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Stellingen behorende bij het proefschrift 

Predictability of Weather Regime Transitions 

1. Atmosferische circulaties die gevoelig zijn voor veranderingen in de sterkte van een 
blokkade of een zonale stroming, worden vaak gekenmerkt door een krachtige straal-
stroom ten westen van een diffluente stroming. 

2. Voor bijna elke atmosferische circulatie kan een kleine storing gevonden worden, zo-
danig dat een regime transitie binnen een week zal plaatsvinden. 

3. Door niet-lineaire mechanismen is het onstaan van een blokkade gemiddeld gevoeliger 
dan het ontstaan van een sterk zonale stroming. 

4. Bij het maken van ensemble verwachtingen met behulp van zogenaamde 'singular vec
tors' dient men in te zien dat lineair langzaam groeiende singular vectors een niet 
verwaarloosbare bijdrage aan de foutengroei kunnen leveren. 

5. Een vlinder maakt nog geen zomer. 
(Een snelle overgang naar een blokkade regime kan, in theorie, het meest effectief op 
gang gebracht worden door niet op een maar op vele plaatsen in de beginconditie kleine 
storingen aan te brengen.) 

6. Omdat veel mensen geneigd zijn een lineair verband te leggen tussen de oorzaak en 
het gevolg van een gebeurtenis, dient op middelbare scholen meer aandacht besteed te 
worden aan niet-lineaire chaotische systemen. 

7. Een betweter is pas echt irritant als hij altijd gelijk heeft. 

8. Het is vaak een kostbare misvatting dat verantwoordelijkheid overdraagbaar is. 



9. Juist door relschoppers als groep verantwoordelijk te stellen voor hun daden komt de 
individuele verantwoordelijkheid beter tot zijn recht. 

10. De 'bestens' order gebruikt voor het aan- of verkopen van effecten zonder koerslimiet 
geeft ten onrechte de indruk dat het plaatsen van zulke orders een goede keuze is. Een 
naamswijziging tot 'slechtstens' order zou het gebruik van deze order sterk reduceren 
en zodoende de particuliere belegger veel geld besparen. 

11. Voor sommige mensen is onrecht een voorrecht, omdat het hun bestaansrecht geeft. 

12. De economiestand op een douchekraan is een goed voorbeeld van een te ver doorge-
draaide zuinigheid van de Nederlander. 

Jeroen Oortwijn Wageningen, 25 maart 1998 
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Chapter 1 

Introduction 

This thesis is about the predictability of weather regime transitions. In this introductory 
chapter the theory of weather regimes is described. Further, the concept of predictability and 
its limitations due to error growth in numerical weather prediction models are explained. To 
illustrate all this, a relatively simple example is considered. The quasigeostrophic model is 
introduced, which is used for numerical experiments in the subsequent chapters, and finally, 
an overview of the thesis is given. 

1.1 Weather regimes 

The extratropical atmospheric evolution exhibits variability at various time scales: high-
frequency variability (2-6 days), low-frequency variability (10-90 days) and seasonal variabil
ity. High-frequency variability is associated with the development of synoptic-scale baroclinic 
weather systems. Predictability of the atmospheric circulation is directly related to the de
velopment of these weather systems. The useful range of deterministic forecasts is limited 
by the life time of these systems, which is of the order of 5 days. The birth of new high-
frequency transients, like depressions, occurs at very small scales that are not fully captured 
by the numerical weather prediction (NWP) models. Within a couple of days they affect the 
atmospheric circulation on much larger scales. It is obvious that when this process is not 
properly resolved in the initial conditions it will be difficult to forecast it correctly. On the 
other hand, the evolution of systems that are already present in the initial conditions can be 
forecasted reasonably well. Thus, current deterministic forecasts are useful, on average, up 
to about 6 days. Low-frequency variability is manifested at time scales in the order of 10 to 
90 days. Dole and Gordon (1983) showed that low-frequency variability even explains the 
largest nonseasonal variance. The predictability is not strongly affected by the presence of 
low-frequency phenomena. 

The geographical distributions of both high-frequency and low-frequency variability are 
inhomogeneous. The atmospheric circulation of the Northern Hemisphere is characterized 
by a localized strong westerly flow, the so-called jet stream, which exists due to the rotation 
of the earth and the temperature difference between the equator and north pole. Due to 
orography and land-sea contrasts the jet stream has mainly two maxima to the east of 
the Himalayas and the Rocky Mountains. Large velocity gradients, differences in the heat 
capacity between land and sea and differences in the moisture distribution in the air over 
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land and sea give rise to the existence of storm tracks at the north-western parts of the 
Atlantic and Pacific oceans. These regions mark the maxima of high-frequency variability. 
The maxima of low-frequency variability are located at the end of the storm tracks at the 
north-eastern parts of the oceans. 

The patterns of low-frequency variability have also a preferred structure. They are charac
terized by recurrent large-scale anomaly patterns. One of the best known weather phenomena 
that may persist for weeks is the so-called blocking event. Blocked flows are characterized 
by a high-amplitude large-scale anomaly pattern consisting of a high pressure cell to the 
north of a low pressure cell. This pattern blocks the normally westerly flow and splits the 
jet into a northern and southern branch. Because the high-frequency transients are forced 
to bend northward or southward this may result in a long period of quiet weather. The 
local weather varies only little during a blocking episode, sometimes causing extremely dry 
and warm periods in summer or dry and cold periods in winter. To the north and south 
of the blocking the weather may be (extremely) wet and stormy. Blocking episodes do not 
show a preferred time scale. Onset and breakdown of blockings are usually very rapid. The 
predictability of blocking maintenance is on average good, whereas the predictability of the 
onset is still a challenge for numerical models (see e.g. Tibaldi et al. 1994). 

To explain the existence of large-scale low-frequency phenomena Charney and DeVore 
(1979) employed the concept of multiple equilibria. In their study they assumed that the 
atmospheric circulation possesses several equilibrium solutions. A stationary equilibrium is 
maintained by the nonlinear interaction of the external (nonzonal) forcing and the zonal flow. 
Driven by small-scale instabilities, the atmosphere moves from one quasi-stable equilibrium 
to another. A blocking event thus corresponds to a situation in which the flow approaches 
a quasi-stable equilibrium. However, all their solutions (which were obtained in a low-order 
model) were unstable to synoptic-scale disturbances and will not be maintained in realistic 
flows. 

This concept has therefore been modified by Reinhold and Pierrehumbert (1982) who 
introduced the term weather regime. They hypothesized that the low-frequency variability of 
the atmospheric circulation is a consequence of transitions between several weather regimes. 
A weather regime is the result of the quasi-equilibrium between the large-scale flow and 
the synoptic-scale weather systems. The large scales not only organize the evolution of 
the synoptic scales into storm tracks, vice versa, the organized storm tracks determine the 
structure of the large-scale flow and balance the tendency of the large scales. Weather 
regimes are quasi-stationary in the large scales only, due to the systematic feedback of the 
high-frequency transients. The reason why low-frequency patterns are not predictable for 
periods much longer than the synoptic-time scale is probably because they are coupled to 
the high-frequency transitions to maintain their structure. 

Two possible configurations of the balance between the large-scale flow and the synoptic-
scale flow may occur. In the first configuration the large-scale pattern is not related to 
a steady state of the large-scale flow, and can only be quasi-stationary by the forcing of 
high-frequency transients. In other words, the large-scale pattern must be successful in 
organizing the transients in a self-sustaining pattern otherwise it will not be persistent. The 
second possibility is that the large-scale pattern approaches a steady state of the large-scale 
equations of motion. In this hypothesis the small tendency of this large-scale flow pattern in 
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the full system must therefore be balanced by the high-frequency transients. Both described 
configurations are supported by several studies. Vautard et al. (1988) and Vautard and 
Legras (1988) showed that blocking flows, which are not stationary states of the large-scale 
equations, can be maintained against dissipation by the high-frequency transients. Haines 
and Marshall (1987) found a similar result but for modonlike blocking flows, which are steady 
states of the simplified large-scale equations. 

In the weather regime theory, onset and breakdown of weather regimes can be explained 
by the evolution of a single disturbance that triggers or breaks down the quasi-equilibrium. 
Thus, transitions may occur very rapidly and almost at random. This is in agreement with 
the observational results that onset and breakdown of persistent large-scale anomalies (e.g. 
blockings) are rather abrupt (on the synoptic-time scale) compared to the duration of the 
event (Dole and Gordon 1983; Hansen and Sutera 1986; Yang and Reinhold 1991). Fur
thermore, no preferred time scale is found (Dole and Gordon 1983; Legras and Ghil 1985; 
Liu 1994). Transitions between weather regimes may thus be purely due to the internal 
dynamics of the atmospheric flow. This view is in contrast with the ideas of, for instance, 
Hoskins and Karoly (1981) who described the onset of certain persistent anomalies in terms 
of propagation of wave trains into the midlatitudes produced by tropical sea surface tem
perature anomalies. Such an external slowly-varying forcing can not account for the abrupt 
changes in the flow structure. However, external forcing could favour the occurrence of cer
tain regimes within a season (see e.g. Palmer 1993). In addition to quasi-stationary weather 
regimes, low-frequency oscillations are observed (e.g. Anderson and Rosen 1983; Branstator 
1987; Kushnir 1987). These low-frequency oscillations may favour the occurrence of partic
ular weather regimes and influence transitions between regimes (Plaut and Vautard 1994; 
Michelangeli and Vautard 1998). 

The regime-like behaviour of the atmospheric circulation may be described using the the
ory of dynamical systems. For forced-dissipative dynamical systems the set of possible states, 
called the attractor of the system, is believed to be much smaller (even of probability zero in 
phase space) than the phase space of the whole system (which is infinitely dimensional). An 
atmospheric state is given by a point in phase space and its evolution by a trajectory. The 
states are expected to propagate aperiodically (chaotically) but not randomly. Regimes may 
be recognized by regions of phase space that are densely populated. Atmospheric states will 
spend more time in these regions and will also visit them more often. Transitions between 
regimes are given by trajectories that connect the regimes. Some regimes may be connected 
by many trajectories, others by few trajectories. The first represent preferred transitions 
between two weather regimes. In section 1.3 we will demonstrate that this behaviour even 
occurs in low-dimensional systems. 

In this thesis, we will focus on the predictability of transitions between a blocking regime 
and a strong zonal flow regime. This study will be performed within the context of a three-
level quasigeostrophic model triangularly truncated at wavenumber 21 (T21QG). Its tangent 
linear and adjoint models are used to perform sensitivity experiments. In the next section we 
describe error growth in numerical models and explain how tangent linear and adjoint models 
may be used to compute maximum error growth. In section 1.3 we apply these methods for 
a relatively simple example. In section 1.4 the T21QG model is briefly described. Finally, 
an overview of this thesis is given in section 1.5. 
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1.2 Error growth 

Errors in the estimation of the initial conditions and errors in the formulation of numerical 
models give rise to error growth. Given the initial state of the atmosphere, future states are 
computed by integrating complex numerical general circulation models (GCMs). Although 
the atmosphere is a deterministic system and its laws of motion are known, some fundamen
tal difficulties arise in the predictability of its future states. The atmospheric circulation is 
nonlinear, mainly due to the presence of non-linear advection, and appears to be fundamen
tally chaotic. An important property of a chaotic system is that it shows sensitivity to initial 
conditions. This means that a small error in the initial conditions will eventually lead to a 
large forecast error. In an infinitely-dimensional system like the atmosphere, infinitesimal 
errors may evolve into large errors even within a finite time. This has resulted in the esti
mation of a predictability horizon of about one or two weeks. Behind this horizon a single 
deterministic forecast is useless. Due to errors in the initial state and imperfections in the 
model formulation current GCMs are useful until forecast day 6, i.e., they have a higher skill 
than forecasts based on climate or persistence. * 

The atmospheric state at a certain time may be represented by a vector ip m phase 
space. The components of tj) contain all essential information, namely, vorticity, divergence, 
temperature, and relative humidity at all points in the atmosphere and pressure at the 
surface. In principal the phase space is infinitely dimensional. In practice, the vector ijj is 
computed at a grid so that the phase space of current GCMs is about 5 x 106. 

Suppose that the atmospheric evolution is given by the following equation 

where F is a nonlinear evolution operator. A forecast can be made by integrating equation 
(1.1). The atmospheric circulation is represented in phase space by an orbit tp(t). Orbits 
starting at slightly different initial states will diverge sooner or later. Since the exact initial 
state of the atmosphere is unknown we will have to take into account error growth. During 
the first 2-3 days error growth appears to be dominated by linear terms. It is therefore useful 
to linearise equation (1.1). This results in the evolution equation for a small error e, 

% = nt)s. (i.2) 

This equation is called the tangent linear equation. The operator F'(t) is obtained by 
differentiation of F along the orbit of tj)(t) in phase space. Since equation (1.2) is linear, we 
may relate the error at forecast time T to the initial error 

e(T) = R(0,T)£(0), (1.3) 

where R(0, T) is the linear evolution operator. 

'Forecast skill is measured in terms of verification scores like the root mean square error (RMSE) and 
anomaly correlation coefficient (ACC). 
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Figure 1.1: Initial error e(0) is sum of eigenvectors ni and 112. Large initial contri
butions of the normal modes are 'hidden' in e(0) due to their opposite working. At 
forecast time T the error has grown because of the unequal decay of ni and 112. 

In order to demonstrate that error growth may be fast or even explosive we shall assume 
that F'(i) is independent of time. Now, the error at forecast time T is found by integration 
of equation (1.2), 

s(T) = eF'-Te(0). (1.4) 

In a classical stability analysis the eigenvalues and the eigenvectors of F ' are calculated. The 
eigenvalues of eF'T are equal to the exponent of the eigenvalues of F' multiplied by the time 
T. The eigenvectors, which are equal to these of eF 'T, are usually called normal modes. Their 
modal structure is constant in time. It will only amplify or decay exponentially and oscillate 
periodically in time (when the eigenvalue is complex). An initial error can be written as a 
sum of these normal modes. A solution is then said to be asymptotically stable when all 
normal modes decay exponentially. However, even in this case (temporary) explosive error 
growth may occur. 

We illustrate this with a simple example, where R = eF T has the following matrix 
structure 

/ n 3 9 \ 
(1.5) 

The eigenvectors of R (equal to the normal modes of F') are equal to ni = (0.981,0.196) 
with eigenvalue Ai = 0.7 and 112 = (1,0) with eigenvalue A2 = 0.3. Hence, at forecast time T 
the normal modes have shrunk to values of 0.7 and 0.3 of their initial lengths. Both normal 
modes decay and the solution is asymptotically stable. However, when we take an initial 
error vector e(0) = (ei(0),e2(0)) = (0,1), its growth at time T is equal to a factor 2.12, 
e(T) = (2,0.7). The situations at initial and final time are shown in Fig. 1.1. 

This error growth is possible because the normal modes are not orthogonal. As a result, 
a small error can have relatively large components with respect to the basis of normal modes. 
The unequal decay of the normal modes results in the temporary growth of the error. * That 
this linear mechanism is important for error growth was already realized by Orr (1907). The 

Un addition to growth due to the unequal decay of the normal modes another process may contribute to 
temporary growth when the dimension of the system is larger. A real matrix operator with at least rank 4 
can have different complex eigenvector pairs. Each eigenvector pair will span a two-dimensional subspace in 
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amplification of errors may be much larger, certainly for systems with more dimensions. * 
When errors are amplified sufficiently, nonlinear terms become important. In this case, the 
linear (asymptotic) stability analysis has become irrelevant. 

It is evident that the calculation of normal modes is not the best choice for estimating 
the maximum possible error growth. Maximum growth may be found by maximizing the 
length ||e(T)|| of e(T). In order to measure lengths we have to equip the vector space with 
a norm. Various norms may be defined depending on their application. In fact, we already 
used a norm induced by the Euclidean inner product < •, • >: 

| |e | |
2=<e,£>=X>2 . (1-6) 

:=1 

Now we can write 

||e(T)||2 =< e(T),e(T) > =< Re(0),Re(0) >=< R*R£(0),e(0) > . (1.7) 

Here, we introduced the operator R*, which is the adjoint of R with respect to the Euclidean 
inner product. For realistic atmospheric flows the linear evolution operator R is always non-
normal, i.e., the operator does not commute with its adjoint. This is due to the always present 
vertical and horizontal shear (Farrell and Ioannou 1996). Hence, the set of eigenvectors is 
not orthogonal. The eigenvector of R with the largest real part of the eigenvalue will there
fore not bound the maximum error growth, as we have seen above. However, the product 
operator R*R is normal and its eigenvectors, so-called singular vectors, do form an orthog
onal basis with respect to the Euclidean inner product. Hence, the dominant eigenvalue, or 
singular value, of R*R gives an upperbound for the amplification of errors at forecast time T. 

In our example the adjoint of R is just its transpose. Hence, 

_ ( 0.09 0.6 \ 
R*R = R T R = . (1.8) 

^ 0.6 4.49 J 

Its singular vectors are Vi = (0.133,0.991) with singular value fi\ = 4.57 and v2 = 
(0.991,-0.133) with singular value /z2 = 0.0096. So, even though all normal modes de
cay the maximum amplification is a factor of %/4.57 = 2.14. The largest decay is determined 
by the smallest singular value, a factor of \/0.0096 = 0.098. The initial and evolved singular 
vectors are shown in Fig. 1.2. 

The singular vectors form an orthogonal basis. Hence, each perturbation can be written 
as a sum of singular vectors. When the amplification properties of all singular vectors are 

the real phase space. When the imaginary parts of the eigenvalues are different, corresponding to different 
oscillation periods, the eigenvector pairs will rotate with different velocities in the real phase space. This may 
lead to error growth. For example, the eigenvectors may be first orthogonal and at a later time be partially 
aligned in the same direction, such that the sum of the components of an error along these eigenvectors will 
increase. 

'Trefethen et al. (1993) show that temporary growth may amplify errors by factors of the order of 105. 
They use this linear mechanism as an explanation for the onset of turbulence for Couette and Poiseuille flow 
at subcritical Reynolds numbers (for which all normal modes decay). 
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Vl 

Figure 1.2: The error circle evolves into an ellipsoid with principal axes given by the 
singular vectors Vi and v2. The error vector £,,(0) is almost equal to vx. At forecast 
time it has evolved into the vector e,(T), which has the largest possible projection 
onto the vector n = (1,1), given by e„.(T). The vector 77(0) evolves into fj(T), 
which is exactly aligned along rj. This vector is not optimal because it projects onto 
decaying directions of phase space. 

known maximum error growth in any specific direction can thus be computed. However, the 
computation of singular vectors is rather expensive. When only maximum error growth in 
a specific direction is required, a more efficient method may be found. Such an approach 
is useful to determine large error growth into the direction of blocking and strong zonal 
flow regimes. Suppose that we want to maximize error growth at forecast time T into 
the direction of phase space given by the vector n (which represents, for instance, a blocking 
anomaly pattern), or, equivalently to maximize the inner product between e(T) and n. Using 
the tangent linear and adjoint operators, we can write 

< e(T), j] >=< R£(0), n >=< e(0), R*?7 > . (1.9) 

We conclude that the error vector e^(0) of unit norm that maximizes the inner product is 
equal to 

*,(0) = p ^ - d.io) 
In the following chapters this method is used to trigger regime transitions. To illustrate it 
in a simple context we return to the two-dimensional example given by Eq. (1.5). Suppose 
that we are interested in error growth in the direction of 77 = (1,1). We then find that 

£„(0) = (0.110,0.994) and sn(T) = (2.02,0.696). (1.11) 

These vectors are almost equal to the fastest growing singular vector Vi at initial and op
timization time, respectively. The maximum amplification in the direction of 77 is given 
by 

<ev(T),V> =192 (1 1 2 ) 

INI L92- ( L12 ) 

Notice that the optimal error vector £V(T) points into another direction of phase space than 
77. However, its projection onto n is largest at forecast time T. In Fig. 1.2 the projection 
onto n is denoted by e%{T) = (1.36,1.36). 
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The initial perturbation ry(0) of unit length which at optimization time is exactly aligned 
along rj is found by the backward integration of the linear model starting with 77; that is, 
7/(0) = i i l ^ j i = (-0.974,0.225). The evolved vector fj(T) = (0.157,0.157) is clearly smaller 
than the projection EV.. (T) of the optimal vector £V(T) onto 77 at time T. 

1.3 Error growth and regimes in the Lorenz model 

In this section we will describe a simple dynamical system used by Lorenz (1963) to study 
Rayleigh-Benard convection. The Lorenz model has only three variables and is one of the 
most simple models that exhibits chaos and sensitive dependence to initial conditions. We 
will use the Lorenz model as a metaphor for the atmospheric circulation and illustrate that 
error growth depends strongly on the value of the initial conditions. Furthermore, it is shown 
that regimes can be triggered with the method described in the previous section. 

1.3.1 Lorenz three-variable model 

The Lorenz model is given by the following set of nonlinear differential equations 

x = —ax + ay, 

y = —xz + rx — y, 

z = xy — bz. (1-13) 

Here x, y, z are the three variables and a, r and b are parameters. The parameters are set 
to the original values a = 10, r = 28 and b = 8/3. These equations are derived by Lorenz 
in order to represent Rayleigh-Benard convection to a rough approximation. It describes 
the motion of a fluid between two horizontal plates with a temperature difference due to 
the heating of the lower one. An unstable situation arises: the warm and lighter fluid at 
the bottom rises and sets into motion the colder fluid a t the top. The equations describe 
the three dominant modes of the system. There are three fixed points: the first represents 
a state of rest (no convection at all), the other two represent circulation cells, which rotate 
clockwise or anticlockwise. For the above given values of the parameters all three solutions 
are unstable. 

A fourth-order Runge Kutta integration scheme is used to integrate the Lorenz model 
with a nondimensional time step of 0.01. The solutions of equations (1.13) appear to be 
aperiodic and chaotic. Due to dissipation, trajectories in the three-dimensional phase space 
are attracted to the structure shown in Fig. 1.3. Since the system shows extreme sensitivity 
to initial conditions this attractor is called a strange attractor (see, e.g., Schuster 1989). 
The attractor resembles a butterfly with two wings on which trajectories circle around. § 
The centers of the two wings represent the two unstable steady convections. The motion 
of the fluid switches in a chaotic manner between the two convection regimes. The number 

§The Hausdorff dimension is a noninteger (fractal) and equal to 2.06. Locally the attractor appears to be 
approximately two-dimensional. All points on the attractor lie very close to a two-dimensional plane tangent 
to the attractor. On a micro-scale it appears that the attractor consists of an infinite set of sheets that are 
densely packed together. 
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Figure 1.3: The Lorenz attractor in the three-dimensional phase space. 

of circulations on a wing between two regime transitions change in a random manner. Two 
characteristic time scales can be recognized: a slow one representing the residence time 
within a regime and a fast one representing the transition time scale. 

The Lorenz model may be considered as a simple model for the atmospheric circulation 
that oscillates between two regimes, e.g., a blocking and a strong zonal flow regime. The 
fast transition time scale in the model can be associated with the synoptic-time scale in the 
atmosphere (about 5 days). As discussed in section 1.1, regime transitions are often rapid 
and on a time scale of the order of a few days. The slower time scale represents the residence 
time within a regime (of the order of a few weeks). 

1.3.2 Ensemble forecasting 

Because we do not know the exact state of the atmosphere, we always have an uncertainty 
in the initial conditions. This uncertainty can be represented in terms of a probability den
sity function. Given the uncertainty in the initial conditions represented by the probability 
density function, an optimal forecast is one for which the complete evolution of the prob
ability density function can be computed. Forecasting has therefore become an inherently 
probabilistic problem (Epstein 1969). 

Let us return to the Lorenz model and look at some ensemble forecasts for various initial 
conditions (cf. Palmer 1993). We assume that each component of the three-dimensional state 
vector x has a normal distribution with a uniform standard deviation a around the initial 
condition. The probability density function thus forms initially a three-dimensional sphere 
in phase space with radius a. The ensembles may be interpreted as the three-dimensional 
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Figure 1.4-' The evolution of ensemble forecasts starting at four different initial 
conditions. Each ensemble consists of 1000 members initially distributed within a 
sphere centered around a reference point. In the first three panels the evolution stages 
are plotted at intervals of 16 time steps. In panel (d) the time interval is 64 time 
steps. 

probability density functions. Each ensemble consist of 1000 points, initially distributed 
within a three-dimensional sphere centered around a reference point. The evolution of the 
ensemble is performed by integrating each point with the nonlinear Lorenz equations (1.13). 
The evolutions are shown in Fig. 1.4. In each panel several stages are plotted. In Fig. 1.4a 
the complete ensemble remains in one regime. The sensitivity to the initial conditions is small 
in this part of phase space and so the evolution is very predictable. In Fig. 1.4b the complete 
ensemble moves from one regime to the other. The regime transition is very predictable. 
Figure 1.4c shows a sensitive evolution. The probability that a regime transition will occur 
is about 50 %. During the first four stages the sphere evolves into an ellipsoid. This is the 
linear stage of the evolution. The principal axes of the ellipsoid can be obtained by computing 
singular vectors, as described in the previous section. In the next stage the ellipsoid is slightly 
deformed by nonlinear processes, the weakly nonlinear stage. The singular vectors still give 
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a reasonable approximation of the fastest growing directions. After this stage the evolution 
of errors is strongly nonlinear. Linear calculations of maximum error growth fail. Total 
loss of predictability occurs when the ensemble is dispersed over the whole attractor (not 
shown). By that time, the probability density function can not be distinguished anymore 
from the climatological distribution. In Fig. 1.4d the ensemble is shown at three stages 
of the evolution. The linear stage is much shorter than in the former examples. At the 
final stage the probability density function has a sharp bimodal distribution. The regime 
type is unpredictable. However, it is still predictable that the system will remain in one of 
the regimes for a very long time. One speaks of a return of skill. This convergence of the 
ensemble is due to phase-space regions in which all (infinitesimal) errors shrink with time. 

The examples illustrate that the predictability depends considerably on the initial condi
tions. This leads to a variability in the skill of various forecasts. By making use of ensemble 
forecasts the skill may be estimated a priori. Knowledge of the skill could enlarge the useful 
range of forecasts. How to compute forecast skill of operational forecast models is one of 
the leading research themes of numerical weather prediction. Current operational forecast 
models have about TV = 106 components. The N-dimensional probability density function 
will evolve in the same way as illustrated in the Lorenz model. The duration of the linear 
phase is estimated at about 2-3 days, the duration of the weakly nonlinear phase at about 
5-7 days. Because of the many degrees of freedom and the high costs of integrating the oper
ational forecast models, it is impossible to compute the complete evolution of the probability 
density function. Therefore, several techniques are applied to estimate the forecast skill. 

Here, we will describe briefly three approaches, which differ mainly in how initial pertur
bations are selected to create an ensemble. The first technique is Monte-Carlo forecasting: 
ensemble members are randomly selected from the initial probability density function (cf. 
Leith 1974). Due to the high numerical costs only a small ensemble can be integrated, which 
will sample only a small subspace of the N-dimensional phase space. This has been the 
reason to develop other techniques that dynamically constrain the selection of perturbations 
to create an ensemble. One of them is applied in the ensemble prediction system (EPS) at 
the European Centre for Medium-Range Weather Forecasts (ECMWF; Molteni et al. 1996). 
In this approach an ensemble is created by computing the fastest growing perturbations that 
will stretch the probability density function along the directions of these dominant linear 
instabilities. In the current ensemble prediction system singular vectors are computed (see 
section 1.2) for a simplified version of the operational model so that 50 alternative forecasts 
can be made. Based on this ensemble probabilities of various scenarios are derived. The 
third technique is the so-called 'breeding' method used at the National Centers for Environ
mental Prediction (NCEP; Toth and Kalnay 1993, 1997). A small ensemble of perturbations 
is created (currently about 17 members are used). The perturbations represent directions in 
which growth has been dominant over the past. The idea is that these 'bred vectors' repre
sent directions in which the analysis uncertainty is large. The bred vectors are obtained by 
performing nonlinear perturbed integrations. After each integration period the bred vector 
is scaled to its initial amplitude. After many integration periods the direction in which error 
growth has been large will remain. 

