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INTRODUCTION 

Some concepts 

A model is a representation of an original. If the model would not. 

be different from the original, there would be no need to make it. It 

agrees with the original on relevant points. The differences between 

model and original make the model simpler, easier to be handled and more 

lucid than reality. Simplification however means that relations are 

wrongly represented or just omitted. Sometimes this is done for easier 

handling, sometimes just because our knowledge of reality is incomplete. 

In a computational model for example simplifications should often be 

introduced to enable a solution. The analytical methods of solution demand 

more simplicity than the numerical methods using digital computers and 

simulation languages. 

A simple example of a mathematical model is the relation between the 

distance (s) covered by a falling apple, the gravitational acceleration 

(g) and the time from the moment of release (t): s = 0,5g t 2 . 

There are many non-mathematical models: 

A map is a simp1ification of the original that contains relevant informa­

tion and allows measurements. Dependent on the purpose roads, railways, 

isohypses or soil types are represented. 

A spatial model of a molecule represents the configuration of the 

composing atoms. This is especially important i~ organic chemistry, where 

the tetraeder is the main basic form. 

A scale model of a ship enables me~surements of the resistance in 

the water. The internal structure need not be copied. However, laws 

of scale must be satisfied, in the reduction from original to model to 

maintain the original relations between viscosity, density, velocity, 

length, etc. 

A system is a limited part of reality with related elements. The 

set of relations is called the structure of the system. Both a model 

and a system have structure. It follows from the definition of a system 

that a model can be considered a system, but that in general the opposite 

is not true. A system M is a model of system 0 provided they have a 

partially overlapping structure. Which parts of 0 must be represented by 

M is determined by the requirements of relevance to be imposed on the 

model. Which parts should not be taken into M is dicta~ed by convenience 

of handling. 



.ATION 

- 2 -

Examples of a system are a cell, a plant, a cow, a field with a crop, 

a farm. The boundary between system and environment is preferentially 

chosen, such that the system is isolated. That means the behaviour of the 

system does not depend on its environment. If this is impossible, the 

boundary is chosen such that the environment admittedly influences the 

system, but the system itself not the environment. To achieve this it is 

often necessary to take the boundary wider than seems necessary for the 

problem. If for example the influence of temperature on the growth of 

plants is studied in a climate room, the climate room is part of the 

environment if the construction is so well done that temperature, moisture 

content and light intensity do not depend on the size of the plants. In 

badly constructed and conditioned climate rooms this requirement is not 

met so that the climate room itself is part of the system. 

Speaking of the behaviour of a system implies that the system is 

dynamic, that means it changes with time. A simplified representation of 

a dynamic system is a dynamic model. 

A fairly wide definition of simulation lS the building of a model and 

the studying of its behaviour. 

Simulation is useful if it increases the insight in reality by 

extrapolating and analogy, if it is the basis for the design of new 

experiments and if the model accounts for most relevant phenomena and 

contains no assumptions proved to be false. The latter requirement seems 

obvious. False assumptions are often made to enable an analy.tical solution. 

By the more recent simulation techniques limitations of this sort are often 

overcome so that the attention can turn from the solution technique to the 

study of the behaviour of model and system. 

Analogous computers 

Often electrical analogue models can be built. Such a model of a 

falling apple might consist of an apparatus with two condensers. The first 

one is charged with a current analogous to the gravitational acceleration 

and maintains a voltage analogous to the velocity. The second condenser 

is charged with a current P,roportional to the voltage of the first one and 

thus maintains a voltage analogous to the covered distance. 

Question: Trace back by means of the mathematical relations if the above 

conclusions are right. 
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The integration in the condensers takes place continuously and simul­

taneously like in reality. Any moment the condition of the system is 

fully determined by the voltages of the condensers. The analogous computers 

that were developed on basis of this principle have proved to be quite 

useful in simulation of continuous processes. There are however some 

objections. The user should adapt the scale of the variable to the voltage 

range of the circuit elements and has to accept their inaccuracies. The 

resulting difficulties rapidly increase with increasing size and complexity 

of the systems to be simulated and sharper requirements of accuracy. These 

problems do not show up in simulation with digital computers. It is 

remarkable that the first languages to simulate continuous systems have 

been developed for digital machines to validate results of simulations with 

analogous machines and to facilitate the assessment of the scaling factors. 

In further development of simulation languages for digital machines, 

these appeared to be preferable over analogous machines, if there are 

discontinuous processes and many empirical relationships in the model. They 

are however at a disadvantage if systems are simulated where changes occur 

at very different time scales. 

In future the disadvantages of both machines may be eliminated and 

the advantages combined in hybrid computers where both types are combined. 

Features of simulation languages 

A digital computer, where all executions are discrete and take place 

in a sequential order, seems to be the most unsuitable instrument to 

simulate continuous systems where changes are parallel and continuous. 

The main feature of simulation languages is to overcome these two 

limitations. It is based on the axiom that changes of conditions in system~ 

are not mutually dependent, but derived each one separately from the state 

of the sys te111 In a mixture of yeasts the rates of growth do not depend 

upon each other, but each one depends separately upon the concentration of 

food and waste products, and on its own amount. 

Thus in principle structural equations, that means n equations with 

n rates of changes, do not ,occur. in the model. This gives the possibility 

to make a routine in the languages to sort the equations that describe thE 

system. The sorting routine determines the order of executions during the 

process of calculation. All rates of change between time t and t+~t are 



- 4 -

calculated from the condition at time t and if necessary data from the 

past. Only after the calculation of all the rates at the moment of the 

simulation, the changes are executed by integration over a small time 

interval. Integration is done semi parallel. 

For practical reasons the time interval c.annot be infinitely small. 

Finite intervals produce systematical errors but these can be kept within 

acceptable limits by the use of good numerical integration methods. The 

simplest one is the Eulerian or rectangular in which the new value of a 

state or integral equals the old value plus the product of the never 

changing time interval and the rate of change. There are however also 

integration methods in which the time interval depends upon the rate of 

change. If the rate of change is relatively large, small steps are taken, 

if the rate is small, large steps can be taken, always keeping the errors 

within acceptable limits. 

CSMP 

A commonly used simulation language is Continuous System Modeling 

Program, developed for IBM 360 and 370 machines. 

The use of CSMP is explained in the rest of this manuscript employing 

examples of increasing complexity. These examples are available in CSMP, 

but it is advised to program the examples and self made variants. 

In the margin of the text it is indicated what functions and construc­

tions are being explained in the examples. 



- 5 -

EXPONENTIAL GROWTH 

The growth of bacteria and algae is often proportional to the amount 

of biomass that is present. 

Question: What environmental conditions must be satisfied 1n any case? 

This proportionality can be represented by the equation 

dH/ dt = RGRxH 

where H is the amount of organisms, measured 1n grams for example, T 

time in hours for example, dH/dt the rate of growth and RGR the relative 

growth rate. 

Question: What are the dimensions of dH/dt and RGR? 

Integration of the above differential equation yields the equation 
RGRxT . h f · · U d H = IH x e , where IH 1s t e amount o organ1sms at t1me zero. n er 

these circumstances the amount increases exponentially with time. 

Question: Calculate the value of H after 0, 2, 4, up to 10 hours for 
-1 RGR equals 0.1 hour and IH equals 1 gram. Represent the 

results in a graph and connect the points by a smooth line. 

For the execution of the above calculation one needs a slide rule 

or table of logarithms. If none of these is available the requested 

relation can also be.found by the following stepwise solution. 

If at a certain time T the amount of organisms equals H, the rate of 

growth at this moment equals RGRxH. During a short time interval DELT 

this rate of growth hardly changes so that at time T+DELT the amount of 

organisms equals approximately H+RGRxHxDELT. Using this new value of H 

the rate of growth at time T+DELT can be calculated ·and so the amount of 

organisms at time T+2xDELT. 

Question: Calculate the values of H after 0, 2, 4, up to 10 hours for RGR 
-1 / equal to 0.1 hour and H set at 1 gram at time zero. Employ 

intervals of 2 hours and the following scheme: 
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TIME a RGRxH RGRxHxDELT 

0 0. 1 0.2 

2 1.2 etc. 

