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Stellingen 

1. Acute stress induceert bij de karper een verschuiving in de verhouding tussen 

aangeboren en verworven afweer. Dit is onderdeel van de adaptieve respons en is van 

belang voor de overleving van het dier. 

Dit proefschrift 

2. Karpers bezitten een uitgebreid interleukine-1 systeem, dat door stress be'invloed 

wordt via de HPI-as. 

Dit proefschrift 

3. De naam "caspase-1" verdient de voorkeur boven "Interleukin-iP-Converting-

Enzyme" gezien de evolutionaire oorsprong van dit enzym. 

Dit proefschrift 

4. Naast genduplicatie maakt ook polyploidisatie een snelle (evolutionaire) adaptatie aan 

selectiedruk vanuit de omgeving mogelijk. 

Vrij naar Wittbrodt et al, 1998 BioEssays 20: S11 -SIS 

5. Door opheldering van het genoom van een beperkt aantal organismen (o.a. Escherichia 

coli, Caenorhabditis elegans, Drosophila melonogaster, zebravis, muis, mens), staan deze vaak ten 

onrechte model voor hun klasse. 

6. Bij functionele overeenkomst en kruisreactiviteit tussen twee eiwitten van 

verschillende diersoorten mag de mogelijkheid van convergente evolutie niet over het 

hoofd gezien worden. 

Beschin et al., 1999 Nature 400: 627-628 

7. De populariteit van "fruits de mer" in Frankrijk verklaart waarom de 

wetenschappelijke literatuur over schelpdieren voornamelijk van Franse oorsprong is. 

8. How inappropriate to call this planet Earth, when clearly it is Ocean. 

Arthur C. Clorke 

Stellingen behorende bij het proefschrift: "Neuroendocrine-immune interactions in carp: a role for Cortisol 

and interleukin-1" van Marc Engelsma, Wageningen, 7 juni 2002. 
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General Introduction 

1 HOMEOSTASIS AND STRESS 

With the decline of fish stocks there is a growing demand for aquaculture 

industries. As in the wild, in aquaculture systems the adaptive capacity of fish will be 

constantly challenged. In a stressful environment the dynamic equilibrium or 

homeostasis of the animal is threatened. Ultimately this may lead to impaired welfare 

of the animal with subsequent vulnerability to diseases and loss in production for the 

fish farmer. 

The definition of stress is surrounded by controversies. A suitable definition is 

given by Chrousos and Gold (1992), in which stress is defined as a condition in 

which the dynamic equilibrium of an animal organism, called homeostasis, is 

threatened or disturbed as a result of the actions of intrinsic or extrinsic stimuli, 

commonly defined as stressors. The stressor can be a large variety of biological, 

chemical and physical factors. In general, the stress response is considered as an 

adaptive response in order to restore disrupted homeostasis. However, under chronic 

or severe conditions this response may become maladaptive and lead to dysfunction of 

the animal as shown by impaired health, growth or survival. In a stress response three 

stages can be recognised (Wendelaar Bonga, 1997): (1) primary response, perception 

of stressor by brain centres resulting in a subsequent release of catecholamines and 

glucocorticoids (2) secondary response, immediate effects of the hormones on oxygen 

uptake, energy substrates and hydromineral balance and (3) tertiary response, 

modulation of growth, reproduction and the immune system. 

Homeostasis of an organism is dependent on bi-directional communication between 

the neuroendocrine system and the immune system. Both monitor the environment to 

give adaptive responses to psychological and physiological disturbances and pathogenic 

challenges, respectively. Although the neuroendocrine system and immune system were 

initially considered to act independently, it is now recognised that an extensive 

communication network controls a concerted neuroendocrine-immune interaction. The 

observation of a close association between the neuroendocrine system and the immune 

system dates back to 1936 when Selye (Selye, 1936) observed enlargement of the 

adrenal gland and involution of the thymus in response to stress. Nowadays 

communication between the neuroendocrine system and the immune system is 

extensively studied in mammals (Blalock, 1994; Chrousos, 1995; Besedovsky and Del 

Rey, 1996; McEwen et al., 1997). Key to a bi-directional communication between these 
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systems is the sharing of receptors to react to mutual signals. Moreover, similar or 

identical hormone and cytokine signalling molecules are synthesised by cells and tissues 

from both systems (Turnbull and Rivier, 1999; Baigent, 2001). 

In teleostean fishes knowledge about neuroendocrine effects on the immune system 

is scant, yet emerging (Weyts et al., 1999; Harris and Bird, 2000). Very little is known 

about signalling by immune cells to the neuroendocrine system in fish. With cytokine 

sequences being rapidly disclosed, it becomes feasible to investigate these interactions. 

In this general introduction the context in which the following chapters have to be 

placed will be explained and the aim and outline of this thesis are given. 

2 IMMUNE RESPONSE IN TELEOST FISH 

Pathogenic challenges will evoke a broad series of responses in teleost fish. In 

general, these responses show clear similarities with the defence system of mammals 

(Van Muiswinkel, 1995). At first, non-specific humoral factors as lysozyme, acute 

phase proteins (e.g. C-reactive protein, serum amyloid A, transferrin, lectin), 

complement system and interferons (IFN) have a role in hampering spread and 

multiplication of the pathogen and triggering the cellular part of the immune system 

(Nakao and Yano, 1998; Bayne and Gerwick, 2001). Many of these proteins are 

normally present in the serum and often induced upon infection. Phagocytosis is an 

important and ancient defence mechanism. In fish macrophages as well as granulocytes 

exert phagocytic functions. In addition, phagocytic cells release a number of oxygen 

radical species and nitric oxide (NO), which can kill intracellular or extracellular 

pathogens (Campos-Perez et al., 2000; Saeij et ah, 2001). Furthermore, in teleost fish 

non-specific cytotoxic cells (NCC) are recognised that possess natural killer (NK) cell­

like activity (Evans et ol., 2001; Jaso-Friedmann et al., 2001). Antigenic particles are 

taken-up and processed by specialised antigen presenting cells (APC) and subsequently 

presented on major histocompatibility complex (MHC) class II molecules (Dixon et al., 

1995). MHC class I molecules present an array of self antigens of which altered 

expression are indicative for virus infected cells (Stet et al., 1998). The presented 

antigens will activate cells of the acquired immune system, T lymphocytes and B 

lymphocytes, to eliminate the pathogen involved. They will also build-up long lasting 

protection and faster response when exposed to the same pathogen henceforth. T 

lymphocyte subsets as mammalian CD4+ and CD8+ cells have not been identified (yet) 

in fish, but both cytotoxic and helper function can be recognised (Miller et al., 1985; 

10 
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Kaastrup et al., 1988; Luft et al., 1994). In teleost fish IgM is the predominant 

immunoglobulin form in blood, recently IgD and a mucosal IgM were described 

(Kaattari and Piganelli, 1996). Clonal expansion, affinity maturation and memory 

formation in the B lymphocyte population is less extensive than observed in mammals 

and isotype switching is not described yet. Though most signalling molecules in fish 

await identification it is supposed that both cells of the innate and acquired immune 

system interact closely, with cytokines and other inflammatory mediators involved in 

signalling between the cells. 

As fish lack bone marrow and lymph nodes, structural organisation of the immune 

system is different from that in mammals. Of particular importance for fish are the 

mucosal tissues (skin, gills, gut) and leucocytes in these tissues as barrier to infectious 

agents from the aquatic environment (Rombout and Joosten, 1998). Together with the 

thymus, the kidney (both head kidney and trunk kidney) of teleosts serves as primary 

lymphoid organ. Haematopoiesis of lymphoid and myeloid cells takes place in the 

kidney. The kidney functions also as a secondary lymphoid organ in which large 

numbers of antibody producing cells reside. Besides, hormone production of Cortisol 

and catecholamines takes place in the head kidney, thus both immune and endocrine 

functions are combined in this organ (see paragraph 3.2). Spleen, secondary lymphoid 

organ, is another site for antibody production and this organ plays an important role 

in the production of erythrocytes. In general the microenvironment of leucocyte 

interaction is thought to be more loosely associated in fish compared to mammals. For 

example, distribution of red and white pulpa is diffuse through the spleen and 

structures such as germinal centres in mammals have not been observed in fish. 

Teleost fish as poikiloterms are directly exposed to changes in the surrounding 

water temperature. This brings about that the immune system of fish needs to function 

at a wider range of temperatures compared to mammals. Each fish species has its own 

temperature "window" in which it can acclimate to changes in water temperature. The 

physiological permissive temperature range is different for each fish species. For 

example, the stenothermic brown trout (Salmo trutta L.) has a narrow range at low 

temperature (around 9-14°C) while for the eurythermal carp (Cyprinus carpio L.) the 

ambient water temperature is permissive for a broad range (0-32°C) with a preference 

for 20-25°C (Elliott, 1981). Although long-term adaptation within the physiological 

range will have consequences for immune functioning (e.g. Le Morvan et al., 1998), 

this thesis is dealing with the consequences of sudden temperature changes for 

immune parameters (see paragraph 7). 

© 
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Input from higher brain centers 

Locus ceruleus 

Sympathetic 
Nervous System 

Stress Response 

Fig. 1. Schematic representation of the interactions between the cytokines IL-1, TNF and IL-6, the 

hypothalamus-pituitary-adrenal (HPA)-axis and the sympathetic nervous system in mammals, with 

emphasis on HPA - immune interactions. See text for details. Abbreviations: ACTH, 

adrenocorticotropic hormone; AVP, arginine vasopressin; CRH, corticotropin releasing hormone; P~ 

end, p-endorphin; E, epinephrine; FSH, follicle stimulating hormone; GC, glucocorticoid; GH, growth 

hormone; IL-1 interleukin-1; IL-6 interleukin-6; Ot-MSH, OC-melanocyte-stimulating hormone; NE, 

norepinephrine; PRL, prolactin; PVN, paraventricular nucleus; TNF, tumor necrosis factor; TSH, 

thyrotropin stimulating hormone. 

3 NEUROENDOCRINE FACTORS INVOLVED IN IMMUNE REGULATION 

3.1 Neuroendocrine factors involved in immune regulation in mammals 

The neuroendocrine system conveys signals for adaptation to environmental 

challenges via two major pathways (Fig. 1). First, catecholamines (norepinephrine, 

© 
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epinephrine, dopamine) are released upon activation of the sympathetic nervous 

system. Sympathetic nerve fibres, originating from the locus caeruleus in the brain 

stem, innervate lymphoid organs and influence immune cells mosdy via ^-adrenergic 

receptor pathways. However, down-regulation of secretion of pro-inflammatory 

cytokines by macrophages involves an a-2 adrenergic receptor pathway (Friedman and 

Irwin, 1997; Downing and Miyan, 2000). A second and important neuroendocrine 

modulator of the immune system is the activation of the hypothalamus-pituitary-

adrenal (HPA)-axis. In this axis corticotropin-releasing hormone (CRH) is released 

from the paraventricular nucleus (PVN) of the hypothalamus in response to 

physiological and stressful stimuli. CRH, but also arginine vasopressin (AVP) 

synthesised in the same nucleus, stimulate synthesis of the polypeptide precursor pro­

opiomelanocortin (POMC) in the anterior lobe of pituitary gland (adrenocorticotropic 

hormone (ACTH) cells) as well as in the pars intermedia melanocyte-stimulating 

hormone (MSH) cells. PVN derived peptides and the POMC cleavage products ACTH, 

(X-MSH and (acetylated as well as non-acetylated) p-endorphins have been shown to 

interact with the immune system (Jessop et al., 2001; Lipton and Catania, 1997). The 

interaction of pituitary output with the immune system is not limited to POMC-

derived peptides: also other pituitary hormones such as growth hormone (GH), 

prolactin (PRL) and thyrotropin-stimulating hormone (TSH) influence the immune 

system (Dorshkind and Horseman, 2001; Bagriacik and Klein, 2000). In the adrenal 

gland ACTH stimulates the release of glucocorticoids (GC), typically Cortisol in man 

and corticosterone in rodents. GC are deeply involved in essentially all physiological 

processes including the activity of the immune system. GC are well-known as 

therapeutics to suppress the immune system in autoimmune and inflammatory diseases. 

However, the classical view of GC solely acting as suppressors of the immune 

system is now abandoned as it appears that under physiological rather than 

pharmacological conditions GC may exert differential and more subde regulatory 

actions (Wilkens and De Rijk, 1997; Sapolsky et al., 2000). In other words, GC should 

be considered as important modulators of the immune system. Cells of the acquired 

immune system and cells of the innate immune system show divergent responses to 

corticosteroids. Lymphopenia, reduced lymphocyte proliferation and decreased natural 

killer (NK) cell activity are well documented (McEwen et al., 1997; Rogers et al., 

1999). On the other hand, the relative number of circulating neutrophilic granulocytes 

and the respiratory burst response often increases under stress conditions. Furthermore, 

GC influence leucocyte trafficking, causing a redistribution of circulating leucocytes 

over the different body compartments (Dhabhar et al., 1996; Dhabhar and McEwen, 
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1997). Apoptosis plays a key role in normal development and regulation of the 

immune system, and is induced by GC in the selection and differentiation of 

thymocytes and B lymphocytes (Krammer et al., 1994; Ashwell et al., 2000). GC affect 

the expression of cytokines differentially. On one hand, the release of pro­

inflammatory cytokines including the typical T helper 1 (Thl) cytokines interleukin-2 

(IL-2) and interferon-y (IFN-y) is strongly suppressed by GC. On the other hand, the 

expression of a number of the T helper 2 (Th2) cytokines interleukin-4 (IL-4) and 

interleukin-10 (IL-10) is stimulated by GC. Thus, GC skew the Thl /Th2 cytokine 

profile in the direction of the Th2 type of response, resulting in a more humoral type 

of response (Rook et al., 1994; Ramirez, 1998). 

3.2 Neuroendocrine factors involved in immune regulation in teleosts 

In fishes, in analogy with mammals, the stress response comprises activation of the 

sympathetic nervous system as well as of the hypothalamus-pituitary-interrenal (HPI)-

axis. Prime focus of this thesis will be on the HPI-axis. The interrenal tissue in the 

head kidney of fish contains equivalent cell types as the mammalian adrenals (cortisol-

producing cells and chromaffin cells; Wendelaar Bonga, 1997). In response to 

hypothalamic (nucleus pre-opticus in fish) release of CRH (and arginine vasotocin 

(AVT) and thyrotropin-releasing hormone (TRH)) the pituitary enhances synthesis of 

POMC and release of its cleavage products. For carp both CRH and POMC were 

recently cloned (Huising et al., 2001 and Arends et al., 1998 respectively). ACTH is a 

potent stimulator of Cortisol production by the interrenal steroid producing cells. 

Cortisol has both glucocorticoid and mineralocorticoid actions in fish (fish lack 

aldosteron, the type of response to Cortisol is receptor-dependent). Both, the 

glucocorticoid and mineralocorticoid receptor were recently cloned for rainbow trout 

(Ducouret et al., 1995; Colombe et al., 2000). As the head kidney combines GC and 

catecholamine production with important immune features e.g. lymphopoiesis and 

antibody production, the potential for paracrine modulation of immune responses by 

stress hormones seems indicated. 

Effects of Cortisol in fish on the immune system - after stress in vivo or upon 

Cortisol feeding - generally comply with findings in mammals. Circulating lymphocyte 

populations decrease in number while neutrophilic granulocytes stay constant or 

increase (e.g. Ellsaesser and Clem, 1986; Ainsworth et al., 1991; Morgan et al., 1993). 

Lymphocyte proliferation is decreased after injection with Cortisol (Espelid et al., 1996) 

and in vitro antibody responses are impaired after Cortisol administration (Carlson et al., 

14 
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1993). Reports on the effects of stress or Cortisol on respiratory burst and phagocytosis 

are conflicting, but may reflect differences between species as well as differences in 

methodology (Weyts et al., 1999). Receptors for GC were demonstrated in salmon and 

carp leucocytes (Maule and Schreck, 1990; Weyts et al., 1998a). In carp a differential 

effect of Cortisol was demonstrated on lymphocytes and neutrophilic granulocytes in 

vitro. Especially activated B lymphocytes harvested from blood are easily triggered to 

enter cortisol-induced apoptosis (Weyts et al., 1998b). In contrast to the sensitivity of B 

lymphocytes to apoptosis signals, carp neutrophilic granulocytes are rescued from 

apoptosis by Cortisol (Weyts et al., 1998c), demonstrating dual actions of GC in fish. 

4 PRODUCTION OF NEUROENDOCRINE MESSENGERS BY IMMUNE CELLS 

Although the cell components of the HPA- or HPI-axis are the main source of HPA-

axis hormones (CRH, TRH, AVP/AVT, ACTH, MSH, endorphins, GH, PRL, GC) it is 

becoming increasingly clear that these signal substances are also produced by the 

immune system. A number of immune cells were shown to produce small amounts of 

hormones such as CRH, ACTH, endorphin and growth hormone (Weigent et al., 1988; 

Lyons and Blalock, 1997; Baigent, 2001). The very low production rates would favor a 

paracrine or autocrine action over a classical endocrine one, as contribution to plasma 

levels of these hormones is anticipated to be small. Locally however, this hormone 

production can be of relevance as the potential hormone producing immune cells by 

far outnumber the endocrine cells. Local production of e.g. CRH can be very effective: 

during inflammation CRH is secreted by leucocytes at the site of inflammation and 

imrnuno-neutralising CRH activity with specific antibodies diminishes inflammation 

(Tumbull and Rivier, 1999). 

Not surprisingly, there are indications that also fish leucocytes produce HPI-axis 

hormones. Ottaviani and co-workers demonstrated in gold fish the presence of 

immuno-reactive CRH in thymus (1998) and POMC mRNA in phagocytes (1995a). 

Channel catfish peripheral blood leucocytes (PBL; B- and T-cell lines) secrete ACTH 

(Arnold and Rice, 2000) both constitutive and CRH-driven. Thus, although research in 

this field is only starting, it can be anticipated that also in fish "stress hormones" are 

produced by leucocytes to allow for bi-directional communication between the 

neuroendocrine system and the immune system. 

15 
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5 CYTOKINES AND NEUROENDOCRINE-IMMUNE COMMUNICATION 

5.1 Cytokine characteristics in mammals 
Cytokines form a heterogeneous set of regulatory (glyco-)proteins, closely related to 

growth factors, involved in coordinated local and systemic responses to infection and 

tissue damage. Production and secretion of cytokines is not restricted to cells of the 

immune system, they can be secreted by a whole range of non-immune cell types. 

Two characteristic features of cytokines are their pleiotropic nature, inducing a broad 

range of activities via multiple target cell types and their redundancy, indicated by the 

overlap in activities among different cytokines. These properties, facilitate integrated 

actions in cytokine networks. The balance in cytokine profiles together with the 

presence of functional receptors determines the outcome of a response to cytokine 

release, rather than the effect of a single cytokine. Very low numbers of cytokine 

receptors need to be activated to trigger intracellular signalling in target cells. The 

potency of cytokines may explain why expression of cytokine genes generally needs to 

be induced by internal or external stimuli and is tightly regulated (Auron and Webb, 

1994). The situation thus contrasts with that of classical hormones that are generally 

constitutively secreted under control conditions and often in circadian profiles. 

Turnbull and Rivier (1995) formulated several criteria for cytokines to comply with 

a regulatory role in HPA/HPI-axis activity. These criteria are equally applicable for 

research into cytokine effects on stress-axis activity in fish as they are in mammals: (1) 

the cytokine must exert a direct effect via specific receptors in the tissues/cells that 

make up the HPA/HPI-axis components; (2) the cytokine should elicit a regulatory 

effect on the HPA/HPI-axis, e.g. raise or lower plasma levels of ACTH and/or GC; (3) 

the activation of the HPA/HPI-axis should be related to synthesis and secretion of the 

pertinent cytokine; (4) inhibition of the action of a particular cytokine, e.g. by 

immuno-neutralisation, should prevent HPA activation. 

A large number of cytokines are known to interact with the HPA-axis. Interleukin-1 

(IL-1), tumor necrosis factor-CC (TNF-a), and interleukin-6 (IL-6) are considered the 

main actors in this communication between the immune system and the HPA-axis 

(reviewed in Turnbull and Rivier, 1999; Fig. 1). All three cytokines appear to meet the 

criteria mentioned above. Because of their importance in the neuroendocrine 

communication, a brief overview on the characteristics on each of these cytokines will 

be given. 

16 
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Fig. 2. Phylogenetic tree with the known IL-1 family members in human, and the IL-iP sequences of 

a number of other vertebrate species. The cluster of IL-iP sequences is shaded grey. Neighbor-Joining 

tree constructed with ClustalX 1.81 (Thompson et al., 1997) alignment program and TREEVIEW (Page, 

1996). Reliability of the branching patterns assessed by 10,000 bootstrap replications, denoted at the 

selected nodes. Nomenclature according to Sims et al. (2001). Genbank accession numbers of the 

human IL-1 family sequences: IL-la, NM000S7S; IL-ip, NM_000576; IL-lra, NM000577; IL-18, 

NM_001562; Q.-1F5, AF186094; IL-1F6, AF201831; IL-1F7, AF201832; LL-1F8, AF201833; IL-1F9, 

AF200492; IL-1F10, AF334755. Accession numbers of non-human IL-iP sequences: chicken, Y15006; 

Xenopus, AJ010497; common carp, AJ245635; rainbow trout, AJ223954; sea bass, AJ311925; gilthead 

sea bream, AJ277166. 

5.2 lnterleukin-1 
The interleukin-1 family is an expanding family of pro-inflammatory cytokines 

(Kumar et al., 2000; Smith et al., 2000; Lin et al., 2001; Dunn et al., 2001; Fig. 2). 

Three members of this family IL-la, IL-lp and the IL-1 receptor antagonist (IL-lra) 

are known for over two decades and present the archetypes of a pleiotropic cytokine 

17 
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(Dinarello, 1994; Dinarello, 1997). IL-1 is an 'early' cytokine in the inflammatory 

response with a cascade of effects, many of which are mediated through up- or down-

regulation of other cytokines. 

The IL-1 system of ligands and receptors is a complex system of agonists and 

antagonists. Biological activity of IL-1 (3 requires processing into a mature form through 

cleavage by caspase-1 (interleukin-iP-converting-enzyme, ICE), whereas IL-1 a not 

necessarily needs to be cleaved to become biologically active. Of the two types of IL-1 

receptors, IL-1R type I and IL-1R type II, only binding of IL-1 a or IL-1 (3 to the type I 

receptor evokes signal transduction. The IL-1R type II is a decoy receptor, functioning 

as an antagonist by capturing excess IL-1. Upon binding of IL-1 a or IL-1 p, the IL-1R 

type I forms a heterodimer with the IL-1 receptor accessory protein (IL-lRAcP). This 

leads to signal transduction and activation of the nuclear factor (NF)-KB pathway 

(Martin and Falk, 1997; May and Ghosh, 1998). Binding of the IL-lra does not lead 

to heterodimerisation with IL-lRAcP, thus preventing intracellular signalling. Soluble 

forms of both receptor types can be found in plasma and can function as sinks for 

surplus of IL-1 protein. However, binding to a soluble receptor may also expand the 

lifetime of the IL-1 molecules enabling them to act "far away" in peripheral targets 

(Rose-John and Heinrich, 1994). 

5.3 Tumor necrosis factor 

Functions of IL-1 largely overlap with those of TNF. Both are primary cytokines 

and often act synergistically. In an inflammatory response TNF usually is the first 

cytokine to appear followed immediately by an IL-1 surge. Two forms of TNF exist 

with approximate 50% homology, TNF-a (cachectin) and TNF-(3 (lymphotoxin-a). 

TNF functions as a membrane bound molecule but can also be cleaved off the cell-

surface to become a soluble protein. Two receptors TNF-R1 and TNF-R2 have been 

identified (Orlinick and Chao, 1998). The receptors have similar extracellular domains 

but differ in their intracellular sequences and consequently in their intracellular 

signalling pathways. Both receptors bind TNF-a as well as TNF-(3. The actions of the 

receptors are partly overlapping but only signalling via TNF-R1 leads to the induction 

of apoptosis (Scaffidi et al., 1999). The intracellular pathway leading to activation of 

NF-KB is partly analogous to that in the IL-1R signalling pathway. Also for the TNF 

receptors (as for membrane-bound TNF itself) proteolysis leading to soluble forms of 

the receptors has been described (Rose-John and Heinrich, 1994) 
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5.4 lnterleukin-6 

IL-6 is a secondary cytokine in the inflammatory response and exhibits pro- as well 

as anti-inflammatory properties. The expression of IL-6 is up-regulated by IL-1 as well 

as TNF and in turn IL-6 inhibits the production and secretion of IL-1 and TNF (Fig. 

1). IL-6 is important as the major mediator of the acute phase reactions. One receptor 

has been described binding IL-6, viz. IL-6R.0C (Kishimoto et al., 1995). Upon binding 

the IL-6/IL-6ROC complex induces formation of a homodimer of the cell surface protein 

gpl30. The gpl30 signal-tranduction element is used by a number of other cytokine 

receptors and involves triggering of the JAK/STAT signalling pathway. The soluble 

receptor of IL-6, in contrast to the soluble receptors in the IL-1 and TNF system, is an 

agonist in the IL-6 signalling pathway (Jones et al., 2001). 

5.5 Effects of neuroendocrine factors on cytokines 

GC control cytokine expression in several ways. After binding of GC to the 

cytosolic glucocorticoid receptor (GR), the activated complex moves into the cell 

nucleus where it can interact with glucocorticoid response elements (GRE). GRE are 

present in promoter regions of regulatory genes and binding of GR leads to activation 

or silencing of the gene. In addition, the activated GR complex can down regulate 

transcription factors like activator protein 1 (AP-1), cAMP responsive element binding 

protein (CREB) and NF-KB by protein-protein interactions (Herrlich, 2001; McKay and 

Cidlowski, 1999). Pathogenic stimuli or other cytokines induce the expression of IL-1 

(and many other cytokines) via the NF-KB pathway. NF-KB resides in the cytosol in an 

inactive form complexed to the chaperone protein inhibitory of NF-KB (1KB). Upon 

phosphorylation 1KB dissociates from the complex and NF-KB can enter the nucleus to 

bind the NF-KB responsive element in the promoter region of target genes. GC 

physically interacts with NF-KB, preventing it to attach to KB responsive elements 

(McKay and Cidlowski, 1999). Moreover, GC up-regulate the 1KB transcript 

production. Not only the transcription of IL-1 is down-regulated by GC, also the 

stability of IL-Ifj mRNA is decreased by these steroids (Lee et al., 1988) 

5.6 Cytokine effects on the neuroendocrine system 

The cytokines IL-1, TNF and to a lesser extent IL-6 in concert influence the HPA-

axis resulting in increased output of ACTH and GC during infection, inflammation and 

trauma, but also during psychologically or physiologically stressful situations. 

Besedovsky and colleagues (1986) were among the first to show an activation of the 

HPA-axis in response to intraperitoneal injection of IL-1. Evidence exists that pituitary 
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corticotropes are a target for IL-1, they exhibit IL-1 receptors; EL-1 potentiates the 

response of ACTH cells to CRH and AVP (e.g. Kemppainen and Behrend, 1998, 

Katahira et al., 1998, Prickett et al., 2000). Also pituitary tissue has been shown to 

express a number of cytokine molecules (IL-1, TNF, IL-6, IFN). However, the 

hypothalamic CRH neurons in the paraventricular nucleus are generally considered the 

prime site for IL-1 mediated HPA-axis activation (reviewed by Turnbull and Rivier, 

1999). Significant activation of these neurons and synthesis of CRH mRNA is measured 

upon peripheral or central administration of IL-1. Moreover, IL-1 rapidly stimulates the 

secretion of CRH (and in some cases also AVP) in portal vessel system of the median 

eminence. However, direct evidence for IL-1 receptors on paraventricular neurons has 

as yet not been published, leaving alternative options of indirect actions of the 

cytokine (e.g. via IL-6, Perlstein et al., 1993). The origin of the centrally active 

cytokines is a complicated issue. Cytokines may be produced locally in neurons, by 

microglia and leucocytes or may originate from peripheral sources. Transport to the 

brain may be direct or indirect. Also local release of cytokines via transport of 

peripheral leucocytes remains an option. For IL-1 and TNF, but to a much lesser extent 

for IL-6, direct transport by a saturable transport system has been described (Plotkin et 

al., 2000, Banks and Kastin, 2000, Maness et al., 1998). Moreover permeability of the 

blood-brain barrier is subject to subtle regulation by inflammatory mediators (Abbott, 

2000). IL-lp induces changes in blood-brain barrier permeability (Blamire et al., 2000; 

Laflamme et al., 1999) and thereby facilitates entrance of leucocytes; moreover it alters 

expression of regulatory factors like prostaglandins and NO in endothelium (Laflamme 

et al., 1999) which will influence vessel permeability and cytokine traffic. Although 

only small effects after long-term incubations have been reported also direct effects of 

IL-1 on GC secretion in the adrenal gland should be considered. 

