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Abstract 

Evaluation of glucosinolate levels throughout the production chain of Brassica 
vegetables; towards a novel predictive modelling approach 

PhD thesis by Ruud Verkerk, Product Design and Quality Management Group, Department of 
Agrotechnology and Food Sciences, Wageningen University, the Netherlands. May 17 2002. 

Glucosinolates are a group of plant secondary metabolites, that can have important 

implications for human health. Vegetables of the Brassica genus, including cabbage, Brussels 

sprouts, broccoli, cauliflower and kohlrabi contribute almost exclusively to our intake of 

glucosinolates. Their added value towards vegetable quality can be ascribed to their health 

promoting properties by a role in the prevention of various cancers. The research described in 

this thesis was done to evaluate how levels of glucosinolates and their health-protective 

breakdown products are affected by various factors within the production chain of Brassica 

vegetables towards a better understanding of the alleged health effects of glucosinolates in 

Brassica vegetables. The research focused specifically on the effects of processing, namely 

chopping and cooking, on the content of glucosinolates. 

It was demonstrated that chopping of raw Brassica vegetables resulted in unexpected, 

increased levels of indolyl glucosinolates after chopping and storage of cabbage and broccoli 

under ambient conditions. In white cabbage a 15-fold increase of 4-methoxy- and 1-methoxy-

3-indolylmethyl glucosinolates was noted after 48 h of storage of chopped cabbage. Chopping 

and storage of broccoli vegetables resulted in a strong reduction of most glucosinolates, 

except for 4-hydroxy- and 4-methoxy-3-indolylmethyl glucosinolates, which increased 3.5-

and 2-fold respectively. In this study we showed that the well-known and accepted breakdown 

mechanism of glucosinolates (hydrolysis by the endogenous enzyme myrosinase) appeared to 

be counteracted by a yet unknown mechanism causing an increase of some indolyl 

glucosinolates. It is postulated that chopping, by mimicking pest damage, triggers a defence 

mechanism in harvested Brassica vegetables. 

Microwave cooking of red cabbage showed to be an interesting alternative for 

conventional cooking. In general, high total glucosinolate levels were observed for various 

microwave treatments due to the absence of leaching of glucosinolates into cooking water that 

takes place in conventional cooked vegetables. An increase in glucosinolate levels appeared 

to be associated with the time/energy input applied resulting in levels exceeding the total 

glucosinolate content of the untreated cabbage. This was probably caused by an increased 

extractability of glucosinolates from the vegetable matrix after the microwave treatment. 

Furthermore, at low (180 Watt) and intermediate microwave powers (540 Watt) substantial 

myrosinase activity was retained in cabbage. Thus, microwave prepared Brassica vegetables 

can offer a higher retention of glucosinolates and controllable amounts of active myrosinase, 

thereby increasing the health-promoting potential of the product. 

Overall it was demonstrated that many steps in the food production chain of Brassica 

vegetables or vegetable products can have a large impact on the glucosinolate content and 

thus affect the final intake of health-protective glucosinolates and breakdown products for 

humans. A novel predictive modelling approach is proposed (and elaborated in a case study 



on cooking) to handle the variations in the production chain and to provide a tool that can be 

used to assist product and process development. This model provides us with more insight in 

the behaviour and fate of glucosinolates and protective derivatives and may lead to options for 

improvement of investigations aimed at understanding the role of dietary glucosinolates and 

breakdown products in the protection against various cancers. Furthermore, predictive 

modelling can be helpful in enhancing the sensitivity of epidemiological studies and 

eventually provide solid evidence for assessment of the risks and benefits of glucosinolate 

consumption. 
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General introduction 



Chapter 1 

Introduction 
In the past few years research from different fields has demonstrated that a broad 

range of non-nutritive, bioactive compounds in foods can play an important role in 

human health and well being. Examples are the groups of flavonoids, carotenoids, 

phyto-oestrogens, folates, and glucosinolates that are ingested via vegetables and fruit. 

The added value can be ascribed to their important role in the prevention of various 

diseases, most importantly ageing diseases like cancer and coronary heart diseases. 

Consequently, with regard to the health-protective properties of these products, 

product nutritional quality has to be defined not only by presence of essential nutritive 

compounds, and absence of undesirable compounds but also by the presence of so-

called health-protective or promoting phytochemicals. 

Food technology and health 
The potential role of fruits and vegetables and derived products in promoting 

health and preventing diseases is studied basically at four levels. In this respect, 

epidemiology looks at associations between nutritional intake and incidence of 

(malignant) diseases. Animal studies investigate the protective mechanisms in 

controlled experiments. Molecular mechanistic studies, usually carried out in vitro, 

also aim at the elucidation of mechanisms. The fourth level consists of human 

intervention studies, where people are given certain amounts of (non)nutrients or 

fruits and/or vegetables and the effects on biomarkers in e.g. human serum are 

measured as indicators for various diseases. In this respect, the field of food 

technology can be seen as an essential input for investigating health benefits from 

food products. Because people eat food products and not ingredients, food technology 

can study the effects of the manufacture of foods on health-protective ingredients. 

Accurate information on the (bio)-availability of protective nutrients and non-

nutrients to humans is needed in order to devise food-based strategies for optimising 

health and improving quality of live. Moreover, based on acquired knowledge, food 

technology can provide tools to design foods with measurable health benefits. 

Glucosinolates in Brassica vegetables 
Nowadays there is a growing amount of evidence for the protective effects of 

different phytochemicals. Food scientists, nutritionists and toxicologists investigate 

promising individual compounds, while epidemiologists focus on certain groups of 

vegetables. Mechanistic studies have shown various health protective effects of a 

large number of compounds. Evidence from animal experiments and epidemiological 

studies suggests that, among other vegetable families, the Brassica vegetables play a 

role in the prevention of cancer. Brassica vegetables comprise a large number of 
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vegetables such as different types of cabbage, cauliflower, broccoli, and Brussels 

sprouts. The protective effect of Brassica vegetables against cancer has been 

suggested to be partly due to their relatively high content of glucosinolates, which 

distinguishes them from other vegetables. 

The research described in this thesis has focussed on this group of glucosinolates, a 

class of more than 100 plant secondary metabolites abundantly present in the 

Brassicacea (Rosa et al., 1997; Verkerk et al., 1998). Glucosinolates themselves 

exhibit minimal anticancer activity, however upon cell damage they undergo 

hydrolysis by the endogenous enzyme myrosinase to yield, amongst others, the 

biological active groups of isothiocyanates and indoles (Fenwick & Heaney, 1983). 

Currently, the role of glucosinolate breakdown products in the prevention of 

carcinogenesis is still under investigation and different protective mechanisms are 

hypothesised. Two distinct protective mechanisms are identified based on inhibition 

of enzymatic activation (phase I) of procarcinogens and induction of enzymes (phase 

II) that deactivate carcinogens (Zhang et al., 1992) and the suppression of tumour 

development via deletion of damaged cells from colonic mucosal crypts by induction 

of programmed cell death (Lund et al., 2001). 

Despite the fact that different epidemiological studies indicate that a diet rich in 

Brassica vegetables can reduce the risk from a number of cancers (Verhoeven et al., 

1996; Voorrips et al., 2000; Zeegers et al., 2001), epidemiology cannot reproducibly 

correlate protection against certain cancers or other diseases with specific vegetables, 

subgroups or individual components. Differences in bioavailability of glucosinolates 

and their breakdown products from foods may partly explain the inconsistency 

between vegetable intake and disease incidence. Therefore, knowledge of their 

bioavailability to human tissues, and in particular of the site and rate of production 

following ingestion of glucosinolates, becomes more crucial (Elfoul et al., 2001). 

Another plausible explanation can be the lack of realistic intake data of 

phytochemicals. To get a realistic estimation of the effect of bio-active compounds 

from foods, a quantitative insight in the processes that take place throughout the entire 

production chain is an absolute requirement. In other words, assessment of accurate 

dietary intake of glucosinolates and their breakdown products can play a crucial role 

in evaluating the protective effects of Brassica vegetables. 

Outline of this thesis 
The objective of this thesis is to quantify glucosinolate levels and to evaluate their 

variability throughout the production chain of Brassica vegetables with special 

emphasis on the effects of processing of the vegetables on glucosinolate content. The 

large number of parameters that affect the glucosinolate level in each step of the 
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production chain hampers the quantification and optimisation of the dietary intake of 

bioactive glucosinolates. Therefore a predictive modelling concept is proposed, which 

describes the fate of glucosinolates and its breakdown products in the production 

chain of Brassica vegetables. 

In Chapter 2 an overview of the various aspects of glucosinolates is given in which 

the versatility of this group of plant metabolites is demonstrated as well as the 

complexity of the glucosinolate-myrosinase system. In Chapter 3 the effects of 

chopping and storage of cabbage are described by which the myrosinase-mediated 

hydrolysis of glucosinolates appears to be counteracted by a yet unknown mechanism 

causing an increase of some indolyl glucosinolates. The fate of glucosinolates and 

effects on myrosinase activity during microwave cooking of red cabbage as 

alternative for conventional cooking is described in Chapter 4. Subsequently, in 

Chapter 5 an impression is given of the variation of glucosinolate levels throughout 

the entire production chain of Brassica vegetables. Furthermore, in this chapter a 

novel predictive modelling approach is proposed to handle these variations in the 

production chain and to provide a tool that can be used to assist product and process 

development. This concept is further elaborated in Chapter 6 with a case study on 

predictive modelling of the glucosinolate-myrosinase system during the cooking of 

red cabbage. Simulation studies were carried out for conventional and microwave 

cooking of cabbage. The results and possible implications of this research are 

discussed in Chapter 7. 

The research described in this thesis provides more insight in the behaviour and 

fate of glucosinolates and protective derivatives and may lead to options for 

improvement of investigations aimed at understanding the role of dietary 

glucosinolates and breakdown products in the protection against cancers. 
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Chapter 2 

Introduction 
Fruit and vegetables are rich sources of micronutrients and dietary fibre, but they 

also contain an immense variety of biologically active secondary metabolites which 

provide the plant with colour, flavour and sometimes antinutritional or toxic 

properties. Amongst the most important classes of such substances are the 

carotenoids, flavonoids, saponins, phytosterols and the glucosinolates. This review is 

concerned with the last of these, a large group of sulphur-containing compounds that 

are found in all the economically important varieties of Brassica vegetables. Currently 

more than 120 different glucosinolates have been identified, of which only a few have 

been investigated thoroughly. 

Glucosinolates and their breakdown products are of particular interest in food 

research, because of their nutritive and antinutritional properties (Fenwick et al., 

1983b), the adverse effects of some glucosinolates on health, but also because of their 

anticarcinogenic properties and finally because they are responsible for the 

characteristic flavour and odour of many Brassica vegetables (van Doom et al., 1998). 

The versatility of these compounds is also demonstrated by the fact that in particular 

some breakdown products are quite toxic to some insects, and therefore could be 

included as one of many natural pesticides. However, a small number of insects such 

as the cabbage aphids use glucosinolates to locate their favourite plants to use as a 

feed and to find a suitable environment to deposit their eggs (Harborne, 1989). 

Furthermore glucosinolates show antifungal and antibacterial properties (Chew, 

1988). 

Historical overview 
Five stages of research activities can be identified stretching back over almost two 

centuries. (1) The classical structural studies of Gadamer at the end of the 19th 

century; (2) the natural product chemical investigations by Kjaer and co-workers over 

the period 1950-80; (3) the interdisciplinary studies responding to the importance of 

rapeseed as an oilseed of commerce and of its defatted meal as a protein-rich animal 

feedstuff and (4) the role and mechanisms of glucosinolates and their breakdown 

products in protecting plants against fungal and insect attack. The growing interest for 

the protective properties of glucosinolates and breakdown products against biological 

processes associated with cellular damage and cancer development in humans can be 

seen as a fifth stage of investigation. 

The glucosinolate sinalbin was isolated from Sinapis alba seeds (white mustard) as 

early as in 1831 (Robiquet and Boutron, 1831). Subsequently Bussy (1840) isolated a 

related compound, sinigrin, from the seeds of black mustard (B. Nigra Koch). The 

first general, although incorrect, structure for these compounds was proposed at the 



Glucosinolates in Brassica vegetables 

end of the nineteenth century by Gadamer (1897), who concluded that the side chain 

was linked to the nitrogen rather than the carbon atom of the "NCS" group. This was 

generally assumed to be correct until 1956, when Ettlinger and Lundeen (1956) 

pointed out the inadequacies of the Gadamer structure and proposed the now correct 

structure (Figure 2.1) and described the first chemical synthesis of a glucosinolate. 

R C S Glucose 

N OS03" 

Figure 2.1 General structure of glucosinolates 

The newly proposed structure contained a P-thioglucose group, side chain R and 

sulphonated oxime moiety. Because of the introduction of more sophisticated 

techniques of analysis and also the pioneering work of Kjaer and coworkers in 

Denmark (Kjaer, 1974; 1976) it was possible to identify more members of the group 

of glucosinolates. 

Recent developments 
The enormous amount of knowledge that is gathered over the many years of 

intensive research is now of great value for the more interdisciplinary approaches for 

elucidating the of recent interest health-protective effect of glucosinolates and their 

breakdown products for humans. Different theories of protective mechanisms are 

hypothesised and investigated intensively. Fahey (2001) has reviewed several cancer-

preventive potentials of glucosinolate metabolites. 

Glucosinolates appear to have little biological impact themselves, but are 

converted to biologically active products such as isothiocyanates, indoles, organic 

cyanides, oxazolidinethiones, and ionic thiocyanate upon enzymatic degradation by 

myrosinase in the presence of water. The key-role of the hydrolytic enzyme 

myrosinase is elaborated further on in this chapter. The anticarcinogenic mechanisms 

by which some of the breakdown products may act include the induction of 

detoxification enzymes and the inhibition of activation of 

promutagens/procarcinogens (Dragsted et al., 1993; Wattenberg, 1992; Jongen, 1996). 

The health-protective properties of Brassica vegetables are substantiated with 

compelling evidence obtained over the past 20 years linking increased consumption of 

Brassica vegetables to reduced incidence of many types of cancer (Steinmetz and 

Potter 1991, 1996; Verhoeven et al., 1996). 
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Glucosinolate distribution among plants 
The occurrence of glucosinolates is limited to dicotyledonous angiosperms. They 

are present in at least 16 different families including Capparaceae, Brassicaceae, 

Moringaceae, Resedaceae containing the largest number of glucosinolates. Among the 

Brassicaceae, the genus Brassica contains a large number of the commonly consumed 

species. These species are cultivated mainly as vegetables, seasonings and sources of 

oil and feed. A considerable amount of data on levels of total and individual 

glucosinolates is now available. Generally, plant species contain four to six different 

glucosinolates in significant amounts. The highest concentrations are usually found in 

the seeds, except for indol-3-ylmethyl and N-methoxyindol-3-ylmethyl 

glucosinolates, which are rarely found in seeds (Tookey et al., 1980). 

Several reports have given the results of the glucosinolate composition of cabbages 

and rapeseed varieties. These reports have been reviewed extensively by Rosa et al. 

(1997). The data are summarised in Table 2.1. The differences in the levels of these 

substances are large, even in the same studies, and even larger in different studies. 

Reasons for these different findings are the use of different varieties, growing 

conditions and the analytical methods used. 

Table 2.1 Principal glucosinolates occurring in the main Brassica vegetables (From Rosa et 
al., 1997). 

Species Glucosinolate 

White cabbage 
(B. oleracea L., Capitata group) 

2-Propenyl 

3-Methylsulfinylpropyl 

Indole glucosinolates 

Indol-3-ylmethyl 

Total 

Concentration 

Average 

36.3 
26.4 
57.2 
66.2 
34.7 
28.3 
72.7 
97.6 
49.4 
31.2 
39.3 
60.7 

143.8 
117.3 
68.6 

200.9 
238.3 

umol/100 g of fresh weight) 

Range 

4.3-147.4 
8.8-148.6 
18.6-104.3 
18.6-162.7 
13.0-70.9 
10.0-58.6 
5.0-193.1 
5.0-279.8 
28.0-106.4 
10.5-104.9 
9.3-129.8 
9.3-200.0 

66.4-236.7 
57.5-234.5 
17.7-112.8 

93.8-348.2 
78.8-602.6 

Reference 

VanEtten et al. (1976) 
VanEtten et al. (1980) 
Sonesetal. (1984a) 
Sonesetal. (1984c) 
VanEtten et al. (1976) 
VanEtten et al. (1980) 
Sonesetal. (1984a) 
Sonesetal. (1984c), 
VanEtten et al. (1976) 
VanEtten et al. (1980) 
Sonesetal. (1984a) 
Sonesetal. (1984c), 

VanEtten et al. (1976) 
VanEtten et al. (1980) 
Mullin and 
Sahasrabudhe (1977) 
Sonesetal. (1984a) 
Sones et al. (1984c) 

10 
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Table 2.1 (continued) 

Concentration (umol/100 g of fresh weight) 

Species Glucosinolate 

Savoy cabbage 
(B.oleracea L., Sabauda group) 

2-Propenyl 

3-Methylsulfinylpropyl 

Indole glucosinolates 

Indol-3-ylmethyl 
2-Hydroxybut-3-enyl 

Total 

Red cabbage 
(B. oleracea L., Capitata group) 

2-Propenyl 

3 -Methylsulfinylpropy 1 

4-Methy Isulfinylbuty 1 

Indole glucosinolates 

But-3-enyl 

2-Hydroxybut-3-enyl 

Total 

Brussels sprouts 
(B. oleracea L., Gemmifera group) 

2-Propenyl 

3-Methylsulfinylpropyl 

Average 

-
14.2 
93.2 

-
46.7 

169.8 
-

80.5 
123.0 

-
0.5 

13.8 

_ 
164.5 
461.3 

12.6 
10.5 
16.1 
14.5 
56.8 
52.3 
72.8 

-
15.1 
9.9 

12.2 
8.3 

204.3 
163.4 
68.8 

136.0 

10.7 
112.1 
76.6 
11.8 

Range 

35.8 
0.1-39.7 
31.5-162.7 
100.7 
15.2-91.1 
72.5-2 79.8 
111.3 
61.7-108.2 
70.2-199.8 
1.6 
0.0-1.3 
5.6-29.5 

275.6 
100.4-265.0 
267.1-653.4 

11.1-14.1 
1.5-25.7 
12.4-19.7 
4.8-31.0 
46.7-66.9 
31.6-82.1 
42.6-102.9 
31.9-67.9 
13.9-16.3 
4.6-15.6 
10.1-14.3 
4.4-5.5 

150.5-258.1 
88.2-234.4 
34.4-98.9 

27.7-392.9 

3.9-22.7 
4.0-280.6 
0.0-154.2 
2.4-18.9 

Reference 

VanEttenetal. (1976) 
VanEttenetal. (1980) 
Sonesetal. (1984a) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 
Sonesetal. (1984a) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 
Sonesetal. (1984a) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 
Sonesetal. (1984a) 

VanEttenetal. (1976) 
VanEttenetal. (1980) 
Sonesetal. (1984a) 

VanEtten et al. (1976) 
VanEttenetal. (1980) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 
VanEtten et al. (1976) 
VanEttenetal. (1980) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 
VanEttenetal. (1976) 
VanEttenetal. (1980) 

VanEttenetal. (1976) 
VanEttenetal. (1980) 
Mullin and 
Sahasrabudhe (1977) 

Heaney and 
Fenwick(1980) 
Carlson et al. (1987a) 
Sonesetal. (1984c) 
Sonesetal. (1984c) 
Carlson et al. (1987a) 

11 
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Table 2.1 (continued) 

Concentration (|imol/100 g of fresh weight) 

Species Glucosinolate 

Brussels sprouts (cont.) 

4-Methylsulfinylbutyl 
J Indol-J-ylmethyl 

1 -Methoxyindol-3-ylmethyl 
But-3-enyl 

2-Hydroxybut-3 -enyl 

Total 

Collards 
(B. oleracea L., Acephala group) 

2-Propenyl 
3 -Methylsulfinylpropyl 
Indol-3-ylmethyl 

Total 

Kale 
(B. oleracea L., Acephala group) 

2-Propenyl 
3-Methylsulfinylpropyl 
Indol-3-ylmethyl 
But-3-enyl 
2-Hydroxybut-3 -enyl 

Total 

Average 

8.2 
113.2 

128.4 
391.8 
21.3 
36.5 

61.3 
4.2 

67.9 

111.9 
8.3 

367.2 

461.9 

495.0 
553.0 

20.7 
38.6 
55.5 
47.3 

220.4 

97.0 
11.7 

107.5 
21.3 
70.1 

439.1 

Range 

0.4-22.6 
45.3-228.4 

54.3-326.3 
327.8-469.4 
1.9-34.3 
7.3-121.7 

6.1-221.2 
0.5-12.2 
93.7-231.9 

29.3-303.5 
1.0-25.4 

330.3-406.5 

138.6-900.7 

318.4-861.9 
465.6-600.6 

12.6-28.7 
8.4-69.3 
44.2-69.5 

64.4-306.7 

62.5-197.3 
0.0-49.9 
67.2-165.3 
5.8-38.1 
16.8-130.3 

316.1-600.0 

Reference 

Carlson etal. (1987a) 
Heaney and 
Fenwick (1980a) 
Sones et al. (1984c) 
Carlson et al. (1987a) 
Sones etal. (1984c) 
Heaney and 
Fenwick (1980a) 
Sones etal. (1984c) 
Carlson etal. (1987a) 
Heaney and 
Fenwick (1980a) 
Sones etal. (1984c) 
Carlson etal. (1987a) 

Mullin and 
Sahasrabudhe (1977) 
Heaney and 
Fenwick (1980a) 
Sones etal. (1984c) 
Carlson etal. (1987a) 

Carlson etal. (1987a) 
Carlson etal. (1987a) 
Carlson etal. (1987a) 
VanEtten and 
Tookey(1979) 

Carlson etal. (1987a) 

Carlson etal. (1987a) 
Carlson etal. (1987a) 
Carlson etal. (1987a) 
Carlson etal. (1987a) 
Carlson etal. (1987a) 

Carlson et al. (1987a) 
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Table 2.1 (continued) 

Concentration (umol/100 g of fresh weight) 

Species Glucosinolate 

Broccoli 
(B.oleracea L., Italica group) 

3 -Methylsulfinylprop y 1 
4-Methylsulfinylbutyl 

rndol-3-ylmethyl 

1 -Methoxyindol-3-ylmethyl 

Total 

Cauliflower 
{B.oleracea L., Botrytis group) 

2-Propenyl 

4-Methylsulfinylbutyl 
3-Methylsulfmylpropyl 

Indol-3-ylmethyl 

1 -Methoxyindol-3 -ylmethy 1 

Total 

Turnip tops 
(B. campestris L. and B. rapa L., 
Rapifera group) 

But-3-enyl 

Pent-4-enyl 

Average 

74.1 
63.9 
97.5 
59.4 
56.0 
8.6 

161.9 

188.2 
248.4 

37.8 
35.8 
10.0 
63.8 
41.0 
37.5 
5.2 

51.0 
50.0 
46.7 
60.6 
42.1 
10.0 
9.3 
7.3 

105.0 

161.9 
135.7 
94.6 

178.2 

-
103.0 

-
58.0 

Range 

0-327.2 
28.9-88.3 
54.0-190.2 
42.2-71.7 
22.8-101.0 
2.4-18.4 

98.5-323.9 

102.2-262.7 
152.2-448.6 

1.3-157.9 
1.3-157.9 
2.9-16.5 
1.8-190.1 
0.0-90.9 
1.3-90.9 
0.0-22.8 
0.0-327.2 
14.8-162.3 
13.6-162.3 
18.8-104.7 
21.0-101.0 
1.1-32.0 
1.2-32.0 
2.3-17.4 

59.1-180.6 

30.2-520.4 
30.2-455.8 
41.1-160.6 
57.1-448.6 

294.0 
38.0-181.0 
151.0 
20.0-112.0 

Reference 

Lewis etal. (1991) 
Carlson etal. (1987a) 
Lewis etal. (1991) 
Carlson etal. (1987a) 
Lewis etal. (1991) 
Lewis etal. (1991) 

Mullin and 
Sahasrabudhe (1977) 
Carlson etal. (1987a) 
Lewis etal. (1991) 

Sones etal. (1984b) 
Sones etal. (1984c) 
Carlson et al. (1987a) 
Lewis etal. (1991) 
Sones etal. (1984b) 
Sones etal. (1984c) 
Carlson etal. (1987a) 
Lewis etal. (1991) 
Sones etal. (1984b) 
Sones etal. (1984c) 
Carlson etal. (1987a) 
Lewis etal. (1991) 
Sones etal. (1984b) 
Sones etal. (1984c) 
Lewis etal. (1991) 

Mullin and 
Sahasrabudhe (1977) 
Sones etal. (1984b) 
Sones etal. (1984c) 
Carlson etal. (1987a) 
Lewis etal. (1991) 

Carlson etal. (1981) 
Carlson et al. (1987b) 
Carlson etal. (1981) 
Carlson et al. (1987b) 
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Table 2.1 (continued) 

Species Glucosinolate 

Concentration (umol/100 g of fresh weight) 

Average Range Reference 

Turnip tops (cont.) 
Total 

186.0 
586.0 
80.0-292.0 

Carlson et al. (1981) 
Carlson et al. (1987b) 

Rapeseed 
(B. napus L.) 

But-3-enyl 
2-Hydroxybut-3-enyl 
Pent-4-enyl 
2-Hydroxypent-4-enyl 

Total 
(Summer rape) 
(Spring rape) 

3,187 
10,937 

824 
522 

8,031 

2,175 

Fenwick et al. (1983a) 
Fenwicketal. (1983a) 
Fenwick etal. (1983a) 
Fenwicketal. (1983a) 

8,425-17,002 Fenwick et al. (1983a) 
8,140-12,582 Fenwick et al. (1983a) 
1,000-2,700 Sang and 

Salisbury (1988) 

Rapeseed 
(B. campestris L.) 

But-3-enyl 

2-Hydroxybut-3-enyl 

Pent-4-enyl 

2-Hydroxypent-4-enyl 

4-Hydroxyindol-3 -y lmethy 1 

13,455 
3,863 

14,207 

23,450 
1,836 

209 

250 
1,704 

240 

322 

161 

396 

261 

10,706-16,107 
1,302-10,281 

11,960-15,698 

-
1,050-2,387 

0.0-520 

-
1,092-2,941 

0-334 

234-385 

0-334 

294-475 

0-474 

Fenwicketal. (1983a) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
Davis etal. (1991) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
Davis etal. (1991) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
Sang and 
Salisbury (1988) 
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Chemical structure 
All the glucosinolates possess a common basic structure (Figure 2.1) comprising of 

a B-D-thioglucose group, a sulphonated oxime moiety and a variable side-chain 

derived from methionine, tryptophan, phenylalanine and some branched-chain amino 

acids. Glucosinolate side-chains are characterised by a wide variety of chemical 

structures. The side chains can be divided into three main groups: aliphatic (alkyl or 

alkenyl group), heterocyclic (indolyl) and aromatic chains. Table 2.2 gives an 

overview of the glucosinolates commonly found in Brassica vegetables. The most 

numerous glucosinolates are those containing either straight or branched carbon 

chains. Many of these compounds also contain double bonds (olefins), hydroxyl or 

carbonyl groups or sulphur linkages. The largest single group (one-third of all 

glucosinolates) contain a sulphur atom in various states of oxidation (e.g. 

methylthioalkyl-, methylsulphinylalkyl-, or methylsulphonylalkyl). The side chain of 

the glucosinolates is the basis for the structural heterogeneity and for the biological 

activity of the enzymatic and chemical breakdown products. 

Table 2.2 Glucosinolates commonly found in Brassica vegetables. 