It is not clear yet which approach is more successful. Studies of Houtekamer and Derome 
(1995) with a T21QG model and Anderson (1997) with the Lorenz model indicate that 
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the use of constrained ensembles may have no impact on the ensemble mean. The forecast 
of higher moment quantities such as forecast spread may even be worse (Anderson 1997). 
Although the importance of ensemble forecasting is evident, much theoretical and practical 
work has to be done. 

1.3.3 Optimal regime transitions 

Ensemble forecast may be especially useful in situations when the atmosphere is about to 
make a regime transition (Palmer 1993; Buizza and Palmer 1995). As we have illustrated 
for the Lorenz model, some regime transitions are predictable, others are unpredictable. 
In the next chapters, we will show that the predictability of the circulation in the T21QG 
model also varies considerably. We will extensively consider initial conditions sensitive and 
insensitive with respect to regime transitions. 

In section 1.2 we have already explained how we can study optimal regime transitions. We 
first illustrate the procedure for the Lorenz model. In order to maximize a regime transition 
we will use the following property of the Lorenz system. The divergence of trajectories is 
largest along the z-axis near the unstable fixed point (0,0,0), see Fig. 1.4d. Trajectories that 
pass this point closely will move to the center of one of the regimes. We will therefore try to 
minimize the z-value of the perturbed orbit at forecast time T in order to induce a transition 
later. 

Let us first rewrite the Lorenz model in the form x = F(x). The linearized equations 
are then given by e = F'(t)e. The operator F'(i) is found by differentiation of F along the 
reference orbit, 

/ -a a 0 \ 
F'(t) =\ r- z(t) - 1 -x(t) . (1.14) 

V y(t) x(t) -b J 

In order to find the optimal transition vector we maximize the inner product 

< e ( T ) , - e , > , (1.15) 

where ez = (0,0,1) is the unit vector in the z-direction. As in equations (1.9) and (1.10) the 
optimal initial transition vector is, apart from a scaling, given by 

£(r(0) = -R*e z . (1.16) 

The adjoint operator R* is equal to the transpose R T of R, with R formally given by 

R = e / 0
T F ' W * < « _ ( 1 1 7 ) 

We will demonstrate how regimes are triggered with two examples. In both examples the 
sensitivity is very large. The optimization time T is equal to 100 time steps. In Fig. 1.5a 
a reference orbit and a perturbed orbit are shown. The reference flow makes first one loop 
in the left regime. Next, it moves to the right regime where it will remain a long period. At 
optimization time T the reference flow is located in the upper left corner of the left wing. The 
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Figure 1.5: Two examples of evolutions that are extremely sensitive to the initial 
conditions. The reference flows are given by ip(t). In (a) the trajectory ipi starting 
at a point found by adding the linearly optimal perturbation to the reference initial 
condition triggers a regime for a very long period, while the reference flow remains 
in the other regime. In (b) the linear optimal evolution tpi does not trigger a regime 
for a long period. The evolution I/JNL, obtained by iteratively modifying the optimal 
perturbation, is more successful. The locations at initial, optimization and final time 
are marked by dots. 

linearly optimal perturbation is computed according to equation (1.16). The perturbation 
is scaled such that it lies on a sphere centered around the reference initial condition with a 
radius equal to 0.1. At optimization time the perturbed orbit is located near the z-axis close 
to the origin. After that, the perturbed flow makes a transition to the left regime, where it 
will remain for a very long time. A regime is successfully triggered. 

After the optimization time T the perturbed flow moves in a large loop around the right 
wing in a region of phase space that is rarely visited. This indicates that the perturbation is 
rather special. We will return to this characteristic of optimal perturbations in the T21QG 
model (see section 5 of chapter 2). The advantage of the Lorenz model is that it has only 
three variables, so that we are able to study the optimal perturbation in more detail (cf. 
Anderson 1994, 1997). A first remark is that the perturbation is constructed to induce 
extreme events and must be special in this sense. Secondly, it appears that the initial 
optimal perturbation is not located exactly on the attractor. ' The initial route of the 

'Very long integrations with the Lorenz model can be performed. It is even feasible to compute analogs 
that are very close to the initial condition. These analogs are on the attractor and are all located in a nearly 
two-dimensional plane. The initial optimal perturbation is located just outside this plane. By selecting the 
analog that at optimization time is closest to the optimally perturbed forecast, a comparison can be made 
between these two trajectories. Each time step, the local tangent plane to the attractor has been computed 
at the location of this analog. It appears that the optimal perturbed trajectory is attracted into the tangent 
plane within about 40 time steps; that is, it is indistinguishable from it. So, although the initial route of 
the optimal perturbation is located outside the attractor, it seems that the further evolution lies on the 
attractor. 
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perturbed trajectory is located just outside the attractor plane. This indicates that also in 
more general dynamical systems optimal perturbations or singular vectors may be not on the 
attractor. They may therefore realize perturbation growth that can not occur for evolutions 
of states on the attractor. 

In Fig. 1.5b a sensitive period is selected for which the linear optimal perturbation fails 
to predict the maximum possible deviation from the reference flow. The perturbation is 
scaled such that it lies on a sphere centered around the reference initial condition with a 
radius equal to 1. Using an iterative extension of the maximization procedure, a perturbation 
with the same initial amplitude is computed, which results in a much larger deviation. In 
chapter 2 the iterative procedure will be described in the context of the T21QG model. 
The trajectory of the iteratively modified initial state remains after the optimization time 
in the left regime for a very long period. The linearly computed optimal perturbation is 
not successful in inducing a regime for such a long time. Through the iterative procedure, 
we can account for nonlinear error growth and extend the maximization procedure into the 
(weakly) nonlinear stage. 

1.4 The T21QG model 

The extratropical circulation can be described approximately by the quasigeostrophic equa
tions. The advantage of the quasigeostrophic equations above the full primitive equations 
is that they are filtered (absence of gravity waves) and can be written in terms of only one 
variable, the quasigeostrophic potential vorticity. In the absence of forcing and dissipation 
the quasigeostrophic potential vorticity is conserved following the geostrophic motion. All 
other variables can be found by the inversion of the quasigeostrophic potential vorticity. 

In this section we will briefly describe the quasigeostrophic model developed by Molteni 
(Marshall and Molteni 1993). It is a three-level spectral model triangularly truncated at 
wave number 21. The T21QG model integrates prognostic equations for quasigeostrophic 
potential vorticity q at 200, 500, and 800 hPa (levels 1,2,3 respectively), 

? f = - v K - V f t - A + S ,1 = 1,2,3. (1.18) 

Here vg is the geostrophic velocity, D represents dissipation and S an artificial forcing. A 
leap-frog scheme is used to integrate the model with a time step of 40 minutes. At each level 
the quasigeostrophic potential vorticity has 483 independent spectral components, so that 
the model has 1449 degrees of freedom. 

The quasigeostrophic potential vorticity is related to the streamfunction as 

<?i = v V i + / - - R f 2 ( V ' i - ^ ) . 

93 = VVs + zfl + J ^ + i ^ i f e - i k ) . (1.19) 

where / is the planetary vorticity, Rx (= 700 km) and R2 (= 450 km) are Rossby radii of 
deformation, h is the orographic height and H0 (= 9 km) is a scale height. The relation 
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between the geostrophic velocity and the streamfunction is given by 

vg j = kxV)/) , , i = l ,2,3. (1.20) 

Here k is the local vertical unit vector. 
The dissipation terms include Ekman friction, temperature relaxation (Newtonian) and 

horizontal diffusion (hyperviscosity). The forcing is constant but spatially varying. It is 
computed by requiring that the average potential vorticity tendencies (eq. (1.18)) of a large 
number of observed atmospheric states will vanish (cf. Roads 1987). The observed states 
that are used, are ECMWF analyses of streamfunction at the three pressure levels for each 
day in January and February 1984 to 1989. The procedure to compute the artificial forcing 
appears to be very successful. The mean state of the model turns out to be very realis
tic. Furthermore, the model simulates the wintertime extratropical variability remarkably 
well. Even statistics and characteristics of blocking and strong zonal flow regimes are well 
simulated. For more details about the model formulation we refer to Marshall and Molteni 
(1993). The model performance is also described by Liu and Opsteegh (1995) and in section 
2.1 of chapter 3. 

In addition to the nonlinear T21QG model, a tangent model and an adjoint model are 
used. The tangent model integrates linear equations (forward in time) which are obtained by 
linearising the prognostic equations (1-18) around a nonlinear orbit of the T21QG model. It 
describes the evolution of small perturbations along this nonlinear orbit. The adjoint model 
integrates the adjoint of the tangent linear equations backward in time. Using the adjoint 
model the sensitivity of a forecast aspect to all uncertainties in the initial conditions can be 
computed. We will use the adjoint model to compute the sensitivity of regime transitions 
to the initial conditions. An overview of the literature on the use of adjoint models in 
meteorology is given in Courtier et al. (1993). 

1.5 Overview of this thesis 

In this thesis we study the sensitivity to the initial conditions of weather regime transitions. 
We focus on transitions between two weather regimes, a Euro-Atlantic blocking regime and 
a Euro-Atlantic strong zonal regime within the context of a quasigeostrophic model. The 
goal of this thesis is to investigate which characteristics of a flow determine the sensitivity 
with respect to these regime transitions and which mechanisms contribute to the growth of 
the optimal transition perturbations. The thesis consists of four chapters. 

In chapter 2 we explain the method to construct perturbations that optimally trigger 
the onset of a blocking or strong zonal flow regime. These regimes are characterized by a 
blocking index. The perturbations maximize the difference in the blocking index between 
reference and perturbed flow at a prescribed forecast time (3 days). A linear sensitivity 
is defined on the basis of the amplification of the perturbations. It is demonstrated that 
periods of high linear sensitivity are very short. The method is also extended to the (weakly) 
nonlinear range (6 days) by applying an iterative procedure to the linear method. This 
procedure modifies the perturbations considerably. The optimal transition perturbations 
are compared to regional singular vectors, which maximize error growth within the Atlantic-
European area. An optimal perturbation can be written as a sum of regional singular 
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vectors. In the linear range, optimal transition perturbations and fastest-growing regional 
singular vectors are strongly correlated during high-sensitivity periods. In the medium range, 
linearly slower-growing regional singular vectors also contribute to the growth of the optimal 
transition perturbations. This chapter has been published as an article in the Journal of the 
Atmospheric Sciences (Oortwijn and Barkmeijer 1995). 

In chapter 3 we study characteristics of high- and low-sensitivity periods. We consider 
blocking and strong zonal flow regimes located over the Euro-Atlantic area and over the 
North-Pacific. High-sensitivity periods are characterized by an intensified jet stream to the 
west of a diffluent flow. Low-sensitivity flows have a jet stream that is weaker and more zonal. 
It is shown that sensitivity toward blocking is slightly larger than sensitivity to strong zonal 
flow in the medium range, due to nonlinear feedback mechanisms. Transitions to blocking 
appear to have, on average, a higher sensitivity than the mean sensitivity, whereas transitions 
to strong zonal flow have, on average, a mean sensitivity. This is probably an important 
reason why especially blocking onset is difficult to predict. This chapter will be published 
as an article in the Journal of the Atmospheric Sciences (Oortwijn 1998a). 

In chapter 4 the growth properties of optimal transition perturbations are studied. The 
evolution of an optimal transition perturbation during a sensitive 72-hour period is exten
sively studied. The evolution can be divided in two phases. The first phase is short (12 
to 24 hours), the growth is strongly non-modal and baroclinic. After that, the growth is 
still non-modal but not as strong and almost barotropic. The initial baroclinic process leads 
to a larger amplification than with barotropic growth only. The further evolution and the 
structure of the perturbation are determined by barotropic interactions between the refer
ence flow and the perturbation. The barotropic evolution is also studied using a leading 
order WKB approximation. The WKB approach is used as a diagnostic tool to interpret 
the evolution of optimal perturbations qualitatively. Thus, we are able to determine charac
teristics of reference flows and perturbations that are important for the development of the 
perturbations. This chapter has been submitted for publication as an article in the Journal 
of the Atmospheric Sciences (Oortwijn 1998b). 



Chapter 2 

Perturbations that optimally trigger 
weather regimes 

The sensitivity of the onset of two weather regimes with respect to initial conditions is studied. 
The weather regimes are a Euro-Atlantic blocking regime and a Euro-Atlantic strong zonal 
flow regime. Both regimes are characterized by the same anomaly pattern but with opposite 
sign. Using a three-level quasigeostrophic T21 model and its tangent linear and adjoint 
versions, initial perturbations are computed that have the largest projection on this anomaly 
pattern at a prescribed forecast time. The tangent linear and adjoint techniques can only be 
used to describe linear error growth. However, with an iterative procedure nonlinear error 
growth can be taken into account. In this way, perturbations can be computed that trigger 
the onset of a weather regime in the linear range (even optimally) as well as in the nonlinear 
range. It is shown that moderate initial perturbations occasionally trigger a transition from a 
blocking regime to a zonal flow regime, or vice versa, within three days. For an optimization 
time of six days, the iteratively computed perturbations generate such transitions for almost 
all investigated cases. 

The perturbations are compared with regional singular vectors, which are the linearly 
fastest-growing perturbations in the Euro-Atlantic area. In the linear range, the perturba
tions project mainly onto the leading regional singular vectors. In the nonlinear range the 
projection onto linearly slower-growing regional singular vectors is stronger. The method 
can easily be generalized to study the sensitivity for a transition to any weather regime or 
anomaly pattern. This approach can be useful to generate specific initial conditions for en
semble forecasting. 

2.1 Introduction 

The quality of a deterministic forecast depends, among other things, on the synoptic situ
ation. Sometimes, small errors in the initial conditions or model errors can grow very fast 
so that the performance of the forecast is low already after a few days. In other situations, 
errors grow more slowly and a forecast may be reliable up to 10 days. The work of Lorenz 
(1965) made clear that infinitesimal errors in the atmosphere may grow so fast that the 
larger scales are influenced in a finite time. As a result, each atmospheric scale has its own 
predictability limit. It is estimated that, on average, infinitesimal errors may have an impact 



20 Perturbations that optimally trigger weather regimes 

on the largest scales (~ 1000 km) within 2 weeks. Therefore, a deterministic forecast beyond 
2 weeks will be impossible. 

Yet, the atmospheric circulation still exhibits some regular behaviour, even for periods 
longer than 2 weeks. In the extratropics, persistent large-scale atmospheric flow patterns 
are observed. Such quasi-stationary flow patterns are called weather regimes. The low-
frequency variability of the extratropical atmosphere can be considered to be mainly due to 
the alternation between several weather regimes, interrupted by transition periods (Vautard 
1990). The maintenance of weather regimes is fairly well investigated. On the other hand, 
onset and breakdown of weather regimes are still very poorly understood. In this chapter, 
we study the potential for the excitation of a weather regime or a weather regime transition 
by adding small perturbations to the initial conditions, which are optimal in some prescribed 
sense. We consider only two regimes. The first regime is the Euro-Atlantic blocking regime. 
During a blocking regime, the weather in Western Europe is characterized by nice and dry 
weather in summer and very cold periods in winter. Blocking flow patterns have been 
observed that persisted for months (Namias 1964). The second one is a strong zonal flow 
regime in the same geographical area. In this regime, the weather is highly variable because 
of the continuous advection of weather systems. Liu (1994) has studied both regimes and has 
showed that the probability distribution of the duration of the regimes is about the same. 

In order to study the sensitivity of regime transitions to perturbations, we first need an 
objective tool to classify to what extent a particular flow pattern can be associated with 
a blocking or with a strong zonal flow regime. The two regimes are characterized by the 
same anomaly pattern but with opposite sign. Therefore a single index, called BINX (Liu 
1994), measuring the amplitude of the anomaly pattern is used. Hereafter this index will be 
denoted by B. The characterization of the regimes will be outlined in section 2.2. In section 
2.3 we derive a method to compute initial perturbations that maximize the amplitude of this 
anomaly pattern at a given forecast time. So these perturbations cause a maximum change 
to one of the regimes. The computations are performed with a three-level quasigeostrophic 
model triangularly truncated at wavenumber 21 (T21QG), its tangent linear and adjoint 
versions. The tangent linear model describes the linear evolution of small errors along a 
reference orbit. With current analysis errors, the evolution is approximately linear during 
the first two or three days (Lacarra and Talagrand 1988; Vukicevic 1991; Errico et al. 1993). 
Results for the quasi-linear range are presented in section 2.4. In section 2.5, a modification 
of the method is presented that enables extension of the method into the nonlinear range. 
Results of the modification method are presented in this section. In section 2.6, the perturba
tions that optimally trigger a regime transition are compared with regional singular vectors, 
which maximize linear error growth over the Euro-Atlantic area. Finally, some concluding 
remarks are given in section 2.7. 

2.2 Characterization of weather regimes 

Many different criteria have been used to characterize an atmospheric blocking regime. The 
best known criteria are those by Rex (1950a,b) and Dole (1978). According to Rex the 500-
hPa height field of a blocking phenomenon must show a split of the jet flow, a sharp transition 
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Figure 2.1: Blocking anomaly pattern: mean 500-hPa geopotential height anomaly 
pattern for the 10000 days out of 45000 days with the largest positive anomalies at 
60° N. The contour interval is 20 m. Solid lines correspond to positive values, dotted 
lines to negative values. 

from westerly to meridional flow and furthermore it must be persistent. Dole characterized 
blocking as a persistent flow with large 500-hPa geopotential height anomalies. It appears 
that there are two preferred regions for blocking in the Northern Hemisphere, over the central 
Pacific and over the eastern Atlantic. In this chapter we focus on the atmospheric flow over 
Europe. Using observations for 10 winter seasons (DJF) from 1982/83 to 1991/92, Liu (1994) 
found that a Euro-Atlantic blocking regime can be characterized by a dipolelike pattern, 
consisting of a very strong positive geopotential height anomaly with its center at about 
60° N and a weaker negative anomaly south of it. Furthermore, he found that a strong 
zonal flow regime is characterized by the opposite dipole pattern. So, both regimes have 
approximately the same anomaly pattern with respect to the climatological mean but with 
opposite sign. Liu computed this anomaly pattern, which he called the blocking geopotential 
height anomaly pattern zb, for the 10 winter season data set and for a data set simulated 
by a T21QG model (Liu and Opsteegh 1995). The latter zb pattern is the mean 500-hPa 
geopotential height anomaly pattern for the 10000 days out of 45000 days of integration 
that had the largest positive anomalies at 60° N. This pattern is shown in Fig. 2.1 It is 
very similar to the pattern computed for the observed winter season data set. Based on 
these results Liu (1994) and Liu and Opsteegh (1995) defined a single index that measures 
the resemblance of a particular circulation pattern with the blocking regime or the strong 
zonal flow regime. This index is called the blocking index B. The blocking index B for a 
particular circulation pattern is defined by the projection of the daily geopotential height 
anomaly pattern zd on the blocking geopotential height anomaly pattern zb, weighted with 
the norm of zb. The blocking index B of a certain flow pattern with streamfunction ip is 
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given by 
m = < * ( * ) , » > ^ {21) 

< Zt,, Zt, > 

where the brackets denote a squared norm inner product on a sphere, integrated over height 

<x,y>=—J J JxydV. (2.2) 

The relation between Zd and tp is given by 

zd{i>) = Lztp - zc , (2.3) 

where Lz is the linear operator that transforms streamfunction into geopotential height and 
zc is the climatological mean geopotential height. The geopotential height field is obtained 
from the streamfunction by solving the linear balance equation. A circulation pattern with 
B > 0.5 (B < —0.5) can be considered as a blocked flow (strong zonal flow). Furthermore, 
the larger B the more pronounced the blocked flow is and the more negative the stronger 
the zonal flow is. Typical values of B are between -2 and 2. 

2.3 Perturbations triggering a regime onset 

The blocking index B characterizes in a simple manner whether a given atmospheric circu
lation pattern can be associated with a blocking regime or a strong zonal flow regime. Small 
perturbations in the initial conditions of a forecast will alter B at a certain forecast time. 
It may even occur that B changes sign, corresponding to a regime transition. We want to 
investigate how the predicted value of B depends on small changes in the initial conditions. 
Therefore, we will determine the initial perturbation that maximizes the difference in B 
between the reference forecast and the forecast made from the perturbed initial state at a 
prescribed forecast time. In other words, this perturbation maximizes the difference between 
the two forecasts in the direction of phase space corresponding to the dipolelike anomaly pat
tern. This approach could be considered as an extension of the study of Barkmeijer (1993), 
where error growth is maximized in a single grid point. 

For the computations, we use a three-level quasi-geostrophic model triangularly truncated 
at wavenumber 21 (T21QG), its tangent linear and adjoint versions. The levels of the model 
are at 200, 500, and 800 hPa. The T21QG model is described in Marshall and Molteni (1993). 
The tangent linear model describes, to first order, the evolution of a small perturbation. The 
evolution of a streamfunction perturbation is given by the tangent linear operator R, such 
that 

e (T )=R(0 ,T )e (0 ) . (2.4) 

The period for which error growth is linear will be called the linear range. With realistic 
analysis errors the evolution of errors is linear up to about 72 hours (Errico et al. 1993). 
However, the length of the linear range is not constant but depends on the synoptic situation, 
the model used and the amplitude and structure of the error itself (Lacarra and Talagrand 
1988). In this work, we will assume that the T21QG model describes the evolution of the 
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atmospheric flow perfectly, i.e. a perfect model approach. So, all forecast errors are due to 
errors in the initial conditions. 

We are interested in the perturbation e, keeping 

| | £ (0) | | 2=< £ (0) , £ (0)> (2.5) 

fixed, that maximizes 
B(i>(T)+e(T))-B(i,(T)) (2.6) 

at prescribed forecast time T. Using the definition of B (Eq. (2.1)), this can be written as 

< L . M T ) + e{T)) -zc,zb>-< Uil>{T) - zc, zb > 
< zb,zb> 

The denominator is just a constant. Therefore, maximizing Eq. (2.7) is equivalent to maxi
mizing 

< Lze(T), zb >=< L2R£(0), zb >=< e(0),R*L*zzb > , (2.8) 

where we introduced the operators R* and L* which are the adjoint operators of R and 
Lz, respectively, with respect to the squared norm inner product. A good introduction 
to the application of adjoint methods in meteorology has been given by Talagrand and 
Courtier (1987). It follows that the initial perturbation that maximizes the difference in B 
at optimization time T is given by 

eL(0) = AR*L>6 . (2.9) 

Here, the subscript L denotes that the perturbation is optimal when the error growth is 
linear. The absolute value of the scaling factor A is fixed through the constraint, Eq. (2.5). 
When choosing A positive, EL maximizes the change towards a blocking regime. A negative 
value of A results in a maximum change towards a strong zonal flow regime. The pattern 
EL is related to the sensitivity fields described in Rabier et al. (1993, 1996). The difference 
in B at optimization time between the reference and perturbed forecast for this optimal 
perturbation is 

AB=H5gM||£L(0)||. (2.10) 

The difference AB is a linear function of the length of the optimal perturbation vector, 
provided the maximization period is kept constant. This linear relation is only valid for 
small initial perturbations, i.e. in the linear range. 

We now define the linear sensitivity by 

SL ~ ~lh\T • ( 2 'n) 

The linear sensitivity Si is a measure for the (maximum) divergence of trajectories when 
projected onto the direction of phase space that corresponds to the blocking anomaly pattern. 
We will see that adding a moderate perturbation £L(0), as given in Eq. (2.9), to the reference 
forecast that has high linear sensitivity Si for a forecast period of 3 days may already lead 
to a substantial difference in B. Even a regime transition is sometimes triggered within 3 
days. 

We want to emphasize that the numerical costs of the computation of EL(0) are very low. 
Only one backward integration of the adjoint model is needed. 
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2.4 Results for the quasi-linear range 

Starting from an arbitrary initial condition, we integrated T21QG for 1200 days. We com
puted the blocking index each day for the final 1000 days. A part of the time series obtained 
in this way is presented in Figs 2.2a and 2.2c. The single valued function B is a very useful 
quantity to decide whether the model state is in a blocking regime (B > 0.5) or in a strong 
zonal flow regime (B < —0.5). The T21QG model is capable of entering both regimes in a 
realistic way (Marshall and Molteni 1993; Liu and Opsteegh 1995). From Figs 2.2a and 2.2c 
it is clear that regime transitions extend over some days but sometimes are very abrupt (e.g. 
around day 60). 

The linear sensitivity SL for a forecast period of 3 days is computed for the same time 
series and is given in Figs 2.2b and 2.2d. A high linear sensitivity for a certain day d means 
that B will differ substantially at day d + 3 if the optimal perturbation is added to the 
reference flow at day d. The real difference AB depends on the amplitude of the initial 
perturbation and on the degree of linearity of the error growth. Low values of SL indicate 
that moderate initial perturbations are not capable of changing the flow substantially towards 
a blocking or strong zonal flow regime. This indicates a high predictability of the regime 
type, because no initial perturbation can change the evolution of the flow strongly towards 
one of the regimes. So, if there is not a regime transition in the forecast, it is likely that the 
flow remains in the same regime. However, when there is a regime transition forecasted, it 
is likely that it will occur. In cases of high values of Si moderate initial perturbations that 
change the flow towards one of the regimes can be found, so that the predictability is less in 
this situation. However, the difference AB due to SL is an upper bound. So, a low sensitivity 
to the optimal error sL(0) implies a relatively high predictability of the regime type. On 
the other hand, a high sensitivity to £L(0) does not necessarily imply a high sensitivity to a 
(random) analysis error. 

Figures 2.2b and 2.2d show that there are days where the sensitivity is small and days 
where the sensitivity is high. Differences may be as large as a factor of 5. Notice that the 
periods with a high linear sensitivity are very short. The majority of the days are insensitive 
to regime transitions. 

Considering together Figs 2.2a and 2.2b and also Figs 2.2c and 2.2d, we see that low 
sensitivity can go along with quasi-stationary flows (e.g. around day 80) or with situations 
where a transition takes place (e.g. around day 60), which means that this particular tran
sition is highly predictable. During periods with a high sensitivity, transitions may (e.g. 
around days 130,730) or may not occur (e.g. around day 690). The same characteristic 
features are shown in the simple three-variable Lorenz convective model that contains two 
regimes (Lorenz 1963; Palmer 1993). 

