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Stellingen 

behorende bij het proefschrift: Germination and dormancy of single tomato seeds; A study using non­
invasive molecular and biophysical techniques 

1) De sterkte van de expressie van 35S::luciferase in individuele zaden is geen maat 
voor de kiemsnelheid van datzelfde zaad (dit proefschrift). 

2) Niet de totale hoeveelheid ATP in een zaad is gerelateerd aan kieming , maar wel 
de lokale ophoping van ATP in de kiemwortel (dit proefschrift). 

3) Fase III van wateropname in de kiemwortel van het embryo start al voor de 
zichtbare kieming . Dit is in tegenstelling met het algemeen aanvaarde 3 fasen 
model voor water opname van zaden, waarin fase HI na kieming plaatsvindt (dit 
proefschrift). 

4) Linker histories spelen een belangrijke rol in down-regulation van genexpressie, 
door aanpassing van DNA-architectuur (Wolffe, Cell 77, 13-16, 1994). 

5) Een levensvatbaar niet gekiemd zaad, is niet noodzakelijkerwijs in kiemrust. 

6) Een zaad van een hormoon-deficiente mutant geimbibeerd in een oplossing van 
datzelfde hormoon, is fysiologisch niet gelijk aan het wild-type. 

7) Het misstaat een plantenfysioloog niet om als dierfysioloog naar cellulaire 
processen te kijken. 

8) Natuurontwikkeling is een contradictio in terminis. 

Patrick Spoelstra 
28 mei 2002 



Voorwoord 

Als kind zagen mijn ouders een echte bioloog in me, die op ontdekkingsreis gaat, de 
oerwouden in, op zoek naar planten en dieren. Nu komen dit soort voorspellingen 
veelal niet uit, anders was Nederland gezegend met een brandweerman of politie 
agent op elke hoek van de straat. Toch ben ik geheel intui'tief in Wageningen beland 
voor de studie biologic Of was het vanwege de diavoorstelling over Pyreneeen-
excursies tijdens een open dag? Al tijdens de eerste practica werd mijn interesse 
gewekt voor de planten. Het kon daarom ook niet uitblijven dat dit uiteindelijk de 
richting was waarin ik afstudeerde met afstudeervakken aan de toenmalige vakgroep 
Plantencytologie en -morfologie en de vakgroep Plantenfysiologie. Ik rolde op deze 
wijze bijna vanzelf het promotieonderzoek in. Toen begon de periode op de vakgroep 
met veel memorabele momenten.. Er zijn veel leuke, minder leuke, en gekke 
momenten gepasseerd (Wie fietste toch over de gang op de bovenste verdieping v/d 
Banaan?). Tijdens deze periode is de basis gelegd voor dit proefschrift. De eerste 21/z 
jaar heb ik daarbij veel ondersteuning gehad van Ronny. Onze jacht op de 
homozygoot eindigde na 2 jaar met een feestje in de kroeg. Dit was overigens geen 
uitzondering, want veel gezelligheid was te vinden in de naschoolse activiteiten en 
tijdens de pauzes in de illegale koffiehoek met diens inwoners (John, Jan Hendrik, 
Wessel e.a.). In 2000 zocht ik het ruime sop en koos voor een carriere in het 
bedrijfsleven, dit terwijl het onderzoek nog niet volledig was afgerond. Promoveren 
naast een fulltime baan is beslist geen sinecure. Hierbij ben ik veel dank verschuldigd 
aan Julia en Peter voor hun inzet bij het Hl-verhaal. Tijdens mijn periode bij Roper 
Scientific B.V., heb ik veel baat gehad bij de flexibele opstelling van Wim van Dieren 
en in de periode daarna met het in bruikleen hebben van de Metamorph-sleutel.. Henk 
was als copromotor in alle fasen maar met name ook in de laatste twee jaar onmisbaar 
vanwege z'n optimisme en ondersteuning, al dan niet in de vorm van schrijfsessies, 
snel een manuscript nakijken of het slobber-bier van de Boni. Gelukkig is Linus toch 
altijd geduldig gebleven, en had hij vaak een heldere kijk op de zaken. Hierbij bedank 
ik iedereen die hierboven staan genoemd en ook de overige bewoners van de Banaan. 
Henk van As dank ik voor de samenwerking bij het NMR-werk. Michiel, je wilde in 
mijn voorwoord; bij deze. Hierbij bedank ik ook mijn ouders voor de stimulans en de 
geboden kansen. Edwin bedankt voor de opmerking in 1996: "Geil, dan krijgen we 
toch nog een doctor in de familie." De laatsten zullen de eersten zijn en dus bedank ik 
speciaal Jolanda voor haar engelengeduld in al die weekenden waarin aan het 
proefschrift gewerkt werd, al dan niet in gedachten of feitelijk achter de PC. 

Patrick 

Kudelstaart, 23-04-02. 
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General Introduction 

The seed is the generative dispersal unit of higher plants. Its functions lie in 

dispersal of the plants' genetic material and 'living' through periods (or seasons) of 

less favourable conditions (e.g. drought, low temperatures, darkness) for vegetative 

survival. Germination is the event that preludes the emergence of a new plant. 

This thesis is aimed at getting a better understanding of processes which 

underlie the germination of seeds, especially tomato seeds (Solarium lycopersicum L). 

The study was focussed on the ability and inability (germinating vs. dormant seeds) of 

tomato seeds to germinate under optimal conditions (25 °C in the dark, with sufficient 

supply of water on filter paper in a petri-dish). 

Germination: definitions 

Seed germination is often different in agronomic terms as compared to a seed 

scientific view. In seed science germination sensu stricto is the process which starts 

with the uptake of water by the dry seeds and which ends with the protrusion of an 

embryo root (the radicle) through the surrounding tissues (e.g. endosperm and testa). 

Further processes including the formation of secondary roots and unfolding of 

cotyledons are regarded as part of subsequent growth processes (Bewley and Black, 

1994). Germination in the agronomic view is the whole process of sowing a seed in 

the soil until emergence of a young seedling with cotyledons. The advantage of the 

scientific definition of germination is that it is a clear definition, which is true for all 

seeds and avoids confusion. The disadvantage is the risk, to be looking at processes 

during germination which might as well be related to post-germinative events. 
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Germination itself is projected at a small timescale compared with the larger timescale 

of subsequent growth of the radicle and cotyledons, which also are part of functions of 

the seed. In this thesis the scientific definition of germination is adopted. 

Germination of tomato seeds 

The physiology of tomato seeds has been extensively studied. They have a 

clearly distinguishable morphology and are of convenient size. Tomato seeds are 

therefore an attractive model system to study seed germination and dormancy . 

Radicle 

Endosperm cap 

Embryo 

Testa 

Endosperm Germinated 

Before germination After germination 

Figure 1: Schematic representation of the morphology of tomato seeds. 

Germination of tomato seeds starts with imbibition of the dry seed with water 

and ends with protrusion of the radicle through the endosperm and testa (Figure 1). 

The embryo is surrounded by a rigid endosperm. The part of the endosperm opposite 

the radicle is called the endosperm cap. Radicle protrusion is dependent on weakening 

of this endosperm cap, thereby relieving the radicle from the mechanical barrier. In 

this respect, whether radicle protrusion occurs or not, radicle growth is the net result of 
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its growth potential (protruding force) and the opposing strength of the endosperm 

cap. 

The restraint of the endosperm cap decreases during germination through the 

action of cell wall degrading enzymes of which endo-6-mannanase (EC 3.2.1.78) has 

been most extensively studied (Groot and Karssen, 1987; Karssen et al, 1989; 

Nomaguchi et al, 1995; Nonogaki et al, 1992; Nonogaki et al, 1995; Nonogaki and 

Morohashi, 1996; Nonogaki et al, 1998; Nonogaki et al, 2000; Still and Bradford, 

1997; Still et al, 1997; Toorop et al, 1996; Toorop et al, 2000). Recently, other 

possible candidates contributing to endosperm cap weakening have been reported, 

including expansins which facilitate cell wall extension in the endosperm cap (Chen 

and Bradford, 2000) and polygalacturonase, another cell wall degrading enzyme 

(Sitrit era/., 1999). 

The growth potential of the radicle of fully imbibed seeds depends on the 

water potential Q¥) of the cells within the radicle. The ¥ is composed of an osmotic 

potential Q¥n) and an opposite pressure potential (turgor, Yp). During imbibition of 

tomato seeds *P of the embryo is approximately -1.5 MPa , while the ¥ of the whole 

seeds is in equilibrium with that of the imbibitional solution (Haigh and Barlow, 

1987). Obviously, the radicle is prone to take up water. Uptake of water should result 

in elongation of cells in the radicle and emergence of the radicle through the 

endosperm cap. For cells to elongate, cells walls must become extensible. Expansins 

have been proposed to function as cell wall loosening factors by disrupting non-

covalent linkages (e.g. hydrogen bonds) between cellulose and hemicellulose thereby 

facilitating cell elongation or expansion (Cosgrove, 1998). During germination of 

tomato an expansin (LeEXP8) is expressed in the radicle (Chen and Bradford, 2000). 

These findings indicate that endosperm cap weakening only is not sufficient for the 
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radicle to protrude, as was already hypothesised by Haigh and Barlow (1987). They 

proposed the existence of a genetically regulated, growth enabling, process, 

independent of hydration. 

Dormancy: definitions 

Dormancy can be defined as the inability of a viable seed to germinate under 

conditions favourable for germination. Dormancy can be divided into primary and 

secondary dormancy (Figure 2) (Crocker, 1916; Hilhorst, 1998; Karssen, 1982). 

During development a seed may acquire dormancy. This dormancy is called primary 

dormancy. A primarily dormant seed will not germinate upon imbibition by water. If 

primary dormancy is absent the seed will then germinate upon imbibition by water. 

Primary dormancy can be relieved (broken) in the dry state by after-ripening for 

periods of months to years which is accelerated by elevated temperatures. In the 

imbibed state primary dormancy can be relieved by cold stratification or chilling for 

several days or weeks at (non-freezing) low temperatures. If after breaking of primary 

dormancy, seeds encounter favourable conditions for germination (e.g. light, 

temperature), germination may be completed. If these conditions are not met, seeds 

may enter a new state of dormancy, called secondary dormancy. Secondary 

dormancy, again, can be relieved by cold stratification. In a seasonal pattern seeds 

may switch between states of dormancy and no dormancy, which is called dormancy 

cycling (Karssen, 1982). 

Both types of dormancy are found in tomato seeds. Often freshly harvested 

seed batches contain a certain percentage of primarily dormant seeds. Cold 

stratification is most effective in breaking this dormancy. Secondary dormancy can be 

induced in non dormant tomato seeds by irradiation with farred light. Secondary 
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PRIMARY 

DORMANCY 

NO 

DORMANCY 

DORMANCY CYCLING 

SECONDARY 

DORMANCY 

GERMINATION 

Figure 2: Schematic representation of changes in dormancy. Adapted from Hilhorst (1998). 

dormancy in these seeds can also be relieved by cold stratification (de Castro et ah, 

2001). 

The study of dormancy in tomato may be hampered greatly by what can be 

referred to as the dormancy paradox: Dormant, non-dormant and dead seeds cannot 

be distinguished within the same seed batch. Only when a radicle protrudes from a 

seed, it was obviously alive and non-dormant (in Chapter 2 this paradox is addressed). 

The dormancy paradox not only applies to mixed seed batches with both non-dormant 

and primarily dormant seeds, but also applies to the induction of secondary dormancy. 

Not all seeds within in a seed batch are sensitive to farred light. A certain percentage 

escapes from secondary dormancy induction. Only prolonged periods of incubation 

may distinguish dormant from non-dormant seeds. Furthermore, dormancy is not an 

'all or none' event. It may be argued that difference in germination rate is an 

expression of dormancy. In other words a seed batch may germinate for 100% but still 

possess a certain degree of dormancy. 

Dormancy is an actively maintained arrest of development. Dormant seeds do 

not necessarily 'slumber' in a metabolically low maintained state. Dormant seeds 
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show active respiration and ATP levels which do not distinguish them from their 

germinating counterparts (Derkx et ah, 1994a). Dormant seeds also show a specific 

gene expression pattern (Anderberg and Walker-Simmons, 1992; Bradford et al., 

2000; Goldmark et ah, 1992; Li and Foley, 1995) 

The role of the phytohormones abscisic acid and gibberellins during germination 

and dormancy 

The effects of abscisic acid (ABA) and gibberellins (GAs) on the development 

of seeds and on germination and dormancy have been studied extensively. Despite the 

studies of physiological responses to exogenously applied GA or ABA and knowledge 

derived from hormone mutants, the pathways of ABA and GA action in seeds are far 

from elucidated. Effects of these hormones are also not always unambiguous. The 

application of GA may break dormancy in one species but can be totally ineffective in 

a second species. Notwithstanding the existence of possibly conflicting results, 

several generalisations can be made with respect to the effects of ABA and GA. ABA 

and GA often have counteracting effects: GA stimulates germination or the breaking 

of dormancy, whereas ABA often inhibits germination or induces dormancy. The 

ratio, rather than the absolute amounts of ABA and GA appears to be decisive in the 

developmental state of seeds. This was demonstrated by the suppression of the non-

germinating phenotype of the Arabidopsis GA-deficient mutant, gal, by crossing with 

the ABA deficient mutant abal (Koornneef et al, 1982). Similarly, in maize, the GA-

deficient mutant dl could suppress the mutant phenotype of the ABA deficient vp5 

mutant (White et al., 2000). It has recently been shown that ABA and GA signal 

transduction pathways do interact in controlling the developmental state of seeds. The 

inhibition of GA biosynthesis could mimic ABA regulated accumulation of 
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maturation phase mRNA in cultured embryos of maize (White and Rivin, 2000). 

More convincingly, PKABA1, an ABA induced protein kinase, inhibits the induction 

by GA of the GAMyb transcription factor. GAMyb is involved in the activation of a-

amylase by GA, the enzyme involved in storage food mobilisation in aleurone layers 

of barley (Gomez-Cadenas et al., 2001). When the barley orthologue of SPY 

(responsible for the slender GA response mutant spindly in Arabidopsis) was 

transiendy expressed in barley aleurone layers it was able to abolish oc-amylase 

activity and activate an ABA inducible promoter. SPY is believed to be a negative 

regulator of GA signalling (Robertson et ah, 1998). 

Our current knowledge of the functions of ABA and GA in tomato seeds has 

been mainly derived from studies with the ABA deficient sif mutant and the GA 

deficient gibl mutant. Both mutants have lesions in their hormone biosynthetic 

pathways. In the gibl mutant the activity of the two step conversion of 

geranylgeranylpyrophosphate (GGPP) to ent- kaurene is blocked (Bensen and 

Zeevaart, 1990). In the sif mutant the last step of ABA-biosynthesis via the oxidation 

of ABA-aldehyde to ABA is negatively affected (Sindhu and Walton, 1988). The sif 

mutant seed does not display primary dormancy and seeds may germinate 

vivipariously in the ripe tomato fruit (Groot and Karssen, 1992). Endo-B-mannanase 

activity was higher in endosperm of sif seeds compared to wild type seeds (Hilhorst 

and Downie, 1996) but the AT of the sif embryo was comparable with that of wild 

type seeds (Liu, 1996) during germination, gibl seeds do not germinate in water. 

Exogenously applied GA is required to complete germination. Endo-6-mannanase 

activity is absent during imbibtion of gibl seeds by water but application of GA will 

induce endo-B-mannanase activity (Groot et al., 1988). Also in the gibl mutant the 

AT of the embryo during imbibition with water was unaffected (Liu, 1996). 
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These two mutants have been extensively used as controls for ABA and GA 

directed processes in tomato seeds. Imbibition of wild type seeds in ABA has also 

been used frequently as a control for ABA related processes. Wild type seeds imbibed 

in 10 \iM ABA do not germinate but are not rendered dormant. As soon as seeds are 

transferred to water they resume germination. Only after prolonged incubation seeds 

may acquire secondary dormancy. 

It is clear that GA is involved in germination. However a role for GA in the 

breaking of dormancy has not been convincingly established. GA was unable to relief 

all tomato seeds from primary or secondary dormancy (de Castro et ah, 2001). 

Sensitivity of seeds to ABA or GA is also an important factor. Non-dormant seeds 

may be insensitive to ABA and dormant seeds may be insensitive to GA. Cold 

stratification which can be used to break both primary and secondary dormancy 

apparently sensitises seeds to GA (Derkx et ah, 1994a; Hilhorst and Karssen, 1992). 

From the above it is clear that the action of ABA and GAs in tomato seeds is complex 

and results should be interpreted carefully. 

Variation : the need for non-destructive methods aimed at the single seed 

Variation in nature is omnipresent. Obviously this is also true for seeds. Seeds 

may vary in many aspects such as size, shape, colour, germination rate or depth of 

dormancy. Variation among single seeds is a mechanism to maximise the likelihood 

of survival of the plant's progeny (Benjamin, 1990). Variation can be determined 

genetically or may be caused by micro-environmental influences, which result in 

phenotypic variation. 

Tomato is a self pollinating crop from which the different cultivars are highly 

isogenic. Nevertheless, single tomato seeds may vary greatly in many aspects. This 
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largely phenotypic variation may be due to positional effects of fruits along trusses, 

between trusses, or the position of a seed in a fruit (Demir and Ellis, 1992; Hatcher, 

1940). Existence of large variations among single seeds is apparent first of all from 

the variation in germination rate of the individual seeds. Existence of variation in 

enzyme activity was demonstrated for endo-8-mannanase which diffused from single 

endosperm caps during germination (Still and Bradford, 1997; Still et al., 1997). 

Variation in endo-8-mannanase activity was 4 orders of magnitude in extreme cases 

and 100 fold in most cases. 

