Climate Change and Global Water Resources

Fulco Ludwig, Pavel Kabat, Jo Alcamo, Frank Voss, Hester Biemans, Michelle van Vliet, Wietste Franssen and Ingjerd Hadelland and Doug Clark **Earth System Science and Climate Change Group, Wageningen UR and Watch Collaborators**

- Global Water Resources the current situation
- Is the hydrological cycle speeding up?
- Climate change and global water resources
- Water and Global Change (Watch) Project and WaterMIP
 - Defining uncertainties in impact studies towards a new approach for the IPCC working group two report

Global Water Resources:

- Increasing population
- Increasing water consumption
- Land cover/use change
- Climate Change

Global Water scarcity according to IWMI

1.4 billion people in
watersheds with
< 1000m³/capita/year

2.4 billion people with poor sanitation

1 billion people without access to safe drinking water

Global water use by sector and continent

Is the hydrological cycle speeding up

Proportion of heavy rainfalls: increasing in most land areas

Drought is increasing in most places

Glaciers and frozen ground are receding

Figure 3: Natural catastrophe trends in the 20th century

Great natural catastrophes with trends

Number of natural catastrophes is increasing

Number of natural catastrophes 1980-2008

- Earthquake, volcanic eruption
- Meteorological events Tropical storm, winter storm, severe weather, hail, tornado,
- Hydrological events Storm surge, river flood, flash flood, mass movement
- **Climatological events** Freeze, wildland fire,

Munioh Re Topics Geo 2008

How will climate change affect global water resources?

Changes in Rainfall by the end of the 21st century

- Relative changes in runoff are larges than the changes in precipitation
- Uncertainty in runoff changes are also larger

a) Precipitation

Water stress by 2050

Changes in water resources stress by 2055 using the A2 Emission scenario

CGCM2

GFDL_R30

CSIRO Mkll

Increase in stress Become stressed No change in stress Reduction in stress Stop being stressed

CCSR/NIES2

Watch Project - Water and Global Change

- Developing a new modeling framework for the assessment of global change impacts on water resources
 - Linking climate and hydrological models
 - Reducing uncertainties feedbacks, improved bias corrections
 - Improved quantification of the uncertainties multi model approaches
 - Improved representation of human impacts dams, extractions, irrigation

The last IPCC reports Working Group 1 (the physical science basis vs. Working Group 2 (Impacts, adaptation and vulnerability. Working Group 1: A well coordinated Model Intercomparison of 21 Global Climate Models – running a range of scenarios

The last IPCC reports Working Group 1 (the physical science basis vs. Working Group 2 (Impacts, adaptation and vulnerability. Working Group 2: A range of different studies using different climate models and different impact models

Current/historic vulnerabilities

Future vulnerabilities/ impacts

Core of the modelling framework is 13 global hydrological models and Land Surface Hydrological models

Sets of model intercomparisons

Protocol of the intercomparison

Forcing data

- Watch Forcing Data
 - Some model used subdaily and other used daily data

Time period

- 1980-1999
 - First five years used as spin-up data analysed 1985-1999

Standardization issues

- Land Mask (CRU)
- Routing Network
- Alma convention
- NET CDF

Date reported

- Gridded fields, land points, 0.5 dd
 - Monthly for 15 years 1985-1999
 - Daily for 1987-88
 - State (water) at beginning and end of simulations

Mean monthly (mm day-1)

 15-year mean monthly values, all models

 Multi-model mean monthly, and interannual range of multimodel mean monthly values

River basins

Mean annual water fluxes (mm year-1)

Model variation in average evaporation in large basins

Human impacts on the global water cycle

- Storage / Dams
- Irrigation
- Water extraction for industry and domestic use
- Land use change
- Water Quality

New module: Reservoir operations Impact of human built reservoirs on water availability

Calculation of pollution loadings

Grid cell loadings – BOD [t/a]

The Way Forward – an ensemble of projections of global water resources – a better estimate of the impacts and the related range/uncertainty

Conclusions

- The global cycle is speeding up causing changes in rainfall amounts and variability
- Global water resources will affected by climate change and other anthropogenic impacts
- An improved modeling framework is needed to better quantify climate change impacts – this is necessary to improve decision making on adaptation
- The IPCC AR5 represents a unique opportunity to improve climate change impact research

