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Stellingen 

1. Omdat dimensieloze parameters correlaties aantonen tussen procesparameters, 
zijn ze een krachtig instrument bij de opschaling van een proces (dit proefschrift). 

2. Aangezien een moleculaire scheiding nooit volledig is, is het onduidelijk wat 
Storti et al. bedoelen met complete separation regions. 
Storti, G.; Mazzotti, M.; Morbidelli, M.; Carra, S. AIChE J. 1993, 39, All. 

3. Hoewel de tegenwoordige optimalisatietechnieken het gebruik van 
extractiefactoren overbodig maken, geven deze factoren wel de noodzakelijke 
inzichten waarom bepaalde ontwerpen wel of niet succesvol zijn. 

A. Experimental design ter minimalisering van betrouwbaarheidsintervallen van 
parameters is onbruikbaar voor niet-lineaire modellen. 

5. In tegenstelling tot wat Alper et al. schrijven, leiden Monte Carlo simulaties niet 
altijd tot goede schattingen van betrouwbaarheidsintervallen van afhankelijke 
parameters; in die gevallen kan reparameterisatie van het model wel leiden tot 
goede schattingen van betrouwbaarheidsintervallen. 
Alper, J.S.; Gelb, R.I. J. Phys. Chem. 1990, 94, 4747. 

6. Het bestaan van een vervolg van een speelfilm pleit meer voor de kwaliteit van de 
eerste speelfilm dan voor die van de vervolgfilm(s). 

7. De ontwikkelingen in de biotechnologie beleven een revolutie. Echter, de 
maatschappelijke acceptatie van biotechnologie volgt een evolutionair pad. 

8. De Nederlandse hyacintenkweek wordt serieus bedreigd door opoffering van, 
voor Nederland unieke, geestgronden aan verstedelijking en natuurontwikkeling. 

9. Aangezien de zuurgraad toeneemt met afnemende getalswaarde (pH), is het beter 
om van alkaligraad te spreken. 

10. Soms lijkt het zo te zijn dat netwerken maar net werken. 

Stellingen behorende bij het proefschrift: 
Enantiomer separation by ultrafiltration of enantioselective micelles in multistage 
systems 

Pieter E.M. Overdevest Wageningen, 4 September 2000 
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1 INTRODUCTION 

Multidisciplinary research in separation technology development 

An increasing demand for optically pure products has intensified the search for new 

separation processes. At Wageningen University a new separation system is under 

development that is based on the ultrafiltration of nonionic micelles containing chiral Cu11-

amino acid derivative selector molecules. This research focuses on the separation of amino 

acid enantiomers both at a molecular level and on a process scale. At the Laboratory of 

Organic Chemistry, molecular interactions taking place in the diastereomeric complex 

formation are investigated by minor modifications in either the chiral selector or the racemic 

substrate. Quantum mechanical calculations have been performed on model compounds to 

study this diastereomeric complex in more detail. At the Food and Bioprocess Engineering 

Group, the separation performance has been studied as a function of pH which shows that 

Langmuir isotherms describe the competitive complexation of phenylalanine (Phe) 

enantiomers by the chiral selector. The validated model has been used to design a cascaded 

counter-current separation system capable of 99+% resolution of racemic mixtures. This 

cascaded ultrafiltration (UF) system enables enantiomer separation in systems that are 

essentially aqueous, which may prove to be advantageous for the development of new 

separation processes preserving the environment. Besides the separation of enantiomers this 

cascaded system provides a straightforward technology to a 99+% separation or removal of 

aqueous solutes, which are difficult to separate based on size exclusion. 

A part of this chapter has been published as part of P.E.M. Overdevest and A. van der Padt, 'Optically 
pure compounds from ultrafiltration' CHEMTECH1999, 29, no. 12, 17. 
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An increasing demand for optically pure products 

The desired biological activity of chiral compounds is often caused by only one enantiomer 

of a pair of enantiomers (figure 1). Consequently, use of only the active enantiomer is 

preferred, since the other one can have no effect, undesired effects, or can even be harmful. In 

May 1992 the current move to single enantiomer drugs received a push when the FDA issued 

a policy statement [7], which stimulated pharmaceutical-, food-, and agrochemical industries 

to develop methods for the production of optically pure compounds. 

Figure 1. Just like our hands, enantiomers are each others mirror image. 

The most obvious source for these compounds is the chiral pool, relatively inexpensive, 

optically pure natural compounds [2]. However, the limited number of compounds in this 

pool requires modification or the total synthesis by either an enantioselective chemical or 

enzymatic route to obtain the desired product. An appropriate route must to be developed for 

each compound because of substrate specificity, which leads to considerable costs and 

increased development time [3]. As an alternative, the usually less expensive synthesis of 

racemic mixtures, followed by a separation step, would isolate both optically pure isomers. 

Nonchiral (symmetric) synthesis followed by a separation step becomes a more attractive 



introduction 

route if a multistep chiral (asymmetric) synthesis results in very low yields or when there is a 

market for both isomers. 

Various ways to separate racemic mixtures 

Although symmetric synthesis is usually less demanding then asymmetric synthesis, 

separation of enantiomers is frequently not trivial, because their physical properties only 

differ in chiral media. Conventionally, large scale production of optically pure compounds is 

based on diastereomeric salt formation [4]. This technique involves many processing steps 

that result in high energy consumption and significant product losses. An alternative process 

uses membranes to resolve enantiomers, can be operated continuously at ambient 

temperatures, and is easily scaled up, making it attractive and cost-efficient. Several kinds of 

enantioselective membranes can be used to separate enantiomers: membranes containing 

proteins [5,6] or chiral polymers [7,8], molecular imprinted membranes [9,10], and supported 

[11,12] or emulsion [13,14] liquid membranes. Non-enantioselective membranes can be used 

to retain two (im)miscible phases of which at least one is enantioselective [15,16]. 

chiral selector 

4. 
micelle 

hydrophobic core'' 
hydrophilic shell 

4 
bulk phase 

I 
I 
I 
I 
1 

bulk phase 

| viscous flow 

I 
1 L 

I 
UF membrane 

Figure 2. Enantiomer separation by ultrafiltration of enantioselective micelles. 
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Enantiomer separation by UF of enantioselective micelles 

In our research we focus on the second type of membrane application. At Wageningen 

University the concept of Micelle-Enhanced UltraFiltration (MEUF) is used to separate 

enantiomers [17]. MEUF combines high permeate flows with the possibility to separate low 

molecular weight components depending on their affinity for the micelle. MEUF has already 

been used for the removal of small organic compounds and for the separation and removal of 

heavy metals from aqueous streams [18,19]. The pore size of the ultrafiltration membrane is 

small enough to reject the micelles, however, large enough to pass all other unbound aqueous 

solutes (figure 2). 

In our studies, the surfactants forming the microheterogeneous medium (in our case micelles) 

have been nonionic and achiral; therefore a chiral co-surfactant (chiral selector) is required. 

The studied chiral selector is cholesteryl-L-glutamate (figure 3). The selector can form 

ternary chelate complexes with a Cu11 ion and a D- or L-amino acid (racemic test 

compounds). The enantioselectivity of the chiral selector molecules is related to the 

difference in stability of the two diastereomeric complexes. During filtration the unbound 

enantiomers pass the membrane, whereas the micelles - including chiral selectors and bound 

enantiomers - are retained. 

Figure 3. Chiral selector: cholesteryl-L-glutamate. 
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The separation can be quantified by the enantiomeric excess of the micelles, eecs= |<7D - <7L| / 

(<7D + 1L) • 100% and of the aqueous bulk phase, ees = \cx> - CL| / (CD + c\) • 100%, where c 

and q are the unbound and bound concentrations, respectively. Two aspects of this system 

should be distinguished: the affinity of the selector for the enantiomers KQ and ATL, and the 

enantioselectivity of the selector for the enantiomers. The operational enantioselectivity 

ciD/L.op is defined as follows: 

a D/L,op 
? D / C I 

< ? L / C I 

(") (1) 

According to Langmuir isotherms, the operational enantioselectivity can be rewritten into the 

intrinsic enantioselectivity, aD/L,int = KB I Ki,. Thus, an enantioselectivity larger than one 

defines a preference of the selector for the D-enantiomer. 

enantiomeric excess in bulk (-) enantiomeric excess in micelles (-) 
1 r 

0.5 

10 

(a) 
CRAC' C C S ~ 0-1 

10 

r \ i i i 

20 30 

selectivity (-) 

20 30 

selectivity (-) 

Figure 4. Calculated enantiomer separation in bulk (a) and micelles (b) in a single stage at various 
racemic mixture and selector concentrations, CRAC and ccs, respectively. The enantiomer 
complexation can be described by multicomponent Langmuir isotherms. 
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A cascaded system to fulfill the separation of a racemic mixture 

Single stage calculations have shown that a high enantioselectivity alone is not sufficient to 

acquire both enantiomers in optically pure form (figure 4). Both eecs and eeB depend on the 

ratio of the racemic mixture concentration and the chiral selector concentration. An excess 

amount of selectors results in an enriched bulk phase. However, the micelles are not 

enantiomerically enriched due to the surplus of sites (low eecs)- Evidently, a deficiency of 

selector molecules results in a low eeB and a high eecs, due to the competitive nature of the 

Langmuir complexation. 

In order to reach 99+% separation of the racemic mixture a multistage separation process is 

required (figure 5). This system is operated in a counter-current mode, analogous to 

conventional extraction and distillation processes. Here, the enantioselective micellar phase 

flows in opposite direction of the bulk phase. In each stage an UF membrane separates the 

micellar phase from its coexisting aqueous bulk phase. 

micelles + D-Phe 

A 
mi' f lar phase 

2 * 

membrane 

racemate 

micelles 

m 

A 
n-1 

— • 

n 

/ 
bulk phase' 

water L-Phe 

Figure 5. Cascaded system applying the counter-current principle for the 99 % separation of 
racemic mixtures. 
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Outline of this thesis 

In order to design a cascaded system capable of a complete (99+%) separation of racemic 

mixtures into two optically pure compounds, an adequate model is required that describes the 

separation in this system. The isotherms describing the chelate complexation of D,L-Phe by 

Cun-cholesteryl-L-glutamate in nonionic micelles are discussed in chapter 2. Since the 

interactions between enantiomers, Cu11 and enantioselective micelles are pH dependent, this 

dependency has been studied to optimize both separation and regeneration processes (chapter 

3). Kinetic data of these interactions are essential for the process design, e.g. to optimize the 

residence time of the micelles in each stage. This is discussed in chapter 4. Subsequently, the 

developed separation model is tested for validity using a cascaded system at lab-scale. 

Moreover, the separation concept and this model are tested at bench-scale using an industrial 

membrane module (chapter 5). Finally, in chapter 6 the cascaded process is further studied 

through sensitivity analyses of its separation performance using the dimensionless numbers 

of the validated model. 
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2 
Summary 

COMPLEXATION MODELING 

An increased demand for enantiopure compounds has induced a significant effort in the 
development of enantiomer separation technologies. The conventional path to obtain 
homochiral products at a preparative scale is diastereoisomer crystallization. Disadvantages 
of this separation process are costly scale-up and a high energy requirement. An alternative 
can be ultrafiltration (UF) of enantioselective micelles, which is an easily scalable process 
with a low energy requirement. The micelles preferentially form a complex with one of the 
enantiomers. Only unbound enantiomers can pass the membrane during the UF process. 

The work described in this chapter aims at the description of the complexation of 
phenylalanine (Phe) enantiomers by cholesteryl-L-glutamate anchored in nonionic micelles 
of nonyl-phenyl polyoxyethylene [E10] ether (NNP10). The description of this model system 
is used to develop a separation process capable of complete (99+%) enantiomer resolution 
from their racemic mixtures. The influence of membrane rejection and of nonselective 
complexation on the operational enantioselectivity is investigated. Both statistical analyses of 
complexation models and UF experiments in absence of chiral selector show that membrane 
rejection and nonselective complexation are not significant compared to enantioselective 
complexation. It is concluded that the complexation can be described by straightforward 
competitive multicomponent Langmuir isotherms. The operational enantioselectivity appears 
to be constant over a wide concentration range and equals 1.4. Only at extremely low total 
enantiomer concentrations the enantioselectivity increases to a value of 4.5. 

A multistage separation process is required in order to separate a racemic mixture for 99+%. 
Preliminary calculations using the Langmuir model have shown that 60 stages are sufficient 
to reach a 99+% separation of both enantiomers. 

This chapter has been published as P.E.M. Overdevest, A. van der Padt, J.T.F. Keurentjes and K. van 
't Riet, 'Langmuir isotherms for enantioselective complexation of (D/L)-phenylalanine by cholesteryl-
L-glutamate in nonionic micelles' Colloids and Surfaces A 2000,163, 209. 
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Introduction 

Chirotechnology, the applied science of the production of enantiopure compounds, is a fast 

developing research field and is increasingly applied in pharmaceutical, agrochemical and 

food industries due to a rise in the demand for enantiomerically pure compounds. The main 

reasons for an increasing demand are [1]: (i) enantiomers can have different biological 

activities, e.g. (5,5)-ethambutol which is tuberculostatic and the (7J,/?)-enantiomer can cause 

blindness; (ii) enantiomers can counteract one another's effect, so-called antagonism, as 

shown by the inhibition of the Japanese beetle pheromone, the (R,Z)-isomei, by 1% of the 

(S^-isomer; (iii) the unwanted enantiomer is seen as an impurity as a consequence of 

registration constraints in certain countries; and (iv) production costs decrease significantly 

as a result of an increased production capacity. 

The most obvious approach to produce optically active components is to use the chiral pool 

[2]. Since not all optically pure products are available from this pool, enantiomers have to be 

synthesized from (a)chiral substrates or have to be separated from their equimolar mixture 

(racemic mixture). The conventional production method, diastereoisomer crystallization, is 

often a batchwise operation [3] and requires relatively inflexible multistep processing [1], 

thus inducing low product yields. 

Application of membranes for the resolution of racemic mixtures can result in continuous, 

energy efficient, preparative separation processes. Enantiomer separation using membranes 

can basically be divided into two types of processes. This classification is based on the 

location of the chiral selector molecules responsible for chiral discrimination between 

enantiomers [4], i.e. inside or outside the membrane, respectively. Membranes can be applied 

as an enantioselective barrier retaining one enantiomer more than the other. Examples thereof 

are membranes made of chiral polymers [5-7], molecular imprinted membranes [3,8,9], 

supported liquid membranes [10-12], emulsion liquid membranes [13,14] and membranes 

containing proteins [15,16]. Alternatively, nonselective membranes can be used to separate 

two (im)miscible phases of which at least one is chiral. Immiscible phases, like in 

liquid/liquid extraction, can be used to separate enantiomers [17-19]. However, the 

performance of conventional extraction equipment is often limited by backmixing and 

flooding [20]. These limitations are eliminated in hollow-fiber membrane extraction, where 

nonselective membranes are used to separate both phases [21,22]. If both enantiomers are 

required the partition of the enantiomers over both phases should not be too far from unity, 
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since at a high distribution coefficient one of the enantiomers will become extremely diluted 

which results in loss of valuable product [23]. Alternatively, membranes can be used to 

separate a miscible enantioselective microheterogeneous phase from an aqueous bulk. An 

efficient separation process is guaranteed by using molecules or colloidal particles larger than 

the pore size of the membrane, e.g. BSA [24,25] or enantioselective micelles as demonstrated 

by our group [26]. Micelles have proven their ability to preconcentrate heavy metals and 

organic compounds from aqueous streams in micelle-enhanced ultrafiltration (MEUF) [27-

29]. Ismael and Tondre have successfully applied a metal ion selector in micelles to separate 

Cu11, Nin, and Co11 ions [30]. Furthermore, micelles are used in micellar electrokinetic 

capillary chromatography (MEKC) to separate enantiomers on an analytical scale [37-53]. 

Figure 1 shows our enantioselective micellar system. Anchoring chiral selector molecules in 

micelles of the nonionic surfactant, nonyl-phenyl polyoxyethylene [E10] ether (NNP10), 

makes the enantioselective micelles. Chiral selector molecules (cholesteryl-L-glutamate, 

CLG) can each bind a Cu11 ion (not shown) and form chelate complexes, preferentially with 

one of the two enantiomers (D,L-Phe). Since ionic surfactants are known to interact with 

amino acids [34] and/or Cu11 ions [35] we have used nonionic surfactants. Ultrafiltration (UF) 

of a solution of enantioselective micelles, Cu11 and D,L-Phe results in enantiomer separation 

as a consequence of: 

• enantioselective one-to-one complexation of enantiomers by chiral selectors; 

• rejection of micelles by the membrane, and accordingly of the bound enantiomers; and 

• permeation of the unbound enantiomers. 

The objective of our research is the development of an enantiomer separation process based 

on micellar UF at a preparative scale. The process design requires a model that describes the 

complexation of enantiomers by enantioselective micelles. This chapter aims at the 

elucidation of the mechanism of D,L-Phe complexation by CLG anchored in NNP10 

micelles. For this reason, the enantioselective and nonselective complexation and membrane 

rejection of bulk enantiomers have been studied. Additionally, statistics have been applied to 

discriminate between different complexation models. 
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N2 

magnetic 
stirrer bar 

membrane —.. . 

water jacket—• = =T=—• permeate outlet 

magnetic stirrer 

Figure 1. Experimental set-up of the Amicon cell and an impression of the enantiomer separation at 
the membrane. 

Theory 

Single and multicomponent complexation isotherm models. Assuming reversible one-to-

one complexations of chiral selectors and enantiomers, complexation can be described 

analogously to Langmuir adsorption isotherms. Considering adsorption equilibrium at equal 

adsorption and desorption rates, Langmuir has derived the classical equilibrium isotherm for 

localized nonlinear monolayer adsorption [36]. Originally proposed for single gas adsorption, 

the isotherm has been adapted for describing solute adsorption by simple replacement of the 

adsorbate pressure by the solute concentration [37]. The Langmuir isotherm is based on the 

following assumptions [38]: 

• adsorbate molecules are held at a fixed number of localized sites; 

• each site can accommodate one single adsorbate molecule; 

• adsorption energy is equal for all sites; and 

• neighboring adsorbate-adsorbate interactions are absent. 
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Accordingly, single enantiomer complexation can be described as: 

<7D = (mM) (1) 
l + KDcD 

qL = (mM) 
l + KLcL 

where K (mM1) is the Langmuir affinity constant, c and q (mM) are the equilibrium 

concentrations of bulk and bound enantiomers, respectively. The indices D and L refer to the 

D- and L-enantiomers, respectively. The Langmuir saturation constant qs (mM) is the 

maximum attainable concentration of bound enantiomer. 

In case both enantiomers strive for complexation with the same binding site, the competitive 

complexation can be described using multicomponent Langmuir isotherms. Several authors 

have used these isotherms to describe enantiomer complexation [25,39,40]. For the D-

enantiomer: 

9,KDCV 
<7D (mM) (2) 

l + KDcD+KLcL 

Besides an isotherm for the D-enantiomer, all isotherm models include an analogous isotherm 

for the L-enantiomer, as summarized in table 1. 

Enantioselectivity. The enantioselectivity aD/L of the micelles containing the selector is 

defined as the ratio of the bound D and L enantiomer concentrations (qo / 1L) over the ratio of 

the bulk concentrations (cD / cL) [38]: 

«D/L = « (3) 
C D / C L 
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Table 1. An overview of the studied single and multicomponent isotherm models. 

Isotherm: 

^ s ^ D ^ D 

ID ~ 
l + KDcD 

< 7 s ^ D C D 

?D -
l + KDcu +KLcL 

4 s,ns ns C D 

?D _ . 
1 + K™{CD+CL) 

< ? s * D C D 9 s , n s ^ 

? D _ ' 

n s C D 

l + ̂ D c D l + ^ n s c D 

« / D C D 

^D _ 

i+/ rDcD + ^ L c L 1 + 

a 
^ s,n 

A: 
ns 

K 
ns 

I'D 

C D 

+ C L ) 

Model 

(1) 

(2) 

(8) 

(9) 

(10) 

According to multicomponent Langmuir complexation the intrinsic enantioselectivity aD/L,int 

is written as [38]: 

aD/L,int =Kv /K-L (-) (4) 

The bound concentrations can be calculated from the measured bulk concentrations co and 

(mM) (5) 

?L= cL, to t - cL W (6) 
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where the index 'tot' refers to the total enantiomer concentrations at the beginning of an 

experiment. 

The operational enantioselectivity (OID/L,OP) can be calculated using eqs 3, 5 and 6: 

CL (>D,tot ~co ) 
aD/L,op= (-) (7) 

CD (CL,tot ~ C L ) 

By definition, an enantioselectivity larger than one indicates a preference of the 

enantioselective micelles for the D-enantiomer. 