Inherent to most methods employed in the study of seed physiology is the 

destructive and averaging nature (seeds are pooled into a sample). Several pitfalls are 

apparent: 1) given the 4 orders of magnitude difference, it is likely that the average of 

the assessed parameter is largely composed of just a few extremes. 2) the direct link 

between the parameter studied and the timing of germination is lost in a destructive 

assay. The observation of germination is limited to germination rate constants such as 

the time point at which the first radicle starts to emerge, percentage of germination, 

the time point at which 50% of seeds have germinated (Tso) or the time point of 

maximum germination. This might hinder the interpretation of events e.g. whether 

they occur prior to or after radicle protrusion (germination related or growth related) 

3) processes which are localised in a small region within the seed and which are 

essential for germination may be totally averaged out and, consequently, disregarded. 

Techniques that aim at localising processes or metabolites within seeds or/and 

are non-destructive might contribute to our understanding of seed performance. Such 

methods, retain both population and single seed information and display a direct link 

to completion of germination of a single seed. Such methods may include 
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immunolocalisation, in situ hybridisation, monitoring of reporter gene activity and in 

vivo imaging of water distribution. 

Outline of the thesis 

Although the experimental work in this thesis differs greatly with respect to 

the employed techniques, all experiments are focussed on using single seed 

techniques in the study of dormancy or germination in tomato seeds. In this way it is 

shown how seed science can benefit from single seed assays. 

Chapter 2 describes how variation between single tomato seeds was studied 

non-destructively with the use of a Cauliflower mosaic virus promoter (CaMV 35S) in 

combination with a firefly (Photinus pyralis) luciferase reporter gene. The dormancy 

paradox is addressed by using luciferase activity as a marker for primary and 

secondary dormancy 

In Chapter 3 luciferase was used to visualise ATP distributions in cryosections 

of tomato seeds either during germination or during primary and secondary dormancy. 

Primarily dormant seeds were separated from germinating seeds by the use of the 

transgenic 35S::luciferase seeds, which were described in chapter 2. 

A turbo spin echo NMR imaging technique was applied in chapter 4 to 

visualise water distributions during germination of single tomato seeds. 

HI linker histones are proteins in the nucleus which play a role in chromatin 

organisation, thereby influencing gene expression. In chapter 5 two functionally 

different linker histones were analysed for expression during germination and 

secondary dormancy. A model is proposed for the regulation of gene expression at the 

level of the chromatin in relation to germination or dormancy. 
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In chapter 6 all results are discussed in relation to each other and current 

opinions in seed physiology. 
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A cauliflower mosaic virus promoter-luciferase reporter 

gene construct as a non-destructive marker in the study of 

variation in timing of germination response to external 

stimuli and dormancy in single tomato seeds (Solarium 

lycopersicum L.) 

P Spoelstra, R. V.L. Joosen and H W. M. Hilhorst 

A combination of a luciferase (firefly) reporter gene and the 35S (CaMV) promoter was transfected to 

tomato (Solarium lycopersicum L.) in order to study the progress of single tomato seed germination in a 

non-destructive manner. Luciferase was mainly expressed in the endosperm cap; gene activity was 

essentially linked to the progress of germination and was used as a marker for variation among single 

seeds. Luciferin uptake was rate limiting in the embryo and not in the endosperm. Variation among 

single seeds was up to 150 fold but did not directly correlate to the germination rates of single seeds. 

Expression of the 35S::luciferase reporter gene could be manipulated in single seeds by ABA and GA. 

Single seeds revealed individual thresholds or sensitivities for ABA and GA and responded in a dose-

response dependent manner. The expression of luciferase was absent in secondarily and primarily 

dormant seeds. This enabled us to non-destructively separate dormant from germinating seeds prior to 

emergence of the radicle from the seed. The use of the luciferase reporter gene in seeds is discussed. 
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Introduction 

Genotypic and phenotypic variation is omnipresent in biology. Obviously this 

is also true for seeds. For example, single seeds from the same ecotype or originating 

from the same plant, vary in their rate of germination, thus spreading emergence over 

time. This seed to seed variation is a biological trait, which is commonly regarded as a 

mechanism to increase probability of survival of plant species through their offspring 

(Benjamin, 1990). Tomato is a self-pollinating crop from which the different cultivars 

are highly isogenic. Notwithstanding this, seed to seed variation in tomato is still 

present. This seed to seed variation in isogenic lines of tomato should be considered 

as largely phenotypic. Phenotypic seed to seed variation might be caused by positional 

effects of the seed within the fruit or the position of that fruit in a truss or the position 

of that truss on the plant (Demir and Ellis, 1992; Hatcher, 1940). 

The study of seed physiology often employs methods which involve pooling 

of seeds into larger samples, from which a physiological parameter is usually assessed 

in a destructive manner. By applying such methods, a direct link with germination of 

that particular sample of seeds is lost; germination can only be described by the 

germination percentage or germination rate of a seed sample in a parallel experiment 

under the same conditions. Both the germination data and the value of the assessed 

parameter are a population average. Population averages give no information about 

the response to a treatment of single seeds within that population. In terms of 

dormancy studies, by pooling seeds in larger samples an additional problem occurs; 

dormant and non-dormant seeds might be pooled within the same sample. In general, 

dormant and non-dormant seeds within a seed batch can only be distinguished after 

incubation under germination conditions. Only when a seed germinates and a radicle 

becomes visible, that single seed was obviously non-dormant. Viable seeds that do not 
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germinate within the boundaries of normal germination time for a certain species must 

then be considered dormant. 

In any seed batch that is studied, seed to seed variation is imminent through 

the variation in germination time of the single seeds. Many biological processes and 

traits underlie this variation in germination time. Every single seed has it own set of 

biological processes and traits, such as, sensitivity to external and internal factors (i.e. 

threshold level), enzyme activities, ATP production and water content, which together 

comprise the processes that underlie germination. 

Study of seed physiology could benefit from experiments which preserve data 

of these processes and combine both population and single seed data (population data 

being simply an average of single seed data). In order to accomplish this, germination 

needs to be studied non-destructively at the single seed level. Only few studies have 

been carried out on germination of single seeds (Jalink et al., 1998; Still and Bradford, 

1997). These studies have reported on seed to seed variation with respect to cell wall 

degrading enzyme activity of endo-6-mannanase (4-5 orders of magnitude 

differences) and chlorophyll fluorescence as indicator of maturity of seeds (100 fold 

differences). In order to monitor single seeds during the progress of germination in a 

non-destructive manner, we transfected tomato plants with a luciferase reporter gene 

fused to a cauliflower mosaic virus promoter (CaMV 35S). 

The CaMV 35S promoter is often used for expression studies of foreign genes 

in plants (Benfey et al, 1989). The firefly luciferase gene encodes a protein which 

catalyses the oxidative decarboxylation of firefly luciferin, using oxygen, ATP and 

Mg2+, thereby releasing a single photon at 562 nm (DeLuca and McElroy, 1974). 

Luciferin is an amphipathic molecule, which can easily penetrate into plant tissues. 

When germinating seeds or plants expressing a luciferase reporter gene are incubated 
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or sprayed with a luciferin solution, photons will be emitted by these seeds or plants 

(Ow et al., 1986). These emitted photons can be spatially and temporally resolved 

with a deeply cooled or intensified CCD camera. In the present study we demonstrate 

the use of a CaMV 35S-luciferase reporter gene construct as a marker for tomato seed 

germination. Luciferase activity from single germinating seeds shows a pattern, which 

is associated with the progress of germination of a single seed. The expression of 

luciferase in seeds is discussed in relation to populations and single seeds that 

germinate or are in a state of dormancy. 
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Experimental procedures 

Plant growth conditions and seed harvesting 

Tomato plants were soil grown in growth chambers at a 16 h light (35 Wm"2) -

25°C, 8 h dark - 19°C regime at a RH of 70 % or in a greenhouse. Tomato fruits were 

picked at the red stage and the seeds and locular tissue were removed from the ripe 

tomatoes by cutting. The locular tissue was digested by adding an equal volume of 2% 

(v/v) hypochloric acid and stirring for 2 hours. Seed were rinsed thoroughly under 

running tap water en transferred onto two layers of filter paper and dried for 3 d at 

35% RH at 21 °C. Dry seeds were either stored at room temperature or at 4°C. 

Induction and of secondary dormancy 

Secondary dormancy was induced in wild-type seeds by far-red (X > 730 nm) 

irradiation for 5 min at hourly intervals during the first 24 h of imbibition at a 

temperature of 21°C followed by incubation in the dark at 25°C for 5 days (de Castro 

et ah, 2001). During this period less than 3% of the seeds germinated. 

Reporter gene construct 

The reporter gene construct was composed of the CaMV 35S promotor (-348 

to +8 sequence; Benfey et ah, 1989; Gardner et ah, 1981) fused to the original 

luciferase coding sequence (de Wet et ah, 1985). In front of the luciferase coding 

sequence an N-terminal SV40 nuclear localisation signal was inserted (van der Krol 
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and Chua, 1991). This construct was ligated into a binary vector, pMON721 and 

transformed to Agrobacterium tumefaciens (Strain ABI). 

Plant transformation 

Transgenic tomato cv Moneymaker (MM) plants were obtained via A. 

tumefaciens mediated transformation of cotyledon explants, as follows: 

Preparing the Feeder Layer 

A 100 mL Petunia albino cobache suspension culture was maintained in 250 

mL erlenmeyer flaks at 25°C under a 16 h light 8 h dark regime on a rotary shaker at 

120 rpm in MS medium (pH 6.0; KOH adjusted) supplemented with 0.5 mg/L BA, 

0.5 mg/L 2,4-D and 30 g/L sucrose. The suspension culture was subcultured every 10 

days by resuspending 50 mL suspension culture into 50 mL of fresh medium. For 

feeder layers, 7-day old suspension cultures were used. Feeder layers were prepared 

by pipetting 2 mL suspension culture into 9 cm petri-dishes containing MS medium 

(pH 5.9; KOH adjusted) supplemented with 2 mg/L NAA, 1 mg/L BAP and 7 g/L 

plant tissue agar. The 2 mL of suspension culture was evenly spread over the medium 

by shaking and covered with a Whatman NR 2 filter paper. Feeder layer plates were 

subsequently incubated for 3 days at 25°C and a 16 h light 8 h dark regime. 

Transformation Procedure 

Moneymaker seeds were surface sterilised in a 15 % (v/v) sodium 

hypochlorite solution for 30 min, rinsed twice in sterile water and subsequently 

germinated in glass jars on MS medium containing 3% (w/v) sucrose under a 16 h 

light, 8 h dark light regime (25 °C). Cotyledon explants were cut from 8 d old 
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seedlings and subsequently co-cultivated on feeder layers of Petunia albino cobache 

cells for 24 h at a 16 h light 8 h dark regime (25°C). After co-cultivation cotyledon 

explants were removed from the feeder layers with tweezers and shortly submerged in 

A. tumefaciens inoculum. The inoculum was prepared by culturing A. tumefaciens 

containing the transformation vector overnight at 28°C in 30 mL of LB medium 

containing 50 (ag/mL kanamycin, 25 |ig/mL chloramphenicol and 30 \ig/mL 

spectomycine to an O.D. of 0.6-1.0. The A. tumefaciens culture was then centrifuged 

at 1600 g for 20 min. The supernatant was removed and the pellet was resuspended in 

30 mL sterilised Millipore water. After inoculation cotyledon explants were blotted 

for 15 min on sterile filter paper and transferred back to the feeder layer and incubated 

for another 48 h at a 16 h light 8 h dark regime (25°C). The cotyledon explants were 

then transferred to an MS medium (pH 5.9; KOH adjusted) containing 20 g/L sucrose, 

200 mg/L carbenicillin or cefotaxin, 200 mg/L vancomycin, 150 mg/L kanamycin, 2 

mg/L zeatin and 1.8 g/L Phytagel (Sigma Aldrich) and incubated at 25°C at a 16 h 

light 8 h dark regime. After 3-6 weeks, callus was observed and also small shoots of 

1-2 mm in length. Both callus and attached shoots were transferred to fresh medium. 

Shoots which reached a length of > 1.5 cm were transferred to MS medium containing 

20 g/L sucrose, 200 mg/L carbenicillin or cefotaxin, 200 mg/L vancomycin and 1.8 

g/L phyta-gel (Sigma Aldrich). Shoots which formed roots were sprayed with 0.1 mM 

luciferin (Molecular Probes) solution containing 0.01% (v/v) Tween 80 and were 

tested for luciferase expression with an intensified CCD camera (Hamamatsu 

Photonics Corp., Japan). Transgenic plantlets (i.e. the primary transformant), 

expressing luciferase were transferred to soil. Seeds were harvested from the primary 

transformants (To). Ti plants were analysed via southern blotting for the number of 

reporter genes inserted into the genome. Luciferase expression during germination 
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was also tested for the different transgenic seed populations. A transgenic line was 

selected with highest luciferase expression during germination, displaying two copies 

of the transgene on southern blots. A homozygous line was obtained in the fifth 

transgenic generation (T5). 

Measurement of luciferase expression in situ 

In all experiments transgenic seeds were imbibed in 0.1 mM luciferin 

(Molecular Probes). Seeds were imbibed in 2.5 mL luciferin solution in 5 cm 0 

plastic containers on 3 layers of filter paper. Alternatively seeds were imbibed in 10 

mL luciferin solution in 12 cm glass petri-dishes on 3 layers of filter paper. To 

minimise reflection of emitted photons on the filter paper the top filter paper was a 

black coloured filter paper (Whatman NR 9). For in situ measurement of luciferase 

expression seeds were germinated in a transparent incubator at 25°C (SI60 Total 

Visibility Incubator, Stuart Scientific Co. Ltd, UK). Alternatively seeds were imbibed 

in 2.5 mL 0.1 mM luciferin solution supplied with 10 p.M ABA, GA4+7, 500 lig.ml"1 

cordycepin or 400 pg.ml"1 cycloheximide. 

Photons emitted by seeds were spatially resolved with a liquid nitrogen cooled 

back-thinned CCD camera (Princeton Instruments Versarray™ 512B, Roper 

Scientific) operated via Metamorph 4.1 (Universal Imaging Corp.) software. Sixteen 

bit monochrome images were generated by on chip integration for 15 or 30 min of 

photons emitted by single seeds. Images of photon emission from seeds were analysed 

for average pixel value using Metamorph 4.1 (Universal Imaging Corp.). The pixel 

values within those images are a direct measurement of the activity of the luciferase 

protein present in seeds. Luciferase activity in all figures is expressed in arbitrary 
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units (AU). Time lapse measurements were performed by generating 1 or 2 images 

every hour during a 2-3 days period, depending on the nature of the experiment. 

Luciferase extraction and in vitro assay 

Ten seeds were frozen in liquid nitrogen and ground with 2 chrome-vanadium 

bullets (0 4 mm) in a 2.2 mL Eppendorf tube on a Braun Biotech Int. Mikro-

Dismembrator U, at 1600 rpm for 3 minutes. The ground sample was suspended in 

500 |iL ice cold extraction buffer (0.25 mM Tris HC1 pH 7.8, 2 mM EDTA, 10 % 

glycerol (v/v), 1 % (v/v) Triton x-100 and 2mM DTT). The extracts were then 

centrifuged at 16000 g for 5 min. The supernatant was removed (i.e. enzyme extract) 

and then immediately frozen into liquid nitrogen in 2 aliquots of 200 |iL. 

The protein content of the extracts was determined with a Pierce, BCA protein 

kit in triplicates of 10 (iL samples of the extract mixed with 100 uL of the BCA 

mixture. Absorption was measured on a Mios Mercks, MR 7000 Dynatech multiwell 

reader at a wave length of 550 nm. 

Luciferase activity of the protein extracts was determined with a 

bioluminescence assay and a Labsystems Luminoskan DS luminometer. The assay 

buffer (pH 7.8) consisted of 20 mM tricine, 5 mM MgCl2, 0.1 mM EDTA, 3.3 mM 

DTT, 500 p.M ATP (Boehringer) and 500 uM luciferin (Molecular Probes). 

Triplicates of 10 pL of the protein extract were pipetted into white microtiter plates 

(Solid White, 96-Well, Costar) and 50 uL of assay buffer was injected into individual 

wells automatically and photon emission measured for 10 sec. 
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RNA isolation, reverse transcriptase PCR and hybridisation 

RNA isolation was modified from Wan and Wilkins, 1994. Ten seeds were 

frozen into liquid nitrogen and ground with 2 chrome-vanadium bullets (0 4 mm) in a 

2.2 mL Eppendorf tube on a Braun Biotech Int. Mikro-Dismembrator U, at 1600 rpm 

for 3 minutes. The ground sample was suspended in 700 (iL hot borate buffer (80°C) 

containing, 0.2 M sodium borate decahydrate, 30 mM EGTA, 1 % SDS (w/v), 1% 

sodium deoxycholate (w/v), 2% (w/v) PVP (Mr 44000) and 10 mM DTT. The sample 

was then transferred to a 2.2 mL Eppendorf tube, containing 0.35 mg proteinase K 

and incubated in a water bath at 42°C for 1.5 h. After adding 55 pX 2 M KC1 and 

subsequent incubation on ice for 1 h, samples were centrifuged at 12000 g for 20 min 

at 4°C. The supernatant was transferred to a 15 mL tube and 270 pL 8 M LiCl was 

added, after which samples were incubated overnight at 4°C. Samples were then 

centrifuged at 12000 g for 20 min at 4°C and the pellet was resuspended in 1 mL ice 

cold 2 M LiCl and subsequently centrifuged at 10000 g for 10 min at 4°C (the latter 2 

steps were performed twice). The pellet was then resuspended in 400 pL 10 mM Tris-

HC1 and remaining debris was spun down by centrifugation at 12000 g for 10 min at 

4°C. The supernatant, containing the RNA was transferred to a 15 mL tube and 40 pL 

2M KAc was added for incubation on ice for 15 min, followed by centrifugation at 

12000 g for 10 min at 4°C. The RNA in the supernatant was precipitated with 1.3 mL 

ethanol and incubated overnight at -20°C, which was followed by centrifugation at 

11000 g for 30 min at 4°C and a washing step with 70% ethanol and subsequent 

centrifugation at 11000 g for 30 min at 4°C. The remaining pellet was dried in a speed 

vacuum rotor and subsequently suspended in 40 pL RNase free water. The RNA 

amounts in the extracts were quantified in a Phamacia GeneQuant RNA/DNA 

Calculator (Pharmacia/ LKB Biochrom Ltd. model 80-2103-98) and stored at -80°C. 