Trivial name Chemical name (side chain R) 

Aliphatic glucosinolates 
glucoiberin 
progoitrin 
sinigrin 
gluconapoleiferin 
glucoraphanin 
glucoalyssin 
glucobrassicanapin 
glucocheirolin 
glucoiberverin 
gluconapin 

Indolyl glucosinolates 
4-hydroxyglucobrassicin 
glucobrassicin 
4-methoxyglucobrassicin 
neoglucobrassicin 

Aromatic glucosinolates 
glucosinalbin 
glucotropaeolin 
gluconasturtiin 

3 -methylsulphinylpropyl 
2-hydroxy-3 -butenyl 
2-propenyl 
2-hydroxy-4-pentenyl 
4-methylsulphinylbutyl 
5-methylsulphinylpentyl 
4-pentenyl 
3 -methylsulphonylpropyl 
3 -methylthiopropyl 
3-butenyl 

4-hydroxy-3 -indolylmethyl 
3-indolylmethyl 
4-methoxy-3 -indolylmethyl 
1 -methoxy-3-indolylmethyl 

p-hydroxybenzyl 
benzyl 
2-phenethyl 
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Synthesis of glucosinolates 
Biosynthesis 

Kjaer and Conti (1954) suggested that amino acids might be natural precursors of 

the aglycone moiety of glucosinolates based on the similarities between the carbon 

skeletons of some amino acids and the glucosinolates. This hypothesis was confirmed 

by studies for the different biosynthetic stages. Most of these studies have involved 

the administration of variously labelled compounds (3H, 14C, 15N or 35S) to plants and 

the assessment of their relative efficiencies as precursors on the basis of the extent of 

incorporation of isotope into the glucosinolate. Glucosinolate biosynthesis can be 

classified in three stages i) amino acid chain elongation, ii) synthesis of the 

glucosinolate from the amino acid and iii) chain modifications (see Figure 2.2). 

• n . t h i o n i n . 
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m e t h y l - S O 2 - p r o p y l 
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Figure 2.2 Model for the biosynthesis of methionine derived aliphatic glucosinolates in 
Brassica vegetables. Abbreviations: Elong = methionine elongation enzyme, UDP-glu T = 
UDP-glucose: thiohydroximate glucosyltransferase, Sulpho T = 3'PAPS-5'-phosphosulphate: 
desulphoglucosinolate sulphotransferase, gs = glucosinolate (Source: van Doom et al., 1999). 

i) side-chain elongation 

The biosynthesis of glucosinolates from amino acids starts with modification of the 

amino acids (or chain extended derivatives of amino acids) via an aldoxime 

intermediate. Kutacek et al. (1962) demonstrated that [3-14C]tryptophan was 

converted into 3-indolylmethylglucosinolate (glucobrassicin). Similarly Underhill et 
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al. (1962) and Benn (1962) showed that phenylalanine was incorporated into the 

benzylglucosinolate (glucotropaeolin) with great efficiency. The origin of 

glucosinolates can be divided into two groups: those derived from common amino 

acids and those from modified amino acids. Not all of the common amino acids lead 

to corresponding glucosinolates being found in nature. For instance the glucosinolate 

from glycine is probably chemically unstable and has therefore never been found in 

plants (Kjaer, 1976). The glucosinolate from alanine (methyl glucosinolate) is 

apparently absent in Brassicas, but is the most widely distributed glucosinolate within 

the Capparaceae. Valine and isoleucine glucosinolates (isopropyl and sec-butyl 

glucosinolates) are widely distributed in Brassicas. Phenylalanine and tyrosine can be 

transformed into the aromatic benzyl- and p-hydroxybenzyl glucosinolates 

respectively. The glucosinolate from tryptophan (indol-3-ylmethyl glucosinolate) 

appears to occur only in seedlings and young vegetative tissue in various families, 

including the Brassicaceae. 

The modification of the common amino acids is mainly in the form of side chain 

elongation. A general route for this is proposed by Kjaer (1976). Various enzymes are 

involved in these steps. The elongation of the side chain from the amino acid 

methionine gives rise to a large family of glucosinolates that occur in Brassicas. Their 

side chains can be generally expressed as MeS(CH2)n with n ranging from 3 to 11 

(Dawson et al., 1993). In a later stage these glucosinolates can be oxidized to the 

corresponding sulfoxides or sulfones. Aromatic amino acids may also undergo 

homologization, for example, phenylalanine being metabolized into 2-phenethyl 

glucosinolate (Dawson et al., 1993). 

The same modifications also take place in the biosynthesis route of other plant 

toxins: the cyanogenic glycosides. However the co-occurrence of glucosinolates and 

cyanogenic glycosides in the same plant is very rare (the exception is Carica papaya). 

The biosynthesis of the cyanogenic glycosides has been recently elucidated in more 

detail by Halkier et al. (1991) and by Koch et al. (1992). Following the formation of 

the aldoxime, the glucosinolate is formed by S-insertion, glucosylation and 

sulphatation. Further modification of the side chain can occur in the formed 

glucosinolate by for example oxidation and/or elimination reactions. The different 

steps in the synthesis is further discussed in some more detail. 

ii) Aldoxime formation 

Aldoxime formation systems have been elucidated in cassava and sorghum 

(Halkier and Lindberg-Nteller, 1991; Koch et al., 1992). In these plants the aldoxime 

formation is involved in the synthesis of cyanogenic glycosides. In Chinese cabbage 

the formation of indole-3-aldoxime is by another system (Ludwig-Muller and 

Hilgenberg, 1988). Both systems are membrane bound. The most recent pathway for 
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aldoxime biosynthesis has been proposed by Koch et al. (1992). Dawson et al. (1993) 

have shown homophenylalanine to be effectively converted to 3-

phenylpropanaldoxime when added to rapeseed (Brassica napus) leaf microsomal 

preparations. Lykkesfeldt and Lindberg- Moller (1993) have observed extracts of 

Tropaeolum majus to inhibit glucosinolate formation in microsomal systems. The 

extracts also inhibited the cyanogenic glucoside formation in a sorghum microsomal 

preparation. The authors suggested benzyl isothiocyanate to be the (partly) inhibiting 

compound. 

Hi) Glucosylation and sulphation 

Formation of the aldoxime is followed by conjugation reactions which introduce 

sulphur to form thiohydroximic acid. Sulphur from cysteine is most effectively 

incorporated (Underhill et al., 1973). The subsequent S-glucosylation is catalyzed by 

thiohydroximate S-glucosyltransferase. This enzyme has been purified and 

characterized by GrootWassink et al. (1994). Sulphation of the desulphoglucosinolate 

is catalyzed by 3'-phosphoadenosine-5'-phosphosulfate. After this formation of the 

overall glucosinolate skeleton modification can occur like stereo-specific insertion of 

oxygen and elimination of methylthiols. 

Chemical synthesis 
Although several methods for the synthesis of a number of glucosinolates (e.g. 

benzyl-, methyl-, phenethyl-, 2-propenyl- and indolyl-) were reported over the past 

four decades, it is clear that these compounds were not routinely synthesised 

(Ettlinger and Lundeen, 1957; Benn and Ettlinger, 1965; Gil and MacLeod, 1980). 

Synthetic routes to naturally occurring indolyl glucosinolates have been developed by 

Rollin and colleagues (Viaud and Rolin, 1990; Viaud et al., 1992; Chevolleau et al., 

1993). 

Most recently Cassel et al. (1998) have reported a new approach to the synthesis of 

glucosinolate precursors that may broaden the range of synthetically accessible 

compounds. Glucoraphanin, the most interesting type of glucosinolate from a health-

protective standpoint, has not yet been synthesised. However, controlled oxidation of 

glucoerucin to yield glucoraphanin and corresponding isothiocyanate sulphoraphane 

has been recently reported by Iori et al. (1999). 

Degradation of glucosinolates 
Myrosinase 

Myrosinase (thioglucoside glucohydrolase EC 3.2.3.1) is the trivial name for the 

enzyme (or group of enzymes) responsible for the hydrolysis of glucosinolates. It is 

located in cellular compartments separate from glucosinolates in the plant and is 
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released when plant cells are damaged upon wounding of the plant, mastication of 

fresh plants (vegetables) or by tissue damage caused by post-harvest treatments or 

processing (Fenwick & Heany, 1983; Rosa et al., 1997). 

The glucosinolate/myrosinase system may have several functions in the plant; (i) 

plant defence against fungal diseases and pest infestation, (ii) sulphur and nitrogen 

metabolism and (iii) growth regulation. Myrosinase has been found in seed, leaf, 

stem, and roots of glucosinolate-containing plants and the activity, which is dependent 

on the species, cultivar and plant organ, appears to be highest in young tissues of the 

plant (Bones, 1990). The complexity of the myrosinase-glucosinolate system indicates 

an important role in cruciferous plants (Bones & Rossiter, 1996). 

Plant breeding strategies over the past decades have concentrated on reducing the 

glucosinolate content of rapeseed to improve the acceptability (reduce toxicity) of 

rapeseed meal and meet the increasingly stringent requirements of the processing 

industry. One approach to reduce undesired breakdown products of glucosinolates 

would be to change the amount of myrosinase available for hydrolysis of the 

glucosinolates. 

Myrosinase exists in multiple forms in many plants. By analytical gel 

electrophoresis various studies have demonstrated the presence of several myrosinase 

isoenzymes (MacGibbon and Allison, 1970; Buchwaldt et al., 1986). Different 

patterns were found depending on whether the extracts were made from leaf, stem, 

root or seed. No direct correlation between myrosinase activity and glucosinolate 

content has been found (Bones, 1990). Several reports have described the isolation 

and physico-chemical characterisation of myrosinase in different Brassicaceae species 

(Durham and Poulton, 1990; Bjorkman, and Janson, 1972). 

All plant myrosinases characterised are glycosylated, although to different extents for 

different isoforms. Little is known about the substrate specificity of myrosinase 

isoenzymes. Two myrosinases isolated by James and Rossiter (1991) degraded 

different glucosinolates at different rates. However, both isoenzymes show highest 

activity against aliphatic glucosinolates and least activity against indole 

glucosinolates. They concluded that members of a given class of glucosinolates are 

degraded at approximately the same rate in vitro. It is also possible that the specificity 

is affected by associated factors like epithiospecifier protein, myrosinase-binding 

protein or other myrosinase associated proteins or components. 

Factors affecting myrosinase activity 
The rate of hydrolysis of glucosinolates is determined to large extent by the 

activity of the enzyme myrosinase. The activity depends on the amount of substrate 

and the enzyme concentration, but also on some intrinsic (metal ions, ascorbic acid, 

pH) and extrinsic (temperature) factors. 
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As for all enzymes, the temperature plays a dual role in the myrosinase activity. 

The activity increases with increasing temperatures, while at high temperature 

inactivation will take place by denaturation of the enzyme. Different temperature 

optima are described probably depending on the different sources of myrosinase. 

Optimal myrosinase activity on sinigrin from radish roots (Raphanus Sativus) was 

37°C and complete deactivation of the enzyme was achieved over 45°C (Jwanny et al., 

1995). Temperature optima for white and red cabbage is 60°C (Yen and Wei, 1993) 

and for Brussels sprouts 50°C (Springett and Adams, 1989). The optimal pH for 

myrosinase activity is strongly dependent on its origin. The optimal pH for broccoli, 

both in the absence and presence of enzyme activators, was situated between 6.5 and 

7, corresponding to the natural pH of fresh broccoli juice (Ludikhuyze et al., 2000). 

Myrosinase from white and red cabbage was characterised by a pH optimum of 8 

(Yen and Wei, 1993), while white mustard and rapeseed myrosinase exerted maximal 

activity in the pH range 4.5 to 4.9 (Bjorkman and Janson, 1972). For myrosinase from 

Brussels sprouts on the other hand, two pH optima were found, 6.0 to 6.5 and 8.0 

(Springett and Adams, 1989). 

Ascorbic acid has been shown to modulate myrosinase activity in some species, it 

inhibits at high concentrations and activates at low concentrations. The activation 

appears to be due to a conformational change in the protein structure, leading to an 

enhanced reaction rate when the effector binding sites are occupied (Ohtsuru and 

Hata, 1973). Metal ions are known to affect the enzyme myrosinase either showing an 

increase or decrease on the activity as well as affecting the course of the reaction and 

the ratio of products formed (Jwanny et al., 1995; MacLeod and Rossiter, 1987). A 

combination of MgCb and ascorbic acid was found to enhance enzyme activity, while 

it was observed that MgCl2 in itself could not be used as enzyme activator 

(Ludikhuyze et al., 2000). 

Hydrolysis products 
Hydrolysis products of glucosinolates contribute significantly to the typical flavour 

of Brassica vegetables. The enzyme myrosinase catalyses the hydrolysis of 

glucosinolates by splitting off the glucose, the unstable aglucone (thiohydroxymate-

O-sulphonate) then eliminates sulphate by a Lossen rearrangement (Figure 2.3). The 

resulting products can be either nitriles, isothiocyanates, indoles, amines, 

epithionitriles, thiocyanates, oxazolidine-2-thiones or other less prevalent products. 

The structure of the resulting products depends on a variety of factors. Whether 

isothiocyanates or nitriles are formed depends on the specific glucosinolates, the part 

of the plant where they are located, the treatment of plant material before the 

hydrolysis of glucosinolates and conditions, especially pH, during hydrolysis. 
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Isothiocyanates are usually produced at neutral pH while nitrile production occurs 

at lower pH. Indole glucosinolates such as glucobrassicin undergo enzyme hydrolysis 

to give 3-indolemethanol, 3-indoleacetonitrile and 3,3'-diindolylmethane (Labague et 

al., 1991). Hanley et al. (1990) isolated an indole isothiocyanate from 

neoglucobrassicin degradation under specific experimental conditions. Less volatile 

compounds such as epithionitriles and oxazolidine-2-thiones are formed from 

glucosinolates with an hydroxyl group at the 2-position of the side chain. 

Only three glucosinolates produce thiocyanates during hydrolysis. These are allyl-, 

benzyl- and 4-methylthiobutyl glucosinolates. Epithioalkanes are produced from the 

hydrolysis of alkenyl glucosinolates when myrosinase co-occurs with a small labile 

protein known as epithiospecifier protein. 

R — N = C = S 

isothiocyanate 

6 11 5 Myrosinase 

N-sulphate 

+ D-Gfucose 

R—C=N 

nitrile 

R — S — C = N 

thiocyanate 

Figure 2.3 Hydrolysis of alkenyl glucosinolates and their breakdown products formed. 

Biological effects of glucosinolates 
The consumption of vegetables and fruit has always been seen as health promoting. 

The protective effect of Brassica vegetables against cancer has been suggested to be 

partly due to their relatively high content of glucosinolates, which distinguishes them 

from other vegetables. 

Besides the beneficial health effects some glucosinolates and breakdown products 

show toxicological effects as well. The toxicity of glucosinolates has been described 

in many studies. Such effects are determined by the aglucones. 

Anticarcinogenicity 
In the largest and most detailed review of diet and cancer yet published, The World 

Cancer Research Fund (WCRF) concluded that diets rich in cruciferous vegetables are 

very likely to protect human beings specifically against cancers of the colon, rectum 

and thyroid. Also when consumed as part of diet high in other types of vegetable, they 

are assumed to give protection against cancer at other sites. This epidemiological 

evidence is consistent with many experimental studies, which from the 1960s onwards 
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have indicated that glucosinolate breakdown products exert anticarcinogenic activity 

in experimental animal models (Verhoeven et al., 1997; Hecht, 1999). 

Carcinogenesis is a multistage process in which at least three distinct phases can be 

recognised: the initiation phase, the promotion phase and the progression phase. At 

each stage of the carcinogenic process a possibility of intervention exists. Wattenberg 

proposed a system of classification of dietary anticarcinogens based on the stage of 

carcinogenesis at which they act (Wattenberg, 1983; 1985). 

Anticarcinogens can then be divided in three major classes. The first class consists 

of compounds that prevent the formation of carcinogens from precursor substances. 

The second are called "blocking agents" and have been found to be effective when 

given immediately before or during treatment with chemical carcinogens, while the 

third class, called "suppressing agents", are thought to act by preventing the 

progression of initiated cells to fully transformed tumour cells. 

There has been much interest in isothiocyanates that can exert high protective, 

anticarcinogenic effects. Isothiocyanates arise in plants as a result of enzymatic 

cleavage of glucosinolates by the endogenous enzyme myrosinase. These compounds 

are attracting increasing attention as chemical and dietary protectors against cancer. 

Their anticarcinogenic activities have been demonstrated in rodents (mice and rats) 

with a wide variety of chemical carcinogens (Table 2.3). The anticarcinogenic effects 

of isothiocyanates can be explained by two different mechanisms. The first, a 

"blocking" effect, involves induction of Phase II enzymes, including quinone 

reductase in the small intestinal mucosa and liver (Zhang et al., 1992a, Talalay & 

Zhang, 1996). These enzymes are involved in the detoxification of xenobiotics. 

Increased activity will therefore block exposure of target tissues to DNA damage. The 

second mechanism, a "suppressing" effect, involves suppression of tumour 

development via deletion of damaged cells from colonic mucosal crypts by induction 

of programmed cell death (apoptosis). Smith et al. (1996) showed that dietary 

supplementation with the glucosinolate sinigrin, or its breakdown product allyl 

isothiocyanate, can protect against chemical induced colorectal carcinogenisis by 

stimulation of apoptosis. Another important example is sulphoraphane, an 

isothiocyanate present in high levels in broccoli, which acts as a strong inducer of 

phase II enzymes in vitro (Talalay et al., 1995). Other isothiocyanates derived from 

common Brassica vegetables may well exert comparable levels of biological activity 

(Chung et al., 1996). 

The evidence for anticarcinogenic effects of Brassica vegetables in humans is 

strongly supported by evidence obtained with experimental animals. In a review by 

Steinmetz & Potter (1991) the overall conclusion from an analysis of 115 case-control 

studies was that a relatively high consumption of Brassica vegetables was associated 

with a reduction in risk of cancer at many sites. For Broccoli consumption in 
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particular, there was a uniform protective effect, with no contrary evidence in any 

study. Consumption of Brassicas, which might be expected to yield high levels of 

indoles and isothiocyanates was particularly strongly associated with a lower risk of 

colon cancer. 

Table 2.3 Protection by a variety of isothiocyanates and glucosinolates against 

chemical carcinogenesis in rat and mouse organs. 

Carcinogens 
3'-Methyl-4-dimethylaminoazobenzene 
4-Dimethylaminoazobenzene 
7V-2-Fluorenylacetamide, acetylaminofluorene 
7,12-Dimethylbenz[a]anthracene (DMBA) 
Benzo[a]pyrene 
Methylazoxymethanol acetate 
7V-Nitrosodiethylamine 
4-(Methylnitroamino)-1 -(3-pyridyl)-1 -butanone (NNK) 
./V-Nitrosobenzylmethylamine (NBMA) 
Ar-Butyl-7V-(4-hydroxybutyl)nitrosamine 

Protective isothiocyanates 
a-Naphthyl-NCS, P- naphthyl-NCS 
Phenyl-[CH2]n-NCS, where n = 0, 1, 2, 3, 4, 5, 6, 8, 10 
PhCH(Ph)CH2-NCS, PhCH2CH(Ph)-NCS 
CH3[CH]n-NCS, where n = 5,11 
CH3[CH2]3CH(CH3)-NCS 
Sulphoraphane, CH3S(0)[CH2]4-NCS 
2-Acetylnorbornyl-NCS (3 isomers) 

Protective glucosinolates 
Indolylmethyl glucosinolate (glucobrassicin) 
Benzyl glucosinolate (glucotropaeolin) 
4-Hydroxybenzyl glucosinolate (glucosinalbin) 

Tumour target organs 
Rat: liver, lung, mammary gland, bladder, small intestine/colon, oesophagus 
Mouse: lung, forestomach 

Source: P. Talalay and Y. Zhang (1996) 

Toxicity 

Vegetables and seeds of the Cruciferea family, such as crambe, kale, mustard, rape, 

cabbage, turnips, etc., are rich in glucosinolates. Many feeds containing a high 

concentration of rape or crambe seed meal have been shown to decrease feed intake 

and growth rate and to cause goitrogenity, enlarged livers, kidneys, thyroid and 

adrenal glands among different animal species. These adverse effects were attributed 

to the high content of glucosinolates and their derivatives, which include goitrin, 

isothiocyanates and nitriles. In humans, epidemiological surveys show a correlation 
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between endemic goitre and consumption of cruciferous vegetables whereas 

experimental studies are unambiguous. Langer et al. (1971) demonstrated the 

goitrogenic properties of cruciferous vegetables and purified glucosinolates and their 

derivatives but the findings of McMillan et al. (1986) are not in agreement with these 

results. 

Among the problems associated with the consumption of these compounds, those 

affecting the thyroid have been studied most extensively (van Etten, 1969). The 

breakdown product 5-vinyl- oxazolidine-2-thione (OZT) was found to be the 

predominant product from the heat-treated rapemeal regardless of the source of 

myrosinase enzyme, which may explain the ability of rapeseed to induce thyroid 

hypertrophy (McKinnon and Bowland, 1979). In certain parts of the world the 

consumption of excessive amounts of Brassicas may contribute to hypothyroidism, 

particularly when natural iodine in the diet is limited. Furthermore the extent to which 

the thyroid function is impaired by glucosinolates is related to species, intake, 

duration of feeding and the nature of the compound. Also the mechanism involved 

seemed to be different. Thiocyanate ions are considered to behave as iodine 

competitors and, therefore cause goitrogenicity only in cases of iodine deficiency, 

while oxazolidine-2-thiones interfere with thyroxine synthesis and therefore, will be 

goitrogenic irrespective of the iodine status (Fenwick et al., 1983). In addition, 

isothiocyanates of the parent glucosinolates sinigrin, glucocheirolin, glucotropaeolin 

and nitriles have shown as well goitrogenic effects also depending on the iodine 

content of the diet. 

Most of the studies on the physiological properties of glucosinolates and their 

breakdown products have been carried out with feeding experiment using rapeseed 

and Crambe abyssinica. These studies showed considerable enlargement of thyroid, 

adrenal gland, kidney and liver. The levels ingested by humans are usually not a 

problem, but animals can suffer if they are fed too much rapeseed meal, which is used 

as a protein supplement in livestock and poultry feeds. Unfortunately the use of this 

meal for feeding purposes can result in various manifestations of toxicity. These 

problems have led to the introduction of "double zero" varieties of rape which are low 

in both erucic acid (less than 2% of the total fatty acids) and glucosinolates (less than 

1% w/w). These "double zero" varieties are common in Canada, and are given the 

general name Canola (Bell, 1993). 

During seed processing most glucosinolate breakdown products are formed by 

which the degree of degradation depends on seed properties and processing conditions 

such as moisture level, pressure, or temperature. Reduction in glucosinolate content 

can be obtained by autoclaving meal for 1.5 hr (Mansour et al., 1993), treatment of 

meal with Cu2+ (Schone et al., 1990) and use of ammonia in conjugation with other 

processing (Keith and Bell, 1982). 
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The use of rapeseed meal containing glucosinolates as feedstuff and their 

antinutritional effects has been extensively studied. Although there is some 

controversy about the quantity of glucosinolates that is tolerated by various animal 

species, threshold levels for glucosinolates in diets have been suggested (Hill, 1991; 

Bell, 1993; Mawson et al, 1993). 

Food quality and glucosinolates 
The typical flavour and odour of Brassica vegetables is largely due to 

glucosinolate-derived volatiles (isothiocyanates, thiocyanates, nitriles). It has been 

shown that the glucosinolates sinigrin and progoitrin are involved in the bitterness 

observed in Brussels sprouts (Fenwick et al., 1983b). Van Doom et al. (1997) 

confirmed the role of sinigrin and progoitrin in taste preference by using taste trials 

with samples of Brussels sprouts. It appeared that consumers preferred Brussels 

sprouts with a low sinigrin and progoitrin content. In cabbage sinigrin is an abundant 

glucosinolate which gives a pungent and bitter flavour. The stronger flavour in the 

heart of the cabbage is in agreement with the presence of higher amounts of sinigrin 

found in the cabbage heads. Low levels of 2-propenyl isothiocyanates formed from 

sinigrin, result in a flat and dull product (Rosa et al., 1997). Pungency and bitterness 

caused by glucosinolate breakdown products play a role in the taste preference of 

consumers and are therefore important quality factors for Brassicas. 

Improvement of flavour and nutritional properties in Brassica can be achieved by 

use of molecular markers in selection of specific glucosinolate lines in breeding 

programmes (Campos-De Quiroz and Mithen, 1996). Developing Brassicas less 

susceptible to diseases, less attractive to insects and with desirable agronomic storage 

and sensory characteristics by manipulating the glucosinolate levels can result in 

crops with higher commercial value (Borek et al., 1994; Brown & Morra, 1995). 

The positive effects against cancer can be considered as another notable quality 

factor of glucosinolates and their derivatives. Brassicaceous vegetables or 

glucosinolate derivatives have been shown to modify endogenous detoxification 

processes and, thus, may interfere in a positive way with the metabolism of chemical 

carcinogens (see §6.1; McDanell et al. 1988; Jongen, 1996). Enhancement of these 

effects by increasing the levels of specific glucosinolates is of importance for 

obtaining protective effects at normal consumption levels 

Responses to stress factors 
Glucosinolates and their breakdown products are considered to function as part of 

the plant's defence against insects attack and to act as phagostimulants (Fenwick et 

al., 1983; Chew, 1988). There is now considerable information on the importance of 
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glucosinolates in insect-plant interactions. However less is known about the influence 

of biotic factors on glucosinolates metabolism in plants. It has been demonstrated in 

different studies that attack by insects, including aphids (Lammerink et al., 1984), root 

flies (Birch et al., 1990), flea beetles (Koritsas et al., 1991), changes both the total 

concentration of glucosinolates on different plant tissues and the relative proportions 

of aliphatic and aromatic compounds. Other examples of stress-induced increases in 

levels of glucosinolates are mechanical wounding and infestation (Koritsas et al., 

1991), methyl jasmonate exposure (Doughty et al., 1995), grazing (Macfarlane Smith 

et al., 1991) for intact plants or UV-irradiation (Monde et al., 1991) and chopping 

(Verkerk et al., 2001; Chapter 3 of this thesis) for post-harvest vegetables. 

Apparently, besides the breakdown mechanism of glucosinolates also an induction 

mechanism of glucosinolate biosynthesis by stress factors is present in Brassica 

vegetables. 

Effects of processing 
The effects of processing on glucosinolate levels in vegetables have been reviewed 

by De Vos and Blijleven (1988). Processes like chopping for raw consumption, 

cooking and fermentation damages plant cells and brings myrosinase in contact with 

glucosinolates which influence the levels of glucosinolates, the extent of hydrolysis 

and the composition, flavour and aroma of the final products. Also low-temperature 

storage like freezing and refrigerating can alter the content of glucosinolates. Freezing 

without previous inactivation of myrosinase results in an almost complete 

glucosinolate decomposition after thawing (Quinsac et al., 1994). During the 

sauerkraut fermentation of white cabbage all glucosinolates were hydrolyzed within 2 

weeks according to Daxenbichler et al. (1980). The breakdown products investigated 

were the thiocyanate ion, isothiocyanates, goitrin and the nitriles l-cyano-3-

methylsulfinylpropane (from glucoiberin) and l-cyano-2,3-epithiopropane (from 

sinigrin). Isothiocyanates, goitrin, and cyano-2,3-epithiopropane were not detectable 

throughout fermantation. The effect of cooking on glucosinolates has received a 

relatively large amount of attention. Cooking reduces glucosinolate levels by 

approximately 30% - 60%, depending on the type of compound. Also thermal 

degradation and washing out occurs, leading to large losses of intact glucosinolates. 