Apart from actions on HPA-axis activity, interleukins may have important effects on 

hippocampal neurons and cells of the optic and pre-optic nuclei thus interfering with 

neuro-behavioral processes (e.g. susceptibility to Alzheimer related to IL-6 

polymorphism) or memory function (IL-1 stimulation of MSH and neuropeptide Y 

neurons). This is also illustrated in illness-associated psychological disturbances for 

which pro-inflammatory cytokines are held responsible. 
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6 CYTOKINES IN TELEOSTS 

From evolutionary perspective, the cytokine system is considered to be ancient and 

certainly not a terrestrial vertebrate or mammalian invention. There are several reports 

about cytokine-like factors and cross-reactivity of recombinant proteins and antibodies 

to cytokines in invertebrates. An IL-1 -like factor has been isolated from the starfish 

Asterias forbesi (Beck and Habicht, 1986) and the tunicate Styela clava (Beck et al., 1989). 

Burke and Watkins (1991) showed stimulation of starfish coelomocytes by 

recombinant IL-lOC. Indications for a relationship between the endocrine messengers 

and the immune system could also be demonstrated in molluscs (Ottaviani et al., 

1995b; Ottaviani and Franceschi, 1997). Cross-species use of recombinant protein and 

antibodies in search for phylogenetic relationships for cytokines, however, needs to be 

considered with caution. Beschin et al. (1999) showed that vertebrate TNF-a and earth 

worm coelomic cytolytic factor-1 (CCF-1) displayed functional analogy and cross 

reactivity with reciprocal antibodies, but lack genetic homology excluding a common 

ancestor relationship. 

Recently, great attention is focused on the family of IL-1 R/Toll-like receptors, 

bearing relationship with Drosophila Toll receptor involved in development and defence 

against microbes (O'Neill and Greene, 1998; Rock et al., 1998; Anderson, 2000). 

Human IL-1 R/Toll-like-receptors and Drosophila Toll/18 Wheeler/MSt contain a 

conserved intracellular domain and an orthologous downstream signalling pathway is 

present both in man (MyD88, IRAK, TRAF6, IKB /NF-KB) and Drosophila (Tube, Pelle, 

dTRAF6, Cactus/Dorsal/Dif). 

In recent years a variety of cytokine sequences was elucidated for several fish 

species. Fibroblast growth factor (FGF) and some CC and CXC chemokines have been 

cloned from a number of fish species (Secombes et al., 1999). Several isoforms of the 

anti-inflammatory cytokine TGF-fJ (e.g.: Liang et al., 1999; Yin and Kwang, 2000a; 

reviewed by Secombes et al., 1999) are described for fish and of the pro-inflammatory 

cytokines IL-1P and TNF-a sequences are published. 

Prior to the elucidation of teleost IL-1 (3 sequences, IL-1 -like activity was reported 

for channel catfish and carp (Hamby et al., 1986; Verburg-van Kemenade et al., 1995). 

Carp supernatants of activated phagocytes were able to induce proliferation of the IL-1 

dependent murine D10 cell line. Furthermore, this proliferation was blocked by 

polyclonal antisera against human IL-1. The first teleost sequence for IL-1(3 was 

published for rainbow trout by Zou et al. (1999) followed by the IL-1 (3 sequence for 
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Fig. 3. Top: plasma Cortisol concentrations in carp during 3 h cold shock (0 - 180 min) with an 

amplitude of 9°C (squares) and control carp (dots). Bottom: water temperature profile during the 

temperature shock. After Tanck et al. (2000) with modifications. 

common carp (Fujiki et al., 2000), a second rainbow trout sequence (Pleguezuelos et 

al., 2000), sea bass (Scapigliati et al., 2001) and recently gilthead sea bream (Pelegrin et 

al., 2001). In addition to the IL-1 (J sequences also an interleukin-1 receptor-like 

sequence was recently published for salmon (Subramaniam et al., 2002) and the IL-1 

receptor type I (Holland et al., 2000) and type II (Sangrador-Vegas et al., 2000) for 

rainbow trout. The potential immuno-stimulatory activity of IL-1 (3 in vivo was 

demonstrated in carp by Yin and Kwang (2000b). Injection of carp recombinant IL-1 

could enhance the agglutinating antibody titres against Aeromonas hydrophila. 

Functional aspects of TNF-OC action in fish were demonstrated so far using human 

recombinant TNF-a in rainbow trout macrophages (Novoa et al., 1996; Knight et al., 

1998) assaying for hepatocyte serum amyloid A expression (Jorgensen et al., 2000). 

Recently TNF-a sequences were published for Japanese flounder (Hirono et al., 2000), 

rainbow trout (Laing et al., 2001) and carp (Saeij and Wiegertjes, 2001), opening new 

ways to test homologous probes in fish research. While most teleost cytokine 
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sequences are only now becoming available, functional information on cytokines in 

neuroendocrine communication in teleosts is limited. 

7 EXPERIMENTAL MODEL 

The present study is part of a multidisciplinary NWO-ALW research programme, in 

which the physiological strategies of common carp during acclimation to temperature 

stress were investigated. This includes neuroendocrine regulation of the stress response, 

the genetic background of the stress response and the effects on reproductive and 

immune system (see NWO-ALW programme for results). 

To study stress-induced physiological changes in fish, a rapid change of ambient 

water temperature was used as a model stressor, which will elicit an adaptive stress 

response in the animal. We used a 3 h decrease with 9°C amplitude from the rearing 

temperature of 25°C and the experimental set-up was designed to enable application of 

the cold shock without handling the fish. This stressor was validated to be an acute 

stressor for carp by Tanck et ol. (2000). Plasma Cortisol levels were used as indicator 

for a primary stress response. With a cold shock of 9°C Cortisol levels rose up to 200 

ng/ml and return to basal levels 2 h after restoring the original temperature (Fig. 3). A 

secondary stress response as increased plasma glucose and lactate concentrations, often 

observed with other stressors, was absent in cold shocked carp. This indicates that 

temperature shocks will be perceived by carp as relatively mild and are thus considered 

to be well within the physiological range of the animal. The advantages of this model 

are easy application without other disturbances and easy quantification in the form of 

water temperature decrease and exposure time. 

In the in vivo temperature stress experiments genetically uniform carp were used to 

reduce phenotypic variation and to improve reproducibility. The carp were Fl hybrids 

of the crossing of an isogenic female E4ES with an androgenetic supermale (YY) 

R3R8, resulting in an all-male offspring (Bongers et al., 1997; Bongers et al., 1998). 

8 A IM AND OUTLINE OF THESIS 

Aim of the present study was to investigate effects of the acute temperature stress 

on the immune system of carp, which leucocyte populations are involved and to what 

extent antibody levels will be affected. Furthermore, important regulatory molecules of 
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the immune system, that moreover are potentially crucial in signalling to the "stress 

axis", are characterised. This will improve our insight into the evolutionary 

development of neuroendocrine-immune communication in general, and will 

contribute to unraveling regulatory mechanisms of the teleost immune system. 

As first objective the potential role of Cortisol, key hormone of the HPI-axis, was 

determined with a study into modulation of carp leucocyte function and viability in 

vitro. In previous studies it was demonstrated that, in circulation, especially the 

activated carp B lymphocytes were affected by Cortisol (Weyts et al., 1998b). As this 

may be of crucial importance for immune activity, B lymphocytes in different body 

compartments were investigated to establish possible differential sensitivity related to 

location or developmental stage. Proliferation and induction of apoptosis was 

determined for B lymphocytes originating from blood, head kidney or spleen (Chapter 

2). In vivo effects of temperature stress were investigated with a study into dynamics 

and viability of leucocyte populations and with analysis of potential changes of T 

lymphocyte independent (TI) and T lymphocyte dependent (TD) humoral immune 

responses (Chapter 3). 

The second objective was characterisation of regulatory molecules which originate 

from the immune system and which are hypothetised to influence HPI-axis. As shown 

in this introduction, IL-ip, involved in neuro-immune communication in mammals, is 

a prime candidate. After elucidation of the carp IL-ip sequence (Fujiki et al., 2000) we 

analysed the genomic organisation and in vivo and in vitro mRNA expression of carp IL-

1P (Chapter 4) . Emphasis was put on Cortisol as potential regulator of IL-1 p 

expression. Homology cloning showed that carp IL-1P was not restricted to a single 

form. A second IL-1 p sequence was found in carp, intriguingly, represented by 

multiple loci. The multiple IL-1 P2 sequences were further analysed and regulation of 

expression of both carp IL-lp sequences was compared (Chapter 5). 

The results obtained will be integrated and discussed in broader perspective 

(Chapter 6). 
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Effects of Cortisol on carp B lymphocytes 

ABSTRACT 

This study compared B lymphocytes isolated from different tissues with regard to 

their proliferation, apoptosis and the effects of Cortisol on these processes. B 

lymphocytes, isolated from the head kidney and spleen, were characterised by higher 

proliferation and lower intracellular calcium (Ca2+j) response to Ig-crosslinking 

compared with peripheral blood B lymphocytes. Cortisol induced high levels of 

apoptosis (160% of control levels) in peripheral blood B lymphocytes, in combination 

with a stimulatory (LPS) signal. Head kidney and to a lesser extent spleen B 

lymphocytes, although less sensitive than their equivalent in peripheral blood, 

underwent cortisol-induced apoptosis irrespective of extra stimulation up to 150% of 

control levels. Also proliferation with and without LPS stimulation was suppressed by 

Cortisol. In view of to the relatively modest concentration of Cortisol (compared to 

plasma values measured during stress conditions) that is effective in inducing a 

significant increase in apoptosis in all three populations of B lymphocytes, it is 

suggested that Cortisol may be important for immunoregulation in both stressed and 

non-stress conditions. This implies possible severe impact of stress on lymphocyte 

development and activity. Different sensitivity of B lymphocytes to the corticosteroid, 

with respect to developmental stage and activity, may prevent excessive and long 

lasting depletion of B lymphocytes. 

INTRODUCTION 

Bi-directional interactions of immune and endocrine functions are now recognised 

to be very important in the regulatory network, ensuring homeostasis during both 

stress and non-stressful conditions (Weyts et al., 1999). Given the need to develop 

disease control procedures in aquaculture, it is of great importance to reveal the 

mechanisms of the neuroendocrine-immune system interactions in fish. Stressor-

induced immunomodulation has mainly been attributed to Cortisol (Ellis, 1981, Barton 

et al., 1991), the major corticosteroid in many fish, which is produced by cells in'the 

interrenal tissue. Cortisol secretion is under endocrine control from the pituitary and 

the main mediators are ACTH and OC-MSH, which are enhanced during acute and 

chronic stress (Wendelaar Bonga, 1997). 

Treatment of fish with Cortisol resulted in reduction of: (1) leucocyte proliferation 

(Ellsaesser and Clem, 1987; Le Morvan-Rocher et al., 1995; Espelid et al., 1996); (2) 
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numbers of antibody producing cells (Carlson et al., 1993; Mazur and Iwama, 1993); 

(3) levels of virus-neutralising antibodies (Wechsler et al., 1986) and (4) circulating 

numbers of lymphocytes (Ellsaesser and Clem, 1987; Espelid et al., 1996). 

The mechanism of cortisol-induced immunosuppression has been the subject of 

several studies. The literature concering the impact of stressors and corticosteroids on 

activity of phagocytic cells is not consistent, probably due to the difference in species, 

stress-protocols and assay systems (Weyts et al. 1999). In vitro studies have revealed that 

mainly B lymphocytes appear to be directly affected by Cortisol, manifested by reduced 

levels of proliferation (Grimm, 1985; Tripp et al., 1987; Espelid et al., 1996) and 

reduced antibody production (Tripp et al., 1987). Moreover, it has been shown that 

carp peripheral lymphocytes and head kidney neutrophilic granulocytes possess high 

affinity receptors for Cortisol and that at least part of the impact of Cortisol is mediated 

through these receptors and affects apoptosis in these cells (Weyts et al., 1998a). These 

effects of Cortisol on cell viability are cell type specific and may be dependent on the 

differentiation and activation state of the leucocytes. Stimulated B lymphocytes are 

especially sensitive and easily become apoptotic, whereas thrombocytes and cells of the 

T lymphocyte fraction are insensitive to Cortisol (Weyts et al., 1997; 1998b). In 

contrast, apoptosis of head kidney neutrophilic granulocytes was inhibited when 

cultured in the presence of Cortisol, (Weyts et al., 1998c). Clearly, as neutrophils 

together with macrophages form a first line of defence against invasion by micro­

organisms, mobilisation of these cells in conditions of stress may be important for 

survival. 

In most studies the cortisol-induced changes in leucocyte function are associated to 

stressful events. However, considering the low concentration of Cortisol that inhibits 

carp PBL proliferation in vitro (Weyts et al., 1997) one should keep in mind that 

endogenous Cortisol may also be important in maintaining immunological homeostasis 

in fish, independent of a stress response. 

The high sensitivity of peripheral B lymphocytes, especially in the activated state, 

evoked our interest to study B lymphocyte populations from the haematopoietic head 

kidney (with high numbers of developing lymphocytes), spleen, a secondary lymphoid 

organ, as well as from the peripheral circulation. Lymphocyte populations were 

characterised for surface immunoglobulin (slg) expression, basal and lipopolysaccharide 

(LPS) stimulated proliferation and apoptosis, and effect of Ig-crosslinking on increases 

of intracellular calcium concentrations. Subsequently the effect of Cortisol was analysed 

with respect to non-stimulated and LPS-stimulated proliferation and apoptosis. 
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MATERIALS AND METHODS 

Animals 

Adult carp, Cyprinus carpio L., were obtained from "De Haar Vissen", Wageningen 

University, Wageningen, The Netherlands. The fish were offspring of a hybrid cross, 

R3 X R8, representing the seventh generation reared at our facilities (Irnazarow, 1995). 

The female was of Polish origin (R3 strain) and the male of Hungarian origin (R8 

strain). They were held at 23°C in recirculating, UV-treated water and fed pellet food 

(Provirni, Rotterdam, The Netherlands), at a daily rate of 0.7% of their body weight. 

Animals were euthanised with 0.2 g/l tricaine methane sulphonate (TMS). 

Isolation of leucocytes 

Heparinised blood was obtained by puncture of the caudal vessel and mixed with 

an equal volume of carp RPMI 1640 medium (Gibco, The Netherlands) adjusted to 

270 mOsmol/kg by addition of H 2 0 , (cRPMI) containing 10 IU/ml of heparine (Leo 

Pharmaceutical Products Ltd., Weesp, The Netherlands). After centrifugation (10 min at 

100 g, followed by 5 min at 700 g) at 4°C with the brake disengaged, white cells in 

the buffy coat were collected and layered on 1.5 volumes of Lymphoprep (density = 

1.077 g/cm3 , Nycomed Pharma, Oslo, Norway). Following subsequent centrifugation 

at 800 g for 25 min at 4°C, the leucocyte layer at the interface was collected, washed 

three times with cRPMI and the final suspension was adjusted to 107 cells/ml. 

Head kidney and spleen tissue was dissected and cell suspensions were prepared by 

passing the tissue through a 50 urn nylon mesh. Cell suspensions were washed once 

before layering on a discontinuous Percoll gradient (1.020 and 1.080 g/cm3) . 

Following centrifugation (800 g, 25 min), cells at the interface were collected and 

washed twice as above. 

All cell suspensions were plated in 24-well culture plates at a density of 107 

cells/well and left to adhere for 1 h at 27°C and 5% C0 2 , to remove neutrophilic 

granulocytes and monocytes/macrophages. Non-adherent cells were subsequently 

harvested by carefully pipetting off and suspended at a density of 107 cells/ml. 

Leucocyte culture conditions 

Cells were seeded in 96-well plates (106 cells/well) and cultured overnight in 

cRPMI containing 100,000 IU/l penicillin-G (Sigma, USA), 50 mg/ l streptomycin 

sulphate (Serva, Germany) and 2.0 mM L-glutamine. Cells received no stimulus, or 

were stimulated with lipopolysaccharide (LPS 100 ng/ml; E. coli: B5 LPS, Difco, 
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Detroit, MI, USA) for 4 h at 27°C and 5% C0 2 , followed by the addition of 0.5% 

pooled carp serum (PCS, pooled serum from 20 adult carp, containing 45 ng/ml 

Cortisol, as determined by radioimmunoassay). Cortisol (36 ng/ml or 10-7 M) was 

added and cultures were maintained for 24 h and 48 h at 27°C and 5% C02 . This 

Cortisol concentration corresponds to half maximal free plasma Cortisol concentrations 

in mildly stressed fish and induces substantial apoptosis in active PBL in vitro (Weyts et 

al., 1997). 

Measurement of leucocyte surface Ig-expression 

Leucocytes (1.25 x 106 cells/ml) were incubated for 30 min at 4°C with a 

monoclonal antibody (mAb) against carp Ig H chain, WCI 12, (Secombes et al., 1983; 

Rombout et al., 1990) with 1% BSA and 0.01% sodium azide. Cells were washed and 

centrifuged for 7 min at 680 g at 4°C. They were resuspended in cRPMI, and 

incubated with fluorescein-isothiocyanate (FITC)-conjugated or rhodamine-

phycoerythrin (RPE)-conjugated rabbit-anti-mouse IgG (RAM-Ig) antibody (1:100; 

Dako A/S, Glostrup, Denmark) for 20 min at 4°C. After washing, 10* cells were 

analysed with a FACStar flow cytometer (Becton Dickonson, Mountain View, CA, USA) 

tuned at 488 nm using the DataMATE software (applied cytometry systems). Within 

the lymphocyte gate (Koumans-van Diepen et al., 1994), the percentage of cells stained 

with the antibodies was determined. 

Changes in intracellular calcium levels after Ig-crosslinking in Fluo3-AM-loaded 

lymphocytes 

Measurement of changes in intracellular calcium was performed as established 

earlier (Verburg-van Kemenade et al., 1998). Lymphocytes were loaded with 

fluorescent Ca indicator at a cell density of 107/ml, at room temperature in the dark. 

Fluo3-AM, 4 uM (Sigma, USA) was added from a 1 mM stock solution in dry 

dimethylsulfoxide (DMSO). To improve the uptake-efficiency 6 ul/ml of Pluronic F-

127 (Sigma, USA, 3% w /v in cRPMI) was added. After 40 min, the loading solution 

was diluted 1:10 with cRPMI, and after incubation for another 10 min, the cells were 

collected by centrifugation for 7 min at 700 g. The pellet was resuspended to obtain 

1.25 x 106 cells/ml in cRPMI. Cells were then incubated at 26°C before and during 

Ca2+j analysis. 

Fluo-3 emission fluorescence in the cells was recorded with the flow cytometer at 

530 ± 30 nm. Baseline fluorescence was established at 5-min intervals (experimental 

samples were measured in parallel at 30 s intervals). After cross-linking of slg by 
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addition of WCI 12 and RAM-Ig (Dako A/S, Denmark) the fluorescence intensity was 

reassessed within 10 s time spans and every S min thereafter. 

Measurement of lymphocyte proliferation 

Cultured cells were labelled with 185 KBq/ml, 3H-methyl thymidine (Amersham, 

UK) for 16 h. The content of each well was harvested with a squatron semi-automatic 

cell harvester (Lier, Norway). The filters with retained cells were dried for 1 h at 50°C 

and were counted in a Beckman LS 1701 scintillation counter using Beckman Ready 

Safe Scintillation Fluid. Measurements per fish were done in triplicate. 

Apoptosis measurements 

Following WCI 12 labelling as described above, cells were washed in cRPMI 

supplemented with 1% BSA and 0.01% sodium azide. They were labelled with annexin 

V, conjugated to FITC (Boehringer, Mannheim, Germany), as described by the 

manufacturer. Annexin V has been shown to detect apoptosis in carp lymphocytes 

(Weyts et al., 1998b). Green and red fluorescence intensities of cells within the 

lymphocyte gate were measured in the FACStar flow cytometer. In a parallel sample, 

propidium iodide (PI) exclusion was used to distinguish necrotic cells, which also 

expose phosphatidyl-serine, from apoptotic cells. Measurements per fish were 

performed in duplicate. 

Statistics 

Each tissue sample was collected from a different fish to ensure the independence 

of the data. The difference between cells from the 3 populations was evaluated using 

one factor analysis of variance (ANOVA) and revealed a statistical difference between 

these with regard to proliferation (t = 1, NS, P = 0) and basal apoptosis was not 

identical (t = 0, NS, P = 0.09). Therefore the effects of Cortisol were evaluated 

comparing sensitivity of the leucocytes expressed as the percentage of the control. 

Differences in sensitivity among groups were assessed in 3 factor ANOVA with organ 

(3 levels - PBL, head kidney and spleen), stimulation (2 levels - NS and LPS) and time 

(2 levels - day 1 and 2) as factors, all orthogonal and fixed. If ANOVA was significant 

Student-Neuman-Keuls test was used to determine which means were significantly 

different. Prior to the ANOVA, Cochran's test was used to test for homogeneity of the 

variances. The results were considered to be statistically significant if P < 0.05. 
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RESULTS 

B lymphocyte characteristics in leucocyte suspensions of head kidney, spleen and 

blood 

The percentages of B lymphocytes in the cell suspensions of non-adherent cells 

from head kidney, spleen and blood amounted 32% (± 3.5), 27% (± 3.1) and 49% (± 

1.7) respectively. 

Basal in vitro proliferation capacity and sensitivity to LPS stimulation is given in Fig. 

1. Highest basal proliferation was found in cells of head kidney and spleen, whereas 

peripheral blood lymphocytes showed low proliferation. After 1 day of LPS stimulation, 

proliferation was increased significantly in head kidney and PBL. The highest absolute 

proliferation was again found in head kidney, with intermediate levels in spleen and 

PBL (Fig. 1A). After 2 days of cell culture the LPS-induced increase in proliferation of 

PBL and head kidney cells was no longer significant. 

The B lymphocytes in PBL suspensions reacted to slg-crosslinking with the highest 

elevation of intracellular calcium levels as compared to head kidney and spleen cell 

suspensions (Fig. IB). To avoid differences in reaction due to differences in B 

lymphocyte numbers, suspensions with a maximum of 5% difference in B lymphocyte 

percentages were selected. 

Basal apoptosis values directly after cell isolation were lowest in PBL (9.7% ± 2.2). 

After culture for 24 or 48 h, apoptosis levels increased and were highest in PBL. Head 

kidney B lymphocytes showed the lowest level of apoptosis after culture. After LPS 

(100 ug/ml) treatment for 24 and 48 h, levels of apoptosis significantly decreased. 

Decreases were most prominent in PBL and head kidney after 24 h of culture (Fig. 

1C). 

Effect of Cortisol on B lymphocyte proliferation in vitro 

Cortisol ( 1 0 7 M) decreased the in vitro proliferation capacity of all cell populations 

(Fig. 2). After 1 day the effect on head kidney cells was small, reaching 30% reduction 

after 2 days of culture. Spleen cells were more affected, showing a 50% decrease of 

proliferation after 1 day and 80% after 2 days of culture. Peripheral blood leucocytes, 

which had a very low basic proliferation capacity in vitro, showed a decrease of 92% 

after 1 day (and 75% after 2 days) of culture. 

Combined Cortisol and LPS treatment increased absolute proliferation in vitro, but 

resulted in a relatively higher cortisol-induced reduction of proliferation as compared 

to non-stimulated cells. Again head kidney cells showed only limited sensitivity 

(maximum 38%). 
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Fig. 1. (A) 3H Thymidine incorporation in vitro of non-adherent leucocytes from peripheral blood 

(black), head kidney (white) and spleen (gray) in the absence (NS) and presence of 100 Hg/ml 

lipopolysaccharide (LPS) after 24 and 48 h in culture. Bars represent the means of 3 fish ± SE. (B) 

Increase in average Fluo3 fluorescence (530 nm) measured at 6-min time intervals in non-adherent 

leucocytes of PBL (solid line), head kidney (dots) and spleen (broken line) after Ig-crosslinking with 

WCI 12-RAM. WCI 12-RAM was added 10 s before measurement at 6 min. (C) Percentage of 

apoptotic WCI 12+ cells in non-adherent leucocyte populations from PBL (black), head kidney (white) 

and spleen (gray) as measured by annexin V-labelling in the absence and in the presence of 100 

Ltg/ml LPS, measured initially (t = 0) and after 24 and 48 h in culture. Bars represent the means of 9-

10 fish ±SE. 
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NSday! LPS day 1 NSday2 LPS day 2 

Fig. 2. Relative decrease of in vitro proliferation (3H-thymidine incorporation) after 1 and 2 days of 

culture in the presence of 107 M Cortisol in non-adherent leucocytes of peripheral blood (black), head 

kidney (white) and spleen (gray). NS are the cultures of non-stimulated cells, LPS represent the cell 

cultures stimulated with 100 ug/ml LPS. Bars represent the means of 3 fish ± SE. Cortisol inhibited 

proliferation in all organs (P < 0.01) and all organs differed in their sensitivity to Cortisol (P < 0.01) 

at both times regardless if NS or LPS. NS and LPS were significandy different (P < 0.01), time 

significandy affected proliferation (P = 0). 

Effect of Cortisol on in vitro apoptosis 

Non-stimulated leucocyte fractions of PBL were least sensitive to Cortisol treatment 

with respect to induction of apoptosis (Fig. 3). Levels amounted to an average of 5% 

and 9% above control level after 1 or 2 days of culture. Stimulation with LPS, 

however, brought about sensitivity to Cortisol treatment. In this condition the level of 

apoptosis increased with an average 58% after 1 day of culture (and 19% after 2 days 

of culture) (Fig. 3). 

Whether tested in non-stimulated or LPS-stimulated conditions, head kidney 

leucocytes showed similar sensitivity to Cortisol. Apoptosis levels in non-stimulated cells 

were 23% and 49% above control levels after 1 and 2 days of culture respectively. In 

LPS-stimulated conditions average apoptosis levels of 29% and 47% above control 

values were registered after 1 and 2 days in culture. 

Spleen cells showed sensitivity to cortisol-induced apoptosis after 2 days but not 

after 1 day of culture. Apoptosis reached 23% above control level. After LPS treatment 
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both the 1 day and the 2 days cell culture had undergone extra cortisol-induced 

apoptosis of 15% and 29%, respectively. 

180 

100 
NS day 1 LPS day 1 NS day 2 LPS day 2 

Fig. 3. Relative increase of apoptotic (Annexin V-positive) WCI 12+ cells in non-adherent leucocyte 

populations of peripheral blood (black), head kidney (white) and spleen (gray) after 1 and 2 days in 

vitro culture in the presence 1(W M Cortisol. NS are the cultures of non-stimulated cells, LPS represent 

the cell cultures stimulated with 100 |xg/ml LPS. Bars represent the means of 9-10 fish + SE. LPS 

different from NS at P < 0.01. NS (day 1 and 2) all organs different at P < 0.01. LPS day 1: both HK 

and SPL different from PBL at P < 0.01 and from each other at P < 0.05. LPS day 2: both PBL and 

SPL different from HK at P < 0.01 and from each other at P < 0.05. 

DISCUSSION 

B lymphocyte activity in PBL, head kidney and spleen 

Most research into B lymphocyte function in fish is performed with PBL as these 

are easily obtained and consist of a relatively pure lymphocyte fraction. However, with 

respect to B lymphocyte function one should realise that cell populations from different 

origin may differ with respect to developmental stage and state of activation. Therefore 

we have studied B lymphocyte populations in head kidney, representing a 

haematopoietic organ with many developmental stages of these cells, in the secondary 

lymphoid organ, the spleen and in circulating leucocytes. The most striking difference 
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between the three cell populations is the high level of basic proliferation in head 

kidney and spleen as compared to PBL. Indeed, as may be expected from 

haematopoietic cells, they show many cell divisions due to high percentages of 

developing cells. PBL that do not spontaneously proliferate can still be stimulated to 

proliferate by LPS. With respect to Ig-crosslinking it was found that the PBL generated 

higher levels of intracellular calcium after cross-linking, indicating stronger cell 

activation. Both characteristics of PBL are consistent with their function in humoral 

defence mechanisms. 

Effects of Cortisol on activity of B lymphocytes 
In earlier studies we showed that Cortisol is involved in immune regulatory 

mechanisms of carp. B lymphocytes within the PBL are especially sensitive to Cortisol, 

which evoked strong dose-dependent decrease in the level of proliferation and a 

massive onset of apoptosis. However, these cells only became sensitive following 

stimulation, confirming previous results (Weyts et al. 1998b). During situations of 

stress, implying high levels of endogenous Cortisol, one would argue that the 

generation of an efficient humoral response would thus be severely affected. In the 

absence of immune stimuli, e.g. invading microorganisms, the circulating population 

would be relatively protected due to lower sensitivity to the corticosteroid. This is 

indicative of a function for Cortisol in removal of activated lymphocytes following an 

immune response. These lymphocytes may be potentially harmful with respect to a 

greater chance of unwanted autoimmune reactions. Conditions of stress might cause 

this process to take place too rapidly. The high relative cortisol-induced reduction of 

proliferation in the non-stimulated PBL population seems to contradict this. However, 

this may be explained by the fact that proliferation capacity of non-stimulated PBL is 

extremely low in absolute amount, and thus is most probably ascribed to a very small 

percentage of activated and thus cortisol-sensitive cells within this population. 

