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Propositions 

1. The macroscopic root water uptake approach is as yet the most feasible and reliable 
for quantifying the sink term. 

This thesis 

2. All existing salinity and water stress reduction functions will lead to about the same 
results if the input parameter values are specified satisfactorily. 

This thesis 

3. The reduction functions are most sensitive to evaporative demand, and after that to 
the threshold values. 

This thesis 

4. The effect of combined water and salinity stress on root water uptake over a large 
range of stress conditions is neither additive nor multiplicative. 

This thesis 

5. Under water stress conditions, root water uptake during the night should be 
included in simulation models. 

This thesis 

6. Simulation models will not be able to yield satisfactory results as long as water 
compensation phenomena are not adequately accounted for. 

This thesis 

7. Our knowledge increases proportional to the diameter of a circle, the questions 
increase proportional to its periphery. 

An old Iranian saying 

8. People forget how fast you did a job, but they remember how well you did it. 
Howard W. Newton 

9. Iran is a country of many resources. The sharp decrease in oil prices provides a 
golden opportunity to base the country's development on non-oil products. 

10. Most saline and sodic soils in Iran occur where there is enough water of good 
quality. While this water is considered as the main opportunity to improve 
these soils, any reclamation project must consider the overall environmental 
impacts. 

11. The Dutch experience to use bicycles must be developed in other countries if we 
are serious to minimize the global warming. 



Abstract 

Homaee, M. Root Water Uptake Under Nonuniform Transient Salinity and Water 
Stress. Ph.D. thesis, Department of Environmental Sciences, Wageningen University and 
Research Center, Wageningen, The Netherlands. 

The study described in this thesis focuses on the quantitative understanding of water uptake 
by roots under separate and combined salinity and water stresses. The major difficulty in 
solving Richards' equation stems from the lack of a sink term function that adequately 
describes root water uptake. From the existing microscopic and macroscopic sink term 
functions, the empirical macroscopic approach was chosen because it requires the least 
number of parameters whose values can readily be determined. All existing reduction 
functions as well as those newly developed in this study are used in the macroscopic model 
and tested against experimental data. The experimentally obtained data are used to derive the 
parameter values needed for the simulation model HYSWASOR. The experiments cover root 
water uptake by alfalfa under salinity stress, water stress, and combined salinity and water 
stress. This order is followed with the analysis of the data and the simulation. 

Under salinity stress, both experimental and simulated results indicate that the well-known 
linear crop response function can be used as a reduction function. The parameter values 
available in the literature for different reduction functions cannot provide acceptable 
agreement with the experimental data. When experimentally derived parameters are used in 
the simulation model, the agreement becomes much closer, but calibration is still needed. The 
parameter values obtained by calibration differ slightly from the experiments, because the 
experimentally derived parameter values are based upon mean soil solution salinity. Both 
experimental and simulation results indicate that different salinity reduction functions can 
provide almost the same results if the parameter values are well specified. For practical use 
the linear reduction function with the least number of parameters appears to be adequate. 

Under water stress, all existing reduction functions as well as the one developed in this study 
are tested on the experimental data. Since the trend of the experimental relative transpiration 
versus mean soil water pressure head is nonlinear, the linear reduction function cannot fit the 
data. The existing nonlinear reduction functions can fit only half of the data range 
satisfactorily. The best agreement is obtained with the newly developed nonlinear two-
threshold reduction function. The parameter values obtained by calibration differ only slightly 
from those of the experiments. Soil water pressure head heterogeneity over the root zone does 
not play an important role in water uptake. The roots appear to take up water from the 
relatively wetter parts of the root zone to compensate for the water deficit in the drier parts. 
On the first day after irrigation both relative transpiration and relative leaf water head are 
almost the same for the stressed and non-stressed plants. While the simulated transpiration 
agrees closely with the experimental data, the main reason for the discrepancy between the 
simulated and actual water contents appears to be water uptake during the night. 

Under combined water and salinity stress, the additive and multiplicative reduction functions 
are first tested against the experimental data and then inserted in the simulation model. A new 
combination reduction function is introduced that differs conceptually from the additive and 
multiplicative functions. Both the experimental and simulated results show that the newly 
proposed model fits the data best, while the worst results are obtained with the simple 
additive model. 

Key-words: Additive, Alfalfa, HYSWASOR, leaf water potential, macroscopic root water 
uptake functions, multiplicative, osmotic head, pressure head, reduction functions, Richards' 
equation, salinity stress, simulation, sink term, transpiration, water stress. 
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1. Salinity and water stress and plant growth 

1.1. Introduction 

Water scarcity and soil salinity are two important limitations for agricultural 

production in the arid and semi-arid regions. Not only an overall shortage of water 

resources, but also a poor distribution of precipitation may cause water shortage, even 

in the winters. Also, the annual precipitation differs significantly from one year to 

another, causing many difficulties for farmers as well as water managers. The term 

drought or water shortage means a period without appreciable precipitation, during 

which the soil water content is reduced to such extent that plants suffer from lack of 

water. Dryness of soil is usually coupled with high evaporation caused by a high level 

of radiation and high dryness of the air. On a large scale, dryness results from the 

combination of low precipitation and high evaporation. 

In the arid and semi-arid regions, the annual evaporation exceeds total annual 

precipitation. For instance, in some parts of Iran {Khuzestan Plain) the average annual 

precipitation is about 250 mm, while the annual potential evaporation is about 4000 

mm (Ghassemi, 1995). About one third of the earth's continental area has a rain 

deficit, and half of this (about 12 percent of the land area) is so dry that annual 

precipitation is less than 250 mm, not even a quarter of the potential evaporation 

{Larcher, 1995). In these regions, irrigation is the only reliable way to assure 

agricultural production. Unfortunately, much of the water available in such regions is 

brackish, depositing salts in the root zone after each irrigation. 

The soil solution salinity increases as water evaporates into the air and plants 

extract water. Therefore, permanent irrigation with water of relatively good quality 

still causes excess soluble salts in soils. Accumulation of excess salts in the root zone 

results in partial or complete loss of soil productivity. Soil salinity is also a serious 

problem in areas where groundwater of high salt content is used for irrigation. All 

irrigation waters contain hundreds of parts per million (ppm) of dissolved salts, as 

compared with 10 ppm in rainwater. In irrigated lands, the concentration and 

composition of the soil solution are derived from the salinity of irrigation water. The 

concentration of the soil solution is always greater than that of the irrigation water. 

Depending on the composition of these soluble salts, the concentrated salts may cause 

an increase of absorbed sodium, which affects the soil physical properties diversely. 

Even in humid areas, salinity is a hazard when irrigating with brackish water or 

treated sewage effluent, or because of sea water intrusion. Recently, interests in 
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maintenance of the environment, preservation of natural resources, and an awareness 

toward human health and nutrition have placed new attention on soil and water 

quality standards (Ghassemi, 1995). Soil is one of the major components of the 

environment. Soil salinization due to changing agricultural production systems is 

presently considered a serious environmental hazard and threatens to be even more so 

in the future. The future need for food will undoubtedly prompt more widespread use 

of saline water for irrigation. Not only will this water have a higher salinity than much 

of the irrigation water used in the past, but also the quantity of water available will be 

less because of the use and degradation by non-agricultural enterprises. Management 

of these poor quality waters will be more difficult and extensive investigations should 

be conducted in this regard. 

Soil is considered saline when the solute concentration in the water phase 

causes reduction in crop production. Thus, soil salinity is a plant-dependent concept. 

For example, an electrical conductivity of the saturated soil extract ECe of 5 dS/m in 

the root zone is saline for alfalfa, because crop yields start to decline at about 2.0 

dS/m, but for barley it is not saline because its yield starts to decrease at about 6.0 

dS/m. Salinity can be defined as the concentration of soluble salts present in water 

and soil on unit volume or weight basis. The major soluble salts causing salinity are 

the cations Ca, Mg, Na, and K and the anions CI, SO4, CO3, and NO3. 

During irrigation intervals several mechanisms are involved in the dynamic 

changes of soil solution salinity. Root water uptake and evaporation from the soil 

surface concentrate the soil solution and decrease the osmotic potential. The soluble 

salts in the root zone are left behind at the evaporation sites and the major fraction of 

dissolved salts is also excluded from water taken up by the roots. The dynamics of 

solute accumulation due to soil evaporation and root water uptake differs in systems 

depending on the amount of drainage. If the amount of water from irrigation and 

rainfall is less than soil evaporation and plant transpiration (arid or semi-arid regions), 

the soil water deficit is first met by extraction from soil water storage. As the stored 

soil water is used up and the soil dries, the crop becomes water-stressed, hence soil 

evaporation and transpiration will be reduced, and salt stored in the root zone 

concentrates in the remaining volume of water. This increased concentration causes 

plant osmotic stress, further reducing transpiration. This reduction continues until the 

plant dies or until water is added to the soil profile and drainage carries salt out of the 

root zone. In the presence of a groundwater table, deficiencies in irrigation and 

rainfall may be compensated by upward flow from the groundwater. This situation, 

however, can not remain indefinitely. Finally, soil salinity will reduce root water 

uptake to the point that the plant dies. 
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This chapter deals with some aspects of plant behavior under salinity stress 

and water stress. In the literature, the plant responses to these stresses are discussed in 

several ways with different terms. In the physiologically oriented publications, plant 

growth and yield are common terms, while in the literature dealing quantitatively with 

water and salinity, the terms relative yield, crop production functions, consumptive 

use, evapotranspiration and relative transpiration are used extensively. The linear 

relation between the relative yield and relative transpiration as found by De Wit 

(1958) is generally accepted and is still frequently used in experimental studies. 

Indeed, any kind of stress on plants will eventually influence the transpiration as well 

as the root water uptake. Since the main emphasis of this research is on root water 

uptake under salinity and/or water stress, the linear relationship between relative yield 

and transpiration is followed. 

In the following review the concepts of plant response to these stresses, whether 

considered as yield or growth, can eventually be related to root water uptake. In this 

chapter, after a brief review of plant responses to the separate salinity and water 

stress, some information on the plant response to joint salinity and water stresses is 

given. Alfalfa was used in the experimental part of this study, hence, a brief review of 

alfalfa responses to these stresses is also given. Since salinity and sodicity have a 

great impact on water and salt movement in the root zone, the soil physical properties 

under such circumstances are also reviewed. 

1.2. Crop response to salinity stress 

The adverse effects of salts on plants are generally divided into two categories. 

The first and most important one is the total salt or osmotic effect on the ability of the 

plant to take up water from the soil solution. Crop growth reduction due to salinity is 

generally related to the soil solution osmotic potential of the root zone. All soluble 

salts contribute to the osmotic effect. When salt is dissolved in water, the potential 

energy of the water is lowered and the plant must spend more energy to take up water 

from the same soil water content. The second category consists of specific ion effects, 

because an excess of specific ions may be toxic to various plant physiological 

processes. In contrast to the osmotic effect, investigations on specific ion effects are 

limited to few studies as documented by Maas (1990) for several crops and by Smith 

(1994) for alfalfa. 

The predominant influence of salinity stress on plants is suppression of root 

water uptake and growth. This suppression is typically a nonspecific salt effect, 

depending more on osmotic stress created by total concentration of soluble salts than 

on the level of specific solutes. Plants under salinity stress show some typical 

symptoms. Bare spots, poor spotty stands, and severely stunted plants are all signs of 

3 
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serious salinity stress. Usually, moderate salt stress restricts plant growth without any 

injury symptoms. Salt-affected plants are stunted in height, have smaller leaves and 

may have a darker blue-green color than normal plants. Chlorosis, the yellowing or 

blanching of green plant parts, is not a typical characteristic of salt-affected plants but 

it appears in many plants as a symptom. Wilting is not a regular characteristic of 

plants under salinity stress because this typically occurs when water availability 

decreases rather abruptly. Under salinity stress (but no water stress), moderate soil 

water potentials are always present and soil water pressure head changes are usually 

gradual. Thus, plants are hardened by continual salinity stress and are less inclined to 

exhibit abrupt changes in turgor {Hoffman, 1981). 

The root zone of all soils naturally contains a mixture of soluble salts. Root 

water uptake will be reduced when the concentration of soluble salts exceeds the 

threshold value of the plant. Excess salinity reduces root water uptake, primarily 

because it increases the energy that the plant must expend to extract water from the 

soil and make the biochemical adjustment necessary to survive. Actual response of 

plants to salinity varies with many factors, including climate, soil conditions, water 

table elevation, agronomic practices, irrigation management, crop variety, stage of 

growth, and salt composition. Salt sensitivity of the plants changes considerably 

during the development stages. Three developmental stages can be distinguished with 

respect to salt tolerance or salt sensitivity: germination, vegetative growth and 

reproductive growth. The separation between growth stage and duration of 

salinization is not always clear even in the experimental studies to evaluate the growth 

stage effect (Maas and Hoffman, 1977). Most plants are relatively salt-tolerant during 

germination and more sensitive during seedling emergence and early stage of seedling 

growth (Rhoades, 1990). A more complex response pattern emerges for germination. 

However, crops such as corn were found to be more tolerant at germination than at 

later growth stages, whereas crops like sugarbeet are more salt-sensitive at 

germination (Meiri, 1984, Shannon, 1997). There is much evidence that vegetative 

growth is particularly salt-sensitive (Lauchli and Epstein, 1990; Shannon, 1997). 

Many crops may be more salt-sensitive at early rather than later growth stages (Meiri, 

1984, Shannon, 1997). Root growth is often less affected by salinity than shoot 

growth. In the shoot, reduction of leaf area is then most prominent. Reduced leaf 

growth may indirectly increase total solute concentration in the leaves, which 

contributes to osmotic adjustment unless solutes build up toxic concentrations, first in 

the oldest and then in the younger leaves. 

When salinity is a hazard, an effective use of soil and water resources dictates 

the selection of relatively salt-tolerant plants. Thus, quantifying the yield response to 

different levels of salinity is of great concern, and hence many field and laboratory 
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experiments have been conducted for many plant species. The effect of salinity on 

crop production is determined by crop salt tolerance. Crop salt tolerance can be 

defined as the ability of plants to survive and produce economic yields under adverse 

conditions caused by soil salinity. Salt tolerance of agricultural crops is typically 

expressed in terms of yield decreases associated with soil salinity increases, or as 

relative crop yield on saline versus nonsaline soils (Bresler et al. 1982, Shannon, 

1997). 

The quantitative response of plants to salinity stress is usually described as 

decreasing yields with increasing electrical conductivity of the soil solution ECSS. 

Brown and Hayward (1956), Lunin et al. (1963), Shalhevet et al. (1969), and Maas 

and Hoffman (1977) suggested that the reduction in crop yield due to salinity can be 

linearly related to the electrical conductivity of the soil solution. Until 1977, yield 

response functions to soil salinity have been either eye-fitted to the data or obtained 

with linear regression techniques. In an attempt to fit a generalized response function 

to all salt tolerance data, Maas and Hoffman (1977) published a comprehensive 

analysis based upon an extensive review of the literature. In general, they found that 

crops tolerate increases in soil salinity up to a threshold value, above which yields 

show an approximately linear decrease with increasing salt concentration. The 

analysis of each experiment was based upon a linear least-squares equation for values 

beyond the threshold salinity value. The response function of Maas and Hoffman can 

be written as: 

— = 100-a(£Ce-£Ce*) ECe>ECl 1.1 

where ECt (dS/m) is the electrical conductivity of the soil saturation extract; ECe 

(dS/m) is the threshold value of salinity at which relative yield begins to decrease; and 

a (m/dS) is the slope which indicates the percent yield decrease per unit salinity 

increase. This equation is valid only when ECe is higher than the threshold value and 

less than the value resulting in zero yield. 

Maas and Hoffman (1977) and Maas (1986, 1990) collected and analyzed data for 

many crops, and determined the slopes and threshold values. This information is 

valuable, but the most important limitation of these data is that the data were obtained 

under uniform salt distributions over the root zone, small changes with time and 

unrestricted water supply by flood irrigation. Furthermore, Eq. 1.1 assumes that the 

crop responds primarily to the osmotic potential of the soil solution and that the effect 

of specific ions or toxicity can be ignored. These tolerance values can change greatly 

if different water salinity levels are applied at different growth stages. 
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Equation 1.1 is valid when the irrigation water quantity is considerably in 

excess of the sum of soil evaporation and plant transpiration, i.e. actual 

evapotranspiration ET&. Bresler et al. (1982) showed this to be true when the ratio of 

quantity of water and maximum ET is larger than 1.5. When irrigation water supply is 

limited to a leaching fraction (LF) of less than 0.3, Eq. 1.1 will not be accurate. 

Equation 1.1 holds under ideal conditions, but can hardly meet the realities in the 

field. It is however still useful for approximate purposes. 

The main purpose of this dissertation is to find an alternative for Eq. 1.1 that 

describes the effect of salinity on transpiration under transient, nonuniform and water 

limited conditions. 

1.3. Crop response to water stress 

Plant and water relations can be discussed from several points of view. In the 

agronomic literature, this relation is widely discussed from morphological, 

physiological and ontogenic points of view, hence main attention is paid to the effect 

of water deficit on the physiology and morphology of plants. Begg and Turner (1976), 

Turner (1986), Kramer and Boyer (1995), Larcher (1995), Boyer (1996) and Turner 

(1997) extensively discussed and summarized the available literature from agronomic 

points of view. In this section a summary of these publications is given, followed by a 

quantitative description of water and plant relations related to the scope of the present 

study. 

Plants consume water essentially for the processes of photosynthesis and 

transpiration, taking up water through the roots, primarily through their root hairs. 

Water is transported through the plant and then removed from the leaf surface via 

transpiration. Transpiration is controlled by the stomatal aperture and by the vapor 

pressure gradient from the leaf to the air. The amount of water required by plants for 

their growth depends on a number of factors including the type of plant, its growth 

stage, soil properties and meteorological conditions. 

The demand for water is not equally spread over the growing season. At the 

beginning of the season, consumptive use is low. It increases as the plant foliage 

develops and the days become warmer, peaks during flowering and fruit formation 

and rapidly decreases towards the end of the growing season. The evaluation of water 

requirements of crops to achieve full production at a particular location is based on 

the estimation of transpiration or evapotranspiration. Evapotranspiration is an energy 

dependent process involving a change of water from the liquid to the vapor phase. 

The rate of ET is a function of the net radiation, the vapor pressure gradient, the 
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resistance to flow, and the ability of the soil and plant to transport water to the site of 

evapotranspiration. 

It is generally accepted that water moves through the Soil-Plant-Atmosphere 

Continuum (SPAC) along a gradient of water potential from the soil through the plant 

to the atmosphere {Philip, 1966; Gardner et al; 1975; Kramer and Boyer, 1995; 

Turner, 1997). The evaporation of water from the leaf provides the major driving 

force of water uptake by transpiring plants against the soil water pressure and 

gravitational potentials, and the frictional resistances in the plant pathways (Begg and 

Turner, 1976). Low water potentials in the transpiration pathway provide the driving 

force for water movement out of some tissues such as the leaf mesophyll, cortex and 

phloem. As a result of this loss, water deficits develop in the leaf, stem and root 

tissues. Thus, water stress occurs as a result of water flow driven by soil water 

potential differences along a pathway in which frictional resistances have to be 

overcome. Water stress does not only occur when the loss of water from the leaves in 

transpiration exceeds the supply from the roots. For a plant going into water stress, 

transpiration exceeds the root water uptake as water is drawn out of tissues 

surrounding the xylem. When the water potential of these tissues has adjusted to the 

water potential in the xylem, a steady state is reached in which transpiration equals 

root water uptake. Since the plant can only extract water from the soil when the water 

potential in the plant is less than that of the soil, a steady state is rarely obtained. The 

difference between the water potential in the plant and soil depends on the rate of root 

water uptake and water conducting properties of soil and plant. 

Plants are most sensitive to water stress during their period of rapid 

development. For most plants this is the time of floral initiation, flowering, fruit, and 

seed development. Plant growth depends basically on continuity of cell division and 

cell enlargement until the characteristic form of the plant is realized. Cell division is 

less sensitive to water stress than cell enlargement (Kramer and Boyer, 1995). Leaf 

enlargement declines rapidly at leaf water potentials (LWP) below -2 bars and ceases 

at LWP of -7 to -9 bars (Boyer, 1996). The most important consequence of leaf 

enlargement decline is a marked reduction in leaf area (LA). A reduction in LA will 

reduce the growth rate. This has a permanent effect for which plants cannot 

compensate by increasing the number of leaves. Water stress can also affect LA 

through its effect of accelerating the rate of leaf senescence. Water stress increases the 

root/shoot ratio (Hoffman and Rawlins, 1971). There is evidence from a number of 

crops that at certain growth stages, especially during flowering and formation of fruit, 

root growth diminishes or ceases completely (Begg and Turner, 1976). By root 

growth reduction, the root water uptake becomes a function of soil water flow to the 

root surface. Since the unsaturated hydraulic conductivity at lower water contents is 
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very low, water stress will soon occur in plants particularly where the roots occupy a 

relatively small volume of soil. 

The influence of water stress on plant physiology is generally attributed to 

stomatal behavior and photosynthesis. Since stomata act as regulators for CO2 

exchange and water loss, water stress sufficient to close stomata also depresses 

photosynthesis. It is generally accepted that photosynthesis reduction due to water 

stress arises from changes in conductance of CO2 through the stomata {Kramer and 

Boyer, 1995). It is now generally recognized that the stomata do not respond to 

changes in LWP until a critical threshold value is reached. However, even if that 

threshold is not reached, a reduction in yield may occur owing to the effect of water 

stress on other physiological or morphological processes {Turner, 1997). 

In irrigation design and management, the quantitative influence of water on 

crop production, the so-called production functions, are of most interest. Studies on 

quantitative relationships between water use and crop yield started by several 

researchers since the beginning of the twentieth century. The term transpiration ratio 

became common and was defined as the ratio (kg/kg) of the amount of water 

transpired during growth and the dry weight of plants at the time of harvest {De Wit, 

1958). This ratio was also called the water requirement or consumptive use. The early 

work in this field led to the conclusion that the water requirement of plants is 

proportional to evaporation from a free-water surface, £0, and dependent on the plant 

species, but relatively independent of soil fertility, weather conditions, and the size of 

the plant {De Wit, 1958). De Wit (1958) analyzed the findings of the early 

investigations in an effort to further identify the factors that determine transpiration 

and yield under field conditions. He concluded that the relationship between yield Y 

and actual transpiration T3 for arid and semi-arid regions is linear in the following 

form: 

Y = f a 

f 1.2 

where / is a crop parameter. For a given crop and year for which / and Eo are 

constants, the relationship between relative transpiration TJTV and relative yield YJYm 

can simply be written as: 

Y T 
— = ̂ - 1.3 
Y T 

m p in which Ym is the maximum yield. 
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In the early experiments, plants were grown in containers, covered to prevent 

direct evaporation from the soil surface, and the amount of transpired water was 

determined by weighing the container. De Wit (1958) concluded that this relationship 

is equally valid for container- and field-grown crops. The validity of De Wit's linear 

relationship in field experiments was confirmed by several researchers in different 

climates (Arkerly, 1963; Hanks et al., 1969; Stewart et al, 1977; Hanks, 1974, 1983; 

Feddes, 1971), and hence, can be used as a general relationship. Recent reviews on 

production functions are given by Letty and Knapp (1990, 1995), while world wide 

data have been collected and evaluated by Doorenbos and Pruitt (1977) and 

Doorenbos and Kassam (1979). 

1.4. Crop response to joint salinity and water stresses 

Both salinity and water stress reduce root water uptake. Under joint salinity 

and water stress the plants must spend more energy to take up water from the soil, 

compared with that under salinity stress only or water stress only. In irrigated soils, 

particularly in arid and semi-arid regions, plants are subjected to both salinity and 

water stress in different intensities. Evapotranspiration during an irrigation interval 

reduces osmotic and matric potentials of the soil solution, which in turn strongly 

reduce root water uptake. Under most conditions, both factors change with time and 

space and the effective stress will depend on the way in which the plant integrates 

them. Despite some progress during the last two decades, the question of how plants 

integrate salinity and water stress remains unsolved. Only few publications are 

devoted to the symptoms of plants under joint salinity and water stress with the 

conclusion that all the mentioned symptoms for the separate stresses can occur 

together. Multiple stress interactions and their impact on plants is the main subject of 

some publications in the field of environmental stresses. There are two contradictory 

concepts about stress interactions. The first is Liebig 's law of the minimum, which 

states that plant growth is limited by a single stress at any one time;' only after the 

stress limitation is relieved, another stress can influence the plant. If this were true, 

raising the availability of any other limiting factor would not improve plant growth 

because the primary limiting factor is still constraining growth. In contrast to Liebig's 

law, one can argue that plants have evolved to compensate for stress imbalances i.e. 

compensatory theory {Bloom et al, 1985), and growth (or root water uptake) should 

be limited by all stresses simultaneously. Several important implications of the 

compensatory theory for plants were suggested by Chopin et al. (1987). First, if a 

plant is limited simultaneously by several resources, increases in a number of 

different resources could increase growth. This improves the chances that growth will 

be increased because any one of a number of different occurrences would enhance 
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growth rather than only one type of occurrence. Second, there are many evidences 

that when plants are limited by several limitations, increases in two or more of them 

has a synergetic impact on growth (Lipscomb, 1991). 

It has been known for a long time that in the case of water and salinity stresses 

there exists a relation between root water uptake reduction and salinity increase. The 

question is whether under similar climatic conditions, this relationship is identical, 

additive, or multiplicative with the effect of water stress. It is known that soil water 

osmotic and pressure potentials are additive in lowering the free energy of the water. 

It is therefore assumed, that they would also be additive in their effect on transpiration 

through reduction of the availability of water for plants. A review of this subject and 

its validity is given in Chapter 2 and quantitatively discussed in Chapter 6. 

Despite some obvious similarities, there are some clear differences between 

plant responses to salt and water stresses. One of the more important observations is 

the lack of wilting under salt stress at water potentials which cause wilting under 

water stress. Wadleigh andAyers (1945) and Sepaskhah and Boersma (1979) reported 

no wilting at low osmotic potentials, whereas there was wilting at equivalent low 

pressure potentials. These observations led to the conclusion that a decreasing 

pressure potential is more detrimental than an equivalent decrease in osmotic 

potential. Furthermore, there may be a difference in the nature of the solutes that 

contribute to osmotic adjustment. Osmotic adjustment is a decrease in plant osmotic 

potential through an increase in solute content in response to a reduction in external 

water potential to the extent that turgor potential is maintained. Generally, poor 

osmotic adjustment leads to stomatal closure and turgor loss, which is soon followed 

by reduced gas exchange and photosynthesis (Shannon, 1997). The obvious difference 

between salinity and water stress is in leaf turgor and the growth processes that are 

influenced by it. For instance, Shalhevet and Hsiao (1986) indicated that the growth 

rate under water stress was half as large as under salt stress in the leaf water potential 

range of interest. Meiri (1984) indicated that soil water pressure head h had a greater 

influence on shoot growth and transpiration than osmotic head h0. However, for root 

growth the effect of h0 was greater than that of h. 

1.5. Salinity and water stress and alfalfa growth 

For this study, alfalfa was selected mainly for its moderate tolerance to 

salinity, its tolerance to water deficit, and its fast postharvest growth. Alfalfa 

(Medicago sativa L.) was one of the first plants cultivated exclusively for use as 

forage and is now grown on some 35 million ha world-wide (Smith, 1994). Relative to 

other forage crops, alfalfa is frequently favored by farmers for the reasons mentioned 

10 
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above, as well as its highly nutritious herbage and excellent persistence. Alfalfa also 

conducts symbiotic N2 fixation in association with Rhizobium bacteria, resulting in a 

significant carryover of nitrogen in crop rotation. Salinity can limit nodule formation 

by reducing the population of Rhizobium in the soil or by impairing their ability to 

infect root hairs. However, the direct effect of salinity on the host plant can limit 

nitrogen fixation independent of the effects of salinity on the Rhizobium bacteria and 

the nodulation process {Keck et al, 1984). Alfalfa may be affected by salinity 

throughout its growth stages. Increased soil salinity results in smaller plants and a 

blue-green color in the vegetation, but these effects are greatly dependent upon the 

timing of the stress. Three developmental stages are recognized due to salinity effects, 

namely germination, seedling emergence and growth, and mature plant growth from 

secondary stems. 

Considerable research has been conducted to assess the osmotic effects of salts 

on germination. Smith (1994) reported about very early to recent studies that indicate 

that alfalfa will not germinate in solutions above 0.5% NaCl. Problems in establishing 

alfalfa usually start when ECt > 8 dS/m. Little progress has been made in separating 

the specific ion and osmotic effects on alfalfa. In one study, Smith (1994) indicated 

that increase in exchangeable sodium percentage (ESP) from 5 to 37.4 decreased 

seedling establishment. Under salinity stress, alfalfa seedlings exhibit a characteristic 

set of plant symptoms. At low salinity level, reduced shoot growth is the only obvious 

evidence of osmotic effect. At higher levels of salinity, reductions in growth are 

accompanied by bleaching of leaflets in younger plants. This is also associated with 

increases in leaf and stem succulence, dark green or blue-green color of the foliage, 

and increases in the leaf-shoot weight ratio. Higher levels of salinity produce marginal 

leaf necrosis or chlorosis, which may be followed by removal of the oldest leaves. 

Little progress has been made in separating the effects of specific ion toxicities and 

osmotic effects on seedling growth for alfalfa (Smith, 1994). 

Several studies (Hoffman, 1981, Keck et al, 1984; Shalhevet 1984, 1993, 

1994; Meiri 1984, 1992; Smith, 1994) indicate that in mature alfalfa salinity tends to 

depress shoot growth more than root growth. The effect of salt stress on alfalfa yield 

has been quantified by Maas and Hoffman (1977) for uniform salinity in the root 

zone. They concluded that forage yield of alfalfa decreased by about 7.3% (slope) for 

each dS/m increase above 2.0 dS/m (salinity threshold value) in the saturation soil 

extract. 

In most studies with alfalfa, root zone salinity varies with depth, having low 

EC near the surface and much higher at the bottom of the root zone (Lonkerd et al, 

1979). It is frequently assumed that plants respond to the average root zone salinity 

under these conditions and some data collected support this idea (Shalhevet and 

Bernstein, 1968; Bower et al, 1969; Prunty, et al, 1991). This assumption is one of 
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the main hypotheses of Maas and Hoffman (1977) in deriving Eq. 1.1. Since the 

majority of roots of alfalfa are within the first 50 cm of the root zone, Bernstein and 

Francois (1973) concluded that alfalfa responded to a calculated mean salinity value 

that is controlled primarily by the salinity of the irrigation water (upper root zone 

salinity), and hence is less affected by deep root zone salinity. Later research 

suggested that alfalfa can tolerate high salinity in the lower part of the root zone (at 

180 cm) by increasing water uptake from higher regions that are lower in salinity 

(Shalhevet and Bernstein 1968; Hanks et al, 1977). Consequently, overall 

transpiration and water uptake for the entire plant remains unchanged. Francois 

(1981) reported that significant yield reduction will not occur until after salinity 

increased in the lower part of the root zone (50-60 cm). Ingvalson et al. (1976) 

suggested that irrigation management, especially the frequency of irrigation, could 

partially explain these contradictory conclusions. They reasoned that immediately 

after irrigation, plants would take up water primarily from the less saline upper root 

zone, and the lower part salinities will affect the plant later in the soil drying cycle. 

Raats (1974a) suggested that the response is determined by a kind of weighted mean 

salinity, in particular the uptake-weighted mean. Dirksen (1985) and Dirksen et al. 

(1994) collected and analyzed some data for alfalfa, which support this suggestion. 

1.6. Salinity and sodicity and soil physical properties 

The suitability of soils for cropping depends strongly on the permeability for 

water and air, and on the properties of the aggregates which control the friability of 

the seedbed. Poor permeability is often a major problem in irrigated lands. Besides 

salinity, sodicity is also an important problem in semi-arid regions. Sodicity strongly 

affects the soil physical properties. Sodic soils usually have poor physical properties 

resulting in restricted water and air movement. The soil is sodic when its ESP is 15 or 

more (U. S. Salinity Staff 1954). For most soils, when the ESP reaches more than 15 

the soil structure will be destroyed and the aggregation becomes massive. 

The soluble salts affect the physical and chemical properties of the soils. 

Historically, the physical behavior of saline soils has been described in terms of the 

combined effects of EC and ESP on flocculation and soil dispersion. Many physical 

properties of soils are sensitive to the relative composition of exchangeable cations, 

which in turn depend on the concentration and composition of the soil solution in 

equilibrium with the solid phase. Divalent cations improve the soil physical properties 

such as hydraulic conductivity K, infiltration rate /, aggregate stability, and aeration. 

High soil solution salinity reduces the unfavorable physical effects of the adsorbed 

monovalent sodium ions. 

