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Stellingen 

1. ABC transporters from Aspergillus nidulans can protect fungal cells against 

natural toxic compounds and xenobiotics. This thesis. 

2. Cells possessing multidrug-efflux proteins as a protection mechanism against 

unrelated natural toxins have a competitive advantage in the chemical war 

between microorganisms in nature. 

3. Understanding the physiological function(s) of ABC transporters facilitates to 

design strategies to overcome multidrug resistance in practice. This thesis. 

4. ABC transporters from filamentous fungi can play a role in secretion of 

endogenous antibiotics. This thesis. 

5. Different ABC transporters from Aspergillus nidulans can transport the same 

compound but can also have a distinct affinity for a specific substrate. This thesis. 

6. Aspergillus nidulans is a suitable model to uncover substrate specificity of ABC 

proteins from other filamentous fungi, such as the human pathogens Aspergillus 

fumigatus and Aspergillus flaws. This thesis. 

7. The imaB mutant of Aspergillus nidulans carries a mutation in a regulatory 

protein. This thesis. 

8. The exciting part of being a molecular biologist is to re-build the "machine of life" 

without a manual of instruction. 

Stellingen behorend bij het proefschrift van Alan C. Andrade: "ABC transporters and 

multidrug resistance in Aspergillus nidulans". 

Wageningen, 19 September 2000. 
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Outline of this thesis 
The ATP-binding cassette (ABC) transporters comprise a large and multifunctional 

family of proteins. ABC transporters are present from archae-bacteria to man but 

became especially known for their involvement in multidrug resistance (MDR) in 

tumour cells. MDR is often accompanied by a massive overproduction of ABC 

transporters. ABC transporters are also involved in various human diseases such as 

cystic fibrosis, adrenoleukodystrophy, the Zellweger syndrome, the Tangier disease and 

familial high-density lipoprotein deficiency. Furthermore, they play a role as peptide 

transporters in antigen presentation. The majority of the ABC transporters in higher 

organisms consists of two transmembrane domains (TMD), each with six predicted 

membrane spanning regions, and two nucleotide binding folds (NBF) in a two times 

two-domain configuration. The nucleotide binding domain can be either located at the 

amino terminus or at the carboxy terminus of the polypeptide, yielding proteins with a 

[TMD-NBF]2 or [NBF-TMD]2 configuration. In Chapter 1 an overview of the 

remarkable variety of cellular functions that these proteins can perform in all living 

cells, is presented. 

The main goal of the studies presented in this thesis was to understand the role 

of ABC-transporter proteins in MDR of the filamentous fungus Aspergillus nidulans. 

Genetic and biochemical data previously generated in the Laboratory of 

Phytopathology, demonstrate that resistance to azole fungicides in laboratory-generated 

ima (imazalil-resistant) mutants is based on an increased energy-dependent efflux 

mechanism that prevents intracellular accumulation of the fungicide. This observation, 

provided the basis for the present work. Similar efflux mechanisms are described for 

human cancer cells with a MDR phenotype. MDR in cancer cells is conferred by 

overexpression of the human ABC transporter MDR1 or P-glycoprotein. Therefore, our 

research focused on a search for ABC-transporter homologues in the A. nidulans 

genome. These studies resulted in the characterization of the first two ABC-transporter 

genes (atrA and atrB) of the ATP-binding cassette superfamily from a filamentous 

fungus (Chapter 2). In addition, we report the characterization of five additional ABC-

transporter-encoding (atrC-atrG) genes from this fungus (Chapter 3 and 5). By now, the 

superfamily of ABC transporters has more than a thousand members identified. Hence, 



it comprises the largest protein family known to date, and many additional atr genes are 

expected to occur in the genome of A. nidulans. 

The role of the identified atr genes in MDR was studied by expression analysis 

after drug treatment and by assessing the sensitivity of genetically-engineered deletion 

and overexpression mutants of atr genes (Chapters 2-6). Expression of atr genes was 

also analyzed in the ima mutants of A. nidulans (Chapter 5). Biochemical experiments 

confirmed that altered sensitivity to fungicides observed in the atr deletion and 

overexpression mutants can be ascribed to differential accumulation of the compounds 

in fungal mycelium (Chapters 3, 4 and 6). 

Attention was also focussed on a putative role of atr genes in secretion of 

endogenous secondary metabolites. More specifically, we have tested the hypothesis 

whether atr genes play a role in penicillin production (Chapter 3). 

In Chapter 7, the results obtained in our studies and relevant aspects that may 

apply to other filamentous fungi are discussed. 



Chapter 1 

ABC transporters and their impact on 
pathogenesis and drug sensitivity 

A.C. Andrade, L.-H. Zwiers and M. A. de Waard 
Pesticide Chemistry and Bioscience - The Food-Environment Challenge (1999), 221-235. 
Edited by G. T. Brooks and T. R. Roberts. Cambridge: Royal Society of Chemistry. 



Chapter 1 

SUMMARY 

This review presents an outline of the multifunctional properties of ABC 

transporters in different biological systems. A well-known function of these 

transport proteins is protection of organisms against toxic compounds. This also 

applies to plant pathogens. We propose that ABC transporters can play an 

important role in plant pathogenesis and fungicide sensitivity and thus can be 

regarded as potential target sites for the discovery of new biologically active 

compounds. 

INTRODUCTION 

Transport is one of the most important and fascinating aspects of life and an essential 

requirement in all organisms. Unicellular organisms need to maintain their homeostatic 

balance with constant uptake and allocation of nutrients and the secretion of toxic 

(waste) products. They must also be able to sense changes in their biotic and abiotic 

environment. In addition, multicellular organisms need to transport metabolites and 

information to and from organs. Multicellular organisms even possess specialized 

organs (tissues) for transport functions, e.g., the blood and nervous system in animals 

and the vascular tissue in plants. 

The main barrier for any transport event is the plasma membrane. Compounds 

can passively cross this barrier by diffusion. Transport by diffusion is possible only 

down a concentration gradient and is limited to solutes able to partition in hydrophobic 

membranes. Therefore, transport of most compounds over membranes is mediated by 

membrane bound proteins with specialized transport functions. With the unraveling of 

the genomes from different organisms the importance of membrane transporters 

becomes obvious. For instance, the complete genomic sequence of the gram-positive 

bacterium Bacillus subtilis possesses 2379 protein encoding ORFs with a known 

function. Of these proteins, 381 are likely to be involved in transport (Kunst et al., 

1997). This means that about 16% of the genes of this organism codes for membrane 

transporters. Several types of membrane transporter systems can be distinguished. 

Ion Channels 

Ion channels are membrane complexes mediating the movement of ions across plasma 

membranes as well as membranes of cell organelles. These channels form a pore 

allowing the passive flux of ions down its electrochemical gradient. The opening of 
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these channels is generally gated. This means that the opening is regulated by changes 

in membrane potential, membrane stretching or binding of a ligand. Ion channels play a 

role in diverse functions such as osmoregulation, cell growth, development, and nutrient 

uptake (Garrill et al, 1993). 

Facilitators 

In contrast to ion channels, facilitators or carriers bind molecules to be transported and 

undergo a reversible change in conformation during transport. Based on the energy 

source driving the transport, facilitators can be classified in primary and secondary 

active transport systems. 

Primary Active Transport Systems. Transporters belonging to this system couple 

transport to ATP hydrolysis. This provides the energy to transport solutes against an 

electrochemical gradient. Besides proton translocating ATPases two other families of 

ATP utilizing transporters are described. The P-type ATPases that make up a large 

superfamily of ATP-driven pumps involved in the transmembrane transport of charged 

substrates and the ATP binding cassette (ABC) transporters (Andre, 1995). 

Secondary Active Transport Systems. Transporters belonging to this system 

derive the energy needed for transport from an electrochemical gradient over the 

membrane. Facilitated diffusion, the transport of solutes down its own electrochemical 

gradient, is generally mediated by uniporters. When transport of solutes takes place 

against an electrochemical gradient, the energy to drive this process is supplied by the 

symport or antiport of H+ or other ions down their electrochemical gradient. A well 

characterized group is the major facilitator (MF) superfamily of transporters. Members 

of this superfamily function as H^-substrate antiporters that use the proton motive force 

to drive transport (Fling et al, 1991). 

This review describes ABC transporters and presents an overview of their 

structural diversity and multifunctional character in a variety of biological systems. 

Emphasis will be on ABC transporters of (filamentous) fungi. 

ABC TRANSPORTERS 

Significance 

ABC transporters are members of a large superfamily of transporters. Generally, they 

are located in plasma membranes and intracellular membranes and include both influx 

and efflux systems. ABC transporters are present from archae-bacteria to man but 
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became especially known for their involvement in multidrug resistance (MDR) in 

tumour cells (Higgins, 1992). The phenomenon of MDR is accompanied by a massive 

overproduction of ABC transporters (Beck, 1991). Besides MDR, they are also involved 

in various diseases such as cystic fibrosis, diabetes, adrenoleukodystrophy and the 

Zellweger syndrome. Furthermore, they play a role as peptide transporters in antigen 

presentation and in chloroquine resistance in the malarial parasite Plasmodium 

falciparum (Foote et al, 1989; Lombard Platet et al, 1996; Neefjes et al, 1993). 

Abundance of ABC Transporters 

ABC transporter encoding genes are present in genomes of species representing all three 

domains of life e.g. archae, eubacteria and eukaryotae. In several of these classes of 

organisms, ABC transporters constitute the largest family of proteins (Table 1). Analysis 

of transport proteins in seven complete genomes of prokaryotic organisms shows that 

ABC-transporter and MF superfamilies account for an almost invariant fraction (0.38 to 

0.53) of all transport systems per organism. The relative proportion of the two classes of 

transporters varies over a tenfold range, depending the organism (Paulsen et al., 1998). 

In eukaryotes the number of ABC transporters reported in literature is steadily 

increasing. In Saccharomyces cerevisiae, to date the only eukaryotic organism with the 

complete genome sequenced, 29 ABC-transporter proteins have been identified. In 

ongoing genome sequencing projects on other eukaryotic species, sequences homologous 

to ABC transporters have been detected as well. 

Molecular Architecture 

ABC-transporter proteins are characterized by the presence of several highly conserved 

amino acid sequences in their ABC domain. Two of these motifs, the Walker A [G-

(X)4-G-K-(T)-(X)6-I/V] and Walker B [R/K-(X)3-G-(X)3-L-(hydrophobic)4-D], are 

found in any ABC transporter and in many other proteins which bind and hydrolyze 

nucleotides (Ames et al, 1990; Ames et al, 1989; Bishop et al, 1989; Walker et al, 

1982). The Walker motifs are separated by 120-170 amino acids including a motif 

characteristic for ABC transporters. This so-called ABC signature, [L-S-G-G-(X)3-R-

hydrophobic-X-hydrophobic-A] is highly conserved among ABC transporters only 

(Croop, 1993). The presence of multiple membrane spanning regions is also 

characteristic for ABC transporters. 
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Table 1. Number of ABC transporters in species representing different domains of life 

Domain 

Archae 

Eubacteria 

Eubacteria 

Eukaryotae 

Category 

Euryarchaeotae 

Firmicutes 

Proteobacteria 

Fungi 

Species 

Archaeoglobus 
julgidus 

Bacillus subtilis 

Escherichia 
coli 

Saccharomyces 
cerevisiae 

Genome 
size (nt) 

2,178,400 

4,214,807 

4,639,221 

12,069,313 

ABC 
transportersa 

40 

77 

79 

29 

Ref. 

(Klenketal., 1997) 

(Kunst etal., 1997) 

(Blattner etal, 1997) 

(Decottignies and 
Goffeau, 1997) 

a The figures do not give the number of transport systems, since these can be assembled from 
different polypeptides. 

All members of the ABC-transporter superfamily have a modular architecture. 

The majority of the ABC transporters in higher organisms consists of two 

transmembrane domains (TMD), each with six predicted membrane spanning regions, 

and two intracellular located nucleotide binding folds (NBF) in a two times two-domain 

configuration. The nucleotide-binding domain can be either located at the amino 

terminus or at the carboxy terminus of the polypeptide, yielding proteins with a [TMD-

NBF]2 or [NBF-TMD]2 configuration. The best characterized examples of ABC 

transporters with the [NBF-TMDeh and [TMD6-NBF]2 configuration are the yeast 

multidrug transporter Pdr5p and the human multidrug transporter P-glycoprotein (P-gp 

or MDR1), respectively (Balzi et ah, 1994; Endicott and Ling, 1989; Gottesman et ah, 

1995; Juliano and Ling, 1976). 

The domains can be formed as separate polypeptides or as a single polypeptide 

with one or more domains fused. Separate polypeptides subsequently aggregate to form 

functional transporters. In eukaryotic organisms the polypeptides are generally 

composed of at least two domains but usually contain all four domains (Blight and 

Holland, 1990). The so-called "half-sized" transporters with a [TMD-NBF] or [NBF-

TMD] configuration are likely to function as dimers (Shani and Valle, 1996). 

Multidrug resistance associated proteins (MRP) form a subfamily of ABC 

transporters with a TMD4-[TMD6-NBF]2 topology. The main difference with other 

ABC transporters resides in the presence of an additional transmembrane spanning 

region at the protein amino terminus. An additional difference is the presence of the so-
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called R-region located between the two homologous halves. The R-region is involved 

in regulation of the protein. MRPs act as glutathione-S-conjugate carriers and have been 

identified in a broad variety of organisms. The best-described example is the human 

MRP involved in broad-spectrum drug resistance (Broeks et al, 1996; Cole et al, 1992; 

Cm etal, 1996). 

Substrates 

Substrates of ABC transporters range from 107 kDa proteins (e.g. haemolysin) to ions 

(e.g. CI") (Anderson et al, 1991; Blight and Holland, 1990). Most of the mammalian 

MDR proteins are (by definition) able to transport a wide variety of compounds 

although substrate specific transporters also occur. For instance, the human ABC-

transporter P-gp (MDR1) has 93 known substrates from various chemical classes either 

of natural or synthetic origin. The main denominator is their high hydrophobicity 

(Gottesman and Pastan, 1993). Recently, a screening of the structures of these 93 

substrates for potential spatial relationships between structural elements responsible for 

interaction with P-gp revealed that the presence of two or three electron donor groups 

with a spatial separation of 2.5 or 4.6 A could be correlated with interaction with P-gp 

(Seelig, 1998). 

Eukaryotic organisms also contain ABC transporters with a specific substrate 

range. For example, Ste6p from S. cerevisiae involved in secretion of the mating-factor 

pheromone and TAP1 and TAP2 involved in human antigen presentation (Kuchler et 

al., 1989; Shepherd et al., 1993). Bacterial ABC transporters involved in drug resistance 

have a very specific substrate specificity and are known as specific drug resistance 

transporters (SDR). Only one bacterial ABC transporter involved in MDR, LmrAp from 

Lactococcus lactis, has been detected (Bolhuis et al., 1996b; Van Veen et ah, 1998). 

Although ABC transporters are generally described as transporters some can 

also act as channels and regulators of channels. The cystic fibrosis transmembrane 

conductance regulator (CFTR) is an ABC transporter with channel function. The 

associated chloride channel is time and voltage independent and requires ATP 

hydrolysis for opening (Bear et al., 1992; Riordan et al., 1989). The human P-gp seems 

to control an associated ATP-dependent volume regulated chloride channel activity 

(Hardy etal, 1995; Valverde etal, 1996). 
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P-GLYCOPROTEIN 

The human P-gp (MDR1) is probably the best characterized ABC transporter involved 

in multidrug resistance. Detailed structure-function relationship studies have been 

performed and its structure has been determined to 2.5-nm resolution (Rosenberg et ah, 

1997). P-gp was first described in hamster cell lines in which the MDR phenomenon 

was correlated with the overexpression of a 170 kDa protein (Juliano and Ling, 1976). 

In human, two P-gp homologues, MDR1 and MDR3, have been identified. MDR1 is 

involved in broad-spectrum drug resistance and MDR3 in the translocation of 

phosphatidylcholine (Van Helvoort et ah, 1996). The overexpression of MDR1 in 

resistant cells with a low and high degree of resistance is due to elevated mRNA levels 

caused by regulatory mutations and gene amplification, respectively (Gudkov, 1991). 

Catalytic Sites 

Biochemical evidence and amino acid sequence information suggest that P-gp has 

ATPase activity. Membrane bound or purified P-gp preparations show a basal ATPase 

activity which can be stimulated by several drugs (al-Shawi and Senior, 1993). Both 

nucleotide binding folds bind and hydrolyze ATP (al-Shawi et ah, 1994). Synthetic 

half-sized P-gp molecules also display basal ATPase activity. However, interaction 

between both halves seems necessary for stimulation of ATPase activity by drugs (Loo 

and Clarke, 1994). This is also demonstrated by mutating either of the two-nucleotide 

binding domains. Inactivation of NBFi results in a block of ATP hydrolysis in NBF2 

and abolishes the drug extrusion capacity of the cells, and vice versa (Loo and Clarke, 

1995a). Interaction between nucleotide binding sites was also demonstrated by 

vanadate-trapping experiments. This inhibitor of ATPase activity traps ADP in a 

catalytic site and trapping of ADP at only one site is sufficient to block ATPase activity 

of the entire protein (Urbatsch et ah, 1995a, 1995b). 

These results have lead to a model for the catalysis mediated by P-gp in which 

both catalytic sites alternately undergo ATP hydrolysis. ATP binding at one site 

promotes ATP hydrolysis at the other. This induces a conformational change preventing 

the hydrolysis of the new-bound ATP. This new conformation has a high energetic state 

and relaxation of this conformation leads to the release of ADP and Pj, and transport of 

a substrate (Senior et al., 1995). 
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Substrate Binding and Transport 

Photoaffinity labeling and mutant analyses indicate that both membrane-bound halves 

of ABC transporters are involved in substrate binding. The substrate binding sites are 

located at the cytoplasmic site of the membrane, especially in transmembrane loops 4, 5, 

6, 10, 11 and 12 (Greenberger, 1993; Loo and Clarke, 1995b; Safa et al, 1990; Zhang et 

al, 1995). 

The way ABC transporters expel their substrates is not completely understood. 

ABC transporters probably act as "hydrophobic membrane cleaners" by detecting drugs 

which partition in membranes because of their hydrophobic nature. The possibility that 

transport out of the cytosol also contributes to the efflux can not be excluded (Bolhuis et 

al, 1996a, 1996b; Gottesman and Pastan, 1988). The result of both transport processes 

is reduced accumulation of toxic compounds at their intracellular target site. The 

recently determined structure of P-gp revealed a large central pore forming a chamber 

within the membrane (Rosenberg et al, 1997). Whether this pore is involved in the 

transport process or whether the transport occurs through conformational changes upon 

ATP-binding and hydrolysis remains unclear. 

PHYSIOLOGICAL FUNCTIONS 

Prokaryotes 

Bacterial ABC transporters can be functionally grouped in two major distinct subfamilies. 

The superfamily of importers is responsible for transport of nutritional substrates. These 

transporters are also called periplasmic permeases and have a multisubunit component 

system with a similar structural organization (Doige and Ames, 1993). The presence of a 

periplasmic binding protein and the synthesis of the import system subunits (NBF and 

TMD) as separate polypeptides are distinctive features to the eukaryotic ABC proteins. 

The histidine permease from Salmonella typhimurium is a well characterized member of 

this subfamily. It is composed of the histidine-binding protein (HisJp) as the receptor, and 

the membrane-bound complex formed by two copies of HisPp (NBF) plus the HisQp and 

HisMp (TMD) (Kerppola et al, 1991). 

The subfamily of ABC exporters is involved in secretion of proteins, peptides and 

non-proteinaceus compounds (Fath and Kolter, 1993). In general, a basic functional 

structure for ABC exporters is composed of dimeric molecules (Wandersman, 1998). The 

ATP-binding motif of this subfamily shows a higher degree of similarity with the 

eukaryotic ABC proteins as compared to the above mentioned ABC importers. In addition, 

10 
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some ABC exporters have their NBF and TMD domains synthesized as a single 

polypeptide. In gram-negative bacteria, additional export proteins are required for transport 

to the extracellular medium. For instance, HlyDp and TolCp which are involved in the 

secretion of haemolysin in E. coli (Wandersman and Delepelaire, 1990). Other examples 

of prokaryotic ABC transporters are the export system of proteases A, B and C in the 

phytopathogenic bacterium Erwinia chrysanthemi (Letoffe et al, 1990), the secretion 

machinery of peptide antibiotics (bacteriocins) from Lactococcus lactis (Stoddard et al, 

1992), and the |3-l,2-glucans oligomers export systems of the plant pathogen 

Agrobacterium tumefaciens (ChvAp) (Cangelosi et al, 1989), and the symbiont Rhizobium 

meliloti (NdvAp) (Stanfield et al, 1988). p-l,2-glucans oligomers are involved in the 

attachment of the bacteria to plant cells. Therefore, ChvAp can be regarded as a virulence 

and NdvAp as a nodulation factor. 

Eukaryotes 

Yeasts. With the unraveling of the complete genome sequence of S. cerevisiae 29 

ABC proteins were identified by sequence homology (Decottignies and Goffeau, 1997). 

Only ten of these proteins have a known physiological function. The 29 encoded ABC 

polypeptide sequences could be divided in six subfamilies. The majority of the proteins 

have the tetra-domain modular architecture comprising nine proteins with the [NBF-

TMD]2 and seven with the reverse [TMD-NBF]2 topology. Furthermore, "half-sized" 

[TMD-NBF] proteins, which likely function as dimers, were detected. For instance, the 

peroxisomal ABC transporters Pxalp and Pxa2p form heterodimers and are involved in 

long-chain fatty acid transport and P-oxidation (Shani and Valle, 1996). The yeast ABC 

proteins with a known physiological function, different from a role in MDR, are listed in 

Table 2. The MDR proteins of S. cerevisiae are discussed bellow, in the section multidrug 

resistance. 

In the fission yeast Schizosaccharomyces pombe and the human pathogen Candida 

albicans, ABC proteins have also functionally been described. All of them have an 

orthologue in the genome of S. cerevisae (Balan et al., 1997; Christensen et al., 1997; 

Ortiz et al, 1992; Ortiz et al, 1995; Raymond et al, 1998). 

Filamentous Fungi. Members of the ABC-transporter superfamily have been 

described for at least seven fungal species (Table 3). The saprophyte Aspergillus nidulans, 

the human-pathogens Aspergillus flams and Aspergillus fumigatus and the plant pathogens 

11 
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Magnaporthe grisea (rice blast), Botryotinia fuckeliana (grey mould), Mycosphaerella 

graminicola (wheat leaf blotch) and Penicillium digitatum (citrus green mould) (Del Sorbo 

etal., 1997;Nakaunee?a/, 1998; Schoonbeek, 1998;Tobinef a/., 1997; Zwiers, 1998). 

Table 2. ABC transporters from Saccharomyces cerevisiae with an identified 
physiological function 

Gene 

STE6 

ATMl 

PXAl 

PXA2 

GCN20 

YEF3 

GenBank 
number 

Z28209 

Z49212 

L38491 

X74151 

D50617 

U20865 

Size 
(aa) 

1290 

690 

870 

853 

752 

1044 

TMD 

12 

5 

5 

6 

0 

3 

Topology 

[TMD + 
NBF]2 

TMD + 
NBF 

TMD + 
NBF 

TMD + 
NBF 

[NBF]2 

[NBF]2 

Knock­
out 

Viable 

Restricted 
growth 

Viable 

Viable 

Viable 

No growth 

Function 

a-pheromone 
export 

Mitochondrial 
DNA maintenance 

VLCFA beta-
oxidation 

Interaction with 
PXAl 

Interactions with 
tRNA and GCN2 

Aminoacyl-tRNA 
binding to 
ribosomes 

Ref. 

(Kuchlerefa/., 
1989) 

(Leighton, 1995) 

(Hettema et al., 
1996) 

(Hettema et al, 
1996) 

(Vazquez de 
Aldana et al., 
1995) 

(Sandbaken et al., 
1990) 

In addition, many other members are expected to be revealed in ongoing fungal 

genome sequencing projects. We screened available expressed sequence tags (EST) data­

bases of A. nidulans and N. crassa for potential homologues of ABC transporters with the 

conserved motifs listed in Table 3 (Nelson et al., 1997; Roe et al., 1998). The search was 

performed with the BLAST program of sequence alignment and yielded seven 

homologous sequences from A. nidulans and two from N. crassa (Table 4) (Altschul et al., 

1997). EST clones identical to atrC and atrD, two previously characterized genes from A. 

nidulans, were also detected (Andrade etal., 1998). 

The physiological relevance of ABC transporters in filamentous fungi is probably 

high (De Waard, 1997). For instance, a number of them may be involved in secretion of 

secondary metabolites, which in the case of fungitoxic compounds, can act as a self-

protection mechanism. Similarly, ABC transporters may provide protection against toxic 

metabolites produced by other microorganisms present in particular ecosystems. Plant 

pathogenic fungi have to cope with a variety of plant defense compounds and they may 

possess ABC transporters that function in protection against the toxic action of such 

compounds as well. These hypotheses are supported by the observation that a wide variety 

12 
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of natural compounds such as isoflavonoids, plant alkaloids and antibiotics can act as 

substrates of ABC transporters (Gottesman and Pastan, 1993; Seelig, 1998). In addition, 

specific ABC transporters of filamentous fungi may function in secretion of a mating 

factor as shown for several yeast species. Therefore, ABC transporters can mediate 

processes important for survival of fungi in nature and hence, may function as significant 

parameters in the population dynamics of these organisms. 

Table 3. Multiple alignment of conserved sequences from reported ABC-transporter 
proteins from filamentous fungi 

Species 

A. nidulans 

A. nidulans 

B.fiickeliana 

M. grisea 

A.fiimigatus 

A. flaws 

A. nidulans 

A. nidulans 

B.fiickeliana 

M. grisea 

A.fiimigatus 

A.flavus 

A.fiimigatus 

Gene 

atrA 

atrB 

Pgpl 

abcl 

mdrl 

mdrl 

atrA 

atrB 

Pgpl 

abcl 

mdrl 

mdrl 

mdr2 

GenBank 
number 

Z689M 

Z68905 

Z68906 

AF032443 

U62934 

U62932 

Z68904 

Z68905 

Z68906 

AF032443 

U62934 

U62932 

U62936 

Domain 

Walker A 

LGRPGTGCSTFL 

LGRPGSGCTTLL 

LGRPGSGCSTFL 

LGPPGSGCSTFL 

VGPSGSGKSTW 

VGPSGSGKSTII 

* * * * 

Walker A 

MGVSGAGKTTLL 

MGSSGAGKTTLL 

MGASGAGKTTLL 

MGVSGAGKTTLL 

VGPSGCGKSTTI 

VGASGSGKSTTI 

VGPSGGGKSTIA 

* ** ** * 

N terminal 

ABC signature 

VSGGERKEVSIAE 

VSGGERKRVSIIE 

VSGGERKRVSIAE 

VSGGERKRVTIAE 

LSGGQKQRIAIAR 

LSGGQKQRIAIAR 

*** * * 

C terminal 

ABC signature 

LNVEQRKLLTIGV 

LSVEQRKRVTIGV 

LSVEQRKRVTIGV 

LNVEQRKRLTIGV 

LSGGQKQRVAIAR 

LSGGQKQRIAIAR 

LSGGQKQRIAIAR 

* * * 

Walker B 

AAWDNSSRGLD 

FCWDNSTRGLD 

VSWDNSTRGLD 

QCWDNSTRGLD 

LLLDEATSALD 

LLLDEATSALD 

* ** 

Walker B 

LFLDEPTSGLD 

IFLDEPTSGLD 

LFLDEATSGLD 

LFVDEPTSGLD 

LLLDEATSALD 

LLLDEATSALD 

LILDEATSALD 

** ** ** 

Asterisks indicate identical amino acid residues. 

13 



Chapter 1 

Table 4. Partial sequences of putative ABC transporters detected in the Expressed 
Sequence Tags (EST) databases from Aspergillus nidulans (A.n.) and Neurospora crassa 
(N.c.) 

Species 

A.n. 

A.n. 

A.n. 

A.n. 

A.n. 

A.n. 

A.n. 

N.c. 

N.c. 

EST clone 

h8h04aljl 

c9e04al.fl 

o8f05al.fl 

e7d04aljl 

m7a02al.rl 

e4a06alxl 

k5a05al.fl 

NCM8C11T7 

NCC3E5T7 

GenBank 
number 

AA785885 

AA783966 

AA787659 

AA784517 

AA786886 

AA784449 

AA786673 

AA901957 

AA901865 

Walker A 

GENGSGKTTLM 

GRNGAGKSTLM 

GLNGOGKSTLI 

ABC signature 

NVEQRKRLTIGV 

SGGQKQRLCIAR 

SQGQRQLVGLGR 

SDGQKSRIVEAL 

Walker B 

LFLDEPTSGLD 

LLLDEATSSLD 

LLLDESTSALD 

SFLDEPTNTVD 

VIMDEATASID 

LLLDEPTNGLD 

S. cerevisae 
homologue 

PdrlOp 

Mdllp 

Ycflp 

YeBBp 

YPL226w 

YPL226w 

YeOBp 

YLL015w 

YER03& 

BLAST 
score " 

e47 

e " 

e w 

e30 

e23 

e"0' 

e * 

e20 

c" 

a Based on homology of the full EST clone. 

Higher eukaryotes. Basically, the majority of the ABC transporters characterized in 

higher eukaryotes have an orthologue in the S. cerevisae genome or at least a very close 

homologue with similar substrate specificity. However, due to evolutionary speciation, 

physiological needs may be different and account for differences in ABC-transporter 

proteins. This is well illustrated by the high number of MRP-like transporters already 

characterized in the genome of Arabidopsis thaliana (Tommasini et ah, 1997). These 

transporters share with Ycflp, the closest yeast homologue, glutathione-S-conjugate 

transport activity. In addition, plant MRP proteins have the property to transport 

chlorophyll catabolites (Lu et al., 1998; Tommasini et al., 1998). Other physiological 

functions of ABC transporters in higher eukaryotes have been described as well (Anderson 

et al., 1991; Broeks et al., 1996; Luciani and Chimini, 1996; Paulusma et al., 1996; Ruetz 

and Gros, 1994; Van Helvoort et al., 1996). 

MULTIDRUG RESISTANCE 

The use of cytotoxic compounds such as drugs in clinical medicine and disease control 

agents in agriculture is an essential component of human life. However, the widespread 

and sometimes excessive use of these compounds has resulted in a high selection pressure 

resulting in drug resistant populations. This phenomenon is of major concern to society. 
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In general, the major mechanisms underling resistance in prokaryotes and 

eukaryotes can be classified as follows: (a) enzymatic inactivation or degradation of drugs, 

(b) alterations of the drug target-site and, (c) decreased drug-accumulation caused by 

energy-dependent drug efflux. More than one mechanism may operate in concert and the 

sum of different alterations represents the final resistant phenotype. 