4 

6 

8 

10 

Represent the results in the graph and connect the points by straight 

lines. 

A comparison of the stepwise and the analytical solution shows that 

the rate of growth is underestimated by the use of the stepwise solution. 

This is caused by the wrong assumption that the rate of growth remains 

the same during two hours, notwithstanding the increase of the amount of 

organisms during this period. It is to be expected that the deviation 

between the stepwise and the analytical solution decreases the shorter 

the time steps are. 

Question: Execute the stepwise calculation also with intervals of I hour 

and 0.5 hour and represent the results after a growth of 0, 

2, 4, ---- 10 hours in the same graph. Coul-d you give a formula 

giving directly the size of H after n time intervals? What lS 

the limit of this formula for DELT approaching zero? 

A calculation with even shorter time steps is tedious and can better 

be done by using the simulation language CSMP, in which the problem reads: 

TITLE EXPONENTIAL GROWTH 

H=INTGRL (IH, RGRxH) 

INCON IH=l. 

PARAMETER RGR= 0. 1 

PRTPLT H 

TIMER FINTIM=lO., OUTDEL=O.S, DELT = 0.05 

METHOD RECT 

END 

STOP 
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The first card mentions the title, which is repeated every page of output. 

On the second card it·is stated that H equals IH at time zero, and is 

found later by integration of RGRxH. The third and fourth card give the 

fER numerical values of the initial constant and the parameter. The next card 

indicates that the value of H should be plotted against time, whereby it 

is simultaneously given as a table. 

On the card beginning with TIMER it is said that the simulation should be 

pursued until 10 units of time are being elapsed (FINTIM), that a point 

must be plotted every 0.5 unit (OUTDEL) and that the time interval of the 

calculation is 0.05 unit (DELT). 

Question: What parameter determines whether the 10 units of time mean 

10 minutes, or 10 hours, or 10 days? 

The METHOD card indicates that the integration should be executed employing 

the RECTangular method of Euler, that was also used in the previous 

examples of calculation by hand. 

The END card indicates the end of the simulation program, and STOP of the 

whole calculation. If one would execute the calculations with an RGR of 

0.2 as well it suffices to insert the cards PARAMETER RGR=0.2 and END 

between the END and STOP mentioned above. This is called a rerun. 

Question: Execute the simulation. 

Make a graph of the amount of organisms after 10 days against 

the size ·of the time interval. Indicate th~ right answer by a 

thin horizontal line. If halving the time interval does not 

change this value by more than some 5 % the result of the 

simulation is acceptable in most situations, because the 

accuracy of the basic parameter is seldom better. What is the 

largest acceptable time interval when RGR=O. 1? 

How much larger or smaller is the acceptable time interval when 

RGR=0.2? 

Finding the acceptable slze of the time interval takes some time, 

and moreover the rates of change may be fast during some period of 

simulation and slow during another, so that the acceptable time interval 

is changing as well. 
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In CSMP integration methods may be used that adapt continually the 

size of the time intervals to the rates of change. The most universally 

applicable method (Runge-Kutta/Simpso ) is called for by omitting the 

METHOD card. 

Question: Does the time interval in the example decrease, increase, or 

just stay equal with time? 
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THE GROWTH OF YEAST 

Growth is only exponential if the factor that determines the rate 

of growth remains constant. This is the case when the amount of food is 

not limiting, and when accumulation of waste products does not occur or 

is not harmful. The mentioned constant factor in that case is the 

physiologically determined maximal rate of growth under optimal conditions. 

Yeast, growing in a liquid solution with enough sugar as food, but 

in anaerob conditions, produces alcohol. An increasing concentration of 

alcohol hampers the formation of new buds, so that the growth will stop, 

even if there is still plenty of sugar. 

Just as in the case of exponential growth it is assumed that the 

growth of the yeast will be proportional to the present amount, but in 

this case the growth rate will also be multiplied by a reduction factor 

that depends on the concentration of alcohol in the environment. 

This is programmed by 

Y=INTGRL (IY, RY) 

where RY is expressed as 

RY=RGRxYx ( 1. -RED) 

Question: Why is the amount of sugar not mentioned? 

Gause (in "The struggle for existence", 1934) stated in an experiment 

that the relative growth rate of the yeast Saccharomyces equals 0.218 

hour-I when alcohol is absent, and that bud formation is entirely 

prevented by an alcohol concentration of 1.5% or more. 

Assuming that the rate of bud formation and thus of growth decreases 

linearly with the alcohol concentration, it can be stated: 

RED=ALC/LALC 

The alcohol concentration itself is the integral of the rate of alcohol 

production: 

ALC=INTGRL (O.,ALCP) 

starting with alcohol concentration zero. 

Question: What is the dimension of ALCP? 

Now it is assumed that the consumption of sugar and thus the 

production of alcohol is proportional to the rate of growth of the yeast: 
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ALCP=ALPFx:RY 

Gause found for the proportionality factor: 

PARAMETER ALPF=O.ll3 

Question: Is this value only physiologically determined? Is it also valid 

for other similar experiments? (Notice the dimension). 

Now finish the simulation program for the growth of yeast, and 

calculate the growth curve of the species Saccharomyces in case 

that the initial amount of yeast equals 0.45 units. Compare 

this with the observed data in table 1. 

Try to choose sensible values of FINTIM and OUTDEL. 

In the same table observed data of the specles Schyzosaccharomyces 

are mentioned. Gause observed that the limiting alcohol concentration was 

the same for both species. 

Question: Try to estimate a value for RGR and ALPF for the latter species 

and use these values for a simulation. Compare the results with 

the observations, repeat the estimation and simulation if needed. 

Table 1: Measured volumes ln indication marks on a centrifugation tube, 

for the species Saccharomyces and Schizosaccharomyces. Mono­

culture and mixed culture dependent on time (after Gause). 

Age in mono mixed 

hours Sacch. Schizos. Sacch. Schizos. 

0 0.45 0.45 0.45 0. 45 

6 0.37 0.375 0.291 

16 8.87 1.00 3.99 0.98 

24 10.66 4.69 1.47 

29 12.50 1. 70 6. 15 1. 46 

40 13.27 

48 12.87 2.73 7.27 1 • 71 

53 12.70 8.30 1. 84 

72 4.87 

93 5.67 

11 7 5.80 

141 5.83 
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If both species are growing in the same medium at the same time they 

influence each other by the production of alcohol. The combined alcohol 

production amounts: 

ALC=INTGRL (O.,RYlxALPFl+RY2xALPF2) 

The species are distinguished by adding a number to their names. 

Question: Write a simulation program for the growth of both species~ 

Regulate the output by the following cards: 

PRTPLT Y1 (RYl ,RED,ALC) 

PRTPLT Y2 (RY2,RED,ALC) 

A graph will be given of the first variable. The other ones, 

enclosed by brackets, will be printed beside the graph. 

Examine the output and compare the results with those of the 

experiment in table 1. 

Growing together both species stops growth after some 50 hours. So it 

does not make sense to extend the simulation beyond this time. Superfluous 

computation can be prevented by inserting a finish condition: 

FINISH ALC=FALC 

FALC=0.99xLALC 

These cards will stop the simulation at the moment that the alcohol 

concentration is one percent less than the limiting alcohol concentration. 

Question: When will the simulation be finished if the card FINISH ALC=LALC 

is inserted rather than the above ones? 

A comparison of simulated and real growth shows that the real growth 

of Saccharomyces in the mixture is slightly less than the simulated growth. 

It seems that the alcohol of the other species is more poisonous. 

Therefore it may be that Schizosaccharomyces produces another waste 

product beside ethanol, that is poisonous to the other species. 

In the simulation programs it is supposed that the reduction factor 

is proportional to the alcohol concentration and it appears from a 

comparison between the real and the simulated results that this is an 

acceptable assumption. A more general assumption about the relation between 

alcohol concentration the reduction factor can be introduced by the 

expression: 
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RED=AFGEN (REDTB,ALC/LALC) 

Here it is stated that the reduction factor RED is a function of the 

JN variable ALC/LALC. The shape of the function is given on a FUNCTION card. 