To illustrate what the impact of eL is during a period with a high sensitivity we select 
day 687. The initial optimal perturbation £L(0) for the period 687 to 690 is added to the 
reference field at day 687. The scaling factor A, see Eq. (2.9), is chosen in such a way that the 
error in the geopotential height of the 500-hPa level is everywhere smaller than 15 m. The 
reference field and the perturbed field are integrated with the nonlinear T21QG model for a 
forecast period of four days. The evolution of these fields and of the error growth are given in 
Fig. 2.3 for the 500-hPa level. The reference field (Fig. 2.3b) and perturbed field (Fig. 2.3c) 
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Figure 2.2: (a) B in the period 1 to 200. (b) Linear sensitivity SL for a forecast 
period of 3 days during the same period, (c) B and (d) SL in the period 600 to 800. 
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Figure 2.3: Geopotential height field at 500 hPa of (a) initial optimal perturbation 
£L(0) for day 687 with optimization time of 3 days, (b) the reference orbit at day 
687 and (c) the perturbed orbit at day 687. Nonlinear integration for 3 days of (a), 
(b) and (c) results in (d), (e) and (f) respectively. Contour intervals are given in 
each panel. 
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at day 687 are both zonal above the Atlantic Ocean and Western Europe: for both fields B 
= -0.49. The initial optimal perturbation, as is shown in Fig. 2.3a, is mainly located above 
North America with its energy distribution concentrated in the smaller scales and has a 
baroclinic structure (200- and 800-hPa levels are not shown in the Figures). Within one day 
the perturbation energy is transferred to lower wave numbers (i.e. the larger scales are more 
pronounced) and the error pattern reveals an equivalent barotropic dipolelike structure. The 
flow in the western part of the Atlantic Ocean becomes more meridional in the perturbed 
run. In the consecutive days the error grows very fast and is advected to the east (Fig. 2.3d). 
The difference AB between the perturbed and reference field after three days (optimization 
time) is 2.02 and the transition to a blocked flow in the perturbed run is clearly visible (B 
— 1.78), see (Fig. 2.3f). After four days AB is even 2.52, the reference field is in the strong 
zonal flow regime (B = -0.63) and the perturbed field in the blocking regime (B = 1.89). 

2.5 Extension to the nonlinear range 

The operational predictability of blocking has been studied by Tibaldi and Molteni (1990). 
They have investigated the ability of the ECMWF General Circulation Model (GCM) to rep
resent Euro-Atlantic and Pacific blocking onset and maintenance. It was found that blocking 
frequency and duration were underestimated in medium-range forecasts. New versions of the 
model have now been improved on these points (Palmer et al. 1990). Furthermore, it ap
peared that when the initial conditions were already blocked, the duration was reasonably 
well predicted. Very short-range forecasts of blocking onset are fairly successful but the onset 
is almost consistently missed beyond day 3 to 4. The inability to predict blocking onset in 
the medium range still has a substantial impact on the systematic model error. As a result 
of this inability, it is relevant to study the sensitivity of regime transitions to initial condi
tions beyond day 3. However, by then the evolution of analysis errors can not be considered 
linear anymore (Lacarra and Talagrand 1988; Vukicevic 1991; Errico et al. 1993). As a 
consequence, the problem arises that the error growth can not be described with a tangent 
linear model. Therefore, it is proposed to modify the technique as outlined in section 2.3 for 
the nonlinear range. 

The modification is based on the following idea. If we add a perturbation with a realistic 
amplitude to the initial conditions, the error growth is, on average, linear up to day 2 or 
3. However, if we add a perturbation that is a few times smaller this period will be longer. 
The amplitude of the initial perturbation and the growth rate determine the length of the 
linear range. In a finite dimensional model this range can always be extended by decreasing 
the amplitude of the initial perturbation. On the other hand, in the real atmosphere, an 
infinite dimensional system, infinitesimal perturbations may evolve into large perturbations 
in a finite time. It follows that although in the model context the optimization time can be 
made very large, the modification only makes sense, a priori, for a maximum optimization 
time between one and two weeks. 

The modification of EL is achieved by applying an iterative procedure. We start the 
modification by adding a perturbation £o(0), which lies in the direction of EL, to the reference 
orbit ip0. The amplitude of £Q(0) must be taken such that its error growth is linear during 
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a period of time T (T < 10 days). A new reference orbit ipi is obtained by performing a 
nonlinear integration with T21QG starting from V'o(O) + £o(0). Iteratively we now determine 
£i(0), keeping < £j(0),£j(0) > fixed, so that 

B(rh{T) + £i{T))-B(MT)) (2-12) 

is maximal or minimal, corresponding to a maximum change towards the blocking regime or 
strong zonal flow regime, respectively. In this, we assume that the evolution of £,(0) is linear 
with respect to ipi for time T. After each iteration, a new reference orbit i/>i+1 is determined 
by starting a model integration from ipi(0) + £*(0). Because we only need to maximize the 
difference between two scalar quantities, it is easy to derive that £,(0) can also be obtained 
by maximizing or minimizing the expression 

B (V i ( r ) + e i (T ) ) -B ( ^ (T ) ) . (2.13) 

Thus, the computation of £,(0) is reduced to the determination of EL with respect to tpi, which 
is described in section 2.3. The iterative procedure ends when the sum of the perturbations 

£ATi(0) = E ( ^ ( ° ) ) i (2-14) 
i=0 

has the same norm as the original linearly optimal perturbation. In the linear case, the 
perturbation that is optimal for inducing a blocking regime differs only in sign from the 
one that optimally induces a strong zonal flow regime. However, in the nonlinear case the 
perturbations, obtained by either maximizing or minimizing each step (Eq. (2.13)), have 
different structures after at least two steps. Namely, after adding or subtracting £i(0) to the 
reference flow two different new reference orbits will be obtained, so that the maximization 
and minimization procedures are not symmetric anymore. The procedure does not guarantee 
that of all perturbations with this norm, ENL results in the maximum difference in B because 
the iterative algorithm can also lead to a local maximum. However, as we will see, the 
procedure works well in the sense that when £JVL is added to the initial streamfunction tp(0), 
AB is substantially larger than obtained with eh when the nonlinear range is entered. 

In this way, we can still use the linear adjoint operator R* in each iteration but are able to 
extend the method into the nonlinear range. The same procedure is described in Barkmeijer 
(1996). Maximizing the cost function AB iteratively is related to the iterative minimization 
procedures used in the context of four-dimensional data assimilation, see Thepaut et al. 
(1991) and Zupanski (1993). 

In Fig. 2.4 results are given for an optimization time T of 6 days (144h) for all days 
between days 701 and 800. This period is chosen because of the high variability in the linear 
sensitivity SL (see Fig. 2.2d). The difference in B of the perturbed flow towards a blocking 
regime is computed in three ways. The dashed line gives AB when the perturbation EL is 
added to the reference flow and error growth would be purely linear. The perturbation EL 
has every day the same initial amplitude such that the maximum value is about 15 m at 
500 hPa. One way to compute AB is to integrate £L with the tangent linear operator R, 
but it can also be calculated directly using Eq. (2.10). The dotted line gives for the same 
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Figure 2.4: The difference AB when the optimal perturbation is added to the refe
rence field with an optimization time T of 6 days for all days in the period 701 to 
800. The dashed line corresponds with a linear integration of EL and a nonlinear 
integration of EL is given by a dotted line. The solid line shows AB when E^L is 
nonlinearly integrated. 

perturbation eL the results for the nonlinear integrations. Comparing these two lines, one 
can see that in general the linear theory overestimates the error growth for EL- The solid 
line gives AB when E^L with the same length as EL is added to the initial conditions and 
integrated in time with the nonlinear model. The number of iterations used varies between 
5 and 7. It appeared that the iterative procedure is not very sensitive to the size of the 
amplitude of the optimal perturbation that is computed in each iteration. Comparing the 
results of the nonlinear integrations with the orbits perturbed with EL and ENL one can 
conclude that modification of the initial error pattern EL can compensate for the saturation 
of the error growth due to nonlinear interactions. 

We point out that the dashed line and solid line are correlated (p = 0.76). It seems 
that linear theory still enables one to determine if a circulation pattern is sensitive to small 
changes in the initial conditions or not, although nonlinear error growth is non-negligible. 
So, Si still might provide an efficient predictor for possible transitions. If one is interested 
in the fastest-growing error patterns, the computation of ENL is needed. 

An example that clearly illustrates the impact of the modification procedure is shown in 
Figs 2.5 and 2.6. In Fig. 2.5, the evolutions of sL and ENL are compared. The reference 
forecast orbit starts from day 722 and the optimization time T is 6 days. Both perturbations 
EL and ENL have initially the same length and their geopotential height fields at 500 hPa are 
given in Figs 2.5a and 2.5b respectively. In computing ENL we used 7 iterations. The main 
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Figure 2.5: Geopotential height field of the initial optimal perturbations (a) EL and 
(b) E^L at 500 hPa for day 122 with optimization time of 6 days. Final errors (c) 
SL and (d) ENL after 6 days. Contour intervals are given in each panel. 

part of EL is located in the North American area, whereas ENL has a more global nature. 
The nonlinear modification of ENL mainly affects the strength of the local structures, not 
the position. After two days the initially small-scale, baroclinic structures have evolved 
into larger scale and equivalent barotropic structures. The error growth of EL is faster than 
ENL during the first four days, which can be expected, but decreases after day five. At 
optimization time, EL has only a small amplitude over the Atlantic and Western European 
areas (Fig. 2.5c). The modified perturbation ENL continues to grow in the nonlinear range 
and shows a large projection onto the blocking anomaly pattern at optimization time (Fig. 
2.5d). Figure 2.6 gives the geopotential height patterns at optimization time of the reference 
orbit (Fig. 2.6a), the orbit perturbed with EL (Fig. 2.6b) and ENL (Fig. 2.6c). The 
perturbation EL was not able to initiate a transition. Both Figs 2.6a and 2.6b are in the 
strong zonal flow regime with B values of -2.1 and -1.4 respectively. Figure 2.6c indicates 
that a transition to a blocked flow is possible at day 6 (B= 0.86) by using £NL as initial 
perturbation. 
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Figure 2.6: Geopotential height patterns at optimization time (6 days) of (a) refer
ence orbit and the reference orbit perturbed with (b) 6L and (c) SNL after nonlinear 
integration. Contour interval is 80 m. 
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Figure 2.7: B in the period 701 to 800 for the reference flow (dashed line) and the 
flows perturbed with EL (dotted line), ENL (solid line) or ejfL with M=5 (line marked 
with open circles), all nonlinearly integrated. 

In Fig. 2.7, AB at forecast day 6 computed with T21QG for all days between days 701 
and 800, shown in Fig. 2.4, is added to B of the reference flow. It turns out that 74 days 
perturbed with EL and 94 days perturbed with ENL are blocked (B > 0.5). This means 
that almost always a block can develop within six days. In the same way, we have tried 
to decrease B every day to get a strong zonal flow. We have found the same high rates of 
transitions to this regime (not presented). Of course, the probability of such a development 
is important. Results show that by adding ENL to the reference flow, the model is forced into 
regions on the attractor that it rarely visits. In almost 50% of all cases B becomes larger 
than 2, a value that is exceeded only a few times in the 1000-day data set (Figs 2.2a and 
2.2c). From this, it can be concluded that the optimal error is very special. Probably, an 
analysis error usually has a low projection on it. 

2.6 Relation to singular vectors 

The eigenfunctions of the product operator R*R are usually called the singular vectors of R 
and the square roots of the eigenvalues the singular values of R. The singular vectors with 
the largest singular values maximize linear error growth, measured with a chosen norm, at a 
certain forecast time. The product operator R*R is always symmetric, by construction. The 
singular vectors are therefore complete and orthogonal (in contrast to the eigenvectors of 
R, which are for stationary reference flows the familiar normal modes). We will now define 
regional singular vectors to be the fastest-growing errors over the Atlantic-European area, 



2.6 Relation to singular vectors 33 

which corresponds to the blocking anomaly area. We can compare e^ with these patterns. 
In order to define the regional singular vectors, we make use of a linear projection operator 
P . A similar projection operator has been used by Barkmeijer (1993) and Buizza (1994). 
The projection operator P acts on a global error field e(T) and projects onto the Atlantic-
European area (10°N-85°N, 90°W-60°E) at the 500-hPa level. The regional streamfunction 
error vector Ps{T) is a A^-dimensional vector, with N = 231. The regional squared forecast 
error will be defined as (Pe(T),Pe(T)), where (•,•) denotes the Euclidean inner product 
running over all 3 levels: 

3 N 

{x,y) = Y,Y,xijyii- (2-15) 
i=i «=i 

Although the field Pe(T) is only non-zero at the 500-hPa level, the singular vectors that 
maximize the regional squared forecast error are in general a field at all levels. The definition 
of the Euclidean inner product is therefore extended to all three levels. By using adjoint 
operators we can put the regional squared forecast error in the form: 

(SR*P*PRS ^ , 0 , with f = Se(0). (2.16) 

The coordinate transformation S has the property that the Euclidean norm of £ equals the 
squared norm of e(0): 

(£,£) = (Se(0), Se(0)) =< e(0),e(0) > . (2.17) 

In maximizing Eq. (2.16) with constraint (Eq. (2.17)) (fixed ||e(0)||), we employ the Lanczos 
algorithm. In order to apply this algorithm, which makes use of matrix algebra, it was 
necessary to define the regional squared forecast error using an Euclidean inner product 
instead of a squared norm inner product. A description of the Lanczos algorithm can be 
found in Parlett (1980). With the Lanczos algorithm the eigenvalues and their corresponding 
eigenvectors are found iteratively in decreasing magnitude of the eigenvalues. The advantage 
of this algorithm is that an explicit form of the product operator SR*P*PRS_1 is not 
required. The first eigenvector maximizes Eq. (2.16) with constraint (Eq. (2.17)). The 
second one maximizes Eq. (2.16) in the subspace orthogonal to the first eigenvector, also 
with constraint (Eq. (2.17)) and so on *. 

The regional singular vectors are complete and span the TV-dimensional vector space. 
The error e is thus a linear combination of the N regional singular vectors: 

N 

e(0) = $ > " < ' (2.18) 

where vt denotes the i'th regional singular vector. We will now investigate which regional sin
gular vectors are important for the construction of EL and SNL- Therefore, the (normalized) 

"The numerical computations are performed by first computing the eigenvalues of the lower-dimensional 
product operator PRR*P* which are identical to the non-zero eigenvalues of the higher-dimensional prod
uct operator SR*P*PRS _ 1 . The eigenvectors Wi of S R * P * P R S _ 1 are related to the eigenvectors u; of 
PRR*P* through the relation u>i = J-SR*P*«i. In this way, we find a set of independent regional singular 
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Figure 2.8: Projection of EL onto the 10 fastest regional singular vectors, for six 
initial conditions (optimization time of 3 days). The linear sensitivity SL is given 
in units o /10 - 6 . 

projection Pi of e on Vi is defined by 

Pi = Ikll 
(2.19) 

so that the sum over all squared projections J^iLiPi equals 1. 
We will first show some results for the quasi-linear range (optimization time T=3 days). 

The projection of £/, on the corresponding 10 fastest regional singular vectors for an inte
gration period of 3 days is given in Fig. 2.8 for six initial conditions. For each case, the 
regional singular vectors have been computed. Days 11, 277, 378 are very sensitive to a 
change of the initial conditions. Days 9 and 16 have a mean sensitivity and day 37 is the 
most insensitive day of the data set (Fig. 2.2b). The initial perturbations EL of the 3 most 
sensitive days all have a very high projection on the first regional singular vector. For day 9 
the most important regional singular vectors are the first and second, for day 16 the second 
and third. Day 37 has the highest projection on the fifth regional singular vector. It appears 
that in the linear range the optimal perturbations EL can be constructed in nearly all cases 
from combinations of the first five regional singular vectors. Especially in the case of very 
sensitive days EL grows very fast and so the leading regional singular vectors must dominate 
the error pattern. For less sensitive days usually more regional singular vectors further down 
in the spectrum are needed. 

In the nonlinear range many more regional singular vectors are involved in the construc
tion of SNL- The regional singular vectors are ordered according to their linear growth rate. 
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Figure 2.9: AB as a function of the length of the initial error using ENL (solid line) 
or EL (dashed line). The length of the perturbation vectors are given in units of 10~5. 

Nonlinear interactions can change this order. In the following, we will focus on perturbations 
that trigger the onset of a blocking regime. The conclusions from these experiments are com
parable to the ones obtained for the onset of a strong zonal flow regime. We have computed 
ENL and the regional singular vectors for an optimization time of T=6 days, starting at day 
743. After 10 iterations, the maximum amplitude of E^L is less than 20 m at 500 hPa. For 
each iteration AB at forecast time T is calculated. The results are given in Fig. 2.9. We 
can see that ENL computed with 10 iterations changes B by 3.1. In Fig. 2.9 is also given 
AB as a result of nonlinear integrations of the linearly optimal perturbation (obtained by 1 
iteration) as a function of its amplitude. It is obvious that this perturbation is not optimal 
anymore for larger initial amplitudes of the perturbation, when nonlinear terms have a larger 
impact. Next, we have computed the projection of e^L onto the regional singular vectors. 
The projection p\ onto the first regional singular vector is 0.2. When we integrate only this 
part of em, AB is 0.85. So, the contribution of the first regional singular vector to the total 
difference in B is 26 %. In Fig. 2.10, the percentage of the total difference in B when using 
only the first M regional singular vectors is shown as a function of M. A combination of the 
first five regional singular vectors explains 61% of AB. Many more regional singular vectors 
are required to increase the change substantially. We therefore conclude that relatively slow-
growing singular vectors (in a linear sense) are contributing to error growth in the nonlinear 
range. In Fig. 2.10 are also given the results of the linearly optimal perturbation for a period 
of T=3 days, starting again at day 743. The contribution of higher-index regional singular 
vectors to AB is very low. 

In most cases, the projection of ENL on one (or more) leading regional singular vectors 
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Figure 2.10: The percentage of the total difference AS explained by the pattern by 
SL (optimization time 3 days) and e^L (optimization time 6 days) when only the 
first M regional singular vectors are used in the expansion. 

is high. However, it does not imply that for those cases combinations of the linearly slower-
growing singular vectors can not produce a large difference in B too. Although the differences 
will normally be less than the difference induced by £NL, it can still be very large. To study 
the impact of the linearly slower-growing regional singular vectors, we will now compute 
the perturbation that is optimal for a regime onset with the additional constraint that it is 
orthogonal to the first M regional singular vectors. This perturbation will be denoted by 
ex. We then have to maximize, see Eq. (2.8), 

< e ( 0 ) , 6 > , (2.20) 

where b = R*L*Z(„ with the constraints that ||e(0)|| is fixed and 

<e(0),Vi>=0, i = l,...,M. (2.21) 

The regional singular vectors form a complete and orthogonal set. Therefore, we can expand 
e(0) and the backward integrated blocking pattern b: 

£_L(°) = Yl VM , 
i>M 

N 

b = Y, b3V3 • 
(2.22) 
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In this way we have directly fulfilled the constraint that £""-(0) is orthogonal to the first M 
singular vectors. Now, 

N N 

<s±{0),b> = < Y, ViVi, YbjVj > 
i>M j=l 
N N 

= < Y Wi* Y, bivi > 
i=l j>M 

= < e ( 0 ) ,P x &>, (2.23) 

where P x is the projection on the subspace that is orthogonal to the vector space spanned 
by the first M regional singular vectors. The solution of Eq. (2.20) with constraints Eq. 
(2.21) is given by 

ex(0) = APXR*L>6 , (2.24) 

with scaling factor A. 
We have computed ej^L with the constraint that ejfL is orthogonal to the first 5 regional 

singular vectors (M=5). The optimization time T is again 6 days and the computations are 
performed for all days between days 701 and 800. The length of ej^L is fixed and equal to 
the lengths of eL and ENL, which have been computed for the same period, see section 2.5. 
The results are shown in Fig. 2.7. One can see that AB, on average, is about as large as 
the change of B as a result of the growth of the linearly optimal perturbations ej,. In 56 
cases (of the unperturbed non-blocked cases) e^L triggers a blocking onset. From this, we 
can conclude that high index regional singular vectors become important in the nonlinear 
range. They may even trigger a regime transition. 

2.7 Concluding remarks 

We have studied the sensitivity to initial conditions of the onset of blocking and strong 
zonal flow regimes in the Atlantic-European area. Both regimes are characterized by the 
same anomaly pattern but with opposite sign. Experiments have been performed with a 
three-level T21QG model with its tangent linear and adjoint versions. To classify the flow, 
the blocking index B introduced by Liu (1994) has been used. Values of B > 0.5 corre
spond to blocked flows, B < -0.5 to strong zonal flows. Perturbations have been computed 
that maximize the difference in B between the perturbed and reference forecasts; i.e. that 
maximize the change towards one of the regimes at a prescribed forecast time. These per
turbations show the largest projection onto the anomaly pattern at optimization time. For 
short optimization times and perturbations with realistic amplitudes, error growth is almost 
linear. The sensitivity varies from day to day with only short periods of a high sensitivity. 
Results show that during these short periods, perturbations may initiate a regime transition. 
It might be useful to investigate the periods with high sensitivity in order to obtain some 
insight in the mechanisms that play a role in triggering a blocking onset or breakdown. For 
an optimization time of two or three days, the perturbations mainly originate from North 
America and are subsequently advected to the east. Thus, features of the jet stream like 
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its strength, geographical position and diffluent character are likely to be important. The 
sensitive periods may show some general properties that could possibly be revealed in this 
way. These issues will be made part of future studies. 

For longer optimization times error growth is affected by nonlinear interactions. For the 
medium range, perturbations have been computed that maximize the difference in B using 
an iterative procedure. Experiments have been performed for an optimization time of 6 days 
with a time series of 100 days. For each day, the optimal perturbation was computed. It was 
found that almost all these perturbations (with realistic initial length) were able to trigger 
a blocking regime or a strong zonal flow regime. Furthermore, very large values of B could 
be obtained, which did not occur in the 1000 days reference orbit. So, it seems that these 
perturbations can induce extreme events. The special character of the perturbations can be 
caused because they do not lie, initially, in the hyper plane given by the local directions of 
the trajectories on the attractor. Another possibility is that the optimal perturbation lies 
on the attractor but in a region in phase space, given by all points that trigger extreme 
events, that is only a small part of the error region around the reference point. In the latter 
case a transition could be possible, but is still very unlikely because the probability that the 
initial condition lies in this particular region is very small. Because the iteratively computed 
perturbations maximize the same cost function as the linearly optimal perturbations, one 
may assume that there is no substantial difference between them. In turn, the linearly 
optimal perturbations are strongly related to the fastest-growing singular vectors, so that 
the special character could hold for the latter ones too. This is consistent with the results of 
Anderson (1994), who found that in the three-variable Lorenz convective model the fastest-
growing singular vectors do not lie in the local tangent plane to the attractor. 

Our approach of constructing perturbations, conceivably with additional constraints con
cerning above remarks, could be useful for ensemble forecasting. In the ensemble forecasting 
technique, a set of slightly different initial states is integrated in time (Lorenz 1965; Leith 
1974). The divergence of the trajectories is taken as a measure of the predictability. In 
this way, the skill of the operational numerical weather prediction (NWP) models could be 
estimated in advance. It is, however, difficult to define a set of initial states that is not too 
large and at the same time gives statistically representative information about the divergence 
of the flow. Current methods to compute a set of initial states are making use of singular 
vectors (Mureau et al. 1993; Buizza et al. 1993) or bred perturbations (Toth and Kalnay 
1993). Results of these methods show that the spread in the medium range is usually too 
small (ECMWF 1993). The iterative algorithm presented in this chapter can be useful to 
compose an ensemble that produces a significantly larger spread in the nonlinear range. 

Moreover, one of the main objectives of ensemble forecasting is to detect possible regime 
transitions that are not forecasted by a general circulation model (GCM). The GCM's are in 
many cases not able to predict regime transitions beyond a few days correctly (Tibaldi and 
Molteni 1990). An important reason for this inability is that the onset of a regime is usually 
very sensitive to the initial conditions (as is shown in this chapter for a blocking and strong 
zonal flow regime). An ensemble prediction system (EPS) should warn for a possible regime 
transition. However, none of the present ensemble prediction systems specifically selects 
initial perturbations that trigger the onset of a particular weather regime. An alternative 
set of initial perturbations for an EPS can be computed by a generalization of our method. 
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In the same way as for the blocking anomaly pattern, perturbations can be computed that 
maximize the projection onto the anomaly patterns of other regimes or flow patterns. A 
possible choice of patterns are the first N empirical orthogonal functions (EOF's), which 
explain most of the variance of the flow. Then, the ensemble of initial perturbations consists 
of perturbations that maximize the projection on these EOF's at a prescribed forecast time. 
Thus, the sensitivity of an evolution towards specific regimes or patterns can be determined 
more directly. 

Our results for the medium range indicated that a large spread could be produced for 
almost every initial condition. When such large spreads can be produced in more realistic 
models, one must doubt the usefulness of a predictability estimate obtained with a small 
ensemble. By this we mean that almost all weather scenarios (i.e. Grofiwetterlage patterns) 
may occur in the medium range for initial perturbations comparable to current analysis 
errors. In section 2.6, we have shown that linearly slow-growing perturbations can have 
a large impact on the flow in the medium range. These perturbations may be of equal 
importance, or even more important for nonlinear error growth than the linearly fastest-
growing perturbations. The growth of the latter perturbations is usually strongly reduced 
by nonlinear interactions. So, in order to obtain a representative probability distribution 
of the occurrence of certain weather scenarios linearly fastest-growing as well as linearly 
slower-growing perturbations must be taken into account in the EPS. It is our intention to 
validate the above method and remarks for larger models. 
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Chapter 3 

Onset of blocking and s t rong zonal 
flow regimes 

Flows with high and low sensitivity with respect to the initial conditions for onset of blocking 
(BL) and strong zonal flow (SZF) regimes have been analysed. We have considered BL 
and SZF regimes at 20° W (Atlantic region) and at 150° W (Pacific region). The BL and 
SZF regimes are characterized by the same dipolelike anomaly pattern but with opposite 
signs. Experiments have been performed with a three-level quasigeostrophic model triangularly 
truncated at wavenumber 21 (T21QG), and its tangent linear and adjoint versions. The 
sensitivity is calculated by perturbing the reference flow with perturbations that optimally 
trigger the onset of a BL or SZF regime after a prescribed forecast time. For forecast times 
larger than 3 days an iterative technique is used to take into account nonlinear growth of the 
perturbations. 

The flows with a high sensitivity show an intensified jet stream to the west of a diffluent 
flow. The strong jet stream by itself results in large perturbation growth. The presence of 
a diffluent flow amplifies the growth and gives perturbations a typical dipolelike character. 
Idealized experiments with a barotropic T21 model confirm that these properties increase 
the sensitivity. Sensitive flows are also characterized by an enhanced ridge upstream of the 
intensified jet stream. This does not directly influence the sensitivity but is associated with 
an intensified jet stream. The flow patterns of periods with low sensitivity are more zonal 
and weaker. 