In several cases the resistance mechanism not only conferred decreased sensitivity 

to a specific drug (and analogues) used during the selection process, but also to several 

structurally and functionally unrelated compounds. This phenomenon, termed multidrug 

resistance (MDR) has been described to operate in a broad range of organisms. It relates to 

decreased accumulation of drugs via energy-dependent drug efflux systems. The majority 

of the transport proteins involved in drug-extrusion as determinants of MDR belong either 

to the ABC transporter or the MF superfamilies. 

ABC Transporters and MDR in Prokaryotes and Lower Eukaryotes 

In prokaryotes most of the characterized efflux-systems involved in MDR utilize the 

proton motive force as energy source for transport and act via a drug/Fi* antiport 

mechanism. The first example of a prokaryotic ABC transporter involved in MDR is the 

LmrAp protein from Lactococcus lactis (Van Veen et al, 1996). The gene encodes a 590 

aa membrane protein with the TMDg-NBF topology. The protein probably functions as a 

homodimer. Functional studies performed in E. coli indicate that its substrate specificity 

comprises a wide range of hydrophobic cationic compounds, very similar to the pattern 

displayed by the human MDR1. Surprisingly, when expressed in human lung fibroblast 

cells, LmrAp was targeted to the plasma membrane and also conferred typical multidrug 

resistance, confirming the evolutionary relation of these two proteins (Van Veen et al., 

1998). 

Genes encoding ABC transporters in parasitic protozoa have been isolated and 

analyzed from Plasmodium, Leishmania, and Entamoeba spp., and variation in the copy-

number and/or levels of expression have been implicated in drug resistance (Ullman, 

1995). 

From S. cerevisiae, at least four members of the ABC transporter superfamily are 

involved in MDR: Pdr5p, Snq2p, Ycflp and Yorlp (Balzi et al, 1994; Cui et al, 1996; 

Decottignies et al, 1995; Li et al, 1997). Pdr5p and Snq2p have the [NBF-TMD]2 

topology and preferential substrate specificity for aromatic cationic compounds, whereas 

Ycflp and Yorlp have the [TMD-NBF]2 orientation and substrate specificity for anionic 
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compounds. Despite its inverted topology and low sequence similarity, Pdr5p seems to be 

the yeast functional homologue of the human MDR1, if substrate specificity is considered 

(Kolaczkowski et al, 1996). The presence of several other ABC proteins from S. 

cerevisiae with high homology to the ones involved in MDR and with common regulatory 

mechanisms suggests that other ABC transporters may be involved in MDR of S. 

cerevisiae as well (Balzi and Goffeau, 1995). In yeast species such as S. pombe and C. 

albicans multidrug-efflux systems based on overproduction of ABC transporters have also 

been identified. Examples are Cdrlp and Cdr2p from C. albicans and Pmdlp and Bfrlp 

from S. pombe (Nagao et al, 1995; Nishi et al., 1992; Sanglard et al, 1996,1997). 

MDR in Filamentous Fungi 

MDR in filamentous fungi has been reported for laboratory generated mutants of A. 

nidulans selected for resistance to azole fungicides. In genetically defined mutants, 

resistance to azoles is based on an energy-dependent efflux mechanism, which results in 

decreased accumulation of the compounds in fungal mycelium (De Waard, 1995). This 

mechanism also operates in other species such as P. italicum, B. fuckeliana, Nectria 

haematococca and probably M. graminicola (De Waard, 1995; Joseph-horne et al., 1996). 

In our laboratory, ABC transporter encoding genes bom A. nidulans, B. fuckeliana and M. 

graminicola, have been isolated and are currently functionally characterized (Andrade et 

al, 1998; Del Sorbo et al, 1997; Schoonbeek, 1998; Zwiers, 1998). The isolated genes 

display a high degree of homology with Pdr5p and Pmdlp, yeast ABC transporters 

involved in MDR. AtrBp from A. nidulans complements a Pdr5p null mutant of S. 

cerevisiae, suggesting indeed a role in fungicide sensitivity and resistance. 

Very recently, the involvement of an ABC transporter (Pmrlp) in azole resistance 

has been established for field isolates of the phytopathogenic fungus P. digitatum, the 

causal agent of citrus green mold (Nakaune et al, 1998). Another example is AfuMdrlp 

from the human pathogen A. fumigatus which confers decreased sensitivity to the 

antifungal compound cilofiingin when overexpressed in yeast (Tobin et al, 1997). 

EVOLUTIONARY ASPECTS OF ABC TRANSPORTERS 

The ubiquitous occurrence of ABC transporters throughout the living world indicates the 

ancient character of this superfamily of proteins. They are believed to date back in 

evolutionary time for more than 3 billion years (Saier et al, 1998). Thus, the 

understanding of evolutionary relationships among these transporters might be helpful in 
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elucidating the origins of multidrug efflux systems, their physiological functions, and more 

important, the nature of their substrate specificity. 

Recently, two paradigms on the evolution of bacterial multidrug transporters have 

been proposed. The first one describes that the transporters have evolved to protect cells 

from structurally diverse environmental toxins. The second one states that the transporters 

initially functioned in transport of specific physiological compounds (or a group of 

structurally related natural compounds) with the ability to expel drugs being only a 

fortuitous side effect (Neyfakh, 1997). Experimental evidence has been proposed for both 

hypotheses, but it is unlikely that transport proteins have evolved numerous distinct 

binding sites for structurally dissimilar molecules and therefore, a physiological substrate 

is likely to exist (Poole, 1997). Furthermore, the presence of accessory factors as 

determinants of substrate specificity, such as the periplasmic binding proteins of the 

prokaryotic uptake systems or the eukaryotic glutathione-S-conjugate export pumps, could 

explain, in part, the accommodation of structurally unrelated compounds by ABC proteins. 

Comparison of multidrug transport systems from six complete genomes of bacteria 

(three pathogenic and three non-pathogenic), indicates that, with one exception 

{Methanococcus jannaschii), the number of multidrug-efflux pumps is approximately 

proportional to the total number of encoded transport systems as well as the total genome 

size. Therefore, the similar numbers of chromosomally encoded multidrug efflux systems 

in pathogens and nonpathogens suggest that these transporters have not arisen recently in 

pathogenic isolates in response to antimicrobial chemotherapy (Saier et al, 1998). 

However, during speciation, novel ABC-transporter proteins with modified substrate 

specificity might have evolved, as a result of fusions, intragenic splicings, duplications and 

deletions, in order to accomplish the different needs of organisms occurring in distinct 

environments. This can be illustrated by the occurrence of bacterial ABC transporters as 

separate subunits (e.g., NBF and TMD) and by the inverted topology of domains observed 

in eukaryotic proteins. In addition, neither homologous proteins nor a characteristic motif 

of the so-called cluster I of yeast ABC transporters have, as yet, been found in prokaryotes 

(Decottignies and Goffeau, 1997). 

The considerations mentioned above and the experimental data available suggest 

that a MDR phenotype is not primarily caused by the appearance of a novel transport 

protein with a modified substrate profile but rather by an increased expression level of a 

pre-existent transport system as a result of alterations in regulation of such proteins (PDR 

in yeast) or gene amplification (MDR in mammalian). 
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PERSPECTIVES 

Since the early 1980's the significance of ABC transporters for drug sensitivity and 

resistance has been recognized in the medical field. A similar interest in the role of ABC 

transporters in agriculture only started recently. Now, there is a growing awareness that 

ABC transporters can be involved in mechanisms of natural insensitivity and acquired 

resistance in a wide range of organisms. In this review, we provide evidence that this 

also holds true for (pathogenic) filamentous fungi. 

In the treatment of MDR-cancer cells, inhibitors of ABC-transporter activity are 

used as synergists of drugs to reduce the MDR phenotype. If MDR would be the main 

mechanism of resistance to azoles, similar inhibitors could be useful in mixtures with 

these fungicides to increase control of azole resistant populations of (plant) pathogenic 

fungi. If ABC transporters also play a role in protection against plant defense 

compounds and/or secretion of pathogenicity factors, inhibition of ABC transporter 

activity would result in enhanced host resistance and/or reduced virulence of the 

pathogen. Both processes would reduce disease development. As described for S. 

cerevisiae and S. pombe specific ABC transporters can be responsible for the transport 

of a mating factors (Christensen et ah, 1997; McGrath and Varshavsky, 1989). 

Inhibition of the activity of such specific ABC transporters would prevent mating, 

reduce the genetic variation and retard the epidemiology of plant pathogenic fungi. 

In S. cerevisiae and C. albicans, ABC transporters with an [NBF]2 configuration 

have been described. These so-called cluster IV ABC transporters interact with tRNA 

and act as elongation factors. ABC proteins of this cluster are interesting target sites for 

antifungal compounds as they seem to be absent from mammals (Decottignies and 

Goffeau, 1997; Vazquez de Aldana et al, 1995). 

Although evidence is accumulating that fungal ABC transporters are involved in 

pathogenesis and (fungicide) resistance, more research is needed to assess the full 

significance of ABC transporters in these phenomena. Knock-out mutants and mutants 

overexpressing ABC transporters will help gaining insight in the physiological 

functions of ABC-transporters. Knock-out mutants lacking the natural insensitivity 

provided by ABC transporters can also be used as tools to screen for compounds with 

intrinsic fungitoxic activity. 
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SUMMARY 

Two single-copy genes, designated atrA and atrB (ATP-binding cassette transporter A 

and B), were cloned from the filamentous fungus Aspergillus nidulans and sequenced. 

Based on the presence of conserved motifs and on hydropathy analysis, the products 

encoded by atrA and atrB can be regarded as novel members of the ATP-binding 

cassette (ABC) superfamily of membrane transporters. Both products share the same 

topology as the ABC transporters Pdr5p and Snq2p from Saccharomyces cerevisiae and 

Cdrlp from Candida albicans, which are involved in multidrug resistance of these 

yeasts. Significant homology also occurs between the ATP-binding cassettes of AtrAp 

and AtrBp, and those of mammalian ABC transporters (P-glycoproteins). The 

transcription of atrA and, in particular, atrB in mycelium of A. nidulans is strongly 

enhanced by treatment with several drugs, including antibiotics, azole fungicides and 

plant defense toxins. The enhanced transcription is detectable within a few minutes after 

drug treatment and coincides with the beginning of energy-dependent drug efflux 

activity, reported previously in the fungus for azole fungicides. Transcription of the atr 

genes has been studied in a wild type and in a series of isogenic strains carrying the 

imaA and/or imaB mutations, which confer multidrug resistance to various toxic 

compounds such as the azole fungicide imazalil. atrB is constitutively transcribed at a 

low level in the wild type and in strains carrying imaA or imaB. Imazalil treatment 

enhances transcription of atrB to a similar extent in all strains tested. atrA, unlike atrB, 

displays a relatively high level of constitutive expression in mutants carrying imaB. 

Imazalil enhances transcription of atrA more strongly in imaB mutants, suggesting that 

the imaB locus regulates atrA. Functional analysis demonstrated that cDNA of atrB can 

complement the drug hypersensitivity associated with PDR5 deficiency in S. cerevisiae. 

INTRODUCTION 

Resistance to multiple chemically unrelated drugs is a general phenomenon described in both 

prokaryotes (Lewis, 1994) and eukaryotes (Higgins, 1992). This phenomenon is referred to as 

multidrug resistance (MDR). MDR can be caused by increased ATP-dependent efflux of toxic 

compounds from the cytoplasm and plasma membrane, mediated by membrane-bound ATP-

dependent transporters of the ABC (ATP-Binding Cassette) superfamily (reviews by Balzi 

and Goffeau, 1995; Gottesman and Pastan, 1993; Juranka et al., 1989; Schinkel and Borst, 

1991; Ullman, 1995). Increased transcription of the mammalian gene MDR1, usually 

accompanied by gene amplification, is generally observed in tumour cell lines displaying 
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MDR to antitumour drugs. Yeast genes encoding another subfamily of ABC transporters, 

such as PDR5 (Balzi et al, 1994; Bissinger and Kuchler, 1994; Hirata et al, 1994) and SNQ2 

(Servos et al, 1993), can also confer a multidrug resistance phenotype when introduced into 

cells in multiple copies on plasmids (Haase et al, 1992; Leppert et al., 1990), or upon point 

mutation of the regulatory loci PDR1 and PDR3 (Balzi and Goffeau, 1994, 1995). Yeast 

proteins Snq2p and Pdr5p display a domain topology different from the mammalian protein. 

They also share sequence peculiarities in the nucleotide-binding domain, such as degenerated 

nucleotide-binding motifs (Balzi et al, 1994). Despite these structural differences, the yeast 

Pdr5p and Snq2p share with the mammalian MDR1 protein many biochemical features and 

functions of drug transport coupled to hydrolysis of nucleotide triphosphates (Decottignies et 

al, 1994, 1995). 

The topology of the mammalian MDR1 gene product, also known as P-glycoprotein (Juliano 

and Ling, 1976) is characterized by two membrane-anchored hydrophobic moieties with six 

transmembrane stretches, alternating with two intracellular ATP-binding hydrophilic 

moieties. The hydrophilic domains comprise a conserved ABC region, including the ATP-

binding motifs known as Walker A and Walker B (Walker et al., 1982) and another conserved 

motif, the so-called ABC signature, preceding the Walker B motif. 

Mammalian P-glycoproteins are in general encoded by small gene families with two 

or three representatives in human and rodents, respectively, designated as MDR genes 

(Gottesman and Pastan, 1993). Although P-glycoproteins are best known for their role in 

MDR, some of them also function in secretion of non-toxic products (Smit et al., 1993; Van 

Kalken et al., 1993). This is also the case for the P-glycoprotein homologue Ste6p from 

Saccharomyces cerevisiae. This transporter mediates the secretion of the lipopeptide mating 

pheromone a and its deletion causes sterility (Kuchler et al., 1989; McGrath and Varshavsky, 

1989). 

In addition to P-glycoproteins, another mammalian ABC transporter, the Multidrug 

Resistance-associated Protein (MRP), is also related to MDR (Cole et al., 1992). In yeast, the 

ABC genes YOR1 and YCF1, conferring resistance to oligomycin, cadmium, and diamid, 

respectively (Katzmann et al, 1995; Szczypka et al, 1994), most closely resemble MRP 

subfamily members in structure and function. Ycflp, like MRP1, participates in the 

glutathione-dependent detoxification pathway by transporting glutathione S-conjugates (Li et 

al, 1996). 

Analysis of the complete yeast genome revealed the existence of 29 genes encoding 

ABC proteins displaying various combinations and dispositions of two to four hydrophobic 
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and hydrophilic domains (A. Decottignies and A. Goffeau, in preparation). On the basis of 

structural features such as domain composition and sequence homologies, it is possible to 

distinguish up to five different subclasses of ABC proteins (S. Michaelis and C. Berkower, in 

press; A. Decottignies and A. Goffeau, in preparation). 

The phenomenon of MDR described for mammals and yeasts, also occurs in 

saprophytic and pathogenic filamentous fungi (De Waard et al., 1996). Mutants of several 

fungal species selected for resistance to azole fungicides, which exert their toxic action by 

inhibition of the activity of sterol 14oc-demethylase, displayed pleiotropic effects to many 

other, chemically unrelated compounds. Genetic determinants displaying pleiotropic effects 

have been identified and mapped (Van Tuyl, 1977). In A. nidulans, resistance to the azole 

fungicide imazalil can be determined by mutations in at least eight different genes (Van Tuyl, 

1977). The mutations imaA (mapped on linkage group VII) and imaB (mapped on linkage 

group V) result in altered levels of resistance to other non-related toxicants, such as acriflavin 

and neomycin. The mechanism of drug resistance in these mutants depends on decreased 

accumulation caused by energy-dependent efflux of the azole fungicides from mycelium (De 

Waard and Van Nistelrooy, 1980), as described for drugs from multidrug-resistant tumour 

cells. As yet, none of these ima loci have been isolated. 

The present paper reports the isolation, molecular cloning and functional analysis of 

two genes, atrA and atrB (ATP-binding cassette transporter A and B), encoding ABC 

transporters in the filamentous fungus A. nidulans. These are, to our knowledge, the first ABC 

superfamily members to be isolated that are probably involved in determining MDR in 

filamentous fungi. The two genes are differentially expressed in wild type and isogenic ima 

mutants after treatment with cycloheximide, the phytoalexin pisatin (a plant defense product 

of pea) and azole fungicides. The function of both genes has been analyzed by 

complementation of a PDR5 null mutant of S. cerevisiae and characterization of the 

phenotype of the transformants. On the basis of these observations, we hypothesize that 

resistance in the ima mutants of A. nidulans may relate to activity of ABC transporters. This 

conclusion is of major interest for the understanding and management of resistance to azole 

antimycotics in mammalian pathogens such as A. fumigatus, the causal agent of systemic 

aspergillosis (Tobin et al., 1996). Since this type of disease has steadily increased over the last 

ten years, especially in immunodepressed patients, this topic is of major concern. A 

comparable critical situation has been described for agriculture, where azole fungicides are 

widely used to control harmful plant pathogens in major agricultural crops (De Waard, 1994). 

30 



The ABC transpoters AtrA and AtrB from A. nidulans 

RESULTS 

Phenotype characterization of multidrug resistant mutants 

The pleiotropic drug resistance spectra of several isogenic ima mutants of A. nidulans were 

studied by determining their sensitivity to several unrelated chemicals in radial growth tests 

(Table 1). The results of our tests largely confirm those obtained by Van Tuyl (1977). ima A 

(strain 130) and imaB (strain 146) mutations confer similar levels of resistance to the azole 

and related fungicides imazalil, fenarimol and triadimenol, and their effects are additive 

(strain R264). imaA also confers resistance to neomycin and tomatine. imaB determines 

hypersensitivity to acriflavin and neomycin, and resistance to pisatin. The low degree of 

hypersensitivity to cycloheximide conferred by imaB described by Van Tuyl (1977), was not 

observed here, ima A and imaB do not alter significantly the level of resistance to other 

compounds tested (chlorpromazine, 4-nitroquinoline-JV-oxide, oligomycin, triflupromazine, 

and valinomycin). 

Table 1. Pleiotropic effects of isogenic imazalil-resistant mutant strains of Aspergillus 
nidulans in radial growth tests 

Compound 

Acriflavin 

Fenarimolb 

Imazalilb 

Neomycin 

Pisatin 

Tomatine 

Triadimenolb 

EC50 (Jig ml"1)a 

003 (wild-type) 
646 ±8 

3.8 ±0.2 

0.08 ± 0.004 

1120 ±20 

23.1 ±1.2 

68.2 ±3.3 

13.5 ±0.6 

130 (imaA) 
607 ± 22 
(0.91) 
8.2 ±0.5 
(2.2) 
0.45 ± 0.02 
(5.6) 
2360 ± 30 
(2.1) 
29.5 ±2.2 
(1.3) 
146 ±4 
(2.1) 
96.6 ±2.3 
(7.2) 

146 (imaB) 
89 ±4 
(0.14) 
25.5 ±0.9 
(6.7) 
0.86 ± 0.02 
(10.7) 
288 ±7 
(0.2) 
108 ±6 
(4.7) 
54.5 ± 3.4 
(0.8) 
101 ±3 
(7.5) 

264 (imaA + imaB) 
137 ±4 
(0.21) 
27.3 ±1.3 
(7.2) 
2.20 ± 0.02 
(27.5) 
652 ± 14 
(0.6) 
98.9 ±6.1 
(4.3) 
89.3 ±4.1 
(1.3) 
226 ±6 
(16.7) 

a The EC50 values are given as means with standard deviations of three replicates. The resistance 
factor (EC50 mutant: EC50 wild type) is given in parentheses. 
b Azole fungicides and related compounds that inhibit sterol biosynthesis. 

Isolation and sequence analysis of the atrA and atrB genes 

In order to isolate genes from A. nidulans conferring multiple drug resistance, we screened a 

non-amplified genomic library of A. nidulans with a probe derived from the region coding for 
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the conserved ABC cassette of the PDR5 gene of S. cerevisiae. Two non-overlapping clones 

were isolated and designated as anl and an2. Southern blot analysis revealed that both clones 

contained a hybridizing fragment, which could be detected in A. nidulans genomic DNA 

restricted with the same enzyme or combinations of enzymes (Fig. 1). The clones contained 

inserts of about 15.5 (anl) and 9.5 kb (an2), respectively (Fig. 2). 

k b 1 2 3 4 5 6 

9.4_ 
6.5_ 
4.3_ 

2.3_ 
2.0-T * 
0.5_ 

?, 
Figure 1. Southern blot analysis 
Southern blot analysis of phage clones selected from a genomic library of A. nidulans by hybridization 
with a PDR5 probe from S. cerevisiae. Lanes 1 and 4: clone anl restricted with BamHl and BamEI + 
Sail, respectively; lanes 2 and 5: clone an2 restricted with BamHl and BamHl + Sail, respectively; 
lanes 3 and 6: genomic DNA from A. nidulans strain 003 restricted with BamHl and BamHl + Sail. 
The probe used was a 1.52 kb BgUl fragment spanning the N-terminal ATP-binding cassette of PDR5. 

A 6.8 kb fragment of anl, containing the region that hybridized with the PDR5 probe, was 

subcloned and entirely sequenced, starting 190 bp before the most upstream Pstl site (Fig. 

2A). The sequence revealed the presence of an open reading frame (ORF) of 4398 bp, 

interrupted by four introns, ranging in size from 57 to 66 bp (Fig. 2B). The positions of 

introns were confirmed by sequencing of a cDNA. In the 5' flanking region several features of 

a promoter sequence were found. In particular, an adenine is present at position -3, a 9/10 

conserved Kozak consensus (CCACC ATG GG) as found around the putative translation 

start. A TATA-like consensus (T ATT AT) (Chen and Struhl, 1988), identical to that of the 

amdS gene of A. nidulans, is present at position -76. In addition, two 5/6 identical CAAT 

consensus sequences at positions -162 and -122, a heat shock element (HSE) consensus at 

position -706 and several other HSE-like (5/6 conserved) consensus sequences were found. In 

the 3' flanking region, two sequences 5/6 identical (+4653 AATACA and +5622 AATAGA) 

to the polyadenylation signal AATAAA (Proudfoot and Brownlee, 1976) were found 15 and 
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383 nucleotides downstream of the stop codon. The sequence is available in the EMBL 

database under the accession number Z68904. 
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Figure 2. Physical map of isolated A, clones 
Physical map of the inserts of phage anl (A) and an2 (C) containing the ORFs of atrA (B) and atrB 
(D), respectively. Restriction sites are abbreviated as follows: B, BamHl; P, Pstl; S, Sail; St, Sstl; Sm, 
Smal; Ev, EcoKV; Bg, BglR; Hp, Hpal; Sp, Sphl; H, HindHl. Open boxes in A and C represent X 
phage arms. ID (A) and D15 (C) represent the restriction fragments used as gene-specific probes. 
Putative translation and stop codons are indicated 

The ORF of anl encodes a protein of 1466 amino acids, with a calculated molecular 

weight of 162.6 kDa and an estimated isoeletric point of 6.45. The predicted structure of the 

protein is typical of an ABC superfamily member. Hydropathy analysis (Kyte and Doolittle, 

1982; results not shown) revealed that each half of the protein consists of a N-terminal 

hydrophylic domain followed by a hydrophobic one. In the latter region several stretches of 

hydrophobic amino acids are present, thus suggesting the occurrence of transmembrane 

domains. The encoded protein has potential sites for N-glycosylation, phosphorylation, and 

myristylation. 

An ATP-binding cassette is present in both halves of the protein. The cassette in the 

hydrophilic moiety of the N-terminal half consists of a degenerated Walker A motif 

(GRPGTGCS), a well-conserved ABC signature (VSGGERKRVSIA), and a degenerated 

Walker B motif (FAAWD). An ATP-binding cassette, with typical Walker A and B motifs 

but with a highly degenerated ABC signature is also present in the C-terminal hydrophylic 

moiety. The amino acid sequence of the protein is very similar to those of other members of 

the ABC superfamily. The best alignments were obtained with Pdr5p (45% identity and 64% 

similarity) and Snq2p (41% identity and 61% similarity) from S. cerevisiae and Cdrlp of C. 

albicans (45% identity and 65% similarity). The regions with the highest level of homology 
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are centered on the ABC cassettes. In view of the similarity of the protein encoded by the 

ORF present on the 6.8 kb fragment of anl to other ABC transporters, the gene present on the 

6.8 kb fragment of anl was designated atrA and the encoded protein AtrAp. 

N-TERMINAL DOMAIN 

A. nidulans AtrAp 

A. nidulans AtrBp 

C. albicans Cdrlp 

S. cerevisiae Snq2p 

S. cerevisiae Pdr5p 

S. cerevisiae Ste6p 

S. cerevisiae Ycflp 

H. sapiens MDR1 

H. sapiens CFTR 

Walker A 

GELLLVLGRPGTGCSTFLKAV 

GEMLLVLGRPGSGCTTLLKML 

GELTWLGRPGAGCSTLLKTI 

GEMILVLGRPGAGCSSFLKVT 

GELLWLGRPGSGCTTLLKSI 

GQFTFIVGKSGSGKSTLSNLL 

GNLTCIVGKVGSGKTALLSCM 

GQTVALVGNSGCGKSTTVQLM 

GQLLAVAGSTGAGKTSLLMMI 

ABC signature Walker B 

VSGGERKRVSIAEMALAMTPFAAWDNSSRGLD 

VSGGERKRVS11ECLGTRASVFCWDNSTRGLD 

VSGGERKRVSIAEASLSGANIQCWDNATRGLD 

VSGGERKRVS IAEALAAKGSIYCWDNATRGLD 

VSGGERKRVS IAEVSICGSKFQCWDNATRGLD 

LSGGQQQRVAIARAFIRDTPILFLDEAVSALD 

LSGGQKARLSLARAVYARADTYLLDDPLAAVD 

LSGGQKQRIAIARALVRNPKILLLDEATSALD 

LSGGQRARISLARAVYKDADLYLLDSPFGYLD 

C-TERMINAL DOMAIN 

A. nidulans AtrAp 

A. nidulans AtrBp 

C. albicans Cdrlp 

S. cerevisiae Snq2p 

S. cerevisiae Pdr5p 

S. cerevisiae Ste6p 

S. cerevisiae Ycflp 

S. cerevisiae Adplp 

H. sapiens MDR1 

H. sapiens CFTR 

Walker A 

GTLTALMGVSGAGKTTLLDVL 

GMLGALMGSSGAGKTTLLDVL 

GQITALMGASGAGKTTLLNCL 

GTMTALMGESGAGKTTLLNTL 

GTLTALMGASGAGKTTLLDCL 

GQTLGIIGESGTGKSTLVLLL 

NEKVGIVGRTGAGKSSLTLAL 

GQILAIMGGSGAGKTTLLDIL 

GQTLALVGSSGCGKSTWQLL 

GQRVGLLGRTGSGKSTLLSAF 

ABC signature Walker B 

LNVEQRKLLTIGVELPPSPKLLLFLDEPTSGLD 

LSVEQRKRVTIGVELVSKPSILIFLDEPTSGLD 

LNVEQRKRLTIGVELVAKPKLLLFLDEPTSGLD 

LNVEQRKKLSIGVELVAKPDLLLFLDEPTSGLD 

LNVEQRKRLTIGVELTAKPKLLVFLDEPTSGLD 

LSGGQAQRLCIARALLRKS-KILILDECTSALD 

LSVGQRQLLCLARAMLVPS - KILVLDEATAAVD 

ISGGEKRRVSIACELVTS P - LVLFLDEPTSGLD 

LSGGQKQRIAIARALVRQP-HILLLDEATSALD 

LSHGHKQLMCLARSVLSKA-KILLLDEPSAHLD 

Figure 3. Clustal alignment of conserved motifs 
Alignment of the Walker A and B motifs and the ABC signature from the ATP-binding cassettes of 
AtrAp and AtrBp with other members of the ABC transporter superfamily. Asterisks (*) indicate 
identical residues, dots (.) conserved substitutions 

A 5.4 kb fragment of an2, containing the region hybridizing with the PDR5-denved 

probe, was subcloned and entirely sequenced. It contains an ORF of 4278 bp interrupted by 

three introns ranging in size from 45 to 53 bp. The positions of these introns were confirmed 

by sequencing of cDNA. In the 5' flanking region adenine is present at position -3 and a 9/10 

conserved Kozak motif (CCACCATG TC) spans the putative translation start. A TATA 
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consensus (TAT AT A) at position -91 and five heat-shock-like elements (5/6) identical are 

also present. In the 3' flanking region a typical polyadenylation signal is observed (+4614 

AATAAA) 180 nucleotides downstream of the putative translation stop codon. The sequence 

is available in the EMBL database under accession number Z68905. 

The ORF encodes a protein of 1426 amino acid residues with a predicted molecular 

weight of 158.9 kDa and a predicted isoeletric point of 7.04. The encoded protein contains 

putative N-glycosylation, phosphorylation and myristylation sites. The hydropathy profile of 

the encoded protein is similar to that of AtrAp (results not shown). Both hydrophilic regions 

contain motifs closely resembling an ABC cassette. Both cassettes display similar degeneracy 

relative to the Walker motifs as observed in AtrAp. The protein shows homology to Pdr5p 

(36% identity and 58 % similarity), Snq2p (38% identity and 60% similarity) and Cdrlp (38% 

identity and 60% similarity). In view of the similarity of the protein with other ABC 

transporters, the gene present in the 5.4 kb fragment of an2 was termed atrB and the encoded 

protein AtrBp. 

Percentages of similarity and identity for AtrAp and AtrBp are 58 and 38, 

respectively. An alignment of the ATP-binding cassettes of AtrAp and AtrBp with other 

members of the ABC superfamily is presented in Figure 3. 

Figure 4. Northern blot analysis 
Northern analysis of atrA (A) and atrB (B) using total RNA from untreated germlings of A. nidulans 
(lanes 1-5) and from germlings treated for 60 min with 10 u,g ml"1 imazalil (lanes 6-10). Lanes 1 and 6: 
wild-type (strain 003), lanes 2 and 7: imaA mutant (strain 130), lanes 3 and 8: imaB mutant (strain 
146), lanes 4 and 9: imaA + imaB mutant (strain R264), lanes 5 and 10: wild-type strain WG-096 used 
for construction of the genomic library. Equal loading of lanes with total RNA was checked by 
subsequent probing of the same blots with a 1.5 kb EcoBJ+SaK fragment derived from the actin gene 
of Cladosporium fulvum. 

atrA and atrB copy number and expression in wild-type and multidrug resistant mutants 

The copy-number of atrA and atrB in the genomes of wild-type, and multidrug-resistant ima 

mutants of A. nidulans was studied by Southern blot analysis, using a 0.81 kb BamHI-SstI 

fragment (ID) and a 0.62 kb BamHI-SstI fragment (D15) (bold in Fig. 2A and 2C) as gene-
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specific probes, respectively. Genomic DNA, digested with various restriction enzymes or 

combinations of enzymes, consistently revealed the presence of only one hybridizing 

fragment in all strains tested. There was no difference in hybridization intensity between 

strain 003 and the ima mutants. These results indicate that atrA and atrB are single-copy 

genes, which are not amplified in multidrug-resistant strains. 