In the mentioned case the function has the shape: 

FUNCTION REDTB= (0. ,0.),(1. ,1.) 

The first number of each pair is the value of the independent variable and 

the second one the corresponding value of the dependent variable. The 

values in between are obtained by linear interpolation. 

Question: Plot the relation between the independent variable ALC/LALC and 

the dependent variable RED by hand for: 

FUNCTION REDTB = ( 0. , 0. ) , ( 0. 25 , 0. 5) , ( 0. 5 , 0. 8) , ( 0. 7 5 , 0. 9) , ( 1. , 1 . ) 

What are the values of RED for ALC/LALC equal to 0.2,0.5,0.8, 

and 0.9? 

If the reduction factor for the growth of yeast is proportional to 

the alcohol concentration the growth of yeast can be represented by the 

following differential equation: 

dY/dt=RGRxYx(l.-Y/YM) 

where YM is the maximal possible amount of yeast. 

Question: Derive this differential equation by eliminating the alcohol 

concentration from the equations for the growth of yeast in the 

simulation program. Then calculate the values of RGR and YM for 

the two yeast species. Integrate the differential equation and 

calculate the course of growth for the species Saccharomyces. 

Compare the results with the simulated curve. Why does this 

differential equation hold only if the initial amount of yeast 

is sufficiently small? 

The pattern of growth that follows from this differential equation 

is the logistic growth pattern. 

When two species are growing in the same medium the rates of growth 

are often represented by the differential equations: 

dYl/dt = RlxYlx(l.-AlxYl-BlxY2) 

dY2/dt R2xY2x(l.-A2xY1-B2xY2) 
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In general, this set of differential equations cannot be integrated into 

analytical expressions for Yl and Y2 as dependent on time. 

Question: Check that the simulation program for the mixed growth is 

pra~tically covered by these differential equations and express 

the constants Rl, R2, Al, A2, Bl, B2 in the constants RGRI, RGR2, 

ALPFl, ALPF2 and LALC. Which constants are mutually equal? How 

do the constants in the differential equations change when one 

of the species is producing another waste product than ethanol 

that is poisonous for the other species? 

Time constant 

In dynamic systems the time constant characterizes on which time scale 

changes occur. It does not make sense to simulate the dynamic behaviour 

of a system employing a time interval DELT larger than the time constant 

of the system. If method RECT is employed, as a rule the time interval 

DELT should be smaller than one tenth of the time constant. Using RKS the 

variable value of DELT will turn out to be about half of the time constant. 

To estimate the time constant of a system its differential equation 

should be approximated by: 

where T is the time constant. If the first derivative has the same sign 

as the variable itself there is a positive feedback. This means that a 

once produced error is propagated more and more. In the opposite case, a 

negative feedback, an error will be damped out together with the variable 

itself. The behaviour of the relative error is however the same in both 

situations. 

The simplest example of a positive feedback is the exponential growth: 

~=~~ 
dt 

Obviously the time constant has the value T = 1/RGR. 

Question: Mention a simple example with a negative feedback. 
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Often more complicated systems can be reduced to a differential equation 

of the fom above. For the yeast the differential equation is 

dH 
dt = RGRxHx( 1. -RED) 

In the beginning RED may be neglected, so that the time constant is again 

1/RGR. Later on growth ceases so that the time constant becomes larger. 

DELT is however detemined by the minimum value of the time constant I)RGR. 

It would be wrong to draw the conclusion that the time constant becomes 

infinite when H approaches its maximum. From what has been said on logistic 

growth it is possible to write the equation as: 

~~ RGRxHx(l.-H/HM) 

When H approaches HM this is almost equal to 

dH 
dt = RGRxHMx(l.-H/HM) or 

dH dt = RGRx(HH-H) or 

d(H-HM) 
dt 

= -RGRx(H-HM) 

Now, written for the new variable H-HM, there is a differential equation 

with a negative feedback and again a time constant 1/RGR. At first the 

positive feedback becomes weaker and weaker, when H is HM/2 the feedback 

is zero and the time constant infinite, and subsequently the negative 

feedback becomes again stronger and stronger. This can be proved by 

taking the derivative of dH/dt to H, as this value represents the feedback 

of H on dH/dt. In the case of the logistic growth it follows: 

d(dH) 
dt 

dH 

2H RGRx(l.- - ) 
HM 

The time constant is the inverse of the absolute value of this coefficient. 

Question: What is the time constant of a falling apple? What are the 

consequences for the time interval DELT? Are there similar 

consequences when METHOD RECT is being used? What is the 

source of this discrepancy? 
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RELATIONAL DIAGRAMS 

Sometimes it is useful to indicate by means of a drawing how the relations are 

be t\veen par arne ters and variables occurring in a model. This can be done without 

mentioning the exact mathematical relationships. Often a scheme for representation 

is used, as developed by Forrester for industrial systems. 

state variable or value of an integral 

flow of material, into or from an integral 

-----~ ·"flow" of information 

rate of flow of material to an integral 

0 variable, no rate or integral 

name parameter 

( ) variable, derived from another 

relational diagram 

( TIME ) time 

(\ graphical relationship 

sink or sour~e, irrelevant to the model 
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The following relation diagram represents a mixed culture of two 

yeast species, that only interfere through the production of alcohol. 

,.,. 
/ 

/ 

RGR1 
~ 

I 
I 
I 

LALC --r--
1 

I 

RGR2 
-r 

I 
I 

........ 

' ' \ 
\ 
\ 

I Y1 

' 
Y2 l 

\ 
\ 
\ 

\ 

' ,, ' ' ....... 

I 
b­

ALPF1 

ALC 

I 
-----6-­
ALPF2 

/ 
/ 

Question: Draw the relational diagram for a falling apple. 

Which curiosity attracts the attention? Write the 

program as well. 

/ 
/ 

/ 

I 
I 

I 
I 

I 
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COMPETITION BETWEEN PLANTS 

The yield of a crop is related to the plant density and the length 

of the growing period. By yield is meant the total dry weight at any 

moment. In an early stage or at low plant density the yield per area is 

practically proportional to the plant density. In a later stage or in a 

high density ,increase of plant density hardly gives any increase of 

yield. In the following figure the yield per area is represented as 

dependent on plant density at two different moments. 

0 

The drawn functions are reasonably represented by 

0 = 
BxD 

BxD+l 
X OM (I) 

D 

where D is the density of sowing or planting, OM the maximal yield for 

large D, and B the space plant. The dimensions of B and D are inverse, 

i.e. m2/plant and plant/m2 resp. Both OM and B are a function of time, 

and independent of D. The maximum yield OM can be measured by periodic 

harvesting in a field with a very high plant density. The yield of a 

plant growing alone enables calculation of B as it equals BxOM. 

Sometimes it is more practical to work with rows rather than 

individual plants. The plant density is then expressed as number of rows 

per meter, and B as meter per row. This was done with two barley species 

Alasjmoen (1) and NHT (2). B and OM were found to be dependent on time 

as follows: 
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FUNCTION BJTB (0. ,0.), (30., .03), (35., .05), (40., .09), (45., .16), •. · 

(50.'. 26) '(55.'. 38) '(60. '.58)' (65. '. 88) ' ( 70. '1. 02) 

FUNCTION B2TB = (0. ,0.), (30., .07), (35., .13), (40.,. 18), (45., .28), ••• 

(50. ' . 51 ) ' (55. ' . 82) ' ( 60. ' 1. 30) ' ( 65. ' 1 . 7 5) ' ( 70. ' 1. 9 4) 

FUNCTION OMITB= (0.,0.),(70. ,0.56) 

FUNCTION OM2TB= (0. ,0.),(70.,0.56) 

In these tables the independent variable is given in days after emergence, 

the dependent variable in the OM tables in kg dry matter/m
2 

and in the 

B-tables in meter/row. The three dots at the end of a card mean that the 

expression or table is continued on the next card. 

Question: Make acceptable that OM increases linearly with time and that 

the rate is the same for both species. 

