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J^teuL en "f 

De aanhoudende remming van de intercellulaire communicatie via gap junctions 
(GJIC) door cytokinen als TNFa en IFN-7 wijst erop dat deze faktoren een 
belangrijke rol kunnen spelen in de atherogenese. 
Dit proefschrift 

2. Macrofagen kunnen GJIC tussen nabijgelegen gladde spiercellen moduleren. 
Dit proefschrift 

3. De door TNFa gei'nduceerde remming van GJIC tussen gladde spiercellen wordt 
gemedieerd door superoxide radicalen. 
Dit proefschrift 

4. Er bestaat geen simpel, rechtlijnig verband tussen de remming van GJIC en de 
stimulatie van celproliferatie door endogene faktoren. 
Rudkin et al, 1996, J. Cell. Physiol. 168:433-441. 
Madhukar et al., 1989, Carcinogenesis 10:13-20. 
Dit proefschrift 

5. Conclusies die verbonden worden aan het onderzoek van Parkes et al. (1991) en 
Marin et al. (1993) betreffende myc genexpressie in gezond en atherosclerotisch 
vaatweefsel zijn niet valide, daar de juiste controles ontbreken. 
Parkes et al., 1991, Am. J. Pathol. 138:765-775. 
Marin et al., 1993, J. Vase. Surg. 18:170-177. 

De termen 'Functional Foods' en 'Health Foods' zijn slecht gekozen, daar zij 
eventuele schadelijke effekten van de betreffende produkten op de gezondheid aan 
het oog onttrekken. 

7. De term 'aderverkalking' dient vervangen te worden door de term 'slagadervervet-
ting'. 

De ontwikkeling van nieuwe antibiotica en vaccins verdient een hogere prioriteit 
dan tot nu toe aan dit onderzoek toegekend is. 



9. De gevaarlijkste hartziekten zijn nog steeds: afgunst, haat en hebzucht. 
Pearl S. Buck 

10. Het opnemen van vrouwen in de Commissie-Verruijt van de Koninklijke Neder-
landse Akademie van Wetenschappen had wellicht meer kunnen bijdragen aan een 
vrouwvriendelijker imago van de beta-vakken dan de door deze Commissie gedane 
aanbevelingen hieromtrent. 

11. Goede en slechte eigenschappen zijn ook op (sub)cellulair niveau vaak nauw met 
elkaar verbonden. 

12. Geheel onverwacht bleek bier structuur aan dit proefschrift te kunnen geven. 

•S>telUngen behorende bii het proefichrift: 

rr/odulation of qap Junctional intercellular communication between human imooth muict 

celli bu leuhocute-derii/ea growth factors and cutokines in relation to atheroqenesis 

^rnne lllensinh 

[AJaqeninqen, 26 novemoer 1997 



Chapter 1 
General Introduction 

Introduction 
A variety of food components and environmental factors contribute to the 

development of the widespread arterial disease named atherosclerosis. The present line of 
research was established in order to explore mechanisms and processes in the vascular 
wall that might be vulnerable to potentially toxic contaminants to which the human 
population is exposed. Previous work broadened the knowledge on the parallelism of 
mechanisms in carcinogenesis and atherogenesis (1). Emphasis was layed on the role of 
gap junctional intercellular communication (GJIC) in the pathogenesis of atherosclerosis. 
In the present study, the involvement of GJIC in this disease process was further 
explored. Special attention was given to the effects of endogenous factors on GJIC 
between vascular cells and to interactions between different cell types of the artery wall. 
The knowledge obtained in this study may serve as a basis for subsequent studies on the 
role of toxic chemicals in atherogenesis and other inflammatory diseases. 

Atherosclerosis 
Atherosclerosis is an arterial disease with a slow progression. The narrowing of 

the lumen of these blood vessels gives rise to myocardial and cerebral infarctions, which 
are among the major causes of morbidity and mortality in Western societies. Multiple risk 
factors have been described for the development and acceleration of atherosclerosis. 
Genetic, environmental and life-style factors may contribute to the pathogenic process. 
Cigarette smoke, hypertension, hyperlipidaemia, obesity, diabetes mellitus and physical 
inactivity are for instance all well known factors with atherogenic potential. 

Atherosclerotic lesions - their morphology 
The arterial vessel wall is build up of three layers: intima, media and adventitia. 

Endothelial cells separate other elements of the innermost layer of the artery wall, the 
intima, from the blood. Smooth muscle cells (SMC), scattered macrophages and extracel
lular matrix components are part of the healthy intima as well (2). The media consists 
mainly of SMC and connective tissue. The outermost layer of the artery wall, the 
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adventitia, is composed of fibroblasts and connective tissue and contains small blood 
vessels, lymph vessels and nerves. In the intima, the process of atherogenesis originates. 

Atherosclerosis is characterized by the occurrence of focal thickenings of the 
intimal layer in the artery wall. In the course of the disease process, blood monocytes and 
T lymphocytes infiltrate into the intima (3-6) after which monocytes differentiate into 
macrophages. A substantial number of intimal macrophages take up lipid droplets. The 
uptake of cholesterol(esters) causes these macrophages and some SMC to transform into 
foam cells (7). Lesion progression is also accompanied by the indolent proliferation of 
SMC and macrophages (8-12), changes in extracellular matrix synthesis and accumulation 
of intra- and extracellular lipids (7,13). As a result of these processes, atherosclerotic 
plaques increase in size and may impede the flow of blood and occlude the arteries 
concerned. 

Atherosclerotic lesions can be classified into several morphologically different 
types (7,14). Early lesions such as fatty streaks (aggregations of macrophage-derived 
foam cells and T lymphocytes) and more advanced lesions like fibrous plaques (a dense 
cap of connective tissue with embedded SMC, macrophages, foam cells and T lymphocy
tes overlays a core of lipid, necrotic debris and calcium) have been described. It is 
thought that early lesions proceed to more advanced lesions in the course of time, 
possibly under the influence of an additional stimulus (7,15). 

Pathophysiological aspects of atherosclerosis 
Atherogenesis is a pathological process with great complexity. As a result, a 

number of hypotheses concerning its etiology arose. Lipids, especially low density 
lipoprotein (LDL) (16,17), blue-green algae (18), hypoxia (19) and viruses (20-23) have 
been suggested to be possible etiologic factors in the development of atherosclerosis. 
Furthermore, immune and inflammatory mechanisms seem to be potent modulators of the 
atherosclerotic process (24-26). These hypotheses however, are not by definition mutually 
exclusive, since they may reflect different aspects of lesion formation (16,17). There are 
two current theories in which aspects of the above-mentioned hypotheses fit. 

The most accepted theory is the response-to-injury hypothesis (27-29). This theory 
is supported by animal studies, by in vitro studies of arterial cells and by observations in 
human atherosclerotic plaque material obtained at surgery. Central to the response-to-
injury hypothesis is the proposal that mechanical, chemical, toxic, viral or immunological 
agents may cause endothelial cell dysfunction, resulting in an increased migration of 
monocytes and T lymphocytes into the intima. Lipid accumulation results in the formation 
of macrophage foam cells and a fatty streak is formed. As a consequence of cellular 
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interactions between the cell types present in atherosclerotic lesions the fatty streak 
transforms into a fibrous plaque. Growth factors and cytokines produced by endothelial 
cells, SMC, macrophages, foam cells and T lymphocytes may act in an autocrine and/or 
paracrine manner on SMC. This may result in an abnormal SMC proliferation and 
accumulation in the intima and may affect lipid and protein synthesis, including the 
formation of extracellular matrix components. 

The other (less supported) theory is the monoclonal hypothesis (30-34). According 
to this theory, each atherosclerotic lesion develops out of one single mutated SMC, 
analogous to the process of tumorigenesis. As a consequence, plaque formation is divided 
in stages of initiation, promotion and progression. In the initiation phase, exogenous 
chemicals, ionizing radiation, viral agents or perhaps even endogenous substances may 
induce mutations in the SMC DNA. During the following promotion phase, (clonal) SMC 
proliferation occurs. Chemical, nutritional, hormonal or even mechanical factors may 
influence this SMC proliferation. Experiments in which tumor initiators like chemical 
(pro)mutagens (35-37), radiation (37,38) and oncogenic viruses (39-42) were able to 
induce or accelerate atherosclerotic lesion formation in laboratory animals support the 
monoclonal hypothesis. Plaques developed in cockerels when they were treated with 7,12-
dimethylbenzo[a]anthracene and methoxane in an 'initiation-promotion sequence' experi
ment (43). Furthermore, epidemiological literature indicated that certain carcinogenic 
agents may exert an atherogenic effect in humans as well (44). Experiments demonstra
ting that human plaque DNA was able to transform mouse fibroblasts (45-47) provided 
additional evidence for the monoclonal hypothesis. Experiments with human plaque SMC 
revealed that the transforming gene(s) resided in the SMC and that they were retained 
during passage in culture (48). However, other researchers failed to observe the transfor
ming activity of human plaque DNA (49). 

Both the response-to-injury theory and the monoclonal hypothesis indicate that 
disturbance of SMC growth control mechanisms may be seen as a key event in the 
pathogenic process. Therefore, mechanisms and factors involved in growth control 
deserve some additional notice. Two general systems regulating cell growth, namely gap 
junctional intercellular communication (GJIC) and the network of growth factors and 
cytokines, will be discussed. 

Involvement of gap junctional intercellular communication 
Gap junctions are transmembrane channels that span plasma membranes of two 

adjacent cells (50-52). They often aggregate into clusters. Gap junctions allow transport 
of ions and other small water-soluble molecules (< 1000 D) of one cell to another. This 
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passage of factors includes amino acids, sugars and signal molecules like cyclic nucleoti
des, Ca2+ and inositol triphosphate. Gap junctions are formed by head-to-head alignment 
of two hemi-channels (connexons) on opposing cells. Connexons consist of six subunit 
proteins named connexins. Several different gap junction connexin proteins exist (53). 
Each connexin gene has its own distinct pattern of tissue-specific expression. However, 
multiple connexins may be expressed in the same cell type. Gap junctions may be formed 
between cells expressing the same connexin proteins, but also between cells expressing 
different types of connexins. 

In vivo studies demonstrated that vascular SMC are interconnected by gap 
junctions (54-56). Immunohistochemistry revealed connexin 40 (Cx40) and connexin 43 
(Cx43) protein expression in relatively small clusters in the plasma membranes. In vitro 

studies confirmed that GJIC occurred between human and rat SMC (57-63). Electron 
microscopy, Northern blot analysis and/or immunohistochemistry demonstrated the 
presence of Cx43 in cultured SMC from human or animal origins (63-67). Cx40 RNA 
could also be detected in SMC (65). Unlike Cx43 expression however, the Cx40 
expression appeared to diminish strongly with successive passages of primary SMC in 
culture. In addition it was demonstrated that the level of Cx43 expression of SMC in 
culture is not a fixed characteristic too. Only a few gap junctions were found in SMC of 
the contractile phenotype, a state in which cell proliferation does not occur. Cells that had 
been modulated to a synthetic phenotype, a state in which SMC may proliferate, expres
sed numerous gap junctions at cell-cell interfaces (67). Cx46, Cx45, Cx42, Cx32 and 
Cx26 mRNA could not be detected in hybridization and/or immunohistochemistry 
experiments with SMC (63,66). 

The extend of GJIC may be regulated by two major mechanisms. Firstly, through 
the synthesis, degradation and incorporation of connexins into the plasma membrane, and 
secondly, via local regulation of the opening and closing of gap junction channels. Intra
cellular messengers like cAMP, Ca2+ and H+ ions influence gap junction permeability in 
direct and/or indirect ways. Indirect effects of these molecules on channel permeability 
include pathways involving calmodulin dependent protein kinase, protein kinase A (PKA) 
and protein kinase C (PKC), which may phosphorylate connexin proteins. Phosphoryla
tion may affect gap junction permeability by a shift in the tertiary structure of the 
connexin (68). 

GJIC is regarded as an important mechanism in the control of cell growth, cell 
differentiation and tissue homeostasis (69,70). Therefore, transient or permanent modula
tions of GJIC may have pathophysiological consequences. GJIC has long been postulated 
to be involved in carcinogenesis. In vitro and in vivo studies (71-78) provide ample 
evidence that inhibition of GJIC and changes in the regulation of GJIC play a role in 
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tumor promotion. A broad range of experimental approaches provided evidence that: (a) 
most tumor cells show an aberrant GJIC among themselves and/or with surrounding 
normal cells, (b) most tumor promoting chemicals (reversibly) inhibit GJIC, (c) several 
anti-tumor promoting agents upregulate GJIC, (d) tumor promoter-mediated inhibition of 
GJIC is associated with enhancement of cell transformation, (e) connexin genes suppress 
malignant cell growth after transfection, (f) oncogenes are correlated with the downregu-
lation of GJIC, (g) tumor suppressor genes are correlated with upregulation of GJIC or 
with the prevention of downregulation of GJIC. 

There are indications that altered GJIC may be important in atherogenesis as well. 
In human atherosclerotic lesions, Cx43 expression was observed. In one study (79), early 
atherosclerotic lesions showed markedly increased expression of Cx43 gap junctions 
between intimal SMC as compared with undiseased vessels. As the disease progressed to 
more advanced plaques, however, the quantity of junctions declined, ultimately to levels 
below those of the undiseased vessel wall. In this study, Cx43 protein expression could 
not be contributed to macrophages. Another study (80) however, revealed that macro-
phage-foam cells in human atherosclerotic arteries displayed a strong Cx43 mRNA 
expression. In experiments with hypercholesterolemic rabbits, Cx43 mRNA and protein 
expression was upregulated in macrophage-foam cells, whereas Cx43 mRNA expression 
in SMC declined when compared to normal control animals (81). Furthermore, athero-
gens like oxidized LDL, cigarette smoke condensate, oxysterols and aldehydes were able 
to reduce GJIC between SMC (57-60) suggesting that disturbance of gap junctional-
mediated growth control by these atherogens might contribute to the SMC proliferation 
seen in atherosclerotic lesions. 

In addition to the up- or downregulation by exogenous chemicals, modulation of 
GJIC occurs under the influence of endogenous factors, such as hormones and growth 
factors as well (70). 

Involvement of growth factors and cytokines 
Growth factors and cytokines are implicated in a wide range of physiological and 

pathological processes, which include growth and development, immune responses, tissue 
repair, atherosclerosis and neoplasia (82). Growth factors and cytokines are hormone-like 
polypeptides, which are produced by a variety of different cell types. They generally act 
locally or over relatively short distances. Their biological actions are pleiotrophic and 
redundant; each factor exerts multiple effects on different cells, and different factors can 
act on the same cell to induce similar effects (83,84). 

Growth factors and cytokines exert their effects by binding to specific receptors on 
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the cell surface of target cells. This binding induces signal transduction mechanisms that 
evoke specific responses dependent on the responding cell type, the stimulating factor and 
the cellular environment. Cell - matrix interactions and the local concentration of growth 
factor or cytokine binding proteins may regulate the ability of a cell to respond to a given 
factor as well (85). 

The release of growth factors and cytokines may stimulate neighbouring cells in a 
paracrine or juxtacrine way or may influence the cell type itself in an autocrine fashion 
when the cell type producing that factor also expresses the corresponding receptor. 
Several factors may act simultaneously on cells; the net effect of these factors may 
depend on the balance between induced mechanisms. The timing of growth factor and/or 
cytokine release, the responsiveness of target cells and the location of producing and 
responding cells may all be of importance in the network of positive and negative 
regulatory signals. 

The possible roles of cytokines and growth factors in the development of athero
sclerosis is comprehensively discussed in several reviews (85-87). A short summary is 
given here. A substantial number of different growth factors and cytokines have been 
identified in atherosclerotic lesions. In normal arteries, many of these growth factors and 
cytokines are expressed in low or undetectable levels. In plaques however, increased 
levels of most factors were observed. This may be the result of the infiltration, transfor
mation and activation of leukocytes in the atherosclerotic intima. However, cells normally 
present in the artery wall (endothelial cells and SMC) also contribute to the expression of 
growth factors and cytokines in the process of atherogenesis. 

Several factors are capable of inducing SMC migration and/or proliferation and 
thus of participating in the pathogenesis of atherosclerosis. Other effects of growth factors 
and cytokines, such as alteration of lipid metabolism and connective tissue synthesis, may 
contribute to atherosclerotic lesion formation as well. Furthermore, the effects of growth 
factors and cytokines on monocyte-chemoattraction, macrophage activation and cell 
survival seem to play a role in the pathogenic process too. 

In the study described in this thesis, tumor necrosis factor a (TNFa), interferon-y 
(IFN-7), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) 
and interleukin-6 (IL-6) were chosen as representatives of several classes of growth 
modulating factors. Their presence in atherosclerotic lesions and effects on SMC are now 
expounded in some detail. 

12 
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TNFa 
Biologically active human TNFa is a non-glycosylated protein consisting of two or 

three identical subunits with molecular masses of 17 kD (88-91). Although originally 
characterized as a factor with antitumor activity, TNFa is now seen as a factor involved 
in several physiological and pathological conditions, like inflammation, immuno-patholo-
gical processes, tissue injury and wound healing. Monocytes and macrophages are 
important cellular sources of TNFa, although other cell types can produce TNFa as well. 
This cytokine acts on many cell types by binding to specific high-affinity receptors. Two 
TNFa receptors with molecular masses of 55 kD and 75 kD have been identified. After 
binding of TNFa to its receptors, the complex is rapidly internalized and degraded and 
signal transduction pathways are set in motion. These post-receptor mechanisms include G 
protein activation, protein phosphorylation, phospholipase activation and oxygen radical 
production. Some TNFa-induced signalling mechanisms and related biochemical effects 
seem to be cell type-dependent. 

Immunohistochemical analysis showed that TNFa is present in human atheroscle
rotic lesions in elevated amounts as compared with the normal vessel wall (92-95), both 
in cells and as extracellular deposits in the connective tissue matrix. TNFa positive 
staining was found in the cytoplasm of macrophages and mast cells, but also in the 
cytoplasm of intimal SMC which suggests that these cell types are capable of producing 
TNFa. TNFa positive staining was also found attached to the cell membrane of SMC, 
indicating that SMC may be a target for the cytokine as well. The distribution pattern of 
TNFa mRNA varied within different parts of the plaque micro-environment (96). When 
macrophages from carotid plaques were isolated and were cultured in vitro, they sponta
neously produced substantially more TNFa than corresponding blood monocytes (97). 
Stimulated SMC in culture also synthesize and secrete biologically active TNFa (98,99). 
Acetylated LDL and oxidized LDL stimulate TNFa expression and release by human 
monocyte-macrophages in vitro (100,101). 

In vitro studies revealed that SMC characteristics may be influenced by TNFa. In 
table 1.1 some effects with relevance for the process of atherosclerosis are given. 
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Table 1.1.: Effects of TNFa on cultured SMC 

effect 

proliferation: 

stimulation 
no effect 

inhibition 

induction of: 

IL-1 production 
IL-6 production 

GM-CSF and M-CSF production 

mRNA 2'-5' oligoadenylate synthetase 

prostaglandin E2 release 

matrix metalloproteinases 
adhesion molecule expression 

migration 

apoptosis (together with IFN-y) 
NO production (together with IFN-Y) 

NOS mRNA expression 
alterations of glycosaminoglycans 

scavenger receptor expression 
modulation of phenotype 

h = human; r = rat; rb = rabbit; b = bovine; rr 

SMC species 

h,rb 
h 

m,b,r 

h 
h 

h 

h 

h 

h 
h 

h 

h,r 
r 

r 

b 

rb 
rb 

I = mouse 

references 

102-106 
107 

108-110 

103 
111 

112 
98 

98 
113 

114-116 
117 

118 
119 

120,121 
122 

123 
106 

IFN-7 
Biologically active human IFN-y (type IIIFN) is a homodimer of two polypeptides 

with molecular masses of 17 kD (124). Although IFN-y first was recognized on the basis 
of its antiviral activity, this cytokine is now seen as a factor involved in many immune 
and inflammatory responses. IFN-y is secreted mainly by activated T lymphocytes and is 
regarded as an important macrophage activating factor. This cytokine exerts its effect on 
cells through binding to a specific receptor expressed at cell surfaces. There appears to be 
only one single type of IFN-y receptor that is expressed on nearly all cell types of the 
body. IFN-y induces dimerization of its receptor; after binding the ligand-receptor 
complex is internalized and signal transduction pathways are set in motion. Post-receptor 
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mechanisms involving protein kinases, receptor phosphorylation and ion fluxes have been 

described. However, a signal transduction mechanism proposing that intracellular IFN-7 

itself induces cellular responses has been described as well. 

Immunohistochemical analysis showed that IFN-y is present in human atheroscle

rotic lesions in and around some T lymphocytes (4). Oxidized LDL stimulated peripheral 

blood mononuclear cells in vitro to produce IFN-y (125). Cell culture studies revealed 

that SMC characteristics may be influenced by IFN-y. In table 1.2 some effects with 

relevance for the process of atherosclerosis are given. 