22 CHAPTER 2 



RNA samples were DNase treated with 2U DNase (Boehringer) and 20 U 

RNAsin (Gibco BRL Life Technologies). The remaining RNA was quantified with 

the GeneQuant and on a 1.5% agarose formaldehyde gel. First strand cDNA was 

synthesised from 2.5 ug RNA using reverse transcriptase with Oligo(dT) primers 

(Superscript1"1 Preamplification System for First Strand cDNA Synthesis Gibco/BRL 

Life Technologies). PCR reactions were performed on cDNA samples with luciferase 

specific primers. Samples were taken after 26 and 30 cycles. Equal amounts of PCR 

samples were subsequently run on 1.5 % agarose gel and blotted onto nylon 

membrane followed by hybridisation according to the manufacturers instructions 

(GeneScreen Plus, Life Science Products). Blots were incubated on phosphor screens 

for several hours and scanned on a Molecular Dynamics Storm 840 phosphor imager 

(Molecular Dynamics Storm 840). The signal was quantified using Metamorph4.1 

(Universal Imaging Corp.) and intensities were corrected with intensities of ribosomal 

bands of the corresponding RNA samples on an ethidium bromide gel. 
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Results and discussion 

Luciferase activity is located in the endosperm 

The expression of the 35S::luciferase reporter gene was monitored during the 

course of germination of tomato seeds. Germination of tomato seeds is believed to be 

controlled by the endosperm cap opposing the radicle tip. In this respect germination 

is a result of the net force of radicle protrusion and endosperm cap restraint. The 

endosperm cap is anatomically different from the rest of the endosperm and shows 

tissue specific gene expression (Chen and Bradford, 2000). This is also true with 

respect to luciferase activity, which was strongest in the endosperm cap and of lower 

intensity in the lateral endosperm. For the experiments described in this paper we 

have chiefly utilised a transgenic 35S::luciferase tomato homozygous line with strong 

expression levels and with 2 segregating copies of the transgene present. Seeds which 

were imbibed in 0.1 mM luciferin and dissected into endosperm cap, lateral 

endosperm and embryo displayed a very low luciferase activity in the embryo and in 

the lateral endosperm (Figure 1A). Other lines originating from the same primary 

transformant were also tested. Single copy lines displayed a luciferase activity which 

was a factor 100 lower compared with double copy lines (possibly due to position 

effects). Seeds with 2 copies of the transgene which were still hemizygous, imbibed in 

0.1 mM luciferin did display luciferase activity in the embryo when dissected and 

placed on a 0.1 mM luciferin solution. Dissecting the embryo from these seeds during 

imbibition in 0.1 mM luciferin and placing the embryo on water instead of luciferin 

showed that luciferin is a limiting factor for luciferase activity in the embryo (Figure 

IB). It is known that the endosperm limits the uptake of water by the embryo (Haigh 

and Barlow, 1987); obviously this is also true for luciferin. In intact seeds activity in 
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Figure 1: A) (lower panel) Luciferase activity in the lateral endosperm (end) the endosperm 
cap (ec) and the embryo (em) of homozygous 35S::luciferase tomato seeds imbibed in 0.1 
mM luciferin. (upper panel) Corresponding bright field image of dissected tomato seed. B) 
(lower panel) Effect of luciferin supply to dissected embryo's of hemizygous 
35S::luciferase tomato seeds. Tomato seeds were imbibed in 0.1 mM luciferin, dissected 
and placed either on water (-luciferin) or on 0.1 mM luciferin (+ luciferin). (lower panel) 
Corresponding bright field image of embryo's of the dissected tomato seed. C) Effect of 
luciferin and wound response on luciferase activity in lateral endosperm (end) and 
endosperm cap (ec) from dissected homozygous tomato seeds (lower panel) and intact 
tomato seed (upper panel). Tomato seeds were imbibed in 0.1 mM luciferin, dissected and 
placed either on water (-luciferin) or on 0.1 mM luciferin (+luciferin). See also Colour 
Pages. 
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the embryo was not detected (or was masked by activity from the endosperm). 

Luciferase activity in the endosperm was affected by dissection of seeds but this 

increase in activity was independent of luciferin (Figure 1C) and more likely a wound 

induced activity increase (van Leeuwen, 2001). Independent of copy number of the 

transgene, either present homozygously or hemizygously, all seeds displayed the 

highest luciferase activity in the endosperm cap with a similar increase during 

germination (see below). 

The average luciferase activity of single seeds as shown in this paper is 

largely accounted for by activity that resides in the endosperm caps of single seeds. 

Given the regulating role of the endosperm cap in germination of tomato seeds and 

the strict relation between luciferase activity and germination (see below), the 

35S::luciferase reporter gene is an excellent marker for germination. 

Luciferase activity was not detected direcdy upon imbibition of transgenic 

35S::luciferase seeds in 0.1 mM luciferin. We designated the period without activity 

as 'delay time'. The onset of luciferase activity marked the end of the delay time. 

Luciferase activity onset was determined for single seeds in time-lapse images by 

calculating pixel intensity S/N ratios. Seeds with pixel intensities higher than 1.5 

times the background noise, in three subsequent time-lapse images, were considered 

luciferase activity-positive. With the progress of germination of a single seed, 

luciferase activity showed a sigmoid curve (R2 = 0.99) during germination and 

reached a maximum at the point at which the radicle tip penetrated the endosperm cap 

and protruded (Figure 2). The shape of the luciferase activity curve during 

germination was similar among all germinating seeds. Nevertheless, the intensity of 

the luciferase activity originating from single seeds varied considerably (see below). 
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Imbibition interval (h) 

Figure 2: Typical luciferase activity curve during germination of a single tomato seed. Indicated is 
the delay time (= time between start of imbibition and start of luciferase activity) with a length of 6 
h and the point at which the tomato seed completed germination (the arrow at maximum luciferase 
activity). 

Luciferase activity depends on transcription and translation 

The changes in in vivo luciferase activity correlated well with luciferase 

mRNA accumulation, determined via RNA extraction and RT-PCR with luciferase 

specific primers and with the increase in extractable luciferase protein levels. 

Luciferase mRNA and protein were extracted from populations of 10-25 seeds after 0, 

6, 12, 17, 24 and 48 h of imbibition. Luciferase protein could be extracted in small 

amounts from dry seeds. At 6 h of imbibition the extractable luciferase protein levels 

had increased slightly. Both extracted and in situ luciferase activity increased during 

the remaining time of imbibition. (Figure 3B). mRNA accumulation also increased 

during imbibition; however the levels decreased during the first 10-12 h. (Figure 3C) 

of imbibition. Possibly, luciferase mRNA was conserved during late maturation and 
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desiccation. Apparently luciferase mRNA is part of a class of residual RNA's which 

are preserved during desiccation but are degraded during early imbibition (Bewley 

and Black, 1994). With de novo synthesis of mRNA's during imbibition luciferase 

mRNA re-appeared in the seed. Luciferase activity could be strongly reduced by 

inhibiting transcription with 500 ng.mL"1 cordycepin and translation with 

400 (ig.mL"1 cycloheximide (Figure 3D) during imbibition. It can be concluded that 

luciferase activity depended both on transcription of the luciferase gene and 

translation of luciferase mRNA. 

The start of in vivo luciferase expression, mRNA accumulation and increase in 

extractable luciferase protein, corresponded approximately with the time point at 

which tubulin protein accumulation was first detected during germination of tomato 

seeds (12h of imbibition; de Castro, 1998). At this time point seeds have reached their 

full water potential and metabolic activity (Dahal et ah, 1996; Haigh and Barlow, 

1987). In this respect this period might also reflect the uptake of luciferin by the 

endosperm cap. This period in which catabolic processes start in the imbibing seeds 

varied in length between seed batches and single seeds (see next section). 

Figure 3: Comparison between in vivo luciferase activity (A), extractable luciferase protein (B) 
and luciferase mRNA levels (C) from populations of tomato seeds during germination. 
D) Effect of inhibition of transcription with 500 ug.mL"1 cordycepin (CP) and translation with 400 
Hg.mL"1 cycloheximide (CHX) on luciferase activity at 36 h of imbibition. 
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Variation in the length of the delay time 

All single seeds within a seed batch showed a delay in the onset of luciferase 

activity. This might indicate that full start of metabolic activity varied among 

germinating seeds. A logical assumption would be, that seeds with an early start of 

metabolic activity (i.e. a short delay time), might have progressed faster through 

germination, compared to seeds with a later start of gene expression. In order to test 

this hypothesis the delay time of seed batches and single seeds were compared with 

the time to radicle protrusion. 

Seeds from greenhouse grown plants harvested in 1998 were used to 

determine the variation in length of this delay time. The delay time of 244 single 

seeds was determined. The average delay time in this seed batch was 8.5 h. The delay 

time of single seeds within a seed batch showed a log-normal distribution (Figure 4). 

This frequency distribution diagram was used to separate the population into 3 sub-

populations; seeds with a delay time shorter than ([J-a) (average minus standard 

deviation), seeds with a delay time between (\l-a) and (jJ+a), and seeds with a delay 

time longer than (p+a). Seeds from these 3 sub populations did not differ 

significantly in average time to germination (Tg, Figure 4). Imbibition of seeds in 10 

uM ABA or GA4+7 to respectively inhibit or promote germination did not have an 

effect on the average delay time (data not shown). 

Distribution of luciferase activity among single seeds of a population imbibed in 

water, ABA or GA 

Single seeds varied considerably in their in vivo luciferase activity during 

germination. The variation of in vivo luciferase activity between single seeds within 
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Figure 4: Frequency distribution of delay time of 244 single tomato seeds plotted on a log time 
scale. The total population is divided into 3 sub-populations: tomato seeds with an delay time 
below (\i-a), between (u-a) and (u+a) and above (u+a). The average time to germination (Av Tg) 
is indicated for these 3 sub-populations. 

the same seed batch was 3 to 150 fold at different time points of imbibition. 

Nevertheless this large variation did not results in aberrant averages of luciferase 

activity of populations of seeds due to a few seeds with extreme high luciferase 

activity (thus skewing the average), as was hypothesised by Still and Bradford (1997). 

This was also illustrated by the fact that luciferase activity in a population of seeds 

showed a log normal distribution (Figure 5), thus seeds with extreme high luciferase 

activity are present within the distribution at low frequencies. Still and Bradford 

(1997) detected an even larger variation between single seeds with respect to endo-6-

mannanase activities (100 to 10.000 fold). Seeds showing high in vivo luciferase 

activity might represent that part of the seed population which has furthest progressed 

in germination (e.g. luciferase expression increases with progress of germination) as 

compared to seeds with low activity. In other words, luciferase activity of a single 
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Figure 5: Log-frequency distribution of luciferase activity of 255 tomato seeds at 24 h of 
imbibition. The total population is divided into 3 sub-populations: Tomato seeds with an luciferase 
activity below (p-a), between (p-a) and (|J+a) and above (jJ+a). The average time to germination 
(Av Tg) is indicated for these 3 sub-populations 

seed might be a reflection of the speed of germination of that single seed. If so, 

plotting luciferase activity of single seeds on a biotime scale (Bradford and Trewavas, 

1994) is expected to even out the observed variation. Variation in luciferase activity 

might also be an intrinsic variation between single seeds in their gene expression. 

Plotting luciferase activity of single seeds during germination on both a biotime scale 

(normalized time scale for each single seed in which time point of germination equals 

1 and start of imbibition equals zero) and a relative luciferase scale showed that, 

besides timing differences, single seeds also had an intrinsic variation in luciferase 

activity independent of germination (Figure 6B). The lack of a simple correlation 
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between luciferase activity of a single seed and time point of germination (Tg) is 

consistent with data of Still and Bradford (1997) who did not find a correlation 

between endo-B-mannanase in single seed endosperm caps and germination. 

However, the authors applied a destructive method in their study. It is interesting to 

note that preliminary results have shown that no relation existed between luciferase 

activity in endosperm caps and endo-6-mannanase activity within that same 

endosperm cap (Spoelstra, unpublished results). Seeds with high luciferase activity 

& 5 

0 10 20 30 40 50 60 70 

Imbibition interval (h) 

Biotime scale (relative units) 

Figure 6: Luciferase activity of single tomato seeds from start of imbibition to time point of 
germination (T0- Tg) plotted on a luciferase activity scale (A) and on both a normalized luciferase 
activity scale and biotime scale (B) (normalized time scale for each single tomato seed in which 
time point of germination equals 1 and start of imbibition equals zero). 
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did not necessarily have high endo-6-mannanase activity and vice versa. 

Possibly due to the combination of timing and intrinsic variation in luciferase 

activity, only a correlation between luciferase activity and speed of germination 

existed when considering population extremes (i.e. extremely low or high luciferase 

activity). A frequency diagram of luciferase activity at 24 h (at least 10 h before the 

first seeds had completed germination), was plotted (Figure 5). The frequency 

distribution diagram was used to divide the whole tested population of seeds into 3 

sub-populations (see previous section). The average time to germination of the outer 

extreme populations differed 10 h, which was tested significantly different with a 

student's-t-test (p< 0.05; confidential interval 5%). The average Tg of the population 

of seeds with luciferase activity between (p-o~) and {\i+o), did not differ significandy 

from the other 2 sub-populations (Figure 6). These results were comparable to the 

sorting of single Brassica seeds into 3 sub-populations based on their individual 

chlorophyll fluorescence. Seeds with low and intermediate chlorophyll fluorescence 

did not differ in germination rate, but seeds with extremly high fluorescence showed 

an average germination rate which was significantly lower (Jalink et ah, 1998). 

Germination of tomato seeds can be stimulated by GA4+7 and inhibited by 

ABA. We tested the effect of 10 |iM ABA or GA4+7 in the imbibition solution, on the 

luciferase activity during germination. 10 |iM ABA fully inhibited germination and 

also lowered luciferase activity and mRNA accumulation (Figure 7). The stimulating 

effect of 10 pM GA4+7 on T50 of a population of 150 seeds (Time to 50% germination, 

45 h vs. 52 h in water) coincided with an increased luciferase activity and luciferase 

mRNA accumulation (Figure 7). The fact that the average luciferase activity increased 

or decreased through exogenously added GA or ABA does not provide information on 

how single seeds respond to GA or ABA. According to Bradford and Trewavas 
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Figure 7: The effect of 10 uM GA4+7 or ABA on the luciferase activity of a population of 150 
tomato seeds during imbibition. GA^ stimulated both germination and the luciferase activity. 
ABA fully inhibited germination and lowered the luciferase activity. Insert shows corresponding 
mRNA accumulation at 48 h determined through RT- PCR with luciferase specific primers. 

(1994), single seeds have different individual threshold levels (i.e. sensitivities) to 

hormones such as GA. With increasing concentrations of GA more seeds will 

respond. Once stimulated above the threshold level a single seed might respond 

linearly to GA over a limited concentration range. Thus increase in response of single 

seeds to GA and recruitment of additional seeds compose the dose response curve 

(Bradford and Trewavas, 1994). We have tested how single seeds respond to an 

increasing concentration of GA. A population of 25 seeds showed a dose response 

dependent increase in luciferase activity with increasing GA concentrations (Figure 

8A). A frequency diagram was plotted for 150 single seeds which were imbibed in 

water or 10 |iM GA»+7 (Figure 9). In the presence of 10 |iM GA4+7 the distribution 
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Figure 8: A) (•) Dose response curve of luciferase activity of tomato seeds at various GA^ 
concentrations (1, 10, 25 & 100 uM). (A) Dose response curve of luciferase activity of tomato 
seeds which had a below average luciferase activity. B) (T) Linear dose response curve of 
luciferase activity of tomato seeds which had an above average luciferase activity. 

became skewed towards higher luciferase activities. At a concentration of 10 (iM 

GA4+7 the response in luciferase activity was not maximal (Figure 8A). This indicates 

that not all seeds responded to this concentration of GA (i.e. the threshold in 

sensitivity was not exceeded for all seeds) and does explain the skewed frequency 
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distribution. Seeds with a threshold sensitivity below 10 \iM GA4+7, in theory, have an 

increased luciferase activity in contrast with the remaining part of the population 

which threshold sensitivities lie above 10 (iM. We therefore hypothesise that seeds 

which have a lower sensitivity threshold should have higher luciferase activities in 

presence of 10 |iM GA4+7 in contrast with seeds with thresholds in excess of 10 |iM 

GA4+7. Seeds with a below population average showed a sigmoid response to 

increasing GA4+7 concentration (Figure 8A). Seeds with an above average luciferase 

activity responded in a linear fashion to increasing GA4+7 concentrations (Figure 8B). 

These observations were consistent with the theory of Bradford and Trewavas (1994). 

The dose response curve of luciferase activity is composed of both the linear increase 

in activity of responsive seeds and the growing number of seeds which become 

responsive. 

0.0 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 3.0 

Log Luciferase activity (AU) 

Figure 9: Frequency distribution diagrams of luciferase activity of 150 tomato seeds at 36 h of 
imbibition in water (A) and 10 uM GAi+7 (B). 
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Luciferase activity is absent in seeds with primary and secondary dormancy. 