Employing formula (1) calculate the yield in kg/m
2 

of a crop 

Alasjmoen and NHT sown at row distances of 10, 25 and 100 em 

and harvested at 15, 30, 45 and 60 days after emergence. 

Plot the results against density in row/m. 

Calculate for both species the yield of a row per meter length 

sown wide apart from other rows. 

Although the quantity B has the dimension space per plant or per row 

it can only be measured indirectly through formula (1). It is well 

possible that at 50 days a solitary row of the race NHT is not 51 em wide. 

To obtain the right answer in the calculation, an effective width of 51 em 

must be used, however. 

The ratio 0/D is the yield in kg per single plant or row. The ratio 

0/0M has an upper limit of 1 and is called· the relative space occupied 

by the crop. It will be indicated by RO. 

Question: The space occupied by a solitary plant lS lim(RO/D) for D 

approaching zero. What is this limit? 

By differentiating the expr~ssion for RO: RO BxD 
BxD+l 

to time and eliminating D a differential equation in a well known form 

is arrived at: 

dRO dB 1 
~ = dt X B X RO X (1.-RO) 
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Question: Execute this differentiation. 

This equation is very similar to the one for the logistic growth. The 

maximum amount here is one (RO cannot exceed 1) and the relative growth 

rate is ~~ i . The main difference is that this is no constant al all. 

dB 1 Question: In what situation is a constant? What are the consequences? 
dt B 

The factor (1.-RO) reduces growth under influence of the occupied 

space. RO need not be the space of the species itself, but may also be 

the space occupied by a competitor. This is true if the plants do not 

distinguish between the presence of plants of the same species or of the 

competitor. 

dR01 
~ 

dR02 = dB2/dt X R02 X (1-SRO) 
dt B2 

SRO = ROl + R02 

These differential equations are the basis for a simulation program for 

the growth of two species 1n mixed culture. A possible formulation is: 

TITLE COMPETITION BETWEEN TWO BARLEY SPECIES 

x DAY IS NUMBER OF DAYS AFTER EMERGENCE 

DAY = START + TIME 

PARAMETER START = 10. 

The asterix at the beginning of card means that .the card contains comments 

only important for the reader and not for the computer. 

x SUM OF THE RElATIVE SPACES 

SRO = ROl + R02 

x GROWTH OF THE FIRST SPECIES 

ROI = INTGRL (ROII,(DBl/Bl)xROlx(l.-SRO)) 

Bl = AFGEN (BITB, DAY). 

DBI = DERIV (DBII,Bl) 

By this function the first derivative of the argument, here Bl, is obtained 

with respect to time. The initial value at time zero must be given. 
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01 = ROlxAFGEN (OMlTB,DAY) 

x GROWTH OF THE SECOND SPECIES 

R02 = INTGRL (R02I,(DB2/B2)xR02x(1.-SRO)) 

B2 = AFGEN (B2TB,DAY) 

DB2 = DERIV (DB2I,B2) 

02 = R02xAFGEN (OM2TB,DAY) 

TIMER FINTIM = 60., PRDEL 

PRINT ROl, R02, 01, 02 

PRTPLT RO 1 , R02 

5., OUTDEL 2. 

INCON ROll = ,R02I ,DB1I = 

END 

STOP 

,DB2I 

In this way every five days the values of the specified variables 

will be printed, and a plot be made of R01 and R02. To obtain a well­

dimensioned graph OUTDEL should be between 1/25 and 1/50 of FINTIM; 

The functions to be used for both species are those for the monoculture 

that have been given before. 

Question: What would have been the time interval DELT, if method RECT 

would have been used? Follow the procedure given in the 

paragraph on the time constant. 

Question: Calculate the correct values of the initial constants, assuming 

that the two species are sown alternatingly in rows 25 em apart. 

Execute the simulation with these values. Compare graphically 

the results of this program with the following results of the 

real experiment. 

Days after emergence 30 40 50 60 70 

Alasjmoen .0100 .0250 .0600 . 1050 . 1250 kg/m 

NHT .0250 . 1100 . 1 750 .2800 .3650 kg/m 

Try to explain in words why NHT gains at the expense of 

Alasjmoen. 

2 

2 

To avoid mistakes the initial values can better be calculated in the 

program itself. Therefore a reserved section can be used beginning by the 
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word INITIAL. The calculation lS programmed as follows: 

INITIAL 

ROll=Bl/DISTl 

Bl=AFGEN(BITB,START) 

R02I=B2/DIST2 

B2=AFGEN(B2TB,START) 

DBll=AFGEN(BlTB,START+l.)-Bl 

DB2I=AFGEN(B2TB,START+l.)-B2 

PARAMETER DIST1=0.5, DIST2=0.5 

x DISTANCE BETWEEN ROWS OF THE SAME SPECIES IN METERS 

DYNAMIC 

The initial section lS finished by the word DYNAMIC that indicates 

at the same time the beginning of the dynamic section. After this follows 

the program as discussed before. 

Question: Which card must be removed? 

Why may ROll be set equal to Bl/DISTI? 

The instructions in the initial section will be executed at time 

zero only, and those in the dynamic section every time interval. 
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COMPETITION BETWEEN SEVERAL PLANT SPECIES 

The program given in the last chapter can 1n principle be extended to 

simulate competition between several varieties. The only trouble is that 

the equations must be written for every variety. This encourages errors 

and does not make the program more surveyable. 

In such a situation the MACRO feature may be used. In a macro a part 

of a process is described in general terms. Every time the macro is called 

for in the initial or dynamic section, CSMP writes .the text using the 

indicated symbols, after which the whole is sorted. So a macro is not an 

order to compute something but to write a piece of text. When a macro is 

called for ten times, the text will be written ten times. 

The macro for the growth of a crop in competition reads as follows: 

MACRO O, RO=GROWTH (BTB,OMTB,SRO,DAY,DBI) 

RO=INTGRL (ROI,(DB/B)xROx(l.-SRO)) 

B=AFGEN (BTB,DAY) 

DB=DERIV (DBI,B) 

O=ROxAFGEN (OMTB,DAY) 

END MAC 

In the first line, the macro declaration,is indicated which variables, 

functions and constants, that come out of the rest of the CSMP program, 

determine the variables 0 and RO. The ENDMAC card indicates the end of 

the macro. Within the.macro GROWTH the equations of the last chapter are 

given under omission of the numbers 1 and 2. 

Likewise, the relations of the initial section can be represented 1n 

a macro: 

MACRO ROI,DBI=BEGIN (BTB,START,DIST) 

ROI=B/DIST 

B=AFGEN (BTB,START) 

DBI=AFGEN (BTB,START+l.)-B 

END MAC 

The complete program for two varieties reads now: 

TITLE COMPETITION OF TWO VARIETIES 

At this place, directly after the title the macro definitions are inserted: 

INITIAL 

ROII,DBII=BEGIN (BlTB,START,DISTl) 

R02I,DB2I=BEGIN (B2TB,START,DIST2) 

DYNAMIC 
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Ol,ROl=GROWTH (BlTB,OMlTB,SRO,DAY,ROli,DBli) 

02,R02=INTGRL (B2TB,OM2TB,SRO,DAY,R02I,DB2I) 

DAY=START+TIME 

SRO=ROl+R02 

PARAMETER DISTl= ,DIST2= 

FUNCTION (function definition as before) 

TIMER FINTIM=70.,PRDEL=5. 

PRINT 01 ,02 

END 

STOP 

The program is now better readab1e. 

Question: Write a simulation program for the growth of three varieties. 

Assume that the maximal yield OM of the third variety grows as 

fast as for the other ones, but that the space per plant B 

reaches a maximum after 50 days and then stays constant. The 

varieties are sown in a ratio 1:1:1. 

Compare the relative yield of the second and the third variety 

and explain the difference. Discuss also differences in relative 

yield RO of the first and second species compared with the 

previous programs. 
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GROWTH AND COMPETITION IN PARAMECIA 

Paramecia are protozoa; unicellular organisms that live in water and 

feed on bacteria. Gause described an experiment with them in "The struggle 

for existence" in 1934, which will be explained by means of a simulation 

program. The species Paramecium caudatum and Paramecium aurelia are used 

in this experiment. They were grown in a test tube with 5 cm3 of 

Oosterhout's balanced physiological solution, buffered at pH 8.0. The 

medium was changed daily after centrifugation to separate the protozoa 

from the liquid. In this way accumulation of waste products was prevented. 