The impact of the stressors on immune competence cannot solely be explained by 

effects of Cortisol on circulating lymphocytes, but will of course also depend on the 

effect of Cortisol on the populations of developing B lymphocytes in the 

haematopoietic organs. With respect to proliferation capacity it may be concluded that 

in head kidney high Cortisol levels of relatively short duration (< 1 day) may have 

limited impact. However, longer Cortisol treatment may be more harmful, as a 2 day 

treatment resulted in reduction of proliferation in both stimulated and non-stimulated 

conditions of approximately 40%. However, in comparison to results obtained with 

spleen cells and PBL, head kidney B lymphocytes seem most protected. With respect to 
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apoptosis the results show that, in contrast to non-stimulated PBL, head kidney B 

lymphocytes and to a lesser extent spleen B lymphocytes are sensitive to cortisol-

induced apoptosis. This may be indicative of a role of Cortisol in B lymphocyte 

selection. It may also be assumed that this is explained by the fact that these are cells 

that have been stimulated to proliferate in vivo. Further stimulation with LPS in vitro 

hardly induced any extra effects. In mammals, immature T- and B lymphocytes are 

easily induced into apoptosis by glucocorticosteroids, consistent with the role of the 

steroids in the selection process (Lenardo, 1997; Ashwell et ol., 1996). For fish this 

issue has not yet been investigated. 

Knowledge of the magnitude and the mechanisms of stressor-induced 

immunomodulation in teleosts is important to improve culture facilities with respect to 

harmful effects of crowding, handling and transport. It is difficult to establish which 

stressor-induced effects are Cortisol mediated. Moreover, from the finding that 

physiologically low-stress concentrations of Cortisol are effective in inducing increased 

apoptosis and inhibited proliferation, it may be concluded that cortisol-induced 

immunomodulation is an integral part of immune cell development and 

immunoregulation in fish, independent of stressors. In this respect it may be relevant 

that the head kidney in fish harbors both the interrenal steroidogenic cells and the 

haematopoietic cells, possibly enabling paracrine interactions between both cell types. 

For carp we now conclude that the sensitivity of B lymphocytes to Cortisol is 

dependent on state of activation and/or development. This differential regulation in 

different immune organs may be important for physiological regulation of the total 

immune response in stress as well as non-stress circumstances. 
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Temperature stress effects on carp leucocytes 

ABSTRACT 

Stress is a potential factor causing increased susceptibility of fish to pathogens. In 

this study we investigated stress-induced immunological changes that may contribute to 

a decreased disease resistance. A 3 h drop in ambient water temperature of 9°C was 

used as a relative mild and acute stress model for carp. Effects of this stressor on the 

dynamics of leucocyte populations were determined with specific monoclonal 

antibodies. The relative number of circulating B lymphocytes decreased significantly 

within 4 h after the onset of single or multiple cold shocks. This decrease was 

reversible as B lymphocyte numbers were restored within 24 h. Most probably a 

redistribution of B lymphocytes contributed to this phenomenon. In head kidney an 

increase was measured in the relative number of B lymphocytes. Granulocyte numbers 

showed opposite reactions, the relative percentage nearly doubled in circulation and 

decreased significantly in head kidney. This demonstrates that in vivo a mild stressor 

differentially alters the distribution of leucocytes. In stressed carp the percentage of 

apoptotic lymphocytes in blood is significantly higher compared to unstressed animals. 

B lymphocytes as well as Ig" lymphoid cells contributed to this increased apoptosis. 

Labelling of blood lymphocytes with a polyclonal antiserum against the glucocorticoid 

receptor showed, besides B lymphocytes, also part of the Ig" lymphoid cell population 

to be glucocorticoid receptor positive. As the distribution of B lymphocytes was 

substantially affected, the effect of temperature stress on humoral antibody responses 

was determined. Kinetics of the primary antibody response to both, a T lymphocyte 

independent (TNP-LPS) and a T lymphocyte dependent antigen (DNP494-KLH) showed 

consistent but moderate decrease of antibody titres in stressed carp. Kinetics of an 

antibody response against the T lymphocyte independent antigen was significantly 

slower in stressed carp. 

INTRODUCTION 

Stress induced disturbances in the homeostasis of an organism affect a range of 

physiological parameters (for fish reviewed by Wendelaar Bonga, 1997). Adaptation to 

these disturbances or stressors enables the organism to survive in changing 

environments. In the long-term the effects ensued from these stressors may lead to 

impaired welfare and health of animals, which in the case of fish can cause losses in 

aquaculture production systems. The majority of the effects of stress in fish are 
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attributed to activation of the hypothalamus-pituitary-interrenal (HPI)-axis, resulting in 

Cortisol release. A correlation between susceptibility of fish to diseases and stress or 

Cortisol administration could be established by several authors (Wiik et al., 1989, 

Houghton and Matthews, 1990; Fevolden et al., 1993). 

Differential effects of stressors can be found on different immune cell types. A 

decreased number of blood lymphocytes (lymphopenia) can be observed after stress in 

mammals as well as in fish (e.g. Ellsaesser and Clem, 1986; Maule and Schreck, 1990; 

Ainsworth et al., 1991; Morgan et al., 1993: Sunyer et al., 1995). In contrast, the 

number of circulating granulocytes after stress often remains constant or may even rise 

(Ellsaesser and Clem, 1986; Ainsworth et al., 1991; Morgan et al., 1993; Narnaware and 

Baker, 1996). 

Only few studies in fish investigated the effect of stress on humoral immune 

responses and in general reported negative effects (Ellsaesser and Clem, 1986; Wechsler 

et al., 1986), while the observed effects of stress on cellular mediated immunity are 

contradictory (reviewed by Weyts et al., 1999). 

Previously we demonstrated dual effects of Cortisol in vitro on cells of the innate and 

the specific immune system of carp (Weyts et al, 1998a and 1998b). In vitro activated B 

lymphocytes undergo apoptosis in the presence of Cortisol, while Cortisol 

administration rescued neutrophilic granulocytes from apoptosis. Besides apoptosis, 

redistribution of cells between different body compartments is described as an 

important effect of acute stress and may have significant consequences for the immune 

response (Dhabhar and McEwen, 1997). 

Modulation of immune cells and humoral immune response by neuroendocrine 

factors in fish is investigated only limitedly. The objectives of this study were to 

determine leucocyte migration and/or apoptosis in common carp (Cyprinus carpio L.) in 

vivo, induced by an acute stressor. As acute stressor a sudden single or repeated drop in 

ambient water temperature was used. Primary (cortisol-induction) and secondary stress 

parameters in carp exposed to cold shocks were carefully analysed by Tanck et al. 

(2000). Within twenty minutes after the onset of the stressor, levels up to 200 ng/ml 

Cortisol were measured in plasma. In this study relative numbers of B lymphocytes and 

granulocytes were determined in several organs after temperature stress. Subsequently, 

stress-induced apoptosis was analysed ex vivo in circulating leucocytes. The blood 

lymphocyte population of unstressed carp was analysed on the presence of 

glucocorticoid receptors. Furthermore, the effect of temperature shocks on production 

of specific antibodies against T lymphocyte independent (TI) TNP-LPS and the T 

lymphocyte dependent (TD) DNP494-KLH antigens was determined. 
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MATERIALS AND METHODS 

Animals and husbandary 

Six months old isogenic carp, Cyprinus carpio L., were reared in the central fish 

facility "De Haar Vissen" (Wageningen University, Wageningen, The Netherlands). The 

fish were the genetically uniform offspring of yy male clone line E4ES and female line 

R3R8 (Bongers et al., 1997 and 1998). They were kept at 25°C in UV-treated, 

recirculating water and fed daily 1.5% of their body weight with pelleted dry food 

(Trouvit, Trouw France SA, Fontaine les Vervins, France). Prior to the experiments, the 

fish were randomly distributed over the tanks and acclimated for 2 weeks in an 

environment with a minimum of disturbance. Before immunisation or sampling, the 

fish were anaesthetised with 0.3 g/l tricaine methane sulphonate (TMS, Crescent 

Research Chemicals, Phoenix, AZ, USA) buffered with 0.6 g/ l NaHC03. 

Temperature shocks 

The experimental set-up used to expose carp to single or repeated temperature 

shocks was previously described by Tank et al. (2000). In brief, fish were stressed with 

a cold shock of 9°C amplitude. This was performed by replacing the standard water 

inlet tube (25°C) with the inlet of the cold water system (16°C). The temperature 

gradually decreased until, after 1 h, the 16°C was reached. Three hours after the onset 

of the cold shock the original temperature was restored. 

Isolation of blood sera and immunisations 

Blood samples were taken by puncture of the caudal vein. Blood was allowed to 

clot at room temperature and was stored overnight at 4°C. Serum was collected after 2 

min centrifugation (1100 g) and stored at -20°C. 

For the trinitrophenyl-lipopolysaccharide (TNP-LPS) immunisations, 5 ug TNP-LPS 

(12 ug TNP/mg LPS, E. coli serotype 0111 :B4; Sigma chemicals, St. Louis, MO, USA) 

in 25 pi phosphate buffered saline (PBS; 140 mM NaCl, 9 mM Na2HPCy2H20, 1.9 

mM NaH2PCyH20; pH 7.2-7.4) mixed 1:1 (v/v) with 25 ul Freund's Incomplete 

Adjuvant (FLA; Difco, Detroit, MI, USA) was injected intramuscularly per fish. 

For dinitrophenyl — keyhole limpet hemocyanin (DNP494-KLH) immunisations, 10 ug 

DNP494-KLH (Calbiochem, La Jolla, USA) was used, disolved in PBS and mixed 1:1 

(v/v) with FIA in a total volume of 50 ul per fish. Control fish were injected with PBS 

mixed 1:1 (v/v) with FIA (total volume of 50 ul). 

53 



Chapter 3 ) 

Isolation of leucocytes 

Leucocytes from organs and peripheral blood were isolated from carp as described 

earlier (Chapter 2). In brief, peripheral blood leucocytes (PBL) were obtained by 

bleeding the carp with a syringe filled with 0.5 ml of carp RPMI (cRPMI, RPMI 1640 

adjusted to carp osmolarity of 270 mOsmol/kg by addition of 10% aqua dest) and 10 

IU/ml heparin (LEO Pharmaceutical products BV, Weesp, The Netherlands). Cells were 

washed twice with cRPMI and isolated with Lymphoprep (Nycomed, Oslo, Norway, 

density 1.077 g/cm3) or Percoll gradient (Pharmacia AB, Uppsala, Sweden; densities 

1.020 g/cm3 and 1.080 g/cm3) by centrifugation for 30 min at 800 g. Subsequently 

the isolated cells were washed twice with cRPMI to remove the remains of 

Lymphoprep or Percoll. Cells were counted and viability was determined by trypan 

blue exclusion. 

For isolating cells from the organs head kidney, spleen and gills, the tissue was 

gently pushed through a nylon gauze (100 urn) and the cells were suspended in 

cRPMI. The isolated cells were washed twice with cRPMI before separation on a 

discontinuous Percoll gradient (Pharmacia AB; densities 1.020 g/cm3 and 1.080 

g/cm3) by centrifugation for 30 min at 800 q. The cells were washed twice with 

cRPMI and viability was determined by trypan blue exclusion. 

Labelling of cell populations and flow cytometric analysis 

Prior to use, FACS-tubes (Falcon, Becton Dickinson, New Jersey, USA) were coated 

with Sigmacote (Sigma chemicals). Per tube 2 X 10s cells were labelled with one of 

the following monoclonal antibodies: (1) WCI 12, specific for carp IgM H chain, 

recognising B lymphocytes (Koumans-van Diepen et al., 1995; Secombes et al., 1983), 

(2) WCL 6, specific for thrombocytes (Rombout et al., 1996) or (3) TCL-BE8, a 

marker for carp granulocytes (Nakayasu et al., 1998). Originally the TCL-BE8 

monoclonal antibody was described as marker for carp neutrophilic granulocytes and 

monocytes (Nakayasu et al., 1998). In our own unpublished studies we detected also a 

slight reaction of TCL-BE8 with basophilic granulocytes. Therefore TCL-BE8 may be 

considered as a myeloid marker, reacting with granulocytes and to a lower extend with 

monocytes. However, with the used Percoll gradient in this study the number of 

isolated basophilic granulocytes will be limited. 

Cells were incubated for 3 0 min at 4°C with the monoclonal antibodies WCI 12, 

WCL 6 or TCL-BE8 at a 1:100 dilution. The cells were washed twice with cRPMI 

containing 1% BSA and 0.01% NaN3 and subsequendy incubated for 30 min at 4°C 

with 1:100 diluted rhodamine-phycoerythrin (RPE)-conjugated goat-anti-mouse or 
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rabbit-anti-mouse (F(Ab')2 fragment; Dako A/S, Glostrup, Denmark). After washing, 

measurements were performed on a FACStar flow cytometer (Becton Dickinson 

Immunocytometry Systems, Mountain View, CA, USA) equipped with a S W argon 

laser, tuned at 488 nm. 

Flowcytometric detection of apoptotic cells 

For apoptosis measurements, cells were resuspended in FACS-tubes (Falcon) in SO 

ul Calcium-buffer (140 mM NaCl, 5 mM CaCl2, 10 mM HEPES) with l / 4 ul annexin 

V-fluorescein-isothiocyanate (FITC; Boehringer, Mannheim, Germany). After 15 min 

incubation on ice 200 ul Calcium-buffer was added to the cell suspension. Prior to 

measurement on the FACS Propidium Iodide (PI; 1 mg/l) was added to the samples to 

be able to exclude necrotic cells from the measurement. Measurements were performed 

on a FACStar flow cytometer (Becton Dickinson) as described above. 

Magnetic cell sorting of PBL 

PBL were isolated as described above. In order to remove the adhering cells 

(monocytes, granulocytes) from the population, cells were seeded in 24-well plates at 

107 cells per ml and incubated for 1 h at 27°C and 5% C02 . Non-adhering cells were 

collected, labelled with d-biotin-n-hydroxysuccinimide ester (biotin; Boehringer 

Mannheim, Mannheim, Germany) conjugated WCI 12 (1:100 in cRPMI; Koumans-van 

Diepen et al., 1995) and incubated for 20 min at 4°C. The cells were washed twice 

with cRPMI and labelled 1:25 with streptavidine-FITC in PBS (Dako A/S; 15 min at 

4°C). Subsequently, after washing twice with PBS containing 1% BSA and 0.01% NaN3, 

the cells were resuspended in 500 ul PBS. Anti-FITC magnetic beads (Biotin 

MicroBeads; Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) were added and 

incubated 10 min at 4°C. After washing the MAgnetic Cell Sorting column (MACS; 

Miltenyi Biotec) three times with PBS the cell suspension was loaded onto the column. 

The WCI 12-negative fraction was collected by rinsing the column with 3 volumes 

PBS. Subsequently, the column was removed from the magnet to elute the WCI 12-

positive fraction with 3 volumes PBS. 

Labelling of PBL with anti-glucocorticoid receptor polyclonal antibody 

MACS separated cells were fixed with 4% paraformaldehyde (PFA) in PBS for 20 

min and washed once with PBS. They were permeabilised by 2 min incubation with 

0.1 % Triton X-100 + 0.01% sodium citrate and washed twice with PBS. The cell 

suspension was diluted to 4 X 106 cells per ml and transferred to FACS tubes (Falcon). 
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Subsequently, the cells were incubated with rabbit polyclonal antiserum against the 

rainbow trout glucocorticoid receptor (GR; Tujague et al., 1998) and cross-reactive 

with carp GR (diluted 1:1000 in PBS for 30 min at 4°C). After washing twice with 

PBS the cells were incubated with goat-anti-rabbit (GAR)-RPE 1:50 in PBS for 30 min 

at 4°C, followed by two washing cycles with PBS. Samples were analysed on a FACStar 

flow cytometer (Becton Dickinson) as described above. 

Enzyme Linked Immunosorbent Assay 

An Enzyme Linked Immunosorbent Assay (ELISA) was used to detect antibodies 

against TNP-LPS and DNP494-KLH. Unless stated otherwise incubations took place for 

1.5 h at 37 °C in a moisture box. In between incubation steps plates were rinsed twice 

for 15 s with tap water plus 0.05% Tween 20 (Merck, Schuchardt, Germany). For 

detection of anti-TNP-LPS or anti-DNP antibodies, flat bottom 96-wells plates (Greiner 

Labortechnik GmbH, Frickenhausen, Germany) were coated overnight with 1 ug/ml 

TNP-LPS (Sigma chemicals) or 0.1 ug/ml DNP44-bovine serum albumin (BSA; 

Calbiochem) respectively, both in 100 ul coating buffer per well (15 mM Na2C03 , 35 

mM NaHCOs; pH 9.6). To prevent non-specific binding, plates were incubated with 

200 ul PBST (PBS with 0.05% Tween 20) plus 1% milk powder (Elk, Campina BV, 

Eindhoven, The Netherlands). Serum samples were pre-diluted 1:20 (TNP-LPS 

immunised fish) or 1:100 (DNP494-KLH immunised fish) in PBST. A 2log serial 

dilution of the samples was made in 100 ul of PBST and incubated. Each plate 

contained a serial dilution of a standard immune serum to correct for plate differences. 

Next, the plates were incubated with WCI 12, a mouse-anti-carp IgM monoclonal 

antibody (Secombes et al., 1983) 1:100 (TNP-LPS immunised fish) or 1:200 (DNP494-

KLH immunised fish) in PBST. Subsequently, the plates were incubated with goat-anti-

mouse IgG (H + L) conjugated with horseradish peroxidase (GAM-HRP, BioRad, 

Richmond, CA, USA) 1:2000 in PBST. As substrate for product detection, 0.04% (w/v) 

orthophenylenediamine dichloride (OPD; Sigma chemicals) in 100 ul substrate buffer 

(0.1 M citric acid, 0.2 M Na 2 HP0 4 H 2 0 ; pH 5.0) with 0.04% (v/v) H 2 0 2 was added 

to all wells and plates were incubated at room temperature in the dark. After 30 min 

50 ul 2.5 M H2S04 was added and the optical density was read at 492 nm with a 

reference at 690 nm (Anthos Reader 2001, Anthos Labtec Instruments GmbH, 

Salzburg, Austria). 

Statistical analysis 

Data were analysed for normality distribution with the Shapiro-Wilk W test. 
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Analysis of variance (ANOVA) was used for evaluating statistical significance of 

differences between control and stressed groups. The Tukey-test was used to find the 

least significant difference. P-values < 0.05 were regarded as significant. 

RESULTS 

Effects of temperature stress on leucocyte distribution 

Two groups of 8 carp were subjected to 3 h temperature shocks on 6 repetitive 

days, while two other groups were sham treated. One of the control and one of the 

stressed groups was immunised with DNP494-KLH prior to the cold shock at day 1 to 

determine the effects of immune-activation on leucocyte distribution. One hour after 

the last temperature shock, the relative percentage of WCI 12-positive (WCI 12+) and 

WCL 6-positive (WCL 6+) cells in the lymphocyte gate was determined in 

Lymphoprep isolated peripheral blood leucocytes (PBL) and Percoll isolated head 

kidney and spleen leucocytes (Fig. 1A). 

In PBL of stressed carp the relative percentage WCI 12+ cells (B lymphocytes) 

decreased significantly (P < 0.001) from 42.8% ± 4.5 to 32.3% ± 5.2. This decrease 

was strongest in the immunised stressed group. No differences were found between 

non-immunised and DNP494-KLH immunised control animals. The relative percentage 

WCI 12+ cells in DNP494-KLH immunised stressed carp was lower than in non-

immunised stressed carp (32.3% ± 5.2 versus 24.8% + 4.4) but this difference was not 

significant. In head kidney cell suspensions the relative number of WCI 12+ cells was 

significandy (P < 0.001) increased in non-immunised, shocked animals (38.9% ± 3.3) 

compared to the control carp (34.0% ± 3.4). Significant differences were not found 

between the immunised non-stressed control and stressed animals. For spleen cell 

suspensions the results were comparable with those observed in blood: stressed carp 

had significandy (P = 0.001) lower numbers of WCI 12+ cells compared to non-

immunised and immunised control fish. 

Opposite effects were observed for the relative numbers of WCL 6+ cells, the 

thrombocytes (Fig. IB). The percentage of WCL 6+ cells increased significantly (P < 

0.001) from 17.1% ± 7.8 to 29.4% ± 6.9 in PBL of stressed carp and even more in 

immunised stressed carp (48.2% ± 4.9). In head kidney cell suspensions WCL 6+ cells 

were hardly present (< 2%) and in spleen cell suspensions significant differences 

between groups were not found. 
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PBL Head Kidney Spleen 

Fig. 1. Average percentage (8 carp per group) of (A) WCI 12-positive and (B) WCL 6-positive cells in 

PBL, head kidney and spleen 1 h after the last of 6 temperature shocks: non-immunised control 

(black), non-immunised stressed (white), DNP494-KLH immunised control (dark grey) and DNP494-

KLH immunised stressed group (light grey). In the analysis a gate selecting the lymphocytes in the 

forward-sideward scatter plot was used. Standard deviations are shown and significant differences from 

the non-immunised control (** P < 0.01) are indicated. 
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In order to determine whether a single temperature shock is enough to induce a 

shift in B lymphocytes, carp were exposed to a 3 h temperature shock and PBL were 

isolated at 1, 2, 4, 7, and 24 h after the start of the stressor. This also demonstrates 

the kinetics of the change in relative percentage WCI 12+ cells induced by the stressor 

(Fig. 2A). Four hours after onset of the stressor, the relative percentage WCI 12+ cells 

were significantly decreased to 65.0% of control levels (P < 0.001). At 7 and 24 h 

significant differences were no longer observed and the percentage WCI 12+ cells 

returned to control level. 

Modulation of the B lymphocyte population was compared with the changes in the 

granulocyte population after a single 3 h cold shock (Fig. 2B and C). One hour after 

the temperature shock, leucocytes from PBL, head kidney, spleen and gills were 

isolated. To include granulocytes, Percoll density centrifugation was also used for 

separation of the PBL. Subsequently, isolated cells were labelled with monoclonal 

antibodies WCI 12 and TCL-BE8. Similar to multiple stressed animals, at 4 h after the 

onset of a single temperature shock the percentage of WCI 12+ cells significantly 

decreased in PBL from 40.0% ± 4.5 to 29.6% ± 3.4 (P < 0.001; Fig. 2B). In head 

kidney cell suspensions the relative population increased from 12.3% ±3 . 7 to 16.1% ± 

1.1 (P = 0.036). Significant changes were not observed in cell suspensions from spleen 

and gills. The average percentage of TCL-BE8-positive (TCL-BE8"1") cells nearly doubled 

in PBL (from 5.9% ± 0.6 to 10.2% ± 4.2, P = 0.020) and also significantly increased 

in gill cell suspensions (P = 0.016; Fig. 2C). In contrast, the percentage TCL-BE8+ cells 

decreased significantly in head kidney cell suspensions (P = 0.035) from 48.2% ± 4.4 

in the control group to 39.8% ± 9.0 in stressed carp. 

Effects of temperature shocks on apoptosis of blood lymphocytes 
To determine the role of apoptosis in stress-induced changes in leucocyte 

composition, PBL-derived lymphocytes from control carp and carp exposed to a single 

cold shock were labelled with WCI 12 and annexin V (8 fish per group). In freshly 

isolated PBL the total percentage of annexin V-positive cells was significantly higher in 

stressed carp (8.0% ± 3.5) compared to control fish (4.4% ± 1.7; P = 0.029; Fig. 3). 

In the WCI 12+ cell population the relative percentage apoptotic cells increased from 

3.2% ± 0.9 till 5.7% ± 3.6 in stressed carp (not significant, P = 0.095). Apoptisis in 

the WCI 12" lymphocyte population increased significantly from 5.2% ± 2.2 to 9.0% ± 

3.7 (P = 0.040). On average 17% of the total number of annexin V-positive cells 

appeared necrotic, as was determined by annexin V - PI double labelling (not shown). 

After 1 or 2 days culture significant differences were not found in the percentage of 
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Fig. 2. (A) Kinetics of the percentage of WCI 12-positive cells relative to the controls following a 

single temperature shock. Time in hours after onset of stressor. Relative percentage (B) WCI 12-

positive and (C) TCL-BE8-positive cells after single temperature shock in PBL, head kidney, spleen and 

gills. Control (black) and stressed carp 4 h after onset of single temperature shock (white); 8 fish per 

group. In the data analysis the total ungated population in the forward-sideward scatter was used. 

Standard deviations are shown and significance (* P < 0.05; ** P < 0.01) compared with the 

unstressed group is indicated. 
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Fig. 3. Dotplot of WCI 12 and annexin V double-stained PBL from a representative control and 

temperature stressed carp. A gate selecting the lymphocyte population in the forward-sideward scatter 

plot was used. PBL isolated 4 h after onset of single cold shock. 

apoptotic (annexin V-positive) cells between stressed and non-stressed fish (not 

shown). 

Glucocorticoid receptor expression in PBL 

Prior to GR detection in MACS isolated lymphocytes, reactivity of the GR polyclonal 

antiserum was tested with western blot analysis on carp PBL cell lysate. A clear band 

with a molecular weight of approximately 92 kDa was detected, which is 

corresponding to the expected size of carp GR (data not shown). 

After separation of WCI 12+ from WCI 12" cells in PBL and exclusion of adhering 

cells, GR expression was determined in the cells from the separate fractions. In the 

WCI 12" fraction three cell populations could be distinguished with regard to GR 

expression (Fig. 4). Part of the WCI 12" cells were GR-negative and two GR-positive 

peaks could be detected. Non-immune serum controls suggest the GR-positive peak 

with lowest fluorescence intensity to be, at least partly, false positive. Possibly a result 

of a hindered washing out of the excess of the intercellular label. In the WCI 12+ cell 

fraction a single GR-positive peak of high intensity was observed. 

Anti-TNP-LPS antibody response after temperature stress 

Carp (with 8 fish per group; in duplo) were immunised with TNP-LPS and received 

5 repetitive temperature shocks at days 3 to 7 post-immunisation (p.i.). Control groups 

were immunised but did not receive temperature shocks. Blood was collected at days 
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Fig. 4. Histogram plot of anti-glucocorticoid receptor labelled PBL after removal of adherend cells and 

MACS separation of WCI 12-negative (WCI 12") and WCI 12-positive (WCI 12+) cells. In the WCI 

12" fraction 3 populations can be distinguished and in the WCI 12+ fraction a single population. 

Representative results of two experiments. 

0, 10, 14, 19 and 24 after injection and the serum was analysed for anti-TNP-LPS 

antibodies with an ELISA. For each sample the serial dilution was checked for 

continuity. Kinetics of the antibody responses to TNP-LPS after repetitive temperature 

shocks are presented in Fig. 5A as mean optical density at a fixed dilution of 1:640, 

which appeared to be a representative dilution. At day 10 the first antibody titres were 

detected in serum and at day 19 and 24 the antibody response was at its maximum. 

From day 14 p.i. onward decreased antibody titres were detected in the animals 

subjected to temperature shocks. On day 14 p.i. the antibody titres in the stressed and 

non-stressed group differed significandy (P = 0.017). The data presented in Fig. 5A are 

representative for 3 reproducible experiments. Stressing at days —2 to 2 after 

immunisation (data not shown), did not differ the results as shown for stressing at 

days 3 to 7 after immunisation. 

The anti-TNP-LPS antibody response was determined with an ELISA using TNP-LPS 

as catching antigen. Low antibody titres were detected when solely LPS (E. coli serotype 

0111 :B4) was used as catching moiety. A correlation could not be found between the 

weight of the individual fish and the optical density of the antibody response, neither 

could any correlation be found between the time of sampling after anesthesia and the 

optical density (not shown). 

0 



Temperature stress effects on carp leucocytes 

A. 

o 

g 

Q 
O 

15 20 25 30 

time after immunisation (days) 

B. 

o o 

c o 

-t-» 

Q 
O 

2.0 n 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 • 

0"> 

0 20 25 30 

time after immunisation (days) 

Fig. 5. (A) Kinetics of the anti-TNP-LPS response in non-stressed carp (dots) and carp stressed at days 

3-7 post-immunisation (squares). The average optical density (OD) of 8 carp per group (from in 

duplo tanks) is shown at a fixed serum dilution of 1:640. (B) Kinetics of the serum anti-DNP 

antibody titre of carp immunised with DNP494-KLH and stressed on days 3-7 post-immunisation. The 

average optical density (OD) of carp from in duplo tanks is presented at a serum dilution of 1:6400. 

Horizontal bars represent days with temperature shocks. Standard deviations are shown; significant 

difference (* P < 0.05) is indicated with an asterisk. 
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Anti-DNP494-KLH antibody response after temperature stress 
Six groups of fish in duplicate (8 fish per group) were immunised with DNP494-

KLH and were shocked at 5 repetitive days, from day 3 to 7 p.i.. A control group was 

immunised without receiving temperature shocks. Blood was collected at days 0, 9, 14, 

19, 23 and 28 p.i.. Subsequently, serum was analysed with an ELISA for anti-DNP 

antibodies. Results are presented as mean optical density per group at a representative 

fixed dilution of 1:6400 (Fig. 5B). The DNP494-KLH responses presented in Fig. 5A are 

representative for 3 reproducible experiments. The first specific antibodies were 

detected in the serum at day 19, the highest titre in the measurement was detected at 

day 28. Temperature shocks on consecutive days after immunisation could not lead to 

significant changes in the immune response compared to control animals. Changing the 

timing of the stressor in relation to the immunisation, by stressing at days —2 to 2 

after immunisation, did not differ the results as shown for stressing at days 3 to 7 

after immunisation (data not shown). 