Tomato seeds, which are freshly harvested often exhibit dormancy, which is 

called primary dormancy (Crocker, 1916; Karssen, 1982). This type of dormancy can 

be overcome by cold-stratification in the imbibed state, but also by after-ripening over 

a period of months in the dry state. Dormancy can be reinduced in non-dormant 

tomato seeds, by applying irradiation with far-red light. This reinducible dormancy is 

called secondary dormancy, which can be broken by cold-stratification (de Castro et 

ah, 2001). A freshly harvested seed batch can be a mixture of primarily dormant seeds 

and non-dormant seeds. Luciferase activity was monitored in such seed batches. 

Primarily dormant seed could be distinguished from germinating seeds, by absence of 

luciferase activity at 48 h of imbibition. Seeds that showed activity all germinated. 

Also secondarily dormant seeds did not reveal any luciferase activity. Absence of 

luciferase activity in dormant seeds corresponded to very low levels of extractable 
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Figure 10: Comparison between extractable luciferase protein levels in secondarily dormant (s.d.), 
primarily dormant (p.d.) and germinating tomato seeds (48 h germ). Dormant tomato seeds were 
extracted 48 h after start of imbibition. 
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luciferase protein, compared to germinating seeds at 48 h of imbibition (Figure 10). 

The non-destructive detection of luciferase activity has enabled us to 

distinguish between dormant and germinating seeds in a seed batch prior to visible 

radicle protrusion of the germinating seeds. To our knowledge, this has not been 

reported in literature before. Only with NMR imaging of water distribution 

differences between non-germinating and germinating seeds were detected non-

destructively (Hou et al., 1997). Dormant and germinating seeds, selected through 

Detection of luciferase activity revealed physiological differences in further 

investigations (see Chapter 3 of this thesis). 

Concluding remarks 

We have demonstrated the use of a non-destructive technique to monitor the 

germination of single tomato seeds. The 35S::luciferase was primarily expressed in 

the endosperm cap. Variation of luciferase activity among single seeds was large and 

only showed a weak relationship with germination performance of a single seed. It 

may be expected that the study of a single parameter in relation to germination 

performance will not reveal such a possible relationship. Many other parameters are 

involved and intrinsic variation combined with variation due to timing differences will 

obscure the (possible) relationship. Also the length of the delay time of a single seed 

(i.e. start of luciferase activity) did not relate to germination performance of a single 

seed. This indicates that the time point of full commencement of metabolism in single 

seeds is independent of the time point of germination. 

In terms of usage of luciferase as a reporter gene coupled to seed or plant 

specific promoters, limited uptake of luciferin by the embryo is likely to interfere with 

correct interpretation of the results. It is therefore concluded that luciferase as a 
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reporter gene has only a limited application in the study of gene expression in seeds 

due to limitation of luciferin uptake by the embryo. 

We have demonstrated that single tomato seeds most likely display individual 

responses to stimuli, such as hormones. These individual responses consist of a 

unique threshold and linear dose response action on addition of GA. 

The monitoring of luciferase activity in partly dormant seed batches will be 

useful in studies in which dormant and germinating seeds need to be separated prior to 

radicle protrusion. In chapter 3 of this thesis, this method is employed in the study of 

distribution of ATP in dormant and germinating seeds. 
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Dormant and germinating tomato seeds 

(Solatium lycopersicum L.) show a different distribution of 

ATP in the embryo 

PSpoelstra, R.V.L. Joosen, L.H.W. van derPlas andH.W.M. Hilhorst 

The distribution of ATP in tomato seeds was visualised using firefly luciferase and an 

intensified CCD camera. The distribution of ATP was imaged in germinating tomato 

seeds at intervals of 3, 6, 17, 24 or 48 h and in seeds in state of primary or secondary 

dormancy. Germinating seeds showed a distribution of ATP with highest ATP 

concentration located in the radicle. In contrast to germinating seeds, ATP was 

distributed more evenly in dormant seeds. It was shown that total ATP concentrations 

in seeds may not be related to the occurrence of germination. Distribution within the 

seed can be related to the occurrence of germination. 

Accepted for publication in Seed Science Research 
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Introduction 

ATP is the main energy source for biological processes, including seed 

germination. In the quiescent dry seed, the adenosine phosphate pool is mainly 

composed of AMP and ADP (Bewley and Black, 1994). ATP is synthesised rapidly 

upon water uptake and resumption of metabolic activity in the seed. ATP is essential 

for germination and is used in anabolic processes such as RNA and protein synthesis 

(Coolbear et al, 1990; de Castro et al., 1995). 

Dormancy is often observed in seeds of wild species but despite extensive 

breeding, dormancy can also occur in cultivated species, such as tomato (Benjamin, 

1990; Still et al., 1997). Obviously, mechanisms which control seed dormancy are 

still present in cultivated species. The complexity of factors that impose or underlie 

seed dormancy has led to the fact that there is no unambiguous definition or 

classification of seed dormancy. Many authors have adopted the classification into 

primary and secondary dormancy (Karssen, 1982). Seeds may acquire primary 

dormancy towards the end of development and start of desiccation on the mother 

plant. Seeds that disperse from the mother plant can either be non-dormant or 

primarily dormant. Freshly harvested seed batches of tomato may contain seeds in a 

state of primary dormancy (de Castro, 1998; Still and Bradford, 1997). Such a batch is 

therefore a mixture of dormant and non-dormant seeds. This primary dormancy 

disappears within months of after ripening in the dry state, or can be relieved by cold 

stratification of seeds in the imbibed state. If non-dormant imbibed seeds receive 

external signals, which inhibit germination, these seeds may acquire secondary 

dormancy. Cold stratification is also efficient for relieving seeds from secondary 

dormancy. Secondary dormancy can be induced in tomato by far red light irradiation 

(de Castro et al., 2001). 
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Dormant seeds show active gene expression, protein synthesis and ATP 

accumulation (Goldmark et al, 1992; Li and Foley, 1995). This clearly indicates that 

dormancy is an actively maintained physiological state in seeds. Dormancy may be 

considered as a mechanism to survive prolonged periods of unfavourable conditions. 

Evidently energy expenditure in the dormant state is expected to be low. The extent to 

which dormant seeds synthesise ATP, has been subject of several studies. Changes in 

dormancy do not necessarily coincide with changes in respiratory activity or ATP 

synthesis (Derkx et al., 1994a). 

The firefly luciferase-luciferin (Photinus pyralis) system has proven to be a 

helpful tool in plant and animal science (Aflalo, 1999). Luciferase catalyses the 

decarboxylation of luciferin, it thereby consumes ATP and oxygen and generates a 

photon (562 nm). The number of emitted photons is a direct measurement of the 

number of ATP molecules that were converted to AMP and PP,. The luciferase-

luciferin system has been used in plant and animal research in three ways: 1) It has 

been used to measure ATP in extracts of plant tissues. 2) It has been used as a reporter 

gene for studying expression of native genes in plants and animals (van der Krol and 

Chua, 1991; van Leeuwen et ah, 2000). 3) Walenta and co-workers (1990) devised a 

method based on the luciferase-luciferin system to spatially resolve ATP distributions 

in cryosections of tumour spheroids. In the present research we utilised the luciferase-

luciferin system in two ways. First we have non-destructively monitored the 

expression of the CaMV 35S promoter-luciferase reporter gene to distinguish between 

dormant and non-dormant seeds of tomato (Chapter 2) and, subsequently, spatially 

resolved ATP distributions in cryosections of these seeds. 

43 IMAGING OF ATP 



Material and methods 

Seed material 

Wild-type, cv. Moneymaker and transgenic 35S::luciferase seeds (Chapter 2) 

were used for ATP imaging. Wild-type tomatoes were harvested in 1991 and 

transgenic tomatoes in 1999. Seeds were extracted from ripe tomatoes and stirred in 

1% (v/v) HC1 for 2 h to remove locular tissue, dried and stored at 5°C. For 

germination experiments 25 seeds were imbibed in 1 mL distilled water in 50 mm 

Petri-dishes on 1 layer of filter paper (Schleicher & Schuell no. 595). Seeds were 

imbibed in water for 3, 6, 17, 24 or 48 h. During imbibition seeds were kept in the 

dark at a temperature of 25°C. 

Induction and relief of secondary dormancy 

Secondary dormancy was induced in wild-type seeds by far-red (X > 730 nm) 

irradiation for 5 min at hourly intervals during the first 24 h of imbibition at a 

temperature of 21 °C and subsequent incubation in the dark at 25°C for 5 days (De 

Castro, 2001). During this period less than 3% of the seeds germinated. In order to 

break secondary dormancy, seeds were given a cold treatment of 3 days at 4°C, after 

which the seeds were transferred to 25°C in the dark and left to germinate for 24 h. 

Measurement of luciferase expression in seeds 

25 Transgenic seeds containing the CaMV 35S-luciferase construct were 

imbibed in 2.5 mL of a 0.1 mM luciferin solution (Molecular Probes) in 5 cm 0 

plastic containers on 3 layers of filter paper. Photons emitted by seeds were spatially 
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resolved with a liquid nitrogen cooled CCD camera (Roper Scientific, Princeton 

Instruments -Versarray-512B) operated via Metamorph 4.1 (Universal Imaging Inc.) 

software. At 48 h of imbibition seeds with primary dormancy were selected by 

absence of luciferase activity. 

Imaging of ATP distribution in cryosections of tomato seeds 

Visualisation of ATP is based upon the reaction of firefly luciferase and 

luciferin with ATP, O2 and Mg2+. The reaction generates oxyluciferin and photons 

with a wavelength of 562 nm at a pH of 7-8. The number of emitted photons is 

directly related to the number of ATP molecules converted into AMP and PPi 

(stoichiometry of 1:1). 

Imbibing seeds were frozen in liquid nitrogen and 20 \im median sections 

from 10 seeds per imbibition interval were cut on a cryostat (Microm CR50 H, bio-

med, Heidelberg, Germany) at -20 °C with a steel knife. Sections were collected on 

glass slides with a frozen film of 50 nL of buffered gel containing luciferase and 

luciferin. This gel (see also Walenta et al., 1990) consisted of 6% gelatin (w/v) and 

300 mM glycerol, 200 mM Hepes (pH 7.75), 100 mM disodium hydrogen arsenate, 

3% polyvinylpyrolidone (Mr 44000; w/v), 10 mM MgC^, 1 mM luciferin and 2 U/L 

luciferase (Boehringer, Mannheim, Germany). The glass slides with the cryosections 

were kept frozen until measurement. At the beginning of the measurement 

cryosections were thawed within a few seconds. ATP molecules from the thawed 

cryosection reacted with luciferin and luciferase in the gel. The patterns of emitted 

photons were captured with an intensified 16 bit CCD camera, with a 50 mm lens 

(Nikon) and 70 mm c-mount extension tubes (Argus-50/2D-luminometer, 

Hamamatshu), in slice mode at a gain of 9.8. Although the reaction continued for a 
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period of about 20 min, emitted photons were only integrated during the first 3 min. 

Prolonged measurements lead to a distorted image of ATP distribution due to 

diffusion of ATP through the gel. 

Calibration and data analysis 

The pixel intensities in 16 bit monochrome images of the bioluminescence 

reaction were measured with the use of Metamorph 4.0 (Univeral Imaging Inc.). The 

intensity of the bioluminescence reaction was calibrated to ATP concentrations, using 

frozen filter paper discs (0 2.5 mm) with l|aL of ATP solutions ranging from 25 to 

450 mM. The discs were placed on top of the reaction gel (Figure 1). Photon emission 

was integrated during the first 3 min and the bioluminescence intensity was quantified 

in the radicle and whole sections. 

Statistical analysis of the data was performed via a paired sample student's t-

test (comparison of ATP distribution differences within seeds) or independent sample 

student's t-test (comparison of ATP distribution differences between seeds of 

different imbibition intervals) at a confidence level of 95% with the SPSS 7.5.2 

program. 

Extraction of ATP 

The extraction of ATP was performed with a trichloric acetic acid extraction 

procedure modified from Saglio and Pradet (1980). Triplicates of 10 wild-type seeds 

were frozen into liquid nitrogen. The seeds were ground with 2 iron bullets (0 4 mm) 

in a 2.2 mL Eppendorf tube on a Braun Biotech Int. Mikro-Dismembrator U, at 1600 

rpm for 3 minutes. 100 pL of a 0.6 M trichloric acetic acid solution in diethyl-ether 

stored at -20° C was added to the ground seeds. Samples were then homogenized in 2 
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Figure 1: Calibration curve (a sigmoid regression formula, which is shown in upper left corner) of 
bioluminescence intensity expressed in arbitrary units (AU) plotted against the ATP concentration 
expressed in mM. Bars indicate standard deviations. 

times 250 pL and 1 time 500 pL of 0.6 M aqueous trichloric acetic acid. 

Subsequently, extracts were centrifuged for 10 min at 16000 g. The supernatant was 

transferred to 12 mL tubes and trichloric acetic acid was removed by extraction with 3 

volumes of diethyl-ether. All previous steps were performed at 0-4 °C. Remaining 

traces of diethyl-ether were eliminated by placing samples in a speed vacuum rotor for 

10 min. 

ATP levels in extracts were assayed by means of a luciferin-luciferase assay 

(Boehringer, Mannheim, Germany) ATP-detection-kit CLSII using a Labsystems 

Luminoskan DS luminometer for 96 multiwell plates. ATP extracts were diluted 3 

times and 10 pL of the diluted extract was added to 100 uL of 0.2 mM tricine buffer 

(pH 7.6). The CLSII assay mix was injected at a volume of 50 pL. 10 Sec. after 

injection, photon emission was measured for 10 sec. 

47 IMAGING OF ATP 



Results 

ATP visualisation and ATP extraction yield similar results when studying total ATP 

levels during germination 

Visualising ATP can yield data about total amounts of ATP present in a tissue, 

but also reveal tissue specific distribution of ATP. At each imbibition interval shown, 

3-4 sections per seed were cut from a total of 10 seeds. ATP levels in single seeds 

were calculated by averaging the ATP concentrations as measured in those 3-4 

sections. ATP concentrations at different imbibition intervals were calculated by 

averaging ATP concentrations found in single seeds. The average ATP concentrations 

found in these single seeds varied over a 2.5 to 5 fold range between seeds of the 

same genotype and imbibition interval (data not shown). In order to establish if 

determining ATP concentrations in our system (seeds) is a reliable method, a 

trichloric acid ATP extraction was performed (Saglio and Pradet, 1980) at the same 

imbibition intervals with the same seed batch and ATP concentrations as assessed 

with both methods were compared. Both techniques yielded similar results when the 

pattern of ATP accumulation during imbibition was compared. ATP could already be 

detected at 3 h of imbibition, after which a fast increase until 17 h was observed. ATP 

concentrations did not increase further between 17 and 48 h of imbibition (Figure 2A, 

B). At 48 h of imbibition, 50% of the seeds had completed germination (i.e. showed 

radicle protrusion). Both germinated and non-germinated seeds were pooled in the 

case of ATP extraction. ATP levels in sections of germinated and not yet germinated 

seeds did not differ significantly (p>0.05). 

ATP was visualised in cryosections of seeds at 3, 6, 17, 24 and 48 h of 

imbibition. Cutting cryosections of dry seeds or seeds at very early stages of 
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imbibition (i.e. prior to 3 h. of imbibition), was not successful, due to insufficient 

hydration of the seeds. Both the embryo and endosperm contained ATP during 

germination. However the ATP concentration in the embryo was higher compared to 

the endosperm (average of 1.5 times higher at 24 h of imbibition). Within the embryo 

the highest concentrations of ATP was located in the radicle at all stages of imbibition 

(Table 1; Figure 3A-E). For statistical testing, the ATP concentration in the radicle 

was compared to the average ATP concentration in the cotyledons. The ATP 

concentration in the radicle at the different imbibition intervals was 1.3 to 2.0 

(p<0.05) times higher than the ATP concentration in the cotyledons (Table 1). 

Table 1: ATP concentrations in radicle and cotyledons in mM, the corresponding standard errors of 
mean (SEM), the ratio between ATP concentration in radicle and cotyledons and the significance of 
differences between radicles and cotyledons during germination and for primarily or secondarily 
dormant seeds and for secondarily seeds which received a cold treatment for 3 days at 4°C with 
subsequent germination of 24 h at 25°C. 

3 h germination 
6 h germination 
17 h germination 
24 h germination 
48 h germination 
primarily dormant 
secondarily dormant 
secondarily dormant + cold 
treatment + 24 h germination 

radicle 
28.0 
31.6 
73.5 
52.3 
50.4 
45.6 
63.9 
112.7 

SEM 
2.1 
2.3 
5.4 
4.0 
5.2 
3.2 
5.3 
10.3 

cotyledons 
19.9 
23.9 
35.9 
35.9 
32.3 
42.3 
60.3 
69.3 

SEM 
1.5 
1.1 
2.0 
2.6 
2.1 
1.3 
4.6 
6.3 

ratio 
1.4 
1.3 
2.0 
1.5 
1.6 
1.1 
1.1 
1.6 

significance 
p < 0.05 
p < 0.05 
p < 0.05 
p < 0.05 
p < 0.05 
p > 0.05 
p > 0.05 
p < 0.05 

The ATP distribution in dormant seeds differs from that in germinating seeds 

Freshly harvested seeds batches can contain percentages of seeds in state of 

primary dormancy . Non-dormant transgenic 35S::luciferase seeds, showed luciferase 

activity during germination, while dormant seeds did not show this luciferase activity 

(Chapter 2). This observation was used to distinguish dormant and non-dormant seeds 
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in freshly harvested seed batches. Seeds were imbibed for 48 h in 0.1 mM luciferin 

and screened for luciferase activity. Cryosections from these seeds with primary 

dormancy were cut and ATP distributions were imaged. The ATP was distributed 

more evenly in seeds with primary dormancy than in germinating wild-type seeds. 