A standardized quantity of bacteria was added to the new solution as the 

daily food. Just before centrifugation the medium was carefully stirred 

and one tenth of the liquid was taken out, in which the number of protozoa 

were counted. At the beginning of every next day the number of protozoa 

was about 0.9 times the number at the end of the day before. Two series 

of experiments were executed, Gause speaks of the one loop experiment in 

case one standardized loop of bacteria was given, and of the half loop 

experiment in case a half loop was given daily. In both series the species 

were cultivated in monoculture and in mixed culture. The results are 

given in table 2 (next page). The given numbers are the numbers Gause 

counted in his sample of one tenth of the total volume. 

Question: Plot the results. What might be the reason for the large scatter? 

In the monoculture the population reaches a maximum in due course and 

stays there, just as in the case of the yeast. In the latter growth ceased 

due to the accumulated waste products. That cannot be the reason here in 

view of the careful centrifugation. The ·most probable reason is that the 

daily amount of food is limiting. In the equilibrium situation the food 

glven is just sufficient to maintain the protozoa population and to replace 

the ten percent that is· removed daily. 

In the mixed culture one of the species vanished and the other 

survived at the same maximum level as in the monoculture. This fact must 

be explained, preferably with data derived from the monoculture only. 

Assumptions on growth and death 

Growth is proportional to the consumption of food. There is a constant 

ratio between the number of the newly grown protozoa and the amount of food 
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Table 2. Numbers as sampled by Gause. 

Mono culture Mixed culture 

Day of the P.aurelia P. cauda tum P.aurelia P.caudatum 

experiment 0.5 3 0.5 3 0.5 3 0.5 3 em em em em 

one half one half one half one half 

loop loop loop loop loop loop loop loop 

0 2 2 2 2 2 2 2 2 

6 3 6 5 10 4 5 8 

2 24 29 31 22 29 29 15 20 

3 75 92 46 16 68 66 32 25 

4 182 173 76 39 144 141 52 24 

5 264 210 115 52 164 162 40 

6 318 210 1 18 54 168 219 32 

7 373 240 140 47 248 153 36 

8 396 125 50 240 162 40 21 

9 443 137 76 150 32 15 

10 454 240 162 69 281 175 20 12 

1 1 420 219 124 51 260 30 9 

12 438 255 135 57 300 276 12 12 

13 492 252 133 70 285 16 6 

14 468 270 110 53 225 20 9 
15 400 240 113 59 260 222 12 3 
16 472 249 127 57 294 220 9 0 
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consumed. This ratio is conversion factor with the dimension number of 

protozoa per loop. It is assumed that there is a natural death rate 

besides the daily removal of one tenth of the population. This natural 

death rate is proportional to the population size with a ratio, the 

relative death rate, that is independent of the density. The rate of food 

consumption that determines the growth rate is proportional to the number 

of protozoa, to the density of the food and to the rate at which the 

protozoa search the water. Moreover there is an upper limit to the rate 

of food consumption, the maximal rate of digestion of food per animal. 

Question: Determine the dimensions of the rates and factors mentioned 

above. The basic units are day, loop, protozo, volume of the 

test tube. 

The program 

As previously done in the program for the competition between plants, 

the dynamics of one species will be described in a MACRO. For each species 

the MACRO is invoked with the appropriate names. It has to be decided upon 

what names should appear on the MACRO declaration card. The output 

variables are the number of protozoa H, the rate of food consumption CNSN, 

and the size of the sample SPLE. The input variables are the rate of 

searching water RSW, the conversion factor CONVF, the maximum rate of 

digestion MRDIG, the relative death rate RDR and the initial population HI. 

The moment of sampling FDTIME and the amount of food FOOD are the same for 

both species so that they need not be included in the MACRO declaration. 

The MACRO definition card now reads: 

MACRO H,CNSN,SPLE=GROWTH (RSW,CONVF,MRDIG,RDR,HI) 

The description of the structure of the MACRO follows: 

H=INTGRL (HI,SN) 

The rate of change SN is given by the difference between the growth rate 

GRSN and the rate of sampling RSAM 

SN=GRSN-RSAM 

The growth rate is the gross rate minus the "natural" death rate. 

GRSN=CNSNxCONVF-RDRxH 

In calculating CNSN saturation with food must be accounted for: 

CNSN=HxAMINl (MRDIG,RSWxFOOD) 
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This function AMINI takes the smaller value of the arguments. If there is 

much food CNSN equals HxMRDIG, the upper limit. Below that limit the rate 

of food consumption is proportional to the amount of food and the rate of 

searching the water. 

Question: Plot the relation between the amount of food FOOD and the growth 

rate GRSN for arbitrary values of the parameters. For which 

value of FOOD 1s the growth rate zero? 

The calculation of the rate of sampling RSAM raises some difficulties. 

Up to this point only continuous processes have been considered. The 

sampling, however, occurs only once a day and is zero for the rest of the 

time. To let the sampled quantity vanish in one time step DELT, the rate 

of sampling must be defined as the size of the sample divided by DELT. 

RSAM=SPLE/DELT 

The size of the sample 1s 

SPLE=FDTIMExO.lxH 

FDTIME is defined in the ma1n program outside the MACRO. It has the value 

1 at the end of the day and is zero for the rest of the time. The MACRO 

is terminated with: 

END MAC 

In the main program the MACRO is called for by: 

HA,CNSNA,SPLEA=GROWTH (RSWA,CONVFA,MRDIGA,RDRA,HIA) 

HC,CNSNC,SPLEC=GROWTH (RSWC,CONVFC,MRDIGC,RDRC,HIC) 

Then FDTIME is defined with: 

FDTIME=IMPULS (1.,1.) 

This function has the value 1. at the moment indicated by the first 

argument, and subsequently at moments with the second argument as intervals. 

It is zero for the rest of the time. This function is also used to 

replenish the daily food. 

FEED=FDTIMEx(L-FOOD)/DELT 

FOOD=INTGRL(L,FEED-CNSNA-CNSNC) 

Lis the amount of food giv~n and is either 1. or 0.5. 

Due to the discontinuity it is necessary to employ the rectangular method 

of integration. 

METHOD RECT 

TIMER FINTIM=l6.,DELT=O.Ol,OUTDEL=O.l 
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For the purpose of comparing with Gause's data it is sufficient to have 

the sample size printed once a day. A simulation program enables a more 

thorough analysis by tracing more variables more frequently. 

To complete the program the values of the properties must be given 

on parameter cards. Approximative values can be found by simplified 

calculations. More exact values can be found by repeated simulation runs, 

employing some criterion for the goodness of fit. Because there are 4 

values to be adapted independently, it is necessary to know the order of 

magnitude beforehand. 

Question: Why? 

First estimation of the parameters 

Gause observed that the liquid became transparent soon after the 

food was given, once the size of the population was not far from maximal. 

He concluded that the protozoa consumed all the bacteria, which was not 

the case in the beginning of the experiment, even a~ the end of the day. 

Once all the bacteria are eaten at the end of the day, it is in the 

monoculture of little importance how fast it happens. The food consumed 

and used for growth is anyway equal to the food given. 

In the monoculture the maximum size of the population hardly depends 

on the rate of food consumption, or on the maximum rate of digestion MRDIG 

and the rate of searching the water RSW. It mainly depends on the food 

conversion factor CONVF and the relative death rate RDR. During one day 

about Hx(RDR+O. 1) dies and the newly grown amount is CONVFxL. In the 

equilibrium situation these quantities are equal, so that 

CONVFxL=H x(RDR+O. 1) eq 
This equation contains two unknowns: CONVF and RDR so that another equation 

is necessary to estimate their values. This equation is obtained at for 

instance the moment that three fourth of the maximum population size is 

reached. The growth rate GR may be estimated from the graph of the data 

and is also equal to: 

GR=CONVFxL-0. 75xH x(RDR+O.l) eq 
Combining both equations allows a first estimate of CONVF and RDR. 