12 
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The most severe adverse effect of sodium ions on the soil physical properties 

is on K and /. Soil hydraulic conductivity is a function of the size of the water-filled 

pores. Therefore, any soil solution salinity that causes a decrease in the size of these 

water-conducting pores has a marked effect on the soil hydraulic conductivity as well 

as on the infiltration rate. The size of the water conducting pores is decreased by 

swelling of clay particles and by dispersion of the colloidal soil material. According to 

the diffuse double layer theory, both swelling and particle dispersion increase as the 

soil solution salinity decreases and the sodium to calcium ratio (Na/Ca) increases. 

Saturated, as well as unsaturated soil hydraulic conductivity behaves accordingly, that 

is, they are higher at the more saline soil solution and decrease with the high Na/Ca 

ratio (Oster, et al. 1996). 

Water flow in unsaturated soil is described well by Darcy's equation. In the 

Darcy-type water flow equation it is assumed that the hydraulic gradient is the only 

driving force that causes water flow. Because of mass movement of salt and water 

content fluctuations, however, dynamic changes of salt concentration may create an 

additional driving force due to the osmotic gradient. Also, variations in salt 

concentration and composition may affect the hydraulic conductivity function, K(9), 

because of density, particle swelling, and dispersion (Bresler et al, 1982). Thus, in 

applying Darcy's flow equation to a given salinity, mutual salt-water flow effects 

must be considered. Investigations to quantify the mutual salt-water flow effects are 

limited to the works of Kemper and co-workers {Kemper, 1961; Kemper and Evans, 

1963; Kemper and Rollins, 1966; Kemper and van Schaik, 1966; and Porter et al, 

1960), providing several complicated coefficients and parameters whose values are 

difficult to obtain. 

Irrigation and leaching of sodic soils with water having too low electrolyte 

concentrations to maintain flocculated conditions, cause hydraulic conductivity 

reductions due to clay dispersion, movement, and consequent blockage of water-

conducting pores. Clay swelling and dispersion due to high sodicity and low salinity, 

are two mechanisms that account for changes in hydraulic properties. Swelling that 

occurs within a fixed soil volume reduces pore radii, thereby reducing both saturated 

and unsaturated hydraulic conductivities. Swelling results in aggregate breakdown or 

slaking, and clay particle movement, which in turn leads to blockage of conducting 

pores. The experimental evidence shows that aggregate dispersion occurs at lower 

electrolyte concentration than that required to flocculate a clay suspension {Oster et 

al, 1996). The electrolyte concentration of the soil solution should be above the 

threshold value that causes dispersion or permeability decrease. The threshold 

concentration is the concentration in the percolating solution that would give rise to a 

10 to 15 percent decrease in the relative permeability at a given sodicity level, as first 

introduced by Quirk and Schofield (1955). Further investigations indicated that water 
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with salinity less than 0.3 dS/m causes clays to swell, resulting in swelling-induced 

effects such as breakdown of aggregates, crusting, and reduced permeability (Bresler 

etal., 1982; Gupta and Abrol, 1990; Osteretal, 1996). 

In the semi-arid regions a great part of soils are both saline and sodic. In Iran, 

this is due to the dominance of NaCl in these soils, which causes both salinity and 

sodicity. Since the solubility of NaCl in water is very high, the reclamation of such 

soils by leaching is relatively easy (Homaee, 1991). Often, the difficulty during 

improvement is the decreasing infiltration rate during leaching. To avoid this 

problem, the use of brackish water rather than fresh water, and/or application of 

gypsum is recommended (U. S. Salinity Lab. Staff, 1954; Oster et al, 1996; Gupta 

and Abrol, 1990; Homaee, 1991). Infiltration rates are more strongly affected by low 

soil salinity and high exchangeable sodium levels than hydraulic conductivities 

because of mechanical impact and stirring action of the applied water and the freedom 

for soil particle movement at the soil surface {Oster et al. 1996). Investigations to 

quantify the influence of salinity and sodicity on infiltration rate are still empirical. 

Oster andSchroer (1979) and Kaur (1994) introduced some empirical relationships as 

function of salinity and sodicity of irrigation water. The relationship proposed by 

Oster andSchroer (1979) can be written as: 

7 = 6.8- 1.1 SAR+ 0.79 c 1.4 

in which, I is the infiltration rate in mm/h, SAR is sodium adsorption ratio of the 

irrigation water ([meq/lit]"2) in equilibrium with the solid phase of CaCC>3 at a CO2 

pressure of 0.07% based on ion activities corrected for ion pairing, and c is total 

cation concentration in mol/m3. The advantage of this type of relations is that it 

employs the SAR of the irrigation water rather than the ESP of the soil that is difficult 

and time consuming to obtain. The slopes as well as the intercept in Eq. 1.4 are only 

valid for the soil type and the irrigation management for which the equation was 

derived and must be adjusted for other soils and irrigation methods. 

1.7. Outline of the thesis 

The thesis deals with root water uptake under separate and joint salinity and 

water stress conditions. The introductory Chapter 1 presents the interactions of plants 

under such circumstances, particularly for alfalfa. Chapter 2 presents governing 

equations for water flow and solute transport and reviews the existing root water 

uptake models. Chapter 3 describes the experimental setup and program. Chapters 4 

to 6 present the analyses of the experimental data and simulation results for salinity 

stress, water stress, and joint salinity and water stress, respectively. 
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In Chapter 2, available root water uptake models are reviewed and classified in 

microscopic and macroscopic groups. For the joint water and salinity stress 

conditions, additive and multiplicative concepts are discussed. The simulation model 

for hysteretic one-dimensional water flow and solute transport in the root zone, 

HYSWASOR, with its governing equations is introduced. 

Chapter 3 gives a detailed description of the experimental setup specifically designed 

for growing alfalfa in the greenhouse under water and/or salinity stress conditions and 

making extensive measurements on soil and plant. Instrumentation and methods are 

described for measuring soil water content and soil bulk electrical conductivity 

(TDR), soil solution electrical conductivity (salinity sensors), leaf water potential 

(pressure chamber), and actual transpiration (weighing). 

Chapter 4 deals with root water uptake under saline conditions. In the first part, 

experimental data are presented and analyzed based on the mean soil solution salinity. 

The second part reports the results with the numerical simulation model 

HYSWASOR. The same order of analysis is followed in Chapter 5 for water stress. 

Chapter 6 deals with joint salinity and water stress. The parameter values for additive, 

multiplicative, and a newly proposed combination reduction function are first derived 

from averaged experimental data for the single stresses in the previous chapters, and 

then tested in the simulation model. 
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2. Models for root water uptake under salinity and water stress 

2.1. Introduction 

Study of plant roots is one of the oldest subjects in plant science, usually 

dealing qualitatively with several aspects of water uptake. The soil-root-stem-leaf-

atmosphere water flow pathway is a major component of the hydrologic cycle. About 

70 percent of the water that falls on the soil surface returns to the atmosphere through 

evapotranspiration. Therefore, vegetated areas constitute an important part of the 

hydrologic cycle. The boundary between soil and roots is a major hydrologic interface 

in that over 50 percent of the evapotranspiration crosses the soil-root interface. 

Penman (1970) estimated that in order to produce 1 kg fresh weight of a crop, 

approximately 100 kg of water must be withdrawn from the soil. Such observations 

led to the conclusion that an important long term aim of hydrologists should be to 

extend and develop their understanding of the hydrologic processes involved in the 

transport of water from soil, into and through plants. 

Root water uptake approaches generally serve one of two purposes. Either 

they produce an estimate of transpired water loss for water budget models or they 

provide estimates of plant water status for predicting water stress. Root water 

extraction is a dynamic term influenced by soil, plant, and climate. Root water uptake 

depends on a number of factors like soil hydraulic conductivity, rooting depth, rooting 

density, root distribution, soil water pressure head, soil water osmotic head, 

evaporative demand, the presence of a groundwater table, plant resistances, growth 

stage of plant, etc. This indicates that an exact physical description of root water 

uptake is rather complicated. Despite of this, several models have been introduced to 

quantify the root water uptake, particularly for use in numerical simulation models. 

Quantitative concepts of water transport into plants first appeared in 

publications of Gradmann (1928) and Van den Honert (1948). Gradmann (1928) was 

the first to suggest that an analogy could be drawn between steady electric current 

flow in a resistance network and steady water flow through the roots, stem, and leaves 

of a plant. Van den Honert (1948) followed this concept and stated that under steady 

state conditions the rate of water flow through a plant part is directly proportional to 

the water potential difference across that part and inversely proportional to the water 

flow resistance. Philip (1958a, b) developed the first detailed quantitative description 

of water transport in plant tissue, resulting in a diffusion equation. His derivation 

assumed that water moves primarily from vacuole to vacuole. Subsequent researchers 

added cell walls and plasmodesmata as possible pathway (Moh, 1981). 
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On the other hand, understanding of soil water status improved by the introduction of 

quantitative energy concepts of soil water by Buckingham (1907) and Richards 

(1931). In another development, introducing the concept of available water for plants, 

field capacity FC and permanent wilting point WP, Veihmeyer and Hendrickson 

(1927, 1931, 1955) stated that soil water is equally available for plants from FC to 

WP. This concept was criticized later by many researchers {Richards, 1928, 1960; 

Slatyer, 1957; Van Bavel and Ahmed, 1976). Richards (1928) pointed out that 

available water involves both the ability of the plant to take up water and the 

readiness with which water moves to replace the extracted water, which indicates that 

soil hydraulic conductivity is an important variable to take into account. Hence, from 

very early investigations it became clear that both soil and plant resistances are 

involved in root water uptake. Many investigations have been conducted later to 

improve and quantify the understanding of the soil-water-root system. 

This chapter presents a brief review on these concepts after introducing the governing 

equations for water flow and solute transport in the root zone. Furthermore, root water 

uptake models are reviewed and classified into the so-called microscopic and 

macroscopic categories. Since in this study the numerical simulation model 

HYSWASOR {Dirksen et al, 1993) has been used, a brief introduction to this model 

is also given. 

2.2. Water movement and solute transport in root zone 

2.2.1. Water movement 

One-dimensional vertical water flow in soil is well described by Darcy's 

equation: 

q=„K{h)
dJh±A 2.1 

dz 

where q is the soil water flux density taken positive upward (LT~), K is soil hydraulic 

conductivity (LT1), h is soil water pressure head (L), and z is gravitational head, as well 

as the vertical coordinate (L) taken positive upward. Applying the principle of 

continuity and representing root water uptake as a sink term S depending on h, leads to: 

™=JjL_S{h) 2.2 
dt dz 

where 6 is volumetric water content (L L"3), t is time (T), and S is soil water 

extraction rate by plant roots (L3L"3T''). Water flow in unsaturated or partly saturated 
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soils is then traditionally described with Richards' equation (Richards, 1931) who 

was the first to combine Eqs. 2.1 and 2.2 as: 

86 „,„dh 8 ( ^ 
• = C(A)—= 

dt dt dz 

8h 
K(h) — + K(h) 

dz 
- S(h) 2.3 

where C is the differential soil water capacity (L"1) which is equal to the slope d0/dh 

of the soil water retention curve. Equation 2.3 may also be expressed in terms of the 

water content if the soil profile is homogeneous, unsaturated, and hysteresis can be 

neglected: 

80__dJ 
dt dz 

D(e)—+K(0) 
dz 

- S(0) 2.4 

where D is the soil water diffusivity (L2T_1), defined as: 

D = K ^ 2.5 
dO 

The unsaturated soil hydraulic functions in the above equations are the soil water 

retention curve 6 (h), the hydraulic conductivity function K(h) or K(0), and the soil 

diffusivity function D(9). Several functions have been proposed to describe the soil 

water retention curve. Among those, the analytical functions of Brooks and Corey 

(1964) and Van Genuchten (1980) are most popular. The latter is extensively used 

particularly in numerical simulation models and can be written as: 

S = ^ ^ - = (\ + a\h\")-" 2.6 

where 6, and 8S are residual and saturated water contents, respectively; and a (L"'), 

n (-), and m (-) are shape factors. The latter can be taken equal to: 

m = \ - - 2.7 
n 

The soil hydraulic conductivity function can be described by (Mualem, 1976; Van 
Genuchten, 1980): 

K = KsSln[\-([-Sl"")m]2 2.8 
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where Ks (LT1) is the saturated hydraulic conductivity. 

Van Genuchten et al. (1991) developed the program RETC to estimate the parameter 

values of these equations from measured 9 (h) and K{0) data. Wosten et al. (1994) 

obtained the above mentioned parameters for more than 600 soil samples in The 

Netherlands {Van Dam et al, 1997). 

2.2.2. Solute transport 

In numerical simulation models, the salt concentration as well as the soil 

solution salinity ECSS at any given depth in the root zone is determined by either 

deterministic or stochastic solute transport approaches. The rate at which solutes 

move through the soil is determined by several transport mechanisms. The 

mechanisms often act simultaneously and may include such processes as convection, 

dispersion, diffusion, adsorption, and production or decay. In the case of 

simultaneous movement of solute and water, it is usually assumed that the transport of 

solute is governed by convection and hydrodynamic dispersion. Convection refers to 

solute movement due to the bulk motion of the flowing fluid. Hydrodynamic 

dispersion consists of the two processes of molecular diffusion and mechanical 

dispersion. The relative contributions of these two phenomena to total hydrodynamic 

dispersion depend on the average fluid velocity through the porous medium. The total 

solute flux is obtained by adding the convective flux, diffusive flux, and the flux due 

to mechanical dispersion. 

Considerable research has been conducted to model solute transport in soils. These 

models vary widely in their conceptual approach and degree of complexity. Among 

others, Addiscott and Wagenet (1985) classified these models as deterministic and 

stochastic models. 

In deterministic models, individual processes and the interactions between those 

processes are defined mathematically, with each set of input data leading to a unique 

and reproducible prediction. These types of models typically account poorly for the 

spatially variable nature of soil. 

Stochastic models presuppose that soil properties vary spatially, so that solute and 

water movements also vary. Stochastic models place less emphasis on the processes 

but more on prediction of the statistical distribution or probability of a given 

characteristic. Common to all stochastic models is the assumption that parameter 

values are distributed in space. The probability distribution functions at each point in 

space are usually unknown and cannot be evaluated from only one or few 

observations within close proximity of the location. Some recent reviews of analytical 

and numerical modeling on solute transport in soil are given by Guven et al. (1990), 

Sudicky and Huyakorn (1991), Sardin et al. (1991) and Van Genuchten (1994). 
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The deterministic convection-dispersion equation is extensively used in numerical 

simulation models. The convective-dispersive equation of solute transport similar to 

Eq. 2.4 can be written as: 

d(ps) djGc) d 
dt dt dz 

(0D^-ac 
dz 

2.9 

where p is the soil bulk density (ML'3), 5 is the solute concentration associated with 

the solid phase of the soil (ML"3), D is the solute dispersion coefficient (L2T-1), c is 

the solute concentration of the fluid phase (ML-3), and Ss (ML'3T~') is a sink for solute. 

The classical Eqs. 2.3 and 2.9 have been solved for a variety of one- and multi

dimensional applications {Van Genuchten, 1994). While models based on these 

equations are important tools, they are also subject to a large number of simplifying 

assumptions which limit their applicability to many problems in the field. These are 

discussed in detail by Van Genuchten (1994). One important limitation in the use of 

Eq. 2.3 involves the sink term S in the flow equation. 

As will be discussed in the rest of this chapter, widely different approaches exist for 

simulating root water uptake, most of them are essentially empirical and contain 

parameters that depend on specific crop, soil, and environmental conditions. Much 

research is still needed to derive physically based descriptions of root water uptake as 

function of water and salinity in the root zone. Another complication arises from the 

extreme heterogeneity of the subsurface environment. There is ample evidence to 

suggest that solutions of these classical models fail to describe accurately transfer 

processes in most natural field soils {Van Genuchten, 1994). Besides these facts, 

deterministic models are still useful to analyze mechanisms involved in flow and 

transport problems and to perform scenario analyses. 

2.3. Root water uptake models 

Steady-state water flow through the entire soil-plant system can be described 

by an analogue of Ohm's law as introduced by Van den Honert (1948): 

rp _ " "root _ "rool " l 9 1 0 

where h, hwoh and h\ are the pressure heads (L) in the soil, at the root surface and in 

the leaves, respectively; Rs and Rp are the flow resistances (T) in soil and plant, 

respectively, and Ta is actual transpiration rate (LT' ). Since hIO0t is hardly measurable 
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(if not impossible), it is convenient to use an equivalent equation rather than Eq. 

2.10: 

™ h — h 
Ta=

 l- 2.11 

The relative importance of Rs and Rp was extensively studied by Gardner and Ehlig 

(1962), Cowan (1965), Newman (1969), Feddes (1971), Yang and De Jong (1971) 

Feddes and Rijtema (1972), Hansen (1974a,b), Taylor and Klepper (1975), Molz 

(1975), Jarvis (1975), Reicosky and Ritchie (1976), Herkelrath, et al. (1977a,b), 

Nnyamah et al. (1977), Meyer et al. (1978) and Blizer and Boyer (1980). The majority 

of these authors believe that Rp is dependent on soil water content #and transpiration 

rate Ta, while some believe that Rp is independent of them. Furthermore, there is 

some evidence that the hydraulic resistance of the root system usually dominates the 

resistance of soil surrounding the roots (Newman, 1969; Molz, 1975, 1976; Taylor 

and Klepper, 1975; Nnyamah et al, 1978; Meyer et al, 1978; Blizer and Boyer, 

1980). If this is true, one may draw the conclusion that root water extraction functions 

expressed in terms of soil hydraulic resistance alone are conceptually wrong. 

However, there is some controversy concerning the degree of dominancy of the root 

resistance (So et al, 1976; Faiz and Weatherley, 1977, 1978). Whether this is true or 

not, it is now well understood that complete specification of all the resistances 

encountered in the soil-root-plant system is hardly feasible. 

There are two main approaches to quantify root water uptake. The first one 

considers the convergent radial flow of soil water toward and into a representative 

individual root, taken to be a line or narrow tube sink uniform along its length. In this 

approach the root is an infinitely long cylinder of uniform radius and water absorbing 

properties. The soil water flow equation in this model is written in cylindrical 

coordinates and solved for the appropriate boundary conditions at the root surface and 

at some distance from the roots. The most common formulation of this microscopic 

approach is based on the work of Gardner (1960, 1964) and describes the microscale 

physics of water flow from the soil to, and through the plant roots. The most 

important limitation of this group of models is the unavailability of the required input 

parameter values. The models of Gardner (1964), Nimah and Hanks (1973a), Feddes 

et al (1974), HUM et al. (1976) and Herkelrath et al. (1977a) are in this category. 

The second, macroscopic approach assumes that the whole root system is a diffuse 

sink which permeates each layer of soil uniformly, though not necessarily with a 

constant density throughout the root zone. In the macroscopic approach, the flow to 
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individual roots is ignored and the overall root system is assumed to extract water at 

some rate from each differential volume of the root zone. The advantage of the 

macroscopic approach is that it does not require complete insight in the physical 

process of root water uptake and, therefore, eliminates the need for difficult to 

measure soil and plant parameters. However, some empirical parameters are still 

needed for different plants, soils, and climates. The models of Molz and Remson 

(1970, 1971); Raats (1974); Feddes et al. (1976, 1978); Van Genuchten (1987); 

Dirksen et al. (1993) and Schmidhalter et al. (1994) are in this group. 

2.3.1. Microscopic models 

The major difficulty in solving Eq. 2.3 (or 2.4), either numerically or analytically 

stems from the unknown form of the S term. There has been a tendency to describe 

the root water uptake analogous to Darcy's equation, assuming that the rate of uptake 

is proportional to the soil hydraulic conductivity and the difference between the total 

pressure head at the root-soil interface and the corresponding pressure head in the soil. 

In this description, an individual root is considered as a hollow cylinder of uniform 

radius and infinite length having uniform water absorbing properties. The governing 

Darcy flow equation for the radial flow coordinates can be written as 

dt r dr 
rK(h) — 

or 
2.12 

where r (L ) is the radial distance from the center of the root. Solution of the above 

equation can be obtained for both steady-and nonsteady-state conditions. For steady-

state conditions with water flowing from a distance r^ to a root with radius r\, the 

solution under the assumption of a constant K is {Feddes, 1981): 

2*Hh-hnA) 2U 

In 
r-

V'I J 
in which qmoi is the rate of water uptake per unit length of root (L3L"1T1). For a 

discrete soil layer of thickness Az and a rooting length per unit volume of soil of L 

(LI/3) the water uptake rate AVT0M (LT1) can be written as: 

AKroot = L Az ql00l 2.14 

With this soil layer being located at depth Z, equation 2.14 can be written as: 
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AVroot=^^LK(h-h,M-Z)Az 2.15 

ln- r 

or 
Sqt = BKL(h-hTM-Z)Az 2.16 

where B, equal to 27t/[ln(r2/ri)], represents a dimensionless geometric and root 

distribution factor. The soil resistance Rs can then be written as: 

R=-^— 2.17 
s BLK 

By dividing the root water uptake rate by the depth increment Az, one may describe 

the sink term as: 

^f^ = BLK(h-hroot-Z) 2.18 
Az 

Equation 2.18 is the general form of the microscopic root water uptake models first 

introduced by Gardner (1960). Indeed, Eq. 2.18 is based upon the assumption that the 

rate of water flow from the soil into the plant root is proportional to the difference 

between the free energy of the water that surrounding soil and in the plant root. As 

pointed out by Feddes (1981), Eq. 2.18 can be used to describe water uptake for 

individual soil layers. Then, summation of the water uptake for all the layers over the 

entire root zone yields the total uptake rate of the whole root system which is equal to 

the actual transpiration rate Ta. Thus, this model describes the extraction term as a 

macroscopic process as well. However, in this chapter we will refer to the single root 

extraction functions as microscopic models. 

Several researchers (Whisler et al. 1968; Nimah and Hanks, 1973a ,b; Feddes et al. 

1974; Childs and Hanks, 1975; Hansen, 1974, 1975; Van Bavel and Ahmed, 1976; 

Hillel et al. 1976; Herkelrath et al. 1977; Bresler et al. 1982; Rowse et al., 1978) 

followed the same concept as Gardner (1960) and made some modifications to make 

the model practical. Most of them devoted their work to find a direct or indirect way 

to determine B and hroot in Eq. 2.18. These models are partly listed by Molz (1981) 

and extensively reviewed and discussed by Feddes (1981). Only a brief review of 

some of the most important models is given here. 

Bresler and Hanks (1969) introduced a model to compute the water and concentration 

of salts in the soil as a function of time and depth, assuming no precipitation or 
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dissolution of salts. Nimah and Hanks (1973) expanded this analysis by including a 

root extraction term. The extraction term can be written as: 

s_K[hrM + \.05Z-h-ho]RDF 2 1 9 

Ax Az 

where RDF is the proportion of the total active roots in depth increment Az; Ax is the 

distance between the plant roots at the point in the soil where h and h0 are measured, 

and h0 is the osmotic head. The value 1.05 accounts for the frictional loss in the root 

(0.05) and for the gravitational head within the root at different depths (1.0). 

The model predicted significant changes in root extraction, evapotranspiration, and 

drainage due to the variations in h-6 relations and rooting depth. The model needs 

information on the effective water potential in the root at the soil surface, the root 

resistance, and the distribution of active roots with depth. 

Among microscopic models only this model deals with salinity. As can be seen in Eq. 

2.19, a simple additivity of soil water osmotic and pressure heads is assumed. 

Herkelrath et al. (1977) assumed that the rate of flow through the root membrane is 

proportional to the difference in the water potential across the membrane and the 

relative saturation 619%: 

S = BLK^{h-hrM-Z) 2.20 

2.3.2. Macroscopic models 

As has been discussed in the previous section, soil water transport models for which 

flow to each individual rootlet of a complete root system must be considered are not 

practical. The detailed geometry of the root system is practically impossible to 

measure and is time dependent. In addition, the water permeability of a root varies 

with position along the root. At present, only macroscopic models that simplify the 

system considerably are able to produce practical results. 

In contrast to the microscopic root water uptake concepts, few macroscopic models 

have been proposed. One reason for this is that in many studies the macroscopic 

models provided reasonable agreement with the experimental field data, hence, they 

are satisfactory for practical purposes. The breakthrough for using such a concept 

came from the assumption made by Molz and Remson (1970, 1971) that the root 

water uptake can be described as actual transpiration. The idea in principle was 

promising, but the major problem was still unsolved: how to obtain the actual 

transpiration? 
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Molz and Remson (1970) developed a one-dimensional mathematical model 

for the macroscopic water extraction and flow process caused by transpiration 

demands of living plants. They assumed, as a first attempt, that root water uptake 

depends only on depth and actual transpiration rate, that is: 

\.6T 1.87/ 
— - T Z + — - 2 - 2.21 

(z,y zr 

where Zr is the depth of the root zone, and z is depth below soil surface. The constants 

1.6 and 1.8 are empirical values to fit a given fixed pattern of water extraction as 

suggested by Danielson (1967). Indeed, the constants came from an empirical rule 

used by some agricultural workers that 40, 30, 20, and 10 percent of the total 

transpiration come from successively deeper quarters of the root zone. The numbers 

of 40, 30,20, and 10 percent have no special significance and should be regarded only 

as reasonable quantities. As pointed out by Molz and Remson (1970) an expression 

such as Eq. 2.21, may give reasonable results at higher water contents, but not at 

lower water contents. As the upper soil layers become drier, more of the transpiration 

requirement has to come from deeper roots in the wetter parts of soil. Similar to any 

other extraction term, Eq. 2.21 does not account for soil water hysteresis. 

In a second attempt, Molz and Remson (1970) developed an extraction term that 

depends on water content, depth, transpiration rate, and the so-called "effective root 

distribution function", which can be written as: 

S = 

\ 

D{0)R 

JD(0)Rdz 
V o 

2.22 

where R is the effective root distribution defined as a relative, spatial measure of the 

roots effective in soil water uptake at a given time (Molz, 1971). Molz and Remson 

(1970) indicated that R could be evaluated from the relationship between soil water 

flux, flux in the plant roots, and the transpiration rate. 

Molz (1971) compared calculated and measured values of effective root distribution 

for sorghum. The root distribution was calculated from the data of Gardner and Ehlig 

(1962) and Gardner (1964), and compared with the measured data in terms of length 

per unit volume of soil. He found a poor correlation between the calculated and 
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measured values when the soil was wet, and a somewhat better correlation when the 

soil dried due to transpiration. 

Molz (1981) introduced a third extraction term that depends on transpiration rate, soil 

water pressure head, water pressure in the root xylem, volumetric soil water content, 

and length of roots: 

S = 
OL(h-hx) 

zr 

J0L(h-hx)dz 
2.23 

in which hx is pressure head of the root xylem. Since in practice it is very difficult to 

obtain the water pressure in the root xylem, no investigation has been conducted to 

evaluate this model. 

Raats (1974) developed a macroscopic root water uptake model based upon an 

exponential decrease of the rate of water uptake with depth: 

S = (^)exp(-j\ 2.24 

where A. (L) is an empirical relative root density or activity chosen such that the 

integral of S over the root zone equals Ta. 

A modification of Eq. 2.24 as given by Schmidhalter et al. (1994) consists of an 

exponential and a linear term: 

•S = ^ p - e x p f - j | + ( 7 - / ) 2 ; 6 2.25 

in which the parameter / indicates a fraction of the transpiration rate, and b is an 

empirical parameter representing the non-exponentially distributed part of the 

transpiration rate, specified for 5-cm increments. The first part of right hand side of 

this equation is the same as that of Raats (1974), multiplied b y / The parameters k 

and b(z) in this model are obtained by relating the root water uptake function to the 

measured chloride distribution. Both parameters were found to be time-invariant and 

were therefore assumed constant. While Schmidhalter et al. (1994) proposed the 

model for areas with saline soils where upward flow from groundwater is the 

principal mechanism leading to salinization, there is no specific term in Eq. 2.25 to 

quantify soil salinity. 
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Popularity of the macroscopic approach increased when the studies of Feddes 

(1976) and Feddes et al. (1978) led to a simple reduction term to convert, potential 

transpiration to actual transpiration as a function of soil water pressure head only. 

Based on this model, the extraction term under non-stress conditions is simply equal 

to potential transpiration over the root zone. As soon as the soil water pressure head 

reaches a critical value the actual transpiration reduces linearly until the root water 

uptake ceases completely (wilting point). This reduction is quantified by the so-called 

reduction function. 

After encountering the difficulties in quantifying the root water uptake 

function with the microscopic approach, Feddes et al. (1976) developed a 

macroscopic approach, in which the sink term was considered as function of 

transpiration rate and the soil water content only. The sink term varies with 9 

according to the soil water pressure heads generally known to be critical for water 

uptake by roots. The flow equation is then solved with Eq. 2.4 with the following 

extraction term: 

S = a(0) - ^ 2.26 
Z, 

in which a (0) is a dimensionless reduction term, depending on soil water content 

only. 

In a second attempt, Feddes et al. (1978) changed the model of Feddes et al. (1976) 

by making the reduction term dependent on soil water pressure head h only, and 

assumed the sink term to be a function of h and potential transpiration rate Tp. They 

assumed that root water uptake is at maximum when the absolute value of the 

negative soil water pressure head \h I is between Ii2 and hi, as illustrated in Fig. 2.1a. 

When \h I is between hi and h4 (soil water pressure head at the wilting point), the 

water uptake decreases linearly to zero. It was further assumed that root water uptake 

is equal to zero at values of \h I smaller than hi (oxygen deficiency) and larger than /z4. 

Similarly to Eq. 2.26, the sink term can then be written as: 

S = a(h)Sm 2.27 

in which Smm is the maximum water uptake rate and a (h) is a dimensionless function 

of pressure head, defined as: 

«(A) = ^ 2.28 
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Integration of S (h) over Zr gives the actual transpiration rate: 

TB= \Sdz 2.29 

and Smax can be obtained by substituting Eq. 2.27 into Eq. 2.29: 

Sm„ = - ^ 2.30 
Zr 

max 

Among the parameters, hi and hn, are most important. The model assumes that the 

value of hj, is dependent on evaporative demand and thus varies with Tp as depicted in 

Fig. 2.1a. This assumption is based on the early investigation by Denmead and Shaw 

(1962), who presented experimental confirmation of the effect of dynamic conditions 

on water uptake and transpiration. They found that under an evaporative demand of 3-

4 mm/d, the actual transpiration rate began to fall below the potential transpiration 

rate at an average h of about -2 bar. When the evaporative demand was 6-7 mm/d, this 

drop already began at a soil water pressure of about -0.3 bar. When the evaporative 

demand was about 1.4 mm/d, no drop in transpiration rate was noticed until the 

average soil water pressure exceeded -12 bar. Besides these observations, it is still not 

clear whether the assumption that only h^ in the Feddes et al. (1978) model depends 

on evaporative demand, is correct or not. If the assumption is true, the reduction term 

is not a single-dependent variable, as they defined. Even if this is true, the suggestion 

still remains qualitative, as one cannot quantify the effect of an intermediate 

transpiration rate on a (h). Hence, an alternative is to introduce the atmospheric 

demand in the model, and describing the reduction term as a (h, Tp). More studies are 

needed to quantify such a reduction term. 

As can be seen from the above derivation, a constant rate of maximum extraction is 

assumed for the entire root zone. Such an assumption can hardly meet reality. Kabat 

et al. (1992) stated that for a non-homogeneous root distribution one can incorporate a 

root distribution function in Eq. 2.30, for example, as a weight fraction of the roots 

relative to the total weight of roots. Such root distribution functions are extensively 

used in numerical simulation models. While the root distribution functions can be 

either linear or nonlinear, Hoogland et al. (1981) concluded from many experimental 

data that in wet soils roots can principally extract water from the moist upper layers 

leaving the deeper layers untouched. Thus, the upper part of the root zone dominates 

the root distribution function. Prasad (1988) assumed that potential water uptake 

varies linearly with depth during the vegetation phase. Similar to Hoogland et al. 

(1981), he took care of the fact that in a moist soil, roots prefer to take up water from 

the upper soil layers without any limitation. He assumed that root water uptake at the 

bottom of the root zone Zr is zero and derived: 
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a 

b 

h'° IhJ 

Figure 2.1. Schematic representations of root water uptake reduction functions a: Feddes et 

al. (1978); b: Maas and Hoffman (1977); c: Van Genuchten (1987); and d: Dirken et al. 

(1993). Note that in (a) the reduction function depends not only on the absolute value of the 

soil water pressure head Ih I, but also on evaporative demand: at high evaporative demand (Tp 

= 5 mm/day) the reduction occurs at lower absolute pressure head (hn) than under low 

evaporative conditions (Tp = 1 mm/day), hi2-
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5 m a x = ^ d - f ) 2.31 

Schematic representations of the different water uptake functions under optimal soil 

water content are depicted in Fig. 2.2. 