Degradation products apparently are hardly detectable after cooking, with the 

exception of the thiocyanate ion and ascorbigen (McLeod & McLeod, 1968; 

McMillan et al., 1986). Pulping of plant tissues results in the complete breakdown of 

glucosinolates byautolysis, -

Prior to many processing steps chopping of the vegetable is necessary. Chopping 

of fresh plant tissues creates optimal conditions for myrosinase and a high degree of 
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glucosinolate hydrolysis can be expected. In contrast to these expectations and 

reported findings Verkerk et al. (2001) observed, after chopping and storage to air of 

different kinds of Brassica vegetables, elevated levels of indolyl glucosinolates. In 

white cabbage the largest increase they found was for 4-methoxyglucobrassicin which 

increased 15-fold. These data are further elaborated in chapter 3. Increasing the 

amount of (indolyl)glucosinolates can have large influences on quality factors as 

flavour and anticarcinogenicity of Brassica vegetables. These findings will change 

our ideas about the fate of glucosinolates and the consequences for estimation of 

intake levels from processed Brassica vegetables. 

Bioavailability 
It is now clear that our understanding of anticarcinogenic properties of 

isothiocyanates has improved considerably over recent years. Therefore, our 

knowledge of their bioavailability to human tissues, and in particular of their site and 

rate of production following ingestion of glucosinolates, becomes more crucial. The 

structural diversity and chemical reactivity of glucosinolate breakdown products, as 

well as the complexities of the environment from which they have to be isolated, have 

long inhibited progress in this field. Improvements in analytical methods for detecting 

and quantifying isothiocyanates and other metabolites are now changing this situation. 

Current evidence suggests that when plant myrosina$e is active, glucosinolates are 

rapidly hydrolysed in the food or in the proximal guf.\ If the enzyme myrosinase is 

deactivated, for example by cooking the vegetables prior to consumption, the intact 

glucosinolates may be able to reach the distal gut where they could be metabolised by 

the resident microflora. This hypothesis was confirmed by studies with gnotobiotic 

rats in which the introduction of a whole faecal flora from rats or humans into initially 

germfree rats resulted in the disappearance of intact glucosinolates in the cecal and 

colonic contents, coupled with the emergence of systemic effects reflecting 

glucosinolate hydrolysis. It appears that the ability to degrade glucosinolates is widely 

distributed among intestinal bacteria (Oginski et al., 1965), and Rabot et al. (1995) 

have isolated from human faeces representatives of various genera (e.g. Bacteroides, 

Peptostreptococcus, Enterococcus, Escherichia, Proteus) which are able to carry out 

the degradation of progoitrin and sinigrin in vitro. However little is known of the 

nature of glucosinolate breakdown products released by human colonic bacteria. 

Isothiocyanates have been detected upon in vitro incubation of human faeces with 

cooked watercress juice (Getahun and Chung, 1999). 

The contribution of the digestive microflora to the production of isothiocyanates in 

vivo, in the distal gut, has been recently ascertained; following gavage with 50 umol 

sinigrin, substantial amounts of allyl isothiocyanate (up to 100 nmol 12 h after dosing) 
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were measured in the cecal and colonic contents of gnotobiotic rats harbouring a 

human digestive strain of Bacteroides, while no allyl cyanide could be detected 

(Elfoul et al., 1999). The formation of other derivatives, eg desulphoglucosinolates or 

thiocyanates, has scarcely been investigated, and studies are often not conclusive, 

mainly because of analytical impediments. Nevertheless, the versatility of microbial 

enzymatic activities could lead to a wider array of metabolites than those so far 

identified. 

Analytical methods 
The large amount of different glucosinolates and the fact that each glucosinolate 

can produce different breakdown products makes the analysis very complicated. The 

analytical methodology was extensively reviewed by McGregor et al. (1983). A brief 

overview is presented here. 

The analysis can be divided into methods for total glucosinolates, individual 

glucosinolates and the breakdown products. Over the past 4 decades, increased 

knowledge of the diversity of the glucosinolates, their enzymatically released products 

and factors influencing their release have led to a multiplicity of analytical methods. 

Glucosinolates coexist with myrosinase in the plant, and processes like grinding or 

cutting of fresh tissue in presence of water will initiate a rapid hydrolysis of these 

compounds. For analysis of intact glucosinolates inhibition of myrosinase activity is 

essential. Before disruption of the material, samples should be completely dry by 

freeze-drying or frozen in liquid nitrogen. The use of aqueous methanol for extraction, 

in combination with high temperatures, also denatures myrosinase (Heaney & 

Fenwick, 1993). 

Total glucosinolates 
Glucosinolates yield equimolar amounts of glucose upon hydrolysis with 

myrosinase. This is true for almost all glucosinolates, and methods based on the 

measurement enzymatically released glucose proved to be relatively rapid and simple 

to apply (Heaney et al., 1988). Therefore the total glucosinolate content of a food 

sample can be measured by determining the quantity of glucose released after 

treatment with the enzyme, but this takes no account of endogenous glucose. 

Alternatively, extraction of glucosinolates can be performed followed by selective 

cleanup that eliminates free glucose and other interfering compounds, after which 

controlled enzymatic release of bound glucose is possible. 

Myrosinase hydrolysis of glucosinolates gives rise to an unstable aglucone, which 

after a Lossen rearrangement produce an equimolar amount of bisulfate. Several 

methods have been described for the quantification of this bisulfate ion using 

titrimetric and gravimetric methods. Schnug (1987) has described a method in which 
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the bisulfate liberated after sulfation, is precipitated with bariumchloride and residual 

barium is measured by X-ray emission spectroscopy. 

Individual glucosinolates 
Gas liquid chromatography (GLC) of derivatized glucosinolates is the traditional 

method for the identification and quantification of individual glucosinolates 

(Underhill & Kirkland, 1971). Initially glucosinolates were extracted with boiling 

water, derivatized and separated by isothermal chromatography. Substantial 

improvements have been subsequently made by Thies (1976). Ion exchange 

purification of glucosinolate extracts to remove carbohydrates and other impurities 

before derivatization increased the sensitivity. A major breakthrough in glucosinolate 

analysis has been achieved with the introduction of enzymatic on-column 

desulfatation using aryl sulfatase. The introduction of a desulfation step before 

derivatization was performed to eliminate sulfate that interfered with GC analysis. 

Desulfation was elegantly carried out on the ion exchange column, using a 

commercially available sulfatase isolated from an edible snail {Helix pomatia). Free 

sulfate in the glucosinolate extract, which could inhibit the sulfatase, was precipitated 

by addition of barium acetate and removed by centrifugation before addition of the 

extract to the ion exchange column. 

Some glucosinolates (indoles) are thermally unstable, therefore HPLC has become 

a more preferred method. High performance liquid chromatography (HPLC) has the 

advantage of direct determination of (desulpho)glucosinolates. The first successful 

application of the technique was described by Helboe et al. (1980). Glucosinolates 

were purified and desulfated on-column and then separated by ion-exchange (Olsen & 

Sorensen, 1979) chromatography or reverse phase ion-pairing chromatography using 

a Ci8 Nucleosil column with gradient elution using acetonitril-water mixtures as the 

mobile phase and tetraoctylammonium bromide as the source of counter ion. By 

avoiding the use of buffer solutions and ion-pairing reagents, glucosinolates could be 

collected in a pure form suitable for identification by mass spectrometry. With the aid 

of this method, 2 new glucosinolates were separated and identified, 4-hydroxy-3-

indolylmethyl glucosinolate and 4-methoxy-3-indolylmethyl glucosinolate (Truscott 

etal., 1982). 

Several mass spectrometric techniques have been investigated for structure 

elucidation of the various (desulpho-)glucosinolates e.g. direct probing electron 

impact, chemical ionization, and fast atom bombardment. Considerable structural 

information can be obtained with these techniques. 

One of the major problems in the analysis of glucosinolates has been the lack of 

suitable standards. The only commercial available glucosinolates are 

benzylglucosinolate (glucotropaeolin) and 2-propenylglucosinolate (sinigrin). Sinigrin 
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is not a suitable internal standard because of the presence of this compound in most 

brassicacious plants. Glucotropaeolin is not normally present in Brassica and has been 

frequently used as internal standard. 

Breakdown products 
The application of HPLC to the investigation of glucosinolate breakdown products 

has been limited due to the volatility of many compounds. Furthermore, thiocyanates 

and nitriles are not detectable spectrometrically. Isothiocyanates and nitriles can be 

analyzed by GLC. HPLC with UV detection may be used for analysis of 

oxazolidinethiones and indoles. Quinsac et al. (1992) developed a method for 

analyzing oxazolidinethiones in biological fluids with a high degree of selectivity. 

However HPLC finds most use in the analysis of intact glucosinolates or 

desulfoglucosinolates. For identification and confirmation of structures, both 

techniques can be coupled to mass spectrometry (MS). Mass spectroscopy has proved 

to be an invaluable tool in the identification and structural elucidation of 

glucosinolates and their breakdown products. Positive ion fast atom bombardment 

mass spectrometry (FAB) (Fenwick et al., 1982) has yielded mass spectra 

characterized by abundant protonated and cationized molecular ions with relatively 

little fragmentation. In the negative ion mode, FAB produces an abundant molecular 

ion (of the glucosinolate anion). This proved especially advantageous in the analysis 

of crude plant extracts and mixtures of purified glucosinolates. 

Zhang et al. (1992b) developed a spectroscopic quantitation of organic 

isothiocyanates. Under mild conditions nearly all organic isothiocyanates (R-NCS) 

react quantitatively with an excess of vicinal dithiols to give rise to five-membered 

cyclic condensation products with release of the corresponding free amines (R-NH2). 

The method can be used to measure 1 nmol or less of pure isothiocyanates or 

isothiocyanates in crude mixtures. 

Summary and conclusions 
Glucosinolate research is expanding from toxicological areas into more health-

promoting areas. Much research is nowadays focussed on the potential effects of 

glucosinolates and their breakdown products against biological processes associated 

with cellular damage and cancer development. Also the role and mechanisms of 

glucosinolates and their products in protecting plants against fungal and insect attack 

and the allelochemical effects on behaviour, health and growth of other species is an 

important area of research. 
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It is clear that factors inducing and directing indole glucosinolate metabolism in 

plants need to be studied in much greater detail as evidence increases on the 

biological activities of these compounds to man. 

There is still much to be learned from in vitro studies about the mechanisms of 

interaction between glucosinolate breakdown products and their target tissues. 

Priorities for future research must be in vivo studies with human volunteers. Such 

studies should preferably be conducted with well-characterised Brassica vegetables, 

and employ protocols which enable the dose-response relationship for both beneficial 

and adverse effects to be properly quantified. 

Further investigations are needed to provide a comprehensive evaluation of 

glucosinolate bioavailability in the context of the whole diet. In particular, it must be 

stressed that many factors may influence the digestive and post-absorptive 

metabolism of glucosinolates and derivatives, and consequently their tissue 

disposition and excretion. For example, dietary fibre and minerals have been 

suspected to modulate the microbial metabolism of glucosinolates in the hindgut 

(Roland et al., 1996), pointing strongly to the role of the complex dietary environment 

as a determinant of the digestive fate of these compounds. 

Finally, as with all phytochemicals, any exploitation of their beneficial effects 

depends upon a full understanding of their behaviour within the changing human food 

chain. The fate of glucosinolates in fresh materials during food production is 

extremely complex since it depends on numerous different processes and several 

mechanisms of degradation and biosynthesis, which seem to occur simultaneously. 

The development of a robust predictive model to quantify the effects of these 

phenomena, and the integration with it of models describing the bioavailability and 

biological activity of the most important glucosinolates in humans, should be the 

ultimate goal for future research in this area. 
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Chapter 3 

Abstract 
Brassica vegetables contain high amounts of glucosinolates, which contribute to 

the beneficial health effects of their consumption. Processing of such vegetables in 

domestic food preparation or industrial processing will influence levels of 

glucosinolates considerably and thus affect their health-protective capacity. This study 

demonstrates the effects of chopping of raw Brassica vegetables on their 

glucosinolate composition. Limited breakdown of aliphatic glucosinolates in cabbage 

was found, whereas unexpected increased levels of indolyl glucosinolates were 

detected after chopping and storage of cabbage and broccoli under ambient 

conditions. In chopped white cabbage a 15-fold increase of 4-methoxy- and 1-

methoxy-3-indolylmethyl glucosinolates was noted after 48 h of storage. Chopping 

and storage of broccoli resulted in a strong reduction of most glucosinolates, except 

for 4-hydroxy- and 4-methoxy-3-indolylmethyl glucosinolates, which increased 3.5-

and 2-fold respectively. The myrosinase-mediated hydrolysis of glucosinolates 

appears to be counteracted by a post-harvest increase of some indolyl glucosinolates. 

In this chapter we propose a mechanism of stress-induced increase of glucosinolates, 

which plays an important role besides the well-known breakdown mechanism. 
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Introduction 
Brassica vegetables such as cabbage, Brussels sprouts, broccoli and cauliflower are 

an important dietary source for a group of secondary plant metabolites known as 

glucosinolates. The sulphur-containing glucosinolates are present as glucosides in 

Brassica vegetables and can be hydrolysed by the endogenous plant enzyme 

myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1). Myrosinase and the 

glucosinolates are physically separated from each other in the plant cell and therefore 

hydrolysis can only take place when cells are damaged, e.g. by cutting or chewing. 

This hydrolysis generally results in the further breakdown of glucosinolates into 

isothiocyanates, nitriles, thiocyanates, indoles and oxazolidinethiones. Glucosinolate 

breakdown products contribute to the characteristic flavour and taste of Brassica 

vegetables (Van Doom et al., 1998; Vaughn et al., 1976). More important are the 

health-protective effects ascribed to the isothiocyanates and some indolic compounds. 

Glucosinolates and their biological effects have been reviewed in detail (Rosa et al., 

1997; Verkerk et al, 1998). During the last decade, intensified research on 

glucosinolates in Brassica vegetables has increased the knowledge of their anti-

carcinogenic effects. Among the different protective mechanisms that have been 

proposed, the induction of phase II enzymes, including glutathione S-transferase and 

quinone reductase, is most extensively investigated (Sparnins et al., 1982; Tawfiq et 

al., 1995). These enzymes, present in the small intestinal mucosa, liver and colon, are 

involved in the detoxification of carcinogens. Increased phase II enzyme activity will 

therefore block the exposure of target tissues to DNA damage. Different studies have 

shown that the breakdown products sulphoraphane and indole-3-carbinol, released by 

the glucosinolates glucoraphanin and glucobrassicin respectively, are strong phase II 

enzyme inducers (Zhang et al., 1992; Hecht, 1995; Talalay and Zhang, 1996). 

The level of glucosinolates ingested by humans depends on a variety of factors 

within the overall production chain of Brassica vegetables (Dekker et al., 2000). The 

glucosinolate content in Brassica vegetables can vary depending on the variety, 

cultivation conditions, harvest time and climate (Rosa et al., 1996; Kushad et al., 

1999). Storage and processing of the vegetables can also greatly affect the 

glucosinolate content. Processes such as chopping, cooking and freezing influence the 

extent of hydrolysis of glucosinolates and the composition of the final products. As 

most vegetables are processed in some way before consumption, the effects of 

processing should be taken into account in order to know what the intake of these 

compounds will be. Some processes have been studied and reviewed by de Vos and 

Blijleven (1988), who concluded that, in general, processing gives rise to a certain 

degree of glucosinolate breakdown caused by myrosinase hydrolysis. 
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Chopping of the Brassica vegetables is a common step in food preparation prior to 

further processing (industrial or domestic). Little is known about the effects of 

physical damage (chopping or slicing) of Brassica vegetables on the levels of 

glucosinolates. Disruption of the tissue caused by chopping releases the enzyme 

myrosinase, which is then able to hydrolyse the glucosinolates (Figure 3.1). This 

hydrolysis is a very efficient process, especially under moist conditions. When 

vegetables are pulped or when water is added to chopped vegetables, the 

glucosinolates are, in a short period of time, enzymatically converted to their 

breakdown products (de Vos and Blijleven, 1988). 

R — N = C = S 

isothiocyanate 

D — r 6 11 5 Myrosinase R _ Q 
• * > _ * • ^ -

NOS03 Water N-sulphate 

+ D-Glucose 

R — S — C = N 

thiocyanate 

Figure 3.1 Schematic diagram of hydrolysis of glucosinolates. R can represent an aliphate, 
aromate or indolyl group. 

There are a number of reports describing the effects of storage of broccoli on the 

glucosinolate content. Hansen et al. (1995) reported the behaviour of glucosinolates in 

broccoli stored under controlled atmosphere (CA) conditions. The CA treatment and 

storage time appeared to have no significant effect on the relative content of the most 

important glucosinolates in broccoli. Rodrigues and Rosa (1999) studied the effects of 

post-harvest treatments on the levels of glucosinolates in broccoli. They observed a 

decrease of most glucosinolates after 5 days of storage at room temperature. However, 

their data show an unexplainable increase of 4-hydroxy-3-indolylmethyl 

glucosinolate. 

Few data are currently available on the effects of chopping and storage of Brassica 

vegetables under less moist conditions as apply for pre-chopped vegetables in the 

vegetable-processing industry. An investigation was therefore conducted to examine 

the effect of chopping and storage of different Brassica vegetables on their 

glucosinolate content. 

Experimental 
Plant material and sample preparation 

White cabbage (cv Marathon) and red cabbage (cv Reliant) were supplied by 

Novartis Seed BV (Enkhuizen, The Netherlands). The vegetables were grown in the 

open air on loam soil. After harvesting they were stored at 4°C until further 
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processing. Broccoli was purchased from local groceries and used immediately. The 

outer leaves of the cabbage were removed and complete cabbages were used for the 

experiments. Florets of different broccoli crops were combined to make a composite 

sample. The vegetables were chopped into pieces of approximately 1 cm and mixed 

thoroughly, and portions of lOOg were stored in open containers at room temperature 

for different times. Homogenisation (pulping) of white cabbage was carried out in a 

food blender. After storage the material was frozen with liquid nitrogen, ground in a 

Waring blender (Model 34BL99, Dynamics Corpn of America, New Hartford, 

Connecticut, USA) and freeze-dried for at least 48 h. 

Glucosinolate analysis 

Freeze-dried plant tissue (0.5 g) was extracted in 10 ml of boiling methanol (70%) 

in a water bath at 75°C for 20 minutes. The supernatant was collected after 

centrifugation (5000 x g, 10 min, RT). The pellet was re-extracted twice in the same 

way. The glucosinolate glucotropaeolin was absent from all tissues and therefore, a 

known quantity (1.0 ml 3.0 mM) was added to each sample during extraction as 

internal standard for subsequent high-performance liquid chromatography (HPLC) 

analysis. Part of the supernatant (2.0 ml) was loaded onto ion exchange mini-columns 

(DEAE Sephadex A-25) and the glucosinolates were desulphated on-column (Helboe 

et al., 1980). The desulphoglucosinolates were eluted with water and separated by 

gradient system HPLC (Spectra Physics) using a Nova Pak CI8 (5 urn) reverse phase 

column (3.9mm x 159mm; Waters Corpn, Milford, MA, USA) with a flow rate of 1 

ml/min. The mobile phase used was water (A) vs acetonitril/water (20:80 v/v, B), the 

total running time was 31 min and the gradient was changed as follows; 100% A/0% 

B for 1 min, then in 20 min to 0% A/100% B, and in 5 min to 100% A/0% B. 

Afterward the column was equilibrated at 100% A/0% B for 5 min. An UV detector 

was used at a wavelength of 229 nm. 

The desulphoglucosinolates were quantified against the internal standard 

glucotropaeolin and expressed as umol/g dry matter. The peaks were identified by 

comparison with standard glucosinolates (sinigrin, glucoraphanin, glucotropaeolin, 

gluconasturtiin) and with data obtained from the literature (Minchinton et al., 1982). 

Glucosinolates were analysed for significant differences by analysis of variance 

performed using Anova tests. 
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Results 
HPLC analysis of red and white cabbage revealed a total of nine different 

glucosinolates (GS), namely five aliphatic and four indolyl glucosinolates. Although 

the glucosinolate pattern is similar in the different cabbage types, the individual levels 

vary strongly (Table 3.1). Differences in absolute glucosinolate levels compared to the 

literature (Kushad et al., 1999) are considered to be primarily due to differences in 

cultivars and growing conditions. 

Table 3.1 Glucosinolates concentrations of the fresh Brassica vegetables (concentration in 

umol/lOOg dry weight) 

Structure of R group 

3-Methylsulphinylpropyl 

2-Hydroxy-3-butenyl 

2-Propenyl 

4-Methylsulphinylbutyl 

3-Butenyl 

4-Hydroxy-3 -indolylmethyl 

3-Indolylmethyl 

4-Methoxy-3 -indolylmethyl 

1 -Methoxy-3-indolylmethyl 

Total glucosinolates 

Trivial name 

Glucoiberin 

Progoitrin (PROG) 

Sinigrin (SIN) 

Glucoraphanin (RAPH) 

Gluconapin 

4-OH-Glucobrassicin 

(4-OHGB) 

Glucobrassicin (GB) 

4-Methoxy-glucobrassicin 

(4-MeGB) 

Neoglucobrassicin (NeoGB) 

White 

cabbage 

542±98 

113±5 

961±262 

4.0±0.6 

127±7 

50±6 

294±3 

45±5 

8±4 

2144±390 

Red 

cabbage 

103±12 

99±1 

81±14 

425±29 

300±2 

151±29 

175±3 

134±17 

2.2±0.1 

1470.2±67 

Broccoli 

165±30 

254±17 

0±0 

735±121 

26±10 

74±22 

350±29 

26±1 

96±6 

1726±210 

The glucosinolates 3-methylsulphinylpropyl (25%) and 2-propenyl (45%) 

dominate in white cabbage, whereas in red cabbage 4-methylsulphinylbutyl is the 

major glucosinolate (29% of total GS). The indolyl glucosinolates (particularly 3-

indolylmethyl) represent about 19 % and 31 % of the total glucosinolates in white and 

red cabbage respectively. The glucosinolate content in broccoli is mainly represented 

by 4-methylsulphinylbutyl (43%) and the indolyl glucosinolates (32%). This is in 

agreement with other reports (Kushas et al., 1999; Rodrigues and Rosa, 1999) and 

makes broccoli the most important source for 4-methylsulphinylbutyl glucosinolate, 

which is the precursor for the anticarcinogenic isothiocyanate sulphoraphane. Storage 

of chopped white cabbage under ambient conditions did not affect the aliphatic 

glucosinolate content in a significant manner. The levels of aliphatic glucosinolates, 

as shown for 2-hydroxy-3-butenyl (PROG) and 2-propenyl (SIN), remained relative 

constant even after 48 h of storage (Figure 3.2). 
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PROG* SIN* 4-OHGB* GB* 4-MeGB** NeoGB** 

Figure 3.2 Effects of chopping and storage of white cabbage on glucosinolate content (see Table 3.1 

for abbreviations). Vertical bars are standard errors of the mean (n=2). Significance of 48h storage for 

the difference in individual glucosinolates: *not significant, p>0.05; **p<0.05; ***p<0.01. 

800 • control 
"10h 
• 24h 
•48h 

S 100 

4-OHGB 4-MeGB* NeoGB* 

Figure 3.3 Effects of chopping and storage of red cabbage on indolyl glucosinolate content (see table 

3.1 for abbreviations). Vertical bars are standard errors of the mean (n=2). Significance of 48h storage 

for the difference in individual glucosinolates: *not significant, p>0.05; **p<0.01. 
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However, the indolyl glucosinolates are strongly affected by chopping and storage 

of white cabbage. The total level of indolyl glucosinolates increased up to 3-fold after 

23 hours (PO.01) and 5-fold (2 mmol/lOOg DW) after 48 hours (PO.05). This 

substantial increase is the result of the increase of all four individual indolyl 

glucosinolates, of which 4-methoxy- (4-MeGB) and l-methoxy-3-indolylmethyl 

(NeoGB) glucosinolate both showed a 15-fold rise in concentration after 48 h (Figure 

3.2). The increase changed the glucosinolate pattern dramatically, with the indolyls as 

major glucosinolates representing 61% of the total amount of glucosinolates (versus 

19% before treatment). 

In Figure 3.3 the levels of the individual indolyl glucosinolates are shown after 

chopping and storage of red cabbage. A gradual increase in the level of 3-

indolylmethyl glucosinolate (GB) was detected, resulting in a 3.5-fold rise after 48 h 

(P<0.01). 4-Hydroxy-3-indolylmethyl glucosinolate (4-OHGB) showed no increase 

after 24 h, though it seemed to increase after 48 h of storage (not significant). The 

levels of the other indolyl glucosinolates remained unchanged even after 48 h. 

Similarly as for white cabbage, the aliphatic glucosinolates remain unaffected in red 

cabbage after storage (not shown). 

Chopping and storage of broccoli affected the glucosinolates differently (Figure 

3.4). Significant decreases (P<0.001) were noted for the aliphatic glucosinolates 2-

hydroxy-3-butenyl (PROG) and 4-methylsulphinylbutyl (RAPH) after 48 h of storage 

of chopped broccoli. 

control 
48 hours 

RAPH*" 40HGB"* GB*** 4MEGB* NeoGB" 

Figure 3.4 Effects of chopping and storage of broccoli on glucosinolate content, (see table 3.1 for 
abbreviations). Vertical bars are standard errors of the mean (n=3). Significance of 48h storage for the 
difference in individual glucosinolates: *p<0.05; **p<0.01; ***P<0.001. 
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Among the indolyl glucosinolates the 4-hydroxy-3-indolyl glucosinolate showed a 

substantial increased (3.5-fold, P<0.001) and 4-methoxy-3-indolylmethyl 

glucosinolate a smaller increase (2-fold, P<0.05), whereas the concentration of 3-

indolylmethyl glucosinolate declined 7.6-fold. As a consequence, 4-hydroxy-3-

indolylmethyl glucosinolate became the major glucosinolate in the treated broccoli 

(41 % of total GS). 

In a comparable experiment, hydrolysis of white cabbage was challenged with 

increasing tissue damage carried out by homogenisation of the cabbage to moist pulp. 

This treatment did not result in increases of any of the glucosinolates; instead, a 

decline of approximately 70% of aliphatic and indolyl glucosinolates was observed 

after 24 h of storage. 

Discussion 
The breakdown of glucosinolates by the hydrolytic plant enzyme myrosinase is 

usually a very rapid event. However, the rate of hydrolysis is influenced by conditions 

such as humidity, temperature and the presence of co-factors and pH may affect the 

breakdown pathway. The prerequisites for hydrolysis are the release of both 

constituents, glucosinolates and myrosinase, from the plant cells, but also the presence 

of free water. 

Our data show that when cabbage is chopped or sliced, hydrolysis of 

glucosinolates is limited, while thorough homogenisation (pulping) of cabbage results 

in a high degree of glucosinolate degradation. The extent of physical damage and 

therefore the release of the constituents can explain these differences. Hydrolysis will 

occur only at the cut surfaces. A rough calculation predicts that this will account for a 

few percent of cell damage possibly explaining the limited glucosinolate hydrolysis. 

Increasing cell damage by pulping or juicing of the cabbage will release more 

myrosinase and glucosinolates, resulting in a higher amount of breakdown as shown 

for white cabbage. Broccoli, on the other hand, is a much more perishable vegetable 

in which senescence (visible as yellowing of the florets) can cause more severe cell 

damage, resulting in strong hydrolysis (autolysis) of the glucosinolates (Figure 3.4) by 

the endogenous enzyme myrosinase. 