Question: Calculate these first estimates for both species and compare 

the results with the values given below. 
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From repeated simulation runs it appears that CONVFA is 3000 and 
-1 

CONVFB is 750, whereas RDR for both species is 0.45 day . 

The rate of searching the water RSW and the maximum rate of digestion 

MRDIG are estimated from the dynamics of the populations at the beginning 

of the experiment. During the early stages the number of protozoa is so 

small that the concentration of bacteria stays practically the same during 

the whole day. As can be seen from the data of the 0.5 and 1 loop 

experiment with P.aurelia the growth rate is about the same and this means 

that the maximum digestion rate is reached at the 0.5 loop concentration 

or that at this level 

MRDIG=0.5xRSW 

When now, the availability of food constantly exceeds the saturation level, 

the relative growth rate, which can be read in the graphs is about 

RGR=MRDIGxCONVF-RDR-0.1 

These two equations allow a first estimate of RGR and MRDIG. 

Question: }fake these first estimates. Try to find as many reasons as 

possible why these first estimates may be very inaccurate. 

The values found by simulation are considerably different and are 

listed below. It must be admitted that the data of the monoculture only 

were not sufficient to derive the values of these parameters, the data 

of the mixed cultures had to be used as well. This is not due to a 

fundamental reason but to the large scatter of the data. Moreover 

differences between species show up much more pronounced in mixed cultures. 

Question: Why is this the case? 

Relative death rate RDR 

Conversion factor CONVF 

Saturation level MRDIG 

Rate of searching water RSW 

P.aurelia 

0.45 

3000 . 

. 56 10-3 

.006 

P.caudatum 
-1 

0.45 day 
-1 

750. animal loop 
-3 -1 -1 

2.24 10 loop animal day 
-1 -1 

.006 volume animal day 

The relative death rate RDR and the rate of searching water RSW turn out 

to be the same for both species. MRDIG is assumed to be four times larger 

for P.caudatum as for P.aurelia. 



- 30 -

Question: What could be a reason for this assumption?~ 

Execute a sensitivity analysis for the parameters RSW, RDR, 

MRDIG and CONVF. For that purpose simulate the growth of the 

species for the parameter values given in the table and once 

for each parameter value separately 10 % larger. 

Determine the influence of these changes on outputs you assume 

to be important. Do this for both the mono- and the mixed 

culture. 

Which valve would you have given to DELT? 

Stochastic phenomena 

Now the reasons for the scatter 1n Gause's data are considered. There 

are two stochastic phenomena that are accessable to calculation: the 

sampling and the death process. Up to this point we assumed that Gause 

was able to sample exactly one tenth of the population, and that during 

any sufficiently small time interval the death rate was exactly HxRDR. 

Neither assumption is right. 

As far as the death process is concerned, the rate is only an average 

value .. Sometimes more protozoa die during a time interval than HxRDRxDELT, 

sometimes fewer. To simulate this the number of deaths must be drawn out 

of a probability distribution around the average death during a time 

interval. The normal distribution and the Poisson distribution may be used 

for this purpose. When each animal has an equal, constant and non-age 

dependent probability of dying it is the Poisson distribution that must 

be used. 

Question: Give a good reason why the normal distribution function 

cannot be used. 

The standard deviation of a Poisson distribution is entirely determined 

by its expectation value. Thus knowing the average a random choice of the 

actual number can be made according to the probability distribution. The 

random choice was programmed in a MACRO. In the main program the invokation 

to calculate the death rate reads: 
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AD HxRDRxDELT 

DRD POISS(P,AD,DELT) 

DR DRD/DELT 

The average number of deaths during a time interval DELT is HxRDRxDELT 

which number is an input to the random selection of the number DRD that 

actually dies. To find the death rate it must be divided by DELT. DR is 

the death rate and is used instead of HxRDR in the previous program. The 

first argument 1n the invokation of the MACRO is an odd, integer number 

required to start some pseudo random series, used for the random selection. 

The last argument indicates that random selection must be executed every 

DELT. 

Now the content of the MACRO will be given, but this 1s only 

understandable for those who know some FORTRAN. 

MACRO N=POISS(P,MEAN,PERIOD) 

Because DO-loops and IF-statements are used the statements must be in 

computational order. This is indicated by the card: 

PROCEDURAL 

If the time 1s not equal to n times PERIOD the drawing need not be 

executed and N equals zero: 

N=O 

IF(IMPULS(O. ,PERIOD).LT.0.5) GO TO 1 

whereby 1 is a CONTINUE statement at the end of the MACRO. In case the 

expectation valve is larger than 25 the Poisson distribution is sufficiently 

approximated by a Gauss distribution with a standard deviation equal to 

the square root of the average. 

IF(MEAN.LT.25) GO TO 2 

N=GAUSS(P,MEAN,SQRT(MEAN)) 

GO TO 1 

2 CONTINUE 

The Gauss function 1s a CSMP function that executes the random choice out 

of a normal distribution. P can be any odd, integer number. The second and 

the third argument represent the average and the standard deviation 

respectively. 

Below a number of 25 the deviation between the Poisson distribution 

and the Gauss distribution becomes too large. To execute the selection 

from the Poisson distribution a number is first drawn between 0 and 1 

according to a standard uniform probability function. This is done by a 
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CSMP function: 

LOT=RNDGEN (P) 

P is again the odd, integer number. 

Then this number is used to read the output from a cumulative Poisson 

distribution function. The cumulative Poisson distribution is obtained 

by a series development (Moroney, 1951). The probability of a number to 
-z be smaller than or equal to 0, I , 2, 3. • • . • is given by e ( 1 + z/ 1! + 

z2/2! + z3/3! ............. )where z is its average. 

Question: Show that this series adds up to 1. Check if the following 

procedure is right. 

SOM=l. 

PROD= I. 

EMINZ=EXP(-MEAN) 

DO 4 J= I , 100 

IF(LOT.GT.SOMxEMINZ.) GO TO 3 

N=J-1 

GO TO 

3 CONTINUE 

PROD=PRODxMEAN/J 

SOM=SOM+PROD 

4 CONTINUEZ 

The MACRO is concluded by 

1 CONTINUE 

END MAC 

Question: Program also a random sampling process by taking 1/10 of the 

solution at the beginning of every day. 

Simulate now the growth of the species in a mixed culture for: 

a. a random death process 

b. a random sampling process 

What is the main reason of the scatter 1n Gause's observations? 
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SIMULATION OF AGE DEPENDENT PROCESSES 

When simulating the growth of protozoa, a constant relative death 

rate was assumed. This implies that death is independent of age. A similar 

situation might arise in a human society when most deaths are caused by 

traffic accidents. An entirely ranciom character of death is assumed by 

using the Poisson or Gauss distribution to describe the process in small 

numbers. 

The other extreme situation lS that death occurs only and completely 

at a fixed age. In that case the growth rate of a population can be 

represented by: 

dH/dt=RBRxH-RBRxHt-L 

Here, L lS the duration of life of the organisms, Ht-L is the amount 

present at a time L earlier and RBR is the relative birth rate. A problem 

is that the age distribution at time zero must be describ~.d. If at time 

zero all organisms have the age 0.51 the initial population will die at 

time 0.51. For this case the simulation program could read: 

H=INTGRL(HI,GR) 

GR=BR-DR 

BR=HxRBR 

DR=DELAY(48,L,BR)+HixiMPULS(0.5xL,FINTIM)/DELT 

PARAMETER HI=l. ,RBR=0.2,L=24. 

In this way the METHOD RECT must be used, because of the division by 

DELT. Another possibility is assuming that HI has a uniform age distribution. 

DR=INSW(TIME-L,HI/L,DELAY(48,L,BR) 

If the first argument of the INSW function lS negative the output equals 

the rate HI/L, if it lS positive the DELAY function will be used. Because 

there is no division by DELT anymore METHOD RKS may be used. The DELAY 

function delays its last argument over a period mentioned in the -second 

argument. The integer number 48 means that 48 values are sampled during 

this period. The larger this number, the better the resolution power. The 

interval between two stored values must be about one tenth of the time 

constant of the concerned variable. The output of the DELAY function is 

zero before the delay time is reached. 