Table 1.2.: Effects of IFN-y on cultured SMC 

effect 

proliferation: 

stimulation 

inhibition 

induction of: 

M-CSF expression 

adhesion molecule expression 

HLA / MHC expression 

mRNA 2'-5' oligoadenylate synthetase 
apoptosis (together with TNFa) 

PDGF-fi receptors 

interferon-inducible protein-10 

NOS mRNA expression 
NO production (together with TNFa) 

phenotypic modulation 
scavenger receptor expression 

inhibition of: 

phenotypic transformation 

a-SM actin production 

h = human; r = rat; rb = rabbit; m = mouse 

SMC species 

h 

h,r,m 

h 

h,rb 

h,r 
h 

h,r 

h 

r 

r 

r 
r 

rb 

h 

r 

references 

126 

102-104,108, 

110,127-130 

112 

115,131 

127,132,133 

129 
118 

126 

134 

120,121 

119 
135 

123 

136 

128 
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IL-6 
Human IL-6 is a glycoprotein with a molecular mass of ~26 kD (137-140). IL-6 

has a wide variety of biological activities and is involved in inflammation and some 
lymphoid malignancies, induces differentiation and/or gene expression and regulates cell 
growth in a cell type-dependent manner. IL-6 is produced by monocytes and macropha
ges, but also by many other cell types. This cytokine exerts its effect by binding to a 
specific cell surface receptor capable of expressing both high and low affinity binding 
sites. After binding of IL-6 to the ligand binding chain, association with a nonligand 
binding chain responsible for signal transduction occurs. Therefore, the IL-6 receptor 
consists of two polypeptide chains. Little is known about the intracytoplasmatic signalling 
mechanisms; however, tyrosine kinase activity seems to play an important role. 

Reverse transcription polymerase chain reaction and in situ hybridization techni
ques showed that IL-6 gene transcripts are expressed in human atherosclerotic lesions. In 
one study, atherosclerotic arteries expressed extensively higher levels of IL-6 mRNA as 
compared with non-atherosclerotic arteries (141). Another study revealed that lesions did 
not per definition contain elevated levels of IL-6 mRNA (142). Immunohistochemical 
staining indicated that IL-6 is present in human atherosclerotic walls as cellular and 
extracellular deposits in the connective tissue matrix (143). Normal intima presented only 
cellular deposits in contrast with plaques where extended extracellular deposits were 
found as well, suggesting that an increased synthesis and release takes place in atheroscle
rotic lesions. Double immunostaining methods revealed that in fatty streaks and more 
advanced lesions, both macrophages and SMC expressed IL-6 (144). Cultured SMC are 
able to synthesize and secrete IL-6 as well (111,145). Several in vitro studies demonstra
ted that SMC may be influenced by IL-6 (table 1.3). 

Table 1.3.: Effects of IL-6 on SMC in vitro 

effect 

proliferation: 

stimulation 

no effect 

induction of: 

PDGF production 

c-myc mRNA level 

h = human; r = rat 

SMC species 

r 
h 

r 

r 

references 

146-148 
111 

148 

146 
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PDGF 
PDGF, a glycoprotein of approximately 30 kD, was first isolated from human 

platelets (149,150). This platelet-derived molecule consisted of two polypeptide chains, 
denoted A and B, held together by disulphide bonds. These A and B chains are 60% 
homologous with one another when their amino acid sequences are compared and have 
molecular weights of 16 kD and 14 kD respectively. Many other cell types can synthesize 
PDGF as well; however, they usually secrete PDGF as homodimers of the A or the B 
chain. PDGF is seen as a factor involved in normal growth, wound healing, inflammatory 
responses and malignancies. 

PDGF is a mitogen for a broad spectrum of cells, including connective tissue 
forming mesenchymal cells. PDGF induces its biological effects on cells through binding 
to specific high-affinity receptors on cell surfaces. The PDGF receptors are homo- or 
heterodimers consisting of a and fi subunits, which are brought together by one of the 
three isoforms of PDGF (PDGF-AA; PDGF-BB; PDGF-AB). The a subunit can bind to 
either PDGF-A or PDGF-B chain; the B subunit only binds to PDGF-B chains. After 
binding of PDGF to the appropriate combination of receptor units, post-receptor mecha
nisms are set in motion. Phosphatidylinositol breakdown, formation of eicosanoids, 
formation of membrane-associated diglycerides, activation of PKC and calcium mobiliza
tion have amongst others been reported to play a role in PDGF signal transduction. 

Hybridization studies identified the presence of PDGF-A and PDGF-B gene 
transcripts in human atherosclerotic plaques at levels greater than the levels detected in 
normal arteries (142,151). In one study with cell type-specific markers, the predominant 
cell type found to express PDGF-B mRNA was the endothelial cell; little or no expression 
of PDGF-B mRNA was detected in macrophages (152). PDGF-A mRNA expression was 
attributed to mesenchymal-appearing intimal cells. Another study also demonstrated that 
the majority of PDGF-A transcripts were produced by SMC (153). However, this study 
suggested that the bulk of PDGF-B transcripts was produced by activated macrophages in 
the lesion. This suggestion was supported by immunohistochemical experiments which 
demonstrated that many non-foam cell macrophages in lesions contained PDGF-B protein 
(10,154). PDGF receptor mRNA expression was observed in intimal mesenchymal cells 
of human atherosclerotic lesions, but not in medial SMC (152). PDGF-B receptors were 
found on intimal SMC in atherosclerotic lesions by immunohistochemical techniques. 
PDGF-B receptors were not detected in SMC in the media or in regions of the intima 
unaffected by atherosclerosis (155). Macrophages and SMC are both capable of synthesi
zing PDGF in vitro (151,156-160). Both native and oxidized LDL enhance PDGF-A gene 
transcripts in cultured SMC (161,162). Decreased PDGF-B mRNA expression however, 
was observed when monocyte-macrophages were exposed to oxidized LDL. In contrast, 
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IFN-7 enhanced the level of PDGF-B mRNA transcripts in macrophages (163). Cell 

culture studies revealed that SMC characteristics may be influenced by PDGF (see table 

1.4). 

Table 1.4.: Effect of PDGF on cultured SMC 

effect 

stimulation of proliferation 

induction of: 

IL-6 production 
bFGF production 

MAP kinase activation 

collagenase production 

H202 

phospholipase D activation 

inositol triphosphate release 

diacylglycerol production 

calcium mobilization 
pH changes 

activation of PKC 

c-fos, c-myc genes 

PLC phosphorylation 

phenotypic transformation 

migration 

LDL binding 

inhibition of: 

adhesion molecule expression 

apoptotic cell death 

NO induction by cytokines 

h = human; r = rat; rb = rabbit; b = 

SMC species 

h 

h 
r 

rb 

h 

b 
h 

h 

r 
r 

r 

r 

r 
r 

r 

r 

rb 
rb 

h,b 

mo 

h 
h 

r 

bovine; mo = mc 

references 

103,126,129, 

164,165 
166-171 

172 

111 
173 
174 

175 

176 

166,177,178 

167,179 

167,179 

167,179 
167,179 

166 

168 

172 

180 

117,173 

181 

115 
182 

183,184 

nkey 
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bFGF 
bFGF is a polypeptide with a molecular weight of 16 - 18 kD (185). It belongs to 

the family of heparin-binding growth factors and is therefore often bound to heparin-like 
molecules in the extracellular matrix and basement membranes. bFGF is widely distribu
ted in tissues where it is involved in mitogenesis, chemotaxis and differentiation; for 
example in embryonic development, angiogenesis and tumorigenesis. bFGF is synthesized 
by many cell types. It is a cellular, rather than a secreted protein; its association with 
cells, extracellular matrix and basement membranes suggests that bFGF is a 'stored' 
growth factor. In inflammation or injury, bFGF is released by heparanases and proteases, 
produced by macrophages, for instance. Cells that respond to bFGF have been shown to 
posses specific FGF receptors. Four members of the FGF receptor family have been 
identified. Both high and low affinity binding sites exist. Signal transduction pathways 
implicated in bFGF-induced gene activation include guanylate cyclase induction (186), 
generation of diacylglycerol and subsequent PKC activation (187-189), Ca2+ mobilization 
(187,190), increased tyrosine kinase activity and protein phosphorylation (190-193) and 
activation of the Na+/H+ antiport (190). Different cell types appear to use different post-
receptor transduction pathways, thus, a general mechanism cannot be given. 

Immunohistochemical studies showed that bFGF is expressed in human atheroscle
rotic plaques (194). In contrast to the expression in normal arteries where bFGF was 
detected in the media and adventitia, the atherosclerotic intima also reacted for bFGF. 
bFGF positive staining was found in foam cells, macrophages and SMC. The relative 
amount of bFGF in plaques versus normal arteries remains controversial however, since 
other studies revealed that atherosclerotic arteries contained less immunoreactive bFGF 
protein than control vessels (195). Members of the FGF receptor family were localized in 
vascular SMC of both normal and diseased human arteries by means of immunolocaliza-
tion (195,196). Receptor expression was also found in foam cells and macrophages. 
Cultured human and bovine SMC expressed and synthesized bFGF (197-199). Cholesteryl 
ester or 25-hydroxycholesterol enrichment enhanced bFGF synthesis and release in rabbit 
and bovine SMC (200). In vitro studies revealed that SMC characteristics may be 
influenced by bFGF. In table 1.5 some effects with relevance for the atherogenic process 
are given. 

19 



Chapter 1 

Table 1.5.: Effects of bFGF on cultured SMC 

effect 

stimulation of proliferation 

induction of: 

collagenase expression 
mRNA LDL receptor 

acyl-CoA cholesterol acyltransferase 

cholesterol esterification 

protein tyrosine phosphorylation 

PKC and PKA activity 

H202 

NO production by cytokines 

inhibition of: 

type I collagen gene expression 

n = human; r = rat; b = bovine 

SMC species 

h,r,b 

h 

r 

r 

r 
r 

r 

r 

r 

h 

references 

199,201-204 

205 

206 

206 

206 
206 

206 

176 
184 

205 

Association of growth factors or cytokines and GJIC 
Growth factors and cytokines bring about a form of intercellular communication 

by binding to specific receptors at cell surfaces. Apart from this receptor-mediated 
signalling mechanism, direct intercellular communication occurs via gap junctions in 
plasma membranes. In contrast to the wealth of data available on both forms of intercellu
lar communication, little is known about the linkage of these two phenomena. 

Several growth factors and cytokines have been reported to modulate GJIC when 
applied to cultured cells (table 1.6). Modulation of connexin expression or connexin 
phosphorylation, modulation of intracellular pH and activation of PKC have been 
proposed as mechanisms regulating some of these growth factor or cytokine-induced 
effects on GJIC. 

To date, reports in literature have been fragmentary. A limited number of growth 
factors and cytokines have been examined for their effects on GJIC. Furthermore, it is 
difficult to draw a conclusion or to make a comparison between these factors, since 
divergent culture conditions like different concentrations and various exposure times have 
been applied. Moreover, unrelated cell types have been used frequently. Interactive 
effects on GJIC have only been reported concerning epidermal growth factor (EGF) and 

20 



General Introduction 

transforming growth factor B (TGFB) or hepatocyte growth factor (HGF) and TGFB!. 

These interactive effects were shown to be cell type-dependent (210,211,219,220,222). 

Table 1.6.: Effects of growth factors or cytokines on GJIC 

growth factor or 

cytokine 

bFGF 

EGF 

IL-la 

BMP-2 

BMP-3 

NDFB 

PDGF 

PDGF-BB 

TGFB 

TNFa 

HGF 

BME = bovine microva 

cell type 

BME 

rat cardiac fibroblasts 

rat cardiac myocytes 

NRK 

Balb C 3T3 
T51B 

NHEK 

K7 

HUVEC 

MC3T3-E1 

MC3T3-E1 

rat Schwann cells 

NRK 

Balb C 3T3 

C3H/10T1/2 

NRK 

Balb C 3T3 
MC3T3-E1 

BE 
BEAS-2B 

NHEK 

rat Schwann cells 

rat Schwann cells 

rat hepatocytes 

scular endothelial cells; NR 

effect on GJIC 

t , i 

t ,4 

iC = normal rat kidr 

references 

207 

208 

209 

210,211 
211 

212,213 

214 

215 

216 

217 

217 

218 

211 

211 

219 

211 

211 
217 

220 

220 
214 

221 

218 

222 

ey cells; Balb C 3T3: 
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mouse embryonic cell line; T51B: rat liver epithelial cells; NHEK = normal human epidermal 
keratinocytes; K7: Ni(II)-immortalized human kidney epithelial cells; IL-la = interleukin la; 
HUVEC = human umbilical vein endothelial cells; BMP = bone morphogenetic protein; MC3T3-
El: osteoblastic cells; NDFB = neu differentiation factor 6; C3H/10T1/2: mouse embryonic 
fibroblast cell line; BE = normal human bronchial epithelial cells; BEAS-2B = adenovirus 12-
SV40 hybrid virus transformed BE cells; T: increase; I: decrease. 

Aim of the study 
Disturbance of SMC growth control mechanisms may be seen as a key event in the 

pathogenesis of atherosclerosis. The research presented in this thesis pertains to the 
hypothesis that leukocytes play an important role in this pathological process. In particu
lar, the effect of leukocyte-derived growth factors and cytokines on SMC growth control 
was studied, since the effect of these endogenous factors on for instance GJIC between 
SMC has not been established previously. 

The main objective of this study was to determine whether growth factors and 
cytokines produced by macrophages and T lymphocytes could influence GJIC between 
SMC and to provide extensive information about the linkage of growth factors, cytokines 
and GJIC. We incubated SMC from human umbilical cord arteries with various concen
trations of (human) recombinant growth factors and cytokines. Subsequently, GJIC 
between these SMC was measured. Different exposure times revealed the time course of 
GJIC modulations upon incubation with growth factors and cytokines (chapter 2 and 3). 
Interactive effects of these factors on GJIC were studied as well, by adding up to three 
growth factors and cytokines simultaneously to SMC (chapter 4). 

A second important objective of this study was to determine whether macrophages 
could influence GJIC between co-cultured SMC. In this type of experiments, the 
complexity of macrophage secretion patterns were reflected more fully. We cultured 
J774A.1 murine macrophages or human monocyte-macrophages on pore membrane inserts 
together with human SMC in the Transwell-COL cell culture system. After removal of 
the inserts containing macrophages, GJIC between the co-cultured SMC was measured 
(chapter 5). 
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Chapter 2 
Inhibition of Gap Junctional Intercellular Communication between 
Primary Human Smooth Muscle Cells by Tumor Necrosis Factor a 

A. Mensink, L.H.J, de Haan, C.M.M. Lakemond, C.A. Koelman and J.H. Koeman 

Based on: Carcinogenesis 16:2063-2067 (1995) 

Abstract 

Tumor necrosis factor a (TNFa), a pleiotrophic cytokine present in atherosclerotic 

lesions, caused a dose-dependent and persistent reduction in gap junctional intercellular 

communication (GJIC) between primary human smooth muscle cells (SMC) in vitro. A 

continuous presence of TNFa was required for this persistent inhibition. Pretreatment of 

SMC with ascorbic acid, a-tocopherol or glutathione prevented this inhibition of GJIC by 

TNFa. The persistent blockage of GJIC by continuous exposure to TNFa suggests that 

TNFa may share some mechanistic similarities with exogenous tumor promoters. 

Furthermore, this reduction in GJIC by TNFa may provide an additional link between the 

processes of atherosclerosis and carcinogenesis. The protection afforded by antioxidant 

compounds suggests a role for active oxygen species in the promotion stage of atheroscle

rosis. 
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Introduction 

Atherosclerosis, characterized as a focal thickening of the intimal layer in the 
artery wall, is considered to be the primary cause of mortality in Western societies. 
Lesion progression is accompanied by the indolent proliferation of smooth muscle cells 
(SMC) and macrophages (8,11). Ultimately, the atherosclerotic plaque can cause occlu
sion of the blood vessel, giving rise to myocardial infarction and cerebral haemorrhage. 

There are several theories regarding the etiology of atherosclerotic plaques, 
including the monoclonal hypothesis and the response-to-injury theory. In both theories 
disturbance of growth control mechanisms is seen as a key event in the pathogenic 
process. The response-to-injury theory (29) focuses on the interaction between endothelial 
cells, SMC, monocytes/macrophages and platelets in the lesion, resulting in the autocrine 
and/or paracrine action of growth factors and cytokines on SMC. The monoclonal 
hypothesis (30) assumes that the atherosclerotic lesion is a tumor developed out of one 
single mutated SMC. Experiments demonstrating that human plaque DNA was able to 
transform NIH 3T3 fibroblasts (46) provided additional evidence for this monoclonal 
theory. From the monoclonal point of view, the pathogenesis of plaque formation can be 
divided in distinct stages of initiation and promotion (33), similar to the process of 
tumorigenesis. 

Gap junctional intercellular communication (GJIC) is regarded as an essential 
mechanism in the control of cell growth (71). Modulation of GJIC is also likely to play 
an important role in the process of carcinogenesis: in vitro and in vivo studies provide 
strong evidence for the involvement of GJIC in tumor promotion (71,72). Moreover, 
there is evidence that altered GJIC is of importance in the pathogenesis of atherosclerosis 
as well. Zwijsen et al. (57-59) and De Haan et al. (60) showed that atherogens, such as 
oxidized low density lipoprotein, cigarette smoke condensate, oxysterols and aldehydes 
are able to reduce GJIC between SMC, suggesting that disturbance of gap junctional-
mediated growth control by these atherogens might contribute to the SMC proliferation 
seen in atherosclerotic lesions. 

It is likely that this SMC proliferation is also influenced by the action of cytokines 
and growth factors, which can be produced locally by the macrophages present or by the 
SMC themselves. Immunohistochemical analysis showed that tumor necrosis factor a 

(TNFa), a pleiotrophic cytokine, is present in atherosclerotic lesions in elevated amounts 
as compared with the normal vessel wall (92,94). 

In vitro studies show that arterial SMC proliferation is stimulated by TNFa 
(105,106). TNFa modulates the phenotype of SMC (106) and activates several SMC 
functions, for instance induction of interleukin 1 production, release of prostaglandin E2, 
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time-dependent induction of the gene for (2'-5')-oligoadenylate synthetase (98) and induc
tion of alterations of SMC glycosaminoglycans (122). 

The present study focuses on the role of TNFa in the modulation of GJIC between 
primary human SMC, suggesting a role for this cytokine in the promotion stage of 
atherosclerosis. Furthermore, a first step is taken to elucidate the mechanism of action of 
this TNFa mediated process. 

Materials and methods 

Chemicals 

Recombinant human TNFa (molecular weight 36 kD; specific activity of the 
batches = 108 units/mg) was obtained from Genzyme Diagnostics (Cambridge, MA). 
Eagle's minimum essential medium (modified) with Earle's salts (EMEM) was purchased 
from ICN Biomedicals Inc. (Costa Mesa, CA). Fetal calf serum (FCS), gentamicin and 
fungizone were obtained from Gibco BRL (UK). Dulbecco's 'A' phosphate-buffered 
saline (PBS) was from Oxoid Ltd. (UK). NADH was obtained from Boehringer Mann
heim GmbH (Mannheim, Germany). Trypsin 1:250 was from Difco (USA). Sodium 
pyruvate was from BDH Chemicals Ltd. (UK). 2-[4-(2-Hydroxyethyl)-l-piperazinyl]-
ethanesulfonic acid (HEPES), ethanol, potassium phosphate, lithium chloride and DL-a-
tocopherol were purchased from Merck (Germany). Triton X-100, Lucifer yellow CH, 
bovine serum albumin (BSA) fraction V, glutathione (GSH) and L-ascorbic acid were 
obtained from Sigma Chemical Co. (St. Louis, MO). 

Culture of primary human SMC 

Primary human SMC were obtained from arteries of human umbilical cords by an 
explant technique. In brief, arteries were isolated aseptically. The adventitial layer was 
carefully removed, whereafter the arterial tissue was cut into small pieces. Explants were 
incubated in EMEM supplemented with 10% FCS, 50 /ig/ml gentamicin and 1.25 /xg/ml 
fungizone in a 37°C, 5% C02 humidified atmosphere. Sufficient cell growth to permit 
subculturing was obtained after 3-4 weeks incubation. Cells displayed the well known 
'hills and valleys' pattern after reaching confluence and were characterized by immuno-
histochemical analysis of SMC a-actin. Experiments were performed on cells in passages 
2-4. 

Experimental procedure 

For measurement of GJIC, SMC were cultured in 35 mm culture dishes (Greiner) 
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until confluency. Serum containing culture medium was removed, whereafter cells were 

washed with PBS. EMEM supplemented with antibiotics and 0.1 - 0.5 % BSA was added 

to the cells. Cells were then incubated with TNFa or PBS as an appropriate blank. Just 

prior to GJIC measurement, HEPES buffer (pH 7.4) was added to the incubations (final 

concentration 20 mM) to stabilize the pH during microinjection and fluorescence 

microscopy. Pretreatment of cells with antioxidants occurred as follows: ascorbic acid in 

serum-free culture medium containing HEPES was added 2.5 h before exposure of cells 

to TNFa; GSH and a-tocopherol were added to the cells in serum containing culture 

medium 24 h and 48 h respectively prior to TNFa exposure. Antioxidant containing 

culture medium was removed and cells were washed twice with PBS, after which the cells 

were exposed to 0.5 nM TNFa for 1 h. 