Transcription of atrA and atrB was investigated in wild-type and drug-resistant 

mutants of A. nidulans (Fig. 4). Northern analysis revealed the presence of a poly(A)+ RNA of 

about 4.7 kb hybridizing with the atrA gene-specific probe and a slightly smaller poly(A)+ 

RNA hybridizing with the atrB gene-specific probe. Both atrA and atrB are constitutively 

transcribed at low levels in the wild-type strain 003. 

Mutants carrying the imaB mutation have a higher level of expression of atrA than 

both wild-type and mutant 130, carrying the imaA mutation (Fig. 4A). In contrast, the level of 

atrB transcript is similar in all strains analyzed (Fig. 4B). 

Table 2. Ability of compounds to enhance transcription of atrA and atrB as determined by 
Northern analysis of total RNA extracted from 12-h-old germlings of A. nidulans strain 003 
after treatment for 1 hour 

Compound^ atrA q^-g 
Control 
Acriflavin (3 g ami"1) 
Cycloheximide (200 ug ml"1) ± + + 
Fenarimol (30 ug ml"1) - + 
Imazalil (0.3 ug ml"1) + + 
4-nitroquinoline oxide (1 ug ml"1) 
Pisatin(15 agm!"1) + + 
Sulfomethuron methyl (30 ug ml"1) 
Tomatine (3 ug ml"1) 

-: basal level of transcripts; 
±, +, + +: weak, moderate and strong increase in transcript levels, respectively 

Induction of atrA and atrB transcription by drugs 

Imazalil enhanced transcription levels of atrA in the wild-type strain 003. The effect of 

cycloheximide was only weak, but the antibiotic strongly increased transcription levels of 

atrB. Transcription levels of atrB were also enhanced by fenarimol and, more strongly, by 

pisatin (Table 2). An example of transcription enhancement of atrA and atrB in strain 003 by 

imazalil is given in Figure 4. Results in this figure also indicate that the fungicide most 

strongly enhanced transcription levels of atrA in strains 146 and R264, which carry imaB. 

36 



The ABC transporters AtrA and AtrB from A. nidulans 

Imazalil also enhanced transcription of atrB but only weak differential effects among isolates 

were observed. A time-course experiment with strain R264 (Fig. 5) demonstrated that 

transcript levels of atrA significantly increased 10 min after treatment with imazalil, while 

increased transcript levels of atrB were already detectable 5 min after treatment with the 

fungicide. 

1 2 3 4 5 6 7 8 

ft 

1 7 3 4 5 6 •' 8 

B * 

Figure 5. Northern blot analysis 
Time-course of expression of atrA (A) and atrB (B) in strain R264 (imaA + imaB) of A. nidulans 
following treatment of 12-hour-old germlings with imazalil (10 ug ml"1). Lanes 1 to 7: 0, 5, 10, 15, 30, 
60 and 180 min of treatment respectively; lane 8: untreated control after 180 min of incubation. Equal 
loading of lanes with RNA was checked by subsequent probing the of the same blots with a 1.5 kb 
EcoRI+Sall fragment derived from the actin gene of Cladosporium fulvum. 

Functional complementation by atrA and atrB of yeast PDR5-nu\\ mutants 

Functional analysis of atrA and atrB was performed by complementation of the PDR5-

deficient strain JG436 of S. cerevisiae. To this end, full-length cDNA of atrA or atrB was 

cloned down-stream of the inducible promoters GAL1 and GAL10 in pYEura3, respectively, 

and transformed into the PDR5 disruptant strain JG436. As controls, the empty vector was 

transformed into the parental strain RW2802 containing a functional copy of PDR5, and into 

JG436. 

The sensitivity of the transformants to cycloheximide, chloramphenicol and imazalil on a 

galactose medium is presented in Table 3. The MIC value of cycloheximide for transformants 

of strain JG436 (the PDifi-disrupted strain) containing atrB and strain RW2802 (contains an 

intact copy of PDR5) is 0.3 u\g ml"1, which is ten times higher than the MIC value for strain 

JG436. The presence of atrB in strain JG436 also increased the MIC values for 

chloramphenicol and imazalil by a factor of three. Interestingly, the level of resistance to 

sulfomethuron methyl was even higher in transformants containing atrB than in strain 

RW2802 containing the wild-type PDR5 gene. In contrast, MIC values of all compounds 

tested for transformants of JG436 containing atrA were similar to those of the host strain 

JG436. Under conditions in which the GAL promoter-driven expression of atrA and atrB is 
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repressed, i.e., in the presence of glucose, the sensitivity levels of atrA- and afr-5-containing 

transformants did not differ from the control host strain. Furthermore, Northern analysis 

revealed high levels of atrA and atrB transcripts in galactose-induced transformants, while no 

atrA nor atrB transcripts were detected in cells grown on glucose. Taken together, these data 

demonstrate a causal relationship between the expression of atrB and the increase in drug 

resistance of an otherwise drug-hypersensitive, P£>/?5-deficient, yeast strain. 

DISCUSSION 

atrA and atrB are, to our knowledge, the first structural determinants of MDR reported for 

filamentous fungi. The putative products of both genes closely resemble other members of the 

ABC transporters superfamily. In particular, they share organization with the ABC 

transporters determining MDR in S. cerevisiae (Pdr5p and Snq2p) and C. albicans (Cdrlp). 

The same type of topology has been found for some "half-sized" transporters such as those 

encoded by the Drosophila white and brown genes, involved in the transport of eye pigments 

(Dreesen et al., 1988; O'Hare et al., 1984) and the Adplp permease of S. cerevisiae (Purnelle 

et al., 1991). In this respect, AtrAp and AtrBp differ from the P-glycoproteins encoded by the 

human MDR1, yeast Ste6p and many other P-glycoproteins in which the hydrophobic regions 

precede the hydrophilic ones. 

Table 3. Effect of transformation of a />Z)J?5-disrupted mutant of S. cerevisiae (JG436) with a 
full-length atrA (JG436 + atrA) or atrB (JG436 + atrB) cDNA on colony formation after 5 
days of incubation in the presence of the inhibitors listed. The disrupted mutant JG436 
carrying the vector plasmid (JG436 + pYEura3) served as control. RW2802 is the parental 
strain of JG436 with a functional copy of PDR5 

Compound Minimal inhibitory concentration ((xg ml"1) 

Chloramphenicol 
Cycloheximide 
Imazalil 
Sulfomethuron methyl 

JG436 + 
pYEura3 

100 
0.03 
10 
1 

RW2802 + 
pYEura3 

1000 
0.3 
30 
3 

JG436 + atrA 

100 
0.03 
10 
1 

JG436 + atrB 

300 
0.3 
30 
10 

Other interesting common features of the ABC transporters of A. nidulans and yeasts, 

concern the degeneration observed in the ABC cassettes as compared to those present in 

mammalian P-glycoproteins. The Walker A motif of mammalian P-glycoproteins contains the 

conserved GxSGxGK(S,T) sequence. In the Walker A motif of the N-terminal half of both 
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Atr proteins, the highly conserved lysine (K) is replaced by a cysteine (C) residue. This has 

also been described for Pdr5p and Snq2p of S. cerevisiae and Cdrlp of C. albicans (Balzi et 

al, 1994; Prasad et al, 1995; Servos et al, 1993). Strikingly, substitution of K by other 

amino acids severely impairs transport activity of mammalian P-glycoproteins and Ste6p 

(Berkower and Michaelis, 1991) but not ATP binding (Azzaria et al., 1989). Obviously, this 

is not necessarily the case for all ABC transporters of filamentous fungi and yeasts. In the 

Walker B motif in the N-terminal half of both Atrs, the highly conserved glutamic acid 

residue (E) is substituted by asparagine (N), as also found in Pdr5p, Snq2p and Cdrlp. Similar 

features hold for the C-terminal ABC signature in which the conserved consensus LSGGQ of 

mammalian P-glycoproteins is replaced by LNVEQ in AtrAp and by LSVEQ in AtrBp. The 

substitution in this motif of the conserved serine (S) by N in the CFTR gene product (S549N) 

is associated with cystic fibrosis in humans (Cutting et al., 1990). In conclusion, AtrAp and 

AtrBp are new members of a new subfamily of ABC transporters which up to now has been 

observed only in yeasts. 

Previous studies (De Waard and Van Nistelrooy, 1979; 1980; 1987) demonstrated 

that accumulation of the azole fungicide fenarimol by the wild-type strain 003 of A. nidulans, 

follows a transient pattern with a maximum at 10 min after addition of the fungicide to 

mycelium. Similar results have been described for other azole fungicides in Penicillium 

italicum (De Waard and Van Nistelrooy, 1984; 1988) and Nectria haematococca 

(Kalamarakis et al, 1991). Isogenic mutants of A. nidulans strain 003 carrying imaA and 

imaB mutations, displayed a relatively low and constant level of fungicide accumulation over 

time. It was proposed that the transient accumulation of azoles by the wild-type A. nidulans is 

based on the capacity of azole fungicides to induce an energy-dependent efflux activity 

responsible for active extrusion of the compounds, while efflux activity in the mutants was 

referred to be constitutive (De Waard and Van Nistelrooy, 1981). The rapid increase in 

expression of atr A and, especially, atrB upon treatment with azole fungicides coincides with 

induction of azole efflux from mycelium in the wild-type strain, suggesting that both Atrs can 

play a role in extrusion of the fungicides. 

imaB mutants (146, R264) have a higher basal level of expression of atr A than the 

wild-type strain. The mutants also showed the strongest activation of atr A transcription after 

treatment with imazalil. This relationship between the presence of imaB and expression of 

atrA indicates that the imaB locus regulates atrA expression, perhaps acting as a regulatory 

protein with a function similar to the one exerted by Pdrlp on PDR5 in S. cerevisiae. The 

Pdrlp regulatory protein is able to influence the expression of several genes, including PDR5 
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(Balzi and Goffeau, 1995). Further studies will aim to establish such a relationship between 

imaB and atrA. 

The basal level of atrB expression was similar in all strains tested. In all strains, 

imazalil strongly activated transcription to about the same extent. Similar results were found 

for cycloheximide and pisatin (results not presented). Hence, no correlation was observed 

between the presence of imaA or imaB mutations and the expression pattern of atrB. 

Therefore, atrB may be subject to stress-induced transcriptional activation as described for 

PDR5 in S. cerevisiae (Miyahara et al., 1996), characterized by an even faster inducibility 

than atrA. 

Compounds that induce the expression of atr genes are not always involved in the pleiotropic 

effects observed for the imaA and imaB mutants. For instance, the basal level of expression of 

atrA is higher in imaB carrying strains and the enhancement in transcript levels caused by 

cycloheximide treatment makes this difference even larger. Nevertheless, no significant 

difference in cycloheximide resistance is observed between wild-type and imaB mutants. This 

implies that, at least for some compounds, an increase in atr transcription is not sufficient to 

confer drug resistance. In the case of cycloheximide, AtrAp synthesis may be inhibited at the 

translational level. Similar results were obtained in S. cerevisiae in which expression of the 

multidrug transporters YDR1 (=PDR5), and SNQ2 can also be induced by compounds that are 

not relevant to multidrug resistance (Hirata et al., 1994). 

The functional role of atrA and atrB in multidrug resistance has been analyzed by 

complementation of a PDR5-deficient yeast mutant. Transformants containing atrB displayed 

an increase in resistance to several drugs. Interestingly, the spectrum of resistance conferred 

by atrB is different from the one displayed by a yeast strain containing an intact copy of 

PDR5. This indicates that AtrBp is functionally different from Pdr5p, implying that ABC 

transporters may have partially overlapping substrate specificities (e.g. cycloheximide), as it 

was found for Pdr5p and Snq2p. Studies with mammalian P-glycoproteins demonstrated that 

drug specificity can be determined by the amino acid sequence in specific regions. In human 

MDR cell lines, two separate nucleotide substitutions in the sixth N-terminal transmembrane 

domain completely changed the pattern of resistance (Devine et al., 1992) and even single 

amino acid substitution in a mouse mdr gene product can abolish its ability to complement a 

yeast STE6 null mutant (Raymond et al., 1992). Mutational analysis of atr A and atrB will be 

the object of future studies. 

Additional insight into the role of both atrs in multidrug resistance will be obtained by 

studying the drug resistance spectra in A. nidulans disruption mutants. This approach may 
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also be useful in determining the function of atrA, which failed to complement the PDR5 

deficiency in yeast, although high levels of atrA transcripts were detected in JG436 cells 

transformed with the atrA cDNA (results not shown). It is possible that atrA mRNA is 

incorrectly processed and/or sorted in yeast, thus giving a non-functional product. Disturbance 

of directional transport might also be one reason why AtrAp did not complement Pdr5p. 

Alternatively, AtrAp could also mediate secretion of endogenous compounds (i.e., secondary 

metabolites, pheromones, etc.) or specifically be involved in extrusion of drugs different from 

those substrates of Pdr5p. The latter hypothesis is supported by data presented in Table 2. 

Based on the results described, we hypothesize that the ABC transporters encoded by atrA 

and atrB play a role in protecting the saprophytic fungus A. nidulans from natural toxic 

compounds. A similar function was proposed for P-glycoproteins of the nematode 

Caenorhabditis elegans (Broeks et al, 1995). Support for this hypothesis comes from the 

MDR pattern, expression and complementation studies. This hypothesis not only relates to 

antibiotics but also to plant defense products such as the phytoalexin pisatin. Hence, it 

corroborates the findings that pisatin-induced transcription of atrB and tolerance of N. 

haematococca to pisatin can be mediated by an energy-dependent efflux (Denny et al., 1987; 

Denny and VanEtten, 1983). If ABC transporters enable plant pathogens to extrude plant 

defense products, thereby reducing their accumulation levels in fungal cells, they might 

constitute a novel class of pathogenicity factors. This hypothesis is being tested by studying 

ABC-transporter-encoding genes in the plant pathogen Botrytis cinerea and the role of such 

genes in pathogenicity. One PDR5 homologue of Botrytis cinerea has already been cloned 

and characterized (Del Sorbo and De Waard, 1996). 

Finally, we also propose that atrA and, especially, atrB are ideal models for the study 

of resistance to therapeutic drugs and agricultural fungicides in mammalian and plant 

pathogens. 

EXPERIMENTAL PROCEDURES 

Chemicals 

Fenarimol, imazalil, triadimenol and sulfomethuron methyl were kindly provided by Dow 

Elanco (Greenfield, Ind., USA), Janssen Pharmaceuticals (Beerse, Belgium), Bayer AG 

(Leverkusen, Germany), and DuPont De Nemours (Wilmington, Del. USA), respectively. 

Pisatin was purified from pea pods (Fuchs et al., 1981). All other chemicals were from Sigma 

(St. Louis, Mo.) unless otherwise indicated. 
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Strains, plasmids and toxicity tests 

Strains of A. nidulans used in this study were the wild-type 003 (biAl; acrAl) and imazalil-

resistant isogenic mutants carrying imaA (130), imaB (146) or both mutations (R264) (Van 

Tuyl, 1977). Sensitivity to toxicants was determined by measuring their EC50 values for 

inhibition of radial growth or the minimal inhibitory concentrations (MIC) necessary to 

prevent colony formation (De Waard and Van Nistelrooy, 1979). Compounds tested included 

antibiotics (cycloheximide, neomycin, oligomycin, valinomycin), plant defense products 

(pisatin and tomatine), azole and related fungicides which inhibit sterol 14odemethylation 

(imazalil, fenarimol and triadimenol), a herbicide (sulfomethuron methyl), calmodulin 

antagonists (chlorpromazine and triflupromazine), and other xenobiotics (acriflavin and 4-

nitroquinoline-oxide). A strain was considered resistant or hypersensitive when the EC50 

value of a particular compound was at least two times higher or lower than the EC50 value of 

the wild-type strain, respectively. The S. cerevisiae PDR5 null mutant JG436 (MATa, 

PDR5::Tn5, leu2, met5, ura3-52, makll, KRB1; Meyers et al., 1992) and yeast plasmid 

pYEura3 were kindly provided by Professor A. Goffeau. 

Library screening, Southern and Northern hybridizations 

A genomic library of A. nidulans strain WG-096 in EMBL3 was kindly provided by Dr. T. 

Goosen (Department of Genetics, Wageningen Agricultural University, Wageningen, The 

Netherlands). Positive phage clones were selected using a 1.52 kb BgRI fragment starting 0.37 

kb before the translation start codon and comprising the entire N-terminal ATP-binding 

cassette (ABC) of gene PDR5 from S. cerevisiae. 

DNA and RNA of A. nidulans were extracted according to Raeder and Broda (1985) 

and Longmann et al. (1987), respectively, from 12-hour-old liquid cultures shaken at 37 °C 

after inoculation with 107 conidia ml"1. Southern and Northern hybridizations were performed 

on HybondN+ and HybondN nylon membranes (Amersham), respectively, according to the 

manufacturer's instructions. Blots were washed at 65 °C in 0.1X SSC unless otherwise 

indicated. In heterologous hybridizations, blots were washed at 56 °C using IX SSC. 

Other recombinant DNA manipulations 

DNA fragments from phages that were positive after tertiary screening were cloned in pGEM-

3Zf(+) (Promega, Madison, Wis.) or pBluescript IISK vectors (Stratagene, La Jolla, Calif). 

E.coli DH5a was used as bacterial host for propagation of constructs. Sequencing was carried 

out by the dideoxy-chain-termination method (Sanger et al., 1977), using Taq polymerase and 
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fluorescent dye terminator dideoxynucleotides. Intron-exon junctions were confirmed by 

sequencing a cDNA cloned in pGEM-T. Sequences were analyzed with the GCG Package 

software (Genetics Computer Group, Madison, Wis.). Multiple alignment was done using the 

CLUSTAL program. 

First-strand cDNA of atrA and atrB was synthesized on poly(A)+ RNA of germlings from A. 

nidulans strain 003, using the Superscript TM II kit (Gibco-BRL, Garthersburg, Md.) 

according to manufacturer's instructions. PCR amplification of cDNA was performed with the 

Expand High Fidelity kit (Boehringer, Mannhein GmbH, Mannheim, Germany) using a 

Techne PHC3 thermocycler (New Brunswick Scientific, Nijmegen, The Netherlands). 

Primers used in PCR reactions were provided by Pharmacia Biotech Benelux (Roosendaal, 

The Netherlands). Primers for amplification of cDNA were designed across the putative 

translation start (5'-GTTCATTCTAGACACCATGGGTGTTCC-3') and stop codon on (5'-

ATGCTCTAGACATCTCACTTCTTCC-3') of the atrA gene. Artificial Xbal sites were included to 

allow subcloning of the PCR product. For the same purpose, EcoRl sites were included in the 

primers for amplification of the cDNA of atrB (primer sequences were 5'-

TTCGAATTCCATGTCTACCCTCACCGTG-3' and 5'-TTCGAATTCGTAAAAGCCTACTCCTCTGC-

3', respectively). Amplified PCR products were cloned in pGEM-T (Promega) and propagated 

in E. coli. 

For yeast complementation studies, atrA and atrB cDNAs were cloned into the Xbal 

or EcoRl site of the yeast shuttle vector pYEura3, under the control of galactose-inducible 

promoters GAL1 and GAL10, respectively. The correct orientation of the coding regions was 

checked by restriction analysis. Transformation of S. cerevisiae strain JG436 was performed 

by the electroporation method described by Becker and Guarante (1991). The resistance of 

Ura+ transformants to a series of compounds was tested on a synthetic medium (Balzi et al., 

1987) containing raffinose and galactose as carbon sources, inoculated with small droplets of 

standardized cell suspensions, according to Prasad et al. (1995). 
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Chapter 3 

SUMMARY 

This paper describes the characterization of atrC and atrD {ABC transporters C 

and D), two novel ABC-transporter encoding genes from the filamentous fungus 

Aspergillus nidulans, and provides evidence for the involvement of atrD in 

multidrug transport and antibiotic production. BLAST analysis of the deduced 

amino acid sequences of AtrCp and AtrDp reveals high homology to ABC-

transporter proteins of the P-glycoprotein cluster. AtrDp shows a particularly high 

degree of identity to the amino acid sequence of AfuMdrlp, a previously 

characterized ABC transporter from the human pathogen Aspergillus fumigatus. 

Northern blot analysis demonstrates an increase in transcript levels of atrC and 

atrD in fungal germlings upon treatment with natural toxic compounds and 

xenobiotics. The atrC gene has a high constitutive level of expression relative to 

atrD, which suggests its involvement in a metabolic function. Single knock-out 

mutants for atrC and atrD were generated by gene replacement using the pyrG 

from Aspergillus oryzae as a selectable marker. AatrD mutants display a 

hypersensitive phenotype to compounds such as cycloheximide, the cyclosporin 

derivative PSC 833, nigericin and valinomycin, indicating that AtrDp is involved in 

protection against cytotoxic compounds. Energy-dependent efflux of the azole-

related fungicide fenarimol is inhibited by substrates of AtrDp (e.g. PSC 833, 

nigericin and valinomycin), suggesting that AtrDp plays a role in efflux of this 

fungicide. Most interestingly, AatrD mutants display a decrease in penicillin 

production measured indirectly as antimicrobial activity against Micrococcus 

luteus. These results suggest that ABC transporters may be involved in secretion of 

penicillin from fungal cells. 

INTRODUCTION 

ATP-Binding Cassette (ABC) transporters are highly conserved traffic ATPases that occur 

ubiquitously in nature (Higgins, 1992). Some members of this large superfamily of 

proteins function in transport of cytotoxic agents across biological membranes, resulting in 

reduced intracellular accumulation of toxins. Hence, they play a role in protecting cells 

against natural toxins. ABC transporters have become especially known for their role in 

multidrug resistance (MDR) in human tumour cells. The MDR family of transporters 

includes the multidrug resistance P-glycoprotein (P-gp) encoded by the MDR1 gene in 
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humans, and the human multidrug resistance-associated protein MRP1 (MRP); both are 

plasma membrane proteins which catalyze the ATP-dependent extrusion of anti-tumour 

drugs during chemotherapy of cancer cells (Cole et al., 1992; Gottesman and Pastan, 

1993). The major drug efflux pumps identified in microorganisms belong to the Major 

Facilator (MF) and the ABC transporter superfamilies of proteins (Marger and Saier, 1993; 

Van Veen and Konings, 1998). Analysis of the complete genome sequence of 

Saccharomyces cerevisiae revealed 29 ABC transporter-encoding genes, and 

overproduction of at least four of them results in MDR (Decottignies and Goffeau, 1997). 

In other yeast species such as Schizosaccharomyces pombe and the human pathogen 

Candida albicans, MDR based on overproduction of ABC transporters has also been 

described. Examples are Cdrlp and Cdr2p from C. albicans, and Pmdlp and Bfrlp from S. 

pombe (Nagao et al, 1995; Nishi et al., 1992; Prasad et al., 1995; Sanglard et ah, 1996, 

1997). 

MDR in filamentous fungi was first reported for mutants of Aspergillus nidulans 

generated in the laboratory and selected for resistance to azole fungicides (Van Tuyl, 

1977). Resistance of these mutants to azoles and related fungicides was based on an 

energy-dependent efflux mechanism, which results in decreased accumulation of the drug 

in the cytoplasm (De Waard and Van Nistelrooy, 1979). The isolation and characterisation 

of two ABC-transporter encoding genes (atrA and atrB) from this fungus have been 

reported (Del Sorbo et al, 1997). Both genes encode proteins that display a high degree of 

homology to Pdr5p, an ABC transporter from S. cerevisiae involved in MDR (Balzi et al., 

1994; Bissinger and Kuchler, 1994; Hirata et al, 1994). In field isolates of the 

phytopathogenic fungus Penicillium digitatum, the causal agent of citrus green mold, the 

ABC transporter Pmrlp plays a role in azole resistance (Nakaune et al., 1998). Protection 

against a phytoalexin from rice has been postulated as the function of Abclp, an ABC 

transporter from the rice pathogen Magnaporthe grisea that is essential for pathogenicity 

(Urban et al., 1999). The ABC transporter genes AfuMDRl and AfuMDRl, and AflMDRl 

have been described for Aspergillus fumigatus and Aspergillus Jlavus, respectively. 

AfuMdrlp may be involved in drug transport since it confers decreased sensitivity to the 

antifungal compound cilofungin when overexpressed in yeast (Tobin et al, 1997). 

Endogenous substrates of ABC transporters involved in MDR are largely 

unknown, but phospholipids have been suggested as candidates (Decottignies et al., 1998; 

Kamp and Haest, 1998; Mahe et al, 1996; Van Helvoort et al, 1996). It has been 

suggested that fungal ABC transporters can also be involved in transport of secondary 
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(toxic) metabolites (De Waard, 1997). A. nidulans is a well known producer of various 

toxic secondary metabolites, such as sterigmatocystin and penicillin. The biosynthetic 

pathway for these compounds has been characterized at the molecular level but little is 

known about the transport of these compounds and their precursors over biological 

membranes (Brakhage, 1998; Brown et al., 1999; Penalva et al., 1998). 

In this paper we report on the isolation and functional characterisation of atrC and atrD, 

two novel ABC transporter-encoding genes from the filamentous fungus A. nidulans, and 

provide evidence suggesting that AtrDp is a novel multidrug transporter protein that plays 

a role in antibiotic secretion. 

RESULTS 

The primary amino acid sequences of AtrCp and AtrDp are highly homologous to 

those of MDR proteins 

A PCR-based approach using degenerate primers designed from conserved domains of 

ABC transporters involved in MDR from a variety of organisms resulted in the 

amplification of two DNA fragments from A. nidulans. Cloning and DNA sequence 

analysis revealed that the amplified fragments were different and encoded highly 

conserved amino acid sequences, characteristic of proteins containing an ATP-binding 

cassette (Bairoch, 1992; Walker et al., 1982). The fragments were used as probes to screen 

a genomic library of A. nidulans. For each probe, positive lambda clones were isolated and 

purified. Southern analysis confirmed the presence of identical hybridizing restriction 

fragments in genomic DNA and in the positive lambda clones isolated. Overlapping 

subclones from phage inserts were cloned and sequenced. The sequence of a 6120-bp 

contig from one lambda clone revealed the presence of an open reading frame (ORF) of 

3852 bp, interrupted by four introns, ranging in size from 46 to 65 bp. The positions of the 

introns were confirmed by cDNA sequencing (Fig. 1A). Analysis of the deduced 1284-

amino acid sequence of the encoded protein, named AtrCp (ABC transporter C), 

suggested the presence of 12 transmembrane (TM) domains and two nucleotide binding 

domains (NBD). These are arranged in two homologous halves in a (TM6-NBD)2 

configuration, as predicted by the TMpred software (Hofmann and Stoffel, 1993). The 

DNA sequence of the second PCR fragment was not present in atrC. Screening of the 

phage library with this fragment resulted in another ABC transporter gene, designated 

atrD. Sequence analysis of atrD revealed the presence of an ORF interrupted by two 

confirmed introns, encoding a putative protein of 1348 amino acids with the same 
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topology as AtrCp (Fig. IB). BLAST analysis of the deduced amino acid sequence of 

AtrCp and AtrDp revealed strong homology to ABC transporters, in particular to the P-

glycoprotein sub-family (Table 1). Alignment of the conserved motifs of AtrCp and AtrDp 

indicates a high degree of homology with other ABC transporters (Fig. 2). The degree of 

homology between AtrDp and AfuMdrlp is remarkably high, with overall identity of 76% 

(Table 1), while the N and C-terminal NBDs are almost identical (Fig. 2). The best 

characterized ATP-binding subunit of ABC transporters has been described for the HisP 

protein from Salmonella typhimurium. Residues of HisP depicted in bold (Fig. 2) represent 

amino acids that interact with ATP (Hung et al., 1998) and are highly conserved in other 

ABC transporters. 
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Figure 1. Physical map of the genomic regions encoding alrC (A) and atrD (B) 
The open arrows represents the coding region of the atr genes interrupted by introns. The conserved 
motifs characteristic of ABC-transporter proteins are shown. The PCR fragments amplified using 
degenerate oligonucleotide primers {aspmdrl, aspmdr2 and aspmdr3) are located between the dashed 
vertical lines. The boxes labeled GspC and GspD represent the DNA fragments used as gene-specific 
probes. Restriction sites are abbreviated as follows: B, BamHl; Bg, Bglll; E, £coRI; H, Hindlll; K, Kpnl; 
S, Sail and Sp, Sph\. 

Table 1. Pairwise comparison of deduced amino acid sequences of atrC and atrD from Aspergillus 
nidulans and other ABC transporters classified in the P-glycoprotein subfamily. 

Protein 

AtrCp 
AtrDp 
AfuMdrlp 
AflMdrlp 
Pmd lp 
CneMdrlp 
ChMdrlp 
HsMDRl 
HvMdr2p 
Ste6p 

Organism 

A. nidulans 
A. nidulans 
A. fumigatus 
A.flavus 
S. pombe 
C. neoformans 
C. griseus 
H. sapiens 
H. vulgare 
S. cerevisiae 

GenBank 
number 

AF071410 
AF071411 

U62933 
U62931 
P36619 
U62930 
P21448 
P08183 
Y10099 
P12866 

Blast 
score a 

-
0 
0 
0 
0 
0 
0 
0 

e.IM 
e"84 

AtrCp 

Identity 

(%) 
-

36 
37 
35 
36 
34 
33 
32 
31 
24 

Similarity 

(%) 
-

53 
54 
52 
51 
51 
51 
50 
48 
43 

Blast 
score 

0 

-
0 
0 
0 
0 
0 
0 
0 

e-"3 

AtrDp 

Identity 

(%) 
36 

-
76 
57 
45 
42 
38 
39 
34 
24 

Similarity 

(%) 
53 

-
83 
71 
60 
57 
55 
55 
51 
43 

a Results were obtained with the BLASTp program of sequence alignment (Altschul et ah, 1997). 
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Southern analysis of genomic DNA of A. nidulans digested with different 

restriction enzymes using the gene-specific probes GspC and GspD demonstrate that atrC 

and atrD are single-copy genes (results not shown). A schematic representation of GspC 

and GspD is presented in Fig. 1A and IB, respectively. 