The ATP concentration in the radicle was comparable to that in the cotyledons (Table 

1; Figure 3H), in contrast with the situation in germinating seeds (Figure 3A-E). 

Secondary dormancy in tomato seeds was induced by far red light irradiation (de 

Castro et ah, 2001). ATP was visualised in seeds in state of secondary dormancy. As 

in primarily dormant seeds, the secondarily dormant seeds showed an ATP 

distribution which was different from the germinating seeds (Table 1; Fig. 3F). The 

ATP concentration in the radicle was again comparable to the ATP concentration in 

the cotyledons, as in seeds with primary dormancy. 

A cold treatment was used to break the secondary dormancy, which resulted in 

100% germination within 72 hours of incubation after transferring the seeds to 25°C. 

ATP distributions were imaged in cryosections at 24 h after transferring these seeds 

from 5 to 25 °C. The earlier observed pattern of ATP distribution in germinating 

seeds, with highest concentration located in the radicle was restored (Table 1, Figure 

3G) The ATP concentration in the radicle was 1.6 times higher compared to the 

average ATP concentration in the cotyledons (p<0.05, Table 1). 
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Figure 2: A) The levels of ATP during germination of wild-type seeds as assessed by ATP imaging 
with luciferase and luciferin. Bars indicate the standard error of mean. B) The levels of ATP during 
germination of wild-type seeds as assessed through ATP extraction. Bars indicate standard 
deviations. 
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Figure 3: Images of ATP distributions in cryosections of tomato seeds. Wild-type seeds at 
3 h (A), 6 h (B), 17 h (C), 24 h (D) and 48 h germinated (E). Secondarily dormant wild-
type seed after 5 days of incubation (F). Wild-type seed after secondary dormancy induc­
tion and cold treatment for 3 d and 24 h at 25°C (G). Seeds in state of primary dormancy 
at 48h of imbibition (H). See also Colour Pages. 
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Discussion 

ATP visualisation and ATP extraction yield comparable results when studying total 

ATP levels during germination 

In the present study we demonstrated the usefulness of the firefly luciferase-

luciferin system to image the ATP distribution in tomato seeds. This technique was 

modified after an earlier study of ATP imaging in tumour spheroids (Walenta et al., 

1990). ATP concentrations varied over a 2.5 to 5 fold range between single seeds of 

the same genotype and treatment. Seed to seed variation studied with the use of a 

single seed assay has been demonstrated before by Still and Bradford (1997). They 

observed a variation of 4-5 orders of magnitude in endo-6-mannanase activity in 

single endosperm caps of tomato seeds. Clearly, seed to seed variation can be found 

for a wide range of metabolite levels and enzyme activities. 

The pattern of ATP accumulation during germination of wild-type seeds as 

assessed through imaging was comparable to the accumulation of ATP determined 

through the classical method of ATP extraction. The accumulated level of ATP in 

seeds cannot be correlated to germination. The seeds with secondary dormancy tested, 

showed a higher concentration of ATP compared to the germinating wild-type. These 

seeds originated from different seed batches harvested 7 years apart. Comparing 

dormant seeds with seeds from the same batch which received a cold-treatment to 

break dormancy, showed higher concentrations in the latter. Thus absolute ATP levels 

do not necessarily correlate with germination; ATP concentrations may also vary with 

genotype and seed lot. 
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Germination of tomato seeds correlates with ATP distribution but not with the 

extractable ATP pool per se 

Earlier studies on the accumulated levels of ATP in correlation with dormancy 

or germination performance have yielded conflicting results (i.e. not always a 

correlation was found). These studies dealt with a large number of plant species, in 

which different biological processes, such as dormancy, ageing and seed vigour were 

correlated to ATP levels (Ching, 1973; Jain et al., 1983; Lunn and Madsen, 1981; 

Siegenthaler and Douet-Orhant., 1994). Several causes for these contradictory results 

were suggested (Mazor et al., 1984; Perl, 1986). The rate of ATP turnover in cells is 

high. Based upon respiration data of Dahal et al., (1996) we can estimate that a single 

tomato seed at 24 h of imbibition at 25°C, produces approximately 7 nmoles of ATP 

per min. Combined with our data at 24 h of imbibition at 25°C, which showed an 

extractable pool of ATP of 2.25 nmoles per seed, this suggests that the whole ATP 

pool within a seed is turned over within minutes. This suggests that accumulated ATP 

concentrations and changes therein are negligible compared to actual levels of ATP 

synthesised and turned over. ATP pools do not always reflect metabolic rates in a 

tissue, since the ATP pool is a result of the balance between processes of synthesis 

and utilisation (Perl, 1986). 

However, the present results show that not the ATP concentration in whole 

seeds per se but the distribution of ATP within a seed is correlated with germination. 

Germinating wild-type seeds showed a typical distribution of ATP with the highest 

levels localised in the radicle (ATP concentration in the radicle was 1.3 to 2.0 times 

higher compared to the cotyledons ). Dormant wild-type seeds showed a more even 

distribution of ATP with equal levels in radicle and cotyledons. Germination 

processes that utilise energy in the form of ATP, such as DNA replication (de Castro 
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et ah, 2000; Liu et al., 1994), cell division, microtubuli assembly (de Castro et al., 

2000) and synthesis of endo-8-mannanase (Toorop et al., 1996) are known to start in 

the radicle during germination of wild-type seeds but are absent in dormant seeds. In 

this respect, higher ATP levels in the radicle might reflect higher metabolic activity in 

the radicle of germinating seeds opposed to absence of these processes in dormant 

seeds. 

Conclusion 

From the present study it is clear that the distribution of ATP within tomato 

seeds is related to germination rather than the concentration within whole seeds. Data 

presented here would not have been obtained through extraction of ATP from whole 

seeds; a higher ATP level in the radicle is not necessarily reflected in a higher 

extractable pool of total ATP. Clearly the study of seed physiology can benefit from 

techniques which give detailed information on the in vivo and spatial distribution of 

metabolites within seeds. 
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Imaging of water distribution in germinating tomato seeds 

(Solarium lycopersicum L.) 

P. Spoelstra, A. Heemskerk, H. van As andH.W.M. Hilhorst 

1H-NMR Turbo Spin Echo Imaging was used to visualise water distribution in 

germinating tomato (Solanum lycopersicum L. cv. Moneymaker) seeds. Water uptake 

by the embryo was triphasic, whereas the endosperm only showed two phases in 

water uptake. Water uptake by the embryo was limited through restriction of water 

uptake by the endosperm. This resulted in a lower water content of the embryo 

compared to the endosperm. Within the embryo, the radicle had the lowest amount of 

water. Prior to visible germination, the radicle started to take up extra water. A 

swelling of the radicle was observed which did not directly result in endosperm cap 

rupture but did result in outward swelling of the endosperm cap. Only after radicle 

protrusion did the rest of the embryo take up extra water. 
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Introduction 

As a final stage in seed maturation seeds of many plant species desiccate, 

thereby facilitating seed dispersal and survival. Seed germination is initiated upon 

reimbibition with water and ends with the protrusion of the radicle through the 

surrounding tissues. Water uptake during germination of seeds is triphasic (Bewley 

and Black, 1994). Phase I of water uptake shows a sharp increase in water content of 

the seed, which is due to a large water potential (A*F) gradient between the seed and 

the environment. Phase II is a period of variable duration in which little or no change 

in water content of the seeds is observed. During phase III, the radicle starts to take up 

extra water as it protrudes through the surrounding tissues, such as endosperm or 

pericarp. 

In tomato seeds, the embryo is surrounded by a rigid endosperm. Water uptake 

of the embryo is inhibited by the endosperm, possibly via restriction of embryo 

swelling, which results in lower water content compared to the endosperm and a AY 

of -1.5 MPa or below during phase II, whereas the whole seed is in equilibrium with 

that of the imbibing solution (Haigh and Barlow, 1987; Liu, 1996). For the seeds to 

germinate the radicle has to protrude through the part of endosperm opposing it: the 

endosperm cap. It is well established that the endosperm cap is weakened by 

hydrolytic enzyme activity during germination of tomato seeds (Haigh and Barlow, 

1987; Karssen et al., 1989; Toorop et ah, 1996). Weakening of the endosperm cap 

facilitates protrusion of the radicle. For protrusion of the radicle extra water uptake is 

needed while cells in the radicle elongate. Possibly, the weakening of the endosperm 

cap also facilitates this uptake of extra water by the radicle (Haigh and Barlow, 1987; 

Liu, 1996) 
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:H NMR imaging has been used to study water distributions and physical 

properties like viscosity of water, membrane water permeability and compartment 

sizes in plant tissues (Chudek and Hunter, 1997; Ishida et al., 2000; McFall and van 

As, 1996). Imaging of water in seeds was demonstrated by several authors (Fountain 

et al., 1998; Ishida et ah, 1995; Jenner et ah, 1988). NMR imaging is a non­

destructive technique, which can reveal possible relations between water uptake and 

germination of a single seed, which cannot be obtained, by destructive techniques. 

We have investigated the distribution and uptake of water by the different 

tissues of tomato seeds during germination with the use of 3D turbo-spin-echo (TSE) 

NMR imaging (Scheenen et ah, 2000; van der Toorn et al, 2000), in order to 

delineate the spatial and temporal distribution of water uptake by the different seed 

tissues and to determine whether an extra uptake of water is required for radicle 

protrusion through the endosperm cap. 
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Results 

Water content and 3D TSE imaging 

Water uptake by seeds during germination has often been studied by weighing 

the imbibed seed and expressing the water content on a dry weight or fresh weight 

basis. Haigh and Barlow (1985) and Liu (1996) presented these data for tomato seeds. 

TSE imaging can also be used to study water uptake or water contents in plant 

material (Scheenen et al., 2000). In order to verify the accuracy of data on water 

uptake as assessed by our TSE imaging experiments we compared data acquired with 

both methods. Fresh weights of imbibing seeds were determined prior to radicle 

protrusion at 5, 17, 30 and 42 h of imbibition. Proton densities of 6 slices containing 

all data of a single seed were measured and averaged for an integral 'water content' of 

a single seed during germination (i.e. distribution of water among different tissues is 

disregarded). Figures 1A and IB show the results of this comparison. Both methods 

revealed a similar pattern of water uptake during germination, with a rapid water 

uptake during phase I, which lasted approximately 12 h and a stationary or slow 

increase in water content during phase n. These observations were consistent with the 

data presented by Haigh and Barlow (1985) and Liu (1996). 

3D TSE imaging of water content and distribution during germination of seeds 

Figure 2 shows 4 slices of a single seed during the first 12 h (phase I) of 

imbibition. The first image was acquired at 2 h of imbibition. Free spaces between the 

embryo and endosperm were observed (Figure 2A), which appear similar to the free 

spaces detected by x-ray imaging of tomato seeds as reported by Liu (1996). The free 

62 CHAPTER 4 



120 

100 
3 
< 

w 
c 
CD 
TJ 
C 2 p 

n J.R -r 

_ 0.40 

£ 0.35 

£ 0.30 
H-^ 

| 0.25 

8 0.20 
1 _ 

1 0.15 

0.10 

B 

i 

Imbibition interval (h) 
• 

10 20 30 40 

Imbibition interval (h) 

Figure 1: A) Average proton density (AU) in a total of 6 slices, of a single tomato seed during 
germination as assessed through 3D TSE NMR imaging. B) Average water content (% of FW) of 15 
tomato seeds during germination, determined by weighing single seeds. 

spaces in the seed disappeared during the course of imbibition, presumably due to 

swelling of the embryo. With the progress of imbibition of seeds, image contrast 

changed. The endosperm remained clearly distinguishable. However details of the 

embryo became obscured due to swelling of the embryo and disappearance of free 

spaces between the embryo and endosperm (Figure 2B). 
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radicle tip 

endosperm 

embryo 

Figure 2: Proton density images of 2 subsequent slices of the same seed acquired through 
3D TSE NMR imaging at 2 h and 12 h of imbibition of a single seed. The arrow indicates 
free space in the seed which disappeared during the first 12 h of imbibition. See also Colour 
Pages. 
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The endosperm, the embryo (minus radicle tip) and the radicle tip were 

separately analysed for the average grayscale values (i.e. proton density). Figure 3 

shows the analysis of 2 single seeds during imbibition, of which one germinated 

during the course of the TSE imaging experiment (Figure 3A). An increase in 

moisture content was detected in all seed parts during phase I. The length of phase I in 

the individual seed parts was 10-15 h. Phase II was observed in all seed parts and 

showed only a slight increase or no increase in water content. Water was distributed in 

a reproducible fashion during imbibition: the endosperm displayed the highest amount 

of water compared to the embryo and radicle tip. The radicle tip contained the lowest 

amount of water (Figure 3). 
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Figure 3: Average proton densities, representing water content, during germination in the endosperm, 
radicle tip and embryo in a single slice of 2 individual seeds acquired through 3D TSE NMR 
imaging: A) germinating seed; B) non-germinated seed. In panel A the first arrow (45 h) indicates 
start of water uptake by the radicle and the second arrow (52 h) indicates the time point of radicle 

Phase III of water uptake is believed to be initiated upon germination of the 

seed, which is marked by protrusion of the radicle through the endosperm and testa 

(Bewley and Black, 1994). Prior to protrusion of the radicle through the endosperm, 
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an outward swelling of the endosperm cap was observed (Figure 4). The protruding 

radicle appeared to cause the outward swelling of the endosperm cap. During this 

protrusion an extra water uptake by the radicle tip was detected (Figure 3A, from 45 h 

onward). It has been suggested that weakening of the endosperm cap (Haigh and 

Barlow, 1987) facilitates the uptake of water by the radicle. This would imply that 

water has to diffuse through the endosperm cap into the radicle thereby generating an 

increased local proton density in NMR measurements. Such an increase in moisture 

content of the endosperm (endosperm cap) opposite the radicle was detected prior to 

radicle protrusion at 45h and onward (Figure 5). 

After radicle protrusion through the endosperm cap (Figure 4; 52/57 h) the 

growing radicle tip continued to take up water. The rest of the embryo only displayed 

extra uptake of water after the radicle had protruded through the endosperm (i.e. after 

completion of germination). Clearly the radicle entered phase III of water uptake 

shortly before actual protrusion through the endosperm and the rest of the embryo 

entered phase HI of water uptake after this event. The endosperm seemed not to enter 

phase III of water uptake; the water content was nearly unchanged prior to and after 

completion of germination (Figure 3 A). 
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radicle tip 

endosperm 

embryo 

Figure 4: Water distribution in 2 slices of a single seed around the the time point of radicle 
protrusion. Arrow (5 lh) indicates outward swelling of the endosperm cap (compare to 45 h), 
prior to radicle protrusion, Radicle has protruded at 52h of imbibition which can be clear­
ly seen at 57 h. See also Colour Pages. 
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germination event. However, de Castro et al. de Castro et a/.(2000), found mitosis in 

the radicle prior to radicle protrusion, just like we observed phase III water uptake 

prior radicle protrusion. The renewed water uptake by the radicle prior to protrusion 

of the radicle through the endosperm cap coincided with an increase in water content 

of the endosperm opposite the radicle tip. This might indicate a facilitated water 

uptake due to weakening of the endosperm cap. Weakening might have two effects: 1) 

Water is able to pass through ruptures between cells in the endosperm cap; 2) The 

radicle is able to swell due to increased elasticity of cell walls in the endosperm cap. 

However, given the current knowledge of tomato seed germination it is unlikely that 

the endosperm is a simple physical barrier obstructing the radicle from water uptake 

and protrusion. The puncture force, the measure of endosperm cap weakening (Chen 

and Bradford, 2000; Toorop et al, 2000), declines continuously during germination. 

If endosperm cap weakening is responsible for water uptake by the radicle, a gradual 

uptake of water during germination might be expected (not the sudden uptake as we 

observed). Thus the growth potential of the radicle or embryo must be another 

important factor in germination (Ni and Bradford, 1993) to explain the sudden water 

uptake. The strength of this growth potential was demonstrated by the outward 

swelling of the endosperm cap prior to actual breakage of the endosperm cap. 

Moreover, when tomato embryos were dissected from fully imbibed seeds and placed 

on water, an instant increase in fresh weight was observed but actual outgrowth of the 

radicle of the dissected embryo was not observed until 30 h of imbibition, only a few 

hours before the intact seed would show radicle protrusion (Haigh and Barlow, 1987). 

This indicates the existence of an internal process which controls outgrowth of the 

embryo during imbibition. Cell elongation is needed for the radicle to protrude. For 

cells to elongate, the cell wall should become extensible. Expansins have been 
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proposed to modify non-covalent bindings in cell walls between cellulose and hemi-

cellulose micro fibrils thereby facilitating cell elongation or expansion (Cosgrove, 

1998). A tomato expansin (LeEXP8) has been reported to be expressed in the radicle 

of germinating seeds prior to radicle protrusion (Chen and Bradford, 2000). Once the 

cell walls in the radicle have become extensible and the restraint in the endosperm cap 

has been weakened enough, the radicle will protrude through the endosperm thereby 

taking up water. 

After radicle protrusion the rest of the embryo started to take up water as well. 

This might be due to the relieved constraint by the endosperm or a directed transport 

of water from radicle towards the cotyledons. The endosperm did not enter a phase III 

of water uptake. The endosperm was already fully imbibed during phase II. This 

seems consistent with the function of the endosperm; control of germination and 

storage of food reserves. 
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Expression of two linker histones variants during 

dormancy and germination of tomato seeds (Solatium 

lycopersicum L.); 

Regulation By Abscisic Acid And Gibberellins? 