Nonselective enantiomer complexation. In addition to enantioselective complexation, 

nonselective (ns) complexation of both enantiomers can occur, which leads to a decrease in 

the operational enantioselectivity. Nonselective complexation can be described as [40]: 

1 s,ns *• ns C D 

qD = (mM) (8) 
1 + * n s ( C D + C

L ) 

Assuming nonselective complexation in presence of chiral selector molecules, the single en 

multicomponent isotherms become, respectively [40]: 

9,KDCD 9 s , n s* n scD 
qD = + (mM) (9) 

1 + * D C D 1 + ^ n s C D 

<7 S ^D C D <7s>ns*nsCD 
qD = + (mM) (10) 

l + KI3cD+KLcL l + * „ ( c D + c L ) 

where qSfis (mM) is the maximum enantiomer concentration nonselectively bound by the 

surfactants and ̂ ns is the affinity constant for nonselective complexation. 

Membrane rejection. Besides nonselective complexation, membrane rejection can result in 

misinterpretation of the measured operational enantioselectivity. In cases where membrane 

rejection (R) is considered, bulk concentrations in the retentate (cr) are calculated using eq 

11: 
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R = l-cp/ct (-) (11) 

where cp is the measured enantiomer concentration in the permeate. When referred to a model 

where membrane rejection is assumed, the reference includes 'R', e.g. model 1R. 

Materials and Methods 

Materials. D-,L-, and DL-Phe, analytical grade CUCI22H2O, KC1, and KOH were obtained 

from Merck (Darmstadt, Germany) and were used without further purification. The 

surfactant, Serdox NNP10 (nonyl-phenyl polyoxyethylene [E10] ether), was a gift by Servo 

Delden b.v. (Delden, The Netherlands). Although the surfactant was most probably a mixture 

of different NNPs, an average molecular weight of 644 g/mol was assumed (CMC equals 

0.047 mM). The chiral selector, cholesteryl-L-glutamate (CLG), was synthesized by the 

Laboratory of Organic Chemistry of Wageningen University (optical rotation, [OI]D293 was 

-27 ° at 10.5 g/L chloroform, 3% trifluoracetic acid). Throughout this study distilled and RO 

filtered water was used. 

Preparing micellar solutions. Batches of 50 mL of solution for ultrafiltration experiments 

were prepared as follows. CLG, insoluble in water, was dispersed in a concentrated surfactant 

solution to yield a stable and transparent solution in which the selector was completely 

dissolved. The selector solubility in the nonionic micelles and the enantioselectivity were 

found to be optimal using this method. The final solutions were obtained by mixing stock 

solutions: 5.0 mL 1.0 M KC1, 5.0 mL 3.0 mM CuCl2, 2.5 mL 0 - 20 mM D-Phe, 2.5 mL 0 -

20 mM L-Phe and 35 mL of the concentrated CLG/NNP solution. These mixtures were set at 

pH 11 and stirred overnight. The experimental concentrations and conditions are summarized 

in table 2. Cu11 was added as the chelating agent, being a prerequisite for the enantioselective 

complexation of Phe by cholesteryl-L-glutamate [26]. KC1 was added to ensure a constant 

ionic strength. To determine the adsorption isotherms of D- and L-Phe the total 

concentrations of both enantiomers were varied whereas all other solute concentrations 

remained the same. 
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Table 2. Solute concentrations and conditions in UF experiments. 

Component 

NNP10 

LCG 

D-Phe 

L-Phe 

CuCl2 

KC1 

Concentration (mM) 

7.8 

0.3 

0-1.0 

0-1.0 

0.3 

100 

Condition 

T 

PH 

25 °C 

11 

Analytical methods. Phe enantiomers were analyzed by HPLC using a 4 mm I.D. x 150 mm 

Crownpak CR(+) chiral crown ether column (Daicel) operated at 5°C. Concentrations were 

measured by UV absorbance detection at 254 nm (Applied Biosystems). A solution of 

perchloric acid in water (pH 1.5) was used as the mobile phase (0.8 mL/min). Before use, the 

mobile phase was filtered through a 0.2 (am membrane filter (Sartopore 300). Between each 

series of analyses a five-point calibration was used, enabling the estimation of the Phe 

enantiomer concentration based upon the measured peak area. 

Enantioselective complexation experiments. Ultrafiltration experiments were performed in 

a thermostated Amicon 300-mL cell at 25 °C in at least triplicate (figure 1). The cell was 

placed on a magnetic stirrer adjusted to 400 rpm to minimize foam production and 

concentration polarization of micelles. A regenerated cellulose membrane (YM3) with a 

molecular weight cut off of 3 kDa was used (Amicon Inc., USA). Part of the bulk liquid (7 

mL) was forced to permeate through the membrane by applying 3 bar N2. The first 4 mL 

were discarded and the following three fractions of 1 mL were collected and analyzed by 

HPLC. 

Measurement of bulk and bound concentrations. Since the permeate concentration 

remained constant during an ultrafiltration experiment, it could be assumed that the 
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complexation equilibrium did not shift during the ultrafiltration process. Subsequently, the 

average permeate concentration is calculated from the three measurements per ultrafiltration 

experiment. Both the selector and bound concentrations increased proportionally with the 

decrease in retentate volume (V): 

9l)M / * D =<7L;ini / « L =<7s,ini / ? , = ^ / F i n i (") ( 1 2 ) 

where the index 'ini' refers to the concentration at the beginning of an ultrafiltration 

experiment. Since qs, qu and <?L had to be multiplied by VIV„a, complexation could still be 

described using straightforward single and multicomponent isotherms. However, to keep 

notation simple qs, qo and qt refer to the concentrations at the beginning of an ultrafiltration 

experiment and not to the actual concentrations during the UF experiment. The bound 

concentrations were calculated using eqs 5 and 6. 

Nonselective complexation and membrane rejection experiments. Nonselective 

complexation experiments were performed in absence of CLG and took place in an Amicon 

cell containing 7.8 mM NNP10,0.3 mM CuCl2 and 0.1 M KC1 (pH 11, 25 °C). To investigate 

membrane rejection of bulk Phe, an ultrafiltration experiment was carried out in an adapted 

Amicon cell with a continuous feed. This feed flow was equal to the permeate flow of 0.025 

mL/s, guaranteeing a constant cell volume of 200 mL. The feed and initial cell solution 

contained 0.15 mM D,L-Phe and 0.1 M KC1 (pH 11, 25 °C). In addition, the Amicon cell 

contained 7.8 mM NNP10. Using eq 11 and a mass balance over the set-up, it can be easily 

shown that: 

C P 
= ( l - / f e~ e ( 1 ~ ' R ) )c f (mM) (13) 

where 9 is defined as the ratio of time and the residence time of the bulk in the cell and index 

'f' refers to the feed concentration. 

Statistics 

Fitting the isotherm models. To fit model 1 the isotherm was rewritten into an 

explicit expression of the predicted bulk enantiomer concentration using eq 5: 
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-B + iJB2 +4cD,totKD 

cD,Pred = (mM) (14) 
2KB 

where B = Kv(qs - CD,tot) + 1 • The same procedure was followed for the L-enantiomer and for 

model 8. For the models 2, 9 and 10 it was not possible to derive simple explicit expressions 

for the bulk enantiomer concentrations. Therefore, an iterative procedure was developed to 

estimate the bulk concentrations CD,preci and copied from a dependent set of equations. Using 

eqs 5 and 6 the following equations could be derived for model 2: 

? s ^ D c D , p r e d 
CD.tot -CD.pred = (mM) (15) 

1 + K D C D.pred + K L c L,pred 

?s-^L cL,pred 
CL,tot -CL,pred = (mM) (16) 

1 + K D C D ; p r ed +KLC L ; p r e d 

where the total concentrations CD.tot and CL.tot were assumed to be the independent variables. 

The RSS was calculated using the difference between the measured and predicted enantiomer 

concentrations in the bulk. An algorithm based on the Levenberg-Marquardt method was 

used to minimize the RSS. 

Confidence intervals of Langmuir constants. Confidence intervals of predicted 

Langmuir constants (Ppred) were calculated using the estimated (asymptotic) standard error of 

the parameters ($p): 

P = Ppred ± * p ' a / 2 , v ( 1 7 ) 

where taa,v is the upper a/2 percent point of the ^-distribution with v= n - p degrees of 

freedom, n is the number of data, and/? is the number of parameters. The diagonal element of 

the pxp variance-covariance matrix of the parameters is equal to the square of the 

corresponding standard error [41]: 

variance - covanance matrix = 
f RSS^ (j'jy « (is) 
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where J is the nxp Jacobian matrix which represents the derivative of the nonlinear functions 

with respect to the parameters. Note that in case of linear regression (y = X$) the Jacobian 

matrix equals X, thus making the estimation of confidence intervals straightforward. 

Confidence intervals of enantioselectivity. The intrinsic enantioselectivity was 

calculated from the estimated Langmuir affinity constants KD and KL using eq 4. This 

equation was expanded as a Taylor series to obtain the standard error of aD/L,int s<xD/L M [42]: 

S2 v2 i2 
aD/Lint ^ n * T I I 

' « — g - + — ^ = C* + C2 (-) (19) 
n2 V2 K1 

D/L,int D L 

where S2KV and S2KL are elements of the variance-covariance matrix (18) and CJcD and CJCL are 

the relative variances of K0 and KL, respectively. This Taylor approximation is valid for a 

relative variance of less than 0.15 [42]. It was obvious that the calculated confidence interval 

of aD/L,int was symmetric using this approximation. However, error distributions of 

parameters in nonlinear models are not necessarily symmetric [43-45]. The customary 

assumptions that the effects of covariance between pairs of parameters can be ignored and 

that the distributions of parameters are normal can lead to a significant error, up to 2- and 3-

fold in the calculated uncertainties [46]. Therefore, a Monte Carlo method was also used to 

calculate the confidence interval of aD/L,int- This procedure contained the calculation of [46]: 

(i) aD/L,int, using eq 4 and the estimated KD and KL; 

(ii) a new set of KB and KL, using sKD and sKL and the normal distribution; and of 

(iii) aD/L,int, using eq 4 and the simulated ATD and KL; 

After repeating step (ii) and (iii) many times (> 2000), the confidence interval was obtained 

from the ordered list by eliminating the upper and lower 2.5% of the simulations. The 

confidence interval of the operational enantioselectivity (CID/L,OP) was obtained by a similar 

procedure as described above. However, OCD/L.OP was calculated using the measured bulk 

enantiomer concentrations and eq 7. New sets of CD and CL were simulated using sD, st and 

the normal distribution. 

Criteria for choice of best model. To select the best model, lower (low) models were 

compared to an extended (ext) model with the use of Mests on estimated parameters and F-

statistics to test the lack of fit [47]. The <-test confidence intervals of the estimated parameters 
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were calculated using eq 17. The variance of the lack of fit and the variance of the extended 

model were compared as follows: 

(*SSlow-*sO/(v10w-veJ 
/ = (-) (20) 

If/was smaller than F low Vext ( l - a ) , the lower model was adequate and the additional 

term was not statistically significant, where 1-a is the confidence level. For nonlinear models 

the statistical analysis is at best only an approximate, since / and bpred I Sb do not have an 

exact F- and ^-distribution, respectively [47]. 

Results and Discussion 

Single component isotherm models. Single component complexation of D- and L-Phe by 

enantioselective micelles have been measured (figure 2). The measurements indicate a higher 

affinity of the micelles for D-Phe than for L-Phe. The bound enantiomer concentrations q are 

calculated by eqs 5 and 6 and approach the CLG concentration (0.3 mM) at high enantiomer 

concentrations. The measured permeate concentrations appear to have a heterogeneous error 

variance (figure 3). Therefore, a weighted least-squares method is used to minimize the 

residual sum of squares (RSS), since information availability for parameter estimation 

decreases at larger variances [41]. For D-Phe: 

RSS = Z 
( C D -CD.pred ) 

2 ~\ 

2 
(-) (21) 

where s2o and s\ are the estimated variances of the measured D-Phe and L-Phe 

concentrations, respectively. Estimation of the Langmuir constants by fitting the isotherms of 

model 1 on the measurements, confirm the expectations (figure 2). The saturation constants 

are 0.30 ± 0.013 and 0.38 ± 0.078 and the Langmuir affinity constants are 28 ± 0.067 and 3.7 

± 1.5 mM"1 for D- and L-Phe, respectively (table 3). The 95% confidence intervals are 

calculated using the variance-covariance matrix and eq 17. The affinity constants suggest an 

intrinsic enantioselectivity of 7.7 ± 3.1 (table 4). Although, it seems that the two saturation 



22 chapter 2 

constants are different, a Mest analysis has shown that the overlap is just over 5%. This is in 

agreement with our expectations that the number of attainable sites is equal for both 

enantiomers. 

QD ( m M ) qL (mM) 

0.3r 

0.2 

0.1 

n 

• 
\ 

fM 

• 

M^+ 

i 

— * ~ ~ ~ 
m 

m 

i 

1 

1 

0.6 0.8 
cD (mM) 

0.2 0.4 0.6 0.8 
cL (mM) 

Figure 2. Single component complexation isotherm of D-Phe (•, left) and L-Phe (•, right). The 
single component data have been used to separately fit the isotherms of model 1 (—). 

Nonselective complexation and membrane rejection of unbound enantiomers have been 

investigated, since these effects increase the apparent affinity and can therefore influence the 

intrinsic enantioselectivity. Model 9, which adds nonselective complexation to model 1, is 

fitted on the single component data. In addition, the same is done with models 1R and 9R, 

where membrane rejection is assumed (eq 11). The four models describing single component 

complexation of D- and L-Phe will be discussed separately. 

Firstly, D-Phe complexation is discussed. In this case, model 9R is the extended model (table 

3). Of the estimated parameters of the extended model only qs and Ku are significant, whereas 

membrane rejection and nonselective complexation can be neglected. It has to be noted that 

the nonselective Langmuir saturation constant Ŝjns of model 9 is nearly zero but significantly 

negative. However, a negative binding saturation concentration is not realistic. The 95% 

confidence interval of R in model 1R demonstrates that membrane rejection does not make it 

a better model than model 1. In addition, testing the lack of fit shows that all lower models 

are just as good as the extended model (f< F). 
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References for tables 3, 4 and 5: (a) D-Phe extended model, w L-Phe extended model, (c) 

.Fj-iow-vext (0.95), <d) using SKD, SKL and the Monte-Carlo method, (e) using eq 19, (f) D,L-Phe 

extended model. 

s(-) 
0.04 r 

0.02 • • 

• • 
• 

_lL 
• • • - • • • • * ' 

* § • I 
0 0.25 0.50 0.75 1.00 

c(mM) 

Figure 3. Calculated standard deviation (s) of all measured D-Phe (•) and L-Phe (•) concentrations 
as a function of the measured permeate concentration (c). 

To support the irrelevance of a negative value of qs,m, nonselective complexation of Phe by 

micelles has been studied in presence Cu11. Since Cu11 ions are capable of binding to the 

hydrophilic head groups of NNP10 [29], it can be hypothesized that Cu11: Phe accumulates in 

the hydrophilic shell of the micelles. Figure 4 shows the data and the fit of model 8 on these 

data (qs,m
= 0.16 ± 0.069 mM, Kns = 1.6 ± 3.4 mM"1). From these data it can be concluded that 

nonselective complexation is significant, which can be attributed to a limited availability of 

Cu11 ions. Hence, the estimated negative gs>ns of model 9 is irrelevant. The value of qs 

estimated by fitting model 1 equals the CLG and Cun concentration. Hence, all Cu11 ions form 

chelates with CLG and Phe. Therefore, it can be assumed that the presence of CLG 

eliminates the nonselective complexation. 
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qD + qL (mM) 
0.15 

25 

0.10 

0.05-

1.5 
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Figure 4. Nonselective enantiomer complexation data (•) in presence of Cu ions and absence of 
CLG molecules. The data have been used to fit model 8 (—). 

Secondly, when the single component models are fitted on the L-Phe data, models 9 and 9R 

turn out to be irrelevant, since both Langmuir saturation constants qs and q%os are equal to 

zero. Therefore, model 1R is chosen as the extended model. The membrane rejection 

parameter in this model equals zero, thus model 1 is just as adequate as model 1R. 

Nonetheless, lack of fit testing shows a significant difference between both models. This is 

probably caused by the fact that these models are nonlinear. For linear models these tests 

would never lead to contrary conclusions. 

Statistics and independent nonselective complexation experiments point out that model 1 can 

be applied to describe single component complexation of both D- and L-enantiomers by 

enantioselective micelles (figure 2). 

Multicomponent complexation isotherms of D,L-Phe. As a consequence of the third and 

fourth assumption of the Langmuir isotherm, the affinity constants of single component 

isotherms can be used for multicomponent isotherms. Therefore, the multicomponent 
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isotherms have been measured to check these assumptions (figures 5 and 6). Again, the 

measurements indicate a higher affinity of the micelles for D-Phe than for L-Phe. At the same 

total enantiomer concentration, the micelles have bound more D-Phe than L-Phe. A similar 

weighted least-squares method as eq 21 has been used to minimize RSS: 

RSS = % 
(cD - cD s P r e d )

2 (cL - c L j ) r e d ) 2 ~\ 

•*D Sh 

(-) (22) 

The multicomponent models 2, 2R, 10 and 10R have been fitted on all single and 

multicomponent complexation measurements. To complete the comparison, nonselective 

complexation is taken into account again, although it has been shown that this effect is 

insignificant (table 5). Moreover, the 95% confidence intervals of the estimated parameters 

have been calculated using the variance-covariance matrix and eq 17. 

0.3 
% (m M ) 

0.1 f 

0 

0.3 

' OmM 

0.40 mM 
_i 1 

0.075 mM 
i i 

0.60 mM 
_i i 

0.15 mM 
_i i 

0.5 

0.80 mM 

1 0.5 1 

cD (mM) 

Figure 5. Multicomponent D-Phe complexation isotherms at different cL,tot given in each figure. The 
data (•) have been used to fit model 2 (—). 
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^ 0.075 mM 
j i 

0.60 mM 0.80 mM 

0 0.5 1 0 0.5 1 0 0.5 1 

1.0 mM 

cL (mM) 

Figure 6. Multicomponent L-Phe complexation isotherms at different co.tot given in each figure. The 
data (•) have been used to fit model 2 (—). 

The estimated membrane rejection of model 2R and the extended model 10R are significantly 

smaller than zero. A significant rejection is also demonstrated by the lack of fit of model 2 

and 10. Nevertheless, a negative R is not expected with our membrane system at these low 

concentrations and pressures. The confidence intervals of ^Sjns and Km include zero when 

fitting model 10 and the extended model. In addition, the lack of fit of model 10 shows that 

nonselective complexation can be neglected. 

To test whether membrane rejection has occurred, a set of independent experiments has been 

performed in an Amicon cell with a continuous feed. Accordingly, eq 13 has been fitted on 

the measured permeate concentrations (figure 7). In presence of surfactant the membrane 

rejection of Phe (R) equals 0.078 ± 0.0064 (-). Hence, negative membrane rejection constants 

are irrelevant in our system. 

Since nonselective complexation is negligible and the Langmuir saturation concentrations of 

the single and multicomponent complexation isotherms approach the selector and Cu11 

concentrations (0.3 mM), it can be concluded that over 93% of CLG and Cu11 ions participate 

in enantioselective enantiomer complexation. This supports the assumption that the CLG: 

Cu" complex can be seen as a localized complexation site. The formation of Cu(Phe)2 in the 
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aqueous phase can probably explain the fact that not all Cu11 ions participate in the 

enantioselective complexation by CLG. 

0.15r 
CQ+C|_(mM) 

0.14 : 

0 .13-

0 0.25 0.50 0.75 1.0 

e(-) 
Figure 7. Membrane rejection (R) estimation of Phe in an Amicon cell with a continuous feed. The 

measured permeate concentrations (•) have been used to fit eq 13 (—). 

Parity-plots have been made by plotting the measured permeate concentrations against the 

corresponding predicted concentrations using model 2 and the corresponding parameters of 

table 5 (figure 8). From these figures it can be concluded that a straightforward 

multicomponent Langmuir isotherm is capable of predicting the bulk enantiomer 

concentrations. Only at extremely low L-enantiomer concentrations (CL < 0.035 mM) 

predictions are underestimated. However, these low L-Phe concentrations can be regarded 

not to be part of the relevant concentrations. Comparing the single and multicomponent 

models, it is remarkable that KQ is the same in both cases and KL is significantly higher in the 

multicomponent case. Apparently, some neighbour-neighbour interactions occur in the 

system. Taking statistics and the parity-plots into consideration the multicomponent 
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Langmuir model 2 is able to describe the multicomponent complexation data (figures 5 

and 6). 
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Figure 8. Parity-plots of all measurements (cexP) and predictions Ov-d) for D-Phe (a, left) and L-Phe 
(b, right). At extremely low L-Phe concentrations predictions are underestimated (see 
insert with logarithmic scale). 

Intrinsic and operational enantioselectivity. Based on the single component model 1 and 

eq 4, a substantial intrinsic enantioselectivity of the enantioselective micelles for D-Phe over 

L-Phe is calculated, 5.5 < a,D/L,int = 7.7 < 13 (table 4). The asymmetry of the confidence 

interval is caused by the nonlinearity of eq 4 and a value of CKL greater than 0.15. 