A C B D 
LVGQSGSGKSTIV QQEP LSGGQKQRVAIARSWSQPKVLLLDEATSALD TTIVIAHKLAT 
IVGSSGSGKSTIL QQEP LSGGQKQRIAIARSIIRNPPILLLDEATSALD TTIIVA|RLST 
LVGPSGSGKSTW SQEP LSGGQKQRIAIARAWSDPKILLLDEATSALD TTIVIA|RLST 
LVGPSGSGKSTW SQEP LSGGQKQRIAIARAIVSDPKILLLDEATSALD TTIVIAJJRLST 
FVGPSGSGKSTII SQEP LSGGQKQRIAIARAIIKDPKILLLDEATSALD TTIVIAIRLST 
LVGASGSGKSTII QQEP MSGGQKQRIAIARAVISDPKILLLDEATSALD TTIVIAHRLST 
IVGKSGSGKSTLS EQRC LSGGQQQRVAIARAFIRDTPILFLDEAVSALD TTIILTHELSQ 
LVGNSGCGKSTTV SQEP LSGGQKQRIAIARALVRNPKILLLDEATSALD TTIVIAHRLST 
FAGPSGGGKSTIF SQDS ISGGQRQRLAIARAFLRNPKILMLDEATASLD TTLVIAHRLST 
IIGSSOSGKSTFL NQLR LSGGQQQRVSIARALAMEPDVLLFDEPTSALD TMVWTHEMGF 

FVGSSGCGKSTMI QQEP LSGGQRQRIAIARALIRDPKIIiLOEATSALD LTVAVAHRLST 
LVGASGCGKTTVI TQNP LSGGQRQRIAIARALIRDPELLLFDEATSALD TTISVAHRLTT 
LVGPSGCOK<?^TI SQEP LSGGQKQRVAIARALLRDPKILLLDEATSALD TTIAVAHRLST 
LVGPSGCGK'.. H SQEP LSGGQKQRVAIARALLRDPKVLLLDEATSALD TTIAVAHRLST 
LVSASKSGKSITI SQEP LSGGQKQRIAIARALIRNPKILLLDEATSALD TTIAVAHRLST 
EVCiSSnrOKS.TI SQEP LSGGQKQRIAIARALIRNPKILLLDEATSALD TTVAIAHRLSS 
IIHKSGI'HK̂ I LV EQKP LSGGQAQRLCIARALLRKSKILILDECTSALD LTMVITHSEQM 
LVGS8GCCX.S I TV SQEP LSGGQKQRIAIARALVRQPHILLLDEATSALD TCIVIAHRLST 
FAOI'SOCXjysrcF SQDS ISGGQRQRLAIARAFLRNPKILMLDEATASLD TTLVIAHRLST 
IIGSSGSGKSTFL NQLR LSGGQQQRVSIARALAMEPDVLLFDEPTSALD TMVWTHEMGF 

Figure 2. Alignment. Amino acid sequence alignment of the conserved NBD motifs of AtrCp and AtrDp 
with those of other ABC transport proteins. Sequences were aligned using the CLUSTAL W program 
(Thompson et al., 1994). The asterisks indicate identical residues and dots indicate conservative 
substitutions. The conserved motifs (A) Walker A, (B) Walker B, (C) ABC signature and (D) the highly 
conserved histidine residue as detected by Decottignies and Goffeau (1997) are highlighted against a gray 
background. Residues in bold indicates residues that interact with ATP (Hung et al., 1998). 

Transcription oiatrC and atrD is enhanced by xenobiotics 

To verify the possible involvement of AtrCp and AtrDp in drug transport, we investigated 

the level of transcription of these genes upon treatment of A. nidulans germlings with 

various toxicants. Results show that the basal level of atrC expression is higher than that of 

atrD (Fig. 3). The plant secondary metabolites reserpine and pisatin, the azole fungicide 

imazalil and the protein synthesis inhibitor cycloheximide, enhance transcription of both 

atr genes, while the azole-related fungicide fenarimol specifically enhances transcription 

of atrD (Fig. 3). 
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The sequence of AnatrC (AF071410) was submitted to the GenBank database (confidential) by June 9, 
1998. Later an additional ABC transporter gene from A. nidulans was filed under the same name of atrC, 
on August 4, 1998. Part of the sequence of this gene is published without reference to its function 
(Angermayr et al., 1999). We propose to rename the latter gene as AnatrC2. 
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actin w 
Figure 3. Northern blot analysis 
Northern analysis of atrC (top) and atrD (middle) using total RNA from germlings of Aspergillus 
nidulans treated with toxicants for 60 min. Lane 1, control (0.1% DMSO); 2, reserpine (100 ug ml1); 3, 
sulfomethuron methyl (30 |ig ml"'); 4, control (0.1% ethanol); 5, imazalil (10 u,g ml"1); 6, fenarimol (20 
Hg ml"'); 7, pisatin (15 u.g ml"'); 8, cycloheximide (20 |lg ml"1). A radiolabeled fragment of the actin 
encoding gene from A. nidulans was used as loading control (bottom). 

AatrD strains are hypersensitive to known substrates of MDR proteins 

In order to functionally characterize atrC and atrD, deletion alleles for each gene were 

generated by gene replacement. The major part of the coding region of the atr genes was 

replaced by the orotidine-5'-phosphate decarboxylase (pyrG) encoding-gene of A. oryzae, 

using an uridine-auxotrophic mutant (WG488) of A. nidulans as the recipient strain for 

transformation. Selection of transformants was based on uridine prototrophy. The use of 

the heterologous selectable marker of A. oryzae minimizes the chance that the construct 

will integrate at the pyrG locus of A. nidulans. A schematic representation of the disruption 

strategy used is given in Fig. 4A and B. A pre-selection step was performed among 24 

transformants per atr gene by dot-blot analysis. Blots containing spotted genomic DNA of 

transformants were hybridized with the gene-specific probes GspC and GspD of atrC and 

atrD, respectively. Southern analysis of 8 pre-selected transformants per atr gene 

confirmed single-copy replacement of both genes. The frequency of single-copy 

replacements was 16% for atrC and 8% for atrD. Further Southern analysis of two 

independent transformants of atrC (probe CI) and atrD (probe Dl) was performed and 
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confirmed replacement of the wild-type locus (Fig. 4C and D). Northern blot analysis was 

carried out with total RNA isolated from germlings treated with cycloheximide, a strong 

inducer of atrC and atrD transcription. This treatment did not reveal any transcripts from 

atrC and atrD in the AatrC and AatrD strains, respectively (Fig. 4E). These observations 

confirm that atrC and atrD were functionally deleted. 
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Figure 4. Replacement of the Aspergillus nidulans atrC and atrD genes. 
A, B. Schematic representation of the disruption construct, and wild-type and disrupted locus of atrC (A) 
and atrD (B). The open boxes labelled GspC, GspD, CI and Dl indicate the restriction fragments used as 
probes in Southern and Northern analyses. Southern analysis was performed with the recipient strain 
WG488 used for transformation and two independent monospore isolates of the disruptants: DC-2 and 
DC-7 for disruptants of atrC and DD-38 and DD-39 for disruptants of atrD. C. Genomic DNA of 
WG488, DC-2 and DC-7 was restricted with EcoSl and hybridized with probes CI and GspC. D. 
Similarly, a blot containing iscoRI-restricted genomic DNA of strains WG488, DD-38 and DD-39 was 
hybridized with the Dl and GspD probes. E. Northern analysis of germlings of A. nidulans treated with 
cycloheximide (20 ng ml"1) for 60 min. The lanes were loaded with RNA from the control strains PAO-1 
(1) and PAO-2 (2) transformed with the pAO-2 vector containing the pyrG gene of A. oryzae, the AatrC 
strains DC-2 (3) and DC-7 (4) and the AatrD strains DD-38 (5) and DD-39 (6). The upper panel shows 
the result of a hybridization with the gene-specific probe GspC of atrC and the lower panel shows the 
same blot hybridized (after stripping the first probe) with the gene-specific probe GspD of atrD. 
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PAO-1 DC-2 DD-38 

PAO-2 DC-7 DD-39 

Control (MeOH) 

Cycloheximide 
(25ngml') 

PSC 833 
(25\igmf) 

Nigericin 
(3 Hgml1) 

Valinomycin 
(3 HgmlJ) 

Figure 5. Toxicity assays 
Sensitivity of Aspergilus nidulans strains PAO-1 and PAO-2 (controls), DC-2 and DC-7 (AatrQ and DD-
38 and DD-39 (AatrD) to four structurally unrelated compounds. Mycelial agar plugs of a confluent plate 
(incubated overnight) of each strain were placed upside down on a minimal medium (MM) plate 
containing the indicated concentration of the compound. Radial growth was assessed after 3 days 
incubation, at 37 C. 
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Two independent monospore isolates of AatrC (DC-2 and DC-7) and AatrD (DD-

38 and DD-39) were characterized. The deletion mutants grow normally and no 

differences in radial growth rates were observed. A radial growth toxicity test was used to 

evaluate the role of AtrCp and AtrDp proteins in drug transport. Activity of thirty five 

compounds (see experimental procedures) was tested. None of them differentially 

inhibited growth of AatrC monospore isolates and control isolates PAO-1 and PAO-2. In 

contrast, AatrD mutants displayed increased sensitivity to cycloheximide (25 ug ml"1), the 

cyclosporin derivative PSC 833 (25 ug ml"1), nigericin (3 ug ml"1), and valinomycin (3 

ug ml"1) as compared to the control isolates tested (Fig. 5). 

The role of AtrDp in the energy-dependent efflux of [14C]fenarimol 

MDR in A. nidulans was first reported for laboratory-generated mutants selected for 

resistance to azole fungicides and related compounds (Van Tuyl, 1977). In these 

genetically defined MDR mutants, resistance to fenarimol is based on increased energy-

dependent efflux activity that results in decreased drug accumulation in the cytoplasm (De 

Waard and Van Nistelrooy, 1979, 1980). This efflux-activity is sensitive to vanadate. In 

order to assess the role of AtrDp in this efflux-mechanism, we tested the potency of 

identified substrates and transcriptional inducers of atrD to inhibit the efflux of 

[14C]fenarimol. Pronounced inhibitory effects were observed for the cyclosporin 

derivative PSC 833, nigericin, reserpine and valinomycin (Fig. 6A). Interestingly, the 

effect of reserpine is transient while that of nigericin, valinomycin and the cyclosporin 

derivative PSC 833 is proportional to the time of exposure to the test compound. 

Cycloheximide has no pronounced effect on [14C]fenarimol accumulation, when applied 

60 min after addition of the labeled fungicide. However, when applied 60 min prior to 

addition of the fungicide, inhibition of efflux activity was observed (data not shown). The 

parent strain PAO-2 and the deletion mutants of atrC and atrD (DC-7 and DD-39, 

respectively) display a similar transient accumulation of [14C]fenarimol (Fig. 6B). 

AatrD mutants show decreased secretion of antibiotic activity 

To test the hypothesis that ABC transporters can export endogenous secondary 

metabolites, antibiotic activity secreted from the disruptants was studied in a bioassay 

using Micrococcus luteus as a test organism. Antibiotic activity of AatrD strains proved 

to be significantly lower (33 % reduction) than that of control and AatrC strains (Fig. 
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7A and 7C). Inhibition zones in the bioassay disappeared when the agar was 

supplemented with the enzyme penicillinase (Fig. 7B), indicating that the antibiotic 

activity was due to the production of penicillin or related antibiotics. 
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Figure 6. Accumulation of [14C]fenarimol by germlings of Aspergillus nidulans 
A. Effect of cycloheximide (A), PSC 833 (•), nigericin (•), valinomycin (X), quercetin (O), and reserpine 
(•) on [14C]fenarimol accumulation by germlings of strain PAO-2. Chemicals (at 100 |Xg ml"1) were 
added 60 min after addition of [14C]fenarimol (t=0). Controls: methanol (0.1 %, bold line), DMSO (0.1%, 
+). B. Comparison of accumulation by germlings of strains PAO-2 (bold line), DC-7 (•) and DD-39 (•). 
[14C]fenarimol was added to germlings at t=0. 

DISCUSSION 

We have cloned and functionally characterized two novel ABC transporter-encoding 

genes, named atrC and atrD, from the filamentous fungus A. nidulans. The encoded 

proteins are highly homologous to previously characterized ABC-transporter proteins from 

the human pathogens A. flavus (AflMdrlp) and A. fumigatus (AfuMdrlp), as well as to the 

leptomycin B resistance protein Pmdlp from S. pombe (Nishi et al, 1992; Tobin et al, 

1997). AtrDp is 76% identical to AfuMdrlp. The number and position of introns in atrD 

and AfuMdrlp are conserved. These results suggest a close evolutionary relationship 

between these two proteins. AfuMdrlp confers decreased sensitivity to the antifungal 

agent cilofungin when overexpressed in S. cerevisiae (Tobin et al, 1997). However, AatrD 

strains of A. nidulans displayed wild-type sensitivity to that compound. Hence, the high 

degree of primary sequence homology does not imply a similar substrate specificity. 

The basis of substrate specificity of ABC proteins is largely unknown. ABC 

transporters involved in MDR from various organisms can share a similar set of substrates 
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but can vary significantly in primary sequence, topology and size. For instance, the Pdr5p 

protein from S. cerevisiae and the human MDR1 P-glycoprotein share substrate specificity, 

despite a difference in topology and low sequence homology (Kolaczkowski et al, 1996). 
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Figure 7. Secreted antibiotic activity 
Agar plugs taken from the center of 14-day-old colonies of Aspergillus nldulans, grown on complete 
medium (CM) plates at 25 °C, were placed on agar plates seeded with Micrococcus luteus and incubated 
overnight at 37 °C. A. Inhibition zones indicating antibacterial activity of control strains PAO-1 and PAO-
2, AatrC strains DC-2 and DC-7, and AatrD strains DD-38 and DD-39. B. A replicate of plate A amended 
with penicillinase (10 units). C. The bars represent the means of the area of inhibition (mm2) obtained from 
6 replicates. Analysis of variance and comparisons between means were applied as described by Snedecor 
and Cochran (1989). Identical letters within the bars indicate no significant difference (P > 0.01) according 
to Tukey's test. 
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Murine Mdr3p, PfMdrlp and human MRP are all capable of transporting the a factor 

pheromone in .?fe6-deficient S. cerevisiae, despite significant amino acid divergence 

(Raymond et ah, 1992; Ruetz et ah, 1993; Volkman et ah, 1995). However, conclusions 

on substrate specificity based on heterologous expression systems should be interpreted 

with caution, especially with respect to MDR proteins, as it has been shown that 

differences in membrane composition can affect substrate specificity and ATPase activity 

of those proteins (Doige et ah, 1993; Romsicki and Sharom, 1998; Sharom, 1997). 

Nevertheless, the report that the half-sized LmrAp protein from Lactococcus lactis, the 

first example of a prokaryotic ABC transporter involved in MDR, can confer a typical 

MDR phenotype when expressed in human lung fibroblast cells, confirms that functional 

homology can be retained over a large evolutionary distance (Van Veen et ah, 1998). 

Thus, an understanding of evolutionary relationships among ABC transporters might help 

to elucidate the origins of multidrug efflux systems, their substrate specificity and their 

intrinsic physiological functions. 

Saprophytic soil fungi such as A. nidulans are constantly challenged by natural 

toxins. By analogy to the proposed origins of bacterial multidrug transporters, we 

hypothesize that selection pressure has triggered the evolution of protection mechanisms 

based on overproduction of ABC transporters, which might originally have had a function 

in the transport of specific endogenous compounds {e.g. secondary metabolites) with the 

ability to expel drugs being only a fortuitous side effect (Neyfakh, 1997). 

The basal level of expression of atrC is high as compared to that of atrD, which 

suggests an intrinsic metabolic function of AtrCp. However, the normal-growth phenotype 

observed for AatrC strains suggests that the role of atrC is not essential or can perhaps be 

provided by other ABC transporters. Increased transcript levels of both atrC and atrD are 

observed upon treatment of fungal germlings with a variety of compounds such as 

cycloheximide (an antibiotic), imazalil (a fungicide), pisatin (a phytoalexin from Pisum 

sativum), and reserpine (a plant indole alkaloid). This might indicate that AtrCp and AtrDp 

may have a function in protecting the cell against a wide range of toxic compounds. The 

observation that compounds can simultaneously enhance levels of both atrC and atrD 

transcripts suggests that both genes share similar regulatory mechanisms and even 

substrates. This redundancy could explain, at least in part, the finding that AatrC mutants 

show no hypersensitive phenotype for any of the set of compounds tested. This has also 

been demonstrated for single knock-out mutants of S. cerevisiae and C. albicans where 
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ABC transporters with distinct but overlapping drug specificities occur, making the 

assessment of the substrate profile of each protein only possible in multiple knock-out 

strains (Hirata et al, 1994; Sanglard et al, 1997). 

The hypersensitivity observed in the AatrD mutants to the chemically unrelated 

compounds cycloheximide, the cyclosporin derivative PSC 833, nigericin and 

valinomycin provides evidence that AtrDp is involved in multidrug transport. These 

compounds have also been reported to be ABC-transporter substrates in other organisms 

(Ambudkar et al, 1999; Kolaczkowski et al, 1998; Kuchler et al, 1989; Nishi et al, 1992; 

Seelig, 1998). Increased sensitivity to actinomycin D as observed in pmdV strain of S. 

pombe was absent in AatrD strains. Several factors can account for this observation. First, 

an intrinsic property of the protein itself may be responsible. Second, the differences in the 

lipid compositions of the membranes might affect substrate specificity as discussed above. 

Finally, the presence of additional, as yet unknown, ABC-transporter proteins (Andrade et 

al, 1999; Angermayr et al, 1999) which share actinomycin D as substrate may 

compensate for the deletion of atrD. The latter hypothesis is supported by the observation 

that many ABC transporter-candidate genes are present in the expressed sequence tag 

(EST) database of A nidulans (Roe et al, 1998). 

The immediate increase in accumulation of [14C]fenarimol observed upon addition 

of reserpine suggests that this compound strongly competes with this fungicide at the 

substrate binding site of (a) fenarimol-efflux pump(s). The inhibitory action on 

[14C]fenarimol efflux is transient, which might be due to rapid inactivation of reserpine 

(e.g sequestration) or to the elevated level of drug-induced efflux pump activity. The latter 

hypothesis is supported by the observation that reserpine strongly enhances transcription of 

atrC and, in particular, atrD. Fenarimol also enhances transcription of atrD. Therefore our 

results suggest that AtrDp plays a role in efflux of this fungicide. However, additional 

pumps involved in extrusion of fenarimol might exist as [14C]fenarimol efflux activity and 

sensitivity to this compound in AatrD and control strains is similar. The cyclosporin 

derivative PSC 833, nigericin and valinomycin also induces accumulation of 

[14C]fenarimol, but, in contrast to reserpine, their effect is not transient but proportional to 

time of exposure to the drug. This indicates that these compounds interfere in a different 

way with fenarimol efflux activity. The cyclosporin derivative PSC 833 is a strong 

modulator of mammalian MDR1 and therefore might have the same effect on fungal 
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homologs (Atadja et al., 1998). The ionophores nigericin and valinomycin may also act 

indirectly via secondary effects (De Waard and Van Nistelrooy, 1987). 

The decreased secretion of antibiotic activity of AatrD mutants suggests a role of 

AtrDp in penicillin secretion. This is the first report on the involvement of an ABC 

transporter in secretion of fungal antibiotics. In Streptomyces peucetius (Guilfoile and 

Hutchinson, 1991) and S. argillaceus (Fernandez et al, 1996), the involvement of ABC-

transporter proteins in secretion of endogenous antibiotics (e.g. rubicin and mithramycin, 

respectively) has also been demonstrated. The decrease in secreted antibiotic activity found 

for AatrD strains may be due to the elimination of secretion by AtrDp. However, 

alternative explanations are possible. AtrDp could, for instance, be involved in 

compartmentalization of biosynthetic precursors. In A. nidulans, the enzymes involved in 

penicillin biosynthesis are located in three different cellular compartments (Brakhage, 

1998). Thus, during the biosynthesis of penicillin several transport steps are required to 

bring intermediates of the penicillin biosynthesis pathway together with the enzymes. If 

these transport steps involved AtrDp, disruption of the corresponding gene would also 

result in decreased penicillin production. Furthermore, AtrDp might also be part of a signal 

transduction mechanism that regulates some component(s) of the penicillin secretory 

machinery, similarly to the function proposed for the Ecs ABC-transporter proteins of 

Bacillus subtilis (Leskela et al., 1999). Hence, further studies will be needed to 

characterize the physiological function of AtrDp in relation to penicillin biosynthesis. In 

addition to penicillin, A. nidulans is known to produce a variety of other secondary 

metabolites such as the hazardous carcinogen sterigmatocystin, an aflatoxin precursor. 

Aflatoxins are substrates of mammalian ABC transporters (Loe et ah, 1997). The presence 

of the consensus binding motif 5'-TCG(Ns)CGA-3' for AflRp, a transcription factor 

involved in regulation of several sterigmatocystin-biosynthesis genes (Fernandes et al, 

1998), in the promoter of atrD suggests that sterigmatocystin might be another endogenous 

substrate for ABC transporters in A. nidulans. 

In summary, our results suggest that secretion of endogenous secondary 

metabolites, exogenous natural toxins and xenobiotics may be mediated by common ABC 

transporters. This may imply that strains overexpressing multidrug transporter genes can 

show various pleiotropic effects with respect to secretion of secondary metabolites. Such 

changes are of interest if they increase production of commercially important compounds. 

However, they may pose a danger if this would also account for detrimental compounds 
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such as virulence factors or mycotoxins. For these reasons, ABC transporters in Aspergilli 

need further investigation. 

EXPERIMENTAL PROCEDURES 

Strains, plasmids and media 

The A. nidulans strains used in this study are listed in Table 2. All strains were derived 

from Glasgow stocks. Standard techniques for manipulation and growth were as described 

by Pontecorvo and colleagues (1953). E. coli DH5oc was used as a host in plasmid 

propagation. 

Table 2. Aspergillus nidulans strains used in this study. 

Strain Genotype3 

Wt003 biAl; acrAl 
WG488 biAl;pyrG89; lysB5;fwAl; uaY9 
PAO-1 andPAO-2 Independent monosporic transformants of WG488 with plasmid pA04-2. 

Prototrophic for uridine. 
DC-2 and DC-7 WG488 with a single-copy replacement of atrC by the disruption construct of 

atrC (DC). Independent monosporic transformants. 
DD-38 and DD-39 WG488 with a single-copy replacement of atrD by the disruption construct of 

atrD {DO). Independent monosporic transformants. 

* For explanation of symbols, see Clutterbuck (1993). 

Nucleic acids manipulations and molecular biological techniques 

Freshly harvested conidia obtained from confluent plate cultures of A. nidulans, grown for 

4-5 days at 37 C, were used as inoculum source for liquid cultures at a density of 10 ml" . 

Germlings harvested after 14 hours of incubation at 37 °C and 200 rpm, were used for 

nucleic acid isolation according to Raeder and Broda (1985) and Logemann et al. (1987). 

Poly A+ mRNA was purified from total RNA with the oligodex-dT™ Qiagen kit (Qiagen, 

Chatsworth, CA, USA). cDNA synthesis was performed using the Marathon™ cDNA 

amplification kit with the Advantage® cDNA polymerase mix (Clontech, Palo Alto, Ca, 

USA). The Random Primers DNA Labelling System (GIBCO BRL™, Breda, The 

Netherlands) was used to generate radioactively labeled oligonucleotide probes with [oc-
32P]dATP. Southern, Northern and Dot blot hybridizations were performed using 

HybondN4^ (DNA) and HybondN (RNA) nylon membranes (Amersham), according to 

manufacturer's instructions. Overnight hybridized blots were washed at 65 °C with 0.1% 

SSC + 0.1% SDS solution. The pGENMZf^ and pGEM-T (Promega, Madison, Wis.) 

vectors were used for cloning DNA fragments and PCR products, respectively. 
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Sequencing was carried out by the dideoxy chain-termination method (Sanger et al, 1977). 

PCR reactions were performed using a Perkin-Elmer DNA thermal cycler 480 and 

Amplitaq® DNA polymerase (Perkin Elmer, Branchburg, New Jersey, USA), unless 

otherwise indicated. Sequences were analyzed using the DNAstar package (DNASTAR, 

Inc.). 

Isolation of conserved ABC motifs by PCR 

The approach used was basically the same as described by Tobin et. al (1997). Degenerate 

oligonucleotide primers were designed to amplify regions of the A. nidulans genome 

encoding consensus ABC-transporter protein sequences similar to the human MDR1, 

Aureobasidium pullulans Mdrlp and S. cerevisiae Ste6p. The codon bias used for primer 

design was based on the report of Lloyd and Sharp (1991). Primer aspmdr-1 (5'-

GCYCTCGTYGGICCCTCIGG-3') or aspmdr-3 (5'-GCYCTCGTYGGICCCAGYGG-

3'), encoding the amino acid sequence ALVGPSG, were used in combination with 

aspmdr-2 (5'-GATRCGYTGCTTYTGICCICC-3'), the complementary strand to the one 

encoding GGQKQRI. PCR reactions were performed at a melting temperature of 94 °C for 

30 s, an annealing temperature of 60 °C for 30 s, and an extension temperature of 72 °C for 

20 s and 30 cycles. Reaction products were reamplified by transferring 2 |xl of the original 

reaction into a fresh PCR reaction mix and reamplifying under the same PCR conditions. 

Genomic library 

A wild-type genomic library constructed in A.EMBL3 was used (Del Sorbo et al, 1997). 

Positive lambda clones were screened and purified by at least three rounds. 

Disruption constructs 

The construct for disruption of atrC was made in three steps. First, a subclone (pC7) 

containing a 1.9 kb Pstl fragment cloned in the Pstl site of pGEM-SZf '̂ was restricted 

with BamHl and Bglll. The 3.9 kb DNA fragment was used to clone a 3.8 kb BamHl insert 

from pA04-2 restricted with BamHl (De Ruiter Jacobs et al, 1989) and named pC704. 

Second, another subclone (pC23) was restricted with BamHl and a 1.2 kb BamHl fragment 

was excised and ligated in the BamHl site of pC704, giving rise to a 9.0 kb construct, 

coded pAOC. The final transformation construct, a 5.4 kb Sphl DNA fragment (DC), was 

obtained by restriction of pAOC with Sphl. The strategy for making the disruption 
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construct of atrD was similar. The first step consisted of cloning a 2.8 kb DNA fragment 

obtained from restriction of pA04-2 with BamHl and BgM into the BamHl site of 

subclone D30, which contained a 0.4kb EcoKI and BamHl insert. This construct was 

named pD30O4. In the second step, a 2.0 kb BglR fragment obtained from subclone D26 

restricted with BgM was cloned in the BamHl site of pD30O4, resulting in a 8.4 kb 

construct coded pAOD. The final transformation construct of 5.2 kb was obtained by the 

restriction of pAOD with Xhol and EcdSl. 

Preparation of protoplasts and transformation 

Mycelial protoplasts were prepared as described by Wernars et. al. (1985) with minor 

modifications. Liquid minimal medium supplemented with 2 g l"1 casaminoacids, 0.5 g 

l"1 yeast extract and auxotrophic markers was inoculated with 106 conidia ml"1 and 

incubated overnight at 37 °C and 300 rpm in a orbital incubator for 16 hours. The 

germlings were harvested through Mira-Cloth, washed twice with sterile water and 

twice with STC buffer ( 1.0 M sorbitol, lOmM Tris-Cl pH 7.5, 50 mM CaCl2) and 

squeezed between paper towels to remove excess of liquid. Protoplasts were released by 

incubation of one gram of mycelium at 30 °C and 100 rpm, resuspended in 20 ml of 

filter-sterilized iso-osmotic S0.8MC medium containing lytic enzymes (5 mg ml"1 

Novozym 234, 0.8 M KC1, 50 mM CaCl2, 20 mM MES pH 5.8) for about 2 hours. The 

protoplast solution was filtered over glass-wool, diluted (1:1) with STC buffer and 

incubated on ice for 10 min. Then, protoplasts were collected by centrifugation (10 

min, 0 °C, 3000 rpm) and washed twice with STC buffer. Transformation was 

performed as described by Van Heemst et al. (1997) using purified DNA (3.5 ug) of 

transformation constructs DC and DD dissolved in sterile water (15 JJ,1). 

Toxicity assays 

Sensitivity of A. nidulans strains to toxicants was determined in a radial growth test on 

MM plates (De Waard and Van Nistelrooy, 1979). Benomyl and sulfomethuron methyl 

were kindly provided by DuPont De Nemours (Wilmington, USA), bitertanol by Bayer 

AG (Leverkusen, Germany), cilofungin by Eli Lilly and Co. (Indianapolis, USA), the 

cyclosporin derivative PSC 833 by Novartis (Basel, Switzerland), fenarimol by Dow 

Elanco (Greenfield, USA) and imazalil nitrate by Janssen Pharmaceuticals (Beerse, 

Belgium). Pisatin was purified from pea pods (Fuchs et al, 1981). All other chemicals 
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tested were purchased from Sigma Chemical Co. (Zwijndrecht, The Netherlands). Final 

concentrations of test chemicals in agar were: actinomycin D (100 (Xg ml"1), benomyl (1 ug 

ml"1), bergenin (100 ug ml"1), bitertanol (10 ug ml"1), cycloheximide (25 ug ml"1), 

cyclosporin derivative PSC 833 (25 ug ml"1), chlorpromazine (25 ug ml"1), 

chloramphenicol (100 ug ml"1), eugenol (2.5 ul ml"1), fenarimol (3 ug ml"1), genistein (100 

Ug ml"1), gramicidin D (10 [Xg ml"1), imazalil (0.03 Ug ml"1), kresoxim methyl (0.3 ug ml" 
l), nigericin (3 |0.g ml"1), nystatin (10 Ug ml"1), 4-iutroquinoline-./V-oxide (1 Ug ml"1), 

oligomycin (0.25 ug ml"1), pisatin (20 ug ml"1), quinidine (200 (j.g ml"1), resveratrol (200 

Ug ml"1), rhodamine 6G (5 ug ml"1), triflupromazine (10 ug ml"1), tomatine (10 ug ml"1), 

valinomycin (3 Ug ml" ). These compounds were added from concentrated solutions in 

methanol. Amphotericin B (25 ug ml"1), brefeldin A (5 ug ml"1), camptothecin (25 ug ml" 
!), cilofungin (0.1 Ug ml"1), psoralen (200 Ug ml"1), quercetin (200 Ug ml"1), sulfomethuron 

methyl (100 ug ml"1) were added from concentrated solutions in DMSO. Acriflavin (1 ug 

ml"1), ethidium bromide (1 ug ml"1) and neomycin sulphate (600 ug ml"1) were dissolved 

in sterile water. The final concentration of the solvents in all treatments never exceeded 

1%. 

Accumulation of |'4C]fenarimoI 

Experiments were performed with standard suspensions of germlings of A. nidulans at an 

initial external concentration of 30 uM [14C]fenarimol (De Waard and Van Nistelrooy, 

1980). 