The diffluence of the flow also results in an asymmetry between sensitivity for BL and 
SZF onset in the medium range. Nonlinear feedback mechanisms increase sensitivity toward 
BL and decrease sensitivity toward SZF. Finally, it is shown that, on average, a transition 
toward BL corresponds with a larger than average sensitivity and that the sensitivity is larger 
when the transition is stronger. Transitions toward an SZF correspond, on average, with an 
average sensitivity independent of the strength of the transition. The precursor patterns of 
transitions toward BL have similar characteristics as the flows with a high sensitivity. Thus, 
blocking onset is likely to be in many cases an inherently sensitive phenomenon. 
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3.1 Introduction 

Extratropical atmospheric dynamics is dominated by a chaotic succession of transient syn
optic weather systems. Still, periods of quasi-stationary behavior in the large scales can be 
observed. Such persistent quasi-stable flow configurations are called weather regimes (Rein-
hold and Pierrehumbert 1982). In such weather regimes, the quasi equilibrium of the larger 
scales is a result of a subtle balance between the planetary scales and the synoptic scales, 
which may be disrupted by a single disturbance. No dynamically preferred time scale seems 
evident (Reinhold 1987). The regimes may persist for several days or even for several weeks. 
Onset and, to a lesser degree, also breakdown of regimes are usually very rapid and difficult 
to predict. The development and transitions of regimes mainly seem to be due to inter
nal chaotic dynamics. Anomalous external forcing, like sea surface temperature anomalies 
(Hoskins and Karoly 1981), may cause a shift in the preference of particular weather regime 
events to occur (Palmer 1993). Also particular phases of low-frequency oscillations may favor 
the occurrence of weather regimes (Plaut and Vautard 1994). 

Despite the random time-dependent character it seems that still some regularity can be 
found in the flow patterns that precede and succeed weather regime events (Dole 1986; Mo 
and Ghil 1987, 1988; Vautard 1990; Plaut and Vautard 1994). Vautard identified, using 
observations of 37 winters, preferred precursor and successor patterns of a set of four Euro-
Atlantic regimes. Among these are a blocking (BL) and strong zonal flow (SZF) regime. 
A striking result is that of all regimes, the BL precursors are most successfully classifiable, 
whereas the prediction of blocking appears to be difficult. Studies on the predictability 
of blocking with the European Centre for Medium-Range Weather Forecasts (ECMWF) 
operational model (Tibaldi and Molteni 1990; Palmer et al. 1990; Tibaldi et al. 1994) 
showed that blocking onset is almost consistently missed beyond day 3-4. Also, the ECMWF 
ensemble prediction system (EPS) underpredicts the ensemble spread during periods in which 
blocking regimes develop (Molteni et al. 1996). This inability is partly due to model errors, 
such as the loss of eddy kinetic energy during the course of the integration (improved in 
more recent versions of the ECMWF model), which results in an underestimation of blocking 
frequency. Another reason for the difficulty in predicting blocking is the inherently sensitive 
and explosive nature of blocking onset. The dynamics in such periods is very sensitive to 
small changes in the flow patterns. 

In this chapter periods will be investigated that show high and low sensitivity for regime 
transitions. The regimes studied are Pacific and Atlantic BL and SZF regimes. Here, sensi
tivity is defined with respect to the initial conditions, for regime transitions after a prescribed 
forecast time. Optimization times of 3 and 5 days are used. We want to emphasize that 
the sensitivity does not indicate whether a regime transition will occur, but that it is a 
measure of the predictability of such an event. High sensitivity indicates a low predictability 
and low sensitivity a high predictability of the forecast evolution. The following questions 
will be addressed. Can we identify general properties of sensitive and insensitive circulation 
patterns? Can we understand why these flows are so sensitive or insensitive? Are these 
flows (in)sensitive only for specific regime transitions or are they (in)sensitive for all kinds 
of perturbation growth? Can we relate sensitive circulation patterns to precursor patterns 
of transitions? Why is the onset of blocking so difficult to predict? 
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Experiments are performed with a three-level quasigeostrophic model triangularly trun
cated at wavenumber 21 (T21QG), described in Marshall and Molteni (1993), and its tangent 
linear and adjoint model. The tangent linear model describes the linear evolution of (small) 
perturbations along a reference forecast (updated every 40 min). Using an adjoint model 
the gradient of an output parameter at a specific optimization time with respect to all input 
parameters at initial time can be efficiently computed (Le Dimet and Talagrand 1986). In 
chapter 2 (Oortwijn and Barkmeijer 1995), a method is described that selects initial per
turbations that optimally trigger the onset of a BL or an SZF regime after a prescribed 
optimization time. This method will be used and allows us to analyse a large number of 
onsets at relatively low numerical costs. 

In section 3.2 we will briefly describe the performance of the T21QG model in simulating 
blocking and strong zonal flow regimes, and an index is given to determine whether a circu
lation pattern is blocked, zonal, or in some intermediate state. The method to select initial 
perturbations that optimally trigger the onset of a BL or SZF regime is described. The 
method also contains a technique to take into account nonlinear growth of perturbations, 
so that sensitivity for the medium range can be calculated. In section 3.3, results of three 
model experiments are presented. Two experiments are performed for the short range for 
the Atlantic and Pacific regions. The third experiment is done for the medium range and the 
Atlantic region. Mean (anomaly) patterns of sensitive and insensitive flows are identified. 
In section 3.4 we will discuss features of (in)sensitive flows and analyse results with a baro-
tropic model. Furthermore, the relation between sensitive flows and precursors of transitions 
is studied. Finally, in section 3.5 we give a summary and some concluding remarks. 

3.2 Blocking and strong zonal flow regimes 

3.2.1 Model performance 

Experiments are performed with a three-level quasigeostrophic model triangularly truncated 
at wavenumber 21 (T21QG). The levels of the model are at 200, 500, and 800 hPa. The 
T21QG model is described in detail in Marshall and Molteni (1993). Liu and Opsteegh 
(1995) have made a comparison between model simulations and observations. Figure 3.1a 
shows the mean 500-hPa geopotential height field for the Northern Hemisphere, calculated 
from a 50000-day perpetual winter integration. The mean field resembles the observed winter 
mean 500-hPa geopotential height field quite well. Figure 3.1b shows the simulated standard 
deviation of the daily 500-hPa fields. The global structure of the variance fields is also in 
general agreement with the observations. The model is able to simulate the maxima over the 
Pacific and Atlantic oceans, which are preferred regions for blocking. The structure of the 
blocking pattern, its effect on transient weather systems, the number of blocking days, and 
the interannual variability in blocking activity are all similar to the observations. However, 
in the model, the duration of a blocking regime is, on average, one day shorter. The same 
conclusions can be made for the model statistics of strong zonal flow regimes. For a more 
extensive description of the model performance (with respect to blocking and strong zonal 
flow regimes) we refer to Liu and Opsteegh (1995). 
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Figure 3.1: (a) Mean and (b) standard deviation of 500-hPa geopotential height field. 
Contour interval is 80 m in (a) and 15 m in (b). 

3.2.2 Characterization of the regimes 

Liu (1994) characterized a Euro-Atlantic BL regime by a dipolelike pattern, consisting of 
a very strong positive geopotential height anomaly with its center at about 60° N and a 
weaker negative anomaly to the south of it. This pattern was calculated by applying a 
blocking criterion to a 10-winter season data set of observations. By applying the same 
blocking criterion to a data set of the T21QG model, Liu and Opsteegh (1995) found a 
similar pattern. Furthermore, it was found that an SZF regime is characterized by the same 
pattern with opposite sign. This anomaly pattern, which is called the blocking geopotential 
height anomaly pattern zt,, is shown in Fig. 3.2a. In order to study Pacific blocking and 
strong zonal flow regimes, we have shifted the blocking anomaly pattern to the Pacific area 
(Fig. 3.2b). In section 3.3.2 we will describe this latter approach more extensively. 

A blocking index, B, can now be defined that measures the resemblance of a particular 
circulation pattern with the BL or SZF regimes. The blocking index B for a particular cir
culation pattern with streamfunction ip is defined by the projection of the daily geopotential 
height anomaly pattern z& on the blocking geopotential height anomaly pattern z^, weighted 
with the norm of z^,: 

<Zi{i>),zh > 
B{iP) = (3.1) 

< Z j , Zf, > 

Here the brackets denote a squared norm inner product on a sphere, S, integrated over height 

< x, y >— — I / Ix y dS dh. (3.2) 

Here, the integration over height is performed by a summation over the three levels. The 
relation between z& and ip is given by 

zd{ip) = Lzip - zc (3.3) 
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Figure 3.2: Blocking anomaly pattern: mean 500-hPa geopotential height anomaly 
pattern, (b) Pacific blocking anomaly pattern (rotated). The contour interval is 20 
m. Solid lines correspond to positive values, dotted lines to negative values. 

where Lz is the linear operator thath transforms streamfunction into geopotential height and 
zc is the simulated climatological mean geopotential height. The geopotential height field 
is obtained from the streamfunction by solving the linear balance equation. A circulation 
pattern with B > 0.5 (B < —0.5) is considered as a blocked flow (strong zonal flow). 
Furthermore, a larger value of B indicates a more pronounced blocked flow, and a smaller 
negative value of B indicates a stronger zonal flow. 

3.2.3 Inducing transitions 

The intent here is to obtain some insight in the sensitivity for the onset of BL and SZF 
regimes to perturbations in the initial conditions. In chapter 2 (Oortwijn and Barkmeijer 
1995) a method is described to obtain the initial perturbation that maximizes the difference 
in B between reference and perturbed flow after a prescribed forecast time: 

AB = B(iKT)+e(:T))-B(V(T)) 

at prescribed forecast time T, keeping 

| k (0) | | 2=< £ (0) , £ (0)> 

(3.4) 

(3.5) 

fixed. Using the definition of B (Eq. (3.1)), one can show that, for the limit of small 
perturbations, maximizing Eq. (3.4) is equivalent to maximizing 

< Lze{T),zb > =< LzRe(0),z6 >=< e(0),R*Lz26 > , (3.6) 

where we introduced the tangent linear operator R, which describes the linear evolution of a 
streamfunction perturbation. The operators R* and L* are the adjoint operators of R and 
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L2, respectively, with respect to the squared norm inner product. It follows that the initial 
perturbation that maximizes the difference in B at optimization time T is given by 

eL(0) = AR'L;^ . (3.7) 

Here, the subscript L denotes that the perturbation is optimal when the perturbation growth 
is linear. The absolute value of the scaling factor A is fixed through constraint Eq. (3.5). For 
positive A, the perturbation EL maximizes the change toward a blocking regime. A negative 
value of A results in a maximum change toward a strong zonal flow regime. The difference 
in B at optimization time between the reference and perturbed forecast for this optimal 
perturbation is 

AB=U5£M||eL(0)||. (3.8) 
INI 

The linear sensitivity is now defined by 

SL ~ ~\RT • (3-9) 

In chapter 2 is shown that for periods with a high sensitivity SL for a forecast period 
of 3 days, a small perturbation £L(0) can lead within just 3 days to a regime transition. 
For longer optimization periods, the assumption of linearity is not valid anymore. Also 
an iterative technique is described to take into account nonlinear perturbation growth (see 
section 2.5). With this procedure, SL is modified to ENL,BL such that the perturbed flow 
makes a transition toward a BL regime. In the same way, CNL,SZF induces an SZF regime for 
the perturbed flow in the medium range. In contrast to the linear case, ENL,BL and £NL,SZF 

have a different structure. In chapter 2 is shown that for almost all circulation patterns small 
initial perturbations can be found such that the perturbed flow makes a regime transition, 
toward BL as well as SZF regimes, within 6 days. These methods, both for the short range 
and the medium range, will be used to compute the sensitivity of flows. Results are presented 
in section 3.3. 

In section 3.4, we will investigate if periods with a high or low sensitivity have specific 
perturbation growth dynamics. Perturbations optimized to trigger regime transitions will 
be compared with perturbations that maximize growth in a particular region. Therefore, 
regional singular vectors (RSVs) will be calculated. These RSVs maximize the rms error over 
the Atlantic-European area; that is, they maximize the following Euclidean inner product: 

(Pe(T),Pe(r)) = (R°P°PR£(0),e(0)) (3.10) 

Here P is a linear projection operator, which acts on a global streamfunction field e(T) and 
projects onto the Atlantic-European area (10°- 85°N, 90°W-60°E) at the 500-hPa level. The 
operators R° and P° are the adjoint operators of R and P with respect to the Euclidean 
inner product. The RSVs are the eigenvectors of R°P°PR. Employing a Lanczos algorithm, 
successive approximations for the eigenvalues and eigenvectors of this symmetric matrix 
operator are found iteratively (Parlett 1980). 
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3.3 Identification of sensitivity patterns 

In this section results are presented of three model experiments. For each experiment a long 
integration of 20000 days with the T21QG model is performed. In the first experiment the 
linear sensitivity SL for a forecast period of 3 days is calculated each day. In the second 
experiment, the same is done with respect to transitions to BL or SZF in the Pacific region. 
In the third experiment the sensitivity during a forecast period of 5 days is calculated each 
day (Euro-Atlantic region only). Next, circulation patterns with high or low sensitivity are 
selected. Here the term sensitivity refers to sensitivity for regime onsets with respect to 
the initial conditions as calculated with the methods described in the previous section. It 
appears that the sensitive circulation patterns as well as the insensitive circulation patterns 
have common properties. Anomaly patterns will be identified that are representative for 
sensitive and insensitive flows. These anomaly patterns will be referred to as sensitivity 
patterns. 

3.3.1 Euro-Atlantic region, short range 

The distribution of the linear sensitivity for a forecast period of 3 days is given in Fig. 
3.3. The mean linear sensitivity SL equals 2.69 x 10"6 s m~2. The standard deviation 
of the distribution is 0.68 x 10~6 s m~2. The minimum value of the linear sensitivity SL 
is 1.23 x 10~6 s m~2, whereas the maximum value equals 7.98 x 10~6 s m - 2 . Hence the 
maximum difference in AB between reference and perturbed flow after 3 days may be as 
large as a factor of 6.4 between low- and high-sensitivity periods. In many high-sensitivity 
cases transitions can be triggered by adding or subtracting the optimal perturbation to the 
initial conditions with a realistic amplitude. From the distribution, the 1000 most sensitive 
and 1000 most insensitive 3-day periods are selected. Each period is characterized by the 
flow at initial time. The sensitive periods all have SL > 3.94 x 10~6 s m~2 and the insensitive 
days SL < 1.79 X 10"6 s m"2. 

In Figs. 3.4a and 3.4b the mean fields of the high- and low-sensitivity sets are shown. 
In Figs. 3.4c and 3.4d the anomalies with respect to the climatological mean (Fig. 3.1a) 
are shown. The zonal wavenumber 3 structure has a large amplitude for the high-sensitivity 
patterns and a small amplitude for the low-sensitivity patterns. For the high-sensitivity pat
terns the ridge in the eastern Pacific is enhanced and the trough above the North American 
continent has deepened. This trough, together with the positive anomaly to its southeast, in
tensifies the jet stream. The low-sensitivity flows are characterized by the opposite anomaly 
patterns; the flow is more zonal and the jet stream is weaker. The anomaly patterns resem
ble a PNA-like structure. The vertical structure of the sensitivity patterns (not shown) is 
equivalent barotropic, with largest values of the anomalies at the 200-hPa level and smallest 
at the 800-hPa level. In Figs. 3.4e and 3.4f the same plots as in Figs. 3.4c and 3.4d are given, 
but now for the 100 most sensitive and insensitive patterns. The anomalies are even larger. 
Note that also the positive anomaly over Europe is larger for the high-sensitivity set, which 
enhances the ridge over Europe. The negative anomaly over Europe in the low-sensitivity 
set is even larger and causes the ridge over Europe to disappear completely. 

There is a clear signal in the sensitivity patterns above the North American continent and 
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Figure 3.3: Distribution of SL taken from a set of 20000 periods. Shaded are the 
low- and high-sensitivity sets, each consisting of 1000 periods. 

North-East Pacific. This region is upstream of the target area (Euro-Atlantic region) and 
the initial optimal perturbation has much of its amplitude here. The signal in the target area 
is much weaker in the mean patterns. Does this imply that the local circulation in the target 
area has no influence on the sensitivity? Or is it still possible to identify differences between 
high- and low-sensitivity flows that are not revealed in the mean sensitivity patterns? 

First of all, we have compared the variance fields of the two sets (not shown) with the 
climatological variance (Fig. 3.1b). The variance in the high-sensitivity set is somewhat less 
over Europe (standard deviation maximum 195 m), about the same over the Pacific, and 
less over the North American continent (less variance in the deepness of the trough over 
North America). For the low-sensitivity set the variance over the Atlantic is larger than 
for the climatological variance (the maximum of the standard deviation is more than 225 
m), whereas over the Pacific area the standard deviation is much less (maximum about 165 
m). Thus, the individual flow patterns of the low-sensitivity set may differ strongly over the 
target area. The differences are smaller but still substantial for the high-sensitivity set. 

In order to reveal the differences between flow patterns in both sets, a cluster algorithm 
was applied as described in Michelangeli et al. (1995). The clustering is done for North 
America and the Euro-Atlantic region (130°W-40°E, 30°-70°N). For each of the 2000 flow 
patterns the anomaly field with respect to the climatological mean for this region is cal
culated. The anomaly patterns are projected in a five-dimensional space by projecting the 
patterns onto the first five empirical orthogonal functions (EOFs). The EOFs are computed 
from a 30000-day run of the T21QG model. The cluster analysis localizes high concentra
tions of points, the clusters, in the five-dimensional space. The iterative algorithm computes 
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Figure 3.4: (a) Mean geopotential height field at 500 hPa of the high sensitive set 
and (b) of the low-sensitivity set (1000 patterns), (c) and (d): As (a) and (b) but for 
the anomaly fields. (e),(f): Anomalies of 100 most (in)sensitive patterns. Contour 
intervals are given in meters. 
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the best partition of the points for a prescribed number of clusters, k, with k between 2 and 
10. Cluster means, which are the mean patterns of each cluster, are used to characterize 
the cluster. The best partition minimizes the sum of variances within the clusters. To test 
the robustness of the method, classifiability and reproducibility tests are performed. A high 
classifiability indicates that the final partition is nearly independent of the initial starting 
points. Reproducibility is tested by splitting the data in two samples and recomputing the 
cluster means. 

For the low-sensitivity set we find four clusters. The cluster means, shown in Figs. 
3.5a-d, are well classifiable and reproducible. Clusters 1 and 3 are zonal regimes, cluster 2 
corresponds to a Greenland anticyclone with a very weak circulation, and cluster 4 with a 
ridge over England. The number of patterns that correspond to each cluster are given in 
the panels. The optimal number of clusters for the high-sensitivity set is less clear. The 
best number seems to be for only two clusters, which are well classifiable and reproducible. 
In Figs. 3.5e and 3.5f the high sensitivity cluster means are given. The difference between 
the means is that in the first cluster the ridge over the Euro-Atlantic region is shifted more 
to the east, whereas in the second cluster the ridge is shifted more to the west. When 
this set is divided into three or four clusters the differences are small. The ridges are more 
pronounced and one cluster is found with a weak zonal flow over Europe but that is still 
slightly diffluent. So, most of the high-sensitivity patterns are characterized by a ridge, 
which involves diffluent flow, over the Euro-Atlantic region. The phase of this ridge shows 
large variability, which causes a cancellation of its signal in the mean sensitivity patterns. 
The low-sensitivity patterns show all kinds of circulation patterns in the target area, from 
strong zonal flows to blocking highs. 

3.3.2 Pacific region, short range 

In order to find sensitivity patterns for Pacific BL or SZF flows, a similar experiment as 
the previous one has been performed. As anomaly pattern the Atlantic blocking anomaly 
pattern (Fig. 3.2a) is used but is then shifted to the Pacific area (Fig. 3.2b). A study by 
Tibaldi et al. (1994) about blocking frequency and predictability, using ECMWF analyses 
and forecasts of 500-hPa geopotential height fields, showed that Pacific blocking has a similar 
dipolelike anomaly field (see their Fig. 3e). The Pacific blocking anomaly pattern (Fig. 3.6b) 
also resembles quite well the Alaska blocking pattern given in Hsu and Wallace (1985, their 
Fig. 2) and Nakamura and Wallace (1990). The exact amplitude of the blocking anomaly 
pattern is not essential for this study, because we only compute the projection of the optimal 
perturbation on this pattern. 

Again, the T21QG model is integrated for 20000 days, and for each day the linear sen
sitivity for a forecast period of 3 days is calculated. The mean linear sensitivity Si equals 
3.31 x 10~6 s m~2 and the standard deviation of the distribution is 0.95 x 10~7 s m~2. Both 
the mean value and standard deviation are somewhat larger for the Pacific region than for 
the Euro-Atlantic region, indicating a slightly higher sensitivity in the Pacific region. The 
minimum value of the linear sensitivity SL is 1.40 x 10~6 s m~2 , whereas the maximum 
value equals 11.0 x 10~6 s m~2. 

In Figs. 3.6a and 3.6b the mean geopotential height fields at 500 hPa of the 1000 most 
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Figure 3.5: Cluster means of low-sensitivity (LS) and high-sensitivity (HS) set. (a) 
LSl,(b) LS2, (c) LS3, (d) LS4, (e) HSl, and (f) HS2. Shown is the geopotential 
height field at 500 hPa. Contour interval is 80 m. 
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sensitive and the 1000 most insensitive initial flow patterns are shown, respectively. In Figs. 
3.6c and 3.6d the anomalies with respect to the climate mean geopotential height field are 
given for the 500-hPa level. The sensitive flows have, as in the former case, an intensified 
jet stream, but now it is over the western Pacific. The insensitive flows are more zonal and 
can be characterized by the opposite anomaly patterns. The intensification (weakening) of 
the wave with zonal wavenumber m = 3 in the high-sensitivity (low-sensitivity) patterns 
is clearly visible. In comparison to the Atlantic sensitivity patterns, there is slightly more 
amplitude in the target area and less amplitude far upstream. The high-sensitivity periods 
are characterized by enhancement and the low-sensitivity periods by weakening of the ridge in 
the target area. Possibly because of the geographical differences (like the Rocky Mountains, 
which interact strongly with the flow) between the Pacific and Atlantic regions, the phase 
of the Pacific ridge shows less variability. The signal in the mean sensitivity patterns is 
therefore larger in the Pacific region. A cluster analysis technique is not necessary to reveal 
the differences between low- and high-sensitivity flows in the target area. We conclude that 
the sensitivity for Pacific BL or SZF onset is mainly influenced by the same features as 
sensitivity for Atlantic BL or SZF onset. 

3.3.3 Euro-Atlantic region, medium range 

The third experiment concerns medium-range sensitivity for the Euro-Atlantic region. For 
20000 days, perturbations EL, £NL,BL, and ENL,SZF have been computed for a 5-day opti
mization period. The perturbation EL is the linearly optimal perturbation. Modifications of 
EL to take nonlinear growth into account are denoted by £NL,BL and £NL,SZF [see sections 
2.5, also 3.2.3]. The perturbation £NL,BL is maximized to induce a blocking regime, whereas 
£NL,SZF is maximized to induce a strong zonal flow at day 5. On average, four iterations are 
adequate in order to compute £NL,BL and £NL,SZF-

Three high- and low-sensitivity sets have been created, each set consisting of 1000 initial 
flow patterns. Integrating £t(0) linearly along the reference orbit yields a value for the 
linearly expected difference AB. The first high- and low-sensitivity sets are obtained on the 
basis of this linear prediction. Another two pairs of high- and low-sensitivity sets are obtained 
by nonlinear integrations ofeNL,BL and £NL,SZF- Comparison of the three different sets may 
yield some knowledge about the validity of the linearity assumption in the calculation of 
the sensitivity patterns (as defined in section 3.3). But first, we will discuss results of the 
computations when the full nonlinear interactions are taken into account (the latter two 
pairs of sets). 

Figures 3.7a-d show the mean geopotential height anomaly fields at 500 hPa that have 
been obtained from the nonlinear integrations of £NL,BL and £NL,SZF- In Fig. 3.7a the 
mean anomaly pattern is given of the 1000 initial flow patterns that are most sensitive for 
a change toward a BL regime. Figures 3.7b-d show the mean anomaly patterns that are 
most insensitive toward a BL regime (Fig. 3.7b), most sensitive toward an SZF regime 
(Fig. 3.7c) and most insensitive toward an SZF regime (Fig. 3.7d). The difference in 
sensitivity to BL and SZF is due to the nonlinearity of the evolution of the perturbations. 
Figure 3.8a shows the difference between the mean patterns that are sensitive for changes 
to BL and SZF (Fig. 3.7a-c). In Fig. 3.8b the difference between Figs. 3.7b and 3.7d 
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Figure 3.6: Mean geopotential height fields at 500 hPa for (a) high-sensitivity set 
and (b) low-sensitivity set (Pacific region), (c) and (d): As (a) and (b) but for the 
anomaly fields. Contour lines are in meters. 

is plotted. Both patterns resemble the blocking anomaly pattern (Fig. 3.2) with negative 
and positive amplitude, respectively. In order to explain that the differences resemble the 
blocking anomaly pattern, one must realize that an initially blocked flow (positive B) has, 
on average, also at optimization time a larger value of B than a flow at optimization time, 
which at initial time is strong zonally. Here, the periods that are most sensitive toward a BL 
regime (AB > 2.4) have at optimization time, on average, a value of B — -0.8. The periods 
that are most sensitive toward an SZF regime (AB < —2.2) have at optimization time, on 
average, a value of B = 0.4. Next, one may argue that when the blocking index of a flow 
is already positive (negative) at optimization time, the flow can be more easily perturbed 
toward a lower (higher) value of the blocking index. (The values of B of a data set obtained 
by integrating the T21QG model vary within a range of about -2.5 to 2.5; only rarely does B 
exceed this range.) Thus, a flow that is initially blocked can more easily be perturbed toward 
a zonal flow than toward an even stronger blocked flow (and vice versa). The opposite is the 
case for the low-sensitivity patterns. If a flow is already blocked it is more insensitive for 
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Figure 3.7: Sensitivity patterns, in geopotential height at 500 hPa, for the 5 day 
period, (a) High sensitivity to BL, (b) low sensitivity to BL, (c) high sensitivity to 
SZF, and (d) low sensitivity to SZF. Contour interval is 20 m. 

changes toward a blocked flow than toward a strong zonal flow. The nonlinear terms cause, 
on average, a tendency of the flow to return to the climate mean. 

In Fig. 3.8c is shown the mean geopotential height anomaly field of the 500 most sensitive 
initial flow patterns toward BL and the 500 most sensitive toward SZF (thus, the anomaly 
field is again the mean of 1000 patterns as in Figs. 3.4c and 3.4d). In Fig. 3.8d this 
field is shown for the 500 most insensitive initial flow patterns toward BL and the 500 most 
insensitive toward SZF. So Figs. 3.8c and 3.8d show the initial anomaly patterns for sensitive 
and insensitive 5-day periods, with respect to transitions toward BL and SZF. Again, larger 
amplitudes of these anomaly patterns are related to a higher (in) sensitivity. Nearly the 
same sensitivity patterns (not shown) are obtained as in Figs. 3.8c and 3.8d by taking into 
account only linear interactions, that is, by computing linear integrations of eL. We conclude 
that linear theory still enables one to determine the sensitivity of circulation patterns for 
a 5-day forecast period (at least in this model), although nonlinear perturbation growth is 
nonnegligible (see also chapter 2). 
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Figure 3.8: (a) High sensitivity to BL - high sensitivity to SZF, (b) low sensitivity 
to BL - low sensitivity to SZF. (c) High-sensitivity patterns for sensitivity to BL or 
SZF and (d) low-sensitivity patterns for sensitivity to BL or SZF. Contour interval 
is 20 m. 

Comparing Figs. 3.8c and 3.8d with Figs. 3.4c and 3.4d, respectively, one notices that the 
sensitivity patterns are nearly equal; even the phases are the same. Only the amplitudes of 
the cells differ slightly and the low-amplitude structures over Europe in the 3-day sensitivity 
patterns have almost completely disappeared in the 5-day sensitivity patterns. 