Subsequently, the use of the Monte-Carlo method is compulsory. However, by fitting the 

multicomponent model 2 the calculated enantioselectivity equals 1.3 < ciD/L,int = 1.4 < 1.5. In 

order to study the difference in oiD/L,int based on the single and multicomponent models, the 

operational enantioselectivity (CID/L.OP) is calculated for each ultrafiltration experiment using 

eq 7 (figure 9). The confidence intervals of aD/L,op are calculated using the Monte Carlo 

method. For simplicity the error bars are replaced by a grey rectangle at higher enantiomer 

concentrations. At cn.tot + CL,tot > 0.5 mM the operational enantioselectivities equal the 

intrinsic enantioselectivity as predicted by model 2. However, the measured operational 

enantioselectivity increase significantly to 4.5 at decreasing CD.tot + CL,tot, which cannot be 

predicted by multicomponent Langmuir isotherms. It appears that ao/L,oP will even increase to 
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7.7, which equals oiD/L,int based on single component isotherms. Contrary to the operational 

enantioselectivity, the complexation of D-Phe and L-Phe are well fitted by model 2 using 

concentration independent K values, which implies a constant enantioselectivity. Deviations 

of predicted bulk L-Phe concentrations (CL < 0.035 mM) from the measured ones are 

responsible for the increase in operational enantioselectivity at decreasing CD.tot + CL.tot- These 

minor deviations have been negligible when fitting the isotherm models. Based on the 

intrinsic and operational enantioselectivities it is concluded that an enantioselectivity of 1.4 

should be used to develop an enantiomer separation process at pH 11. 
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Figure 9. Operational enantioselectivities for all multicomponent UF experiments (•). The 
confidence intervals of the data indicated by an arrow include zero. 
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Concluding Remarks 

D,L-Phe enantiomers can be separated using a separation process based on ultrafiltration of 

nonionic enantioselective micelles containing cholesteryl-L-glutamate. Operational 

enantioselectivities of 1.4 to 4.5 have been measured. Straightforward multicomponent 

Langmuir isotherms can be used to describe Phe enantiomer complexation by 

enantioselective micelles, where ^> = 28 mM"1 and K^ = 20 mM"1. The estimated Langmuir 

saturation concentration qs is 0.28 mM and equals 93% of CLG and Cu11 ion concentrations 

and guarantees a high efficiency of these molecules. By two independent routes it is shown 

that extension of the complexation model by membrane rejection and/or nonselective 

complexation of enantiomers will not lead to a better model. Statistical analysis of the 

investigated models results in the classical Langmuir isotherms. Secondly, independent 

experiments show that both effects can be neglected if compared to enantioselective 

complexation. 

In order to separate a racemic mixture for 99+% a multistage separation process will be 

required, since the differences between D- and L-Phe complexation are relatively subtle. The 

multicomponent isotherm model is a key element in the development of this multistage 

system. Preliminary calculations have shown that 60 stages are sufficient to reach a 99+% 

separation. In addition, an increase in enantiomer and selector concentration is still needed to 

obtain a cost effective separation system. 
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3 
Summary 

COMPLEXATION AND REGENERATION 

Many enantiomer separation systems are studied to meet the increasing demand for 
enantiopure compounds. One way to obtain pure enantiomers is the application of 
enantioselective micelles in ultrafiltration systems. We have studied the separation of 
phenylalanine enantiomers by ultrafiltration of cholesteryl-L-glutamate (CLG) anchored in 
nonionic micelles. Cu11 ions have been used to form 1:1:1 chelate complexes between CLG 
and a Phe enantiomer, preferably with the D-enantiomer. Since the net charges of 
enantiomers and CLG are pH dependent, it is expected that the complexation and 
enantioselectiviry are a function of the pH as well. Consequently, it is foreseen that pH will 
be an important factor in the design of a cascaded separation process that yields 99+% 
enantiopure products. This chapter aims at the description of the complexation equilibria at 
various pHs. 

Batch and continuous experiments at pH 7, 9 and 11 have shown that the competitive 
complexation of enantiomers can be described by multicomponent Langmuir isotherms. The 
enantioselectivity of CLG for D-Phe increases upon a decreasing pH, 1.4, 1.7 and 1.9 for pH 
11,9 and 7, respectively. Since at the reduced pHs the electrostatic interactions diminishes, it 
is hypothesized that the weak enantioselective interactions will be more pronounced. 
Accordingly, the saturation concentration and the affinity constants decrease upon decreasing 
pH, finally resulting in no complexation at pH 6. 

To design an economically attractive separation process, regeneration of D-Phe saturated 
micelles leaving the multistage system is inevitable. Regeneration, i.e. recovery of 
enantioselective micelles for reuse, is possible at pH < 4. To keep the salt production to a 
minimum, the shift in pH between the separation and the regeneration process must be 
minimized. Therefore, a separation process at pH 7 seems the most attractive. 

This chapter has been submitted for publication as P.E.M. Overdevest, T.J.M. de Bruin, E.J.R. 
Sudholter, K. van 't Riet, J.T.F. Keurentjes and A. van der Padt, 'Separation of racemic mixtures by 
ultrafiltration of enantioselective micelles I. Effect of pH on complexation and regeneration' 

35 
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Introduction 

Enantiopure compounds are essential constituents of pharmaceuticals, crop protection agents 

and food. The fact that in various countries the inactive enantiomer is legally seen as an 

impurity is another reason for a greatly increased demand for pure enantiomers over the years 

[7]. This chapter emphasizes a route for the separation of racemic mixtures by filtration of 

enantioselective micelles using ultrafiltration membranes. 

The separation concept is based on Ligand-Modified Micelle-Enhanced UltraFiltration (LM-

MEUF) [2]. Enantioselective micelles, aggregates of chiral selector molecules and nonionic 

surfactants, have the ability to discriminate between D- and L-enantiomers [5]. The chiral 

selector used in our study, cholesteryl-L-glutamate (CLG), prefers the formation of a chelate 

complex with a Cu11 ion and a D-Phe enantiomer over the formation of a chelate complex 

with a Cu11 ion and a L-Phe enantiomer [4]. The pores of the ultrafiltration membrane are 

small enough to reject the micelles and are large enough to allow permeation of unbound 

enantiomers. Therefore, after mixing enantioselective micelles with a racemic mixture, 

ultrafiltration results in a D-Phe enriched retentate and an L-Phe enriched permeate. 

At pH 11 we have measured an enantioselectivity of 1.4 for this system [4]. This 

enantioselectivity implies that a multistage process will be needed to obtain products with a 

99+% enantiopurity (figure 1). The effect of the pH on the performance of the 

enantioselective micelles is essential to minimize the number of stages necessary for 99+% 

separation. At pH 11 both the selector and the enantiomers are negatively charged and form a 

neutral chelate complex by Cu11 ion binding [5]. Since the charge of selectors and 

enantiomers depends on the pH (p/cLG « p/phe = 5.5), it is hypothesized that the chelate 

complex formation and enantioselectivity will depend on pH as well [6,7]. Brookes and Pettit 

have measured a maximum enantioselectivity at pH 6 for chelate complexes containing a Cu11 

ion, a L-amino acid, and a D- or a L-histidine enantiomer [J]. 

The high affinity of CLG for D-Phe at pH 11 (KD = 28 mM1) [4] suggests that 

decomplexation will result in highly diluted solutions and consequently in a product loss. It is 

expected that a decrease in pH can be used to regenerate the saturated micelles that leave the 

multistage separation process. To reduce salt built-up after multiple separation/regeneration 

cycles, the associated pH shift must be minimized. Additionally, it is desirable to run the 

separation process under mild conditions, i.e. neutral pH and room temperature. This chapter 
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aims at the description of complexation and decomplexation at various pH values, which will 

be used for the development of a separation system under milder conditions than at pH 11. 

99.9 % D; 0.1 % L 

water 

50 % D; 50 % L 

1 
A m 

/ 

<— n 
/ 

micelles 

0.1% D; 99.9% L 

Figure 1. A multistage ultrafiltration system for the separation of enantiomers. 

Multicomponent Langmuir complexation isotherms 

In our previous work [4], it is concluded that multicomponent Langmuir isotherms (eq 1) can 

describe the unbound and bound enantiomer concentrations (c and q, respectively): 

(mM) (1) 
I+A : D C D +KLCL 

where e represents the D- or the L-enantiomer and qs is the saturation complexation 

concentration (mM). The ratio of the Langmuir affinity constants, Ko and^L (mM-1), is equal 

to the intrinsic enantioselectivity, aD/L,int- Consequently, an enantioselectivity larger than one 

indicates a complexation preference for the D enantiomer. 

Materials and Methods 

Materials. The nonionic surfactant, nonyl-phenyl polyoxyethylene [E10] ether (NNP10), was 

a gift by Servo Delden b.v. (Delden, The Netherlands). Since the surfactant was most 

probably a mixture of different NNPs, an average molecular weight of 644 g/mol was 

assumed. Nonionic micelles were used to prevent unfavorable nonselective charge-charge 

interactions between enantiomers by micelles. The chiral selector, cholesteryl-L-glutamate 

(CLG), was synthesized by the Laboratory of Organic Chemistry [8] by esterification of L-

glutamate and P-cholesterol. To minimize the loss of chiral selector by permeation, it 
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contained a large hydrofobic anchor (cholesterol) to make it water insoluble. Therefore, it 

was expected that the cholesterol group was completely absorbed by the hydrophobic core of 

the nonionic micelles. Throughout this study double distilled water was used. All other 

components were obtained from Merck (Darmstadt, Germany) and were used without further 

purification. 

Preparation of micellar solutions. The chiral selector was dispersed in the liquid surfactant, 

followed by the addition of water (5% of final volume) to yield a highly concentrated 

surfactant solution. This strongly enhanced the solubilization process of CLG in the nonionic 

micelles. After 24 hours equilibration, water and stock solutions of Phe, CuCi2 and KC1 were 

added. The final solutions contained 7.8 mM NNP10, 0.3 mM CLG, 0.3 mM CuCl2, and 0.1 

M KC1, respectively. Throughout the experiments different total enantiomer concentrations 
cetot w e r e u s ed (0-01 rnM - 1.25 mM). After the pH was set using concentrated HC1 and 

KOH solutions, the solutions were equilibrated for another 24 hours. 

Three micelle-enhanced ultrafiltration systems. The membranes used in the ultrafiltration 

systems were regenerated cellulose ultrafiltration membranes with a molecular weight cut off 

of 3 kDa (YM3, Millipore) and hollow fiber modules (Centrysystem 300 HG, Secon, 

Germany) with a molecular weight cut off of 10 kDa. The membrane rejection of NNP10 

micelles was high for both membranes (99+%). Since membrane rejection of unbound 

enantiomers can be neglected [4], it can be assumed that the permeate concentrations are 

equal to the bulk enantiomer concentrations in the retentate. Furthermore, since nonselective 

complexation by micelles can be neglected [4], the bound enantiomer concentration can be 

calculated by simple mass balances: qe = ceM - ce. Measurement of the permeate 

concentrations ce was performed by HPLC as described before [4\. Three types of 

ultrafiltration systems were used: 

Dead-end ultrafiltration system. Equilibrium experiments were conducted in a stirred 

cell (8400 series, Amicon) (figure 2). During these dead-end ultrafiltration experiments the 

volume decreased. Accordingly, the bound and the unbound selector concentrations increased 

proportionally. If mentioned, the bound concentrations qe will refer to the concentrations at 

the start of the ultrafiltration. Since rejection of unbound enantiomers is negligible [4], it was 

expected that the equilibrium would not shift. Before ultrafiltration, a micellar solution was 

placed in the cell and the experiment started by applying 3 bar N2. Consequently, part of the 
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bulk liquid (7 mL) was forced to permeate through the membrane. Only the last three 1 mL 

samples were analyzed. 

p (3 bar N2) 

bound enantiomer 
micelle 
chiral selector 

unbound enantiomer 

samples 
Figure 2. Enantiomer separation in a dead-end UF system (dashed box) with continuous feed. 

Dead-end ultrafiltration system with continuous feed. A stirred cell with a 

continuous feed was used to perform wash-in and wash-out experiments [9]. This way, 

multiple equilibrium data points of enantiomer complexation by enantioselective micelles 

could be measured in a single experimental run [10] (figure 2). This set-up resembled a single 

stage chromatography column consisting of 1 theoretical transfer unit only, however, 

contrary to chromatography, a step function input was used instead of a pulse. The 

ultrafiltration experiment started by applying 3 bar N2 at both the reservoir and the stirred 

cell. Immediately after this, the valve was closed resulting in equal feed and permeate flows, 

OF = Op (= 2.8 • 10"5 L/s). Consequently, the cell volume remained constant. Since the 

residence time t (= VI OF ) was 2 hours and the mixing time was in the order of seconds, it 

could be assumed that the stirred cell was ideally mixed. Throughout this study we used a 

dimensionless time 0 (= 11 x). The samples were collected in a fraction collector and analyzed 

by HPLC. 
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Cross-flow ultrafiltration system. Regeneration of the micelles was studied at various 

pHs by measurement of the unbound enantiomer concentration in time using a cross-flow 

ultrafiltration system. The micellar solution was pumped (Watson Marlow, 505S) through a 

hollow fiber module, where the transmembrane pressure was set at 1.5 bar. The sample 

volume was kept to a minimum (0.5 mL), to maintain a constant selector concentration. The 

(de)complexation was followed by sampling the permeate every 0.25 hours. 

Influence of pH on complexation. In order to interpret the influence of the pH on the 

complexation of D- and L-Phe by the enantioselective micelles, the performance of the 

micellar system was studied at pH 5 - 12. The specific optical rotation [a]n293 of the chiral 

selector is -34° at 10.5 g/L chloroform (3% trifluoracetic acid) [8]. A series of eight 50 mL 

micellar solutions were prepared, in which the racemic mixture concentrations were 0.15 mM 

(ce,m = 0.075 mM). These equilibrium experiments were performed in a dead-end UF system 

(figure 2). 

Complexation isotherms. Since the complexation model is known from the experiments at 

pH 11 [4], it could be expected that we could make use of experimental design. A D-optimal 

design is one that maximizes the determinant of Fisher's information matrix XX, where X is 

the design matrix for the linear model y = X(3. Consequently, this procedure leads to the 

minimization of the volume of the confidence ellipsoid of the estimated regression 

parameters p. Since the Langmuir isotherm model is a nonlinear model, the design matrix 

depends on the regression parameters. Hence, in nonlinear cases experimental design is an 

unsuitable tool. However, experiments at high enantiomer concentrations result in a good 

estimate of the saturation concentration qs. Experiments performed at relatively low 

concentrations result in good estimates of the affinity constants. Keep in mind that the slope 

at the origin of the complexation isotherm equals qs • Ke. To measure the complexation 

isotherms at pH 7 and 9, two series of 50 mL micellar solutions were filtrated by a dead-end 

UF system (figure 2), at various racemic mixture concentrations (cCjtot = 0.01 mM - 1.25 

mM). The Langmuir isotherms were fitted on the measured permeate concentrations. 

A newly synthesized batch of chiral selector was used ([OI]D293 = -27°, conditions as before). 

Based on optical rotation measurements we expected the selector to be more enantioselective 

than the one we used in the previously discussed experiments, since the optical rotations of 

cholesteryl-D-glutamate and cholesteryl-DL-glutamate are -38° and -33°, respectively [77]. 
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Langmuir affinity constants. A dead-end ultrafiltration cell with a continuous feed was used 

to obtain better estimates of the affinity constants (figure 2). Three 200 mL micellar solutions 

were prepared as described previously, however, no enantiomers were added. The feed 

solution contained 0.15 mM D,L-Phe (ĉ feed = 0.075 mM) and 0.1 M KC1. Both the micellar 

solution and the feeding solution were set at the same pH (6, 7 or 9). 

Regeneration of enantioselective micelles. The regeneration of saturated micelles was 

studied by measurement of the decomplexation at pH 2, 3, and 4. For this purpose, three 200 

mL micellar solutions were prepared with 0.15 mM D,L-Phe and set at pH 7. After 24 hours 

equilibration the solutions were set at pH 2, 3, and 4, respectively. After another 24 hours the 

solutions were placed in a dead-end ultrafiltration cell with a continuous feed (figure 2). 

Subsequently, the equilibrated micellar solutions were fed with 0.1 M KC1 of the same pH. 

This way, the wash-out of enantiomers could be studied in a single stage, the first step in the 

regeneration process. 

The second step of the regeneration process is to reset the pH of the enantioselective micelles 

by increasing the pH to the value of the separation process, in order to reuse the micelles. 

Four 200 mL micellar solutions were prepared with 0.15 mM D,L-Phe. The solutions were 

set at pH 7 and equilibrated for 24 hours. Afterwards, the solutions were filtrated in a cross-

flow ultrafiltration system. The experiments started by setting the solutions at pH 3. To study 

the decomplexation rate, the first experiment was kept to pH 3. While running the other three 

experiments, the pH was changed to a value of 7 after a regeneration time t of 2, 6, and 10 

hours, respectively, so that the reusability of the enantioselective micelles could be studied. 

Fitting procedure. The models were fitted on the corresponding data points by minimization 

of the Residual Sum of Squares {RSS). The RSS was based on the difference between the 

measured ce and predicted cejPred permeate concentrations: 

RSS = Y,{cD -CD,pred f + £ ( C L -CL,pred f (2) 

where the RSS was minimized by a Levenberg-Marquardt method. Additionally, the fitting 

procedure yielded the Jacobian matrix which was used to calculate the 95% confidence 

intervals of the estimated parameters. A more detailed explanation of the fitting procedure 

and the Monte Carlo simulations used to estimate the parameter confidence intervals are 

given in chapter 2. 
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Results and Discussion 

Influence of pH on complexation. To optimize the selector performance, the complexation 

has been studied at pH 5 up to 12. Figure 3 clearly shows that no complexation takes place at 

low and high pH values. At pH 5 and 6, there is less attraction between CLG, Cu11 and Phe as 

a consequence of a lower net negative charge of both selector and enantiomer. At high pH, 

the high hydroxide ion concentration causes Cu11 ions to precipitate as copperhydroxide, 

making these ions unavailable for the chelate formation between selector and enantiomer. 

The observed trends indicate that the pH interval of interest lies between pH 7 and 11. This 

tendency corresponds with the species distribution calculation by Creagh et al. [12]. 

Consequently, we have continued our studies focussing on the complexation isotherms of D-

and L-Phe at pH 7 and 9, since the isotherms at pH 11 have previously been measured [4]. 

00 

75 

50 

25 

0i 

1elceM (%) 

C—i I I -

— B B. \ 

.. I l l l 

6 8 10 12 

PH (-) 

Figure 3. Effect of pH on complexation of D- (•) and L-Phe (•). 

Complexation isotherms. The complexation isotherms of D,L-Phe and enantioselective 

micelles measured by dead-end ultrafiltration experiments at pH 7 and 9 are given in figure 4. 

Analogous to our study at pH 11, these measurements confirm that multicomponent 

Langmuir isotherms can be used to describe the Phe enantiomer complexation by CLG in 

NNP10 micelles. The solid lines in figure 4 show the fitted Langmuir isotherms. The 

deviations between the measured and predicted concentrations appear to be large. However, 

the deviation in the fitted permeate concentrations is only minor and approaches the 
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measurement error. This is illustrated by the dashed line in figure 4 given by qe,pred = ce,tot -

ce>pred (mM). The lack of fit is given by ce - ce?pred which is equal to the minor distance 

between ce and the intersection of the dashed line and the Langmuir isotherm. Hence, a small 

error in the measured permeate concentration results in a much larger error in the calculated 

bound concentration. Of course one could argue whether nonselective complexation could 

explain the residual part of the deviation. However, independent experiments at pH 7 and 9 

have shown that nonselective complexation is less than 3% of the selective complexation and 

could therefore be neglected. 

qe (mM) 
0.15 r 

0.10 -

0.05 

qe (mM) 
0.15 r 

0.10 

0.05 

J _ J. 

0 0.4 0.8 1.2 

ce (mM) 

Figure 4. Complexation isotherms at pH 7 (left) and 9 (right), where e represents D- (•) and 
L-Phe (•). 

The estimated Langmuir constants ^s (mM), Kn (mM-1) and K^ (mM"1) using eq 1 are 

summarized in table 1, the Langmuir parameters at pH 11 have been added from chapter 2. 

Case 1 represents the estimation of ^s, KQ and Ki, at pH 7, 9 and 11, respectively. It shows 

that the Langmuir saturation concentration qs increases with pH. Apparently, at pH 7 a large 

part of the selector molecules are shielded from Cu11 complexation due to a deeper location in 

the micelle caused by a lower net charge of CLG than at pH 11. 

Since the negative charges of the enantiomers and the selector molecules increase with an 

increasing pH between 7 and 11, an increase in the affinity constants could be expected. The 

confidence intervals of the estimated affinity constants at pH 7 and 9 are large, due to the low 

number of measurements. As a result, the intrinsic enantioselectivity aD/L,int calculated as K-o 

over KL has such a large confidence interval that no conclusions can be drawn. 

Notwithstanding, it is expected that the enantioselectivity is significantly larger than 1, since 

qn/qL is larger than 1 for all ce (figure 4). At pH 11, a significant enantioselectivity could be 
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calculated from the Langmuir affinity constants, 1.4 ± 0.081, since many more measurements 

(218) have been done. 