Besides limited amount of hydrolysis of aliphatic glucosinolates in cabbage, 

elevated levels of some indolyl glucosinolates were observed after chopping and 

storage under ambient conditions of the different types of Brassica vegetables. This 

remarkable stress-induced post-harvest increase of glucosinolates in Brassica crops 

has not been described in the literature before. 

In plants in the field, stress-induced increases of indolyl glucosinolates have been 

found in swede and kale caused by infestation of turnip root fly (Birch et al., 1992) or 
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of cabbage stem flea-beetle (Koritsas et al., 1991). Bodnaryk (1992) demonstrated the 

correlation of mechanically wounding, mimicking pest damage, and induction of 3-

indolylmethyl and 4-hydroxy-3-indolylmethyl glucosinolates. In those experiments, 

cotyledons of B napus were damaged by needle puncturing, which resulted in a 3-fold 

increase of 3-Indolylmethyl glucosinolate after 24 h. Exposure of leaves to methyl 

jasmonate was found to cause selective induction of glucosinolates in oilseed rape 

(Doughty et al., 1995). These examples of stress-induced increase of indolyl 

glucosinolates are related to intact plants. In our research we describe changes of the 

glucosinolate levels in post-harvest vegetables. A recent study of post-harvest broccoli 

described results that are in agreement with our observations. Rodrigues and Rosa 

(1999) investigated glucosinolate levels in the primary and secondary inflorescence of 

fresh broccoli after different treatments. They observed a strong decline of most of the 

glucosinolates when the fresh material was left at room temperature for 5 days. Their 

data however, show an almost 5-fold increase of 4-hydroxy-3-indolylmethyl 

glucosinolate and 2-fold increase of 4-methoxy-3-indolylmethyl glucosinolate but a 

large decrease of 3-indolylmethyl glucosinolate in the secondary inflorescences of 

broccoli stored for 5 days. No explanation was given for this increase of 

glucosinolates. 

Previous studies on the effects of vegetable processing have always focussed on 

the loss of total glucosinolates. Processes such as steaming, blanching and cooking 

mostly resulted in a decrease of all types of glucosinolates (Slominski and Campbell, 

1989; de Vos and Blijleven, 1988). This can be explained by breakdown of 

glucosinolates by myrosinase or high temperatures, and leaching of glucosinolates 

into the cooking water. In our study we showed that the opposite, i.e. an increase of 

some indolyl glucosinolates, could also take place during processing. In this respect 

we can argue that measuring total amounts of glucosinolates in (processed) vegetables 

can mask the behaviour of less abundant individual glucosinolates. These findings 

will change our ideas about the fate of glucosinolates and the consequences for 

estimation of intake levels from processed Brassica vegetables. 

Conclusions 
Apparently, mechanical damaging, i.e. chopping of post-harvest Brassica crops 

induced physiological changes markedly affecting the levels of individual 

glucosinolates. We propose that the total glucosinolate content of chopped cabbage is 

possibly a reflection of two opposing mechanisms, namely breakdown of 

glucosinolates by myrosinase and formation of some indolyl glucosinolates by a so far 

unknown mechanism. What types of indolyl glucosinolates are inducible depends on 

the species of Brassica. 
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It is clear that factors inducing and regulating indolyl glucosinolates in plant 

metabolism need to be studied in much greater detail as evidence increases on the 

biological activities of these compounds in humans. The possibility of increasing the 

amounts of some indolyl glucosinolates by chopping, as found in this study, opens up 

new ways of improving the potential health benefits of Brassica vegetables. 
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Chapter 4 

Abstract 
The concentrations of individual and total glucosinolates (GS) were measured in 

red cabbage after different microwave treatments varying in time and intensity of the 

treatments. Furthermore the myrosinase enzyme activity of the microwave-heated 

vegetables is determined. The retention of glucosinolates in the cabbage and the 

residual activity of the hydrolytic enzyme as a result of microwave preparation were 

compared with untreated cabbage. In general, high total glucosinolate levels were 

observed for all the applied microwave treatments. This high retention probably 

reflects the absence of leaching of glucosinolates into cooking water that takes place 

in conventional cooked vegetables. 

It is striking that many of the time/energy input combinations result in levels 

exceeding the total GS-content of the untreated cabbage material. Moreover the 

increase in levels seems to be associated with the energy input applied. A possible 

explanation for this behaviour is an increased extractability of GS from heat-treated 

cabbage as compared to raw cabbage. The activity of myrosinase was affected 

differently when vegetables were microwave cooked with varying powers. Substantial 

myrosinase activity was retained in cabbage at low (24 min 180 Watt) and 

intermediate microwave powers (8 min 540 Watt) while microwave cooking for 4.8 

minutes at 900 W (259.2 kJ energy input) resulted in complete loss of hydrolytic 

activity. In this respect, differences in observed temperature profiles of the various 

microwave treatments play an important role. Higher retention of glucosinolates and 

controllable amounts of active myrosinase can offer increasing health-promoting 

properties of microwave prepared Brassica vegetables. 
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Introduction 
Glucosinolates are a group of secondary plant metabolites that occur in crops 

belonging to the family of Brassicaceae. The widely cultivated, economically 

important vegetables such as broccoli, cauliflower, cabbage and Brussels sprouts, are 

the major sources of glucosinolates in the human diet. In the past few years Brassica 

vegetables are receiving more attention due to the health-promoting properties 

ascribed to the glucosinolates. The particular interest in glucosinolates for the food 

research is based on their anticarcinogenic properties and also because of their 

contribution to the characteristic flavour and odour of many Brassica vegetables. 

Specific hydrolysis products of glucosinolates are responsible for these important 

properties. When the plant tissue is damaged by food preparation or mastication of the 

vegetables the glucosinolates are brought into contact with, and hydrolyzed by, the 

endogenous plant enzyme myrosinase (thioglucoside glucohydrolase EC 3.2.3.1), 

releasing a broad range of breakdown products including isothiocyanates and indoles. 

The level of glucosinolates ingested by humans depends on a variety of factors 

along the complete production chain of Brassica vegetables (Dekker et al., 2000). 

Most likely, processing and food preparation of the vegetables affect mostly the 

glucosinolate content and consequently determine the final intake levels of health-

protective compounds. Processes such as chopping, cooking or freezing influence the 

extent of hydrolysis of glucosinolates and the composition of the final hydrolysis 

products. As most vegetables are processed in some way before consumption, the 

effects of processing should be taken into account in order to make accurate estimates 

of dietary intake of these protective compounds (Dekker et al., 2000). Hence, control 

of glucosinolate levels and myrosinase activity in Brassica vegetables is highly 

desirable. 

A large number of Brassica vegetables are consumed after cooking. Various 

studies on different phytochemicals have shown that conventional cooking can lower 

their contents in foods. Examples as folate in spinach (Leichter et al., 1978) and in 

broccoli (Klein et al., 1979; 1981) show large losses caused by leaching of the 

protective compounds in the cooking water. 

Also considerable reductions of glucosinolates levels are demonstrated in different 

studies (Mullin and Sahasrabudhe, 1978; Ciska and Kozlowska, 2001; Sones et al., 

1984). Rosa and Heaney (1993) analysed the effects of cooking of different cabbage 

types and measured individual and total glucosinolate levels in the cooked leaves and 

the cooking water. It appeared that the glucosinolate content of the cabbages was 

reduced by more than 50%, mostly ascribed to leaching of the glucosinolates into the 

cooking water. However, the effects of cooking of Brassica vegetables on the 

hydrolytic activity of the enzyme myrosinase are hardly studied. Besides the 
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glucosinolates, the presence of active myrosinase is a prerequisite for formation of 

protective breakdown products. 

Microwave cooking is an interesting alternative way of cooking with little or no 

water needed for preparation of the vegetables. Therefore leakage of glucosinolates is 

limited and higher retention of glucosinolates and breakdown products in the Brassica 

vegetables can be expected. Microwaves generated by a magnetron are absorbed by 

food; alignment of dipole molecules of the medium (mainly water) with the 

microwave field creates friction among molecules, which results in heating of the 

product. The temperature rise in the food depends on the duration of heating, the 

location in the food, convective heat transfer at the surface, and the extent of 

evaporation of water inside the food and at its surface. Typically, microwave food 

processing uses the 2 frequencies of 2450 and 915 MHz. Of these two, the 2450 MHz 

frequency is used for home ovens and both are used in industrial heating (Knutson et 

al., 1987). Use of microwave energy rather than conventional methods to cook food 

results in savings in energy and time, improved acceptability of some foods by 

consumers and improved nutritive quality of many foods. Research has considered the 

convenience and consumer satisfaction of microwave-heated foods and inactivation of 

spoilage and pathogenic micro-organisms by microwave energy. Special interest goes 

to the high retention of nutrients in microwave prepared foods. One of the main 

claimed advantages is that the speed of the heat treatment produces less degradation 

of the nutritional value resulting in a product of high quality. 

The aim of this study was to investigate the behaviour of the 

glucosinolate/myrosinase system in red cabbage during a broad range of microwave 

treatments varying in time and power (energy input). Glucosinolate content and the 

hydrolytic activity of myrosinase were measured in red cabbage samples treated at 

high power and short heating times in comparison with treatments at low power and 

long heating times. The overall effects of microwave cooking on the protective 

capacity of cabbage are discussed in respect to intake of glucosinolates and health-

protective breakdown products as compared to conventional cooking methods. 

Materials & Methods 
Sample preparation. Red cabbage (Brassica oleracea L., Capitata group) material 

was purchased from local supermarkets (Wageningen, The netherlands). The outer 

leaves of the heads were removed and complete cabbage heads were used for the 

experiments. The cabbage was chopped into pieces of approximately 1 cm and mixed 

thoroughly. For glucosinolate analysis of the fresh cabbage the chopped material was 

directly frozen with liquid nitrogen. The frozen material was ground in a Waring 
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Blender (Model 34BL99, Dynamics Corp. of America, New Hartford, Connecticut, 

USA) and stored at -30°C until further analysis. 

Preparation of cabbage juice for the analysis of myrosinase activity. Red cabbage 

material was chopped and juice was prepared with a commercial juice centrifuge 

(Braun, type 4290). After the microwave treatment 200 g cabbage was cooled down 

on ice until 23°C and juiced. The obtained juice was sieved to remove the larger parts. 

Subsequently the juice was incubated for 1 hour at 40°C in an oven to hydrolyse the 

endogenous glucosinolates present in the cabbage. The obtained batch of 

glucosinolate-free juice was considered as a crude myrosinase extract in which 

different cabbage components are present that could affect the myrosinase activity 

(e.g. ascorbic acid). Part of the juice was incubated for 15 minutes at 100°C in order 

to inactivate the enzyme myrosinase. This juice was used for dilution purposes in the 

activity assays. 

Experimental set-up 

Microwave cooking. Approximately 2 kg of red cabbage was chopped (1 cm2) and 

divided into portions of 300 g each. Each portion was placed in a 500 ml beaker and 

cooked in a microwave oven (Daewoo, Model KOC-87-T, Korea) at 2450 MHz 

according to the scheme in Table 4.1. After the microwave treatment, a subsample of 

100 g was taken for analysis of desulphated glucosinolates. The vegetables were 

frozen with liquid nitrogen, ground in a Waring Blender and stored at -20°C until 

analysis. The remaining 200 g of cabbage was used for the preparation of juice for the 

analysis of the hydrolytic myrosinase activity. 

Separate experiments were carried out for the temperature registration of cabbage 

samples during microwave cooking. The temperature of cabbage samples was 

measured in a Whirlpool microwave (type m506, 750W output) using a glassfibre 

probe (Takaoka, Type FTP3-3003 s/n 31888). The probe was inserted, via an opening 

in the microwave, in the middle of chopped portions of red cabbage. The obtained 

data (time/temperature profiles) were used for the development of a predictive 

temperature model. 

Analysis 

Glucosinolate analysis. The glucosinolates were analysed in the fresh cabbage or 

cabbage juice using high performance liquid chromatography (HPLC) following on-

column desulphation as described by Verkerk et al. (2001). 

Determination of myrosinase activity. The activity of the enzyme myrosinase 

present in the juice is measured by hydrolysis of a known amount of sinigrin added to 
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the juice. To 5.0 g of cabbage juice 1 ml of 6 niM sinigrin was added and incubated at 

40°C for 0, 5, 10 and 20 minutes. The reaction was stopped by adding 12 ml of 100% 

hot methanol (for 10 min at 75°C). The juices were centrifuged (5000 x g, 10 min, 

RT) and remaining sinigrin was isolated from the collected supernatant and analysed 

byHPLC. 

Table 4.1 Heating scheme of red cabbage samples according to different powers and 
heating times. 

Treatment 

A 

B 

C 

D 

E 

Energy input 
(kJ) 

32.4 

64.8 

129.6 

194.4 

259.2 

180W 

3 min 

6 min 

12 min 

18 min 

24 min 

540W 

1 min 

2 min 

4 min 

6 min 

8 min 

900W 

36 s 

1 min 12s 

2 min 24s 

3 min 36s 

4 min 48s 

Modelling of the temperature in cabbage during microwave heating 

Time-temperature profiles within a food product are influenced by both internal 

heat generation due to absorption of electrical energy from the microwave field and 

heat transfer by conduction, convection and evaporation (Komolprasert and Ofoli, 

1989). Microwave heating is complicated and not easily modelled because the rate of 

energy absorption and energy distribution is controlled by the physical, thermal and 

electrical properties of the product and the variation with temperature during 

radiation. In this study modelling of the cabbage temperature was simplified with the 

assumption that the Tc, max=100 °C. The specific food properties (e.g. density, specific 

heat) were not characterised individually but were lumped in the energy conversion 

coefficients. During the process of microwave heating the cabbage will also transfer 

heat to the surroundings which subsequently warms up. 

The model was based on the energy input, cabbage weight and heat transfer to the 

surroundings (equations 1 and 2). 

dT P 
- f = * r k2(Tc-Tsur),Tc<T,, 
at m 

drei 

At 
" *• 3 " v-* C * SUr ) •> *sur — *su 

(1) 

(2) 
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in which Tc is the temperature of the cabbage (°C) and Tsur the temperature of the 

surroundings increasing in time t (s) and P (Watt) refers to the applied microwave 

power on the mass m (g) of the cabbage, ki is an energy conversion' coefficient 

(°C-g-J_1) and k.2, kj are heat transfer coefficients (s"1). 

The parameters in equation 1 and 2 were estimated from experimental data 

obtained from microwave treatments of lOOg, 200g and 300g red cabbage upon 

heating at 150, 450 and 750 Watt for varying times. 

Data analysis. Statistical analysis of the data was performed on the original data by 

one-way analysis of variance (ANOVA) using the statistical package from Microsoft 

Excel software. Fitting of the model equations on the experimental data has been done 

by minimising the sum of squares of the relative errors between model prediction and 

measured data using non-linear regression with the "solver" routine of Microsoft 

Excel 97. 

Results 
Temperature profiles. The measured temperatures of the cabbage microwave 

heated at different power inputs were fitted to model equations 1 and 2 (Figure 4.1). 

o 

3 

2 a a. 
E a 

Figure 4.1 Temperature profiles of 300 g red cabbage microwave heated at 150W (•), 450W 
(•) and 750W (A), solid lines are the model fits. 

Microwave cooking at 450 and 750W resulted in a temperature of the cabbage of 

100°C reached within 5 and 3 minutes respectively and remained constant after that 

time. On the other hand, the cabbage microwave treated at 150W raised in 

temperature considerably slower and did not reach higher than 86°C after 25 minutes 
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of exposure (Figure 4.1). With use of the developed model temperature profiles of 

different powers can be predicted. The obtained model parameters are presented in 

Table 4.2. 

Table 4.2 Estimation of heat transfer parameters. 

Parameters 

k, 

k2 

h 

10.7 °CgJ"' 

0.26 s"1 

4.0 s"1 

Note: Parameters ̂  and k3 are fitted for a cabbage weight of 300g. 
These parameters can deviate when using different weights. 

Total and individual glucosinolates. The main glucosinolates identified in the red 

cabbage are listed in Table 4.3. The glucosinolates 2-Propenyl and 4-

Methylsulphinylbutyl (MSB) are representing together 70 % of the total amount of 

glucosinolates. These two types of glucosinolates are responsible for the important 

characteristics of flavour (sinigrin) and health-protection (glucoraphanin) of red 

cabbage, respectively. 

Table 4.3 Average levels (umollOOg"' fresh weight) of the main glucosinolates identified by 
HPLC in untreated (fresh) red cabbage. 

Structure of R group Trivial name [C]* SD 

2-propenyl 

4-Methylsulphinylbutyl 

4-Hydroxy-3 -indolylmethyl 

3-Indolylmethyl 

4-Methoxy-3-indolylmethyl 

Sinigrin 33.0 2.2 

Glucoraphanin 20.8 2.7 

4-Hydroxyglucobrassicin 5.4 0.8 

Glucobrassicin 8.6 1.3 

4-Methoxyglucobrassicin 8.8 0.9 

Total 76.6 7.9 

Mean concentrations of the five different batches (A-E) of red cabbage. 
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We used for the different energy inputs A, B, C, D and E different batches of red 

cabbage bought at the local supermarket. This caused some variation in the individual 

and total glucosinolate levels between batches (Table 4.3). Substantial variations in 

glucosinolate content between and within Brassica groups have been reported earlier 

(Kushad et al., 1999; Carlson et al., 1987). Genetic and environmental factors are 

supposed to contribute both significantly to the variation in levels of glucosinolates. 

The total energy input of a microwave treatment (Joules) is the result of applied 

power multiplied by the time of exposure (seconds). 

Effect of microwave treatments on GS content. The total glucosinolate contents 

(GS) in red cabbage after the different microwave treatments are presented in Table 

4.4. The relative change in GS-content was calculated for each cabbage batch. In 

general, high total glucosinolate levels were observed for all the applied microwave 

treatments. It is striking that many of the time/energy input combinations resulted in 

levels exceeding the total GS-content of the untreated cabbage material. Moreover the 

increase in levels seems to be associated with the energy input applied (Figure 4.2). 

Total glucosinolate content of red cabbage microwave treated for 3 minutes at 180W 

(32.4 kJ) increased from 74.4 ± 4.3 |amol/100g fresh weight to 128.0 ± 5.2 umol/lOOg 

fresh weight when cooked for 4 min 48 s at 900W (259.2 kJ). This latter more intense 

microwave treatment resulted in 178% increase of total glucosinolate content 

compared to the control (P<0.01). 

Table 4.4 Mean concentration of total amount of glucosinolates in red cabbage after different 
microwave treatments" (concentration in nmollOOg"1 fresh weight; concentration relative to 
untreated cabbage (expressed as %) is indicated in parentheses). Significant difference: 
*P<0.05; **P<0.01. 
Treat
ment 

A 

B 

C 

D 

E 

Energy 
Input(kJ) 

32.4 

64.8 

129.6 

194.4 

259.2 

Untreated 

[C] 

72.2 

81.0 

83.6 

74.0 

71.9 

SD 

11.1 

12.3 

15.4 

9.8 

9.0 

180W 

[C] 

74.4 
(103) 

77.9 
(96) 

85.1 
(102) 

129** 
(174) 

115** 
(160) 

SD 

4.3 

6.6 

14.1 

7.9 

1.8 

540W 

[C] 

73.1 
(101) 

71.0 
(88) 

119** 
(142) 

103* 
(139) 

103* 
(143) 

SD 

1.7 

14.5 

5.3 

1.4 

4.9 

900W 

[C] 

80.5 
(111) 

85.0 
(105) 

113** 
(135) 

100* 
(134) 

128** 
(178) 

SD 

15.0 

11.9 

1.1 

5.2 

5.2 

"Treatments were performed in duplicate ([C] ±SD). 
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50 250 300 100 150 200 

Energy input (kJ) 

Figure 4.2 The effect of different microwave energy inputs on the total glucosinolate 

content in red cabbage. 180 W (•), 540W ( •) , 900 W (A). 

Table 4.5 Mean concentration of 2-Propenyl glucosinolates in red cabbage after different 
microwave treatments" (concentration in umollOOg"1 fresh weight; concentration relative to 
untreated cabbage (expressed as %) is indicated in parentheses). Significant difference: 
*P<0.05;**P<0.01. 
Treat- Energy Untreated 180W 540W 900W 
ment Input (kJ) 

[C] SD [C] SD [C] 

A 32.4 31.2 1.2 40.6* 2.5 33.9 
(130) (109) 

B 64.8 35.5 4.3 38.8 5.2 26.5 
(110) (75) 

C 129.6 41.0 0.0 47.3 16.4 58.6** 
(115) (143) 

D 194.4 29.0 5.3 64.6* 5.9 40.4 
(223) (139) 

E 259.2 28.2 0.0 56.9* 3.8 47.9** 
(202) (170) 

SD [C] SD 

1.2 

3.0 

0.1 

4.8 

1.7 

41.0 
(132) 

37.4* 
(105) 

56.8** 
(139) 

42.2* 
(146) 

66.7** 
(237) 

8.2 

1.4 

1.3 

1.8 

3.7 

"Treatments were performed in duplicate (fC] +SD). 

Despite the large increase of total glucosinolate content, there are remarkable 

differences in behaviour of individual glucosinolates for the different microwave 

treatments. As the glucosinolates 2-Propenyl and 4-Methylsulphinylbutyl represent 

most of the glucosinolates in red cabbage they determine mainly the course of the 
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total GS-content. The glucosinolate 2-Propenyl (Sinigrin) presented in Table 4.5 

showed a substantial increase especially at higher energy inputs (treatment E). The 2-

Propenyl concentration was 202%, 170% and 237% higher for treatments El80 

(PO.05) E540 (PO.01) and E900 (P<0.01) respectively as compared to the untreated 

samples of the same cabbage batch. However, 4-Methylsulphinylbutyl (MSB, 

Glucoraphanin) glucosinolate levels decrease at lower energy inputs (treatments A 

and B) after which some treatments showed a small increase at higher energy inputs 

(Table 4.6). However, as a whole the different microwave treatments do not show a 

notable effect on MSB glucosinolates. 

Table 4.6 Mean concentration of 4-Methylsulphinylbutyl glucosinolates in red cabbage after 
different microwave treatments" (concentration in umollOOg"' fresh weight; concentration 
relative to untreated cabbage (expressed as %) is indicated in parentheses). Significant 
difference:*P<0.05; **P<0.01. 
Treat- Energy Untreated 180W 540W 900W 
ment Input (kJ) 

[C] SD [C] SD [C] SD [C] SD 

32.4 20.0 0.3 14.2** 0.4 17.9 1.9 19.4 1.8 
(71) (89) (97) 

64.8 21.5 0.4 15.9** 0.4 17.7* 0.9 18.2 2.2 
(74) (82) (85) 

129.6 23.3 0.0 17.1** 0.3 28.1* 1.2 22.0 0.6 
(73) (121) (95) 

194.4 21.1 9.3 23.8* 0.7 21.0 0.0 20.6 0.7 
(113) (128) (98) 

259.2 18.1 3.3 17.6* 0.5 20.4 7.3 
(98) (113) 

21.1 
(117) 

"Treatments were performed in duplicate ([C] ±SD). 

Glucosinolate levels of the three 3-Indolylmethyl glucosinolates generally also 

showed an increase with increasing energy inputs (Table 4.7-4.9, Figure 4.3-4.5). 

After an initial decrease, significant increases were noted in 4-Hydroxy-3-

indolylmethyl glucosinolate content for treatments D (194.4 kJ) and E (259.2 kJ) 

compared to untreated cabbage samples (Table 4.7). There is a similar trend for 4-

Methoxy-3-indolylmethyl glucosinolates although the values of D900 and E540 

deviate from this having lower levels (Table 4.9). In the case of 3-Indolylmethyl 

glucosinolates no decrease was observed; instead all treatments (except for B180) 

resulted in levels exceeding the untreated samples. However large variation in the 

measurements caused not all of the levels to be significantly increased (Table 4.8). 
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One remarkable observation in this respect is the t rend of highest increase at the 

intermediate microwave treatments C540 [129.6 kJ] and C900 [129.6 kJ] and the 

subsequent decline at more intense treatments E540 [259.2 kJ] and E900 [259.2 kJ ] . 

Table 4.7 Mean concentration of 4-Hydroxy-3-indolylmethyl glucosinolates in red cabbage 
after different microwave treatments3 (concentration in umollOOg"' fresh weight; 
concentration relative to untreated cabbage (expressed as %) is indicated in parentheses). 
Significant difference:*P<0.05; **P<0.01. 
Treat- Energy Untreated 180W 540W 900W 
ment Input (kJ) 

[C] SD [C] SD [C] SD [C] SD 

A 32.4 4.63 0.12 3.18* 0.20 3.52 0.37 3.30 0.80 
(69) (76) (71) 

B 64.8 6.38 0.46 4.69 0.60 5.53* 0.18 4.96 1.21 
(74) (87) (78) 

C 129.6 5.47 0.27 3.61** 0.06 6.77** 0.15 5.89* 0.37 
(66) (124) (108) 

D 194.4 5.63 2.88 7.04* 0.61 6.68** 0.10 7.43** 0.39 
(125) (119) (132) 

E 259.2 5.08 0.15 8.05** 0.08 6.69** 0.13 9.03** 0.07 
(159) (132) (178) 

"Treatments were performed in duplicate ([C] +SD). 

Table 4.8 Mean concentration of 3-Indolylmethyl glucosinolates in red cabbage after different 
microwave treatments3 (concentration in umollOOg"1 fresh weight; concentration relative to 
untreated cabbage (expressed as %) is indicated in parentheses). Significant 
difference:*P<0.05; **P<0.01. 
Treat- Energy Untreated 180W 540W 900W 
ment Input (kJ) 

[C] SD [C] SD [C] SD [C] SD 

32.4 9.64 0.31 11.19 2.05 12.37* 0.83 10.89 3.06 
(116) (128) (113) 

B 

C 

D 

E 

64.8 

129.6 

194.4 

259.2 

8.29 

5.47 

9.20 

10.55 

0.02 

0.08 

5.03 

1.18 

8.18 
(99) 

9.83 
(180) 

18.05* 
(196) 

17.55* 
(166) 

0.09 

1.56 

1.23 

1.29 

14.65 
(177) 

16.25 
(297) 

17.72 
(193) 

18.58 
(176) 

0.00 

3.37 

0.00 

3.38 

14.26 
(172) 

18.2** 
(333) 

20.7** 
(225) 

18.4** 
(174) 

5.44 

1.17 

1.39 

0.32 

"Treatments were performed in duplicate ([C] ±SD). 
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Figure 4.3 The effect of microwave energy inputs (180W) on various indolyl glucosinolate 
contents. Glucobrassicin (•); 4-Hydroxyglucobrassicin (•) ; 4-Methoxyglucobrassicin (A). 
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Figure 4.4 The effect of microwave energy inputs (540W) on various indolyl glucosinolate 
contents. Glucobrassicin (•); 4-Hydroxyglucobrassicin (•); 4-Methoxyglucobrassicin (A). 