Bioassays 

A. nidulans strains were point-inoculated on agar plates containing complete medium 

(CM) and incubated for 14 days at 25 °C. The strain of M. luteus (DSM-348) was 

purchased from DSMZ (Braunschweig, Germany). Overnight bacterial cultures were 

grown on Lab-Lemco Broth (Oxoid) at 30 °C and 200 rpm. In bioassays, portions (50 ml) 

of freshly prepared sterile Lab-Lemco Agar (Oxoid) were cooled-down (45 °C), mixed 

with overnight bacterial culture (1 ml) and transferred to 145 mm (diameter) plates. Then, 

agar plugs from the center of 14-day-old colonies of A. nidulans strains to be tested were 

placed equidistantly on top of the bacterial plates and incubated at 30 °C. Inhibition zones 

were measured after 24 hours of incubation. 
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SUMMARY 

This paper reports the functional characterization of AtrBp, an ABC transporter 

from Aspergillus nidulans. AtrBp is a multidrug transporter and has affinity to 

substrates belonging to all major classes of agricultural fungicides and some 

natural toxic compounds. The substrate profile of AtrBp was determined by 

assessing the sensitivity of deletion and overexpression mutants of atrB to several 

toxicants. All mutants showed normal growth as compared to control isolates. 

AatrB mutants displayed increased sensitivity to anilinopyrimidine, benzimidazole, 

phenylpyrrole, phenylpyridylamine, strobilurin, and some azole fungicides. 

Increased sensitivity to the natural toxic compounds camptothecin (alkaloid), the 

phytoalexin resveratrol (stilbene) and the mutagen 4-nitroquinoline-/V-oxide was 

also found. Overexpression mutants were less sensitive to a wide range of 

chemicals. In addition to the compounds mentioned above, decreased sensitivity to 

a broader range of azoles, dicarboximides, quintozene, acriflavine and rhodamine 

6G was observed. Decreased sensitivity in overexpression mutants negatively 

correlated with levels of atrB expression. Interestingly, the overexpression mutants 

displayed increased sensitivity to dithiocarbamates fungicides, chlorothalonil and 

the iron activated antibiotic phleomycin. Accumulation of the azole fungicide 

[14C]fenarimoI by the overexpression mutants was lower as compared to the 

parental isolate, demonstrating that AtrBp acts by preventing intracellular 

accumulation of the toxicant. Various metabolic inhibitors increased accumulation 

levels of [14C]fenarimol in the overexpression mutants to wild-type levels, 

indicating that reduced accumulation of the fungicide in these mutants is due to 

increased energy-dependent efflux as a result of higher pump capacity of AtrBp. 

INTRODUCTION 

The use of fungicides in crop production continues to be essential for effective control of 

plant diseases and assurance of high crop yields. Recently, new classes of fungicides have 

been developed in order to meet the public demand of environmentally safer products. 

These modern fungicides include the classes of anilinopyrimidines, phenoxyquinolines, 

phenylpyrroles and strobilurins (Knight et ah, 1997), which are highly selective site-

specific inhibitors of the metabolism of target organisms. A disadvantage of fungicides 

with a specific mode of action is the high risk of resistance development (Jespers and De 
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Waard, 1993). This has been the case for the first generation of modern fungicides (e.g. 

benzimidazoles, phenylamides, dicarboximides, and sterol biosynthesis inhibitors), whose 

activity was significantly reduced by the development of resistance in target populations. 

In some cases, resistance developed not only to a specific fungicide but also to structurally 

and functionally unrelated compounds. This phenomenon, known as multidrug resistance 

(MDR), has been reported to operate in a broad range of organisms and is of major 

concern in clinical medicine. Therefore, understanding the mechanisms of multidrug 

resistance development is important for society in general. 

A common mechanism of MDR is the overexpression of energy-dependent 

multidrug efflux pumps, also known as multidrug transporter proteins or P-glycoproteins 

(P-gp). Overexpression of such proteins in cancer cells results in MDR to 

chemotherapeutic drugs and other hydrophobic pharmacological agents (Ambudkar et al, 

1999). P-glycoproteins belong to the ubiquitous superfamily of ATP-Binding Cassette 

(ABC) transporters. Besides multidrug transporters, the family includes proteins involved 

in transmembrane transport of various substances such as ions, amino acids, peptides, 

sugars, vitamins, steroid hormones, bile acids and phospholipids (Higgins, 1992, 1994; 

Van Helvoort et al, 1996). 

In filamentous fungi, MDR was first reported for laboratory-generated mutants of 

Aspergillus nidulans selected for resistance to azole fungicides, also described as sterol 

biosynthesis inhibitors (Van Tuyl, 1977). Resistance to azoles in isogenic mutants is based 

on an energy-dependent efflux mechanism which results in decreased accumulation of 

compounds in fungal mycelium, similarly to the phenomenon observed in cancer cells (De 

Waard and Van Nistelrooy, 1979, 1980). This mechanism also operates in plant pathogens 

such as Penicilium italicum, Botrytis cinerea, Nectria haematococca, and probably 

Mycosphaeaerella graminicola (De Waard et al., 1996; Joseph-Horne et al., 1996). To 

date, at least five ABC transporters highly homologous to multidrug-efflux pumps from 

other organisms have been described for A. nidulans (Andrade et al., 1999; Angermayr et 

al, 1999; Del Sorbo etal, 1997). 

This paper describes the functional characterization of atrB, a previously described 

gene of A. nidulans (Del Sorbo et al, 1997). AtrBp displays a high degree of sequence 

homology to BcatrBp from B. cinerea, Mgatr5p from M. graminicola, Pmrlp from 

Penicillium digitatum, and Abclp from Magnaporthe grisea (Goodall et al, 1999; 

Nakaune et al, 1998; Schoonbeek et al, 1999; Urban et al, 1999). A high degree of 

homology also exists with ABC proteins classified in sub-cluster 1.1 from Saccharomyces 

75 



Chapter 4 

cerevisiae (Decottignies and Goffeau, 1997), Bfrlp from Schizosaccharomyces pombe 

(Nagao et al., 1995), and the Cdrlp and Cdr2p proteins from Candida albicans (Prasad et 

ah, 1995; Sanglard et al, 1996, 1997). Most of these proteins have been characterized as 

multidrug-efflux pumps. Previously, we have reported that heterologous overexpression of 

atrB in S. cerevisiae restores wild-type sensitivity to cycloheximide, tentatively indicating 

that AtrBp is also a multidrug-efflux protein. Here, we describe in detail the substrate 

specificity of the multidrug transporter AtrBp by phenotype characterization of knock-out 

and overexpression mutants of A. nidulans with respect to fungicide sensitivity. AatrB 

strains display increased sensitivity to several classes of fungicides and some natural toxic 

compounds. atrB overexpression mutants are less sensitive to a wide range of compounds. 

Interestingly, these overexpression mutants display at the same time increased sensitivity 

to some conventional fungicides and phleomycin, an iron-activated antibiotic. These 

results clearly indicate that AtrBp is a multidrug transporter involved in protection against 

natural toxins and xenobiotics and might play a role in iron metabolism. 

RESULTS 

Generation of AatrB mutants 

To characterize the substrate specificity of AtrBp and its role in MDR, we have 

generated deletion mutants by replacing the major part of the coding region of atrB with 

the orotidine-5'-phosphate decarboxylase (pyrG) encoding-gene of A. oryzae. The uridine-

auxotrophic strain WG488 of A. nidulans was used as the recipient strain for 

transformation and selection of transformants was based on uridine prototrophy. The use 

of the heterologous selectable marker of A. oryzae minimizes the chance of integration of 

the construct at the pyrG locus of A. nidulans. The schematic representation of the 

disruption strategy used is given in Fig. 1(a). Southern blot analysis confirmed replacement 

of the wild-type allele of atrB in all mutants tested (Fig. lb). The replacement of the atrB 

locus was confirmed by the expected shift in size of the restriction fragments when the 

blots were hybridized with probe Bl (left panel). When the same blots were hybridized 

with probe B2, a smaller hybridizing fragment as compared to the wild-type locus (Lane 

1, right panel) was expected to occur (Lanes 2-9). However, in some of the mutants 

(Lanes 2, 3 and 6) a restriction fragment of the same size as the wild-type locus (Lane 1) 

was still present and indicated that these mutants are heterokaryons. For further analysis 

two independent mutants DB5 (Fig. lb; lane 4) and DB21 (Fig. lb; lane 9) were selected. 
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Figure 1. Generation of deletion mutants of the Aspergillus nidulans atrB gene 
(a) Schematic representation of the wild-type atrB locus, disruption construct, and knock-out 
locus of atrB. Horizontal lines labeled Bl and B2 indicate the restriction fragments used as 
probes in Southern analysis, (b) Southern blot analysis was performed with genomic DNA from 
the recipient strain WG488 used for transformation (Lane 1) and eight putative AatrB isolates 
(Lanes 2-9). Genomic DNA of WG488, and DB isolates was restricted with Bglll and 
hybridized with probes Bl and B2 (left and right panels, respectively), (c) Northern blot 
analysis of RNA isolated from germlings treated with cycloheximide (20 |Xg ml"1) for 60 min. 
The lanes represent the control strains PAO-1 (Lane 1) and PAO-2 (Lane 2) transformed with 
the pAO-2 vector containing the pyrG gene of A. oryzae and the AatrB strains DB5 (Lane 3) 
and DB21 (Lane 4). The upper panel shows the result of a hybridization with the gene-specific 
probe D15 of atrB (Del Sorbo et ai, 1997). The middle panel show the same blot hybridized 
with the gene-specific probe GspD of atrD and the bottom panel with actin as loading controls. 
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Northern blot analysis was carried out with total RNA isolated from germlings 

treated with cycloheximide, a strong inducer of atrB transcript levels. This treatment did 

not reveal any signal of mRNA from atrB in the AatrB mutants, whereas transcript 

levels oiatrD were the same in all strains tested (Fig. lc). These observations confirm 

that atrB was functionally deleted. 

Generation of overexpression mutants of atrB 

Generation of mutants with increased copy number of atrB was achieved by 

transformation of strain WG488 with construct pOB, which contains a genomic copy of 

atrB comprising the coding region plus the 5' and 3'untranslated regions (UTR). This 

construct was cloned in the pPL6 vector (Oakley et ah, 1987), which contains XhspyrG 

from A. nidulans. A schematic representation of the transformation construct coded 

pOB is presented in Fig. 2(a). After selection of transformants based on uridine 

prototrophy, sensitivity to camptothecin was tested. This compound was selected 

because AatrB mutants displayed a strong increase in sensitivity to this compound as 

compared to control isolates (Fig. 2c, left panel). Therefore, increase in the copy 

number of atrB should lead to decreased sensitivity to camptothecin. Using this 

screening procedure, we isolated mutants with different levels of resistance to 

camptothecin, as compared to the control isolates (data not shown). We postulated that 

this differential degree of resistance could be due to different copy number of atrB. To 

investigate this assumption, mutants displaying different levels (low, intermediate and 

high) of resistance to camptothecin were selected for further characterization (OB7, 

OB16 and OB35, respectively). Southern blot analysis confirmed an increase in atrB 

copy number in all strains tested (data not shown) and Northern blot analysis confirmed 

that sensitivity to camptothecin in the different overexpression mutants was negatively 

correlated with levels of atrB transcription (Fig. 2b and right panel of 2c). 

Phenotype characterization 

Two independent monospore strains of AatrB, DB5 and DB21 were selected for phenotype 

characterization with respect to sensitivity to fungicides and other toxicants. Strains PAO-1 

and PAO-2, transformed with a construct containing the pyrG from A. oryzae only, were 

used as controls. The deletion mutants grew normally and no differences in radial growth 

rates were observed. A radial growth toxicity test was used to evaluate the role of AtrBp in 
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drag sensitivity. The activity of 50 compounds (see Experimental procedures) was tested. 

AatrB mutants displayed increased sensitivity to the fungicides azoxystrobin, 

camptothecin, carbendazim, cyprodinil, fenpiclonil, fludioxonil, fluazinam, ketoconazole, 

kresoxim-methyl, 4-nitroquinoline oxide, prochloraz, propiconazole, resveratrol, 

thiabendazole, trifloxystrobin, when compared to the control isolates tested (Fig. 3a, 

Tables 1 and 2). AatrB mutants did not display increased sensitivity to cycloheximide, 

although we have shown previously that atrB was able to confer decreased sensitivity to 

this compound when overexpressed in yeast cells (Del Sorbo et al, 1997). 

(a) 
Hm dill 

$ph\ 

Bam HI 
Sac 

Slul 

(b) 
1 2 345 6 78 

Exposure 1 

Exposure 2 >• 

rRNA 

(c) 
PAO-1 PAO-2 

Camptothecin 
(10ugml") 

PPL6-1 OB7 

DB5 DB21 OB16 OB35 

Figure 2. Generation of overexpression mutants of the Aspergillus nidulans atrB gene 
(a) Schematic representation of the pOB construct used for transformation. Restriction sites are 
indicated in italics, (b) Northern blot analysis of RNA isolated from untreated germlings of A. 
nidulans after different exposure times of blots. The lanes contain RNA samples obtained from 
the control strains PPL6-1 (Lane 1) and PPL6-2 (Lane 2) and the atrB overexpression mutants 
OB7 (Lane 3), OB 16 (Lane 4), OB 18 (Lane 5), OB30 (Lane 6), OB35 (Lane 7) and OB44 
(Lane 8). Bottom panel: loading control (ethidium bromide stained blot). (c) Altered sensitivity 
to camptothecin displayed by atrB deletion (DB-5 and DB-21) and overexpression ( OB-7, OB-
16 and OB-35) mutants as compared to control strains (PAO and PPL6-1, respectively). 
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Sensitivity of the overexpression mutants OB7, OB16 and OB35 to the same set 

of compounds described above was also determined. Strain PPL6-1 transformed with 

the pPL6 construct was used as control strain. The overexpression mutants displayed 

decreased sensitivity to a wide range of compounds (Tables 1 and 2). Furthermore, the 

degree of decreased sensitivity to these compounds was positively correlated with the 

level of atrB expression (Fig. 3b, Tables 1 and 2). Most interestingly, we also observed 

that the overexpression mutants displayed increased sensitivity to compounds such as 

chlorothalonil, ferbam, thiram, and phleomycin. The increased sensitivity was 

negatively correlated with the level of atrB expression (Fig. 3c, Tables 1 and 2). 

AtrBp causes energy-dependent efflux of [14C]fenarimol 

In genetically defined MDR mutants of A. nidulans, resistance to the azole fungicide 

fenarimol is based on increased energy-dependent efflux activity which results in 

decreased cytoplasmic drug accumulation (De Waard and Van Nistelrooy, 1979, 1980). 

We could not find any significant difference in [14C]fenarimol accumulation between the 

control PAO and the AatrB strains (Fig. 4a). However, initial [14C]fenarimol accumulation 

in atrB overexpression mutants was lower than in control PPL6-1 strain (Fig. 4b). In radial 

growth tests, mutants overexpressing atrB had decreased sensitivity to fenarimol. 

We also confirmed that the efflux mechanism operating in the overexpression 

mutant OB35, as in the control strain PPL6-1, was energy-dependent. This conclusion is 

based on results of experiments in which the effect of respiratory inhibitors (oligomycin 

and CCCP) and an inhibitor of membrane ATPases (ortAo-vanadate) on accumulation of 

[14C]fenarimol was tested. Addition of these compounds instantly increased accumulation 

of [14C]fenarimol (Fig. 4c). This effect is ascribed to inhibition of energy-dependent 

[14C]fenarimol efflux activity as reported previously (De Waard and Van Nistelrooy, 

1980). In the same way, we have checked the potency of two substrates (kresoxim-methyl 

and iprodione) of AtrBp, to competitively inhibit the efflux of [14C]fenarimol. These 

compounds also stimulate the accumulation of [14C]fenarimol. The inhibitory activity of 

iprodione seems to be transient in time (Fig. 4d). 
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Chapter 4 

Table 1. Sensitivity of deletion (DB5 and DB21) and overexpression mutants (OB7, 

OB16 and OB35) of atrB in Aspergillus nidulans to fungicides and antimycotics in 

radial growth tests. 

Fungicides and 
antimycotics 

Azoles 
Fenarimol 
Imazalil 
Itraconazole 
Ketoconazole 
Miconazole 
Prochloraz 
Propiconazole 

Anilinopyrimidines 
Cyprodinil 
Pyrimethanil 

Aromatic hydrocarbons 
Na-o-phenylphenate 
Quintozene 

Benzimidazoles 
Carbendazim 
Thiabendazole 

Dicarboximides 
Iprodione 
Vinclozolin 

Dithiocarbamates 
Ferbam 
Thiram 

Phenylpyrroles 
Fenpiclonil 
Fludioxonil 

Phenylpyridylamines 
Fluazinam 

Strobilurins 
Azoxystrobin 
Kresoxim-methyl 
Trifloxystrobin 

Polyene antibiotics 
Amphotericin B 
Nystatin 

Miscellaneous 
Cilofungin 
Chlorothalonil 

EC50 Pao* 
(mgl1) 

2.32 
0.04 
0.05 
0.12 
0.36 
0.08 
1.23 

0.03 
0.18 

12.41 
7.42 

0.22 
1.99 

2.93 
4.92 

31.21 
25.41 

0.15 
0.10 

0.20 

0.04 
0.05 
0.002 

58.0 
13.1 

0.02 
1.68 

Qsot 

AatrB 

0.97 
0.92 
0.94 
0.71 J 
1.03 
0.72} 
0.63 } 

0.45 X 
0.92 

1.02 
0.94 

0.86 J 
0.93 

0.95 
0.96 

0.93 
1.00 

0.87 X 
0.49 X 

0.33 J 

0.49} 
0.73} 
0.59} 

0.86 
0.76 

1.02 
1.35 

EC50 Ppl6* 
-(mgl"1) 

2.89 
0.05 
0.05 
0.07 
0.33 
0.06 
1.45 

0.02 
0.20 

12.67 
6.73 

0.23 
1.78 

2.64 
5.78 

29.17 
28.78 

0.15 
0.10 

0.13 

0.02 
0.04 
0.002 

52.8 
17.6 

0.02 
1.46 

Qsot 
OB7 

1.46 
1.00 
0.91 
1.08 
1.42 
1.41} 
1.00 

1.60} 
1.00 

0.95 
1.00 

1.23} 
1.15} 

1.00 
1.00 

1.00 
0.93 

1.50 
1.67} 

1.00 

1.60} 
1.42} 
1.00 

0.86 
1.00 

0.92 
1.07 

OB16 

1.81 
1.19 
0.98 
1.27 
1.74 
>10} 
1.34} 

3.14} 
1.26 

0.95 
1.50 

1.77} 
1.51 } 

1.24 
1.28} 

0.96 
0.88 

1.85} 
3.74} 

1.37} 

2.07} 
2.48} 
3.55} 

0.87 
0.84 

1.07 
0.86 

OB35 

2.34} 
1.66} 
1.00 
1.93} 
3.51 } 
>100} 
2.28} 

4.16} 
1.50} 

0.91 
6.33} 

1.88} 
2.21 } 

1.79} 
1.67} 

0.74} 
0.55} 

5.62} 
6.00} 

1.72} 

7.13} 
7.42} 
5.57} 

0.79 
0.58} 

1.09 
0.12} 

* Control strains 
t Degree of sensitivity expressed as EC50 mutant/EC5o control strain. 
} Mean values of colony size of control strains and mutants growing on agar amended with 
fungicides around EC50 concentrations (see exp. procedures) are statistically different according 
to Tukey's test (PO.05). 

82 



Multidrug Resistance in Aspergillus nidulans 

DISCUSSION 

We have shown that deletion and overexpression mutants of atrB in A. nidulans display 

differential sensitivity to structurally unrelated compounds. These results indicate that the 

ABC transporter AtrBp is a multidrug transporter and accepts these compounds as 

substrates. We propose that the reduced intracellular accumulation of [14C]fenarimol in 

overexpression mutants of atrB and the decreased sensitivity to fenarimol can be explained 

by increased efflux activity of the fungicide. 

Table 2. Sensitivity of deletion (DB5 and DB21) and overexpression mutants (OB7, 

OB 16 and OB35) of atrB in Aspergillus nidulans to natural toxic products and 

miscellaneous compounds in radial growth tests. 

Compounds 

Antibiotics 
Cycloheximide 
Phleomycin 

Ionophores 
Nigericin 

Miscellaneous 
Acriflavine 
4-NQO 
Rhodamine 6G 
CCCP 

Plant compounds 
Camptothecin 
Eugenol 
Resveratrol 

EC50 Pao* 
(mgl"1) 

63.8 
31.1 

3.3 

1.95 
1.65 
4.74 
0.40 

65.3 
140 
-§ 

Q50t 

AatrB 

1.07 
1.04 

1.01 

0.80 
0.69 
0.90 
0.76 

0.24 } 
0.80 
< l t 

EC50 Ppl6* 
-(mgl-1) 

71.9 
28.3 

3.2 

1.43 
1.50 
4.35 
0.32 

66.7 
170 
-§ 

Qsot 

OB7 

0.91 
0.71 

1.01 

1.16 
0.97 
1.06 
1.12 

-§ 
0.92 
-§ 

OB16 

1.00 
0.56 X 

1.02 

2.78} 
1.60 j 
1.20 
1.23 

-§ 
0.95 
-§ 

OB35 

0.91 
0.35} 

1.01 

6.07} 
1.67} 
2.24} 
1.24} 

-§ 
1.00 
-§ 

* Control strains 
t Degree of sensitivity expressed as EC50 mutant/EC50 control strain. 
} Mean values of colony size of control strains and mutants growing on agar amended with 
fungicides around EC50 concentrations (see methods) are statistically different according to 
Tukey's test (P<0.05). 
§ EC50 values for the mutants are above solubility level of the compound and could not be 
accurately determined. 

Deletion strains of atrB displayed increased sensitivity to different classes of 

agricultural fungicides: cyprodinil (anilinopyrimidine), ketoconazole, prochloraz and 

propiconazole (azoles), carbendazim (benzimidazole), fenpiclonil and fludioxonil 

(phenylpyrroles), fluazinam (phenylpyridilamine) and azoxystrobin, kresoxim-methyl 

and trifloxystrobin (strobilurins). Increased sensitivity was also observed for other 
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compounds such as 4-nitroquinoline-A^-oxide (mutagen), camptothecin (plant alkaloid), 

and the phytoalexin resveratrol (stilbene). These results indicate that these compounds 

are substrates of AtrBp. 

Analogous to ABC transporters of yeast (Kolaczkowski et al., 1998; Sanglard et 

al, 1996; Sanglard et al, 1997), ABC transporters of A. nidulans may have distinct but 

overlapping substrate specificities. This makes it difficult to assess the substrate profile 

of an ABC protein using single knock-out mutants. To overcome this problem, the 

sensitivity of overexpression mutants to toxicants was also determined. This approach 

led to the characterization of additional substrates, such as fenarimol, imazalil and 

miconazole (azoles), pyrimethanil (anilinopyrimidine), iprodione and vinchlozolin 

(dicarboximides), quintozene (aromatic fungicides), acriflavine and rhodamine 6G. In 

all cases, an inverse correlation between levels of atrB expression in the overexpression 

mutants and sensitivity to toxicants was established. These results provide evidence that 

AtrBp pump activity is responsible for the decreased sensitivity to toxicants. The results 

also imply that the use of overexpression mutants avoids or minimizes the problem of 

redundancy of ABC transporters in characterization of the substrate specificity of 

AtrBp. Phenotype characterization of multiple deletion mutants is another approach that 

can be used to minimize the problem of redundancy. This approach was used to 

characterize the drug-resistance profile of the major ABC transporters of the PDR 

network from S. cerevisae (Kolaczkowski et al, 1998). The sensitivity of isogenic S. 

cerevisae strains deleted in PDR5, SNQ2, or YOR1, and multiple knock-outs in different 

combinations was tested to 349 toxic compounds. Several fungicides, similar to the 

ones used in our study, appeared to be ABC-transporter substrates in that organism. 

The transient accumulation of [14C] fenarimol in the AatrB mutants and control 

strains is similar. In contrast, the overexpression mutants have a lower initial level of 

[ C] fenarimol accumulation. These results indicate that AtrBp can act as a fenarimol 

efflux pump. However, results also suggest that A. nidulans has (an) additional efflux 

pump(s) accepting fenarimol as substrate. In AatrB mutants, such additional efflux pumps 

may compensate for the absence of AtrBp, resulting in similar patterns of [14C]fenarimol 

accumulation. Such compensating efflux pumps are still unknown but it might be one of 

the many ABC-transporter-candidate genes present in the expressed sequence tag (EST) 

database of A. nidulans (Roe et al., 1998). 
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Restoration of wild-type levels of [ C]fenarimol accumulation in the 

overexpression mutant OB35 after addition of the respiratory inhibitors (CCCP and 

oligomycin) and an inhibitor of membrane ATPases (ort/jo-vanadate), demonstrates that 

the [' CJfenarimol efflux is energy-dependent. This may be due to a direct effect of the 

inhibitor on the AtrB protein (vanadate), an effect on ATP synthesis in mitochondria 

(CCCP, oligomycin), and indirectly via dissipation of the proton-motive force (CCCP). 

Furthermore, identified substrates in the toxicity assays such as kresoxim-methyl and 

iprodione, also stimulate accumulation of [ C]fenarimol, suggesting that these 

compounds are competitive inhibitors of [14C]fenarimol efflux. Interestingly, a different 

pattern of inhibition for the two compounds was observed. First, the iprodione 

concentration (300 u.M) required to increase [14C]fenarimol accumulation was ten times 

higher than the one used for fenarimol (30 \\M). Kresoxim-methyl showed this effect at 

equimolar concentrations (30 \\M). This suggests that AtrBp has a higher affinity for 

kresoxim-methyl than for iprodione. Altered sensitivity to iprodione was only detected 

in the overexpression mutants whilst altered sensitivity to kresoxim-methyl was 

detected in both deletion and overexpression mutants of atrB. These results also suggest 

that AtrBp has a relative high-affinity to kresoxim-methyl. 

Similarly to the yeast ABC-transporter proteins of sub-cluster 1.1 (Decottignies 

and Goffeau, 1997), AtrBp has the (NBF-TMD)2 configuration. The majority of ABC 

transporters involved in MDR from yeast, such as Pdr5p, Snq2p and Pdrl2p are 

grouped in this sub-cluster. Genes encoding proteins with very high homology to AtrBp 

have been described for at least two important plant pathogens, B. cinerea and M. 

graminicola (Goodall et al, 1999; Schoonbeek et al, 1999). A BLAST analysis with the 

AtrBp sequence reveals that BcatrBp from B. cinerea is its closest homologue with an 

overall identity of 70%. Most interestingly, the predicted transmembrane domains of both 

proteins are also highly conserved. This suggest that BcatrBp from B. cinerea may have 

similar substrates as AtrBp from A. nidulans. 

Wild-type sensitivity to cycloheximide was restored to the PZ)^?5-deficient 

strain, upon transformation with the cDNA of atrB in a high-copy-number vector (Del 

Sorbo et al, 1997). In the present work, neither AatrB nor overexpression mutants of A. 

nidulans displayed altered sensitivity to cycloheximide as compared to the control 

strains. It has been demonstrated for the human MDR1 protein that lipid composition of 

membranes can affect its substrate specificity and ATPase activity (Doige et al., 1993; 
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Romsicki and Sharom, 1998; Sharom, 1997). Hence, differences in membrane 

composition of yeast as compared to A. nidulans could explain these results. 

(a) (b) 

10 20 30 40 50 60 

Time (min) 

(c) (d) 

10 20 30 40 50 60 70 80 90 100 110 120 

Tlme(mn) 

10 20 30 40 50 60 70 80 90 100 110 120 

Turefirin) 

Fig. 4. Accumulation of [ C]fenarimol by germlings of Aspergillus nidulans 
Accumulation of [14C]fenarimol (30 uM) by control strains PAO (bold line) and AatrB mutants 
(x). (b) Accumulation of [14C]fenarimol by control strain PPL6-1 ( O ) and the atrB 
overexpression mutants OB7 (+), OB16 (X) and OB35 (•). (c) Effect of CCCP (a, • ) , 
oligomycin (A, • ) and sodium ortho-vanadate («•, • ) on [14C]fenarimol accumulation by control 
strain PPL6-1 (open symbols) and the atrB overexpression mutant OB35 (filled symbols). 
CCCP (30 uM), oligomycin (30 uM) and sodium ortho-vanadate (30 mM) added 60 min after 
addition of [14C]fenarimol (t=0). Controls: methanol (0.1 %; O, • ) . (d) Effect of kresoxim-
methyl (A, A) and iprodione (a, • ) on [14C]fenarimol accumulation by germlings of the control 
strain PPL6-1 (open symbols) and the atrB overexpression mutant OB35 (filled symbols). 
Kresoxim-methyl (30 uM) and iprodione (300 uM) added 60 min after addition of 
[14C]fenarimol (t=0). Controls: methanol (0.1 %; o,«). 
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Most interestingly, the overexpression mutants of atrB displayed increased 

sensitivity to dithiocarbamates fungicides, chlorothalonil and the iron-activated 

antibiotic phleomycin. The increase in sensitivity of the overexpression mutants 

negatively correlated with the levels of atrB expression in the different mutants. We 

hypothesize that the explanation for the increased sensitivity displayed by the 

overexpression mutants could relate to iron metabolism, as the toxicity of phleomycin is 

directly correlated with intracellular iron contents (Haas et al., 1999). Therefore, it 

might be that atrB is also involved in iron uptake or secretion of siderophores. 

A better understanding of the role of AtrBp in sensitivity and resistance to 

toxicants may elucidate additional functions of AtrBp. This is of general relevance, 

since it might help to design strategies to overcome MDR in practice. This is already 

exemplified by our observation that dithiocarbamate fungicides and other compounds 

showed increased activity against overexpression mutants of atrB, with an MDR 

phenotype. 

EXPERIMENTAL PROCEDURES 

Strains, plasmids, and media 

The A. nidulans strains and plasmids used in this study are listed in Table 3. All strains 

were derived from Glasgow stocks. Standard techniques for manipulation and growth were 

as described by Pontecorvo et al. (1953). E. coli DH5ot was used as a host in plasmid 

propagation. 

Nucleic acid manipulations and molecular biological techniques 

Freshly harvested conidia obtained from confluent plate cultures of A. nidulans, grown for 

4-5 days at 37 °C, were used as inoculum source for liquid cultures at a density of 107 

conidia ml"1. Germlings harvested after 14 hours of incubation at 37 °C were used for 

nucleic acid isolation according to Raeder & Broda (1985) and Logemann et al. (1987). 