Table 1. Langmuir coefficients and aD/L,int estimated from equilibrium experiments at pH 7, 9 and 
11, where aD/L,int is calculated (case 1) or estimated (case 2 and 3). 

Case 

1 

2 

3 

PH 

7 

9 

11 

7 

9 

7 

9 

?.(mM) 

0.17 ±0.019 

0.19 ±0.012 

0.28 ± 0.0039 

0.17 ±0.019 

0.19 ±0.012 

0.17 ±0.019 

0.19 ±0.012 

KD (mM"1) 

24 ±17 

63 ±49 

28 ±1.3 

24 ±17 

63 ±49 

Kh (mM'1) 

13 ±9.0 

37 ±28 

20 ± 0.76 

13 ±9.0 

37 ±28 

aD/L,int (") 

1.9±1.9(fl) 

1.7±1.9(a) 

1.4 ± 0.081(a) 

1.9 ±0.40 

1.7 ±0.21 

1.9 ±0.40 

1.7 ±0.21 
(a) 'aD/Lint= a™M (CSA^D)2 + (sKJKLf)

V2, where s is the standard deviation [4]. 

To circumvent the large confidence intervals of otD/L,int in case 1, we have substituted Kn by 

ctD/L,int ^L in eq 1 in order to estimate aD/L,int, ^L and ^s (case 2). Additionally, we have 

estimated qs, KD and OIDILM DY substitution of KL by Ku/ao^int in eq 1 (case 3). As expected, 

the estimated values of the parameters are the same in all cases, since the minimum in RSS is 

independent of these substitutions. Contrary to the large confidence intervals of the affinity 

constants, the enantioselectivities deviate significantly from unity. These measurements have 

shown that the enantioselectivity decreases upon increasing pH. Since the number of charge 

interactions increases upon increasing pH, the nonselective electrostatic interactions become 

more and more pronounced, causing the enantioselectivity to decrease. Optimization must 

prove if at a lower pH the lower saturation concentration is compensated by the higher 

enantioselectivity. 

Langmuir affinity constants. To estimate the Langmuir affinity constants accurately (i.e. 

smaller estimated standard deviation of the estimated parameters) we have chosen a different 

experimental approach, dead-end ultrafiltration with a continuous feed. A racemic mixture of 

phenylalanine is continuously fed to a micellar solution in a dead-end UF system. Figure 5 

shows so-called break-through curves of D- and L-Phe at pH 6, 7 and 9, respectively, which 
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are the permeate concentrations of both enantiomers in time. The dashed lines represent the 

concentrations in case that no complexation has occured: cjcejeed = 1 - e-9. Similar to the 

batch experiments (figure 3), these measurements easily show that only little complexation 

has taken place at pH 6 and considerably more at pH 7 and 9. 

A mass balance over the micellar solution assuming instantaneous Langmuir complexation 

leads to unsatisfactory fits (not shown). Therefore, we have assumed that the enantiomer 

complexation is limited by a complexation reaction rate. For this, the model is extended with 

a Linear Driving Force model (LDF model), which describes the complexation rate as the 

product of a driving force ce - ce>&K (mM), and a reaction rate constant ke (s"
1) [13,14]: 

Ac. 

d6 
~-Ce,feed Ce Tke \Ce -C*,eq ) [mM] (3) 

where ce>eq (mM) represents the coexisting unbound concentration in equilibrium with the 

actual bound enantiomer concentration, 0 is the dimensionless time, and x (s) is the residence 

time of the aqueous bulk in the stirred cell. The equilibrium concentration ce,eai is calculated 

by the Langmuir isotherms. This chapter focuses on the complexation isotherms, the rate 

constants will be discussed in chapter 4. 

ce ' Ce,feed (") 
1.0 r 

' J&P 
'^Ef ^ ^ r, , pH7 

i 

2 0 1 2 3 0 1 2 3 
e (-) e (-) e (-) 

Figure 5. Break-through curves of D- (•) and L-Phe (•) at pH 6, 7 and 9 (from left to right). 

The LDF model has been fitted on the measured break-through curves by minimizing the 

difference between the measured and predicted permeate concentrations (table 2 and solid 

lines in figure 5). To reduce the number of parameters to be estimated, the previously 

estimated qs and aD/L,int values have been used to fit eq 3 on the kinetic data at pH 7 and 9 

(table 1). The estimated values for KL at pH 7, 9 and 11 confirm that the affinity constant 
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increases upon increasing pH: 8.9, 14, and 20 mM"1, respectively. Although, the 

enantioselectivity decreases with increasing pH, the calculated values for Kr> (= aoa-M KL) 

still increase upon increasing pH: 17,24, and 28 mM"1, respectively. 

Table 2. Dead-end ultrafiltration experiments with a continuous feed of D,L-Phe. 

pH j,(mM) an/mm (-) 4 (mNf ' ) ^ (mM- 1 ) ' " 

6 0.037 ±0.022 0.67 ±0.15 20 ±28 13 (-15;+16) 

7 0.17(a) 1.9(a) 8.9 ±1.3 17 (-3.2; + 3.6) 

9 0.19(fl) 1.7(fl) 14 ±2.3 24 (-3.7;+ 4.0) 

11 0.28 (a) 1.4(a) 20(a) 28 (-1.6;+1.7) 
(a) taken from table 1. 

KD is calculated as a^/LM KL, the 95% confidence intervals of KD are calculated by 
Monte Carlo simulations and are given between parentheses [4]. 

Regeneration of enantioselective micelles. To reuse the micelles leaving the separation 

system (stage 1 in figure 1), the bound enantiomers must be dissociated from the micelles. 

We have considered three options: (i) an increase in temperature, (ii) dilution, and (iii) a 

decrease in pH. Since affinity usually decreases with temperature, it could be expected that 

temperature could induce decomplexation. However, ultrafiltration experiments at 

temperatures above the cloud-point of NNP10 (57°C) have shown negligible decomplexation. 

Although not applicable for decomplexation, cloud-point extraction could be considered for 

enantiomer separation instead of using ultrafiltration membranes [15,16]. Secondly, 

decomplexation by dilution is not an option either, since the high affinity constant would 

result in highly diluted systems. According to the equilibrium Langmuir model an unbound 

D-Phe concentration of 0.004 mM is required in order to remove 90% of the bound D-Phe 

enantiomers. 

To prevent these highly diluted solutions we have studied the decomplexation of enantiomers 

by the third option: a decrease in pH. At pH 2, 3, and 4, the positive charge induces charge 

repulsion between selector molecules, enantiomers and Cu11. Therefore, ultrafiltration 

experiments have been performed in a dead-end UF system with a continuous water feed of 

the same pH (figure 2). 
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Figure 6. Wash-out curves of D-Phe at pH 2 (•), 3 (•), and 4 (•). 

Figure 6 shows that at pH 2 and 3 all enantiomers are dissociated from the micelles, since the 

initial permeate concentration, cD, is equal to the total enantiomer concentration, cn.tot (0.15 

mM). After 24 hours at pH 4, only 70% of the bound D-Phe molecules have been dissociated. 

At pH 3, the reusability of the enantioselective micelles has been studied in more detail. 

At pH 3 the complete decomplexation has taken 10 hours (figure 7a). Unfortunately, after 10 

hours at pH 3 the micellar solution has lost 35 % of its complexation capacity (figure 7b). It 

has been expected that the unbound concentrations return to the initial unbound 

concentrations indicated by the horizontal dashed lines when the pH is reset to 7 at t = tKg. 

Therefore, we have studied shorter regeneration times at pH 3. For tKg is 6 hours the 

reusability is better than for tKg is 10 hours (figure 7c). Still, the micelles have lost 20 % of 

their complexation capacity. After two hours at pH 3 only 60% of the bound enantiomers 

have been dissociated (figure 7d). However, the micelles retain nearly all their complexation 

capacity. It is concluded that hydrolysis of CLG could not have been responsible for the 

decreased effectiveness, since glutamic acid could not be found in the permeate. These 

regeneration experiments have shown that only partial dissociation should be allowed at pH 3 

to keep the enantioselective micelles effective. Moreover, pH 4 could be further optimized in 

a multistage system to minimize the dilution. 
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Figure 7. Decomplexation at pH 3 (a) and subsequent complexation at pH 7 at different regeneration 
times, ?reg = 10, 6, and 2 hours (b, c, and d, respectively), see vertical dashed lines. 

Conclusions 

The separation of Phe enantiomers by cholesteryl-L-glutamate (CLG) anchored in micelles of 

the nonionic surfactant NNP10 is strongly effected by pH. The complexation of D,L-Phe by 

these enantioselective micelles can be described by straightforward multicomponent 

Langmuir isotherms. For pH 7, 9 and 11 the Langmuir constants have been estimated by 

fitting the isotherms on ultrafiltration data. The intrinsic enantioselectivity ciD/L,int decreases 

with increasing pH: 1.9, 1.7, and 1.4 for pH 7, 9, and 11, respectively. An increase in pH 

results in more charge interactions, which are unfavorable for enantioselective complexation. 

Evidently, as a result of these charge interactions, the Langmuir affinity constants increase 

with pH, KL is 8.9, 14, and 20 mM"1 for pH 7, 9, and 11, respectively. Moreover, an 



complexation and regeneration 49 

increasing pH results in an increasing maximum binding concentration, 57, 63 and 93% of 

the CLG concentration, respectively. 

Decomplexation of enantiomers is mandatory to reuse the enantioselective micelles and to 

obtain the bound enantiomer, in our study D-Phe. However, regeneration of saturated 

micelles at pH > 7 results in highly diluted solutions, due to the high Langmuir affinity 

constants. A decrease in pH results in charge repulsion between CLG, Cu11, and Phe, and 

consequently in decomplexation. Unfortunately, a pH < 3 results in inactivation of CLG. At 

pH 4 only 70% of the bound enantiomers have been dissociated in a single stage. A 

multistage system could be used to complete the decomplexation. 

For aD/L,int = 1.9 a multistage system is still needed for 99+% separation of enantiomers. For 

further optimization, the effect of the pH on the separation performance, the costs of the 

chiral selector and the number of stages should be taken into account. 

Nomenclature 

q, c bound and unbound concentration, respectively [mM] 

tf cpred, ce>Pred estimated bound and unbound concentration, respectively [mM] 

qs saturation concentration [mM] 

K affinity constant [mM"1] 

aD/L,int intrinsic enantioselectivity (= K-Q I Ki) [-] 

[CI]D293 optical rotation at 293 K, using sodium emission spectrum (589 run). [°] 

k reaction rate constant [s"1] 

pi. isoelectric point [-] 

s standard deviation of parameter 

t, x time and residence time, respectively [s] 

<1>P,<X>F permeate and feed flow rate, respectively [L/s] 

V volume [L] 

8 time [-] 

The subscripts D, L, e, F, P, eq, tot and reg refer to the D-enantiomer, the L-enantiomer, the 

D- or the L-enantiomer, the feed, the permeate, the equilibrium state the total concentration 

and regeneration, respectively. 
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4 
Summary 

COMPLEXATION KINETICS 

Application of enantioselective micelles in ultrafiltration systems can be an alternative route 
to meet the increasing demand for enantiopure products. Previously, we have studied the 
separation of D,L-phenylalanine (D,L-Phe) by cholesteryl-L-glutamate anchored in nonionic 
micelles (intrinsic enantioselectivity <XD/L,int= 1.9). A cascaded system is needed to complete 
the separation, since a single stage is insufficient to obtain 99+% optically pure products. It is 
shown that complexation and decomplexation processes are not instantaneous, hence 
elucidation of the complexation kinetics is inevitable to design a multistage system. 

Linear driving force (LDF) models describe both the complexation and decomplexation rates 
of enantiomers. It can be concluded that the complexation rates of D- and L-Phe, (32 ±11)-
10"5 s"1 and (28 ± 14) • 10"5 s"1, respectively, are not limited by enantiomer diffusion in the 
hydrophilic shell of the micelles. Consequently, the formation and rearrangement of the 
chelate complexes must be rate limiting. In addition, decomplexation of both enantiomers is 
even slower, in the order of 10"6 s"1. Fortunately, ultrafiltration experiments have indicated 
that a rapid exchange of bound L-Phe by unbound D-Phe improves the decomplexation of L-
Phe, (360 ± 250) • 10"5 mM"1 s"1. This exchange process can be described by a second order 
LDF model. 

This chapter has been submitted for publication as P.E.M. Overdevest, M.A.I. Schutyser, T.J.M. de 
Bruin, K. van 't Riet, J.T.F. Keurentjes and A. van der Padt, 'Separation of racemic mixtures by 
ultrafiltration of enantioselective micelles II: (de)complexation kinetics' 

57 
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Introduction 

Different biological activities of enantiomers make enantiopure compounds essential 

constituents of pharmaceuticals, crop protection agents and food. Therefore, numerous 

methods are studied to obtain these enantiopure products on a preparative scale [7]. We 

emphasize a route for the separation of racemic mixtures using membranes, potentially 

leading to continuous and preparative separation processes requiring a low energy input. 

Ultrafiltration membranes are used to retain enantioselective micelles from a aqueous bulk 

phase containing the unbound enantiomers, representing a so-called ligand-modified micelle-

enhanced ultrafiltration process [2] (figure 1). The enantioselective micelles are composed of 

a chiral co-surfactant (chiral selector) cholesteryl-L-glutamate, CLG, anchored in micelles of 

the nonionic surfactant nonyl-phenyl polyoxyethylene [E10] ether [3]. For an efficient 

separation process, it is prerequisite that the chiral selector is insoluble in water, since 

solubility in the aqueous bulk phase leads to a loss of selector through the membrane. 

Nonionic micelles are used to prevent nonselective ion-ion interactions between surfactant 

and enantiomers. Since a single stage is insufficient, the separation requires a multistage 

system (cascade) to reach an optical purity of 99+% for the desired enantiomers). 

hydrophilic shell 

enantioselective 
hydrophobic core f micelle 

chiral selector 

D 

viscous flow 

aqueous bulk L ^^P L "* unbound enantiomer 

Figure 1. Enantiomer separation by ultrafiltration of enantioselective micelles containing chiral 
selector molecules. Micelles are rejected by the ultrafiltration (UF) membrane, where 
unbound enantiomers can pass the membrane. D and L represent the two enantiomers. 
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The complexation is based on 1:1:1 chelate complexes of selector, Cu11 and an enantiomer, 

where the heterologous complex (CLG:Cu:D-Phe) is more stable than the homologous 

complex (CLG:Cu:L-Phe) [4]. The complexation equilibria of D,L-Phe by CLG can be 

described by multicomponent Langmuir isotherms at pH 7, 9 and 11, where ao/uint is 1.9,1.7, 

and 1.4, respectively [3,5]. Dead-end ultrafiltration with a continuous feed indicates that Phe 

enantiomer complexation by CLG is not instantaneous [5]. This chapter aims at the 

description of the (de)complexation kinetics of D,L-Phe by the enantioselective micelles. The 

(de)complexation rates put restrictions on the residence times of the solutions in each 

ultrafiltration stage. Long residence times are unfavorable as they lead to larger systems. 

Theory 

Modeling system kinetics. Complexation in a dead-end ultrafiltration system with a 

continuous feed can be described by the following mass balance of the unbound enantiomers 

[6,7]: 

dce dqe 

= c F e -ce (mM) (1) 
d0 d0 

where e accounts for the D- or the L-enantiomer, c and q (mM) are the unbound and bound 

enantiomer concentrations, respectively, CF>e (mM) is the enantiomer feed concentration and 9 

is the dimensionless time and equals the time t (s) over the residence time of the aqueous bulk 

phase in the stirred cell x (s). The volume K(L) remains constant, since the feed and permeate 

flow are equal, 4>F (L S"1) and Op (L s"1), respectively (figure 2). The influence of the micellar 

volume on the unbound enantiomer concentration can be neglected since the micelle 

concentration is only 0.5% w/w. The unbound enantiomer concentration in the cell equals the 

measured enantiomer concentration in the permeate, since membrane rejection of unbound 

enantiomers can be neglected [3]. 
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p (3 bar N2) 

feeding solution 

micellar solution 

UF membrane 

fraction collector 
Figure 2. Experimental set-up of dead-end ultrafiltration with continuous feed. 

To describe the (de)complexation kinetics, we distinguish 3 processes: (i) complexation of 

enantiomers by chiral selectors, (ii) decomplexation of enantiomers and chiral selectors, and 

(iii) exchange of enantiomers. A linear driving force (LDF) model is used to describe these 

processes [8,9]. This simple model is based on a rate constant k (s1), and a driving force 

based on a concentration gradient. 

Complexation kinetics. For the complexation three processes can be distinguished: (i) 

enantiomer diffusion through the hydrophilic shell of the nonionic micelle, (ii) complexation 

of the enantiomer at an empty site, CLG:Cu, to form the chelate complex, CLG:Cu:Phe, and 

(iii) rearrangement of this chelate complex. These processes are lumped in a single 

complexation equation: 
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force>ceq,e CLG:Cu + e-Phe -> CLG:Cu:e-Phe 

where ke,+i (s1) is the complexation rate constant. Keep in mind that also decomplexation 

occurs, as will be given below. The driving force of the complexation reaction is described 

by the difference between the actual unbound concentration in the bulk ce (mM) and the 

equilibrium unbound concentration ceq,c (mM) corresponding to the Langmuir isotherms [3] 

and the coexisting bound concentration qe (mM): 

ceq,e = [mM] (2e) 
Ke (qS - ?D - ?L ) 

where Ke (mM1) is the affinity constant for e-Phe, and qs (mM) is the Langmuir saturation 

concentration. Equation 2e is a generic equation for both enantiomers, e.g. equation 2D 

corresponds with the isotherm for D-Phe. In addition to the mass balance of the unbound 

enantiomers (eq 1), the mass balance of the bound e-Phe enantiomer is: 

dq 
for ce > c, eq,e 

de 
=T ke>+l (ce - c e q > e ) [mM] (3e) 

complexation 

In case both enantiomers have equal complexation rate constants, it can be assumed that 

diffusion is rate limiting, since this is a nonselective process. On the other hand, being 

enantioselective processes, complex formation and rearrangement are assumed to be rate 

limiting if both constants are different. 

Decomplexation kinetics. The decomplexation reaction includes the same three processes as 

the complexation reaction, although in opposite direction: 

k e , - l 

force<ceq,e CLG:Cu + e-Phe <- CLG:Cu:e-Phe 

where keA (s1) is the decomplexation rate constant of e-Phe. The driving force of the 

decomplexation reaction is described by the difference between the actual bound 

concentration in the bulk qe (mM) and the equilibrium bound concentration q^e (mM) 
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corresponding to the Langmuir isotherms [3] and the coexisting unbound concentration, ce 

(mM): 

qeq,e =Kece (qs -qD -qL ) 

The mass balance of bound e-Phe is: 

for Ce < Ceq,e 
dqe 

d0 
= -x £e>_i \qe -qeq,e ) 

decomplexation 

[mM] (4e) 

[mM] (5e) 

The dimensionless ratio of the complexation and decomplexation rate constants, ke<+i I ke.\, is 

not equal to the corresponding affinity constant Ke (mM1), due to the lumped character of the 

reaction rate constants. Note that, ce < c ^ corresponds with qe > q^ for all concentrations. 

Exchange kinetics. Exchange describes an equimolar reaction where a compound is 

transferred from one phase to another under simultaneous transfer of another compound in 

opposite direction [10,11]. Applied to our system this exchange reaction is described as: 

^DL,- l 

D + CLG:Cu:L *~ L + CLG:Cu:D 

^DL,+l 

The rate of this reaction is given by the exchange rate constants £DL,+I (mM1 s"1) and £DL,-I 

(mM"1 s"1). A second order LDF-term is used to account for enantiomer exchange [10], where 

one term represents the driving force of the unbound enantiomers, and the other term 

represents the driving force of the bound enantiomers. If CD > c^p and qL > qeq,L (CD, <7L) 

exchange of bound D-Phe by unbound L-Phe can be described by: 

d ? D 

d8 
= t*DL,+l ( cD -Ceq ,D ) ( ? L - ? e q , L ) [mM] (6) 

exchange(co ,?L ) 

dqi 

d0 
= - 1 : £ D L , + 1 ( C D -Ceq,D ) ( ? L - ?eq ,L ) [mM] (7) 

exchange(cn , ? L ) 
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In case cL > ceq,L and qu > q^u (CL, qv), similar sets of mass balances are used for exchange 

of bound D-Phe by unbound L-Phe, including &DL,-I (mM-1 s"1), and will be referred to as eqs 

8 and 9. The equilibrium concentrations are calculated by eqs 2e and 4e. Obviously, the 

exchange expression is omitted in case the two LDF-terms have opposite signs. 

Materials and Methods 

Materials. The nonionic surfactant, nonyl-phenyl polyoxyethylene [E10] ether (NNP10), 

was a gift by Servo Delden b.v. (Delden, The Netherlands). An average molecular weight of 

644 g/mol was assumed. The chiral selector, cholesteryl-L-glutamate (CLG), was synthesized 

by the Laboratory of Organic Chemistry ([a]D
293 = -27° at 10.5 g/L chloroform, 3% 

trifluoracetic acid) [12]. Double distilled water was used throughout this study. All other 

components were obtained from Merck (Darmstadt, Germany) and were used without further 

purification. The ultrafiltration experiments were performed using a regenerated cellulose 

membrane of 3 kDa MWCO (YM3, Millipore). 