300 

ss 
« 250 

ra 
c 200 

0 
3 150 

o* 100 I 
c 

50 

, ,—• -±— 
" - TIE" ^ m * ' 

0 250 50 100 150 200 

Energy input (kJ) 

Figure 4.5 The effect of microwave energy inputs (900W) on various indolyl glucosinolate 
contents. Glucobrassicin (•) ; 4-Hydroxyglucobrassicin (•) ; 4-Methoxyglucobrassicin (A). 
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Table 4.9 Mean concentration of 4-Methoxy-3-Indolylmethyl glucosinolates in red cabbage 
after different microwave treatments3 (concentration in nmollOOg"1 fresh weight; 
concentration relative to untreated cabbage (expressed as %) is indicated in parentheses). 
Significant difference:*P<0.05; **P<0.01. 
Treat- Energy Untreated 180W 540W 900W 
ment Input (kJ) 

[C] SD [C] SD [C] SD [C] SD 

A 32.4 6.78 0.03 5.23** 0.01 5.38** 0.14 5.85 1.16 
(77) (79) (86) 

B 64.8 9.45 0.22 10.27* 0.51 6.61* 0.47 10.23 1.79 
(109) (70) (108) 

C 129.6 8.39 0.25 7.29 1.01 9.20* 0.55 10.0** 0.02 
(87) (110) (119) 

D 194.4 9.09 3.84 15.4** 0.66 11.3** 0.30 8.63 0.98 
(169) (124) (95) 

E 259.2 10.06 0.32 15.0* 1.27 9.51 1.30 12.8** 0.42 
(149J (95} Q27J 

treatments were performed in duplicate ([C] +SD). 

Effect of microwave treatments on myrosinase activity. Since the presence of the 

enzyme myrosinase is crucial in the production of health-protective breakdown 

products of glucosinolates it is important to assess the remaining hydrolytic activity in 

the cabbage after the various microwave treatments. 

The activity of the enzyme myrosinase was determined in juices prepared from 

fresh and microwave treated red cabbage samples. Previous research (unpublished) 

showed that juicing of cabbage resulted in high myrosinase activity in the juice and 

little remained in the cabbage pulp. Since we are interested in the myrosinase activity 

at cellular conditions, measuring the activity in the juice of cabbage is preferred over 

the activity of the isolated enzyme, which is usually done (Yen and Wei, 1993; 

Ludikhuyze et al., 1999, 2000; Wilkinson et al., 1984). The presence of known (e.g. 

ascorbic acid, MgCl2 and iron) and yet unknown components in the cabbage juice that 

are important for myrosinase activity gives a valuable advantage to this approach. 

After preparation of the juice the existing myrosinase was tested for its ability to 

hydrolyse pure sinigrin added to the juice sample. In Figure 4.6 the amounts of 

convertible sinigrin are presented after 20 minutes of exposure to the juiced samples. 

This figure shows that the activity of myrosinase diminished with increasing energy 

inputs. Cabbage microwave treated with the highest power (900W) and the highest 

energy inputs (C900, D900 and E900) (almost) completely lost hydrolytic capacity. 
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Figure 4.6 Residual myrosinase activity of red cabbage as a function of energy input to 
microwave. Energy inputs are A: 32.4 kJ, B: 64.8 kJ, C: 129.6 kJ, D: 194.4 kJ and E: 259.2 kJ. 

The milder microwave treated cabbage at 540 Watt resulted in a reasonable amount 

of myrosinase residual activity capable to convert the exogenous sinigrin even at 

higher energy inputs (treatment D and E). Cabbage treated at lowest microwave 

powers (180W) retained the highest myrosinase activities. 

Discussion 
Different processes that can take place during microwave cooking determine the 

fate of glucosinolates. In this respect it is essential to realise that in intact cells of 

cabbage the membrane of the vacuole separates the enzyme from its substrate. First, 

hydrolysis will occur at the cutting surface of the chopped cabbage. Second, further 

membrane damage and cell rupture can be the result of increasing temperatures and 

microwave radiation. In the case of conventional cooking cell lysis will occur giving 

rise to a sudden increase in osmotic pressure difference over the vacuole membrane 

which will result in collapse of this membrane, resulting in a mixing of the 

glucosinolates and the myrosinase in the cooking water. Enzymatic degradation can 

then take place (see Chapter 6). Third, myrosinase activity increases with moderate 

heat at temperatures up to about 60°C, inactivation will occur at higher temperatures 

(Chapter 6). 
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Glucosinolates. In our study, microwave cooking of cabbage at low (180W), 

intermediate (540W) and high (900W) energy inputs did not result in losses in 

glucosinolate levels in the cabbage as occurs during conventional cooking in water. 

Unexpectedly, many microwave treatments with varying energy inputs revealed total 

GS-contents exceeding the levels present in untreated cabbage (Figure 4.2). This high 

retention probably reflects the absence of leaching of glucosinolates into cooking 

water that takes place in conventional cooked vegetables. The process of cell 

disruption probably will take place when temperatures are reached unfavourable for 

the hydrolytic enzyme myrosinase. Especially at high microwave power (900W) there 

is little opportunity for hydrolysis of glucosinolates taking place. During the different 

microwave treatments of the cabbage samples differences in behaviour can be 

recognised between the individual glucosinolates. The microwave treatments did not 

reveal a large affect on MSB glucosinolates, while 2-propenyl glucosinolate levels 

increased substantially. 

Published data concerning the effects of microwave cooking on glucosinolate 

levels are scarce. In this respect, effects of microwave treatments on antioxidant 

compounds like ascorbic acid (AA) and (3-carotene (P-C) were studied in more detail. 

Howard et al. (1999) reported no effects on the AA or P-C content after microwave 

cooking of broccoli for 8 min at 700W. 

In our study, microwave cooking decreased the moisture content of cabbage by 

evaporation causing elevated glucosinolate levels in the samples. However a 

maximum weight loss of 20% after cooking was determined experimentally (not 

shown) and this could not explain the high increase of glucosinolates. A possible 

explanation for this phenomenon is an increase in chemical extractability of the 

glucosinolates after an intense heat treatment. Cooking has been reported to increase 

extractability of carotenoids. Hart & Scott (1995) showed in various green vegetables, 

peas and beans an average increase of 24% lutein and 38% P-carotene. These 

substantial increases of health-protective compounds after microwave cooking can 

have important consequences with respect to bioavailability of these compounds to 

humans. 

Myrosinase. The activity of myrosinase is affected differently when vegetables are 

microwave cooked with varying time-power combinations though same total energy 

inputs. For example, substantial myrosinase activity was retained in cabbage after 24 

minutes microwave cooking at 180W (259.2 kJ) while 4.8 min microwave cooking at 

900 W (259.2 kJ) resulted in complete loss of hydrolytic activity (Figure 4.3). Similar 

profiles were observed with treatment C (129.6 kJ) and D (194.4 kJ). An explanation 

for these differences can possibly be found in the temperature profiles fitted for the 

different applied microwave treatments (Figure 4.7). 
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Figure 4.7 Temperature profile fits of 300 g red cabbage microwave heated at 180W (solid 
line), 540W (dashed line) and 900W (dotted line). 

Microwave cooking at 900W resulted in a temperature of the cabbage of 100°C 

reached after 2.8 minutes and continued cooking for another 2 minutes. Apparently, 

the myrosinase enzyme was denatured at these conditions. However, red cabbage 

microwave treated at 180W raised in temperature considerably slower and did not 

reach higher than 90°C after 25 minutes of exposure (Figure 4.7). Under these 

conditions the more thermostable myrosinase (Yen and Wei, 1993) apparently can 

survive partly and maintain some hydrolytic activity. More difficult to explain were 

the myrosinase activities at the 540W microwave treated cabbage samples. Cabbage 

microwave treated at 540W reached a temperature of 100°C after 4.6 minutes and 

continued cooking for another 3.4 minutes. Striking in this treatment is the substantial 

remaining hydrolytic activity of 47%, 55% and 17% after 4, 6 and 8 minutes 

respectively. While cabbage treated at 900W retained only 5.4% and 2.7 % 

myrosinase activity after 3.6 and 4.8 minutes respectively. Certain discrepancies in 

activity differences can be imputed to the microwave principle of going on and off to 

regulate the power output (cycling). Furthermore, moisture content during microwave 

heating is known to affect enzyme inactivation and/or denaturation of proteins (Wang 

and Toledo, 1987). 

The use of microwave energy with respect to enzyme inactivation in food systems 

has been investigated in a number of studies (Kermasha et al., 1993; Owusu-Ansah 

and Marianchuk, 1991). In these studies, mainly focussed on improving palatability 

and nutritional value of foods, high microwave powers are used, generally indicating 

that microwave enzyme inactivation appears to be more effective than conventional 
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heating. Our study shows a retention of substantial myrosinase activity at less intense 

microwave conditions, which is essential for the release of protective glucosinolate 

breakdown products during consumption. 

Concluding remarks 
The health benefits of vegetables are well recognised, but vegetable intake in 

Europe is below recommendations. Food preparation methods such as conventional 

cooking reduce intake of important potentially health-protective and promoting 

compounds as glucosinolates even more. In this study, microwave cooking appeared 

to show high retention of the glucosinolates even exceeding in some instances the 

levels in untreated cabbage material. Therefore microwave-cooked cabbage would 

result in a relatively higher intake of glucosinolates as compared to conventional 

cooked cabbage in water. The residual activity of the hydrolytic enzyme myrosinase 

as obtained at certain milder microwave conditions can possibly also cause conversion 

of glucosinolates into protective breakdown products during mastication of the 

vegetables. However it should be investigated to what degree myrosinase is able to 

exert hydrolysis when it is partially inactivated. 

In conclusion, this study showed that microwave cooking of cabbage is an 

interesting alternative for conventional cooking. Higher retention of glucosinolates 

and controllable amounts of active myrosinase offers increasing health-promoting 

properties of microwave prepared Brassica vegetables. 
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Chapter 5 

Abstract 
In this chapter it is demonstrated that many steps in the food production chain of 

Brassica vegetable products can have a large impact on the final intake of health 

protective glucosinolates. The large amount of variables for each step in the chain 

makes an experimental quantification of dietary intake of phytochemical extremely 

difficult. We present a concept of predictive modelling of health aspects in the 

production chain of vegetable products, which is intended to be used for the 

development of tools to facilitate both product and process development for health 

products as well as epidemiological input data for bioactive substances in the diet. 

In the model, essential parameters that determine the health-promoting qualities of 

the food product need to be selected after which the most critical sub-processes for 

each parameter are investigated during the whole process. These sub-processes are 

translated to mathematical equations, usually (partial) differential equations in 

combination with mass balances, describing what happens to the health promoting 

quality during the process. In a case study the health protective glucosinolates present 

in Brassica vegetables are used to illustrate the value of such a predictive model. The 

described model provides a powerful tool for handling the variation of glucosinolate 

levels throughout the chain in a quantitative way. Product development, consumer 

advice and epidemiological research are important areas that can benefit enormously 

from this approach. 
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Introduction 
There is a growing awareness of nutritionists, food scientists, the food industry, 

and, perhaps most importantly, of the consumers on the relation between diet and 

health. Nowadays there is an increasing amount of evidence for protective effects of 

compounds present in fruit and vegetables (phytochemicals) by epidemiology and 

mechanistic studies in vitro and in vivo or on human biomarkers. Some of the 

compounds that have been studied extensively are carotenoids, flavonoids, folates, 

and glucosinolates. It is thought that they play an important role in the prevention of 

various diseases, most importantly ageing diseases like cancer and coronary heart 

diseases. Research on this subject is focussed on promising individual compounds by 

food scientists or on certain fruit or vegetables by epidemiologists. 

Mechanistic studies have shown various health protective effects of a large number 

of compounds. Epidemiological studies however have only shown associations 

between the total intake of fruit and vegetables and health protection with limited 

evidence linked to the individual components (Steinmetz and Potter, 1991). It is not 

yet possible to resolve whether these associations are to be attributed to Brassica 

vegetables per se or to vegetables in general. 

The impact of food processing and storage on some micro-nutrients such as 

vitamins (especially vitamin C) and minerals are reasonably well known. 

Unfortunately, the stability and fate of phytochemicals such as e.g. flavonoids or 

glucosinolates in the production chain of fruits or vegetables have not been 

investigated to the same extent. The lack of knowledge on the effects of processing 

and storage has implications on the reliability of intake data used in epidemiological 

studies. Due to the lack of this quantitative information optimum intake levels for the 

majority of phytochemicals are not known. Despite this problem, there is a growing 

interest in enhancing levels of beneficial phytochemicals in crops by conventional 

breeding or genetic modification. With more knowledge on the effects of the complete 

production chain a more effective choice can be made on how to enhance, if desired, 

phytochemical levels in the final consumed product. 

There is a growing amount of evidence directing to protective effects of certain 

phytochemicals in a dose-response relating way. The effective concentration-window 

of ingested phytochemicals can possibly play a crucial role for their protective mode. 

For example, vitamin C, an essential constituent of the human diet, used widely 

throughout the food industry for its antioxidant properties. Epidemiologists recently 

reported that people who take 500 mg of vitamine C each day were two and a half 

(nonsmokers) to five (smokers) times more likely to suffer thickening of the carotid 

artery (Southon, 2000). While nobody disputes that vitamin C is an essential 

micronutrient needed to prevent disease and promote health the dose appears to be 
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crucial. Other examples emphasising the importance of intake balance are (3-carotene 

(1994) and minerals like iron (Halliwell and Gutteridge, 1989). The dose-response 

relationship can make the difference between no effect, protective effects or harmful 

effects. Therefore, in order to get a realistic estimation of the effect of these bio-active 

compounds from foods, a quantitative approach throughout the entire production 

chain is an absolute requirement to obtain reliable intake data. 
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Figure 5.1 Schematic representation of a food production chain for Brassica vegetables and 
possible causes for variation in levels of bio-active compounds. 

In Figure 5.1 a schematic representation of a food production chain of Brassica 

vegetables is given. It is indicated that all steps in this chain can have an effect on the 
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level of the phytochemicals, depending on several processes and conditions. In this 

chapter we describe a modelling concept which enables the quantitative prediction of 

the effects of these conditions and processes in the production chain on the 

phytochemical levels and potential health related benefits. 

The production chain and possible effects on health 
General 

Healthiness of consumed products is determined by the level of bio-active 

components in the final product and by their bio-availability from the (digested) final 

product. There is scattered information about the effects of certain conditions at some 

steps in the production chain on the level of specific bio-active components (examples 

are on flavonoids from apple during juice production (Dekker et al., 1999) and on 

glucosinolates from Brassica vegetables during cultivation and processing (Verkerk et 

al., 1998; Mithen et al., 2000). Even less information is available on the effects of 

steps in the production chain on the bioavailability (a notable exception is the effect of 

processing on the bioavailability of carotenoids (Thane and Reddy, 1997). The effects 

of all steps in the production chain on health promoting components have not been 

systematically studied and because of the almost infinite amount of possible variation 

in all the factors they never will be. Due to this lack of information we feel that a 

predictive modelling approach can be a very effective tool to estimate the effects of 

variation in conditions and processes on healthiness of products. This modelling 

approach should then be based upon a sound mechanistic understanding of the most 

relevant conditions and processes within the entire production chain. 

To illustrate this approach we have chosen glucosinolates as an example. Research 

on the protective effects of dietary glucosinolates from Brassica vegetables in human 

cancer development requires an accurate assessment of the dietary intake of these 

components. 

General information on glucosinolates and health 

Glucosinolates are an important group of phytochemicals that are widely 

distributed throughout the Cruciferae, a family that includes the Brassica vegetables 

such as cabbage, Brussels sprouts, broccoli and cauliflower. Detailed information on 

glucosinolates is given in chapter 2 of this thesis, however some aspects relevant for 

this chapter are summarised here. Glucosinolates co-exist with, but are physical 

separated from, the hydrolytic enzyme myrosinase in the intact Brassica plant. Upon 

mechanical injury of the tissue, the enzyme and substrate come into contact resulting 

in hydrolysis. The features of the hydrolysis environment such as pH, temperature and 

the presence of co-factors determine the proportion and nature of the various 

breakdown products. Intact glucosinolates can also be hydrolysed by the human gut 
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flora. There are however indications that the bioavailability of the breakdown 

products is lower from intact glucosinolates in the diet compared to pre-hydrolysed 

glucosinolates. Substantial evidence suggests that the hydrolysed glucosinolate 

products possess important protective properties against cancer. This protective effect 

against cancer has been attributed to the ability of some breakdown products, mainly 

isothiocyanates, to inhibit phase I enzymes that are responsible for the bio-activation 

of carcinogens (Guo et al., 1992) and to induce phase II detoxification enzymes 

(Sparnins et al., 1982; Wattenberg 1978; Zhang et al., 1992). 

The next sections deal with the sources and the extent of variation of glucosinolate 

content within the production chain of Brassica vegetables. 

Genetical and environmental variation 

Comparative studies of glucosinolate distribution and variability between and 

within groups of the most widely consumed Brassica vegetables such as broccoli, 

cabbage and Brussels sprouts show large differences (Kushad et al., 1999). It is 

supposed that genetic factors and environmental factors contribute both significantly 

to the variation in levels of glucosinolates. An example of the variation within a 

variety is given in Figure 5.2 (for methods and materials see chapter 3). For seven 

different varieties of white cabbage the individual glucosinolates show substantial 

variation (up to 5-fold) in levels. 
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Figure 5.2 Variation in the level of individual glucosinolates in white cabbage varieties. The 

glucosinolates are 3-methylsulphinylpropyl (iberin), 2-hydroxy-3-butenyl (progoitrin) and 

2-propenyl (sinigrin). 

76 



Glucosinolates in the production chain of Brassica vegetables 

In some Brassica vegetables significant variations in glucosinolate levels are 

reported from year to year due to environmental conditions (Carlson et al., 1987; Rosa 

et al., 1994). Factors that may have contributed to this variation included growing 

sites, soil type, sulphate and nitrate fertilisation, climate and date of harvest. 

The glucosinolate degradation products are partly responsible for the typical 

flavour of Brassica vegetables. It has been shown that the glucosinolates sinigrin and 

progoitrin are involved in bitterness in Brussels sprouts. Breeding and selection of 

cultivars for more desirable organoleptic properties have led to considerable variation 

in the glucosinolate profiles of vegetables such as cabbage and Brussels sprouts 

(Griffiths and Fenwick, 1984; van Doom et al, 1998). 

Storage and distribution 

Other important steps in the production chain are post-harvest treatments of the 

vegetables. The variability rising from raw material storage depends on duration and 

conditions of handling and storage. Raw materials change with time and unless 

careful handling, transportation and storage procedures are used, the initial quality of 

the raw materials (such as phytochemical content) may be irreversible lost. It is 

known that in fresh vegetable products the greatest loss of vitamins occurs during the 

first 24 hrs and after that the level stays steady during normal storage time in 

appropriate circumstances. The transit of fresh produce takes approximately 7 to 14 

days and post-harvest handling before commercial freezing is usually takes less than 

12 h. The faster the cooling happens the smaller the loss. Until now there is little 

information about the stability of phytochemicals in general and glucosinolates in 

particular during storage, handling and distribution. 

Some hydrolysis of glucosinolates can take place during harvest and storage 

caused by senescence. Obviously cabbage is more resistant to this than vegetables as 

broccoli and cauliflower that are highly perishable and must be cooled immediately 

after harvest. For broccoli, refrigeration at 4°C and freezing were shown to be the best 

preservation processes for maintaining high levels of glucosinolates (Rodrigues and 

Rosa, 1999). However freezing causes ice formation within the cells resulting in 

damage to cell structures (Reid, 1990). This becomes apparent upon thawing and can 

cause subsequent hydrolysis of glucosinolates. 

An increase in total glucosinolate content was reported in broccoli when stored 

under air or under controlled atmosphere for 7 days, while the absence of 02 with a 

20% C02 concentration resulted in total glucosinolate loss (Hansen et al, 1995). 

The gas conditions, humidity and temperature are also of importance during 

transport of the vegetables to the processor or supplier. 
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Processing 

Fruits and vegetables are abundant sources of different phytochemicals and are 

consumed widely and in varying amounts. Both groups, but vegetables in particular, 

are subjected to different types of processing prior to consumption. Although 

consumption of minimal processed or even fresh unprocessed fruit and vegetables is 

widely advocated, it may not always be possible or even desirable. For reasons of 

costs, availability and edibility, processing is necessary or desired. Industrial 

processing may be minimal or more extensive, involving procedures as washing, 

cutting, blanching, addition of processing chemicals, drying, fermenting, freezing, 

canning and sterilising. Regarding the Brassica vegetables, any process that disrupts 

cellular integrity may result in some glucosinolate hydrolysis. However another 

mechanism has found to be induced by post harvest processing of Brassica 

vegetables. Verkerk et al. (2001) found that cutting of several Brassica vegetables and 

storage in air resulted in a remarkable increase of especially the indolyl 

glucosinolates. While other glucosinolates were found to be unaffected by this 

treatment, some indolyl glucosinolate increased up to 15-fold in concentration (in 

detail elucidated in chapter 3). Again these results show a large possible variation in 

levels depending on the type of treatment. 

A large number of Brassica vegetables are consumed after cooking, and the 

amounts of glucosinolates are usually reduced considerably in cooked vegetables. 

Processes that can take place during cooking are the following; 

• (Partial) inactivation of myrosinase; 

• Heat degradation of glucosinolates and breakdown products; 

• Enzymatic breakdown of glucosinolates; 

• Loss of enzymatic co-factors (ascorbic acid, iron); 

• Leaching of glucosinolates, breakdown products and myrosinase in cooking water. 

Figure 5.3 illustrates the effect of the amount of cooking water and the condition at 

the start of the cooking process (addition of the vegetable to cold or to already boiling 

water) on the glucosinolate levels in broccoli. It appeared that the level of leakage of 

glucosinolates into the cooking water is strongly related with increasing amount of 

cooking water and to lesser extent with the cooking time or method. 
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Figure 5.3 Effect of different conventional cooking methods of broccoli on the total 
glucosinolate content. A: hot start (1:1); B: hot start (1:4); C: cold start (1:2); D: cold start 
(1:8), indicating start of cooking with cold or hot water and ratio vegetable/cooking water. 

When large amounts of water were used, cooking reduced the total glucosinolate 

content of the broccoli by more than 80%. Most of this loss was due to leaching of the 

glucosinolates into the cooking water. Also other studies show large effects of 

cooking on glucosinolate composition of several Brassica vegetables (Rosa and 

Heaney, 1993; Jiao et al., 1998). All these studies demonstrate the importance of 

assessing the intake of glucosinolates after processing. However processing is 

affecting the glucosinolate levels in a complex manner caused by the variation in 

process conditions. In the case of cooking of the vegetables, the temperature profile 

and amount of cooking water are of importance. 

Overall variation as affected by the production chain 

In conclusion we can state that the glucosinolate content of processed vegetables 
depends on: 

• genetic and environmental factors (determining their quantity in the original raw 
foods); 

• the extent and nature of processing (industrial and domestic); 

• packaging and storage conditions. 
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As illustrated in the above mentioned examples the intake data of glucosinolates 

can exhibit large variation throughout the entire food production chain. It can be 

estimated that the levels at different steps in the production chain can easily have a 

variation of 5-10 fold in the raw material (e.g. cultivar differences), 5-10 fold 

variation caused by industrial processing and storage, 5-10 fold variation by 

household preparation (e.g cooking practices). These mentioned parts of the food 

production chain therefore result in an expected input variation of at least 100 fold 

between individual consumers (Figure 5.4). 
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Figure 5.4 Variation in phytochemical (glucosinolate) levels at three levels in the food 
production chain and the resulting overall variation in intake levels at the consumer level. 

This is of course a very undesirable situation for many actors in the food chain: 

i) Industry for the development of functional food products with a guaranteed level of 

a certain component or a reproducible and reliable physiological impact; 

ii) Government agencies giving advice regarding best practices and diets related to 

public health; 

iii) Scientists who have to rely on intake data to study the relation between food and 

health (epidemiologists). 
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Moreover, it is conceivable that the variation of levels of bio-active compounds 

and lack of accurate intake data is responsible for the limited solid epidemiological 

evidence on the protective effect of certain groups of fruit or vegetables so far. 

Therefore we present a more integrated study of the dietary exposure of important 

phytochemicals in the food production chain. 

Predictive modelling approach 
We have demonstrated the large variability in levels of glucosinolates throughout 

the production chain of Brassica vegetables. Because of the almost infinite amount of 

possible variation in all the factors of the chain it will not be feasible to carry out 

systematic studies on all the effects. For this reason we propose the development of 

quantitative predictive models that describes the fate of phytochemicals in the food 

production chain from 'field to table' and finally into a healthier consumer. Modelling 

the production chain will consist of a series of sub-models describing the effects of 

the different steps within the chain. In Figure 5.5 a schematic representation of such a 

sub-model is given. 
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Figure 5.5 Schematic representation of a sub-model describing the effect of a step in the 
production chain on the level of a bio-active compound (Xin/out) depending on the conditions 
during that step (Yi). 

This sub-model will consists of a set of mathematical equations describing the 

dynamic changes in the concentration of the phytochemicals in food products in one 

specific step or process. After linkage of these sub-models the effects of the various 

processes in (part of) the food production chain on the fate of phytochemicals can be 

predicted. The development of a predictive model is based on three steps: 
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• selection of the essential chain elements that determine the final content of the 

studied compound in the food; 

• characterisation of the most critical sub-processes for each factor during the process 

under study; 

• translation of the sub-processes to mathematical equations, usually (partial) 

differential equations in combination with mass balances, describing what happens 

during processing. 

For the translation it is important to make appropriate assumptions about the 

system in order to simplify reality as much as possible. With this set of equations the 

changes in concentration of compounds and other relevant factors can be calculated 

with appropriate software. The predictive modelling approach must be based upon a 

sound mechanistic understanding on the most relevant conditions and processes 

within the entire production chain. A translation of the conceptual (sub)-model to a 

predictive model is carried out in a case study performed on consumer processing (see 

chapter 7 for details). The effects of cooking on glucosinolates in cabbage are studied 

extensively and subsequently translated in a quantitative predictive model. In this case 

study the important elements for healthiness were selected (content of glucosinolates, 

breakdown products and active myrosinase) and critical sub processes were identified 

(cell lysis, leaching, enzyme denaturation and enzyme activity). These processes were 

translated to mathematical equations and independent analysis on their temperature 

dependence was performed. By giving the temperature profile during cooking, the 

amount of cabbage and cooking water to the model, the cooking process can now be 

simulated and glucosinolate and breakdown product profiles during the cooking 

process be calculated. In the validation procedure the model was applied to predict the 

effect of cooking water on the final level of glucosinolates in broccoli and the match 

between the predicted line and the measurements was almost identical. 

Applications of predictive modelling of health aspects 
The proposed concept of predictive modelling of health aspects in the production 

chain is an innovative and challenging approach for the characterisation of the 

influence of the food production chain on ingestion of phytochemicals by humans. 

The described method of predictive modelling provides a powerful and efficient tool 

for handling the variation throughout the chain in a quantitative, scientific way. 

A valuable way of using this predictive quantitative model is the use in 

combination with epidemiological studies. As shown in this chapter these 

epidemiological studies now have to deal with differences in intake level that can 

easily vary by a factor 10 to 100 depending on the way of processing (cutting, storage, 

cooking). By correcting intake data of bioactive compounds derived from e.g. fruit 
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and vegetables for the way they are processed, either by industry or by consumers 

themselves, the sensitivity of such studies will be enhanced enormously. Application 

of predictive models and hence correct intake data for chain effects may possibly 

separate the anticarcinogenic effect of Brassica vegetables from the effect of 

vegetables in general. 

Conclusions 
There is a growing interest in the enhancement of levels of desirable 

phytochemicals in crop plants via classical breeding or biotechnological methods. 