The Random Primers DNA Labelling System (GIBCO BRL™) was used to generate 

radioactively labeled oligonucleotide probes with [oc-32P]dATP. Southern, Northern and 

dot blot hybridizations were performed using HybondNT (DNA) and HybondN (RNA) 

nylon membranes (Amersham), according to manufacturer's instructions. Overnight 

hybridized blots were washed at 65 °C with 0.1% SSC + 0.1% SDS solution. The pGEM-

3Zf(+) and pGEM-T (Promega) vectors were used for cloning DNA fragments and PCR 
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products, respectively. Sequencing was carried out by the dideoxy chain-termination 

method (Sanger et al., 1977). PCR reactions were performed using a Perkin-Elmer DNA 

thermal cycler 480 and Expand™ High Fidelity PCR kit (Boehringer Mannheim GmbH). 

Sequences were analyzed using the DNAstar package (DNASTAR). 

Table 3. Aspergillus nidulans strains and plasmids used in this study. 

a. Strains Genotype* 

WG488 

PAO-1 and PAO-2 

DB5andDB21 

PPL6-1 
OB7, OB 16 and 
OB35 

MAl;pyrG89; lysB5;fwAl; uaY9 
Independent monosporic transformants of WG488 with plasmid pA04-
2. Prototrophic for uridine. 
WG488 with a single-copy replacement of atrB by the disruption 
construct DB. Independent monosporic transformants. 
Monosporic transformants of WG488 with plasmid pPL6. Prototrophic 
for uridine. 
Independent monosporic transformants of WG488 with plasmid pOB. 
Prototrophic for uridine. 

b. Plasmids 
PGEM-3Zi<+) 

pGEM-T 
pD15 

pSF5 

pGspD 

pA04-2 

pPL6 
pTB 
pAOB 

pOB 

Relevant characteristicsf 
E. coli cloning vector 
E. coli cloning vector 
Subclone containing atrB gene-specific 
probe 
gamma-actin of A. nidulans cloned in 
pUC19 
Subclone containing atrD gene-specific 
probe 
pyrG of A. oryzae cloned in pUC19 

pyrG of A. nidulans cloned in pUC19 
atrB cloned in pGEM-T 
pyrG of A. oryzae cloned in BamHl site of 
pTB 
atrB cloned in EcoRl site of pPL6 

Reference or source 
Promega 
Promega 
DdSorbo etal., 1997 

Fidel et al, 1988 

Andrade et al., in press 

De Ruiter-Jacobs et al, 
1989 
Oakley et al, 1987 
This study 
This study 

This study 

* For explanation of symbols, see Clutterbuck (1993). 
t See methods for detailed information on cloning procedures. 

Disruption constructs 

Primers for amplification of the atrB locus were designed in the 5' and 3' UTR 

(untranslated regions). Artificial EcoRl sites were included in the primers to allow further 

subcloning of the PCR product. Primer sequences were 5'-

CGTGAATTCCTGGATGGTTCAGCTTA-3' and 5'-TAAGAATTCTTCAAGTTCGTCGAAGACG-

3'. A 5.2 kb amplified PCR product using the lambda clone an2 (Del Sorbo et al., 1997) as 

template DNA, was cloned in pGEM-T and coded pTB. This clone was checked by 

restriction analysis and sequencing. Furthermore, the 8.0 kb pTB clone was restricted with 
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BamHl and a 5.15 kb DNA fragment was used to clone the pyrG from A. oryzae as a 3.8 

kb BamHl insert from pA04-2 restricted with BamHl (De Ruiter-Jacobs et al., 1989). This 

construct was coded pAOB. The final transformation construct, a 5.95 kb EcoKI DNA 

fragment (DB), was obtained by restriction of pAOB with EcoRI. For generation of the 

control strains, the pA04-2 clone was used for transformation (De Ruiter-Jacobs et al, 

1989). 

Overexpression constructs 

The overexpression construct was made by restriction of pTB with EcoKI and a 5.2 kb 

DNA fragment containing the whole atrB locus was cloned in the EcoKI site of pPL6 

(Oakley et al, 1987). The resulting 9.4 kb vector, coded pOB, was used for 

transformation. The control strains (PPL6) were obtained by transformation with the pPL6 

vector. 

Preparation of protoplasts and transformation 

Mycelial protoplasts were prepared as described by (Wernars et al, 1985) with minor 

modifications. Liquid minimal medium supplemented with 2 g casamino acids 1" , 0.5 g 

yeast extract l"1 and auxotrophic markers was inoculated with 106 conidia ml"' and 

incubated overnight at 37 °C and 300 r.p.m. in a orbital incubator for 16 hours. The 

germlings were harvested through Mira-Cloth, washed twice with sterile water and twice 

with STC buffer ( 1.0 M sorbitol, 10 mM Tris-Cl pH 7.5, 50 mM CaCl2) and squeezed 

between paper towels to remove excess of liquid. Protoplasts were released by incubation 

of one gram of mycelium at 30 °C and 100 r.p.m., resuspended in 20 ml of filter-sterilized 

iso-osmotic S0.8MC medium containing lytic enzymes (5 mg Novozym 234 ml"1, 0.8 M 

KC1, 50 mM CaCl2, 20 mM MES pH 5.8) for about 2 hours. The protoplast suspension 

was filtered over glass-wool, diluted (1:1, v/v) with STC buffer and incubated on ice for 10 

min. Then, protoplasts were collected by centrifugation (10 min, 0 °C, 3000 r.p.m.) and 

washed twice with STC buffer. Transformation was performed as described by Van 

Heemst et al. (1997) using purified DNA of transformation constructs DB (3.5 ug) and 

pOB (5.0 \ig) dissolved in sterile water (15 (J.1). 
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Toxicity assays 

Sensitivity of A. nidulans strains to toxicants was determined by measuring their EC50 

values for inhibition of radial growth on MM plates (De Waard and Van Nistelrooy, 

1979). Mycelial agar plugs of an overnight-grown confluent plate of each strain were 

placed upside down on minimal medium (MM) plates amended with fungicides at 

different concentration of the compounds. Radial growth was assessed after 3 days 

incubation, at 37 C. Carbendazim and sulfomethurom methyl were kindly provided by 

DuPont De Nemours, cilofungin by Eli Lilly, fenpiclonil, fludioxonil and trifloxystrobin 

by Novartis, kresoxim-methyl by BASF, fenarimol by Dow Elanco and imazalil nitrate 

and ketoconazole by Janssen Pharmaceuticals. All other chemicals tested were 

purchased from Sigma Chemical. For statistical analysis a radial growth test was 

performed in four replicates, at one concentration around the determined EC50 value of 

the compounds for the control strains. These concentrations were: azoxystrobin (0.05 |Xg 

ml"1), carbendazim (0.3 (Xg ml"1), cycloheximide (50 (Xg ml"1), cyprodinil (0.03 (Xg ml"1), 

eugenol (100 ug ml"1), fenarimol (3 ug ml"1), fenpiclonil (0.3 ug ml"1), fluazinam (0.3 

ug ml"1), fludioxonil (0.1 (Xg ml"1), imazalil nitrate (0.05 ug ml"1), iprodione (5 ug ml"1), 

itraconazole (0.05 ug ml"1), kresoxim-methyl (0.05 ug ml"1), miconazole (0.5 ug ml"1), 

nigericin (3 ug ml"1), Na-o-phenylphenate (15 ug ml"1), nystatin (10 |0.g ml"1), 4-

nitroquinoline-A^-oxide (1 Ug ml"1), phleomycin (30 Ug ml"1), prochloraz (0.1 ug ml"1), 

propiconazole (1 fig ml"1), pyrimethanil (0.3 ug ml"1), quintozene (10 ug ml"1), 

resveratrol (300 ug ml"1), rhodamine 6G (5 Ug ml"1), thiabendazole (3 ug ml"1), 

trifloxystrobin (0.01 |Xg ml"1). The compounds were added from concentrated solutions 

in methanol. Amphotericin B (30 |Xg ml"1), camptothecin (10 (Xg ml"1), cilofungin (0.03 

|Xg ml"1), chlorothalonil (3.0 |Xg ml"1), ferbam (30 (J,g ml"1), and thiram (30 (Xg ml"1), 

were added from concentrated solutions in DMSO. Acriflavine (3 (Xg ml"1) was 

dissolved in sterile water. The final concentration of the solvents in the agar was the 

same for all treatments and never exceeded 1%. Analysis of variance from two 

independent experiments was applied as described by Snedecor and Cochran (1989). 

Significant differences were obtained by comparing the mean values of colony size of 

control strains and mutants using Tukey's test (PO.05). 
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Accumulation of [I4C]fenarimol 

Experiments were performed with standard suspensions of germlings of A. nidulans at an 

initial external concentration of 30 uM [14C]fenarimol, as described before (De Waard and 

VanNistelrooy, 1980). 
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SUMMARY 

We have determined the expression pattern of eight different ABC-transporter 

(Atr) encoding genes from Aspergillus nidulans that display high primary sequence 

homology to multidrug transporter proteins from other organisms. Transcription 

of all eight atr genes was studied in wild-type and multidrug resistant MDR (ima) 

mutants. Five (atrA-D and atrCi) have been characterized previously and three atr 

candidate genes were selected from the expressed sequence tags (EST) database of 

A. nidulans. Selection of the EST clones was based on sequence homology to ABC 

proteins known to transport azoles. They were designated atrE-G and the full 

cDNA sequence of atrE is presented. imaB mutants of A. nidulans possess an 

increased energy-dependent efflux mechanism that prevents intracellular 

accumulation of fungicides and results in multidrug resistance to a range of 

compounds among which azole fungicides. The imaB mutation enhances 

transcription of several atr genes and this strongly suggests a mutation in a 

regulatory gene. Increased fenarimol efflux and decreased sensitivity to azole 

fungicides is also observed for an atrB overexpression mutant (OB35). However, 

fenarimol accumulation in imaB mutants is significantly lower than in OB35 

indicating that the increased fenarimol efflux activity in imaB mutants is probably a 

concerted action of several overproduced Atr proteins, which may be AtrD-G. 

INTRODUCTION 

Antifungal sterol biosynthesis inhibitors are widely used in crop protection and clinical 

medicine. Major classes of sterol biosynthesis inhibitors are azoles (imidazoles and 

triazoles) and azole-related compounds (pyridines and pyrimidines). Azoles are site-

specific inhibitors of either cytochrome P450-dependent lanosterol (yeasts) or eburicol 

(filamentous fungi) 14oc-demethylase activity (Vanden Bossche, 1995). Inhibition of sterol 

demethylase activity results in depletion of ergosterol and accumulation of toxic sterol 

synthesis intermediates. Both effects cause malfunctioning of cell membranes and arrest of 

fungal growth. Fungicides with a specific mode of action can have a high risk of resistance 

development. This also applies to azole fungicides. Since their introduction, various cases 

of resistance development in either plant or mammalian pathogens have been reported 

(Denning et al., 1997; Knight et al., 1997; Vanden Bossche et al., 1998; White et al., 

1998). 

96 



imaB regulates expression of atr genes 

The major mechanisms of azole resistance in fungi are decreased affinity of the 

target enzyme sterol demethylase for the compounds and reduced accumulation of the 

compounds in the fungus (De Waard, 1994; White et al, 1998). Resistance in mutants of 

Aspergillus nidulans selected under laboratory conditions for resistance to azole fungicides 

is due to decreased accumulation of these compounds. These mutants have a multidrug 

resistance (MDR) phenotype (Van Tuyl, 1977). MDR is the term used to describe the 

ability of cells to display cross-resistance to structurally unrelated compounds, after 

being selected for resistance to a single cytotoxic drug. This phenomenon has been 

reported to also operate in malignant cancer cells (Ambudkar et al., 1999) and in a broad 

range of organisms, including causal agents of human diseases and is, therefore, of 

major concern in clinical medicine. The reduced accumulation of azoles in MDR 

mutants of A. nidulans is based on an increased energy-dependent efflux mechanism. (De 

Waard and Van Nistelrooy, 1979, 1980). This mechanism also operates in plant pathogens 

such as Penicilium italicum, Botrytis cinerea, Nectria haematoccoca, and probably 

Mycosphaeaerella graminicola (De Waard et al, 1996; Joseph-Horne et al., 1996). Also in 

the human pathogen Candida albicans, a similar mechanism has been reported (Ryley, 

1984). In most instances, the increased energy-dependent efflux is due to 

overexpression of multidrug-efflux pumps, which drive the transport of the toxicants 

from the plasma membranes to the outer environment. 

The major drug efflux pumps identified in microorganisms with affinity to azole 

antifungals belong to the ATP-Binding Cassette (ABC) and the Major Facilator (MFS) 

superfamilies of proteins. In yeasts, examples of MFS transporters involved in resistance 

to azoles are FLR1 from Saccharomyces cerevisiae (Alarco et al., 1997) and CaMDRl 

from C. albicans (Fling et al., 1991), respectively. The ABC family of proteins 

represents the largest class of transporters known to date (Bauer et al., 1999). Besides 

multidrug transporters, the family includes proteins involved in membrane translocation 

of various substances such as ions, amino acids, peptides, sugars, vitamins, steroid 

hormones, bile acids and phospholipids (Higgins, 1992, 1994; Van Helvoort et al., 1996). 

Analysis of the complete genome sequence of S. cerevisiae revealed 29 ABC-transporter 

encoding genes of which at least three (PDR5, SNQ2 and YOR1) have been charcaterized 

as azole efflux-pumps. (Decottignies and Goffeau, 1997; Kolaczkowski et al., 1998). In C. 

albicans, Cdrlp and Cdr2p are ABC transporters involved in resistance to azoles (Prasad et 

ah, 1995; Sanglard et al., 1996, 1997). Overexpression of these drug efflux pumps in S. 

cerevisiae and C. albicans results in MDR indicating that these proteins have a broad 
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substrate specificity, accepting not only azoles but also structurally unrelated 

compounds as substrates. 

To date, at least five ABC transporters from A. nidulans highly homologous to 

multidrug-efflux pumps from other organisms have been described. Additional sequences 

displaying homology to ABC transporters are present in an expressed sequence tag (EST) 

database (Andrade et ah, 1999; Angermayr et ah, 1999). In this report, we have analyzed 

the expression of atrA-D, ABC-transporter genes previously described (Andrade et ah, 

1999; Angermayr et ah, 1999; Del Sorbo et ah, 1997) and the isolation of atrE-G, three 

new ABC-transporter genes. The expression was studied in a wild-type isolate and azole 

resistant mutants of A. nidulans with a MDR phenotype. The mutants, selected for 

resistance to the azole fungicide imazalil, carry imaA, imaB and imaA + imaB mutations 

(Van Tuyl, 1977). The single mutants imaA and imaB are isogenic strains derived from 

strain 003 but the recombinant strain 264 is not. imaB mutants display an increased 

energy-dependent efflux of the azole-like fungicide fenarimol. atrD-G show increased 

expression in strains carrying the imaB mutation as compared to wild-type and imaA 

strains. These results show that the imaB mutation affects transcription of several atr 

genes, suggesting that imaB may encode a transcriptional regulator. Results also suggest 

that AtrD-G proteins play a role in increased fenarimol-efflux activity of these mutants. 

RESULTS 

[l4C]fenarimol accumulation by azole resistant mutants 

imaA and imaB mutants of A. nidulans are laboratory-generated mutants selected for 

resistance to the azole fungicide imazalil. They show cross-resistance to other azoles 

and azole-like compounds. Only the imaB mutants display decreased sensitivity to 

fenarimol (Fig. 1). In the imaB mutant, resistance to fenarimol is based on increased 

energy-dependent efflux activity which results in decreased cytoplasmic drug 

accumulation (De Waard and Van Nistelrooy, 1979, 1980). These results were confirmed 

(Fig. 2A). In addition, we found that [14C] fenarimol accumulation by the imaA mutant, 

resembled that of the wild-type, being transient in time (Fig 2A). The non-isogenic 

recombinant strain 264 carrying both imaA and imaB mutations, showed a slightly 

higher degree of resistance and a increased accumulation of fenarimol as compared to 

strain 146 (Fig 1 and 2A). 

Pre-treatment of germlings of wild-type isolate 003 with the protein synthesis 

inhibitor cycloheximide (200 ug ml"1) for 60 min, inhibits the transient [14C]fenarimol 
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accumulation pattern, suggesting that de novo protein synthesis is required for 

[I4C]fenarimol efflux (Fig. 2B). In contrast, pre-treatment with resveratrol (50 ug ml"1) 

or fenarimol (20 ug ml"1) decreases fenarimol accumulation, suggesting that these 

compounds induce the efflux activity (Fig. 2B). 

100 

-003 (wild-type) 

-146 (imaB) 

-X— 130(imaA) 

-O—264 (imaA + imaB) 

003 

130 

146 

264 

ECso 

8.8 

7.2 

40.5 

68.0 

Qso 

-
0.8 

4.7 

7.8 

10 100 

fenarimol (mg I"1) 

1000 

Figure 1. Sensitivity of wild-type and azole-resistant mutants of Aspergillus nidulans to 
fenarimol 
Dose response curve indicating differential sensitivity of wild-type strain 003 (•) and azole-
resistant mutants 130-imaA (*), 146-imaB (•) and 264-[imaA + imaB] (o) to fenarimol. The 
effective concentration required for 50% growth inhibition (EC50) and the degree of sensitivity 
expressed as EC5o mutant/EC50 control strain (Q50) are presented within figure. 

Recently, we have demonstrated that the atrB overexpression mutant OB35 

displays decreased sensitivity to fenarimol and other azole fungicides. [14C]fenarimol 

accumulation by the atrB overexpression mutant is relatively low and energy-

dependent. These results suggest that AtrBp accepts these fungicides as substrates 

(Andrade et al, 2000). However, the relationship, between AtrBp and the imaB 

mutation is not clear. A comparison of [14C]fenarimol accumulation by the imaB 

mutant 146 and the atrB overexpression mutant OB35 in relation to their parental 

99 



Chapter 5 

isolates (003 and PPL6, respectively) indicates that mutant OB35 shows a lower initial 

[14C]fenarimol accumulation than isolate PPL6 (Fig. 2C). This is probably due to 

constitutive production of AtrBp. Accumulation of [14C]fenarimol by the imaB mutant 

146 is significantly lower, suggesting that the fenarimol efflux activity(ies) of the imaB 

mutant might be the result of additional fenarimol transporters different of AtrBp (Fig. 

2C). 

- 0 03 (wild-type) 

- 146 (imaB) 

-X—130(imaA) 

—O—264 (imaA + imaB) 

20 30 40 

Time (min) 

| 2.0 

-Control (MeOH) 

-Fenarimol 

- D — Cycloheximide 

—X— Resveratrol 

30 41 
Time (min) 

Time (min) 

Figure 2. Accumulation of [ C]fenarimol 
by wild-type and azole-resistant mutants 
of Aspergillus nidulans 
(A) Comparison of [l4C]fenarimol 
accumulation by germlings of wild-type 
strain 003 (•) and azole-resistant mutants 
UO-imaA (*), 146-imaB (•) and 264-imaA 
+ imaB (o). (B) Effect of cycloheximide 
(a), resveratrol (*) and fenarimol (o) on 
[14C]fenarimol accumulation by wild-type 
strain 003. Cycloheximide (200 ug ml"1), 
resveratrol (50 u,g ml"1) and fenarimol (20 
(Xg ml"1) dissolved in methanol were added 
60 min prior addition of [14C]fenarimol. 
Methanol control (•). (C) Comparison of 
[14C]fenarimol accumulation by germlings 
of azole-resistant mutants 146-imaB (o) 
and OB35-atrB overexpression (A) and 
control strains 003 (•) and PPL6 (A), 
respectively. 
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Generation of atr A knock-out mutants 

Previous work demonstrated that atrA shows a higher basal transcript level in imaB 

mutants than in the wild-type isolate (Del Sorbo et al, 1997), suggesting that the ABC 

transporter atrA can account for the high [14C]fenarimol efflux observed in imaB 

mutants. To verify this hypothesis, we have generated a knock-out mutant of atrA by 

replacing the major part of its coding region by the orotidine-5'-phosphate decarboxylase 

(pyrG) encoding-gene of Aspergillus oryzae. The uridine-auxotrophic strain WG488 of A. 

nidulans was used as the recipient strain for transformation and selection of transformants 

was based on uridine prototrophy. A schematic representation of the disruption strategy 

used is presented in Fig. (3A). Southern blot analysis of genomic DNA isolated from 48 

uridine prototrophic transformants revealed that in four transformants, a replacement of the 

atrA locus by the disruption construct DA had occurred (data not shown). However, in 

only one mutant, coded DAI, a single integration of the construct DA had occurred. The 

three other disruption mutants carried additional ectopic integrations of the disruption 

construct. Southern blot analysis with genomic DNA isolated from mutant DAI confirmed 

replacement of the wild-type allele of atrA by the disruption construct DA (Fig. 3B). To 

confirm that atrA was functionary deleted, Northern blot analysis was carried out with total 

RNA isolated from germlings of the control strains and atrA deletion mutants, treated with 

cycloheximide, a previously identified inducer of atrA transcription (Del Sorbo et al, 

1997). Surprisingly, for all strains tested, no detectable signal could be observed in the 

autoradiographs. The experiment was repeated three times with the same results. The 

activity of the probe was checked by hybridization with a Southern blot and results 

confirmed it to be functional. 

To test the involvement of AtrAp in transport of azoles, a radial growth test was 

used to assess the sensitivity of the atrA knock-out mutants to azole fungicides. Sensitivity 

was compared with two control strains coded PAO-1 and PAO-2, obtained by 

transformation of strain WG488 with a contract containing only the pyrG from A. oryzae. 

In this test, the atrA deletion mutant DA2 which has one additional ectopic integration of 

the disruption construct, was also included. The deletion mutants grew normally and no 

differences in radial growth rates as compared to the control stains were observed. 

Sensitivity of the atrA deletion mutants DAI and DA2 to azole fungicides (fenarimol, 

imazalil, prochloraz, propiconazole and miconazole) was similar to the control strains (data 

not shown). These results indicate that AtrAp is not a transporter of azole fungicides and 

that other transporters are responsible for fenarimol-efflux activity. 
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Figure 3. Replacement of the atrA gene of Aspergillus nidulans 
(A) Schematic representation of the disruption construct, and wild-type and knock-out locus of 
atrA. Lines labeled pi , p2 and p3 indicate the restriction fragments used as probes in Southern 
blot analysis. (B) Southern blot analysis performed with DNA of the recipient strain WG488 
used for transformation and the atrA deletion mutant DAI. Genomic DNA of WG488 and DAI 
was restricted with Bglll and hybridized with probes pi (left panel), p2 (middle panel) and p3 
(right panel). 

Characterization of ESTs homologous to azole ABC transporters from other fungi 

The presence of sequences in an EST database of A. nidulans (Roe et al., 1998) 

homologous to ABC transporters, have been reported previously (Andrade et al, 1999; 

Angermayr et al, 1999). In order to identify additional ABC genes from A. nidulans 

with a putative role in fenarimol efflux by imaB mutans, we studied EST sequences 

with homology to previously characterized azole transporters from other fungi. A 

TBLASTn search using the amino acid sequences of the azole transporters Pmrlp from 

P. digitatum (Nakaune et al, 1998), Pdr5p from S. cerevisae (Balzi et al, 1994) and 

Cdrlp from C. albicans (Prasad et al, 1995) against the dBEST database of the NCBI 

site (http://www.ncbi.nlm.nih.gov/blast/blast.cgi) yielded a number of EST fragments 

displaying homology to different parts of the query protein sequence. Redundancy of 
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EST clones was observed and contigs based on the consensus of these redundant EST 

sequences were generated (Table 1 and Fig. 4). An alignment of the putative peptides 

encoded by these EST sequences with the amino acid sequence of Pmrlp is presented in 

Figure 4. 

Since contigs 1, 2 and 3 displayed homology to the same C-terminal half of the 

query protein sequence, at least three new ABC transporters were identified. EST 

sequences displaying homology to the N-terminal half of the query protein sequence 

and contigs with homology to the C-terminal half could be parts of the same ABC 

transporter. To test this hypothesis we have followed a PCR approach using specific 

EST primers in different combinations. Using a cDNA library from A. nidulans as a 

template, PCR products of the expected size as compared to the Pmrlp sequence, were 

obtained in reactions using primer combinations PF4 (specific primer for EST 

g0g01al.fl) and PR3 (contig 1), and PF3 (specifc primer for EST f0d04al.rl) and PR4 

(contig 2) (Fig 4). The PCR products generated were coded PCR1 and PCR2, 

respectively. Products were also obtained when the primer combinations PF1 (EST 

gOgOlal.rl) and PR1 (EST g0g01al.fi) coded PCR3, and PF5 (EST 05g05al.rl) and 

PR5 (contig 3) coded PCR4, were used. These last combinations {PF1 + PR1; PF5 + 

PR5) were used as positive controls, since they were designed based on sequences 

(forward- .rl, and reverse- .fl) coming from the same EST clone (Roe et al, 1998). All 

PCR products were fully sequenced. Overlapping sequences from PCR products PCR1 

and PCR3, and the known sequences of contig 1 and clone gOgOlal (Fig. 4) resulted in 

a full-length sequenced cDNA, which was coded atrE. The resulting consensus 

sequences obtained from PCR products PCR2 and contig 2 was coded atrF, and the 

resulting consensus sequences from PCR4 and contig 3, coded atrG. These latter 

sequences {atrF and atrG) correspond to partial ABC-transporter sequences. An 

unrooted phylogenetic tree that illustrates the relationship of several fungal ABC-

transporter proteins sharing the [NBF-TM6] configuration is presented in Fig. (5A). The 

tree is based on an alignment of the C-terminal transmembrane domain (TM6-TMi2) of 

proteins from different fungal species (Fig. 5B). This region was chosen due to the lack 

of N-terminal sequences of atrF and atrG. The tree indicates that the identified ABC 

transporters atrE-G have high similarity to Pmrlp, a well characterized azole ABC 

transporter from P. digitatum (Nakaune et al, 1998). 
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Table 1. Redundant EST clones of Aspergillus nidulans encoding putative ABC 
proteins, detected using the amino acid sequence of Pmrlpa from Penicillium digitatum 
as the query sequence. 

Consensus sequence EST clones Gen Bank number 

Contig 1. 

Contig 2. 

Contig 3. 

s3f01al.fl 
s3g01al.fl 
y8g05al.fl 
y8g05al.rl 
z6a05al.rl 

c8ea2al.rl 
c3a08al.rl 
c8e02al.fl 
n0c02al.fl 

g3cl2al.rl 
j9b01al.rl 
k5ellal.rl 
xlf03al.rl 

AA966005 
AA966007 
AI213250 
AI213251 
AI213841 

AA783851 
AA783193 
AA783850 
AI211053 

AA784913 
AA786256 
AA965611 
AI212281 

1 Genbank accession number BAA31254. 

(a) 

Figure 5. Phylogenetic tree 

(a) Unrooted phylogenetic tree of several fungal ABC transporters with the [NBF-TM6]2 
configuration. The consensus tree made with the Phylip program is presented. Distances were 
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calculated using Prodist and the Neighbor-joining matrix. Numbers between branches 
correspond to the confidence of the consensus tree assessed with the bootstrap option of 100. 
(b) ClustalW alignment of the C-terminal transmembrane domain (TM6-TM12), predicted using 
the TMAP program of the EMBOSS software (Persson and Argos, 1994), used to generate the 
tree. 
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1 2 3 4 1 2 3 4 1 2 3 4 
atrB 

atrC 

atrD 

atrE 

long exposure 

atrF 

atrG 
long exposure •*. 

rRNA 
Control Fenarimol Fenarimol 

(20 |ag ml) (200 ng ml ) 
Figure 6. Northern Blot analysis 
Northern blot analysis of atrB-G (top to bottom, respectively), using total RNA from germlings 
of wild-type and ima mutants of Aspergillus nidulans, treated with fenarimol for 60 min. Left 
panel, mock-treatment (methanol 0.1%), middle panel (fenarimol 20 ug ml"1) and right panel 
(fenarimol 200 ug ml"1). Wild-type 003 (lanes 1), strain 130-imaA (lanes 2), strain 146-imaB 
(lanes 3) and strain 264-imaA + imaB (lanes 4). Equal loading of samples was checked by 
hybridization with a ribosomal probe of Aspergillus niger (Melchers et al., 1994) (Bottom 
pannel). 

Expression analysis of atr genes in ima mutants 

Transcription of atr genes was investigated by Northern blot analysis of total RNA 

isolated from four different strains (003, 130, 146 and 264). Total RNA was isolated 

from germlings treated with fenarimol (20 |j.g ml"1 and 200 |Xg ml"1) or solvent control 

(methanol 0.1 %), for 60 minutes. For atr A and atrC2, no mRNA signal could be 

observed in any of the treatments (data not shown). Northern Blot analysis of the other 

atr genes showed a relatively high basal level of atrC expression as compared to all 

other genes tested (Fig. 6). The basal expression pattern of atrC is similar in all isolates 
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tested. imaB mutants show a higher basal level of expression of atrD-G. Treatment of 

fungal germlings with fenarimol (20 u.g ml"1) enhanced transcription of atrB-G, in all 

strains, but the effect is much less pronounced in the imaB mutant 146. Treatment with 

fenarimol at a higher concentration (200 ug ml"1) resulted in higher atrD-G transcript 

levels in imaB mutants, as compared to the other strains tested but had no effect on atrB 

transcript levels in the imaB mutant 146 (Fig. 6). The treatment also enhanced atrB 

transcript levels in strains 003 and 130. 

Treatment with resveratrol (50 iig ml"1) specifically enhanced atrB transcript 

levels. Results indicate again that basal transcription of atrB is similar for all isolates 

tested (Fig. 7, left panel). The phytoalexin resveratrol increased transcription of atrB in 

all isolates tested (Fig. 7, right panel), but stronger in imaB mutants as compared to the 

wild-type 003 and imaA mutant 130. These results suggest a regulatory role of imaB on 

atrB transcription. This treatment also resulted in a negative effect on atrE transcript 

levels (data not show). In summary, Northern analysis indicate that imaB mutants 

possess a significant change in expression patterns of atr genes as compared to the wild-

type 003. 

atrB 

rRNA 

1 2 3 4 

Control Resveratrol 

Figure 3. Expression of atrB upon treatment with resveratrol 
Northern blot analysis of atrB (top panel) using total RNA from germlings of Aspergillus 
nidulans mock-treated with 0.1% methanol (left panel) and resveratrol (50 jig ml"') treated 
(right panel) for 60 min. Wild-type 003 (lanes 1), strain \30-imaA (lanes 2), strain 146-imaB 
(lanes 3) and strain 264-imaA + imaB (lanes 4). Equal loading of samples was checked by 
hybridization with a ribosomal probe of Aspergillus niger (Bottom panel). 