Solution preparation. Batches of 200 mL micellar solution were prepared as follows. The 

selector was dispersed in the liquid surfactant, followed by addition of 6 mL of water to yield 

a highly concentrated solution. The solution was stirred for 20 h, during which the selector 

completely dissolved. Stock solutions of D,L-Phe, CuCU and KC1 were added, so that the 

final concentrations were 7.8 mM NNP10 (0.5% w/w), 0.3 mM CLG, 0.3 mM CuCl2, 0.15 

mM D,L-Phe and 0.1 M KC1. Equimolar concentrations of selector and Cu11 result in the 

optimal performance of this system [4]. Based on the type of experiment the micellar solution 

and the feed solution contained 0.15 mM D-, L-, or D,L-Phe or no enantiomers at all (table 

1). In addition, the feed solution contained 0.1 M KC1 to maintain a constant ionic strength 

during the experiment. The batches and the feed solutions were set at pH 7 and were 

equilibrated for another 20 h. 
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Table 1. The type of experiment is appointed by the initial state of the UF system. 

Type of exp. micellar solution feed solution 

Wash-in 0.15 mM D,L-Phe 

Wash-out 0.15 mM D,L-Phe 

Wash-in/out 0.15 mM of one enantiomer 0.15 mM of other enantiomer 

Continuous ultrafiltration experiments. A stirred cell (Amicon 8400 series, Millipore) with 

a continuous feed was used to perform wash-in, wash-out, and wash-in/out experiments [6,7] 

by ultrafiltration of a micellar solution (figure 2). Both the reservoir and the cell were 

pressurized at 3 bar by N2. Immediately after the system reached 3 bar the pressure valve was 

closed and the experiment started. The feed flow O F was equal to the permeate flow <J>P (2.8 • 

10"5 L/s), so that the volume V remained constant (200 mL). It could be assumed that the 

solution in the cell was ideally mixed, since the residence time, T = 7.2 • 103 s, was much 

longer than the mixing time, which was in the order of seconds. Note that, this system 

resembled a chromatography set-up containing 1 theoretical transfer unit, however, we 

applied a step function input instead of a pulse. 

The permeate was collected in a fraction collector and samples were analyzed by HPLC as 

described before [3], which enabled us to measure the break-through curves of both the D-

and the L-enantiomer. Three experimental procedures were followed to study the 

complexation, the decomplexation and the exchange of enantiomers by the enantioselective 

micelles. These procedures will be referred to as wash-in, wash-out and wash-in/out 

experiments, respectively (table 1). 

Fitting procedure. The measured permeate concentrations CD and CL were used to fit the 

kinetic model (eqs 1 - 9). An algorithm based on the Levenberg-Marquardt method was used 

to minimize the Residual Sum of Squares (RSS): 

RSS = Y,{CD -CD.pred f + £ ( C L -CL,pred f (10) 

where copied and CL,pred are the predicted permeate concentrations of D- and L-Phe, 

respectively, by the Langmuir isotherms [3,5]. Additionally, the algorithm yielded the 

Jacobian matrix which was used to calculate the 95% confidence intervals of the estimated 
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parameters. In order to reduce the number of parameters we fixed the saturation 

concentration qs, the affinity constant for L-Phe Ku and the intrinsic enantioselectivity 

<*D/L,int. These parameters have been estimated before by dead-end ultrafiltration experiments: 

0.17 ± 0.019 mM, 8.9 ± 1.3 mM"1, and 1.9 ± 0.4, respectively [5]. 

Results and Discussion 

To collect the rate constants three types of experiments were done to study the complexation, 

decomplexation, and exchange kinetics of D,L-Phe by the enantioselective micelles. 

Complexation kinetics. Figure 3a shows the break-through curves of D- and L-Phe 

measured during wash-in. The dotted line in this figure represents the permeate concentration 

in case no complexation takes place, ce = c ?,e (1 - e-6). It can clearly be seen that 

enantioselective complexation takes place to the advantage of D-Phe. The measured 

concentrations have been used to fit eqs 1, 2e and 3e (solid lines) by minimizing the 

difference between the measured and predicted permeate concentrations (eq 10). The 

estimated complexation rate constants, &D,+I and &L,+I, are (32 ± 11) • 10"5 s"1 and (28 ± 14) 

•10"5 s"1, respectively (table 2). Although exchange could have occurred, addition of the 

exchange model (eqs 6 and 7) yields the same values for £D,+I and &L,+I (as shown by Mests) 

and an insignificant exchange parameter, £DL,+I is (22 ± 84) • 10"5 mM"1 s"1. Apparently, under 

these conditions the bound L-Phe concentration was so low that exchange could not be 

distinguished from complexation. As we will show later, exchange of bound D-Phe by 

unbound L-Phe (CL, qo) is not expected at all. 

Since the complexation rate constants, &D,+I and £L,+I, are not significantly different, it 

appears that a nonselective process is rate limiting. Since the chiral selector has a relatively 

small hydrophilic head group (L-Glu) as compared to the hydrophilic head group of the 

surfactant (10 ethylene oxide groups), it is hypothesized that equal rate constants could be the 

result of diffusion limitation of Phe through the hydrophilic shell of the micelle. To check 

this hypothesis we have calculated the apparent diffusion constant De>app (m2 s"1) of the 

enantiomers in the hydrophilic shell using the complexation rate constants ku,+i and &L,+I: 



60 chapter 4 

ce (mM) 

v.vro 

0.050 

0.025 

0 

(a) 
,.~ 

_--' 
'**' ^ 

/' _^sf^ 
/' j ^ ^ ^-f 

/ _>^^ ^*% 

/jit£^ 
T 

,,-""* 

W^^ • 

1 

0.5 1.0 1.5 
e(-) 

Figure 3. Break-through curves of D- ( •) and L-Phe ( •) in wash-in (a) and wash-out (b) 
experiments, with fit ( ) and in case no affinity takes place ( ). 

Table 2. Three types of experiments have been performed to study the complexation kinetics. 
Exchange rate constant £DL,-I is left out, since it is zero in all cases. 7-Test analyses show 
that each estimated rate constant is the same for each type of wash experiment, except for 
#L,+I, which could be explained by the experimental conditions. 

type of wash 

experiment 

obtained set 

*D,+I • 105 kDA • 105 ku+l • 105 khA • 105 AIJL.+I • 105 

(S"1) (s"1) (a"') ( 0 (mM-1 • s"1) 

in 32 ±11 28 ± 14 22 ± 84 

out 0.23 ±0.09 0.18 ±0.12 

in/out (cD, qL) 51 ± 23 0.86 ±0.64 360 ±250 

in/out (cL, qu) 0.24 ± 0.07 0.42 ± 0.09 

32 ±11 0.23 ±0.09 28 ± 14 0.18 ±0.12 360 ±250 

where 8 (m) is the diffusion length. The specific area A (m1) of the micelle is calculated as 

3 E / r, where the micellar volume fraction s is 0.005, assuming equal densities of micelles 

and water. The micelle radius r (m) has been obtained by measurement of the micelle 

diffusion constant in the aqueous phase using a light scattering technique (ALV3000 digital 

autocorrelator, X = 488 nm, measured angle is 90°). According to the Stokes-Einstein 

relation, the micellar diffusion constant equals k T I 6 n r\ r [13], where k (J K"1) is the 

Boltzmann constant, T (K) is the temperature and t) (N s m"2) is the viscosity of the bulk 
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phase. The light scattering measurements have resulted in a hydrodynamic micelle radius of 

approximately 10 nm, hence we have assumed a diffusion length of 5 nm. Consequently, 

diffusion constants of 1.3 • 10"18 and 1.1 • 10"18 m2s"' are calculated for D- and L-Phe, 

respectively (eq 11). Even a viscosity correction of 100 for the oily-like polyoxyethylene 

layer can not explain the deviation from diffusion constants of aqueous solutes in water, 

which are in the order of 10"9 m2 s"1 [14]. It is concluded that chelate formation or 

rearrangement of the complex in the micelle must be rate limiting. 

Decomplexation kinetics. Figure 3b shows the wash-out of D,L-Phe. The measured 

permeate concentrations approach the concentrations in case no decomplexation occurs, ce -

CF,e e"
6 (dotted lines). This figure indicates that the decomplexation rate constant is small if 

compared to the inverse of the residence time (7.2 • 103 s). Indeed, fitting eqs 1, 4e and 5e 

results in values of only (0.23 ± 0.09) • 10"5 s"1 and (0.18 ± 0.12) • 10"5 s"1 for £D,-i and K-u 

respectively (solid lines). 

A possible explanation for the slow decomplexation could be that after complexation the 

neutral CLG:Cu:Phe complex rearranges and relocates to the center of the micelle, due to the 

hydrophobiciry of Phe. Consequently, disassociation requires relocation and rearrangement 

of the complex, which are probably the rate limiting factors in this system. Therefore, it can 

be hypothesized that decomplexation of one enantiomer under simultaneous complexation of 

the other enantiomer (exchange) is faster than just decomplexation of the one enantiomer, 

since relocation and rearrangement of the complex can than be partly omitted. 

Exchange kinetics. Wash-in/out experiments have been performed with two different initial 

states: D-Phe enantiomers have been fed to micelles equilibrated with L-Phe (figure 4a: CD, 

<7L) and visa versa (figure 4b: CL, <7D)- Figure 4a clearly shows that L-Phe decomplexation is 

induced by feeding the micellar phase with D-Phe. Fitting the kinetic model (eq 1, 2D, 3D 

4L, 5L, 6 and 7) on these measured concentrations has yielded the D-Phe complexation rate 

constant, the L-Phe decomplexation rate constant, and the exchange rate constant, &DL,+I 

(table 2). The estimated value for the D-Phe complexation rate constant, (51 ± 32) • 10"5 s"1, is 

equal to the corresponding value in the wash-in experiment. The estimated L-Phe 

decomplexation rate constant, (0.86 ± 0.64) • 10"5 s"1, equals the one estimated in the wash­

out experiment. The additional L-Phe decomplexation is described by the exchange rate 

constant £DL,+i of (360 ± 250) • 10"5 mM"1 s"1. 
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Figure 4. Break-through curves of D- (•) and L-Phe (•) in wash-in/out experiments (a: D-Phe in 
feed, b: L-Phe in feed), with fit ( ) and in case no affinity takes place ( ). 

Figure 4b shows that the D-enantiomer decomplexation rate is not significantly higher than 

the one estimated in the wash-out experiment (figure 3b). Indeed, fitting the kinetic model 

(eqs 1, 2L, 3L, 4D, 5D, 8 and 9) has confirmed that £DL,-I is zero. Therefore, we have used 

eqs 1,2L, 3L, 4D and 5D to estimate the D-Phe decomplexation rate constant, kD,-i and the L-

Phe complexation rate constant, ArL,+i, as (0.24 ± 0.07) • 10s s"1 and (0.42 ± 0.09) • 10"5 s"1, 

respectively (table 2). The fact that the D-Phe decomplexation rate constant is the same in 

both this exchange experiment and in the wash-out experiment strengthens the assumption 

that D-Phe decomplexation is independent of the presence of L-Phe. 

Finally, one set of kinetic parameters is obtained to describe all kinetic experiments (table 2). 

For exchange (&DL,+I) we have used data of the wash-in/out experiments, while the other 

parameters originate from wash-in and wash-out experiments (table 1). Figure 5 shows a 

parity plot of all measured and predicted data using eqs 1, 2e, 3e, 4e, 5e, 6 and 7, and the 

obtained parameter set given in table 2. It can be concluded that this model adequately 

describes all the experiments. 
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Figure 5. Parity-plot of all measured (exp) kinetic data against the predicted (pred) concentrations 
based on the LDF-model and the obtained parameter set (table 2). 
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Conclusions 

A model is presented that describes the (de)complexation kinetics of D,L-Phe enantiomers by 

enantioselective micelles, composed of cholesteryl-L-glutamate (CLG) in micelles of the 

nonionic surfactant NNP10. The model based on the Linear Driving Force concept was 

extended by second order enantiomer exchange. These kinetic data are essential to design a 

multistage system. 

Continuous ultrafiltration experiments have shown that the complexation rate constants of D-

and L-Phe are (32 ±11)- 10"5 s"1 and (28 ± 14) • 10"5 s"1, respectively. Since the complexation 

rate constants for the D- and L-enantiomer are equal, it can be concluded that the 

complexation rate is not limited by chiral recognition during chelate formation. Most likely, 

rearrangement and relocation (caused by hydrophobicity of Phe) of the chelate complex is 

rate limiting. Hence, decomplexation should be slow. Indeed, this is the case: &D,-I is (0.23 ± 

0.09) • 10"5 s"1 and £L,-I is (0.18 ± 0.12) • 10"5 s"1. Fortunately, exchange of the enantiomers is 

significantly faster, fcDL,+i is (360 ± 250) • 10"5 mM"1 s"1. 

To ensure an efficient use of the enantioselective micelles, it is expected that each stage 

should be in equilibrium, since the enantioselectivity is not kinetically controlled. Therefore, 

the residence time per stage x should be at least 1.1 - 104 s to reach complexation 

equilibrium, assuming x > 3 / ke^\. 
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Nomenclature 

A specific area of the micelle (=3 sir) (m1) 

ce unbound enantiomer concentration (mM) 
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DejapP apparent diffusion coefficient of enantiomers (m2 s"1) 

Ke affinity constant (mM"1) 

kei±i (de)complexation reaction rate constant (s") 

£DL,±I exchange reaction rate constant (mM"1 s"1) 

qe bound enantiomer concentration (mM) 

qs saturation concentration (mM) 

t time (s) 

V volume (L) 

aD/L,int intrinsic enantioselectivity (= Ko I KL) (-) 

[a]D
293 optical rotation at 293 K, using sodium emission spectrum (589 run). (°) 

8 diffusion length (m) 

e micellar volume fraction (-) 

Op, Op permeate and feed flow rate, respectively (L s"1) 

x residence time per stage (s) 

0 dimensionless time (=t/x) (-) 

The subscripts D, L, e, F, P, eq, and tot refer to the D-enantiomer, the L-enantiomer, the D-

or the L-enantiomer, the feed, the permeate, the equilibrium state and the total concentration, 

respectively. 
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5 
Summary 

MODEL VALIDATION 

The increasing demand for optically pure compounds (enantiomers) stimulates the 
development of new enantiomer separation processes at industrial scale. We study the 
separation of enantiomers by ultrafiltration of enantioselective micelles in a cascaded system, 
since one single stage can only result in 99+% separations of both enantiomers at extremely 
high enantioselectivities of around 104. The previously described complexation model [1] has 
been validated by two set-ups: a cascade of 5 lab scale ultrafiltration units and a bench scale 
system. Thus, this separation concept has proven its suitability for enantiomer separation. In 
addition, the bench scale experiments have demonstrated that the micellar separation system 
can be operated at larger scale using industrial type of membrane modules. 

Model calculations show that the separation is not greatly improved at enantioselectivities (= 
ratio of affinity constants) above 10. Moreover, these calculations have made clear that the 
affinity of the enantioselective micelles for the substrate (enantiomers) plays a crucial role in 
the performance of the separation process. This will be discussed in detail in chapter 6. 

This chapter has been submitted for publication as part of P.E.M. Overdevest, M.H.J. Hoenders, K. 
van 't Riet, J.T.F. Keurentjes and A. van der Padt, 'Enantiomer separation in a cascaded micellar 
ultrafiltration system: enantioselectivity, Langmuir affinity, and productivity'. 

67 



68 chapter 5 

Introduction 

Since the biological activity of enantiomers can be different, the purity of these chiral 

compounds in pharmaceuticals, agrochemicals and food additives is of crucial importance. 

Where one enantiomer has the desired activity, the mirror image of this compound can 

provoke negative side effects. Consequently, the development of new methods for the 

production of these optically pure compounds is stimulated by the industry. 

A new separation technique, based on micelle-enhanced ultrafiltration (MEUF) [2,3], makes 

use of membranes in order to accomplish the separation of racemic mixtures (i.e. an 

equimolar mixture of the two enantiomers). Membrane separations are attractive and cost-

efficient, due to the possibility of continuous operation, a low energy requirement, and ease 

of scale-up. The developed system contains nonionic micelles in which chiral selector 

molecules are anchored [4]. Starting with a racemic mixture, the selector preferentially binds 

one of the two enantiomers. During ultrafiltration, the micelles are retained including the 

bound enantiomers, while unbound enantiomers pass the membrane. 

Equilibrium and kinetic models have been developed to describe the complexation of D,L-

phenylalanine (D,L-Phe) enantiomers by cholesteryl-L-glutamate in nonionic micelles [5,6], 

which is our model system. Design calculations show that extremely high 

enantioselectivities, of around 104, are required to satisfy the separation constraint in one 

single stage. However, above an enantioselectivity of 10, the separation hardly improves (Fig. 

1). This chapter describes a multistage system that results in the separation of both 

enantiomers (Fig. 2). If only one enantiomer is required at high purity, the other enantiomer 

can be re-introduced in the separation system after racemization. Then, the required number 

of stages will be less than in case both enantiomers are wanted. This chapter aims at the 

development of a model describing the separation in a multistage system, using the 

previously fitted complexation model [7]. Cascaded ultrafiltration experiments have been 

conducted at both laboratory and bench scale to validate the separation model. The lab scale 

system has consisted of a series of 5 ultrafiltration (UF) units, the bench scale system of only 

one single UF unit containing an industrial type of membrane module. In the bench scale 

system the feed concentration is controlled to simulate the condition in each UF stage of the 

multistage system. 
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Figure 1. Enantiomer separation in one single stage for several ratios of selector and racemic 
mixture concentrations (value is shown at the right side of each curve), (a) the ee in the 
bulk phase, ee% = | cD - cL | / (cD + cL), and (b) the ee of enantiomers on the chiral 
selectors, eecs = I ft - ft I / ( f t+ ft)-
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Figure 2. A cascaded counter-current MEUF system for the separation of racemic mixtures. Water 
enters stage 1, a racemic mixture (equimolar solution of both enantiomers) enters stage m, 
and 'empty' micelles enter the system in stage n. Under optimal conditions, the retentate 
of stage 1 is enriched with the D-enantiomer, where the permeate of stage n is enriched 
with the L-enantiomer. 
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Theory 

Modeling the cascaded ultrafiltration system. Previously, we have fitted the 

multicomponent Langmuir isotherms [/] and the (de)complexation kinetics [6]. These models 

are used to describe the enantiomer separation in a cascaded MEUF system of n stages (Fig. 

2). For each stage, the mass balances are combined with the multicomponent isotherms. To 

avoid correlation between system parameters and input variables and to facilitate the scale-up 

of the separation system, dimensionless numbers are introduced (Fig. 3, appendix I): 

d ( o ^ + p e , - e e > i ) , 
li =<PM,I ae,M-i +<PM,; P2i (9e,i+i -6e , i ) 

de (-) (i) 

-aeJ +cpFi; +cpBi,- aeJ_i 

where aej represents the dilution factor of enantiomer e (D or L) in the system, equal to the 

unbound enantiomer concentration in stage i ce,, (mM) over the enantiomer feed 

concentration CF,C (mM). The number p is a measure for the selector requirement: the selector 

concentration ^S,F entering the cascade over c^,e. The mass flows through the system are 

characterized by their stage cut cp: the flow fraction of the sum of flows leaving (or entering) 

a stage. Both /, and g, are functions of these stage cuts (see Appendix I). 

At equilibrium, the bound enantiomer concentration 0C,, is described by the Langmuir 

isotherms. Introducing the presented dimensionless parameters, these isotherms become: 

a D/L,int & D,i 

e D ) / = (-) 
1 / K L +aD/L,int<*D,> +<*L,i 

eL,,-= (-) (2) 
1/ K L + a D/L>int a DJ + a u 

where KL is the dimensionless affinity number for the L-enantiomer, equal to the affinity for 

this enantiomer KL (mM"1) times cp,e. 
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Figure 3. One single stage from the cascaded system, (a) the dimensional variables, and (b) the 
dimensionless numbers (note, <S>VMm = 0, and (pM,* = 1 -<pBi). 

The intrinsic enantioselectivity a^M equals KD over KL. In case the residence time in the 

system is long enough to assume equilibrium [6], the separation can be modeled using eqs 1 

and 2; note that, d6e,, / d9 = (d6e,, / dae,,) • (dae,, / d0). Otherwise, the complexation kinetics 

can be described by a linear driving force model (appendix II). 

Optimization criterion and separation constraint. To optimize the separation process, both 

product yield and purity should be maximized using a minimal number of stages. In order to 

do so, a yield and purity constraint must be defined. For this cascaded system, we aim at a 

high purity of both the micellar phase leaving stage 1 and the bulk phase leaving stage n. 
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Therefore, the sum of the enantiomeric excess in both phases, eesam = eeu,i + eeB,„ (%), 

should at least be equal to a chosen set-point: 

^sum \aD,\ -?L,1 +CD.1 ~CL,1 I |CD,« "CL,» I 
+ (-) (3) 

100% qDA +qL,i +cD>1 +cL ) i c D „ +cL;„ 

A set-point of 199% secures a high purity of both enantiomers (> 99%). Self-evidently, a 

high purity of both enantiomers leads to a high recovery of both enantiomers. 