P. Spoelstra, R.V.L. loosen, J. Buitink, P.E. Toorop andH.W.M. Hilhorst 

The expression of two functionally different linker histones has been studied during 

germination and secondary dormancy in tomato Solanum lycopersicum L. Expression 

of the hisl-s gene was linked with secondary dormancy induction and secondary 

dormancy. Gene expression of hisl-s was overall low during germination of tomato 

seeds. leHl gene expression increased during germination and was absent during 

secondary dormancy of tomato seeds. Chilling of secondarily dormant seeds resulted 

in induction of germination and in the induction of leHl expression. ABA was unable, 

when applied exogenously, to stimulate hisl-s expression. leHl was under control of 

GA in the embryo of germinating seeds. The role of ABA and GA is discussed in 

relation to dormancy and germination. It is hypothesised that linker histones play a 

regulatory role in modulating gene expression and act as a switch between the 

dormant and germinating state of seeds. 
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Introduction 

Histones are highly conserved proteins that are associated with the DNA of 

eukaryotes and play an important role in the organisation of chromatin. The basic 

subunit of chromatin is the nucleosome which consists of 200 bp duplex DNA 

wrapped around 2 copies of each structural histone, H2A, H2B, H3 and H4. The 

higher order organisation of the nucleosome is facilitated by binding of the 

nucleosome to a fifth type of histone, the linker histone or HI. The organisation of the 

DNA in the histone complex has a considerable effect on compacting DNA strands 

into chromatin, thus enabling the eukaryotic cell to organise DNA of over a meter 

long into a single cell nucleus (for review see: Ramakrishnan, 1997; Zyprian, 1994). 

Condensation of DNA by histones is an important mechanism involved in the 

regulation of gene expression. The linker histone HI is responsible for reorganisation 

of the chromatin into a higher order structure. Without such a reorganisation, genes 

are inaccessible for the transcriptional machinery and thus gene expression is 

repressed (Wolffe, 1994). 

HI histones are subject to regulation both in a quantitative and qualitative 

way. They are known to be post-transcriptionally regulated through phosphorylation 

in a cell cycle dependent manner (Bradbury, 1992; Roth and Allis, 1992). Most 

organisms possess several highly polymorphic HI histones of which the expression 

can be under control of or can be associated with different developmental and 

regulatory processes. This suggests repression of expression of certain classes of 

genes depending on the developmental program in a cell (Bouvet et ah, 1994; Shen 

and Gorovsky, 1996). 

In tomato three different linker histone variants have been cloned and 

described. The first HI histone described was designated le20 and hisl-s in later 
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publications (Bray et ah, 1999; Cohen and Bray, 1990). hisl-s expression in leaves 

was higher than in roots. High accumulation of mRNA was observed in wilted leaves, 

with exception of the ABA deficient mutant flacca, but also during development of 

seeds and green fruits. The hisl-s gene is believed to be stress related and induced by 

ABA or under diurnal control (Corlett et al, 1998). The hisl-s gene has greatest 

similarity with Hl-D from L. pennellii (Wei and O'Connell, 1996) and HI-3 from 

Arabidopsis (Ascenzi and Gannt, 1997). The hisl-s gene shows only distant similarity 

with the two other linker histone in tomato which share a high homology. 

Jayawardene and Riggs (1994) reported on a second HI histone sequence which was 

found to be expressed highest in meristematic tissues or tissues with a large 

proportion of cells actively engaged in cell cycle. The third linker histone was cloned 

by van den Heuvel et al. (1999), leHl. This histone was also expressed in 

meristematic tissues or tissues with a large proportion of cells actively engaged in cell 

cycle. The second and third linker histone genes share a significant sequence 

homology with the Hl-1 and Hl-2 genes from Arabidopsis (Gantt and Lenvik, 1991) 

and HI from tobacco (Szekeres et al., 1995). 

Differential screening of cDNA libraries from germinating seeds, dormant 

seeds and seeds imbibed in ABA have suggested a possible role for the hisl-s linker 

histone during dormancy of seeds (Spoelstra, unpublished results). Linker histones 

have been reported to both decrease or increase during germination (Dicorato et al., 

1995; Grellet et ah, 1977; Szekeres et ah, 1995). It is possible that these studies have 

dealt with functionally different sub-classes of HI histones. 

The role of ABA and GA in germination of seeds has been subject of 

extensive studies. Both linker histones have been suggested to be regulated by either 

ABA or GA (Cohen and Bray, 1990; Heuvel et al., 1999), which makes them possible 
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candidates to play a role in the control of germination at the level of gene expression. 

In order to study the possible role of the linker histones hisl-s and leHl in the control 

of germination and dormancy of tomato seeds, we studied the expression patterns of 

both genes during the induction and breaking of dormancy and the possible role of 

ABA and GA in the regulation of their expression. Moreover hisl-s and leHl seem 

excellent tools to assess the operation of a GA/ABA balance in tomato seeds. 
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Material and Methods 

Seed material and plant growth conditions 

Wild-type seeds 

Moneymaker tomato plants were soil grown in a greenhouse in 1991. Tomato 

fruits were picked at the red stage and the seeds and locular tissue were removed from 

tomatoes by cutting. The locular tissue was digested by adding an equal volume of 2% 

hypochloric acid and stirring for 2 hours. Seeds were rinsed thoroughly under running 

tap water en transferred onto two layers of filter paper and dried for 3 d at 21 °C. Dried 

seeds were stored at 4°C in plastic containers. 

gibl mutant seeds 

gibl mutant plants were grown on soil in a greenhouse in 1997 and were 

weekly sprayed with a solution of 10 |iM GA4+7 to enable flower induction (Groot et 

ah, 1987). Red fruits were picked and seeds were harvested and stored as described 

for wild-type seeds. 

Transgenic seeds: 

Transgenic Money Maker tomato plants, containing 2 homozygous copies of a 

35S::luciferase construct (see Chapter 2; line B5, 6th generation transgenic, second 

truss: T6B5-II) were grown in a greenhouse in 1999. Red fruits were picked and seeds 

were harvested, stored and germinated as described for wild-type seeds. 
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Germination conditions 

General conditions 

Triplicates of 25 seeds were imbibed in 1 ml of imbibition solution, on filter 

paper in 4.5 cm plastic petri dishes, sealed with Parafilm, at 25°C in constant 

darkness. Seeds were dissected into embryo and endosperm, frozen in liquid nitrogen 

and stored at -80°C until RNA extraction. 

Wild-type and gibl seeds 

Wild-type seeds were imbibed in demineralised water for a period of 4, 12,18, 

24, 36, 42, 48, 57 and 67 h. Alternatively, wild-type seeds were imbibed in 10 uM of 

ABA for a period of 24 and 48 h. gibl mutant seeds were imbibed in either 

demineralised water or a solution of 10 uM of GAi+7 for a period of 24 and 34 h. 

Induction and breaking of secondary dormancy 

Secondary dormancy was induced in transgenic 35S::luciferase seeds (T6B5-

II) by far-red (X > 730 nm) irradiation for 15 min at hourly intervals during the first 48 

h of imbibition at a temperature of 21°C and subsequent incubation in the dark at 

25°C for 5 days (adapted from de Castro et al. 2001). After this period seeds were 

tested for germination and for luciferase activity by on chip integration of light 

emitted by these seeds (e.g. dormant seeds do not emit light) for 30 min on a Roper 

Scientific Princeton Instruments Versarray™ 512B liquid nitrogen cooled CCD 

camera operated at -90°C via Metamorph 4.1. (Universal Imaging Corp.) Seeds which 

revealed luciferase activity (non-dormant seeds; Chapter 2) were discarded. At this 

stage luciferase negative seeds are considered to be in a state of secondary dormancy. 

In order to break secondary dormancy, seeds were given a cold treatment for 2 days at 
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4°C, after which the seeds were transferred to 25°C in the dark and left to germinate. 

Seeds were dissected into endosperm and embryo at the different stages according to 

Table 1 and subsequently frozen in liquid nitrogen and stored at -80°C . 

Table 1. Specification of samples taken at different stages during dormancy induction and breaking 

treatment 

FR 

SDO 

SD1 

SD2 

SD3 

SD4 

CI 

C2 

G10 

G24 

G32 

far red irradiation 

48h/15 min.h-1 

48h/15 min.h"1 

48h/15 min.h-1 

48h/15 min.h-1 

48h/15 min.h-1 

48h/15 min.h"1 

48h/15 min.h1 

48h/15 min-h"1 

48h/15 min.h"1 

48h/15 min.h"1 

48h/15 min.h"1 

dormancy 

-

5d 25°C 

6d 25°C 

7d 25°C 

8d 25°C 

8d 8h 25°C 

5d 25°C 

5d 25°C 

5d 25°C 

5d 25°C 

5d 25°C 

breaking 

-

-

-

-

-

-

24h 3°C 

48h 3°C 

48h 3°C 

48h 3°C 

48h 3°C 

germination 

-

-

-

-

-

-

-

-

lOh 25°C 

24h 25°C 

32h 25°C 

RNA isolation, Reverse Transcriptase PCR and Hybridisation 

RNA isolation was modified from Wan and Wilkins (1994). Twenty embryo's 

or endosperms were ground with 2 chrome-vanadium bullets (0 4 mm) in a 2.2 mL 

Eppendorf tube on a Braun Biotech Int. Mikro-Dismembrator U, at 1600 rpm for 3 

minutes. The ground sample was suspended in 700 p i hot borate buffer (80°C) 

containing, 0.2 M sodium borate decahydrate, 30 mM EGTA, 1 % SDS (w/v), 1% 

sodium deoxycholate (w/v), 2% (w/v) PVP (Mr 44000) and 10 mM DTT. The sample 
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was then transferred to a 2.2 mL Eppendorf tube, containing 0.35 mg proteinase K 

and incubated in a water bath at 42°C for 1.5 h. After adding 55 |aL 2 M KC1 and 

subsequent incubation on ice for 1 h, samples were centrifuged at 12000 g for 20 min 

at 4°C. The supernatant was transferred to a 15 mL tube and 270 |iL 8 M LiCl was 

added, after which samples were incubated overnight at 4°C. Samples were then 

centrifuged at 12000 g for 20 min at 4°C and the pellet was resuspended in 1 mL ice 

cold 2 M LiCl and subsequently centrifuged at 10000 g for 10 min at 4°C (the last 2 

steps were performed twice). The pellet was then resuspended in 400 |iL 10 mM Tris-

HC1 and remaining debris was spun down by centrifugation at 12000 g for 10 min at 

4°C. The supernatant, containing the RNA was transferred to a 15 mL tube and 40 |iL 

2 M KAc was added for incubation on ice for 15 min, followed by a centrifugation at 

12000 g for 10 min at 4°C. The RNA in the supernatant was precipitated with 1.3 mL 

ethanol and overnight incubation at -20°C, which was followed by centrifugation at 

11000 g for 30 min at 4°C and a washing step with 70% ethanol and subsequent 

centrifugation at 11000 g for 30 min at 4°C. The remaining pellet was dried in a speed 

vacuum rotor and subsequently suspended in 40 \iL RNase free water. RNA samples 

were DNase treated with 2U DNase (Boehringer) and 20 U RNAsin (Gibco BRL Life 

Technologies). The remaining RNA was quantified with the GeneQuant and on a 

1.5% agarose formaldehyde gel. First strand cDNA was synthesised from equal 

amounts of RNA (2.5 (ig) using reverse transcriptase with Oligo(dT) primers 

(Superscript'"1 Preamplification System for First Strand cDNA Synthesis Gibco/BRL 

Life Technologies). RT-PCR was performed with leHl and hisl-s specific primers 

(hisl-s forward: ATC TGC CAA GGC TGT TAC TCA TCC, hisl-s reverse: TGG CGT CGC 

TTT TGC TTT CT, leHl forward: CAA AGC CGA AGC CAA AA, leHl reverse: CGG CCG 

CAG ATA CAA ACC AC) according to the manufacturers instructions (Superscript"" 
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Gibco/BRL Life Technologies). 10 \iL was sampled at various PCR cycles and 

subsequently run on 1.5 % agarose gel and blotted onto nylon membrane followed by 

hybridisation according to the manufacturers instructions (GeneScreen Plus, Life 

Science Products). A DNA probe for leHl was kindly provided by Prof. G.J. Wullems 

(Dept. of Experimental Botany, Catholic University Nijmegen, the Netherlands). The 

hisl-s probe was a 400 bp cDNA fragment which was identified during differential 

screening of cDNA libraries of tomato seeds imbibed in water or 10 (aM ABA or 

secondarily dormant seeds (Spoelstra, unpublished). The 400 bp fragment was 

identified via sequence comparison in the NCBI BLAST search as the Lycopersicon 

esculentum hisl-s gene (97% , e"171 homology NCBI accession number Z11842). 

Blots were incubated on phosphor screens for 12 hours and scanned on a Molecular 

Dynamics Storm 840 phosphor-imager. 
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Results 

leHl and hisl-s are differentially expressed during germination of tomato seeds 

The expression patterns of leHl and hisl-s were studied during germination of 

wild-type tomato seeds cv. Moneymaker. The germination curve is shown in Figure 

1A. The first seeds germinated at 42 h of imbibition. At 67 h 100% of the seeds had 

completed germination. At 57 h radicles which had protruded showed an average 

length of 1 mm and at 67 h protruded radicles had a average length of 3.5 mm. 

Germinated and ungerminated seeds at 42, 48, 57 and 67 h of imbibition were pooled 

for RNA extraction. 

Both linker histones appeared to be differentially expressed in embryo and 

endosperm, hisl-s expression in the endosperm was constantly low during 

germination (Figure 2). hisl-s expression in the embryo was high at the start of 

imbibition and strongly declined after 4 h of imbibition, after which expression 

remained at lower levels (Figure 2). leHl showed a different expression pattern during 

germination with a decrease in expression in the endosperm after 18 h of germination 

and an increase in expression in the embryo during imbibition and prior to radicle 

protrusion. A peak in expression of leHl was observed at 57 h of imbibition at which 

time 80% of the seed population had completed germination. At 100% germination 

(67 h) expression of leHl had decreased substantially. 
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Figure 1: A) Germination curve of wild-type seeds in water. B) Germination curve of secondarily 
dormant T6B5-II seeds with (closed symbols) or without (open symbols) a 2d chilling treatment .C) 
Germination curve of non-dormant T6B5-II seeds in water (closed symbols) and 10 uM ABA (open 
symbols). D) Germination curve of gibl seeds in water (open symbols) or 10 uM GA4+7 (closed 
symbols). 
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hisl-s expression is associated with secondary dormancy whereas leHl expression 

is associated with germination 

The expression profiles of leHl and hisl-s were studied during the induction 

of secondary dormancy, during a subsequent period of secondary dormancy, during 

chilling and during subsequent germination at 25°C.During induction of dormancy by 

far red light irradiation expression of hisl-s was strong, especially in the endosperm. 

During the first two days of secondary dormancy (SDO and SD1; Figure 3) hisl-s 

expression in the endosperm was maintained at a comparable level after which 

expression levels decreased (SD3 and SD4; Figure 3). Concomitantly with the 

decrease of expression of hisl-s in the endosperm, expression during induction of 

secondary dormancy increased transiently in the embryo. During the breaking of 

dormancy by chilling the expression of hisl-s was down regulated (CI and C2; Figure 

3). Chilling of the secondarily dormant seeds for 2 days induced germination of 80% 

of the seed population (Figure IB). From secondarily dormant seeds which were not 

chilled but left at 25°C in the dark, only 6% completed germination. During 

germination (G10, G24 and G32; Figure 3) hisl-s expression in both endosperm and 

embryo increased compared to the second day of chilling, but was still lower 

compared to peak levels during dormancy. The latter results were comparable with the 

results of figure 2, showing that hisl-s expression was low during germination of 

wild-type seeds, with exception of expression in the embryo at 4 h of imbibition. 

Whereas hisl-s is expressed strongly during dormancy induction and during 

secondary dormancy, leHl expression was low (Figure 3). During breaking of 

dormancy by chilling of the seeds at 4°C no induction was detected of leHl 

expression. During the first 10 h after transfer of the seeds to 25° C, expression of 

leHl was strongly induced in the endosperm. 
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Figure 2: /w',s/-.s and leHl mRNA levels, as determined through RT-PCR of cDNA samples 
with specific primers in embryos and endosperm of T6B5-II seeds at different intervals (h) 
during germination. 
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Figure 3: hisl-s and leHl mRNA levels, as determined through RT-PCR of cDNA sam­
ples with specific primers, in endosperm and embryos of T6B5-II seeds during far red 
light irradiation (FR), secondary dormancy (SD0-SD4), chilling (CI, C2) and subsequent 
germination (G10, G24, G32). See table 1 for details on different stages. 
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At 24 and 32 h after transfer of the chilled seeds to 25°C expression of leHl in the 

endosperm decreased again. This decrease of leHl expression in the endosperm 

during germination was also observed during normal germination (Figure 2). 