However, the need for increased levels of specific health promoting compounds in the 

plants is unsubstantiated when more accurate intake data are lacking. It is 

demonstrated that many steps in the food production chain of vegetables can have a 

large impact on the stability and fate of phytochemicals. All these steps contribute to 

the final intake of specific bio-active compounds and thus, determine the health 

promoting capacity of the food. This is most clearly illustrated by the influence of 

processing on the levels of phytochemicals as discussed in this paper. The concept of 

predictive modelling of the health effects on products throughout the entire production 

chain can be an extremely valuable tool. An application of this approach as an 

example of the effect of processing is the predictive model describing the fate of 

glucosinolates during cooking of cabbage, which is further elaborated in chapter 6 of 

this thesis. The development of models similar as the one described in this paper for 

other steps in the production chain and also for other types of compounds (e.g. 

flavonoids, carotenoids and folates) can increase our knowledge on actual levels in the 

final product data substantially. A further extension of this modelling concept with the 

effects on the bio-availability of phytochemicals is a future challenge. Product 

development, consumer advice and epidemiological research are important areas that 

can benefit enormously from this approach. 
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Chapter 6 

Abstract 
The group of glucosinolates (GS) plays an important role in the health-protective 

potential of Brassica vegetables. Cell damage of the vegetables by processing or 

mastication releases the endogenous hydrolytic enzyme myrosinase, which converts 

the glucosinolates to anticarcinogenic breakdown products such as isothiocyanates 

and indoles. 

In this study the glucosinolate-myrosinase system was investigated during 

processing, that is. cooking of cabbage. By modelling the effects of processing on the 

system a tool was developed that can be used to assist product and process 

development. The model can also be used to improve the quality of investigations 

aimed at understanding the role of dietary glucosinolates and breakdown products in 

the protection against cancers. Glucosinolates as precursors of health-protective 

components and the active enzyme myrosinase are selected as most important health 

related parameters. Cell lysis, leaching of the components and denaturation and 

activity of myrosinase are identified as critical sub-processes. These sub-processes are 

translated into mathematical equations describing what happens during the cooking 

process. Based on the mathematical descriptions of the sub-processes we developed a 

model that describes the fate of the glucosinolate-myrosinase system during the 

cooking process of cabbage and predicts the health related parameters in the products 

consumed by humans. Simulation studies with the model show considerable reduction 

in GS contents in the cabbage with about 40% to 70% depending on the ratio of 

vegetables/cooking water, the warm up and cooking time. Also low amounts of 

breakdown products are formed during cooking (max. 4% of total GS). Ultimately, in 

different simulation studies it is shown that cabbage prior to consumption contains no 

active myrosinase anymore. The model predictions show good correlation with 

experimental data available from literature. The large impact of vegetable processing 

or food preparation on the variation in levels of health-protective breakdown products 

can partly explain the weak inverse correlation between consumption of Brassica 

vegetables and cancer incidence. 



Predictive modelling of glucosinolates 

Introduction 
Fruits and vegetables are abundant sources of various, extensively studied, health-

protective phytochemicals. One important group of these phytochemicals is that of the 

glucosinolates. Glucosinolates (GS) comprise a group of thioglucosides naturally 

occurring in Brassica vegetables such as broccoli, cauliflower, radish, Brussels 

sprouts and cabbage. Glucosinolates co-exist with, but are physically separated from 

the hydrolytic enzyme myrosinase in the intact Brassica plant. Upon mechanical 

injury of the tissue, the enzyme and substrate come into contact resulting in hydrolysis 

(Mithen et al., 2000; Verkerk et al., 1998). The products of GS hydrolysis, particularly 

the isothiocyanates and indoles, have been shown to act as anticarcinogens by 

inhibition of phase I enzymes responsible for bioactivation of carcinogens and by 

induction of phase II detoxification enzymes that affect xenobiotic transformations 

[Sparnins, et al., 1982; Wattenberg, 1978; Zhang et al.,1992). Research is ongoing to 

establish the biological activities of dietary glucosinolates and breakdown products, 

their bioavailability and metabolism. 

Epidemiological studies indicate that a diet rich in Brassica vegetables can reduce 

the risk from a number of cancers (Steinmetz and Potter, 1991; Verhoeven et al., 

1996). However up to now epidemiology cannot reproducibly correlate protection 

against certain cancers or other diseases with specific vegetables, subgroups or 

individual components. A plausible explanation for this can be the lack of realistic 

intake data of specific health protective phytochemicals. Assessment of accurate 

dietary intake of phytochemicals thus can play a crucial role. In this respect the impact 

of food processing and storage on the stability and behaviour of phytochemicals such 

as glucosinolates in the production chain of Brassica vegetables has not been 

investigated intensively (Dekker et al., 2000). With more knowledge on the effects of 

the complete production chain a more effective choice can be made on how to 

enhance phytochemical levels in the final consumed product. Moreover, 

epidemiological studies can possibly be improved by correcting phytochemical intake 

data for different steps in the food production chain such as processing. The large 

variability of important dietary phytochemicals within a food production chain of 

Brassica vegetables is illustrated in chapter 5 of this thesis. Furthermore, in chapter 5 

it was proposed to develop quantitative predictive models that describes the fate of 

phytochemicals in the food production chain from 'field to table' and finally into a 

healthier consumer. This model should consist of a set of mathematical equations 

describing the dynamic changes in the concentration of the phytochemicals in food 

products. With this model the effects of the various processes in the food production 

chain on the fate of phytochemicals can be predicted. 
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Prior to consumption most of the vegetables are processed, e.g. industrial or 

domestic. Industrial processing may be minimal or more extensive, involving 

procedures as washing, cutting, blanching, addition of processing chemicals, drying, 

fermenting, freezing, canning and sterilising. Domestic processing or preparation of 

the food is more complex and much less standardised. The most important ones are 

chopping and cooking of the vegetables. Regarding the Brassica vegetables, any 

process that disrupts cellular integrity may result in some glucosinolate hydrolysis. 

Besides decline in glucosinolate content also increase of specific glucosinolates 

occurs in response to cutting and storage of cabbage (Verkerk et al., 2001). 

A large number of Brassica vegetables are consumed after cooking, and the 

amounts of glucosinolates are usually reduced considerably in cooked vegetables. 

Some sub-processes that can take place during cooking are leaching of glucosinolates, 

breakdown products and myrosinase into the cooking water, inactivation of the 

enzyme myrosinase, enzymatic breakdown of glucosinolates or heat degradation of 

glucosinolates and breakdown products. Different studies have shown large effects of 

cooking Brassica vegetables mostly resulting in substantial leaching of glucosinolates 

into the cooking water (Verkerk et al., 1998; Rosa and Heaney, 1993; Mullin and 

Sahasrabudhe, 1978; Jiao et al.,1998). These studies emphasise the importance of 

assessing the intake of glucosinolates after processing prior to consumption. However 

processing is affecting the glucosinolate levels in a complex manner caused by the 

variations in process conditions. In the case of cooking of the vegetables, the 

temperature profile and amount of cooking water are of importance. 

Model building 
Mathematical description of the cooking process of cabbage 

As an example of the modelling of the fate of bio-active compounds in processing 

and food preparation as part of the food chain we will describe the cooking process of 

red cabbage. To model the changes in content of glucosinolates in the cabbage we 

have to look in some detail to the most important processes during cooking. First we 

have to select the important factors that determine the health-protective compounds of 

the food product. For these factors the most critical sub-processes during the cooking 

process have to be selected. When these sub-processes have been identified they have 

to be translated to mathematical equations, usually (partial) differential equations in 

combination with mass balances, describing what happens during processing. For the 

translation it is important to make appropriate assumptions about the system in order 

to simplify reality as much as possible. With this set of equations, the changes in 

concentration of compounds and other relevant parameters can be calculated with the 

appropriate software. 
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Selection of important parameters for healthiness 

The formation of glucosinolate derivatives depends on the enzymatic degradation 

by the endogenous enzyme myrosinase or by bacterial enzymes in the human gut. For 

the health protective properties of cabbage the most important parameters are: content 

of glucosinolates and breakdown products and the amount of active myrosinase. The 

model to be developed has to be able to predict these parameters after the cooking 

process. 

Identification of critical sub-processes 

As described above glucosinolates can be degraded by the endogenous enzyme 

myrosinase. In intact cells of cabbage the membrane of the vacuole separates the 

enzyme and its substrate. During cooking cell lysis will occur giving rise to a sudden 

increase in osmotic pressure difference over the vacuole membrane which will result 

in collapse of this membrane, resulting in a mixing of the glucosinolates and the 

myrosinase in the cooking water. Enzymatic degradation can then take place. In 

Figure 6.1 these sub-processes have been schematically illustrated. 

1. Cell lysis 

2. Leaching 

3. Enzyme denaturation 

4. Enzyme activity 

Wk Myrosinase 

H Denatured Myrosinase 

Glucosinolate 

Breakdown product 

Figure 6.1 Schematic illustration of the most important processes determining the fate of 

glucosinolates during cooking. 
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For mathematical treatment of these sub-processes the cell lysis rate has to be 

known as a function of temperature. Also an assumption has to be made how quickly 

the enzyme and glucosinolates mix with the cooking water. The kinetics of enzymatic 

degradation of glucosinolates has to be known as a function of concentrations and of 

temperature. Although myrosinase is quite a stable enzyme, denaturation will occur at 

a certain rate depending on the temperature. So also the denaturation rate as a function 

of temperature has to be determined. 

Translation into mathematical equations 

Cell lysis is described as a first order process, meaning that the rate of lysis will be 

proportional to the fraction of cells that is still intact. Experiments were conducted 

where cell lysis was measured by the increase in conductivity of the cooking water 

caused by release of cell contents upon lysis after different time/temperature 

treatments of the cabbage. These experiments could be described quite accurately by 

the first order equation (1) and mass balance (2): 

dCC,/ , „ 
- = -kl-CC,i (1) 

At 

Cc,; = l - C c , (2) 

in which Ccj is the fraction of intact cells and Cc.i of lysed cells at time t (min), ki is 

the rate constant of cell lysis (min1). 

Because of the high osmotic pressure difference between cooking water and cell 

contents, free water will dilute the cell content very quickly once the cells are lysed. 

Also the size of the cut cabbage particles is quite small (~1 cm2). Therefore the 

mixing rate of solutes (including enzyme and glucosinolates) from the lysed cells to 

the cooking water is assumed not to be rate limiting. Based on these assumptions the 

leaching of compounds from the lysed cells is described by the mass balance (3-5): 

Mf = Mw + Cc, • Mc • (1 - IM) (3) 

M is the mass (g), / refers to not enclosed water (=cooking water + water in lysed 

cells), w to the initial amount of cooking water and c to the cabbage. /Mis the fraction 

of insoluble matter. After cell lysis, leaching of active myrosinase and glucosinolates 

is described by the equations (4) and (5). 
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Mc—^-CGS,=Mf-^-\^f (4) 

Mc • —^~ • CMyr,i = Mf ;jj—"I /-•/• (5) 

in which G5 refers to glucosinolates, Myr to active myrosinase in intact cells (/) or in 

released water (/). The denaturation of myrosinase is described by first order 

inactivation with the Arrhenius equation describing the temperature dependence of the 

rate constant (6) and (7). 

dClMyrJ 

It ' 

dC 

~kd • CMyr,i ( 6 ) 

—T \d -~kd -cMyr,f (') 

in which kd is the rate constant of myrosinase denaturation both in intact cells (i) and 

in released water (/). Finally the degradation of glucosinolates by myrosinase is 

described by the Michaelis-Menten equation (8). 

dCGS,f | ka-CMyr,f 

— T t — a = r w 

at A m CGSJ 

In this equation ka refers to the rate constant of maximum enzyme activity and Km 

to the enzyme M-M constant (umol.g"). The temperature dependence was described 

by the Arrhenius equation (9). 

~EaJ 
kj=k0J-e*-T (9) 

in which kj is the experimentally observed rate constant of process j , k0 the pre-

exponential factor (min1), Ea the activation energy (kJ/mol), R the gas constant 

(kJ/mol.K) and T absolute temperature (K). A summary of the different sub-processes, 

the required experiments and the necessary parameters is presented in Table 6.1. 
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Table 6.1 Schematic representation of the experimental set-up for parameter estimation. 
Experiment 

Cell lysis/ leaching 

Enzyme activity* 

Enzyme denaturation" 

Variable 

T293-373K 

t 0-60 min 

T313K 

t 0-40 min 

T273-373K 

t 0-120 min 

Analysis 

Conductivity 

Hydrolysis of sinigrin 

Enzyme activity 

Parameters 

Eaj: koi 

K 
Km 

kd 

Ea,d ; koM 

Equations 

(1, 2, 3, 4, 
5,9) 

(8,9) 

(6, 7, 9) 

# in juiced cabbage; T = Temperature (degrees Kelvin); t = time (min) 

Material & Methods 
Sample preparation 

Red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) material was 

supplied by Novartis Seed BV (Enkhuizen, The Netherlands) and partly purchased 

from local supermarkets (Wageningen, The Netherlands). The outer leaves of the 

heads were removed and complete cabbage heads were used for the experiments. The 

cabbage was chopped into pieces of approximately 1 cm2 and mixed thoroughly. For 

glucosinolate analysis of the fresh cabbage the chopped material was directly frozen 

with liquid nitrogen. The frozen material was ground in a Waring Blender (Model 

34BL99, Dynamics Corp. of America, New Hartford, Connecticut, USA) and stored 

at -30°C until further analysis. 

Preparation of cabbage juice for the analysis of the activity and denaturation of 

myrosinase. 

Red cabbage material was chopped and juice was prepared with a commercial juice 

centrifuge (Braun, type 4290). The obtained juice was sieved to remove the larger 

parts. Subsequently the juice was incubated for 1 hour at 40°C in an oven to hydrolyse 

the endogenous glucosinolates present in the cabbage. The obtained batch of 

glucosinolate-free juice was considered as a crude myrosinase extract in which 

different cabbage components are present that could affect the myrosinase activity 

(e.g. ascorbic acid). Part of the juice was incubated for 15 minutes at 100°C in order 

to inactivate the enzyme myrosinase. This juice was used for dilution purposes in the 

activity assays. 
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Microwave cooking 

Approximately 2000 g of red cabbage was chopped and divided into portions of 

300 g each. Each portion was placed in a 500 ml beaker and cooked in a microwave 

oven (Daewoo, Model KOC-87-T, Korea) at 2450 MHz for 1, 2, 4, 6, or 8 min with 

an output power of 540W and 36, 72, 144, 216, or 288 sec with an output power of 

900 W. After heating, the vegetables were frozen with liquid nitrogen and stored at -

30°C until glucosinolate analysis. Temperature registration during microwave 

cooking was done using a glassfibre probe (Takaoka, Type FTP3-3003 s/n 31888). 

Analysis 

Glucosinolate analysis 

The glucosinolate 2-propenyl (sinigrin, Aldrich Chemical Co., Milwaukee, WI, 

USA) present in the fresh cabbage or cabbage juice was analysed using high 

performance liquid chromatography (HPLC) following on-column desulphation as 

described by Verkerk et al. (2001). 

Conductivity measurement 

Cell lysis was determined by measuring the conductivity of the cooking water at 

23°C with a Microprocessor Conductivity Meter (Type WTW, LF537). Temperature 

registration of the cabbage during the conventional cooking experiments was carried 

out with a Tinytalk-PT Logger (range -50°C - 300°C) that was inserted in the cabbage 

pieces. 

Determination ofmyrosinase activity 

The activity of the enzyme myrosinase present in the juice was measured by 

analysing the extent of hydrolysis of a known amount of sinigrin added to the juice. 

To 5.0 g of cabbage juice 1 ml of 6 mM pure sinigrin was added and incubated at 

40°C for 0, 5, 10 and 20 minutes. The reaction was stopped by adding 12 ml of 100% 

hot methanol (for 10 min. at 75°C). The juices were centrifuged (5000 x g, 10 min, 

RT) and remaining sinigrin was isolated from the collected supernatant and analysed 

by HPLC. 

Experimental set-up 

Cell lysis 

For the temperature incubations 150 g samples of chopped red cabbage were 

immersed in 400 ml water at desired temperatures in 800 ml beakers. The beakers 

were placed in a waterbath and incubated for different preset temperatures. The red 

cabbage samples were incubated at 40, 60, 80 and 100°C for 10, 20, 40 and 60 

minutes. Immediately after incubation the samples were quickly cooled on ice after 

which the vegetables were separated from the cooking water, weighed and frozen with 

95 



Chapter 6 

liquid nitrogen. After cooling down of the cooking water (23°C) the conductivity was 

measured (in mSiemens) and samples were collected in tubes and stored at -30°C 

until further analysis. 

Effect of temperature on cabbage myrosinase activity 

The cabbage juices (crude myrosinase extract) were equilibrated at various 

temperatures (20, 40, 60 and 80°C). The hydrolysis was then started by addition of 1.0 

ml 6 mM sinigrin standard and stopped after the desired times by adding hot 

methanol. From the remaining intact sinigrin the rate of hydrolysis was calculated. 

Effect of temperature on denaturation of myrosinase 

For determining the thermal stability of myrosinase between 25 and 80°C, the 

remaining activity was measured after different temperature/time incubations of the 

cabbage juice. For this purpose the 'dilution juice' (heat-treated cabbage juice) was 

brought at the desired temperature and the incubation was started by addition of the 

'active myrosinase' juice. Immediately after cooling of the incubated juices, the 

myrosinase activity at 40°C was measured as before. 

Data analysis 

The validity of the Arrhenius equations was evaluated by plotting ln(&) versus the 

reciprocal temperature and determining the goodness of the fit by means of the 

correlation coefficient and residual analysis (Microsoft Excel). 

Results & Discussion 
Kinetics of cell lysis 

Cell lysis was determined by measuring conductivity of the cooking water after 

different time/temperature treatments of the chopped red cabbage. It was found that 

the electrical conductivity of the cooking water increased with increasing cell damage 

caused by leaching of the cell content into the water. Being able to measure the extent 

of cell lysis simply and quickly allows evaluation of what percent of plant cells must 

be ruptured to achieve optimal conditions for glucosinolate hydrolysis. These 

experiments could be described quite accurately by the first order equation and the 

temperature dependence was described by the Arrhenius equation. The rate constant k/ 

and the apparent activation energy Ea of the cell lysis have been determined for the 

different temperatures. The temperature dependence according to Arrhenius resulted 

in fo/and Eaj values of 2.9-106 min"1 and 53 kJ/moleK respectively. 
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Activity of myrosinase 

The activity of the enzyme myrosinase was determined in juices prepared from red 

cabbage. Previous research (unpublished) showed that juicing of cabbage resulted in 

high myrosinase activity in the juice and little remained in the cabbage pulp. Since we 

are interested in the myrosinase activity at cellular conditions, measuring the activity 

in the juice of cabbage is preferred over the activity of the isolated enzyme, which is 

usually done (Yen and Wei, 1993; Ludikhuyze et al., 1999, 2000; Wilkinson et al., 

1984). The presence of known (e.g. ascorbic acid, MgCb and iron) and yet unknown 

components in the cabbage juice that are important for myrosinase activity gives a 

valuable advantage to this approach. 

The rate of glucosinolate hydrolysis depends on temperature, pH and on the 

concentrations of enzyme and substrate. The pH dependence is not included in the 

model. Yen and Wei (1993) reported an optimum pH at 8.0 for myrosinase activity 

from red cabbage and a relative activity of 90% in a pH range between 5.0 and 8.0. 

However West et al. (1977) have shown two pH optima at 5.0 and 8.0 for myrosinase 

in crude extracts from cabbage. For myrosinase from broccoli a pH optimum of 6.5 

was found in partly purified extracts (Ludikhuyze et al., 2000). The crude red cabbage 

juice used in our experiments showed a constant pH of 6.5 (at 23°C), which is 

according to most literature in the range of high myrosinase activities. 

The temperature dependence of myrosinase activity is shown in Figure 6.2. The 

optimal temperature of myrosinase in the red cabbage juice appeared to be around 

40°C. Additional datapoints can possibly result in an optimal temperature just below 

or above 40°C, however activity was less than 40% at 60°C. 

20 80 40 60 

Temperature (°C) 

Figure 6.2 Temperature profile of myrosinase activity in red cabbage juice. 

Experiments carried out under conditions described at Materials &Methods. 

100 
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The optimal temperature of 30°C found for activity of myrosinase from broccoli 

(Ludikhuyze et al., 2000) and our own findings are low compared to the reported 

optimal temperatures of myrosinase from other sources (Bjorkman and Janson, 1972). 

Yen and Wei (1993) showed optimal temperatures of 60°C for myrosinase from red 

and white cabbage and still more than 90% activity at 50°C. It is very well possible 

that different vegetable sources of myrosinase show different physical properties such 

as temperature dependence. Moreover the difference in procedures of activity 

measurements, (partly) purified myrosinase versus crude vegetable juice, can also 

explain differences in behaviour of the enzyme activity. The temperature dependence 

for myrosinase activity could be described by the Arrhenius equation resulting in ko,a 

and Ea,a values of 1.2-104min_1 and 32 kJ/mole-K, respectively. 

Denaturation kinetics of myrosinase 

Thermal inactivation of myrosinase was studied at temperatures ranging from 25 to 

70°C and was determined by measuring the remaining activity after different 

temperature-time incubations of the cabbage juice. The rate constant for denaturation 

was calculated from these experiments. Myrosinase is according to the literature a 

more thermostable enzyme that seems to survive after cooking of vegetables. Yen and 

Wei (1993) show that red cabbage myrosinase is more stable than white cabbage 

myrosinase, however both were destroyed for 90% after heating at 70°C for 30 

minutes. Ludikhuyze et al. (1999) studied thermal inactivation of myrosinase in 

broccoli in the temperature range 30-60°C. They reported a rather thermolabile 

myrosinase with optimal activity at 30°C, and significant inactivation occurring at 

40°C. These latter findings are more in agreement with our results. 

Table 6.2 Overview of the parameter estimation of the different cooking sub-processes. 

Sub-process 

Cell lysis 

Myrosinase activity 

Myrosinase denaturation 

Parameters 
J/mol.K 

ko.i 

Ea,i 

ko.a 

&a,a 

ko,d 

Ea,d 

2.9-10" min' 

53 kJ/mol-K 

1.2-104min"' 

32 kJ/mol-K 

5.0-1023 min1 

155kJ/mol-K 
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Simulation of the cooking process 

With the set of equations describing the most relevant sub-processes during 

cooking of cabbage, cell lysis and myrosinase denaturation and activity, and the 

parameters that have been estimated it is now possible to simulate the cooking 

process. For this purpose a temperature profile during cooking had to be chosen as 

well as the amount of cabbage and cooking water. The applied temperature profile of 

in total 90 minutes is not realistic to domestic consumer cooking but is chosen here 

for reasons of clarity to explain the different steps in the cooking process. With an 

Excel discrete timepoint programme, using Euler's method, these simulations were 

calculated. In Figure 6.3A and 6.3B the simulation results for the cooking of 150 g red 

cabbage in 300 g of water is shown. 
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Figure 6.3 Simulation results of a cooking process of 150 g of red cabbage in 300 g of water. 
A, temperature profile, cell lysis and profile of active myrosinase during the cooking process; 
B, glucosinolate (GS) and breakdown product (BDP) profiles during the cooking process in 
cabbage (cab) and water. 
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The applied temperature profile has been indicated in panel A of Figure 6.3 

(heating up from 20 to 100°C, 30 minutes of cooking and finally cooling down to 

consumption temperature of 50°C). During the heating phase the cells start disrupting 

which results in the leaching of part of the glucosinolates and myrosinase. However 

because of the temperature rise also denaturation of the active myrosinase occurs both 

in the cabbage and in the cooking water after leaching. These two phenomena result in 

an optimum in the released active myrosinase at around 16 minutes when temperature 

reaches 60°C. Upon further heating all the myrosinase is quickly denatured and after 

20 minutes when temperature reaches 73 °C no active myrosinase is present anymore. 

As a result of this behaviour of myrosinase the enzymatic breakdown of released 

glucosinolate is occurring only at a short time period, when the released myrosinase is 

still active. At this time period the main part of glucosinolate is still present in intact 

cabbage cells. This part is only released when the myrosinase is already denatured and 

therefore this glucosinolate fraction will just distribute itself between the cooking 

water and the cabbage. No degradation is expected anymore. The applied temperature 

profile, amount of cooking water and cooking time would result for this simulation 

example in a cabbage for consumption that contains no active myrosinase and 28 % of 

the initial glucosinolate level. Some 3 % of the initial glucosinolate level is present in 

the form of breakdown products in the cabbage, 62 % as intact glucosinolate in the 

cooking water and almost 7 % as breakdown products in the cooking water. 

Application and validation of the model 

With the derived predictive cooking model it is quite easy to study the effects of the 

cooking process conditions on the final level of glucosinolate in the cabbage. By 

doing so it can be shown that one of the most relevant conditions is the amount of 

cooking water relative to the cabbage. In Figure 6.4 this effect of the amount of 

cooking water on the final level of glucosinolate in the product is shown. For 

validating the model cooking experiments that were done with broccoli are shown in 

the figure as well. It can be observed that the predicted line is in agreement with the 

experiments (Figure 6.4). 

A more challenging validation of the model is the prediction of the dynamic 

changes in the glucosinolate levels during cooking. This validation was done by 

cooking red cabbage for different times and analysing the cabbage for glucosinolate 

levels after different times of treatment. In Figure 6.5 the prediction of the levels of 

glucosinolate, breakdown products and of active myrosinase are shown together with 

the measured amount of glucosinolates in the cabbage after different times of the heat 

treatment. 
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Figure 6.4 Effect of the volume of cooking water on the final level of glucosinolates in 150g 

of broccoli as predicted by the model, compared with experimental results. The triangles are 

the experimental data and the line gives the prediction by the model. 
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Figure 6.5 Dynamic behaviour of glucosinolate (GS) and breakdown product (BDP) levels 

during cooking of 150g red cabbage in 300g water as predicted by the model, compared with 

experimental results of the total glucosinolate levels (•) in the red cabbage. 

As can been seen from Figure 6.5 the levels of glucosinolate that are found in the 

cabbage are somewhat higher than predicted. The final glucosinolate levels in the 

cabbage are around 50% while the model predicts only 30%. The dynamic behaviour 

of the glucosinolates in the cabbage is predicted quite well. The predicted decrease in 
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levels between 15 and 30 minutes is corresponding with the observed decrease. The 

fact that the predicted levels are lower than the observed ones can possibly be 

explained by an increase in chemical extractability of the glucosinolates after intense 

heat treatments (see discussion further on). Another explanation is the fact that 

glucosinolates do not leach freely out of the lysed cells, but partly bind to parts of the 

cell contents. This was also observed when juice was made from red cabbage. 

Although different glucosinolates show different distribution behaviour over the 

cabbage insoluble parts and the juice, all are preferentially bound to the insoluble 

parts. To make a more accurate prediction of the glucosinolate behaviour during 

cooking the model could be extended with a partitioning equation describing this 

behaviour. 

Recently Ciska and Kozlowska (2001) studied the effect of different cooking times 

on the GS content in white cabbage. Their observation of the largest decrease in GS 

content during the first minutes of cooking (35%) is in agreement with the prediction 

carried out with our model when using the described conditions (Figure 6.6). 
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Figure 6.6 Prediction of glucosinolate loss (line) during cooking of red cabbage compared to 

experimental data of sinigrin (•) and total GS (•) from white cabbage as obtained from 

literature (Ciska & Kozlowska, 2001). Cooking was carried out with constant cabbage-water 

ratio (1:3) and started with boiling water. 

Also at longer cooking times the model gives a fairly good fit with at maximum 

10% differences in GS levels. In another study carried out by Rosa and Heaney (1993) 

the effect of cooking on glucosinolate content was investigated on different cabbage 

varieties. They noted a substantial reduction in glucosinolates of more than 50% after 
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10 minutes of cooking of all tested cabbage varieties. Using the same conditions (10-

min cooking, 50g cabbage/250g water) the model predicts a similar reduction of 58% 

of the glucosinolate content. In addition, because in both studies the vegetables were 

added to boiling water it is likely that no hydrolytic conversion has taken place and 

little or no protective components have been formed. 