Extraction factor. The extraction factor Aei describes the ratio of the number of molecules 

of a certain species that leave separation stage / in the two opposite directions [7] (Fig. 3): 

1-<PEU 
1 v e,i 1 e,i 

<PB,» 

Ce,i +<le. 1-9B,; 
(-) (4) 

<PB,i 

where Pe,i is the partition factor of an enantiomer in micellar and bulk phase, given by the 

Langmuir isotherms. Both Pei and A*,, are useful tools in the development of the cascaded 

system, since it provides insight how the separation can be improved. By controlling the stage 

cuts cpB,„ the extraction factors of the two enantiomers can be set oppositely from one, so that 

the D-enantiomers move effectively with the micellar phase (AD,/ > 1) and the L-enantiomers 

move in opposite direction with the bulk phase (AL,, < 1). Consequently, all (pB,, must be 

larger than 0.5. 

Materials and Methods 

Materials. We used nonionic micelles to prevent unfavorable nonselective ion-ion 

interactions between enantiomers and micelles. The nonionic surfactant, nonyl-phenyl 

polyoxyethylene [E10] ether (NNP 10), was a gift by Servo Delden b.v. (Delden, The 

Netherlands). The NNP 10 batch was a mixture of different NNPs, therefore, an average 

molecular weight of 644 g/mol was assumed. The chiral selector, cholesteryl-L-glutamate 

(CLG), was synthesized by the Department of Organic Chemistry [4]. The optical rotation of 

the chiral selector [a]o293 was -27 ° at 10.5 g/L chloroform (3% trifluoracetic acid). The 
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chiral selector contained a large hydrofobic anchor (cholesterol) to secure their solubility in 

the micelle. Throughout this study double distilled water was used. All other components 

came from Merck (Darmstadt, Germany) and were used without further purification. 

Preparation of micellar solutions. The micellar solutions were prepared as described 

previously [/]. The final solutions were set at pH 7 and contained 7.8 mM NNP10, 0.3 mM 

CLG, 0.3 mM Q1O2, and 0.1 M KC1. To generalize terminology the selector concentration 

refers to the Langmuir saturation concentration qs. 

Micelle-enhanced ultrafiltration in cascaded systems. Two types of experiments were 

conducted to validate the developed model for the separation of enantiomers in a cascaded 

system. First, a cascaded system was used containing 5 stages. Second, one single stage 

bench scale system was used to simulate the separation in a cascaded system of 60 stages. 

Measurements of the enantiomer concentrations were performed by HPLC as described 

before [5]. 

Cascaded system. Similar to the cascaded system shown in Fig. 2, a five stage system 

was operated in a counter-current mode (« = 5). Each stage consisted of a stirred vessel with 

0.5 L micellar solution and a hollow-fiber membrane module. A peristaltic pump (Watson 

Marlow 505S with 5 pump heads) was used to simultaneously pump the micellar solution 

through 5 independent hollow-fiber cross-flow systems (Bio-Nephross Allegro dialyzers by 

Cobe Nephross BV) at 4.2 • 10"4 L/s. A second peristaltic pump with a multitube cassette 

(Watson Marlow 205U) pumped the permeate from membrane module i to micellar solution i 

+ 1 at <PB,o<,<m = 8.11 • 10"6 L/s and <J>B,ms« <» = 8-72 • 10"6 L/s, so that <pB,i<;<m = 0.700 and 

<pB,m < i < n = 0.715. The bulk phase that entered stage 1 contained 0.1 M KC1 at pH 7. A 

second Watson Marlow 205U pumped the micellar solution from stage i to stage i - 1 at OM,/ 

= 3.47 • 10"6 L/s (cpM.i = 1 - (pB,i)- The micellar solution that entered the system in stage 5 was 

the same as was initially present in each stage. The racemic mixture fed to stage 4 {m = 4) at 

6.08 • 10"7 L/s (cpF,m = 0.05) contained 6 mM of D,L-Phe. The residence time in the membrane 

module (order of minutes) can be neglected if compared to the residence time in each stage 

(12 h). Therefore, we could regard both flask and module as one single stage. 

Samples were taken daily from both the permeate and micellar phase of each stage. It could 

be assumed that both nonselective enantiomer complexation by the nonionic surfactants and 
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membrane rejection of unbound enantiomers can be neglected [5]. Therefore, in each stage 

the bound enantiomer concentration qei (mM) could be calculated by subtracting the 

measured enantiomer concentration in the bulk phase cCi, (mM) from the one in the micellar 

phase. The enantiomer concentration in the micellar phase was measured after diluting the 

0.2 mL samples with 0.1 mL 2 M hydrochloric acid to provoke decomplexation. The cascade 

experiment ran for 10 days at 4 °C to avoid bacterial growth in the system. Plate counting of 

the micellar flow leaving stage 1 showed indeed that no micro-organisms were present. 

Bench scale system. Fig. 4 depicts the cross-flow system used for the bench scale 

ultrafiltration experiments (Amafilter b.v., Alkmaar, The Netherlands). The micellar solution 

was circulated at 0.125 L/s from a 10 L vessel through a spiral wound membrane module 

with a i m 2 cellulose membrane (Hoechst UF-C-10, 10 kDa MWCO) using a diaphragm 

pump (Wanner Engineering Inc., model D-10/G-10). The transmembrane pressure was set at 

2.0 bar realizing a permeate flow of 5.56 • 10"3 L/s, which resulted in a residence time of the 

permeate in the module under 5 minutes. 

The equilibrium separation model (appendix I, ao/L.int = 1.9, P = 1, KL = 2.5, so that CF,e = 

0.28 mM) was used to calculate the cu,t and CL,, profiles of Phe in a cascade of 60 stages 

resulting in an eesam of 199%. The stage number of the single stage bench scale system in this 

cascaded system was simulated by controlling the feed concentrations of both enantiomers 

entering the bench scale system CF,e. The feed concentrations of the bench scale system were 

calculated using the equilibrium separation model, so that at steady state the unbound 

concentrations in the cascaded system will equal the unbound concentration in the bench 

scale system in time: 

dce 

c?,e =ce +* 
At 

dq( 

1+ 
dce j 

(mM) (5) 

where ce and Acel At are derived from the calculated concentration profiles in the cascade, dqe 

I dce is obtained from the Langmuir isotherms, and T is the residence time of the bulk phase in 

the bench scale system, which was set at 10 h. The equilibrium model (eq 5) would still result 

in a good approximation, comparing the residence time with the complexation kinetics [<5]. 

The concentration profiles could not be simulated by one single experiment within a time 

span of a few days, due to the discontinuity at the feeding stage of the cascade (m = 35). 
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Therefore, two experiments were conducted, one simulating stage 1 to stage 35, the other 

started in stage 60 and stopped in stage 35. 

After pump calibration, cF,e was related to the speed of pumps 1 and 3 (Fig. 4). Water was 

added to the bench scale system to compensate the total flow for a constant residence time 

(pump 2). 

I < £ -

D-Phe 
pump 1 

water 

-<§Hi 
pump 2 

L-Phe 

& 
pump 3 

"f,e 

UF-module 

Figure 4. Bench scale cross-flow system. Pumps 1, 2, and 3 were PC controlled using Keithley's 
Testpoint software and I/O-card DDA-08/16 (Cleveland, Ohio, US). The vessel volume 
was kept at 10 L by an electronic level-controlled valve at the permeate side of the 
module. 

Results and Discussion 

Ultrafiltration experiments with a cascaded system. A run with a five-staged ultrafiltration 

system has been conducted in order to validate the separation model (eqs 1 and 2). Figs. 5a 

and 5b show the unbound and bound enantiomer concentrations leaving the cascade from 

stage 1 and 5, respectively. The preference of CLG for D-Phe causes qu,i to exceed gL,i (Fig. 

5a). Consequently, the bulk phase is enriched with L-Phe (Fig. 5b). The deviation between 

the measured and predicted unbound concentrations in stage 5 can be explained by just a 4% 

off-set in the bulk phase flow. In spite of this minor deviation the separation is well predicted, 

ees.s (Fig. 5c). Measuring and predicting an eecs.i of 41% in a cascade of 5 stages (Fig. 5c), 

calculations for one single stage have shown that under the same conditions an eecs.i of only 
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27% is expected. Of course, eeB,« (4%) is not strongly influenced by the number of stages, 

since the feed stage is only one stage away from the outlet. 
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0< 

9e,1 ( m M ) 

(a) 

, ^ 

• 

£*-

• 

- ¥ " " L 

ce,5 (mM) 

100 200 300 

time (h) 

ee (%) 

200 300 

time (h) 

eecs,,(%) 

100 200 300 

time (h) stage (-) 

Figure 5. Ultrafiltration experiments in a cascade of 5 stages (cFe = 3 mM), (a) bound concentrations 
of D- (•) and L-Phe (•) in stage 1, (b) unbound concentrations in stage 5, (c) excess of 
(un)bound enantiomers, eeB (A) and eeCs (•), respectively, and (d) eeCs in a cascade of 60 
stages under similar experimental conditions (dotted line 1), after process optimization 
(dashed line 2) and after additional medium optimization (solid line 3). The solid lines in 
figure a, b, and c are equilibrium model predictions. 
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Cascade optimization. Despite the separation enhancement of the cascade as compared to 

one single stage, these measurements easily show that 5 stages are still not sufficient to 

satisfy the constraint of eesum > 199 (Eq. 3). Dotted line 1 shows that the current experimental 

conditions can never lead to two optically pure products using any number of stages, where 

<PB,I</<I» = 0.700 and (pB,m<;<« = 0.715. In this case most enantiomers leave the system from 

stage «, due to the relatively high bulk phase flow. Only a small amount leaves the system 

from stage 1, of course, with a high purity. Therefore, the bulk phase flow fractions of the 

total flow leaving each stage, cps,; = $>B,i I (^B.J+^M,;)* have been optimized in order to 

improve the separation. At the optimized set of (PB,» the relative transport of bound 

enantiomers increases, so that the separation improves at stage 60 and decreases at stage 1 

(dashed line 2, (pB,i <; < m — 0.560 and q>B,m <, < « = 0.575). This shows that at a racemic mixture 

feed concentration of 6 mM optimization of the stage cuts alone is not enough to reach 99+% 

separation of both enantiomers. Medium engineering is inevitable to reduce the affinity of the 

chiral selector for the L-enantiomer from 8.9 to 0.83 mM'1 and increase the Langmuir 

saturation concentration (read chiral selector concentration) from 0.17 to 3 mM to keep CF,« at 

3 mM and still achieve that eesma > 199% (solid line 3). In dimensionless terms this implies 

that KL is reduced from 27 to 2.5 and P is increased from 0.057 to 1. An improved separation 

can also be achieved by diluting the system to CF,<. = 0.28 mM and gs,„+i = 0.28 mM, keeping 

KL at 8.9 mM'1. All the above calculations have been performed using the experimentally 

determined anoint = 1.9 [1]. The effect of the enantioselectivity on the separation 

performance will be discussed in the next chapter. 

Extraction factors. The effect of KL on the separation performance of the cascade is shown 

by the extraction factors in Fig. 6. At high values for KL nonlinear complexation behavior 

becomes apparent having a negative effect on the separation (Fig. 6a). In this case, both 

enantiomers are transported in the same direction with the micellar phase. Reducing KL (read 

Ki) cause the separation to become ineffective, ALj, = AD,, (Eq. 4). Fig. 6b shows A,.,, at the 

optimized KL of 2.5, which implies a CF,e of 0.28 mM, since the affinity of CLG for L-Phe is 

8.9 mM"1. The next session discusses the validation of the separation model using a cascade 

approximation under these experimental conditions. The relations between the process and 

medium parameters and their effect on the eeswa are further discussed in chapter 6 using the 

defined dimensionless numbers. 
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stage (-) stage (-) 

Figure 6. Extraction factors (Ae,) in the 60 stage cascade corresponding to lines 2 (a, dashed lines, 
KL = 27) and 3 (b, solid lines, KL = 2.5) of Fig. 5d. The horizontal dotted line indicates Ae,, 
= 1. For an effective separation process, it should be pointed that ALjl < 1 < AD,;. 

Cascade approximation by one single stage and a calculated feed concentration strategy. 
To validate the model for 60 stages is hardly possible using the previously discussed lab scale 

cascade set-up. Hence, we have simulated a cascade of 60 stages by one single stage 

ultrafiltration system and controlling the feed concentrations of both enantiomers Cf,e (mM). 

The location of the single stage bench scale system in the cascade can be approximated by a 

place to time transformation of the concentration profiles in the cascade. Therefore, the feed 

concentrations are chosen so that the expected unbound concentrations in the bench scale 

system are equal to the calculated concentration profiles in the cascade corresponding to the 

solid line in Fig. 5d. 

Fig. 7 shows the measured unbound concentrations of D- and L-Phe of the two independent 

experiments. The solid lines represent the expected concentrations using the kinetic model, 

including both the Langmuir isotherms and the linear driving force model [6]. The minor 

difference between both model predictions is explained by the relatively long residence time, 

if compared to the complexation kinetics. Since the measurement error is in the order of 

0.002 mM, it is shown that both models describe the measurements well. 
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Figure 7. Ultrafiltration experiments in a bench scale system simulating the separation of D- (•) and 
L-Phe (•) in a cascade of 60 stages. The kinetic model predictions (solid lines) are not 
connected in stage 35, since the feed concentrations and unbound concentrations have 
been calculated with different models, the equilibrium and kinetic model, respectively. 
The equilibrium model predictions are presented by the dotted lines. The deviation 
between model and measured data from stage 35 to 45 could not be explained. 

Conclusions 

Validation experiments prove the suitability of the previously estimated Langmuir isotherms 

to describe the separation of Phe enantiomers by our enantioselective micelles in cascaded 

ultrafiltration systems. Using the experimentally determined a,D/L,int of 1.9, model calculations 

show that 60 stages are sufficient to separate both enantiomers at 99+% purity. However, the 

enantiomer feed concentration of the cascade is in that case still very low, i.e. tenths of mM. 

The validated Langmuir equilibrium model can be used to maximize the enantiomer feed 

concentration and minimize the number of stages while satisfying the purity constraint of 

99+%. This is discussed in the next chapter. 
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Nomenclature 

ce,t unbound concentration in stage i (mM) 

CF,6 enantiomer feed concentration (50% of racemic mixture) (mM) 

The enantiomer feed concentration CFJ(! is half of the racemic mixture feed concentration. 

ee enantiomeric excess (%) 

Ke affinity constant (mM"1) 

ke,±\ (de)complexation reaction rate constant (s1) 

&DL,±I exchange reaction rate constant (mM'V1) 

qe,i bound enantiomer concentration in stage / (mM) 

<7V selector concentration in stage i (mM) 

#S,F selector concentration in OM,II+I (mM) 

t time (s) 

Vi volume of micellar phase in stage i (L) 

[OI]D293 optical rotation at 293 K, using sodium emission spectrum (589 nm). (°) 

OM,I flow of micellar phase leaving stage / (L/s) 

OB,, flow of bulk phase leaving stage /' (L/s) 

<&F,I flow of feed entering stage i (L/s) 

x residence time per stage (s) 

Dimensionless numbers 

ctD/L,int intrinsic enantioselectivity Ko I Kt 

p relative selector concentration gSjF / c?,e 

<P'M,, stage cut of micellar phase entering stage i % , + ] / (<J>B,,+<I>M,,) 

9M,, stage cut of micellar phase leaving stage / <&M,; / (^B.i+^M,!) 

(P'B,, stage cut of bulk phase entering stage i OB ,M / (<&B,,+<I>MI) 

(PB,I stage cut of bulk phase leaving stage i OB , , / (OB.I+OM,,) 
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cp'F,m stage cut of feed entering stage m ((p'F,,*m = 0) 0F>m / ( O B ^ + ^ W ) 

/; reciprocal of relative sum of flows into stage / (OB,I + 4>M,I) / ((&B,i+(I)M,i) 

Ke relative affinity KeCfte 

Ae,i extraction factor in stage i Pe,\ (1 - <PB,;) / <PB,; 

Pe,i partition factor in stage i (qe,i + ceJ) I ceJ 

Qt relative Langmuir saturation concentration in stage i qsj I qs$ 

re (de)complexation and exchange kinetics 

ae,i dilution factor in stage i ce>i I cF,e 

0e,, bound fraction in stage i Qejqsj 

0 relative time fO-r.i/^i 

An apostrophe indicates a stage cuts of a flow entering a stage. Subscripts: M, micellar phase; 

B, bulk phase; e, D- or L-enantiomer; /, stage number; m, feeding stage number; «, number of 

stages. 
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Appendix I 

The separation in a cascade of ultrafiltration stages is modeled by n mass balances to describe 

the total enantiomer concentration ceJ + qeJ (mM) of each enantiomer e in the micellar phase 

of each stage i (Fig. 3): 

Vi 
( dc • da ^ 

u L e ,i u H e ,i 

+ 
k dt dt ) 

= 3>M,;+1 \Ce,i+\ + ae,i+l ) - * M , i (<=eJ +<le,i ) + 

+ 0 F > ! C F + 0 B , i - l ceM - 0 B > , C e ; l 

(mol/s) 

where cej and qe,i are the unbound and bound enantiomer concentrations, respectively, V (L) 

is the volume of the micellar phase, and 0 (L s"1) represents the various mass flows through 

the system. Normalizing both the unbound concentration as aej = ce>, / CF,e and the bound 

concentration as 0e,, = qe,i I qs,t yields: 

Vt 
'do-£ j , 

>. dt 
-+P2r 

dee;, ^ 

dt j 
= *M,i+l {ae,M+PQi+\ ®e,i+\ )-®M,i {?e,i+$Qi ®e,i V 

+& F j i +<D B .-.j Oe ,.i - <t> B,i:de , 

(L/s) 

where P is the ratio of CFIC and the selector concentration entering the cascade in stage n, qs? 

(mM), and Qt is the ratio of qs? and the selector concentration in stage i, qs,i (mM). Since 

^M.J+I Qt+i = ®M,i Qi, the former equation can be rewritten as: 

\doe4 dQeJ ' 
V,\ + P 2 , — 

dt dt 
= ®Mj+l ae,M +®M,i P 2 , (8e,»+l - 6 e , i h 

(L/s) 

Introducing the dimensionless stage cuts cp yields Eq. 1: 
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+P2; \=<?M,i oe,,-+i +(pM,i P2 ; (6e>/+i -ee>1- )+ / / • ! . _ . . . . . , _ . , . . . . . _ „ , 

ae de J (-) (i) 

-aej +cpF;(- +(PB,I oe,,-_i 

where the apostrophe indicates the stage cut of a flow entering a stage, and /; is the ratio of 

the sum of flows into stage 1 and the sum of flows into stage /'. 

Appendix II 

The complexation kinetics have been thoroughly investigated in the previous chapter. 

According to the kinetic complexation model, the bound enantiomer concentration in stage i 

qej (mM) can not be directly calculated using the Langmuir isotherms and the unbound 

concentrations in stage i ce,, (mM). Therefore, mass balances for both unbound and bound 

enantiomers must be distinguished. Following a similar approach as in appendix I, these mass 

balances are: 

daeJ 

h = <P'B,/ <*e,i-\ -<3e,i +<P'M,/ CTe,i+l + (P F,i ~re 

de 

dQe,i . . re 

li = <PM,i \®e,i+l - 0 e , i ) + 

de pg, 

where re is the kinetic term representing the complexation, decomplexation, or exchange 

process. For complexation (CTC,, > o «,,<,,,): 

For decomplexation (6e>, > 6 eq,e,;): 

re =-*e>_i T, pg, (ee>; - e e q > ( M ) 

And for exchange (CTD>, > a eq,D,; A 6L>, > 6 eq>L, <): 
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+ *DL,+1 *< $Qi CF \aD,i -<7eq,D,' X^L,/ _9eq,L,< J 

>X =-*L,-l Ti P 2 . (eL>/ -9eq,W )+ 

-*DL,+1 T; P g / CF ( o D i , -O eq,D, ' ) ( 9 L, i _9eq,L, ; ) 

The Langmuir isotherms are used to calculate the unbound and bound enantiomer 

concentrations in stage i (ceq,e,, and 0eq,e,i) in equilibrium with the actual bound and unbound 

enantiomer concentrations, respectively [6]. 



6 
Introduction 

CONCLUDING REMARKS 

This thesis presents a cascaded enantiomer separation process that is based on the 

ultrafiltration of enantioselective micelles containing chiral selector molecules (Fig. 1). As a 

model system, we have studied the separation of D,L-phenylalanine (D,L-Phe) enantiomers 

by cholesteryl-L-glutamate (CLG) in nonionic micelles [1,2]. The stability difference 

between two chelate complexes results in chiral separation at a molecular level, where the 

stability of CLG:Cun:D-Phe exceeds the one of CLG:Cun:L-Phe. Further, an ultrafiltration 

(UF) membrane causes the micelles to be separated from the unbound enantiomers, i.e. 

separation on process scale. Since one single UF stage is inadequate to achieve 99+% 

separation of both enantiomers, the separation has been studied in a cascaded system [3]. 