Measurement of GJIC 

GJIC was determined after microinjection of a 20% Lucifer yellow CH (in 0.33 M 
lithium chloride) solution in a single cell (223). In each SMC culture at least 20 indivi
dual cells were microinjected using a vertical injection system (Olympus Injectoscope 
IMT-2-syf) (224) with a dye filled capillary glass tip (Clark, Pangbourne, UK). The glass 
capillary tip was prepared using an automatic magnetic puller (Narishige, Tokyo, Japan) 
with a tip diameter of 1 /tm. The Lucifer yellow CH filled cells were checked with phase-
contrast and fluorescence microscopy directly after microinjection. Fifteen to twenty 
minutes after the first injection the number of communicating cells was determined using 
fluorescence microscopy. The average number of fluorescent cells was calculated for each 
incubation. The average number of communicating cells in control incubations was taken 
as 100% GJIC. Photographs were taken using an Olympus OM 4 Ti camera using an 
injectoscope. Each experiment was performed in duplicate. At least three independent 
tests were done, except for the time curves, where two independent tests were performed. 
At least one test was performed in a 'double blind' way. 

Cytotoxicity assay 

SMC were grown in six-well tissue culture plates (Costar Europe Ltd.). When 
confluent, cells were (pre)incubated as described above. After treatment(s), media were 
taken from the wells and centrifuged. Cells were scraped from the bottom of the wells 
after addition of 0.5% Triton X-100 in 0.1 M phosphate buffer, pH 7.5, followed by a 
sonification step in ice water (5 min, Sonorex RK 100) and a centrifugation step. Lactate 
dehydrogenase (LDH) activity was measured in the supernatants (225) and LDH leakage 
was calculated. Each experiment was performed at least in duplicate and at least two 
independent tests were done. 
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Statistics 

Statistical analyses of the data were performed using Students Mest (P<0.05). 

Results 

Smooth muscle cell GJIC 

Primary human SMC display a profound GJIC (Fig. 2.1). In typical experiments 

Lucifer yellow spread over an average of 20 - 100 cells (depending on cell density at 

confluency) in control incubations. In most experiments a control value of ~40 communi

cating cells was observed. r 

W 
•••.,'•• \ • VV«A, 

1 7*1* 4^h 

Fig. 2.1. Photographs showing Lucifer yellow transfer in confluent primary human SMC. 
(A) Phase contrast graph of SMC. (B) Fluorescence in the same field after injection of 
one SMC with Lucifer yellow. Original magnification x200. 
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GJIC between primary human SMC upon 1 h exposure to TNFa 

Figure 2.2 illustrates the dose-dependent decrease in GJIC between primary human 
SMC exposed to 0.05 - 2.5 nM TNFa. A significant, 20% reduction in GJIC was already 
observed at exposure of these cells to 0.05 nM TNFa. At 0.3 nM TNFa a maximum of 
40% inhibition of GJIC was reached and inhibition remained at this level up to a 
concentration of 2.5 nM. 

c o u 

O 
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0.00 0.50 1.00 1.50 2.00 

concentration TNFa (nM) 

2.50 

Fig. 2.2. GJIC between human SMC after exposure for 1 h to the indicated concentra

tions of TNFa. All values are mean ± SD. * : Significantly different from control value. 

GJIC between primary human SMC upon exposure to TNFa for different periods of time 

A significant inhibition of GJIC was already observed 1 h after exposure to TNFa 
(Fig. 2.3). The inhibition of GJIC upon exposure to TNFa persisted until the last time 
point in these series of experiments (24 h). Upon incubation with 0.05 nM TNFa, GJIC 
was reduced to 75% of control incubations. Incubation with 0.5 nM TNFa also resulted 
in a persistent inhibition of GJIC, to a level of 65% of control. To investigate whether the 
persistent inhibition of GJIC required the continuous presence of TNFa, experiments 
were performed whereby a 1 h exposure to TNFa was followed by replacement of this 
exposure medium by control medium (Fig. 2.4). Upon removal of TNFa from the culture 
medium, the inhibited response of GJIC was restored to control values within 30 min. 
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Fig. 2.3. GJIC between human SMC after exposure to TNFa for different periods of 

time. Circles, 0.05 nM TNFa; diamond, 0.5 nM TNFa. All values are mean ± SD. SD 

for control incubations varied between 3.6 and 8.7%. * : Significantly different from con

trol value. 
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Fig. 2.4. GJIC between human SMC. (A) control incubation; (B) 1 h 0.5 nM TNFa; (C) 
1 h 0.5 nM TNFa followed by replacement of exposure medium by control medium for 1 
h; (D) 1 h 0.5 nM TNFa followed by replacement of exposure medium by control 
medium for 30 min. All values are mean ± SD. * : Significantly different from control 
value. 
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Effects of antioxidants on GJIC between primary human SMC upon exposure to TNFa 

Pretreatment of primary human SMC with 1 or 10 /*M a-tocopherol, 10 or 50 /xM 

ascorbic acid, or 1 mM GSH prevented the inhibition of GJIC upon exposure to 0.5 nM 
TNFa (Fig. 2.5). None of the GJIC values from antioxidant pre-incubations was 
significantly different from the control value, which was set at 100%. 

Cytotoxicity 

It is reported that TNFa can damage plasma membranes under certain circumstan
ces. This membrane permeabilization can be a relatively fast event, occurring within a 
few hours after TNFa exposure (226). To determine whether the observed reduction in 
SMC GJIC was influenced by loss of membrane integrity, LDH activity was measured in 
culture media and cell homogenates. No membrane cytotoxicity was observed in SMC 
cultures treated with 0.5 and 2.5 nM TNFa for 1 or 24 h. Values of LDH activity in cell 
homogenates after exposure to TNFa varied between 95 and 102 % of the control values 
(data not shown). Also, no cytotoxic effects were seen at concentrations and treatment 
times of the antioxidants used in the experiments (data not shown). The combination of 
antioxidant treatment and incubation with 0.5 nM TNFa did not cause membrane leakage 
either. Furthermore, no morphological changes of SMC were seen in our experiments. 
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Fig. 2.5. GJIC between human SMC after pretreatment with GSH (A), ascorbic acid (B) 
or a-tocopherol (C). Dotted bars represent control incubations; open bars represent TNFa 
exposures. All values are mean ± SD. * : Significantly different from control value. 
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Discussion 

The present study clearly demonstrates that TNFa is able to significantly reduce 
GJIC between primary human SMC. The results also indicate that free radicals may be 
responsible for the observed effect of TNFa on GJIC. 

Our results show a resemblance to those reported by Fujiki & Suganuma (227) and 
Komori et al. (228), who demonstrated that TNFa acts as a tumor promoter in the BALB 
/ 3T3 assay. 

The reduction in GJIC between primary human SMC occurred in a dose-dependent 
way, reaching ~40% inhibition at a dose of 0.3 nM TNFa. Serum values of TNFa are 
reported to be of the order of 10 - 65 pg/ml (92,229). Assuming a molecular weight of 36 
kD for TNFa, this may correspond to a concentration of 0.3 - 2.0 pM. Rus et al. (92) 
reported that the TNFa concentration in the arterial wall was ~ 200 times higher than in 
serum, which may result in concentrations of 0.06 - 0.40 nM. This estimated target tissue 
concentration is within the range of the inhibitory response of TNFa on GJIC observed in 
our in vitro study. This may suggest that inhibition of GJIC between SMC can also occur 
in vivo. 

Inhibition of GJIC caused by TNFa lasts for at least 24 h. This persistent 
reduction in GJIC suggests a strong atherogenic potential of the cytokine TNFa. How
ever, on removing TNFa from the culture medium the inhibited response of GJIC was 
quickly restored. This indicates that a continuous presence of TNFa is required to obtain 
a persistent inhibition. Such a continuous presence of TNFa may be achieved through 
local synthesis and accumulation of TNFa in the arterial wall, as was suggested by Rus et 

al. (92). Immunohistochemical analysis and in situ hybridization studies clearly show that 
macrophages and SMC can serve as sources for TNFa in the lesions (93,94). 

The biological consequence of this 40% reduction in GJIC by TNFa is not easily 
given, since this value was obtained in an in vitro assay in which, for instance, the 
arrangement of SMC in culture dishes will deviate from their organization in the vascular 
wall. The extrapolation is difficult to make for known tumor promoters as well. The 
inhibition in GJIC caused by TNFa, a body's own substance, is somewhat lower, but 
comparable with the 50 - 60% inhibition caused by well known xenobiotic tumor 
promoters like coplanar polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-
p-dioxin (230). 12-0-Tetradecanoylphorbol-13-acetate (TPA) inhibits GJIC in vitro almost 
completely. However, this inhibition of cell communication by TPA is transient and is 
restored within 24 h (231), while on the other hand both PCB/dioxin and TNFa inhibit 
GJIC for a prolonged period of time. 

The rapid occurrence of GJIC inhibition (within 1 h) and the fast reversal of this 
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inhibition following removal of TNFa from the culture medium points towards a rapid 
membrane-linked mechanism of action. Several cell type-dependent post-receptor signal 
transducing pathways are known to be affected by TNFa (90). TNFa signalling mecha
nisms include activation of phospholipase A2, stimulation of phospholipase C, stimulation 
of phospholipase D, protein phosphorylation, G protein activation, activation of protein 
kinase C and enhancement of cAMP levels (232). All these processes are known to affect 
GJIC. 

Furthermore, several lines of evidence indicate that reactive oxygen formation 
and/or production of nitric oxide are involved in TNFa mediated processes (90). The 
present study indicates that free radical production by SMC might play a role in the 
observed reduction in GJIC caused by TNFa, since pretreatment of these cells with 
ascorbic acid, a-tocopherol or GSH prevented inhibition of GJIC. The observed preven
tion of inhibition of GJIC by antioxidants has been previously reported in studies with 
classical chemical tumor promoting agents (233). Furthermore, a correlation between 
GJIC and GSH levels in cells has been reported (234). Further research, currently in 
progress, is aimed at revealing whether free radicals are actually formed by SMC on 
exposure to TNFa. In addition, the radical species involved and their mode of action 
with regard to the inhibition of GJIC between SMC will be determined. However, other 
mechanisms of GJIC regulation cannot be ruled out. For instance, a-tocopherol is able to 
inhibit protein kinase C translocation and activity in rat SMC (235). 

The results of the present study may contribute to the increasing data supporting 
the view that radicals are important in tumor promotion (236). For instance, it is known 
that active oxygen can act as a tumor promoter in cell transformation assays (237). 

In studying atherosclerosis much attention has been given to the (per)oxidation of 
low density lipoprotein components (238), causing amongst other things endothelial 
damage, foam cell formation, SMC proliferation and immune system activation. Free 
radicals can also directly activate SMC growth (239). Thus, active oxygen seems to be 
involved in many stages of the pathogenic process. Our study adds a new concept to the 
role of active oxygen in the process of atherosclerosis; namely their possible role in 
inhibition of GJIC and thus in the promotion stage of this disease. 

In conclusion, the persistent blockage of GJIC by TNFa suggests that TNFa may 
act as an endogenous 'promoter' on human SMC. Furthermore, this reduction in GJIC by 
TNFa may provide an additional link between the processes of atherosclerosis and 
carcinogenesis, a connection previously suggested by Zwijsen et al. (162,240). 
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Modulation of Intercellular Communication between Smooth Muscle 

Cells by Growth Factors and Cytokines 

A. Mensink, A. Brouwer, E.H. van den Burg, S. Geurts, W.M.F. Jongen, 

C.M.M. Lakemond, I. Meijerman and T. van der Wijk 

Based on: Eur. J. Pharmacol. 310:73-81 (1996) 

Abstract 

We recently reported that tumor necrosis factor a (TNFa) is able to cause a dose-
dependent and persistent reduction in gap junctional intercellular communication (GJIC) 
between primary human smooth muscle cells (SMC). In order to study whether this 
observed persistent reduction in GJIC is a unique feature for TNFa, the present study 
focuses on the effects of other growth factors and cytokines on GJIC. Platelet-derived 
growth factor A A and BB (PDGF-AA, PDGF-BB), basic fibroblast growth factor 
(bFGF), interleukin-6 (IL-6) and interferon-7 (IFN-7) were able to modulate GJIC 
between primary human SMC in vitro. However, our results demonstrate that the 
magnitude and nature of the observed effects are growth factor- and cytokine-specific. 
PDGF-AA, PDGF-BB and IL-6 caused a transient reduction in GJIC, while bFGF 
induced a transient increase in GJIC. IFN-7 was shown to be capable of causing a persis
tent reduction in GJIC. In addition, PDGF-AA, PDGF-BB, bFGF, IL-6, IFN-7 and 
TNFa all stimulated SMC proliferation. These observations suggest a more complex 
relationship between modulation of GJIC and cell proliferation than current hypotheses 
imply. The implications of the observed effects of growth factors and cytokines on GJIC 
between SMC in relation to the process of atherosclerosis are discussed. 
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Introduction 

Atherosclerosis is a pathophysiological phenomenon with a slow progression 
giving rise to myocardial and cerebral infarctions. Atherosclerotic lesions ('plaques') are 
characterized as focal thickenings of the intimal layer of the artery wall. Lesion progres
sion is accompanied by infiltration of monocytes and lymphocytes, proliferation of smooth 
muscle cells (SMC), accumulation of intra- and extracellular lipids and synthesis of 
extracellular matrix components. 

Regarding the etiology of atherosclerosis, both the response-to-injury theory and 
the monoclonal hypothesis focus on disturbance of growth control mechanisms as the key 
event in atherogenesis. Consequently, both theories assume an important modulatory role 
for growth factors and cytokines in the pathogenesis of the disease. The response-to-
injury theory (29) supposes that growth factors and cytokines produced by cell types 
present in the lesions, act in an autocrine and/or paracrine manner on SMC proliferation. 
The monoclonal hypothesis (33) parallels atherogenesis with tumorigenesis, thereby 
dividing the pathogenesis of plaque formation in stages of initiation and promotion. 

Hybridization and immunohistochemical studies demonstrated that platelet-derived 
growth factor AA and BB (PDGF-AA, PDGF-BB), basic fibroblast growth factor 
(bFGF), interleukin-6 (IL-6), interferon-7 (IFN-7) and tumor necrosis factor a (TNFa) 
are present in human atherosclerotic plaques (4,94,141,142,194). It is not completely 
clear whether the amount of all these growth modulating substances is elevated in plaques 
when compared with the nonatherosclerotic vessel wall. bFGF, IL-6, PDGF and TNFa 
are able to induce SMC proliferation (241). It has been reported that IFN-7 either 
stimulates (126) or suppresses (128,129) SMC proliferation, probably depending on the 
culture conditions for these cells. 

In vitro and in vivo studies provide evidence for the involvement of modulation of 
gap junctional intercellular communication (GJIC) in the process of tumor promotion 
(71). Altered GJIC seems to be important in the pathogenesis of atherosclerosis as well. 
Atherogens like oxidized low density lipoprotein, cigarette smoke condensate, oxysterols 
and aldehydes are able to reduce GJIC between SMC (57-60). 

Previous work (242) demonstrated that TNFa is able to cause a dose-dependent 
and persistent reduction in GJIC between primary human SMC, suggesting that TNFa 
may act as an endogenous 'promoter' on human SMC. In order to study whether this 
observed persistent reduction in GJIC between SMC is a unique feature for TNFa or a 
more common event in growth factor or cytokine action on these cells, the present study 
focuses on the effects of PDGF-AA and PDGF-BB, bFGF, IL-6 and IFN-7 on GJIC 
between primary human SMC. Furthermore, we have studied the effect of these growth 
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modulating peptides and TNFa on SMC proliferation in our cell culture system, in order 

to obtain more knowledge about the relationship between GJIC and cell proliferation. 

Materials and methods 

Chemicals 

Recombinant human TNFa (molecular weight 36 kD; specific activity 10s U/mg), 
recombinant human IL-6 (molecular weight =26 kD; specific activity 1.8 x 108 and 1.8 x 
109 U/mg) and recombinant human IFN-7 (molecular weight 34 kD; specific activity 2.5 
x 107 U/mg) were obtained from Genzyme Diagnostics (Cambridge, MA, USA). PDGF-
AA, PDGF-BB and bFGF were obtained from Genzyme Diagnostics (Cambridge, MA, 
USA; molecular weight PDGF 26 kD, molecular weight bFGF 17.5 kD) and from Gibco 
BRL (Paisley, UK, molecular weight PDGF 30 kD, molecular weight bFGF 17 kD). Cell 
proliferation kits based on 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide 
(MTT) cleavage by mitochondrial dehydrogenases and NADH were purchased from 
Boehringer Mannheim GmbH (Mannheim, Germany). Eagle's minimum essential medium 
(modified) with Earle's salts (EMEM) was purchased from ICN Biomedicals Inc. (Costa 
Mesa, CA, USA). Fetal calf serum (FCS), gentamicin and fungizone were obtained from 
Gibco BRL (Paisley, UK). Dulbecco's 'A' phosphate-buffered saline (PBS) was from 
Oxoid Ltd. (UK). Trypsin 1:250 was from Difco (USA). Sodium pyruvate was from 
BDH Chemicals (UK). 2-[4-(2-Hydroxyethyl)-l-piperazinyl]ethanesulfonic acid (HEPES), 
potassium phosphate, lithium chloride and acetic acid were purchased from Merck 
(Darmstadt, Germany). Triton X-100, Lucifer yellow CH, and bovine serum albumin 
(BSA) fraction V were obtained from Sigma Chemical Co. (St. Louis, MO, USA). 

Culture of primary human SMC 

Primary human SMC were isolated from arteries of human umbilical cords by an 
explant technique. After careful removal of the adventitial layer, the arterial tissue was 
cut into small pieces. Explants were incubated in EMEM supplemented with 10% FCS, 
50 Mg/ml gentamicin and 1.25 /ig/ml fungizone in a 37°C, 5% C02 humidified atmos
phere. Cells were allowed to grow for 3-4 weeks until subculturing. Cells displayed the 
well known 'hills and valleys' pattern after reaching confluence (243). Experiments were 
performed on cells in passage 2-5. 

Experimental procedure 

For measurement of GJIC, SMC were grown in 35 mm culture dishes (Greiner 
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B.V., Alphen a/d Rijn, Netherlands) until confluency. Serum containing culture medium 

was removed whereafter cells were washed with PBS. EMEM supplemented with 

antibiotics and 0.1 - 0.5 % BSA was added to the cells. Cells were then incubated with 

the growth modulating factors or with either PBS (in the case of IL-6, IFN-7, bFGF) or 

acetic acid (in the case of PDGF) as appropriate blanks. Just prior to GJIC measurement, 

HEPES buffer (pH 7.4) was added to the incubations (final concentration 20 mM) to 

stabilize the pH during microinjection and fluorescence microscopy. 

Measurement of GJIC 

GJIC was determined after microinjection of a 20% Lucifer yellow CH (in 0.33 M 
lithium chloride) solution in a single cell (223). In each SMC culture at least 20 indivi
dual cells were microinjected using a vertical injection system (Olympus Injectoscope 
IMT-2-syf) (224) with a dye filled capillary glass tip (Clark, Pangbourne, UK). The 
capillary glass tip was prepared using an automatic magnetic puller (Narishige, Tokyo, 
Japan) with a tip diameter of 1 pm. The Lucifer yellow CH filled cells were checked with 
phase-contrast and fluorescence microscopy directly after microinjection. 15 - 20 min 
after the first injection the number of communicating cells was determined using fluo
rescence microscopy. The average number of fluorescent cells was calculated for each 
incubation. The average number of communicating cells in control incubations was taken 
as 100% GJIC. Each experiment was performed in duplicate. At least three independent 
tests were done. Data presented in figures 3.1-3.4 are the average values of these tests. 

Cell proliferation assays 

5000 - 10000 SMC (n=8) were plated in serum containing culture medium in 96 
wells microtiter plates (tissue culture grade, Greiner B.V., Alphen a/d Rijn, Netherlands); 
100 ii\ medium per well. After 24 h, the culture medium was removed and the cells were 
washed with PBS. EMEM supplemented with antibiotics and 0.5% BSA was added to the 
cells. Cells were then incubated with the growth modulating factors or with either PBS or 
acetic acid as appropriate blanks for 24 h, whereafter cell proliferation was measured. 
After incubation with growth modulating factors, SMC cells were incubated with MTT 
reagent according to the instructions of the manufacturer. The MTT colorimetric assay is 
based on cleavage of the yellow tetrazolium salt MTT to formazan dye by dehydrogenase 
activity in active mitochondria of living cells. The formazan dye formed is quantified 
using a Thermomax microplate reader (Molecular Devices, Sunnyvale, CA, USA). An 
increase in number of living cells results in an increase in the overall activity of mito
chondrial dehydrogenases in the sample, which correlates to the amount of formazan 
formed as monitored by the absorbance at 595 nm. 
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Cytotoxicity assay 

SMC were grown in six-well tissue culture plates (Costar Europe Ltd.). When 
confluent, cells were incubated as for GJIC measurement. After treatment, media were 
taken from the wells and were centrifuged. Cells were scraped from the bottom of the 
wells after addition of 0.5% Triton X-100 in 0.1 M phosphate buffer, pH 7.5, followed 
by a sonification step in ice water (5 min, Sonorex RK 100 (Bandelin GmbH, Berlin, 
Germany)) and a centrifugation step. Lactate dehydrogenase (LDH) activity was measured 
in the supernatants (225) and LDH leakage was calculated. Each experiment was 
performed at least in duplicate and at least two independent tests were done. 