DISCUSSION 

A drop in ambient water temperature was used as a model for acute stress in carp. 

In a previous study, Tank et al. (2000) validated this rapid three-hour change in 

ambient water temperature (within physiological range) as an acute and relatively mild 

stressor in carp. During a temperature shock with an amplitude of 9°C, as applied in 

this study, Cortisol levels rose up to 200 ng/ml in plasma (Tank et al., 2000), with 

peak levels of plasma Cortisol at 20 minutes after the onset of the stressor. Three hours 

after restoration of the original temperature, plasma Cortisol concentrations were 

restored to base-line levels ( ± 2 0 ng/ml) . 

Decrease of the B lymphocyte fraction (WCI 12-positive cells) in PBL after exposure 

to single or multiple cold shocks is considered to reflect a decrease in absolute 

numbers of B-lymphocytes. This is concluded from the fact that B lymphocytes 

together with thrombocytes, make up the majority in PBL. Indeed, the thrombocyte 

fraction (WCL 6-positive cells), which was earlier demonstrated to be non-responsive 

to Cortisol (Weyts et al., 1998a; Weyts et al., 1998c), rose concomitantly to the 

decrease of B lymphocytes. After immunisation the effect of stressful circumstances on 

B lymphocyte populations was even more prominent, which might indicate increased 

vulnerability due to stress in infected animals. 
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A decrease in circulating (B) lymphocytes is also described for other stressors in 

mammals (McEwen et al., 1997; Dhabhar et dl., 1996) and fishes. Transport stress in 

channel catfish (Ictalurus punctata; Ellsaesser and Clem, 1986; Ainsworth et al., 1991), 

30-60 s air-exposure of juvenile Coho salmon (Oncorhynchus kisutch; Maule and Schreck, 

1990) and confinement of brown trout (Salmo trutta L.; Morgan et al., 1993) all resulted 

in diminution of circulating B lymphocytes. This again confirms again lymphopenia to 

be one of the classical stress-induced phenomenons that occur during stressful 

conditions of different nature or intensity. 

Two mechanisms can be postulated to contribute to a decrease in circulating B 

lymphocytes after stress: apoptosis and redistribution of cells. As in mammals, 

apoptotic cells in vivo will be rapidly taken-up by macrophages (Fadok and Chimini, 

2001; Henson et al., 2001), leaving only a small percentage of the lymphocytes to be 

found apoptotic ex vivo. Nevertheless, the relative percentage apoptotic cells ex vivo nearly 

doubled after cold shocks. While Ig~ lymphocytes contributed significandy to the 

increased apoptosis, also apoptosis of B lymphocytes was increased. Previously, it was 

demonstrated that in vitro, Cortisol especially induced apoptosis in LPS-activated blood B 

lymphocytes of carp (Weyts et al., 1998a; Chapter 2). This suggests that of the 

circulating B lymphocytes in vivo, the activated part of the population is preferentially 

affected by stress. It is difficult to conclude whether the initial reduction of circulating 

B lymphocyte numbers, during the first hours after the onset of an acute stress, is 

resulting from a fast induction of apoptosis or is mainly caused by redistribution of 

leucocytes. Restoration of the circulating B lymphocyte population within 24 hours 

after termination of the stressor implies occurrence of B lymphocyte redistribution 

between body compartments during/after acute stress. 

Possible targets for redistribution of B lymphocytes from PBL are the head kidney, 

mucosal organs (gut, gills, skin) and connective tissue. The stress-induced relative 

increase of B lymphocytes in head kidney tissue would be indicative of this, but 

cannot be considered conclusive as part of this rise may be resulting from the large 

relative decrease of neutrophilic granulocytes. There are no indications in the present 

study that the spleen would function as target for migrating blood B lymphocytes. B 

lymphocyte numbers decrease in spleen cell suspensions after multiple temperature 

shocks, and after a single cold shock no significant changes were found. Also no 

significant changes in relative B lymphocyte numbers were found in cell suspensions 

from gill tissue. As with other peripheral tissues (e.g. gut, skin or connective tissue) an 

influx of B lymphocytes could be concealed, as the volume of these organs is such that 
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an increase in cell numbers could be hard to detect. 

Relative numbers of TCL-BE8-positive cells (mainly granulocytes) nearly doubled in 

blood and showed an important decrease in head kidney and gills after temperature 

shocks. This observation suggests that during acute stress head kidney granulocytes 

enter the circulation, resulting in an increased PBL granulocyte population. Moreover, 

results of previous in vitro studies in which head kidney neutrophilic granulocytes could 

be rescued from apoptosis by Cortisol indicate their enduring viability during stress 

(Weyts et al., 1998b). Induction of enhanced IL-1 (3 in response to LPS stimulus in the 

presence of Cortisol (Chapter 5) and no loss of in vitro respiratory burst activity with 

Cortisol also support this theory (Weyts et al., 1998b). As postulated by Dhabhar and 

McEwen (1997) for acute stress in mammals, the redistribution of leucocytes may 

enhance immune function in the compartments to which the leucocytes have migrated. 

In general, a similar redistribution of leucocytes is observed in other fish species 

and with other stressors. For example, after handling stress or Cortisol feeding of 

juvenile Coho salmon (Oncorhynchus kisutch) a decrease in total leucocyte numbers from 

blood and spleen was described, together with a significant increase of leucocyte 

numbers in the anterior kidney (Maule and Schreck, 1990). Ellsaesser and Clem 

(1986) showed reduction of B and T lymphocytes and increase of neutrophilic 

granulocytes in circulation in channel catfish (Ictalurus punctatus). As opposed to the 

comparable results in literature with respect to the impact of stress on leucocyte 

distribution, results on leucocyte functioning are contrasting (reviewed by Weyts et al., 

1999). For example, phagocytosis of leucocytes decreased (e.g. Narnaware and Baker, 

1996), remained constant (e.g. Ainsworth et al., 1991) or increased (e.g. Pulsford et al., 

1994) after stress. Presumably, differences in fish species, origin of the leucocytes, 

experimental set-up and duration and severity of the stressor will affect the outcome of 

the experiments. Recently, Ortuno and co-workers (2001) showed decreased 

phagocytosis in the head kidney of sea bream (Spams aurata L.) after short term 

crowding stress. However, this seemed to be correlated to migration of phagocytic 

cells from the organ into the circulation. In accordance to our results in carp 

respiratory burst activity remained unaffected. 

As described above, in freshly isolated lymphocytes the Ig~ and Ig+ lymphoid cells 

both contributed to the increased apoptosis. GR labelling of WCI 12-positive cells 

showed the majority of this population to be GR-positive and thus potentially to be 

Cortisol sensitive. In the WCI 12-negative fraction populations could be distinguished 

with distinct GR expression. This WCI 12-negative fraction primarily consists of T 
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lymphocytes, non-specific cytotoxic cells (NCC) and thrombocytes, as 

monocytes/granulocytes are excluded by adherence. Previous findings of low 

expression of GR in carp thrombocytes and non-responsiveness toward Cortisol (Weyts 

et al., 1998a; Weyts et al., 1998c) suggests the GR-negative population primarily to be 

thrombocytes. The percentage GR-negative cells is lower than expected on base of 

thrombocyte numbers in carp blood. However, this might be either due to loss of 

trombocytes in the MACS-isolation procedure or residual GR-label, which unfortunately 

could not be excluded, to be the cause of the GR-positive peak with lowest 

fluorescence intensity. The high fluorescent GR-positive peak in the Ig" fraction is 

postulated to represent T lymphocytes and/or NCC. Hence, these populations may 

potentially be affected by a stress-induced Cortisol surge. 

The significant effects of even a single temperature shock on the dynamics of B 

lymphocytes, being precursors for plasma cells, suggest implications for formation of a 

systemic antibody response. Immunisation and stress experiments revealed primary 

antibody responses to both TI- and TD-antigens to decrease over the full time-scale of 

the response in stressed carp. Kinetics of the primary immune response to the TI-

antigen TNP-LPS was significantly lower during onset of the immune response in 

acutely stressed carp. As TNP-LPS generates an antibody response without intervention 

of T lymphocytes, it is postulated that clonal expansion of B lymphocytes is disrupted 

by temperature stress. Refrained from the difference in kinetics and magnitude of the 

response, the final difference in plasma antibody titres between stressed and control 

carp are not essentially dissimilar for a TI- or a TD-antigen. It may not be excluded 

that the effect registered in the TD-response is mediated partly through cortisol-

induced impaired B lymphocyte function. As our experiments were not designed to 

compare the magnitude of the TD versus TI antibody responses, conclusions regarding 

absolute levels should be taken with care. The difference may be the result of ratio 

differences between hapten and carrier, differences in the ELISA protocol and/or 'real' 

biological differences in the responses. 

Ellsaesser and Clem (1986) demonstrated an impaired in vitro response to TI- as 

well as TD-antigens after handling and transport stress in channel catfish. On the other 

hand, Espelid et al. (1996) found no difference in antibody response to Aeromonas 

salmonicida after repeated handling stress of Atlantic salmon (Salmo salar L.). Also here the 

type, duration and intensity of the stressor applied may influence the outcome of the 

experiment. 
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Regulation of carp IL-lfi RNA expression 

ABSTRACT 

The intron-exon organisation of the carp interleukin-1 (3 (IL-1P) gene consists of 

2455 bp and comprises seven exons. Three IL-iP RNA transcripts have been found in 

carp: (1) a fully spliced product, (2) exon 1-7 with introns 5 and 6 and (3) exon 1-7 

with intron 5 only. The intron-containing products probably represent partially spliced 

transcripts. IL-1P mRNA expression in carp was semi-quantitatively analysed by RT-PCR 

in multiple organs, including brain and pituitary. Constitutive expression of the IL-1 p 

mRNA was found in these organs with a predominant expression in the immune 

organs head kidney and spleen. Furthermore, a scattered distribution of IL-lp 

producing cells was shown by in situ hybridisations of head kidney tissue. 

Administration of phorbol-myristate-acetate (PMA), lipopolysaccharide (LPS) or retinoic 

acid (RA), to phagocytes isolated from the head kidney, resulted in expression of IL-iP 

intron-containing transcripts. Of these, only PMA and LPS were stimulators that 

induced the fully spliced transcript. A role for the nuclear factor (NF)-KB pathway in 

carp IL-1P expression was shown with suppression of the LPS-induced IL-1P 

expression by NF-KB inhibitor pyrrolidine dithiocarbamate (PDTC). Cortisol was able 

to inhibit in vitro constitutive expression of IL-1P transcripts. Addition of Cortisol 

simultaneously with LPS could not substantially inhibit transcription. 

INTRODUCTION 

Although in mammals interleukin-1 p (IL-lp) is known over almost two decades 

for its importance in immune regulation (Dinarello, 1997), in non-mammalian 

vertebrates for years there was only evidence for the existence of an IL-1 -like factor 

(reviewed in Secombes et al., 1999). Previously, we were able to show secretion of an 

IL-1 -like factor in carp macrophages and neutrophilic granulocytes (Verburg-van 

Kemenade et al., 1995; Weyts et al., 1997). This was established by the T-lymphocyte 

stimulating activity of this factor, a bio-activity that could be blocked by polyclonal 

antibodies against human IL-Ioc and p. 

Recently, the first teleost nucleotide sequences encoding proteins structurally in 

accordance with mammalian IL-iP were cloned from rainbow trout (Zou et al., 1999a) 

and carp (Fujiki et al., 2000). The similarity with mammalian IL-iP is surprisingly low: 

for carp 21.8-24.7% of the overall amino acid sequence (Fujiki et al., 2000). Moreover, 

carp and rainbow trout amino acid sequence only have 22.3% identity. A remarkable 
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feature contrasting with mammalian IL-1 fj is the lack of a clear caspase-1 (interleukin-

lfj-converting-enzyme; ICE) cut site in trout and carp IL-1 (3. Despite these differences 

with mammalian IL-1 p the similarity in secondary structure is high. Consistent with 

mammalian xL-lp", both teleost sequences lack a classical leader sequence. They contain 

multiple instability motifs (AUUUA) in the 3'-untranslated region of the mRNA 

sequence, which is characteristic for cytokine sequences. In carp, one of the motifs is 

in accordance with longer functional sequence of AU-rich elements as proposed by 

Lagnado and co-workers (1994). 

Besides an important regulating factor, guiding the immune response after external 

or internal challenges, IL-ip in mammals is also reported to be a signalling molecule 

for communication between the immune system and other internal systems (Blalock, 

1994; Besedovsky and Del Rey, 1996). It is an important modulator of activity of the 

hypothalamus-pituitary-adrenal (HPA)-axis, the so-called stress-axis. Moreover, there 

are indications of IL-1P acting as a neuropeptide within the brain (Anforth et al., 

1998) The general vertebrate pattern of hypothalamus and pituitary control over 

corticoid production also applies to teleost fishes. Cortisol, the major corticosteroid in 

fish, is produced by the interrenal cells of the head kidney. So the neuro-endocrine 

circuit involved in Cortisol production in fish is the hypothalamus-pituitary-interrenal 

(HPI)-axis. Cortisol has important immune regulating functions in fish (Weyts et al., 

1999), but the effects of Cortisol on IL-1 production have not yet been established. 

Very recently Zou et al. (2000) reported inhibitory action of pre-incubation of Cortisol 

on lipopolysaccharide (LPS)-induced IL-1P RNA expression in trout. Presence of IL-1P 

in the brain and pituitary of teleost fish would be an indication that also in fish its role 

is not restricted to the immune system and immune organs. 

In the present study, we determined the sequence of the carp IL-1 (i gene. IL-1 (i 

RNA expression was semi-quantitatively analysed by RT-PCR in multiple organs, 

including brain and pituitary tissue. The expression of IL-1P mRNA in head kidney 

tissue was visualised with mRNA probes specific for carp IL-lfJ in in situ hybridisations. 

Furthermore, the regulation of IL-1(3 RNA expression was studied in vitro in 

macrophage and neutrophilic granulocyte cell fractions from the head kidney after 

stimulation with phorbol-myristate-acetate (PMA) and LPS. Nuclear factor (NF)-KB is 

one of the molecules implicated in the regulation of IL-1 (3 expression (Auron and 

Webb, 1994). Involvement of this factor in the expression was established by in vitro 

incubation in the presence of its inhibitor pyrrolidine dithiocarbamate (PDTC). 

Regulation of the expression was further examined with all-trans-retinoic acid (RA), a 

derivative of vitamin A, involved in pattern formation during development but also in 
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modulating immune responses (Trechsel et al., 1985). Potential influence of the HPI-

axis on IL-1 (} expression was investigated by in vitro administration of Cortisol. 

MATERIALS AND METHODS 

Animals 

Common carp, Cyprinus carpio L., were obtained from 'De Haar Vissen' (Wageningen 

University, the Netherlands). The fish were genetically uniform Fl hybrids of female 

line E4 X ES and male clone line R3R8 (Bongers et al., 1997) of approximately half a 

year old. They were kept at 25°C in recirculating, U.V. treated water and fed daily 1% 

of their body weight in dry pellet food (Trouvit, Trouw France SA, Fontaine les 

Vervins, France). Diagnostic laboratory ID-Lelystad (Lelystad, the Netherlands) routinely 

screened the animals for parasite, bacterial and virus infections to exclude infection 

related interleukin expression. Prior to dissection, the carp were anaesthetised in 0.3 

g/l tricaine methane sulfonate (TMS) buffered with 0.6 g/l sodium bicarbonate and 

bled by puncture of the caudal vessels. 

Sequencing 

To design non-genomic amplifying primers for RT-PCR, the genomic sequence for 

carp IL-1P had to be determined. Primers were based on the IL-1P cDNA sequence 

(Fujiki et al., 2000). Using genomic DNA or a PMA-activated macrophage cDNA library 

(Saeij et al., 2000) as template for PCR several products were obtained. The products 

were ligated in a pGEM T-easy vector (Promega Corporation, Madison, USA) and 

transformed in JM109 competent cells. Plasmid DNA was isolated from overnight 

cultures using QIA-prep Spin miniprep system (QIAGEN GmbH, Hilden, Germany). 

The plasmids were sequenced using ABI Prism-Bigdye Terminator Cycle Sequencing 

Ready Reaction system and analysed on an ABI 377 sequencer (Perkin-Elmer 

Biosystems, Foster City, USA). The nucleotide sequences were analysed with 

Sequencher 3.1.1 software (Gene Codes Corporation, Ann Arbor, USA), CLUSTAL W 

1.7 multiple sequence alignment program (Thompson et al., 1994) and the FASTA 

package (Pearson and Lipman, 1988). 

Cell culture 

Cells from the head kidney were isolated as previously described (Verburg-van 

Kemenade et al., 1995). Briefly, Percoll density gradient macrophage-enriched fractions 
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(1.060 and 1.070 g/cm3) and neutrophilic granulocyte-enriched fractions (1.070 and 

1.083 g/cm3) were obtained. Macrophages and neutrophilic granulocytes were further 

purified by adherence to 96 well microtiter plates (Costar, Corning Inc., Corning, USA) 

at a density of 107 cells/ml in carp RPMI (cRPMI; RPMI corrected for carp osmolarity 

by addition of 10% v/v aquadest). After 1 h, non-adhering cells were removed by 

washing and the adhering cells were further incubated for 20 h with culture medium 

(cRPMI with L-glutamine, penicillin-G, streptomycin sulphate and 0.5% pooled carp 

serum) at 27°C with 5% C02 . Subsequently, the cells were stimulated with phorbol-

myristate-acetate (PMA, 0.1 ug/ml; Verburg-van Kemenade et al., 1994), all-trans-

retinoic acid (RA, 1 uM; Jarrous and Kaempfer, 1994) or lipopolysaccharide (LPS, E. 

coli 055:B5 LPS, 10 Ug/ml; Weyts et al., 1998a) with or without the addition of NF-KB 

inhibitor pyrrolidine dithiocarbamate (PDTC, 5 uM; Saeij et al., 2000) or Cortisol (36 

ng/ml) . This Cortisol concentration is the half-maximal free plasma Cortisol level in 

stressed carp (Weyts et al., 1998a). Unless stated elsewhere, chemicals were purchased 

from Sigma (Sigma chemicals, St. Louis, USA). RNA was isolated 2 h post stimulation 

of the cells. 

RNA isolation and reverse transcription - polymerase chain reaction 

For in vivo IL-1 (3 mRNA expression measurements, head kidney, spleen, gill, liver, 

pituitary and brain tissue (mesencephalon region) were isolated from the animals 

under RNase free conditions, snap frozen in liquid nitrogen and stored at -80°C until 

further processing. RNA was isolated with the SV Total RNA Isolation System 

(Promega). Tissue samples were homogenised with SV lysis buffer and total RNA was 

isolated following the manufacturer's protocol. 

For RNA isolation from in vitro cultured cells, the supernatant was taken off and the 

cells were resuspended in 175 ul SV lysis buffer. Further RNA isolation was performed 

according to the manufacturer's protocol. RNA was stored at -80°C. 

The expression of IL-1 (3 mRNA was analysed with Superscript One-Step RT-PCR system 

(GibcoBRL Life Technologies, Rockville, USA) according to the manufacturer's protocol 

using a DNA Thermal Cycler 9700 (Perkin-Elmer Biosystems). To prevent amplification 

of potential contaminating genomic IL-1 (J DNA, the forward primers used were 

designed to anneal to the sequence in exons on either side of intron 2 (5 '-

ACCAGCTGGATTTGTCAGAAG-3'; according to Fujiki et al., 2000) or intron 4 (5 ' -

ATCTTGGAGAATGTGATCGAAGAG-3'). The reverse primers were designed either over 

intron 5 (5'-ACATACTGAATTGAACTTTG-3'), amplifying fully spliced IL-1P mRNA or 

within intron S (5'-GGGAACCGTCAAAAGGACAT-3'). The latter, together with one of 
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the forward primers, amplifies specifically intron 5-containing RNA transcripts. No 

discrimination was made between RNA transcripts containing only intron 5 and 

transcripts containing intron 5 and 6. 40S ribosomal RNA sub-unit SI 1 was used as 

control with primers according to Fujiki et al. (2000). 

In situ hybridisation 

For construction of DIG labelled IL-ip specific RNA probes, the PCR product of 

forward primer 5'-AAGTACAAAAAGACTATGGTGCA-3' and reverse primer 5'-

GATACGTTTTTGATCCTCAAGTGTGAAG-3' was used. The product, containing the 

exons 5, 6 and 7, was cloned and the plasmids isolated as described above. DIG 

incorporation was achieved with DIG RNA labelling system (Roche Diagnostics, 

Mannheim, Germany) using Sp6 and T7 RNA polymerase. A sense probe was used as 

control for the specificity of the probes. 

Head kidney sections were fixed and stored in 4% paraformaldehyde (PFA) at 4°C. 

Prior to submerging in liquid nitrogen, an overnight incubation step was performed 

with 15% sucrose in phosphate buffered saline (PBS) to prevent tissue damage due to 

freezing. Cryostat sections of 7 urn (2800 Frigocut, Leica, Rijswijk, The Netherlands) 

were prepared, mounted onto Polysine slides (Menzel-glaser, Germany) and stored at 

-20°C. Slides were rinsed three times in PBS, 10 minutes at 42°C in Hyb+-buffer 

(50% formamide/SSCT-BL (0.3 M NaCl, 30 mM Nacitrate, 0.1% Tween 20 and 1% 

Boehringer blocker) with 5 mg/ml Torula RNA and 50 |Xg/ml heparin) and hybridised 

for 20 h with approximately 0.1 ng DIG probe per ul Hyb+-buffer at 42°C under glass 

coverslip. The slides were subsequently washed for 15 min at 42°C with the following 

solutions: twice in 50% formamide/SSCT, once in 25% formamide/SSCT and three 

times in SCCT and 0.1X SSCT. Then at room temperature for 5 min: twice with PBS 

with 0.1% Tween 20 (PBST). Blocking was performed with PBST-BL (PBST with 1% 

Boehringer blocker) for 30 min followed by labelling with 1:1000 alkaline 

phosphatase-conjugated anti-DIG antibody (anti-DIG/AP; Roche Molecular Systems, 

Inc., Branchburg, New Jersey, USA) for 1 h at room temperature. The slides were 

washed three times with PBST-BL (10 min), twice with PBST (10 min) and colour was 

developed with 0.34 mg/ml nitroblue tetrazolium salt (NBT) and 0.175 mg/ml 5-

bromo-4-chloro-3-indolyl-phosphate (BCIP) in substrate buffer (0.1 M Tris, 0.1 M 

NaCl, 0.05 M MgCl2). The reaction was stopped by washing with PBST. 
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ex1 ex2 ex3 

1 1 
in2 in3 

Exon Size (bp) 

ex4 

1 49 (UT) 
2 4 (UT) + 41 
3 79 
4 178 
5 174 
6 137 
7 219 + >332(UT) 

in4 

ex 5 

in5 

ex6 

in6 

5' splice donor Intron Size (bp 
CAACAG g t a c g 1 
GTCAGA g t a a g 2 
TCCATG g t g ag 2 
TCGAAG g t a c e A 
ACAAAG g t a a a 5 
TTGAAG g t t t g 6 

102 
168 
90 
699 
94 
89 

ex7 

^̂ H ^̂ H 
3' splice acceptor 
t t t a g AACGAT 
a a c ag AGCATT 
t e c ag AGTTGC 
c a c ag AGCGTC 
t t c a g TTCAAT 
t t t a g GAGGCC 

Fig. 1. Schematic representation of the exon-intron organisation of the carp IL-1 (5 gene. The open 

hoxes in the figure represent the coding sequence of the IL-1 p gene. The black boxes represent the 

untranslated regions of the mRNA. The numbers of the exons (ex) and introns (in) are above the 

figure. In the table the nucleotide sequences of start and termination of the introns is shown together 

with the sizes of the introns and exons (UT = untranslated). 

RESULTS 

Genomic organisation of carp IL-1/i 

PCR amplification of genomic DNA, using primers deduced from the IL-1 (3 cDNA 

sequence, revealed the nucleotide sequence of the carp IL-1 (3 gene. The nucleotide 

sequence is available from the EMBL database under accession no. AJ24563S. The 

sequence comprises 245S bp and consists of 7 exons (Fig. 1). Alignment per exon 

(data not shown) revealed exons 4, S, 6 and 7 having the highest amino acid identity 

to human (Clark et al., 1986) and trout IL-1 (3 (Zou et al., 1999b; Pleguezuelos et al., 

2000) sequences (ranging from 23.9% to 43.5%). In particular exon 6 has high 

identity with 42.6%, 40.4% and 43.5% amino acid identity to trout IL-1 (31, trout IL-

lf}2 and human IL-1 (3 respectively. Based on this genomic, DNA sequence primers 

which only amplify cDNA were developed for carp IL-l(3. After PCR amplification with 

the activated macrophage cDNA library as template, 3 transcripts were revealed: fully 

spliced RNA transcripts (exon 1-7), transcripts containing exon 1-7 plus intron 5 and 

transcripts containing exon 1-7 plus intron 5 and 6. 
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Fig. 2. RT-PCR of carp (E4E5 X R3R8) mRNA isolated from head kidney, spleen, liver, gills, brain and 

pituitary with specific primers for fully spliced IL-1P mRNA. 40S ribosomal S11 RNA expression was 

used as a standard control. The figure is a representative of 5 fish. 

In vivo expression of IL-1/5 mRNA in different organs 

The expression of IL-iP in head kidney, spleen, gill, liver, brain (mesencephalon 

region) and pituitary as determined by RT-PCR is shown in Fig. 2. A constitutive 

expression of fully spliced IL-1 p mRNA was seen in healthy carp from 2 lines (E4E5 X 

R3R8 and R3F8 X R8F7) and 2 separated recirculation systems. In vivo, intron-

containing transcripts were not found with the exception of head kidney tissue where 

intron-containing transcripts could be detected (data not shown). The highest 

expression of the fully spliced transcript was found in the immune organs head kidney 

and spleen. Compared to the expression found in head kidney tissue, in gills and brain 

a moderate expression was detected while liver and pituitary only showed poor 

expression. 

In vitro expression of carp IL-lf} mRNA 

The cell fractions isolated from the head kidney were analysed with RT-PCR for IL-

lP RNA expression. In culture, directly after adherence of the cells, 3 out of 4 

macrophage and neutrophilic granulocyte fractions were positive for IL-iP transcripts 

(data not shown). After culturing these non-stimulated cells for 20 h, only 2 out of 15 

RT-PCR experiments revealed expression of the fully spliced mRNA. In 8 cases intron-

containing transcripts could be detected. 

Subsequent in vitro studies into kinetics and regulation of carp IL-1P RNA expression 

were performed with a mixed phagocyte fraction (macrophage plus neutrophilic 

granulocyte enriched fractions) from the head kidney. Cells were stimulated with PMA, 

all-trans-retinoic acid or LPS in the presence or absence of PDTC or Cortisol. 
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Fig. 3. RT-PCR expression of carp IL-1 P RNA in phagocytic cells isolated from the head kidney. The 

numbers indicate time in hours after administration of LPS or the untreated controls at the 

corresponding time. 40S ribosomal S11 RNA expression was used as a standard control. The figure is a 

representative of 3 fish. 

Administration of LPS (10 (ig/ml) resulted in expression of fully spliced and intron 5-

containing IL-1 (3 RNA products within 1 h. Expression of intron S -containing products 

was detected up to 3 h after stimulation, while fully spliced products were still 

detected 8 h after stimulation with a peak at 2 h (Fig. 3). Two hours after the onset of 

stimulation with PMA (0.1 ug/ml) , the RNA expression was equivalent to the LPS-

induced expression (Fig. 4). Addition of NF-KB inhibitor PDTC (5 uM) simultaneously 

with LPS could suppress the LPS-induced expression. Incubation with all-trans-retinoic 

acid (1 uM) for 2 h showed higher expression of intron-containing transcripts 

compared to control, but no induction of fully spliced IL-1P transcripts could be 

detected. Cortisol (36 ng/ml) could not inhibit the LPS-induced expression. However, 

the 'spontaneously' induced expression directly after adherence of the cells could be 

suppressed by Cortisol addition in 6 out of 8 cases (data not shown). 

IL-1p in situ hybridisations in head kidney tissue 

Detection of the constitutive IL-1 {$ mRNA expression with specific DIG-labelled 

anti-sense probes revealed a scattered distribution of IL-1 (3 mRNA-producing cells in 

the head kidney of carp (Fig. S). The staining is only present in the cytosol of the cells 

with the highest staining in the larger cells. Sense probes that were used as control 

showed no staining. 
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Fig. 4. RT-PCR expression of RNA from phagocytic cells isolated from carp head kidney 2 h after 

stimulation with PMA, LPS, LPS plus Cortisol or PDTC or all-trons-retinoic acid, with specific primers 

for fully spliced and intron 5-containing EL-1(3. 40S ribosomal Sll RNA expression was used as a 

standard control. The figure is a representative of 5 fish. 