Chapters 2 and 3 describe the development of a two component Langmuir model that is 

capable of predicting the competitive complexation at various pH. Both independent 

experiments and statistics show that membrane rejection of unbound enantiomers and 

nonselective complexation can be neglected if compared to the enantioselective complexation 

by CLG [4]. It is shown that complexation only occurs at pH 7 and higher [J]. Regeneration 

of D-Phe saturated micelles can be improved by a pH reduction. In order to minimize salt 

production the pH shift should be minimal. 

Section 'Chiral selector engineering' is written by T.J.M. de Bruin and P.E.M. Overdevest as a 
result of the collaboration within the STW project (WCH44.3380). 

Sections 'Nonionic surfactants' and 'pH of the medium' have been published as part of P.E.M. 
Overdevest and A. van der Padt, 'Optically pure compounds from ultrafiltration' CHEMTECH1999, 
29, no. 12,17. 

Sections 'Affinity of microheterogeneous media for the substrate', 'Process engineering' and 
'From dimensionless numbers back to system dimensions' have been submitted for publication as part 
of P.E.M. Overdevest, M.H.J. Hoenders, K. van 't Riet, J.T.F. Keurentjes and A. van der Padt, 
'Enantiomer separation in a cascaded micellar-enhanced ultrafiltration system: enantioselectivity, 
Langmuir affinity, and productivity'. 
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UF membrane 

hydrophobic core 

hydrophilic core 

chiral selector bound enantiomer unbound enantiomer 

Figure 1. Ultrafiltration (UF) of micelles for the separation of enantiomer. The separation is the 
result of enantioselective partition between bulk and micellar phase. Separation of bulk 
and micellar phase by a UF membrane is based on size exclusion. 

The equilibrium experiments have indicated that the complexation of enantiomers by the 

enantioselective micelles is not instantaneous [6]. Chapter 4 discusses the Linear Driving 

Force model that describes both the complexation and decomplexation rates of enantiomers. 

Finally, the developed model is validated by cascaded ultrafiltration experiments at both lab 

and bench scale [7]. 

The scope of this chapter is to indicate how the performance of cascaded UF systems or any 

cascaded counter-current nonlinear complexation system can be optimized. Therefore, we 

have analyzed the equilibrium model and selected the dimensionless numbers effecting the 

separation by the cascade. Medium parameters (aD/L,int, P, and KL) describing the intrinsic 

properties of the enantioselective microheterogeneous medium are distinguished from 

process parameters (« and (p) that can be used to control the process at macroscopic scale: 

• OLD/L,int D-enantiomer affinity constant / L-enantiomer affinity constant 

P selector feed concentration / enantiomer feed concentration 

• KL L-enantiomer affinity constant. enantiomer feed concentration 

• n number of stages 

• <p flow in or out a stage / sum of flows in or out a stage 

These dimensionless numbers facilitate the elimination of correlation between system 

parameters and input variables. The stage cuts (cp) have been optimized for a given set of 
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medium parameters to minimize n under the constraint that the eesum (= eeu,\ + eeB/i) exceeds 

the required enantiomeric excess [7]. Depending on the undesirability of an impurity this 

could be 199% or even 199.9%. In this chapter, the feeding stage (m) is chosen to be w/2 for 

all calculations. Furthermore, the implications of the optimized numbers will be discussed for 

both the model system and the competitive nonlinear complexation processes in general. 

Engineering aspects effecting the performance of the separation system 

Two groups at the Wageningen University closely cooperate in the development of this chiral 

resolution system. On a molecular level the interactions within the ternary complexes are 

studied at the Laboratory of Organic Chemistry. At the Food and Bioprocess Engineering 

Group the separation process is studied at laboratory scale and bench scale. Here, we present 

an overview of the most important engineering aspects that influence the performance of the 

separation system. 

Chiral selector engineering 

At the Laboratory of Organic Chemistry several routes have been followed to elucidate the 

molecular interactions between the selector and the enantiomers, in order to optimize the 

chiral selector molecules [8]. In this study derivatives of glutamic acid are used, esterified at 

its y-position with a large hydrophobic anchor, e.g. cholesterol. The operational 

enantioselectivities ao/L,op = <7D CL / cu q\, of stereoisomers of cholesteryl-glutamate for the 

separation of DL-Phe are presented in Table 1. High enantioselectivities have been measured 

for cholesteryl-L-glutamate (CLG). Cholesteryl-D-glutamate (CDG) is synthesized to study 

the enantioselective site of the chiral selector. If chiral recognition takes place exclusively at 

the amino acid head group, it is expected that the enantioselectivity of CDG is equal to the 

reciprocal value of CLG. However, a significantly lower operational enantioselectivity for 

CDG of 0.45 is found, this is far from 1 over 8.2. This strongly suggests that apart from the 

glutamate head group also the chiral hydrophobic anchor (cholesterol) contributes to the 

chiral recognition process. This is supported by the fact that if cholesteryl-DL-glutamate is 

used, the enantioselectivity still significantly deviates from unity. 
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Table 1. Operational enantioselectivities (<XD/L,OP) for D,L-Phe of some chiral selectors (0.30 mM) 
dissolved in micelles of the nonionic surfactant nonyl-phenyl polyoxyethylene [E10] 
ether, NNP10 (7.8 mM) at pH 9 and 25 °C. The concentrations of D,L-Phe, Cun, and KC1 
are 0.15 mM, 0.30 mM, and 0.1 M, respectively. 

chiral selector (XD/L £E_ 

cholesteryl-L-glutamate 8.2 ±1.8 

cholesteryl-D-glutamate 0.45 ± 0.07 

cholesteryl-DL-glutamate 1.6 ±0.2 

Modification in the substrate. The chiral microheterogeneous medium was tested for 12 

different amino acids, which were used as test compounds [8]. Table 2 shows only part of the 

tested amino acids. The experiments have shown that the enantioselectivity is related to the n 

value of an amino acid. Hydrophobic amino acids (high n value) dissolve nonselectively in 

the micelle, whereas hydrophilic amino acids (low n value) prefer the aqueous bulk. A 

modification of the amino acid is required, if the hydrophobicity differs from the indicated 

range. For example, tyrosine that cannot be separated with this system, has been converted 

into O-methyl-tyrosine, which yields aD/L,op = 7.2. The amino acids which have a 

hydrophobicity within the above-mentioned range can be separated very well: in case of 

phenylglycine (PheGly) up to ao/L.op = 14. This wide range of measured enantioselectivities 

might point to different types of coordination for different amino acids and hence different 

amino acid-amino acid interactions. This suggests that the geometry around Cu11 in such 

complexes is highly dependent on the type and size of the substrate. 

Table 2. Operational enantioselectivities (ao/L,op) of cholesteryl-L-glutamate for some amino acids. 
See Table 1 for the concentrations and conditions. 

substrate ap/L.op (-) n(a) (-) 

phenylglycine 14.5 ±2.5 1.22 

phenylalanine 8.2 ±1.8 1.63 

homophenylalanine - 2.04 

Q-methyl-tyrosine 7.2 ±1.6 1.87 
(o) 7i = log Pow (amino acid) - log Pow (glycine), where Pow is the partition coefficient of 
the enantiomer in octanol and water. 
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Quantum mechanical techniques. Therefore, the geometric structure was investigated using 

computational techniques. Since the parameters for Cu11 in molecular mechanics (MM) are 

not sufficiently accurate, the complex was computed quantum mechanically (QM) [9,10] 

with the use of density functional theory (B3LYP) [11,12]. However, due to long 

computation times (several months on a Cray C916 /12104), the diastereomeric complex had 

to be simplified to bis-glycinato-Cun« H2O (w = 0 - 4). From these computational studies it 

is concluded that: (i) such complexes are only well described if large basis sets are used [6-

311+G(d,p)] [13]; (ii) hydrogen bond formation strongly influences the final geometry; (iii) a 

trans complex is always more stable than the corresponding cis complex; and (iv) no single 

set of electrostatic potential charges (from methods such as CHELPG and Merz-Kollman) 

can be derived for the description of either cis or trans Cun-bis-amino acids complexes, 

thereby hampering the parameterization for molecular mechanics. The electrostatic potential 

charges are used to calculate Coulomb interactions in molecular mechanics. To perform 

meaningful calculations on large Cu11 amino acids complexes QM/MM calculations most 

probably offer the best solution [14]. 

Isothermal titration calorimetry. Furthermore, the formation of the diastereomeric 

complexes has been investigated by Isothermal Titration Calorimetry (ITC) [15]. 

Thermodynamic data of the complexation reaction can be straightforwardly determined with 

this technique: the affinity constant K, the change in enthalpy AH, in entropy AS and in Gibbs 

free energy AG. From Table 3 it follows that the data (ao/L.int = KQI K±) are in agreement 

with the ultrafiltration: the D-enantiomer forms the most stable diastereomeric complex for 

Phe and PheGly. The difference in magnitude in enantioselectivity between ITC and 

ultrafiltration measurements could be explained by the fact that only the rapid complexation 

between substrate and selector is measured with ITC, whereas the exchange of one 

enantiomer for the other (which forms the most stable diastereomeric complex) is not [6]. 

From the ITC experiments it can be concluded that the reaction is endothermic (AH > 0), and 

is driven by entropy (AS > 0). This can be interpreted as the release of water molecules from 

the CLG:Cun complex if the substrate is bound. 
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Table 3. Isothermal Titration Calorimetry (ITC) at pH 7 and 25 °C. The concentrations of CLG, 
NNP 10, titrant, Cu", and NaOAc are 1.5 mM, 7.8 mM, 25 mM, 1.5 mM, and 0.1 M, 
respectively. 

titrant n K AH AG AS OLU/LM 

(mol'1) (kJmol"1) (kJmol"1) (Jmor'K"1) 

1.17 

1.26 

Medium engineering 

Nonionic surfactants. Besides the chiral selector the micelles contain achiral nonionic 

surfactants. Use of a nonionic surfactant prevents undesired electrostatic interactions between 

ionic surfactants and other charged species in the medium: chiral selectors, enantiomers, and 

Cu" ions. In addition, to minimize the leakage of surfactant molecules through the 

ultrafiltration membrane, the critical micelle concentration (CMC) of the surfactant should be 

extremely low. For a given hydrophobic tail group, the CMC of a nonionic surfactant is 

substantially lower than for an ionic surfactant [16]. Of course, the CMC can be even 

eliminated by polymerizing the hydrofobic tails of the surfactants in the micelle [17,18]. 

To study the influence of the nonionic surfactants on the performance of the chiral selector 

molecules, we have tested two series of commercially available surfactants: Tween and Brij 

(see appendix). At first, we did not expect any effect of the surfactant on aD/L,0p, because we 

did not believe that it had a significant role in the formation of ternary complexes. Some 

preliminary experiments with a Tween surfactant, however, have indicated otherwise. 

Therefore we have started a more thorough study. The experimental results with the Tween 

and Brij surfactants are shown in Figs. 2a and 2b, respectively. These figures clearly show 

that the operational enantioselectivity is higher when shorter surfactant chains are used. Of 

course, there is a restriction, since at very short chain lengths no micelles are formed. The 
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experiments with Tween 60 and 80 show that even unsaturated C-bonds improve the 

enantioselectivity (Fig. 2a). 

The formed 1:1:1 complexes of CLG, Cu11, and D,L-Phe are diastereomeric complexes, thus 

having different physical properties and different geometries. It can be hypothesized that the 

difference in stability (enantioselectivity) of these complexes is enhanced by the ordered 

microstructure of the medium in which these complexes are dissolved, i.e. the achiral 

micelles. Possibly, the enantioselective interactions decrease upon an increase in micellar size 

due to steric effects which are more pronounced in larger micelles. Note, the micellar size is 

directly related to its aggregation number which decreases upon shorter chain lengths. At 

25 °C the aggregation number of Brij 56 and 58 micelles are 80 and 200, respectively. 

aD/L,op (") 
aD/L,op (") 

8 

6 

4 

2 

(a) (b) 

11 13 15 17 19 0 5 10 15 20 25 

P(-) /•(-) 

Figure 2. Operational enantioselectivity aD/L0p of CLG (0.30 mM) for various nonionic surfactants: 
(a) CpE2o (•); Tween80 (•) and (b) Ci2Er (•); Ci6Er (A); and Ci8Er (•). The 
concentrations of D,L-Phe, Cu11, surfactant, and KC1 were 0.15 mM, 0.30 mM, 7.8 mM, 
and 0.1 M, respectively (pH 11). Equilibrated solutions were ultrafiltrated using a stirred 
cell (Amicon, 8400 series) to separate the unbound enantiomers from the micelles and the 
bound enantiomers (25 °C). 

pH of the medium. The pH of the microheterogeneous medium plays a significant role in the 

performance of the enantioselective micelles. Since the charge of both the enantiomers and 

the chiral selector is pH dependent, it is obvious that the formation of the ternary complexes 

is pH dependent as well. For this, we have studied the complexation of enantiomers by 

enantioselective micelles at pH 11 down to 6 [5]. From the results it is concluded, that the 
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enantioselectivity increases upon decreasing pH. However, the affinity decreases upon 

decreasing pH, ending in no complexation at pH 6. 

To regenerate the saturated micelles leaving the cascade, we have tested decomplexation of 

bound enantiomers. Ultrafiltration experiments have shown that dilution and an increased 

temperature do not lead to a considerable decomplexation. However, a decrease in pH causes 

repulsion between selector and enantiomer, due to their positive charges, leading to the 

desired decomplexation [5]. In order to keep the salt production to a minimum, after multiple 

separation cycles, the difference between complexation and decomplexation pH should be 

minimized. 

Enantioselectivity. The enantioselectivity OID/L quantifies the preference of the chiral selector 

for one of the two enantiomers, and is defined as (^D/CD) / (<7I/CL), where q and c are the 

bound and unbound concentration, respectively, of the D- and L-enantiomers [19]. For 

Langmuir isotherms, CCD/L equals the ratio of the two coexisting affinity constants, AD / KL (= 

ciD/L,int)- Single stage calculations have shown that an increase of a.D/L,int from the 

experimentally measured value of 1.9 to a value of 5 implies a dramatic increase in separation 

[7]. Moreover, this increase in separation is only minor if ctD/L,int is further increased above 5. 

Selector engineering by both quantum mechanical calculations [13,14] and minor 

modifications in either the chiral selector or the racemic substrate [8] should accelerate the 

development of selector molecules having an enantioselectivity of at least 5. 

Ultrafiltration experiments at pH 7 up to 11 with cholesteryl-L-glutamate and D,L-Phe have 

shown that the affinity is based on ionic interactions which predominate the enantioselective 

interactions [5]. So, the enantioselectivity of the system can be improved by reducing the 

ionic interactions, possibly by increasing the salt concentration. Ultrafiltration experiments 

with various nonionic surfactants have shown that the enantioselectivity of CLG is dependent 

of the type of achiral surfactant [3]. It is therefore expected, that the ordered microstructure of 

the microheterogeneous media can be exploited to maximize the difference in stability of the 

two possible diastereomeric complexes: CLG:Cun:D-Phe and CLG:Cun:L-Phe. Later in this 

chapter the separation improvement will be quantified by a reduction in the number of stages 

required to achieve eesxm = 199%. 

Selector concentration. The productivity of the separation system depends on the selector 

concentration in the cascade. If properly operated, the higher the selector concentration, the 
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more enantiomers can be separated in a certain time span. Of course, the enantiomer 

concentration is limited by its solubility in the microheterogeneous medium and by solubility 

of the microheterogeneous medium itself. Various microheterogeneous media have been 

reviewed at their capacity to anchor sufficient selector molecules to separate enantiomers at 

their solubility concentration. 

Preliminary optimization calculations show that the selector feed concentration ^S,F should be 

around half of the racemic mixture feed concentration. Since p is proportional to the selector 

costs being the determining factor of the total system costs, it is imperative to include |3 in the 

final system optimization. For all subsequent calculations p has been set to 1. For an optimal 

eesnm, this corresponds to an average requirement of 3 chiral selector molecules per 

enantiomer entering the cascade. As will be shown in the next section, the selector per 

enantiomer requirement decreases upon enantioselectivity. 

For our model system, P = 1 implies that the selector concentration should be 40 mM to 

separate a Phe racemic mixture at its solubility concentration of 80 mM in water at 25°C. 

Assuming that each selector molecule requires 2 nm2 to bind an enantiomer Acs (nm2) [20], 

the selector feed concentration qs,F (mM) can be calculated as: 

104e 
<7S,F = (mM) (1) 

where s (-) is de volume fraction of the media particles in the solution, and dp (nm) is the 

particle diameter, assuming spherical media. Table 4 shows dv of various microheterogeneous 

media from literature that can be used to absorb or covalently bind chiral selector molecules. 

Subsequently, using Eq. 1 and common e from literature the attainable ^S,F can be calculated 

for various microheterogeneous media. This short review is at best only an approximation, 

since micelles are likely to be polydisperse in mass and oblate in shape [21,22]. 

For conventional vesicles and micelles, it can be concluded that the desired selector 

concentration of 40 mM can not be achieved in the concentration range where micelles and 

vesicles are thermodynamically stable. Viscosity measurements of aqueous solutions of 

nonyl-phenyl polyoxyethylene [E10] ether have shown that at volume fractions above 0.02 

the micelles increase in size, so that the specific area decreases. This phenomenon can be 

overcome using polymerized micelles, where the unsaturated carbons of the hydrofobic tail 

groups have been polymerized [30]. This eliminates the critical micelle concentration and 
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makes them independent of self-assembly, characteristic to conventional micelles. 

Consequently, these particles can be concentrated to a volume fraction of 0.08, sufficient to 

locate 40 mM of chiral selectors, number 3 of Table 4. To generalize this concept, it is 

assumed that each selector is effectively used, contrary to the experimental data of chapter 3 

for our model system. 

Table 4. Various microheterogeneous media to anchor chiral selector molecules. 

no. dp (nm) ref. s (-) gsj (mM) 

1. vesicle 150 

2. micelles 10-20 

3. polymerized micelles 10 

4. dendrimers 3 - 10 

A second alternative is the use of dendrimers, which have a well defined size and structure 

(number 4). In general, common properties of dendrimers are the high number of functional 

groups on the surface, excellent solubility, guest molecule encapsulation, and very low 

solution viscosity [31]. Frechet reports a solubility of 1.15 • 103 g/L for a 5 generation 

dendrimer (MW of 11 kDa) in tetrahydrofuran as compared to its linear analogue, 25 g/L 

[31]. These physical properties make dendrimers an attractive microheterogeneous medium 

to separate enantiomers in the cascaded ultrafiltration system. Either, the dendrimer is 

chemically modified to become enantioselective [28,29], or chiral selector molecules are 

encapsulated in its internal cavity [32]. The molecular weight of dendrimers, 1 up to 30 kDa 

[31], facilitates the separation of bound and unbound enantiomers by ultrafiltration 

membranes. 

Affinity of microheterogeneous media for the substrate. To study the effect of KL on the 

separation performance of the cascaded system, eesmD has been calculated as a function of this 

dimensionless affinity number (Fig. 4a). These calculations show that there is a window 

where eesum complies with the optimization constraint. Below this KL window the enantiomer 

concentrations of the micellar phase ce,i + qe,i and the bulk phase cej become similar, caused 

by decreasing affinity, qe,t —» 0. Therefore, the extraction factors [33] of both enantiomers 

(Ag,/) become equal: 
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lim A e , = lim 
KLiO KLlo 

( \ l_(pB^. l-(pB^. 
(-) (2) 

<PB,J <PB,; 

To explain the diminishing separation above the KL window, the total concentrations qe,t + cej 

have been calculated for the cascade of 60 stages of Fig. 4a at maximum eesum where KL = 2.5 

(Fig. 4b). From these characteristic concentration profiles, it can be concluded that in the 

outer stages of the cascade the enantiomer concentrations are lower than in the center stages 

of the cascade. For linear extraction processes the partition factor is a constant. The 

complexation behavior of the enantioselective micelles, however, is described by nonlinear 

Langmuir isotherms causing the partition factor Pej = {qe>i + cc,,) / cft, to decrease upon 

increasing concentration. In other words, at both ends of the cascade, the micelles bind to 

many enantiomers, including the low-affinity substrate, in our case the L-enantiomer. 

Consequently, the extraction factor profiles are V-shaped, note that cps,, are constants at both 

sides of the feeding stage (Fig. 3). 

Ae,,(-) 

20 40 60 

stage (-) 

Figure 3. Extraction factors (Ael) in a 60 stage cascade where KL = 2.5. The horizontal dotted line 
indicates Ae, = 1. For an effective separation process, it should be pointed that AL>, < 1 < 
AD,,-

Calculations show that the differences between P^j and Pt,i increase with KL. Above the KL 

window the nonlinearity of Pej increases to the extend where it is impossible to correct all />«,,, 

by a constant cps,; to get all A«,/ at opposite sides from one [7]. In agreement to our findings 

Morbidelli et al. have shown that complete separation occurs only in certain regions of flow 
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ratios, studying both feed concentration and substrate affinity independently in simulated 

moving bed units [34,35]. 