Expression of leHl in the embryo increased during the first 10-24 h after transfer of 

the chilled seeds to 25°C (Figure 3), when germination starts (Figure IB) 

corresponding with the results during normal germination (Figure 2). 

hisl-s expression in tomato seeds is not induced by exogenously applied ABA 

his Is expression has been reported to require ABA for expression (Bray et 

ah, 1999) or is diurnally regulated (Corlett et ah, 1998). It has been known for years 

that ABA plays an important role in seed development and dormancy (Hilhorst and 

Karssen, 1992). Tomato seeds which were imbibed in 10 |iM ABA solution did not 

germinate (Figure 1 C). The expression of the hisl-s gene was assessed in endosperms 

and embryos at 24 and 48 h of imbibition of seeds in 10 uM ABA. Levels of 

expression in both the embryo and endosperm in ABA imbibed seeds were 

comparable with levels found in germinating seeds (Figure 4). Only at 24 h of 

imbibition in ABA the endosperm showed a somewhat higher hisl-s expression 

compared to 24 h of imbibition in water. 

leHl expression is not necessarily under control ofGA in gibl mutant seeds 

leHl has been cloned after differential screening for genes in the GA deficient 

gibl mutant which are upregulated by GAs. leHl was found to be more abundant in 

leaves from GA treated gibl plants compared to non-treated gibl plants (van den 

Heuvel et al., 1999). We have tested whether the leHl gene is regulated by GA4+7 in 

gibl tomato seeds, gibl seeds were imbibed in either water or a solution of 10 (aM 
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GA4+7- gibl seeds in water did not germinate (Figure ID), whereas seeds imbibed in 

10 |iM GA4+7 did germinate. Radicle protrusion started around 34 h and at 67 h 97% 

of the gibl seeds had completed germination (Figure ID). leHl was expressed at 24 h 

in the endosperm of gibl seeds imbibed in water at levels comparable with expression 

in endosperm at 24 h of GA imbibed gibl seeds. At 34 h of imbibition in GA4+7 the 

level of leHl expression in the endosperm of gibl seeds had decreased whereas 

without GA this decrease did not occur (Figure 5). This could be expected, since leHl 

expression in the endosperm also declined during germination of wild type seeds 

(Figure 2). Expression of leHl was low in the embryo of gibl seeds imbibed in water 

but was induced at 34 h of imbibition in GA4+7. This induction was comparable to the 

increase in expression of leHl in germinating wild-type seeds (Figure 2) 
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Figure 4: hisl-s mRNA levels, as determined through RT-PCR with specific primers of 
cDNA samples in endosperm and embryos of T6B5-II seeds imbibed in water and 10 uM 
ABA for 24 h and 48 h and at 10, 24 and 32 h (G10, G24, G32) of germination (after cold 
treatment). 
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Figure 5: leHl mRNA levels, as determined through PCR with specific primers of cDNA 
samples in endosperm and embryos of gib 1 seeds imbibed in water or 10 uM GA4+7 at 24 
and 34 h of imbibition. 
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Discussion 

The expression profiles of the two linker histones, leHl and his Is during 

germination and dormancy have confirmed the existence of different members of a 

class of linker histones, which are under control of distinct developmental processes. 

It has been reported that linker histones are involved in chromatin 

organisation, thereby resulting in repression and expression of different classes of 

genes (Wolffe et ah, 1997). Different sub types of linker histones are involved in 

regulation of different classes of genes (Bouvet et al., 1994; Shen and Gorovsky, 

1996). Given the role of both ABA and GA in the control of development, 

germination and dormancy of seeds, an ABA and a GA regulated linker histone might 

fulfil such a role. We have shown that leHl and hisl-s were expressed during 

dormancy and germination of tomato seed. High expression of hisl-s was linked with 

secondary dormancy in seeds, whereas leHl was expressed at high levels in 

germinating seeds. This leads to the hypothesis that hisl-s histone represses 

expression of genes which are involved in germination and the leHl histone represses 

gene expression which is related to dormancy. Concomitantly, the hisl-s histone 

would induce ABA related gene expression and the leHl histones GA regulated gene 

expression. Expression of these subtypes of linker histones may be part of a 

developmental switch between the dormant and the germinating state of seeds. Earlier 

reports on HI histones in seeds have also shown two types of histones during 

germination. Histones were cell cycle regulated and showed increasing levels during 

germination of seeds (Dicorato et al, 1995; Szekeres et al., 1995) or decreased in 

germinating seeds (Grellet et ah, 1977). 
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HI histones are known to be post-transcriptionaly regulated through 

phosphorylation (Bradbury, 1992; Roth and Allis, 1992). Localisation and detection 

of both linker histone proteins, should therefore be necessary for a more detailed 

picture of the function of the two linker histones during germination and dormancy of 

tomato seeds. 

It has been shown by immunolocalisation that Hl-S protein accumulated in the 

nucleus and was associated with chromatin in tomato leaves which were subjected to 

water stress (Scippa et al, 2000). The accumulation of the Hl-S protein occurred 

several hours later than the induction of expression of the gene (Scippa et al., 2000). 

This might indicate that although his Is mRNA levels decline during the (4 days of) 

secondary dormancy in tomato seeds, Hl-S protein levels might still be present in the 

nucleus. 

hisl-s has been reported to be ABA regulated (Bray et ah, 1999; Imai et al., 

1995). hisl-s expression was indeed accompanied by raised ABA levels in wilted 

leaves, but also during seed development (Bray et al., 1999). This evidence is not 

conclusive, hisl-s has also been reported to be expressed in leaves in a diurnal 

manner, independent of ABA levels (Corlett et al., 1998). In non-dormant tomato 

seeds subjected to 10 pM of ABA, hisl-s mRNA levels were comparable to 

germinating seeds in water. ABA was unable to induce strong expression of hisl-s; 

such a strong induction was only observed during secondary dormancy and secondary 

dormancy induction by far red light. The application of ABA to non-dormant tomato 

seeds inhibits germination but does not induce dormancy of the seeds. When ABA 

imbibed seeds are transferred back to water, seeds complete germination. ABA is also 

unable to inhibit the activity of cell wall degrading enzymes such as endo-8-

mannanase (Toorop et al., 1996; Toorop et al., 2000) or expansins (Chen and 
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Bradford, 2000) which are expressed in relation to germination. Thus, exogenous 

application of ABA to non-dormant seeds does not always seem to be the correct 

control for ABA related gene expression in tomato seeds during induction of 

dormancy or absence of germination, hisl-s expression might occur during several 

processes in which ABA action is involved including the induction of primary 

dormancy during seed development (Bray et al., 1999; Groot and Karssen, 1992; 

Hilhorst, 1995) or water deficit (Bray, 1997). Yet this does not exclude other possible 

ways of induction of hisl-s expression without the action of ABA , such as far red 

light and the diurnal cycle (Corlett et al., 1998). It is not clear whether ABA is 

involved in induction and maintenance of secondary dormancy (Berrie and Robertson, 

1976; Bewley, 1980), although far red light irradiation did not induce dormancy in the 

ABA deficient sif mutant seeds (de Castro et al., 2001). It is likely that hisl-s 

expression is not under direct control of ABA (Corlett et al., 1998). Interesting to note 

in this respect is the induction by ABA and salt stress of an mRNA (rd22) in 

vegetative organs of Arabidopsis, while it was not induced in seeds of Arabidopsis by 

ABA (Yamaguchi-Shinozaki and Shinozaki, 1993). Preliminary results in our 

laboratory showed that also hisl-s may be induced in tomato seeds by imbibition 

under restriction of water uptake by -1.0 MPa PEG (data not shown). 

leHl was cloned by differential screening for GA regulated genes from cDNA 

populations from the gibl mutant in the presence and absence of GAs (van den 

Heuvel et al., 1999). leHl expression was considerably lower in plant tissues of gibl 

plants compared to gibl plants which were grown under application of GA3 to restore 

the wild type phenotype. This suggests a regulatory role for GA's in leHl expression. 

gibl seeds do not germinate without addition of GA to the imbibition medium (Groot 

et al., 1988). leHl was highly expressed in the endosperm of gibl imbibed in water 
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while expression of leHl in the embryo of gibl seeds imbibed in water was low. 

Imbibition of gibl seeds in a solution of 10 uM GA4+7 restored the wild type 

phenotype in both endosperm (a decrease in leHl expression) and embryo (an 

increase in leHl expression). These results suggest that leHl expression is under 

control of GAs but is not necessarily linked to the occurrence of GAs in tomato seeds. 

leHl expression occurs during GA regulated processes such as germination but GA 

apparently does not directly regulate leHl expression in the endosperm of tomato 

seeds, as leHl expression is high in the endosperm of non-GA treated gibl seeds. 

However, the leHl mRNA levels might be a remainder of the expression of leHl in 

the endosperm during development. In our experiments gibl plants were weekly 

sprayed with a solution of GA4+7 to stimulate seed setting and fruit development 

(Groot et ah, 1987). Breakdown of certain classes of pre-existing mRNA during 

germination (Bewley and Black, 1994) may not occur in gibl seeds imbibed in water. 

Addition of GA to the imbibition medium restored the wild type germination 

phenotype and mRNA breakdown may have occurred during the first hours of 

germination (Bewley and Black, 1994). 

In tomato three different linker histones have been described. leHl has a high 

homology with a related HI linker histone described by Jayawardene and Riggs 

(1994). These two linker histones are expressed in tissues which show an active cell 

cycle. During tomato seed germination the cell cycle is initiated in the embryo (de 

Castro et ah, 2000; Liu, 1996) and during development the cell cycle is active in both 

embryo and endosperm in tomato seeds (Liu, 1996). The expression of leHl shows a 

close correlation with the activity of the cell cycle. Cell cycle activity was absent upon 

secondary dormancy induction and was induced again after dormancy breaking by 

chilling (de Castro et ah, 2001). Imbibition of wild type seeds in ABA did not inhibit 
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cell cycle activity but even stimulated cell cycle activity (Liu, 1996) which was 

reflected in higher leHl expression in ABA imbibed seeds (data not shown). 

We have provided evidence that linker histones in tomato may play a 

regulating role during germination and dormancy. The involvement of ABA and GA 

in modifying the expression of hisl-s and leHl is not fully understood and needs 

further investigation. 

93 EXPRESSION OF TWO LINKER HISTONES VARIANTS 



94 CHAPTER 5 



General Discussion 

95 



General discussion 

This thesis describes studies on germination and dormancy of tomato seeds 

through the use of physiological, biophysical and molecular techniques. These 

different techniques have enabled us to study the expression of a CaMV 

35S::luciferase construct as a marker for dormancy, germination and variation; the 

distribution of ATP within the seed was visualised with the luciferase-luciferin 

system; the uptake and distribution of water during germination were visualised by 

3D TSE NMR-imaging. Finally, the expression of two linker histones was studied 

through RNA extraction and reverse-transciptase-PCR. 

Dormancy and germination in tomato seeds 

Germination and dormancy of tomato seeds are predominantly regulated by 

the endosperm. The endosperm limits outgrowth and water uptake of the embryo. For 

this reason dormancy in tomato is called 'coat-imposed' (Hilhorst and Karssen, 1992). 

Therefore, the ability of the embryo to protrude the radicle with a force that is high 

enough to overcome the mechanical restraint of endosperm and testa and the control 

of this process is important in the control of dormancy and germination. Browsing 

through literature available on germination of tomato seeds leads easily to the 

conclusion that the interaction between the embryo and the endosperm is complex. It 

seems hard to grasp the control of dormancy and germination in a few simple 

hallmarks. Several factors have been described to influence germination of tomato 

seeds, including light, hormones and temperature. 
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Light 

Non-dormant tomato seeds do not require light to germinate. Nevertheless 

tomato seeds are sensitive to red light and far red light. Red light leads to conversion 

of phytochrome from the inactive form Pr to the active Pfr, while far red light causes 

the opposite conversion. Secondary dormancy can be induced in tomato seeds by far 

red light irradiation. A far red light pulse of 10 min at an intensity of 2.1 mW.cm"2 at 

24 h of imbibition inhibited germination and also inhibited 35S::luciferase expression 

in transgenic seeds (Chapter 2). A red light pulse of equal intensity of 10 min applied 

at 24 h was able to stimulate both 35S::luciferase expression and germination. Seeds 

which have received intermittent far red light pulses at 2.1 mW.cm"2 for 48 h are 

rendered secondarily dormant. 35S::luciferase expression is then abolished and the 

ATP concentration in the radicle is lowered (Chapter 3). his Is linker histone 

expression is strongly induced upon induction of secondary dormancy through far red 

light irradiation. The induction of hisl-s expression was first detected in the 

endosperm but was delayed in the embryo (Chapter 5). Light perception in relation to 

germination within seeds by phytochrome is believed to be located in the embryonic 

axis (Bewley and Black, 1994; Frankland and Taylorson, 1983). Far red light 

inhibited 35S::luciferase expression which is mainly expressed in the endosperm cap 

(Chapter 2). Far red light irradiation also inhibited endo-6-mannanase activity in the 

endosperm cap (Nonogaki et ah, 1995). This observation is supportive for the 

hypothesis that a diffusible factor, most likely GA, from the embryo stimulates endo-

6-mannanase activity in the endosperm cap (Groot and Karssen, 1987). Synthesis of 

GA in the embryo and diffusion of GA from the embryo may be inhibited by far red 

light irradiation, thus preventing endo-8-mannanase activity in the endosperm cap. 
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The development of primary dormancy in tomato seeds with respect to light 

conditions is not well understood. Not all seeds are primarily dormant upon imbibition 

with water. The primarily dormant seeds could be distinguished by absence of 

luciferase activity (Chapter 2). Similar to secondarily dormant seeds primarily 

dormant seeds have a lowered ATP accumulation in the radicle compared to non-

dormant seeds. It would be interesting to study how primary dormancy is acquired (is 

phytochrome involved?) and why not all seeds are primarily dormant upon imbibition. 

Growth conditions for tomato plants such as light composition (FR/R ratio) and 

temperature have not lead to an unambiguous rule of thumb of how primary dormancy 

may be induced (Hilhorst, personal communication). 

Hormones 

It has been well established that ABA and GA are involved in germination and 

dormancy of tomato seeds. GA and ABA influence the expression of 35S::luciferase 

when applied exogenously in a dose responsive manner. ABA inhibits both 

germination and corresponding luciferase activity but does not render seeds dormant. 

The high ATP accumulation in the radicle in germinating seeds was not influenced by 

application of 10 |iM ABA (Spoelstra, unpublished results). This is also true for endo-

6-mannanase activity (Toorop et al., 1996) and expansin expression (Chen and 

Bradford, 2000) in the endosperm cap. his Is expression was not induced in non-

dormant seeds which were imbibed in 10 uM ABA. Inhibition of germination by 

exogenously added ABA is probably based on the decrease in growth potential of the 

embryo (Bewley, 1997; Nomaguchi et al., 1995), although the water potential of the 

embryo is unaffected by ABA (Liu, 1996). The decrease in growth potential is likely 

to be caused by the inability of cell walls in the radicle to elongate in the presence of 
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ABA (Schopfer and Plachy, 1985). NMR imaging showed that prior to actual 

emergence of the radicle the endosperm cap is pushed outward (Chapter 4). This is 

facilitated by the fact that cell walls have weakened under influence of hydrolysing 

enzymes. It has been proposed that ABA acts via inhibition of the second phase of 

endosperm weakening (Toorop et al, 2000). This second phase might be related to 

the further undermining of endosperm cap restraint by the outward push caused by the 

protruding radicle. The fact that this second phase is absent in the presence of 

exogenously applied ABA is then a result of the absence of radicle protrusion. 

Whereas ABA inhibits germination, it is stimulated by GA. 35S::luciferase 

expression was positively influenced by exogenously applied GA. Luciferase activity 

showed a sigmoid response to GA (Chapter 2). At a concentration of 10 |uM GA4+7 

still not all seeds were stimulated: apparently some seeds have sensitivity thresholds 

higher than this concentration. Luciferase activity appeared to be related to this 

threshold. Seeds with an above population average luciferase activity had lower 

threshold levels compared to seeds with luciferase activity below population average 

(Chapter 2). Seeds which were treated with GA concentrations higher than this 

threshold showed a linear response with increasing GA concentration. This is in 

accordance with the threshold theory postulated by Bradford and Trevawas (1994). 

During tomato seed germination, GA is involved in regulation of endo-6-

mannanase activity (Groot and Karssen, 1987; Groot et al., 1988) and expression of 

expansins (Chen and Bradford, 2000) and it stimulates cell cycle activity (de Castro, 

1998; Liu, 1996). These processes are often absent in gibl seeds but can be restored 

by application of GA4+7. leHl expression was partly influenced by GA in gibl seeds. 

leHl expression in the endosperm of gibl seeds was independent of exogenous GA, 

whereas GA had a stimulating effect on leHl expression in the embryo. The data 
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presented in this thesis have helped to better understand the variation in the response 

to GA and how ABA and GA are involved in the regulation of dormancy and 

germination of tomato seeds. 

Temperature 

Temperature can have a profound effect on germination and dormancy of 

tomato seeds. In this thesis we have used a low temperature treatment (chilling /cold-

stratification) to break primary and secondary dormancy. How chilling affects the 

seeds in switching to a germination mode is hardly understood. Chilling of dormant 

tomato seeds may sensitise them for GA and light (de Castro et ah, 2001; Derkx et ah, 

1994b). Both primarily and secondarily dormant seeds are relatively insensitive to 

treatments with GA and light prior to chilling. Chilling has also been suggested to act 

by delaying thermal revision of pre-existing Pfr to Pr and it induces membrane 

changes that may affect availability or sensitivity of receptor sites (Frankland and 

Taylorson, 1983). Involvement of the membrane may also occur through fluidity 

changes due to temperature changes. As a result membrane permeability may change 

with effects on intracellular pH and signal transduction (Hilhorst, 1998), leading to a 

altered gene expression pattern. Specific cold acclimation related gene expression, 

protein phosphorylation and release of Ca2+ in plants have been reported and recendy 

reviewed (Thomashow, 2001). In Arabidopsis a family of transcriptional activators 

CBF/DREB1 play an important role in the plant response to low, non-freezing 

temperatures. It is not known whether or how such transcriptional activators may play 

a role during dormancy breaking by chilling. There is evidence for synthesis of rRNA 
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during low temperature presowing treatment (10°C) (Coolbear et ah, 1990) in tomato 

seeds. 

Plants also respond to cold stress by solute accumulation, such as sugars. This 

solute accumulation may play a role in lowering the base water potential of the 

embryo thus increasing germinability (see also: Bradford, 1995; Bradford, 1996). 