DISCUSSION 

Similar to the human IL-l(3 gene (Clark et ai., 1986), the carp IL-lp gene consists 

of 7 exons, whereas the trout IL-l(3l gene (Zou et al., 1999b) and IL-l(32 gene 

(Pleguezuelos et al., 2000) have 6 exons. In carp the first exon remains untranslated, a 

situation also observed in the human and trout LL-iP genes. The low identity within 

exons 2 and 3 compared to human IL-iP is in accordance to their location in a 

precursor of the protein and their expected absence in a mature form of the protein. 

The sizes of the exons are similar to the exon sizes of the human IL-ip, unlike the 

situation in trout where the 5 '-end is shorter. The size of introns in the carp and trout 

IL-ip genes (ranging from 89 bp (intron 6) to 699 bp (intron 4)) is relatively short 

compared to their mammalian equivalents. The deduced coding sequence of the here 

reported carp gene matches the one reported by Fujiki et al. (2000) for all but three 

residues. These substitutions are all non-synonymous resulting in the following amino 

acid substitutions: Cys3 into a Tyr, Glu5 into a Lys and Gin9 into a Pro. With no 

functional data of the protein published yet, classification of this molecule as an IL-ip 

is purely based on its structural molecular similarity to mammalian IL-1J3. Considering 

the tetraploid nature of carp, also in carp IL-1 (3 may be present in two isoforms as has 

been demonstrated in trout (Pleguezuelos et al., 2000). 
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B 

A 

Fig. 5. In situ hybridisation with DIG probes specific for H-iP mRNA in head kidney of carp. Positive 

cells show a dark stained cytoplasm. (A) (40x), (B) detail at a higher magnification (lOOx) and (C) 

sense negative control of the same tissue (40x). 

It is generally accepted that mononuclear cells from the blood of healthy humans 

do not spontaneously express IL-iP protein and contain no significant amounts of 

mRNA encoding for IL-iP (Dinarello, 1991). However other cells, generally non­

immune cells, are known to express IL-1 (3 in healthy humans. In pathogen-free mice, 

Takaca et al. (1988) showed by in situ hybridisation that it is possible to have a 

constitutive expression of IL-1P mRNA in multiple organs, e.g. lymph nodes, spleen, 

thymus and bone marrow. The distribution and localisation of producing cells suggests 

them to be macrophages. In the present study we showed a constitutive in vivo 

expression of carp IL-ip mRNA in multiple organs, with a predominant expression in 

the immune organs head kidney and spleen. These RT-PCR results are confirmed by in 

situ hybridisations, the latter moreover demonstrate a scattered distribution of the IL-iP 

mRNA containing cells and highest staining in the larger cells. To exclude the 

possibility that this IL-ip expression is merely related to infection, the animals were 

screened for the presence of parasites or bacterial/viral pathogenic infections. The 

absence of infections was confirmed by a number of immune function assays on fish 

from the same batch and aquariums, which revealed low lymphocyte proliferation, 

nitric oxide (NO) production at basal level and no activated respiratory burst activity. 

Carp from an independent source and different crossing (R3F8 X R8F7) tested on 
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constitutive in vivo IL-ip mRNA expression showed a similar pattern. Therefore, we 

conclude that constitutive IL-1P mRNA expression in normal lymphoid tissue of carp 

seems evident. Whether this is accompanied by constitutive expression of an 

(biologically active) IL-1P protein remains to be determined. In mammals transcription 

and translation of IL-1 p are under separate control: gene expression can occur without 

translation into protein (Schindler et al., 1990a; 1990b). 

Two incompletely spliced transcripts of IL-1P could be found in the cDNA library 

from PMA stimulated macrophages, in vivo in the head kidney tissue and in vitro in 

macrophage and neutrophilic granulocyte fractions. These transcripts contain either 

intron 5 or intron 5 and 6. Similar transcripts have been described in rainbow trout 

(Zou et al., 1999b), in which intron 5 (in accordance with carp intron 6) and intron 4 

and 5 (in accordance with carp intron 5 and 6) can be found. Aligned with human IL-

lp , carp IL-ip exon 6 codes for the most conserved region in the protein sequence. 

With the presence of an in frame stop codon almost directly into intron S, translation 

of intron-containing transcripts into a functional IL-1P protein is not very likely as 

these will lack the most conserved part of the protein sequence. The transcripts 

including the introns probably represent partially processed RNAs. A similar 

phenomenon has been reported for human IL-ip RNA (Jarrous and Kaempfer, 1994) 

in which intron 3-containing precursor RNAs were detected. 

In contrast to the above finding of a constitutive expression of fully spliced IL-1P 

mRNA in tissue, 'naive' head kidney cells which were in culture for 20 h generally 

showed no expression of fully spliced IL-1 (3 mRNA. However, directly after isolation of 

the cells or after refreshing the culture media, expression of intron-containing and fully 

spliced IL-1P RNA could be found. This expression is probably the result of either 

activation by adherence, remainder of in vivo activation or minimal contamination of 

endotoxins in the culture media (Schindler and Dinarello, 1990c). Adherence of 

mammalian monocytes to plastics or glassware is sufficient to trigger the expression of 

IL-lp mRNA (Schindler et al., 1990a). 

Activation of NF-KB by LPS has been well established in mammals and blocking 

this pathway shows its role in the IL-1 (3 expression (Auron and Webb, 1994). 

Addition of PMA or LPS in vitro resulted in expression of both intron-containing and 

fully spliced IL-1P RNA products within one hour. Expression of intron-containing 

products was seen till 3 h after LPS stimulation and fully spliced products exceeded 8 h 

after LPS stimulation with a peak at 2-3 h. The NF-KB inhibitor, PDTC, was shown to 
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completely suppress the LPS-induced expression, clearly indicating that the NF-KB 

transcription factor is involved in the LPS-induced expression of carp IL-1 p. 

Retinoic acid (RA) is a derivative of vitamin A and a gene modulating factor involved 

in a broad range of biological processes e.g. pattern formation in the development of 

organisms (Trechsel et al., 198S; Jarrous and Kaempfer, 1994). Jarrous and Kaempfer 

(1994) have described the retinoic acid-induced IL-1P expression in human peripheral 

blood mononuclear cells. RA induces the accumulation of precursor transcripts but fails 

to yield mature mRNA. In carp a similar expression pattern was observed. RA could 

induce intron-containing IL-1 (3 RNA, but no fully spliced mRNA transcripts are 

detected. We therefore presume that in carp, like in mammals, an activation step is 

required to induce processing of intron-containing RNA into mature mRNA. 

In mammals activation of the HPA-axis, inducing corticoid secretion and immune 

inhibition have been well described. Corticosteroids display inhibitory effects on 

macrophage IL-1P transcription (Frieri, 1999). Also a clear antagonistic relationship is 

described between the NF-KB- and glucocorticoid receptor (GR)-mediated pathways 

(McKay and Cidlowski, 1999). In fish, HPI-axis activation during stress has been 

established with Cortisol as the predominant corticosteroid produced (Wendelaar 

Bonga, 1997). IL-1(3 expression in carp immunocytes and in brain tissue, together 

with potential regulation of its secretion by Cortisol supplies extra evidence for the 

concept of neuroendocrine-immune interaction. This connection was earlier established 

with the finding of cortisol-induced regulation of immune functions (Weyts et al., 

1998a; 1998b). Interestingly, basal expression of IL-1P RNA could be inhibited by 

Cortisol in 6 out of 8 cases. LPS-induced IL-1 fj expression however was not inhibited, 

even when low LPS concentrations were applied (unpublished results). In rat alveolar 

macrophages, the synthetic corticosteroid dexamethasone could enhance LPS-induced 

IL-1P and NO secretion (Broug-Holub and Kraal, 1996). A possible explanation of our 

results could be that the LPS-NF-KB activation overrules the cortisol-GR inhibition. 

Stimulatory effects of Cortisol on the viability of carp granulocytes could earlier be 

established by Weyts et al. (1998b). Alternatively the Cortisol effects might also be 

partly induced through mineral corticoid receptors (MR), which have recently been 

detected in fish (Colombe et al., 2000). Very recent results of Zou et al. (2000) indicate 

inhibition of LPS-induced IL-1 (3 expression in trout after pre-incubation with Cortisol. 

Our experiments might indicate an inhibitory role for Cortisol in preventing excessive 

IL-1P secretion under basal conditions. During situations of bacterial challenge, the 

LPS-induced IL-1 P expression would however not be limited by excessive Cortisol 

levels under conditions of stress. Possible inhibitory or even stimulatory effects of 
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Cortisol on the IL-1P protein secretion remains to be studied with the development of 

antibodies against expressed IL-1P protein. This approach may also enable us to 

establish a possible feedback mechanism of IL-1 on corticotrophin releasing hormone 

(CRH)-induced adrenocorticotrophic hormone (ACTH) secretion. 
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Two IL-1J5 genes in carp 

ABSTRACT 

Interleukin-1P (IL-1P) is a central component in innate immunity and the 

inflammatory response of mammals. Only recently the first non-mammalian IL-1 (J 

sequences were published. Here we describe a second IL-1P sequence (IL-1(32) in carp 

with 74% amino acid identity to the carp IL-1 p 1 sequence. The existence of two IL-1P 

copies in the carp genome probably originates from the tetraploid nature of the 

species. In contrast to the first carp IL-1P sequence, IL-1(32 is represented by multiple 

genes with 95-99% identity. Detection of several IL-1J32 sequences within individual 

homozygous fish suggests the presence of multiple copies of the IL-1 (32 gene in the 

carp genome, possibly as a result of subsequent gene duplication of IL-l(i2. In vivo, 

constitutive mRNA expression of both IL-1P genes was found in healthy carp. IL-lp2 

mRNA expression could be up-regulated in vitro, similar to carp IL-lfil, by stimulation 

of head kidney cells with lipopolysaccharide (LPS). Cortisol, the major glucocorticoid 

in fish, is an endocrine-derived factor mediating IL-l(3 expression. Although 

constitutive IL-1P expression was inhibited by a physiological dose of Cortisol, Cortisol 

synergistically enhanced LPS-induced IL-1P expression in carp. The transcription factor 

nuclear factor (NF)-KB was showed to be involved in expression of IL-1P1 and IL-1P2. 

Ratio of IL-1 (3 expression was determined and this showed IL-1P1 mRNA expression to 

be at least a tenfold higher compared to IL-lp2. The possibilities of IL-1P2 being a 

functional gene or approaching pseudogene status are discussed. 

INTRODUCTION 

After infection or injury the pro-inflammatory cytokine interleukin-1 (IL-1) 

stimulates the host immune response by initiating and promoting production of other 

cytokines, chemokines and adhesion molecules (Dinarello, 1997). IL-lOC and IL-1P are 

well-known members of the expanding IL-1 family of regulatory proteins (Kumar et 

ol., 2000; Smith et al., 2000; Lin et al., 2001; Sims et ol, 2001). Characteristic for IL-la 

and IL-ip is the lack of a hydrophobic leader sequence and a P-barrel structure. In 

contrast to IL-1 a , proteolytic cleavage of IL-1 p is required to obtain a biological active 

mature protein. The cysteine protease caspase-1 (interleukin-1 P-converting enzyme, 

ICE) cleaves the human pro-IL-ip at Asp116-Ala117. 

Recently, the first non-mammalian IL-1P sequences were published for chicken 

(Weining et al., 1998), Xenopus (Zou et al., 2000a), rainbow trout (Zou et al., 1999a; 
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Pleguezuelos et al., 2000), carp (Fujiki et al., 2000), sea bass (Scapigliati et al., 2001) 

and gilthead sea bream (Pelegrin et al., 2001). The primary sequence similarity of 

teleost IL-lfJ compared to mammalian IL-iP is with 25-30% rather low. In accordance 

to mammalian IL-lp, the teleost sequences are lacking a classical leader sequence and 

contain multiple instability motifs (AUUUA) in the 3'-untranslated region of the 

mRNA sequence. Remarkably in contrast to mammalian IL-ip, all non-mammalian IL-

lP sequences found thus far are lacking a clear caspase-1 cut site. 

In healthy carp constitutive IL-1P mRNA expression was observed predominantly in 

the immune organs head kidney and spleen (Engelsma et al., 2001). In vitro, 

transcription of IL-1 p can be induced by lipopolysaccharide (LPS) and modulated by 

the endocrine agent Cortisol, as was demonstrated in carp and rainbow trout (Chapter 

4; Zou et al. 2000b). Furthermore, we showed in previous studies (Chapter 4) that the 

nuclear factor (NF) -KB pathway is involved in LPS-induced IL-1 {3 expression in carp. 

Considering the tetraploid nature of carp, the existence of multiple IL-iP genes in 

this species may be postulated. As for rainbow trout, having a tetraploid ancestry, two 

IL-ip sequences were described (Zou et al., 1999a; Pleguezuelos et al., 2000). Here, we 

show cloning and sequencing of a second carp IL-lp locus. Interestingly, with PCR 

analysis of individual homozygous fish multiple genes were detected for the second IL-

1P locus. Expression of both IL-1 p mRNA sequences was compared under different in 

vitro and in vivo conditions and ratio of expression of the two carp IL-1P sequences was 

determined. 

MATERIALS AND METHODS 

Carp maintenance and genetics 

Carp (Cyprinus carpio L.) between 6 and 9 months of age were obtained from 'De 

Haar Vissen' (Wageningen University, the Netherlands). They were kept at 25°C in 

recirculating, U.V. treated water and fed daily 1% of their body weight with pelleted 

dry food (Trouvit, Trouw France SA, Fontaine les Vervins, France). Carp were 

anaesthetised in 0.3 g/l tricaine methane sulfonate (TMS) buffered with 0.6 g/l 

sodium bicarbonate prior to dissection, and bled by puncture of the caudal vessels. For 

the experiments carp from inbred and homozygous lines were used (Irnazarow, 1995; 

Komen et al., 1991; Wiegertjes et al., 1996; Bongers et al., 1997). A PMA-activated 

macrophage cDNA-library constructed from RNA of 64 R3 X R8 fish was used for 

obtaining the cDNA sequences (Saeij et al., 2000). Genomic DNA was isolated from 
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individual fish of homozygous lines E4 and R3R8-69-45. For expression analysis the 

inbred line R3 X R8 and Fl hybrids of an isogenic female E4E5 and an androgeneticly 

cloned male (yy) R3R8 were used. 

Cloning and sequencing of carp IL-1fQ 

The initial reverse primer (newILl.rvl; Table 1) was based on conserved regions in 

the carp IL-lpl sequence (AB010701, Fujiki et al., 2000). A PMA-activated macrophage 

cDNA library (Saeij et al., 2000) was used as template for the PCR reactions. With 

newILl.rvl in combination with AZAP vector primer SK (5 ' -

CGGCCGCTCTAGAACTAGTGGATC-3') multiple PCR products were obtained using a 

DNA Thermal Cycler 9700 (Perkin-Elmer Biosystems, Foster City CA, USA) 

Products were ligated in pGEM T-easy vector (Promega Corporation, Madison WI, 

USA) and transformed into JM109 competent E. coli cells. Plasmid DNA was isolated 

from cloned cells using QIA-prep Spin miniprep system (QIAGEN GmbH, Hilden, 

Germany) and products with the approximate expected insert size were subsequently 

sequenced using ABI Prism-Bigdye Terminator Cycle Sequencing Ready Reaction System 

and ABI 377 sequencer (Perkin-Elmer Biosystems). One of the PCR products obtained 

showed 74% sequence identity to the carp IL-lpM sequence. Primers were designed to 

amplify the full coding region from this partial sequence (Table 1). 

Sequence data analysis 

Nucleotide sequences were analysed with the Sequencher 3.1.1 program (Gene 

Codes Corporation, Ann Arbor, MI, USA), CLUSTAL W 1.7 (Thompson et al., 1994) 

and submitted to BLAST (Altschul et al., 1997). Percentage identity to IL-ip sequences 

from other species was calculated using the FastA package (Pearson and Lipman, 

1988). 

Phylogenetic trees of vertebrate IL-1P amino acid sequences (p-distance) and carp 

IL-lp2 nucleotide sequences (Kimura 2-parameter) were generated with MEGA 2.1 

software (Kumar et al., 2001) using the neighbor-joining method of Saitou and Nei 

(1987) and assessed on reliability using 1000 bootstrap replications. 

Isolation of genomic DNA and organisation of the IL-1p2 gene 

Genomic DNA was isolated from carp liver tissue with the Wizard Genomic DNA 

isolation system of Promega (Promega Corporation, Madison WI, USA) according to 

the manufacturer's protocol. Using genomic DNA of a single individual of clone line 

E4 and an individual of clone line R3R8-69-45 the exon-intron organisation was 
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determined. Cloning and sequencing were performed as described above; the primers 

used are denoted in Table 1. 

Table 1. Used IL-l[5 specific oligonucleotide primer sequences. 

Primer 

newlL1.rv1 

IL-ip2.f1 

IL-ip2.f2 

IL-l{32.f3 

IL-1|32.rv1 

IL-ip2.rv2 

IL-1|32.rv3 

IL-ip2.rv4 

IL-1|32.rv6 

IL-1pU3 

IL-ipi.rv1 

IL-ip2.f4 

IL-ip2.rv5 

IL-ipall.fw1 

inpall.rvl 

Primer sequence (5' 

CAA 

GAA 

GTG 

CAA 

TTG 

ATG 

TTA 

AGG 

GAT 

ATC 

GAT 

GCC 

CGK 

TGG 

AGC 

GCA 

GCC 

ACG 

CGA 

TGG 

ATG 

GTC 

GTC 

CGG 

TTG 

ACG 

CAG 

CRT 

AGA 

TGT 

AGG 

GCT 

CTG 

TTT 

GTC 

TTG 

TTG 

CGG 

CTG 

GAG 

TTT 

ATC 

CAT 

ATG 

GCT 

TAG 

TAA 

AGT 

AAC 

ACT 

AGC 

AAG 

CTG 

TGA 

AAT 

TTG 

AAC 

GCT 

TGA 

AAT 

-3') 

AGG 

TGC 

GCA 

CAA 

CGA 

AGC 

TGT 

GTC 

TGG 

GTG 

ATC 

TAG 

GAA 

TCG 

AAA 

TTG 

GAC 

GGA 

CTC 

TAC 

GCA 

GAA 

TTA 

TGT 

ATC 

CTC 

GCA 

TTG 

AAG 

CCA 

ACA 

ACC 

AGT 

GTA 

TCT 

GTC 

CAG 

TCA 

GAA 

AAG 

TGA 

AAC 

AGC 

TCC 

G 

ATT 

CAC 

C 

TGT AGT T 

T 

GA 

GAG 

TGT GAA G 

T 

TTT 

GT 

AGG 

Function 

Conserved IL-ip primer 

Partial sequences, intron-exon mapping 

Intron-exon mapping 

cDNA cloning, intron-exon mapping 

Intron-exon mapping 

Intron-exon mapping 

cDNA cloning 

Intron-exon mapping 

Partial sequences 

RT-PCR IL-101 forward 

RT-PCR IL-1J31 reverse 

RT-PCR IL-1p2 forward 

RT-PCR IL-132 reverse 

Ratio expression IL-1P1/IL-1P2 

Ratio expression IL-1P1/IL-1P2 

Cell culture, RNA isolation and expression analysis 
In vivo expression of carp IL-l(J mRNA was determined in the organs gills, head 

kidney, spleen, thymus, brain (mesencephalon region) and pituitary. The organs were 

snap frozen in liquid nitrogen and stored at —80°C until RNA isolation. 

For in vitro mRNA expression analysis phagocytic cells from the head kidney were 

isolated as described before (Verburg-van Kemenade et d., 1995). Briefly, with Percoll 

density gradient centrifugation macrophage-enriched fractions (1.06 and 1.07 g/cm3) 

and neutrophilic granulocyte-enriched fractions (1.07 and 1.083 g/cm3) were 

obtained. A mixture of the two was plated in 96-well microtiter plates (Corning 

Costar, Badhoeverdrop, The Netherlands) at a density of 107 cells/ml in carp RPMI 

(cRPMI; RPMI corrected for carp osmolarity of 270 mOSm by addition of H 2 0 up to 

10%). After 1 h the supernatant and non-adhering cells were removed and the 

adhering cells were washed and further incubated with culture medium (cRPMI with 

L-glutamine, penicillin-G, Streptomycin sulphate and 0,5% pooled carp serum) at 27°C 

with 5% C02 . After an incubation of 20 h the cells were stimulated with 

lipopolysaccharide (LPS, E. coli 055:B5 LPS, 10 (Xg/ml) with or without Cortisol in 

different concentrations (40, 100 and 400 ng/ml) . At 4 h after the onset of the 
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treatments RNA was isolated from the cells. Furthermore, effect of addition of Cortisol 

at different time points to LPS-stimulated cells was investigated. NF-KB inhibitor 

pyrrolidine dithiocarbamate (PDTC, 5 (xM) was added to head kidney phagocytes 1 h 

prior to 4 h LPS stimulation. 

RNA was isolated using the SV Total RNA Isolation System (Promega). Organs were 

homogenised in 175 (il SV lysis buffer, medium from the in vitro cultured cells was 

removed and the cells resuspended in 175 ul SV lysis buffer. Further RNA isolation 

was performed according to the manufacturer's protocol. RNA was stored at —80°C. 

The expression of IL-1P mRNA was analysed with Superscript One-Step RT-PCR 

system (GibcoBRL Life Technologies, Rockville, MD, USA) according to the 

manufacturer's protocol. The specific primers used for detecting IL-1P1 and IL-lfi2 

transcripts are denoted in Table 1. 40S ribosomal RNA sub-unit 11 or (3-actin were 

used as control. 

Ratio of IL-1/3 expression 

The ratio of the expression between IL-lpl and IL-lfJ2 was determined by PCR on 

head kidney tissue and head kidney phagocytes with primers amplifying both carp IL-

1(3 sequences (IL-1 pall forward and reverse, Table 2). The PCR product was then 

treated with restriction enzymes specific for one of the isoforms. Avo II was used to 

digest IL-1P 2 in order to measure the amount of IL-1P1 and Hinc II was used vise 

versa. As control the PCR product was digested by both enzymes. Fragments were 

quantitatively analysed on 1.5% agarose gels with Multi-Analyst Version 1.1 (Bio-Rad 

Laboratories, Hercules, CA, USA) software package. 

RESULTS 

Cloning, sequencing and structural analysis of a second carp IL-ip molecule 

An IL-iP-like sequence was obtained from a PMA-activated macrophage cDNA-

library in an anchored PCR, using a primer based on a conserved region of the carp 

IL-1P sequence (Fujiki et al., 2000; further referred to as IL- lpl ) . This IL-1 P-like 

transcript had 74% identity to the carp IL-1P1 sequence. Primers were designed based 

on this partial sequence to further analyse this transcript. In subsequent independent 

PCR analysis the existence of at least 6 novel partial IL-1P sequences could be 

identified with 95-99% amino acid identity. Out of the 6 sequences, the coding region 

of 2 sequences was further analysed. Based on amino acid comparisons these sequences 
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were designated 11-102*01 and IL-1 P2*02. Both sequences encode a 272 amino acid 

protein. An alignment of the deduced amino acid sequence of IL-102*01 and IL-

102*02 with the carp IL-1P1 sequence is shown in Fig. 1A. Differences between the 

IL-102 sequences were too small to reliably amplify full 3'-UTs regions for IL-102*01 

or IL-102*O2 separately. However, 3'-UTs regions belonging to IL-102 sequences were 

found containing up to five AUUUA instability motifs (data not shown). The IL-

102*01 and IL-102*02 nucleotide sequences have been submitted to the 

Genbank/EMBL database with accession numbers: AJ401030 and AJ401031, 

respectively. 

Identity of the carp IL-102 sequences over the full-length of the deduced amino 

acid sequences was approximately 72-73% to the carp IL-101 sequence. Compared 

with other vertebrate IL-10 sequences, identities of the deduced IL-102 amino acid 

sequences ranged from 22 to 31%, depending on the species (Fig. IB). The amino 

acid sequence Glu1 to Glu96 of IL-102 have a lower identity to the pro-part of human 

IL-10 (17.9%), than the amino acid sequence Glu97 to Asp272 have to the mature part 

of the human protein (24.6%). 

Phylogenetic analysis of IL-10 sequences from a number of vertebrate species 

showed the teleost sequences in a separate cluster from the other vertebrate IL-10 

sequences (Fig. 1C). In turn the rainbow trout and carp sequences form separate 

clusters within the main cluster of teleost sequences. 

Genomic organisation of IL-1p2 

As the cDNA library was constructed from multiple individuals, genomic DNA from 

2 homozygous individuals (from carp lines E4 and R3R8-69-4S) was used to further 

Fig. 1. (A) ClustalW alignment of the deduced carp IL-1 (31, IL-l(j2*01 and IL-lp2*02 amino acid 

sequences. Potential glycosylation sites are underlined and the boxed residues represent the IL-1 family 

motif. Dashes indicate identity to carp IL-1 p 1 and asterisks represent gaps. (B) Percentage amino acid 

sequence identity (FastA) of carp IL-1P sequences compared with IL-1P sequences from trout and 

human. (C) Phylogenetic tree (Neighbor-Joining) for vertebrate IL-1P amino acid sequences. Scale at 

the bottom represents genetic distance (p-distances). Bootstrap values are given at the branch nodes. 

Genbank/EMBL accession numbers of the used IL-1P sequences: human, X02532; rabbit, D21835; 

mouse, MIS131; rat, M98820; horse, D42147; cat, M92060; pig, M86725; dolphin, AB028216; cow, 

M35589; sheep, X56972; possum, AF071539; chicken, Y1S006; Xenopus, AJ010497; carp 1, AB01701; 

carp 2-1, AJ401030; carp 2-2, AJ401031; rainbow trout 1, AJ223954; rainbow trout 2, AJ245925; sea 

bass, AJ311925; gilthead sea bream, AJ277166. 
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IL-1B1 MAYH*KYVHPLDLSEAFETDSAIYSDSADSDELDCPDPQSMSCQCDMH*DIKLELSSHPHSMRQWNIII 

IL-1B2*01 -ERLER-IL-***-D-L *L--P GF--P QLG-M K P K V-

IL-1B2*02 --L-GR-IL-***-D-L *L--P GF--P QLC-M K P K V-

I L - 1 B 1 AVERLKHIKNMSSGKFCDEELLGFILENVIEERLVKPLNETPIYSKTSLTLQCTICDKYKKTMVQSNKLS 

I L - 1 B 2 * 0 1 K K QDA- -NI - A - Q T - C R - - L - - V h T 

I L - 1 B 2 * 0 2 K K SQDA- -NI - A - O T - R - - T R SV L T 

I L - 1 B 1 DEPLHLKAVTLSAGAMQYKVQFSMSTFVSSATQKEAQPVCLGISNSNLYLACTQLDGSSPVLILKEASGS 

I L - 1 B 2 * 0 1 NQD T I PY DP-NDG 1 S G - - P L V - - P 

I L - 1 B 2 * 0 2 NQD T I M-Y Q-NNG 1 S G - - P L V - - P 

I L - 1 B 1 VNTIKAGDPM* *rjSLLFiiRKETGTRYNTi 

I L - 1 B 2 * 0 1 L T GY 1 D-

I L - 1 B 2 * 0 2 L T -D GY f A-

KY|pW||| | | |AFDDWEKVEMNQMPTTRTTNFTLEDQKRI 

c 

Carp 1 

Carp 2*01 

Carp 2*02 

Trout 1 

Trout 2 

Human 

Carp 1 

100.0 

Carp 2*01 

72.0 

100.0 

Carp 2*02 

73.1 

93.8 

100.0 

Trout 1 

31.1 

29.9 

28.5 

100.0 

Trout 2 

30.8 

29.2 

27.8 

75.0 

100.0 

Human 

26.6 

22.4 

22.3 

26.1 

26.5 

100.0 

100 l 

100 

47 

- Rabbit 

" Mouse 

Rat 

- Horse 

— Cat 

- Pig 

Dolphin 

I Cow 

100 1 sheep 

Poss u m 

Chicken 

- Xenopus 

- Carp 1 

Carp 2*01 I t_arp z-

3~l rarr>;>*i 1001 Carp 2*02 

Trout 1 

Trout 2 

Sea bass 

Sea bream 
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Fig. 2. (A) Distribution of the carp 11.-102 sequences from the different sources: macrophage cDNA 

library and the genomic DNA from carp lines E4 and R3R8-69-45. (B) ClustalW alignment of the 

partial nucleotide sequences found for IL-1(J2. Dashes indicate identity to carp 11.-102-1. Introns in the 

genomic sequences were omitted; place of introns in these sequences indicated with an arrowhead. IL-

1(32*12 has a divergent intron. (C) Neighbor-Joining tree (Kimura 2-parameter) of the partial IL-1 (32 

nucleotide sequences. IL-lp2*l2 was excluded from the dataset. Scale at the bottom represents genetic 

distance. Bootstrap values are given at the branch nodes. 
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A ex1 ex2 ex3 ex4 

in2 ¥ 
Exon Size (bp) 5' splice donor Intron Size (bp) 3' splice acceptor 

c-wim ^,»„m„ _^ -^_ 1 -mc t t c a g AACQAT 

aac ag TGCACT 
tec ag ATGTGC 
cac ag AGCGTT 
tty ag TTCAAT 
ttt ag GAGGTC 

1 
2 
3 
4 
5 
6 

52 (UT) 
4 (UT) + 
76 
181 
174 
137 

35 
CGACTG gt atg 
TTCGGA gt aag 
KGCATG rt gag 
TCGAAG gt ace 
ACAAAG gt aac 
TTGAAG gt tyg 

1 
2 
3 
4 
5 
6 

105 
196 
86 
ND 
92 
88-89 

216-222 + >135-334 (UT; variable) 

L Q D • 
CCT CAA GAC TAA caa taa ate ctg 
CTT CAA GAC TAC CAA TAA ate ctg 

L Q D Y Q 

Fig. 3. (A) Schematic representation of the exon-intron organisation of the carp IL-1 (32 gene. Open 

boxes represent the coding sequence of the IL-1 p 2 gene and black boxes represent the untranslated 

regions. The numbers of the exons (ex) and introns (in) are above the figure. In the table the 

nucleotide sequences of start and termination of the introns is shown together with the sizes of the 

introns and exons (UT = untranslated). The symbol "k" represents the nucleotides guanine or 

thymine; "r" represents adenine or guanine and "y" represents cytosine or thymine. (B) Alignment of 

carp IL-102*01 with an IL-102 sequence containing an alternative stop site. Exon 7 sequence in 

uppercase and 3'-UT in lowercase. Deduced amino acid sequences are given above and below the 

nucleotide sequence. Substitution of a single nucleotide in the stop codon results in a 2 amino acid 

extension of the coding region. 

characterise the nature of the multiple sequences. Performing independent PCR analysis 

resulted in the identification of a minimum of 6 IL-1 (32 sequences in both E4 and 

R3R8-69-45 individuals (Fig. 2A and 2B). Four sequences from the E4 individual 

correspond with sequences retrieved from the cDNA library. In the R3R8-69-4S 

individual 2 IL-lfi2 sequences were found overlapping with sequences from the cDNA 

library. Taking together all sequence data (cDNA and genomic DNA), 35 nucleotide 

substitution sites could be detected encompassing the complete IL-lp2 coding region 

(data not shown). Of these 35 sites, 29 were non-synonymous substitutions. 