Belmans et al. (1983) assumed that the root density is constant with depth and time 

and proposed for Smm: 

Smxi=P~Qz 2.32 

where P is the maximum uptake rate and Q is the rate of decrease in uptake with 

depth z. They indicated that the magnitude of Q is very small and could be 

disregarded. Neglecting Q in Eq. 2.32 implies that Smm at equivalent h is a constant 

for the entire rooting depth. However, experimental data of Allmaras (1975), Prasad 

(1988) and Rasiah et al. (1992) indicated that Smax couldn't be regarded constant over 

the root zone. Rasiah et al. (1992) assessed the influence of parameter estimation of 

the macroscopic root water uptake functions. They used Eq. 2.32 to simulate root 

water uptake. According to the fact that 5max is not constant over the root zone, they 

proposed an independent discontinuous 5max function for each arbitrary compartment. 

They indicated that in the presence of living roots, volumetric water content could be 

predicted with high accuracy, using nonlinear and discontinuous estimation 

techniques. Rubin and Or (1993) developed a stochastic-analytical model for 

unsaturated flow in heterogeneous soils including root water uptake. The best 

agreement of soil water contents was found when water uptake by plant roots was 

specified to an exponential decay with depth, as proposed by Raats (1974). 

2.4. Root water uptake models for salinity stress 

Following the assumption of Feddes et al. (1978), one may introduce a soil 

salinity reduction term, a (h0), into Eq. 2.27 instead of a (h). This salinity function 

can be put in the form of the Maas and Hoffman equation (Eq. 1.1). Written in terms 

of the soil solution osmotic head h0, this gives (Fig. 2.1b): 

a^) = ̂ -^:{K-h0) 2.33 
360 

where h 0 is the osmotic threshold value and 360 is a factor to convert the salinity-

based slope to cm osmotic head (U.S. Salinity Laboratory Staff, 1954). To improve 

the analysis of Maas and Hoffman (1977), Feinerman et al. (1982) proposed a 

switching regression method to estimate the coefficients in Eq. 1.1. 
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Figure 2.2. Schematic representations of different water uptake distributions under optimal 

soil water contents, a: Feddes et al. (1978); b: Prasad (1988); Danielson et al. (1967), and 

Hoffman and Van Genuchten (1983). 
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This method requires at least two data points to the left and at least three data points 

to the right of the fitted threshold value. This makes the method less suitable for 

experiments with a limited number of data points. Equation 1.1 is a popular model for 

quantifying salinity effects on crop production because of its linearity and simplicity. 

Since the linear assumption does not fully meet real conditions in the field, Van 

Genuchten and Hoffman (1984) proposed two alternative equations for Eq. 2.33. 

Their proposed exponential equation reads as: 

a ( / 0 = [ exp(M, - /^o ) ]~ ' 2.34 

in which A, and P are empirical constants. Their S-shape function can be written as: 

a{h0)-. 

1 + 
V ^o50 ) 

2.35 

where h0^ is the soil salinity at which «( h0) is reduced by 0.50, and/? is an empirical, 

presumably crop, soil and climate-specific dimensionless parameter. The value of p 

was found to be 3 when the S-shaped function was applied to salinity stress data. 

Equation 2.35 was found to describe crop salt tolerance data equally well or better 

than Eq. 2.33 (Van Genuchten, 1987). 

Dirksen et al. (1988, 1993) proposed as modification for Eq. 2.35: 

«(*„) = 1 

1 + 
ti -h 

V " o "o50 J 

2.36 

Equation 2.36 is more realistic than Eq. 2.35, incorporating a salinity threshold value 

in the equation. The most important limitation for Eqs. 2.35 and 2.36 arises from the 

difficulty involved to obtain h0so. Furthermore, p is not yet defined either physically or 

empirically. 

2.5. Root water uptake models for joint water and salinity stress 

Whereas root water uptake is reduced due to low soil water pressure and 

osmotic potentials, it is not clear how these stresses interact when they occur together, 

and vary with time and depth. The simple additivity of soil water pressure and 
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osmotic potentials as proposed by early investigators {Ayers et al., 1943; Wadleigh 

and Ayers 1945; Wadleigh et al, 1946; U.S. Salinity Laboratory Staff, 1954) is still 

questionable. Because soil water pressure and osmotic heads are additive in reducing 

the free energy of soil water, it was assumed that their effect on transpiration is also 

additive through reduction in the availability of water for plants. Early studies 

indicated that yield reduction is a function of integrated osmotic and pressure heads. 

This observation led to the conclusion that the effect of excess salt on transpiration is 

similar to that of water stress. Meiri (1984) analyzed data of Meiri and Shalhevet 

(1973), Sepaskhah and Boersma (1979), Jensen (1982), and Parra and Romero 

(1980) by multilinear regression and found that the effects of osmotic and matric 

potentials are somewhat additive. It is important to keep in mind that in most of these 

investigations PEG (Poly ethylene glycol) rather than a real drought intrusion was 

used to create water stress. Shalhevet (1984, 1994) referred to the same studies and 

stated that the bulk evidence suggests that the effects of salinity and water stress are 

identical, and that a unified function may be applied to both stress components. This 

would imply that h and h0 are additive in their effect on transpiration, but one unit of h 

is not equivalent to one unit of h0 (Shalhevet, 1994). Such a conclusion remains 

useless, however, unless an empirical proportionality coefficient can be determined. 

It has been known for many years that crop response to soil water and salinity 

is a continuous function. Information on the consumptive use of many crops is 

available for irrigation with nonsaline water. The question is whether this information 

also applies to saline irrigation water, and if not, what adjustments need to be made. 

Stewart andHagan (1973) proposed the following production function: 

Y ET 
— = {\-b)+ b—s- 2.37 
Ym ET 

where ETa and ETm are actual and maximum evapotranspiration, respectively, and b is 

an empirical constant. Shalhevet et al. (1973) and Shalhevet (1984) argued that b may 

or may not be affected by salinity. Since salinity may affect the rate of canopy 

development and the eventual leaf area index (LAI), b could indeed depend on soil 

salinity. Application of the equation to different locations with different soil water 

osmotic and pressure heads indicated that regardless of the type of stress causing 

reduction, ET,. decreased proportionally. Where salinity stress was involved, plant 

water extraction was less than in similar treatments without salinity stress. Using Eq. 

2.37, Katerji et al. (1998) found that the yield estimate for maize and sunflower was 

quite accurate, for potatoes somewhat less, but for soybean unsatisfactory. Still, the 
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relative effect of salinity stress and water stress on transpiration cannot be calculated 

with this equation. 

Among the microscopic extraction functions, only Eq. 2.19 deals both with h 

and h0. In this model, the osmotic head is added to the matric head to establish the 

water potential gradient from the soil to the root. Furthermore, the influence of 

salinity is assumed to be only osmotic, and effects of specific ions as well as chemical 

precipitation-dissolution are ignored. Nimah and Hanks (1973b) and Childs and 

Hanks (1975) reported good agreement between the field data for alfalfa under joint 

water and salinity stresses and computed water contents over the root zone and 

transpiration. Wolf (1977) reported that computed and measured data correlated 

excellently when salinity was low, but for high salinity the model overestimated. 

Hanks (1984) stated that Eq. 2.19 is quite crude, particularly regarding plant factors. 

He indicated that attempts to make the model more realistic by including such plant 

factors as axial and radial root resistance did not improve the predictability when 

applied to actual problems. 

Childs and Hanks (1975) used this model to simulate the effect of root distribution on 

dry matter yield in saline condition. The result indicated that because of upward water 

flow, the influence of rooting depth on relative yield was large where the amount of 

water applied was much less than the water lost through evapotranspiration. Hanks 

(1984) pointed out that the model cannot be applied to the field scale because of 

considerable spatial variability in the field which the model cannot handle. Cardon 

and Letey (1992) showed that in its calculations of root water uptake Eq. 2.19 is 

generally inconsistent with plant behavior. The insensitivity of this model is caused 

by the manner in which the salinity effect is incorporated in the uptake term. The 

value of S is dominated by the nonlinear changes of h and K with 0. In contrast, h0 

decreases linearly with 9 (simple concentration-dilution). Moreover, increasing the 

salinity of the irrigation water while maintaining high water contents, results in 

relatively high K{9) values and plant water extraction proceeds at or near maximum 

levels. 

Basically, the macroscopic models do not account for saline conditions. One 

reason for this is the unknown relation between h and h0 as they vary in time and 

space. Few attempts have been made to modify the Feddes et al. (1978) model for 

salinity. In a first attempt, Van Genuchten (1987) modified Eq. 2.27, using different 

equations for both the water stress reduction function a (h) and the maximum 

extraction rate 5max. He assumed that water and salinity stress have similar effects on 
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yield, and hence on transpiration, and proposed a similar smooth S-shaped 

relationship for a (h): 

1 
a(h)-

1 + f— 
h 

V'50 J 

2.38 

in which &50 is the soil water pressure head at which a (h) is reduced by 0.50. It was 

expected that h^ depends on soil, climatic, and management conditions. Except near 

saturation, a plot of Eq. 2.38 closely resembles the stress part of the Feddes et al. 

(1978) model. This simplification can be justified for relatively short periods of 

saturation. A schematic representation of Eq. 2.38 is given in Fig. 2.1c. 

The reduction function due to joint salinity and water stress is then obtained by 

summation of h and h0 with undefined empirical coefficients for soil water pressure 

head (ay) and osmotic head (02): 

a(h,h0) = 1 

1+ 
(ci\h + a2h0) 

2.39 

Since the assumption of linear additivity is still being questioned, and parameters ai 

and &2 practically are difficult to obtain, Van Genuchten (1987) proposed a simple 

multiplication of Eqs. 2.35 and 2.38: 

a(h,KY 
1 2.40 

1 + 
" h ' 

K_ 

Pi 

1 + \K 1 
A50 _ 

Dirksen et al. (1988, 1993) multiplied identical reduction terms for water stress and 

salinity stress, each with their own values for the threshold value h , h 0 and 50% 

value /?o50 and h*o5o' 

a(h,hj-

1 + 
ti -h 

h' -h<„ 

1 2.41 
K - K 

Schematic view of the pressure head reduction function of Eq. 2.41 is given in Fig. 

2.1d. 

Van Genuchten (1987) proposed for the maximum extraction term Smax: 
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5mai = T„S(z) 2.42 

where 8(z) is a depth-dependent root distribution function. Based on the experimental 

data documented by Gardner (1983), Hoffman and Van Genuchten (1983) proposed: 

8 = — 
3Zr 

8 = J*-
12Zr 

£ = 0 

1--

for z < 0.2Zr 

for 0.2Zr < z<Z r 

for z > Zr 

2.43 

A plot of the relative root distribution function as a function of relative rooting depth 

(z/Zr) is presented in Fig. 2.2d. 

The most important limitation of Eqs. 2.40 and 2.41 is the difficulties involved in 

obtaining the required parameter values. Furthermore, there is still no physical or 

empirical explanation for p\ and px, which determine the rate at which the water 

uptake diminishes when the threshold values are exceeded. It is still not clear whether 

p\ and/?2 have approximately the same values. 

As shown by Dirksen (1985) and discussed by Dirksen et al. (1993), leaf water 

potentials closely reflect the effect of soil water potentials on water uptake integrated 

over the root zone. Thus, Dirksen et al (1993) derived the parameter values from 

experimental leaf water potentials of alfalfa, which can be measured easily. 

In one study, Cordon and Letey (1992) compared the sensitivity of Eq. 2.19 and Eq. 

2.40 to salinity stress. They found that the water uptake term of Eq. 2.19 was 

insensitive to salinity and generally inconsistent with plant behavior. Equation 2.40 

had a broad range of sensitivity for fluctuations in both the pressure and osmotic 

heads, providing reasonable calculations of transpiration rates. 

2.6. Numerical simulation model HYSWASOR 

The numerical simulation model for Aysteretic water and solute transport in 

the root zone, HYSWASOR (Dirksen et al, 1993), was designed to study the 

influence of soil water pressure and osmotic potentials on root water uptake under 

hysteretic conditions (frequent irrigation). This makes this model ideally suitable for 

use in this study. Detailed information on this model is given elsewhere (Dirksen et 

al, 1993; Kool and Van Genuchten, 1991; and Van Genuchten, 1987). 
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HYSWASOR is a modified version of WORM (Van Genuchten, 1987), an efficient 

mass-lumped, fully implicit Galerkin finite element code for one-dimensional, 

isothermal transport of water and solute in rigid porous media (Dirksen et al, 1993). 

The governing one-dimensional water flow equation is Eq. 2.3. The main wetting and 

drying soil water retention functions are described by the parametric function of Eq. 

2.6. Similar equations are used in the algebraic algorithm to generate closed hysteretic 

scanning curves. The hydraulic conductivity function can be described by Eq. 2.8, or 

can be given in a table of K as function of 9. 

Solute transport is described by the familiar advection-dispersion equation. The only 

major change in the solute transport module, in comparison with WORM, is the 

inclusion of Freundlich's nonlinear adsorption isotherm. Osmotic potential is 

expressed as osmotic head which is assumed to be a linear function of solute 

concentration c and ECSS according to: 

ho = - 4 0 c = -400£Css 2.44 

in which h0 is in cm, c in \i mol/cm3 and ECSS in dS/m. 

Eq. 2.41 is used as the reduction function, multiplied by <f>a\, I MinAir to incorporate 

the effect of oxygen deficiency on root water uptake reduction under wet conditions. 

This effect is assumed to vary linearly between the threshold air volume fraction $,ir = 

MinAir and $,ir = 0. The complete extraction term is then: 

: f _ ^ _ , i f ^ l ] _ ^ _ J ^ x _ ^ J ^TVS 2.45 
I MinAir 

1 + " h' -h~ 
Pt 

1 + 
' K-K ' 
K-Kx_ 

l p i 

where 5 is the relative root density or activity (L"1) defined such that the integral of S 

over the root zone equals 1. 

2.7. Summary 

Historically, two concepts of root water uptake have evolved: microscopic and 

macroscopic. The microscopic concept considers the radial flow of soil water toward 

a representative root of infinite length, uniform thickness, and uniform absorptivity. In 

microscopic models, the soil water flow equation is usually written in cylindrical 
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coordinates and solved with appropriate boundary conditions at a root surface and at 

some distance from the root. Because the required input parameters at the soil-root 

interface are rather difficult to measure, it has not proven practical to test the proposed 

microscopic models directly. 

The macroscopic concept regards the root system as a whole. Because the parameters 

needed in macroscopic models can be measured, this concept is most widely used in 

numerical simulation models. The macroscopic concept remains essentially empirical, 

however, and much research is still needed to derive a physically based description. 
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3. Physical experiments 

3.1 Introduction 

Most salt tolerance and water stress studies have been carried out separately 

and many data are available for either water stress or salinity stress only. There are 

only few publications in terms of root water uptake under joint water and salinity 

stresses (Dirksen et al, 1994). Even in studies with only salinity stress, most 

investigations have been conducted at uniform salt distributions over the root zone 

with soil solution concentrations relatively constant in time. The objective of this 

study was to investigate the influence of water, salinity, and joint water and salinity 

stress on root water uptake when both soil water osmotic and pressure heads change 

in time and space. To facilitate such a study, a specific experimental set up was 

designed on which alfalfa was grown in densely instrumented laboratory soil columns 

and harvested at approximately 50-day intervals for one year. Stresses imposed on the 

plants lasted for about 20 days, while considerable time has been spent for the plants 

to recover and regrow after each stress period. Different soil water osmotic and 

pressure head distributions over the root zone have been obtained by varying 

irrigation water salinities and irrigation quantity and intervals. 

The experiments consisted of five major periods. In the first period, 

information on plant, soil and greenhouse conditions was obtained, which was 

essential for the measurements during the following four periods. The second and the 

third period were dedicated to only salinity stress and only water stress, respectively. 

The joint water and salinity stress data were collected during two different phases, the 

fourth and fifth period. Each period had its own reference treatment. 

Water content and bulk electrical conductivity in the root zone were measured 

nondestructively with (mostly) automated TDR (Time Domain Reflectometry) 

instrumentation. This apparatus could measure 36 locations (four columns) fully 

automatically, the remaining locations were measured semi-automatically. The time 

intervals for all automated TDR measurements were two hours. In-situ soil solution 

electrical conductivities were measured manually with salinity sensors once a day at 

all locations, while the actual transpiration was determined by weighing the columns 

five times a day (with few exceptions). Leaf water potentials of the treatments were 

measured twice a day. Details of the experimental set up are discussed in the next 

part, while Table 3.1 lists detail information on the experimental treatments. An 

overview of the experimental setup is given in Fig. 3.1a. 
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Figure 3.1a. An overview of experimental apparatus with automated TDR equipment, salinity and TDR 
sensors, electronic scale, pressure chamber, and an apparatus to control the suction applied to reach the 
target leaching fraction. The plants belong to the second growth period and were in flowering stage 
under no stress condition. Plants in the first 3 columns in the left row were damaged by insects. 

Figure 3.1b. (left): An overview of the automated TDR apparatus with the PC, (right): an experimental 
column with TDR and salinity sensors and tensiometers. Two glass bottles for collecting suction-
drainage via two parallel filter tubes from the bottom of the column, and a salinity bridge to measure 
soil solution salinity, are also shown. 
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3.2. Experimental setup 

To obtain as accurate experimental data as possible, highly instrumented 

experiments were carried out by growing alfalfa (Medicago Sativa L.) in a greenhouse 

under controlled environmental conditions. Alfalfa has been chosen because it can be 

harvested repeatedly for a relatively long period without significant changes in the 

root system and more importantly, because alfalfa is categorized as moderately 

tolerant to salinity stress and tolerant to water deficit. This makes alfalfa ideal for this 

study. Because the alfalfa plants were well developed, the distance between the 

containers was kept as large as possible (55 cm) to minimize neighboring plants 

shadowing to each other (Fig. 3.1a). This arrangement caused the plants to transpire 

large amounts of water compared to field conditions. The experimental measurements 

covered four periods consisting of 5 salinity stress treatments (S*Wo), 2 water stress 

treatments (SoW/), and 10 joint salinity and water stress treatments (S,W,), 

respectively. Detailed information on each individual treatment and its replicates is 

given in Table 3.1. The reference treatment R for each period of measurements was 

different from the others. Because the joint water and salinity stresses were introduced 

to the plants in two time periods, the reference treatments were also different and all 

the collected data were later compared with their own R. The transpired water from R 

was considered to be equal to potential transpiration Tp. 

3.3. Experimental phases 

All treatments were carried out in duplicate. Within all experimental phases, 

the first treatment was always the reference treatment R without salinity or water 

stress. From this treatment, the required amounts of water for the other treatments 

were derived. Also, all the data obtained from the other treatments were compared 

with the data of this treatment. All irrigations of R were with tap water of ECm < 0.2 

dS/m. Since no water stress was allowed for R, the irrigation intervals needed to be 

short; hence, the columns received irrigation water every two days during the entire 

experiment. The target leaching fraction of the salinity treatments was 0.5. Thus, a 

large amount of saline water in excess of potential transpiration was applied to the 

columns, and the same amount of excess water was given to the reference treatment. 

This provided a relatively similar water distribution over the root zone for all 

treatments. In the cases of water stress and joint salinity and water stress, no extra 

water was given to the reference as it was not given to the stressed treatments. At the 

end of the stress period the plants were harvested, excess salinity was flushed out of 

all soil columns and the alfalfa was allowed to develop healthy plants under no-stress 
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Table 3.1. Quantity Qw, and salinity ECm of irrigation water, target leaching fraction LF, 
number of irrigations N, and irrigation time intervals / of experimental treatments. 

Experimental 

Phase 

I. Preliminary 

II. Salinity stress 

III. Water stress 

IV. Salinity and 

water stress 

V. Salinity and 

water stress 

Name 

s,w„ 

SoW; 

SjW! 

S/W2 

Treatment 

R 

S,W0 

s2w0 

S3W0 

S4W0 

S5W0 

R 

S0W, 

S0W2 

Ri 

s,w, 
S2W, 

S3W, 

S4W, 

S5W, 

R2 

s,w2 

S2W2 

S3W2 

S4W2 

S5W2 

£ C j w 

dS/m 

Tap 

1.5 

2.0 

3.0 

4.0 

5.0 

Tap 

Tap 

Tap 

Tap 

1.5 

2.0 

3.0 

4.0 

5.0 

Tap 

1.5 

2.0 

3.0 

4.0 

5.0 

Qm 

cm3 

1.5 R 

1.5 R 

1.5 R 

1.5 R 

1.5 R 

1.5 R 

1.5 R 

0.7 R 

0.5 R 

1.5 R 

0.7 R 

0.7 R 

0.7 R 

0.7 R 

0.7 R 

1.5 R 

0.5 R 

0.5 R 

0.5 R 

0.5 R 

0.5 R 

4, 

4, 

4, 

4, 

4, 

4, 

4, 

4, 

4 

4 

4 

4 

4, 

4, 

4, 

4, 

4, 

4, 

4, 

4, 

4 

4 

4 

4 

t 

d 

2 

2 

2 

2 

2 

2 

2 

3,3, 

3,3, 

2 

3,3 

3,3 

3,3 

3,3 

3,3 

2 

3,3 

3,3 

3,3 

3,3 

3,3 

3, 

3, 

3 

3, 

3, 

3, 

3, 

3, 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

N 

-

10 

10 

10 

10 

10 

10 

10 

5 

5 

10 

5 

5 

5 

5 

5 

10 

5 

5 

5 

5 

5 

LF 

-

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

-
-
-

-
-
-
-
-
-

-
-
-
-
-
-

conditions, before the next stress was introduced. 

Experimental phase II was carried out under salinity stress without water stress, 

consisting of five treatments. The soil was salinized by twice saturating and draining 

all columns, applying appropriate amounts of water and salinity. This salinization as 

well as the salinity stress was introduced to the columns after developing healthy 

plants. To avoid toxicity effects and precipitation/dissolution reactions of salts with 

the soil solid phase, salinities were created by adding equal molar (charge base) 

quantities of CaCh and NaCl to the irrigation water. The imposed salinity levels were 

related to the salinity threshold value of alfalfa, ECe = 2 dS/m. Accordingly, the EC of 
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the irrigation water was 1.5, 2.0, 3.0, 4.0, and 5.0 dS/m for the treatments Si Wo, 

S2W0, S3 Wo, S4W0, and S5W0, respectively. Similar to R, these treatments were 

irrigated every two days. To minimize salt accumulation, particularly in the deeper 

part of the root zone, the target leaching fraction was 0.50 for all saline columns. For 

this reason and also because no water deficiency was allowed, the applied irrigation 

water was always in excess of potential transpiration. The excess water was sucked 

out overnight with a vacuum pump at suctions of 60 to 80 cm. 

In experimental phase III, two levels of water stress were introduced to the plants, 

denoted as S0W1, and S0W2. No salinity stress was allowed for these treatments. The 

columns were first irrigated twice with tap water at 4-day intervals and thereafter 

received water at 3-day intervals. The amounts of irrigation water for these treatments 

were 70% and 50% of their own reference treatment i.e. Wi = 0.7R and W2 = 0.5R. 

Since the columns received less irrigation water than needed for potential 

transpiration, there was no leaching. 

Experimental phase IV with salinity stress and first level water stresses consisted of 

five treatments denoted as S1W1, S2W1, S3W1, S4W1, and SsWi, respectively. Since 

there was no leaching, after each water application the salinity in the root zone 

increased particularly in the upper parts. The amount of applied irrigation water for all 

replicates was about 0.7 of potential transpiration, calculated from the reference 

treatment (Wj = 0.7R). The first two irrigation intervals of 4 days were followed by 3-

day intervals. The columns received the same amount of irrigation water; the only 

difference between the treatments was the salinity of the irrigation water which varied 

from 1.5 to 5 dS/m. Since the columns did not receive enough water, no leaching 

occurred. 

In experimental phase V, both salinity stress and the second level of water stress were 

investigated, having five treatments denoted as S1W2, S2W2, S3W2, S4W2, and S5W2, 

respectively. The amount of applied irrigation water for all treatments was about 50 

percent of the potential transpiration stress (W2 = 0.5R). Irrigation intervals were the 

same as for the fourth experimental phase. The columns received the same amount of 

irrigation water; thus the only difference within treatments was the salinity of the 

applied water which varied from 1.5 to 5 dS/m. 

3.4. Soil columns 

The soil containers were PVC cylinders, 67 cm high and 21 cm in diameter 

(Fig.3. lb). The most active part of alfalfa roots is usually located in the top 50 cm of 
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the root zone (Smith, 1994). Thus, it was decided to study root water uptake of alfalfa 

in soil columns 15 cm deeper than this active part. Accordingly, the containers were 

filled up to 65 cm with soil and the remaining 2 cm was filled with coarse sand to 

reduce evaporation from the soil surface. In the top 30 cm of the columns three 

parallel ports for TDR sensors, self-made tensiometers, and salinity sensors were 

made at 5-cm increments. The outside diameter of the tensiometers was made the 

same as that of the salinity sensors. In the lower 30 cm of the columns the same ports 

were located at 10 cm intervals. Later, 15 cm of glass wall was added to the top of the 

columns as a free board to facilitate the flood irrigation. To suck out the excess water, 

measure the leaching fraction, and make optimal aeration conditions in the root zone, 

two parallel ports were installed at the bottom of each column. Two filter tubes were 

installed in these ports to suck out the excess waters with a vacuum pump. To 

measure actual transpiration, the columns were hung onto an electronic scale. To 

facilitate attaching a handle to the columns an extra piece of PVC was glued to the top 

of each column. 

3.5. Soil Packing 

In laboratory studies of water movement and solute transport, soil packing 

plays an important role, as it strongly influences the soil water hydraulic functions. 

Many laboratory studies are based upon the assumption that the packed soil columns 

are both longitudinally and laterally homogeneous. In most of the studies with 

multiple columns it is assumed that the packing of the columns is nearly similar. 

Despite considerable progress in soil physical instrumentation, there still is no 

standard method for soil packing. In some studies the soil columns are packed with 

dry soil (Oliviera et al, 1996), while others (Topp and Miller, 1966; Nimmo and 

Miller, 1986) packed their columns under water. However, the most uniform packing 

can be achieved by adding an optimal amount of water to the soil. The uniformity of 

packing is usually evaluated by measuring the soil bulk density (or porosity) along the 

longitudinal direction. The packing method used in this study consisted of adding 

some water to the soil, compressing equal mass of soil by dropping a weight an equal 

number of times from the same height and checking the bulk density for each soil 

increment. 

Wichmond loamy sand soil (14% clay, 31% silt and 55% sand) was chosen to 

avoid preferential flow as much as possible. The soil was first sieved with a 1-cm 

sieve. One column was packed with air-dried soil at 5-cm increments. Compressing 

the air-dried soil by more than 20 hits from 65 cm height with a 1750 g weight did not 

increase the soil bulk density more than 1.27 g/cm3. Using a heavier weight (3100 g) 

and increasing the number of hits from 20 to 30 did not change the bulk density of air-
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dried soil. The same soil packing procedure was then followed with soil mixed 

uniformly 0.050, 0.075, 0.100, 0.125 and 0.150 gram water per gram of soil. At a 

water content of 0.125 g/g, 15 hits yielded nearly uniform bulk densities of 1.42 

g/cm3. Subsequently, all fourteen columns were packed at this water content by the 

same procedure. To minimize the variations during packing, the bulk density of every 

5 cm packed soil was measured before adding the next soil increment. The remaining 

small variations in bulk densities are depicted in Fig. 3.2. 

After packing, all the sensors were installed and the columns were saturated with tap 

water and drained twice with a suction pump to reduce remaining differences in the 

soil packing. During the first irrigation, some ports leaked water. This was controlled 

by a very thin film of Vaseline at the contact places between the outside of the sensors 

and the ports. After fixing all the seepage holes the columns were twice irrigated and 

drained. 
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Figure 3.2. Dry bulk density of packed soil at 5-cm increments for 14 experimental columns, 
denoted as C| to C|4. 

3.6. Seeding 

It was very important to grow healthy plants before introducing any kind of 

stress. To fix nitrogen of air in the roots, the alfalfa seeds were inoculated with 

Rhizobium bacteria. First the suspension of Rhizobia was mixed by Carboxyl 

MethylCellulose CMC and later four parts of seeds were mixed by one part of this 

mixture. CMC was used to fix the Rhizobial cells to the seed coat. Finally, the wet 

seeds were dusted with dry CaCC>3 (1 g CaCCb for 2 g seeds). After this inoculation, 

alfalfa was immediately seeded at a density of four seeds per location and 20 locations 
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per column. A week later, all locations were thinned to one plant, giving 20 plants per 

columns. 

The seeds received the first irrigation water (tap water) 15 minutes after seeding. The 

second irrigation was given 4 days after seeding and later on every three or two days, 

depending on the evaporative demand in the greenhouse; the columns were irrigated 

by the same amount of tap water. Eight days before the first harvesting, the columns 

had to be irrigated daily. The first harvest was 11 weeks after the seeding, which was 

the longest growth period of the experiments. The second harvest was 7 weeks after 

the first cutting. During this re-growth period the young plants were infested with 

insects (White fly and Thrips). To prevent any more damage from these insects, a 

biological control was proposed but for practical reasons a weekly spraying with some 

selective insecticides was used. After three growth periods when all of the conditions 

were controlled and healthy plants were established, the target stresses were 

introduced to the plants and the actual measurements were started. 

3.7. Greenhouse conditions 

The experimental setup was located in a greenhouse that was originally 

designed to grow tropical plants. Therefore, both temperature and relative humidity 

were high. The recorded minimum and maximum temperature during the whole 

experimental period were 18 and 36 °C, respectively, while the relative humidity was 

recorded between 34 and 65 percent. The humidity was controlled by regular air 

circulation. The experimental columns were located in two rows of seven. Above each 

row 4 artificial lights (Son-T Agro 400, Philips, Belgium) were suspended at 220 cm 

above the ground (150 cm above top of the columns). The height of mature plants at 

flowering stage was about 70-75 cm for the nonstressed plant. Thus, the distance of 

the lamps in this case was about 75-80 cm above the top stems. Therefore, the heating 

by the artificial lights could not cause any damage to the plants. At the beginning, the 

light period was 10 hours but that caused horizontal development of stems. In the 

absence of enough light, plants speed up cell division and the stems tend to grow 

horizontally due to their weight. This will break the stems after a few days. For this 

reason the light period was increased to 14-16 hours a day (depending on the season). 

The re-growth periods depended on the environmental conditions in the greenhouse. 

They were about 7-10 days longer in the winter than in the spring and summer. Most 

re-growth periods were 4-6 weeks, and the experimental measurements were 

accomplished during the last 20 days of each growth period. 
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3.8. Water application 

The electrical conductivity of the applied water and the leaching water were 

measured for each water application. For practical reasons all irrigations were 

performed by flooding. In all cases, irrigation water was applied to the soil columns in 

the evening just before turning off the light, so that the applied water could infiltrate 

into the soil columns during the night. This allowed the assumption that during the 

light period soil water pressure heads corresponded to the main drying soil water 

retention curve. While this is true for the salinity stress treatments (because they were 

nearly saturated with water with each irrigation), in the case of water stress soil water 

pressure heads may have differed from the main drying curve. 

Water stress was created as function of potential transpiration, obtained 

experimentally from daily measurement of transpiration of non-stressed treatments. 

One complete growth period was carried out to find out how much water had to be 

applied to the column to avoid any water limitation. Also, based on these results the 

required amounts of water for stress treatments were obtained, but these were 

modified later due to changes in the evaporative demand in the greenhouse. 

3.9. Fertilizer application 

Because alfalfa can fix nitrogen in its roots, no nitrogen fertilizer was added to 

the soil. Early in the second re-growth period some nutrient deficiencies appeared. 

Chemical analyses of the drainage water indicated that there were not sufficient 

nutrients in the drainage water as well as in the soil itself. Thus, except N, a complete 

nutrient mixture (including P, K, Mg, Ca, S, Fe, Zn) was added in solution to the 

irrigation water. Since the fertilizer solution was dilute, its electrical conductivity was 

low (EC< 0.3 dS/m) and the additional influence on the case of salinity and/or water 

stress was negligible. However, the additional salinity was directly measured by the 

salinity bridge and was taken into account. 

3.10. Measurements 

In-situ measurements were made of soil water content 9 (t, z), soil water 

pressure head h (t, z), soil solution electrical conductivity ECSS (t, z), and bulk soil 

electrical conductivity EC*, (t, z). The £CSS was measured manually once a day at each 

depth and converted to osmotic head. Water contents were measured automatically in 

4 columns (32 locations) 12 times a day and the remaining columns were measured 

semi-automatically 5 times a day. Soil water pressure heads could be measured with 

self-made tensiometers (flat-shaped ceramics) and pressure transducers that could be 
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scanned automatically at 16 locations. The remaining locations had to be measured 

manually. Due to some difficulties the tensiometer measurements were not reliable 

(for more detail see section 3.10.2). 