The DELAY function gives a delay as given by the solid line in the 

figure below as a response to a stepwise change at time zero. 
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There lS also a method to disperse the delay, as illustrated by the dashed 

line. This method is applied if some animals die earlier and some later 

than the average. It is called the method of the dispersed delay. 

A 24 hour's period is divided in for instance 4 parts of 6 hours each. 

The amount in each of these groups is conserved in an integral. In each 

group there is an average residence time of 6 hours. This can be done as 

follows: 

Hl=INTGRL(HI, BR-Hl/6.) 

H2=INTGRL(O. ,(Hl-HZ)/6.) 

H3=INTGRL(O. ,(H2-H3)/6.) 

H4=INTGRL(O. ,(H3-H4)/6.) 

Question: Show that the average residence time in each group is 6 hours. 

For this purpose set BR at zero and keep track of HI in time. 

The average residence time is 

HI 
HI f L(H)dH 

0 

Here L is the actual residence time of dH. 

To calculate BR the total population Hl+H2+H3+H4 must be multiplied 

by RBR. 
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\{ucstiun: t:x..::cuce Lhc simulation with the DEL\Y funcli•.1n, dliU with the 

method of the. dispersed delay, taking N=l, 2, 4 and 24 resp. 

Which simple, previously treated, situation is obtained when 

N=l? Plot the total population against time. Make also a 

simulation with RBR=O. Take FINTIM=48. and HI=IOO. 

If N classes are employed to cover a lifetime 1, the average 

residence time in each class is 1/N. The number N is determined by the 

standard deviation of the lifetime. It can be derived that N is equal to 

N=(1/o) 2 

1n which o is the standard deviation of the duration of life 1. 

If the standard deviation is less than one fifth of the total lifetime, 

the number of classes must be so large that the computation time becomes 

prohibitive. Then it is better to use a so called boxcartrain. 

The difference with the previous method is that there is not a 

continuous flow from one class to the next, but that once in every 

residence period all contents shift one place.· To program this we need 

the IMPU1S function, as 1n the sampling of the paramecia: 

PUSH=IMPU1S(l. ,1.) 

Hl=INTGRL(Hil,BR- PUSHxH1/DE1T) 

H2=INTGRL(HI2, PUSHx(Hl-H2)/DELT) 

H24=INTGRL(HI24, PUSHx(H23-H24)/DELT) 

The birth rate BR can be the total birth rate times the relative birth 

rate.· It is also possible to introduce an age dependent fecundity by 

BR=FlxHl+F2xH2+F3xH3+ ............. + F24xH24 

Here F is the fecundity. of each class. 
fill 

Programmed in this way death only occurs at the moment that all 

classes are passed, which is similar to the result of the DELAY function. 

It is also possible to introduce death in other age classes. The extended 

equations are: 

Hl=INTGRL(Hil,BR-RDRlxHl-PUSHxHl/DELT) 

H2=INTGRL(HI2,-RDR2xH2+PUSHx(Hl-H2)/DELT) 

H24=INTGRL(HI24,-RDR24xH24+PUSHx(H23-H24)/DELT) 
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Both F and RDR may be functions of external conditions. A survey of the 

three discussed delay methods follows: 

Integration method 

Course of the delay 

Flexibility 

DELAY function 

any 

sudden 

poor 

dispersed delay 

any 

gradual, 
dependent on the 
number of classes 

good 

boxcartrain 

RECT 

sudden 

moderate 

Question: Write a simulation program for the growth of the population 

in The Netherlands, based on data of 1968. 

Population on December 31st 1968: 

Age group Number of men Number of women 

0 - 4 610736 581772 

5 - 9 613494 586599 

10 - 14 580261 552807 

15 - 19 569490 542467 

20 - 24 582563 553889 

25 - 29 452267 419526 

30 - 34 404872 379516 

35 - 39 393384 380914 

40 - 44 371039 377987 

45 - 49 362217 376413 

50 - 54 314031 330267 

55 - 59 297444 323390 

60 - 64 262211 297817 

65 - 74 368998 452313 

75 - 199953 259709 

Total 6383000 6415000 
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Death per 1000 men and women per year 

Age Men Women 

0 - 15,6 11 '4 

1 - 4 1 ,0 0,7 

5 - 14 0,5 0,3 

15 - 29 1 '0 0,4 

30 - 44 1 '8 1 '2 

45 - 64 10,9 5,5 

65 - 74 41 '7 23,9 

75 - 11 7 '6 95,7 

Nwnber of births in 1968 according to the age of the mother: 

<15 

0 

15-19 

11825 

20-24 

75599 

Ratio boys/girls 1.048 

25-29 

78787 

30-34 

43055 

35-39 

21039 

40-44 

6246 

45-49 

564 

>49 

0 

Consider carefully the choice of the age classes and the delay method. 

Ask for the composition of the population and the total number every five 

years. Simulate over 50 years. Consider the influence of postponing the 

first child by shifting the effective fecundity to a later age group. 

The matrix method 

This method is not a simulation method, but can be a useful additional 

tool. It provides the equilibrium age class distribution and the 

corresponding relative growth rate of a population. The principles of the 

method will be given. 

In case that DELT ~n a program with the boxcartrain equals the average 

residence time in each class, the contents are shifted one place, 

diminished by the amount died, at every time interval. If the relative 

death and birth rate do not change in time (they may be dependent on age) 

a matrix method, introduced by Leslie in 1945, may be applied. Let· the 

contents of the classes be the elements of a vector. If there are ten 

age groups, the vector is tendimensional. Then the age class distribution 

one time interval later is found by multiplying this vector by a matrix: 
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H1 F1 F2----------F10 H1 
I I 
I 

51 0-----------0 I 
I I I 
I I I 
I 0 52 0 I I 
I 

I ' ' I I - I ' 0 - 0 I ' I I 
I 

I ' ' ' I I 0 ' 0 I 
I ' I I I " ' ' I I 0 ' 0 I I 

' I I ' ' ' 
I I 

H10 0---------0 59 0 H10 t t+DELT 

At the left hand side the vector is written as it lS at time t+DELT. It 

lS found by multiplication of the vector at time t by the matrix. In the 

matrix, Fl is the relative number of births per time step in class I and 

Sl is the fraction of class I that passes to class I+l; in other words 

minus the fraction that dies during a time interval. 

From matrix algebra it is known that repeated multiplication by a 

matrix gives rise to a vector that has a constant relative composition in 

due course. Each time the length of the vector is increasing by a constant 

factor. These are called the dominant eigenvector and the corresponding 

eigenvalue. Standard programs are available to derive them from a matrix. 

The result of these mathematics agrees with the experience that any 

population approaches a stable age distribution and a constant relative 

growth rate in due course, provided the relative death and birth rates 

remaln constant. This matrix method is usually cheap in terms of computation 

time, but requires more mathematical knowledge and is less flexible than 

simulation. It only provides information on the final stage. For that 

reason the method lS useful if a certain distribution of death and birth 

rates will end up ln a stable population or not. It will also show how the 

relative growth rate will change as influenced by a shift in births to 

another age group. 

Question: Is it possible to solve the questions on the growth of the 

Dutch population by means of the matrix method? 

Facultative question: Calculate the age distribution in equilibrium and 

the corresponding relative growth rate of the Dutch population 

by means of the rna trix method on basis of the 1968 data. 
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FLOW OF HEAT IN SOIL 

There is a great deal of similarity in simulating the age distribution 

of a population and physical diffusion processes in space and time. These 

similarities will be illustrated by a simulation program for the course of 

temperature in the soil as influenced by a cyclic variation of temperature 

at the surface. 

To this end the soil is divided in horizontal layers, thus assuming 

that the only gradients are vertical. The thermal condition of the layers 

is characterized by heat content rather than by temperature. 

In defining the initial condition the temperatures are used INITIAL. 