A phylogenetic tree was constructed from all partial IL-lp2 nucleotide sequences 
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Fig. 4. In vivo IL-iPl and IL-1P2 mRNA expression in the organs, gills, head kidney, spleen, thymus, 

brain and pituitary. 40S ribosomal S11 RNA expression was used as a control of the expression. The 

figure is representing 1 of 4 fish. 

identified in the cDNA library and at genomic level (Fig. 2C). Though certainly not 

unambiguous, partition into two clusters could be suggested for the IL-1P2 sequences. 

No clear correlation was observed between the tree topology and the source of the 

sequences (compare Fig. 2A and 2C). 

The intron-exon organisation of IL-l|32 was established by PCR on genomic DNA 

using IL-132 specific primers and sequencing of the resulting products. No variations 

were found in length of exons between the IL-lfi2 sequences (Fig. 3A). Though, 

variations were detected in the 3 '-untranslated (UT) region and in one of the clones 

identified an alternative stop was found, substitution of an adenine by a cytosine 

prolonged the sequence with 2 codons before a subsequent stop codon (Fig. 3B). The 

lengths of the introns between the different IL-1 (32 sequences were identical except for 

a small variation in the length of intron 6 (88-89 bp). Intron-exon boundaries were 

identical between carp IL-l(3l and IL-1 fi2. Consistent with IL-lfi sequences in other 

species the coding region started in exon 2, thus placing exon 1 in the S'-UT region. 

In vitro and in vivo expression oflL-ip2 

In vivo expression of IL-1 p2 was investigated by isolating RNA from the snap frozen 

organs, gills, head kidney (a major immune organ in fish), spleen, thymus, brain and 

pituitary. RT-PCR demonstrated constitutive expression of carp IL-113 mRNA in these 

organs (Fig. 4). In general for the 4 fish tested, IL-lfjl expression was highest in head 

kidney and spleen. Difference in expression between the organs could not be 
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Two IL-1/5 genes in carp 

40S 

IL-1|31 

IL-1P2 

B 

c 
o 

cort 
RNA isolation 

t = 2 h 

t = 4 h 

Fig. 5. Carp I l - lp l and IL-l(i2 mRNA expression in RT-PCR on phagocytic cells from the head 

kidney. (A) Enhancement and inhibition of LPS-induced IL-lp expression by concentration range of 

Cortisol (40, 100 and 400 ng/ml). (B) Influence of pre-incubation and simultaneous administration of 

Cortisol (40 ng/ml) to LPS-induced H-1P expression. Time schedule of administration in hours 

indicated under the samples. 40S ribosomal SI 1 RNA expression was used as a control of the 

expression. The figures are representatives of 4 fish. (C) H-iPl and IL-1 p2 mRNA expression in LPS 

stimulation of head kidney phagocytes with or without PDTC. Single fish, P-actin was used as control. 
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Restriction enzyme 

Ava II Hinc II Hinc II 

Restriction enzyme 
Ava II + 

Ava II Hinc II ^jnc y 

464/470 bp ^ 
401 bp k-

259 bp * 
205 bp • 

1.00 

iill 
0.75 

0.50 

0.25 

464/470 bp ^ 

401 bp * 

259 bp • 

205 b p ^ 

1.00 

0.75 

0.50 

0.25 

Fig. 6. Ratio of the RNA expression between H-lpM and 11.-102. (A) In unstimulated head kidney 

tissue and (B) in LPS stimulated head kidney cells. Top agarose gel with uncut RT-PCR product (large 

arrow) and some of the cut products visible (small arrows). Bottom digitalisation of RT-PCR 

fragments. The figures are representatives of 6 fish with genetically different backgrounds (R3 x R8 

and E4E5 x R3R8). 

established for IL-1 p2 in the 4 fish tested. 

In vitro LPS stimulation of head kidney phagocytes showed induction of IL-1 (31 as 

well as IL-l|}2 mRNA (Fig. S). Remarkably, with the addition of a physiological dose 

of Cortisol (40 ng/ml) , a synergistic stimulatory effect of Cortisol on LPS-induced IL-1 (3 

expression was observed. A high (non-physiological) dose of 400 ng/ml Cortisol was 

able to inhibit the LPS-induced IL-1P mRNA expression (Fig. SA). No difference in 

expression was found between cells pre-incubated with Cortisol prior to LPS stimulus 
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or when Cortisol was simultaneously added with LPS (Fig. 5B). With pyrrolidine 

dithiocarbamate (PDTC), inhibitor of the NF-KB pathway, LPS-induced IL-l(3 

expression could be blocked for IL-l(5l and IL-l|32 (Fig. 5C). 

Ratio of IL-1 fQ expression 

The different primer sets used to specifically detect IL-l(3l and IL-1(32 mRNA 

transcripts with RT-PCRs, did not allow determination of relative expression between 

IL-1P1 and IL-1P2. In order to quantify the ratio of expression, a single primer set 

was developed specifically amplifying both sequences. As template, mRNA isolated 

from head kidney tissue (unstimulated) and mRNA from LPS-stimulated head kidney 

phagocytes were used. The resulting RT-PCR product was enzymatically cleaved with 

restriction enzymes specific for either IL-lfil or IL-1 fi2. Digestion of IL-1 P2 with Ava II 

results in two fragments of 69 bp and 401 bp and the amount of uncut IL-1 p i (464 

bp) was measured. Hinc II has a single restriction site in IL-1 p i (resulting in a 205 bp 

and a 259 bp fragment) and upon digestion of IL-1 p i product, IL-1P2 (470 bp) was 

determined. Digitising the expression data of head kidney tissue (Fig. 6A) and LPS-

stimulated head kidney cells (Fig. 6B) both revealed an at least tenfold higher 

expression of IL-1 p 1 mRNA. 

DISCUSSION 

IL-1P is a key component in innate immunity and the inflammatory response. 

Using homology cloning we were able to identify a second IL-1 P molecule in carp. 

The sequence has a translation product of 272 amino acids and a high identity to carp 

IL- ipi . The primary structure has the major characteristics of an IL-1P sequence: lack 

of a hydrophobic leader sequence and presence of an IL-1P family motif. 

Carp IL-1P1 and IL-1 P2 sequences show the same intron-exon organisation. Intron-

exon boundaries of IL-1 P genes are conserved between different species, indicating a 

common ancestral origin. An exception is exon 3 which is completely lacking in 

rainbow trout IL-1P (Zou et al., 1999b). 

The presence of two IL-1P sequences in common carp probably originates from the 

tetraploid nature of this species. Also in rainbow trout a tetraploidisation event 

occurred during evolution and in this species two IL-1P forms were detected as well 

(Zou et al., 1999a; Pleguezuelos et al., 2000). The rainbow trout and the carp 

sequences are located in separate, species specific clusters in the phylogenetic tree, 
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confirming that the two species underwent tetraploidisation in separate events (Ohno et 

al., 1967; Larhammar and Risinger, 1994). Interestingly, the second locus in carp is 

represented by multiple sequences, unlike the situation for EL-1P1. Presence of multiple 

IL-1 fJ2 sequences in the genomic DNA of homozygous individuals suggests that 

apparently, in addition to a genome duplication event leading to the IL-1P1 and IL-

102 genes, one or more subsequent duplications of the IL-1 p2 have occurred. 

Recently, six novel genes have been described in human that are predicted to 

encode homologs of IL-1 (reviewed by Dunn et al., 2001). These genes all cluster in 

the same region on chromosome 2 that contains IL-1 a , IL-1P and IL-lra. Probably all 

arose from a common ancestral gene that underwent a number of duplications (Dunn 

et al., 2001). The here described sequences in carp all have closest relation to IL-1 (3 

from the IL-1 family, indicating the founding gene duplications for these genes to be 

of more recent origin. However, isoforms are found for at least several of the novel IL-

1 genes in human (personal communication RA Kastelein), which might represent a 

situation more comparable to the situation found for carp IL-1 p. Though not akin, the 

variations within carp and human IL-1 genes both show the evolutionary multiformity 

of the IL-1 family, probably as result of gene duplications. These might reflect the 

selective pressure of infectious agents (Liu and Shaw, 2001) and is contributing to the 

complexity and redundancy of the cytokine network. 

Within humans another variation in the IL-1 family is described in the form of a 

number of allelic polymorphisms for IL-1 a , IL-1 p and IL-lra. For IL-1 (J a base 

exchange polymorphism in the promoter region at -S l l (di Giovine et al., 1992) and 

another single base change at +3953 in exon 5 (Bioque et al., 1995) are described. 

Both thought to be associated with severity of a number of inflammatory diseases (e.g. 

Kornman et al., 1997; Hurme and Helminen 1998; Schrijver et al., 1999). The low 

number of polymorphic sites within human IL-1 fi is in sharp contrast with the carp 

IL-1P 2 locus presented in this study where a high number of substitutions was found 

within the coding region of the gene. In humans the alternative genotype is only 

carried by a small part of the population and disease-associated, while in carp multiple 

IL-1 (32 sequences are present in the genomic DNA of homozygous and presumably 

healthy individuals. This suggests human IL-1P polymorphism and the variations 

observed in carp IL-1P to be of different origin. 

IL-1 p 1 and IL-1P2 have different potential N-linked glycosylation sites. IL-1P1 has 

four potential glycosylation sites whereas IL-lfJ2 has only one. Relevance of this 

difference may be limited, considering the lack of glycosylation of human IL-1 (3 and 

lower bioactivity of artificially glycosylated recombinant IL-1P (Lfvi et al., 1991). 
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In mammals, processing of pro-IL-l|3 by caspase-1 (IL-1 (5-converting enzyme; ICE) 

is an obligatory step to obtain a biological active mature protein. Caspase-1 is a 

cysteine protease with substrate specificity for Asp-X (Howard et al., 1991). However, 

as yet no non-mammalian IL-1 (3 sequence with a clear caspase-1 cut site has been 

described. Caspase-1 is found in chicken (Johnson et ah, 1998), but lack of the critical 

aspartic acid residue in chicken IL-1P suggests that caspase-1 is not involved in 

cleavage of chicken IL-1 p. It could be hypothesised that, from an evolutionary point of 

view, IL-lf} cleavage by caspase-1 in mammals is a secondary derived character. 

Alternative processing of pro-IL-ip, independent of caspase-1, has been described and 

result in an active mature protein. For example, granzyme A and matrix 

metalloproteinases can mediate caspase-1 independent IL-1P processing (Irmler et al., 

1995; Schonbeck et al., 1998; Lundqvist, et al., 1998; Fantuzzi and Dinarello, 1999). 

Necessity of cleavage of IL-1P by proteases seems to be present in lower vertebrates 

based on the following observations: (1) Low identities of the N-terminal part of the 

non-mammalian IL-1 p between species (approximately 18%). (2) A low molecular 

weight protein present in active carp phagocyte supernatants is cross-reactive with 

monoclonal anti-carp IL-1P and polyclonal anti-human IL-1 p antibodies (Verburg-van 

Kemenade et al., 1995; Mathew et al., 2001). (3) A partial carp recombinant IL-1P 

protein (Thr115-Ile276) is able to induce proliferation of carp leucocytes (Mathew et al., 

2001) and enhance agglutinating antibody titres against Aeromonas hydrophila in infected 

carp (Yin and Kwang, 2000). Yet it remains to be established whether the full-length 

sequence could be active too. 

With in vivo and in vitro studies we demonstrated expression of IL-1P mRNA which 

could be modulated by LPS and Cortisol. As with IL-1P1, IL-1P2 mRNA is 

constitutively expressed in healthy carp in vivo. Whereas IL-1P1 is predominantly 

expressed in head kidney and spleen, high expression of IL-1P2 could also be found in 

other organs such as gills and thymus. This could suggest a differential role for IL-1P1 

and IL-1P2 within the carp immune system. Comparison of the in vitro mRNA 

expression of IL-1P1 and IL-1P2 showed that expression of both was regulated in 

similar fashion. LPS and PMA (data not shown) could up-regulate the expression of as 

we described before for carp IL-1P1 (Chapter 4). Next to these stimuli, products of 

the neuro-endocrine system such as glucocorticoids are important modulators for 

cytokine expression (Wilckens and De Rijk, 1997; Galon et al. 2002). In teleost fish, 

Cortisol is the major glucocorticoid released after activation of the hypothalamus-

pituitary-interrenal (HPI)-axis. Previously, we demonstrated that under culture 

conditions a basal expression might exist of IL-1P1 (Chapter 4 ) , which also holds for 
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IL-1(32. Addition of Cortisol could down-regulate this basal constitutive expression in 

vitro for both IL-1P1 and IL-1P2. Remarkably, further analysis showed that IL-lp 

expression could not be inhibited by Cortisol when the cells were stimulated with LPS. 

On the contrary, Cortisol and LPS synergistically stimulate expression of IL-l(3. Whether 

Cortisol was added simultaneously with LPS or cells were pre-incubated with Cortisol 

prior to the LPS stimulation made no difference. Only the more pharmacological dose 

of 400 ng/ml showed inhibition of IL-lfi expression. In rainbow trout the LPS-

induced expression was also inhibited at a Cortisol dose of 320 ng/ml (Zou et al., 

2000b). A discrepancy exists between the two species with the use of a Cortisol dose 

of 100 ng/ml, where we found synergistic stimulatory activity while in rainbow trout 

inhibition was reported. Possibly inter-species variation accounts for this difference; the 

regulation of the in situ concentration of IL-1P protein takes place at a different level or 

different affinity exists for the IL-lp receptor. As in the head kidney of carp both 

Cortisol production and immune functions are located, paracrine interaction is 

considered feasible. Concentrations of Cortisol could be locally high which may give 

the need for a relative protection of the leucocytes for Cortisol. 

Studies analysing the ratio of expression revealed that the amount of IL-1P2 is less 

than 10% of the total amount of IL-1 p expressed, regardless of stimulation. 

Considering this in association to the multiple copies found, one could speculate about 

the function of IL-1P2. The presence of multicopy genes is a well-known phenomenon 

in fish genomes, even in diploid species (Wittbrodt et al., 1998). However, the IL-1P2 

sequence in carp presented in this study has remarkable characteristics: an unexpected 

high number of substitutions in the coding region of the gene. This is not restricted to 

the loops but is also present in the more evolutionary conserved P-strands (data not 

shown). Polymorphism of cytokine genes itself is uncommon and could potentially 

influence receptor - ligand interaction. Either IL-1P2 has accumulated non-deleterious 

substitutions or it is approaching a pseudogene status. The latter may be supported by 

the relative low level of transcription of IL-1 P2 compared to IL-1P1. A similar situation 

is also proposed for carp somatotropin (Larhammar and Risinger, 1994). However, 

transcripts of IL-1P2 can still be regulated by factors as LPS and Cortisol comparable to 

IL-1P1, suggesting a comparable and functional promoter region. Moreover, the 

inhibition of IL-1P1 as well as IL-1P2 expression by PDTC proposes expression of both 

to be regulated via the NF-Kfi pathway. Together with the multiple forms of the IL-

1P2 gene and differential in vivo expression this could suggest divergent function of 

both IL-1 P sequences within the immune system. 
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In conclusion, next to probable duplication of the carp IL-1(3 gene by the 

tetraploidisation event, the second locus is represented by multiple copies in the 

genome. IL-1 p mRNA of both forms is expressed constitutively in vivo and up-regulated 

after LPS stimulus in vitro. Moreover, endocrine-derived Cortisol could modulate the 

mRNA expression of both forms. Future research involves answering the key question 

whether the products encoded by the multiple sequences of IL-lp2 are biological 

active and thus whether carp IL-1 (3 protein exists in at least two isoforms. Followed by 

the intriguing question whether these ligands share the same receptor. 
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General Discussion 

Teleost fishes are found in essentially every aquatic habitat and have been successful 

in adapting to different environments. More than half of the extant vertebrate species 

belong to this group and it can be postulated that the ability to control and coordinate 

endocrine and immune responses to environmental challenges must have contributed 

to this success. We hypothesised that for the neuroendocrine and immune system in 

teleost fish reciprocal interactions exist in analogy to the mutual interactions in 

mammals (Blalock, 1994; Besedovsky and Del Rey, 1996; Tumbull and Rivier, 1999). 

Common carp (Cyprinus carpio L.) was used in our studies as a representative teleost fish. 

For this species elaborate background data are available on both immune and 

neuroendocrine system. Moreover, teleostean fish are intriguing models to study 

neuroendocrine-immune interactions, as the head kidney combines corticosteroid and 

catecholamine production with haematopoiesis and immune functions. These properties 

may therefore be under both hormonal and paracrine control. This structural 

organisation underscores the physiological likelihood of the neuroendocrine and 

immune systems to interact. Key topics for the present study were: (1) the effects of 

acute stress on carp leucocyte populations and (2) identification of immune-derived 

factors potentially involved in the interaction with the neuroendocrine system during 

stressful circumstances. 

1 TEMPERATURE STRESS EFFECTS ON CARP PHYSIOLOGY 

Three hour drops in ambient water temperature, with amplitudes of 7, 9 or 11°C, 

were used as model to induce an acute and relative mild stressor in carp. This was 

shown to activate the hypothalamus-pituitary-interrenal (HPI)-axis and induce effects 

on the reproductive system (see also summaries NWO-ALW programme). In this 

study, we show profound effects of such a stressor on the immune system. Collectively 

the data are summarised in Fig. 1. Exposure of carp to temperature shocks was shown 

to decrease cerebral blood flow while cellular activity in the hypothalamic and pituitary 

region was increased, as was shown by functional Magnetic Resonance Imaging (fMRI; 

Van den Burg et al., 2002a). Cold shocks caused elevated levels of Cortisol in plasma, as 

an indicator for a primary stress response, with the peak in response at 20 min after 

the start of the cold shock (Tanck et al., 2000). This acute stress-induced Cortisol 

release was shown to be primarily CRH-ACTH mediated. A TRH - OC-MSH or TRH -

|3-endorphin pathway was not involved in the acute stress-induced Cortisol release (Van 

den Burg et al., 2002b). No stress-related changes were observed in secondary 
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metabolic parameters, such as plasma glucose and lactate levels (Tanck et al., 2000). 

The response to temperature stress was shown to be heritable (h2 estimate 0.60; Tanck 

et al., 2001) and with subsequent selective breeding, high and low responder lines for 

temperature stress were obtained. These animals will be interesting tools for further 

study of different physiological and immunological aspects of the stress response. 

With regard to the reproductive system, exposure to repeated cold shocks did delay 

testicular development, which was mediated by Cortisol (Consten et al., 2001). 

Probably, Cortisol acts independent of 11-ketotestosterone (an important factor in the 

onset of spermatogenesis) and possibly directly on germ cells, as glucocorticoid 

receptors are present in these cells (Consten et al., 2002). 

Our own data (presented in Chapter 2 and Chapter 3 of this thesis) showed that in 

vivo cold shocks and in vivo Cortisol affect leucocyte populations in carp reversibly and 

differentially. 

Cold shocks 

Decreased cerebral 
blood volume 
Increased cellular activity 
in hypothalamus 

Cortisol release primarily 
CRH-ACTH mediated 

Increase of plasma 
Cortisol within 20 min 

Hypothalamus < -

CRH 

Pituitary <-
(pars distalis/ pars intermedia) 

ACTH 

Head Kidney 
(interrenal tissue) 

Cortisol 

Reproductive system 
- GR in germ cells 
- Delayed testicular development 

IL-1(3 
TNF-a 

Immune system 
- GR present in blood lymphocytes 
- Temporal changes in cell distribution 

(B-lymphocytes, granulocytes) 
- Increased apoptosis in circulating 

lymphocytes 
- Delayed antibody response 
- Rescue of granulocytes (in vitro) 
- Enhanced LPS-induced IL-1(3 RNA 

expression (in vitro) 

Fig. 1. Model of the HPI-axis and the effects of temperature shocks on carp physiology. Emphasis is 

put on data from this thesis. See text for details. Abbreviations: ACTH, adrenocorticotropic hormone; 

CRH, corticotropin releasing hormone; P-end, P-endorphin; IL-1 interleukin-1; oc-MSH, a-melanocyte-

stimulaung hormone; TRH, thyrotropin releasing hormone; TNF-a, tumor necrosis factor-Ct. 
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2 STRESS AND LEUCOCYTE POPULATIONS 

Exposure of carp in vivo to cold shocks was shown to have a significant impact on 

the distribution and viability of carp leucocytes (Chapter 3). Our data show that the 

relative number of carp B lymphocytes declined in circulation whereas the relative 

number of granulocytes increased. Circulating B lymphocytes returned to normal levels 

within 24 h after application of the stressor. The swift alterations in the circulating B 

lymphocyte fraction was accompanied by nearly doubled ex vivo registration of 

apoptosis. Therefore, it is postulated that both apoptosis and redistribution to other 

body compartments attributed to alteration in B lymphocyte fractions (Chapter 3). 

Cortisol-induced apoptosis is mediated by the high affinity glucocorticoid receptor that 

was earlier characterised for carp leucocytes (Weyts et al. 1998a). In the present study 

we could demonstrate the presence of GR protein in the great majority of circulating B 

lymphocytes (Chapter 3). Nevertheless, Cortisol will have differential effects on B 

lymphocytes of different origin and different state of activation (Chapter 2). In 

circulation, especially activated B lymphocytes will be vulnerable to cortisol-induced 

apoptosis. Therefore it is hypothesised that Cortisol may function in the process of 

tempering the immune response by timely inactivation of activated circulating B 

lymphocytes. As B lymphocytes are numerous in carp this may be of crucial 

importance to the animal to retain homeostasis. As discussed below, efficient 

generation of antibody responses remains a prerequisite for defense. 

Activated B lymphocytes are precursors to form the antibody producing cells, the 

above mentioned findings might have implications for a subsequent antibody response. 

Indeed, the effects of cold shocks on primary antibody responses to T lymphocyte 

independent (TI) and T lymphocyte dependent (TD) antigens consistently resulted in 

lower antibody titres in stressed carp, compared to control animals (Chapter 3). 

However, the effects were limited and only during the onset of the response to the TI-

antigen these differences were significant, implying a slower response to the Tl-antigen 

after acute stress. The more distinct effect on the Tl-antigen response suggests a direct 

effect on priming of B lymphocytes or development of these cells to plasma cells. As 

the relative difference in the final response between stressed and control fish is 

comparable for the TI- and TD-antigens, the effect of the latter could be explained by 

the same action, indicating limited effects on T helper lymphocytes. 

Considering the fact that antibody responses were only moderately affected, it may 

be concluded that for this mild stressor, the effects on disease resistance in aquaculture 

conditions will be limited. It is recommended to now investigate the secondary 

<d) 



Chapter 6j 

response in order to establish the impact that acute stress has on the formation or 

function of memory B lymphocytes. 

Considerable induction of apoptosis by Cortisol in head kidney B lymphocytes could 

form a potential threat to the immune system, as the head kidney forms an important 

organ of the immune system. In the head kidney haematopoisis is critically located in 

the vicinity of Cortisol producing interrenal cells, making high local concentrations of 

Cortisol feasible. It is therefore postulated that the animal has adapted to this condition 

as in head kidney tissue and to a lesser extent in spleen, the effect of Cortisol on B 

lymphocyte proliferation and apoptosis was relatively modest (Chapter 2). However, 

both unstimulated as well as LPS-stimulated head kidney B lymphocytes were sensitive 

to cortisol-induced apoptosis. This might reflect the role Cortisol may have in the 

selection process of developing B lymphocytes in carp. Negative selection of auto­

reactive B lymphocytes, ultimately leading to apoptosis of these cells, will probably 

affect the majority of the maturing B lymphocytes in carp, similar to mammalian B 

and T lymphocyte differentiation (Krammer et al., 1994; Ashwell et al., 2000). 

Both B lymphocytes as well as Ig" lymphocytes contributed to an increase in the 

number of apoptotic lymphocytes in temperature stressed carp. The Ig" population in 

carp PBL primarily consists of thrombocytes, putative T lymphocytes and nonspecific 

cytotoxic cells (NCC). Although Ig" lymphocytes were shown to be hardly affected by 

Cortisol in vitro (Weyts et al., 1998b), at least part of the population in carp possessed 

glucocorticoid receptors (GR; Chapter 3). Hence, these GR-positive cells could 

potentially be affected by Cortisol to subsequently contribute to the observed in vivo 

increase in apoptosis of PBL from stressed 

The granulocyte fraction in circulation significantly increased together with a 

decrease of this fraction in head kidney, from which a considerable portion of these 

cells originate. These results are indicative of recruitment of neutrophilic granulocytes 

during stressful circumstances. Previous findings indicate that neutrophilic granulocytes 

may have a prolonged lifespan through rescue from apoptosis in the presence of 

Cortisol (Weyts et al., 1998c). Moreover, oxygen radical production could not be 

inhibited by Cortisol. Finally, in vitro administration of Cortisol synergistically enhanced 

LPS-induced mRNA expression of carp IL-1 (3 in phagocytes (Chapter 5). In mammals a 

stress-induced redistribution of leucocytes is attributed to changes in expression of 

adhesion molecules and chemotactic cytokines (Downey, 1994; Campbell and Butcher, 

2000). Acute stress should not necessarily be considered harmful to the immune status 

of the animals, recruitment of leucocytes may also enhance the immune response 
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(Dhabhar and McEwen, 1997). This in contrast to a chronic type of stress, which is 

considered to be maladaptive and harmful for the general physiology of the animal. As 

the cause of an acute stress is often directly or indirectly threatening the immune 

homeostasis of the animal, it requires an immediate immune response which can be 

effectuated by an active innate type of response. A similar model for fish is feasible on 

the basis of current results that suggest granulocytes to be relatively protected during 

stress. On the other hand, recent data suggest that nitric oxide (NO) production by 

phagocytes and LPS-induced mRNA expression of TNF-OC decreased by Cortisol addition 

in vitro (JPJ Saeij, personal communication). This indicates the necessity for intensive 

research into the relation of innate and adaptive immune responses during stress. 

3 INTERLEUKIN-Ip1 IN CARP 

3.1 Comparison of IL-1/3 from mammals and fish 

In the present study carp IL-lp was characterised for its potential as prototypic 

cytokine in the inflammatory response of carp. Moreover, IL-1(3 is a potential 

regulating factor in the bi-directional communication between the immune and 

neuroendocrine system. Some remarkable characteristics were found for carp IL-ip 

(and other teleost IL-1P sequences), which make an intriguing comparison with 

mammalian IL-lp. 