Model predictions of levels of glucosinolates and breakdown products after cooking 

of cabbage 

Conditional on the correctness of the model we are now able, with the use of 

computer simulations of the cooking model, to make predictions with regard to 

optimisation of the levels of the protective compounds after cooking, and thus intake 

levels, by adjusting the cooking conditions. 

100 1 

warm up time (min) 

10 20 30 40 

heating time (min) 

10 20 30 40 

warm up and heating time (min) 

Figure 6.7 Simulations of the cooking model predicting the glucosinolate (solid line) and 

breakdown product (dotted line) levels in the cabbage for different cooking regimes. A. 

Variable warm up time from 1 to 40 minutes; heating time of 15 min and cooling down time 

of 5 min.; B. Variable heating time from 1 to 40 minutes; warm up time of 10 min. and 

cooling down time of 5 min.; C. Variable warm up and heating time of 1 to 40 minutes and 

cooling down time of 5 min. 150 g cabbage and 300 g water. 

Figure 6.7A shows that the total levels of potentially protective breakdown products 

are very low varying from 0.6 % at 10-15-5 min of warm up, heating and cooling 

down, up to a maximum of 3.7 % of the total amount of glucosinolates after the 40-

15-5 minutes cooking regime. Besides the breakdown products the simulation shows a 

low retention of 37% of glucosinolates in the cabbage in the first regime and 30 % in 

the latter one (Figure 6.7A). When the heating time is varied (1 to 40 min) at constant 

warm up and cooling down time (10 and 5 min), the level of breakdown products 
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remain at a constant low level of about 0.7 % of the total amount of glucosinolates 

(Figure 6.7B). Also after 40 minutes less than 1/3 of the initial amount of 

glucosinolates is retained in the cabbage. When increasing both warm up and heating 

time, the levels of breakdown products are only slightly higher (3.9% of total GS) 

after 40-40-5 minutes (Figure 6.7C) compared to simulation of increasing of warming 

up time (Figure 6.7A). The above described simulations were carried out assuming a 

1:2 ratio of cabbage versus water. Doubling the amount of cooking water (600g 

instead of 300 g) reduces quantities of breakdown products in the cabbage even more. 

Reduction of 85, 115 and 86 % in levels of breakdown products for cooking regimes 

A, B and C respectively, is mostly explained by increased leaching of glucosinolates 

into the cooking water. 

The explanation of these low levels of breakdown products is evident and leads to 

the glucosinolate/myrosinase system. That is, for production of protective breakdown 

products enzyme and substrate should be into contact with each other at conditions 

favoured for hydrolysis. This situation can not be realised during cooking of cabbage. 

For instance at the 10-15-5 minute regime (Figure 6.7A) the maximum myrosinase 

enzyme activity is at about 6 minutes while at that time only 4% of the total amount of 

plant cells are lysed and the cooking water has reached a temperature of about 70°C. 

In other words glucosinolates and myrosinase are only in limited contact with each 

other at unfavourable temperatures and therefore little hydrolysis can take place. 

Increasing the warm up period can result in somewhat, but not much, higher level of 

breakdown products. However such a temperature profile will lead to undesired 

aspects such as long preparation time and degeneration of product qualities factors 

(flavour and texture). 

The significance of myrosinase-mediated conversion is emphasised by the 

bioavailability studies carried out by Conaway et al. (2000). They showed that the 

bioavailability of isothiocyanates (ITCs) from fresh broccoli was approximately three 

times higher than that from steamed broccoli, in which myrosinase is inactivated. 

Based on their results they concluded that, considering the potential chemopreventive 

activity of ITCs in broccoli, cooking might substantially reduce the health beneficial 

effects of broccoli in the diet. The assumption that conventional cooking is 

diminishing the protective effects of vegetables seems to be supported by the 

epidemiological trend showing most clear protective effects for raw vegetables 

(Steinmetz and Potter, 1996). 

Simulation study of microwave cooking 

As discussed above, conventional cooking of cabbage in boiling water causes 

substantial leaching of glucosinolates and breakdown products from the cooked 

material. As an alternative we studied a microwave cooking process in which no 
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additional water is used during the treatment. It is hypothesised that, because no 

leaching can take place, this way of food preparation will result in higher retention of 

glucosinolates in the final vegetable product. The experimental data were compared 

with a simulation of microwave cooking using the developed cooking model without 

the use of water. Using this model as such, we ignore the possible differences in lysis 

kinetics between microwave and conventional cooking. Differences in lysis might 

occur due to a different heat generation system in the cabbage and because of the lack 

of an osmotic pressure difference between cabbage and cooking water in the case of 

microwave cooking. The temperature of the cabbage during microwave cooking was 

described by an experimentally determined relation between cabbage weight and 

microwave power. The temperature model was based on the energy input, cabbage 

weight and heat transfer to the surroundings (equations 10 and 11). 

AT P 
c -• *! k2(Tc -Tmr) , Tc< Tc,max (10) At 

J rp 

**-3 \ C SUf) ' sur — sur.max \ *• A / 
At 

in which Tc is the temperature of the cabbage (°C, max. 100°C) and Tsur the 

temperature of the surroundings increasing in time t (s) and P (Watt) refers to the 

applied microwave power on the mass m (g) of the cabbage, ki is an energy 

conversion coefficient of 10.7 °C-gJ"' and &2 and ftj are heat transfer coefficients of 

0.26 and 4.0 s"1 respectively. The parameters in equation 10 and 11 were estimated 

from experimental data obtained from microwave treatments of red cabbage as 

described in chapter 4 (Verkerk et al., 2002). These parameters are specific for the 

microwave used and the geometry of the container which holds the cabbage. The 

weight of the cabbage was corrected for evaporation of water from the cabbage by the 

experimentally determined equation (12). 

G = G0-ke-t (G>0) (12) 

in which G is the weight of the cabbage (g) at time t (min), G0 is the starting weight 

(g) and ke refers to the evaporation coefficient, which is linearly correlated with the 

applied microwave power constant (= 0.0168-P (min1)). 

Microwave cooking of 300 g cabbage at 540W resulted in a small drop of total 

glucosinolate content after 2 minutes (from 100% to 88%), after which the amounts 
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increased up to more than 140% of the untreated cabbage (Figure 6.8). According to 

the model, which is corrected for weight loss caused by evaporation of the water, 

there is also a very high amount of glucosinolates in the vegetables predicted after 

'cooking without water' for 8 minutes. The cabbage reached a temperature above 60°C 

after 2.5 minutes and cooking started (100 °C) after 5 minutes. Based on the 

temperature, glucosinolate hydrolysis could take place within the first two minutes. 

However hydrolysis will be limited since less than 1% of the cabbage cells are 

disrupted at that time period. 

4 6 
Time (min) 

8 

Figure 6.8 Behaviour of glucosinolates in a simulation study on microwave cooking of 300 g 
red cabbage without water as predicted by the model (solid line), compared with experimental 
results of the glucosinolate levels in the cabbage (•). Dotted line represents the temperature 
profile; Microwave cooking is carried out for 8 minutes at 540W; the prediction was corrected 
for evaporation losses. 

Microwave cooking of 300 g cabbage at 900W revealed an increased GS-content 

with increasing cooking time (Figure 6.9). After almost 5 minutes the GS-content was 

as high as 178% of the untreated cabbage. Also with this temperature profile, 

mimicking a 900W treatment, the model predicts very high amounts of glucosinolates 

(123%) after cooking for 5 minutes. In this cooking profile the temperature of the 

cabbage reached 100 °C within 3 minutes and continued cooking for another 2 

minutes. 
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Figure 6.9 Behaviour of glucosinolates in a simulation study on microwave cooking of 300 g 
red cabbage without water as predicted by the model (solid line), compared with experimental 
results of the glucosinolate levels in the cabbage (A). Dotted line represents the temperature 
profile; Microwave cooking is carried out for 5 minutes at 900W; the prediction was corrected 
for evaporation losses. 

In our study, microwave cooking at intermediate (540W) and high (900W) energy 

inputs did not result in losses in glucosinolate levels in the cabbage. Unexpectedly, 

both microwave treatments revealed total GS-contents exceeding the levels present in 

untreated cabbage. Published data concerning the effects of microwave cooking on 

glucosinolate levels are limited. In this respect, antioxidant compounds like ascorbic 

acid (AA) and (3-carotene (|3-C) were studied in more detail. Howard et al. (1999) 

reported no effects on the AA or 0-C content after microwave cooking of broccoli for 

8 min at 700W. 

Microwave cooking decreased the moisture content of cabbage by evaporation 

causing elevated glucosinolate levels in the samples. However a maximum weight 

loss of 20% after cooking was established experimentally and this could not explain 

the high increase of glucosinolates. A possible explanation for this phenomenon is an 

increase in chemical extractability of the glucosinolates after an intense heat 

treatment. Cooking has been reported to increase extractability of carotenoids. Hart & 

Scott (1995) showed in different green vegetables, peas and beans an average increase 

of 24% lutein and 38% (3-carotene. These substantial increases of health-protective 

compounds after cooking can have important consequences with respect to 

bioavailability of these compounds to humans. 
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Conclusions 
We presented a model that describes the fate of glucosinolates as precursors of 

health-protective components and an active enzyme myrosinase during the cooking 

process of red cabbage and predicts the final intake by humans. Conventional cooking 

resulted in substantial losses of glucosinolates and low levels of protective breakdown 

products and therefore decreases any health-promoting properties of the cooked 

vegetables. This study emphasises the importance of assessing the intake of 

glucosinolates and derivatives after processing or food preparation prior to 

consumption regarding the health-protective capacity of cooked vegetables. 

Further studies characterising changes in the levels of glucosinolates and 

breakdown products during processing and preparation will be critical to fully 

understand the role in the diet that vegetables processed in different ways may play in 

preventing human diseases. Possible other methods of food preparation like 

microwave cooking of vegetables can offer more controllable and promising 

alternatives regarding phytochemical intake. To assist these studies the predictive 

modelling approach presented in this chapter can be a valuable tool. Another way of 

using the predictive quantitative model is the use in combination with epidemiological 

studies. The large impact of vegetable processing or food preparation on the variation 

in levels of health-protective glucosinolate breakdown products can partly explain the 

weak inverse correlation between consumption of Brassica vegetables and cancer 

incidence. By correcting intake data of bioactive compounds derived from e.g. fruit 

and vegetables for their way of processing, either by industry or by consumers 

themselves, the sensitivity of such studies can possibly be enhanced enormously. A 

third possible application is the simulation of food preparation in different ways for 

designing human intervention studies. 
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Introduction 
The discovery that a diet rich in fruits and vegetables decreases risk of developing 

many types of cancer has focused attention on the causal agents and mechanisms 

underlying this relationship (Steinmetz and Potter, 1991). Evidence that Brassica 

vegetables may have important anticarcinogenic effects associated with the biological 

activity of glucosinolate breakdown products raised questions about how to 

investigate these compounds from a food technology point of view. 

The research described in this thesis was done to evaluate how levels of 

glucosinolates and their derivatives are affected by various factors within the 

production chain of Brassica vegetables towards a better understanding of the alleged 

health effects of glucosinolates in Brassica vegetables. The research focused mostly 

on the effects of processing, namely chopping and cooking, on the content of 

glucosinolates. A novel predictive modelling approach is proposed (and elaborated in 

a case study) to handle these variations in the production chain and to provide a tool 

that can be used to assist product and process development. This model provides us 

with more insight in the behaviour and fate of glucosinolates and protective 

derivatives and may lead to options for improvement of investigations aimed at 

understanding the role of dietary glucosinolates and breakdown products in the 

protection against various cancers. The implications of the effects for human intake 

are discussed in this chapter in relation to the health-protective potential of Brassica 

vegetables and vegetable products in the human diet. 

Health effects of Brassica vegetables 
The health value of food products is determined by the level of both nutrients and 

biologically active non-nutrients in the final product and by their bioavailability and 

bioactivity after digestion. The protective effect of Brassica vegetables against cancer 

has been suggested to be partly due to their relatively high content of glucosinolates, 

which distinguishes them from other vegetables. Vegetables of the Brassica genus, 

including cabbage, Brussels sprouts, broccoli, cauliflower and kohlrabi contribute 

most to the daily intake of glucosinolates. Epidemiological studies strongly suggest 

that high intakes of Brassica vegetables are associated with a reduced risk of cancer at 

many sites (Verhoeven et al., 1996). This epidemiological evidence is consistent with 

many experimental studies, which from the 1960s onwards have indicated that 

glucosinolate breakdown products exert anticarcinogenic activity in experimental 

animal models (Verhoeven et al., 1997; Hecht, 1999). 

However, from the epidemiological literature it is not clear whether the protective 

effects were attributable to Brassica vegetables per se or specific groups of Brassica 

vegetables or to vegetables in general (Voorrips et al., 2000). Furthermore, because of 
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the existence of many other bioactive compounds in vegetables, the question 

remained which (combination of) compounds might be responsible for the protective 

effect. 

Variation within the production chain of Brassica vegetables 
General 

Because of the nature of glucosinolates, their vulnerability to tissue damage and 

the highly reactive nature of their breakdown products, it is essential to consider their 

behaviour and biological effects in the context of the whole food chain from farm to 

fork. There is only scattered information about the effects of the conditions prevailing 

at each step in the production chain on the level of specific bio-active components. 

Even less information is available on the effects of steps in the production chain on 

the bioavailability, although one important exception is the effect of processing on the 

bioavailability of carotenoids (Castenmiller et al., 1999; Thane and Reddy, 1997). 

Processing is a prerequisite for several foodstuffs in order to improve palatability, 

shelf life, digestibility and food safety. The methods involved in processing and 

preparation of foods vary widely and several studies have shown that nutritive values 

may be improved or diminished. Less information is available about the effect of 

processing on non-nutritive, bioactive compounds with alleged health protective 

properties. 

Fresh vegetables 

Obviously, raw and fresh Brassica vegetables contain highest levels of 

glucosinolates. However, there is a substantial variation in glucosinolates content 

between groups of vegetables and between and within different varieties due to 

genetic and environment factors (Kushad et al., 1999). Also, it is worthwhile to 

mention the analytical variation and inaccuracies in the quantitative determination of 

glucosinolates. A number of factors contribute to both, within and between laboratory 

variation. Most important are the discrepancies of analytical data obtained from raw 

versus cooked vegetables. In our research, microwave cooking of red cabbage led to 

an apparent increase in the levels of glucosinolates in the cooked vegetables (Chapter 

4). This was probably due to an increased chemical extractability of glucosinolates 

from the vegetable matrix. Cooking has been reported to increase extractability of 

carotenoids in various green vegetables, peas and beans (Hart & Scott 1995; Granado 

et al., 1992), by which the increment varied according to the type of vegetable and 

carotenoid. It is therefore important to further investigate this underestimation of the 

glucosinolate content of raw Brassica vegetables. Moreover, increases of 

glucosinolates, as observed after microwave cooking, can have important 
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consequences with respect to (bio)availability of these compounds and thus, the 

health-protective potential of (microwave) cooked vegetables to humans. 

The existing variation in individual and total glucosinolates levels between and 

within different varieties can be ascribed to environmental factors as cultivation 

(variety, cultivation practices, nutrition, climate, harvest time) and storage, packaging 

and transportation (time, temperature, humidity, physical damage, atmosphere) 

(Chapter 5). It is of importance to recognise the large differences in glucosinolate 

profiles between various Brassica vegetables. Vegetables like white cabbage and 

savoy cabbage do not contain the glucosinolate glucoraphanin (4-

methylsulphinylbutyl), while glucoraphanin is the predominant glucosinolate in 

broccoli (more than 50% of the total amount of glucosinolates). Sinigrin (2-propenyl 

glucosinolate) is present in all Brassica vegetables except for broccoli (or in very low 

amounts). In cauliflower the most abundant glucosinolates are sinigrine and 

glucobrassicin (3-indolymethyl glucosinolate)(Kushad et al., 1999; Rosa et al., 1997). 

There is a scientific debate about which glucosinolate breakdown products play a 

role in the protection against cancers. Most attention has been paid to specific 

breakdown products, mainly isothiocyanates, which are able to inhibit phase I 

enzymes responsible for the bio-activation of carcinogens (Guo et al., 1992) and to 

induce phase II detoxification enzymes (Sparnins et al., 1982; Zhang et al., 1992). In 

this respect, the indolic compounds (released from indolyl glucosinolates) reveal a 

dual role, inducing both phase I and phase II enzymes (McDanell et al., 1988). 

The large variation in glucosinolate levels between and within each group of 

Brassica vegetables suggests differences in their health-promoting potentials (Kushad 

et al., 1999). Since not all Brassica vegetables contain the "healthy" glucosinolates, or 

at least in appreciable amounts, this should be taken into account in epidemiological 

studies. 

Clearly, ingestion of raw vegetables will result in hydrolysis by an unaffected, 

active enzyme myrosinase during consumption of the vegetables. However, it is 

unknown to what extent mastication of the vegetables contributes to the release of the 

protective breakdown products. Since consumption is the final step in which 

glucosinolates can be released from the food matrix and hydrolysed into protective 

derivatives, mastication and possibly fermentation in the body needs to be thoroughly 

investigated. 

Cooked vegetables 

Brassica vegetables are mostly not consumed raw but are often industrially or 

domestically subjected to thermal processing. Industrial heating of the vegetables is 

usual blanching or sterilising. Domestic heating or preparation of the food is more 

complex and much less standardised. The glucosinolate content in vegetables after 
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cooking depends on the method and duration of cooking, degree of raw material 

disintegration and on the raw material itself. Some sub-processes that take place 

during cooking are leaching of glucosinolates, breakdown products and myrosinase 

into the cooking water, inactivation of the enzyme myrosinase, enzymatic breakdown 

of glucosinolates or heat degradation of glucosinolates and breakdown products 

(Chapter 5). Our research showed that cooking is affecting the glucosinolate levels in 

a complex manner caused by the variations in process conditions of which the 

temperature profile and amount of cooking water are the most important ones 

(Chapter 6). Conventional cooking resulted in substantial losses of glucosinolates and 

low levels of protective breakdown products and therefore decreases any health-

promoting properties of the cooked vegetables. These reductions in glucosinolate 

levels are in agreement with earlier reports (Rosa and Heaney, 1993; Mullin and 

Sahasrabudhe, 1978; Ciska & Kozlowska, 2001). 

As an alternative we studied microwave cooking of vegetables in which no 

additional water is used during the treatment (Chapter 4). It was hypothesised that, 

because no leaching can take place, this way of food preparation resulted in higher 

retention of glucosinolates in the prepared vegetable product. In this study, microwave 

cooking showed a high retention of the glucosinolates, in some instances even 

exceeding the levels in untreated cabbage material. High intensity microwave cooking 

of red cabbage led to an apparent increase in the levels of glucosinolates in the cooked 

vegetables (Chapter 4). Moreover the increase in levels seems to be associated with 

the energy input applied. This was probably due to reduced glucosinolate breakdown 

in combination with more efficient release of glucosinolates during extraction for 

analysis. Microwave-cooked cabbage would result in a relatively higher intake of 

glucosinolates as compared to conventional cooked cabbage in water. Above all, a 

reasonable retention of myrosinase activity was shown at less intense microwave 

conditions, which is essential for the release of protective glucosinolate breakdown 

products during consumption. 

Ready-to-eat vegetables 

The ready-to-eat products and meals form an important market growing every year. 

The application of new technologies has resulted in products with extended shelf life, 

better taste and higher nutritional value. Brassica vegetables as cabbage, Brussels 

sprouts, cauliflower and broccoli are often used in ready-to-eat meals and can 

therefore contribute to an important part of our glucosinolate intake. However, 

preliminary analysis of data of an extensive survey of glucosinolates and breakdown 

products conducted on a broad range of ready-to-eat products and meals showed 

negligible amount of both groups of compounds in most of the meals (Verkerk, 2001, 

unpublished results). 
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In this respect, food companies producing ready-to-eat meals containing Brassica 

vegetables are facing a challenge to develop products and/or meals with high levels of 

health-protective glucosinolates. A ready-to-eat product can probably be transformed 

into a functional food if the food industry succeeds in increasing the concentration of 

glucosinolates in the product by retaining the original levels in vegetables throughout 

the entire process. Nevertheless, a health beneficial effect of the product still needs to 

be demonstrated and for this further research is required. 

Glucosinolates and epidemiology 
Food composition tables are important tools for epidemiological studies on 

nutrients and non-nutrient phytochemicals in relation with diseases. However, 

accurate knowledge of the nutrient and non-nutrient intake of individuals and groups 

of people requires information on the contents of prepared foods, in other words prior 

to consumption. Unfortunately, dietary calculations are frequently made on the basis 

of foods as brought into the kitchen. It is shown in this thesis (Chapter 3, 4, and 6) 

that vegetable processing and food preparation have large impact on glucosinolate 

content. 

Epidemiological studies indicate that cancer incidence may be lowered due to the 

intake of vegetables. For the group of Brassica vegetables the presence of 

glucosinolates is assumed to play a role in the protection against cancer. This would 

imply a direct relation between glucosinolate intake and glucosinolates measured in 

the fresh, unprocessed vegetables. However, this epidemiological observation does 

not take into account the effects of food processing and preparation on glucosinolate 

content and myrosinase activity, and thus of the consequences for potential health-

protection. Therefore, we emphasise that food composition tables should be used with 

some restraint or rather, should be adapted to accommodate these new insights. 

The possible consequences of these highly variable levels of glucosinolates in 

epidemiological studies can be illustrated in a hypothetical example in which the 

intake of a bioactive compound (e.g. a glucosinolate) is associated with the decrease 

of the relative risk of developing a certain type of cancer. In Figure 7.1 it is illustrated 

that high intake of a protective compound would be inversely associated with cancer 

incidence: the relative risk (RR) is 0.6 for a relative intake of the compound (RI) of 

0.5. In epidemiological studies (cohort or case control) usually only the intake of 

products is estimated and a fixed content of bioactive compounds is assumed. The 

consequence of this is that variation in the content of bioactive compounds, such as 

glucosinolates, is not taken into account. If we assume a situation in which there is a 

2-fold deviation in content and thus intake of a protective glucosinolate (RI 0.25-1.0), 

caused by variation in e.g. vegetable processing and food preparation, it will alter the 
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bandwidth of the relative risk considerably (RR 0.2-0.8). In other words, the study 

population consists of people varying not only in the intake of the food products, but 

also in the content of protective compounds in those products. These confounding 

effects lowers the sensitivity of epidemiological studies considerably. 
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Figure 7.1 Hypothetical example of the deviation in relative risk of cancer incidence 

according to relative compound/food intake. 

This example is a simplified representation of a much more complex situation. If 

individual compounds, as glucosinolates and breakdown products in Brassica 

vegetables are responsible for alleged health-protection it is likely that their activity 

will be positively or negatively affected by other dietary factors (e.g. ascorbic acid, 

fibers). In this example we used a reasonably low variation in content (2-fold) of 

protective compound, while it is more likely that this variation will be several orders 

of magnitudes higher as described in this thesis. So the actual confounding effect of 

this variation can be much higher. Therefore, we emphasise that confounding of 

epidemiological results, caused by this glucosinolate intake paradigm, will very likely 

contribute to the uncertainties in the association between Brassica vegetable intake 

and cancer incidence. 

The complexity of the glucosinolate-myrosinase system hampers the use of food 

composition tables in epidemiological studies even more. Glucosinolates themselves 

do not possess any health-protective properties but rather some of their breakdown 

products. Cell damage of the vegetables by processing or mastication releases the 
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endogenous hydrolytic enzyme myrosinase, which converts the glucosinolates to 

anticarcinogenic breakdown products such as isothiocyanates and indoles. Thus, 

protection is only possible if an active plant myrosinase or microbial enzymes in the 

gut with similar activity are present and able to convert the glucosinolates. 

Predictive modelling 
The effects of all steps in the production chain on health-promoting components 

have not been systematically studied and because of the almost infinite amount of 

possible variation in all the factors they never will be. Due to this lack of information 

we advocate a predictive modelling approach as a very effective tool to estimate the 

effects of variation in conditions and processes on the levels of glucosinolates and 

protective derivatives and thus the health-protective potential of vegetable products. 

This modelling approach should then be based upon mechanistic understanding of the 

most relevant conditions and processes within the entire production chain ofBrassica 

vegetables. 

Research on the protective effects of dietary glucosinolates from Brassica 

vegetables in human cancer development requires an accurate assessment of the 

dietary intake of these components. 

Glucosinolate-myrosinase system 
The conversion of anticarcinogenic breakdown products from glucosinolates can in 

theory take place at three different stages; i) during processing, e.g. cooking by plant 

myrosinase; ii) during mastication of the cooked vegetables and iii) by intestinal 

microbial enzymatic activity in the human body. For the first stage our model 

simulations (Chapter 6) predict that during cooking very little hydrolysis takes place 

resulting in about 3 to 4 % of the total original amount of glucosinolates. For the 

second stage, hydrolysis during mastication of the vegetables in the mouth, an active 

myrosinase enzyme is needed. Our predictive model indicates that myrosinase is 

completely inactivated after different cooking simulations (not shown) and therefore 

can not contribute to hydrolysis of glucosinolates in the mouth. Hydrolysis by 

intestinal microflora of the remaining intact glucosinolates present in the cabbage can 

most likely contribute to the release of breakdown products and subsequently being 

absorbed from the intestinal tract (Getahun and Chung, 1999; Elfoul et al., 2001 and 

Rabot et al., 1995). However, it is demonstrated that this third stage of conversion of 

glucosinolates, depending on the used bacterial strain, is taking place in only limited 

quantities in the human body (Krul et al., 2001). 

The significance of myrosinase-mediated conversion is emphasised by 

bioavailability studies carried out by Conaway et al. (2000). They showed that the 

118 



General Discussion 

bioavailability of isothiocyanates (ITCs) from fresh broccoli is approximately three 

times higher than that from steamed broccoli, in which myrosinase is inactivated. 

Based on their results they concluded, considering the potential chemopreventive 

activity of ITCs in broccoli, that cooking might substantially reduce the health 

beneficial effects of broccoli in the diet. The assumption that conventional cooking is 

diminishing the protective effects of Brassica vegetables seems to be supported by the 

epidemiological trend showing most clear protective effects for raw vegetables 

(Steinmetz and Potter, 1996). 

Future prospects 
It is demonstrated that many steps in the food production chain of Brassica 

vegetables can have a large impact on the behaviour and fate of glucosinolates, 

breakdown products and the hydrolytic enzyme myrosinase. All these steps contribute 

to the final intake of glucosinolates and their protective breakdown products and thus, 

determine the health promoting potential of the food. In an attempt to deal with the 

variability in the food production chain it will be useful to develop a health protection 

index of Brassica vegetables or vegetable products that contains a correction factor 

for effects of the production chain. In this respect, an index for effects of processing, 

affecting intake mostly, is especially of interest. In this health protection index the 

presence or absence of "healthy" glucosinolates in defined Brassica vegetables can be 

included as well as the levels of the desired glucosinolate and breakdown product 

(high, medium, low) after post-harvest processes or treatments and the amount of 

retained active myrosinase enzyme. In future epidemiological studies evaluating 

possible associations between intake of glucosinolates and cancer incidence the food 

intake data that is converted to glucosinolate data can be adjusted by using this health 

protection index. This can lead to an enhancement of the sensitivity of these studies. 

The concept of predictive modelling within the entire production chain as developed 

and discussed in this thesis could be a valuable tool in developing this health 

protection index. In summary, the approach of predictive modelling based on 

mechanistic insight in the underlying (bio)chemical processes and the development of 

a health protection index for Brassica vegetables can be helpful in enhancing the 

sensitivity of epidemiological studies. 

There is a growing interest in the enhancement of levels of desirable 

phytochemicals in crop plants via classical breeding or biotechnological methods. 

