Adapting landscapes to climate change:

identifying priority zones for linking networks

Claire Vos, Hans Baveco, Peter Schippers & Jana Verboom

Contents

- How to adapt to climate change?
- Climate change and habitat fragmentation a bad combination
- Adaptation strategy
 - Linking Networks: example climate corridor for wetlands

How to adapt to climate change?

Climate proofing ecosystems

Naar Veraart et al 2006

Climate proofing ecosystems

Building adaptive capacity

- Society decides
- Nature is only one of the land use functions.
- Building adaptive capacity for ecosystems in multifunctional landscapes
- Ecological networks are well placed to fulfill that role

Why does habitat fragmentation enhance the effects of climate change?

- 1. Species expansion is hampered by habitat fragmentation
- 2. Recovery after disturbances is less effective

Climate envelope models predict further shifts of suitable climate envelopes

Identify areas where the distances between suitable habitats are too large for colonization

- 1. Shifting envelopes
- 2. Configuration of habitat
- 3. Dispersal model

www.branchproject.org

2020

Climate no longer suitable

Climate proof – expansion is possible

Not Climate proof: habitat is suitable but too isolated

Vos et al. 2008

Species expansion: are species able to keep up with the rate of climate change?

- Expansion slows down or stops where habitat is too fragmented
- We modelled:
 - Speed of shifting climate
 - Speed of species expansion
 - Amount of habitat in the landscape

METAPHOR moving window

Metapopulation model

Spatially explicit

Individual based

Shifting suitable climate zone

North METAPHOR shaking/moving window Patch Habitat becomes suitable Shaking movement of bell shaped window Optimal habitat Habitat detoriating 1000km 20 Km A LTERRA- AGENINGEN UR

Effect of habitat fragmentation temp 4°C/century

10% habitat
extinction after 225 years
expansion 600 km

Effect of habitat fragmentation temp

4°C/century

10% habitat
extinction after 225 years
expansion 600 km

5% habitat
extinction after 155 year
expansion 220 km

Time to extinction depends on:

- rate of climate change
 - species cannot keep up
- the size of the species distribution range
 - species with small ranges most sensitive
- the northward expansion rate
 - species traits
 - dispersal capacity
 - population growth rate
 - Habitat fragmentation
 - more habitat helps

2. Weather extremes more frequent and stronger

- More warm and dry periods
- More extreme precipitation
- More storms

Results in larger fluctuations of populations: increase of extinction risk

Predicted sedge warbler recovery: faster in stronger habitat networks

—Adapting the landscape to climate change defining a strategy

- Adaptation on two levels:
- Improve adaptive capacity of ecosystems on the spot
 - to cope with disturbances
 - to accommodate change (and do not try to control a steady state)
- 2. Improve adaptive capacity of species and habitats
 - Facilitate migration to cope with shift of suitable climate or conditions

Adaptation strategy 1: Enlarge Areas

To compensate for population fluctuations

More room for habitat heterogeneity to dampen effect weather extremes

Increase colonizing capacity

Key area

Adaptation Strategy 2:

Link habitat networks

To facilitate range shifts of species

Applying the addaptation strategy

Where is adaptation of the National Ecological Network needed?

Example Wetland Ecosystem

Adaptation strategy: climate corridor for wetlands

- Create an (international) resilient network of wetland ecosystems
 - enlarge areas
 - increase spatial cohesion
 - improve abiotic conditions
 - give room to natural processes -> heterogeneity
- Concentrate adaptation measures within this corridor
 - most efficient
 - best opportunities
 - more effective protection so that (new) land use that blocks adaptation can be avoided
 - focus to increase efforts or to adapt strategy when necessary

Spatial assessment

- Identify nature areas that might be too small
 - Identify bottlenecks for species with different dispersal capacity

- Identify suitable conditions where habitat restoration is possible
- Identify possibilities for synergy with other functions

Design of a climate corridor for wetlands

Step 1 Identify strongholds

Wetland

Step 2

Connect the strongholds with a climate corridor

Step 3

Enlarge wetlands within the climate corridor

- Increase carrying capacity
- Increase heterogeneity

Step 4

Link networks within the climate corridor

- Increase connectivity
- Create new wetland areas
- Solve barriers

Wetland

Design of a climate corridor

Thank You

© Wageningen UR