Why are the differences in the 3- and 5-day sensitivity patterns so small? One may expect 
that the initial perturbations for the 5-day periods are located farther upstream, resulting in 
a westward shift of the sensitivity patterns. In order to study the mean locations of the ini
tial perturbations, 500 perturbations for high-sensitivity periods and 500 for low-sensitivity 
periods are calculated for 3-day and 5-day periods. Mean and standard deviations are cal
culated. Because of the small-scale structures that depend strongly on the reference flow, 
the mean patterns have very low amplitudes which are nearly insignificant. (Significance is 
tested by averaging different sets of initial perturbations.) Only for the mean initial pertur
bation patterns of the 3-day low-sensitivity periods can a significant pattern be identified. 
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In this case the initial perturbation tends to be a dipolelike pattern located upstream of the 
target area. For low-sensitivity periods, which are characterized by a weak zonal westerly 
flow, the initial dipolelike perturbations will be mainly advected to the target area. During 
this evolution the amplitude of the perturbation will amplify slowly. 

Plots of the standard deviations for the initial perturbations of high-sensitivity 3- and 
5-day periods are shown in Fig. 3.9. In Figs. 3.9a, 3.9b, and 3.9c the standard deviations in 
geopotential height at 200, 500 and 800 hPa, respectively, are given for the 3-day period. In 
Figs. 3.9d, 3.9e, and 3.9f the standard deviations are given for the 5-day period. Comparing 
the 3- and 5-day standard deviations, one can see that at all levels the maximum values 
are shifted to the west in the latter plots, so the initial perturbations for a 5-day period 
are located farther upstream. An explanation for the small differences between the 3- and 
5-day sensitivity patterns could be that these special flow patterns are easily perturbed in 
the direction of blocking/strong zonal flow. The position and structure of these patterns are 
not affected by the length of the integration. However, for 5-day integrations it is necessary 
to start off initial perturbations farther upstream than for 3-day integrations in order to 
trigger the transitions. Notice also the westward tilt with height in the standard deviation, 
suggesting that baroclinic mechanisms play a role in the amplification of the perturbations. 

3.4 Features of high-sensitivity and low-sensitivity flows 

So far, we have identified mean anomaly patterns that give an indication of the sensitivity 
of a circulation pattern to make a transition toward a BL or SZF regime after 3 or 5 days. 
The difference between the mean sensitivity patterns for short and medium range was small. 
The sensitivity patterns consisted mainly of upstream wave trains of positive and negative 
anomalies (Figs. 3.4c, 3.4d, 3.6c, 3.6d, 3.8c, and 3.8d). It was also shown that the flow 
properties in the target area, that is, the area where the blocking anomaly pattern is located, 
contribute to the sensitivity, although the signal in the mean patterns is weak. Sensitive 
periods are characterized by an enhanced ridge in the target area. In this section we will 
address the following questions. What causes these flows to have a high or low sensitivity? 
Are these periods sensitive for regime transitions only, or are they sensitive for all kinds 
of perturbation growth? What are the basic mechanisms involved in the growth of the 
perturbations? Can the high-sensitivity patterns be related to precursor patterns for BL and 
SZF regimes? In order to answer these questions we have computed regional singular vectors 
(RSVs) for both sensitive and insensitive periods. The RSVs are computed for the Atlantic-
European region (10°-85°N, 90°W-60°E). Also, a comparison with barotropic experiments 
will be made. Because of the small differences between the 3- and 5-day sensitivity patterns, 
experiments are performed for the short range only. 

In Fig. 3.10 an example is given of a high-sensitivity period. Figure 3.10a shows the 
initial flow pattern in geopotential height at 500 hPa and Figs. 3.10b-f show the first five 
evolved regional singular vectors. The RSVs maximize the expression in Eq. (3.10) and 
are subsequently integrated linearly for 3 days to get the evolved patterns at optimization 
time. Figure 3.11 shows these patterns for a low-sensitivity period. The eigenvalues of the 
RSVs of the high-sensitivity period are much larger than those of the low-sensitivity period. 
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Figure 3.9: Standard deviations in geopotential height of £L(0) (Tapt = 3 days) at 
(a) 200 hPa, (b) 500 hPa, and (c) 800 hPa; and of eNL(Q) (Topt = 5 days) at (d) 
200 hPa, (e) 500 hPa, and (f) 800 hPa. 
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Furthermore, the structure of the RSV patterns are different. The evolved RSVs in the low 
sensitivity period consist of wave trains aligned zonally, whereas the evolved RSVs (mainly 
RSV1, RSV2, and RSV5) have more meridional structure in the high-sensitivity period. 
Especially the first evolved RSV has a large projection onto the blocking anomaly pattern 
(Fig. 3.2a). To measure the projection of the ith evolved RSV u* onto the blocking anomaly 
pattern Zf,, we define the (normalized) projection coefficient pi by 

Pi 
\<Vi,Zb>\ 

INI INI ' 
(3.11) 

so that pi varies between 0 and 1. The projection coefficient p\ of the first evolved RSV i>i, 
shown in Fig. 3.10b, equals 0.52. 

Table 3.1 gives the mean values of the eigenvalues and projection coefficients calculated 
from 100 high-sensitivity periods and 100 low-sensitivity periods for the first five RSVs. 
Comparing the mean values of the 100 sensitive and insensitive periods one notices that for 
sensitive periods the eigenvalues are larger. In particular, the first two eigenvalues have much 
larger values. Also, the projection coefficients of the first two evolved RSVs are on average 
much larger. So perturbation growth is not only larger during sensitive periods but also the 
perturbations have a preference to evolve into meridional dipolelike structures. Furthermore, 
the occurrence of large eigenvalues and dipolelike perturbation patterns seem to coincide. 

ith 
RSV 

i= l 
i=2 
i=3 
i=4 
i=b 

High-sensitivity set 
Mean 

Pi 
0.47 
0.28 
0.13 
0.14 
0.13 

Mean 
eigenvalue 

168 
101 
66 
51 
41 

Low-sensitivity set 
Mean 

Pi 
0.11 
0.11 
0.14 
0.13 
0.13 

Mean 
eigenvalue 

56 
45 
36 
30 
24 

Table 3.1: Mean projection coefficient Pi and mean eigenvalue of 100 high and 100 
low sensitive periods as a function of the ith RSV. 

3.4.1 Barotropic versus baroclinic mechanisms 

To study the relative importance of barotropic and baroclinic mechanisms some integrations 
are performed with the barotropic vorticity equation on a rotating sphere without orography. 
The barotropic model is triangularly truncated at T21. The radius of the earth is used as 
a unit of length and the inverse of the angular speed of rotation of the earth as the unit of 
time. 

Optimal transition perturbations and RSVs are computed with the adjoint of the ba
rotropic model for the same high- and low-sensitivity periods used in the computation of 
the baroclinic RSVs. The reference flow in the adjoint computation is taken to be the 
500-hPa streamfunction evolution of the baroclinic model. The evolved barotropic RSV 
patterns for the sensitive periods have again a more meridional dipolelike structure and the 
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Figure 3.10: (a) Initial flow pattern in geopotential height at 500 hPa for a high-
sensitivity 3-day period. Contour interval is 80 m. (b)-(f): The first five evolved 
RSV patterns. 
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Figure 3.11: (a) Initial flow pattern in geopotential height at 500 hPa for a low 
sensitive 3 day period. Contour interval is 80 m. (b)-(f): The first five evolved RSV 
patterns. 
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low-sensitivity periods show zonally oriented wave trains. The growth of the barotropic 
perturbations/RSVs is on average a factor of 2 smaller than the growth of the baroclinic 
perturbations/RSVs. Baroclinic mechanisms are thus essential for realizing much larger 
amplifications of the perturbations. 

In this chapter, we study the mean characteristics of high-sensitivity and low-sensitivity 
flows. The averaging process yields mean characteristics that can be understood mainly by 
barotropic mechanisms. Therefore, in the following we will focus on the barotropic properties 
of these periods. However, one must keep in mind that the baroclinic properties of the 
perturbations and reference flows are important and have a large contribution to the growth 
of the perturbations, as is shown in the last paragraph. 

The sensitivity patterns (Figs. 3.4a and 3.4b, 3.6a and 3.6b) correspond to flows with 
a larger (high sensitivity) or smaller (low sensitivity) amplitude of the zonal wavenumber 3 
mode. In order to perform an idealized experiment these flows are simulated by stationary 
Rossby-Haurwitz waves (m=3, n=6) with varying amplitude. Rossby-Haurwitz waves are 
of the form 

V>m,„(A,ii,t) = A Re{Fm,n(A - ut,ii)}-Cfi, (3.12) 

where Ym^n is the spherical harmonic function of order m and degree n. Here, Re(z) denotes 
the real part of the complex number z, and 

2 + C ( 2 - n ( n + l)) 
-n{n+l) 

In the T21QG model, orography fixes the phase of the planetary waves. Here, the addition 
of a zonal velocity (proportional to C) fixes the phase of the Rossby-Haurwitz waves. The 
Rossby-Haurwitz wave with m — 3 and n = 6 is stationary (ui — 0) when C = 0.05. 
Figure 3.12 shows two Rossby-Haurwitz waves for two different amplitudes A. Increasing the 
amplitude causes local areas with a stronger flow and areas with diffluent flow. Eigenvalues 
of the RSVs are calculated for an optimization time of 3 days. 

Table 3.2 summarizes the results for the largest eigenvalue for different amplitudes of the 
Rossby-Haurwitz wave. Increasing the amplitude yields a higher sensitivity. In Fig. 3.13 
the first 2 initial and evolved RSVs are plotted for the Rossby-Haurwitz wave shown in Fig. 
3.12b. Note that the second RSV is orthogonal to the first RSV. When propagating into the 
diffluent area, the initial zonally elongated anomalies shrink in the zonal direction, because 
the westerly flow is stronger to the west than to the east (convergence of the flow in zonal 
direction), and become meridionally stretched, due to the diffluent flow. This process yields 
dipolelike blocking anomaly patterns. Similar processes can also be seen in the evolution 
of the baroclinic RSVs. Furthermore, the combination of a strong westerly flow upstream 
of a diffluent flow, where the westerly flow is much weaker, results in the convergence of 
the RSV patterns near the entrance of the diffluent area. This effect contributes also to 
larger eigenvalues of the RSVs. Namely, a locally confined large amplitude pattern yields 
a larger value of the norm [because of the squared weighting, like in Eq. (3.10)] than a 
broader low-amplitude pattern. One may wonder then why the cluster mean shown in Fig. 
3.5b, a blocked circulation pattern, is low sensitive. This flow pattern yields dipolelike RSV 
patterns in the target area. However, because of the weak flow to the west of the block, the 
eigenvalues are small. Thus the flow is low sensitive. 
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Figure 3.12: Stationary Rossby-Haurwitz waves with amplitudes equal to (a) 0.5 and 
(b) 2.5. 

Amplitude A 
Eigenvalue of first RSV 

0.1 
1.21 

0.5 
2.54 

1.0 
5.86 

2.5 
33.3 

5.0 
226.5 

Table 3.2: Eigenvalue of the first RSV as a function of the amplitude of the Rossby-
Haurwitz wave. 

A look at the perturbation kinetic energy tendency equation elucidates why the RSVs 
have a zonally elongated structure as shown in Figs. 3.13a and 3.13c. The perturbation 
kinetic energy is defined by KE' = u'2 + v'2, with u' and v' the zonal and meridional 
perturbation velocity components, respectively. The growth of the perturbation kinetic 
energy can be approximated by (Simmons et al. 1983) 

dKE' 
dt 

= E • Vub. (3.14) 

Here, ub is the velocity field of the reference flow, the bar denotes an area-weighted integration 
and 

E = - ( u ' 2 - v ' 2 , u V ) , (3.15) 

is the so-called E-vector (Hoskins et al. 1983). In the regions of difnuence, the velocity 
gradient dub/dx < 0. Thus, zonally elongated eddies, with u'2 > v12, will increase the per
turbation kinetic energy KE1. In case of a zonal reference flow with horizontal shear (like 
for many low-sensitivity periods), the second term of the basic velocity gradient dub/dy is 
largest. [For a pure zonal reference flow and linear perturbation growth Eq. (3.14) is ex
act.] Growth of KE1 is implied by eddies whose axes are tilted from northeast to southwest 
(dub/dy < 0, uV > 0) or from northwest to southeast (dub/dy > 0,u'v' < 0). The per
turbation Reynolds stresses extract energy from the horizontal shear of the reference flow, 
decelerating the zonal flow and increasing perturbation kinetic energy. During the growth, 
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(a) RSV.1 Eigenvalue = 33.3 (b) ev. RSV1 Eigenvalue = 33 .3 

m 

Figure 3.13: The first 2 RSVs and evolved RSVs at optimization time equal to 3 
days. Contour interval in (a) and (c) is 1 (with the -1, 0, and 1 contour lines 
omitted) and in (b) and (d) 10 (with the 0 contour line omitted). The reference flow 
is the stationary Rossby-Haurwitz wave with amplitude equal to 2.5. 

the tilt of the perturbations decreases and the perturbations form wave trains along a lati
tude. Such RSV structures are observed for the low-sensitivity periods (Fig. 3.11). A similar 
analysis is performed in a paper by Buizza and Molteni (1996). 

The eddies are not only modified by shrinking and stretching processes but also by wave 
dispersion. When, for instance, only the largest eddy of the second RSV (Fig. 3.13c) is 
integrated linearly, the evolved pattern resembles the wave train structure of the second 
evolved RSV (Fig. 3.13d). However, its amplitude is much lower. The fastest growing RSVs 
divide their energy over several eddies instead of one large eddy. This is apparently the 
most optimal partition of energy. The initial amplitude of an RSV, n, is fixed through the 
constraint (n, rj) = n, with n a fixed scalar. The constraint is quadratic in r). Therefore, by 
spreading the energy over several eddies instead of one, more energy can be 'hidden' in the 
initial perturbation field. Next, the process of wave dispersion yields that at optimization 
time the patterns add up to large-amplitude eddies, resulting in a large value of the squared 
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norm and thus in a large eigenvalue. 
Finally, we want to discuss the impact of the diffluence of the flow on the sensitivity 

with respect to the medium range computations in the T21QG model. The diffluence of 
the flow probably results in an asymmetry between sensitivity for BL and SZF onset in the 
medium range. Increasing the diffluence of the flow through amplification of the blocking 
pattern intensifies the sensitivity of the flow, whereas weakening of the blocking anomaly 
pattern decreases the sensitivity. Nonlinear feedback mechanisms will therefore cause a larger 
sensitivity for transitions toward blocking than toward an SZF regime. This asymmetry 
in the sensitivity becomes important in the iterative modification procedure. After one 
iteration, the new reference flow for a transition toward a blocking regime is stronger diffluent 
than the former and so, on average, more sensitive. For transitions toward an SZF regime 
the opposite is true. By this asymmetry, the mean difference in B between the reference 
and perturbed flow for high- sensitivity 5-day periods toward BL turns out to be about 10% 
larger than the mean difference in B for high-sensitivity 5-day periods toward SZF in the 
T21QG model. 

In summary, we have found that an upstream strong flow (characterized by the sensitivity 
patterns) and a local diffluent flow (only partly contained in the sensitivity patterns) are 
properties that make a circulation pattern sensitive for transitions to BL or SZF. The diffluent 
flow not only causes dipolelike RSV patterns, but also contributes to larger eigenvalues. 
Furthermore, the diffluence of the flow affects the medium-range sensitivity such that the 
sensitivity for transitions to BL is slightly larger than sensitivity for transitions to SZF. The 
barotropic evolution can explain a large part of the sensitivity although baroclinic growth 
is necessary to get much larger amplifications of the perturbations. This is also reflected in 
the initial baroclinic structure of the optimal perturbations (Fig. 3.9). 

3.4.2 Precursors of transitions 

In this subsection, we investigate whether transitions toward BL and toward SZF are more or 
less sensitive to initial conditions than the mean sensitivity to initial conditions. In addition, 
we also study whether the high or low sensitivity patterns can be related to precursor patterns 
of transitions. We therefore performed a 100000-day model integration. 

First of all, the linear sensitivity SL for a forecast period of 3 days is calculated each day. 
Again, the distribution of SL is similar to the distribution shown in Fig. 3.3, with a mean 
sensitivity SL — 2.69 x 10~6 s m~2. Secondly, the blocking index B is calculated each day. 
In order to identify transitions toward BL or SZF we calculate the change AB = B(T = 
3) — B(T = 0). A transition is stronger when the change AB is larger. We are now able to 
relate the change AB to the sensitivity SL. Figure 3.14a gives the mean sensitivity of all 
transition cases toward BL with a strength larger than the corresponding value of AB on the 
x axis. So, all transitions with AB > 0.25 have a mean sensitivity of SL = 2.72 x 10"6 s m~2, 
whereas all transitions with AB > 2.75 have a mean sensitivity of SL = 3.52 x 10~6 s m - 2 . 
Hence, when the transition toward BL is stronger, the sensitivity SL is, on average, larger. 
However, the standard deviation of the sensitivity values varies between 0.70 x 10~6s m~2 

and 0.95 x 10~6s m - 2 . This means that individual transitions can still have a rather low-
sensitivity SL- Figure 3.14b gives the mean sensitivity of all transition cases toward SZF. 
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One can see that the sensitivity SL is independent of the strength of the transition. The 
standard deviations vary between 0.55 x 10_6s m - 2 and 0.73 x 10~6s m~2, indicating that 
individual transitions may have a high- or low-sensitivity SL-

5.5e-06 

2.5e-06 

Figure 3.14: (a) Mean Si, S3, and S5 of all transition cases toward BL with a 
strength larger than the corresponding value of AB on the x axis, (b) Same as in 
(a) but for transitions toward SZF. 

Next, we look at precursor patterns of transitions. We define the n-day precursor pattern 
of a transition of strength AB as that pattern at T = 0 that precedes an n-day period in which 
B changes an amount AB = B(T = n) — B(T = 0). Transitions toward BL are, on average, 
rather sensitive and, as shown in section 3.3, high-sensitivity periods are characterized by 
the upstream anomaly patterns given in Fig. 3.4. So we expect that the precursor patterns 
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of BL have a projection on these anomaly patterns. In order to facilitate the comparison 
between precursor patterns and sensitivity patterns we now define a sensitivity index, S. 
The sensitivity index S is similar to the blocking index B, 

S W = < * W . * > . (3.16) 

Here, zs is the geopotential height anomaly field given in Fig. 3.4c and zd is the daily 
geopotential height anomaly pattern. A large and positive value of S indicates a large 
projection on za, so that the flow over North America is similar to that shown in Fig. 3.4a. 
A large negative value indicates that the flow projects on the anomaly pattern of Fig. 3.4d 
(which is almost the opposite of zs) and is such more similar to the flow of Fig. 3.4b. 

In Fig. 3.14a is plotted the mean 5 n of all transition cases toward BL within n days for 
n is 3 and 5, with a strength larger than the corresponding value of AB on the x axis. One 
can see that the 3-day precursors as well as the 5-day precursors have, on average, a larger 
projection on zs when the strength of the transition is larger. The standard deviations of Sn 

vary barely around 1.0. In Fig. 3.14b it is shown that in the case of transitions to SZF the 
mean 5„ is independent of the strength of the transition and equal to about -0.15. 

Figure 3.15a shows the mean geopotential height anomaly pattern at 500 hPa of all 3-
day precursors of transitions with a strength larger than AS > 1.5. The mean projection 
on zs equals 0.62. Over the North Atlantic and Europe the anomaly pattern has a negative 
projection on the blocking anomaly pattern, B = —0.9, so that 3 days later the mean 
projection will be at least B — 0.6. Figure 3.15b shows the same anomaly pattern but for 
transitions toward an SZF (AB < —1.5). The projection indices are, respectively, S = —0.18 
and B = 0.79. Precursors of stronger or weaker transitions differ mainly in the amplitude of 
the precursor anomaly pattern. An analysis of precursors and successors of transitions could 
make clear how BL and SZF regimes are established in the T21QG model. That analysis is 
out of the scope of this study. 

When we correlate the time series of the daily values of SL and 5, the correlation co
efficient is equal to 0.45. This means that in the T21QG model the flow structure above 
North America at 500 hPa at a particular day already explains a substantial part of the 
sensitivity Si for transitions toward BL or SZF regimes 3 days later. That is remarkable 
since the calculation of S requires no computer time, whereas for the calculation of SL an 
adjoint calculation (a time-consuming process) must be performed. 

So far, we measured sensitivity by calculating the linear sensitivity SL- The underlying 
assumption is that SL gives a good estimate of the local divergence of orbits in phase space. 
Here divergence is with respect to variations in B. In order to test the validity of the 
assumption we performed the following calculations. When the sensitivity is high we expect 
a large divergence of orbits: some orbits will evolve into blocked flows, others into zonal 
flows. Thus for high-sensitivity periods the variations in AB must be large, resulting in a 
large standard deviation a of the distribution of AB. Orbits in low-sensitivity phase space 
regions will have a smaller divergence. This does not necessarily result in a lower standard 
deviation a(AB), because nearby orbits in low-sensitivity regions can all evolve to large B 
or to large — B. However, when the standard deviation of low-sensitivity periods turns out 
to be lower than the one of high-sensitivity periods, the assumption must certainly be partly 
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Figure 3.15: Mean geopotential height anomaly patterns of all 3-day precursor pat
terns with a strength (a) AB > 1.5 and (b) AB < —1.5. 

valid. In Fig. 3.16 is plotted a(AB) for all cases within a bin of width 0.5 x 10~6s m~2 

with a mean sensitivity, SL, at the corresponding value on the x axis. It is clear that the 
standard deviation increases with increasing sensitivity. We conclude that the sensitivity SL 
is a reflection of the divergence of orbits in phase space. 

That transitions toward BL are on average sensitive to initial conditions and sensitivity 
depends on the strength of the jet stream and on the diffluence of the flow in the blocking 
area is in agreement with results of Nakamura and Wallace (1990, 1993) and Vautard (1990). 
Nakamura and Wallace (1990) found that during blocking onset periods the upstream storm 
track is highly active and Nakamura and Wallace (1993) found that the flow exhibits strong 
diffluence ahead of a deep trough. Vautard (1990) identified three precursor mechanisms for 
Euro-Atlantic blocking. The flow patterns of all three precursors are characterized by an 
intensified jet stream and/or a diffluent flow over the Atlantic region. Thus, blocking onset 
is likely to be in many cases an inherently sensitive phenomenon. 

3.5 Summary and discussion 

In this chapter, flows with high and low sensitivity with respect to initial conditions for the 
onset of blocking (BL) and strong zonal flow (SZF) regimes have been analysed. We have 
considered BL and SZF regimes at 20° W (Atlantic region) and at 150° W (Pacific region). 
The BL and SZF regimes are characterized by the same dipolelike anomaly pattern but with 
opposite signs. Experiments have been performed with a quasigeostrophic model triangularly 
truncated at wavenumber 21 (T21QG), and its tangent linear and adjoint versions. Using the 
method described in chapter 2 (Oortwijn and Barkmeijer 1995) initial perturbations can be 
computed that optimally trigger the onset of a BL or SZF regime after a prescribed forecast 
time. For optimization times larger than 3 days an iterative technique is used to take into 
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Figure 3.16: Standard deviation a(AB) for all cases within a bin of 0.5 x 10 6 s rn 
with a mean sensitivity, SL, at the corresponding value on the x axis. 

account nonlinear growth of the perturbations. 
We have performed three large experiments. For each experiment the T21QG model is 

integrated for 20000 days, and for each day the sensitivity for onset of BL and SZF regimes 
is calculated. The first two experiments concern sensitivity for periods of a 3-day duration 
in the Atlantic and Pacific regions, respectively. In the third experiment the sensitivity for 
5-day periods is calculated for the Atlantic region. The initial reference flow patterns of 
the 1000 most sensitive and 1000 most insensitive periods have been selected. The mean 
fields of these patterns have been analysed. It appears that the initial patterns of the high-
sensitivity periods of the first and third experiment (Atlantic region) are characterized by 
an enhanced ridge over the northeast Pacific, and a deep trough over the North American 
continent with a ridge to its southeast. Low sensitivity flows are more zonal and weaker in 
this area (characterized by the opposite anomaly patterns with respect to the climate mean). 
The mean patterns for the Pacific regimes have similar features. High-sensitivity periods are 
characterized by an enhanced ridge over Asia, a deep trough at the east coast of the Asian 
continent, and a ridge to its southeast. The flow of low-sensitivity periods is again more zonal 
and weaker. In the target regions (Atlantic and Pacific regions) many of the high-sensitivity 
flows are characterized by a ridge and by diffluent flow for 3-day optimization times. The 
projection of a 500-hPa daily flow pattern on the mean sensitivity patterns already explains 
a substantial part of the 3-day sensitivity for transitions toward BL or SZF. The influence 
of nonlinear terms, causing an asymmetry between sensitivity for BL and SZF onset in the 
medium range, is noticeable in the patterns in the target area of high or low sensitivity flows. 
Flows that are sensitive for BL onset and insensitive for SZF onset are more zonal in this 
region. Flows that are insensitive for BL onset and sensitive for SZF onset show an enhanced 
ridge in this region. Thus, the nonlinear terms cause, on average, a tendency of the flow to 
return to the climate mean. 

Simulations with the T21QG model and a T21 barotropic model reveal that two main 
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properties of a flow are responsible for the sensitivity of the flow: a diffluent flow in the 
target area and an intensified jet stream upstream of it. The strong jet stream by itself re
sults in large perturbation growth. The presence of a diffluent flow amplifies the growth and 
gives perturbations a typical dipolelike character. These properties can be understood with 
barotropic mechanisms. However, baroclinic properties of the perturbations and reference 
flows are important and have a large contribution to the growth of the perturbations. The 
relation between a diffluent flow and sensitivity also results in an asymmetry between sensi
tivity for BL and SZF onset in the medium range. Nonlinear feedback mechanisms increase 
sensitivity toward BL and decrease sensitivity toward SZF. High-sensitivity flow patterns are 
also characterized by enhancement of the ridges over the northeast Pacific (sensitivity for 
Euro-Atlantic BL and SZF regimes) and Asian continent (sensitivity for Pacific BL and SZF 
regimes). These enhancements do not directly influence the sensitivity. The figures of the 
variance in the initial perturbation fields (Fig. 3.9) show that the perturbations do not have 
much amplitude in these regions. The dynamics of the model (and atmosphere?) causes a 
deep trough associated with an upstream ridge; that is, the combination is a preferred flow 
pattern. The variability over the northeast Pacific is larger than over the Asian continent, 
so that the amplitude of the ridge is larger over the northeast Pacific. 

It is shown that, on average, a transition toward BL corresponds with a larger than 
average sensitivity and that the sensitivity is larger when the transition is stronger. Tran
sitions toward an SZF correspond, on average, with an average sensitivity independent of 
the strength of the transition. The precursor patterns of transitions toward BL have similar 
characteristics as the flows with a high sensitivity. These results are in general agreement 
with characteristics of precursors of blocking onset found in observations by Nakamura and 
Wallace (1990, 1993) and Vautard (1990). Thus, blocking onset is likely to be in many cases 
an inherently sensitive phenomenon. 