Statistics 

Statistical analyses of the data were performed using Students ?-test (P < 0.05). 

Results 

GJIC between SMC 

Primary human SMC display a distinct GJIC. In typical experiments Lucifer 
yellow spread over an average of 15-80 cells (probably depending on cell density at 
confluency) in control incubations. In most experiments a control value of ~40 communi
cating cells was observed. Within separate experiments, standard deviations for duplicate 
incubations were generally small. The standard deviations for control incubations and 
growth factor or cytokine incubations were quite similar within experiments. In experi
ments with IFN-7, bFGF and IL-6 the average standard deviations within single experi
ments were 3 - 5%. In experiments with PDGF results were more variable; standard 
deviations were a few percent higher than in the other experiments. Standard deviation 
values in the order of 10% were seen in a number of cases in separate PDGF experi
ments. 

PDGF 

PDGF-AA and PDGF-BB reduce GJIC between primary human SMC in a similar 
way. In 1 h incubations, GJIC is reduced to ~ 80% of control value at 0.1 nM PDGF 
(Fig. 3.1 A,B). Higher concentrations PDGF-AA and PDGF-BB resulted in a stronger 
decrease in GJIC, with a maximal inhibition of 35-40%, reached at 0.5 - 0.7 nM PDGF. 
The observed inhibition in GJIC is transient for both PDGF isoforms with a maximum 
inhibition after 1 h incubation followed by a return to almost control values within 24 h 
(Fig. 3.2 A,B). Replacement of PDGF containing culture medium with medium contai-
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ning fresh PDGF after 3 h during an exposure time of 4 h did not give rise to different 

experimental outcomes for both PDGF-A A and PDGF-BB isoforms (data not shown). 

Thus, the transient nature of this GJIC inhibition upon incubation with PDGF isoforms 

appeared not to be caused by a depletion of PDGF in the culture medium. 
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Fig. 3.1. Dose-dependent inhibition of GJIC between human SMC by PDGF-AA (A) or 

PDGF-BB (B). Exposure time was 1 h to the indicated concentrations of PDGF-AA or 

PDGF-BB. All values are mean ± SD. * : Significantly different from control value. 
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Fig. 3.2. Time-dependent inhibition of GJIC between human SMC by PDGF-AA (A) or 

PDGF-BB (B). Exposure concentration was 0.5 nM PDGF-AA or 0.5 nM PDGF-BB for 

the indicated periods of time. All values are mean ± SD. Average SD for control 

incubations was 9.0% (A) and 11.7% (B). * : Significantly different from control value. 

IL-6 

One hour incubations of confluent SMC cultures with 0.5 nM IL-6 did not result 
in a consistent reduction in GJIC between these cells (Fig. 3.3 A). Incubation with 2.5 
and 5.0 nM IL-6 for 1 h caused a small but significant reduction in GJIC of 13 + 4.5 
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and 17 + 6.0 %, respectively. However, when SMC were incubated for a longer period 
of time with 0.5 nM IL-6, a significant reduction in GJIC was obtained at 7 and 9 h of 
exposure (Fig. 3.3 A). At these time points, GJIC was inhibited to —80% of control 
incubations. At 17 and 24 h of incubation with 0.5 nM IL-6, GJIC was restored to 
control values (Fig. 3.3 A). Again, the transient nature of this GJIC inhibition by IL-6 
appeared not to be a consequence of a depletion of the cytokine in the culture medium, 
since a 17 h incubation time resulted in the same GJIC value as a 10 + 7 h incubation 
with refreshment of IL-6 containing culture medium after 10 h of incubation (data not 
shown). 

IFN-y 

Upon addition of 0.5 nM IFN-7 to SMC, GJIC is reduced to -80% of control 
incubations (Fig. 3.3 B). This reduction in GJIC occurred within 1 h and lasted for at 
least 24 h. When 2.0 or 3.5 nM IFN-7 were added to the SMC for 1 h, GJIC was not 
further reduced i.e. 20 ± 0.7 and 18 ± 1.4% inhibition respectively. 

bFGF 

Addition of 0.5 nM bFGF to SMC resulted in a significant increase in GJIC to 
123% of control incubations at 24 h of exposure only (Fig. 3.4 A). At 30 h incubation, 
GJIC returned to control value, irrespective of addition of fresh bFGF containing culture 
medium after 6 h incubation (data not shown). Incubation of SMC with 2.0 and 4.0 nM 
bFGF for 24 h resulted in a further increase in GJIC; with a doubling of the number of 
communicating SMC at 4.0 nM (Fig. 3.4 B). 

Cytotoxicity 

To determine whether the observed effect on SMC GJIC was influenced by loss of 
membrane integrity upon incubation with growth factors or cytokines, LDH activity was 
measured in culture media and cell homogenates. No membrane cytotoxicity was 
observed in SMC cultures treated for 24 h with 0.5 or 2.5 nM IL-6, 0.5 or 0.7 nM 
PDGF-AA or PDGF-BB, or 0.5 nM IFN-7 (data not shown). Treatment of cells for 30 h 
with 0.5 nM bFGF did not cause membrane cytotoxicity either. Thus, these studies on 
GJIC were done at noncytotoxic concentrations. 
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Fig. 3.3. GJIC between human SMC upon incubation with 0.5 nM IL-6 (A), or 0.5 nM 
IFN-y (B) for the indicated periods of time. All values are mean ± SD. Average SD for 
control incubations was 3.2% (A) and 2.8% (B). * : Significantly different from control 
value. 
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SMC proliferation 

In a number of experiments, PDGF-AA, PDGF-BB, IL-6, bFGF, TNFa and IFN-
7 were able to stimulate SMC proliferation. In table 3.1 maximal absorbance values 
(percentages of control) are given for the incubations of SMC with growth factors and 
cytokines. However, a considerable inter-experimental variance was observed (data not 

44 



Chapter 3 

shown). In some 24 h incubations with growth factors and cytokines, no significant cell 

proliferation was observed compared to control incubations. In some other experiments, 

PDGF-AA and PDGF-BB could not induce cell proliferation, whereas the other growth 

modulating factors did stimulate SMC growth. Furthermore, the magnitude of the 

proliferative response varied strongly per experiment. In some experiments, TNFa and 

IFN-7 were the most potent factors tested; in other experiments the tested growth factors 

and cytokines seemed to be more or less equally potent. Experiments in which SMC were 

incubated for 72 h with the growth modulating factors also resulted in the above discussed 

forms of inter-experimental variance (data not shown). In our cell culture system, we 

never observed a suppression of SMC growth upon incubation with IFN-7. 

Table 3.1. 
Maximal absorbance values of SMC incubtions with growth factors and cytokines as 
measured in the MTT test after incubation with these factors for 24 h 

Growth factor / cytokine Absorbance 595 nm (% of control) 

PDGF-AA 118 + 13 a 

PDGF-BB 132 ± 17 a 

IL-6 109 ± 9 a 

bFGF 107 ± 9 a 

TNFa 140 ± 20 a 

IFN-7 1 4 4 ± 19 a 

Values are mean + SD (n=8). SD for control incubations varied from 2 to 8%. 
a: Significantly different from control value. 

Discussion 

The present study demonstrates that the growth modulating factors PDGF-AA, 
PDGF-BB, IL-6, bFGF and IFN-7 are able to modulate GJIC between primary human 
SMC. In the case of PDGF-AA, PDGF-BB and IL-6, a transient reduction in GJIC is 
observed. On the contrary, a transient increase in GJIC is seen in SMC incubated with 
bFGF. Furthermore, IFN-7 is shown to be a growth modulating factor capable of causing 
a persistent reduction in GJIC (>24 h). 

Time course effects of IFN-7 show a resemblance with the effects of TNFa on 
GJIC between human SMC (242). The -20% inhibition in GJIC caused by IFN-7 is, 
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however, lower than the -40% inhibition caused by TNFa, but both factors cause a 
persistent reduction in GJIC for at least 24 h. 

Maldonado et al. (211) reported that PDGF (isoform not mentioned) reduced GJIC 
at 20 min after growth factor application with 0 - 37%, depending on the cell type used. 
In a dose-response curve at 20 min after addition of PDGF, they observed a 37% 
inhibition of GJIC between BalbC 3T3 cells upon incubation with 0.6 nM PDGF. This 
corresponds well with the 35-40% inhibition in GJIC between SMC seen in our experi
ments upon incubation with 0.5 - 0.7 nM PDGF. Pelletier and Boynton (219) demonstra
ted however, that 0.3 nM PDGF-BB inhibits GJIC between C3H/10T1/2 cells almost 
completely after 40 min incubation. The transient nature of GJIC inhibition observed in 
our experiments upon PDGF exposure of SMC, shows a resemblance with the fast 
recovery of GJIC (within 70 min) between C3H/10T1/2 cells exposed to PDGF-BB, as 
described by these authors. 

The GJIC inhibitory activity of IL-6 appeared to be smaller than was observed for 
PDGF isoforms. In addition, time course experiments demonstrated a slower response of 
GJIC inhibition to IL-6 treatment. Only when high concentrations (2.5 or 5.0 nM) of IL-6 
were added to the cells, a quick response of GJIC inhibition within 1 h of exposure was 
observed. The slow response of GJIC inhibition at 0.5 nM IL-6 suggests that IL-6 may 
have an 'indirect' effect on GJIC as well, perhaps by changing the levels of other growth 
modulating factors in the SMC culture. For instance, it is known that IL-6 is able to 
stimulate PDGF production in SMC from rat aorta (148). 

In the present study only bFGF stimulated GJIC between SMC. bFGF appeared to 
be a potent modulator of GJIC in our study with a doubling of the number of communica
ting cells after 24 h of incubation with 4.0 nM bFGF. This result is comparable with 
results of Pepper and Meda (207) who demonstrated an increase in GJIC between 
endothelial cells upon incubation with bFGF. 

Our results demonstrate that the modulation of GJIC between SMC is growth 
factor and cytokine-specific. The reason for the different modulatory effects on GJIC by 
growth factors and cytokines is unknown, but may be associated with differences in signal 
transduction mechanisms. The signal transduction pathway after PDGF receptor activation 
on SMC is relatively well known. Inositol 1,4,5-triphosphate release, diacylglycerol 
production, calcium mobilization, activation of protein kinase C and changes in intracellu
lar pH have been reported (166,244,245), processes which may modulate GJIC by 
affecting the permeability of gap junction channels. Pelletier and Boynton (219) observed 
that inhibition of GJIC by PDGF-BB was dissociable from the PDGF receptor tyrosine 
kinase activity in C3H/10T1/2 cells. Furthermore, they found that PDGF treatment of 
these cells resulted in phosphorylation of the connexin 43 (Cx43) protein. Growth factors 
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may regulate GJIC at the level of connexin transcription, mRNA stability, translation and 
post-translational processing as well: bFGF treatment of endothelial cells resulted in an 
increase in Cx43 expression (207). Moreover, Kardami et al. (246) have shown that 
bFGF-like peptides are an integral part of, or exist in close association with gap junctions 
and may thus modulate GJIC. 

The biological consequences of the modulation of GJIC by PDGF-AA, PDGF-BB, 
IL-6, IFN-y and bFGF are not easily explainable. Extrapolation from these in vitro data 
to the in vivo situation is difficult, since in the in vitro assay, for instance, the arrange
ment of SMC will deviate from the organization of SMC in the vascular wall. Further
more, primary human SMC from umbilical cord arteries were used in our experiments, 
which may differ from more adult SMC in atherosclerotic plaques. Both the percentage of 
increase or decrease in GJIC and the duration of the effect caused by these growth 
modulating factors may be of importance in determining the relevance for the process of 
atherogenesis. Growth modulating factors like IFN-y and TNFa, that cause a persistent 
reduction in GJIC, are more likely to have impact on the disturbance of normal SMC pro
liferation than growth factors and cytokines which modulate GJIC only temporarily. 
However, growth factors and cytokines that cause only a temporal modulation of GJIC 
may be continuously present and the development of atherosclerotic lesions may take 
many years. 

In agreement with many reports in literature, PDGF-AA, PDGF-BB, IL-6, IFN-y, 
bFGF and TNFa all stimulated SMC proliferation in our hands using the MTT test. 
However, the mitogenic responses of the SMC varied considerably in experiments. This 
heterogeneity in SMC response with respect to cell proliferation has been reported before 
(245,247-251). Differences between 'SMC batches' may stem from their derivation from 
different individuals, variations in cell passage numbers and the possible interchange 
between the synthetic, secretory phenotype in which cells experience growth and 
proliferation, and the contractile, nonproliferating phenotype. Hall et al. (249) suggest 
that the heterogeneity in SMC cultures may also represent a heterogeneity of vascular 
SMC in vivo. This heterogeneity in vivo may reflect a specialization of function related to 
the location of SMC in the vascular tissue. These differences in SMC batches may result 
in differences in for instance SMC size, saturation density, synthesis of matrix compo
nents, cell surface receptor number and proliferation rate. Also, it is not unlikely that cell 
density influences the SMC proliferative response. 

Both in vivo and in vitro studies (77) demonstrated cell cycle-related changes in 
GJIC. The growth state of cells may influence junctional sensitivity (252). Accordingly, 
several reports suggest a link between modulation of GJIC and mitogenesis (76). 
Yamasaki et al. (253) report a relationship between increased cell proliferation and 
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decreased GJIC in a liver model. Chandross et al. (221), however, present data concer
ning the effect of transforming growth factor B (TGFG) and pituitary extract on GJIC and 
cell proliferation of Schwann cells, suggesting that factors which stimulate proliferation 
simultaneously enhance coupling, whereas factors that inhibit proliferation reduce GJIC. 
Our observations suggest a more complex relationship between modulation of GJIC and 
cell proliferation, since SMC mitogens may either reduce or enhance GJIC between these 
cells, depending on the growth factor or cytokine used. Observations in favour of this 
more complex relationship between GJIC and mitogenesis were previously reported by 
Madhukar et al. (214): epidermal growth factor acted as a mitogen on human keratinocy-
tes while TGFB seemed to suppress DNA synthesis, although both factors inhibited GJIC 
between these cells. The complex nature of the relationship between modulation of GJIC, 
cell proliferation and the process of atherosclerosis is further reflected by Rennick et al. 

(67) who observed that gap junctions, measured by means of Cx43 immunolabelling, are 
numerous between SMC of the synthetic phenotype, a state in which SMC may prolife
rate. Only a few gap junctions were found in SMC of the contractile phenotype, a state in 
which cell proliferation does not occur. Recently, Blackburn et al. (79) observed that 
early stages of human atherosclerosis are characterized by increased expression of 
immunodetectable Cx43 gap junctions in the intima. As the disease progresses, however, 
the quantity of junctions declines, ultimately to levels below those of the undiseased 
vessel. Unfortunately, nothing is known yet about the functionality of these immunodetec
table gap junction proteins. 

In conclusion, the results of our study clearly demonstrate that effects of SMC 
mitogens on GJIC are not univocal and thus cannot be generalized. Furthermore, the 
results indicate that it may be useful to separate transient and persistent effects on GJIC 
with respect to expected or predicted consequences. In atherosclerotic lesions a mixture of 
growth factors and cytokines will be present. Therefore, it is interesting to examine the 
interactive effects of combinations of growth modulating factors on GJIC between SMC, 
in order to mimic the in vivo situation more adequately. At the moment, this is further 
investigated in our laboratory. 
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Abstract 

Disturbance of smooth muscle cell (SMC) growth control is a key event in the 
pathogenesis of atherosclerosis. The present study demonstrates that combinations of 
mitogens exhibit interactive effects on gap junctional intercellular communication (GJIC) 
between human SMC. GJIC was dramatically reduced upon incubation with tumor 
necrosis factor a (TNFa) and interferon-y (IFN-7). Addition of basic fibroblast growth 
factor (bFGF) to this combination did not restore GJIC. When cells were exposed to a 
combination of TNFa and bFGF, control levels of GJIC were obtained which implies an 
antagonistic interactive effect. Combination of IFN-7 and bFGF resulted in reduced 
communication at roughly the level of IFN-7 incubations. When platelet-derived growth 
factor BB (PDGF-BB) was combined with TNFa and/or IFN-7, the reduction in GJIC 
upon incubation with these combinations of factors did not differ from the reduction 
provoked by TNFa and IFN-7 in the absence of PDGF-BB. Superoxide radicals were 
shown to be involved in the inhibition of GJIC upon incubation with TNFa, but play 
barely a role in IFN-7 incubations. Immunofluorescence studies revealed that connexin 43 
staining was reduced in SMC cultures incubated with a combination of TNFa and IFN-7. 
In conclusion, this study demonstrates that interactive effects of mitogens should be taken 
into consideration when studying growth control mechanisms of SMC. 
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Introduction 

Atherosclerotic lesions ('plaques') are characterized as focal thickenings of the 
intimal layer in the artery wall. In the course of the disease process, blood monocytes and 
lymphocytes infiltrate into the intima (3-6). Lesion progression is also accompanied by the 
indolent proliferation of smooth muscle cells (SMC) and macrophages (8-10), changes in 
extracellular matrix synthesis and accumulation of intra- and extracellular lipids (7,13). 

Disturbance of SMC growth control mechanisms is seen as a key event in the 
pathogenic process (29,32), in which growth factors and cytokines produced by macro
phages, lymphocytes and SMC may play a central role (24,87). Growth factors and 
cytokines bring about a form of intercellular communication through binding to specific 
receptors at the cell surfaces of nearby cells. Apart from this receptor-mediated signalling 
mechanism, direct intercellular communication occurs via gap junctions in plasma 
membranes. Through these plasma membrane channels ions, metabolites and other small 
molecules (<1000 D) can be exchanged between cells. Gap junctional intercellular 
communication (GJIC) is regarded as an important mechanism in the control of cell 
growth, cell differentiation and tissue homeostasis (69,76). Altered GJIC may affect the 
pathogenesis of atherosclerosis. Atherogens like oxidized low density lipoprotein (LDL), 
cigarette smoke condensate, oxysterols and aldehydes reduce GJIC between SMC (57-60). 
Modulation of GJIC is also likely to play an important role in the process of carcinogene
sis; in vitro and in vivo studies provide evidence for the involvement of GJIC in tumor 
promotion (71). 

Previous work (242,254) demonstrated that SMC mitogens known to be present in 
atherosclerotic lesions, such as platelet-derived growth factor A A (PDGF-AA), platelet-
derived growth factor BB (PDGF-BB), basic fibroblast growth factor (bFGF), interleukin 
6 (IL-6), interferon-7 (IFN-7) and tumor necrosis factor a (TNFa) are able to modulate 
GJIC between human vascular SMC, suggesting that receptor-mediated signalling and 
GJIC may be linked. Furthermore, we demonstrated that the action of growth factors and 
cytokines on GJIC between SMC is mitogen-dependent: incubation with PDGF-AA, 
PDGF-BB or IL-6 results in a transient reduction in GJIC; exposure to bFGF causes a 
transient increase in GJIC. IFN-7 and TNFa reduce GJIC for at least 24 h, suggesting 
that these two cytokines may share some mechanistic similarities with exogenous tumor 
promoters. 

In the SMC micro-environment of the atherosclerotic plaque a mixture of growth 
factors and cytokines will be present. This may result in interactive effects of these 
factors on SMC characteristics. The present study focuses on the interactive effects of 
combinations of mitogens on GJIC between SMC, in order to mimic the in vivo plaque 
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situation more adequately. Possible interactive consequences of these combinations of 
mitogens on proliferation of SMC were examined as well. In TNFa and IFN-y incuba
tions, the role of superoxide radicals in the inhibition of GJIC and the immunofluores
cence of connexin 43 (Cx43) were studied as well. 

Materials and methods 

Chemicals 

Recombinant human TNFa (molecular weight 36 kD; specific activity 7.69 x 107; 
1.08 x 108 and 1.43 x 108 U/mg) and recombinant human IFN-7 (molecular weight 34 
kD; specific activity batch-1: 2.5 x 107 U/mg; specific activity batch-2: 4.75 x 107 U/mg) 
were obtained from Genzyme Diagnostics (Cambridge, MA). PDGF-BB (molecular 
weight 30 kD), bFGF (molecular weight 17 kD), minimum essential medium (modified) 
with Earle's salts (EMEM), fetal bovine serum (FBS), gentamicin, fungizone and 10 x 
phosphate-buffered saline (PBS; without calcium and magnesium) were supplied by Gibco 
BRL (Paisley, UK). Superoxide dismutase (SOD; from bovine erythrocytes, specific 
activity 5000 U/mg) and cell proliferation kits based on 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyl tetrazolium bromide (MTT) reduction were purchased from Boehringer Mann
heim GmbH (Mannheim, Germany). Dulbecco's 'A' PBS was from Oxoid Ltd. (London, 
UK). Trypsin 1:250 was from Difco (Detroit, MI). Sodium pyruvate was from BDH 
Chemicals Ltd. (Poole, UK). A?-2-hydroxyethylpiperazine-A^-2-ethane sulfonic acid 
(HEPES), potassium phosphate, lithium chloride and methanol were purchased from 
Merck (Darmstadt, Germany). Triton X-100, Lucifer yellow CH and bovine serum 
albumin (BSA) fraction V were obtained from Sigma Chemical Co. (St. Louis, MO). 
Monoclonal mouse anti-Cx43 (clone Z039) was obtained from Zymed Laboratories Inc. 
(San Francisco, CA). Fluorescein isothiocyanate (FITC)-conjugated rabbit anti-mouse 
immunoglobulins and Dako Pen were purchased from DAKO A/S (Glostrup, Denmark). 
Vectashield mounting medium and normal rabbit serum (NRS) were supplied by Vector 
Laboratories (Burlingame, CA). Slides and coverslips were from Rofa-Mavi (Beverwijk, 
Netherlands). 