Carp IL-lp sequences show a relative low identity to mammalian IL-iP (Chapter 4 

and Chapter 5), which is corresponding with the other teleost IL-1P sequences 

described thus far (Zou et al., 1999a; Pleguezuelos et al., 2000; Scapigliati et al., 2001; 

Pelegrin et al., 2001). Among fish species, as extensive and evolutionary "ancient" 

vertebrate group, the sequences are no more similar to each other than to mammalian 

IL-ip. For example, sequence identity between carp and human is approximately 27% 

and between carp and rainbow trout 30%. On the other hand, the IL-1 system is 

considered as an important and ancient regulating system for both the immune system 

and the neuroendocrine system, thus expected to be well conserved. Possible 

explanations for this paradox are: (1) the redundancy of cytokines which may leave 

space for changes in the design and (2) the secondary and tertiary conformation is 

more important for functioning than the primary amino acid sequence. Indeed, the 

sites of the P-strands in the secondary structure are conserved when comparing human 

and carp IL-1P (Fig. 2), and Secombes et al. (1998) has shown that the rainbow trout 
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IL-1 (3 sequence can be super-imposed on the human crystal structure of IL-1 (3. The 

limited primary sequence homology of IL-1 (3 from divergent species probably results 

from the small number of residues required to maintain the p-barrel structure (Kumar 

et al., 2000; Vigers et al., 1997). Thus it would appear that in an evolutionary context 

the three-dimensional structure is more important for cytokine function than its 

primary sequence. 

These low primary sequence homologies in cytokines are in contrast to the high 

conservation in primary amino acid structures seen in protein hormones. A possible 

explanation may be that the redundancy of the cytokine network allows more 

flexibility in the structure of the ligands involved. 

Human IL-ip APVRSLNCTLRDSQQKSLVMSGPY ELKALHLQGQDMEQQW 

Carp IL-102 ERLVKPLNATQTYRKTTRTLQCSVCDKYKKTLVQSNKLTNQDLHLKAVTLSAGTIQYKVQ 

Human IL-1 p FSM-SFVQGEESNDKIPVALGLKEKNLYLSCVLKDDKPTLQL--ESVDPKNY PKKK 

Carp IL-1 (52 FSMMTYVSSAQQNNGQPVCLGISNSNLYIACTQSGGSPPVLLLKEVSGPLNTITADDPNG 

Human IL-1 (3 MEKRFVFNKIEINNKLEFESAQFPNWYISTSQAENMPVFLGGTKGGQDITDFTMQFVSS 

Carp IL-102 YDSLLFFRKETGTAYNTFESVKYPGWFISTAFDDWKRVEMSQVPTDRT-TDFTLQD 

Fig. 2. Comparison of the secondary structure of carp IL-1 (3 with human IL-1 (3: The sites of (3-strands 

are conserved between carp and human IL-ip. Alignment of exons 5-7 of the carp 11.-102*02 amino 

acid sequence with the mature human IL-ip amino acid sequence. Consensus secondary structure 

prediction is denoted below the carp sequences and was calculated at Pole Bio-Informatique Lyonnais 

(http://nspa-pbil.ibcp.fr). For comparison, (3-strand information from human IL-1P crystal structure 

was used (Priestle et al., 1988). 

A caspase-1 cleavage site, characteristic for mammalian IL-1 (3 sequences, is not 

clearly present in carp (Chapter 5) and other non-mammalian IL-1 P sequences 

analysed so far. In mammals, cleavage of IL-1 (3 by caspase-1 occurs after a highly 

conserved aspartic acid residue. In chicken, IL-1 (3 shows significant similarity to 

mammalian IL-1 (3 in the region around the cleavage site (Weining et al., 1998) and a 

caspase-1 sequence was described (Johnson et al., 1998). However, the critical aspartic 

acid residue is lacking in chicken IL-1 (3. As caspase-1 is also involved in other 
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processes, die hypothesis could be postulated that caspase-1 as a processor of IL-iP 

may be a more recent adaptation in mammals. Low homology in the N-terminal part 

of deduced IL-1P proteins in teleosts suggests a necessity for processing to obtain an 

active protein (or at least an alternative active protein if the precursor is active as well, 

e.g. IL-lOt). Moreover, a low molecular weight protein cross-reactive with monoclonal 

anti-carp IL-lp and polyclonal anti-human IL-lp1 antibodies was detected in 

supernatants of stimulated carp phagocytes (Verburg-van Kemenade ct ol., 1995; 

Mathew et ah, 2001). Other members of the caspase family are participating in 

cytokine maturation in mammals and could be candidates for processing teleost pre-IL-

lP (Talanian et al., 1997; Thornberry et al., 1997). Moreover, alternative processors of 

pre-IL-iP are described in mammalian literature (Irmler et al., 1995; Schonbeck et al., 

1998; Lundqvist, et al., 1998; Fantuzzi and Dinarello, 1999). These molecules might be 

candidates for processing IL-iP in non-mammalian vertebrates. Other characteristics 

typical for IL-1, such as the IL-1 family motif and RNA instability motifs in the 3 ' -

untranslated region, are present in all vertebrate IL-1P sequences described thus far. 

We found two forms of IL-1 P in the carp genome: IL-1P1 and IL-1P2 (Chapter 4 

and Chapter 5). Both have a conserved genomic organisation of seven exons of which, 

similar to human IL-ip, the first remains untranslated. Also in rainbow trout two IL-1P 

sequences were found (Zou et al., 1999a; Pleguezuelos et al., 2000). A likely 

explanation for the existence of two related but distinct IL-1P forms in both species is 

the tetraploidisation event that occurred independently in both species. In carp this is 

suggested to be the result of hybridisation of two closely related diploid cyprinids 

(allotetraploidisation) rather than genome duplication (autotetraploidisation; Ohno et 

al., 1967). For a number of other molecules in carp two isoforms are described, e.g. 

POMC and TNF-OC (Arends et al., 1998; Saeij et al., 2002). 

Remarkably, of the carp IL-1P2 gene multiple loci (up to six) could be detected in 

the genome of individual homozygous carp (Chapter 5), while as yet, no alternative 

sequences are found for carp IL-1P1. This suggests additional duplications of the IL-

1P2 gene. IL-1P1 is represented by either a single locus in the genome or multiple 

corresponding loci. Research using Northern-blot or Denaturing Gradient Gel 

Electrophoresis (DGGE) techniques could further clarify the exact number of gene 

copies for IL-ipi and IL-1P2. 

Comparative expression showed the IL-1P2 sequences in carp to be expressed at 

least a tenfold less than IL-1P1 mRNA. This, together with the large amount of 

substitutions accumulated in the IL-lp2 sequences, could be an indication for IL-1P2 
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approaching a pseudogene status. However, RT-PCR detection of mRNA expression 

suggest a similar expression "profile" for IL-1J31 and IL-1 (32 to several stimuli (LPS, 

Cortisol; Chapter 5). This makes a similar promoter (region) for both likely and 

proposes the IL-1 fi2 promoter region to be intact. Indeed, the NF-KB pathway appears 

to be involved in the expression of both IL-1P molecules (Chapter 5). The 

multiformity of IL-1P2 could therefore also relate to complex ligand - receptor 

interactions with different binding activities. Gene duplication of cytokines appear to 

reflect enhancement of immune function under selective pressure of infectious agents 

(Liu and Shaw, 2001). Recombinant protein expression studies should give clarity to 

this intriguing variation in the IL-lp2 locus and its functional implication. 

The multiple forms of IL-1 (3 found in teleosts and the presence of both types of 

receptors in rainbow trout (Holland et al., 2000; Sangrador-Vegas et al., 2000) indicates 

that the IL-1 system in teleost fish is probably as extensive as that of mammals. Thus, a 

convergent evolution in complexity of the IL-1 system seems to exist between teleost 

fish and mammals. This emphasises redundancy to be characteristic for the cytokine 

network and to be ubiquitous in vertebrates. 

A constitutive mRNA expression of carp IL-1P1, as well as IL-l|32, was found in 

tissue of healthy carp with a predominant expression in head kidney and spleen 

(Chapter 4 and Chapter 5). This is in contrast to reports on trout and sea bass where 

activation of the immune system is a prerequisite to induce transcription in vivo (Zou et 

al., 1999a; Scapigliati et al., 2001). IL-1 (3 protein is normally not circulating in the 

blood of healthy humans (Dinarello, 1994), but in mice RNA transcripts are detected 

in a variety of organs of healthy individuals (Takaca et al., 1988). IL-1P is a potent 

cytokine and is shown to be tightly regulated in humans (Auron and Webb, 1994). 

This suggests that carp IL-1 P is regulated at another level than RNA transcription in 

order to restrict the amount of active IL-1 p. However, it remains to be determined to 

what extent the basal IL-1 P mRNA expression in carp is accompanied by a constitutive 

protein expression. Another possibility could be that carp IL-1 P protein is less potent 

in triggering the IL-1 P receptor. 

For carp and rainbow trout IL-1 P incomplete and/or late splicing products could 

be detected (Chapter 4; Zou et al., 1999b). Alternative splicing of the IL-1P RNA could 

be an explanation for this. However, stop-codons are directly introduced by the 

unspliced introns, which makes it unlikely that an alternative protein is generated. Still, 

it could be a regulatory mechanism to control the amount of IL-1P messengers. Pre-
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mRNA of IL-1(3 could form a "reservoir" of messengers to quickly generate mature 

messengers upon stimulation. In addition, unspliced mRNA could be less prone to 

breakdown by instability motifs. Although incomplete splicing of IL-Ifj is also 

described for human (Jarrous and Kaempfer, 1994), this does not seem very 

prominent in mammals. If splicing of introns would be temperature dependent, it 

could also be speculated that teleosts, being poikiloterms, might have slower splicing 

of introns. 

3.2 Carp IL-1/3 expression and Cortisol 

In vitro, RNA expression of carp H-lpM and IL-l(32 could be induced dose 

dependendy in head kidney phagocytes by stimuli as PMA and LPS (Chapter 4). Also 

in vivo infection of carp with the parasite Trypanoplasma borreli could up-regulate both IL-

l(3l and IL-lp2 transcription (Fig. 3). Involvement of the NF-Kfi pathway was 

demonstrated in carp by blocking of the LPS-induced expression of IL-lfil and IL-1P2 

with the NF-KB inhibitor pyrrolidine dithiocarbamate (PDTC; Chapter 4 and Chapter 

5). This opens the possibility that Cortisol can modify IL-1 (3 gene transcription through 

direct binding of the GR to NF-KB dimer proteins, as is described for mammals 

(McKay and Cidlowski, 1999). 

40S 

IL-1P1 

IL-1(32 

c 
o 

Fig. 3. IL-1P1 and IL-1P2 mRNA expression in head kidney tissue of carp infected with the parasite 

Trypanoplasma borreli. Time in hours (h) and days (d) after infection. 40S ribosomal Sll RNA expression 

was used as a control of the expression. With gratitude to JPJ Saeij for the RNA samples of infected 

fish. 
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In carp, Cortisol was found to inhibit basal IL-iP expression in cultures of 

phagocytic cells derived from head kidney. However, LPS-induced IL-lfJ expression 

could be synergistically enhanced by a physiological dose of Cortisol (Chapter 4 and 

Chapter 5). This suggests that Cortisol in vivo may suppress potentially harmful IL-iP 

expression, but during infection the pro-inflamatory NF-KB signalling pathway will 

overrule this suppression. In paragraph 2 the potential beneficial role of Cortisol to 

granulocytes is discussed. The synergistic induction of IL-1 fj expression with LPS and 

Cortisol in vitro supports those findings. 

If interleukin molecules in fish have comparable potency to these molecules in 

mammals, a tight regulation of the expression will be required (Schindler et al., 1990; 

Auron and Webb, 1994). Regulation of IL-1(3 synthesis at another level than RNA 

transcription may be an explanation for the constitutive in vivo expression of IL-1P 

mRNA. The number of receptors on target cells, presence of receptor antagonist, 

soluble receptors and decoy receptors all could affect the final pro-inflammatory signal 

of IL-ip. On the other hand, the first results with recombinant IL-113 proteins in 

teleosts point towards lower potency (Hong et al., 2001; Yin and Kwang, 2000). 

Interestingly, TNF-a RNA expression in carp was inhibited by a physiological (stress) 

dose of Cortisol (Saeij et al., unpublished observation). This suggests RNA expression of 

carp IL-ip towards cortisol-exposure to be divergent from mammalian IL-ip but, in a 

cytokine network, the balance of the total cytokine profile will be decisive for the 

physiological outcome. 

Constitutive mRNA expression of IL-1P in carp or induced expression after LPS 

injection in trout is primarily observed in the immune organs such as head kidney and 

spleen. Interestingly, in carp IL-ipi and IL-1P2 expression was also observed in brain 

and pituitary tissue (Chapter 4 and Chapter S), suggesting that IL-1 protein is also 

produced in the central nervous system of fish. The source of expression could be 

endogenous expression of IL-1 p by microglia-cells within the brain or from leucocytes 

passing the blood-brain barrier. This an indication for potential IL-1 p influence on 

HPI-axis hormone production in carp. 

Investigations on the role of carp IL-1P in the actual feedback of the immune 

system on the neuroendocrine system was hampered by the lack of recombinant carp 

IL-1 p. This tool became recently available as Yin and Kwang (2000) constructed a 

recombinant carp IL-1P and demonstrated the potential immuno-stimulatory activity of 

IL-ip in vivo. With this recombinant protein we can now investigate the role of IL-1P 
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in its feedback on the neuroendocrine system in fish. The first results (JR Metz, 

personal communication; see Verburg van Kemenade et al., 2001) showed that a high 

dose of recombinant carp IL-1 p could trigger release of OC-MSH and (3-endorphin from 

the pituitary gland of carp in a superfusion set-up. 

4 FUTURE PROSPECTS 

At the present the field of fish immunology is rapidly growing. Molecules involved 

in immune regulation are now quickly disclosed. With the wide array of tools that 

became available, this will enable functional studies into the relative contribution of, 

and the intimite interaction between, the innate and acquired immune system. In this 

thesis we demonstrated that stressful circumstances may critically alter this immune 

homeostasis by influencing leucocyte distribution, viability and activity. This may 

induce effective adaptation to the stressor, but may also lead to impaired immune 

responses in maladaptive conditions. Better insight into the subtle mechanisms of 

immune regulation during stress will therefore be beneficial to support a "healthy" 

aquaculture practice. As effects of stress will have impact on the general physiology of 

the animals, a multidisciplinary approach is needed. The NWO-ALW programme, in 

which this thesis is embedded, gives a solid basis to achieve this cooperation and 

already has led to new long-term projects. 

This thesis emphasises that in teleosts interleukin molecules are crucial to achieve 

homeostasis within the immune system and to accomplish coordinated 

neuroendocrine-immune interaction. 11,-1(3 is a potential keystone for this regulation. 

Therefore our characterisation of these molecules in carp, for the first time provide 

tools to establish their function in immune regulation and neuroendocrine 

performance. The in vitro regulation studies with LPS and Cortisol already disclose 

potential regulatory mechanisms. The multiformity of carp IL-1 (3 sets an intriguing 

puzzle to further identify active forms of IL-1 (3 and interaction with the IL-1 receptor 

at the protein level. Moreover, the presence of IL-1P expression in brain and pituitary 

are indications to further determine the presence of IL-1 receptors in this region and 

hence, further disentangle potential feedback of the immune system on the 

neuroendocrine system. 
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The aim of our research was to explore the genetic background of the stress 

response in common carp (Cyprinus carpio L.) and produce isogenic strains with 

divergent stress responses. As stressor a rapid temperature decrease (= cold shock) was 

used. As a preparatory step, a number of experiments were carried out to investigate 

the validity of the cold shock as a stressor and define a selection criterion for the 

selection experiment. The stress response of common carp was studied by evaluating 

plasma Cortisol, glucose and lactate after a rapid temperature drop (AT: 7°C, 9°C or 

11°C). All three amplitudes used induced a significant rise in plasma Cortisol levels. 

Peaks occurred within 20 min after onset of the cold shock. However, no stress-related 

related secondary metabolic changes were observed in any of the experiments 

described: plasma glucose levels remained unaffected and plasma lactate levels dropped. 

Based on these results, the plasma Cortisol concentration at 20 min after onset of a 9°C 

cold shock was set as selection criterion in our selection experiment. 

The first step in the actual selection experiment was the formation of the base 

population. This base population was an F[ cross between six sires from a wild strain 

originating from the Anna Paulowna (AP) polder and a highly domesticated 

homozygous E4 dam already present in our laboratory. Thirty-three randomly picked 

sires from these six E4 X AP full-sib families (F^ were androgenetically reproduced to 

create the F2 generation, which thus consisted of 33 doubled haploids (DH) progeny 

groups. These 33 DH progeny groups (566 individuals) were subjected to the 9°C 

cold shock, enabling us to estimate a heritability (h2) for the height of the Cortisol 

stress response. A high h2 estimate of 0.60 was found, which clearly shows that the 

stress response due to a cold shock is hereditary in the carp population used. 

Because the model used to estimate the h2 assumed a complete homozygous state 

of the DH individuals and to ensure that only homozygous individuals would be used 

for subsequent reproduction, all individuals within the 33 DH androgenetic progeny 

groups were analysed using 11 microsatellite markers. In total, 92% of the 

androgenetic DH individuals proved to be homozygous at all 11 loci. Forty-three out 
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of the 47 heterozygous individuals were heterozygous at a single locus only. This 

heterozygosity was probably due to DNA fragments caused by UV-irradiation of the 

eggs, although the maternal origin of the fragments could not be proved beyond 

doubt. Screening with 11 microsatellites also revealed two linkage groups, a 

segregation distortion at two microsatellite loci and possible association of some 

microsatellites with weight, length, stress-related plasma Cortisol levels and basal 

plasma glucose levels. 

Selection of individual fish from the 3 3 DH progeny groups based on the response 

at 4 months was not possible. Therefore, three DH progeny groups with a high (Hl-

3) and three with a low (LI-3) mean plasma Cortisol concentration were selected. The 

154 DH fish in these six groups were individually tagged, mixed and subjected to a 

second cold shock at an age of IS months. For each individual fish, a breeding value 

was estimated (EBV) for stress-related Cortisol. Two homozygous sires (two high and 

two low) and dams (high and low) were selected based on their EBV and used to 

produce four homozygous (Homlso) and eight heterozygous isogenic (Hetlso) strains. 

These were used in two separate experiments to examine the genetic background of 

the stress-related Cortisol response. In both experiments, the strains were subjected to 

the 9°C cold shock at an age of 5 months. The ranking in plasma Cortisol levels of the 

Homlso strains was identical to the ranking in EBV of the sires and the maximal 

difference of 350 nmol/l was similar to the expected difference based on these EBV's. 

Differences between the Hetlso strains were smaller than expected, and influence of 

non-additive genetic effects could not be detected. 

Apart from the isogenic strain used in the first experiments, no complete profiles of 

the Cortisol, glucose and lactate dynamics had been examined in other isogenic strains. 

Therefore, an additional experiment, parallel to the selection experiment, was carried 

out to investigate the 'complete' Cortisol, glucose and lactate dynamics during the cold 

shock in four, readily available, isogenic. The experiments showed that stress-related 

Cortisol response patterns can differ consistendy between genotypes of common carp. 

The observed differences in plasma glucose and lactate dynamics between control and 

shocked fish were most likely temperature related. 

Based on the results of the experiments performed, it can be argued that the best 

method to change the stress response of common carp would be through selective 

breeding (exploiting additive genetic effects) rather than through crossbreeding 

(exploiting non-additive genetic effects). The selection and the 'parallel' experiments 

resulted in several isogenic strains of common carp with at least two types of Cortisol 

stress responses. Type I showed a relative short Cortisol response with either a high or 
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low peak at 20 min after onset of the shock. Type II showed a similar Cortisol level at 

20 min but no significant decrease in this level during the cold shock. These different 

isogenic strains will be valuable tools in future research into the stress response itself 

and its effects on other traits like growth, reproduction and health. This way, some of 

the problems related to the use of stress response as selection criterion in commercial 

breeding programmes in fish could be solved in the near future. 

Residual heterozygosity was demonstrated to occur in androgenetic progenies, most 

likely due to maternal DNA fragments induced by the UV irradiation of the eggs. 

Improved control measures were implemented in the androgenesis procedure, but 

androgenetic progenies destined for further reproduction purposes should be screened 

for residual heterozygosity. Androgenetic reproduction proved to be a useful tool for 

dissection of phenotypic variance and heritability estimations for traits, especially in 

combination with selection experiments aimed at development of isogenic strains for 

this trait. Androgenesis might result in reduced fertility in female progeny, but the 

advantages are such that inclusion of androgenetic reproduction within larger 

commercial breeding programmes for faster dissemination of genetic progress and 

product protection should be considered as a promising option. 
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The role of the HPI-axis of the common carp in response to 
rapid temperature changes 

E.H. van den Burg, S.E. Wendelaar Bonga, G. Flik 

Department of Animal Physiology, Faculty of Science, University of Nijmegen, Nijmegen, The Netherlands 

When fish face stressful conditions, the hypothalamic-pituitary-interrenal axis (HPI-

axis) is activated to enable the individual to cope with the stressor and to show 

homeostasis. A key function of the HPI-axis is attributed to proopiomelanocortin 

(POMC) -derived hormones that are produced by the corticotrope cells in the pituitary 

pars distalis and the melanotrope cells in the pituitary pars intermedia. These hormones 

include adrenocorticotropic hormone (ACTH), OC-melanocyte-stimulating hormone (oc-

MSH), and (3-endorphin. Their release is under hypothalamic control of corticotropin-

releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). ACTH is a potent 

stimulator of Cortisol release by the interrenal cells in the head kidney, but in the 

Momzambique tilapia, also a-MSH has corticotropic activity (Lamers et al., 1992), 

which can be potentiated by (3-endorphin. Cortisol, the end product of the HPI-axis, 

reallocates energy away from investment activities such as reproduction, growth and 

immune functioning, to adaptation to stressors, e.g. by restoring ionic balance 

(Wendelaar Bonga, 1997). The activity of the HPI-axis is not only influenced by 

stressors, but also, at least in poikilotherms such as the common carp, by ambient 

water temperature. Plasma Cortisol levels correlate positively with acclimation 

temperature (Arends et al., 1998). 

The aim of our research was to determine the activity of the HPI-axis and to 

establish the role of the peptides hormones involved in the functioning of the HPI-axis 

in common carp, using temperature acclimation and a rapid temperature drop (a 

stressor) as paradigms. We applied functional Magnetic Resonance Imaging (fMRI) to 

study how a rapid 10°C temperature drop affects brain activity. Using this in vivo 

approach, we demonstrated that the cerebral blood volume decreased throughout the 

brain, except in the pituitary gland. Cellular activity in the nucleus preopticus (NPO) 

and the nucleus lateralis tuberis (NLT) in the hypothalamus and the pars distalis (pd) 

increased following a temperature drop. These stress-associated regions were activated 

in a temporal order and in agreement with anatomical and physiological data. The 

NPO was activated within 0.5 min, the NLT after 1 min and the pd after 1.5 min after 

the onset of the temperature drop. Plasma Cortisol levels increased from 5 min 
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onwards. The results demonstrate that fMRI allows to study the entire HPI-axis and 

that the technique is a promising tool to study neural activity in fish. 

To investigate the role of a-MSH and P-endorphin in the HPI-axis, we acclimated 

common carp to 1S°C, 22°C, or 29°C. In vitro, the melanotrope cells of carp acclimated 

to higher temperatures were more sensitive to TRH than those of carp acclimated to 

lower temperatures. Furthermore, the release of both a-MSH and P-endorphin 

correlated positively with acclimation temperature. Plasma a-MSH and P-endorphin 

levels rose with increasing temperatures. Surprisingly, most of the melanotrope cells 

(67%) did not respond to a stimulus with CRH in vitro. The cells that did respond 

increased their a-MSH and p-endorphin output dramatically (up to 2S-fold), and this 

stimulation was independent of acclimation temperature. In contrast, the corticotrope 

cells always responded to a CRH-stimulus. A similar "all-or-nothing" response was 

observed in carp subjected to confinement stress: plasma a-MSH and P-endorphin 

concentrations increased up to fivefold, or were not affected by this stressor. 

Elaborate in vitro studies concerning the control of Cortisol release by POMC-derived 

peptides did not support a role of a-MSH and P-endorphin in this process. Only 

ACTH exerted corticotropic activity. Nevertheless, the pars intermedia does produce 

and secrete a corticotropic signal. Identification of this signal requires further studies. 

Again, an "all-or-nothing" response was observed: two out of six pars intermedia's 

released this signal that was equipotent to ACTH. 

We present the following conceptual model on the function of the HPI-axis and 

the role of the different hormones. During acute stress, such as a temperature drop, 

the CRH-ACTH-cortisol axis is activated. The release of the corticotropic signal from 

the pars intermedia is apparent only in response to as yet undefined environmental 

stimuli. Ambient water temperature modulates basal HPI-axis activity, i.e. the activity 

in the absence of a stressor. TRH, a-MSH and p-endorphin are likely not involved in 

the control of Cortisol release. The increase of basal HPI-axis activity at higher ambient 

water temperatures, as measured by plasma Cortisol levels, may therefore be related to 

subtle changes in the CRH-ACTH-cortisol cascade. 
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Stress response and pubertal development in the male 
common carp, Cyprinus carpio L 

D. Consten, J.G.D. Lambert, H.J.Th. Goos 

Research Group for Comparative Endocrinology, Graduate School of Developmental Biology, University of 

Utrecht, The Netherlands 

In this study, we investigated the effect of stress adaptation on the pubertal 

development. Puberty is the developmental process by which the animal acquires the 

capacity to reproduce. In males, the period of pubertal development may be defined as 

the time span that starts with the beginning of spermatogonia! multiplication until the 

appearance of the first flagellated spermatozoa. The onset and regulation of puberty is 

determined by functional development of the brain-pituitary-gonad (BPG) axis. Stress 

effects have been reported to affect all levels of the BPG-axis. However, the precise 

mechanisms via which the stress response has its adverse effects on reproduction are 

still unknown. 

In this study, we focussed on the effects of stress on pubertal development in the 

male common carp, Cyprinus carpio L. As stressor we used a temperature shock. At 

unexpected times, the fish were subjected to a sudden fall in water temperature of 

11°C. 

Our results demonstrated that submitting pubertal common carp to cold shock 

stress leads to an increased Cortisol secretion as part of the stress response. Repeated 

exposure to this stressor caused a retardation of the testicular development, reflected by 

a lower gonadosomatic index (GSI). Histological analysis of the testes revealed that this 

is due to an impaired spermatogenesis as indicated by the presence of less advanced 

spermatogenetic stages. This effect could be prevented by co-treatment with RU486, a 

glucocorticoid receptor antagonist, indicating that Cortisol mediates the deleterious 

effects of stress on testicular development. 

A similar effect on pubertal development can be obtained by mimicking 

temperature stress by feeding the fish with Cortisol containing food pellets. It appeared 

that all components of the brain-pituitary-gonad axis were affected by the Cortisol 

treatment. We observed a reduction of the hypothalamic sGnRH content. On the level 

of the pituitary, prolonged Cortisol treatment resulted in diminished LH and FSH 

encoding mRNA levels, a decrease in pituitary LH content and consequently a 

reduction of the sGnRHa-stimulated LH secretion in vitro. In addition, in vitro treatment 
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with dexamethasone did not have any influence on the LH release. As expected, we 

observed an impaired testicular development. These phenomena were accompanied by 

lower plasma levels of testosterone and the 11-oxygenated androgens: 11-

ketoandrostenedione (OA) and 11 -ketotestosterone (11KT). We showed that this 

reduction of the androgen levels is caused by a direct effect of Cortisol on the testicular 

androgen production, independent of the LH secretion. Furthermore, we conclude that 

the diminished androgen secretion after long-term Cortisol treatment is caused by a 

general retardation of testis growth, including the steroidogenic elements and rather 

than by an effect on the capacity of the steroid producing enzymes. 

Testosterone has been shown before to induce pubertal gonadotroph maturation, 

whereas the 11 -oxygenated androgens stimulate testicular growth and spermatogenesis. 

Therefore, we suggested that effects of Cortisol on the LH secretion and on testicular 

development may be caused by effects on the androgen production. In our final 

experiments, we combined Cortisol treatment with replacement of the testicular steroid 

hormones, testosterone or OA, the latter being converted to 11KT. Although this 

resulted in a restoration of plasma 11KT levels in the Cortisol treated fish, the 

inhibitory effect of Cortisol on testicular development could not be prevented. This 

suggests that Cortisol acts more downstream than 11 KT in the stimulatory cascade 

leading to spermatogenesis. The possibility of a direct effect on developing germ cells 

is suggested, since we showed the presence of the glucocorticoid receptor encoding 

mRNA in germ cells by in situ hybridisation. Combined testosterone and Cortisol 

treatment, however, resulted in restoration of the LH pituitary content and the basal 

and sGnRHa-stimulated LH secretion in vitro. 

In summary, we showed that adaptation to cold-shock stress in the male common 

carp inhibits pubertal development and that this effect is mediated by Cortisol. 

Furthermore, we collected evidence that the effect of Cortisol on the testis is direct and 

not mediated by an effect on the LH plasma levels, although the pituitary LH 

production is affected. We could, however, not exclude that FSH mediates the stress-

induced inhibition of testicular development. Although Cortisol inhibits testicular 

androgen production, it is more likely that the effect on spermatogenesis is by a direct 

action on the germ cells. 
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Maintaining a dynamic internal equilibrium, homeostasis, is crucial for survival of 

an organism. Disturbances in the environment may threaten the homeostasis and this 

will subsequently evoke an adaptive response in order to restore homeostasis. In 

vertebrates the adaptive response is mediated via the neuroendocrine system by 

adrenocortical and adrenergic activation. Glucocorticoids (GC) and catecholamines are 

the main actors in the response and can affect a whole range of processes, including 

those in the immune system. In response to pathogenic challenges the immune system 

is triggered, resulting in activation of components of innate and acquired immunity. 