Finally, we point out the importance of the norm. It is well known that the structures of 
the optimal perturbations depend strongly on the norm. In this chapter a squared norm is 
used to calculate the optimal perturbations. Some calculations are performed with a kinetic 
energy norm to study whether the sensitivity patterns also depend strongly on the norm. 
Using a kinetic energy norm, the correlation between the wind fields of the blocking anomaly 
pattern and the perturbation pattern is maximized rather than the correlation between the 
geopotential height anomaly fields. A kinetic energy norm puts more weight on larger scales 
of the initial perturbation. It is found that with a kinetic energy norm the high-sensitivity 
circulation patterns found with the streamfunction norm are also more sensitive than the 
low-sensitivity circulation patterns found with the streamfunction norm. So, the sensitivity 
patterns depend much less on the norm than the initial perturbations. Besides, a test that 
shows that the sensitivity reflects the divergence of orbits in phase space of the model with 
respect to BL and SZF transitions has also been performed. Therefore, the conclusions made 
in this chapter are probably rather general and not specific for the perturbations used here 
to compute the sensitivity of circulation patterns. 
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Chapter 4 

Growth properties of optimal 
transition perturbations 

The development of perturbations that optimally trigger the onset of Euro-Atlantic blocking 
(BL) and strong zonal flow (SZF) regimes has been investigated. These perturbations will 
be called optimal transition perturbations. First, a T21 three-level quasigeostrophic model 
(T21QG) including a forward and adjoint tangent propagator, is used to compute the sensi
tivity in the initial conditions for onset of BL and SZF regimes. The evolution of an optimal 
transition perturbation during a sensitive 72-hour period is extensively studied. Barotropic 
and baroclinic mechanisms are distinguished by displaying the results in terms of the baro
tropic and baroclinic modes of the system. Next, the perturbation is decomposed in normal 
modes. The evolution can be divided in two phases. During the first rapid phase, the growth 
is strongly non-modal and baroclinic. After that, the growth is still non-modal but not as 
strong and almost barotropic. 

In the second part of this chapter, the barotropic evolution is studied using a leading or
der WKB approximation adopted for non-zonal smooth background flows. This approach is 
based on the assumptions that the perturbations may be represented by wave packets and that 
a scale separation between the perturbations and the background flow can be made. The WKB 
approach is used as a diagnostic tool to interpret the evolution of the optimal perturbations 
qualitatively. We have focused on the evolution of zonally elongated wave packets that are 
located in or near the jet stream, and propagate into a diffluent area. Because the background 
flow is non-zonal, total wave action of a packet is not conserved. However, under certain 
conditions total wave enstrophy of a packet is conserved. The WKB equations predict rea
sonably well the evolution of the perturbations, although the assumptions are violated in the 
final stage of the integration period. 

4.1 Introduction 

Regime transitions are often very rapid and difficult to predict (Tibaldi and Molteni 1990; 
Palmer et al. 1990; Kimoto et al. 1992; Tibaldi et al. 1994). It is therefore of great 
practical importance to investigate these transitions. In chapter 3, periods with a high-
and low-sensitivity in the initial conditions for onset of blocking (BL) and strong zonal flow 
(SZF) regimes were studied (Oortwijn 1998a). One of the results was that flows with a high 



72 Growth properties of optimal transition perturbations 

sensitivity are characterized, on average, by an intensified jet stream to the west of a diffluent 
flow. The sensitivity was calculated by computing perturbations that maximize transitions 
between BL and SZF regimes within a fixed period of time. In this chapter we will focus on 
the structure and evolution of such optimal perturbations in terms of vertical modes, normal 
modes and with a WKB approach. 

It is now generally known that perturbations may grow much faster, although for a finite 
time, than the fastest growing normal mode (e.g. Orr 1907; Farrell 1982; Trefethen et al. 
1993; Buizza and Palmer 1995). Normal modes (NMs) are eigenvectors of the linear evolution 
operator. They grow exponentially and preserve their shape. The linear evolution operator is 
generally non-normal. The set of eigenvectors is therefore not orthogonal. As a consequence, 
a small perturbation written as a sum of NMs can have large components with respect to 
this basis. This may result in a larger than exponential growth of the perturbation with 
a shape that evolves in time. Here we will actually compute, within the context of a T21 
three-level quasigeostrophic model (hereafter called T21QG model, described in Marshall 
and Molteni 1993), the complete set of 1449 NMs and show how the components of the 
optimal perturbation change as a function of time. 

The optimal transition perturbations are directly related to singular vectors (SVs), which 
maximize RMS error growth over a fixed period of time (see chapter 2). Singular vectors have 
been applied to predictability and sensitivity studies (Farrell 1988 and 1989; Molteni and 
Palmer 1993) and are used in the ECMWF operational ensemble forecasting system (Mureau 
et al. 1993; Molteni et al. 1996). Optimal perturbations/SVs are able to grow fast by 
extracting energy very efficiently from the background flow. Both barotropic and baroclinic 
processes provide energy for the development of the perturbations. In this chapter, we will 
separate barotropic and baroclinic modes in order to determine their relative importance. 

In order to interpret the growth of optimal perturbations, we will also look at it from 
another perspective. Many singular vectors are strongly localized and have a wave train-like 
structure. Therefore, they may be considered as Rossby wave packets propagating on a mean 
flow dominated by much larger scales. When the time mean flow u is assumed to be zonal, a 
conservation law for the evolution of wave packets can be derived using a leading order WKB 
approach (after Wentzel, Kramers and Brillouin). Under these conditions total wave action 
is conserved (Bretherton and Garrett 1969). This conservation law states that for a packet, 
with local zonal wavenumber m and frequency u>, the ratio between the energy of the packet 
and its intrinsic frequency ui = u — mu is constant. Hence, a wave packet that propagates 
into a stronger zonal flow acquires a larger intrinsic frequency and therefore gains energy. 
Buizza and Palmer (1995) use this argument to interpret SV growth. However, as is already 
mentioned above, in periods with a large sensitivity to the onset of BL or SZF regimes 
the mean flow is diffluent and thus essentially non-zonal. Under certain conditions wave 
action conservation may be generalized to conservation of wave enstrophy for wave packets 
propagating on non-zonal mean flows (Young and Rhines 1980). It is investigated whether 
we can interpret the growth of the optimal perturbations by means of these concepts. 

This chapter is organized as follows. In section 2 we will describe the time evolution of 
an optimal transition perturbation. In section 3 we will derive equations for the barotropic 
evolution of wave packets on non-zonal mean flows using a WKB approximation. In section 
4 we will show the numerical results of this approach and compare them to results of com-
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putations performed with a barotropic model. Finally, we will discuss the main results in 
section 5. 

4.2 The evolution of an optimal transition perturbation 

4.2.1 General remarks 

In section 2.3 (Oortwijn and Barkmeijer 1995) we described a method to compute pertur
bations that optimally trigger a BL or SZF onset. It was shown that the streamfunction of 
the initial optimal perturbation is given by Eq. (2.9) 

eL(0) = AR*L^. (4.1) 

Here, A is a scaling factor. The pattern z<, is a dipolelike geopotential height anomaly field 
at 500 hPa, which characterizes a Euro-Atlantic BL regime (positive sign) or a SZF regime 
(negative sign). This so-called blocking anomaly pattern was computed by Liu (1994) using 
atmospheric observations and again by Liu and Opsteegh (1995) using data of the T21QG 
model. These patterns differ only slightly. The blocking anomaly pattern consists of a very 
strong positive geopotential height anomaly with its center at about 60° N and a weaker 
negative anomaly to the south of it (see Fig 2.1 of chapter 2). The operators L* and R* are 
the adjoint operators of Lz and R with respect to the squared norm inner product 

3 

<f,9>=Y,J Jfi9idS. (4.2) 

The sum runs over the three levels (200, 500, and 800 hPa, i=l,2,3) of the T21QG model 
and the integration is performed over the sphere. The linear operator Lz transforms stream-
function into geopotential height, based on the linear balance equation. The linear evolution 
operator R(0, T) describes, to first order, the evolution of a small perturbation starting at 
initial time 0 to optimization time T. It follows, that the backward integration of the block
ing anomaly pattern, using the adjoint operator R*, gives the optimal perturbation £L(0), 

which at optimization time T has the largest projection onto this dipolelike pattern. A neg
ative value of the scaling factor A results in a change toward a SZF regime, a positive value 
toward a BL regime. 

The linear sensitivity Si was defined in Eq. (2.11) on the basis of the amplification rate 
of the perturbation, 

_ |lR*L;st|| 
L"~ih\r ' ( } 

where ||e||2 =< e,e >. Hence, a large amplification corresponds to a high sensitivity. In 
chapters 2 and 3 it was shown that the linear sensitivity Si for a three-day time interval 
fluctuates strongly. The mean linear sensitivity SL of the total distribution (20000 cases, 
Fig. 4.3) is 2.69 x 10"6 s m~2 with a standard deviation of 0.68 x 10 -6 s m"2. The difference 
in the three-day sensitivity can be as large as a factor 6 between high- and low-sensitivity 
periods. 
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So far, we have focused on the mean properties of these sensitive and insensitive flows. In 
this chapter, we will pay attention to the evolution of the perturbations during a three-day 
time interval. We will describe the evolution of an optimal perturbation £/, for one sensitive 
period of the T21QG model and show which mechanisms are involved in the amplification of 
the perturbation. In other sensitive cases the evolution of the optimal perturbations is very 
similar. In the discussion, we will distinguish between barotropic and baroclinic mechanisms. 
In order to determine their relative importance it will be useful to write the fields in the 
T21QG model as a sum over vertical modes. In the three-level T21QG model one barotropic 
mode and two baroclinic modes can be distinguished. The derivation of these modes is given 
in Appendix A. 

4.2.2 A representative example of a sensitive period 

Vertical mode decomposition 

Figure 4.1 shows the streamfunction of a sensitive three-day period and its optimal pertur
bation at T = 0 and optimization time T = 72. The linear sensitivity 5x equals 4.35 x 10~6 

s m~2, which is about 2 standard deviations larger than the mean value. Figure 4.1a shows 
the streamfunction of the perturbation superimposed on the streamfunction of the initial ref
erence flow at 200 hPa. Figures 4.1b and 4.1c show the 500- and 800-hPa fields, respectively. 
The perturbation is located over the North-Atlantic ocean and North-American continent. It 
has a baroclinic structure and its energy is concentrated predominantly in small-scale eddies. 
The perturbation is mainly located in or near the jet stream, intensifying or moderating local 
gradients. In Fig. 4.2 the streamfunction of the corresponding barotropic mode and the first 
and second baroclinic modes are given. A large part of the energy is concentrated in the sec
ond baroclinic mode at initial time. We recall that the relation between the streamfunction 
at model levels and the vertical modes is derived in appendix A. The vertical structure of 
the streamfunction field of the barotropic mode is independent of height. The first baroclinic 
mode changes its sign once in the vertical, whereas the second baroclinic mode changes sign 
twice. 

The evolved perturbation is obtained by integrating the tangent linear model. It is char
acterized by a large negative streamfunction anomaly surrounded by two positive streamfunc
tion anomalies above the Atlantic and Western-Europe. The vertical structure has become 
equivalent barotropic (Figs. 4.Id, 4.1e and 4.If) and so it is the barotropic mode (Fig. 4.2d) 
that dominates the structure. The first (Fig. 4.2e) and second (Fig. 4.2f) baroclinic modes 
contribute little to the perturbation field. The amplification of the perturbation is enormous. 
Measured in total kinetic energy (TKE) the amplification is a factor 93.5, with 

3 3 

TKE = £ KEi = £ / / V<fc • VAdS. (4.4) 

Here VV>* is the gradient of streamfunction at model level i. 
In Fig. 4.3a the kinetic energy (KE) of the perturbation is plotted as a function of time. 

Shown are TKE and KEt at 200, 500, and 800 hPa (i=l,2,3). The TKE is normalized to 
one initially. The growth is nearly uniform at all levels. The KE of the vertical modes is 
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Figure 4-1' Streamfunction of the optimal perturbation superimposed on the reference 
flow at the three levels 200, 500, and 800 hPa at initial and optimization time. At 
optimization time the perturbation contour interval is 20 times larger than at initial 
time. 
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Figure 4-3: Kinetic energy of the optimal perturbation (log-scale) as a function of 
time, (a) TKE (normalized to 1 initial time) and KE of the three model levels, (b) 
TKE and KE of the three vertical modes. 

given in Fig. 4.3b. It shows that initially the second baroclinic mode dominates the KE. 
The KE in the second baroclinic mode even decreases for a while and within 24 hours almost 
all KE is located in the barotropic mode. So, the perturbation gains energy by barotropic 
as well as by baroclinic processes during the first 24 hours. After that, barotropic processes 
dominate the evolution (see also Molteni and Palmer 1993; Mureau et al. 1993). The initial 
decrease of baroclinic energy, which is essentially available potential energy, implies that the 
latter is converted to barotropic kinetic energy. The available potential energy (APE) in 
the T21QG model consist of two terms that are proportional to the square of the 200-500 
hPa thickness and the 500-800 hPa thickness, 

APE = APEn + APE23 = J J (-L^ - fo)* + J_(,fc - ^3)A dS, (4.5) 

where R\ (=700 km) and R2 (=450 km) are Rossby radii of deformation. The difference 
between APE in the reference flow and perturbed flow increases particularly the first 12 
hours very fast (not shown). Hence, APE has been converted to KE in the perturbed flow. 

In order to test whether the evolution of the perturbation during the last 48 hours 
can indeed be described mainly by barotropic processes, the following experiment has been 
performed: the optimal perturbation is integrated with the tangent linear model of the 
barotropic vorticity equation along the 500-hPa reference orbit, which was obtained by inte
grating the baroclinic model. Then, the initial optimal perturbation at 500 hPa is integrated 
for 72 hours. The KE amplification of this perturbation is only 67 % of the KE amplifi
cation of the three-level perturbation at 500 hPa in the baroclinic T21QG model. Next, 
we take the 24-hour evolved optimal perturbation of the baroclinic model at 500 hPa and 
integrate this structure along the last 48 hours of the baroclinic reference flow using again 
the tangent linear model of the barotropic vorticity equation. In this case, the amplification 
is 93 % of the original amplification. In both cases the evolved structure is very similar to 
the original perturbation shown in Fig. 4.2b. We conclude that during the last 48 hours 
barotropic mechanisms dominate the evolution strongly. 
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The evolution can thus be separated into two phases. In the first phase, lasting about 
24 hours, baroclinic and barotropic processes both cause growth of the perturbation, which 
has the structure of a baroclinic wave train. Its small-scale structure at 500 and 800 hPa 
disappears and an equivalent barotropic wave train arises, of which the growth during the 
second phase, from about 24 to 72 hours, can be understood in terms of barotropic processes. 

Normal mode decomposition 

In order to further study the two phases of the evolution, a comparison is made between the 
growth of the optimal perturbation and the growth of the normal modes. Normal modes 
(NMs) are eigenvectors of R in case of a stationary reference flow. The tangent linear 
operator of a stationary reference flow can be written as R = exp(F' • T), where F' gives the 
linear evolution of a perturbation, ^ = F'e. The eigenvectors of the real matrix operator F ' 
are generally complex with complex eigenvalues exp((A + ifi)T). The complex eigenvectors 
form complex conjugated pairs with complex conjugated pairs of eigenvalues. The real and 
imaginary parts of the eigenvector pairs form an invariant two-dimensional subspace in the 
real phase space. This causes modal growth of the NMs, which means that NMs grow 
exponentially and, in addition, oscillate in the invariant two-dimensional subspace. Apart 
from these periodic oscillations, NMs do not change their pattern in time. In general, the 
operator R is non-normal. Because of this, the NMs form a nonorthogonal basis. As a 
result, a small perturbation written as a sum of NMs can have relatively large components 
with respect to this basis of NMs. The dimension of the phase space of the T21QG model 
is 1449, so that a given perturbation e can be written as 

1449 

e=^2 Wi, (4.6) 
1=1 

where r\i is the ith component of e with respect to the basis n. When the i'th and (i+l)'th 
NM form a complex conjugated pair then we wil take n; equal to the real part of these 
NMs and n i+1 equal to the imaginary part of these NMs. In this way, n* and n^+1 span the 
invariant two-dimensional subspace. 

To compute the NMs, the mean flows of the first 0 to 24 hours and the last 24 to 72 
hours are taken as time invariant basic states. In Fig. 4.4a the components of the initial 
optimal perturbation are shown with respect to the basis formed by the NMs of the 24-hour 
mean flow. The NMs are sorted by the real part of the eigenvalue so that the first NM 
amplifies fastest. Both NMs and optimal perturbation are normalized to 1 with respect to 
the squared norm inner product, Eq. (4.2). The first 465 NMs amplify, all other NMs decay. 
The fastest e-folding time is about 45 hours. The optimal perturbation is a combination of 
many amplifying and decaying NMs. As many as 69 components have a value larger than 1 
with a maximum of 3.5. The sum of the squares of the components equals 213, which should 
be equal to 1 for an orthonormal basis. After 24 hours, this sum for the normalized evolved 
optimal perturbation reduces to 31, see Fig. 4.4b. This indicates that the initial perturbation 
is constructed in such a way that it is a combination of many NMs that point into directions 
that partially cancel each other. The different oscillation and amplification properties of 
the NMs cause a fast non-modal growth of the perturbation. The dispersion of the pattern 
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spect to a basis of NMs. The NMs are sorted by amplification rate such that the first 
NM grows fastest, (a) Optimal perturbation at initial time and (b) after 24 hours 
for NMs of first basic state, (c) After 24 hours and (d) 72 hours for second basic 
state. 
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is also clearly noticeable in the evolution of the optimal perturbation (see also Fig 4.5). 
Growth through rapidly amplifying NMs seems to be of secondary importance, although the 
initial components of the growing NMs are somewhat larger than of the decaying modes. In 
Fig. 4.4c the components of the normalized 24-hour evolved optimal perturbation are given 
with respect to the NMs of the average 24- to 72-hour basic state. Figure 4.4d shows the 
normalized optimal perturbation after 72 hours. In the last 48 hours the sum of the squared 
components does not reduce anymore. The perturbation mainly grows by amplification of 
NMs. In Fig. 4.4c one can see that the components that are significant are principally 
with respect to the fastest growing NMs. After 72 hours, significant components are also 
with respect to the decaying NMs. The perturbation will not show any substantial growth 
anymore. 

Time evolution 

As we have seen, the baroclinic modes cause an initial displacement from available potential 
energy of the reference flow to perturbation kinetic energy. This process occurs fast, within 12 
to 24 hours. After that, the energy transfer is completely dominated by the kinetic energy 
transfer from the reference flow to the perturbation. It seems that the baroclinic growth 
principally results in an additional amplification of the structure. Without the baroclinic 
growth, the evolved perturbation would be weaker but its spatial structure, as is shown in 
the subsection 4.2.2, would be much less affected. This extra amplification is important 
though; it leads on average to a factor 2 larger growth (see section 3.4.1). The barotropic 
interactions between the reference flow and perturbation determine effectively the further 
evolution and structure of the perturbation. We shall therefore, in the remainder, focus on 
the barotropic part of the growth. First, the time evolution of the barotropic mode will be 
described. Then, in the next sections, we will consider at length the barotropic mechanisms 
that are involved using a WKB approach. 

In Fig. 4.5 the barotropic mode of the optimal perturbation is plotted together with 
the associated reference state. The evolution is shown every 6 hours for the first 36 hours, 
after that, every 12 hours. The evolution can be characterized by a developing wave train. 
Especially in the first part the perturbation grows very fast. However, as shown in Fig. 4.3 
this is partly due to baroclinic energy conversion. The wave train propagates with a group 
velocity that is larger than the phase velocity of the individual eddies; wave crests appear 
in front of the packet and disappear at the back. The energy propagates through the train, 
resulting in the downstream development of the eddies. Furthermore, it can be observed 
that wave energy propagates northward relative to the background velocity field. During 
the evolution, the zonal length scale of the eddies decreases and the meridional length scale 
increases. In addition, the horizontal tilt of the eddies from southeast to northwest vanishes. 
The development of the ridge in the reference flow near the end of the period causes the 
most downstream crest to move southward and the second crest to move northward so that, 
together with the third crest, a typical blocking anomaly pattern arises. 

In summary, the optimal transition perturbation has initially the structure of a rather 
small-scale baroclinic wave train. However, the barotropic part of the perturbation has 
initially already a large-scale zonally elongated structure. Baroclinic energy sources supply 
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Figure \.5: The evolution of the barotropic mode of the optimal perturbation is shown 
together with the associated reference flow. The first 36 hours the time interval 
is 6 hours, after that the time interval is 12 hours. The contour interval of the 
perturbation is set to 1 initially. In each panel the contour interval of the perturbation 
is given. 
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energy for the barotropic kinetic energy growth. In the first hours available potential energy 
is converted into kinetic energy. After this first rapid phase of strongly non-modal growth, 
the perturbation evolves mainly by barotropic mechanisms, with it extracting kinetic energy 
from the reference flow. In the next sections, we will study these dominant barotropic 
processes by considering wave packets on a barotropic basic state. 

4.3 A WKB approximation 

We will now study the barotropic interaction between the perturbation and the mean back
ground flow. In chapter 3 it was shown that in sensitive periods the mean 500-hPa flow is 
characterized by an intensified jet stream upstream of a diffluent flow associated with a ridge 
over the Euro-Atlantic area. This leads to a picture in which the larger scales already have a 
ridge structure that can be reinforced or weakened by the smaller-scale perturbations. The 
mean flow is thus essentially non-zonal. This makes the analysis much more complex than in 
the case of a zonal background flow. In the following, we will assume that a scale separation 
can be made between the perturbations and mean flow. In addition, it is explicitly assumed 
that the perturbations can be represented in the form of wave packets. 

In addition to the results for the sensitivity on the 500-hPa level, we have described in 
section 4.2.2 that the barotropic evolution on the 500-hPa level was a reasonable approxi
mation to the latter part of the evolution of the optimal perturbation. We shall therefore 
compare the evolution of the barotropic mode to barotropic experiments on the 500-hPa 
level. We consider the non-divergent barotropic vorticity equation, 

This equation expresses conservation of the vertical component of absolute vorticity C + / 
following the horizontal motion, where ( is the relative vorticity and / the planetary vorticity. 
The variation of the Coriolis parameter with latitude is given by f-. The non-divergent 
velocity field v = (u, v) can be written in terms of the streamfunction V" by letting v = 
e3 x 'Vip, where es is the unit vector pointing vertically upward. The relative vorticity is 
then given by £ = V 2^. 

We are interested in the evolution of small perturbations superimposed on a mean flow, 
which itself is a solution of the barotropic vorticity equation (Eq. (4.7)). Linearisation of 
Eq. (4.7) about the mean flow yields 

Here mean flow variables are marked by an overbar and perturbation variables by a prime. 
The next step in the derivation is the representation of perturbations by wave packets. 

A wave packet is the envelope of a train of propagating waves. The wave train is assumed to 
have a dominant local frequency u, vector wavenumber k = (m, n) and amplitude a, which 
are all slowly varying functions of space and time. That is, the derivatives of these variables 
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to x, y and t are 0(e), with e a small parameter. The local frequency and wavenumbers may 
be derived from a phase function 0(x, i), 

- i d 6 - i d e - i 9 0 ,A0\ 

" = -£ m>m = £ Tx>n = £ w (49) 

which are all 0(1). Approximations to solutions of Eq. (4.8) are found by assuming that the 
wave packets have a WKB form (after Wentzel-Kramers-Brillouin). The WKB expansion 
may be written (Miiller 1978; Zeng 1983a, 1983b) 

OO 

</>'(x, t) = £ enan(x, t)eieWe. (4.10) 
ra=0 

In our derivation it is assumed that a wave packet can be approximated to lowest order in 
the expansion, which implies that the plane waves are approximately sinusoidal 

^ = ao(x,t)e^x-^e . (4.11) 

Substitution of Eq. (4.11) into Eq. (4.8) yields, to zero'th order in e, the dispersion relation 
for Rossby waves, which relates the local frequency at a fixed point to the local wavenumber, 

u = k-V + LJ = mu + nv+ 9x 9y ', (4.12) 
K 

with 
k2 = m2 + n2 (4.13) 

the total horizontal wavenumber squared. Here u> is the intrinsic frequency, i.e. the local 
frequency measured by an observer moving with the mean flow, and k • v is the Doppler 
shifted frequency. Using the phase function relations (Eq. (4.9)), so-called propagation 
equations can be written in a canonical form 

a. . 

(4.14) 

(4.15) 
where a = x, y and kx = m, ky n 
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(4.16) 

stands for differentiation moving with the group velocity cg = (cgx,cgy). The integration of 
Eq. (4.14) yields the path described by an observer always moving with the local value of 
the group velocity. This path is known as a ray (see e.g. Lighthill 1978). The change of 
wavenumber along the ray is described by Eq. (4.15). Using the dispersion relation, we find 
a set of four coupled equations that can be solved when initial conditions are specified. 

(m2 - n 2 ) ( ^ ) - 2mnf 
c9* = u+ {- ^ ^ , (4.17) 
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2mn(^) + (m2-n2)| 
c»=U+ dV

 kl — . (4-18) 

dm du dv m d2C, n d2C ,. 1Q^ 
dt dx dx k2 dxdy k2 dx2' 

dn_ _ du_ ffi,™ (d2( + f\ _ n d2Q , . 
dt ~ mdy Udy +k2\ 6y2 j k2 dydx' ( ' 

The number of degrees of freedom is reduced to only four by using the WKB approximation. 
The price that is paid for this reduction is the loss of linearity. The original linear equation 
((Eq. 4.8)) is replaced by a set of nonlinear equations. 

Substitution of Eq. (4.11) into Eq. (4.8) yields to first order in e the so-called transport 
equation 

9 _d . 9 , , , . _ _. 
TT7 + u— + v— k a0 - (OJ - mu — nv) 
at ox ay' 2{mdx- + ndy-)ao 

'dm dn 
dx dy 

+S^-<^)^-- <«» 
The transport equation can be rewritten in a more convenient expression (see appendix B, 
Eq. (4.75)). We now take the envelope of the packet to be of sinusoidal form 

a0 = |a0|e
ia(x'". (4.22) 

Thus, we can derive equations for the phase a and the amplitude |ao| of the packet, 

dt 
2d|ao| \a0\dk2 Pjaoj 

(4.23) 

- |ao| [k • (k • V)v + k • (v • V)k - v • (k • V)k] = 0. (4.24) 

Equation (4.23) states that the envelope of the wave packet propagates with the group ve
locity and thus moves along a ray. When we assume that the mean flow is time independent, 
the frequency u of a packet is constant along a ray (see Bretherton and Garrett 1969), 

This implies that the frequency of the packet is conserved. 
Multiplying Eq. (4.24) by \a0\ yields an equation for the kinetic energy density E = 

!&2|ao|2 of the packet. On a plane, the energy density equation can be written as 

dE 
— + EV-ce = sQ/,ea/3, (4.26) 
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where s is the stress tensor, also called the radiation stress tensor (Longuet-Higgins and 
Stewart 1964), and e is the strain rate tensor, 

s = 
2£ 
fc2" 

m 
mn 

mn 
«2 

, and e = 
as 
dx 

1 (du i dv\ 
2 \dy T 8x) 

2 \dy •*" dx) 
dv 
dy 

(4.27) 

When the wave packet propagates on a non-uniform mean flow the strain rate tensor has 
non-vanishing components. The mean flow does work on the wave packet at a rate sapeap 
(first shown in the paper of Longuet-Higgins and Stewart (1961) on gravity waves). This 
implies that the total energy of the wave packet is not conserved and changes as 

d_ 
dt 

JfwEdxdy = fJw\a0\ 
,du 

(m -n)^Z + mn\-57. + ^Z dx 
du dv 
dy dx 

dx dy. (4.28) 

Here the packet is denoted by W and is used that the flow is non-divergent. The integral 
equation states that the packet gains energy through conversion of mean kinetic energy by 
the Reynolds stress mechanism. 