Culture of primary human SMC 

Primary human SMC were isolated from arteries of human umbilical cords by an 

explant technique. After careful removal of the adventitial layer, the arterial tissue was 

cut into small pieces. Explants were incubated in EMEM supplemented with 10% FBS, 

50 jug/ml gentamicin and 1.25 /ag/ml fungizone in a 37°C, 5% C02 humidified atmos-
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phere. Cells were allowed to grow for 3-4 weeks until subculturing. Cells displayed the 

well known 'hills and valleys' pattern after reaching confluence (243). Experiments were 

performed on cells in passage 2-5. 

Experimental procedure 

For measurement of GJIC, SMC were grown in 35 mm culture dishes (Greiner 
B.V., Alphen a/d Rijn, Netherlands) until confluency. Serum containing culture medium 
was removed whereafter cells were washed with PBS (Oxoid). EMEM supplemented with 
antibiotics and 0.1 - 0.5 % BSA was added to the cells. Cells were then incubated with 
the growth modulating factors for the indicated periods of time. Some results in table 4.3 
were obtained in incubations in which cells were exposed to IFN-7 for 24 h; during the 
last hour of this incubation several concentrations of TNFa were added to these cells as 
well. Just prior to GJIC measurement, HEPES buffer (pH 7.4) was added to the incuba
tions (final concentration 20 mM) to stabilize the pH during microinjection and fluores
cence microscopy. 

Measurement of GJIC 

GJIC was determined after microinjection of a 20% Lucifer yellow CH (in 0.33 M 
lithium chloride) solution in a single cell (223). In each SMC culture at least 20 indivi
dual cells were microinjected using a vertical injection system (Olympus Injectoscope 
IMT-2-syf) (224) with a dye filled capillary glass tip (Clark, Pangbourne, UK). The 
capillary glass tip was prepared using an automatic magnetic puller (Narishige, Tokyo, 
Japan) with a tip diameter of 1 pirn. The Lucifer yellow CH filled cells were checked with 
phase-contrast and fluorescence microscopy directly after microinjection. Fifteen to 
twenty minutes after the first injection the number of communicating cells was determined 
using fluorescence microscopy. The average number of fluorescent cells was calculated 
for each incubation. The average number of communicating cells in control incubations 
was taken as 100% GJIC. Each experiment was performed in duplicate. At least two but 
predominantly three or more independent tests were done. Data presented are the average 
values of the performed tests. 

Cytokine batch differences in measurement of GJIC 

In agreement with our previous work (242), two separate TNFa batches which 
were generally used in the experiments described in this paper, inhibited GJIC between 
SMC with —40% at 0.5 nM (data not shown). However, in a few additional experiments 
with 0.5 nM of a 'deviant' batch of TNFa, only —20% inhibition of GJIC was observed 
(data not shown). The cause for these quantitative differences in effect is not clear. While 
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performing experiments with bFGF in combination with IFN-7, we were faced with 
differences between two IFN-Y batches as well. 1 h incubations with 0.5 nM of either 
IFN-7 batch alone resulted in a 20% reduced GJIC between SMC. However, when SMC 
were incubated for 24 h with these IFN-7 batches, dissimilarity occurred. 0.5 nM IFN-y 
batch-1 inhibited GJIC still 20%, whereas the same concentration of batch-2 resulted in a 
much stronger reduction in GJIC of approximately 50% (data not shown). The cause for 
this discrepancy in effects is not clear. The relatively high SD (13.7%) for 24 h incuba
tions with 0.5 nM IFN-7 batch-2 may indicate that perhaps the 'age' of IFN-7 stock 
solutions (in PBS/BSA, stored at -80°C) contributes to this phenomenon. At first use, 24 
h incubations with IFN-7 batch-2 inhibited GJIC for almost 70%. Via 50% inhibition, its 
potency to reduce GJIC diminished to 40% within 6 weeks of time. The fact that IFN-7 
batch-1 was supplied by the manufacturer as a solution, whereas batch-2 was obtained as 
a lyophilized powder is in agreement with this hypothesis. 

Cell proliferation assay 

SMC (2000 - 5000) were plated (n > 16) in serum containing culture medium in 

96 wells microtiter plates (tissue culture grade, Greiner B.V., Alphen a/d Rijn, Nether

lands); 100 ix\ medium per well. After attachment of these cells (for at least 4 h), the 

culture medium was removed. Cells were then incubated with EMEM supplemented with 

antibiotics and 0.5% BSA. Growth factors and/or cytokines were added subsequently to 

the cells (day 1). The media were replaced on day 5 of incubation. Growth factors and/or 

cytokines were added to culture medium containing antibiotics and 2% FBS, whereafter 

cells were exposed to these factors for three more days. On day 8, SMC were incubated 

with the MTT solution and solubilization buffer, according to the instructions of the 

manufacturer. On day 9, the formazan dye formed in these cells was quantified by 

reading the absorbance at 595 nm, using a Thermomax microplate reader (Molecular 

Devices, Sunnyvale, CA). 

Immunofluorescence assay 

SMC were cultured on glass slides until these cells made substantial (membrane) 
contacts with neighbouring cells. Then, cells were exposed for 24 h to EMEM with 
antibiotics and 0.5% BSA (control) or to this medium completed with 0.5 nM TNFa 
and/or 0.5 nM IFN-7. After these incubations, cells were washed twice with PBS 
(Oxoid). Then, cells were fixed for 5 min in ice-cold methanol. Cells were dried at room 
temperature and stored at 2-8 °C. Fixed cells were subsequently put in PBS for 5 min, 
followed by treatment with 0.2% Triton X-100 in PBS for 1 h. From these two incuba
tions onward, PBS without calcium and magnesium (Gibco) was used. Then, the cells 
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were rinsed in PBS and incubated with 2% BSA in PBS for 30 min. After washing in 
PBS, the cells were incubated overnight with the monoclonal anti-Cx43 antibody (1:1000 
in 10% NRS in PBS) at room temperature. Subsequent washing in PBS (3 changes of 5 
min), incubation with 2% BSA in PBS (30 min) and another washing step in PBS prece
ded a 3 h incubation with the polyclonal FITC-conjugated rabbit-anti-mouse antibodies 
(1:20 in 10% NRS in PBS) at room temperature. After washing in PBS (3 changes of 5 
min), cells were enclosed in vectashield and coverslips were applied. Slides were stored 
at 2-8 °C until examination with a Nikon optiphot-2 with photo-attachment, equipped with 
appropriate filters for epifluorescence. Photographs were taken using a Kodak 3200 asa 
tmz film. Exposure time was ± 25 sec. Quantification of fluorescence was performed on 
scanned negatives (Horizon scanner, Agfa, Germany; 1000 dpi, 1350 x 870 pixels). 
Fluorescent objects were defined as a minimum of 4 pixels (programme NIH 1.6.0). 
Thus, 1 - 3 pixels were regarded as noise to correct for the granularity of the film. 
Tresholds were 155 (gray) - 255 (black). 

Cytotoxicity assay 

SMC were grown in six-well tissue culture plates (Costar Europe Ltd., Badhoeve-
dorp, Netherlands). When confluent, cells were incubated as for GJIC measurement. 
After treatment, media were taken from the wells and were centrifuged. Cells were 
scraped from the bottom of the wells after addition of 0.5% Triton X-100 in 0.1 M 
phosphate buffer, pH 7.5, followed by a sonification step in ice water (5 min, Sonorex 
RK 100 (Bandelin GmbH, Berlin, Germany)) and a centrifugation step. Lactate dehydro
genase (LDH) activity was measured in the supernatants (225) and LDH leakage was 
calculated. Each experiment was performed in duplicate and at least two independent tests 
were done. 

Statistics 

Statistical analyses of the data were performed using Students f-test (P < 0.05). 

Results 

Smooth muscle cell GJIC 

Primary human SMC from umbilical cord arteries display a distinct GJIC 
(242,254). In the experiments described here, Lucifer yellow spread over an average of 
38 - 95 cells in control incubations. Differences in the number of communicating SMC in 
separate experiments may result from SMC heterogeneity between cultures and may also 
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depend on SMC density at confluence. 

With the exception of the experiments concerning the combination of IFN-y and 

bFGF, SD for duplicate incubations in separate experiments generally did not exceed 10% 

and were often much less. 

Combination of TNFa and bFGF 

Addition of 0.5 nM TNFa in combination with 0.5 or 2.0 nM bFGF to human 
SMC for 24 h gave rise to GJIC values that did not differ from control values (table 4.1). 
The GJIC values of the combined exposures differed significantly from those obtained 
upon incubation with 0.5 nM TNFa or 0.5/2.0 nM bFGF alone for 24 h. Thus, at 24 h, 
effects of TNFa and bFGF on GJIC seem to counteract each other. Upon 30 h incubation 
of SMC with the combination of 0.5 nM TNFa and 2.0 nM bFGF, GJIC was significant
ly reduced as compared to control values (table 4.1). This reduction of —34% corres
ponds well with the reduction caused by incubation with 0.5 nM TNFa alone, indicating 
that bFGF at 30 h of incubation apparently does not affect GJIC anymore. 

Table 4.1 
GJIC (% of control) upon incubation of human SMC with TNFa and bFGF 

exposure time (h) GJIC (%) 

0.5 nM TNFa 

0.5 nM bFGF 

2.0 nM bFGF 

0.5 nM TNFa + 0.5 nM bFGF 

0.5 nM TNFa + 2.0 nM bFGF 

0.5 nM TNFa + 2.0 nM bFGF 
Average SD for control incubations was 2.8%. GJIC values from incubations with TNFa and bFGF 
alone were reproduced from our previous reports (242,254). a: significantly different from control 
incubations, b: significantly different from incubations with 0.5 nM TNFa + 2.0 nM bFGF for 24 
h. 

Combination of IFN-y and bFGF 

The interpretation of the interactive effects of IFN-y and bFGF on GJIC between 
SMC is difficult, due to the IFN-y batch differences (see materials and methods section). 
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The combination of 0.5 nM IFN-7 batch-1 with 0.5 nM bFGF for 24 h resulted in a 
significant reduction in GJIC of 38% as compared to control values (table 4.2), which 
was significantly different from incubations with IFN-7 batch-1 or bFGF alone. However, 
this 38% reduction in GJIC does not differ significantly from the 32% reduction in GJIC 
which was observed in incubations with 0.5 nM IFN-7 batch-1 in combination with 2.0 
nM bFGF. When compared to incubations with IFN-7 batch-1 alone, the combination of 
0.5 nM bFGF and 0.5 nM IFN-7 batch-1 significantly further decreased GJIC, whereas 
the combination of 2.0 nM bFGF and 0.5 nM IFN-7 batch-1 did not. Experiments with 
bFGF in combination with IFN-7 batch-2 gave rise to somewhat different results. Upon 
combination of these factors, GJIC decreased to the level of inhibition observed in 
experiments with IFN-7 batch-2 alone. However, a non-significant increase in GJIC was 
observed when combinations of IFN-7 batch-2 and 2.0 nM bFGF were compared with 
combinations of IFN-7 batch-2 and 0.5 nM bFGF (table 4.2). Although it is difficult to 
interpret these varying results, the overall effect of combinations of IFN-7 with bFGF 
differed from the effect of TNFa and bFGF combinations. TNFa and bFGF were able to 
counteract each others effect, while in IFN-7 and bFGF combinations this did not seem to 
occur consistently. 

Table 4.2 
GJIC (% of control) upon 24 h incubation of human SMC with IFN-7 and bFGF 

0 nM IFN-7 

0.5 nM IFN-7 
batch-1 

0.5 nM IFN-7 
batch-2 

0.5 nM IFN-7 
batch-1/2 

0 nM bFGF 

100 

80.6 ± 2.3 a.c 

48.0 ± 13.7 a,c 

0.5 nM bFGF 

122.6 ± 2.6 a,b 

61.9 ± 5.2 a,b,c 

51.4 ± 5.9 a,c 

57.7 ± 7.5 a.c 

2.0 nM bFGF 

139.0 ± 3.7 a.b 

68.3 + 11.9 a,c 

69.5 ± 17.2 a,c 

69.1 + 14.9 a,c 

Average SD for control incubations was 13.6%. GJIC values from incubations with IFN-7 and 
bFGF alone were reproduced from our previous report (254). a: significantly different from control 
incubations, b: significantiy different from IFN-7 incubations, c: significantly different from bFGF 
incubations. 
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Combination of TNFa and IFN-y 

Addition of 0.5 nM IFN-7 for 24 h, combined with 1 h additions of several 
concentrations of TNFa resulted in significant reductions in GJIC between SMC (table 
4.3). At 0.5 nM for both factors, GJIC was reduced to 43% as compared to control 
values. When the IFN-7 concentration increased to 1.5 nM under the same experimental 
conditions, no extra inhibition of GJIC was observed. A similar, - 57% reduction in 
GJIC between SMC was also established when these cells were exposed to the combina
tion of 0.5 nM IFN-7 and 0.5 nM TNFa for only 1 h. Upon simultaneous addition of 0.5 
nM TNFa and 0.5 nM IFN-y for 24 h, GJIC between human SMC was vigorously 
reduced. Only 14% GJIC was left between these cells, which was significantly different 
from control values and from exposures to TNFa, IFN-7 batch-1 or -2 alone (table 4.3). 
In series of additional experiments with a 'deviant' batch of TNFa (see materials and 
methods section), the simultaneous exposure of SMC to 0.5 nM TNFa and 0.5 nM IFN-7 
batch-2 for 24 h resulted in a GJIC of 30.5 + 2.6%. Although this - 70% reduction in 
GJIC is still considerable, the reduced capacity of this batch of TNFa concerning GJIC 
inhibition is clearly expressed even in combination with IFN-7. Overall, the effects of 
IFN-7 in combination with TNFa on reduction of GJIC may be described as arithmetical
ly additive, since the effect of the combination (at 0.5 nM -57% inhibition) is similar to 
the sum of both individual effects (at 0.5 nM -40% and -20% inhibition for TNFa and 
IFN-7 batch-1 respectively). In addition, when TNFa and IFN-7 were combined for 24 
h, the strong reduction (-86%) in GJIC resembled additive (compared to IFN-7 batch-2) 
or even synergistic (compared to IFN-7 batch-1) effects. 

To determine whether the strong reduction in GJIC upon 24 h incubation with 0.5 
nM TNFa and 0.5 nM IFN-7 was (partly) due to loss of membrane integrity, LDH 
activity was measured in culture media and cell homogenates. No membrane cytotoxicity 
was observed upon 24 h of incubation with a combination of these cytokines. Values of 
LDH activity in cell homogenates after exposure varied between 93 and 101% of control 
values (average value 98%, data not shown). These cytokines may however have 
influenced the viability of SMC in another way. It was previously reported (118) that the 
combination of TNFa and IFN-7 may induce apoptosis in (subpopulations of) cultured 
human SMC. To exclude a possible dominating influence of apoptosis on the strong 
inhibition of GJIC upon incubation with TNFa and IFN-7 together, 'restoration' 
experiments were carried out. SMC were incubated with 0.5 nM TNFa and 0.5 nM IFN-
7 for 24 h. Then, cells were washed with PBS and incubated with control (BSA) medium 
for another 24 h, whereafter GJIC was measured. These SMC communicated at the same 
level as control cells; that is 100.1 ± 2.8%. Thus, apoptosis does not underlie the 
observed strong reduction of GJIC upon exposure to these cytokines as well. In addition, 
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no morphological changes between control cells and exposed cells were observed in the 
great majority of the experiments performed with IFN-7 in combination with TNFa. In a 
couple of experiments however, a few cells could have been apoptotic: they shrank and 
retracted from their neighbour cells. In the direct area around these cells, no microinjec
tion of Lucifer yellow was performed. 

Combination of TNFa, IFN-y and bFGF 

When human SMC were exposed to combinations of TNFa, IFN-7 and bFGF for 
24 h, GJIC was again strongly reduced to a level comparable to 24 h incubations with 
TNFa and IFN-7 (80 - 86% inhibition, table 4.3). Thus, addition of bFGF to the 
combination of TNFa and IFN-7 did not restore GJIC even a bit. In this combination of 
three cytokines, effects on GJIC are not simply (arithmetically) additive, since an extra 
effect of bFGF, compared to incubations of IFN-7 together with TNFa, could not be 
observed. No membrane cytotoxicity was observed when cells were incubated with the 
combination of 0.5 nM TNFa, 0.5 nM IFN-7 and 2.0 nM bFGF: LDH activity in cell 
homogenates varied between 97 and 99% of control values (data not shown). 

Combination of PDGF-BB and TNFa and/or IFN-y 

One hour incubations with 0.5 nM PDGF-BB reduced GJIC between SMC signifi
cantly to 72.9 + 5.5%, as compared to control cells. When 0.5 nM PDGF-BB was 
combined with 0.5 nM TNFa for 1 h, GJIC was reduced to - 6 3 % as compared to 
control incubations (Fig. 4.1); a value similar to the decrease in GJIC caused by 0.5 nM 
TNFa alone. The combination of 0.5 nM PDGF-BB and 0.5 nM IFN-7 for 1 h reduced 
GJIC values between these cells with —20% of control values (Fig. 4.1). This reduction 
in GJIC is comparable with the inhibition of GJIC caused by IFN-7 alone. Approximately 
55 % reduction in GJIC was obtained when SMC were incubated with the combination of 
0.5 nM PDGF-BB, 0.5 nM TNFa and 0.5 nM IFN-7 for 1 h (Fig. 4.1). This decrease in 
GJIC is significantly different from GJIC inhibition as a result of TNFa, IFN-7 or 
PDGF-BB incubations alone, but does not differ from the reduction in GJIC caused by the 
combination of 0.5 nM TNFa and 0.5 nM IFN-7 for 1 h (see also table 4.3). Thus, 
effects of PDGF-BB in combination with TNFa and/or IFN-7 are not arithmetically 
additive. However, it cannot be concluded yet that antagonism underlies the observed 
effects, since TNFa and IFN-7 were used in concentrations that inhibited GJIC maximal 
when administered alone (242,254). As a consequence, intracellular processes involved 
may already have functioned at their maximum. 

58 



. Chapter 4 

Table 4.3 

GJIC (% of control) upon incubation of human SMC with TNFa, IFN-7 and bFGF 

exposure time (h) GJIC (%) 

0.1 nM TNFa 

0.5 nM TNFa 

1.0 nM TNFa 

0.5 nM IFN-7 

1 69.5 ± 5.2 a 

1 60.5 ± 2.6 a 

1 60.5 + 5.7 a 

1 81.5 + 2.4 a 

0.5 nM TNFa 

0.5 nM IFN-7 

0.5 nM bFGF 

2.0 nM bFGF 

24 

24 

24 

24 

65.0 + 2.1 a 

80.6 + 2.3 a 

122.6 + 2.6 a 

139.0 + 3.7 a 

0.5 nM IFN-7/O.I nM TNFa 

0.5 nM IFN-7/O.5 nM TNFa 

0.5 nM IFN-7/I.O nM TNFa 

1.5 nM IFN-7/O.5 nM TNFa 

0.5 nM IFN-7/O.5 nM TNFa 

24/1 57.5 ± 6.8 a,b,c 

24/1 43.4 ± 2.6 a,b,c 

24/1 43.4 ± 4.0 a,b,c 

24/1 43.6 ± 4.9 a,b,c 

1 43.3 ± 3.1 a,b,c 

0.5 nM IFN-7/O.5 nM TNFa 24 

0.5 nM IFN-7/O.5 nM TNFa/0.5 nM bFGF 24 

14.4 + 3.6a.b.c 

20.6 + 9.3 a,b,c,d,e,f 

0.5 nM IFN-7/O.5 nM TNFa/2.0 nM bFGF 24 14.5 + 8.9 a,b,c,d,e,f 

Average SD for control incubations was 2.5 - 10.2%. (Estimates ot) GJIC values from incubations 

with TNFa, IFN-7 and bFGF alone were reproduced from our previous reports (242,254). IFN-7 

batch-1 was used in these experiments, except for the 24 h incubations of IFN-7 in combination 

with TNFa in which both IFN-7 batch-1 and IFN-7 batch-2 were used, a: significantly different 

from control incubations, b: significantly different from TNFa incubations, c: significantly different 

from IFN-7 incubations, d: significantly different from bFGF incubations, e: significantly different 

from 24 h incubations with TNFa + bFGF, f: significantly different from 24 h incubations with 

IFN-7 + bFGF. 

59 



Chapter 4 

so i 
c 
o 
o 60 

^- 40 h 
o 

20 

- ^ T 

^ f - ^ E -

TNF IFN TNF + IFN 

Fig. 4.1. GJIC (% of control) upon 1 h incubations of human SMC with PDGF-BB, 
TNFa and IFN-7. Dotted (grey) bars represent incubations with 0.5 nM TNFa and/or 
0.5 nM IFN-7, which are partly reproduced from our previous reports (242,254). Open 
bars represent these incubations of TNFa and/or IFN-7 in combination with 0.5 nM 
PDGF-BB. Average SD for control incubations was 2.2%. IFN-7 batch-1 was used in 
these experiments, a: significantly different from control incubations. 