HCI=TCOMxVHCAPxTEMPI 

PARAM TCOM=0.02,VHCAP=l.E6,TEMPI=20. 

x UNITS IN KG,M,S SYSTEM 

Here TCOM is the thickness of the layers, VHCAP the volumetric heat 

capacity of the soil and TEl1PI the initial temperature. The basic units 

are in the kilogram, meter, second system. 

Derived units here are joule for energy, and joule per m3 per °C for 

· the heat capacity. 

The use of a consistent system of units may result in cumbersome 

numbers, but this is preferable above adaption of dimensions. It is a 

troublesome source of errors if the dimensions do not agree. Sometimes it 

is advantageous, however, to have input or output converted into a better 

known dimension. For instance it is often desirable to have time tabulated 

in hours besides seconds, like in this programme. That must be done in the 

dynamic section: 

DYNAMIC 

HOUR=AMOD(TIME/3600. ,24.) 

Time in hours is found by dividing the number of seconds by 3600. The 

AMOD function takes care that it is reset to zero every 24 hours. The 

integration is: 

HCI=INTGRL(HCI,FL1-FL2) 

HC15=INTGRL(HCI,FL15-FL16) 

Question: What direction is positive for the flow of heat FL? 
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The driving force for the flow of heat is the temperature difference 

between adjacent layers. 

FLl=(Tl1PS-TMP1)xCOND/(0.5xTCOM) 

FL2=(TMP1-TMP2)xCOND/TCOM 

FL15=(TMP14-TMP15)xCOND/TCOM 

FL16=0. 

The last and the first equation formulate the boundary conditions. The 

temperature at the surface TMPS will be given by: 

TMPS=TAV+TAMPLxSIN(6.2832xTIME/86400.) 

PARAM TAV=20. ,TAMPL=IO. 

The temperature of the layers is calculated by: 

TMPl=HCl/(TCOMxVHCAP) 

TMP15=HC15/(TCOMxVHCAP) 

Question: List the dimensions of all variables and parameters. 

The timer card and the output cards may be: 

PRINT TMPS,FLl,HOUR,TMPl,TMP2,TMP3,TMP4, ............. ,TMP15 

TIMER FINTIM=172800.,PRDEL=1800. 

Question: Compare the variation in temperature at a depth of 5 em for a 

soil column of 30 ern and of 15 em. Explain the difference. 

Question: Express the value of the time constant in TCOM,COND,VHCAP. 

What is the influence of doubling the number of layers on 

the computation time? 
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APPENDIX 

In the last program and also in the program on population growth a 

list of similar equations had to be written. There are three methods 

available to reduce the amount of punching work involved. 

For the type of programs where layers or classes are employed the 

MACRO feature does not give much reduction of the work. 

Question: Try this out. 

This feature is available on the computer ln Nijmegen, Wageningen and 

Jerusalem. It enables to write a list of similar equations at once: 

HCl=INTGRL(HCI,FLl-FL2) 

HC15=INTGRL(HCI,FL15-FL16) 

can be substituted by: 

INDEX HC"l 15"=INTGRL(HCI FL"I 15"-FL"2 16") 
' ' ' ' 

This INDEX-label generates the statements above. The pair of numbers 

following a variable indicates the first and the last number of the 

list. Within one statement a variable may be identified by numbers that 

are shifted, like FL in the statements above. The initial heat content 

HCI is the same for all layers so that it need not be numbered. The 

flow of heat may be specified by: 

FL1=(TMPS-TMPl)xCOND/(0.5xTCOM) 

INDEX FL"2, 15"=(TMP"l, 14"-TMP"2, IS")xCOND/TCOM 

FL16=0. 

The first and the last flow have different formulations so that they 

must be defined separately. The INDEX feature can be combined with a 

convenient way of data-input. The problem of the growth of the Dutch 

population can be taken as an example. There are 15 age classes of 

men and women. The initial number of women in the 15 classes can be 

given as: 
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.STOCK ·woi(l-15)=581772. ,586599., .....•........ ,259709. 

This ~~ equivalent to: 

p ARAM:-~WOI 1 =581772. 'WOI2=586599. ' .............. 'WOI 1 5=259 709. 

c. The u.se of FORTRAN 
========~========= 

Gen:er·ally ·this is m~re complicated than the use of the INDEX method, 

but it cannot always be replaced by it, as in the case of the programming 

of the Poisson distribution in the growth of the paramecia. 

FORTRAN can be intermixed freely with CSMP provided it is preceded 

by a NOSORT card that prevents the statements from being sorted by the 

computer. At the end of the FORTRAN section one should put a SORT card, 

that reactivates the sorting routine. 

In this construction the sorting routine cannot sort the statements 

from both sides of a NOSORT section into one package. 

That can be accomplished by using a PROCEDURE instead of a NOSORT 

section. In its use it must be stated what are the input and output 

variables that must be subjected to sorting. 

PROCEDURE A,B,C=NAME(V,W,X,Y,Z) 

computation 

END PRO 

The FORTRAN section is then concluded by ENDPRO. In this case there are 

three input variables and five output variables. Now the procedure is 

sorted as one block, behind the computation of the inputs and before 

the use of the output variables. 

Once it is understood how the INDEX feature works, there are no 

problems with the DO-loop. 

INDEX RH"2 ,24"=H" 1 ,23"-H"2 ,24" 

can be written in FORTRAN as: 

DO SO I=2,24 

RH(I)=H(I-1)-H(I) 

50 CONTINUE 

I is the index of the array which runs from 2 to 24. It is a fixed 

or integer variable as specified on a FIXED card: 

FIXED I 

The number 50 ls here the number of the DO-loop. It can be freely 

chosen by the programmer under the restriction it has not been used 

somewhere else as an identifier. Each DO-loop is started and terminated 

by the same number. 
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RH and H are arrays. The compiler is warned to reserve the 

required space in the memory by: 

STORAGE RH(24),H(24) 

Any number between the brackets of an array 1s integer so that it should 

be written without a decimal point. 

DO-loops may be nested: within the mentioned DO-loop 50 another 

DO-loop may be put with its own number. 

Sometimes a choice must be made between two computative procedures. 

This happened in the computation of the size of the sample out of the 

paramecia. The value o.f MEAN determined whether the GAUSS distribution 

or· the Poisson distribution must be applied. 

IF(MEAN.LT.25.) GO TO 2 

Computation of the Gauss distribution 

GO TO 1 

2 CONTINUE 

Computation of the Poisson distribution 

CONTINUE 

If the condition MEM~ less than 25. is satisfied, the computation leaps 

to 2. The expression within the parenthesis behind the word IF has to 

be written without blanks, and LT must be surrounded by two points. 

The.standard expressions for comparison are: 

LT less than 

GT greater than 

EQ equal to 

NEQ not equal to 

Question: Write a program for the choice between Gauss and Poisson that 

leads to the same result, but employing the expression GT 

instead of LT. 

It is not possible to have subscribed variables printed by means of the 

PRINT statement, but to request output by means of FORTRAN is cumbersome. 

Therefore, it is most convenient to convert the subscribed variables to 

regular ones by: 

Hl=H (J) 

H2=H(2) 

etc. 
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This can be accomplished by: 

INDEX H"I,24"=H("1,24") 

The obtained variables can be asked for on a PRINT card: 

PRINT Hl,H2, etc., H24 or by PRINT H(l-24). 
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INDEX OF DESCRIBED LABELS AND FUNCTIONS 

Name Page 

AFGEN 12 

AMINI 26 

AMOD 39 

DELAY 33 

DELT 7 

DERIV 19 

DO 42 

DYNAMIC 21 

END 7 

IF 43 

IMPULS 27 

INC ON 7 

INDEX 41 

INITIAL 21 

INTGRL 7 

INSW 33 

FINISH 11 

FINTIM 7 

GAUSS 31 

MACRO 22 

METHOD 7 

NOSORT 42 

PARAMETER 7 

PRDEL 20 

PRINT 20 

PROCEDURE 42 

RNDGEN 32 

SORT 42 

STOCK 42 

STORAGE 43 

STOP 7 

TIMER 7 

TITLE 7 

There are more available. They are described ln the FORTRAN 

and CSMP manual. 