On a sphere (with radius R = 6.37 x 106m), additional metric terms must be added in 
order to get the correct expression (see appendix B, Eqs (4.77)-(4.80)) 

d - / jwEdxdy = / / j a o | ,du 
(m - n ) ^ + mn\!T + ^ 

+(n2 - m2) 

dx 

2 , u t an0 

du dv 

R + mn 

dy dx 
utan(/> 

R 
dx dy. (4.29) 

Simmons et al. (1983) have derived an equation for the growth of perturbation kinetic energy 
(their equation (4)), which can be written in a similar form 

I / / * * * - //[<»"-»,2»S-«v( 
+(ti" - « « ) 

du dv 
dy dx 

,2vvwtan0 , ,utan(/> 
R — uv R 

dx dy. (4.30) 

Here, the integration is performed globally. The equivalence becomes clear by observing that 
in the WKB approximation the zonal velocity is proportional to the meridional wavenumber 
u' ~ n and the meridional velocity to the zonal wavenumber v' ~ —m, as can be derived 
from Eq. (4.11). 

In the particular case of a zonal mean flow it can be easily derived from Eq. (4.19) 
that the zonal wavenumber of the packet remains constant. Zonal asymmetry results in a 
packet with varying zonal wavenumber. (In a similar way: the meridional asymmetry leads 
to variations of the meridional wavenumber.) In a zonal background flow total wave action is 
also conserved. Wave action density A is defined as the relation between the energy density 
and the intrinsic frequency, thus A — ¥. One can derive, combining the equation for the 
kinetic energy density Eq. (4.26) and the evolution equation of the intrinsic frequency 

du) _ dil>_ du_ „ du/3 

dt dx dy gadxa 
(4.31) 
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that for a zonal mean flow the wave action density equation equals 

Ft A 

^ + AV-cg = 0. (4.32) 

This implies that total wave action, i.e. the wave action density integrated over the wave 
packet, is conserved. This result was first obtained by Bretherton and Garrett (1969). 
It means that total wave energy is proportional to the instantaneous intrinsic frequency; 
that is, an energetically growing disturbance propagates in a direction such that its intrinsic 
frequency increases accordingly. In the absence of zonal symmetry this conservation equation 
is not valid anymore. This is in contrast to a system of propagating surface gravity waves 
on a slowly varying non-zonal mean flow. Here total wave action is still conserved (see 
Bretherton and Garrett 1969). However, when variations of the mean vorticity terms are 
of 0(e) so that the terms |£u' and |^u' can be neglected in Eq. (4.8) conservation of total 
wave enstrophy can be derived (Young and Rhines 1980), 

dP 
— + P V - c g = 0. (4.33) 

The wave enstrophy density P is equal to the product of the square of total wavenumber 
and energy density, P = k2E. The conservation law states that an energetically growing 
disturbance modifies its shape such that total wavenumber decreases. Conservation of total 
wave enstrophy breaks down when the terms |£ and f£ become of O(l). In the simulations 
these conservation laws are used to calculate the energy of the wave packet. 

4.4 Numerical simulations 

In this section we will describe some examples of integrations of wave packets using the WKB 
approximation. For this purpose, a WKB model is written. Computations are performed 
with a barotropic model and its tangent linear and adjoint model for comparison. A short 
description of these models will be given first. 

4.4.1 Formulation of the WKB model and the barotropic model 

The WKB model integrates the set of four coupled nonlinear propagation equations (Eqs 
(4.17)-(4.20)). A wave packet is characterized by its zonal and meridional wavenumbers 
(m, n) and its position on the sphere (x, y). The spatial size of the wave packet is thus reduced 
to a single point, which represents its center of wave energy. The wavenumbers and position 
of the packet are prescribed at initial time. Making use of recurrence relations for Legendre 
functions, see for example Machenhauer (1979), we have derived analytical expressions for 
the mean velocity and mean relative vorticity and their first and second derivatives to x and 
y for every position on the sphere. The computations of these variables are exact for mean 
flows with spectral components up to T21. The group velocity components and the tendency 
of the wavenumbers can be calculated by substitution of their values into Eqs (4.17)-(4.20). 
The energy of the packet propagates at the group velocity. Its new position and wavenumbers 
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after one time step are calculated by integrating the propagation equations. The integration 
is performed using a fourth-order Runge-Kutta method with a time step of 1 hour. In this 
way, the path of the packet, i.e. the ray, is found. In order to satisfy the assumptions of 
the WKB approach we have to consider smooth mean flows. The mean flows we will study 
are time invariant or have a sufficiently small tendency to be considered time invariant. The 
computations can then be validated by testing whether the dominant frequency of the packet 
along the ray is conserved, see Eq. (4.25). 

Because we assume that the packet has no spatial size, the integrand of Eq. (4.29) is 
considered as a measure of the tendency of the total energy of the packet. When total wave 
action or total wave enstrophy is conserved total wave energy can also be calculated using 
these conservation properties. 

The barotropic model integrates the barotropic vorticity equation (Eq. (4.7)). The model 
is triangularly truncated at T42, using a time step of 30 minutes, or at T85, using a time 
step of 15 minutes. Orography and forcing are not included. The tangent linear model 
describes the linear evolution of small perturbations along a reference forecast, which will 
be time invariant in the following experiments. The adjoint of the tangent linear model is 
computed with respect to the squared norm inner product. 

4.4.2 Zonal mean background flow 

To introduce the WKB method we will first describe the development of a wave packet 
superimposed on a zonal mean flow. Zonal mean flows are stationary solutions of Eq. (4.7). 
A zonal mean flow with a reasonably realistic velocity profile is obtained by zonally averaging 
the low-sensitive cluster mean LS3, which is shown in Fig. 5c of chapter 3 (see also Fig. 4.9). 
This LS3 pattern is nearly zonal. In Fig. 4.6 the zonally averaged mean flow is shown. The 
velocity field has a jet-like structure, with a maximum velocity equal to 18.5 m s"1 at 35°N. 
We have located the wave packet in the shear stream centered at 22°N and 62°W, its envelope 
having the sinusoidal form of Eq. (4.22). The dominant zonal and meridional wavelengths 
are both equal to about 4500 km (Am = A„ = A), so that m = n = | ~ 1.4 x 10 -6 

m"1. In Fig. 4.6 snapshots of the evolution of the packet are shown at 24 hourly intervals. 
The integration is performed with the T85 version of the tangent linear model. The packet 
propagates northeastward in the direction of the jet maximum. The group velocity, i.e. the 
velocity at which the energy or envelope propagates, is larger than the phase velocity, i.e. the 
velocity of the individual crests. The crests appearing in front of the packet are a clear sign of 
this. The tilt of the packet, initially from northwest to southeast, vanishes the first few days 
due to an increase of the meridional wavelength. After 72 hours the packet splits into two 
parts. The southern part of the packet bends southward and acquires a tilt from southwest 
to northeast. The northern part passes through the jet maximum. The tilt changes again 
from northwest to southeast. 

In Fig. 4.7 integrations are repeated with the WKB model. In the integrations two 
packets are superimposed on the same zonal mean flow. The packets have slightly different 
initial positions and are integrated for 10 days. We will show that both packets describe 
parts of the evolution of the perturbation. Every 24 hours the position of the packet is 
marked by a vector and circle. The slope of the vector reflects the ratio of the meridional 
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Figure 4-6: Development of a wave packet superimposed on a zonal mean flow. The 
velocity field has a jet-like structure shown in panel (a), with a maximum of 18.5 
m s_1 at 35° iV. The initial dominant zonal and meridional wavelengths are equal 
to about 4500 km. The evolution is shown every 24 hours. The fields are given in 
stream]'unction. The contour interval is equal to 5.9 xlO6 m2 s_1 for the zonal mean 
flow and arbitrary for the perturbation. 
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Figure ^.1: Development of two wave packets with slightly different initial positions 
superimposed on a zonal mean flow. The velocity field has a jet-like structure shown 
in Fig. 4-6- The initial zonal and meridional wavelengths are equal to about 4500 
km. Every 24 hours the location of the packets is marked by a vector and circle. The 
slope of the vector reflects the proportion of the meridional to the zonal wavenumber. 
The size of the circle reflects the energy of the packet. 

wavenumber to the zonal wavenumber of the packet. A vertical (horizontal) slope indicates 
that the zonal (meridional) wavenumber is zero. When the wavenumbers are equal the slope 
is 45°. The size of the circle marks the energy of the packet, i.e. the radius increases a 
factor of 2 when the energy doubles. The horizontal wavenumber and total wave action are 
conserved, because of the zonal symmetry. The southern packet bends to the south before 
it reaches the jet maximum. Near the jet maximum the intrinsic frequency u> is largest and 
therefore, due to the conservation of waveaction, the energy of the packet is maximal. The 
turning point is located at the position where n = 0 (An —» oo), see Eq. (4.18). Here the 

meridional velocity cgy ~ —p2*- reverses sign. In the neighborhood of the turning point 
the WKB method is obviously invalid. However the terms in Eqs (4.17)-(4.20) in which the 
meridional wavenumber is involved become very small near the turning point and can be 
neglected. The integration can thus be continued. The packet looses energy and approaches 
a critical line at which all energy will be lost (both E a s i i become zero). The northern 
packet passes through the jet maximum before n = 0. At the jet maximum the term I s 

reverses sign, so that n increases again before it reaches n = 0, see Eq. (4.20). The ray 
has therefore no turning point and approaches a critical line further to the north where all 
energy has been lost to the mean flow. 

We are not interested in the asymptotic behaviour of the packet, as the WKB approach 
fails in this limit (due to viscosity and nonlinearity). Moreover, by this time the packet is 
spread over the whole northern hemisphere. Its description by just a single wavenumber 
pair has become unrealistic. As can be observed by comparing Figs. 4.6 and 4.7, both rays 
in Fig. 4.7 describe parts of the development of the wave packet in Fig. 4.6. We will also 
encounter this in the following examples because the spatial size of the perturbations is not 
negligible entirely. The main conclusions that can be drawn from the WKB approach are 
that it predicts an amplification of the wave energy when wave crests lean into the mean 
shear (^ > 0 where | | > 0, or ^ < 0 where | | < 0) and a decrease when they lean along the 
mean shear (^ < 0 where P > 0, or ^ > 0 where ^ < 0). In the first case, the meridional 
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wavelength increases and the packet propagates toward the jet maximum. In the second 
case, the meridional wavelength decreases and the packet propagates into weaker westerly 
flow. We will concentrate on such mechanisms in the description of the development of wave 
packets superimposed on non-zonal mean flows. The description can only be qualitative 
because of the assumptions made in the WKB method. The goal is not to develop an 
accurate forecast model but to interpret the main processes using simple relations. 

4.4.3 Non-zonal background flows 

Rossby-Haurwitz waves 

We will proceed with background flows that are non-zonal. First, we will consider packets 
superimposed on stationary Rossby-Haurwitz waves. Rossby-Haurwitz waves are solutions 
of the barotropic vorticity equation of the form 

i>{\, n)=A Be{YMJf(X, //)} - c/i , (4.34) 

where YM,;V is the spherical harmonic function of order M and degree N. Re{^} denotes the 
real part of the complex number z, A is longitude and \i = sin 4>, where <j> is latitude. In our 
application we choose M = 3, N = 6, c = 0.05 and vary the amplitude A. For these values, 
the flow possesses characteristics of sensitive periods like a strong jet stream upstream of a 
diffluent flow (see chapter 3) on the same spatial scale. By enlarging A the strength of the 
jet becomes stronger and the diffluence of the flow larger. In chapter 3 it was also shown 
that the initially fastest growing perturbations (regional singular vectors) are formed by 
eddies that have a zonally elongated structure, see Fig. 3.13. These perturbations can be 
represented reasonably well by wave packets that have a large dominant zonal wavelength 
and a small dominant meridional wavelength. 

In Fig. 4.8 we show several evolutions of wave packets, which may be compared to the 
evolution of the regional singular vectors (RSVs) shown in Fig. 3.13. In Figs. 4.8a to 4.8c 
we have set the initial zonal wavenumber equal to 10000 km and the meridional wavenumber 
to 1000 km. The packets are located at three different positions, so that we have one packet 
located at the jet maximum and two located just to the north and south of it. In Fig. 4.8a 
A = 0.1 so that the mean flow is nearly zonal with a very weak jet. The zonal wavenumber m 
is not conserved anymore but changes slowly. The energy of the packet grows by maximally 
5%. In Fig. 4.8b A = 1.0 and in Fig. 4.8c A = 2.5. In these diffluent background flows 
| | < 0 is the dominant term. The energy of the packet grows the first 48 to 72 hours, since 
m < n (see Eq. (4.28)). In the second part, | | > 0 so that the packet looses energy where 
m < n (angle of vector with meridional direction is smaller than 45°) and gains energy where 
m > n (angle of vector with zonal direction is smaller than 45°). At initial time m is very 
small and even decreases and goes through zero during the first 24 hours of the most northern 
path. The prediction of the value of m is incorrect (one can compare this to the turning 
point in a zonal flow where n —> 0), but there all terms in which m appears can be neglected, 
the (temporary) incorrect value of m does not affect the evolution of the group velocity, 
meridional wavenumber, the energy and even its own evolution. Since zonal variations in 
the mean flow are small at the initial position of the packet, the small value of m does 
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Figure 4-8: Wave packets superimposed on Rossby-Haurwitz waves with amplitudes 
equal to 0.1 (a), 1.25 (b), 2.5 (c) and 2.5 (d). The initial zonal and meridional 
wavelengths are equal to about 10000 km and 1000 km, respectively (panels (a), (b) 
and (c)). In panel (d) the initial zonal and meridional wavelengths are 10 times 
smaller. Every 24 hours the location of the packets is marked. 

not directly imply that the WKB approximations fail. After this initial period, the WKB 
equations predict an increase of m and decrease of n. The zonal size of the packet decreases 
and the meridional size increases. This goes together with an increase of the energy. It 
appears that the wave enstrophy is nearly conserved: k2 decreases as a result of a decreasing 
'aspect ratio' (m increases and n decreases), which leads to an increase of E. The energy of 
the northern packet increases more than that of the southern packet. The main difference in 
the mean flow is that the term | j is positive in the former case and negative in the second 
one. Therefore, the zonal wavenumber m of the northern packet increases more slowly (Eq. 
4.19), by which the packet gains more energy because the negative contribution of rn2^ in 
Eq. (4.28) is smaller during a longer time interval. 

In Fig. 4.8c it can be observed that the path of the northern packet deviates from the 
mean flow. This occurs when m becomes of the same order of n so that the second term of 

2mraac+/ 
the meridional group velocity component —k4

9y can not be disregarded in comparison to 
v. However, at that time the size of the packet has become so large compared to deviations 
in the mean flow, that the WKB approximation is not valid anymore. In Fig. 4.8d the 
evolutions of wave packets superimposed on the same mean flow (A = 2.5) are shown but 
with a meridional and zonal wavelength each 10 times smaller. The evolutions of the packets 
are comparable to the ones in Fig. 4.8c. The main difference is that the packets follow 
the mean flow, because of the smaller size of the packets. As can be deduced by looking 
at the group velocity components, only when the total wavenumber k is small the group 
velocity will differ substantially from the background velocity field. However, in this range 
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Figure 4-9: Evolution of the fastest growing RSV of the low-sensitive cluster mean 
LS3. Fields are in streamfunction. The contour interval of the background flow is 
5.9 xlO6 m2 s_1. The contour interval of the RSV is given in each panel. 

the validity of the WKB approximation becomes questionable. 

Low-sensitive background flow 

We will now proceed with more realistic large-scale mean flows. We will first consider the 
low-sensitive cluster mean LS3 (Fig. 5c of chapter 3) and then the high-sensitive cluster mean 
HS1 (Fig. 5e of chapter 3). The cluster means were found by applying a cluster algorithm 
(see Michelangeli 1995 and chapter 3) to a high- and low-sensitivity set, each containing 
1000 flow patterns. The sensitivity is defined again with respect to the initial conditions 
for onset of BL and SZF regimes. The flow of LS3 is fairly zonal (Fig. 4.9), the flow of 
HS1 is characterized by a stronger jet stream upstream of a diffluent flow (Fig. 4.11). For 
both cluster means we have computed regional singular vectors (RSVs) that maximize rms 
error over the Atlantic-European area (10°N - 85°N and 90°W - 60°E, see also Eq. (3.10)). 
The computations are performed with the barotropic model at T42. The cluster mean LS3 
and its fastest growing RSV are shown in Fig. 4.9a. The RSV is located to the south of 
the jet maximum where the shear is largest. The RSV can be represented quite well by a 
wave packet with a small zonal wavenumber and a large meridional wavenumber. During 
the evolution the tilt decreases. The energy of the packet increases by the Reynolds stress 
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mechanism already described above. The sensitivity for BL/SZF onset is low because the 
sensitivity is located here more to the south. Furthermore the perturbation exists of zonally 
instead of meridionally oriented wave trains. 

Results of ray tracing of wave packets superimposed on the flow pattern LS3 are shown 
in Fig. 4.10. Four different initial positions are chosen. The packets have a structure similar 
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Figure 4.10: Development of four wave packets with only different initial position 
superimposed on the low-sensitive cluster mean LS3. The initial zonal wavelength is 
10000 km, the initial meridional wavelength is 1000 km. Every 24 hours the location 
of the packets is marked by a vector and circle. 

to the RSV, a large initial zonal wavelength (10000 km) and a small initial meridional 
wavelength (1000 km). One directly observes that the sensitivity of the flow is not in the 
neighborhood of the jet maximum but southward and northward of it. Near the jet maximum 
wave packets are being advected by the mean flow. The orientation of the packet follows the 
weakly meandering mean flow, so that m and n are not conserved. However, wave enstrophy 
is (nearly) conserved. During the first 48 hours the packet following the most southern ray 
conserves its wave enstrophy. Its tilt changes by an increasing meridional wavelength, which 
results in an increasing energy. The zonal wavelength decreases only after 48 hours. Because 
n continues to decrease, k becomes so small that the group velocity differs from the velocity 
field of the mean flow. By this time, the WKB approximation again looses its validity. Still, 
it predicts rather well that the energy will grow and the ray will bend northward. The 
most northern packet gains energy by tilting in the opposite direction, because the shear is 
opposite. 

High-sensitive background flow 

In Fig. 4.11 the evolution of the fastest growing RSV superimposed on the high-sensitivity 
cluster mean HS1 is shown. The RSV can again be represented quite well by a wave packet 
with a very small zonal wavenumber and a large meridional wavenumber. (Notice that the 
barotropic part of the optimal perturbation (Fig. 4.Id) has a similar elongated structure.) 
The northern part of the RSV has initially much less amplitude but after 72 hours it has about 
the same strength as the southern part. This indicates that wave energy moves northward. 
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Figure 4-11: Evolution of the fastest growing regional SV of the high-sensitive cluster 
mean HSl. Fields are in stream]'unction. The contour interval of the background 
flow is 5.9 xlO6 m2 s'1. The contour interval of the RSV is given in each panel. 

This could be partly due to the mechanism described at the end of the discussion of Fig. 
4.8. 

The WKB results are shown in Fig. 4.12. It appears that the ratio of m and n must 
be very small, otherwise the tilt of the packet will change so fast that when it enters the 
diffluent area it is not able to gain energy anymore. Therefore, the initial zonal wavelength 
is chosen to be 25000 km and the meridional wavelength 1000 km. The packets gain energy 
initially through the shear in the jet stream and after that by the diffluence of the flow. In 
fact, the same mechanisms that are responsible for the energy growth of the packets in Figs. 
4.7 and 4.8 apply here. Due to the shear and the diffluence n decreases, whereas m increases 
in the diffluent area. The WKB approach predicts that the wave energy propagates along a 
ray that bends to the north with respect to the mean flow. This has also been observed in 
Fig. 4.11. However, the WKB approximations exceed their validity range at the end of the 
integration period. 

4.5 Summary and discussion 

In this chapter, we have focused on the evolution of optimal transition perturbations. These 
perturbations optimally trigger a blocking (BL) or strong zonal flow (SZF) regime within 
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Figure Jy.12: Development of four wave packets with only different initial position 
superimposed on the high-sensitive cluster mean HSl. The initial zonal wavelength is 
25000 km, the initial meridional wavelength is 1000 km. Every 24 hours the location 
of the packets is marked by a vector and circle. 

3 days. The computation of the perturbations has been described extensively in chapter 
2 (Oortwijn and Barkmeijer 1995). In chapter 3 (Oortwijn 1998a) we have mainly investi
gated characteristics of sensitive and insensitive reference flows, with sensitivity denned as 
sensitivity to the initial conditions for onset of BL and SZF regimes. Here, we have inves
tigated the development of perturbations superimposed on background flows that possess 
these characteristics. 

First, we have considered the full evolution of a fast growing optimal transition pertur
bation during a sensitive three-day period. This example is illustrative for many evolutions 
of optimal transition perturbations. The evolution is studied using a vertical mode decom
position and a normal mode decomposition of the perturbation. We can identify two phases 
in the evolution of the perturbation. At initial time, the perturbation can be described by a 
small-scale wave train with a strong baroclinic structure. However, its barotropic part has a 
zonally elongated large-scale structure. After 24 hours the barotropic part almost completely 
dominates the pattern. During this first phase, available potential energy is converted to 
kinetic energy. The growth is strongly non-modal: the perturbation is a combination of 
many (amplifying as well as decaying) NMs that point into directions that partially cancel 
each other. Due to different oscillation and amplification properties of the NMs, the growth 
is faster than exponential. After 24 hours, the development of the perturbation is mainly 
barotropic, extracting kinetic energy from the reference flow. During this second phase, 
the growth is still non-modal but not as strong as before. The growth is mainly due to 
amplification of the NMs. 

In the second part of this chapter we have described the barotropic evolution using a WKB 
approximation. This approach is based on the following assumptions: the perturbation can 
be represented in the form of a Rossby wave packet, and a scale separation between the 
perturbation and the background flow can be made. These assumptions are rather strong 
and will not be valid for realistic basic states. In particular, the initial baroclinic development 
of an optimal perturbation depends strongly on the small-scale structure of the background 
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flow. This initial inverse energy cascade can therefore not be described within the context 
of the WKB method. However, the barotropic part of the evolution and the structure of 
the perturbation seem to depend more on the large-scale structure of the background flow. 
As is shown in chapter 3 (Oortwijn 1998a), the sensitivity is higher when the background 
flow has a strong jet stream to the west of a diffluent flow. We have therefore focused on 
the barotropic part of the development. Because of its assumptions, the WKB approach is 
meant as a diagnostic tool to interpret the evolution of perturbations qualitatively. Thus, 
we are able to determine which terms in the equations are important for the development of 
the packets. 

We have considered idealized basic states in order to satisfy the WKB assumptions. It 
appears that the WKB method describes the development of the perturbations reasonably 
well, although the scale separation between the perturbations and the background flow is 
fairly small. First the evolution of a perturbation on a zonal mean flow is described. In 
this case, total wave action of a packet is conserved. The growth of an optimal perturbation 
embedded in a zonal background flow may be interpreted by this conservation law: a wave 
packet that propagates into a stronger zonal flow acquires a larger intrinsic frequency and 
therefore gains energy. However, sensitive periods with respect to BL onset are essentially 
non-zonal and cannot be interpreted therefore by conservation of total wave action. Under 
certain conditions, conservation of total wave enstrophy may be derived for wave packets 
embedded in a non-zonal background flow: a growing disturbance modifies its shape such 
that its total wavenumber decreases. The evolution of the perturbations may be understood 
partly by this concept. However, when the scale of a packet becomes in the order of variations 
in the mean flow, total wave enstrophy will not be conserved anymore. We have focused on 
the evolution of zonally elongated wave packets located initially in or near the jet stream that 
propagate into a diffluent area. For these packets wave enstrophy is not conserved anymore 
in the latter part of the integration when the meridional wavenumber becomes of the order 
of the meridional variations in the background flow. In this limit, the WKB approach is 
not valid anymore, although it still predicts rather well that the energy will grow and that 
the packet propagates along a ray that bends northward with respect to the background 
flow. When variations in the mean flow appear on smaller scales, like for daily flow patterns, 
conservation of total wave enstrophy will not apply anymore. However, the evolution of the 
barotropic mode of the considered fast growing perturbation on an unsmoothed background 
flow, indicates that the mechanisms we have studied with the WKB approach still play an 
important role in these more realistic situations. 

A Vertical modes of the T21QG model 

Vertical modes can be found when horizontal and vertical coordinates are separated. For
mally, the streamfunction V and planetary vorticity / can be expanded by summing over 
vertical modes (Flierl 1978; Neven 1993; Ambaum 1997), 

00 

1>(\,4>,p,t) = £ Gm(p)i>m{\,ct>,t), (4.35) 
m=0 
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f(<t>) = £ Gm(p)U<P). (4-36) 
m=0 

When the vertical modes Gm(p) satisfy the Sturm-Liouville equation 

f^i)dm-Xmdm=0 (437) 

with boundary conditions 

dGm\ fdGm> = 0 > ( 4 3 g ) 

dp I \ dp , 
y ' P=PH \ * / p=Pl 

then the quasigeostrophic potential vorticity 

0 / 1 3 
* = W + / + rf£^J* (4.39) 

can be written as 
oo 

q{K<t>,p,t) = £ Gm{p)qm{\,ct>,t), (4.40) 
m=0 

with 
?m(A, <t>, t) = V2i>m{\, <j>, t) + }m{(j>) + Xmj>m{\ <t>, *)• (4.41) 

The eigenfunctions Gm(p) can be chosen such that they form an orthonormal system with 
respect to the inner product 

Ph 
— Fh Gm(p)Gn(p)dp = 6mn. (4.42) 
- Pi hi 

The imposed boundary conditions (Eq. (4.38)) imply that the vertical velocity on the bottom 
of the atmosphere {p = p{) and at the top of the atmosphere (p = ph) is equal to zero, i.e. 
the stratosphere acts as a rigid lid over the troposphere. The expression for the coefficient 
q~m (Eq. (4.41)), which is associated with the m'th vertical mode, is such that it depends 
only on the m'th streamfunction coefficient ipm. We will use this property in the derivation 
of the vertical modes of the T21QG model. 