DISCUSSION 

Data presented in this paper provide molecular evidence for the fact that resistance to 

fenarimol in imaB mutants of A. nidulans is based on an increased energy-dependent 
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efflux mechanism that prevents intracellular accumulation of the fungicide (De Waard 

and Van Nistelrooy, 1980). Increased energy-dependent efflux commonly results from 

overproduction of multidrug-efflux pumps of either the MFS or ABC superfamily of 

proteins. For a better understanding of the role of ABC transporters in fenarimol-

resistant imaB mutants of A. nidulans, we have determined the expression patterns of 

eight different atr genes that display high sequence homology to multidrug transport 

proteins from other organisms. Results indicate that imaB affects transcription of 

several atr genes simultaneously and therefore, it is unlikely that it encodes a structural 

transporter itself. We hypothesize that imaB is a mutation in a regulatory gene of A. 

nidulans that controls the expression of several structural genes. In that context, imaB 

could function in a similar way as PDR1 of S. cerevisiae (Balzi et ah, 1987). Pdrlp is 

part of the PDR (pleitropic drug resistance) network of S. cerevisiae and functions as a 

transcriptional regulator of several ABC transporters as well as other transcription 

factors (Balzi and Goffeau, 1995). 

Pre-treatment of wild-type A. nidulans germlings with cycloheximide (a protein 

synthesis inhibitor) annulled the transient accumulation curve of fenarimol indicating 

inhibition of fenarimol efflux. This result demonstrates that in the wild-type strain, 

fenarimol efflux requires de novo protein synthesis. In contrast, pre-treatment with 

fenarimol and resveratrol resulted in lower accumulation of fenarimol, indicating induction 

on the fenarimol efflux mechanism. Resveratrol specifically enhances transcription of 

atrB, especially in imaB mutants. These results suggest that resveratrol and fenarimol 

induce expression of atrB resulting in enhanced fenarimol efflux activity and reduced 

fenarimol accumulation. This is in agreement with our findings that indeed AtrBp is a 

multidrug transporter which also transport resveratrol and azole fungicides (Andrade et 

ah, 2000). Accumulation levels of fenarimol by atrB overexpression mutant OB35 lies 

between those of the wild-type isolate (003) and imaB mutant (146), indicating a higher 

efflux activity in imaB mutants as compared to atrB overexpression mutants. This result 

suggest a higher efflux activity in the imaB mutant than in the atrB overexpression 

mutant and may be indicative for a role of additional transporters in fenarimol efflux. 

This hypothesis is in agreement with previous results (Andrade et ah, 2000). 

We have tested the role of additional ABC transporters in efflux of fenarimol by 

studying the transcription of various ABC genes (atrA-G) in wild-type and ima mutants 

of A. nidulans. AtrAp could have been a good candidate since basal transcript levels of 

atr A were reported to be higher in imaB mutants than in wild-type (Del Sorbo et ah, 
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1997). However, this study demonstrates that sensitivity of wild-type and atr A deletion 

mutants to azole fungicides is the same. We were also unable to reproduce the 

differential expression of atr A in wild-type and imaB mutants after pre-treatment with 

fungicides such as fenarimol (results not shown). Hence, we conclude that AtrAp is not 

a transporter of azole fungicides. 

ABC transporter genes different from atrA-D were identified in an EST database 

of A. nidulans (Roe et al, 1998). Translated sequences with high homology to well 

characterized azole transporters from other fungi (Balzi et al, 1994; Nakaune et al, 

1998; Sanglard et al, 1995) were selected. At least three different ABC transporters 

highly homologous to azole efflux pumps were identified. The cDNA of one of them, 

atrE, was fully and of the other two, atrF and atrG, were only partially sequenced. 

Phylogenetic analysis indicates that all three genes have high homology to Pmrlp, an 

ABC transporter from P. digitatum (Nakaune et al, 1998). Resistance to azole 

fungicides in P. digitatum is correlated with enhanced expression levels of Pmrl. 

Treatment of mycelium with azole fungicides results in stronger Pmrl expression in 

azole-resistant than in wild-type isolates of P. digitatum (Nakaune et al, 1998). These 

results indicate that Pmrlp plays a role in resistance to azole fungicides in P. digitatum. 

We found that the ABC-transporter encoding genes atrD, atrE, atrF and atrG 

display a higher basal level of expression in imaB mutants than in wild-type A. 

nidulans. These results suggest that the higher fenarimol efflux activity in imaB mutants 

as compared to atrB overexpression mutants is the result of a concerted activity of 

multiple transporters. This situation resembles the PDR network of S. cerevisiae where 

several ABC transporters are co-regulated by Pdrlp (Balzi and Goffeau, 1995). Such a 

mechanism would also be in agreement with the hypothesis of Nakaune et al. (1998), 

that drug efflux transporters different from Pmrlp are involved in resistance to azole 

fungicides in P. digitatum. Our current research focuses on a further characterization of 

atrF and atrG and the isolation of the imaB gene. 

EXPERIMENTAL PROCEDURES 

Strains, plasmids, and media 

All A. nidulans strains used in this study were derived from Glasgow stocks (Table 2). 

Standard techniques for manipulation and growth were as described by Pontecorvo et al. 

(1953). E. coli DH5oc was used as a host in plasmid propagation. 
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Table 2. Aspergillus nidulans strains used in this study. 

Strain Genotype* 

WG488 biAl; pyrG89; lysB5;fwAl; uaY9 
PAO-1 and PAO-2 Independent monosporic transformants of WG488 with plasmid 

pA04-2. Prototrophic for uridine. 
DAI WG488 with a single-copy replacement of atrA by the 

disruption construct DA. 
DA2 WG488 with replacement of atrA by the disruption construct 

DA and one additional ectopic integration of the disruption 
contruct. 

* For explanation of symbols, see Clutterbuck (1993). 

Nucleic acids manipulations and molecular biological techniques 

Freshly harvested conidia obtained from confluent plate cultures of A. nidulans, grown for 

4-5 days at 37 C, were used as inoculum source for liquid cultures at a density of 107 

conidia ml'1 of medium. Germlings harvested after 14 hours of incubation at 37 °C were 

used for nucleic acid isolation according to Raeder & Broda (1985) and Logemann et al. 

(1987). Poly A+ mRNA was purified from total RNA with the oligodex-dT™ Qiagen kit 

(Qiagen, Chatsworth, CA, USA). The Random Primers DNA Labelling System (GIBCO 

BRL ) was used to generate radioactively labelled oligonucleotide probes with [oc-
32P]dATP. Southern and Northern blot hybridizations were performed using HybondN*" 

nylon membranes (Amersham), according to manufacturer's instructions. Overnight 

hybridised blots were washed at 65 °C with 0.1% SSC + 0.1% SDS solution. The pGEM-

3Zf(+) and pGEM-T (Promega) vectors were used for cloning DNA fragments and PCR 

products, respectively. PCR reactions were performed using a Peltier Thermal Cycler 

PTC-200 (MJ Research) and Expand™ High Fidelity PCR kit (Boehringer Mannheim 

GmbH) was used to amplify the disruption construct of atrA. Sequencing was carried out 

by the dideoxy chain-termination method (Sanger et ah, 1977). Sequences were analysed 

using the DNAstar package (DNASTAR). 

The oligonucleotide primers used for amplification and sequencing the cDNA 

fragments of atrE-F are listed on Table 3. cDNA synthesis was performed using the 

Marathon™ cDNA amplification kit with the Advantage® cDNA polymerase mix 

(Clontech, Palo Alto, Ca, USA). PCR conditions were as recommended by the the 

Marathon™ cDNA amplification kit. Briefly, 94 °C for 1 min, 5 cycles (94 °C for 30 sec, 
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72 min for 4 min), 5 cycles (94 °C for 30 sec, 70 min for 4 min), 30 cycles (94 °C for 20 

sec, 68 min for 4 min) and final extension at 68 °C for 6 min. 

Table 3. Primers used to amplify and sequence atrE, atrF and atrG. 

C o d e ^ Sequence 5'-3' 

PF1 TTCTCGGATCCATCTCACCAAACC 
PF2 AAGCATGTTCGCCCAAAAAGT 
PF3 TGCTGCTTCACCTTACACA 
PF4 GTGGACGGCGGACAATACCTG 
PF5 GGCCGCACTGAGCATCCTG 
PR1 TGACCCCGACTCTGCTCCAACTG 
PR2 GACCGGCGTTGCGATAGAGC 
PR3 TGTAGGCCCGCATATAGTCTCCA 
PR4 GCAGTCACCATTAGGAGCATCAT 
PR5 ACCCTCGCAACATTACGCAAAAA 
AtrEfl AGTGGTGAAATGCTTGTTGTCCTG 
AtrEf2 GTCGACAGGAAAAGCTTGATTATG 
AtrEf3 GCTTCGGCTCCCCAACTGATTAC 
AtrErl AGAAGAGCACCCCGGTAGTAAAAA 
AtrEr2 ATAGAGGTCGGGGCGTTGAAGAA 
AtrEr3 CGCTCTGGGACGCTTGGTAG 
AtrFfl TATGCTTTTGAGTCCCTTATGGTC 
AtrFrl GGCGGGATTGGCATTCTTT 
AtrFr2 CCCCTAGGATACCAACCACAGC 

Disruption constructs 

Primers for amplification of the atr A locus were designed in the 5' and 3' UTR 

(untranslated regions). Primer sequences were 5'-

TCAATTCCCGCTCTGATCATCACAGG-3' and 5'-GGCACAATTCCAAGTGAACG 

-3'. A 6.7 kb amplified PCR product using the lambda clone anl (Del Sorbo et al, 1997) 

as template DNA, was cloned in pGEM-T and coded pTA. This clone was checked by 

restriction analysis and sequencing. Furthermore, the 9.7 kb pTA clone was restricted with 

EcoRI + Xho\ and a 6.3 kb DNA fragment was used to clone the pyrG from A. oryzae as a 

3.8 kb insert from pA04-2 restricted with £coRI + SaR (De Ruiter-Jacobs et al, 1989). 

This construct was coded pAOA. The final transformation construct, a 7.14 kb amplified 

product coded (DA) was obtained in a PCR reaction using the primers described above. 

For generation of the control strains, the p A04-2 clone was used for transformation (De 

Ruiter-Jacobs etal, 1989). 
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Preparation of protoplasts and transformation 

Mycelial protoplasts were prepared as described by Wernars et al. (1985) with minor 

modifications. Liquid minimal medium supplemented with 2 g casamino acids l"1, 0.5 g 

yeast extract l"1 and auxotrophic markers was inoculated with 106 conidia ml"1 and 

incubated overnight at 37 °C and 300 r.p.m. in an orbital incubator for 16 hours. The 

germlings were harvested through Mira-Cloth, washed twice with sterile water and twice 

with STC buffer ( 1.0 M sorbitol, 10 mM Tris-Cl pH 7.5, 50 mM CaCl2) and squeezed 

between paper towels to remove excess of liquid. Protoplasts were released by incubation 

of one gram of mycelium, resuspended in 20 ml of filter-sterilized iso-osmotic S0.8MC 

medium containing lytic enzymes (5 mg Novozym 234 ml"1, 0.8 M KC1, 50 mM CaCb, 20 

mM MES pH 5.8) at 30 °C and 100 r.p.m. for about 2 hours. The protoplast suspension 

was filtered over glass-wool, diluted (1:1) with STC buffer and incubated on ice for 10 

min. Then, protoplasts were collected by centrifugation (10 min, 0 °C, 3000 r.p.m.) and 

washed twice with STC buffer. Transformation was performed as described by Van 

Heemst et al. (1997) using purified DNA of transformation constructs DA (5 ug) 

dissolved in sterile water (15 ul). 

Toxicity assays 

Sensitivity of A. nidulans strains to toxic compounds was determined by measuring 

their EC5o values for inhibition of radial growth on MM plates (De Waard and Van 

Nistelrooy, 1979). Mycelial agar plugs of an overnight-grown confluent plate of each 

strain were placed upside down on a minimal medium (MM) plate containing different 

concentrations of the test compound. Radial growth was assessed after 3 days 

incubation at 37 °C. 

Accumulation of [14C]fenarimol 

Experiments were performed with standard suspensions of germlings of A. nidulans at an 

initial external concentration of 30 uM [14C]fenarimol, as described before (De Waard and 

Van Nistelrooy, 1980). 
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SUMMARY 

The multidrug-efflux protein AtrBp from Aspergillus nidulans can act as a 

transporter of the phenylpyrrole fungicides fenpiclonil and fludioxonil and is a 

determinant of cellular sensitivity of this fungus to these compounds. Deletion and 

overexpression mutants of atrB have increased and decreased sensitivity to the 

fungicides, respectively, as compared to control strains. The sensitivity of the 

mutants to fludioxonil is positively correlated with accumulation levels of the 

fungicide in germlings. We also found that in overexpression mutants with 

different levels of atrB expression and in deletion mutants, transcript levels of atrB 

negatively correlates with sensitivity to fludioxonil and accumulation of the 

fungicide by germlings. In all isolates accumulation of fludioxonil was energy-

dependent, indicating that reduced accumulation of the fungicide in the 

overexpression mutants is due to increased efflux activity of AtrBp. We propose 

that AtrBp functions as an energy-dependent efflux pump that modulates 

intracellular concentration of phenylpyrrole fungicides in fungal mycelium. 

INTRODUCTION 

Fungi, bacteria and higher plants are an important natural source of molecules with 

antifungal properties (Knight et al., 1997). Phenylpyrrole fungicides are an example of 

antifungal compounds developed by modification of a natural toxic product. These 

fungicides were developed based on the lead structure pyrrolnitrin, a secondary 

metabolite of Pseudomonas pyrocina and other pseudomonads (Nyfeler and 

Ackermann, 1992). Pyrrolnitrin is effective in the control of several post-harvest 

diseases (Hammer et al., 1993) but its use in agriculture is limited since the pyrrole ring 

is photounstable. Pyrrolnitrin also displays some phytotoxicity (Fischer et al., 1992). 

Optimization of photostability led to the introduction of the highly active 3-

cyanopyrroles fenpiclonil (Nevill et al., 1988) and fludioxonil (Gehmann et al., 1990). 

Fenpiclonil is used as a seed-dressing agent against numerous fungal pathogens. 

Fludioxonil shows improved photostability over fenpiclonil, and it has been exploited as 

a foliar fungicide against Botrytis cinerea, Monilia spp., and Sclerotinia spp. (Nyfeler 

and Ackermann, 1992). 

The genetic potential of microorganisms to evolve resistance mechanisms in 

response to new fungicides can not be underestimated (Knight et al., 1997). Several 

mechanisms of fungicide resistance have been identified and can relate to (i) enzymatic 
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inactivation or degradation of compounds, (ii) alterations of the drug target-site and, 

(iii) decreased intracellular accumulation of the toxic compounds. Many modern 

fungicides are single-site inhibitors of fungal metabolism and can have a high risk of 

resistance development due to alteration of the drug target site. Biochemical studies 

indicate that phenylpyrrole fungicides affect cell wall synthesis and induce 

accumulation of glycerol in mycelium (Jespers et ah, 1993; Leroux et al., 1992; Pillonel 

and Meyer, 1997). Several lines of evidence suggest that their primary target site could 

be protein kinases involved in the regulation of polyol biosynthesis (Orth et al., 1995; 

Pillonel and Meyer, 1997; Schumacher et al., 1997). Under laboratory conditions, 

mutants from different fungal species displaying cross resistance to both phenylpyrrole 

and dicarboximide fungicides can readily be isolated. These resistant mutants also 

display hypersensitivity to osmotic stress and mutants from plant pathogens such as 

Botrytis cinerea and Ustilago maydis, are non-pathogenic (Beever, 1983; Ellis et al., 

1991; Faretra and Pollastro, 1993; Orth et al, 1995). This phenotype of resistant 

mutants possibly accounts for the low frequency of these type of mutants under field 

conditions (Leroux et al., 1999). Field isolates of B. cinerea which acquired resistance 

to dicarboximides after a few years of commercial use were not osmotically sensitive, 

suffered only from a minor fitness penalty and were sensitive to phenylpyrroles (Hilber, 

1992). 

Drug extrusion, mediated by membrane-associated drug efflux pumps is another 

ingenious mechanism used by microorganisms to evade the toxic effects of antibiotics 

(Putman et al., 2000). The major drug-efflux pumps identified in microorganisms 

belong to the ATP-Binding Cassette (ABC) and the Major Facilitator (MFS) 

superfamilies of proteins (Marger and Saier, 1993; Van Veen and Konings, 1998). 

Some of these drug-efflux pumps, the so-called multidrug transporters, have specificity 

for compounds with very different chemical structures and cellular targets. 

Overexpression of these energy-dependent multidrug efflux proteins is often associated 

with resistance to several chemically unrelated drugs, a biological phenomenon 

common to many organisms and termed multidrug resistance (MDR). In filamentous 

fungi, MDR was first reported for laboratory-generated mutants of A. nidulans selected 

for resistance to azole fungicides (De Waard and Van Nistelrooy, 1979; Van Tuyl, 

1977). Resistance to azoles due to enhanced energy-dependent efflux of these 

compounds also operates in plant pathogens such as Penicilium italicum, Botrytis cinerea, 
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Nectria haematoccoca, and probably Mycosphaeaerella graminicola (De Waard et ah, 

1996; Joseph-Home et al, 1996). 

To date, several genes encoding ABC proteins from a number of filamentous fungi 

highly homologous to multidrug-efflux pumps have been described (Andrade et al., 2000a, 

1999; Angermayr et al., 1999; Del Sorbo et al., 1997; Nakaune et al., 1998; Tobin et al., 

1997; Urban et al., 1999; Zwiers and De Waard, 1999). AtrA and atrB from A. nidulans 

were the first ABC-transporter genes to be reported from a filamentous fungus (Del 

Sorbo et al, 1997). AtrBp is a well characterized multidrug-efflux protein that confers 

MDR when overexpressed in S. cerevisiae or A. nidulans (Andrade et al, 2000b; Del 

Sorbo et al., 1997). Genes encoding proteins with very high homology to AtrBp have 

already been described for B. cinerea and M. graminicola (Goodall et al., 1999; 

Schoonbeek et al., 1999). This suggest that these proteins may have a similar function. 

This paper reports that the multidrug-efflux protein AtrBp from A. nidulans 

functions as an energy-dependent efflux pump that modulates intracellular concentration of 

phenylpyrrole fungicides in fungal mycelium. Results show that AtrBp protects fungal 

cells against phenylpyrrole fungicides and can be a major determinant in resistance of this 

fungus to these fungicides 

RESULTS 

Sensitivity of deletion and overexpression mutants of atrB to phenylpyrrole 

fungicides 

To characterize the role of AtrBp in protection of A. nidulans against phenylpyrrole 

fungicides, we tested the sensitivity of deletion and overexpression mutants of atrB to 

fludioxonil and fenpiclonil. These mutants have been described previously (Andrade et 

al., 2000b). Briefly, deletion mutants were generated by replacing a major part of the 

coding region of atrB with the orotidine-5'-phosphate decarboxylase (pyrG) encoding-

gene of A. oryzae, using a uridine-auxotrophic strain of A. nidulans (WG488) as the 

recipient strain for transformation. Generation of overexpression mutants of atrB was 

achieved by transformation of the same strain (WG488) with construct pOB that 

contains a genomic copy of atrB comprising the coding region plus the 5' and 

3'untranslated regions (UTR). This contract (pOB) was cloned in the pPL6 vector 

(Oakley et al., 1987) which contains the pyrG from A. nidulans. Transformants of A. 

nidulans with different levels of increase in atrB expression were selected. 

Characterization of these transformants resulted in strains OB7, OB16 and OB35, with a 
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low, intermediate and high increase in basal expression level of atrB, respectively 

(Andradeefa/.,2000b). 
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a so 
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Figure 1. Effect of phenylpyrroles on radial growth of deletion and overexpression 
mutants of atrB from Aspergillus nidulans 
Dose-reponse curve of control strains PAO (•) and atrB deletion mutants DB (o) to fludioxonil 
(A) and fenpiclonil (C). Dose-reponse curve of control strain PP16 (•) and atrB overexpression 
mutants OB7 (a), OB 16 (A) and OB35 (•) to fludioxonil (B) and fenpiclonil (D). Data for 
strains PAO and DB represent mean values of independent monosporic transformants PAO-1 
and PAO-2, and DB5 and DB21, respectively. Results represent mean values of three 
repetitions. The effective concentration required for 50% growth inhibition (EC50) and the 
degree of sensitivity expressed as EC50 mutant/EC5o control strain (Q50) are presented within 
each panel. 
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Radial growth toxicity tests with fludioxonil and fenpiclonil indicates that 

deletion mutants of atrB (DB) display increased sensitivity to both phenylpyrrole 

fungicides tested, as compared to the control strains PAO (Fig 1A and 1C). In contrast, 

the overexpression mutants OB7, OB 16 and OB35 display decreased sensitivity to both 

fungicides. Furthermore, the degree of resistance of these overexpression mutants was 

positively correlated with the levels of atrB expression (Fig IB, ID and 2). 

(A) 

1 2 3 4 
atrB 

18S RNA 

5 6 7 8 

(B) 

Short exposure 

Long exposure 

18SRNA 

Control (MeOH) 

PPL6 0B7 0B16 OB35 

Fludioxonil (30 min) 

PPL6 OB7 OB160B35 

Fludioxonil (60 min) 

PPL6 OB7 OB16 OB35 

Figure 2. Northern blot analysis of atrB upon treatment of Aspergillus nidulans 
with fludioxonil 
(A) Northern blot analysis of atrB (top panel) using total RNA from germlings treated 
with fludioxonil for 30 min (lanes 3 and 4) or 60 min (lanes 7 and 8). Methanol control, 
0.1% (lanes 1, 2 and 5, 6). Control strain PAO-1 (lanes 1, 3, 5 and 7), atrB deletion 
mutant DB-5 (lanes 2, 4, 6 and 8). Equal loading of samples was checked by 
hybridization with a ribosomal probe of Aspergillus niger (bottom panel). (B) Northern 
blot analysis of atrB (top and middle panels) using total RNA from germlings of atrB 
overexpression mutants of A. nidulans treated with fludioxonil for 30 min (middle 
panel) or 60 min (right panel) after different exposure times of blots (short and long 
exposure). Methanol control, 0.1% (left panel). Equal loading of samples was checked 
by hybridization with a ribosomal probe of Aspergillus niger (bottom panel). 
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Expression analysis of atrB upon treatment with fludioxonil 

To further characterize the role of atrB in sensitivity of A. nidulans to phenylpyrrole 

fungicides, we have investigated the effect of fludioxonil treatment on atrB expression. 

This was performed by Northern blot analysis of RNA isolated from fludioxonil-treated 

(4 uM) and mock-treated (0.1% methanol) germlings of the deletion and overexpression 

mutants of atrB and their corresponding control strains PAO and PPL6, respectively. 

Fludioxonil treatment strongly enhances atrB transcript levels in control strain PAOl, 

but no detectable signal for atrB is observed in total RNA isolated from fludioxonil-

treated germlings of strain DB5 (Fig 2A). These results confirm functional deletion of 

atrB in strain DB5. Results also show that strains OB7, OB16 and OB35 have a higher 

basal level of atrB transcripts as compared to control strain PPL6 (Fig. 2B, left panel). 

These levels are different among OB strains and increase in the order of OB7, OB 16 

and OB35 (Fig. 2B, left panel). Fludioxonil treatment (30 or 60 min) strongly enhances 

atrB transcription in control strains PPL6 and in the overexpression mutants OB7 and 

OB16 (Fig 2A and 2B). Treatment of germlings from strain OB35 with fludioxonil does 

not obviously affect atrB transcript levels (Fig 2B). 

[I4C]fludioxonil accumulation by atrB mutants 

To demonstrate that AtrBp functions as an energy-dependent efflux pump that prevents 

intracellular accumulation of phenylpyrrole fungicides in germlings of A. nidulans, 

[ C]fludioxonil accumulation by deletion and overexpression mutants of atrB was 

determined. atrB deletion strains (DB) display a higher [14C]fludioxonil accumulation 

as compared to the control strains PAO (Fig 3A). Accumulation of [14C]fludioxonil by 

control strains (PAO) is transient while that of the deletion strains is almost constant in 

time (Fig 3A). In contrast, atrB overexpression mutants OB7, OB16 and OB35 display 

lower [14C]fludioxonil accumulation as compared to control strain PPL6 (Fig. 3B). 

Mutant OB35 shows the lowest [14C]fludioxonil accumulation level of all strains tested 

while mutants OB 16 and OB7 show intermediate accumulation levels. These results 

indicate that overexpression of atrB results in an increased efflux of [14C]fludioxonil. 

We also show that the accumulation of [14C]fludioxonil in overexpression mutant 

OB35 and in control strain PPL6 is energy-dependent. This conclusion is based on the 

observation that the respiratory inhibitor CCCP instantly increased accumulation of 

[ C]fludioxonil in both strains tested (Fig. 3C). This effect is ascribed to inhibition of 
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energy-dependent [14C]fludioxonil efflux activity, in a similar way as described previously 

for [14C]fenarimol (De Waard and Van Nistelrooy, 1980). 

Figure 3. Accumulation of [14C]fludioxonil by deletion and overexpression mutants of atrB 
from Aspergillus nidulans 
(A) Comparison of [14C]fludioxonil accumulation by germlings of control strains PAO (•) and 
atrB deletion mutants-DB (o). Data for strains PAO and DB, represents mean values of 
independent monosporic transformants PAO-1 and PAO-2, and DB5 and DB21, respectively. 
(B) Comparison of [14C]fludioxonil accumulation by germlings of control strain PPL6 (•) and 
atrB overexpression mutants OB7 (•), OB 16 (A) and OB35 (o). (C) Effect of CCCP (m,a) on 
[14C]fludioxonil accumulation by control strain PPL6-1 (closed symbols) and the atrB 
overexpression mutant OB35 (open symbols). Arrows indicate CCCP (30 uM) added 60 min 
after addition of [14C]fludioxonil (t=0). 
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DISCUSSION 

The present study shows that AtrBp is a determinant of sensitivity of A. nidulans to 

phenylpyrrole fungicides. This conclusion is based on the observation that the 

expression level of atrB in deletion and overexpression mutants of atrB is negatively 

correlated with sensitivity to fenpiclonil and fludioxonil and, with accumulation levels 

of [14C]fludioxonil in germlings. 

AtrBp functions as an inducible, energy-dependent efflux pump of fludioxonil, 

since accumulation of [14C]fludioxonil by control strains PAO and PPL6 is transient in 

time and addition of the respiratory inhibitor CCCP results in an instantaneous increase 

in accumulation of the fungicide. These results suggest that energy-dependent efflux 

activity of AtrBp prevents intracellular accumulation of phenylpyrrole fungicides, in a 

similar way as described for azole fungicides (De Waard and Van Nistelrooy, 1980, 

1984). 

Recently, we have reported that these overexpression mutants of atrB also 

accumulate relatively low levels of [14C]fenarimol and are less sensitive to fenarimol 

(Andrade et al, 2000b). These results indicate that AtrBp can also act as a fenarimol 

efflux pump. However, [14C]fenarimol accumulation by deletion mutants of atrB was 

similar to control strains (Andrade et al, 2000b). We hypothesized that A. nidulans has 

(an) additional efflux pump(s) accepting fenarimol as substrate that could compensate 

for the absence of AtrBp in atrB deletion mutants. In this paper, we demonstrate that 

deletion mutants of atrB display a relatively high levels of [14C]fludioxonil accumulation 

and have an increased sensitivity to phenylpyrroles than control strains. Therefore, the 

ABC transporter AtrBp can be regarded as the major efflux pump of phenylpyrrole 

fungicides in A. nidulans. 

Northern blot analysis indicates that treatment of fungal mycelium with 

fludioxonil results in an increase in atrB trancript levels and supports the involvement 

of AtrBp in protection against phenylpyrrole fungicides. However, this effect is not 

evident in the mutant OB35 which has a high basal level of atrB expression. Possibly, 

induction of atrB requires intracellular accumulation of fludioxonil, a condition which 

is not met in mutant OB35. Hence, the constitutively high efflux-activity of fludioxonil 

in mutant OB35 prevents that the fungicide reaches a sufficiently high concentration to 

enhance transcription of atrB. 

The molecular basis for the broad substrate specificity of multidrug ABC 

proteins is only poorly understood (Gottesman et al., 1995). However, recent studies 
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with the human P-glycoprotein (Loo and Clarke, 1999a, 1999b, 2000; Ueda et al, 

1997), the LmrAp from Lactococcus lactis (Van Veen et al, 2000a, 2000b) and Pdr5p 

from S. cerevisiae (Egner et al., 2000, 1998) have provided strong evidence that the 

transmembrane domains form the route through which the solutes cross the plasma 

membrane and confer substrate specifity by one or more substrate-binding sites. A 

BLAST analysis with the AtrBp sequence reveals that BcatrBp from B. cinerea is its 

closest homologue with an overall identity of 70%. A similar level of identity is also 

observed between AtrBp and Mgatr5p from M. graminicola (Goodall et al, 1999). Most 

interestingly, the predicted transmembrane domains of both proteins are also highly 

conserved. This suggests that BcatrBp from B. cinerea and Mgatr5 from M. graminicola 

may have similar substrates as AtrBp from A. nidulans. The functional characterization of 

BcatrB from B. cinerea (Vermeulen et al, 2000), indicates that BcatrB is indeed the B. 

cinerea orthologue ofatrB from A. nidulans. We will compare the substrate specificity of 

AtrBp, BcatrBp and Mgatr5p by overexpression of their encoding genes in an atrB 

deletion mutant of A. nidulans. This type of experiments may validate A. nidulans as an 

alternative system to dissect the substrate specificity of ABC proteins from other 

filamentous fungi. This would be particularly helpfull for ABC transporters from human 

pathogens such as Aspergillus fumigatus and Aspergillus flavus where the generation of 

overexpression mutants of multidrug-efflux pumps in the laboratory requires extreme 

caution since they can be hazardous to human health. 

EXPERIMENTAL PROCEDURES 

Strains, plasmids, and media 

The A. nidulans strains used in this study are listed in Table 1. All strains were derived 

from Glasgow stocks. Standard techniques for manipulation and growth were as described 

by Pontecorvo et al. (1953). E. coli DH5oc was used as a host in plasmid propagation. 

Nucleic acids manipulations and molecular biological techniques 

Freshly harvested conidia obtained from confluent plate cultures of A. nidulans, grown for 

4-5 days at 37 °C, were used as inoculum source for liquid cultures at a density of 107 

conidia ml"1. Germlings harvested after 14 hours of incubation at 37 °C were used for 

nucleic acid isolation according to Logemann et al. (1987). The Random Primers DNA 

Labelling System (GIBCO BRL™) was used to generate radioactively labelled 
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oligonucleotide probes with [a-32P]dATP. Northern blot hybridizations were performed 

using HybondN nylon membranes (Amersham), according to manufacturer's instructions. 

Overnight hybrydized blots were washed at 65 °C with 0.1% SSC + 0.1% SDS solution. 