Gene expression of hisl-s was strongly down regulated during chilling at 4°C 

(Chapter 5). During chilling 'dormant' transgenic seeds did not show luciferase 

activity or 35S::luciferase expression. Upon transferring chilled seeds to germinating 

temperatures 35S::luciferase expression was initiated and the distribution of ATP 

displayed highest accumulation in the radicle (Chapter 3), a situation comparable with 

seeds which were initially non-dormant. leHl expression in both embryo and 

endosperm is also induced within 10 h after transferring chilled seeds to 25 °C 

(Chapter 5). Synthesis of rRNA during chilling may lead to an increased capability for 

translation and the leHl linker histone may then be involved in the increased gene 

expression by remodelling DNA architecture in favour of genes involved of 

germination processes. 

Variation among single seeds and the use of single seed assays 

In this thesis the degree and types of variation among single seeds have been 

demonstrated through imaging of ATP and imaging of changes in luciferase transgene 

expression. Single seeds varied a factor 2.5 to 5 with respect to ATP concentration. It 

is not known what the origin of this variation is (Chapter 3). Whether a higher ATP 

concentration results in a faster germination could not be determined due to the 

destructive nature of the technique albeit that this is unlikely given the lack of relation 

between luciferase activity in transgenic seeds and germination performance. 
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Luciferase activity varied among single seeds over a 150 fold range in extreme cases. 

This variation was partly related to the individual progress of germination of single 

seeds (luciferase activity increases during germination) but a strong correlation was 

possibly masked by intrinsic variation in activity between single seeds. In this respect 

a physiological process related to germination may be better expressed on a biotime 

scale basis (Bradford and Trewavas, 1994; Bradford, 1996), but even then variation is 

not fully evened out (Chapter 2). Seeds also varied in the length of the period from the 

start of imbibition until full commencement of metabolic activity, which was 

indicated by variation in delay time of luciferase activity. This period was 

independent of the final time point of germination of a single seed. Single seeds 

displayed also individual sensitivity thresholds for GA (Chapter 2). The apparently 

large scale variation between single seeds has raised the question whether the 

population average is determined by only a few extreme values (Bradford, 1996; 

pitfall 1; see Chapter 1 for description of the pitfalls connected with the use of pooled 

samples is seed physiology studies). This problem did not occur with respect to 

luciferase activity of single seeds in non-dormant seed batches. If necessary, this 

pitfall can be easily avoided by using a large number of single seeds and generating 

frequency distributions. 

The direct link between a studied parameter to germination is only retained 

with non-destructive methods (pitfall 2). This was convincingly demonstrated by 3D 

TSE NMR imaging of water uptake in single germinating seeds. The uptake of water 

by the radicle prior to actual protrusion through the endosperm would never have been 

detected in a destructive method. Until recently uptake of water by the radicle was 

considered a post germination event (Chapter 4; Bewley and Black, 1994). By the use 

of ATP imaging and 3D TSE NMR imaging it was clearly demonstrated that localised 
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changes may be overlooked when more classical methods such as weighing seeds and 

extracting ATP are applied. The localised water uptake by the radicle, most likely by 

water 'travelling' through the endosperm cap and the high ATP accumulation in the 

radicle would never have been detected with the classical methods (pitfall 3). 

The use of the lucif erase reporter gene to study gene expression in seeds 

Within our laboratory luciferase has been extensively used as a reporter gene. 

Luciferase has proven to be a highly dynamical reporter with protein half life of 15 

min in the presence of luciferin. Luciferin should easily penetrate in most plant tissues 

(Aflalo, 1999). Until recently luciferin supply was expected not to be rate limiting 

(van Leeuwen et al., 2000). However it has been recently reported that luciferin 

uptake can be rate limiting for the luciferase reaction in leaves (Nass and Scheel, 

2001). Experiments in this thesis have shown that in imbibing seeds the luciferin 

supply to the embryo was also limited. This is most likely due to the restriction of 

water uptake of the embryo by the endosperm, as was clearly demonstrated by 3D 

TSE NMR imaging. Furthermore, there is some preliminary evidence that the low 

water potential of the embryo is also limiting expression or activity of luciferase. 

Seeds imbibed in -1.0 MPa PEG displayed hardly any luciferase activity which was 

also reflected in low amounts of extractable luciferase protein. The luciferase signal 

originating from the endosperm was shown to be related to expression of the 

35S::luciferase construct and translation of the luciferase mRNA. The low activity of 

luciferase in the embryo was partly caused by the limitation of luciferin uptake but in 

homozygous lines with 2 copies of the luciferase transgene it might also be related to 

gene silencing phenomena or positional effects (see also: van Leeuwen et al., 2001). 

Transgene silencing might be avoided by the use of single copy lines (Finnegan and 
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McElroy, 1994). Unfortunately the single copy line which we obtained through 

transformation and selective breeding had a very limited luciferase expression in 

seeds which was hardly detectable, even with the most sensitive camera available. 

Tomato seed germination and dormancy; A model 

This tentative model aims to explain the relations between the effects of ABA, 

GA and light in the induction of dormancy and the germination of tomato seeds. Red 

light irradiation causes the conversion of the inactive phytochrome form Pr to the 

active form Pfr. The influence of Pfr on GA metabolism is two fold: through 

increased synthesis of GA (Toyomasu et al., 1998; Yamaguchi et al., 1998) and 

through interaction of the signal transduction pathway of GA and phytochrome which 

'intersect' down stream. This may lead to sensitisation for GA (Weller et al, 1994). 

Furthermore Pfr stimulates the catabolisation of ABA (Kraepiel and Rousselin, 1994). 

The expression of leHl, in this model, is under control of phytochrome (Chapter 5) 

but may be enhanced through GA via the overlap in signal transduction pathway. 

leHl causes the necessary DNA architectural changes to inhibit dormancy related 

gene expression. GA itself positively affects germination by enhancing cell cycle 

activity, the expression of cell wall degrading enzymes in the endosperm cap such as 

endo-6-mannase, expansins which increase cell wall extensibility in the radicle. The 

time point of germination is determined by the interaction of the radicle growth 

potential or cell wall extensibility and the diminishing resistance of the endosperm 

cap. The radicle protrudes by uptake of extra water through the endosperm. It thereby 

causes an outward swelling of the endosperm cap which will rupture and allow the 

radicle to protrude (Chapter 4). 
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Far red light irradiation causes the photochrome conversion of the active form 

Pfr to the inactive form Pr. This conversion may lead to an increased sensitivity for 

ABA or absence of the inhibiting effects of Pfr-phytochrome signalling on ABA 

levels (see also: Weatherwax et ah, 1998). ABA inhibits germination related gene 

expression like that of expansins and thus the growth potential of the embryo 

(Schopfer and Plachy, 1985). The conversion of the active form Pfr to the inactive 

form Pr also leads to inhibition of GA transduction by recruiting elements of the GA 

signal transduction pathway (Weller et al., 1994). As a consequence, the expression of 

hisl-s increases, which causes the necessary architectural DNA changes to inhibit 

germination related gene expression, while cell cycle activity and the expression of 

cell wall degrading enzymes like endo-6-mannanase is inhibited. The combined 

effects of absence of Pfr-phytochrome signalling and the ABA signal transduction 

induce dormancy in the tomato seed. 

The presented model can also explain why exogenously applied ABA does not 

induce dormancy in a non-dormant imbibed tomato seed and does not enhance hisl-s 
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expression. For dormancy induction and hisl-s expression the absence of the Pfr-

phytochrome signal transduction is needed. The model may also explain why GA is 

often not capable to overcome dormancy in tomato seeds when applied exogenously, 

while dormancy can be overcome by combination of light and GA: the combined 

action of Pfr-phytochrome and GA is necessary to break dormancy. 
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Summary 

Formation, germination and dormancy of seeds are important steps in the life 

cycle of higher plants. The seed is the generative dispersal unit, which enables plants 

to spread and survive through periods or seasons of less favourable conditions. In 

agriculture tomato is an important crop and seed companies go through big efforts to 

deliver uniformly germinating seed batches. Uniform germination of a seed lot does 

not often come naturally. Seed to seed variation in timing of germination and also 

dormancy cause non-uniform germination of seed batches. This variation and 

dormancy of tomato seeds is the subject of the experimental work presented in this 

thesis. Several molecular and biophysical techniques have been used to expand our 

knowledge of tomato seed physiology. 

The firefly luciferase-luciferin system has been used in two distinct techniques 

to study single tomato seeds. A reporter gene construct consisting of a CaMV 35S 

promoter and the luciferase gene was introduced in tomato by Agrobacterium 

mediated transformation (Chapter 2). Transgenic seeds were obtained and imbibed in 

0.1 mM luciferin solutions. The expression of the luciferase gene was linked with 

photon emission from the seeds during germination. Luciferase was expressed in a 

developmental pattern during germination in all germinating seeds. Luciferase 

expression increased during germination. Although the expression pattern of 

luciferase was intrinsically linked with the completion of germination, the luciferase 

activity of a single seed could not be used as a prediction of the time point of visible 

germination or of the germination rate of a single seed. This was due to the 

125 SUMMARY 



combination of both a time component and an intrinsic variation in the level of 

expression. 

Both primarily and secondarily dormant tomato seeds did not show luciferase 

activity. This enabled us to distinguish, non destructively, dormant from germinating 

tomato seeds prior to radicle protrusion and, hence, separation of those seeds for 

future experiments. 

Luciferase was also used to visualize distribution of ATP in sections of tomato 

seeds during dormancy and germination (Chapter 3). It was shown that not the overall 

ATP level or concentration of a seed was related to germination or dormancy per se, 

but merely the localised increase of ATP levels in the radicle. Dormant tomato seeds 

did not show an increase in the level of ATP in the radicle. 

Germination of seeds starts with the uptake of water and finishes by water 

uptake by the radicle at the initiation of seedling growth. Water uptake by tomato 

seeds was studied with the use of NMR-imaging (Chapter 4) . Water uptake resulted 

in an uneven distribution of water over the seed tissues. The endosperm had higher 

water content during germination. Radicle protrusion was accompanied by an uptake 

of extra water, thereby stretching the endosperm outward which resulted in rupture of 

the endosperm cap, which marked the end of germination. In contrast with the 

commonly adopted model in which seeds take up extra water only after germination, 

tomato seeds showed this extra water uptake prior to germination. 

Linker histones play an important role in the regulation of gene expression by 

remodelling DNA architecture. Distinct linker histones are thereby under control of 

different developmental processes in plants. With this in mind we have studied the 

expression of two different linker histones in tomato, which were originally believed 

to be under control of either GA or ABA, by the use of reverse-transciptase PCR. 
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ABA and GA are antagonists in the regulation of seed germination and this makes 

both linker histones excellent candidates to play a role in the regulation of 

germination and dormancy of tomato seeds (Chapter 5). It was shown that the two 

different linker histones were differentially expressed in seeds, in relation with 

dormancy or germination. The linker histones also appeared not to be necessarily 

under direct control of either GA or ABA. A model is presented in which dormancy 

and germination are controlled by the linker histones, which, on their turn, are under 

direct control of phytochrome signal transduction. Expression of the histones may be 

stimulated or accompanied by ABA or GA. 

This research was financially supported by the Netherlands Technology Foundation 

(STW) and was coordinated by the Life Science Foundation (SLW). 
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Samenvatting 

In de levenscyclus van hogere planten spelen zaden een belangrijke rol. Zaden 

dienen voor verspreiding van de soort en het individu maar ook om periodes en 

seizoenen te overleven welke ongunstig zijn voor groei. Daarnaast zijn zaden 

belangrijk in landbouwkundig opzicht, voor zowel pootgoed als consumptie. Aan 

zaden als uitgangsmateriaal voor gewassen worden hoge kwaliteitseisen gesteld met 

betrekking tot uniforrae kieming, afwezigheid van kiemrust en houdbaarheid. Het is 

dus van belang om de processen te kennen die een belangrijke rol spelen in de variatie 

in kiemsnelheid tussen de individuele zaden in een populatie en in de regulatie van 

kiemrust. In deze dissertatie is hiernaar onderzoek verricht via meerdere moleculaire 

en biofysische technieken. 

In hoofdstuk 2 staat beschreven hoe, op een non-destructieve wijze, door 

middel van transformatie van tomaat met een luciferase-gen uit het vuurvliegje en de 

35 CaMV promotor de kieming van individuele tomatenzaden is geanalyseerd. 

Transgene zaden zijn daartoe gekiemd in een oplossing van luciferine. De 

fotonenemissie van deze zaden was direct proportioned aan de expressie van het 

luciferase-gen. Deze expressie nam continue toe tijdens kieming en was afwezig in 

zaden welke in kiemrust verkeerden. De hoeveelheid luciferase activiteit was geen 

directe maat voor de snelheid van kieming van een individueel zaad. De variatie 

tussen zaden m.b.t. luciferase-activiteit bestond uit zowel intrinsieke (biologische) 

variatie als een tijdscomponent. 

Luciferase-activiteit was volledig afwezig in zaden die in een staat van 

primaire of secundaire kiemrust verkeerden. Dit gegeven is gebruikt om op non-
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destructieve wijze scheiding te kunnen aanbrengen tussen kiemende zaden en zaden in 

kiemrust geruime tijd voor het doorbreken van het kiemworteltje. 

In hoofdstuk 3 is luciferase gebruikt om ATP te visualiseren in zowel 

kiemende zaden als zaden in kiemrust. Daarbij is gebleken dat niet de totale 

hoeveelheid ATP in een zaad gerelateerd is aan kieming of kiemrust, maar wel de 

locale ophoping van ATP in het kiemworteltje van het embryo. Deze locale ophoping 

van ATP in het kiemworteltje was niet aanwezig in zaden welke kiemrust vertoonden. 

Kieming van zaden in het algemeen begint met de opname van water en eindigt met 

een hernieuwde opname van water door het kiemworteltje als aanvang van de groei. 

De opname van water door endosperm en embryo van tomatenzaden werd 

gevisualiseerd door middel van NMR-imaging (hoofdstuk 4). Daarbij is gebleken dat 

de hoeveelheid water in het endosperm hoger is dan in het embryo. Vlak voor kieming 

begint het kiemworteltje extra water op te nemen waarbij het strekt en het endosperm 

naar buiten drukt, alvorens door het endosperm heen te breken. Dit proces van extra 

water opname door het embryo werd tot dusver beschouwd als een proces dat na 

kieming plaatsvindt. 

De zogenaamde linker histories spelen mogelijk een belangrijke rol bij de 

regulatie van gen expressie door middel van herstructurering van de DNA-

architectuur. Er bestaan daarbij verschillende vormen van deze histonen die elk onder 

controle staan van verschillende stadia en ontwikkelingsprocessen in de plant. In 

tomaat zijn deze histonen ook aanwezig. Aangenomen werd dat deze gecontroleerd 

worden door de plantenhormonen abscisinezuur (ABA) en gibberelline (GA). Twee 

van dergelijke histonen zijn bestudeerd in hoofdstuk 5. Hierbij bleek dat de twee 

verschillende histonen ieder een verschillende rol spelen in kieming en kiemrust van 

tomatenzaden. Er werd daarbij ook aangetoond dat regulatie door ABA of GA daarin 
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niet strikt noodzakelijk is. Dit heeft geleid tot een model waarin kiemrust en kieming 

van tomatenzaden gereguleerd wordt door deze linker histories en waarbij de 

fytochroom signaaltransductie een direct aansturende werking heeft die ondersteund 

wordt of gepaard gaat met de aanwezigheid van ABA of GA. 
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Figure 1: A) (lower panel) Luciferase activity in the lateral endosperm (end) the 
endosperm cap (ec) and the embryo (em) of homozygous 35S::luciferase tomato seeds 
imbibed in 0.1 mM luciferin. (upper panel) Corresponding bright field image of dissected 
tomato seed. B) (lower panel) Effect of luciferin supply to dissected embryo's of hemizy-
gous 35S::luciferase tomato seeds. Tomato seeds were imbibed in 0.1 mM luciferin, dis­
sected and placed either on water (-luciferin) or on 0.1 mM luciferin (+ luciferin). (lower 
panel) Corresponding bright field image of embryo's of the dissected tomato seed. C) Effect 
of luciferin and wound response on luciferase activity in lateral endosperm (end) and 
endosperm cap (ec) from dissected homozygous tomato seeds (lower panel) and intact 
tomato seed (upper panel). Tomato seeds were imbibed in 0.1 mM luciferin, dissected and 
placed either on water (-luciferin) or on 0.1 mM luciferin (+luciferin). 



Figure 3: Images of ATP distributions in cryosections of tomato seeds. Wild-type seeds at 
3 h (A), 6 h (B), 17 h (C), 24 h (D) and 48 h germinated (E). Secondarily dormant wild-
type seed after 5 days of incubation (F). Wild-type seed after secondary dormancy induc­
tion and cold treatment for 3 d and 24 h at 25°C (G). Seeds in state of primary dormancy 
at 48h of imbibition (H). 
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Figure 2: Proton density images of 2 subsequent slices of the same seed acquired through 
3D TSE NMR imaging at 2 h and 12 h of imbibition of a single seed. The arrow indicates 
free space in the seed which disappeared during the first 12 h of imbibition. 
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Figure 4: Water distribution in 2 slices of a single seed around the the time point of radicle 
protrusion. Arrow (5 In) indicates outward swelling of the endosperm cap (compare to 45 h), 
prior to radicle protrusion, Radicle has protruded at 52h of imbibition which can be clear­
ly seen at 57 h. 
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Figure 5: A) Localised uptake of water (single slice) through the endosperm just below the 
endosperm cap (region of interest) with increase in water content, represented by increase in 
proton density (arrow) starting at 47 h and continuing at 48 h, 49h, 50h, 51h, 52h, 53h and 
54h. Radicle protruded at 51/52 h (see also Figure 4). B) Increase in proton density represent­
ing the uptake of water within the region of interest in panel A, between 45 and 55 h. 