The T21QG model integrates prognostic equations for quasigeostrophic potential vortic
ity q at 200, 500, and 800 hPa (levels 1,2 and 3 respectively). The quasigeostrophic potential 
vorticity is related to the streamfunction as 

<?i = v2v>i + /-.Rr2W'i-v*). 
q2 = v2ife + / + flr2M-V*)--R^2W'2-iM. (4-43) 

93 = VVs + / (l + J " j + ̂ 2(V>2 - *M-

Here, / is the planetary vorticity, Ri (= 700 km) and R2 (= 450 km) are Rossby radii of 
deformation, h is the orographic height and HQ (= 9 km) is a scale height. (In the model, 
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lengths are expressed in units of the radius of the earth R = 6.37 x 106m.) The discretization 
into three levels implies in fact that the streamfunction (and similarly the quasigeostrophic 
potential vorticity) is written as a sum of contributions of the three levels, 

rl> = GiVi + G2V2 + G3V>3, (4-44) 

where the vertical modes have the structure as given in Fig. 4.13a. We can denote these 
modes by 

G2 = 1 , G3= 0 . (4.45) 

In order to find the vertical coefficients q~m, we need to find a linear operator A m n that 
transforms 

3 

(4.46) 

(4-47) 

such that the expression for qm-i can be written as in Eq. (4.41). First, we rewrite Eq. 
(4.43) as 

qm = V2V>ra + fm + Bmnipn, m= 1,2,3 (4.48) 

where 

( — R~2 R~2 0 \ 

RT2 - ( i?r 2 + JR2"
2) R^2 (4.49) 

0 R^2 -R^2 J 

Substitution of Eq. (4.41) in Eq. (4.47) and using Eq. (4.46) yields an eigenvalue equation 

VmBT = XmVm, m = 1,2,3. (4.50) 
where the left eigenvector Vm is equal to the m'th row of Amn. The solution of the eigenvalue 
problem leads to the following relations between the streamfunction at model levels and the 
streamfunction associated with the vertical modes, 

i>BAR = i>o = 0.577 (V>i + V2 + V>s), (4.51) 
IPBCI = V̂ i =-0.799 Vi + 0.254 V2 + 0.545 Vs, (4.52) 
i>BC2 = V>2 = 0.168 ?/>! - 0.776 V2 + 0.608 $,. (4.53) 

The corresponding vertical modes with eigenvalues Xo = 0, Xi = —109 and \i = —465 are 
equal to 

/ -0 .799 \ / 0.168 \ 
Gx = 0.254 , G2 = -0 .776 , (4.54) 

I 0.545 J \ 0.608 / 
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such that 
ip = G0ip0 + G1V1 + G2ip2- (4.55) 

The vertical structure of the modes is shown in Fig. 4.13b. We will call the streamfunction 
associated with the vertical mode with m = 0 the barotropic mode tpBAR because the vertical 
structure is constant at all model levels. The vertical structures associated with the so-
called first and second baroclinic modes tpBci and VBC2 change their sign once and twice, 
respectively. 

The vertical modes derived above correspond to a discretized version of the Sturm-
Liouville equation (Eq. (4.37)). The Sturm-Liouville equation reduces to an eigenvalue 
equation in which the vertical modes Gm are eigenfunctions of B. The orthornormalization 
property (4.42) reduces to a vector product of vertical modes 

^ m ' ^n — On (4.56) 
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Figure J^.13: (a) Vertical modes associated with the three-level model and (b) the 
vertical modes that are associated with a discretized version of the Sturm-Liouville 
equation (Eq. (4-37)). 
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B Derivation of the KE-equation 

We will derive the KE-equation (Eq. (4.26)) in general orthogonal coordinates. The lin
earised barotropic vorticity equation can be written as 

^ + v - V C ' + v '-V(C + / ) = 0. (4.57) 

Furthermore, we use the following expressions 

k = - V0, and thus V x k = 0, (4.58) 

V>' = a0e*, (4.59) 

v' = e3 x W ' . (4.60) 

The gradient of V' is written 

e 

It follows that the perturbation relative vorticity is given by 

C = v-w' = 
_ o a. 2i i« ( V # ) 2 w i _ 2 „ n 

= V W e +— (Vo0- V0)e < - a0 , / e • + - a o V 2 0e ' 

~ -k2a0e$ + i { 2 ( k - V a o ) e ^ + a 0 V - k e ^ } , (4.62) 

when terms of 0(e2) are omitted. To 0(1) we now find for Eq. (4.57): 

iu)k?aoe'T - ik2a0V • ke^ + ia0(e3 x k) • V(C + f)e* — 0. (4.63) 

So that _ 
, _ , ( e 3 x V « + / ) ) - k 

u = k • v + K—— , (4.64) 

_du, _ e 3 x V ( C + / ) 2k(e 3xV(C + / ) ) - k 
C g - 9 i f c - V + jfc* fc5 > (4-65) 

where e3 is the local vertical unit vector. 
To 0(e) Eq. (4.57) yields the transport equation (see Eq. (4.21)): 

- ( ^ + v • V)fc2a0 + (u - k • v) [2(k • V)a0 + a0V • k] 

+ ( e 3 x Vao)-V(C + / ) = 0 . (4.66) 

We will now have to carry out some manipulations with the equations. Combining Eqs (4.64) 
and (4.65) yields 

fc2cg = k2v + e3 x V(C + / ) - 2(w - k • v)k (4.67) 
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Using the rules for vector operations, we get 

V-(fc2cg) = v-Vfc2 + fc2V-v + V(C + / ) - V x e 3 - e 3 - V x V(C + / ) 
-2(w - k • v)V • k - 2k • V(w - k • v) 

= v - V f c 2 - 2 ( w - k - v ) V - k - 2 k - V ( o ; - k - v ) , (4.68) 

because the mean flow is non-divergent and the rotation of the local vertical unit vector and 
the rotation of a gradient are zero. Next, we use that 

-*•*»- -*•*(-£)-• !-£• 
2k -V(k -v ) = 2k- [ (k-V)v + ( v -V)k + k x ( V x v ) + v x ( V x k ) ] 

= 2k • (k • V)v + 2k • (v • V)k. (4.70) 

With 
v • Vk2 = 2v • (k • V)k - 2v • (V x k) x k = 2v • (k • V)k (4.71) 

Eq. (4.70) can be rewritten 

2k • V(k • v) = 2k • (k • V)v + 2k • (v • V)k - 2v • (k • V)k + v • Vk2 (4.72) 

Now, combining Eqs (4.68), (4.69) and (4.72) we find 

! _ , , , , (d \ 2 . \dk2 

- ( W - k . V ) V . k = - V . ( ^ c g ) ^ - + V . V j ^ + - -

- k • (k • V)v - k • (v • V)k + v • (k • V)k. (4.73) 

Rewriting of the transport equation (Eq. (4.66)) leads to 

— + v • V J k2a0 - (w - k • v) [2(k • V)a0 + a0V • k] 

+ [e3x V(C + /)]-Va0 

+ [k2v + e3 x V(C + / ) - 2(<j - k • v)k] • Va0 - a0(w - k • v)V • k 

2da0 ( L . - . j 
k2-£ + a0 l-+v -V } k2 - a0(u -k-v)V -k = 0, (4.74) 

where is used Eq. (4.67). Finally, substitution of Eq. (4.73) in Eq.(4.74) yields 

, 9 dan an dk k an _ 
K , + TT - ;—I—TT- v • cB 

-a0 [k • (k • V)v + k • (v • V)k - v • (k • V)k] = 0. (4.75) 
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On a plane, this results in the following kinetic energy equation (after using the wave packet 
structure (Eq. (4.22)) and multiplying by \a0\) 

d E r-TT 
|Oo| 

/ 2 2 \ ^ ̂  I v"" v" 

dx 
du dv 
dy dx 

(4.76) 

In order to transform the kinetic energy equation to spherical coordinates we use generalized 
expressions for the vector operators as given in Appendix A-3 of Haltiner and Williams 
(1980). Local Cartesian coordinates will be defined by 

x = (i?cos0)A, y = Rcj), 
d i d d__}_d_ 
dx Rcos(j>dX' dy Rd(j>' 

where R denotes the radius of the earth, R = 6.37 x 106m. Hence 

dm dn tan <j> 
dy dx R 

The derivatives of the unit vectors are given by 

de-i 

(4.77) 

(4.78) 

d\ 
de2 

~d\ 
ctei 

de2 

= e 2 s i n <j>, 

= —eisinc 

= o, 

= 0. (4.79) 

Using these equations we find extra metric terms in the kinetic energy density equation, 

dE ™ 
lao| 

,du 
(m -n)— + mn[ — + 

du dv 

dx 

. , ,.iJtan<£ 

dy dx 
Mtan</> 

+ mn- R 
(4.80) 
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Samenvatting 

Voorspelbaarheid van weerregime transities 

Weersverwachtingen worden al sinds 1950 gemaakt met behulp van computers. Hiervoor wor-
den steeds snellere en duurdere computers gebruikt. De verbetering van de weersverwachting 
houdt echter geen gelijke tred met de investeringen in computers en computermodellen die 
het weer simuleren. De modellen geven nog al eens een verkeerde verwachting. Waarom 
is het weer eigenlijk zo moeilijk te voorspellen? Er zijn perioden dat weersverwachtingen 
slechts voor een of enkele dagen betrouwbaar zijn, terwijl in andere perioden het weer meer 
dan een week goed voorspelbaar is. Het ene weertype blijkt beter voorspelbaar te zijn dan 
het andere weertype. Soms houdt een weertype erg lang stand. In zo'n geval is de zomer 
bijvoorbeeld erg mooi of is de winter zo langdurig koud dat er een elfstedentocht geschaatst 
kan worden. Echter in soortgelijke situaties kan het weer ook heel snel omslaan naar een 
ander weertype. Waarom is het weer zo variabel en hoe komt het dat een omslag zo snel kan 
optreden? 

De voorafgaande vragen hebben erg veel te maken met het onderwerp dat in dit proef-
schrift bestudeerd wordt. Ik zal eerst op deze vragen ingaan en proberen een beeld te 
schetsen van het weer, of beter, van de atmosferische circulatie, en van de problemen bij de 
voorspelling ervan. Tot slot zal het onderzoek dat beschreven is in dit proefschrift samengevat 
worden. 

De tijdsevolutie van de atmosfeer is erg complex. Daarvoor is een aantal redenen aan te 
wijzen. Twee daarvan zal ik hier bespreken. Als eerste is de atmosfeer een zeer groot systeem. 
Veel processen spelen zich gelijktijdig af op verschillende plaatsen in de atmosfeer en met 
verschillende intensiteit en omvang. Het ene proces, zoals bijvoorbeeld de ontwikkeling van 
een krachtig hogedrukgebied, bepaalt het weer voor een lange periode en een groot gebied, 
terwijl een ander proces, zoals bijvoorbeeld een onweersbui, slechts een korte duur heeft en 
erg lokaal is. Een tweede belangrijke reden is dat de atmosfeer een niet-lineair systeem is. Dit 
heeft belangrijke consequenties voor de voorspelbaarheid. Hier zal ik later op terug komen. 
Eerst zal ik proberen duidelijk te maken wat lineair en niet-lineair precies betekenen. 

Een verband tussen twee variabelen is lineair indien de verandering van de ene variabele 
een evenredige verandering geeft in de andere variabele. Zo zal een auto die twee keer zo hard 
rijdt als een andere auto, in een gegeven tijdsinterval, een twee keer zo grote afstand afleggen. 
Als in een elektrisch circuit de spanning verdubbeld wordt, zal de elektrische stroom ook in 
sterkte verdubbelen. De stijging van de luchtdruk leidt tot een evenredige stijging van de 
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kwikkolom in een kwikbarometer (iedere stijging van 13.6 mbar geeft een stijging van 1 cm 
kwik). 

De gevolgen van een verandering in een variabele (zoals de snelheid, spanning en druk 
in bovenstaande voorbeelden) zijn in een lineair systeem meestal duidelijk. Niet-lineaire 
verbanden, waarin een verandering in het algemeen geen evenredige verandering tot gevolg 
heeft, zijn vaak veel complexer. Dat de natuur of andere systemen eigenlijk zelden (zuiver) 
lineair reageren mag blijken uit de volgende voorbeelden. 

Als een auto harder gaat rijden, zal deze door een onevenredige toename in de luchtwrij-
ving minder zuinig rijden. Als iemand twee keer zo lang in de zon blijft liggen, wordt hij of 
zij niet twee keer zo bruin (wellicht wel twee maal zo rood). In de supermarkt is een produkt 
in een grote verpakking meestal voordeliger dan dezelfde hoeveelheid bestaande uit kleinere 
verpakkingen. Verdubbeling van de dosis medicijnen leidt zelden tot een verdubbeling in 
de snelheid van het genezingsproces. Integendeel, dit kan de gezondheid ernstige schade 
toebrengen. 

Bij niet-lineaire processen hangt de tijdsevolutie af van niet-lineaire verbanden. Een 
dergelijk systeem wordt een niet-lineair dynamisch systeem genoemd. Een goed voorbeeld 
hiervan is de beweging van de beurskoersen. Wanneer de koersen een stijgende lijn vertonen 
leidt dit vaak tot een extra stijging van de koersen. Het gevoel dat het goed gaat overheerst, 
meer mensen stappen in (want ze willen de boot niet missen), met als gevolg dat de beurs
koersen verder stijgen. Andersom geldt dit ook. Als het minder goed gaat besluiten mensen 
te verkopen, de koers daalt, waardoor nog meer mensen gaan verkopen. In beide gevallen is er 
sprake van een zogenaamde positieve terugkoppeling (alhoewel het effect in het laatste geval 
negatief is). Een dergelijk proces zal door een positieve terugkoppeling zichzelf versterken. 

Mathematisch gezien betekent het niet-lineair zijn dat er termen in de vergelijkingen voor-
komen die bijvoorbeeld kwadratisch zijn. Dit niet-lineair zijn betekent dat variabelen met 
elkaar vermenigvuldigd worden of wel gekoppeld zijn. Een verdubbeling van de amplitude 
van een bepaalde variabele hoeft dan niet te leiden tot een verdubbeling in de intensiteit van 
de respons. Deze kan veel sterker of zwakker zijn. Dit maakt het systeem complexer: de 
invloed van een verandering in een variabele op andere variabelen is niet direct in te zien. 
Hier komt de voorspelbaarheid om de hoek kijken. 

De atmosferische circulatie is ook een niet-lineair dynamisch systeem. In feite is de 
beweging van lucht niets anders dan een grote verzameling botsende moleculen die bewegen 
in het zwaartekrachtsveld van de aarde. De beweging van ieder molecuul wordt beschreven 
door de wetten van Newton. Door de krachten te beschouwen die op een luchtpakketje (een 
klein volume lucht met nog steeds enorm veel moleculen) werken, kunnen de zogenaamde 
Navier-Stokes-vergelijkingen afgeleid worden. Deze beschrijven de beweging van lucht (en 
in het algemeen van vloeistoffen), waarbij geen rekening gehouden hoeft te worden met de 
beweging van individuele moleculen. De Navier-Stokes-vergelijkingen zijn als het ware de 
bewegingsvergelijkingen van Newton voor een continuum. Ze bevatten niet-lineaire termen. 

De wetten van Newton en de Navier-Stokes-vergelijkingen zijn deterministisch. Dit houdt 
in dat, indien de snelheid en positie van ieder molecuul in de lucht op een begintijdstip bekend 
zouden zijn, in principe alle volgende botsingen uitgerekend kunnen worden. Met andere 
woorden, als de begintoestand van een deterministisch systeem bekend is, is de verdere 
evolutie volledig bepaald. Zelfs tot het einde van de vorige eeuw dacht men daarom dat 
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men slechts nauwkeuriger hoefde te rekenen om een betere voorspelling te maken. Echter, 
het gedrag van niet-lineaire systemen is in veel gevallen chaotisch. Deze systemen worden 
gekenmerkt door een grote gevoeligheid voor kleine veranderingen in de begintoestand. Dit 
betekent dat een kleine fout in de schatting van de begintoestand steeds sterker doorwerkt in 
de tijd. Dit heeft zelfs als gevolg dat na een eindige tijd het gedrag volledig onvoorspelbaar 
wordt. Deze eindige tijd wordt de voorspelbaarheidshorizon genoemd: voorbij deze tijd 
kunnen we niet voorspellen. De voorspelbaarheidshorizon van de atmosferische circulatie 
wordt geschat op 1 a 2 weken. We kunnen dus nog zoveel investeren in computers en com-
putermodellen, we zullen nooit deterministische voorspellingen kunnen maken voor langer 
dan 2 weken vooruit. * 

Chaos betekent niet dat het systeem zich willekeurig ontwikkelt. De atmosfeer zal zich 
namelijk ontwikkelen volgens de deterministische Navier-Stokes-vergelijkingen. We spreken 
dan ook van deterministische chaos. Naast een grillig karakter vertoont het weer ook duidelijk 
een soort orde. Niet alle weersituaties zullen zich voordoen en de situaties die optreden 
gebeuren in het algemeen in dezelfde vorm. Zo zal in Nederland nooit een temperatuur van 
60°C bereikt worden, zullen we nooit kunnen schaatsen in de zomer, waait de wind rond een 
lagedrukgebied altijd tegen de klok in, en gaat mooi en standvastig weer gepaard met een 
krachtig hogedrukgebied. Het weer heeft dus bepaalde voorkeurspatronen die steeds weer 
opnieuw ontstaan. 

De belangrijkste bronnen die het weer in beweging brengen zijn de temperatuurverschillen 
tussen de polen en evenaar, door een ongelijke instraling van de zon, en de draaiing van de 
aarde. Hierdoor bevindt er zich op het noordelijk halfrond, op breedten tussen 40° en 70°, 
hoog in de atmosfeer een krachtige westenwind (het sterkst op zo'n 10 kilometer hoogte) die 
geheel rond de aarde waait. Deze stroming wordt de straalstroom genoemd. De straalstroom 
waait niet precies langs een breedtegraad maar vertoont slingeringen. Door de aanwezigheid 
van bergen als de Himalayas en de Rocky Mountains en verschillen in de warmtecapaciteit 
tussen land en oceanen, is de stroming ten oosten van deze bergketens sterker dan op andere 
plaatsen. Op deze plaatsen ontstaan depressies (lagedrukgebieden) vanwege de grote snel-
heidsverschillen die zich in de straalstroom voordoen (de warme Golfstroom is echter ook een 
belangrijke factor). Dit proces is te vergelijken met de waterstraal uit een kraan. Wanneer 
men de kraan niet te ver opendraait, is de straal erg glad en kan men er doorheen kijken. 
Wordt de kraan vervolgens verder opengedraaid dan wordt de straal veel chaotischer, tur-
bulenter en ondoorzichtig. Dit komt door de snelheidsverschillen in de stroming waardoor 
allerlei storingen ontstaan. Storingen in de straalstroom kunnen zich onder gunstige om-
standigheden ontwikkelen tot depressies. Een depressie mengt warme lucht uit het zuiden 
met koude lucht uit het noorden zodat temperatuurverschillen tussen de pool en evenaar 
genivelleerd worden. De grootte van een depressie, hetgeen de synoptische schaal genoemd 
wordt, is in de orde van zo'n duizend kilometer. De levensduur van een depressie is ongeveer 

*Dit betekent niet dat seizoens- of klimaatverwachtingen zinloos zijn. Het weer hangt namelijk ook af 
van de stroming en temperatuur van de oceanen. De evolutie van de oceanen, die veel langzamer varieren 
dan de atmosfeer, kan voor een veel langere termijn voorspeld worden. Een voorbeeld is het fenomeen El 
Nino: de hogere oppervlaktetemperaturen van het zeewater aan de oostkant van de tropische Pacific hebben 
een maandenlange invloed op bijna de gehele atmosferische circulatie. Ook de invloed van broeikasgassen 
op het klimaat heeft voorspelbare componenten. 
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5 dagen. 
Depressies die het weer in Europa bei'nvloeden ontstaan meestal ergens boven het westen 

van de Atlantische oceaan. Door de straalstroom worden ze meegevoerd in de richting van 
ons land. Soms bevindt er zich echter een sterk hogedrukgebied boven Europa en wordt de 
straalstroom afgebogen naar het noorden of zuiden of splitst hij zich zelfs in een noordelijke 
en zuidelijke tak. Depressies kunnen ons land dan niet bereiken. Zo'n situatie wordt een 
blokkade genoemd, omdat de oostwaartse beweging geblokkeerd is. Zo'n blokkade kan zich 
langere tijd handhaven, soms wel een aantal weken tot een of enkele maanden, en doet 
zich herhaaldelijk voor. Een blokkade is een voorkeurspatroon van het weer op een langere 
tijdschaal dan die van depressies. In het gebied van een blokkade is het weer doorgaans erg 
mooi en droog, in de zomer warm en in de winter juist koud. In gebieden ten noorden of ten 
zuiden van een blokkade is het weer veel natter met meer wind, omdat depressies nu hier 
overtrekken. 

Een blokkade is een voorbeeld van een weerregime. De term weerregime is gei'ntroduceerd 
door Reinhold en Pierrehumbert (1982). Zij veronderstelden dat de atmosfeer een aantal 
voorkeurspatronen heeft die een soort evenwichtstoestanden zijn tussen processen op een 
zeer grote ruimtelijke schaal (met afmetingen van vele duizenden tot tienduizenden kilo
meter) en processen op een synoptische schaal. Doordat deze processen elkaar wederzijds 
positief bei'nvloeden kan een patroon ontstaan dat lange tijd stand houdt. Zo'n voorkeurspa
troon wordt een weerregime genoemd. De atmosferische circulatie zal zich afwisselend in 
verschillende weerregimes bevinden, met tussenliggende perioden waarin een omslag (tran-
sitie) plaatsvindt. Het noordoostelijk deel van de Atlantische oceaan en het noordoostelijk 
deel van de Pacific zijn voorkeursgebieden waar deze regimes ontstaan. Dit heeft te maken 
met de ligging van de bergketens en de sterkte van de straalstroom ten westen van deze 
gebieden. 

Een tweede regime dat het weer boven West-Europa in grote mate bei'nvloedt, is een 
sterk zonale stroming regime. In dit geval vertoont de straalstroom bijna geen slingeringen 
en loopt de sterke oostwaartse stroming door tot boven West-Europa. Depressies zullen dan 
over ons land trekken. Het weer is erg wisselvallig en nat. Dit kan een lange tijd aanhouden. 
De winters van 1994 en 1995 zijn voorbeelden waarin het regime van sterk zonale stroming 
zich lange tijd manifesteerde. Beide keren leidde de overvloedige hoeveelheid regen bijna tot 
een watersnoodramp. 

Hoewel een weerregime een lange periode kan standhouden, is de duur niet erg goed te 
voorspellen. Dit komt doordat de instandhouding van de weerregimes afhankelijk is van 
depressies die slechts zo'n 5 dagen leven. Het tijdstip waarop de atmosferische circulatie 
een transitie maakt naar een ander regime blijkt erg moeilijk voorspelbaar te zijn. Deze 
omslagpunten zijn juist erg interessant omdat het weer daarna een totaal ander karakter kan 
hebben. Dit is te vergelijken met de omslagpunten in de beurskoersen. Het omslagpunt van 
een positieve-stemming regime naar een negatieve-stemming regime is zowel erg interessant 
als lastig te voorspellen. 

In dit proefschrift zijn de transities tussen een blokkade regime en een sterk zonale stro
ming regime bestudeerd. De studie is gedaan door de atmosferische circulatie te simuleren 
met behulp van een computermodel. Dit model heeft drie lagen op verschillende hoogten 
(op ongeveer 2, 5 en 12 km) in de atmosfeer. Iedere laag bestaat uit een rooster van punten 
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(64 x 32) dat horizontaal verdeeld is. De horizontale afstand tussen twee roosterpunten is 
zo'n 500 km. Dit betekent dat alleen de grootschalige stromingen bestudeerd kunnen wor-
den. In ieder roosterpunt zijn variabelen als de luchtdruk, snelheid en temperatuur bekend. 
Door middel van vergelijkingen die afgeleid zijn uit de Navier-Stokes-vergelijkingen kan de 
tijdsevolutie van de atmosfeer bepaald worden. Door daarnaast gebruik te maken van ge-
avanceerde wiskundige technieken, kan de gevoeligheid in de begintoestand voor het ontstaan 
van regimes berekend worden. Zo ben ik in staat om transities tussen een geblokkeerd regime 
en een sterk zonale stroming zeer effectief te bestuderen. Deze studie is beschreven in de 
hoofdstukken van het proefschrift. In de volgende alineas zal de inhoud van deze hoofd-
stukken worden samengevat. 

Hoofdstuk 1 is een inleidend hoofdstuk. Als eerste wordt een kort overzicht gegeven 
van de theorie van weerregimes. Daarna wordt met een eenvoudig voorbeeld aangetoond 
dat kleine verschillen in de begintoestand tussen twee stromingen (bijvoorbeeld een andere 
windsnelheid of temperatuur in een aantal roosterpunten van het model) zeer snel kunnen 
toenemen. Ook wordt uitgelegd hoe een berekening gemaakt kan worden van de maximale 
verschillen na een bepaalde (niet al te lange) periode. Aan de hand van een relatief zeer 
eenvoudig niet-lineair dynamisch systeem, het zogenaamde Lorenz model, laat ik zien dat 
de gevoeligheid in de begintoestand voor regime transities erg groot kan zijn. Dit model ligt 
ten grondslag aan de beroemde metafoor van de vlinder van Lorenz: het fladderen van een 
vlinder in Noord-Amerika kan een aantal dagen later een storm in Europa veroorzaken of te 
niet doen. Als laatste wordt een beschrijving gegeven van het computermodel dat gebruikt 
is om experimenten uit te voeren. 

In hoofdstuk 2 wordt de methode beschreven waarmee optimale transitie-perturbaties 
berekend kunnen worden. Deze storingen zullen, indien ze bij de begintoestand van een 
atmosferische stroming opgeteld worden, na een aantal dagen de maximale verandering (ten 
opzichte van de geevolueerde toestand zonder deze perturbaties) in het weerregime teweeg-
brengen. De maximale verandering die in een periode bereikt kan worden is een maat voor 
de gevoeligheid in de begintoestand in deze periode. Het blijkt dat de gevoeligheid sterk 
van dag tot dag fluctueert. De wiskundige methoden die gebruikt worden zijn slechts geldig 
voor niet al te grote perturbaties. In dat geval zijn de veranderingen in de processen (bij 
benadering) lineair. Als we een periode die langer duurt dan 3 dagen bestuderen, worden de 
perturbaties echter te groot. De groei wordt dan ook bepaald door niet-lineaire termen in de 
vergelijkingen. Daardoor worden de berekeningen veel complexer. Door de lineaire methode 
herhaaldelijk toe te passen is het toch mogelijk om perioden van zo'n 6 dagen te bestuderen. 
Het blijkt dan dat er voor bijna ieder weertype hele kleine perturbaties in de begintoestand 
gevonden kunnen worden die ervoor zorgen dat het weer na 6 dagen compleet is omgeslagen. 
Met andere woorden, de atmosferische circulatie kan erg gevoelig zijn voor kleine storingen. 
Deze storingen kunnen binnen een korte termijn het weer sterk be'fnvloeden. 

In hoofdstuk 3 is een groot experiment beschreven. Uit een grote set van perioden zijn 
de situaties met de hoogste en laagste gevoeligheid in de begintoestand voor het ontstaan 
van blokkades en sterk zonale stroming regimes geanalyseerd. Het blijkt, onder andere, dat 
stromingen met een hoge gevoeligheid een sterke straalstroom ten westen van een diffluente 
stroming (dit is een uitwaaierende stroming) vertonen. Laag gevoelige stromingen hebben 
een zwakkere en meer zonale stroming. Ook wordt onderzocht waarom deze karakteristieken 
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de gevoeligheid beinvloeden. 
Als laatste wordt in hoofdstuk 4 de ontwikkeling bestudeerd van optimale transitie-

perturbaties. Onderzocht wordt hoe het komt dat deze zo snel kunnen groeien. Het blijkt 
dat er twee fasen onderscheiden kunnen worden. Tijdens de eerste fase groeit de perturbatie 
door middel van zogenaamde barotrope en barokliene mechanismen. Tijdens de tweede fase 
domineren barotrope mechanismen. Op verschillende manieren worden deze mechanismen 
bestudeerd. 
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