Incubations with SOD 

In a preceding paper (242) we reported that free radical production by SMC might 
play a role in the observed reduction in GJIC caused by TNFa, since pretreatment of 
these cells with ascorbic acid, a-tocopherol or glutathione (GSH) prevented this inhibition 
of GJIC. In order to study whether this radical based inhibition of GJIC is a unique 
feature for TNFa and to gain more insight in the radical species involved, we studied the 
effect of SOD on TNFa and/or IFN-7 induced reduction of GJIC. 

When administered alone, SOD did not affect GJIC (table 4.4). Addition of 200 
U/ml SOD simultaneously with TNFa for 1 h prevented the inhibition of GJIC between 
SMC which occurs upon incubation with TNFa alone (table 4.4). When SMC were 
pretreated with 0.5 nM TNFa for 1 h and 200 U/ml SOD was added subsequently to this 
TNFa incubation for another hour, GJIC returned to control values: 96.8 ± 2.5% (data 
not shown). This amount of SOD was still able to shift GJIC values back to control levels 
when SMC were incubated with 0.5 nM TNFa for 23 h prior to the 1 h addition of SOD 
(table 4.4). Thus, the superoxide radical seems to be involved in GJIC reduction by 
TNFa, since incubation with SOD, even hours after the addition of TNFa, restored GJIC 
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to control values. The effect of SOD on IFN-7 incubations was more complex. Upon 1 h 
incubation with IFN-7, 200 U/ml SOD significantly elevated GJIC values with ~ 10% as 
compared with IFN-7 GJIC values (table 4.4). However, 1 h exposures of SOD could not 
(partly) restore the inhibition of GJIC between SMC in 24 h incubations with IFN-7. The 
combination of 0.5 nM TNFa, 0.5 nM IFN-7 and 200 U/ml SOD for 1 h gave rise to a 
GJIC value that corresponds with the value obtained in incubations with IFN-7 and SOD 
for 1 h: 89.0 ± 4.6% (data not shown). Finally, when 24 h incubations of 0.5 nM TNFa 
together with 0.5 nM IFN-7 were completed with an one hour incubation of as much as 
1000 U/ml SOD, the antioxidant enzyme could not even partly neutralize the strong 
inhibition of GJIC caused by these cytokines (data not shown). 

Table 4.4 
GJIC (% of control) upon incubation of human SMC with TNFa or IFN-7 and SOD 

time (h) exposure 

1 TNFa 

24 TNFa 

1 IFN-7 81.5 ± 2.4 a 91.4 ± 4.8 a,c 

24 IFN-7 80.6 ± 2.3 a 75.1 ± 4.3 a 

SOD was added during the last hour of the incubations at 200 U/ml. Concentrations of TNFa and 
IFN-7 were 0.5 nM. Average SD for control incubations in various sets of experiments did not 
exceed 5.6%. GJIC values from incubations with TNFa and IFN-7 alone were reproduced from our 
previous reports (242,254), except for 24 h incubations with TNFa since the 'deviant' batch of 
TNFa (see materials and methods section) was used in these 24 h experiments. Both IFN-7 batch-1 
and IFN-7 batch-2 were used in these experiments, a: significantly different from control incuba
tions, b: significantly different from TNFa incubations, c: significantly different from IFN-7 
incubations. 

Immunofluorescence studies 

Incubation of SMC with 0.5 nM TNFa in combination with 0.5 nM IFN-7 for 24 
h resulted in a reduced Cx43 immunostaining with monoclonal anti-Cx43 as compared 
with untreated cells. In Fig. 4.2 the results of three independent experiments are shown. 
In 'valley' regions of control SMC (Fig. 4.2 A,C,E) the fluorescent Cx43 spots are 

61 

GJIC (%) 
-SOD 

100 

60.5 ± 2.6 a 

82.0 ± 3.1 a 

GJIC (%) 
+SOD 

99.0 ± 5.3 b,c 

98.2 ± 6.4 b 

96.2 ± 3.1 b 



Chapter 4 

frequent. Upon incubation with the combination of TNFa and IFN-7, the amount of 
fluorescent spots decreased in valley regions, as can be seen in Fig. 4.2 (B,D,F). 
However, in the so called 'hill' regions where SMC display a crowded multilayer growth 
pattern, Cx43 fluorescence was strongly present in both control and cytokine incubations 
(data not shown). The number of fluorescent objects in valley regions of Fig. 4.2 were 
quantified (table 4.5). The difference between control cells and exposed cells was evident, 
although the reduction in fluorescence differed per experiment. Exposure of SMC with 
0.5 nM TNFa for 24 h did not seem to affect Cx43 staining compared to control 
incubations (data not shown). Cx43 staining upon incubation of SMC with 0.5 nM IFN-7 
for 24 h did not give simple univocal results (data not shown). 

SMC proliferation 

The individual factors TNFa, IFN-7, bFGF and PDGF-BB all stimulated SMC 
proliferation. In table 4.6 absorbance values (as indicator of cell proliferation) are given 
for the incubations of SMC with these mitogens. Furthermore, several combinations of 
mitogens were tested for growth promoting activity as well. The results (table 4.6) show 
that all combinations tested stimulated SMC proliferation significantly in comparison with 
control cells. Because of the absence of dose-response curves for the individual factors 
and inter-experimental variance however, it is not possible to make a statement with 
regard to possible interactive effects of these factors on cell proliferation. This is clearly 
demonstrated in incubations with the combinations of TNFa and IFN-7 or TNFa and 
PDGF-BB. Exposure to the combination of TNFa and bFGF gave rise to somewhat more 
univocal results. These incubations may result in decreased SMC proliferation as 
compared to incubation with bFGF alone. Regarding the combination of IFN-7 and 
bFGF, we noticed that in four incubations, SMC proliferation was more or less equal or 
reduced compared with cell proliferation as a result of incubation with IFN-7 or bFGF 
alone. In two incubations however, SMC proliferation was somewhat increased compared 
to the incubations with the individual factors. The combination of PDGF-BB and IFN-7 
seemed to induce SMC proliferation more or less comparable with the induction by IFN-7 
alone. 

Fig. 4.2. Cx43 immunofluorescence in valley regions of human SMC cultures. Three 
independent tests were done. Photographs A, C and E represent control incubations; 
photographs B, D and F represent the corresponding incubations with 0.5 nM TNFa in 
combination with 0.5 nM IFN-7. Bar = 31 jum 
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Table 4.5 
Quantification of fluorescent objects (arbitrary units) in valley regions of human SMC as 

photographed in figure 4.2 

control TNFa/IFN-7 decrease 

A: 1956 B: 1200 36% 

C: 834 D: 343 59% 

E: 302 F: 47 84% 

Cells were incubated with control (BSA) medium or with 0.5 nM TNFa in combination with 0.5 

nM IFN-7 for 24 h. 

64 



Chapter 4 

Table 4.6 
Absorbance values {% of control) of SMC incubations with growth factors and cytokines 
as measured in the MTT test. 

exposure 

control 

test 1 

100 + 8 

test 2 

100 ± 6 

test 3 

100 ± 7 

test 4 

100 ± 8 

0.5 nM TNFa 

0.5 nM IFN7 

0.5 nM bFGF 

2.0 nM bFGF 

0.5 nM PDGF-BB 

112 + 5 

123 ± 8 

129 + 5 

129 ± 6 

117 ± 6 

113 + 7 

120 ± 5 

134 ± 5 

133 ± 6 

127 + 4 

117 + 6 

123 ± 5 

113 + 5 

113 + 5 

110 ± 7 

107 ± 10 

126 ± 7 

0.5 nM TNFa + 

0.5 nM IFN7 

0.5 nM TNFa + 

0.5 nM bFGF 

0.5 nM TNFa + 

2.0 nM bFGF 

0.5 nM IFN7 + 

0.5 nM bFGF 

0.5 nM IFN7 + 

2.0 nM bFGF 

134 ± 11 

a,b 

123 ± 5 

a,c 

115 ± 6 

c 

136 ± 5 

b,c 

124 ± 5 

c 

125 + 7 

a,b 

121 ± 6 

a,c 

122 ± 6 

a,c 

131 ± 8 
b 

129 ± 5 

b,c 

109 ± 8 

a,b 

115 + 7 

115 ± 8 

128 ± 8 

b,c 

124 + 8 

c 

163 + 9 

a,b 

0.5 nM TNFa + 127 + 5 123 ± 7 116 + 9 
0.5 nM PDGF-BB a,d a,d d 

0.5 nM IFN-y + 124 ± 5 118 ± 7 1 1 8 + 9 
0.5 nM PDGF-BB d d b,d 

In~aTriour~ex^nments: n > 16. All growth factor- and cytokine incubations were significantly 

different from control incubations, a: significantly different from TNFa incubation; b: significantly 

different from IFN7 incubation; c: significantly different from bFGF incubation; d: significantly 

different from PDGF-BB incubation. 
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Discussion 

The present study demonstrates for the first time that combinations of growth 
factors and cytokines exhibit interactive effects on GJIC between human SMC. These 
interactive effects may be described as either antagonistic, additive or even synergistic, 
depending on the combination of factors tested. When TNFa was combined with IFN-7, 
GJIC between SMC was strongly reduced with 57% (1 h) or 86% (24 h). Addition of 
bFGF for 24 h to this combination of TNFa and IFN-7 did not restore GJIC even a bit. 
A consequence of this 80 - 86% inhibition of GJIC was that in some experiments a 
number of SMC did not communicate with neighbouring cells at all. That is, only the 
injected cell itself was fluorescent upon examination. This may result in an escape from 
growth control mechanisms which, in turn, may lead to disturbance of SMC proliferation, 
a key event in atherosclerosis. When TNFa and bFGF were combined for 24 h, they 
counteracted each others effects on GJIC to values corresponding with control communi
cation. The mechanism of this TNFa-bFGF interaction on GJIC may probably be best 
described as antagonism. In contrast to the combination of TNFa with bFGF, no major 
counteracting effects were observed on GJIC inhibition by combinations of IFN-7 and 
bFGF for 24 h. Finally, addition of PDGF-BB to TNFa and/or IFN-7 for 1 h did not 
influence the reduction in GJIC which was obtained by TNFa and/or IFN-7 as such. 
More research is needed to evaluate these growth factor and cytokine interactions 
properly. SMC should be exposed to mixtures of non-saturating concentrations of 
individual factors, in order to obtain dose-response data that would allow more insight 
about the nature of interactions and the mechanisms involved. 

Studies with SOD demonstrated that the superoxide radical may be involved in 
GJIC reduction by TNFa, since incubation with SOD, even hours after the addition of 
TNFa, restored GJIC to control values. This observation is consistent with our previous 
work, in which we demonstrated that pretreatment of SMC with ascorbic acid, a-
tocopherol or GSH prevented the TNFa-induced inhibition of GJIC (242). Experiments 
with SOD previously revealed that superoxide radicals may be involved in GJIC inhibition 
upon incubation with exogenous chemicals, like phenobarbital, as well (233,255). The 
apparent production of superoxide radicals by SMC in our experiments is in agreement 
with the generation of these radicals by human fibroblasts upon exposure to TNFa (256). 
Furthermore, SOD partly restored IFN-7 effects on GJIC in the short- but not in the long 
term. When SMC were incubated with TNFa and IFN-7 simultaneously for 24 h, high 
levels of SOD could not even partly counteract the strong inhibition of GJIC caused by 
these cytokines. Thus, other mechanisms may affect GJIC more predominantly in long 
term incubations with TNFa and IFN-7. 
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One such mechanism may be represented by the reduced Cx43 staining which was 
observed in immunofluorescence studies on SMC cultures incubated with TNFa and IFN-
7 for 24 h. Further research has to establish whether this reduced immunostaining results 
from reduced Cx43 expression, or if Cx43 epitope presentation is affected by functional 
modifications or protein-Cx43 interactions. The difference in Cx43 fluorescence between 
control cells and cells exposed to TNFa and IFN-y was evident, although the reduction in 
fluorescence differed per experiment. These differences may be due to the heterogeneity 
between these cultures of primary human SMC (254). Alternatively, these differences 
may originate from differences in the ratio between the amount of cytokines and SMC. 
This ratio may explain the Cx43 fluorescence in exposed hill regions as well. 

TNFa, bFGF, IFN-7 and PDGF-BB all stimulated SMC proliferation, as indivi
dual factors as well as in combinations. Unfortunately, not much can be said regarding 
the nature of interactive effects on cell proliferation, since a considerable inter-experimen
tal variance was observed. In general, SMC proliferation was not extra induced by the 
addition of a second mitogen. Although comparison of GJIC and cell proliferation is faced 
with some difficulties, for instance the different time scales of the two types of experi
ments, the present results indicate that the relationship between GJIC and cell prolifera
tion may be complex as we stated before (254). 

Variations in SMC responses, concerning for instance the absolute number of 
communicating SMC in control incubations, the reduction of Cx43 fluorescence upon 
incubation with TNFa and IFN-7 and the differences in cell proliferation may represent 
matters inherent to SMC culturing. Differences in SMC 'batches' (254) or SMC pheno-
types (257) and differences in cell densities (because plating efficiences and growth rates 
cannot be accurately predicted (108)) may underlie these variations. 

We can only speculate about the intracellular mechanisms of the described 
interactive effects. We restricted our reflections to the combinations of TNFa/bFGF, 
TNFa/IFN-7 and TNFa/IFN-7/bFGF, since marked effects were observed in these 
incubations. When TNFa was combined with bFGF, GJIC seemed to be antagonistically 
influenced by both factors. The 'overall' result of the simultaneous exposure to TNFa and 
bFGF may be a simple addition of two unrelated mechanisms. When bFGF exposure, for 
instance, elevates Cx43 levels in SMC analogous to its action in endothelial cells (207), 
more gap junctions may be formed which may elevate GJIC. However, due to the action 
of TNFa, a substantial part of these 'extra' channels may be closed. Several other 
phenomena concerning TNFa-bFGF interactions have been reported. TNFa is likely to 
increase the number of heparin-binding (fibroblast) growth factor receptors on human 
SMC (102) and may therefore influence the binding of bFGF on SMC. Hydrogen 
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peroxide, which may be formed out of superoxide radicals upon incubation with TNFa or 
which may be produced upon bFGF induction of SMC (176), has been demonstrated to 
strongly increase the affinity of bFGF for its receptor at the cell surface of SMC (258). 
Furthermore, TNFa is able to induce 2'-5'oligoadenylate synthethase in SMC (98). This 
may lead to degradation of RNA and reduced protein synthesis (129), which in turn may 
affect Cx43 expression. Concerning SMC proliferation, our results may correspond to 
those of others who observed antagonism between TNFa and bFGF on endothelial cell 
growth (109). However, TNFa alone inhibited endothelial cell growth in these studies, 
unlike the stimulation of SMC proliferation seen in our study. 

A lot of information is available concerning interactive effects of IFN-7 and 
TNFa. Synergistic effects of both cytokines were observed studying cytotoxicity/growth 
inhibition of tumor cells (259-261), induction of oxidative stress, inhibition of energy 
metabolism and GSH depletion in hepatocytes (262) and hydrogen peroxide production 
and N02 release from macrophages (263). Antagonism was observed in studies concer
ning proliferation of human fibroblasts (264) and expression of HLA proteins on 
fibroblast-like synoviocytes (265). In studies with human and rat SMC, synergistic effects 
of TNFa and IFN-7 were reported concerning apoptosis (118), induction of HLA 
expression (133), induction of intercellular adhesion molecule-1 (115) and stimulation of 
NO production (119,120,266). Our observation that combining TNFa and IFN-7 results 
in additive or synergistic inhibition of SMC GJIC adds a new kind of interactive effect to 
these lists. Our variable results concerning cell proliferation upon combining TNFa and 
IFN-7 are not entirely surprising. Stimulating as well as inhibiting effects on SMC 
proliferation have been described for both individual factors (103-109,126-129,254,258). 
Concerning their combination, inconsistent reports also exist (103,108,110,134). 

Receptor modulation may contribute to the interactive actions of TNFa and IFN-7 
(265,267-270). However, actions at the post-receptor level may be of importance as well 
(271-274). The additive effect on GJIC seen in our 24 h incubation of SMC with IFN-7 
combined with 1 h of TNFa is not likely to be due to induction of TNFa receptors, since 
combinations with 1.0 nM TNFa did not result in a stronger GJIC inhibition than 
combinations with 0.5 nM TNFa. Furthermore, the same amount of GJIC inhibition was 
achieved when SMC were incubated with both cytokines for only 1 h, a time span in 
which complete receptor synthesis is not likely to occur. It cannot be excluded, however, 
that TNFa induced IFN-7 receptors, since GJIC was synergistically inhibited in 24 h 
incubations with TNFa and IFN-7 batch-1. The arithmetically additive effects on GJIC 
occurred despite the fact that both factors bring about their maximal individual effects at 
0.5 nM (242,254). This may suggest that IFN-7 and TNFa exhibit (at least in part) their 
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effect on GJIC through different intracellular pathways. Differences in results in TNFa 

and IFN-7 incubations in experiments with SOD and differences in GJIC upon IFN-

7/bFGF versus TNFa/ bFGF combinations are also in favour of this suggestion. 

Addition of bFGF to the combination of IFN-7 and TNFa for 24 h did not restore 

GJIC even a bit. Several aspects may be considered in this perspective. Like TNFa, IFN-

7 is able to induce 2'-5'-oligoadenylate synthethase activity, which may affect Cx43 

expression (129). Furthermore, it was demonstrated that effects of bFGF on GJIC varied. 

bFGF enhanced GJIC in endothelial cells and cardiac fibroblasts (207-208), probably by 

inducing Cx43 expression. However, bFGF reduced GJIC in cardiac myocytes (209). It 

was suggested that differences in intracellular milieu affect bFGF actions (209). Cytokines 

like TNFa and IFN-7 may affect this intracellular milieu and may therefore influence 

bFGF actions. Cytokine-induced differences in intracellular milieu may underlie the 

observed differences in interactive effects on GJIC between TNFa/bFGF and IFN-

7/bFGF combinations as well. 

In conclusion, interactive effects should be taken into consideration when studying 
disturbance of growth control mechanisms, since multiple growth factors and cytokines 
may simultaneously be present in tissues. The factors tested in this study have all been 
shown to be present in human atherosclerotic lesions (4,94,142,194). It is not unlikely 
that circumstances vary considerably in plaques. The exact composition of the mixture of 
growth factors and cytokines may differ locally, for instance due to the presence of many 
or just a few macrophages, foam cells and T-lymphocytes. In order to gain more insight 
in the pathological process of atherosclerosis, further research should be directed to the 
presence of growth factor- and cytokine receptors on SMC in lesions and to the interac
tive effects of factors on SMC characteristics. 
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Abstract 

The present study demonstrates for the first time that cells cultured on pore 
membrane inserts (macrophages) modulate gap junctional intercellular communication 
(GJIC) between a second cell type (smooth muscle cells (SMC)) co-cultured in Transwell-
COL cell culture chambers. Unstimulated J774A.1 murine macrophages reduced GJIC 
between human SMC. Stimulation of J774A.1 cells by lipopolysaccharide (LPS) or 
interferon-y abrogated this modulation of GJIC. Unstimulated human monocyte-macro
phages did not affect GJIC between human SMC. Upon stimulation of these monocyte-
macrophages with LPS, a substantial increase in GJIC between co-cultured SMC was 
observed. Thus, activation of macrophages alters their interaction with co-cultured SMC. 
Since these results were obtained in an indirect co-culture system in which direct cell-cell 
contact is prevented, it is hypothesized that soluble factors released by macrophages may 
be involved in this modulation of GJIC between SMC. The possible nature of the 
responsible soluble factors is discussed in the context of atherosclerosis. 
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Introduction 

Atherosclerotic plaques are heterogenous with respect to cellular composition: 
smooth muscle cells (SMC), macrophages and T lymphocytes have all been demonstrated 
to be present in human atherosclerotic lesions (5,275). Disturbance of SMC growth 
control mechanisms is seen as a key event in the pathogenesis of atherosclerosis (29,32). 
Interactions between SMC and blood-borne cells may therefore be important in the 
etiology of the disease process. Macrophages, for instance, may influence SMC through 
modulation of lipoproteins, secretion of growth factors and cytokines and release of 
enzymes and reactive oxygen species (276). 

In most studies, macrophage-derived factors have been added as purified compo
nents or as conditioned media to SMC cultures. These kinds of experiments have several 
disadvantages. In testing one single factor, the complexity of the macrophage secretion 
pattern is not taken into account at all. Upon using conditioned media, unstable factors 
may be lost during media collection or processing. 

To overcome these disadvantages, SMC and macrophages have been co-cultured 
either directly (cell - cell contact) or indirectly. In indirect co-culture systems no cell -
cell contact occurs, since SMC and macrophages are separated by, e.g. pore membranes. 
Through these pore membranes diffusion of soluble mediators may occur. In indirect co-
culture experiments it was demonstrated that macrophages influenced SMC phenotype and 
stimulated SMC proliferation (277,278). In contrast with these results, Fan et al. 

(279,280) reported that macrophages inhibited SMC proliferation in indirect co-culture 
experiments. Zhang et al. (281) demonstrated that both soluble factors and direct 
macrophage - SMC cell-cell contact may influence SMC characteristics. 