However, the need for increased levels of specific health-promoting glucosinolates in 

the crops is unsubstantiated as long as more accurate intake data are lacking and no 

strong associations between Brassica vegetable consumption and cancer incidence 

can be postulated. 
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When products are developed with substantial higher levels of glucosinolates, 

possible harmful effects of these compounds should be taken into account. It has been 

shown by in vitro experiments that glucosinolate breakdown products are capable of 

inducing genotoxic effects. However this only occurs at very high doses, which 

exceed by more than 100 fold the exposure level in humans (Kassie and Knasmiiller, 

2000). Also there is no epidemiological evidence that this is an important cause of 

human disease. 

In conclusion, the approach of predictive modelling and the development of a 

health protection index for processed Brassica vegetables can be helpful in enhancing 

the sensitivity of epidemiological studies and eventually provide solid evidence for 

assessment of the risks and benefits of glucosinolate consumption. This approach can 

also be applied to other phytochemicals, where similar variability can be expected. 

Furthermore, predictive modelling of health aspects in the production chain of 

vegetable products can be used for the development of tools to facilitate both product 

and process development for health products. 
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Summary 

Phytochemicals are a group of "non-nutrient" plant secondary metabolites, found in 

many plant foods, which can have important implications for human health. Their 

added value can be ascribed to the important role in the prevention of various 

diseases, most importantly ageing diseases like cancer and coronary heart diseases. 

Consequently, vegetable quality has to be defined not only by the presence of 

essential nutritive compounds, favourable sensory attributes and the absence of 

undesirable compounds but also by presence of health-protective or health-promoting 

phytochemicals. 

There is substantial epidemiological evidence for positive health effects from the 

consumption of fruits and vegetables on various cancers and cardiovascular diseases. 

In this respect, protective effects of Brassica vegetables against cancer have been 

suggested to be mainly due to their relatively high content of glucosinolates, which 

distinguish them from other vegetables. Vegetables of the Brassica genus, including 

cabbage, Brussels sprouts, broccoli, cauliflower and kohlrabi contribute almost 

exclusively to our intake of glucosinolates. There is considerable scientific evidence 

for the anticarcinogenic action of certain glucosinolate breakdown products, 

especially sulphoraphane and other isothiocyanates, which induce detoxifying 

enzymes in a number of different organs in vivo. In general, this induction leads to 

enhanced excretion of carcinogens and is associated with a reduction in the formation 

of DNA adducts. Several epidemiological studies show that high intakes of Brassica 

vegetables are associated with a reduced risk of cancer at different sites. However, it 

is not yet clear whether these associations are to be attributed to Brassica vegetables 

per se or to vegetables in general. 

In this thesis an extensive overview of the relative unknown group of 

glucosinolates is presented, describing the current state of knowledge regarding the 

genetics and biosynthesis of glucosinolates, their chemical analysis and their 

bioavailability to humans (Chapter 2). The myrosinase-mediated hydrolysis of 

glucosinolates plays an important role in the release of protective breakdown 

products. In principle, disruption of the food matrix and subsequent release of 

glucosinolates and myrosinase triggers this hydrolytic reaction. In Chapter 3 it is 

demonstrated that chopping of raw Brassica vegetables results only in limited 

breakdown of aliphatic glucosinolates whereas, unexpectedly, increased levels of 

indolyl glucosinolates are observed after chopping and storage of cabbage and 

broccoli under ambient conditions. In white cabbage a 15-fold increase of 4-methoxy-

and l-methoxy-3-indolylmethyl glucosinolates was noted after 48 h of storage of 

chopped cabbage. Chopping and storage of broccoli vegetables resulted in a strong 
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reduction of most glucosinolates, except for 4-hydroxy- and 4-methoxy-3-

indolylmethyl glucosinolates, which increased 3.5- and 2-fold respectively. In this 

study we showed that the well-known and accepted breakdown mechanism of 

glucosinolates (hydrolysis by the endogenous enzyme myrosinase) appeared to be 

counteracted by a yet unknown mechanism causing an increase of some indolyl 

glucosinolates. It is postulated that chopping, by mimicking pest damage, triggers a 

defence mechanism in harvested Brassica vegetables. 

As most vegetables are processed in some way before consumption, the effects of 

industrial processing and household preparation should be taken into account in order 

to know what the intake of these protective compounds will be. A large number of 

Brassica vegetables are consumed after cooking. Various studies on glucosinolates 

have shown that conventional cooking can lower their contents in foods. Leaching of 

the glucosinolates into the cooking water causes considerable reduction of 

glucosinolates levels. A study conducted on microwave cooking of red cabbage 

showed it to be an interesting alternative for conventional cooking (Chapter 4). In 

general, high total glucosinolate levels were observed for various microwave 

treatments probably reflecting the absence of leaching of glucosinolates into cooking 

water that takes place in conventional cooked vegetables. Therefore, consumption of 

microwave-cooked cabbage would result in a higher intake of glucosinolates 

compared to conventional cooked cabbage. It is striking that many of the various 

time/energy input combinations resulted in levels exceeding the total glucosinolate 

content of the untreated cabbage. Moreover the increase in levels seemed to be 

associated with the energy input applied. It is hypothesised that this is due to an 

increased chemical extractability of glucosinolates from the vegetable matrix after the 

microwave treatment. The various applied microwave powers affected the myrosinase 

enzyme differently. Substantial myrosinase activity was retained in cabbage at low 

(24 min 180 Watt) and intermediate microwave powers (8 min 540 Watt) while 

microwave cooking for 4.8 minutes at 900 W (259.2 kJ energy input) resulted in 

complete loss of hydrolytic activity. In this respect, differences in observed 

temperature profiles of the various microwave treatments play an important role. 

Microwave prepared Brassica vegetables can offer a higher retention of 

glucosinolates and controllable amounts of active myrosinase, thereby increasing the 

health-promoting potential. 

In Chapter 5 it is demonstrated that many steps in the food production chain of 

Brassica vegetables or vegetable products can have a large impact on the 

glucosinolate content and thus, affect the final intake of health-protective 

glucosinolates and breakdown products for humans. Summarising it is concluded that 

the glucosinolate content of processed vegetables depends on: 
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• genetic and environmental factors (determining the glucosinolate content in the 

original raw foods); 

• the extent and nature of processing (industrial and domestic); 

• packaging, storage and distribution conditions. 

The large amount of variables for each step in the chain makes an experimental 

quantification of dietary intake of glucosinolates and consequently their contribution 

to health-protection very difficult. For this reason a concept of predictive modelling of 

glucosinolates in the production chain of Brassica vegetables and derived products 

was developed. This model can be used as a tool to facilitate both product and process 

development for health products as well as to obtain more realistic epidemiological 

input data for bioactive substances in the diet. 

The proposed predictive modelling concept was elaborated in a study on the 

glucosinolate-myrosinase system during cooking of cabbage (Chapter 6). The level of 

glucosinolates as precursors of health-protective components and the activity of the 

enzyme myrosinase were selected as most important parameters. Subsequently cell 

lysis, leaching of the components and denaturation and activity of myrosinase are 

identified as critical sub-processes. These sub-processes were translated into 

mathematical equations describing the changes during the cooking process. Based on 

the mathematical descriptions of the sub-processes a model was developed that 

describes the fate of the glucosinolate-myrosinase system during the cooking process 

of red cabbage and predicts their level prior to consumption of the vegetables. 

Validation of the model was done by comparing the results of cooking experiments of 

broccoli and red cabbage with the model prediction. 

Simulation studies with the predictive model show considerable reduction in 

glucosinolate contents in the cabbage of about 40% to 70% depending on the ratio of 

vegetables/cooking water, the warm up and cooking time. Also very low amounts of 

breakdown products are formed during cooking (max. 4% of total glucosinolate 

content). Ultimately, in different simulation studies it is shown that cabbage prior to 

consumption contains no or very little active myrosinase. In conclusion, conventional 

cooking of cabbage resulted in substantial losses of glucosinolates and low levels of 

protective breakdown products and therefore diminishes the health-protective 

potential of the cooked vegetables. 

It is demonstrated that many steps in the food production chain of Brassica 

vegetables can have a large impact on the fate of glucosinolates, breakdown products 

and the hydrolytic enzyme myrosinase. All these steps contribute to the final intake of 

glucosinolates, their protective breakdown products and myrosinase and thus, 

determine the health-promoting potential of the food. This variation is a strong 

confounding factor in epidemiological studies and will very likely contribute to the 
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uncertainties in the association between Brassica vegetable intake and cancer 

incidence. 

In an attempt to deal with the variability in the food production chain the 

introduction of a "health protection index" of Brassica vegetables or vegetable 

products is proposed that can be used as a correction factor for effects of the 

production chain. In the future, epidemiological studies evaluating possible 

associations between intake of Brassica vegetables and cancer incidence can be 

adjusted by using this health protection index. The concept of predictive modelling 

within the entire production chain as developed and discussed in this thesis could be a 

valuable tool in developing this health protection index. Refining epidemiological 

studies in this way may result in separating the anticarcinogenic effect of the 

glucosinolates from Brassica vegetables from the effect of vegetables in general. In 

conclusion, the approach of predictive modelling based on mechanistic insight in the 

underlying (bio)chemical processes and the development of a health protection index 

for processed Brassica vegetables can be helpful in enhancing the sensitivity of 

epidemiological studies and eventually provide solid evidence for assessment of the 

risks and benefits of glucosinolate consumption. This approach can also be applied to 

other phytochemicals, where similar variability can be expected. Furthermore, 

predictive modelling of health aspects in the production chain of vegetable products 

can be used for the development of tools to facilitate both product and process 

development for health products. 
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Fytochemicalien zijn een groep van bioactieve secundaire plantmetabolieten die 

voorkomen in veel plantaardig voedsel. Ze kunnen een belangrijke rol vervullen voor 

de gezondheid en het welzijn van de mens. Hun belang in de voeding kan 

toegeschreven worden aan de mogelijke rol die zij spelen bij het voorkomen van 

enkele ziekten, voornamelijk verouderingsziekten zoals kanker en hart- en 

vaatziekten. Dit betekent dat de aanwezigheid van gezondheidsbeschermende en -

bevorderende fytochemicalien als een additioneel kwaliteitskenmerk van groenten kan 

worden aangemerkt, naast de gewenste sensorische eigenschappen, de aanwezigheid 

van essentiele voedingscomponenten en de afwezigheid van ongewenste 

verbindingen. 

De laatste jaren hebben diverse epidemiologische studies (bevolkingsonderzoeken) 

aangetoond dat een hoge consumptie van groente en fruit samenhangt met een lager 

risico op het krijgen van bepaalde soorten kanker, hart- en vaatziekten en andere 

chronische ziekten. De groep van Brassica groenten lijkt daarbij een expliciete rol te 

spelen bij het voorkomen van kanker. Groenten behorend tot het Brassica geslacht, 

zoals alle koolsoorten, spruiten, broccoli, bloemkool en koolrabi, bevatten een relatief 

grote hoeveelheid aan bio-actieve stoffen, glucosinolaten genaamd. Verondersteld 

wordt dat de beschermende effecten van Brassica groenten tegen kanker toe te 

schrijven zijn aan de aanwezigheid van glucosinolaten die deze groep onderscheidt 

van andere groenten. Glucosinolaten zelf vertonen nauwelijks anti-kanker activiteit, 

echter bij beschadiging van het plantenweefsel komt een hydrolytisch enzym 

(myrosinase) vrij dat in staat is om de glucosinolaten om te zetten in een reeks 

biologisch actieve componenten. Enkele van deze afbraakproducten, zogenaamde 

isothiocyanaten en indolen, hebben het vermogen om in het lichaam 

ontgiftigingsenzymen te induceren. In het algemeen leidt deze enzyminductie tot een 

toename in uitscheiding van carcinogene en andere lichaamsvreemde stoffen en gaat 

samen met een afhame van DNA schade. Hoewel diverse epidemiologische studies 

aangeven dat een hoge inname aan Brassica groenten samen gaat met een verlaging 

van het risico van diverse soorten kanker kunnen deze studies vooralsnog niet 

reproduceerbaar aangeven of dit verband toe te schrijven is aan Brassica groenten op 

zich of aan groenten in het algemeen. Met andere woorden, het is moeilijk om, op 

basis van deze epidemiologische studies, de groep van glucosinolaten aan te wijzen 

als een van de beschermende factoren. Bij het onderzoek naar de 

gezondheidsbeschermende eigenschappen van glucosinolaten in Brassica groenten is 

het van belang om te weten wat de gehalten zijn na verwerking en/of bereiding van 

groenten, om uiteindelijk de inname van deze stoffen bij de mens te kunnen schatten. 
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De uitgangsgedachte is dat in de gehele productieketen van Brassica groenten er 

factoren zijn die de gehalten kunnen beinvloeden. Het doel van het onderzoek zoals 

beschreven in dit proefschrift was daarom om de effecten van activiteiten in de 

productieketen van Brassica groenten op de glucosinolaat gehalten te bestuderen. 

Daarbij is met name gekeken naar de bereiding van groenten waarvan de grootste 

effecten werden verwacht. Een onderzoeksaanpak gebaseerd op het voorspellend 

modelleren van processen binnen de productieketen is ontwikkeld om de 

glucosinolaat gehalten en beschermende afbraakproducten na een proces te kunnen 

kwantificeren en zodoende een uitspraak te kunnen doen over hun inname. 

In dit proefschrift wordt als eerste een uitgebreid overzicht gegeven van de 

betrekkelijk onbekende groep van glucosinolaten. Hierin wordt de huidige stand van 

zaken weergegeven aangaande de genetica en biosynthese van glucosinolaten, hun 

chemische analyse en hun biologische beschikbaarheid voor de mens (Hoofdstuk 2). 

De myrosinase-gereguleerde hydrolyse van glucosinolaten speelt een belangrijke rol 

bij het vrijmaken van de beschermende afbraakproducten. In principe zal 

beschadiging van het plantenweefsel en het vervolgens vrijkomen van glucosinolaten 

en het enzym myrosinase leiden tot deze hydrolyse. Echter, in Hoofdstuk 3 is 

beschreven dat het snijden van rauwe Brassica groenten slechts resulteerde in een 

beperkte afbraak van alifatische-glucosinolaten terwijl een onverwachte toename van 

indolyl-glucosinolaten werd waargenomen na snijden en opslag van kool en broccoli 

onder omgevingscondities. In witte kool werd zelfs een 15-voudige toename van het 

4-methoxy-3-indolylmethyl-glucosinolaat en 1 -methoxy-3-indolylmethyl-

glucosinolaat waargenomen na 48 uur opslag van gesneden kool. Snijden en opslag 

van broccoli resulteerde in een sterke afname van de meeste glucosinolaten, behalve 

het 4-hydroxy-3-indolylmethyl-glucosinolaat en 4-methoxy-3-indolylmethyl-

glucosinolaat die respectievelijk een 3,5- en 2-voudige toename lieten zien. In deze 

studie is aangetoond dat tegenover het bekende afbraakmechanisme van 

glucosinolaten (hydrolyse door het endogene enzym myrosinase) een nog onbekend 

mechanisme staat dat een toename van met name indolyl-glucosinolaten kan 

veroorzaken. Verondersteld wordt dat het snijden, overeenkomend met insectenvraat, 

een verdedigingsmechanisme in geoogste Brassica groenten activeert. 

De meeste groenten worden voor consumptie op de een of andere wijze bewerkt. 

De effecten van bewerking dienen daarom in ogenschouw te worden genomen 

teneinde te bepalen wat de gevolgen zijn voor de inname van de beschermende 

componenten. Veelal worden Brassica groenten gekookt. Voorgaande studies hebben 

aangetoond dat koken het glucosinolaat gehalte in voedsel aanzienlijk kan verlagen. 

Het uitlekken van glucosinolaten naar het kookvocht is de belangrijkste oorzaak voor 

deze afname van glucosinolaten. In een studie beschreven in Hoofdstuk 4 zijn de 

effecten van magnetronbereiding van rode kool, als alternatief voor conventioneel 
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koken, onderzocht op de glucosinolaat gehalten en de myrosinase activiteit. Bij 

magnetron bereiding van de groenten was geen water toegevoegd en verondersteld 

werd dat uitlek van de glucosinolaten dan ook beperkt zou zijn. In het algemeen 

werden zeer hoge gehalten aan glucosinolaten waargenomen bij verscheidene 

magnetronbehandelingen varierend in tijd en vermogen. Aangenomen kan dan ook 

worden dat consumptie van magnetron-bereide kool zal leiden tot een hogere inname 

aan glucosinolaten dan kool gekookt in water. Het is opvallend dat veel van de 

verschillende tijd-energie input combinaties leidden tot glucosinolaatgehaltes die zelfs 

hoger waren dan in onbehandelde kool. Bovendien nam het gehalte aan 

glucosinolaten toe met de hoeveelheid toegevoerde energie door de magnetron. 

Verondersteld wordt dat de magnetronbehandeling de matrix van de kool verandert 

hetgeen de chemische extractie van de, glucosinolaten vergroot. Verder is gebleken dat 

de resterende myrosinase enzymactiviteit afhankelijk is van de tijdsduur en het 

vermogen van de magnetronbehandeling. Enzymactiviteit werd nog waargenomen bij 

een laag (24 minuten 180Watt) en een tussenliggend magnetronvermogen (8 minuten 

540 Watt) waardoor er tijdens consumptie van de bereide groenten nog hydrolyse van 

glucosinolaten kan plaatsvinden. Een intensieve behandeling van 4,8 minuten bij 900 

Watt (259,2 kJ energie) resulteerde in een complete inactivatie van het enzym. De 

waargenomen verschillen in temperatuurprofielen van de diverse behandelingen 

spelen waarschijnlijk hierbij een rol. Geconcludeerd kan worden dat magnetron 

bereiding van kool kan resulteren in een hoog gehalte aan glucosinolaten en een 

beheersbare hoeveelheid actief myrosinase, hetgeen een toename in het 

gezondheidsbeschermend vermogen van de bereide groenten kan opleveren. 

In Hoofdstuk 5 staat beschreven dat een groot aantal stappen in de productieketen 

van Brassica groenten of afgeleide producten een grote invloed kan hebben op het 

glucosinolaatgehalte en dus op de uiteindelijke inname van de beschermende 

glucosinolaten en hun afbraakproducten. Samenvattend kan worden vastgesteld dat 

het glucosinolaatgehalte in verwerkte groenten afhankelijk is van: 

• de genetica en omgevingfactoren (bepalen het glucosinolaatgehalte in het ruwe 

uitgangsmateriaal); 

• de mate van verwerking (industrieel en huishoudelijk) 

• verpakking, opslag en distribute omstandigheden. 

Het grote aantal variabelen van de diverse schakels in de keten maakt een 

experimentele kwantificering van de glucosinolaatgehalten en vervolgens hun 

gezondheidsbeschermende bijdrage voor de mens zeer moeilijk uitvoerbaar. Daarom 

is een concept ontwikkeld voor het voorspellend modelleren van de glucosinolaat 

gehalten in de productieketen van Brassica groenten en afgeleide producten. Dit 

model zou gebruikt kunnen worden bij bevolkingsstudies voor het verkrijgen van 

reele inname gegevens van bioactieve componenten via onze voeding. Anderzijds 
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biedt een modelmatige aanpak mogelijkheden voor product- en procesontwikkeling 

voor gezonde producten. Het voorgestelde concept van voorspellend modelleren is in 

Hoofdstuk 6 verder uitgewerkt in een studie naar het glucosinolaat-myrosinase 

systeem tijdens het koken van kool. Het gehalte aan glucosinolaten, als precursors van 

de beschermende afbraakproducten, en de activiteit van het enzym myrosinase zijn 

geselecteerd als meest belangrijke parameters. Vervolgens zijn lysis van cellen, uitlek 

van de componenten en de activiteit en het denatureren van myrosinase 

gei'dentificeerd als kritieke sub-processen. Deze sub-processen zijn bestudeerd en 

vertaald in wiskundige vergelijkingen die de veranderingen tijdens het kookproces 

beschrijven. Gebaseerd op de wiskundige beschrijvingen van de sub-processen is een 

model ontwikkeld dat het glucosinolaat-myrosinase systeem beschrijft tijdens het 

kookproces van rode kool en de gehalten glucosinolaten en afbraakproducten 

voorspelt in de groente vlak voor consumptie. De werking van het model werd 

getoetst door de resultaten van kookexperimenten van broccoli en rode kool en 

experimenten beschreven in de literatuur te vergelijken met model voorspellingen. 

Simulatiestudies met het model laten een aanzienlijke afname zien van 

glucosinolaat gehalten in de kool van ongeveer 40% tot 70% afhankelijk van de 

verhouding groente/kookwater, de opwarmtijd en de kooktijd. Ook voorspelt het 

model dat er lage hoeveelheden afbraakproducten gevormd worden tijdens het koken 

(maximaal 4% van het totale glucosinolaat gehalte). Bovendien laten verschillende 

simulatiestudies zien dat de kool na behandeling zeer weinig of geen actief 

myrosinase meer bevat. Dus, conventioneel koken (in water) van kool leidt tot 

aanzienlijke verliezen van glucosinolaten en lage hoeveelheden van beschermende 

afbraakproducten hetgeen het gezondheidsbeschermend vermogen van de gekookte 

groenten substantieel kan verminderen. 

Samenvattend kan gesteld worden dat een groot aantal factoren in de 

productieketen van Brassica groenten een grote invloed hebben op de glucosinolaat 

gehalten, beschermende afbraakproducten en de myrosinase activiteit. Al deze 

factoren dragen bij aan de uiteindelijke inname van glucosinolaten en daarvan 

afgeleide beschermende stoffen en bepalen dus voor een groot gedeelte het 

gezondheidsbeschermend vermogen van dit voedsel. Het is zeer goed denkbaar dat de 

genoemde variatie in de keten, met name de verwerking en bereiding van groenten, 

een sterk complicerende factor is in epidemiologische studies en interventiestudies en 

dus mogelijk een van de verklaringen is voor de vaak uiteenlopende bevindingen. 

Om met deze variatie in de productieketen om te gaan is voorgesteld een 

"gezondheidsbeschermingsindex" te introduceren voor Brassica groenten of afgeleide 

producten die als correctiefactor gebruikt kan worden. In epidemiologisch onderzoek 

naar inname van Brassica groenten en verbanden met kanker incidentie zou correctie 

met behulp van deze beschermingsindex kunnen plaatsvinden. De aanpak van het 
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voorspellend modelleren in de productieketen, zoals besproken in dit proefschrift, kan 

gebruikt worden bij de verdere ontwikkeling van deze index. Verondersteld wordt dat 

het op deze manier verfijnen van epidemiologische studies zou kunnen leiden tot het 

scheiden van aanwezige beschermende effecten van de bioactieve componenten in 

Brassica groenten van de effecten van groenten in het algemeen. Verder onderzoek is 

nodig om dit te onderbouwen. 

Concluderend kan gesteld worden dat de aanpak van voorspellend modelleren, 

gebaseerd op mechanistische inzichten van de onderliggende (bio)chemische 

processen en de ontwikkeling van een "beschermingsindex" voor verwerkte Brassica 

groenten helpt bij het vergroten van de gevoeligheid van epidemiologisch onderzoek. 

Deze aanpak opent de weg om een sterker bewijs te kunnen leveren voor mogelijke 

beschermende van effecten van glucosinolaten. Voor andere fytochemicalien, waarbij 

een vergelijkbare variatie is te verwachten in de productieketen, zijn de concepten 

zoals beschreven in dit proefschrift voor glucosinolaten in Brassica groenten, ook 

goed toepasbaar. 
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Het dankwoord is een mooie gelegenheid om eens achterover te leunen en terug te 
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enthousiasme konden soms overweldigend zijn, maar waren voor mij vaak een 

stimulans voor mijn onderzoek. 

En dan mijn co-promotor Matthijs Dekker. Beste Matthijs, ik heb veel van je 

geleerd echter een 'modelleer-wizard' zoals jij zal ik nooit worden. Wei heb je me 

enthousiast gemaakt voor de mogelijkheden die modelleren met zich meebrengt. De 

inhoud van dit proefschrift is dan ook in belangrijke mate bei'nvloedt door jouw 

expertise op dit gebied. Ik waardeer enorm het goede contact wat we altijd hebben 

gehad. Onze gesprekken beperkten zich dan ook niet tot wetenschappelijke zaken. 

Onze halfjaarlijkse EU-tripjes en congres bezoeken naar diverse leuke oorden zal ik 

niet snel vergeten. Zowel op wetenschappelijk als op sociaal gebied waren deze altijd 

een groot succes. Ik vond het heel prettig om met jouw als 'baas' te mogen 

samenwerken. Dank je voor jouw hulp en inzet. 

Ook gaat mijn dank uit naar professor van Boekel. Tiny, jouw betrokkenheid bij 

mijn promotieonderzoek was voornamelijk zichtbaar in het laatste traject. Ik ben je 

zeer erkentelijk voor jouw waardevolle commentaren op mijn manuscripten. Terwijl 

jij in een voor jouw hectische periode zat, nam je toch de tijd om mijn hoofdstukken 

door te worstelen en van nuttig commentaar te voorzien. 

Veel dank ben ik verschuldigd aan een groot aantal studenten die in de loop der 

jaren een afstudeervak bij mij hebben gedaan en die veel aan de glucosinolaat studies 

hebben bijgedragen. Martijn van der Gaag, Bregje Krebbers, Mathijs Nouwens, 

Gerard Voogd, Joost Taks, Marian Verbiest, Matthijs van Rijn, Elle van Oosterhout, 

Paula Savolainen en Michiel Kokken. Ik was altijd zeer onder de indruk hoe gedreven 

jullie aan het onderzoek deelnamen. 

Ik wil ook al mijn andere collega's van de leerstoelgroep productontwerpen en 

kwaliteitskunde bedanken voor de prettige sfeer binnen onze groep gedurende de 

soms zeer turbulente afgelopen jaren. Anita Linnemann vanaf het eerste uur en later 
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ook Gerrit Meerdink, bedankt voor jullie gezelligheid, betrokkenheid en voor het 

gezelschap tijdens de lunches. Ook enkele ex-collega's wil ik hier nog noemen: 

bedankt Maria Baltussen voor je inzet bij het opzetten van de analyses aan de 

afbraakproducten en 'Flavo-Addie', succes met jouw laatste loodjes van het 

proefschrift. 

I would also like to thank the participants involved in the EU-project 'Effects of 

Food-borne Glucosinolates on Human Health' excellently co-ordinated by Professor 

Ian Johnson (Institute of Food Research, Norwich, UK). Ian, as we have experienced 

in Austria, there is no mountain high enough for you. Thanks for the very nice 

memories I have to our project meetings. 

Ik stel het zeer op prijs dat Karen Ziekenheiner en mijn zus, Loes Verkerk, bereid 

zijn om op te treden als mijn paranimfen. Riet, bedankt voor jouw creatieve bijdrage 

die de omslag van mijn proefschrift siert. Ik ben er zeer blij mee en weet zeker dat 

Frans trots zou zijn op zowel de binnenkant als de buitenkant van dit boekje. 

Als laatste richt ik mij tot mijn gezin. Brigitte, ook jij hebt met mijn al eerder 

genoemde opstandigheid te maken gehad. Het is misschien iets te gemakkelijk om dat 

allemaal toe te schrijven aan mijn promotiedrang maar ik hoop dat er toch wel iets van 

mijn onrust nu is weggenomen. Alhoewel jij dacht 'hij krijgt het nooit op tijd af 

steunde je me volledig in mijn ambitieuze opwelling. Bedankt daarvoor! Tenslotte 

mijn 3 spruitjes Emma, Leon en Joanne. Ook aan jullie valt nog veel te modelleren. 

Maar ik zal er niet aan beginnen want ik hou van jullie onvoorspelbaar gedrag. 

Ruud 
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