Table 1. Aspergillus nidulans strains and plasmids used in this study. 

Strains Genotype* 
WG488 biAl;pyrG89; lysB5;fivAl; uaY9 
PAO-1 and PAO-2 Independent monosporic transformants of WG488 with plasmid 

pA04-2. Prototrophic for uridine. 
DB5 and DB21 WG488 with a single-copy replacement of atrB by the disruption 

construct DB. Independent monosporic transformants. 
PPL6-1 Monosporic transformants of WG488 with plasmid pPL6. 

Prototrophic for uridine. 
OB7, OB 16 and Independent monosporic transformants of WG488 with plasmid 
OB35 pOB. Prototrophic for uridine. 

Plasmids 
pD15 

pl8S 

Relevant characteristics 
Subclone containing atrB gene-specific probe (Del Sorbo et al., 
1997) 
Subclone containing a ribosomal probe from Aspergillus niger 
(Melchers et al., 1994) 

* For explanation of symbols, see Clutterbuck (1993). All strains are described in 
Andrade et al. (2000b). 

Toxicity assays 

Sensitivity of A. nidulans strains to the phenylpyirole fungicides fludioxonil and 

fenpiclonil was determined by performing a dose-response curve for inhibition of radial 

growth on MM plates (De Waard and Van Nistelrooy, 1979). Mycelial agar plugs of an 

overnight-grown confluent plate of each strain were placed upside down on minimal 

medium (MM) plates amended with fungicides at different concentration. Radial growth 

was assessed after 3 days incubation at 37 C. The final concentration of the solvents in 

the agar was the same for all treatments and never exceeded 1%. 

Accumulation of [14C]fludioxonil 

Experiments were performed with standard suspensions of germlings of A. nidulans at an 

initial external concentration of 4 uM [14C]fludioxonil using the same methodology 

described for experiments with [14C]fenarimol (De Waard and Van Nistelrooy, 1980). 

Carbonyl cyanide w-chlorophenylhydrzone (CCCP) was purchased from Sigma-Aldrich. 
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Chapter 7 

GENERAL DISCUSSION 

Cytotoxic compounds such as drugs in clinical medicine and fungicides in control of plant 

diseases are widely used. However, the widespread and sometimes excessive use of these 

compounds has resulted in a high selection pressure resulting in drug resistant populations. 

Understanding the mechanisms of antimicrobial resistance is essential in order to cope 

with this serious problem. 

In general, the major mechanisms underling resistance in microorganisms can be 

classified as follows: (a) enzymatic inactivation or degradation of drugs, (b) alterations of 

the drug target-site, and, (c) decreased drug-accumulation caused by energy-dependent 

drug efflux. More than one mechanism may operate in concert and the sum of different 

alterations represents the ultimate resistant phenotype. 

Drug extrusion mediated by membrane-associated drug efflux pumps is an 

ingenious mechanism used by microoganisms to evade the toxic effects of antibiotics 

(Putman et al., 2000). The major drug-efflux pumps identified in microorganisms 

belong to the ATP-Binding Cassette (ABC) and the Major Facilitator (MFS) 

superfamilies of proteins (Marger and Saier, 1993; Van Veen and Konings, 1998). 

Some of these drug-efflux pumps, the so-called multidrug transporters, have specificity 

for compounds with very different chemical structures and cellular targets. 

Overexpression of these energy-dependent multidrug efflux proteins is often associated 

with resistance to several chemically unrelated drugs, a biological phenomenon 

common to many organisms and termed multidrug resistance (MDR). 

The aim of this thesis was to identify and characterize molecular mechanisms for 

drug-resistance in Aspergillus nidulans, with special emphasis on drug-efflux systems of 

the ABC-transporter superfamily of proteins. Results presented in previous chapters and 

relevant aspects that may apply to other filamentous fungi are discussed here. 

Isolation and characterization of air genes from Aspergillus nidulans 

Using different approaches, we have identified seven ABC-transporter genes (atrA-G) 

from A. nidulans. The approach of heterologous screening using a DNA probe from 

PDR5, a well characterized multidrug transporter from Saccharomyces cerevisiae, 

yielded the first ABC transporters, atrA and atrB, isolated from a filamentous fungus 

(Chapter 2). A second approach, based on PCR with degenerate oligonucleotide primers 

designed to amplify regions of the A. nidulans genome encoding consensus ABC-

transporter sequences similar to P-glycoproteins, resulted in the cloning of atrC and 
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atrD (Chapter 3). The last approach was based on a screening of an EST database of A. 

nidulans for sequences encoding putative proteins with homology to known fungal 

multidrug transporters, particularly involved in efflux of azole fungicides. With this 

approach, atrE, atrF and atrG were identified (Chapter 5). The proteins encoded by all 

seven atr genes isolated display a high primary sequence homology to known 

multidrug-efflux proteins from other organisms. As described in Chapter 1, all members 

of the ABC-transporter superfamily have a modular architecture. The majority of the 

ABC transporters in higher organisms consists of two transmembrane domains (TMD), 

each with six predicted membrane spanning regions, and two intracellularly located 

nucleotide binding folds (NBF). The NBF domain can be either located at the N-

terminus or at the C-terminus of the polypeptide, yielding proteins with a [TMD-NBF]2 

or [NBF-TMD]2 configuration. The proteins encoded by atr A and atrB (Chapter 2) have 

the [NBF-TMD]2 topology and are highly homologous to multidrug-transport proteins 

from yeasts (Balzi and Goffeau, 1994). The same configuration is displayed by AtrEp, 

AtrFp and AtrGp (Chapter 5). AtrCp and AtrDp (Chapter 3) have the mirror-like 

structure [TMD-NBF]2, analogous to the human multidrug transporter P-glycoprotein 

(P-gp or MDR1) (Juranka et ah, 1989). 

Expression analysis of atr genes 

To further investigate the role of the isolated atr genes from A. nidulans in multidrug 

transport, expression analysis of these genes upon treatment with toxicants was 

performed with wild-type and MDR (ima) mutants of A. nidulans. imaA and imaB 

mutants of A. nidulans are laboratory-generated mutants selected for resistance to the 

azole fungicide imazalil and related compounds (Van Tuyl, 1977). In imaB mutants, 

resistance to fenarimol is based on an increased energy-dependent efflux activity that 

results in decreased cytoplasmic drug accumulation (De Waard and Van Nistelrooy, 1979, 

1980). Therefore, these mutants were good candidates to use in our studies, to correlate 

azole resistance of these mutants with changes in expression of atr genes. 

Expression studies in a wild-type isolate demonstrated that the basal level of atr 

gene expression is usually low and can be strongly enhanced by treatment with 

unrelated toxicants. Time course experiments, indicate that within 5 min after treatment 

with a toxicant (e.g. imazalil), enhanced transcript levels of atr genes can be observed 

(Chapter 2). These results are expected when one considers the energy-costs required 

for transport (low basal level) and a role in MDR (quick and broad response to 
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toxicants). Some compounds can have a specific effect on transcription of a particular 

atr gene while others may have an effect on transcript levels of several atr genes. The 

specific effect can be exemplified by results described in Chapter 5, where treatment 

with resveratrol specifically induces transcription of atrB. On the other hand, treatment 

with fenarimol enhances transcription of several (atrB-G) genes (Chapter 5). The latter 

observation suggests that some atr genes are co-regulated and the Atr proteins may have 

overlapping substrate specificities. This is in agreement with observations on ABC 

proteins from other organisms (Hirata et al., 1994; Kolaczkowski et al., 1998; Sanglard 

etal, 1997). 

Expression analysis in the ima mutants of A. nidulans shows that atrD, atrE, 

atrF and atrG display a higher basal level of expression in imaB mutants than in the 

wild-type (Chapter 5). These results suggest that increased fenarimol efflux activity in 

imaB mutants is the result of a concerted activity of multiple transporters and strongly 

suggest that imaB is a mutation in a regulatory gene. This situation resembles the PDR 

network of S. cerevisiae where several ABC transporters are co-regulated by Pdrlp 

(Balzi and Goffeau, 1995). Such a mechanism would also meet the assumption of 

Nakaune et al. (1998), that drug-efflux transporters different from Pmrlp are involved 

in resistance to azole fungicides in Penicillium digitatum. 

Functional characterization of atr genes 

atrB and atrD have been functionally characterized as multidrug transporters, since 

deletion mutants of these genes display increased sensitivity to a number of unrelated 

toxicants. AatrB mutants have an increased sensitivity to different classes of fungicides, 

mutagens and natural toxic compounds. On the other hand, AatrD mutants display 

increased sensitivity to cycloheximide, the cyclosporin derivative PSC 833, nigericin and 

valinomycin. These results indicate that AtrBp and AtrDp from A. nidulans are multidrug 

transporters with different substrate specifities (Chapters 3 and 4). 

AtrBp was further characterized by overexpression in A. nidulans and S. 

cerevisiae (Chapters 2, 4 and 6). Sensitivity to cycloheximide of a PDR5 deficient strain 

of S. cerevisiae was restored to wild-type levels, upon transformation with cDNA of 

atrB in a high copy number vector (Chapter 2). No changes in sensitivity to 

cycloheximide were observed for neither deletion nor overexpression mutants of atrB 

obtained by transformation in A. nidulans. Therefore, the substrate specificity of AtrBp 
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expressed in yeast and A. nidulans are not the same. It has been demonstrated for the 

human MDR1 protein that lipid composition of membranes can affect substrate 

specificity and ATPase activity (Doige et ah, 1993; Romsicki and Sharom, 1998; 

Sharom, 1997). Hence, differences in membrane composition of S. cerevisiae and A. 

nidulans could explain our results. 

Overexpression mutants of atrB display altered sensitivity to a broader range of 

compounds as compared to AatrB mutants (Chapter 4), indicating that the presence of 

additional drug-efflux pumps with affinity for the same compound may prevent a change 

in phenotype of deletion mutants. Hence, the functional characterization of the substrate 

profile of a multidrug transporter using both deletion and overexpression mutants is 

particularly useful in order to overcome the problem of redundant transporters with 

similar specificities, in the same organism. Our studies indicate that fenarimol is an 

example of a compound that can be a substrate of various efflux-pumps in A. nidulans. 

Accumulation and drug-sensitivity assays indicate that overexpression mutants of atrB 

display relatively low levels of fenarimol accumulation and decreased sensitivity to 

fenarimol (Chapter 4). These results indicate that AtrBp can act as a fenarimol efflux 

pump. However, sensitivity of AatrB mutants to fenarimol and their fenarimol 

accumulation was similar to control strains, indicating that A. nidulans has (an) 

additional efflux pump(s) accepting fenarimol as substrate that can compensate for the 

absence of AtrBp in AatrB mutants (Chapter 4). Data from expression analyses also 

suggest the existence of several fenarimol-efflux pumps (Chapters 2, 3 and 5). 

ABC transporters that transport similar compounds may also have distinct 

affinities for particular substrates. For instance, the functional characterization of atrB 

(Chapter 6) strongly supports that AtrBp has a distinctive affinity to fludioxonil since both 

AatrB and overexpression mutants have altered sensitivity to fludioxonil. In addition, 

changes in sensitivity observed for AatrB mutants correlate with the relatively high 

accumulation levels of fludioxonil. This was not observed for fenarimol. Therefore, the 

ABC transporter AtrBp can be regarded as a major efflux pump of phenylpyrrole 

fungicides in A. nidulans. 

Redundance of ABC transporters may explain, at least in part, the findings that 

AatrA and AatrC mutants have no hypersensitive phenotype for any of the compounds 

tested. However, the observation that atrA transcript levels were not influenced by any of 

these compounds and that atrA expression in S. cerevisiae does not confer drug resistance, 
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suggest that AtrAp indeed is not a multidrug transporter. Alternatively, AtrAp can be a 

transporter of a non-toxic endogenous substrate, with an unknown physiological function. 

Physiological functions of atr genes 

The decreased antibiotic activity of AatrD mutants suggests that AtrDp might have a role 

in penicillin secretion (Chapter 3). In that case, AtrDp would be the first ABC transporter 

for which a role in secretion of a fungal antibiotic is demonstrated. The involvement of 

ABC-transporter proteins in secretion of the endogenous antibiotics (e.g. rubicin and 

mithramycin) has been demonstrated before for Streptomyces peucetius (Guilfoile and 

Hutchinson, 1991) and S. argillaceus, respectively (Fernandez et al., 1996). The decrease 

in antibiotic activity of AatrD strains can be due to reduction of efflux capacity by AtrDp. 

However, alternative explanations are possible. AtrDp could also be involved in 

compartmentahzation of biosynthetic precursors. In A. nidulans, the enzymes involved in 

penicillin biosynthesis are located in three different cellular compartments (Brakhage, 

1998). Thus, in biosynthesis of penicillin several transport steps are required to bring 

intermediates of the penicillin biosynthesis pathway in contact with enzymes in the 

cytosol. If these transport steps would require AtrDp, disruption of the encoding gene 

would also affect penicillin production. Furthermore, AtrDp could have a yet unknown 

physiological function that could indirectly affect regulatory mechanisms of penicillin 

production. There is now accumulating evidence that the human multidrug transporter, 

MDR1, has several cellular functions and regulates a range of different physiological 

processes (Johnstone et al, 2000). Similarly, AtrDp could have ion channel activity that 

affects extracellular pH, a well characterized regulatory-factor in penicillin biosynthesis of 

A. nidulans (Espeso et ah, 1993). Hence, further studies to support a physiological role of 

AtrDp in penicillin biosynthesis are needed. Generation of overexpression mutants of atrD 

and protein-localization studies would be helpful tools to address this question. 

Interestingly, overexpression mutants of atrB displayed increased sensitivity to 

dithiocarbamate fungicides, chlorothalonil and the iron-activated antibiotic phleomycin 

(Chapter 4). This phenotype was most pronounced in the overexpression mutant with 

the highest levels of atrB expression. We hypothesize that this phenomenon could relate 

to iron metabolism. Phleomycin toxicity is directly correlated with intracellular 

concentration of iron (Haas et ah, 1999). Therefore, it might be that atrB is involved in 

iron uptake or secretion of siderophores. Preliminary expression studies (H. Haas, 
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personal communication) indicating higher transcript levels of atrB under iron limiting 

conditions, support this hypothesis. 

Concluding remarks 

The ABC superfamily of transporters comprises the largest protein family known to date. 

These proteins have substrate specifities ranging from ions, heavy metals, carbohydrates, 

drugs, amino acids, phospholipids, steroids, glucocorticoides, bile acids, mycotoxins, 

antibiotics, pigments, peptides and even large proteinaceous toxins (Bauer et al., 1999). 

This thesis demonstrates that some of the identified ABC transporters from A. 

nidulans can function in cellular protection against natural toxicants and xenobiotics. 

Deletion and overexpression mutants display increased and decreased sensitivity to 

toxicants, respectively. Data presented also suggest a role for ABC transporters in 

production of fungal secondary metabolites. This may imply that strains overexpressing 

multidrug-transporter genes can show various pleiotropic effects with respect to production 

of secondary metabolites. Such strains are of interest if they could increase production of 

commercially important compounds. However, they may pose a danger if they would also 

transport endogenous detrimental compounds such as microbial virulence factors or 

mycotoxins. 

Genes encoding proteins with very high homology to AtrBp have recently been 

described for important plant pathogens such as Botrytis cinerea (BcatrB) and 

Mycosphaerella graminicola (MgatrS) (Goodall et al., 1999; Schoonbeek et al., 1999). 

These ABC transporters may have similar substrates as AtrBp of A. nidulans. The 

functional characterization of BcatrB from B. cinerea (Vermeulen et al., 2000) indicates 

that BcatrB from B. cinerea and atrB from A. nidulans are indeed orthologues. By 

comparing the substrate specificity of AtrBp, BcatrBp and Mgatr5p upon expression in A. 

nidulans, one can validate that A. nidulans is a suitable system to dissect the substrate 

specificity of ABC proteins from other filamentous fungi. This would be particularly 

helpful for ABC transporters from the human pathogens Aspergillus fiimigatus and 

Aspergillus flavus where the generation of mutants overexpressing multidrag-efflux pumps 

requires extreme caution since these mutants can be extremely hazardous to human health. 
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SUMMARY 

The term multidrug resistance (MDR) stands for simultaneous cellular resistance to 

chemically unrelated toxicants and is often associated with overproduction of 

multidrug-efflux proteins of the ATP-binding-cassette (ABC) superfamily. The ABC 

transporters comprise a large and multifunctional family of proteins. Besides multidrug 

transporters, the superfamily includes proteins involved in transmembrane transport of 

various substances such as ions, amino acids, peptides, sugars, vitamins, steroid hormones, 

bile acids, and phospholipids. An overview of the great variety of cellular functions that 

these proteins can perform in living cells is presented in Chapter 1. 

The aim of this thesis was to identify and characterize molecular mechanisms of 

drug resistance in Aspergillus nidulans, with special emphasis on drug-efflux proteins of 

the ABC-transporter superfamily. Using different approaches, we have identified seven 

ABC-transporter genes (atrA-G) from A. nidulans. Heterologous screening of a 

genomic library from A. nidulans using a DNA probe from PDR5, a well characterized 

multidrug transporter from Saccharomyces cerevisiae, yielded atrA and atrB, the first 

ABC-transporter genes isolated from a filamentous fungus (Chapter 2). The second 

approach, PCR with degenerate oligonucleotide primers based upon consensus 

sequences encoding ABC transporters from the subfamily of P-glycoproteins, resulted 

in the cloning of atrC and atrD (Chapter 3). The last approach, was based on a 

screening of an EST database of A. nidulans for sequences encoding proteins with 

homology to known fungal multidrug transporters, particularly involved in efflux of 

azole fungicides. With this approach, atrE, atrF and atrG were identified (Chapter 5). 

The proteins encoded by all seven atr genes isolated display high sequence homology to 

known multidrug-efflux proteins from other organisms. 

To investigate the role of the isolated atr genes from A. nidulans in multidrug 

transport, expression analysis of these genes in wild-type and MDR (ima) mutants of A. 

nidulans was performed, after treatment of germlings with toxicants. imaA and imaB are 

laboratory-generated mutants of A. nidulans selected for resistance to the azole 

fungicide imazalil and related compounds. In imaB mutants, resistance to the azole-like 

compound fenarimol is based on an increased energy-dependent efflux activity which 

results in decreased cytoplasmic drug accumulation. Therefore, these mutants were 

suitable to correlate azole resistance with expression levels of atr genes. 
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Expression studies in a wild-type isolate demonstrated that the basal level of 

expression for most atr genes is low and can be strongly enhanced by treatment with 

unrelated toxicants (Chapters 2, 3, 5 and 6). Time course experiments indicated that 

within 5 min after treatment with a toxicant (e.g. imazalil), enhanced transcript levels of 

atr genes can be observed (Chapter 2). Some compounds can specifically induce 

transcription of one particular atr gene while others may simultaneously affect 

transcription of several atr genes (Chapter 5). For instance, resveratrol specifically 

induces transcription of atrB, while treatment with fenarimol enhances transcription of 

several genes (atrB-G). Expression analyses in the ima mutants of A. nidulans shows 

that atrD, atrE, atrF, and atrG display a higher basal level of expression in imaB 

mutants than in the wild-type (Chapter 5). Treatment with fenarimol also enhances 

transcription of these atr genes in imaB mutants. 

Mutants in which atrB and atrD have been deleted display increased sensitivity 

to a number of unrelated toxicants. AatrB mutants have increased sensitivity to different 

classes of fungicides, mutagens and natural toxic compounds. AatrD mutants display 

increased sensitivity to cycloheximide, the cyclosporin derivative PSC 833, nigericin and 

valinomycin. These results indicate that AtrBp and AtrDp from A. nidulans are multidrug 

transporters with different substrate specifities (Chapters 3 and 4). 

AtrBp has been further characterized by overexpression in A. nidulans and S. 

cerevisiae (Chapters 2, 4 and 6). Sensitivity to toxicants of a ,PZ)/?5-deficient strain of S. 

cerevisiae was restored to wild-type levels, upon transformation with cDNA of atrB in a 

high copy number vector (Chapter 2). Mutants overexpressing atrB in A. nidulans also 

display decreased sensitivity to toxicants. These overexpression mutants display altered 

sensitivity to a wider range of compounds as compared to AatrB mutants (Chapter 4). 

These results indicate that the presence of additional drug-efflux pumps with affinity for 

the same compound prevent a change in phenotype of some deletion mutants. Redundancy 

of ABC transporters may explain, at least in part, the findings that AatrA and AatrC 

mutants show no hypersensitive phenotype for any of the compounds tested (Chapters 3 

and 5). However, the observation that atrA transcript levels were not influenced by any of 

the compounds tested and that atrA expression in S. cerevisiae does not confer drug 

resistance, suggest that AtrAp is not a multidrug transporter. 

ABC transporters which have overlapping substrate specificities may still have 

specific substrates. AtrBp has a distinctive specificity for the phenylpyrrole fungicide 
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fludioxonil since both AatrB and atrB overexpression mutants have altered sensitivity to 

this compound (Chapter 6). In addition, the increase in sensitivity to fludioxonil 

observed for AatrB mutants correlates with the relatively high accumulation levels of 

this compund. This was not observed for fenarimol. Therefore, the ABC transporter 

AtrBp can be regarded as a major efflux pump of phenylpyrrole fungicides in A. 

nidulans. 

Unexpectedly, overexpression mutants of atrB displayed increased sensitivity to 

dithiocarbamate fungicides, chlorothalonil and the iron-activated antibiotic phleomycin 

(Chapter 4). This phenotype was most pronounced in the overexpression mutant with 

the highest levels of atrB expression. We hypothesize that this phenomenon could relate 

to involvement of AtrBp in iron metabolism. 

AatrD mutants display a decrease in penicillin production, indirectly measured 

as antimicrobial activity against Micrococcus luteus (Chapter 3). These results suggest 

that AtrDp has a role in penicillin production. 

In conclusion, data presented in this thesis demonstrated that some of the 

identified ABC transporters from A. nidulans function in protection against natural 

toxicants and xenobiotics. Deletion and overexpression mutants of specific atr genes 

display increased and decreased sensitivity to toxicants, respectively. A role for ABC 

transporters in production of fungal secondary metabolites has also been suggested. This 

may imply that strains overexpressing multidrug-transporter genes can show pleiotropic 

phenotypes with respect to production of secondary metabolites. 
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SAMENVATTING 

Gelijktijdige resistentie van cellen tegen chemisch niet-verwante verbindingen wordt 

beschreven met de term multidrug resistentie (MDR). MDR gaat vaak gepaard met 

overproductie van multidrug-transport eiwitten van de ATP-bindings-cassette (ABC) 

superfamilie. ABC transporters vormen een grote en multifunctionele eiwitfamilie. 

Behalve multidrug transporters bevat de superfamilie ook eiwitten die betrokken zijn bij 

transmembraan transport van diverse stoffen zoals ionen, aminozuren, peptiden, suikers, 

vitaminen, steroid hormonen, galzuren en fosfolipiden. Een overzicht van de grote 

verscheidenheid in cellulaire nineties die deze eiwitten in levende cellen kunnen 

bezitten, wordt gegeven in Hoofdstuk 1. 

Het doel van dit proefschrift was om moleculaire mechanismen 

verantwoordelijk voor drug resistentie in Aspergillus nidulans te identificeren en te 

karakteriseren. Hierbij werd de aandacht vooral gericht op drug-efflux eiwitten van de 

ABC superfamilie. Met behulp van diverse technieken hebben we zeven ABC-

transporter genen ( atrA-G) van A. nidulans gei'dentificeerd. Heterologe screening van 

een genomische bibliotheek van A. nidulans met een DNA probe van PDR5, een goed 

gekarakteriseerde multidrug transporter van Saccharomyces cerevisiae, leidde tot de 

ontdekking van atrA en atrB, de eerste ABC-transporter genen die uit een filamenteuze 

schimmel zijn gei'soleerd (Hoofdstuk 2). De tweede benadering, PCR met 

gedegenereerde primers gebaseerd op consensus sequenties voor ABC-transporter 

genen uit de subfamilie van P-glycoprote'inen, resulteerde in de klonering van atrC en 

atrD (Hoofdstuk 3). De laatste benadering was gebaseerd op screening van een EST 

bibliotheek van A. nidulans op aanwezigheid van sequenties coderend voor eiwitten met 

homologie voor bekende multidrug transporters in schimmels, in het bijzonder ABC 

transporters betrokken bij efflux van azool fungiciden. Met deze benaderingswijze 

werden atrE, atrF en atrG gei'dentificeerd (Hoofdstuk 5). De eiwitten die door alle 

zeven atr genen worden gecodeerd, bezitten een hoge mate van homologie met 

multidrug efflux eiwitten van andere organismen. 

Om de rol van de gei'dentificeerde atr genen van A. nidulans in multidrug 

transport te bestuderen, is de expressie van deze genen bestudeerd in het wild-type en 

MDR (ima) mutanten van A. nidulans na behandeling met toxische verbindingen. imaA 

en imaB zijn mutanten van A. nidulans die in het laboratorium zijn geselecteerd op 

resistentie tegen het azool fungicide imazalil en verwante verbindingen. In imaB 
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mutanten, is resistentie tegen het verwante fungicide fenarimol gebaseerd op een 

toename in energie-afhankelijke efflux activiteit, hetgeen resulteert in een afhame van 

de accumulatie van de stof in het cytoplasma. Deze mutanten waren derhalve bruikbaar 

om resistentie tegen azolen te correleren met expressie niveaux van atr genen. 

Expressiestudies in een wild-type isolaat toonde aan dat het basale niveau van 

expressie voor de meeste atr genen laag is en sterk verhoogd kan worden door 

behandeling met niet-verwante verbindingen (Hoofdstukken 2, 3, 5 en 6). Al 5 minuten 

na behandeling met toxische verbindingen (b.v. imazalil) kon reeds een toename in 

transcriptie niveau van atr genen worden waargenomen (Hoofdstuk 2). Sommige 

verbindingen induceren specifiek de transcriptie van een atr gen terwijl andere de 

transcriptie van meerdere atr genen bei'nvloeden (Hoofdstuk 5). Resveratrol induceert 

bijvoorbeeld specifiek de transciptie van atrB, terwijl fenarimol de transcriptie verhoogt 

van meerdere genen (atrB-G). Expressie analyse van ima mutanten van A. nidulans 

toonde aan dat atrD, atrE, atrF en atrG een hoger niveau van basale expressie vertonen 

in ima mutanten dan in het wild-type (Hoofdstuk 5). Behandeling met fenarimol 

verhoogt ook het transcriptie niveau van deze atr genen in imaB mutanten. 

Mutanten waarin atrB en atrD zijn uitgeschakeld vertonen een verhoogde 

gevoeligheid voor een aantal niet-verwante verbindingen. AatrB mutanten bezitten een 

toename in gevoeligheid voor verschillende groepen van fungiciden, mutagentia en 

natuurlijk toxische verbindingen. AatrD mutanten bezitten een toename in gevoeligheid 

voor cycloheximide, het cyclosporine derivaat PSC 833, nigericine en valinomycine. 

Deze resultaten duiden er op dat AtrBp en AtrDp van A. nidulans multidrug transporters 

zijn met een verschillende substraat specificiteit (Hoofdstukken 3 en 4). 

AtrBp is verder gekarakteriseerd door overexpressie in A. nidulans en S. 

cerevisiae (Hoofdstukken 2, 4 en 6). Transformatie met cDNA van atrB in een 

multicopy vector naar een PZ)/?5-disruptie mutant van S. cerevisiae resulteerde in 

transformanten met een wild-type gevoeligheid voor toxische verbindingen (Hoofdstuk 

2). Dezelfde afhame in gevoeligheid voor toxische verbindingen werd gevonden in 

AtrBp overexpressie mutanten van A. nidulans. Deze atrB overexpressie mutanten 

vertonen voor meer verbindingen een andere gevoeligheid dan de AatrB mutanten 

(Hoofdstuk 4). Deze resultaten wijzen er op dat de aanwezigheid van additionele drug-

efflux pompen met affiniteit voor dezelfde verbinding verandering van het fenotype van 

sommige deletie mutanten kan voorkomen. De aanwezigheid van meerdere ABC 
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transporters kan, op zijn minst ten dele, de waarnemingen verklaren dat AatrA en AatrC 

mutanten niet overgevoelig zijn voor de geteste verbindingen (Hoofdstuk 3 en 5). De 

waarneming dat het atrA transcriptie niveau door geen van de geteste verbindingen 

wordt bei'nvloed en dat atrA expressie in S. cerevisae geen resistentie tegen drugs 

bewerkstelligt, suggereert dat AtrAp geen multidrug transporter is. 

ABC transporters met een overlappende substraat specificiteit kunnen toch nog 

specifiek zijn voor bepaalde substraten. AtrBp heeft een onderscheidende specificiteit 

voor het fenylpyrrol fungicide fludioxonil omdat zowel AatrB mutanten als atrB 

overexpressie mutanten een veranderde gevoeligheid voor deze verbinding bezitten 

(Hoofdstuk 6). Bovendien correleert de toename in gevoeligheid van AatrB mutanten 

voor fludioxonil met een relatief hoog accumulatieniveau van het fungicide in de 

schimmel. Dit werd niet waargenomen voor fenarimol. Daarom kan de ABC transporter 

AtrBp worden beschouwd als de belangrijkste efflux pomp van fenylpyrrol fungiciden 

in A. nidulans. 

Het is opvallend dat overexpressie mutanten van atrB een toename in 

gevoeligheid vertonen voor dithiocarbamaat fungiciden, chloorthalonil en het 

antibioticum fleomycine dat door ijzer wordt geactiveerd. (Hoofdstuk 4). Het fenotype 

was het duidelijkst in overexpressie mutanten die het hoogste niveau van atrB expressie 

vertonen. We veronderstellen dat dit fenomeen te maken kan hebben met de rol van 

AtrBp in ijzer metabolisme. 

AatrD mutanten vertonen een afname in penicilline productie, indirect gemeten 

als antimicrobiele activiteit tegen Micrococcus luteus (Hoofdstuk 3). Deze resultaten 

suggereren dat AtrDp een rol vervult bij penicilline productie. 

Samenvattend tonen de gegevens die in dit proefschrift worden gepresenteerd 

aan, dat ABC transporters van A. nidulans kunnen functioneren bij de bescherming van 

cellen tegen natuurlijk toxische verbindingen en xenobiotica. Deletie en overexpressie 

mutanten van specifieke atr genen vertonen respectievelijk een toename en afhame in 

gevoeligheid voor toxische verbindingen. De suggestie wordt ook gedaan dat ABC 

transporters een rol kunnen spelen bij de productie van secundaire metabolieten van 

schimmels. Dit zou kunnen betekenen dat stammen die multidrug-resistentie genen tot 

overexpressie brengen pleiotrope effecten vertonen met betrekking tot de productie van 

secundaire metabolieten. 
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