Previous work (242,254,chapter 4) demonstrated that macrophage- and lympho
cyte-derived growth factors and cytokines were able to modulate gap junctional intercellu
lar communication (GJIC) between SMC in an interactive fashion. GJIC is regarded as an 
important mechanism in the control of cell growth, cell differentiation, and tissue 
homeostasis (69,70). Therefore, modulations of GIIC may have pathophysiological 
consequences. In vitro and in vivo studies provide evidence that inhibition of GJIC plays a 
role in the promotion phase of carcinogenesis (71,72,74,77). Altered GJIC may affect the 
pathogenesis of atherosclerosis as well. Atherogens like oxidized low density lipoprotein 
(LDL), cigarette smoke condensate, oxysterols and aldehydes reduce GJIC between SMC 
(57-60). 

The present study was aimed at studying the effect of macrophages on GJIC 
between SMC in an indirect co-culture system. Macrophages were cultured on 24.5 mm 
pore membrane inserts which were placed inside six-well cluster plates containing human 
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SMC on glass coverslips. After co-culturing, the hetero-cellular influence of macrophages 

on GJIC between SMC was determined. 

Materials and methods 

Chemicals and materials 

Recombinant mouse interferon 7 (mIFN-7; molecular weight —19 kD; specific 
activity ~ 107 U/mg), minimum essential medium (modified) with Earle's salts (EMEM), 
RPMI 1640, Iscove's medium, fetal bovine serum (FBS), gentamicin, penicillin, 
streptomycin, fungizone and lOx phosphate-buffered saline (PBS) without Ca2+ and Mg2+ 

were obtained from Gibco BRL (Paisley, UK). Lipopolysaccharide (LPS) from E.Coli 
0111.B4 (stimulation indices 14.2 at 31.3 jug/ml and 23.2 at 250 /ig/ml), Lucifer yellow 
CH and bovine serum albumin (BSA) fraction V were purchased from Sigma Chemical 
Co. (St. Louis, MO). Dulbecco's 'A' PBS was from Oxoid Ltd. (London, UK). Trypsin 
1:250 was from Difco (Detroit, MI). Dulbecco's modification of minimum essential 
medium (DMEM) was from ICN Biomedicals (Costa Mesa, CA). Ethylenediamine-
tetraacetic acid disodium salt (EDTA) was from Janssen Chimica (Beerse, Belgium). 
Lithium chloride, glutamine and 2-[4-(2-hydroxyethyl)-l-piperazinyl]ethanesulfonic acid 
(HEPES) were purchased from Merck (Darmstadt, Germany). Percoll was obtained from 
Pharmacia (Uppsala, Sweden). Six-well plates, six-well size Transwell-COL cell culture 
chamber inserts (pore size 0.4 /tm) and 75 cm2 cell culture flasks were purchased from 
Costar Europe Ltd. (Badhoevedorp, Netherlands). 25 cm2 cell culture flasks were from 
Nunc A/S (Roskilde, Denmark). Glass coverslips were from Rofa-Mavi (Beverwijk, 
Netherlands). Cell scrapers and 35 mm culture dishes were supplied by Greiner B.V. 
(Alphen a/d Rijn, Netherlands). 

Human SMC 

Primary human SMC were isolated from arteries of umbilical cords by an explant 
technique. After careful removal of the adventitia, the arterial tissue was cut into small 
pieces. Explants were incubated in EMEM supplemented with 10% FBS, 50 /ig/ml 
gentamicin and 1.25 /tg/ml fungizone (EMEM+ + +) in a 37°C, 5% C02 humidified 
atmosphere. Cells were allowed to grow for 3-4 weeks until subculturing. These SMC 
displayed the well known 'hills and valleys' pattern after reaching confluence (243). 

Human monocyte-macrophages 

Human peripheral blood mononuclear cells were isolated from citrate anti-
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coagulated blood by centrifugation over Percoll (specific gravity 1.078 g/cm3 at 20°C, 
290 mOsm; lOOOxg, 20 min.) Cells from the interface were collected and platelets, 
monocytes and lymphocytes were subsequently purified by elutriation essentially as 
described by De Boer and Roos (282) with minor modifications. The monocytes were 
further purified by a second Percoll gradient to a purity of about 85%. The remaining 
contaminating cells were removed by adhering the monocytes to a flask at 37°C in a 
cabinet for 1 h. The non-adhering cells were removed and the monocytes were then 
cultured in Iscove's medium (with 10% FBS, 2 mmol/1 glutamine, 100 U/ml penicillin 
and 100 /^g/ml streptomycin, pH 7.4) for 1 day at a concentration of 2 - 5 x 106 / ml in 
25 cm2 flasks. Then, RPMI 1640, supplemented with 10% FBS and 50 /ig/ml gentamicin 
was added to the cells. After at least 5 days of culturing in 25 cm2 cell culture flasks, 
during which the originally rounded cells spreaded, cells were detached from the flask by 
15 min incubation at 37 °C with an 1:1 mixture of 10 mM EDTA in PBS (without Ca2+ 

and Mg2+), pH 7.1 and EMEM supplemented with 10% FBS and 50 /xg/ml gentamicin 
(EMEM++). Thoroughly pipetting released most of the cells which were collected and 
centrifuged for 5 min at 400xg. The pellet was resuspended in EMEM++ and =3.4 x 
105 cells were plated onto Transwell-Col pore membrane inserts. After 1-6 days, indirect 
co-culture experiments were initiated with these human monocyte-macrophage cultures. 

J774A.1 murine macrophages 

The J774A.1 murine monocyte-macrophage cell line (TIB 67) was obtained from 
the American Type Culture Collection (Rockville, MD). This cell line was adapted to 
culture from an oil-induced tumor which arose in a BALB/c mouse and displays a number 
of mature macrophage properties (283,284). J774A.1 cells were cultured in DMEM 
supplemented with 10% FBS and 50 /ig/ml gentamicin (DMEM++). Subcultures were 
prepared by scraping. 

Indirect co-culture system 

Transwell-COL chamber inserts were used according to the instructions of the 
manufacturer. Briefly, 2.6 ml culture medium was added to the cluster plate wells. 
Hereafter, the 24.5 mm diameter membrane inserts were added. Finally, 1.5 ml culture 
medium was added to these inserts (for schematic representation see Fig. 5.1). 

Murine macrophages: 2-3 x 105 J774A.1 cells were seeded on the collagen-
treated, microporous membrane inserts in DMEM++ (day 1). After adherence of these 
cells (~2 h), the culture medium was replaced by fresh DMEM++ or by DMEM+ + 
containing 1 jtg/ml LPS or 100 U/ml mIFN-7. After 24 h of incubation (day 2), these 
murine macrophages were carefully washed with PBS (Oxoid): the medium from the 
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upper compartments was removed and the empty inserts were placed in cluster plate wells 
containing 2.6 ml PBS. Then, 1.5 ml PBS was added to the inserts. This procedure was 
repeated with a fresh solution of PBS in both upper- and lower compartment. Thus, both 
sides of the inserts were 'rinsed' twice this way. At this point, co-culturing started. Glass 
coverslips with confluent human SMC (passage 2-7) were placed on the bottom of the 
cluster plate (lower compartment). DMEM++ was added to these cells. Then, the inserts 
with J774A.1 cells were hung above the SMC. Finally, DMEM++ was added to the 
inserts. In incubations without macrophages, 'blank' inserts containing only DMEM+ + 
were hung above the SMC. After a 24 h co-culture of SMC and J774A. 1 cells, GJIC 
between SMC was measured (day 3). Just prior to GJIC measurement, the insert was 
removed from the cluster plate, after which the coverslip containing SMC was transferred 
to a 35 mm culture dish. From the lower compartment, 1.5 ml culture medium was added 
to these SMC. HEPES buffer (pH 7.4) was added to these cells (final concentration 20 
mM) to stabilize pH during microinjection and fluorescence microscopy. Some co-culture 
experiments were carried out for two days only. In these '2-days experiments' which 
involved only untreated macrophages, 5 - 7.5 x 105 J774A.1 cells were seeded at day 1. 
After adherence (~ 2 h), the inserts with macrophages were placed above the SMC and 
fresh DMEM++ was added to the co-culture. After 24 h GJIC between SMC was 
measured. The results of the '2-days' and '3 days experiments' were very similar. 
Therefore, these results were put together in table 5.1. Experiments in DMEM supple
mented with gentamicin and 0.5% BSA were carried out as well. 

Human monocyte-macrophages: ~3.4 x 105 human monocyte-macrophages on 
membrane inserts were provided with EMEM++, or with EMEM + + containing 1 
;ug/ml LPS (day 1). After 24 h of incubation (day 2), these cells were carefully washed 
with PBS, analogous to the procedure described for J774A.1 cells. Then, co-culture of 
the human monocyte-macrophages and SMC in EMEM++ started. After 24 h of 
incubation (day 3), GJIC between SMC was measured. 

Measurement of GJIC 

GJIC was determined after microinjection of a 20% Lucifer yellow CH (in 0.33 M 
lithium chloride) solution in a single cell (223). In each SMC culture at least 20 indivi
dual cells were microinjected using a vertical injection system (Olympus Injectoscope 
IMT-2-syf) (224) with a dye filled capillary glass tip (Clark, Pangbourne, UK). The 
capillary glass tip was prepared using an automatic magnetic puller (Narishige, Tokyo, 
Japan) with a tip diameter of 1 /mi. The Lucifer yellow CH filled cells were checked with 
phase-contrast and fluorescence microscopy directly after microinjection. The number of 
communicating SMC was determined ~ 15 min after the first injection. The average 
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number of fluorescent cells was calculated for each incubation. The average number of 
communicating cells in control incubations was taken as 100% GJIC. Each experiment 
was performed in duplicate. At least two but predominantly three or more independent 
tests were done. Data presented in table 5.1 and 5.2 are the average values of the perfor
med tests. 

Statistics 

Statistical analyses of the data were performed using Students Mest (P < 0.05). 

2V5 mm pore membrane insert \ 

Fig. 5.1. Schematic representation of the Transwell-COL co-culture system. Macrophages 

are cultured on microporous membrane inserts (upper compartment), whereas SMC are 

cultured on glass coverslips in the lower compartment. 

Results 

GJIC between human SMC 

The human SMC used in these experiments displayed a distinct GJIC. Lucifer 

yellow spread over an average of 47 - 94 cells in control incubations. In experiments 

without FBS, SMC displayed a 20% reduced GJIC as compared to experiments in which 

10% FBS was added to the culture medium (data not shown). 

GJIC between SMC in indirect co-cultures with J774A.1 cells 

In an indirect co-culture system, unstimulated J774A.1 cells were able to reduce 
GJIC significantly between human SMC by ~22% (table 5.1), both in experiments with 
or without 10% FBS. The precise amount of J774A.1 cells present on the membrane 
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inserts did not seem to be of great importance (data not shown). When J774A.1 cells 
were pretreated with 1 /Kg/ml LPS or 100 U/ml mIFN-7, no difference in GJIC between 
SMC was observed anymore as compared to control incubations without macrophages. 
Stimulation of J774A.1 cells with either LPS or mIFN-7 apparently levelled out the 
reduction of GJIC by unstimulated macrophages. 

Table 5.1 
GJIC (% of control) between human SMC in an indirect co-culture system with J774A.1 

murine macrophages 

10% FBS 

-

-

+ 

+ 

+ 

+ 

pretreatment J774A.1 

-

-

-

-

LPS 

mIFN-7 

J774A.1 

-

+ 

-

+ 

+ 

+ 

GJIC (% of control) 

100 + 1.1 

77.3 + 3.1* 

100 ± 2.7 

78.7 ± 2.7* 

97.6 ± 5.9 

95.2 ± 3.2 

Human SMC were co-cultured with J774A.1 cells for 24 h. In some experiments, J774A.1 cells 
were pretreated with 1 ftg/ml LPS or 100 U/ml mIFN-7 for 24 h. *: significantly different from 
control incubation. 

GJIC between SMC in indirect co-cultures with human monocyte-macrophages 

Unstimulated, co-cultured human monocyte-macrophages did not seem to affect 
GJIC between SMC (table 5.2 A). However, when these monocyte-macrophages were 
pretreated with 1 jug/ml LPS, a substantial and significant ~60% increase in GJIC 
between co-cultured SMC was observed (table 5.2 A). However, the extent of stimulation 
of GJIC between SMC by LPS-pretreated human monocyte-macrophages varied conside
rably (table 5.2 B). Nevertheless, these experiments clearly demonstrated that activation 
of these monocyte-macrophages alters their interaction with co-cultured SMC. 
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Table 5.2 
GJIC (% of control) between human SMC in an indirect co-culture system with human 

monocyte-macrophages 

A B 

pretreatment macrophages GJIC (% of control) GJIC (% of control) 

macrophages 

100 ± 6.5 

+ 102.6 + 4.5 

181.4 + 0.9 
LPS + 160.7 + 29.3* 

140.0 + 2.0 
Human SMC were co-cultured with human monocyte-macrophages for 24 h. In some experiments, 
human monocyte-macrophages were pretreated with 1 /ig/ml LPS for 24 h. *: significantly different 
from control incubation. 

Discussion 

To our knowledge, this study demonstrates for the first time that cells cultured on 
pore membrane inserts (macrophages) modulate GJIC between a second cell type (SMC) 
co-cultured in Transwell-COL cell culture chambers. Since these results were obtained in 
an indirect co-culture system in which direct cell-cell contact is prevented, it is hypothe
sized that soluble factors released by macrophages may be involved in this modulation of 
GJIC between SMC. 

Co-culturing of J774A.1 macrophages with human SMC in this system reduced 
GJIC between SMC with ~22%. However, when J774A.1 cells were stimulated by 
pretreatment with LPS or mIFN-7, the reduction in GJIC between co-cultured SMC was 
not observed anymore. Thus, stimulation of J774A.1 cells by either LPS or mIFN-7 
altered the interaction between SMC and these murine macrophages in this indirect co-
culture system. It is not known whether stimulation of J774A.1 cells results in the loss of 
production of GJIC inhibiting substances or whether stimulation of these cells induces the 
synthesis and secretion of factors that antagonize the action of GJIC inhibiting substances 
produced constitutively by this cell line. 

Unstimulated human monocyte-macrophages did not seem to affect GJIC between 
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SMC in this Transwell-COL co-culture system. A substantial ~60% increase in GJIC 
between co-cultured SMC was observed however upon stimulation of these monocyte-
macrophages by LPS. Analogous to the indirect co-culture experiments with LPS-treated 
J774A.1 cells, GJIC between SMC was elevated upon incubation with LPS-stimulated 
human monocyte-macrophages as compared to incubations with unstimulated macropha
ges. In experiments with LPS-stimulated murine macrophages, a control level of GJIC 
was observed, whereas in experiments with LPS-stimulated human monocyte-macropha
ges GJIC significantly increased as compared to control levels. It is unlikely that traces of 
LPS, in case of insufficient washing procedures, were responsible for the observed effects 
on GJIC, since LPS did not affect GJIC between human umbilical vein SMC (285). 
Furthermore, an LPS-induced down-regulation of heterologous GJIC between human 
umbilical vein SMC and endothelial cells was reported by these authors. 

Macrophages may secrete a complex mixture of growth factors, cytokines, 
enzymes, cytokine- and enzyme inhibitors, extracellular matrix and other binding 
proteins, bioactive lipids, hormones, reactive oxygen and nitrogen intermediates, 
complement components and coagulation factors (286). We can only speculate about the 
nature of the factors involved in GJIC modulation. The ~22% reduction in GJIC between 
SMC seen upon co-culturing with unstimulated J774A.1 cells may have been caused by 
the release of cytokines like tumor necrosis factor a (TNFa) or IFN-y by these macro
phages, since these cytokines have been demonstrated to reduce GJIC between SMC 
substantially (242,254). The observation that unstimulated human monocyte-macrophages 
did not affect GJIC between SMC may suggest that no GJIC inhibiting substances were 
produced by these cells. Alternatively, a cocktail of factors may have been produced by 
these human monocyte-macrophages in which factors may counteract each others effects 
on GJIC. 

LPS stimulation of J774A.1 cells has been found to induce nitric oxide (NO) 
production (287,288). NO production, however, is not likely to be the cause of increased 
GJIC between SMC upon incubation with LPS-treated macrophages as compared to 
incubations with unstimulated cells, since 1) NO has been suggested to block gap junction 
channels between tracheal SMC rather than to stimulate GJIC (289) and 2) human 
inducible nitric oxide synthethase is not inducible by LPS (290). 

Another explanation for the effects of stimulated macrophages on GJIC between 
SMC may be the production of reactive oxygen species by J774A.1 cells and human 
monocyte-macrophages upon stimulation with LPS or IFN-Y (291,292). However, 
previous studies (242, chapter 4) suggested that reactive oxygen species inhibited rather 
than stimulated GJIC between SMC , which renders a role for reactive oxygen species as 
a cause for increased GJIC rather unlikely. 
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It is known that treatment of J774.1 cells or other macrophages with LPS may 
induce TNFa production by these cells (293-296). TNFa production however, does not 
explain the observed increase in GJIC since previous work clearly demonstrated that this 
cytokine reduces GJIC between SMC as we already mentioned (242). Other cytokines or 
growth factors may be better candidates. Basic fibroblast growth factor (bFGF) for 
instance is able to significantly increase GJIC between SMC (254). It may well be that 
bFGF-like factors are produced by (LPS) stimulated macrophages. 

Alternatively, (J774A.1) macrophages may affect the co-cultured SMC by the 
release of enzymes. Release of plasmin or heparanase (297,298) may free bFGF and other 
matrix-associated growth factors from their binding sites in the SMC extracellular matrix 
(299,300), which in turn may affect GJIC. The release of matrix metalloproteinases like 
collagenases, gelatinases and stromelysins by macrophages (301,302) may affect the SMC 
extracellular matrix and SMC characteristics as well. LPS or IFN-y stimulation of the 
macrophages may alter the biosynthesis of these metalloproteinases in these cells (301-
304), although the effects of LPS and IFN-y stimulation on for instance gelatinase 
production differ. Alternatively, the production of cytokines and growth factors by 
macrophages may induce metalloproteinase expression by SMC themselves (305,306). 

The variation in result observed in two separate 'LPS-experiments' with human 
monocyte-macrophages may originate from small differences in the 'age' of these 
monocyte-macrophages or from differences in plating efficiency of the monocyte-
macrophages upon detachment with EDTA and adherence to the Transwell-COL mem
brane inserts. The exact number and differentiation state of the monocyte-macrophages 
may influence the amount of substances (like for instance growth factors and enzyme(s)) 
produced by these stimulated cells. However, the variation in results may also originate 
from differences in SMC cultures which may for instance stem from variation in SMC 
passage number, variation in SMC phenotype, differences in cell density and time of 
subculturing until confluency. This SMC heterogeneity may affect the type and amount of 
growth factors that become sequestered in the SMC matrix and may therefore influence 
the amount of growth factors that are released upon degradation of this extracellular 
matrix. 

Further research should be directed at studying the effect of different types of 
macrophages on GJIC between SMC. Heterogeneity in atheroma macrophages exist 
(307,308); the most noticeable difference being the presence of 'normal' macrophages and 
the presence of macrophage-derived foam cells. It is likely that lipid laden macrophages 
display a deviant endocytic and secretory repertoire (309) which may affect GJIC between 
SMC in another way than 'normal' macrophages. Furthermore, macrophages should be 
exposed to different (patho-)physiological agents with relevance to the process of athero-
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sclerosis, in order to study their effects on SMC GJIC in even more detail. 

Another way by which macrophages may influence SMC functioning is via direct 

cell-cell contact, for instance by heterologous GJIC. Heterologous GJIC between SMC 

and macrophages may be of importance in the pathogenesis of atherosclerosis by facilita

ting efficient exchange of (reactive) substances between these cell types. The strong 

expression of connexin43 (Cx43) mRNA in macrophage foam cells in sections of human 

atherosclerotic carotid arteries (80) and the upregulation of Cx43 protein expression in 

macrophage foam cells of hypercholesterolemic rabbits (81) suggests that heterologous 

GJIC may be relevant in vivo. Possible effects of for instance growth factors, cytokines, 

extracellular matrix components, oxidized LDL and other atherogenic chemicals on 

heterologous GJIC in vitro, in addition to functional characterization in vivo deserve some 

attention. As a start, preliminary data from our laboratory suggest that direct, heterolo

gous cell-cell contact, measured as Lucifer yellow transfer from human SMC to co-

cultured J774A.1 macrophages (both cell types have been demonstrated to express Cx43; 

63,64,310) increases upon incubation with TNFa. 

Despite the fact that a lot of detailed questions still have to be elucidated, the 

conclusion can be drawn that macrophages are important modulators of SMC functioning. 