Actual transpiration ra and leaf water potential LWP were also measured. To measure 

transpiration the surface of all columns was isolated uniformly with coarse sand to 

minimize soil evaporation. Since alfalfa is a heterogeneous plant, the number of stems 

for each plant, as well as the transpiration rate, was not necessarily the same for all 

plants. To minimize errors due to this heterogeneity, transpiration was measured eight 

times a day for four weeks. In this case no stress was allowed and the columns 

received sufficient tap water. The irrigation intervals were two or three days. Because 

the young plants were thinned uniformly, 28 days actual transpiration measurements 

showed only very small (negligible) variation between the columns. At the end of 

each growth period the plants were harvested to 15 cm above the top of the soil 

columns. 

3.10.1. Soil water content and bulk electrical conductivity (TDR) 

Information on the temporal and spatial variation of soil water content is 

central to understanding root water uptake patterns. The accepted standard technique 

for measuring soil water content is oven drying at 105 °C to constant mass {Gardner, 

1986). This inevitably involves destructive sampling. It is also time consuming and 

thus not suited for in-situ measurements required for this study. For these reasons an 

indirect method of soil water monitoring was used. Soil water content can be 

determined indirectly by measuring the effective soil permittivity. In the time domain 

refiectometry (TDR) technique the permittivity can be derived from the propagation 

velocity of a very fast rise-time voltage pulse traveling along a wave guide (sensor) 

imbedded in the soil. The pulse is reflected back at the open end of the sensor. From 

the down and return travel time of the pulse along the sensor and the length of the 

sensor, the permittivity of the soil can be derived. Fellner-Feldegg (1969) was the 

first to use TDR to measure the permittivity of liquids, while its use for measuring soil 

water content was introduced by Topp et al. (1980). 

The effective permittivity e of the soil, which is strongly related to 8, determines the 

propagation velocity v of the electromagnetic waves: 

v = ~ 3.1 

where c = 3 x 10 m/s is the velocity of light in vacuum. 
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A cable-tester can be used to measure the travel time ts of the pulse along the TDR 

sensor. Since the wave travels forth and back along the rods of length /, the 

mechanical propagation velocity is: 

u 
By equating Eqs. 3.1 and 3.2, the permittivity can be calculated according to: 

cr. 
£ = 

2/ 
3.3 

A calibration relationship is needed to convert s to volumetric water content 9. Topp 

et al. (1980) found that the following relationship holds for a relatively large number 

of soils: 

9 = (-530+ 292f - 5.5s2 + 0.043^3)x 10"4 3.4 

This calibration relationship has given satisfactory results for many soils; however, 

for low bulk densities, specific mineralogical properties, clays, and organic soils, a 

soil-specific calibration is necessary (Dirksen and Dasberg, 1993). For a wide range 

of porous media 9 (s) calibration functions can be obtained by applying a theoretical 

mixing model originally developed by Maxwell and applied by De Loor (1990). In 

this model, components with different e are thought to be randomly distributed in a 

homogeneous mixture. Dirksen and Dasberg (1993) showed that for many clay soils 

the theoretical mixing model yields a better calibration than Eq. 3.4. For the soil used 

in this study Eq. 3.4 proved to be accurate enough and hence was used to convert the 

TDR wave forms to volumetric water contents. 

Dalton et al. (1984), Dasberg and Dalton (1985), and Dalton and Van Genuchten 

(1986) proposed that the attenuation of the TDR signal could be used to estimate the 

bulk electrical conductivity of the soil. Topp et al. (1988), Yanuka et al. (1988), and 

Zegelin et al. (1989) examined this proposal in detail. The bulk electrical conductivity 

measured with TDR is the result of different components {Dirksen, 1996) and the soil 

solution electrical conductivity (which influences the root water uptake) is only one of 

them. Indeed, plant roots take up water through semi-permeable membranes in the 

cell walls, thus sieving solutes out of the transpiration stream. As a result, root water 

uptake takes place against the osmotic potential of the soil water. Thus, the electrical 

conductivity of the soil solution is of most interest rather than the bulk electrical 

conductivity. For this reason, ECSS was directly measured with a salinity bridge and 
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some ECb data were used randomly to check the trend of salinity distributions over 

the root zone, using the following equation (Dirksen, 1996): 

£Cb =1.06-3.45pf +1.75pf
2 -4.36pf

3 +12.96pf
4 3.5 

where pt (-) is the final reflection coefficient obtained directly from the automatic 

wave form analysis. 

An automated TDR system with 32 probes (Fig. 3.1b) was installed for 4 

columns (8 position for each) in the greenhouse to obtain measurement series of e at 

different depths in the root zone. Every 2 hours wave forms of all probes were 

measured, using a Tektronix 1502B cable tester and a multiplexer and control system, 

developed by Heimovaara and Bouten (1990). The wave forms were stored in a 

personal computer. The measurement and storage of 32 wave forms took about 11 

minutes. The stored wave forms were analyzed with procedures and programs of 

Heimovaara and Bouten (1990). The wave forms collected for the manual TDR 

measurements were also analyzed with the same program. All volumetric soil water 

contents were obtained based on the calibration equation of 3.4. 

3.10.2. Soil water pressure head 

Soil water pressure heads in the tensiometery range were measured with 

tensiometers with individual pressure transducers (XCA4-01-150DN, Silicon Pressure 

Sensors; AE Sensors B.V; Dordrecht, The Netherlands) linked to a computerized 

control box. This facilitated a fully automated monitoring of soil water pressure heads 

with 16 tensiometers at the same times as the TDR measurements. Before starting any 

actual measurements in the soil columns, all tensiometers were filled with de-aired 

water and checked in water at different elevations. These measurements showed a 

high accuracy (in water). When the tensiometers were installed in two columns at 

different depths, they provided reasonable measurements in very wet conditions, but 

unfortunately, were unsatisfactory in dryer soil. Since the ceramics had a flat shape, 

the first suspicion was poor contact of the tensiometers with the soil as the soil dries 

out. If this was true, this problem could be improved by pushing the tensiometers a 

few centimeters further into the soil to facilitate better contact. By pushing the 

tensiometers 5 cm (in 2 steps, each step 2.5 cm) more inside the soil, the problem was 

not solved. Therefore, the readings collected by the control box were checked 

manually for the same tensiometers at the same depths. The result indicated large 

differences (55-135 cm) between the fully automated and manual measurements. The 

readings for both automated and manual measurements from saturation until very dry 
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conditions never decreased beyond -488 cm. Thus, we concluded that the flat-shaped 

tensiometers could not make good contact with the soil, and also the automated 

instruments did not register accurate values. Another attempt was made to use a newly 

developed osmotic tensiometer (Dirksen, 1996). The data collected by a datalogger 

were not reliable, however, suggesting that here also there was no good contact 

between the flat-shaped osmotic tensiometer and the soil. Due to these difficulties no 

tensiometry readings were made during the experimental periods. The water content 

data were later converted to corresponding soil water pressure heads, using the drying 

main soil water retention characteristics measured by the evaporation method (Wind, 

1966). 

3.10.3. Soil hydraulic functions 
All irrigation waters were applied to the soil during the dark period. Thus, the 

applied water moved downward and distributed in the soil while there was no water 

uptake by the plants. The measurements were made in the light period when the plants 

transpired water and thus, all data were collected during drying periods. For this 

reason the soil hydraulic functions were determined for drying conditions, using 

Wind's evaporation method. This method was originally proposed by Wind (1966) 

and adapted for fully and semi-automated monitoring by Halbertsma and Vermin 

(1994, 1997). The advantage of this method is that it can be used to determine both 

the unsaturated soil hydraulic conductivity and soil water retention characteristics. 

The range of determination of conductivity depends on the soil type and mostly lies 

between h = -50 cm to h = -700 cm. The range of determination of soil water retention 

characteristic is approximately between h = 0 cm to h = -800 cm. 

Three soil columns were packed in PVC cylinders, 8 cm high and 10.1 cm diameter, 

with the same bulk density as the experimental columns. The samples were saturated 

from below by placing them in a few centimeters of water for 48 hours, and then 

allowed to dry by evaporation from the top surface. Soil water pressure heads were 

measured with 4 tensiometers (outer diameter 0.2 cm, length 1.5 cm) horizontally 

installed into pre-bored holes at heights of 1, 3, 5 and 7 cm from the bottom of the soil 

samples. Each tensiometer was connected to a pressure transducer. Each soil column 

was placed on an electronic scale (accuracy = 0.1 g). First, the top of the samples was 

covered and the saturated samples and tensiometers were equilibrated for a few hours. 

When the top lid was removed, the initial evaporation rate in the controlled 

environment (temperature = 20 °C, relative humidity = 50 %) was approximately 1.5 

mm/h. At regular intervals, the hydraulic heads and total weight of the soil columns 

were measured and recorded in a personal computer. After the upper tensiometer 

failed to function due to air entry, the soil was removed from the cylinder, weighed 

and dried at 105 °C to determine the average water content at the end of the 
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experiment. From these data and the measured weights the average water content 

during the experiment was calculated. The method assumes that the soil sample is 

homogeneous in its hydraulic properties, thus the water content of each compartment 

can be estimated from the water content of the whole sample and the tensiometer 

readings. From these data the K- h -8 relationships were calculated, using an 

adaptation of Wind's method (Halbertsma and Veerman, 1994). The nonlinear 

least-squares optimization program RETC {Van Genuchten et al, 1991) was used to 

obtain the values for the parameters in Eqs. 2.6 and 2.8, shown in Table 3.2. The 

hydraulic functions of soil column 2 are depicted in Fig. 3.3. 

Table 3.2. Parameter values of the analytical expressions of Van Genuchten (Eq.2.6) and 

Mualem (Eq. 2.8) for three columns packed at a bulk density of 1.42 g/cm3, obtained with the 

nonlinear least-square optimization program RETC. 

Soil 

column 

1 

2 

3 

ft 

cm3 cm"3 

0.010 

0.010 

0.010 

ft 

cm3 cm"3 

0.438 

0.460 

0.460 

* s 

cm d"' 

20.790 

19.528 

20.561 
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-

0.0116 

0.0197 

0.0146 
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-

1.387 
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Figure 3.3. Water retention characteristic (left) and hydraulic conductivity characteristic 

(right) for soil column 2. The Van Genuchten-Mualem parameter values are given in Table 

3.2. 
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3.10.4. Leaf water potential 

Leaf water potentials (LWP) can be considered to reflect the whole soil-root-

water-plant-climate system. Therefore, it was important that this be measured as 

accurately as possible under the nonuniform soil water osmotic and pressure head 

conditions. LWPs were measured with a pressure chamber (Plant Water Status 

Console, Model 3005, Soilmoisture Equipment Co., Santa Barbara, California, USA). 

For the same reason as for the actual transpiration, the measurements were made 

manually twice a day. Before starting actual measurements, from seven days after 

harvesting until flowering stage, leaf water potentials were measured eight times a 

day at 6.00 (before turning the light on), 8.00, 10.00, 12.00, 14.00, 16.00, 18.00 and 

20.00 hrs. The result of these extensive measurements indicated that for the climatic 

conditions in the greenhouse there was no considerable difference between 8.00 to 

10.00 and 12.00 to 16.00. Thus, all LWP measurements were made at 10.00 in the 

morning and 14.00 in the afternoon. To obtain a complete picture for each 

experimental phase, LWP were measured 8 times a day at 2 hour intervals during one 

irrigation interval. The effect of growth on the leaf water potentials was considerable 

during the first three weeks of re-growth; thereafter, they became more stable. Since 

all stresses were introduced to the plants about 4-5 weeks after harvesting, the data 

obtained during stress belong to this stable period. All of the reported LWP data are 

the average of at least 5 measurements. The leaves were taken uniformly from the top 

of common stems that were exposed to direct light. To reduce the experimental error, 

each leaf was put in the pressure chamber immediately after cutting. Each LWP 

measurement took about 2-3 minutes. A sample of full measurements of LWP for 3 

days of the first experimental stage is given in Table 3.3. 

Table 3.3. LWP (bar) variation during one irrigation interval under no stress condition. The 
data at 6.00 were obtained just before the lights were turned on. The column received 
irrigation water 10 hours before the first measurements. 

Day 

1 

2 

3 

6.00 

-5.4 

-6.3 

-6.8 

8.00 

-9.1 

-10.3 

-11.2 

10.00 

-10.4 

-11.8 

-12.3 

Time 

12.00 

-12.1 

-12.2 

-12.5 

14.00 

-12.3 

-12.4 

-12.6 

16.00 

-12.6 

-13.2 

-13.2 

18.00 

-10.8 

-11.5 

-11.8 

20.00 

-7.5 

-8.8 

-9.6 
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3.10.5. Soil solution salinity 
Root water uptake takes place against the osmotic potential of the soil water. 

Thus, soil solution salinity rather than the bulk electrical conductivity is the 

appropriate parameter to evaluate the influence of soil salinity on root water uptake. 

For this reason, soil solution salinities were measured in-situ with salinity sensors 

(Model 5100) and a salinity bridge (Model 5100, Soilmoisture Equipment Company, 

Santa Barbara, California, USA). All sensors were installed horizontally into the soil 

columns in one row at depth intervals of 5 cm in the top 30 cm and 10 cm below that. 

Since the transpiration of the plants in the greenhouse was high, it was expected that 

the applied solutes would concentrate in the root zone in a relatively short time. To 

find out the best time for the salinity measurements, one week monitoring with 2-hour 

time intervals was carried out. The results indicated that the sensitivity of the Salinity 

Bridge is not high enough to measure the small changes of ECSS within a day. Thus, 

ECSS was measured daily at 10.00 am and the values were converted to osmotic head 

(cm) according to (US. Salinity Laboratory Staff, 1954): 

h=-36c = -360 EC.. 3.6 

in which h0 is in cm; c is the solute concentration in u mol/cm3, and ECSS in dS/m. 

3.10.6. Transpiration 

Both salinity and water deficit strongly influence plant transpiration; thus, 

actual transpiration measurements were essential for this study. At the beginning of 

the experiment, daily transpiration measurements were considered. Later, the number 

of measurements was increased to five per day. The plants needed 4-5 weeks for 

healthy re-growth after each cutting and had to be harvested a few days after 

development of secondary stems. Due to optimal conditions in the greenhouse, the 

secondary stems always appeared about 7-8 weeks after the last harvest. Thus the 

plant could be held under stress for about 20 days. The actual transpiration was 

obtained by weighing the columns. The amount of transpired water was converted to 

mm/h per surface area of the soil columns, rather than that of the plant canopy. 

56 



4. Root water uptake under nonuniform transient salinity stress 

4.1. Introduction 

Many investigations on root water uptake have been conducted under steady-

state saline conditions. Most of these studies were carried out in controlled 

experimental conditions in which uniform salt distributions over the root zone were 

established and the soil solution changes over time were negligible. A large number of 

the so-called salt tolerance experiments (Maas and Hoffinan, 1977; Maas, 1990), 

which are now accepted as a reference data base for salinity studies, were conducted 

under such conditions. In contrast, under field conditions such uniformity over the 

root zone is rare. Thus, the way that plants react to different degrees of salinity along 

its root system is important for understanding how plants integrate such effects. For 

instance, it is not yet clear whether under heterogeneous salinity condition plants react 

preliminary to the salinity of the upper or deeper part of the root zone. 

The objective of this part of the study was to investigate the influence of 

different irrigation water salinities as well as different soil solution osmotic heads on 

root water uptake patterns, and to investigate which macroscopic model can provide 

the best agreement with the experimental data. Since the overall reaction of plants on 

different salinities is of most interest, the actual reaction of the plants in terms of 

transpiration was central for this study. Also, it was important to check the conceptual 

salinity approaches when dealing with the numerical simulation models. The concepts 

available for this purpose are originally based on the work of Feddes et al. (1978) in 

combination with the salinity reduction functions of Maas and Hoffman (1977), Van 

Genuchten (1987), and Dirksen et al. (1993). These concepts were discussed in 

Chapter 1 and Chapter 2. This chapter consists of two main parts. First, after 

illustrating samples of experimental data, the macroscopic root water uptake model of 

Feddes et al. (1978) with the different salinity reduction functions are compared with 

experimental data. Second, the collected data are compared with results of numerical 

simulation with the model HYSWASOR. 

4.2. Materials and methods 

Alfalfa was seeded in packed cylindrical soil columns with a height of 65 cm 

and a diameter of 21 cm. The measurements started after healthy plants had 

developed. Since water stress was not allowed, in this part of the experiment the 
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irrigation intervals were relatively short (48 hours). Assuming no water uptake during 

the dark period, all irrigation waters were applied to the columns by flood irrigation 

immediately before turning off the lights in order to allow the applied water to 

distribute over the root zone in the time that the plants did not transpire water. The 

excess water was sucked out with a suction pump. This allowed us to assume that all 

downward water movement occurred at night, and that during the light period no 

downward water movement took place. To attain the target leaching fractions, the 

columns were saturated. Thus, it can be assumed that during the measurements 

hysteresis in soil water did not occur and the main drying curve of the soil moisture 

retention characteristic can be used. All measurements (with few exceptions) started 

after switching on the lights. The light period normally was 15 hours per day until 

9.00 pm. 

Water salinities were varied around the salinity threshold value of alfalfa, i.e. at 1.5, 

2.0, 3.0, 4.0, and 5.0 dS/m, denoted as Si, S2, S3, S4, and S5, respectively. Soil water 

osmotic heads were obtained by converting the corresponding soil solution salinities 

according to Eq. 3.6. Since the plants react to the soil solution salinity ECSS, the data 

were analysed based on ECSS rather than soil bulk electrical conductivity EC\,. 

Soil water content #and EC\, were measured with the TDR equipment. Fully automated 

TDR equipment was used for 4 columns, while the remaining columns were measured 

manually. Soil water pressure heads h were obtained by converting 0to h based on the 

soil water retention characteristics given in Fig. 3.3 and Table 3.2. Salinity of irrigation 

and drainage waters were measured by a conductivity cell (Digimeter L21; Eijkelkamp, 

Agrisearch Equipment, The Netherlands). 

Actual transpiration Ta measurements were made by suspending the columns and 

weighing them with a digital balance. The transpiration rate of each column has been 

measured at least 5 times a day. The transpired waters for each column were related to 

the surface area of the soil columns, rather than to the plant canopy. Leaf water 

potentials LWP were measured twice a day at 10.00 am and 2.00 pm with a pressure 

chamber. All of the LWP data reported here are the mean of at least 5 leaves, which 

have been taken from the top of each plant. For every treatment, detail LWP 

measurements were made at 2-hour intervals for one irrigation interval, starting before 

the lights were turned on until just before they were turned off. 

4.3. Experimental data 

A summary of all the irrigation intervals, except the first two of phase II (see 

Table 3.1) with only salinity stress is given in Table 4.1. 
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Table 4.1. Summary of experimental phase II. 

Treatment 

£Ciw (dS/m) 

Target LF (-) 
Irrigation interval (d) 

Applied water (mm) 

Actual LF (-) 

Transpired water (mm) 

Drainage water (mm) 

EC of drainage water (dS/m) 

Water 

application 

3 
4 

5 
6 

7 
8 
9 

10 

3 
4 
5 
6 

7 
8 
9 
10 

3 
4 

5 
6 
7 

8 
9 
10 

3 
4 

5 
6 
7 

8 
9 
10 

3 
4 
5 
6 
7 
8 
9 
10 

R 

Tap 

0.5 
2 

40 
52 

52 
62 

52 
62 
52 

52 

0.39 
0.42 
0.36 
0.34 

0.35 
0.32 

0.32 
0.27 

24.6 

26.0 
33.2 
41.0 

33.9 
41.9 
35.4 

37.8 

15.4 

22.0 
18.8 

21.0 
18.1 

20.1 
16.6 
14.2 

-
-
-
-
-
-
-
-

s, 
1.5 

0.5 
2 

40 
52 
52 
62 
52 

62 
52 

52 

0.44 
0.44 

0.47 
0.39 
0.42 
0.38 

0.33 
0.34 

22.4 

25.4 
27.4 

37.6 
30.0 
38.7 

34.7 
34.4 

17.6 
22.9 
24.6 
24.4 
22.0 

23.3 
17.3 
17.6 

2.35 
3.00 
3.15 
3.70 

4.50 
4.45 
4.30 
4.60 

s2 

2.0 

0.5 
2 

40 
52 
52 
62 
52 

62 
52 

52 

0.48 
0.45 
0.50 
0.40 
0.47 

0.43 
0.43 
0.41 

20.8 
24.8 
26.0 

37.0 
27.4 
35.4 

29.9 
30.9 

19.2 
23.4 

26.0 
25.0 
24.6 

26.6 
22.1 
21.2 

2.25 
2.90 
4.05 
4.40 

5.10 
7.65 
8.00 
8.30 

S3 

3.0 

0.5 
2 

40 
52 
52 
62 
52 

62 
52 

52 

0.51 
0.48 
0.52 
0.42 
0.52 

0.51 
0.48 
0.46 

19.5 
21.5 

25.1 
36.1 
24.8 
30.6 
27.2 

28.2 

20.5 

24.9 
26.9 
25.9 ' 
27.2 
31.4 

24.8 
23.8 

2.90 

2.50 
4.65 
5.30 

7.30 
8.25 
8.40 
8.50 

S4 

4.0 

0.5 
2 

40 
52 

52 
62 

52 
62 
52 

52 

0.59 
0.51 
0.56 
0.49 

0.61 
0.65 
0.57 
0.51 

16.5 
21.3 

23.1 
31.8 
20.5 
22.0 

22.5 
25.6 

23.5 
26.6 

28.9 
30.2 
31.5 

40.0 
29.5 
26.4 

3.10 

2.30 
4.15 
5.70 

7.80 
8.80 
8.60 
9.10 

s5 

5.0 

0.5 
2 

40 
52 

52 
62 
52 

62 
52 
52 

0.60 
0.58 
0.61 

0.58 
0.68 
0.67 
0.51 
0.56 

15.9 
19.6 
20.5 

26.0 
16.8 
20.2 

18.8 
22.7 

24.1 

30.0 
31.5 
36.0 
35.5 

41.8 
33.2 
29.3 

3.60 

2.90 
5.25 
7.30 

8.70 
8.50 
9.10 
9.90 
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Figure 4.1 presents the water content distribution of all salinity treatments during the 

fifth irrigation interval. As depicted in these figures, the water content of the most 

saline treatment (S5) was higher than the less saline treatment (Si) as well as R. This 

indicates that increasing salinity reduces root water uptake. The magnitude of water 

content decrease due to root water uptake was not necessarily uniform over the root 

zone for each individual treatment. Most of the water was taken up in the top 25 cm of 

the root zone. As discussed in Chapter 1, according to ample reports the most active 

part of alfalfa roots is located in the first 50 cm of the rooting depth and in nonsaline 

conditions most of the water is taken up from this part. The depth of the experimental 

columns was 65 cm. Thus, the entire rooting depth can be considered as active, and it 

was expected that the plants would take up water relatively uniformly from different 

parts of the root zone. The water content changes over the root zone for the reference 

treatment (R) clearly indicate, however, that the plants took up water predominantly 

from the upper part while sufficient water was available everywhere in the soil 

profile. As depicted in Fig. 4.1, except for Si the water content decrease was more or 

less the same over the root zone. However, it should be noted that ECSS was spatially 

variable over the root zone (Fig. 4.2). More uptake was expected at depths with lower 

salinities than the data indicate. Presumably, this is due to the high hydraulic 

conductivity at high water contents, causing water taken up from one depth to be 

compensated immediately from another depth. Figure 4.2 illustrates the ECSS 

distribution of each individual saline treatment over the root zone. Despite applying 

relatively large leaching fractions and using highly soluble salts, the spatial variability 

of ECSs over the root zone was still relatively large. In most cases, ECSS increased with 

time. This implies that the soil solution was concentrated as a result of root water 

uptake. In most cases, this increase occurred over the whole rooting depth. The 

corresponding EC\, measurements by TDR for all the treatments are given in Fig. 4.3. 

These distributions are similar to the ECSS. This suggests that the TDR and the salinity 

bridge equipment worked satisfactorily. 

Figure 4.4 shows the sink term S distributions of all the treatments at the first day 

after the fifth irrigation interval. The sink terms have been calculated based on the 

continuity equation (Eq. 2.2) for 10 hour time interval. For the reference treatment R, 

most water was taken up from depth 10 cm. Figure 4.4 clearly shows that the uptake 

rate decreased over the root zone with increasing salinity. However, except for S5, the 

trend of uptake changes over the root zone was almost similar to that of R. 

Figure 4.5 presents the absolute values of the negative leaf water heads, LWH, as 

function of time for all the treatments. According to these measurements, the largest 

change in LWH always happened after switching on the lights (at 6.00 am). This trend 

continued until 4 pm; after that, the LWH for all the treatments increased due to the 

lower temperature and higher air circulation in the greenhouse. 
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Figure 4.1. Water content distributions of the reference R and salinity treatments Si, S2, S3, S4 

and S5 at 14, 24, 38 and 48 hours after irrigation. 
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Figure 4.2. Soil solution electrical conductivity ECSS distributions of salinity treatments Si, S2, 
S3, S4 and S5 over the root zone for 14 and 38 hours after the irrigation. 
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Figure 4.3. Soil bulk electrical conductivity distributions of the salinity treatments Si, S2, S3, 

S4 and S5 at 14 and 48 hours after irrigation. 
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soil solution salinity distributions are depicted in Figures 4.1 and 4.2, respectively. 
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Figure 4.5. Absolute leaf water head LWH changes as function of time after the irrigation for 
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The climatic conditions of the greenhouse did not differ sensibly between about 10.00 

and 12.00 h; as a result, there was little change in LWH. The recovery of LWH of the 

stressed plants during the dark period was enough to survive and tolerate the next 

stressed day, but the LWH did not recover to the value of the previous day. 

Cumulative transpired water (mm) for all the treatments is depicted in Fig. 4.6. The 

total transpired water for R was always higher than that of the saline treatments (with 

an exception for Si at the first irrigation interval). The transpired water of R in some 

instances was about two times more than that of Ss. The quantity of water sucked out 

from R was always less than that of the saline treatments. This can be related to the 

higher remaining water content just before applying the next irrigation to the soil 

columns. 
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Figure 4.6. Cumulative transpired water of the reference R and salinity treatments Si, S2, S3, 
S4 and S5 for the whole growth period. 

4.4. Salt heterogeneity and relative root water uptake 

Soil salinity is seldom uniform with depth, and at any given depth it varies 

with time. The question of how plants integrate this space and time varying salinity is 

important because by changing management practices it is possible to change both the 

frequency of salinity fluctuations and the distribution of salinity over the root zone. 

Increase in soil salinity as a result of evaporation occurs at the soil surface, while the 
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site of separation of salts from the soil water due to root water uptake takes place at 

the soil-root interface. The actual distribution of salts over the root zone reflects the 

water extraction pattern, which depends not only on root distribution, but also upon 

root activity. Root distribution over the root zone depends to a great extent upon 

whether the root system developed into a saline or nonsaline profile. In the 

heterogeneous saline profile, roots do not penetrate readily into highly saline depths, 

but once established in nonsaline soil, creating salinity does not change the root 

distribution drastically. In the current study, the root system was well developed 

before introducing salinity in the root zone. Thus the distribution of soil salinity over 

the root zone was largely dependent on the root water uptake patterns. 

Theoretical concepts of how plants integrate soil salinity have not been fully 

developed and verified. To avoid difficulties arising from complications of plant 

integration, many studies have been conducted in uniform soil solution salinities. 

While studies under such uniform conditions can improve understanding of root water 

uptake in saline soils, the question still remains unanswered. In the nonuniform salt 

distribution situation, it is frequently assumed that the plant responds to the average 

salinity in such circumstances. Concerning this heterogeneity, there are three 

contradictory ideas in the literature (see Ch. 1). The first states that the relative uptake 

is strongly affected by the more saline part in the root zone. The second suggests that 

the water uptake can better be related to the salinity of the upper part of the root zone 

than that of the deeper part. The third proposed that the plant response can be 

described better by some weighted mean salinity (Raats, 1974a; Hoffman and Van 

Genuchten, 1983; Dirksen, 1985; Dirksen et al, 1994). Dirksen (1985) proposed the 

following uptake-weighted mean osmotic head: 

oo 

\S{z)h0(z)dz 

hB=^ 4.1 

JS(Z) dz 
0 

The analyses made by Dirksen (1985) and Dirksen et al. (1994) on the experimentally 

collected data with Eq. 4.1 indicated satisfactory results. However, investigations on 

the mentioned controversy are rare and it is not yet clear which one is the closest to 

reality. The main reason for this scarcity is that required data cannot be obtained 

easily and the subject should be investigated in fully controlled conditions which is 

either time consuming and/or expensive. 

Probably, the best way to check these contradictory ideas is to create different salt 

distributions over the root zone in different columns with the same mean salinities. 

Such conditions occurred in a few of our experimental columns. Table 4.2 represents 

the data obtained under such conditions. The average ECSS of all columns was about 
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Table 4.2. Soil water content 9, soil solution salinity ECSS, and water uptake rate S for four 

soil columns with about the same average £CSS> TJTP, andLWPR/LWPSl. 

Soil 

Column 

A 

B 

C 

D 

Depth 

cm 

5 
10 
15 

20 
25 

35 
45 
55 

Average 

5 
10 

15 
20 
25 

35 
45 

55 
Average 

5 
10 
15 
20 
25 

35 

45 
55 

Average 

5 
10 
15 
20 
25 
35 

45 
55 

Average 

£^ss 

dS/m 

2.5 
3.3 
2.8 
2.2 

2.2 

2.7 
2.8 
1.8 

2.5 

4.1 
3.6 
3.3 
3.0 
3.4 

3.1 
2.7 

0.3 
2.7 

2.0 
2.2 
2.7 
2.8 
2.6 

2.6 
2.4 

3.3 

2.6 

2.0 
2.1 
1.9 
2.0 
1.9 
1.9 
2.0 
5.6 

2.6 

e 
cm3/cm3 

0.290 
0.296 
0.301 
0.317 

0.317 
0.332 
0.338 

0.351 
0.320 

0.269 
0.291 
0.276 
0.280 
0.272 

0.281 
0.336 
0.341 
0.300 

0.206 
0.268 
0.248 
0.284 
0.244 

0.244 

0.296 
0.307 

0.270 

0.201 
0.267 
0.245 

0.281 
0.239 

0.240 
0.291 
0.297 

0.260 

S 

10-3cm3/cm3h 

2.34 
0.68 
1.46 
1.68 

1.47 
1.87 
1.68 

2.30 
1.76 

0.72 
0.88 
0.91 
1.95 
1.45 
1.68 
1.15 
2.61 
1.49 

1.65 
2.65 
1.08 
2.09 
0.53 

0.81 
1.92 
0.72 

1.36 

1.05 
1.89 
1.76 

2.18 
0.66 
0.64 
0.94 

0.89 
1.15 

TJTp 

-

0.85 

0.84 

0.86 

0.84 

LfVPR/LWPsi 

-

0.86 

0.84 

0.89 

0.78 
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2.6 dS/m. In these experimental columns, the water content distributions over the root 

zone were not exactly the same for all the columns but they were very close to each 

other, and were high enough to prevent any water deficit. The interesting observation 

of these columns was that the relative uptake (TJTP) as well as the relative leaf water 

head (LWHR/LWHS,) for all of them were almost the same. The sink term is calculated 

based on Eq. 2.2. 

Root water uptake under heterogeneous soil water osmotic head conditions seems to 

be a function of several factors such as soil solution electrical conductivity, water 

content, depth, and root density. Since the plants in each container were treated 

uniformly before creating any stress, we assume that the root density in all the 

columns was the same. Table 4.2 will be discussed in the following steps in order to 

find a conclusion for such heterogeneity: 

1. Equal water content and same depth, different salinity 
In column A, the water content from 5 to 15 cm was relatively constant. By increasing 

ECSS from 2.5 to 3.3 dS/m, the uptake rate S decreased sharply from 2.34 to 0.68 xlO"3 

cm3/cm3 h. Again, by decreasing salinity from 3.3 to 2.8 dS/m at 15 cm depth S 

increased drastically from 0.68 to 1.46 xlO"3 cm3/cm3 h. At the bottom of this column 

a decrease of salinity from 2.8 to 1.8 dS/m (having the same water content) increased 

S by the magnitude of 0.62 xlO"3 cm3/cm3 h per IdS/m. This magnitude is comparable 

but not equal to that at 5-15 cm depth. In column B, 0 is the same at 15 and 20 cm. 