Bi-directional communication between the Hypothalamus-Pituitary-Adrenal (HPA)-axis, 

sympathetic nervous system and the immune system is crucial to ensure homeostasis in 

mammals. Shared use of ligands and especially receptors forms a key component of 

this mutual interaction. 

The Hypothalamus-Pituitary-Interrenal (HPI)-axis is the teleost equivalent of the 

HPA-axis. Stress induced immuno-suppression in fish is mosdy attributed to actions of 

Cortisol, major GC in fish and end-product of the HPI-axis. Stress in aquaculture is one 

of the potential factors causing increased susceptibility of fish to pathogens and 

subsequently considerable losses in production. 

As part of a programme investigating adaptive strategies of carp (Cyprinus carpio L.) 

after temperature stress, this study focuses on the possible neuroendocrine modulation 

of immune functioning during acute stress. We studied the effects of in vitro Cortisol 

and in vivo acute temperature stress on carp leucocytes and functioning of these 

leucocytes. Moreover, the Cortisol influence on gene expression of the cytokine 

interleukin-1 (i (IL-iP)was studied. IL-iP in mammals is part of the reciprocal 

signalling between neuroendocrine and immune system, therefore it may be an 

important candidate for modulating hormone secretion in carp. 

Cortisol acts upon lymphocytes differentially; in previous research it was 

demonstrated that in carp, in particular the B lymphocytes are affected. In vertebrates B 

lymphocytes play an important role in acquired immunity as precursors of antibody 

producing cells. Maturation and activation state of B lymphocytes may have 

consequences for the influence Cortisol has on these cells. Therefore, carp B 

lymphocytes were isolated from different tissues and compared with regard to their 

proliferation, apoptosis and the effects of Cortisol on these processes (Chapter 2). Head 

kidney and spleen B lymphocytes were characterised by high basal proliferation. 

Peripheral blood B lymphocytes showed a low basal proliferation which could be up-

regulated by stimulation with lipopolysaccharide (LPS), a major constituent of the cell 
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wall of gram-negative bacteria. LPS could not alter proliferation of head kidney B 

lymphocytes. In addition, Ig-crosslinking induced higher intracellular calcium responses 

in circulating B lymphocytes compared with B lymphocytes from head kidney or 

spleen origin. With respect to apoptosis, stimulation could enhance cell viability in all 

organs. However, in combination with Cortisol high levels of apoptosis were induced. 

Especially activated peripheral blood B lymphocytes were sensitive to cortisol-induced 

apoptosis. Also head kidney and to a lesser extent spleen B lymphocytes, although less 

sensitive than their equivalent in circulation, underwent cortisol-induced apoptosis 

irrespective of extra stimulation. Proliferation was suppressed by Cortisol in blood and 

spleen B lymphocytes and to a more limited extent in head kidney, regardless of LPS 

stimulation. It is suggested that Cortisol may be important for immunoregulation in 

both stress and non-stress conditions, because the relatively modest concentration of 

Cortisol used (compared to plasma values measured during stress conditions) could 

induce a significant increase in apoptosis in all three populations of B lymphocytes. 

This implies an impact of stress on B lymphocyte development and activity. 

Stress-induced immunological changes that may contribute to a decreased disease 

resistance in carp were investigated (Chapter 3). A 3 h drop in ambient water 

temperature was used as model for a relative mild and acute stressor for carp. After 

single or multiple temperature shocks, the relative number of circulating B 

lymphocytes decreased significantly within 4 h after the onset of the stressor, which 

was even more pronounced than after challenging the immune system. After a single 

temperature shock the relative number of B lymphocytes returned to control levels 

within 24 hours. In head kidney, an increase was measured in the relative number of 

B lymphocytes. Migration of B lymphocytes resulting in a redistribution of these cells 

to other body compartments may contribute to the relative drop in B lymphocytes in 

the circulation. Granulocyte numbers showed opposite reactions, doubling in 

circulation and decreasing significantly in head kidney. This demonstrates differential 

modulation of immune cells in vivo by a relative mild stressor. Freshly isolated blood 

lymphocytes from stressed carp showed a considerable higher number of apoptotic 

cells than lymphocytes from unstressed animals. Besides B lymphocytes, Ig~ 

lymphocytes contributed significantly to this stress-induced apoptosis. Glucocorticoid 

receptors could be detected in the vast majority of the B lymphocytes and also part of 

the Ig" lymphocytes. As distribution of B lymphocytes was substantially affected by 

temperature stress, the effects of multiple temperature shocks on humoral antibody 

responses were determined. The kinetics of the antibody response to both, T 
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lymphocyte independent (TI) antigens and T lymphocyte dependent (TD) antigens 

consistently showed a trend to decreased antibody response in stressed carp. In carp 

immunised with the Tl-antigen TNP-LPS the antibody response was significantly slower 

in the stressed carp. These observations confirm the effect of temperature stress on the B 

lymphocyte population. 

These results show that even a mild stressor can affect distribution of B lymphocyte 

and granulocyte cell populations reversibly with differential effects and thus can have 

implications for a subsequent immune response. However, during acute stress, the role 

of Cortisol is most probably not purely immunosuppressive but more 

immunomodulatory. A stress-induced enhancement of an innate type of response could 

facilitate a fast and effective reaction of the immune system. 

Cytokines, like IL-ip, play a pivotal role in the regulation of the immune system. 

Macrophages and a whole range of other cells release IL-1 (3 as a response to infection 

or tissue damage. IL-1 (3 has pleiotropic effects as an immune and inflammatory 

mediator. Furthermore, IL-1 (3 is an important candidate able to affect the HPI-axis by 

altering the release of corticotropin releasing hormone (CRH) and adrenocorticotropic 

hormone (ACTH). 

In fish, most interleukin molecules await identification but the IL-1 P sequences of 

several teleost fishes were recently elucidated. In the tetraploid carp we describe gene 

organisation and expression of two IL-1 (3 genes: IL-1P1 and IL-lfi2 (Chapter 4 and 

Chapter 5 respectively). The two carp mRNA sequences share about 74% amino acid 

identity. The existence of two IL-1P copies in the carp genome probably originates 

from the tetraploid nature of the species. In contrast to carp FL-lpM, the IL-lp2 locus is 

represented by multiple sequences with 95-99% identity. Detection of up to 6 distinct 

IL-1 (32 sequences within single homozygous fish suggests the presence of multiple 

copies of the IL-1 (32 gene in the carp genome. Both IL-1P1 and IL-1 (32 comprise seven 

exons with typical IL-1 characteristics as an IL-1 family motif and instability motifs in 

the 3'-untranslated region. A general discrepancy of teleost IL-1 (3 sequences described 

thus far with mammalian IL-1 (3, is the lack of a clear caspase-1 (interleukin-1P-

converting enzyme; ICE) cleavage site. Three IL-1 Pi RNA transcripts could be detected 

in carp: (1) a fully spliced product, (2) exon 1-7 with introns 5 and 6 and (3) exon 1-

7 with intron 5 only. Intron-containing products were also detected for IL-1 p2. These 

intron-containing products probably represent partially spliced transcripts. 

IL-1 P mRNA expression in carp was semi-quantitatively analysed by RT-PCR in 

multiple organs, including brain and pituitary. In vivo, mRNA of both IL-1 p sequences 
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were constitutively expressed in healthy carp, for IL-ipi this was predominantly in the 

immune organs head kidney and spleen. Furthermore, a scattered distribution of IL-

l(3l producing cells was shown by in situ hybridisations of head kidney tissue. 

Administration of phorbol-myristate-acetate (PMA) or LPS to phagocytes isolated from 

the head kidney, resulted in up-regulation of IL-lpM expression. Also IL-1 ̂ 2 transcripts 

could be up-regulated by in vitro LPS stimulation of head kidney phagocytes. 

Interestingly, by determining the ratio of expression it was demonstrated that IL-1 (32 is 

expressed at a maximum of one tenth of the amount of the IL-1P1 sequence. Together 

with the high number of amino acid substitutions in the IL-l|i2 sequences this 

suggests either that IL-1 [}2 is approaching a pseudogene status or IL-1 $2 is part of a 

complex receptor — ligand interaction network. The involvement of nuclear factor 

(NF)-KB in carp IL-1P1 expression was shown with suppression of the LPS-induced IL-

lP expression by the NF-KB inhibitor, pyrrolidine dithiocarbamate (PDTC). Data 

suggests also that carp IL-l(32 is regulated via NF-KB and consequently both IL- lP 

sequences appear to have similar promoter regions. 

Cortisol, as endocrine-derived factor potentially mediating carp IL-1P expression, 

was able to inhibit constitutive expression of IL-1P1 as well as IL-l(i2 transcripts in 

vitro. However, when Cortisol was added in combination with LPS at a physiological 

dose, Cortisol could not inhibit LPS-induced expression. Moreover, it appears that 

Cortisol synergistically enhances LPS-induced IL-1P expression in carp. Probably LPS 

overrules the glucocorticoid receptor mediated inhibition via the NF-KB pathway. This 

might imply that Cortisol can not suppress IL-lfi activation during infection. At a 

tenfold higher Cortisol dose, however, the expression is inhibited. 

In conclusion, data presented in this thesis show that carp leucocytes are 

differentially sensitive to Cortisol and in vivo stress, with regard to cell type, location 

and maturation or activation state. This affects cell viability, replication and migration 

with subsequent consequences for the immune status of carp. Also interaction of the 

neuroendocrine system with immune regulating factors was demonstrated: Cortisol 

affects carp IL-1P mRNA expression. IL-1 p in carp consists of multiple forms and is 

part of an immune regulating mechanism which probably matches that of mammals in 

complexity. 
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Voor een organisme is het belangrijk om ondanks veranderingen in de omgeving, 

een intern fysiologisch evenwicht, homeostase, te handhaven. Onder invloed van stress 

wordt bij zoogdieren het zenuwstelsel geactiveerd, gevolgd door stimulatie van onder 

andere een hormonale cascade, de Hypothalamus-Hypofyse-Bijnier (HHB) as. Als 

eindproduct worden glucocorticoi'den afgegeven die het metabolisme, de 

waterhuishouding, de voortplanting, maar ook het afweersysteem kunnen be'invloeden. 

Hier is dus sprake van communicatie tussen het hormonale systeem en het 

afweersysteem. Het bestaan van een communicatienetwerk tussen het zenuwstelsel, 

hormonaal systeem en het afweersysteem van zoogdieren is inmiddels duidelijk 

aangetoond. Dit netwerk is gebaseerd op de wederzijdse productie van dezelfde 

signaalstoffen (hormonen, neuropeptiden, cytokinen) en receptoren voor deze 

signaalstoffen. 

Beenvissen beschikken over een goed ontwikkeld hormonaal systeem en 

afweersysteem. Het equivalent van de HHB-as is bij vissen de Hypothalamus-Hypofyse-

Interrenale (HHI) as. Het belangrijkste eindproduct bij vissen, Cortisol, wordt 

geproduceerd door de interrenale cellen van de kopnier. Interessant is dat in de 

kopnier van vissen ook belangrijke afweerfuncties plaatsvinden en dat veel cellen van 

het afweersysteem (lymfocyten, macrofagen, granulocyten) hier gevormd worden. Dit 

betekent dat paracriene interacties tussen interrenale cellen en witte bloedcellen 

mogelijk zijn. 

Het is al lang bekend dat stress een van de factoren is die bij vissen een verhoogde 

gevoeligheid voor ziekten kan veroorzaken. Dit kan in de intensieve viskweek tot grote 

verliezen leiden. Onderdrukking van de afweer onder invloed van stress wordt meestal 

toegeschreven aan de effecten van Cortisol op witte bloedcellen. Het mechanisme van 

de interactie tussen het hormonaal systeem en het afweersysteem bij vissen is echter 

nog nauwelijks onderzocht en de meeste signaalstoffen van het afweersysteem, zoals 

cytokinen en chemokinen, moeten nog worden gekarakteriseerd. 

Het in dit proefschrift beschreven onderzoek maakt deel uit van een door NWO-

ALW gefinancierd programma dat aanpassingstrategieen van karpers bestudeerde, na het 

toepassen van een acute stress in de vorm van een drie uur durende verlaging in de 

watertemperatuur. Gekeken werd naar fysiologische veranderingen, neurale en 

hormonale veranderingen, veranderingen in de voortplanting en naar de erfelijke basis 

voor stressgevoeligheid. Het in dit proefschrift beschreven onderzoek richtte zich op 
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het bestuderen van de effecten van stress of Cortisol op de cellen van het 

afweersysteem en op de productie van antilichamen. Vervolgens werd een belangrijke 

signaalstof van het afweersysteem, interleukine-1P (IL-1 p), gekarakteriseerd en werd 

gekeken naar de expressie van dit molecuul in aanwezigheid van Cortisol. Interleukine-

lB is niet alleen belangrijk omdat het een centrale rol speelt in de afweer, bij 

zoogdieren is inmiddels gebleken dat het ook invloed kan uitoefenen op de HHB-as. 

In Hoofdstuk 2 worden effecten van Cortisol op B-lymfocyten beschreven. B-

lymfocyten zijn belangrijk als voorlopers van antilichaamproducerende cellen. Doordat 

zij hun specifieke antilichamen aan de buitenzijde van hun celmembraan presenteren 

kunnen zij binnengedrongen ziekteverwerkers herkennen. B-lymfocyten worden bij 

vissen in de nier gevormd en komen verder voornamelijk voor in de milt en in het 

bloed. Deze populaties B-lymfocyten verschillen in hun stadium van ontwikkeling 

en/of activiteit. Gekweekte B-lymfocyten afkomstig uit de kopnier, waarschijnlijk veel 

jonge B-lymfocyten, vertonen de grootste spontane delingsactiviteit. B-lymfocyten uit 

de milt en vooral B lymfocyten uit het bloed delen pas als zij hiertoe aangezet worden 

door bijvoorbeeld lipopolysachariden (LPS), een belangrijke component uit de celwand 

van gram-negatieve bacterieen. Omdat het afweersysteem een bijzonder dynamisch 

systeem is vormt apoptose (geprogrammeerde celdood) een belangrijke factor in de 

regulatie. Aanwezigheid van Cortisol blijkt het proces van apoptose te kunnen 

versnellen. Dit gebeurt al bij concentraties die tijdens een zeer milde stress gemeten 

worden. Hierdoor is het mogelijk dat Cortisol invloed heeft op het aantal actieve B-

lymfocyten dat kan bijdragen aan de afweer. Aangezien de vorming van B-lymfocyten 

en de productie en afgifte van Cortisol beide in de kopnier plaatsvinden, zou een 

verhoging van Cortisol door stressvolle omstandigheden grote gevolgen kunnen hebben. 

Uit dit onderzoek bleek echter dat het vooral de B-lymfocyten in het bloed zijn, en 

niet de jonge B-lymfocyten in de kopnier, die door Cortisol tot apoptose worden 

aangezet. 

Om op Cortisol en andere glucocortico'iden te kunnen reageren is de aanwezigheid 

van glucocorticoidreceptoren in de eel van belang. In het bloed konden deze 

receptoren zowel in de overgrote meerderheid van de B lymfocyten als in een deel van 

de overige lymfocyten worden vastgesteld (Hoofdstuk 3). 

Vervolgens werd het effect van blootstelling aan een of meerdere 

temperatuurschokken op het aantal B-lymfocyten in kopnier en bloed bestudeerd en 

werd bij deze dieren de vorming van specifieke antilichamen gekwantificeerd 

(Hoofdstuk 3). Vier uur na het begin van een of meerdere temperatuurschokken was 
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het aantal B lymfocyten in het bloed significant gedaald in verhouding tot de overige 

witte bloedcellen. Activering van het afweersysteem door antigenen (immunisatie) kon 

dit effect versterken. In de kopnier werd juist een toename gemeten in het relatieve 

aantal B lymfocyten. Na een enkele temperatuurschok was het relatieve aantal B 

lymfocyten in het bloed binnen 24 uur terug op het controle niveau. Dit wijst op een 

actieve migratie van B lymfocyten. In het bloed van gestresste karpers werd naast 

verschuivingen in celpopulaties ook een verhoogd aantal apoptotische lymfocyten 

aangetroffen. Naast B lymfocyten droegen ook andere lymfocyten bij aan deze 

significante toename van apoptotische cellen. 

Een antilichaamrespons verloopt voor de meeste antigenen via activatie van T 

lymfocyten (T lymfocyt afhankelijk). Sommige antigenen kunnen echter B lymfocyten 

direct stimuleren (T lymfocyt onafhankelijk). Voor beide typen antigenen werd het 

effect van meerdere koudeschokken op de antilichaamrespons bepaald. Zowel bij T 

lymfocyt onafhankelijke antigenen als bij T lymfocyt afhankelijke antigenen was in 

gestresste karpers een verlaging van de antilichaamrespons te zien. In karpers 

ge'immuniseerd met het T lymfocyt onafhankelijke antigen was de antilichaamrespons 

significant trager in de gestresste karpers. 

In tegenstelling tot de B lymfocyten verdubbelde het relatieve aantal neutrofiele 

granulocyten in het bloed na koudeschokken en was er in de kopnier sprake van een 

relatieve afname. Neutrofiele granulocyten zijn een belangrijke celpopulatie voor het 

aangeboren afweersysteem. Zij zorgen bij het binnendringen van ziekteverwekkers voor 

een snelle fagocytose, een bacteriedodende werking en het activeren van de langzamere 

specifieke afweer. Eerder werd vastgesteld dat Cortisol de apoptose in deze cellen juist 

vermindert, wat duidt op een actieve aangeboren respons bij infecties tijdens 

omstandigheden van stress. 

De karper heeft twee vormen van interleukine-l|3: IL-lfil en IL-lfi2 (Hoofdstuk 4 

en Hoofdstuk 5). De aanwezigheid van twee IL-l(3 kopieen in het genoom van de 

karper vindt zijn oorsprong waarschijnlijk in de tetraploi'de herkomst van deze soort. De 

genomische organisatie en genexpressie van deze twee IL-1P werden verder onderzocht. 

Het mRNA van de twee karper IL-1P sequenties codeert voor twee IL-1 p eiwitten met 

74% overeenkomst in aminozuur samenstelling. Bovendien werden van het IL-1P2 gen 

meerdere sequenties gevonden met een identiteit van 95-99% op aminozuur niveau. Het 

voorkomen van (in ieder geval) 6 verschillende IL-ip2 sequences in een enkele 

homozygote vis suggereert de aanwezigheid van meerdere kopieen van het IL-1 f32 gen 

in het genoom van de karper. Zowel het IL-1P1 als het IL-1P2 gen bestaat uit zeven 
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exonen met karakteristieke eigenschappen voor de familie van IL-1 moleculen (IL-1 

'family motif en instabiliteitsmotieven in de 3' regio). Naast het volledige transcript 

van exon 1-7 werden er voor karper IL-l|3l RNA transcripten gedetecteerd die intron 

5 of intronen S en 6 bevatten. Intron bevattende producten werden ook waargenomen 

voor IL-1P 2. Deze intron bevattende producten vertegenwoordigen waarschijnlijk 

vroege RNA transcripten waar de intronen nog uit verwijderd worden. 

Zoogdier IL- lP wordt geactiveerd door een klieving van het eiwit door het enzym, 

caspase-1 (interleukine-1 fj-converterend enzym; ICE). Hoewel ook voor beenvissen een 

klieving noodzakelijk lijkt werd bij de tot mi toe beschreven IL-1 p sequenties van 

verschillende vissoorten geen duidelijke caspase-1 klievingsplaats gevonden. In gezonde 

karpers, zonder tekenen van infectie of stress, werd mRNA van beide IL-1 (3 sequenties 

gevonden. Expressie komt voor in de belangrijke organen van het afweersysteem, de 

kopnier en milt, maar ook in hersenen en hypofyse. Met in situ hybridisatie werden de 

IL-1 (3 producerende cellen in de kopnier zichtbaar gemaakt. Het zijn relatief grote 

cellen die verspreid in het weefsel van de kopnier voorkomen. 

Stimulatie van fagocyterende cellen (macrofagen en granulocyten) uit de kopnier 

met LPS of phorbol-myristaat-acetaat (PMA) resulteerde in een verhoging van beide IL-

1(3 RNA transcripten. Interessant is dat de expressie van IL-1P1 een tienvoud hoger ligt 

dan de expressie van IL-1 (32. Dit kan er op wijzen dat IL-1 (32 een pseudogen status 

benadert. Het voorkomen van een groot aantal aminozuur substituties in de IL-1 (32 

sequentie zou ook een indicatie hiervoor kunnen zijn. Een andere mogelijkheid is dat 

IL-1 (32 onderdeel is van een complex netwerk waarin de bindingsterkte tussen de 

verschillende IL-1 (32 moleculen en de receptor varieert. 

Nuclear factor (NF)-KB is een transcriptie factor die betrokken is bij de 

intracellulaire aansturing van de expressie van veel cytokinen. Bij zoogdieren is NF-KB 

belangrijk voor de expressie van IL-1 (3. In de karper werd de betrokkenheid van NF-KB 

aangetoond via onderdrukking van LPS-gei'nduceerde IL-1P1 en IL-1 (32 expressie door 

de NF-KB remmer, pyrrolidine dithiocarbamaat (PDTC). Dit wijst op vergelijkbare 

promoter regionen voor beide IL-1P sequenties. 

Cortisol kon de basale expressie van IL-1P1 en IL-1 (32 transcripten in kweek 

remmen. Echter, wanneer een fysiologische concentratie van Cortisol werd toegediend 

in combinatie met LPS, werd een verhoging van IL-1 (3 expressie gemeten. 

Waarschijnlijk overheerst LPS de door glucocorticoi'dreceptor gereguleerde remming via 

de NF-KB route. Dit kan betekenen dat Cortisol gedurende een infectie of 

omstandigheden van stress de IL-1 (3 expressie niet kan onderdrukken. 
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Samenvatting 

Concluderend kan gezegd worden dat ook bij vissen sprake is van een subtiele 

regulatie van zowel het aangeboren als het verworven afweersysteem. De resultaten uit 

dit proefschrift geven meer informatie over de mogelijke interventie door het 

hormonale systeem middels afgifte van Cortisol tijdens omstandigheden van stress. De 

gevoeligheid van B-lymfocyten voor Cortisol is afhankelijk van de plaats, de maturatie 

en/of de mate van activiteit. Een milde acute stress, kort na het tijdstip van 

immunisatie, blijkt beperkte negatieve invloed uit te oefenen op de vorming van 

specifieke antilichamen. De genomische sequenties van de meerdere vormen van het 

karper interleukine-1 (3 molecuul, een potentieel cruciale signaalstof voor de regulatie 

van het afweersysteem, konden worden opgehelderd. Net als bij zoogdieren zijn deze 

vormen van IL-1 waarschijnlijk onderdeel van een complex regulatiemechanisme. 

Expressie is door Cortisol afgifte te beinvloeden. Dit interleukine molecuul is bovendien 

interessant omdat het mogelijk bijdraagt tot een gecoordineerde regulatie van zowel 

het hormonale systeem als het afweersysteem. Het beschikbaar komen van recombinant 

eiwitten maakt een intensief vervolgonderzoek naar functie en regulatie mogelijk. 
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Dankwoord 

DANKWOORD 

Er is heel wat water door de Rijn langs Wageningen gestroomd voor het 

boekwerkje dat nu voor u ligt deze vorm heeft gekregen. Voor de goede afronding 

hiervan heb ik de medewerking gehad van velen, en ik wil dan ook iedereen bedanken 

die zijn of haar steentje heeft bijgedragen. 

Een aantal personen wil ik daarbij met name noemen. In de eerste plaats mijn co-

promotor: Lidy, meer dan vier jaar lang was jij mijn eerste aanspreekpunt. Met een 

niet aflatend enthousiasme altijd bereid de discussies aan te scherpen, deze meer 

diepgang te geven of met een mooie zin een net iets positievere draai aan het geheel 

te geven (op het einde is het toch nog een echt stress-project geworden!). Mijn 

promoter Wim, bedankt voor de vele motiverende discussies en de kritische blik 

waarmee mijn artikelen werden bestudeerd. Naarmate het einde in zicht kwam werden 

de besprekingen met de begeleidingscommissie steeds intensiever. Jan R, je hebt daar 

een uiterst constructieve bijdrage aan geleverd. Dankzij jullie vele op- en aanmerkingen 

zijn mijn ruwe teksten tot leesbare artikelen geworden. 

Een speciaal woord van dank gaat uit naar Rene: hoewel je niet in mijn 

begeleidingscommissie zat, heb je toch een behoorlijk aandeel gehad in dit proefschrift 

(ik voel me al aardig moleculairbioloog). Huub, jouw enthousiasme en verfrissende 

kijk heeft het laatste stuk een duw in de rug gegeven. Geert, onze discussies over 

ELISA's en experimentele opzetten waren erg nuttig en ik hoop ze nog eens te kunnen 

voortzetten. 

Veel steun heb ik gehad van de mede-AIO's, Ellen J en Franci (van wie ik het 

stokje heb overgenomen), Ank, Jeroen, Corine, Mark, Heidi en Joop. Onze 

bijeenkomsten waren niet regelmatig maar het was zeker goed om af en toe eens met 

AIO's onder elkaar te zijn. Bedankt voor de prettige samenwerking. 

Anja en Adrie waren altijd van de partij om mij bij te staan als ik weer eens een 

mega-experiment had. Bovendien was Adrie altijd bereid om mijn cellen te 

vertroetelen. Je kennis van de voorraad in het Zodiac gebouw is onovertroffen. Ellen H 

(postuum) wist op de meest onmogelijke tijden de FACS draaiende te houden. Trudi 

en Beja, bij elkaar opgeteld zijn het heel wat sequence gels geworden, bedankt! 

Een groot aantal studenten heeft in het kader van een afstudeervak resultaten 

verzameld voor mijn project. Erwan, Sander, Marloes B, Maarten-Jay, Marloes H, 

Katinka, Mark, Jasper en Dagmar, samen hebben jullie vele stukjes van de puzzel 

opgelost, hartstikke bedankt. 

Sietze, Aart, Truus, Wian en Wilna van de proefaccomodatie "de Haar Vissen" wil 
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ik bedanken voor de verzorging van de karpers, controle van de waterkwaliteit en 

bovendien voor het draaiende houden van het koudwatersysteem, wat de nodige 

zweetdruppels heeft gekost. Karpers? Bij Menno kon ik altijd terecht om op bestelling 

karpers te laten "maken". 

Na het lezen van dit proefschrift zal het duidelijk zijn geworden dat mijn project 

onderdeel was van een samenwerkingsverband tussen vier groepen. Dat betekent tijdens 

de driemaandelijkse bijeenkomsten een zaaltje vol met begeleiders: Sjoerd, Gert, Hans, 

Henk en Jan L bedankt voor de vele kritische opmerkingen. De OIO's Michael, Dimitri 

en Erwin wil ik danken voor de prettige samenwerking in de gezamenlijke 

experimenten. Dit geldt ook voor Neil en Jurriaan van het "andere" stress programma. 

Toen ik begon als AIO was de vakgroep EDC net opgesplitst in de leerstoelgroepen 

CBI en EZO. Wat betreft de sociale interactie tussen deze groepen is van deze splitsing 

gelukkig niets te merken: rond de koffietafel, kerstvieringen en labuitjes is het een 

gezellige mengelmoes van celbiologen en zoologen. Houden zo! En daar tussen in ... 

Hilda, Ineke en Anke, bedankt voor alle goede zorgen en secretariele ondersteuning. 

Barbara, thanks for the nice time together in and outside the lab. I hope I will visit 

you in Tasmania next time! I also like to thank our colleagues Jimmy and Joseph from 

the National University of Singapore for the hospitality and friendly cooperation. 

Olga en Hans van CIDC-Lelystad, dankzij de vrijheid die jullie mij hebben gegeven 

om mijn proefschrift af te maken is de uitloop binnen de perken gebleven en kan ik 

mij vanaf nu volledig op de schelpdieren storten. 

Mijn paranimfen, Nico en Karin v /d B: Nico, ik kijk er naar uit om in Zeeland 

samen het water in te plonzen. Karin, zijn we toch nog bijna tegelijk dr geworden! Na 

een zware dag op het lab was het erg prettig om samen naar huis te fietsen. 

De karper die voorop dit proefschrift prijkt zal niemand zijn ontgaan; Karin de B 

bedankt, hij is prachtig. 

Pa en Ma, jullie geloofden het allemaal wel wat ik aan het doen was, bedankt voor 

alles! Ingeborg, ook jij hebt zichtbaar bijgedragen aan dit boekwerkje. 

Tot slot, een groot woord van dank gaat uit naar Yvon. Lieve Yvon, het valt niet 

altijd mee om een AIO als vriend te hebben. Maar als ik de neiging had om me in 

mijn werk te verliezen, dan was jij er om mij daar uit te halen. 
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