Direct and indirect co-culture systems, featuring GJIC modulation of these cell types in 

incubations with endogenous and/or exogenous compounds, await further study. 
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Chapter 6 
Summary and Concluding Remarks 

In this thesis, the effect of leukocyte-derived growth factors and cytokines on GJIC 
between SMC was investigated. GJIC is regarded as an important mechanism in the control 
of cell growth, cell differentiation and tissue homeostasis. Disturbance of SMC growth 
control is regarded to be a key event in the pathogenesis of atherosclerosis in which growth 
factors and cytokines are thought to play a central role. In the present study, cultured human 
SMC were incubated with (human) recombinant growth factors and cytokines. TNFa, IFN-7, 
PDGF, bFGF and IL-6 were chosen as representatives of several classes of growth 
modulating factors. These growth factors and cytokines are known to be products of 
macrophages and/or T lymphocytes and have been detected in human atherosclerotic lesions. 
After an incubation period, GJIC between SMC was measured. In addition, human SMC 
were co-cultured with J774A. 1 murine macrophages or human monocyte-macrophages in the 
Transwell-COL cell culture system, to account for the complexity of macrophage secretion 
patterns. After removal of the macrophages, GJIC between the co-cultured SMC was 
determined. 

The experiments described in chapter 2 and 3 clearly demonstrate that all factors 
tested reduced GJIC between SMC with - 2 0 - 50%, except for bFGF which strongly 
increased GJIC. Furthermore, these experiments revealed that effects of growth factors and 
cytokines on GJIC are not univocal and thus cannot be generalized. PDGF, IL-6 and bFGF 
caused transient effects on GJIC, whereas in experiments with TNFa or IFN-7, a persistent 
inhibition of GJIC was obtained. 

The most remarkable result of the study described in chapter 4 was that upon 
combining TNFa and IFN-7, GJIC between SMC strongly reduced (up to 86%) in an 
additive or synergistic manner. Upon long term incubation with the combination of TNFa 
and IFN-7, some SMC did not communicate with neighbouring cells at all. This may result 
in an escape from growth control mechanisms, which, in turn, may lead to disturbance of 
SMC proliferation, a key event in atherosclerosis. In incubations with other combinations of 
growth factors and cytokines, (antagonistic) interactive effects on GJIC were observed. 

The present investigation provided evidence that reactive oxygen species may play a 
role in cytokine-induced inhibition of GJIC between SMC. Experiments described in chapter 
2 revealed that pretreatment of SMC with antioxidants like ascorbic acid, a-tocopherol or 
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GSH prevented the inhibition of GJIC upon exposure of SMC to TNFa. Studies with SOD 
(chapter 4) demonstrated that the superoxide radical may be involved in GJIC reduction by 
TNFa, since incubation with SOD, even hours after the addition of TNFa, restored GJIC 
to control values. Furthermore, SOD partly restored IFN-y effects on GJIC in the short - but 
not in the long term. When SMC were incubated with TNFa and IFN-Y simultaneously for 
24 h, high levels of SOD could not even partly counteract the strong inhibition of GJIC 
caused by these cytokines. Thus, other, superoxide-unrelated mechanisms may affect GJIC 
more predominantly in long term incubations with the combination of TNFa and IFN-7. One 
such mechanism may be represented by the reduced Cx43 staining which was observed in 
immunofluorescence studies on SMC cultures incubated with these cytokines (chapter 4), 
which may be an indication for the reduced presence of functional gap junction channels. 

PDGF-AA, PDGF-BB, IL-6, IFN-7, TNFa and bFGF all stimulated SMC 
proliferation in our cell culture system, as individual factors as well as in combinations 
(chapter 3 and 4). Upon comparing these cell proliferation results with GJIC data, a 
complex relationship between modulation of GJIC, cell proliferation and the process of 
atherosclerosis is suggested. 

Experiments described in chapter 5 demonstrated that macrophages cultured on pore 
membrane inserts modulate GJIC between SMC co-culfured in Transwell-COL cell culture 
chambers. Since these results were obtained in an indirect co-culture system which prevents 
direct cell-cell contact, it was hypothesized that soluble factors, released by macrophages, 
may be involved in the modulation of GJIC between SMC. At this moment, one can only 
speculate about the nature of the factors involved in this macrophage-dependent modulation 
of GJIC. The results clearly indicate that the source and activation state of macrophages were 
of importance in these co-culture experiments. Therefore, further research should be aimed 
at studying the effect of different types of macrophages on GJIC between co-cultured SMC. 
Heterogeneity in atheroma macrophages exists; the most noticeable difference being the 
presence of 'normal' macrophages and the presence of macrophage-derived foam cells, which 
are likely to differ in endocytic and secretory repertoire. Furthermore, macrophages should 
be exposed to different (patho-)physiological agents with relevance to the process of 
atherosclerosis, in order to study their effects on GJIC between SMC in even more detail. 

The present study provides a good starting point for further research aimed at the 
understanding of mechanisms by which environmental contaminants or drugs might interfere 
with atherogenesis. It is already known that widespread food chain and cigarette smoke 
contaminants like for example benzo[a]pyrene, polychlorinated biphenyls and 2,3,7,8-
tetrachlorodibenzo-/?-dioxin may affect the pathogenesis of atherosclerosis in several ways, 
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for instance by damaging SMC DNA (311), disrupting endothelial barrier function (312), or 

by modulation of plasma cholesterol and lipoprotein levels (313,314). Furthermore, 

chemicals like components in cigarette smoke condensate may modulate GJIC between SMC 

(57). Considering that growth factors and cytokines like TNFa and IFN-7 may have marked 

effects on GJIC, one may assume that environmental contaminants and drugs capable of 

affecting the expression of growth factors and cytokines (315-329) or their receptors 

(325,326,330-332) may interfere with GJIC in an indirect manner. In the case of 

atherogenesis for instance, chemicals may stimulate growth factor- and cytokine production 

by SMC and/or macrophages which, in turn, may influence homologous GJIC between SMC. 

In addition, exogenous chemicals may influence heterologous GJIC between macrophages and 

SMC as well; either directly, or indirectly via the induction of growth factor and cytokine 

expression by these cells. As a consequence, macrophage-derived reactive substances will 

have more - or just less- impact on SMC functioning. 

Relatively short exposures to environmental contaminants or drugs in individuals in 

which plaques have already passed some critical phases in the atherosclerotic process might 

enhance the severity of the lesions. Further research along this line may also lead to the 

identification of nutritional or chemical factors that may have beneficial (protective / 

regressive) effects on the development of atherosclerotic lesions. 

Modulation of GJIC by growth factors and cytokines may affect a response-to-injury. 
On the other hand, modulation of GJIC may also play a role in the monoclonal expansion of 
cells. Therefore, the response-to-injury hypothesis and the monoclonal theory may be 
compatible is some respects, as was previously suggested by Zwijsen (333). 

The results of the present study may also be applicable to other pathophysiological 
phenomena, in which growth factors and cytokines may play a prominent role in the onset 
or progression of the disease. Proliferative diseases like pulmonary fibrosis, 
glomerulosclerosis and liver cirrhosis share some pathobiologic mechanisms with 
atherosclerosis, including leukocyte infiltration, mesenchymal cell proliferation and enhanced 
matrix synthesis (334-337). Leukocyte-derived growth factors and cytokines may modulate 
GJIC between the mesenchymal cells concerned, which in turn may result in abnormal cell 
proliferation. It is known that certain chemicals may contribute to the development of these 
diseases. The mechanisms by which these chemicals act may be linked to the processes 
studied and discussed in this thesis. 

Overall, the information presented in this thesis concerning the possible role of growth 
factors and cytokines in the pathophysiology of atherosclerosis provides a useful instrument 
to study possible modulatory effects of chemicals on the process of atherosclerosis via the 
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mechanisms mentioned above. 
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Abbreviations 

Balb C 3T3 mouse embryonic cell line 
BE normal human bronchial epithelial cells 

BEAS-2B adenovirus 12-SV40 hybrid virus transformed BE cells 

bFGF basic fibroblast growth factor 

BME bovine microvascular endothelial cells 

BMP bone morphogenetic protein 

BSA bovine serum albumin 

C3H/10T1/2 mouse embryonic fibroblast cell line 

cAMP cyclic adenosine monophosphate 

Cx connexin 

D dalton 

DMEM Dulbecco's modification of minimum essential medium 

DNA deoxyribonucleic acid 

EDTA ethylenediamine tetraacetic acid (disodium salt) 

EGF epidermal growth factor 
EMEM Eagle's minimum essential medium (modified) with Earle's salts 

FBS fetal bovine serum 

FCS fetal calf serum 
FITC fluorescein isothiocyanate 

GJIC gap junctional intercellular communication 

GM-CSF granulocyte-macrophage colony stimulating factor 

GSH reduced glutathione 

H202 hydrogen peroxide 

h hour(s) 

HEPES 2-[4-(2-hydroxyethyl)-l-piperazinyl]-ethanesulfonic acid 
HGF hepatocyte growth factor 
HLA human leukocyte associated antigen 

HUVEC human umbilical vein endothelial cells 

IFN-7 interferon-7 

IL-la interleukin-la 
IL-6 interleukin-6 
J774A.1 murine monocyte-macrophage cell line 
K7 Ni(II)-immortalized human kidney epithelial cells 
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kD 
LDH 

LDL 

LPS 
MAP kinase 

MC3T3-E1 

M-CSF 

MHC 
mIFN-y 

min 

mRNA 

MTT 

NADH 

NDFB 

NHEK 

NO 

N02 

NOS 

NRK 

NRS 
PBS 

PCB 

PDGF 
PKA 

PKC 

PLC 

SD 

SM 
SMC 
SOD 

T51B 

TGFB 

TNFa 

TPA 

kilodalton 

lactate dehydrogenase 

low density lipoprotein 

lipopolysaccharide 
mitogen-activated protein kinase 

osteoblastic cells 
macrophage colony stimulating factor 

major histocompatibility complex 
mouse interferon-y 

minute(s) 

messenger ribonucleic acid 

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide 

nicotinamide adenine dinucleotide 

neu differentiation factor 6 

normal human epidermal keratinocytes 

nitric oxide 
nitrite 

nitric oxide synthase 

normal rat kidney cells 

normal rabbit serum 
phosphate-buffered saline 

polychlorinated biphenyl 

platelet-derived growth factor 

protein kinase A 
protein kinase C 

phospholipase C 
standard deviation 

smooth muscle 
smooth muscle cell(s) 
superoxide dismutase 

rat liver epithelial cells 

transforming growth factor B 

tumor necrosis factor a 

12-0-tetradecanoylphorbol-13-acetate 
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Samenvatting en Slotopmerkingen 

Het onderzoek beschreven in dit proefschrift heeft betrekking op effekten van door 

leukocyten geproduceerde groeifaktoren en cytokinen op de intercellulaire communicatie 

via gap junctions (GJIC) tussen gladde spiercellen. GJIC speelt een belangrijke rol bij de 

regulatie van processen als celdeling, celdifferentiatie en weefselhomeostase. Verstoring 

van normale gladde spiercelproliferatie mechanismen wordt gezien als een sleutel-

gebeurtenis bij het ontstaan van atherosclerose, waarbij groeifaktoren en cytokinen een 

centrale rol toebedacht wordt. In het onderhavige onderzoek werden humane gladde 

spiercellen blootgesteld aan (humane) recombinante groeifaktoren en cytokinen. TNFa, 

IFN-7, PDGF, bFGF en IL-6 werden gekozen als vertegenwoordigers van een aantal 

klassen van groeimodulerende faktoren. Van deze groeifaktoren en cytokinen is bekend 

dat zij geproduceerd worden door macrofagen en/of T lymfocyten en dat zij aanwezig zijn 

in humane atherosclerotische lesies. Na een incubatieperiode werd de GJIC tussen de 

blootgestelde gladde spiercellen gemeten. Tevens werden humane gladde spiercellen 

samen met J774A.1 muis macrofagen of humane monocyt-macrofagen gecultiveerd in het 

Transwell-COL kweeksysteem, zodat de complexiteit van macrofaag secretiepatronen tot 

uitdrukking kon komen. Na het verwijderen van de macrofagen uit het kweeksysteem 

werd de GJIC tussen de achtergebleven gladde spiercellen bepaald. 

De experimenten beschreven in hoofdstuk 2 en 3 tonen duidelijk aan dat alle 
geteste faktoren GJIC tussen gladde spiercellen reduceren met - 2 0 - 5 0 % , behalve bFGF 
die GJIC sterk doet toenemen. Deze experimenten laten verder zien dat de effekten van 
groeifaktoren en cytokinen op GJIC niet eenduidig zijn, zodat ze niet veralgemeniseerd 
kunnen worden. PDGF, IL-6 en bFGF moduleren GJIC tijdelijk, terwijl in experimenten 
met TNFa of IFN-7 een aanhoudende remming van GJIC werd verkregen. 

Het meest opvallende resultaat van de studie beschreven in hoofdstuk 4 was dat 
een combinatie van TNFa en IFN-7 GJIC tussen gladde spiercellen op een additieve of 
synergistische wijze (met maximaal 86%) sterk reduceerde. Sommige gladde spiercellen 
communiceerden in het geheel niet meer met naburige cellen wanneer zij gedurende 
langere tijd blootgesteld werden aan de combinatie van TNFa en IFN-7. Hierdoor zouden 
deze cellen kunnen ontsnappen aan groeicontrole mechanismen, wat weer kan resulteren 
in een verstoring van de normale gladde spiercelproliferatie, een sleutelgebeurtenis in het 
atherosclerotische proces. In incubaties met andere combinaties van groeifaktoren en 
cytokinen werden (antagonistische) interactieve effekten op GJIC waargenomen. 
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Het onderhavige onderzoek leverde aanwijzingen op dat reactieve zuurstof species 
een rol kunnen spelen in de cytokine-gei'nduceerde remming van GJIC tussen gladde 
spiercellen. De experimenten die beschreven staan in hoofdstuk 2 laten zien dat voorbe-
handeling van gladde spiercellen met antioxidantia als ascorbinezuur, a-tocopherol of 
GSH de remming van GJIC kon voorkomen wanneer deze cellen vervolgens blootgesteld 
werden aan TNFa. Studies met SOD (hoofdstuk 4) tonen aan dat het superoxide radicaal 
betrokken lijkt te zijn bij de GJIC remming door TNFa, omdat blootstelling aan SOD, 
zelfs uren na TNFa toevoeging, GJIC deed herstellen tot controle waarden. SOD was 
tevens in staat om IFN-y gei'nduceerde effekten op GJIC ten dele teniet te doen in 
kortdurende experimenten, een eigenschap die bij langdurige IFN-y incubaties niet meer 
tot uitdrukking kwam. Een hoge concentratie SOD bleek niet in staat te zijn de sterke 
GJIC remming die veroorzaakt werd door een 24 uurs blootstelling aan een combinatie 
van TNFa en IFN-y zelfs maar gedeeltelijk op te heffen. Derhalve lijken voornamelijk 
andere, superoxide-onafhankelijke mechanismen GJIC te bei'nvloeden in de langer durende 
incubaties met de combinatie van TNFa en IFN-y. Een dergelijk mechanisme kan 
verband houden met de verminderde Cx43 kleuring die werd waargenomen in immuno-
fluorescentie studies die werden uitgevoerd met gladde spiercellen die aan deze cytokinen 
blootgesteld waren (hoofdstuk 4), wat wellicht duidt op een verminderde aanwezigheid 
van functionele gap junction kanalen. 

In ons kweeksysteem bleken PDGF-AA, PDGF-BB, IL-6, IFN-y, TNFa en bFGF 
in staat om gladde spiercelproliferatie te induceren, zowel als individuele faktoren als in 
diverse combinaties (hoofdstuk 3 en 4). Door het vergelijken van de celproliferatie 
resultaten en de GJIC gegevens lijkt de conclusie gerechtvaardigd dat er een complex 
verband bestaat tussen modulatie van GJIC, celproliferatie en het proces van atherosclero-
se. 

De experimenten beschreven in hoofdstuk 5 laten zien dat macrofagen die 
gecultiveerd werden op porie-bevattende membranen in staat bleken GJIC tussen gladde 
spiercellen die zich in hetzelfde Transwell-COL kweeksysteem bevonden te moduleren. 
Daar deze resultaten verkregen werden in een kweeksysteem waarbij direkt cel-cel contact 
niet mogelijk was, werd geconcludeerd dat oplosbare faktoren, afgescheiden door de 
macrofagen, betrokken waren bij deze modulatie van GJIC tussen gladde spiercellen. Op 
dit moment kan er slechts gespeculeerd worden over de aard van de faktoren die 
verantwoordelijk zijn voor deze macrofaag-afhankelijke modulatie van GJIC. De 
resultaten tonen duidelijk aan dat de oorsprong en de activatie toestand van de macrofagen 
van belang waren in de experimenten. Vervolgonderzoek zou derhalve gericht moeten zijn 
op het bestuderen van de effekten die verschillende typen macrofagen zouden kunnen 
hebben op GJIC tussen gladde spiercellen. Atheroma-macrofagen zijn heterogeen van 
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samenstelling; het meest opvallende verschil betreft de aanwezigheid van 'normale' 

macrofagen naast de macrofaag-schuimcellen die er een ander endocytose- en secretiepa-

troon op na houden. Macrofagen zouden bovendien blootgesteld kunnen worden aan 

diverse (patho)fysiologische stimuli die relevant zijn voor het proces van atherosclerose, 

zodat macrofaag-effekten op GJIC tussen gladde spiercellen in nog meer detail bestudeerd 

kunnen worden. 

Het onderzoek beschreven in dit proefschrift vormt een goed uitgangspunt voor 
nader onderzoek naar mechanismen waarlangs milieuvervuilende stoffen of medicijnen 
zouden kunnen interfereren met de atherogenese. Het is bekend dat veelvoorkomende 
contaminanten in sigarettenrook en in de voedselketen, zoals bijvoorbeeld benzo[a]pyreen, 
polychloorbifenylen en 2,3,7,8-tetrachloordibenzo-p-dioxine, de pathogenese van 
atherosclerose op verschillende manieren kunnen beiinvloeden; onder andere door het 
DNA van gladde spiercellen te beschadigen (311), door de endotheliale barriere te 
ontwrichten (312) of door de plasmacholesterol- en lipoprote'ine concentraties te verande-
ren (313,314). Chemicalien zoals componenten in sigarettenrookcondensaat kunnen 
bovendien GJIC tussen gladde spiercellen moduleren (57). Het lijkt redelijk te veronder-
stellen dat omgevingsfaktoren en medicijnen die in staat zijn de expressie van groeifakto-
ren en cytokinen (315-329) of hun receptoren (325,326,330-332) te bei'nvloeden, GJIC op 
een indirekte wijze kunnen moduleren, in beschouwing nemende dat groeifaktoren en 
cytokinen als TNFa en IFN-7 uitgesproken effekten op GJIC kunnen hebben. In de 
atherogenese bijvoorbeeld zouden chemicalien de groeifaktor- en cytokineproduktie door 
gladde spiercellen en/of macrofagen kunnen stimuleren welke op hun beurt de homologe 
GJIC tussen gladde spiercellen kunnen bei'nvloeden. Exogene chemicalien zouden 
bovendien 00k de heterologe GJIC tussen macrofagen en gladde spiercellen hetzij direkt, 
hetzij indirekt via de inductie van groeifaktor- en/of cytokine-expressie door deze cellen 
kunnen be'invloeden. De consequentie hiervan zou kunnen zijn dat reactieve verbindingen, 
geproduceerd door macrofagen, meer - of juist minder - invloed op het functioneren van 
gladde spiercellen kunnen uitoefenen. 

In individuen waarin plaques al enkele kritische fasen van het atherosclerotische 
proces doorlopen hebben zouden relatief kortdurende blootstellingen aan milieuvreemde 
stoffen of medicijnen de ernst van de lesies kunnen doen toenemen. Verder onderzoek 
langs deze weg kan mogelijk 00k resulteren in de identificatie van voedingscomponenten 
en chemische stoffen die juist een heilzaam (beschermend / regressief) effekt op de 
ontwikkeling van atherosclerotische lesies hebben. 

Modulatie van GJIC door groeifaktoren en cytokinen kan een 'response-to-injury' 
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bemvloeden. Modulatie van GJIC kan echter ook een rol spelen bij de monoclonale 
expansie van cellen. Derhalve kunnen de 'response-to-injury' hypothese en de monoclona
le theorie verenigbaar zijn op een aantal punten, zoals Zwijsen reeds eerder suggereerde 
(333). 

De resultaten van het onderzoek beschreven in dit proefschrift kunnen wellicht ook 
toegepast worden bij andere pathofysiologische processen waarbij groeifaktoren en 
cytokinen een belangrijke rol spelen bij het ontstaan of verloop van de ziekte. Prolifera-
tieve ziekten als longfibrose, glomerulosclerose en levercirrhose delen een aantal 
pathobiologische mechanismen met atherosclerose, zoals leukocyt infiltratie, mesenchyma-
le celproliferatie en verhoogde matrix synthese (334-337). De door leukocyten geprodu-
ceerde groeifaktoren en cytokinen zouden GJIC tussen de mesenchymal cellen kunnen 
moduleren, wat weer zou kunnen resulteren in een abnormale celproliferatie. Het is 
bekend dat bepaalde chemicalien bijdragen aan de ontwikkeling van deze ziekten. De 
mechanismen waarlangs deze chemicalien hun invloed uitoefenen zouden verband kunnen 
houden met de processen die bestudeerd en bediscussieerd zijn in dit proefschrift. 

De informatie die in dit proefschrift gepresenteerd is betreffende de mogelijk rol 

van groeifaktoren en cytokinen in de pathofysiologie van atherosclerose vormt een nuttig 

instrument om mogelijke modulatoire effekten van chemicalien op het proces van 

atherosclerose via de hierboven genoemde mechanismen te bestuderen. 
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