While salinity decreased from 3.3 to 3.0 dS/m, S increased from 0.91 to 1.95 xlO"3 

cm3/cm3 h. Again, by a salinity increase from 3.0 to 3.4 dS/m, S changed from 1.95 to 

1.45 xlO"3 cm3/cm3 h, and by a salinity decrease from 3.4 to 3.1 dS/m, S increased 

from 1.45 to 1.68 xlO"3 cm3/cm3 h. In column C, by a salinity increase from 2.4 to 3.3 

dS/m at depths 45 and 55 cm the relative uptake decreased sharply from 1.92 to 0.72 

xlO"3 cm3/cm3 h. Also in column C, both ECSS and 0are the same at 25 and 35 cm, 

while S decreased from 0.81 to 0.53 xlO" cm /cm h. In column D, by a salinity 

increase from 2.0 dS/m at depth 45 cm to 5.6 dS/m at depth 55 cm, 5 decreased 

slightly. Even though the magnitudes of the S changes per unit salinity change is not 

equal for the reported data, the trend of the S variations support the assumption of 

Dirksenetal. (1994). 

2. Equal salinity, different water content 
In column D, the salinity of the soil solution is about the same except for the last 

increment and the main difference is in water content. In the top of the column (5-10 

cm) the water content is quite different, the soil solution salinity is the same, and the 

sink term increased from 1.05 to 1.89 xlO"3 cm3/cm3 h. At the next depth (15 cm), by 
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decreasing 6 from 0.267 to 0.245 cm3/cm3, the sink term was also decreased from 

1.89 to 1.76 xlO"3 cm3/cm3 h. At the depths of 20 and 25 cm by decreasing 0 from 

0.281 to 0.239 cm3/cm3 the uptake rate was decreased to 0.66 xlO"3 cm3/m3 h. 

However, having the same ECSS and 0 at depths 25 and 35 cm, almost the same S 

value occurred. These observations suggest that at constant ECSS, higher 0 provides 

higher uptake rate. Note that this conclusion is drawn for low amounts of salinity. 

3. Equal salinity and water content, different depth 

In column D, at depth 15 and 35 cm with ECSS = 1.9 dS/m and 0 = 0.24 cm3/cm3, S 

decreased sharply from 1.76 to 0.64 xlO"3 cm3/cm3 h. Further, in column A at depths 

20 and 25 cm both 0 and ECSS were equal, and S was almost the same. However, S at 

depth 15 cm was less than that at 5 cm. This can be related to the influence of depth 

on water uptake rate, in as much as the plants prefer to provide their demand from the 

upper parts. 

These observations indicate that even with this detailed experiment, drawing a clear 

picture on how plants integrate under heterogeneous salinity conditions is rather 

complicated, if not impossible. Remains the interesting observation that all the 

experimental columns depicted in Table 4.2 with about the same mean salinity 

exhibited almost the same relative transpiration rates and relative leaf water heads. 

Thus, leaving all complications behind, we will follow the macroscopic root water 

uptake under saline conditions based on the soil solution osmotic head averaged over 

the root zone. 

4.5. Test of theoretical reduction functions against experimental data 

In this section, the experimentally collected data are compared with existing 

salinity reduction functions. These functions were introduced and discussed in chapter 

2 (Eq. 2.33, Eq. 2.35, and Eq. 2.36). They are empirical in nature and leave some 

questions to be answered. First, it is not yet clear if a so-called crop response function 

(Eq. 2.33) can be used as a reduction term in a macroscopic root water uptake model. 

If so, it is not clear whether or not the same parameter values can be employed. 

Furthermore, the linearity of the widely used Eq. 2.33 is questionable and it is now 

clear that the salinity threshold value varies with climate and soil conditions. For 

instance, in gypsiferous soils plants can tolerate ECSS about 4 dS/m higher than in 

other soils {Maas, 1990). Also, by increasing the evaporative demand the salinity 

threshold value decreases. Equation 2.33 contains two input parameters, the salinity 

threshold value and the slope. If the threshold value varies due to high evaporative 
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demand, it is not yet clear whether the slope proposed by Maas and Hoffman (1977) is 

applicable, and if not what modification should be made. 

In both equations 2.35 and 2.36 the shape of the function is strongly dominated by the 

exponent p and /z0so, while there is still no physical or empirical definition for the 

former. It is of most interest to find (at least) an empirical definition for p. Also, it is 

practically difficult to obtain h0$o as one of the main parameters needed in the 

equations. An interesting subject is whether the latter can be replaced by a relatively 

simple parameter. In this section, first the salinity reduction functions will be 

compared with the experimental data to find out which function can fit the data best, 

and then will be tried to answer the above mentioned questions. The variability of the 

experimental LWP data as function of different soil solution salinities are also 

demonstrated and discussed. 

In the following comparisons, the data were collected from all the irrigation intervals. 

The reported ECSS data are the mean values over the root zone. The relative uptake is 

defined as 
zr 

jsdz 
_° = ZL = „( / , ) 4.2 
zr -j- v o / 

[S dz p 

J max 0 

will be compared with the measured TJTV for the corresponding soil solution 

salinities. 

4.5.1. Comparison of conceptual soil salinity reduction functions with 

experimental data 

Figure 4.7a presents the relative transpiration a = TJTP as function of the mean soil 

solution salinity. Either a linear (Figure 4.7b) or a nonlinear (Fig. 4.7c) shape can be 

fitted to the experimental data. In Fig. 4.7b the soil solution salinity threshold value 

EC* and ho50 value are about 2 dS/m (-720 cm) and -2880 cm (8 dS/m), respectively. 

The experimental EC* is half of that reported by Maas and Hoffman (1977) for alfalfa 

and less than that obtained by Dirksen et al. (1993). In the case of linear fitting, the 

experimental data were compared with the linear Eq. 2.33 as depicted in Fig. 4.7d. In 

this figure, the originally proposed parameter values for EC (ECSS = 4 dS/m) and the 

slope (0.073 m/dS) were compared with the experimentally obtained parameter values 

and the best linear fitting, respectively. As shown in Fig. 4.7d, most of the 

experimental data are underestimated if the proposed EC* by Maas and Hoffman is 

used. On the other hand, using the experimentally obtained EC* with the same slope 

of Maas and Hoffman, provides almost the same fitting as the best fitted line. 
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Figure 4.7. The relation between the experimental relative transpiration TJTV and the mean 

soil solution salinity over the root zone, a: the measured data; b: the best linear fit; c: the best 

nonlinear fit; d: comparison between the best linear fit, the original Maas and Hoffman (1977) 

parameter values, and the Maas and Hoffman function with the experimentally obtained 

threshold value and slope. 
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This implies that Eq. 2.33 is more sensitive to its threshold value than the slope. Thus, 

future investigations may need to be more focused on quantification of EC* under 

different soil and climatic conditions. 

In the case of nonlinear fitting, the experimental data are compared with Eqs. 2.35 and 

2.36 as illustrated in Figs. 4.8a and 4.8b, respectively. Van Genuchten and Hoffman 

(1984), and Van Genuchten (1987) fit their data with the dimensionless exponent/? = 

3, while Dirksen et al. (1993) obtained the best fit with/7 = 1.5. The latter obtained 

/z05o =-3900 cm and the threshold value h 0 = -2800 cm from the fitted data. Van 

Genuchten and Hoffman (1984) used h0so = -6300 cm from the database of Maas and 

Hoffman. When these values were used in Eqs. 2.35 and 2.36, the agreement between 

the calculated and experimental data was unsatisfactory. Both equations were 

sensitive to h0$o, while Eq. 2.36 to a lesser extent was sensitive to h 0. Thus, in Figs. 

4.8a and 4.8b the experimentally obtained values for h 0 and /iO50 with/? = 1.5 and/? = 

3 were used and compared with the best nonlinear fitted curve and the experimental 

data. Also, since p in these equations is not yet defined, an alternative is proposed. 

Indeed, p is a shape parameter, as are h 0 and h0so, but the influence of /i0so is larger 

than that of h*0. Similar to Van Genuchten (1987), I assume that p is crop, soil and 

climate-specific, and propose that the following ratio be used until further evidence 

confirms or rejects it: 

h„.n 

K,n - h' 
A3 

'o50 

The difficulty of obtaining hoia remains unsolved. 

Figure 4.8a illustrates the agreement between the data obtained and calculated 

with Eq. 2.35. In this figure the valuesp - 3 (Van Genuchten, 1987),/? = 1.5 (Dirksen 

et al. 1993) and/? = 1.35 (Eq. 4.3) are used. As expected, the latter in Eq. 2.35 does 

not provide a satisfactory agreement with the experimental data. The reason is that 

Eq. 2.35 does not contain a salinity threshold value, while it is a component of Eq. 

4.3. Figure 4.8b compares the data obtained and calculated with Eq. 2.36. The same 

parameter values are used in this figure as for Fig. 4.8a. As can be seen in Fig. 4.8b, 

the exponent obtained with Eq. 4.3 gives good agreement with the experimental data, 

and is close to that obtained with/7 = 1.5. An interesting observation about Eq. 4.3 is 

that it provides about the same value as that derived from the database by Maas and 

Hoffman for alfalfa. 

Equation 2.36 (r = 0.80) provides better correlation with the experimental data than 

Eq. 2.35 (r = 0.75). This can be related to the salinity threshold parameter in Eq. 2.36, 

which makes this model more precise. 
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In conclusion, Eq. 2.33 can be used as a salinity reduction function in the macroscopic 

root water uptake model of Feddes et al. (1978), but it is very sensitive to the salinity 

threshold value. Secondly, the presented experimental data suggest a nonlinear trend 

similar to the data reported by Dirksen et. al (1993) and some others. Such 

nonlinearity should be taken into account for detailed and more accurate purposes 

such as numerical simulation models. Equations 2.35 and 2.36 are more sensitive top 

than A0so, and therefore, for convenience sake should be defined at least empirically or 

replaced by simpler parameters. The proposed Eq. 4.3 to determine p empirically is 

promising, but it still contains /J05O as an input parameter which is difficult to obtain. 

Having a salinity threshold parameter, Eq. 2.36 is in principle more reliable than Eq. 

2.35. Similarly to Eq. 2.35, an important limitation is the unavailability of A05o for a 

large number of crops, as it is hard to obtain this value even in completely controlled 

experiments. Equation 4.3 provides almost the same value for p as that which can be 

derived from the database of Maas and Hoffman for alfalfa. This might be due to the 

slight nonlinearity of the experimental data. However, it is not yet clear if this 

observation can be expanded to other plants. If so, the only parameter needed to 

specify Eq. 4.3 is the salinity threshold value. Thus, the database of Maas and 

Hoffman can be used to transform their linear function to the nonlinear one. 

4.5.2. A nonlinear two-threshold reduction function for salinity stress 

The observations reported in the previous subsection clearly imply the need 

for a simple and nonlinear function with accessible parameters. We have seen that all 

nonlinear reduction functions are sensitive to their parameter values. As discussed, 

Eqs. 2.35 and 2.36 could not fit our experimental data if the parameter values 

proposed by the original authors are used. If for a moment we assume that the 

definition of p in Eq. 4.3 is accurate enough, at least h0so should be replaced by 

another parameter. Equation 2.35 does not employ the threshold value as an input 

parameter. 

The presented data indicate a smooth nonlinear shape of the reduction term for saline 

conditions. The low degree of nonlinearity appeared to be the reason for the good 

agreement between the experimental data and those calculated with Eq. 2.33. This 

agreement was especially good in the range of a = 1 to about a = 0.6. For higher 

salinity, the nonlinearity plays a significant role, which has to be taken into 

consideration. The advantage of Eq. 2.33 is its simplicity, but it contains the following 

shortcomings: 

- Similar to any other biological system, a linear reduction function is far from reality. 

There is ample evidence in the literature that a nonlinear function can better fit actual 
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data. (Van Genuchten and Hoffman, 1984; Dirksen, 1985; Van Genuchten, 1987; 

Dirksen et al, 1993, 1994). 

- At a certain salinity, a linear reduction function becomes zero. For alfalfa this value 

is about ECe = 14 dS/m (Maas and Hoffman, 1977). Much evidence in the literature 

does not support this. When the water content is high enough, wilting due to salinity 

occurs at much higher soil solution salinities than what follows from the linear 

extrapolation of Eq. 2.33 (for more detail see Ch. 1 and Ch. 2). 

- The equation is rather sensitive to the salinity threshold value, while the latter is 

influenced by the climatic conditions (evaporative demand), soil type, and the kind of 

soluble salts in the root zone. Because the model contains only two input parameters, 

by changing the threshold value for one climatic condition to that for another, the 

accuracy of the model is significantly changed. 

The shortcomings of the nonlinear reduction functions Eq. 2.35 and Eq. 2.36 are: 

- they are highly sensitive to their exponent, which has not yet been defined. 

- both equations employ //05o as an input parameter, which is very difficult to 

determine. 

- it is not clear at which salinity the reduction term approaches a minimum. 

Based on the above mentioned points, I suggest as modification for Eq. 2.36: 

a(h0) = — - ) 4.4 

1 + 
1 - a 

h'-h„. 

The nonlinear form of Eq. 4.4 is shown in Fig. 4.8c. The osmotic head threshold value 

h*0 is the value at which the reduction starts. The reduction in a due to salinity beyond 

h 0 continues significantly until a certain degree of salinity (/?omax) is reached; beyond 

ftomax salinity increases do not cause significant further reductions in a. This reflects 

the fact that at h0 < homWi the plant is still alive but the biological activities are at their 

minimum rate, cto is the value of a corresponding to homm. This model is not very 

sensitive to its exponent p which similar to Eq. 4.3 can be obtained from: 

h. 
P = 

omax A c 

Km^-K 

Equation 4.4 is valid for 1> a >ao. The other general validities are 

a (h0) =1 if h0 > h\ 

a (h0) = a, if h0 < hol 'omax 
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The agreement between the experimental data and that calculated with Eq. 4.4 is 

depicted in Fig. 4.8d, using different values for p. The agreement with/? = 1.35 is 

almost the same as p = 1.5 and that with the best nonlinear fitting. 

4.5.3. Leaf water potentials for nonuniform soil solution salinities 

Leaf water head can be considered as an indicator for the whole soil-water-

plant-climate system. Figure 4.9a represents the measured absolute LWH of all 

salinity treatments as function of mean ECSS. The trend of the data in this figure is not 

clear due to the fact that the LWH of the salinity treatments consist of a nonstressed 

part and a stressed part. For this reason, the net effect of salinity on LWH is shown in 

Fig. 4.11b. By subtracting the LWH of the reference treatment, LWHR, from each 

individual salinity treatment, LWHS„ Fig. 4.9b provides a better trend and seems to be 

nonlinear. Following this normalization, the ratio of LWHS/LWHR is also depicted in 

Fig. 4.9c. Similarly to Fig 4.9b, the trend is nonlinear. 

Due to the similarity between transpiration and leaf water potential (both represent the 

whole system), one may expect a relation between them. Figure 4.9d shows that the 

relative leaf water head LWHS/LWHR and the relative transpiration TJTV are related to 

each other, but statistically it is not a 1:1 relation. One may conclude that the LWH 

data suggest more clearly a nonlinear trend than the relative transpiration data in 

saline soil. 

4.6. Simulation with HYSWASOR 

The one-dimensional simulation model for hysteretic water and solute 

transport in the root zone, HYSWASOR, has been designed particularly to study root 

water uptake under nonuniform soil water osmotic and pressure heads, making it 

ideally suitable for use in this study. The governing flow equations and the root 

extraction term of this model have been discussed in Chapter 2. 

In HYSWASOR, the top boundary condition can be specified as head, flux density 

(evaporation included), water layer applied (controlled by Mariotte head), and free 

evaporation during light. Required input for the top boundary conditions include 

solute concentration of the infiltration water, potential transpiration rate, and 

evaporation rate. The bottom boundary condition can be specified as head, flux 

density, gravitational flow, and suction candle. The latter was particularly necessary 

for this part of the study, because the experimental columns were connected to a 

suction pump to suck out excess water during the night. Required input lower 

boundary conditions include soil water pressure head and/or soil water content, solute 

concentration, and hysteresis index for any soil depth. These must be given at least for 
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Figure 4.9. Absolute leaf water head LWH (a) and net LfW (b) versus mean soil solution 

salinity EC^. Relative leaf water head LWH^JLWH^ (c) versus mean ECSS, and transpiration 

7yrp(d). 

the top and bottom of a soil column. Root water uptake parameters (constant during 

the simulation) must be specified as input. Either Mualem-Van Genuchten parameters 

or a K-9 table must be given as soil parameters. The model provides as output 

volumetric soil water content, soil water pressure head, hydraulic head, soil water flux 

density, root water uptake rate, and solute concentration at any desired node and time 

step. Also, cumulative values of infiltrated water, evaporation, drainage, capillary rise, 
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transpiration, infiltrated and drained solutes are generated by the model. Simulated 

soil water content, soil water pressure and osmotic heads and water uptake rate 

distributions are shown on screen, providing a valuable tool to follow the process 

during the simulation. 

HYSWASOR has been developed further such that the sample input file given in 

Dirksen et al. (1993) is no longer current. The input file used in this study for the S3 

treatment is given in Table 4.3 (only a part of the specified boundary conditions and 

the K-6 table are shown). The water uptake parameters have been derived from the 

experimental data. The boundary condition times are linked to irrigation intervals and 

potential transpiration measurements. The latter obtained experimentally from the 

reference treatment. Soil evaporation is set to zero. Since no reliable soil water 

pressure heads were obtained during the experiments, initial water contents are 

specified rather than soil water pressure heads. The initial soil solution concentrations 

are derived from measured ECSS based on Eq. 3.6. 

4.6.1. Calibration 

From five experimental treatments, the S3 treatment was selected for the 

calibration. This treatment was irrigated every 48 hours with 3 dS/m (c = 30 

umol/cm3, h0 = -1080 cm) water. The soil hydraulic functions were obtained from a 

laboratory experiment with the evaporation method of Wind (1966). The influence 

of hysteresis on the water content simulations was tested by varying the hysteresis 

code. Kool and Parker (1987) proposed that the a parameter in Eq. 2.6 for the 

wetting soil water retention characteristic is two times that of the drying one. The 

simulations indicated no significant influence on water contents over the root zone. 

This is due to the fact that the experimental columns were irrigated with large 

quantities of water to reach the high target leaching fractions. As a result, the columns 

were nearly saturated every 48 hours, and the scanning curves always started at the 

wet end of the retention curve. However, simulations for a dry column (water stress 

experiment) showed the sensitivity for hysteresis. Therefore, hysteresis was included 

in all simulations. 

The root activity distribution influences the root water uptake pattern significantly. In 

HYSWASOR, any root activity distribution can be specified. All the root activity 

patterns proposed in chapter 2 (constant with depth, exponential with a maximum at 

the soil surface, linear with a maximum at the soil surface and zero for the bottom of 

the root zone, and stepwise root density distributions) were used to check the 

difference in the simulated soil water contents and actual transpiration. The simulated 

water contents as well as the simulated actual transpiration indicated no significant 
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Table 4.3. Input file for S3 treatment with reduction function Eq. 2.36. Only part of the 

specified K-Q table and boundary conditions are given. 

=GeneralData === 
MaxDepth NrOfElements ConcGroundWater MariotteHead MaxSurfaceDetention 

65 650 0 100 0 
HysCode SolCode TranspCode PltCode Pltlnt PltChoice BCOutCode LCOutCode 
Debug 

1 1 0 1 10 0 0 0 0 
Onedayd or 24) Sunrise Sunset DelTMax Tmax OutTimesInterval 

24 10.5 0 0.1 480 1 
Additional times for output (2 lines; total output times < 500) 

Depths in extra plot file (max.: 8 ) : 
5 10 15 20 25 35 45 55 

Water uptake parameters (all heads in cm): 
Matric: Threshold 50% Exponent; Osmotic: Threshold 

-le6 -l.le6 1.5 -720 
Root activities/densities (incr. depth; min nr. of depths: 0, 

Time \ Depths: 0 5 10 15 20 25 35 45 55 
0 1 0.9 0.8 0.65 0.55 0.45 0.35 0.25 0.2 

50% Exponent 
-2650 1.35 

max. nr.: 20) 
65 
0.2 

============ Soil parameters ======= line nr. 
Soil type 1: 

ad nd md wcsd wcrd aw 
0.0146 1.386 0.279 0.428 0.01 0.0292 

21 NrOfRootActLines == 

nw 
1.386 

mw 
0.279 

wcsw SatCond Lk 
0.428 0.84 -1 

CondCode Rhob 
1 1.42 

Difp 
0.017 

Ldis Iambi lamb2 FreundK FreundExp MinAir 
1 0 0 0 1 0 

k-thet, 
Theta: 

k: 0. 

a table (increasing order of theta, max. nr.: 20, incl. saturation) 
0.1844 0.1994 0.2072 0.2121 0.2231 0.2311 0.2407 0.248 

779e-4 0.198e-3 0.278e-3 0.371e-3 0.621e-3 0.11e-2 0.176e-2 0.26e-2 
=== Boundary conditions === line nr. yy = xx + ll*NrOfSoils ======= 

BCTime 
0 

10.5 
10.51 
15 
18 
24 
38 
41 
48 

TopCode 
2 
1 
1 
1 
1 
1 
1 
1 
2 

TopVal 
3.8 
0 
0 
0 
0 
0 
0 
0 
3.8 

TopCon 
15 
0 
0 
0 
0 
0 
0 
0 
15 

BotCode 
3 
3 
1 
1 
1 
1 
1 
1 
3 

BotVal 
-50 
-50 

PotTrans 
0 
0 
0.110 

-50 

173 
116 
109 
103 
115 
115 

Evapor 

428 
438.5 
438.51 
446 
456 
480 

depth 
0.0 
5 
10 
15 
20 
25 
35 
45 
55 
65.0 

5.2 
0 
0 
0 
0 
0 

15 
0 
0 
0 
0 
0 

soil 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

kap 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

hi 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Initial conditions 

-50 
-50 
0 
0 
0 
0 

= line nr. 
wci 

.137 

.137 

.193 

.167 

.184 

.135 

.136 

.153 

.193 

.233 

289 

092 
118 
118 

yy ̂  
ci 

NrOfBC + 2 

30 
30 
33 
25 
27 
23 
16 
15 
15 
15 

(at least given 

at top and bottom) 
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change due to the different root activity distributions. The simulated total actual 

transpiration with the different root activity distributions resulted in only about 1mm 

difference for the whole experimental growth period. This was expected because 

water contents in the columns were high. Any decrease in water content at a particular 

depth causes a hydraulic head gradient that moves water from other depths to 

compensate the water that was taken up. This was checked by means of a 

modification of the original version of HYSWASOR, such that the water flux density 

for each node was printed in the output file. For instance, during the daylight the 

water flux density was even comparable with the root water uptake at the same depth. 

The simulated salt concentrations are more sensitive to the root activity distributions 

than the water contents. Water uptake from a particular depth causes an increase in 

salt concentration due to the water content decrease at that depth. At the same time, 

water moving through the soil to compensate water taken up by the roots, carries salt 

along. The best agreement between the simulated and a particular experimental soil 

solution concentration distribution was obtained when the root activity distribution 

was set to 1.00, 0.90, 0.80, 0.65, 0.55, 0.45, 0.35, 0.25, 0.20, and 0.20 for the depths 

of 0.0 (the soil surface), 5, 10, 15, 20, 25, 35, 45, 55, and 65 cm, respectively. 

Therefore, in all the simulations this root activity distribution was specified. The root 

activity distribution is automatically normalized such that the integral over depth is 

unity. 

4.6.2. Comparison of experimental and simulated actual transpiration for 
different soil solution salinities 

The main purpose of this part of the study was to find out how the plant roots 

behave under salinity stress. The final judgment on the agreement between simulated 

and experimental root water uptake data was based on the actual transpiration. The 

simulation model was run with the salinity reduction terms of Eqs. 2.33, 2.35, 2.36 

and 4.4. The threshold-slope model of Eq. 2.33 is much more sensitive to the salinity 

threshold value h 0 than to the slope. The experimental threshold value was about half 

of that of Maas and Hoffman, but the slope was almost the same. This indicates that 

different soil types and different evaporative demands, even different kinds of salt, 

influence the threshold value. The models employing a salinity threshold value are 

potentially more accurate than those that do not, but the value of h 0 must be 

determined as accurately as possible. The actual transpiration simulated with Eq. 2.33 

for different h 0 values indicated that this model is very sensitive to this parameter, 

while different slopes have less influence on the simulated transpiration. The 

simulated total actual transpiration changed significantly when h 0 was varied 

between 2 to 4 dS/m. The closest agreement with the experimental data was obtained 
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for h o = -600 cm and the slope of 0.071 m/dS. Therefore, in all simulations these 

values were used for Eq. 2.33 (Table 4.4). 

The sensitivity analysis shows that the actual transpiration simulated with the 

reduction term of equation 2.35 is highly sensitive to p. By changing p from 3 {Van 

Genuchten, 1987) to 1.35 (about that of the experiments) total actual transpiration 

changed about 75mm. The model is also sensitive to /?O50> but not as much as to p. The 

best agreement with the experimental data was obtained with p = 1.72 and h0so = -

2880 cm and these values were used in the simulations (Table 4.4). 

Equation 2.36 is sensitive to p, but not as much as Eq. 2.35. Equation 2.36 is most 

sensitive to h 0, and less to h0so- The closest agreement between experiments and 

simulated transpiration with Eq. 2.36 was obtained for h 0= -720 cm, ho5o = -2650 cm 

andp = 1.35. These values were used in all simulations with Eq. 2.36 (Table 4.4). 

Equation 4.4 is not as sensitive to p and homax as to h 0 and OQ. The best simulated 

transpiration with Eq. 4.4 was obtained with the experimental parameter values, 

onlyao was changed from 0.25 to 0.40 (Table 4.4). 

Table 4.4. Parameter values for Equations 2.33, 2.35, 2.36 and 2.36, originally proposed, 
experimentally derived, and optimized for S3. 

Equation 

2.33 

2.35 

2.36 

4.4 

parameter 

K (cm) 

Slope m/dS 

h0so (cm) 

Pi-) 

K (cm) 

^o5o(cm) 

P(-) 

K (cm) 

Fornax ( cm) 

Pi.-) 

Ok, 

Original 

-1440 

0.073 

-6300 

3 

-2800 

-3900 

1.5 

-

-

-

-

Experiment 

-720 

0.071 

-2880 

1.35 

-720 

-2880 

1.35 

-720 

-5700 

1.35 

0.25 

Optimized 

-600 

0.071 

-2880 

1.72 

-720 

-2650 

1.35 

-720 

-5700 

1.35 

0.40 
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In section 4.5 the experimental relative transpirations were compared with the 

calculated values according to reduction functions Eqs. 2.33, 2.35, 2.36, and 4.4, with 

the conclusion that Eqs. 2.33, 2.35 and 2.36 do not give good agreement if the 

originally proposed parameter values are used. For the simulated actual transpiration 

the same comparison is followed. Figure 4.10a shows the comparison between the 

experimental actual transpiration and those simulated with reduction terms of 

equations 2.33, 2.35, 2.36 and 4.4, using the parameter values originally proposed by 

the modelers. These values do not provide a reasonable agreement. Figure 4.10b 

presents the best agreement between experimental and simulated cumulative actual 

transpiration for treatment S3, obtained with the parameter values listed in the last 

column of Table 4.4. These optimized values differ slightly from the experimentally 

derived values. 

Figures 4.10c, 4.10d, 4.10e, and 4.1 Of present the comparison between the 

experimental actual transpiration and that simulated with the optimized parameter 

values of Eqs. 2.33, 2.35, 2.36 and 4.4 for the treatments Si, S2, S4 and S5, 

respectively. The experimental potential transpiration that was obtained from the 

reference R treatment is also given in these figures, denoted as Tp. 

4.6.3. Quantitative comparison of experimental and simulated actual 

transpiration 

Analysis of residual errors, differences between measured and simulated 

values, can be used to evaluate model performance. Loague and Green (1991) used 

the following statistics to evaluate solute transport models: maximum error ME, root 

mean square error RMSE, coefficient of determination CD, modeling efficiency EF, 

and coefficient of residual mass CRM. The mathematical expressions of these 

statistics are: 

ME = Ma&\Pi-0-\M 

r „ i"2 

RMSE = 

n 

CD- i=1 

I^-O,)2 

1=1 

n 

(ot-d)2 

100 

0 

4.6 

4.7 

4.8 

Z(^-o)2 
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Figure 4.10. Comparison between the experimental (Exp.) and simulated cumulative 

transpiration of treatment S3 for the reduction function Eqs. 2.33, 2.35, 2.36 and 4.4, using a: 

the parameter values originally proposed by the authors (O) and b: the optimized values that 

yield the best agreement listed in Table 4.4. The potential transpiration Tf is also given. 
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Figure 4.10. Comparison between the experimental (Exp.) and simulated transpiration with 

reduction functions Eqs. 2.33, 2.35, 2.36 and 4.4, using parameter values optimized for 

treatment S3. e: S4, treatment f: S5 treatment. 
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i= l i = l 

EF = ± '- 4.9 

S(0(-O)2 

Z ^ - Z A 
c m = ̂  —J- 4.10 

n 

Z°. 
i=i 

where Pj are the predicted (simulated) values; 0\ are the observed (measured) values; 

n is the number of samples; and the overlined characters represent mean values. The 

lower limit for ME, RMSE, and CD is zero. The maximum value for EF is one. Both 

EF and CRM can be negative. The ME value represents the worst case performance of 

the model while the RMSE value shows how much the simulations overestimate or 

underestimate the measurements. The CD gives the ratio between the scatter of the 

simulated values and of the measurements. The EF value compares the simulated 

values to the averaged measured values. A negative EF value indicates that the 

averaged measured values give a better estimate than the simulated values. The CRM 

is a measure of the tendency of the model to overestimate or underestimate the 

measurements. A negative CRM shows a tendency to overestimate. If all simulated 

and measured data are the same, the statistics yield: ME = 0; RMSE = 0; CD =\;EF = 

0; and CRM= 0. Table 4.5 gives the values of the five statistics for the experimental 

and simulated actual transpiration based on Eqs 2.33, 2.35, 2.36 and 4.44. The 

performance of all the reduction functions is almost similar. The tendency of the 

reduction functions to under or overestimate is also similar, but this tendency is not 

strong because all CRM values are around zero. Furthermore, there is no significant 

difference in calculated CD among the reduction functions. Most results for Eqs. 2.36 

and 4.4 are the same, indicating that the performance of these reduction functions is 

rather similar. If a nonlinear function is needed, Eq. 4.4 can be used because of its 

relatively accessible input parameters. In conclusion, these statistics indicate that all 

the salinity reduction functions perform almost similarly. For simplicity, one may 

then as well choose Eq. 2.33 with less, and widely available input parameters. 

However, it should be noted that in all the reduction functions the experimentally 

obtained parameter values were used rather than those proposed by the modelers. 
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Table 4.5. Statistical parameters to evaluate the model performance with the reduction 
functions of Eqs. 2.33, 2.35, 2.36 and 4.4. 

Treatment 

Si 

s2 

s3 

s4 

s5 

a {h0) 

Eq. 2.33 
Eq. 2.35 
Eq. 2.36 
Eq. 4.4 

Eq. 2.33 
Eq. 2.35 
Eq. 2.36 
Eq. 4.4 

Eq. 2.33 
Eq. 2.35 
Eq. 2.36 
Eq. 4.4 

Eq. 2.33 
Eq. 2.35 
Eq. 2.36 
Eq. 4.4 

Eq. 2.33 
Eq. 2.35 
Eq. 2.36 
Eq. 4.4 

ME 
mm 

11.89 
12.16 
13.24 
13.19 

16.00 
11.68 
18.60 
18.50 

11.15 
9.85 
11.45 
11.45 

11.29 
11.59 
11.29 
9.29 

9.27 
9.79 
6.65 
6.85 

RMSE 

mm 

30.24 
23.90 
37.50 
37.13 

59.50 
36.76 
73.19 
72.79 

26.94 
23.98 
27.73 
27.42 

28.83 
39.53 
29.53 
25.07 

31.91 
32.39 
17.89 
17.79 

CD 
-

0.954 
0.969 
0.930 
0.931 

0.870 
0.935 
0.846 
0.847 

0.969 
0.978 
0.979 
0.979 

0.991 
0.922 
0.989 
0.989 

0.944 
0.871 
0.964 
0.970 

EF 
-

-0.047 
-0.030 
-0.074 
-0.072 

-0.140 
0.068 
-0.181 
-0.180 

-0.031 
-0.021 
-0.021 
-0.021 

0.008 
-0.084 
-0.010 
-0.043 

0.055 
-0.146 
-0.036 
-0.030 

CRM 
-

-0.041 
0.000 
-0.053 
-0.052 

-0.086 
0.050 
-0.106 
-0.106 

-0.028 
-0.018 
-0.030 
-0.029 

0.027 
0.055 
-0.032 
-0.025 

0.034 
-0.034 
0.000 
-0.003 

4.6.4. Comparison of experimental and simulated water content and salinity 

distributions 

The initial soil water contents and osmotic heads were obtained from the 

experimental measurements just before the first irrigation after the plants were well 

developed. The same procedure as described for subsection 4.6.2 was followed to find 

the best agreement between the simulated and experimental S3 treatment, using 

different parameters (Table 4.4) for the different reduction functions. The closest 

agreement with the experimental data was obtained with the parameter values in the 

last column of Table 4.4. Figure 4.11 shows the water content distribution with Eq. 

2.36 and/? = 1.35; the results forp =1.5 were slightly different. The simulated water 

contents in Fig. 4.11 represent almost the best agreement with the experimental data. 

For other cases, there were discrepancies in different degrees between the simulated 

and measured water contents. An interesting observation is that in the whole 

simulation period the simulated and measured mean water contents agreed closely. 
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The corresponding experimental and simulated ECSS distributions are given in Fig. 

4.12. The simulated salinities follow about the same trend as the experimental data, 

but the magnitude of the simulated salinities is unsatisfactory. The simulated mean 

soil solution salinities for the entire simulation period are closer to the real data, 

similar to the water contents. Generally, the simulated mean water contents and mean 

soil solution salinities over the root zone for all the reduction functions were in better 

agreement with the experimental data than each individual simulated value. 

The presented data show that the water contents cannot be simulated precisely. This 

can be related to the way in which the simulation model calculates water contents. 

The model distributes the potential transpiration over the root zone according to the 

specified root activity distribution. The actual transpiration is equal to the potential 

transpiration until the threshold salinity is reached and the actual transpiration is 

calculated for every node according to the specified reduction function. The 

integration of the calculated transpiration over all the nodes gives the actual 

transpiration for the entire root zone. When the soil salinity differs with depth, the 

model assumes that water can be taken up independently at every depth according to 

the specified reduction function and the (relative) root activity. For instance, if the soil 

solution salinity near the bottom is lower than at the top, the model calculates the 

higher water uptake at the bottom. The water contents and salinities are then 

calculated according to the water depletion at each node. This algorithm causes a 

discrepancy between the simulated and measured water contents and salinities, 

because under real conditions plants tend to minimize the energy needed to overcome 

the osmotic head of the soil water. This means that they tend to take up water from the 

depth with the minimum salinity and stop taking up water from other parts as long as 

the zone with minimum salinity contains enough water to provide the evaporative 

demand. When the minimum salinity zone can no longer satisfy the evaporative 

demand, water will be taken up from the next less saline depth. This process continues 

until the free energy of the soil water due to high salinity decreases to such an extent 

that the biological energy of the plants has become insufficient and water uptake stops 

altogether. 

When plants take up water from one depth only (because of lower salinity) the water 

moves from another depth with higher water content due to the hydraulic head 

gradient. The soil solution salinity may or may not change due to the transported 

water at that depth, compared with that before root water uptake. But, the salinity at 

the depth from which the water was taken up will certainly increase if the water is not 

replenished from another depth. Thus, at a certain time and depth ECSS may change or 

remain unchanged due to root water uptake. This process may describe the 

discrepancy of the experimental and simulated soil solution salinity data. 
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Figure 4.11. Experimental (E) and simulated (S) water content distribution at day 11 and 16 

of S3 treatment, using reduction function Eq. 2.36. 
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Figure 4.12. Experimental (E) and simulated (S) soil solution salinity ECS5 at day 11 and 16 of 

S3 treatment, using reduction function Eq. 2.36. 
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This may also be regarded as a reason for what was found earlier in this study, that 

different root activity distributions did not influence 6 and Tp (but they slightly 

changed ECSS). Because such a process is not yet well understood, including it in the 

numerical simulation model is rather difficult. Besides this, the simulated and 

experimental mean 0 and ECSS data agree closely. Also, regardless of what kind of 

salinity reduction function is used the simulations give reasonable actual 

transpirations compared with the experiments. This implies that the simulation model 

provides acceptable results if the system in its entirety is regarded. 

4.7. Summary and conclusions 

Four different salinity reduction functions, Eqs. 2.33, 2.35, 2.36, and 4.4, were 

tested directly on experimental data and inserted in the numerical simulation model 

HYSWASOR to check their performance in a macroscopic root water uptake model 

(Eq. 2.27). Equation 2.33, was used to check if this function originally proposed for 

the long-term response (yield) can be employed in the macroscopic sink term of Eq. 

2.27 as a reduction function. Further, equations 2.35, 2.36 and the newly developed 

Eq. 4.4 that are originally proposed as salinity reduction functions were tested with 

the experimental data. 

The results indicated that Eq. 2.33, known as the crop response (yield) function, can 

be used as a reduction function in Eq. 2.27 with the original slope (proposed by the 

modelers) and a modification in its salinity threshold value. From both the 

experimental and simulated data it appeared that the most sensitive part of the 

reduction functions is the threshold value, while for Eq. 2.35 without a threshold the 

major sensitivity lies in its shape parameter. Equations 2.35 and 4.4 were also 

sensitive to their shape parameters, but to a lesser degree. 

Because most of the parameter values originally proposed by the modelers could not 

provide good agreement with the experimental data, the values were derived from the 

experimental data. These experimental values were based on the mean soil solution 

salinities. Because the simulation model responds to each individual value at each 

depth, these values were slightly modified (optimized) to reach the best agreement 

between the simulated and experimental data. 

The simulated cumulative actual transpirations were rather close to the experimental 

values, while the simulated soil water contents and soil solution osmotic head showed 

some discrepancies with the actual data, but the mean soil solution salinity and water 

content were very close to the measured data. This implies that the simulation model 

can provide good agreement with the measured data when the system is regarded in 

its entirety. 
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The different salinity reduction functions could provide almost the same results if the 

parameter values are well specified. This observation suggests the use of the simple 

linear reduction term Eq. 2.33, although it should be noted that the maximum salinity 

obtained in the present experiments was about 12 dS/m. In this salinity range, 

extrapolation of the linear function of Eq. 2.33 does not create a big error, but at 

higher salinities such extrapolation is not risk-free, because the data appear to have a 

nonlinear trend. For practical use, the linear function of Eq. 2.33 may be used in 

combination with the macroscopic model of Eq. 2.27 to estimate the actual 

transpiration as well as the root water uptake. 
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5. Root water uptake under nonuniform transient water stress 

5.1. Introduction 

Root water uptake studies generally have one of two purposes. Either they 

produce estimates of transpirational water losses for water budget models or they 

provide estimates of plant water status for predicting water stress. Root water uptake is a 

dynamic process influenced by soil, plant, and climate conditions. It depends on a 

number of factors such as soil water pressure head, soil hydraulic conductivity, osmotic 

head (in saline condition), evaporative demand, rooting depth, root density distribution, 

and plant properties. As discussed in Chapter 2, there are two main approaches to 

quantifying root water uptake. The so-called microscopic approach considers the root as 

an infinitely long cylinder of uniform radius and water absorbing properties. The soil 

water flow equation in this model is written in cylindrical coordinates and solved for the 

appropriate boundary conditions at the root surface and at some distance from the roots. 

The most important limitation of this approach in terms of application is the 

unavailability (if not impossibility to obtain) of the required input parameter values, 

particularly those at the root surface. 

The second, so-called macroscopic approach, is an empirical function that describes 

plant water uptake based on the observed response to soil water pressure head. In the 

macroscopic approach, the flow to individual roots is ignored and the overall root system 

is assumed to extract water from individual increments of the root zone at rates that are 

related to bulk soil water properties. The most common formulation of this approach is 

based on the work of Feddes et al. (1978) and describes water uptake as the actual 

transpiration rate over the root zone (Eq. 2.27). The advantage of the macroscopic 

approach is that it does not require complete insight in the physical process of root water 

uptake and, therefore, eliminates the need for soil and plant parameters that are difficult 

to obtain. Such an empirical approach still needs to be calibrated, however, for different 

plants and probably different climate conditions. 

The objective of this part of the study was to investigate the impact of different soil 

water pressure heads on the root water uptake pattern, and to investigate which pressure 

head reduction function can provide the best correlation with the experimental data. 

Since the overall reaction of plants on the heterogeneous soil water pressure head system 

is of most interest, the actual reaction of plants in terms of transpiration rate was central 

for this study. Dealing with numerical simulation models, it was also important to check 

the performance of the pressure head reduction functions of Feddes et al. (1978), Van 
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Genuchten (1987) and Dirksen et al. (1993) in combination with the macroscopic model 

of Eq. 2.27. This chapter first compares these reduction functions with the experimental 

data and then evaluates their performance in the numerical simulation model 

HYSWASOR. 

5.2. Materials and methods 

Two water stress treatments (Wi and W2) and a reference (R) were established 

in the greenhouse to investigate the influence of different soil water pressure heads on 

the root water uptake of alfalfa. The target amount of applied water for the first level 

of water stress Wi was 70 percent of the no-stress treatment R, while the second level 

W2 received about 50 percent of the irrigation water of R. 

The measurements were started after healthy plants developed. Salinity stress was not 

allowed and hence the irrigation intervals were relatively long (i.e. 4 and 3 days) in 

order to let the columns dry out as much as possible. Tap water was applied to the soil 

columns by flood irrigation immediately before turning off the lights in order to allow 

as much water as possible to move downward at night. To prevent evaporation from 

the soil surface the top of each column was covered by granules. All measurements 

(with few exceptions) were started after switching on the lights. The artificial light 

period was mostly 15 hours per day from 6.00 am (or 6.30) until 9.00 pm. 

Some fertilizers in solution form were added to the irrigation water to prevent any 

possible nutrient deficiency. The electrical conductivity of the applied water with the 

fertilizers was always less than 0.65 dS/m, thus the salinity caused by these 

applications was negligible. To verify that, some salinity measurements were made 

after each irrigation. Until the last application, soil solution salinity was less than the 

lowest readable value with the Salinity Bridge. For more experimental details, see 

Chapter 3. 

5.3. Experimental data 

A summary of experimental phase III (see Table 3.1) is given in Table 5.1. It 

shows that the transpired amount of water by the stressed treatments Wi and W2 was 

about 66 and 50 percent of the reference treatment R. Total transpired water for Wi and 

W2 was 18 and 40 mm, respectively, higher than the total applied water. Hence, the 

water storage of the soil columns was partly depleted. Figure 5.1 presents the water 

content distributions over the root zone for one irrigation interval of the R, Wi and W2 

treatments. The reference treatment shows an increasing water content with depth, 

while the water content of the stressed treatments decreases with depth. 
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Table 5.1. Water budget of experimental phase III. 

Treatment 

R 

Wj 

W2 

Applied water 

mm 

585 

335 

227 

Transpired 

mm 

535 

353 

267 

water Irrigation interval 

d 

2, 2, 2,2,2,2, 2,2,2,2 

4,4,3,3,3,3 

4,4,3,3,3,3 

The data of both stress treatments belong to the fifth of six irrigation intervals, while 

those of R belong to the seventh out of 10. Until 44 hours after the irrigation most of the 

water of the R treatment was taken from the top 25 cm, while in the period 44-48 hours 

most of the water was extracted from 30-55 cm depth. This shift occurred when #had 

decreased to about 0.17 cm3/cm3. The stressed treatments had been under water stress 

already for 14 days and the irrigation water was only enough to wet the upper part of 

the root zone. The corresponding soil water pressure head distributions of all the 

treatments are also given in Fig. 5.1. These are obtained by converting the 

experimentally measured water contents according to the analytical expression of Van 

Genuchten (1980) for the main drying retention curve. 

Figure 5.2 shows the LWH of all the treatments measured at 2-hour intervals. The 

treatments received irrigation water on the evening before. The lower left hand value 

of each set was measured at the end of the dark period (at about 6.00 am) and the 

lower right hand value just before switching to darkness. The LWH of the stressed 

treatments at the first day after irrigation differed slightly from that of R. This implies 

that the LWH is not sensitive to the water deficit in the lower part of the root zone. As 

long as the plant is provided with the required transpirational water, the LWH behaves 

about the same as under nonstressed conditions. During the night, plant recovery was 

the same for all the treatments. In the second day after irrigation, the difference 

between stressed and nonstressed treatment became larger. The largest difference 

occurred at the third day after irrigation. Complete recovery did not occur from the 

second day on for all the treatments. Figure 5.2 also shows the sensitivity of LWH to 

evaporative demand. L WH values during daylight hours changed considerably, while 

the light intensity as well as all other greenhouse conditions except the temperature 

were constant. Hence, one can argue that LWH is too sensitive to be considered as an 

accurate indicator for deriving the parameter values for the root water uptake 

reduction functions. 
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Figure 5.1. Soil water content and corresponding pressure head distributions at 14, 16, 18, 20, 

24, 38, 40, 42, 44 and 48 hours after the seventh irrigation of R and at 10, 16, 20, 40, 48, 64, 

and 72 hours after the fifth irrigation of Wi and W2. 
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Figure 5.3. Measured cumulative transpiration versus time for reference R and stressed 
treatments Wi and W2. 
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Figure 5.3 represents the measured cumulative transpiration for all the 

treatments. During the first day after irrigation, total transpiration of Wi and W2 was 

nearly the same as that of the R treatment. For Wi this trend continued until 62 hours 

after the first irrigation, for W2 the transpiration started to differ from R immediately 

after the first day. This indicates that the columns that received less water than R 

transpired the same amount of water as R in the first day after the irrigation. This 

trend has been observed for nearly all irrigation intervals. Thus, one may conclude 

that if part of the root zone can supply all the water needed to satisfy the evaporative 

demand, it does not matter that other parts of the root zone are very dry. Total 

available water is more important for the plant than the specific location of the water. 

Therefore, unlike salt heterogeneity over the root zone, heterogeneity of the soil water 

pressure head does not play an important role in terms of root water uptake, i.e. the 

water is taken up from depths with higher water content. 

Figure 5.4 shows the measured relative transpiration TJTP as function of the 

mean soil water content over the root zone. One can fit a linear threshold-slope 

relationship on the data; the threshold being about 0.15 cm3/cm3. Fig. 5.5 shows the 

nonlinear relationship between the experimental TJTP and the mean absolute soil 

water pressure head, \h\, derived from the soil water content of each soil increment 

according to the analytical expression of Van Genuchten (1980). The two relatively 

high TJTp values belong to a short time period in which a sharp decrease of the 

temperature in the greenhouse diminished the evaporative demand considerably. This 

observation support the suggestion of Feddes et al. (1978) that the reduction term for 

water stress is evaporative-demand dependent (see Ch. 2, Fig. 2.1a). This observation 

led us to follow the scatter of the data based on evaporative demand. In Fig. 5.5, the 

relation between TJTP and mean | h | exhibits the most scatter in the range of 3 < | ft \ < 

30 m. In all cases at a given | h | , TJTP depended considerably on the evaporative 

demand of the greenhouse. As the evaporative demand increased, mostly between 

12.00 and 14.00h, TJTP values shifted down sharply. Based on Fig. 5.5, the h 

threshold value is about -800 to -1000 cm. This range is within the accuracy of the 

data of Dirksen et al. (1993), and is very close to that proposed by Feddes et al. 

(1996). 

The relationship of the absolute LWH (Fig. 5.6a), nor that of the normalized 

LWH^I/LWHR (Fig. 5.6b), versus absolute mean h, exhibits any trends. Subtracting 

I LWH I values of the reference treatment from the stress treatments, | LWHw - LWHR \, 

provided a non-linear trend (Fig. 5.6c). The correlation between LWHW/LWHR and TJTP 

in Fig. 5.6d is reasonably good (r = 0.846). This appears due to the fact that both TJTP 

and LWHW/LWHR represent the whole system and are evaporative-demand dependent. 
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Figure 5.4. Experimental relative transpiration TJTr versus mean soil water content of the 
root zone for Wi and W2. 
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head LWH^-LWHR versus absolute mean h; d: relative transpiration TJTV versus relative leaf 
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5.4. Test of theoretical reduction functions against experimental data 

This section aims to compare the data obtained from the experiments with 

existing macroscopic reduction functions. Feddes et al. (1978) proposed for the stress 

part of Fig. 2.1a a simple linear function that is controlled by h-$ and h\ according to: 

h-K 
a(h) = 

K-K 
5.1 
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in which h is the prevailing soil water pressure head, h^ is the soil water pressure head 

threshold value and ht, is the soil water pressure head at wilting (see Fig. 2.1a). 

Alternatively, Van Genuchten (1987) proposed, similar to Eq. 2.35, the S-shaped 

relationship of Eq. 2.38. Dirksen et al. (1988,1993) modified Eq. 2.38 by the assumption 

that root water uptake is not reduced above a threshold value of soil water pressure head 

h , and introduced: 

« (h) = z-^- ~ 5.2 

1 + 
h -h 

h'-hm 

The data presented here are taken from all irrigation intervals. The relative uptake is 

assumed to be equal to the relative transpiration as: 
zr 

jSdz 

-S = l*- = a(h) 5.3 
zr rp *• / 

[S dz p 

J max 
0 

Figure 5.7 presents the comparison between the experimental relative 

transpiration and that calculated with Eq. 5.1 as function of|/z|. The values\h^\ = 

16000, 9000, 6000, 4000, and 3500 cm (Table 5.2) are indicated in Fig. 5.7 as Eqs. 

5.1a, b, c, d, e, and f, respectively. The best correlation (r = 0.64) was obtained 

for | hj, | = 800 cm and | h$ \ = 3500 cm. A linear fit is not possible for the whole range 

of experimental data. From the crop production point of view the most important part 

of the data is about \h\< 4000 cm, and hence, the relative transpiration data for the 

higher | h \ values can be ignored. On the other hand | /?41 = 4000 cm or even larger 

values for the wilting point pressure head make no physical sense; this is a 

shortcoming of any linear extrapolation. Fig. 5.7 shows that alfalfa can survive even 

at I h$1» 13000 cm. An alternative is to make a two-segment linear fit to the 

experimental data, as depicted in Fig. 5.8. The break point (second threshold) and 

slope of the line can as yet not be assigned a physical meaning. To avoid unreasonable 

extrapolation, an alternative for equation 5.1 is to define a threshold-slope equation 

similar to that of Maas & Hoffman (1977): 

a(h) = \-a'(hi-h) 5.4 

Like any other threshold-dependent model, Eq. 5.1 and Eq. 5.4 are sensitive to the 

threshold value. Feddes et al. (1978) suggested the threshold value to be only 

evaporative-demand dependent, while it seems to be soil-dependent as well. The 

water supply by soil to plant roots largely depends on the soil hydraulic conductivity. 
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Figure 5.7. Linear fit of experimental relative transpiration TJTV as function of absolute mean 
pressure head by Eq. 5.1 with the parameter values in Table 5.2. 
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Figure 5.8. Two-piece linear fit of experimental relative transpiration T/Tv as function of 
absolute mean pressure head. 
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At high water contents, the hydraulic conductivity is large and the soil can quickly 

provide the requested water to the roots. As the water content/soil water pressure head 

decreases, the soil hydraulic conductivity sharply decreases nonlinearly, and with it 

the rate of water movement towards the plant roots. Clearly, the hydraulic properties 

differ largely from one soil to another and cannot be ignored in root water uptake 

studies. Thus, it is reasonable to consider hi also as a soil-dependent parameter. 

Figure 5.9 presents a nonlinear fit of the experimental TJTf versus mean | h | of the 

root zone by the reduction function of Eq. 2.38, for which several values of h$o and/? 

are chosen, as shown in Table 5.2. This includes the h$o value proposed by Dirksen et 

al. (1993), as well as the values obtained from the experiments. Also forp, the values 

originally proposed by Van Genuchten (p = 3), Dirksen et. al (p = 1.5), and that 

derived from salinity stress data (p = 1.35) are used. None of these parameter values 

provides a good fit over the entire experimental range. For instance, the values used in 

Eq. 2.38b and Eq. 2.38c provide excellent agreement only for 0.5 < a (h) < 1. 

Similarly, parameter values that give the best agreement for the lower mean | h \ values 

give an unsatisfactory fit for the higher soil water pressure heads. Besides the 

unavailability of the h$o and/? values, another shortcoming of this nonlinear reduction 

function is that it does not have a threshold value as input parameter. 

Figure 5.10 shows similar nonlinear fits by Eq. 5.2; again the parameter values are 

summarized in Table 5.2. As discussed for the salinity stress data, this nonlinear 

reduction function has the advantage of a threshold value as input parameter. The 

parameter values were taken from Dirksen et al. (1993), the current experimental 

data, and from the salinity stress treatments. Similar to Eq. 2.38, none of the fitted 

curves covers the whole range of experimental data. For instance, Eq. 5.2b, d, and e 

provide good agreement only for the first half of the experimental data (TJTP > 0.5). 

As discussed for Eq. 2.38, this limitation was expected because Eq.5.2 does not 

contain a second threshold value that specifies from which h value on the reduction is 

less significant. 

Similar to the reduction function for salinity proposed in Chapter 4, the 

following "two-threshold non-linear function" may be used as a pressure head 

reduction function in the macroscopic sink term of Eq. 2.27: 

« ( * ) = — ^—. ™ 5 - 5 

1 + 
\-aQ 

\ aa ) 

'h'-h' 
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Figure 5.9. Nonlinear fit of experimental TJT9 versus mean | h \ by Eq. 2.38 with parameter 

values given in Table 5.2. 
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Figure 5.10. Nonlinear fit of experimental TJTV versus mean | h \ by Eq. 5.2 with parameter 

values given in Table 5.2. 
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Table. 5.2. The parameters used in the reduction functions of Eqs. 5.1, 2.38, 5.2, and 5.5. The 
correlation coefficient r is also given. 

Equation 

5.1a 

5.1b 

5.1c 

5.Id 

5.1e 

2.38a 

2.38b 

2.38c 

2.38d 

2.38e 

5.2a 

5.2b 

5.2c 

5.2d 

5.2e 

5.2f 

5.5a 

5.5b 

5.5c 

5.5d 

5.5e 

5.5f 

h% or h~ 

cm 
-800 

-800 

-800 

-800 

-800 

-400 

-400 

-400 

-1000 

-1000 

-1000 

-1000 

-1000 

-1000 

-1000 

-800 

-1000 

h4 

cm 
-16000 

-8000 

-6000 

-4000 

-3500 

^50 

cm 

-2000 

-2000 

-1200 

-2000 

-2000 

-1200 

-1200 

-2000 

-2000 

-2000 

-2000 

"max 

cm 

-9000 

-9000 

-10000 

-12000 

-9000 

-8000 

P 

-

3.00 

2.00 

1.50 

1.35 

1.15 

1.50 

3.00 

1.50 

1.35 

1.15 

2.00 

1.15 

1.35 

1.15 

1.15 

1.12 

1.12 

aa 

-

0.20 

0.20 

0.20 

0.20 

0.20 

0.17 

r 

-
0.55 

0.62 

0.60 

0.61 

0.64 

0.86 

0.88 

0.87 

0.87 

0.89 

0.83 

0.76 

0.85 

0.84 

0.88 

0.83 

0.91 

0.91 

0.91 

0.91 

0.92 

0.92 

in which hmwi (the second threshold value) is the soil water pressure head beyond which 

changes of h no longer influence the relative transpiration significantly, and a, is the 

relative transpiration at /imax. 

Similarly to Eq. 4.3 the dimensionless exponent/? can be obtained from the expression: 

P = - 5.6 

Compared to Eqs. 2.38 and 5.2, Eq. 5.5 with ti and hmwl has the advantage of providing 

entire coverage of the experimental data. Furthermore, as discussed for the salinity stress 

experiments, the non-defined/? in Eqs. 2.38 and 5.2 can now be defined by Eq. 5.6. 

Another limitation of Eqs. 2.38 and 5.2 is that it is difficult to derive hw even from 

laboratory experiments. For salinity stress, one can use the data collected by Maas and 

Hoffman, but for water stress such data do not exist. It is not yet clear whether hso is soil-

and/or plant-specific. Analogous to the conclusion drawn for the pressure head threshold 

value, one can argue that h$o also is soil-dependent. The difference between the reported 

105 



Chapter 5 

value by Dirksen et al. (//50 = -1200 cm) and that of our experiment (7z50 = -2000 cm) 

could then be explained by the difference in soil types. 

In Eq. 5.5, hmsx replaces hso- Eq. 5.5 is neither sensitive top nor to hmsx. Since the shape 

of the function is controlled by three parameters (ab, fcmax and p), the sensitivity of the 

model to its shape parameters is decreased considerably compared to Eqs 2.38 and 5.2. 

Figure 5.11 shows the fit of the experimental data by the reduction function of Eq. 5.5 

with the parameter values listed in Table 5.2. This figure shows that the newly proposed 

reduction function Eq. 5.5 indeed covers the whole range of experimental data. 
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Figure 5.11. Nonlinear fit of experimental TJTV versus mean \h\by Eq. 5.5 with parameter 
values given in Table 5.2. 

5.5. Simulation with HYSWASOR 

The one-dimensional simulation model for hysteretic water and solute 

transport in the root zone, HYSWASOR, its governing flow equations and the original 

root extraction term used in this model were already discussed in Chapter 2. The 

required input information is given in Chapter 4. HYSWASOR has been designed to 

study root water uptake under nonuniform soil water osmotic and pressure heads. The 

model is flexible to study such system in detail during short time intervals. These 

features make the model ideally suitable for use in this study. The pressure head 

reduction functions of Eqs. 5.1, 2.38, 5.2 and 5.5 were used in the simulation model 

and evaluated against the experimental data. The water uptake parameters were first 
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taken from the best fits of the experimental data (Table 5.2) and later modified 

according to the best calibration based on one of the experimental treatments. The 

boundary condition times were linked to the irrigation intervals and the potential 

transpiration measurements (reference treatments). Soil evaporation was set to zero. 

Since no reliable soil water pressure heads were obtained during the experiments, the 

initial water content distribution was specified. 

5.5.1. Calibration 

The experimental treatment Wi was used for the calibration. The soil 

hydraulic functions were determined by the evaporation method of Wind (1966). 

The influence of hysteresis on the water content simulations has been tested. Kool 

and Parker (1987) proposed that the a parameter in Eq. 2.6 for the wetting soil 

water retention characteristic (av) is two times that of the drying one aj. To find the 

best agreement between the experimental and simulated water contents, aw was 

changed from 1.75 to 2.25 times a</. The best agreement was obtained with aw = 

\.95otd. This value was used in all simulations to describe hysteresis. 

In HYSWASOR any root activity distribution can be specified in the input file. 

Simulations with different root density distributions indicated a reasonable influence 

on the simulated water contents, particularly for the higher water contents. In 

relatively wet soil, the soil hydraulic conductivity is large enough to allow water to 

move from one depth to another to compensate the water taken up. Similar to the 

salinity stress simulations, the closest agreement between the simulated and 

experimental water content distributions was obtained with an exponential root 

activity distribution. Accordingly, in all the simulations the following root activity 

distribution was specified: 1.00, 0.90, 0.80, 0.65, 0.55, 0.45, 0.35, 0.25, 0.20, and 0.20 

for the depths of 0, 5, 10, 15, 20, 25, 35, 45, 55, and 65 cm, respectively. Except for 

the uniform distribution that gave 6 mm difference, the other root activity 

distributions resulted in only about 1 mm difference between simulated and 

experimental cumulative actual transpiration for the whole growth period. This can be 

related to the fact that except the uniform distribution, all the root activity 

distributions specify the highest activities in the upper 25 cm. 

5.5.2. Comparison of experimental and simulated water content distributions 

Figure 5.12 shows samples of the experimental and simulated water content 

distributions obtained with the reduction term Eq.5.5 for one irrigation interval of the 

Wi and W2 treatments. The model simulates the trend of water content changes 
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reasonably, but there are some discrepancies between the actual values. Irrespective 

of what reduction function is used, these discrepancies are especially high when the 

evaporative demand is high. In most cases, the disagreement starts during the second 

night after irrigation and increases with time. These observations prompted us to 

follow the water content distributions during the dark period. The column weight 

remained exactly the same during the dark period, indicating that no water transpired. 

However, the water content decreased in the top 25 cm of the soil columns, but not in 

the deeper parts. This always happened between 21.00 to 4.00 h; thereafter, water 

contents remained unchanged until the lights were turned on at 6.00 am. Thus any 

uptake due to small natural light intensities between 4.00 and 6.00h is unlikely. 

Before 4.00h, the plants must have taken up water from the upper part of the soil 

column and store it in their tissues. This is supported by the recovery of the LWH 

(Fig. 5.2). This process was observed under water stress, but not in the saline 

treatments (Ch. 4). This may be related to the high soil water contents in these 

treatments. Typical changes in soil water content over the root zone during the dark 

period of the stressed treatments are depicted in Fig. 5.13. The integrated amount of 

depleted water over the night was irregular from day to day, but in most cases 

depleted water was high when the evaporative demand during the light period was 

high. More observations are needed to quantify this phenomenon. 

5.5.3. Experimental and simulated actual transpiration for different soil water 
pressure heads 

The main purpose of this part of the study was to investigate the influence of 

different soil water pressure heads on root water uptake using macroscopic root water 

uptake models. Thus, the final judgement for agreement between simulated and 

experimental data is actual transpiration. The simulation model was run with the 

reduction terms of Eqs. 2.38, 5.1, 5.2, and 5.5. 

As discussed earlier, the linear model of Feddes et al is sensitive to both hy and 

ha,. Simulation of actual transpiration with Eq. 5.1 for different hi values indicated that 

this model is more sensitive to hi, than to ha,, similar to that for salinity stress with the 

model of Maas and Hoffman. For example, simulated actual total transpiration for one 

growth period changed about 12 mm between hj, = -600 to -400 cm, while decreasing 

hn from -3500 to -5500 changed the transpiration about 5 mm. The closest agreement 

between simulated actual transpiration and experimental data of Wi was obtained 

with hi = -800 cm and ha, = -3500 cm (Fig. 5.14). These values were used in all 

following simulations of Wi and W2 with the reduction function of Eq. 5.1 (Table 

5.3). 
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Figure 5.12. Experimental (E) and simulated (S) soil water content distributions with 

reduction function Eq. 5.5 at 20, 40, and 64 hours after fifth irrigation, a: treatment W,, b: 

treatment W2. 
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Figure 5.13. Measured soil water content changes during the dark period, ti: immediately after 

darkness, t2: just before turning on the lights and ty. after 4 hours of light, a: treatment W,, b: 

treatment W2. 
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The sensitivity analysis shows that the simulated actual transpiration with the 

reduction term of equation 2.38 is sensitive to h$o as well as p, as expected for a 

nonlinear function. By changing;? from 3 (proposed by Van Genuchteri) to 1.15 (that 

of the current experiment) total actual transpiration changed only about 3 mm. The 

model is more sensitive to hso than p, as the total transpiration changed about 8 mm 

when hsd was decreased from -2000 to -1800 cm. The best fit in Fig. 5.9 was obtained 

with/? =1.15 and h$0 = -2000 cm (Table 5.2), but these parameter values resulted in 

an overestimation of transpiration. The closest agreement between actual transpiration 

and experimental data was obtained for h50 = -1800 cm. These values were used in the 

following simulations of Wj and W2 with Eq. 2.38 (Table 5.3). 

Table. 5.3. The parameter values used in the simulations for different reduction functions. 

Equation 

5.1 

2.38 

5.2 

5.5 

hi or h* 

cm 

-800 

-
-800 

-1000 

h 
cm 

-3500 

-
-
-

^50 

cm 

. 

-1800 

-1600 

-

h 
"max 

cm 

-
-

-7000 

P 

-

1.15 

1.25 

1.15 

a. 

-

-
-

0.17 

Equation 5.2 is sensitive to /250 as well as top and h , but not as much as Eq. 2.38. The 

shape of Eq. 5.2 is dominated by three parameters (p, h , hso)- The parameter values 

were first taken from the best experimental fit of Fig. 5.10; i.e. h = -1000 cm, hso = -

2000 cm and p = 1.15 (Table 5.2). The actual transpiration simulated with these 

values, however, was slightly overestimated. The closest agreement between the 

simulated actual total transpiration and experimental data of Wi was obtained by 

changing the parameter values to h = -800 cm, h5o = -1600 cm andp = 1.25. In all 

following simulation of Wi and W2 with Eq. 5.2, these values were used (Table 5.3). 

The sensitivity analysis indicated that the reduction term of Eq. 5.5 is neither sensitive 

to p nor to hmax, and slightly sensitive to h and ceo- The total actual transpiration 

changed about 3 mm when h was changed from -800 to -600 cm. The same 

difference of 3 mm was obtained when «, was changed from 0.17 to 0.25. The total 

actual transpiration did not change when hmm was changed from -6000 to -12000 cm. 

The parameter values for Eq. 5.5 were first assumed to be the same as for the best fit 

in Fig. 5.11, which were h* = -1000 cm, hmax = -8000 cm, p = 1.15 and ck = 0.17 

(Table 5.2). The closest results with the experimental data was obtained by changing 

only hmm from -8000 to -7000 cm. These parameter values were used in all following 

simulations of Wi and W2 with Eq. 5.5 (Table 5.3). 
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The need for the slight modification of the parameter values obtained from the best fit 

of the experimental data can be related to the fact that the experimental parameter 

values were derived from the mean soil water pressure head over the root zone, while 

in the numerical simulation the reduction term is calculated for each node and then 

integrated over the root zone. The comparison between the experimental cumulative 

actual transpiration and that simulated with reduction functions of Eqs. 5.1, 2.38, 5.2, 

and 5.5 and the parameter values listed in Table 5.3 are depicted in Fig. 5.14 for the 

calibration treatment Wi and Fig. 5.15 for the validation treatment W2. The 

experimental potential transpiration that was obtained from the reference R is also 

given in these figures. 

5.5.4. Quantitative comparison of the experimental and simulated actual 
transpiration 

Residual errors can be analyzed to compare the simulated and experimental 

results. Loague and Green (1991) used statistics to evaluate solute transport models. 

These statistics are: maximum error (ME), root mean square error (RMSE), coefficient 

of determination (CD), modeling efficiency (EF), and coefficient of residual mass 

(CRM). The mathematical expressions that describe these measures have been 

introduced in Chapter 4. Table 5.4 presents these statistics for the actual transpiration 

simulated with Eqs. 5.1, 2.38, 5.2 and 5.5. This shows that the simulated transpiration 

for all four equations is almost similar. Similar to what was concluded for the salinity 

reduction terms, all the pressure head reduction functions appear to lead to about the 

same result if the required input parameters are specified satisfactorily. In this case, 

the results were almost identical because the parameter values were primarily 

obtained from the same experimental conditions. In such a situation, one may as well 

choose for the simple, less-parameter-needing function of Eq. 5.1, but as was 

discussed, extrapolation of this linear model is not risk-free. 

Table 5.4. Statistical parameters used for comparison of the experimental actual transpiration 

and the model performance for the calibration (Wi) and validation (W2) treatments. 

Treatment 

W, 

W2 

Equation 

5.1 
2.38 
5.2 
5.5 

5.1 
2.38 
5.2 
5.5 

ME 
mm 

31.27 
18.26 
23.56 
28.77 

36.24 
31.34 
35.85 
30.01 

RMSE 
mm 

85.65 
46.07 
70.89 
70.03 

123.84 
146.56 
139.23 
140.40 

CD 
-

0.851 
0.946 
0.952 
0.952 

0.958 
0.870 
0.940 
0.904 

EF 
-

-0.174 
0.053 
0.047 
0.047 

0.041 
-0.148 
-0.063 
-0.242 

CRM 
-

-0.087 
0.037 
0.071 
0.071 

-0.129 
-0.156 
-0.148 
-0.149 
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Figure 5.15. Experimental and simulated total actual transpiration for W2 treatment. 
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5.6. Summary and conclusions 

Four different soil water pressure head reduction functions were used in the 

macroscopic model of Eq. 2.27. The linear reduction function of Eq. 5.1 did not fit 

well TJTp as function of mean soil water pressure head. The nonlinear functions of 

equations 2.38 and 5.2 TJTV could not fit the whole range of TJTP as function of mean 

soil water pressure head, while the two-threshold function of Eq. 5.5 provided a 

reasonable fit to all TJTV data as function of mean soil water pressure head. The soil 

water pressure head heterogeneity over the root zone did not play an important role in 

water uptake, as long as there is enough water in one part of the root zone. The plants 

seem to satisfy the evaporative demand from wet parts of the root zone irrespective of 

the water deficit in drier parts. This conclusion is based upon the observations that on 

the first day after the irrigations both actual relative transpiration and relative leaf 

water head were almost the same for the stressed and nonstressed treatments. Some 

discrepancies were observed between measured and simulated individual water 

contents, and also for the mean soil water content over the root zone. The main reason 

for these disagreements appeared to be root water uptake during night. Whereas roots 

took up water during the dark period, the plants had no possibility to transpire it and 

hence the plants held the water in their tissues. As a result, leaf water potentials of the 

stressed treatments recovered reasonably after the dark period. In the simulations, all 

four reduction functions led to almost the same results when the parameters were 

primarily derived from the experimental data and slightly modified. However, the 

reduction function of Eq. 5.5 required very small modification on only one of its 

parameters, while for the other reduction functions more parameter values had to be 

modified. 

Quantitative comparison between experimental and simulated actual transpiration 

indicated that all the reduction functions give almost similar results. Besides taking 

the input parameter values from the experimental data for calibration, the input 

parameters had to be modified to obtain the best agreement with the experimental 

data. This can be related to the fact that these values were derived from the 

experimental mean pressure head over the root zone, while in the simulations the 

reduction term is calculated for each individual node based on its own soil water 

pressure head. 

Since all the reduction functions led to about the same results, for practical use the 

most simple Eq. 5.1 is proposed to be used in Eq. 2.27. 
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6. Root water uptake under joint nonuniform transient salinity and 
water stress 

6.1. Introduction 

Most salt tolerance and water stress studies have been carried out separately and 

many data are available for either water stress or salinity stress only. There are only few 

publications dealing with root water uptake under joint water and salinity stress 

conditions. A review of the conceptual models of root water uptake under joint water 

and salinity stress is given in section 2.5. 

It is well known that water uptake is reduced due to salinity. It is not yet clear how plants 

react when low soil water pressure head h occurs together with low osmotic head h0. In 

the earliest studies (see section 2.5) the investigators proposed that joint effect of salinity 

and water stress on water consumption may be related to the total soil water osmotic and 

pressure heads. The concept of total was later designated as the sum of these two 

components, from which the additivity concept was bom. Some researchers clearly 

showed that one unit h0doQS not influence the water consumption the same as one unit of 

h. The proponents of additivity suggested that some empirical proportionality 

coefficients should be included in the linear additivity of h0 and h (see section 2.5). Such 

empirical coefficients are considered to be plant, soil, and climate specific, but have 

never been introduced in the literature. 

The so-called multiplicativity concept is based upon the product of the separate 

reduction terms for soil water osmotic and pressure heads. This concept was originally 

proposed by Van Genuchten (1987) and has been used extensively in many numerical 

simulation models dealing with root water uptake. 

The objective of this part of the study was to investigate the joint influence of different 

levels of h and h0 on root water uptake patterns, and to investigate which concept fits 

experimental data best, or what adjustments need to be made. 

In this chapter all existing concepts were used as reduction functions in the macroscopic 

Eq. 2.27 and compared with the experimental data. Furthermore, they were incorporated 

into the simulation model HYSWASOR, and the obtained results compared with 

experimental data. Since the overall reaction of plants to heterogeneous soil water 

osmotic and pressure heads was central for this study, the actual transpiration was 

considered the best indicator for comparing experimental and simulated data. 
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6.2. Materials and methods 

In this part of the study different levels of salinity (Si, S2, S3, S4, and S5) and 

water stresses (Wi, W2) have been applied to the plants simultaneously, using an 

individual reference treatment R for each water stress level (see Table 3.1). Water and 

salinity stresses were applied to the plants after healthy plants had developed. The target 

water applications were 70 and 50 percent of the reference for Wi and W2, respectively. 

The irrigation water salinities were 1.5, 2.0, 3.0, 4,0 and 5.0 dS/m for Si, S2, S3, S4, and 

S5, respectively. All possible combinations of the mentioned water and salinity stresses 

with their own references were applied. Variations of soil water content, soil water 

pressure head, and osmotic head distributions in the root zone were obtained by varying 

the quantity of applied water, irrigation intervals, and irrigation water salinities. At the 

end of each experimental growth period, plants were harvested and the wet and dry 

matter of each individual column determined; the latter by drying the plant for 24 hours 

at 70 °C. More details on materials and methods of this part of the study are reported in 

Chapter 3. 

6.3. Experimental data 

The quantities of applied water and transpired water as well as the irrigation 

intervals of the experimental treatments are given in Table 6.1. The applied water for the 

reference and the stressed treatments for the first level of water stress (SjWi) was less 

than that of the second level of water stress (SjW2). This was due to the higher 

evaporative demand of the greenhouse at the time that the SjW2 treatments were 

established. Therefore, each level of water stress had its own reference, Ri, and R2, and 

the applied water for SiWi was 0.52R, and that for SiW2 was between 0.29R2 to 0.43R2. 

In the S1W1, S2Wi, S3W1, and S4W1 treatments, more water transpired than was applied. 

Only in the most saline column (S5W1), the applied water could not be taken up totally 

due to high salinity; this happened only in the last two irrigation intervals. Leaching was 

not allowed in the treatments, and thus by each water application more salt was 

introduced in the soil column, increasing the salt concentration in the soil solution 

particularly in the upper part of the root zone. This resulted in a decrease of transpiration 

with time. 

The S]W2, S2W2 and S3W2 treatments also transpired more water than was applied. For 

the S4W2 and S5W2 treatments this was true only in the last two (fifth and sixth) 

irrigation intervals. 

Figure 6.1 shows the soil water content distributions of R2, SiW2, S2W2, S3W2, S4W2, 

and S5W2 at 16, 38, and 62 hours after the first irrigation. The water content of R2 was 

always higher than the stress treatments. 
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Table 6.1. Applied and transpired water (mm), salinity of irrigation water EQv, (dS/m) and 
irrigation time intervals (d) for joint water and salinity stress treatments. 

SjW, 

SiW2 

Treatments 

Ri 
s,w, 
s2w, 
s3w, 
s4w, 
s5w, 

R2 

s,w2 
s2w2 
s3w2 
s4w2 
s5w2 

Applied 
water 
mm 

458.0 
237.6 
237.6 
237.6 
237.6 
237.6 

654 
282 
266 
266 
266 
188 

FC 

dS/m 

Tap 
1.5 
2.0 
3.0 
4.0 
5.0 

Tap 
1.5 
2.0 
3.0 
4.0 
5.0 

Transpired 
water 
mm 

428 
315 
307 
278 
258 
212 

547 
368 
350 
342 
219 
144 

Irrigation interval 

d 

2, 2, 2,2, 2, 2,2, 2, 2, 2 
4,4,3,3,3,3 
4,4,3,3,3,3 
4, 4, 3, 3, 3,3 
4,4,3,3,3,3 
4, 4, 3, 3, 3, 3 

2,2, 2,2, 2,2,2,2, 2, 2 
4, 4, 3, 3, 3, 3 
4 ,4,3,3,3,3 
4,4,3,3,3,3 
4,4,3,3,3,3 
4,4,3,3,3,3 

Figure 6.2 shows the soil solution electrical conductivity distributions of S1W2, S2W2, 

S3W2, S4W2, and S5W2 at the same times. There was no leaching applied to the columns. 

After each irrigation, ECSS increased particularly in the upper parts of the columns. This 

resulted in a high spatial variability at the end of the experimental growth period. 

Figure 6.3a presents the cumulative transpired water (mm) during one experimental 

growth period for the Rb S,W,, S2Wi, S3W1, S4W,, and S5W1 treatments; Fig. 6.3b 

shows the same for R2, SiW2, S2W2, S3W2, S4W2, and S5W2. The transpiration from Ri 

and R2 was much larger than that from the corresponding stressed treatments. The high 

transpiration rates are due to the fact that the transpiration is related to the cross sectional 

area of the soil columns, rather than the plant canopies (see Ch. 3). 

The measured absolute leaf water heads | LWH\ of all the treatments are given in Fig. 

6.4. The measurements were made at 2-hour time intervals, starting just before the end 

of the darkness periods. The | LWH\ values of SsW! in the second day after irrigation 

were slightly lower than in the first day after irrigation. This is due to the lower 

evaporative demand in the greenhouse at the second day. The | L WH \ of S5W2 in the first 

and second day after irrigation deviated considerably from the other treatments. This 

reflects the lower amounts of water applied to W2 compared to Wi. 

Figure 6.5 presents the relationship between the relative leaf water head LWHR/LWHSIWI 

and mean absolute soil water pressure head | h I for different mean ECSS. Except at 3-4 

dS/m, the trend of variation is almost linear. The slopes of the lines increase and the 

intercepts decrease with increasing mean soil solution salinity. 
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Figure 6.1. Measured soil water content distributions of R, SiW2, S2W2, S3W2, S4W2, and 

S5W2 at 16, 38 and 62 hours after the first irrigation. 
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Figure 6.6 presents the relationships between the experimental relative transpiration 

TJTP and the mean\h\for different mean ECSS over the root zone. Either linear or 

nonlinear fitting can be applied in Fig. 6.6a, but for the other figures the relations 

become almost linear as the mean ECSS increases. The relative transpiration decreased 

from 1.00 for mean £CSS = 2-3 dS/m to 0.40 for mean ECSS = 9-11 dS/m. The mean \h | at 

which the plant's biological activities become minimal (wilting) changed from -8000 cm 

for mean ECSS = 2-3 dS/m to about -2000 cm for mean ECSS = 9-11 dS/m. 

At a given soil water pressure head, the relative transpiration decreases with increasing 

salinity, similar to the relative leaf water head (Fig. 6.5). For the same mean soil solution 

salinities, neither the slopes nor the intercepts are exactly the same, and extrapolation to 

TJTV = 0 and LWHu/LWHsiWi = 0, respectively, does not give the same | h \ value. 

The close similarity of relative LWH and relative transpiration as function of 

mean | /i | for a given EC& supports the suggestion of Dirksen (1985) that LWH instead of 

relative transpiration can be used to derive the parameter values for the a (h, h0) 

function. One should keep in mind, however, that LWH depends not only on h0 and h, 

but also on the time of measurement and evaporative demand. The LWH can change 

even within short time periods (see Figs. 6.4a and 6.4b). For all the experimental phases, 

it appears that the relative L WH was more sensitive to evaporative demand than relative 

transpiration. For instance, at a given h and h0 the relative LWH could recover from 

about 0.6 to about 0.9 in the morning. The relative transpiration is also evaporative-

demand dependent, but never changed as much. Furthermore, many plants are 

heterogeneous along their stems and provide different LWH at different locations. When 

deriving parameter values for reduction functions from LWH, these effects of location 

and times should be minimized. By doing so, the close agreement between the relative 

LWH and relative transpiration data in Figs 6.5 and 6.6 was obtained. 

6.4. Test of theoretical reduction functions against experimental data 

This section aims to compare the data obtained from the experiments with all 

the existing reduction functions under joint heterogeneous salinity and water stress. 

First, the existing concepts for joint water and salinity stress will be discussed, 

followed by introducing a new combination method under joint heterogeneous soil 

water osmotic and pressure heads. The latter differs conceptually from other 

approaches. Second, the experimental data under separate and combined stresses are 

compared and the available concepts are tested with the mean soil solution osmotic 

and pressure head data. 
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Figure 6.6. Relative transpiration TJTV versus mean |A I for mean £CSS of 2-3 dS/m, 3-4 dS/m, 

4-5 dS/m, 5-7 dS/m, 7-8 dS/m, and 9-11 dS/m. 
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6.4.1. Theoretical concepts 

The available reduction functions can be divided into two categories: additive 

(Eq. 2.39) and multiplicative (Eqs. 2.40 and 2.41). One more multiplicative reduction 

function has been recently introduced in the latest version of SWAP (Van Dam et al., 

1997), the product of Eq. 2.33 and 5.1: 

UK-K) 
360 

6.1 

For separate salinity and water stress, I proposed the two-threshold nonlinear functions 

Eqs. 4.4 and 5.5, respectively, which fit the experimental data satisfactorily. Similar to 

Eqs. 2.40 and 2.41, one can also take the product of those expressions: 

a(h,h0)-
1 1 

1 + 
ft \ 

l~«oi 

V a o i J 

~ ti -h' 

_fl ~ Wmax_ 

1 + 
^ a02 ) 

ti-K 
ti -Km, 

6.2 

in which dimensionless p\ sndpi can be obtained from Eqs. 5.6 and 4.3, respectively. 

However, Eq. 6.2 belongs to the multiplicative category. This multiplicative approach, in 

principal, has no physical basis and cannot discriminate between its components. 

Different reductions due to osmotic and soil water pressure head produce the same 

result. For instance, the joint reduction a (h0, h) due to a (h0) = 0.25 and a (h) = 0.50 is 

exactly the same as for a (h0) = 0.50 and a (h) = 0.25. From this point of view, 

multiplicativity can be regarded as an identical approach. As for the magnitude of the 

product, there is no evidence to support that separate reductions of 0.25 and 0.50 due to 

osmotic head and pressure head cause 0.875 reduction in water uptake. 

In view of these shortcomings, I introduce a new combination of reduction functions of 

Maas and Hoffman (1977) and Feddes et al. (1978) that differs conceptually from the 

additive and multiplicative approaches. Figures 6.7a and 6.7b illustrate these reduction 

functions, respectively. 

The reduction function of Fig. 6.7b can be divided into three parts. Part I (triangle h\Ahi) 

represents air deficiency, part II (rectangular hiABhi) is the non-stress part, and part III 

(triangle h^Qh^) represents water stress. The slope of B/24 is determined by h^ and hi,. The 

latter (wilting point) is constant for a particular plant and hi is assumed to be only 

evaporative-demand dependent (Feddes et al., 1978). Since this model originally was 

developed for nonsaline conditions, the slope of B/14 is valid for salinities equal to or less 

than the salinity threshold value EC , as shown in Fig. 6.7b. 

125 



Chapter 6 

The database of Maas and Hoffman is collected from nonrestricted water conditions. 

Taking advantage of this, I apply the reduction of this model directly to the no-water -

stress part of Fig. 6.7b, as shown in figure 6.7c for alfalfa. Assuming linear reduction 

from B to h$, I assume further that each dS/m salinity beyond the threshold value shifts 

the wilting point 360 cm to the left. This is consistent with the observation that plants 

wilt at higher soil water pressure head in the presence of salinity than without salinity. 

The magnitude of 360 proposed here is only a preliminary guess coming from the well-

known Eq. 3.6 and will be used until further evidence provides a more precise quantity. 

The effect of each level of joint water and salinity stress can be obtained as illustrated in 

figure 6.7d. The general expression for the reduction in root water uptake due to joint 

soil water osmotic and pressure heads, as depicted in Fig. 6.7d can then finally be written 

as: 

h-{K-h0) 
a(h,he)-

fh-(h4-h0) L 360 i-^fe-0 6.3 

This equation is valid for h0 < h 0 and (h4-h0) < h < hj, respectively. Other general 

validities are the same as the original models. 

This combination model is flexible to use any other (nonlinear) salinity reduction 

function instead of the linear function of Maas and Hoffman. Different salinity 

reduction functions should only change the height of the horizontal non-stress line 

segment of the Feddes et al. reduction function and not influence the slope of the line 

segment beyond hi significantly. The reduction function due to salinity and water 

stress remains linear, and the right hand side of Eq. 6.3 can be replaced with the 

appropriate parts of Eqs. 2.40, 2.41 and 6.2, respectively, in the following way: 

a(h,hJ=h-ih<-h°K-
°> h,-(h4-h0) 

1 

1 + 

6.4 

0> h3-(h4-h0) 
1 + 

hi - h„., 

6.5 

°> A,-(A4-A0) 
1 + 

*02 J 

K-h 
6.6 
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Figure 6.7. Schematic illustration of reduction functions of a: Maas and Hoffman (1977); b: 

Feddes et al. (1978); c: direct application of salinity reduction of Maas and Hoffman model 

(for a = 0.7) into no-stress part of Feddes et al; and d: combined reductions as function of soil 

salinity and pressure head. 
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In this section all these equations for joint water and salinity stress are compared 

with the experimental data. The data presented here belong to all the treatments in Table 

6.1. The relative uptake is assumed to be equal to the relative transpiration: 

Jsdz 
-f = ̂  = a(h,h0) 6.7 

6.4.2. Comparison of separate stress and combined stress data 

Whereas in Chapters 4 and 5 the experimental data for separate salinity and 

water stress have been reported, this chapter presents the data under joint heterogeneous 

soil water osmotic and pressure heads. To facilitate discovering any consistent 

relationship of the separate and combined stresses, various experimental parameters are 

summarized in Table 6.2. The transpired water in all the salinity stress treatments was 

less than the applied water, while in the water stress treatments some water was taken up 

from the soil column in excess of applied water. 

For the S;Wo treatments, relative transpiration T/Tp decreased with increasing salinity. 

Such a reduction also occurred for the SjWi and S|W2 treatments and for the SoWi 

treatments in response to increasing water deficit. In most treatments the relative dry 

weight {Y/Y„)A of the harvested plants was higher than the relative transpiration TJTP. 

This may be regarded as contrary to the basic assumption made in Eqs. 4.2, 5.3 and 6.7. 

The most likely reason for this disagreement is that the plants were first allowed to 

develop into healthy plants before the stresses were introduced. Thus, the dry weight 

reflects in the first place the mass obtained before stress, and only secondarily the 

influence of the stress later on. In all the treatments the relative wet weight (}/Ym)w was 

less than the relative dry weight (Y/Ym),). 

According to the multiplicative models the separate reductions due to salinity 

and water stress can simply be multiplied. The data presented in Table 6.2 can 

potentially confirm or reject this concept. The product of TJTV = a of Si Wo and TJTP = 

a of SoWi is 0.92x 0.66 = 0.61. This product of the reduction terms due to the individual 

stresses Si and Wi is smaller than the reduction term of the combined stress SiW], for 

which TJTP =a= 0.74. Similarly, for W, and S2, S3, S4, and S5 this product is 0.56,0.51, 

0.44, and 0.39, respectively, while the reduction term for the combined stresses S2W1, 

S3W1, S4W1, and S5W, is 0.72,0.65, 0.60, and 0.50. The same comparison yields (0.92x 

0.50 =) 0.46, 0.42, 0.39,0.33, and 0.30 versus 0.67, 0.64, 0.62, 0.40, and 0.26 for S,W2, 

S2W2, S3W2, S4W2, and S5W2, respectively. The multiplicative model underestimates the 
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actual transpiration, except for S5W2. Thus, the presented experimental data do not 

confirm the multiplicative concept. This conclusion is drawn irrespective of any 

functions. This will be evaluated in the next subsection. 

Table 6.2. Comparison between relative transpiration TJTV, relative applied water I-JIVR, ratio of 
transpired and applied water TJlm relative wet weight (Y/Ym)y„ and relative dry weight (Y/Ym)i of 
the separate and combined water and salinity stress treatments. 

Treatment 

SiW0 

S0Wi 

SiW, 

SiW2 

s,w0 

S2W0 

S3W0 

S4W0 

s5w„ 

SoW, 
S0W2 

s,w, 
s2w, 
s3w, 
S4W! 

s5w, 

s,w2 

s2w2 

s3w2 

s4w2 

s5w2 

TJTP 

-

0.92 
0.85 
0.78 
0.67 
0.59 

0.66 
0.50 

0.74 
0.72 
0.65 
0.60 
0.50 

0.67 
0.64 
0.62 
0.40 
0.26 

IJIwR 
-

1 
1 
1 
1 
1 

0.57 
0.39 

0.52 
0.52 
0.52 
0.52 
0.52 

0.43 
0.41 
0.41 
0.41 
0.29 

TJIW 

-

0.98 
0.98 
0.98 
0.98 
0.98 

1.05 
1.18 

1.33 
1.29 
1.17 
1.08 
0.89 

1.30 
1.30 
1.28 
0.82 
0.76 

(y/Ym\, 

g 

0.89 
0.76 
0.56 
0.49 
0.37 

0.61 
0.56 

0.59 
0.57 
0.48 
0.47 
0.45 

0.52 
0.48 
0.47 
0.45 
0.25 

(Y/Ym)d 

g 

1.00 
0.87 
0.65 
0.58 
0.55 

0.87 
0.69 

0.74 
0.70 
0.69 
0.64 
0.55 

0.70 
0.65 
0.59 
0.58 
0.36 

6.4.3. Application of reduction functions to mean soil solution osmotic and pressure 

heads 

Among the introduced reduction functions, Eq. 2.39 represents an additive form 

of water and salinity stress. As discussed in Chapter 2, values for the proportionality 

coefficients a\ and 02 in Eq. 2.39 are not available and hence Eq. 2.39 is simplified to a 

simple linear additivity ofh and h0, or a\ = cti=\. Figures 6.8a and 6.8b present the fit 

of the additive (Eq. 2.39), multiplicative (Eq. 2.40, 2.41, 6.1 and 6.2), and newly 

proposed combination (Eq. 6.3) reduction functions with the experimental relationship 
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of TJTp versus mean h, for mean EC^ of 7-8 and 9-11 dS/m, respectively. In both 

figures, Eq. 6.3 gives the best fit, while the worst agreement belongs to Eq. 2.39. 

Equations 6.1 and 6.3 both represent a combination of the Feddes et al. (1978) and Maas 

& Hoffinan (1977) models. Figure 6.9a compares the two models against experimental 

data for a mean ECSS over the root zone of 9-11 dS/m. The simple product of the separate 

osmotic and pressure head components in Eq. 6.1 keeps ha, (wilting point) constant in the 

saline condition. In contrast, Eq. 6.3 follows the experimental trend that with increasing 

salinity wilting occurs at higher soil water pressure heads. As the salinity increases, the 

disagreement between the two equations becomes greater. Figure 6.9b compares the new 

combination model with linear (Eq. 6.3) and nonlinear (Eqs. 6.4, 6.5, and 6.6) reduction 

due to salinity against the experimental data for mean ECSS = 9-11 dS/m. The nonlinear 

salinity reduction terms influence the height of the horizontal segment only slightly 

(from 0.42 to 0.45). In view of this small difference, I propose that for practical purposes 

Eq. 6.3 be used, rather than Eqs. 6.4,6.5, or 6.6. 

These results indicate that neither the multiplicative nor the additive reduction functions 

fit the experimental data satisfactorily. The best fits were obtained with Eq. 6.3, which 

combines the linear salinity reduction function of Maas & Hoffman (1977) with the 

pressure head reduction function of Feddes et al. (1987). The additive Eq. 2.39 generally 

gave the worst agreement with the experimental data. From a practical point of view, 

Eq. 6.3 appears to be accurate enough (Fig. 6.9b). The parameter values for the Maas & 

Hoffman equation are available for many plants, while those of the nonlinear functions 

(Eqs. 6.4, 6.5, and 6.6) are difficult to obtain. I propose, therefore, that Eq. 6.3 be used 

as a reduction function for joint heterogeneous soil water osmotic and pressure heads in 

the macroscopic root water uptake equation (Eq. 2.27). 

6.5. Simulation with HYSWASOR 

In the simulations with HYSWASOR the input parameter values for the different 

reduction terms have been obtained from the previously calibrated treatments of separate 

salinity and water stress. Thus, no calibration was made for the 10 joint water and 

salinity stress treatments. The parameter values used in the simulations are given in 

Table 6.3. 

Figure 6.10 presents a comparison between the experimental and that simulated with Eq. 

6.3 water content distributions of SiWi, S2Wi, S3W1, S4Wi, and SsW, at 40 and 166 

hours after the first irrigation. The simulation model provides reasonably good 

agreement with the experimental water contents, particularly at relatively wet conditions. 
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Figure 6.8. Comparison between additive (Eq. 2.39), multiplicative (Eqs. 2.40, 2.41, 6.1, and 

6.2) and newly proposed combined reduction function (Eq. 6.3) with the experimental 

relationship of TJTP versus mean pressure head for mean ECSS of 7-8 dS/m and 9-11 dS/m. 
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Figure 6.9. a: Comparison of multiplication of Feddes et al. (1978) and Maas and Hoffinan (1977) 

models (Eq. 6.1), and the new combination reduction function (Eq. 6.3), with the experimental data for 

mean ECSS of 9-11 dS/m; b: comparison between the new combination reduction function with linear 

(Eq. 6.3) and nonlinear (Eqs. 6.4, 6.5, and 6.6) reductions due to salinity. 
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Figure 6.11 shows that the corresponding experimental and simulated ECSS distributions 

agree closer than the water contents. In some treatments and at some depths, the 

magnitude of the simulated ECSS differs from the experimental values, but the trend is 

almost the same. The corresponding simulated root water uptake rates are given in Fig. 

6.12. The water uptake distribution generally corresponds with the water content and 

ECSS distributions. The highest water uptake rate occurs with S1W1 at 40 hours after the 

first irrigation in the upper 20 cm of the soil column. This reflects the high water content 

and low ECSS in that part of the soil profile. The highest simulated salinity occurs after 

166 h at 5 cm depth of SsWj, at a water content of about 0.13 cm3/cm3 (Fig. 6.10). The 

simulated water uptake rate under these conditions is only about 0.002 cm3/cm3 h. 

Table 6.3. Parameter values used in simulations with various reduction functions. 

Eq. 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

hy or K 

cm 

. 

-
-800 

-1000 

-1000 

-1000 

K 

cm 

_ 

-
-
-8000 

-
-8000 

h$o 

cm 

-1800 

-1800 

-1600 

-
-
-

"max 

cm 

_ 

-
-
-
-7000 

-

Px 

-

1.15 

1.15 

1.25 

-
1.15 

-

«D1 

-

_ 

-
-
-
0.17 

-

K 
cm 

_ 

-
-720 

-600 

-720 

-600 

f>o50 

cm 

_ 

-2880 

-2650 

-
-
-

"omax 

cm 

_ 

-
-
-
-5700 

-

Pi 

-

_ 
1.72 

1.35 

-
1.35 

-

a«i 

-

_ 

-
-
-
0.4 

-

a 

m/dS 

_ 

-
-
0.071 

-
0.071 

Actual transpiration can be considered as the best indicator for the whole soil-plant-

climate system under heterogeneous soil water osmotic and pressure head distributions. 

Thus, the final argument on the simulation performance of the various reduction 

functions can be based upon the comparison of the measured and simulated actual 

transpiration. Figures 6.13 to 6.17 give this comparison for SiWi, S2W1, S3W1, S4W1, 

S5W1, S,W2, S2W2, S3W2, S4W2, and S5W2. Without additional calibration, Eq. 6.3 

provides the closest agreement in most treatments. At the lower soil solution salinities, 

Eq. 6.1 performs very closely to Eq. 6.3. Both equations combine the Feddes et al. 

(1978) and Maas and Hoffman (1977) functions. The main difference between Eqs. 6.1 

and 6.3 is the slope of the reduction line due to salinity. Eq. 6.1 keeps h\ constant at 

different salinities, and the slope of the line changes with the height of the horizontal 

segment for no-water-stress. In Eq. 6.3, hi, decreases with increasing salinity and thus the 

slope of the line changes little. Since at low salinities the h* values in both equations are 

very close to each other, both equations provide almost similar results. As the soil 

solution salinity increases the difference between the equations becomes larger. 

Quantitative comparisons of all the reduction functions are given in the next subsection. 
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Figure 6.10. Comparison between experimental (E40, E166) and with Eq. 6.3 simulated (S40, 

S166) soil water content distributions for S,W,, S2W,, S3W,, S4Wh and S5Wi at 40 and 166 

hours after the first irrigation. 
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Figure 6.12. Simulated sink term 5 distributions corresponding with soil water contents and 

soil solution salinities in Figures 6.10 and 6.11, respectively. 
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6.5.1. Quantitative comparison of experimental and simulated actual transpiration 

In the preceding two chapters, the residual errors between the simulated and 

experimental results have been analyzed to evaluate the performance of the various 

reduction functions. The same statistics are employed here, namely maximum error 

(ME), root mean square error (RMSE), coefficient of determination (CD), modelling 

efficiency (EF), and coefficient of residual mass (CRM). The mathematical 

expressions of these statistics are given in Chapter 4, and the values calculated for the 

actual transpiration simulated with Eqs. 2.39, 2.40, 2.41, 6.1, 6.2, and 6.3 are given in 

Tables 6.4 and 6.5. 

For all treatments except S5W2, the worst simulation results are obtained with the simple 

additivity of Eq. 2.39, while Eq. 6.3 performs the best for eight treatments. For S1W1 and 

S4W2, Eq 6.2 gives a slightly better performance than Eq. 6.3. In most cases, the 

tendency of Eq. 6.3 to overestimate or underestimate (CRM) is less than that of other 

equations. Tables 6.4 and 6.5 indicate that the root mean square errors with Eq. 6.3 is 

minimum for 7 of the 10 treatments, which indicates that for these 7 treatments all 

other equations provide over and/or underestimates of the cumulative actual 

transpiration. Also, for 7 treatments the simulated transpiration with Eq. 6.3 provides 

less scatter with the experimental data than the other equations. In conclusion, for 

most treatments Eq. 6.3 yields the best agreement with the measured transpiration. 

6.6. Summary and conclusions 

Six different reduction functions were used in the macroscopic sink term of Eq. 

2.27. The reduction functions are the additive Eq. 2.39, the multiplicative Eqs. 2.40, 

2.41, 6.1 and 6.2, and the newly proposed Eq. 6.3 which combines the linear salinity 

reduction function of Maas and Hoffman (1977) and the linear soil water pressure head 

reduction function of Feddes et al. (1978). The parameter values for these reduction 

functions were first derived from experimental data and then incorporated in the 

numerical simulation model HYSWASOR. The simulated actual transpiration, water 

content, and soil solution salinity were compared with the experimental data. 

The relation between relative transpiration and mean \h I was more or less linear 

for all mean ECSS except for the lower level of ECSS = 2-3 dS/m (Fig. 6.6). This linearity 

was also observed for the corresponding relative leaf water head. As the mean soil 

solution salinity increased the trend became more linear. The linear trend is in agreement 

with the reported experimental data for the salinity stress treatments (experimental phase 

II) but not with the nonlinear trend obtained for the water stress treatments (experimental 

phase III). 
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Figure 6.13. Comparison of cumulative actual transpiration simulated with Eqs. 2.39, 

2.40,2.41,6.1, 6.2, and 6.3 with experimental data for SiWi and S2W! treatments. 
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Figure 6.14. Comparison of cumulative actual transpiration simulated with Eqs. 2.39, 

2.40,2.41, 6.1, 6.2, and 6.3 with experimental data for S3W1 and S4W1 treatments. 
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Figure 6.15. Comparison of cumulative actual transpiration simulated with Eqs. 2.39, 

2.40, 2.41, 6.1, 6.2, and 6.3 with experimental data for S5W1 and S1W2 treatments. 
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Figure 6.16. Comparison of cumulative actual transpiration simulated with Eqs. 2.39, 

2.40, 2.41, 6.1, 6.2, and 6.3 with experimental data for S2W2 and S3W2 treatments. 
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Figure 6.17. Comparison of cumulative actual transpiration simulated with Eqs. 2.39, 

2.40, 2.41, 6.1, 6.2, and 6.3 with experimental data for S4W2 and S5W2 treatments. 
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Table 6.4. Statistics used to compare the HYSWASOR model performance with different 

reduction functions for S1W1, S2Wi, S3Wi, S4W1, and S5W1 against the experimental actual 

transpiration Ta. 

Treatments 

s,w, 

s2w, 

s3w. 

s4w. 

s5w, 

Equation 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

ME 

mm 

63.1 

29.1 

17.9 

17.3 

16.5 

18.5 

109.4 

92.5 

88.3 

93.7 

88.3 

70.7 

102.6 

84.7 

81.2 

91.6 

81.2 

61.7 

80.7 

60.2 

55.5 

70.7 

55.6 

33.8 

39.3 

18.2 

13.2 

32.4 

13.3 

9.4 

RMSE 

mm 

197 

80 

30 

31 

29 

74 

307 

252 

224 

227 

225 

162 

572 

473 

431 

447 

432 

293 

246 

165 

124 

154 

125 

60 

121 

41 

62 

90 

61 

173 

CD 

-

0.83 

0.93 

0.99 

0.97 

0.99 

0.81 

0.67 

0.65 

0.61 

0.58 

0.61 

0.60 

0.82 

0.78 

0.73 

0.70 

0.74 

0.68 

0.73 

0.75 

0.70 

0.618 

0.70 

0.81 

0.77 

0.90 

0.90 

0.72 

0.90 

0.80 

EF 

-

0.165 

0.066 

0.002 

-0.027 

-0.007 

-0.229 

0.324 

0.334 

0.389 

0.416 

0.387 

0.395 

0.177 

0.221 

0.261 

0.295 

0.250 

0.317 

0.262 

0.246 

0.297 

0.381 

0.295 

0.186 

0.227 

0.090 

0.092 

0.270 

0.092 

-0.23 

CRM 

-

0.220 

0.088 

0.008 

0.001 

0.006 

-0.062 

0.345 

0.283 

0.249 

0.250 

0.250 

0.162 

0.394 

0.328 

0.302 

0.317 

0.301 

0.196 

0.276 

0.184 

0.135 

0.166 

0.137 

0.009 

0.134 

0.020 

-0.043 

0.007 

-0.41 

-0.194 

r 

-

0.995 

0.993 

0.992 

0.980 

0.992 

0.983 

0.998 

0.998 

0.997 

0.997 

0.997 

0.998 

0.997 

0.997 

0.994 

0.992 

0.994 

0.998 

0.998 

0.997 

0.996 

0.995 

0.996 

0.996 

0.996 

0.996 

0.994 

0.990 

0.994 

0.998 
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Table 6.5. Statistics used to compare the HYSWASOR model performance with different 

reduction functions for S]W2, S2W2, S3W2, S4W2, and S5W2 against the experimental actual 

transpiration Ta. 

Treatments 

s,w2 

s2w2 

s3w2 

s4w2 

s5w2 

Equation 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

2.39 

2.40 

2.41 

6.1 

6.2 

6.3 

ME 

mm 

76.7 

34.9 

20.3 

24.2 

20.7 

16.5 

117.6 

94.3 

93.7 

96.7 

88.8 

77.3 

143.3 

116.5 

110.3 

125.3 

110.5 

87.4 

23.5 

9.4 

9.6 

19.9 

9.5 

20.5 

44.8 

59.2 

60.8 

44.6 

60.7 

34.4 

RMSE 

mm 

272 

105 

76 

93 

76 

164 

370 

319 

319 

313 

305 

233 

445 

390 

381 

401 

382 

290 

488 

404 

395 

431 

396 

360 

302 

424 

468 

369 

466 

251 

CD 

-

0.80 

0.83 

0.86 

0.83 

0.86 

0.96 

0.97 

0.96 

0.96 

0.92 

0.94 

0.97 

0.80 

0.88 

0.89 

0.89 

0.89 

0.94 

0.90 

0.95 

0.95 

0.83 

0.95 

0.97 

0.44 

0.34 

0.33 

0.48 

0.33 

0.65 

EF 

-

0.197 

0.160 

0.130 

0.140 

0.133 

-0.042 

-0.022 

0.036 

0.036 

0.070 

0.056 

0.152 

-0.237 

-0.133 

-0.121 

-0.121 

-0.124 

-0.064 

0.09 

-0.051 

-0.053 

0.164 

-0.057 

0.033 

0.55 

0.65 

0.66 

0.51 

0.66 

0.34 

CRM 

-

0.23 

0.092 

0.018 

0.023 

0.020 

-0.070 

0.416 

0.358 

0.358 

0.352 

0.343 

0.261 

0.500 

0.438 

0.428 

0.451 

0.429 

0.326 

0.090 

-0.006 

-0.014 

0.050 

-0.013 

-0.093 

-0.333 

-0.476 

-0.527 

-0.416 

-0.349 

-0.283 

r 

-

0.999 

0.999 

0.998 

0.998 

0.998 

0.998 

0.992 

0.991 

0.991 

0.988 

0.998 

0.990 

0.991 

0.989 

0.987 

0.989 

0.987 

0.991 

0.996 

0.996 

0.997 

0.997 

0.997 

0.997 

0.993 

0.993 

0.995 

0.990 

0.992 

0.998 
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The experimental results clearly support Eq. 6.3, particularly for the higher soil solution 

salinities. While Eq. 6.3 contains a linear salinity reduction function, it is still flexible to 

be used with any nonlinear salinity reduction term, such as Eqs. 6.4, 6.5 and 6.6. 

However, these expressions give no significant improvement in the comparison with the 

presented experimental data. Equation 6.3 has the advantage of simplicity and requires 

less input values. 

The comparison between the experimental and simulated transpiration indicates that for 

most treatments Eq. 6.3 provides the best results. Among the multiplicative functions, 

Eqs. 2.41 and 6.2 provide the better results. Since Eq. 2.41 requires parameter values of 

h$o, ho$o, p\ and pi that are difficult to obtain, it is more convenient to use Eq. 6.2. The 

values of p\ and pi can be obtained with Eqs. 5.6 and 4.3, respectively. The simple 

additivity of Eq. 2.39 always provided the worst agreement with the experimental data. 

With Eq. 6.3, the simulation model provides reasonably good agreement with the 

experimental soil water content and even more with the soil solution salinity. Some 

discrepancies were observed, but the trend of the simulated data was reasonable. The 

discrepancy between the simulated and experimental water contents is partly due to the 

way water uptake is calculated. The potential transpiration is distributed equally over 

each soil increment and the water uptake is calculated according to its own reduction 

function and root activity, independent of the uptake in other increments. Integration 

of these uptake increments over the root zone yields the total uptake. In reality, the 

plant can take up the required water from any depth if there are active roots. Root 

systems are reasonably flexible to adjust to water uptake at other depths to reach their 

evaporative demand. Water flow in the soil in compensation of water depletion due to 

root water uptake at other depths also seems to be an important phenomenon, which 

has to be taken into account in a proper way. More research is needed to verify and 

quantify this. The second reason for the disagreement between the simulated and 

experimental water contents can be attributed to increases in soil hydraulic 

conductivity in the presence of roots. Soil hydraulic conductivity also increases with 

increasing salinity (see chapter 1). The input soil hydraulic parameters are obtained 

from soil samples without roots and salinity and are assumed constant during the 

simulations. 

All observations clearly support the newly proposed Eq. 6.3. The magnitude of the soil 

water pressure head at which wilting occurs at different salinities needs more 

investigation. 
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Summary 

Water scarcity and soil salinity are two important limitations for agricultural 

production in the arid and semi-arid regions. From the point of view of crop 

production in such areas, it is important to quantify the influence of soil water osmotic 

and pressure heads under non-optimal conditions. These influences generally appear 

in the ability of plant roots to take up water from the soil. Root water uptake is a 

dynamic process influenced by soil, plant, and climate conditions such as soil water 

pressure head, soil hydraulic conductivity, osmotic head, evaporative demand, rooting 

depth, root density distribution, and plant hydraulic resistances and other plant 

properties. To quantify such a process, the major difficulty in solving the Richards 

equation stems from the lack of a sink term function that adequately describes root 

water uptake. 

Historically, both microscopic and macroscopic concepts of water uptake by roots 

have evolved. The microscopic concept considers the radial flow of soil water 

towards a representative root of infinite length, uniform thickness, and uniform 

absorptivity. In microscopic models, the soil water flow equation is usually written in 

cylindrical coordinates and solved with appropriate boundary conditions at a root 

surface and at some distance from the root. Since obtaining the required input 

parameters at the soil-root interface is rather difficult, if not impossible, it has not 

proven practical to measure the required parameters directly to test the proposed 

microscopic models. Macroscopic models regard the root system as a whole and the 

needed parameters can be measured. For this reason, these models are most widely 

used in numerical simulation studies. The macroscopic concept remains essentially 

empirical, however, and much research is still needed to be done to derive physically 

based descriptions. 

For the reasons stated above, the empirical macroscopic approach was chosen in this 

study. All existing reduction functions, as well as those newly developed in this study 

are used in the macroscopic model and tested against experimental data. The 

experimental data are used to derive the parameter values needed for the simulation 

model HYSWASOR. The experiments covered root water uptake by alfalfa under 

salinity stress, water stress, and combined salinity and water stress. This order is 

followed with the analysis of the experimental data and the simulations. 

The alfalfa was grown in a specifically designed experimental set up with 

densely instrumented soil columns and harvested at approximately 50-day intervals 

for one year. 



Summary 

Chapter 2 describes the theory of water flow and solute transport in soil, 

together with the sink term models. Water flow in the unsaturated zone is described 

by the Darcy equation (Eq. 2.1), together with the soil water retention and hydraulic 

conductivity characteristics. These soil hydraulic properties are described by the 

analytical functions of Van Genuchten and Mualem. Solute transport is described by 

the convection-dispersion equation (Eq. 2.9). Sink term concepts are reviewed and 

classified in microscopic and macroscopic models. The existing macroscopic 

reduction functions for salinity stress, water stress and the combined stress are 

presented. This theoretical frame work is the basis of HYSWASOR, a one-

dimensional finite element model for hysteretic water and solute transport in the root 

zone. 

Chapter 3 describes the experimental materials and methods. The specifically 

designed set-up and the method used for packing the soil is described in detail. The 

sequence of the stresses applied to the plants is discussed. The experiments consisted 

of three phases: salinity stress, water stress, and salinity and water stress. Data 

analysis and simulation results of each phase are discussed in separate chapters. The 

standard laboratory method used to determine the soil water retention and hydraulic 

conductivity characteristics is discussed. The theory of Time Domain Reflectometry 

(TDR) for indirect measurement of soil water content and bulk electrical conductivity 

is discussed briefly. 

In Chapter 4, existing and a newly developed salinity reduction functions are 

tested directly on the experimental data and inserted in the numerical simulation 

model HYSWASOR to check them in a macroscopic root water uptake model (Eq. 

2.27). All the experimental and simulated results indicated that the well known so-

called crop response function Eq. 2.33 with the slope originally proposed by the 

modelers and a modified salinity threshold value can be used as a reduction function 

in Eq. 2.27. The most sensitive part of this reduction function is the threshold value, 

while for Eq. 2.35 without a threshold the major sensitivity lies in its shape parameter. 

Because most of the parameter values originally proposed by the modelers do not 

provide good agreement with the experimental data, the parameter values are derived 

from the measured mean soil solution salinities. When used in the simulation model, 

these values still have to be modified slightly to reach the best agreement with the 

experimental data, because the simulation model calculates the root water uptake 

independently at individual times and depths. The simulated actual transpirations are 

rather close to the experimental values, while the simulated soil water contents and 

soil solution osmotic head indicate some discrepancies with the actual data; the mean 

values of these variables are very close to the measured data. This implies that the 
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simulation model can provide good agreement with the measured data when the 

system is regarded in its entirety. Both the simulated and experimental data indicate 

that different salinity reduction functions can provide almost the same results if the 

parameter values are well specified. This observation suggests the use of the simple 

linear reduction term Eq. 2.33 in the simulation model. 

In Chapter 5, four different soil water pressure head reduction functions are 

used in the macroscopic model of Eq. 2.27. The linear reduction function of Eq. 5.1 

can not fit the experimental data well. The nonlinear functions of equations 2.38 and 

5.2 do not fit the whole range of the experimental data, while the newly developed 

two-threshold function of Eq. 5.5 provides a reasonable fit to all the experimental 

data. The soil water pressure head heterogeneity over the root zone does not play an 

important role in water uptake as long as there is enough water available in a part of 

the root zone. The plants can supply the evaporative demand from that part, thus 

compensating for the water deficit in the drier parts. This conclusion is based upon the 

observations that on the first day after the irrigations both the actual relative 

transpiration and the relative leaf water head were almost the same for the stressed 

and nonstressed treatments. The main reason for the discrepancies between the 

simulated and measured water contents appears to be root water uptake during the 

night. The water taken up by the roots during the dark period could not be transpired 

by the plants, and hence it was stored in their tissues. As a result, leaf water potentials 

of the stressed treatments recovered reasonably well during the dark period. In the 

simulations, all four reduction functions led to almost the same results when the 

parameters were primarily derived from the experimental data and slightly modified. 

Since all the reduction functions lead to about the same results, it is proposed that for 

practical use the most simple Eq. 5.1 be used in Eq. 2.27. 

In Chapter 6, six different reduction functions for combined water and salinity 

stress are used in the macroscopic sink term of Eq. 2.27. The reduction functions are the 

additive Eq. 2.39, the multiplicative Eqs. 2.40, 2.41, 6.1 and 6.2, and the newly 

developed Eq. 6.3 which combines the linear salinity reduction function of Maas and 

Hoffman (1977) and the linear soil water pressure head reduction function ofFeddes et 

al. (1978). All these reduction functions are compared with the experimental data and 

have been incorporated in the numerical simulation model HYSWASOR. 

The relation between the experimental relative transpiration and the joint soil water 

osmotic and pressure heads appears to be linear (with an exception for the salinity near 

the threshold value). This linearity is also observed for the corresponding relative leaf 

water head. As the mean soil solution salinity increases, the trend becomes more linear. 

The presented experimental results support Eq. 6.3, particularly for the higher soil 
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solution salinities. The simulations indicated that, for most treatments Eq. 6.3 provides 

the closest agreement with the experimental transpiration. 

Soil water content, and particularly soil solution salinity simulated with Eq. 6.3 agree 

reasonably with the experimental data: in spite of the observed differences, the trend of 

the simulated data is good. The discrepancy between the simulated and experimental 

water contents is partly due to the way in which water uptake is calculated by the 

simulation model. The potential transpiration is distributed equally over the soil 

increments and the actual uptake due to the reduction function and root activity is 

calculated independently for each increment. The integration of these water uptakes 

over the root zone yields the total uptake. In reality, the plants take the required water 

from any depth if there are enough active roots. This means that the root system is 

reasonably flexible to compensate for lack of water at other depths and satisfy the 

evaporative demand. Water uptake compensation seems to be an important 

phenomenon, which has to be taken into account in a proper way. More investigations 

are needed to verify and quantify such a phenomenon. 

The second reason for the disagreement between the simulated and experimental 

water contents can be attributed to the influence of roots and the soil concentration on 

the soil hydraulic conductivity. The input soil hydraulic parameters were obtained 

from soil samples without roots and salinity and assumed constant during the 

simulations. 

In conclusion, all observations support the proposed Eq. 6.3. The soil water pressure 

head at which wilting occurs still needs more investigations. 
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Samenvatting 

Watergebrek en verzouting zijn twee belangrijke beperkingen voor de agrarische 

productie in aride en semi-aride gebieden. Met het oog op de opbrengsten van 

landbouwgewassen is het belangrijk dat de invloed van de osmotische druk en de 

drukhoogte van het bodemwater kan worden gekwantificeerd. In het algemeen uiten 

deze invloeden zich in het vermogen van plantenwortels om water uit de grand op te 

nemen. Wateropname door plantenwortels is een dynamisch proces dat wordt beinvloed 

door bodem, plant en klimatologische omstandigheden, zoals drukhoogte en osmotische 

druk van het bodemwater, bodemwaterdoorlatendheid, verdampingsvraag, 

bewortelingsdichtheid en - diepte, hydraulische weerstanden in de plant en andere 

planteigenschappen. Bij het kwantificeren van dit proces door het oplossen van de 

Richards' vergelijking ligt het grootste probleem in het ontbreken van een 

onttrekkingsfunctie die de wateropname door wortels adequaat beschrijft. 

In de loop der tijd zijn zowel microscopische als macroscopische concepten voor 

de wateropname door plantenwortels ontwikkeld. Het microscopisch concept beschouwt 

de radiale stroming van water naar een representatieve wortel van oneindige lengte, 

uniforme dikte, en uniforme absorptieve eigenschappen. In microscopische modellen 

wordt de waterstromingsvergelijking gewoonlijk in cylindrische coordinaten geschreven 

en opgelost met geeigende randvoorwaarden aan het worteloppervlak en op enige 

afstand van de wortel. Aangezien het erg moeilijk, zo niet onmogelijk is om de vereiste 

invoerparameters te verkrijgen, is het niet praktisch gebleken om deze parameters direct 

te meten en daarmee de voorgestelde microscopische modellen te testen. 

Macroscopische modellen daarentegen beschouwen het wortelstelsel als een geheel, 

waarbij de benodigde parameters wel kunnen worden gemeten. Om deze reden worden 

deze modellen het meest gebruikt in numerieke simulatiestudies. Het macroscopisch 

concept blijft evenwel in essentie empirisch en veel onderzoek is nodig om 

natuurkundige beschrijvingen af te kunnen leiden. 

Vanwege bovengenoemde redenen is in dit onderzoek voor de macroscopische 

benadering gekozen. Alle bestaande en in deze studie nieuw ontwikkelde wateropname-

reductiefuncties zijn in het macroscopisch model gebruikt en getest tegen experimentele 

data. De experimentele gegevens worden gebruikt om parameterwaarden af te leiden die 

nodig zijn voor het simulatiemodel HYSWASOR. De experimenten betroffen 

wateropname door wortels van lucerne onder zoutstress, waterstress, en gecombineerde 

zout- en waterstress. Dezelfde volgorde is gehandhaafd in de presentatie en analyse van 

de experimentele resultaten en de simulaties. De lucerne werd gezaaid in intensief 
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bemeten bodemkolommen met speciaal ontworpen meetapparatuur, waarbij het gewas 

in een kas gedurende een jaar werd verzorgd en geoogst met intervallen van ongeveer 50 

dagen. 

Hoofdstuk 2 beschrijft de theorie van water- en zouttransport in de bodem, samen 

met de wortelopnamemodellen. Water transport in de onverzadigde zone wordt 

beschreven met de Darcy vergelijking (Verg. 2.1), gecombineerd met de 

bodemwaterretentie- en doorlatendheidskarakteristiek. Deze hydraulische 

bodemeigenschappen worden beschreven met de analytische nineties van Van 

Genuchten en Mualem. Transport van opgeloste stoffen wordt beschreven met de 

convectie-dispersie vergelijking (Verg. 2.9). De wateropnamefuncties worden 

beoordeeld en ingedeeld volgens microscopische en macroscopische benaderingen. De 

beschikbare macroscopische reductiefuncties voor zoutstress, waterstress, en 

gecombineerde zout- en waterstress worden gepresenteerd. Dit theoretische raamwerk 

vormt de basis van HYSWASOR: een een-dimensionaal, eindige-elementen model voor 

hysteretisch transport van water en opgeloste stoffen in de wortelzone. 

Hoofdstuk 3 beschrijft de experimenten en meetmethoden. De speciaal ontworpen 

apparatuur en de manier van pakken van de grondkolommen worden in detail 

beschreven, evenals de volgorde van de aan de planten opgelegde stress. De 

experimenten waren opgedeeld in drie fasen: zoutstress, waterstress, en zout- en 

waterstress gecombineerd. De analyse van de resultaten van deze experimenten en die 

van de simulaties worden voor iedere fase in aparte hoofdstukken besproken. De 

standaardmethode die is gebruikt voor het bepalen van de bodemwaterretentie- en 

doorlatendheidskarakteristiek wordt ook uitvoerig besproken. De theorie van de 

TijdsDomeinReflectometrie (TDR) voor indirecte metingen van het bodemwatergehalte 

en de electrische geleidbaarheid worden in het kort besproken. 

In Hoofdstuk 4 worden bestaande, alsmede nieuw ontwikkelde reductiefuncties 

voor zoutstress direct getest aan experimentele resultaten en ingevoerd in het numerieke 

simulatiemodel HYSWASOR, teneinde ze te verifieren in een macroscopisch 

wateropname-model (Verg. 2.27). Alle resultaten van experimenten en simulaties geven 

aan dat de bekende, zogenoemde gewasopbrengstfunctie (Verg. 2.33) met de 

oorspronkelijk door de modelmakers voorgestelde helling en een aangepaste waarde 

voor de zoutdrempel, kan worden gebruikt als reductiefunctie in Verg. 2.27. Het meest 

gevoelige deel van deze reductiefunctie is de drempelwaarde, terwijl voor Verg. 2.35 

zonder drempelwaarde de grootste gevoeligheid huist in de vormparameter. Omdat de 

meeste parameterwaarden die voorgesteld zijn door de modellenmakers geen goede 
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overeenstemming met de experimentele resultaten leveren, zijn de parameterwaarden 

afgeleid van het gemiddelde van de gemeten zoutconcentraties van het bodemwater. Als 

deze waarden in het simulatiemodel worden gebruikt, moeten ze nog enigszins worden 

aangepast om de beste overeenstemming met de experimentele resultaten te bereiken. 

Dit is nodig omdat het simulatiemodel de wateropname afzonderlijk berekent op ieder 

tijdstip op iedere diepte. De gesimuleerde feitelijke hoeveelheden transpiratie liggen 

dicht bij de experimentele waarden, terwijl de gesimuleerde bodemwatergehalten en 

zoutconcentraties van de bodemoplossing enige verschillen vertonen met de 

experimentele gegevens; de gemiddelden van deze variabelen liggen heel dicht bij de 

gemiddelde gemeten waarden. Dit betekent dat het simulatiemodel goede 

overeenstemming kan geven met gemeten resultaten wanneer het systeem in zijn geheel 

wordt beschouwd. Zowel de gesimuleerde als de experimentele resultaten geven aan dat 

verschillende zoutreductiefuncties vrijwel dezelfde resultaten kunnen leveren als de 

parameterwaarden goed zijn gespecificeerd. Deze waarneming suggereert het gebruik 

van de eenvoudige lineaire reductiefunctie (Verg. 2.33) in het simulatiemodel. 

In Hoofdstuk 5 worden vier verschillende reductiefuncties voor de drukhoogte van 

het bodemwater gebruikt in het macroscopisch model van Verg. 2.27. De lineaire 

functie van Verg. 5.1 blijkt niet goed bij de experimentele gegevens te passen. De niet-

lineaire nineties van Verg. 2.38 en 5.2 beslaan niet de gehele rijkwijdte van de 

experimentele data, terwijl de nieuw ontwikkelde, twee-drempelige functie van Verg. 

5.5 alle experimentele resultaten wel redelijk goed dekt. De heterogeniteit van de 

drukhoogte van het bodemwater over de wortelzone speelt geen belangrijke rol in de 

wateropname zolang er genoeg water beschikbaar is in een deel van de wortelzone. De 

planten kunnen vanuit dat deel in de verdampingsvraag voorzien en aldus het 

watertekort in de drogere gedeelten compenseren. Deze veronderstelling is gebaseerd op 

de waarneming dat op de eerste dag na de irrigaties zowel de actuele relatieve 

transpiratie als de relatieve bladwaterdrukhoogte bijna hetzelfde waren voor gestresste 

en niet-gestresste planten. Het verschil tussen de gesimuleerde en gemeten 

watergehalten lijkt voornamelijk veroorzaakt te worden door wateropname door de 

wortels gedurende de nacht. Het door de wortels in de donkere periode opgenomen 

water kon niet door de planten worden verdampt en dus werd het opgeslagen in hun 

weefsels. Als gevolg daarvan herstelden de bladwaterpotentialen van de gestresste 

planten zich redelijk in het donker. 

In de simulaties geven de vier reductiefuncties vrijwel dezelfde resultaten als de 

parameterwaarden eerst worden afgeleid van de experimentele resultaten en daarna nog 

enigszins aangepast. Aangezien alle reductiefuncties ongeveer dezelfde resultaten 

opleveren, wordt voorgesteld dat voor practische doeleinden de meest eenvoudige Verg. 
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5.1 wordt gebruikt. 

In Hoofdstuk 6 worden zes verschillende reductiefuncties voor gecombineerde 

water- en zoutstress gebruikt in de macroscopische opnameterm van Verg. 2.27. De 

reductiefuncties zijn de additieve Verg. 2.39, de multiplicatieve Verg. 2.40, 2.41,6.1, en 

6.2, en de nieuw ontwikkelde Verg. 6.3 die de lineaire zoutreductiefunctie van Maas en 

Hoffman (1977) combineert met de lineaire waterdrukhoogte-reductiefunctie van 

Feddes et al. (1978). Al deze reductiefuncties worden vergeleken met de experimentele 

data en zijn ingevoerd in het numerieke simulatiemodel HYSWASOR. De relatie tussen 

de experimentele relatieve transpiratie en de gecombineerde osmotische hoogte en 

drukhoogte van het bodemwater blijkt lineair te zijn (met een uitzondering voor het 

zoutgehalte nabij de drempelwaarde). Deze lineairiteit wordt ook waargenomen voor de 

relatieve drukhoogte van het bladwater. Naarmate de gemiddelde zoutconcentratie van 

de bodemoplossing toeneemt wordt het verband meer lineair. De gepresenteerde 

experimentele resultaten ondersteunen Verg. 6.3, in het bijzonder voor de hogere 

zoutconcentraties van de bodemoplossing. De simulaties geven aan dat Verg. 6.3 voor 

de meeste stress-behandelingen de beste overeenstemming geeft met de experimentele 

transpiratie. 

De bodemwatergehaltes en in het bijzonder de zoutconcentraties van de bodemoplossing 

gesimuleerd met Verg. 6.3 komen redelijk overeen met de experimentele data: ondanks 

de waargenomen afwijkingen is de tendens van de gesimuleerde resultaten goed. De 

verschillen tussen de gesimuleerde en experimentele watergehalten zijn ten dele het 

gevolg van de manier waarop wateropname wordt berekend in het simulatiemodel. De 

potentiele verdamping wordt gelijkmatig verdeeld over de bodemsegmenten en de 

feitelijke opname als gevolg van de reductiefunctie en de wortelactiviteit wordt 

onafhankelijk berekend voor ieder segment. De integraal van de wateropnames over de 

diepte van de wortelzone levert de totale opname. In werkelijkheid neemt de plant het 

benodigde water op van welke diepte dan ook als daar tenminste voldoende actieve 

wortels aanwezig zijn. Dit betekent dat het wortelstelsel redelijk flexibel is om het 

gebrek aan water op andere diepten te compenseren en aan de verdampingsvraag te 

voldoen. Wateropname-compensatie lijkt een belangrijk fenomeen te zijn dat op een 

goede manier in rekening moet worden gebracht. Meer onderzoek is nodig om dit 

fenomeen kwantitatief te verifieren. 

De tweede reden voor de verschillen tussen de gesimuleerde en gemeten watergehalten 

kan worden toegeschreven aan de invloeden van de wortels en de zoutconcentratie op de 

bodemwaterdoorlatendheid. De ingevoerde waarden van de hydraulische bodemwater-

parameters werden namelijk verkregen aan bodemmonsters zonder wortejs en zouten en 
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werden verondersteld constant te zijn gedurende de simulaties. 

Concluderend kunnen we stellen dat alle waarnemingen de voorgestelde Verg. 6.3 

ondersteunen. De bodemwaterdrukhoogte waarop verwelking optreedt dient echter nog 

verder te worden onderzocht. 
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List of main symbols 

Symbol Representation Dimension Unit 

a slope in the equation of Maas & Hoffman (Eq. 2.33) 
C differential soil water capacity 
c velocity of light in vacuum (Eq. 3.1) 
c soil solution concentration 

D soil water diffusivity; also solute dispersion coefficient 
EQ evaporation rate from a free-water surface 
EC electrical conductivity 
EC* threshold electrical conductivity 
EC\, bulk electrical conductivity 
ECe electrical conductivity of saturated extract 
ECivl e lectrical conduct ivi ty o f irrigation water 
ECSS e lectrical conduct ivi ty o f soil solution 
ESP e xchangeable sodium percentage 
ETZ ac tual evapotranspirat ion rate 
ETP potential evapotranspirat ion rate 
h soil wa ter pressure head 
h t h reshold soil wa ter pressure head 
h0 soil wa ter osmot ic head 

h\ threshold osmotic head 

hw pressure head at which a (h) reduces to 0.50 

hoia osmotic head at which a ( h0) reduces to 0.50 

K soil hydraulic conductivity 
Ks saturated hydraulic conductivity 
L root length per unit volume of soil 
LF leaching fraction 
LWH absolute value of leaf water head 
1 length 
m empirical parameter in Eq. 2.6 
n empirical parameter in Eq. 2.6 
p empirical exponent in nonlinear reduction functions 
q soil water flux density 
S volumetric root water uptake rate 

Smax maximum volumetric root water uptake rate 

SAR sodium absorption ratio 
Se degree of saturation 
T„ ac tual t ranspirat ion rate 
Tp potential t ranspirat ion rate 
/ time 

L 3MT 3 r 2 

L"1 

LT1 

ML"3 

LV 
LT1 

L-3M"'T3I2 

L"3M"'T3I2 

L"3M"'T3I2 

L -3 M - l T 3 j2 

L"3M"'T3I2 

L"3M"'T3I2 

LT"1 

LT-1 
L 
L 
L 

L 
L 

L 

LT1 

LT1 

LL"3 

L 
L 

LL"1 

LT' 
L3L-3T"' 

L3L"3T' 

ML"3 

L3L"3 

LT1 

LT"1 

T 

m/dS 
1/cm 
m/s 

i4.mole/cm3 

cm2/h 
mm/h 
dS/m 
dS/m 
dS/m 
dS/m 
dS/m 
dS/m 

mm/h 
mm/h 
cm 
cm 
cm 

cm 
cm 

cm 

cm/h 
cm/h 
cm/cm3 

cm 
cm 

cm/cm 
cm/h 
cm3/cm3 h 

cm3/cm3 h 

(meq/1)05 

cm /cm3 

mm/h 
mm/h 
h 



List of main symbols 

h 
V 

Y 

Ym 

z. 
z 

a 
a(h) 

a(h0) 

a (h, h0) 

e 

e 
e, 
% 

Pi 

travel time of TDR pulse in soil 

velocity 

crop yield 

maximum crop yield 

depth of root zone 

gravitational head; also vertical coordinate 

empirical parameter in Eq. 2.6 

pressure head reduction function 

osmotic head reduction function 

joint pressure and osmotic head reduction function 

Relative permittivity 

volumetric soil water content 

residual soil water content 

saturated soil water content 

dry soil bulk density 

T 
LT' 
ML 2T' 

M L 2 r ' 
L 
L 
L"1 

-

-

-

-
L3L"3 

L3L"3 

L3L"3 

ML/3 

s 
m/s 
kg/m2 d 

kg/m2 d 

cm 
cm 
1/cm 

-

-

-

-
cm3/cm3 

cm /cm" 

cm3/cm3 

g/cm3 
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