The existence of a KL window implies that a reduction in affinity improves the productivity of 

the cascaded system, since the racemic mixture feed concentration must be proportionally 

increased to maintain the optimal KL [36]. Generally speaking, one can say that, in order to 

attain the highest possible feed concentration (i.e. solubility concentration) at ao/L,int = 1-9, 

the low-affinity constant should be 2.5 over the solubility of this substrate. Note, the high-

affinity constant is given by the low-affinity constant times ciD/L.int- For our model system this 

implies that the affinity constants should decrease a factor of 140, so that KL becomes 0.063 

mM"1 and the racemic mixture feed concentration can be increased to 80 mM (i.e. solubility 

at25°C). 

200 

199 

198 

197 

eesum (") Qej + ce.l < m M ) 

<C 

n = 80 

n = 60 

_J |_ 

2 3 4 5 

KL(") 

40 60 
stage;' (-) 

Figure 4. Cascade calculations using Langmuir equilibrium model, aD/L,int = 1-9, (a) effect of KL on 
cascade separation, eesma has been optimized for a range of KL using q>B,i, where dotted 
lines represent eesum = 199% and 199.9%, respectively, (b) characteristic profiles of 
enantiomer concentrations (n = 60, KL = 2.5, CF,e = 40 mM). 

For CLG and D,L-Phe, the reduction in affinity can be reached by: 

• adjusting the hydrophobicity of the bulk phase to improve the preference of the 

enantiomers for the bulk phase [8,3]. 
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• using another ion to form the ternary complex. Cu11 ions are known to form very stable 

ternary complexes [5,37]. Ternary complexes based on Zn11, Co11, and Ni11 have a lower 

stability than complexes based on Cu11 [38]. 

Of course, one could also develop another selector, possibly based on nonionic interactions. 

The combination of an increased selector and racemate feed concentration and a decreased 

affinity increases the feasibility of a separation process for D,L-Phe by enantioselective 

microheterogeneous media. 

Process engineering 

In addition to medium and selector engineering approaches, one could argue whether process 

engineering could offer alternatives. Therefore, we have studied the effect of the number of 

stages in the cascade n and the stage cuts of the bulk phase flow <PB,;. 

Number of stages. Model calculations show that the width of the KL window depends on the 

enantioselectivity and the number of stages (Fig. 4a). Its position, of course, is a direct result 

of the required eeSUm constraint. Towards process optimization, the KL windows have been 

calculated for two eeSUm constraints (199% and 199.9%) and a series of aD/L,int: 1.9 

(experimentally measured for our model system), 2.5, 5, and 10 (Fig. 5a). Based on the single 

stage calculations, it is not expected that a further increase of ao/L.mt above 10 will reduce the 

number of stages required to fulfill the eeSum constraint [7]. The solid and dashed lines in Fig. 

5a represent the intersections of the curves and the dotted lines of Fig. 4a indicating an eeswa 

of 199% and 199.9%, respectively, for a range of n. As expected, the required number of 

stages increases upon increasing eeswn and upon a decreasing enantioselectivity. Furthermore, 

at low enantioselectivities the separation is more sensitive to a deviation in KL, caused by the 

smaller distance between the extraction factor profiles of both enantiomers (Fig. 3). 

Consequently, more stages are needed to compensate this effect. The distance between the 

extraction profiles increases upon increasing enantioselectivity. 
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Figure 5. Cascade calculations using Langmuir equilibrium model, (a) required number of stages for 
a series of aD/L,int and for an eesum of 199% ( ) and 199.9% ( ), (b) minimal number 
of stages n for an eesum of 199% ( ) and 199.9% ( ), and the coexisting value of KL. 
The vertical dotted line represent aD/L,int = 1 • 

Optimization of the number of stages is performed by plotting the minima of Fig, 5a as a 

function of the enantioselectivity (Fig. 5b). Indeed, the decrease in the number of stages 

required to reach 199% or 199.9% separation diminishes at aD/L,int > 10. Moreover, the 

optimal KL increases upon enantioselectivity. However, overdesigning the cascade by less 

then 5% more stages, allows a wide range of applicable KL values (gray area in Fig. 5b). 

Of course, the number of stages alone is not sufficient to optimize the cascaded system. The 

costs of the system per kg of separated product should be minimized, under the condition that 

eesam satisfies the required purity. 

Stage cuts. The stage cuts q>B,, = 0>B,I I (OB.I+OM,;) have a strong effect on the success of the 

separation in the cascade. This is shown by Storti et al. in simulated moving bed processes 

[39,40]. They have studied the effect of substrate affinity and feed composition on the flow 

ratios on both sides of the feeding stage in simulated moving bed processes. Similar to their 

results, we have found that a too high (pB;; results in migration of all enantiomers with the 

bulk phase, so that eeM,i = 100% and ee^ = 0%. The reverse is the case when <PB,, is too low 

(e«M,i = 0% and ee^^ = 100%). Of course, in the cases where the ee = 100% there is no yield. 

The optimal <ps,i increases with ctD/L,int (Fig. 6a) and KL (not shown). Consequently, a larger 

membrane area per stage is required to separate the micelles from the bulk phase. On the 

other hand, the required number of stages decreases upon increasing aD/L,mt- Hence, this 
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should be optimized. Moreover, the required number of chiral selector molecules (CS) per 

enantiomer entering the cascade decreases, since 9M,; - 1 - <PB,; at a constant p of 1. 

CS / enantiomer (-) <PB,;,opf(-) 

Figure 6. Cascade calculations using Langmuir equilibrium model, (a) number of chiral selector 
molecules entering the cascade per enantiomer and the coexisting optimal stage cut of the 
bulk phase ((pB,,,opt), (b) sensitivity of eeSum for deviation in cpB,i from <PB,i,opt-

Since stage cuts are an important factor in the separation performance of the cascaded 

system, pump stability should be guaranteed. Fig. 6b shows that the sensitivity of eesum 

increases upon KL. Similar to our findings, Mazzotti et al. have calculated a decrease in 

robustness upon increasing KL, in their case upon increasing feed concentration [36]. The 

increased sensitivity at higher KL is also expressed by the V-shaped extraction factor profiles 

(see section 'Affinity of microheterogeneous media for the substrate')- Therefore, the Acpopt-

window satisfying the eesam criterion, should be maximized to improve the robustness of the 

system [39]. 

The concentration difference over the stages in the cascade can be reduced by a reflux, and 

therefore improve the separation, since it prevents the low affinity enantiomer to leave the 

system from stage 1 and facilitates it to leave the system from stage n. However, calculations 

(K = 60, oiD/L.int = 1.9) show that the reflux ratios [33] of the high and low affinity enantiomers 

must be 2 and 10, respectively, to level the concentration profiles, which results in large 

regeneration flows. 
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So far, we have assumed that all cpB,< are the same for i < m and for i > m, respectively. By 

tuning the stage cuts in each stage, the extraction factors can be set to values opposite from 

one. However, controlling all flows independently increases the system costs. 

From dimensionless numbers back to system dimensions 

In addition to the insight in the relation between the physical parameters describing the 

separation process, dimensionless numbers facilitate the scale-up of the separation process. 

For example, given one flow in the system the dimensionless stage cuts relate this flow to all 

other flows in the system. Table 5 shows the necessary system dimensions to separate a 

certain amount of enantiomers per day. 

From case A it is concluded that the low racemic mixture concentration results in large flows 

through the system, so that a large membrane area is required. Moreover, the system is very 

large (6.5 m3 per stage) as a consequence of the slow complexation, 3 • 10"4 s"1 [6]. In 

addition to the extra costs of a larger apparatus, large amounts of chiral media are present in 

the apparatus, 605 kg. Since it is expected that the chiral media will be the cost determining 

factor of the separation system, it is desired to improve the complexation kinetics. Note that 

the complexation rates of both Cu11 by hydroxyoximes in CTAB micelles [41] and D,L-Phe 

by N-decyl-L-hydroxyproline in emulsion liquid membranes [42] are only in order of 

seconds. If the amount of selector in the system is restricted to 1 kg (equal to the daily 

separated amount of racemic mixture), it is necessary to increase the complexation rate to 

0.18 s"1 (case B) Accordingly, each stage has a volume of approximately 1 liter and requires 

2.7 m2 membrane. 

Since the complexation is not limited by diffusion [6], it can be concluded that the complex 

formation itself is the rate limiting factor in the complexation process. Selector engineering is 

the apparent instrument to develop faster complexation processes. 
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Table 5. Required cascade dimensions in order to separate 1 kg of racemic mixture per day. The 
required dimensions for an eesum of 199 % have been calculated for two cases. Case A 
represents the conditions under which the cascaded experiments have been conducted 
using the model system [7]. Case B represents a desired enantioselective medium that, 
compared to the model system: (i) contains a higher selector concentration (40 mM), (ii) 
has a lower affinity for the enantiomers (KL = 0.063 mM"') and (iii) performs faster. 
Parameters with a grey background have been fixed, others have been calculated using 
these constraints. For both cases: n = 60, aD/L int= 1-9, P = 1, <PB K / < m - 0 .775, <PB,™ <, < „ = 
0 .779. 

productivity (kg / day) 

racemic mixture feed (mM) 

bulk phase flow into stage 1 (L / s) 

system membrane area (m2) '"' 

complexation rate constant (s1) 

residence time (s) 

system volume (m3)(fc) 

selector in system (kg) 

A 

1 

6.0 

0.50 

2.2-

3.0-

I.I 

3.9-

6.1 • 

103 

10" 

Itt4 

102 

102 

B 

1 

80 ";) 

3.8 • 10-2 

1.6- 102 

0.18 

18 

5.0 • 10": 

1 

(o) UF experiments resulted in a permeate flux of 50 L / m2 • h [7]. 
(6) residence time = 3 / complexation rate constant. 
<c) Phe solubility at 25 °C. 
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Concluding remarks 

This study clearly proves the suitability of microheterogeneous media (in our case micelles) 

in cascaded ultrafiltration for molecular separations. The separation of D,L-Phe by 

cholesteryl-L-glutamate can be adequately described by Langmuir isotherms. The validated 

separation model can be used to predict the number of stages necessary to reach high purity 

products. 

The different measured enantioselectivities for different amino acids, prompted the 

Laboratory of Organic Chemistry to do molecular modeling. Quantum mechanical 

calculations on model compounds show that subtle changes (e.g. due to a change in the 

number of coordinating water molecules), lead already to major changes in the overall 

structures. Therefore, in order to perform accurate calculations on large Cu11 bis-amino acids 

complexes, it is recommended to use QM/MM calculations. In this way, the metal ion and its 

direct surroundings are described by quantum mechanical methods, whereas other parts of the 

complex are described by molecular mechanics. 

Model calculations show that the separation of enantiomers in a cascaded system is only 

successful within a certain K-window (K= enantiomer feed concentration multiplied by 

its affinity constant). Consequently, the productivity of the separation process can be 

improved by a reduction in affinity of the microheterogeneous media for the enantiomers. 

Moreover, the contribution of a higher enantioselectivity to separation decreases sharply at 

enantioselectivities higher than 10. Furthermore, the desired increase in selector 

concentration from tenths of mM to tens of mM shows that another media must be applied, 

due to the limited thermodynamic stability of micelles at high surfactant concentrations. So, 

medium engineering should focus on the development of separation media characterized by a 

high selector concentration and weak interactions with enantiomers. For this, one can think of 

polymerized micelles or dendrimers. 

Ultrafiltration of microheterogeneous media in cascaded systems utilizes the benefits of 

chromatographic and distillation processes: preferential binding under mild conditions and 

counter-current flow of both the micellar phase and the bulk phase through the apparatus, 

respectively. Therefore, this concept provides a new basis for the development of large scale 

separation techniques. 
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Nomenclature 

Acs required area for selector/enantiomer complex (nm2) 

cej unbound concentration in stage /' (mM) 

CFIC enantiomer feed concentration (5 0% of racemic mixture) (mM) 

dv media particle diameter (nm) 

ee enantiomeric excess (%) 

eesam sum of ees,n and eeu.i (%) 

Ke affinity constant (mM"1) 

n number of stages (-) 

qe,i bound enantiomer concentration in stage i (mM) 

<7 S ] F selector concentration in <I>M,n+i (mM) 

The enantiomer feed concentration (CF,£) is half of the racemic mixture feed concentration. 

Dimensionless numbers 

aD/L,int enantioselectivity Ku I K]_ 

(3 relative selector concentration <7S,F / CF 

E volume fraction of media particles in solution 

(PM,I stage cut of micellar phase leaving stage / 4>M,, / (OB.J+OM,,) 

CPB,, stage cut of bulk phase leaving stage i (= 1 - (PM,;) ^B , / / ( ^B . J+^M, : ) 

KL relative affinity for the L-enantiomer K^cr 

Ag, extraction factor in stage i Pei (1 - cpB,;) / <PB,I 

Pei partition factor in stage i (qe,i + cej) I ce,t 
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An apostrophe indicates a stage cuts of a flow entering a stage. The subscripts M, B, e, i and 

m represent the micellar phase, the bulk phase, the D- or L-enantiomer, the stage number and 

the feeding stage number, respectively. 
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Appendix 

Nonionic surfactants used in separation experiments. Tween surfactants are characterized by 

a common head group of sorbitan and poly(ethylene oxide), where only the alkyl tail group 

differs in length (C,,-sorbitan-E2o). Brij surfactants differ both in tail as in head group length 

(QJv)-

trivial name Chemical name p 

Tween 20 Polyoxyethylene(20)(a) sorbitan monolaurate 

Tween 40 Polyoxyethylene(20) sorbitan monopalmitate 

Tween 60 polyoxyethylene(20) sorbitan monostearate 

Tween 80 polyoxyethylene(20) sorbitan monooleate 

Brij 30 polyoxyethylene(4) lauryl ether 

polyoxyethylene(lO) lauryl ether 

Brij 35 polyoxyethylene(23) lauryl ether 

Brij 56 polyoxyethylene(lO) cetyl ether 

Brij 58 polyoxyethylene(20) cetyl ether 

Brij 76 polyoxyethylene(lO) stearyl ether 

Brij 78 polyoxyethylene(20) stearyl ether 

(a) length of hydrofilic head group as number (r) of ethylene oxide units. 

11 

15 

17 

17 

11 

11 

11 

15 

15 

17 

17 



SUMMARY 

The fact that the mirror images of chiral compounds (enantiomers) can have different 
biological activities has forced pharmaceutical, food and agrochemical industries to develop 
methods for the production of optically pure compounds. Optically pure compounds can be 
directly obtained from the chiral pool or by (bio)chemical (total) synthesis. Additionally, the 
desired compounds can be separated from racemic mixtures. The production of these 
mixtures is more or less straightforward, although its separation is not, since their physical 
properties only differ in chiral media. 

At Wageningen University a new enantiomer separation system is under development that is 
based on the ultrafiltration (UF) of enantioselective micelles containing chiral Cun-amino 
acid derivative selector molecules. The selector molecules preferentially form a ternary 
complex with one enantiomer of a pair of enantiomers, while unbound enantiomers can pass 
the membrane during the UF process. We have studied the separation of D-, and L-
phenylalanine (Phe) enantiomers by UF of cholesteryl-L-glutamate (CLG) anchored in 
nonionic micelles. Since one single UF stage is inadequate for nearly complete (99+%) 
separations of both enantiomers, the separation has been studied in a cascaded system of 
multiple UF stages. 

A two component Langmuir model is developed that predicts the competitive complexation 
at various pH. Both independent experiments and statistics show that nonselective 
complexation and membrane rejection of unbound enantiomers can be neglected if compared 
to the enantioselective complexation by CLG. It is shown that complexation only occurs at 
pH 7 and up. To design an economically attractive separation process, regeneration of D-Phe 
saturated micelles leaving the multistage system is inevitable. Regeneration, i.e. recovery of 
enantioselective micelles for reuse, is possible at pH < 4. To keep the salt production to a 
minimum, the shift in pH between the separation and the regeneration process must be 
minimized. Therefore, a separation process at pH 7 seems attractive. 

The Linear Driving Force model describes both the complexation and decomplexation rates 
of enantiomers by the enantioselective micelles. The complexation is not instantaneous, 
characteristic complexation time approximates one hour. Decomplexation of both 
enantiomers is even slower, fortunately, a rapid exchange of bound L-Phe by unbound D-Phe 
improves the decomplexation rate of L-Phe. This exchange process can be described by a 
second order LDF model. Since the enantioselectivity is not kinetically controlled, it is 
expected that the selector effectiveness is fully attained when each stage is at equilibrium. 

Using the previously estimates Langmuir isotherms a model has been developed that predicts 
the separation by enantioselective micelles in a cascade of UF stages. This separation model 
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has been validated by a cascaded system containing five stages and by simulating a cascade 
of 60 stages in a single stage bench scale system by controlling its enantiomer feed 
concentrations. In both systems, the model has proven its suitability to adequately describe 
the separation of both Phe enantiomers. This validated separation model has been used to 
optimize the number of stages necessary to reach high purity products. 

Calculations with this validated model have shown that the following aspects can be effected 
to improve the performance of the counter-current separation system: 

• An increase of aD/L,int (intrinsic enantioselectivity) up to 10 strongly reduces the required 
number of stages to attain high purities of both enantiomers. Higher values of anoint do 
not greatly reduce the number of stages. 

• A reduction in affinity allows to proportionally increase the feed concentration. 
• The selector concentration should be in the same order as the enantiomer feed 

concentration. Hence, operating at high feed concentrations implies high selector 
concentrations. Reviewing several microheterogeneous media, such as micelles, vesicles, 
polymerized micelles, and dendrimers, has shown that only polymerized micelles and 
dendrimers can anchor sufficient chiral selectors in order to separate Phe enantiomers at 
their solubility concentration. 

• Ultimately, the slow complexation rate is responsible for a large apparatus. Improving the 
complexation rate reduces the system volume and hence reduces the amount of chiral 
selectors present in the system. 

This research has made clear that UF of enantioselective micelles in a cascaded system is a 
promising new technique to separate enantiomers at preparative scale. This concept exploits 
the advantageous aspects of chromatographic and distillation processes: preferential binding 
under mild conditions and counter-current flow, respectively. In general, this UF process can 
be applied for any aqueous solute separation, characterized by weak and fast substrate 
interactions and a high selector concentration. 



SAMENVATTING 

Het feit dat de spiegelbeelden van chirale componenten (enantiomeren) verschillende 
biologische activiteiten kunnen vertonen, hebben farmaceutische, voedingsmiddelen-, en 
agrochemische industrieen er toe gezet methoden te ontwikkelen die de productie van 
enantiomeer-zuivere stoffen op industriele schaal mogelijk maakt. Deze stoffen kunnen direct 
gewonnen worden uit de natuur of kunnen worden verkregen door (bio)chemische synthese. 
Daarnaast kunnen de gewenste chirale componenten gescheiden worden uit een racemaat 
(50/50 mengsel van beide spiegelbeeldmoleculen). De productie van een racemaat is min of 
meer eenvoudig, terwijl de scheiding daarvan dit niet is, omdat de verschillen tussen beide 
enantiomeren alleen tot uiting komen in een chirale omgeving. 

Binnen Wageningen Universiteit is een nieuw enantiomeerscheidingssysteem in ontwikkeling 
dat gebaseerd is op ultrafiltratie (UF) van enantioselectieve micellen die chirale 
selectormoleculen (een Cun-aminozuurderivaat) bevatten. Deze selectoren vormen preferent 
een complex met een van beide typen enantiomeren, terwijl ongebonden enantiomeren het 
membraan kunnen passeren gedurende het filtratieproces. Micellen kunnen het membraan 
niet passeren. We hebben de scheiding bestudeerd van D- en L-fenylalanine (Phe) door 
cholesteryl-L-glutamaat selectoren (CLG), die verankerd zijn in ongeladen micellen. Omdat 
een enkele UF-eenheid niet toereikend is voor een bijna volledige scheiding (99+%) van beide 
enantiomeren, is de scheiding bestudeerd in een serie van UF-eenheden (meertraps). 

Een Langmuir model is ontwikkeld die de concurrerende complexatie bij verschillende 
zuurgraden (pH) beschrijft. Zowel onafhankelijke experimenten als statistische analyse tonen 
aan dat niet-enantioselectieve complexatie en membraanrejectie van ongebonden 
enantiomeren verwaarloosd kan worden indien het vergeleken wordt met de selectieve 
complexatie door CLG. Aangetoond wordt dat complexatie alleen bij pH 7 en hoger 
plaatsvindt. Om een economisch aantrekkelijk scheidingsproces te ontwerpen, is regeneratie 
van verzadigde micellen, die het meertrapssysteem verlaten, onontkoombaar. Regeneratie, 
terugwinning van de enantioselectieve micellen voor hergebruik, is mogelijk bij pH 4 en 
lager. Om de zoutproductie tot een minimum te beperken, moet de pH stap tussen het 
scheidings- en het regeneratieproces geminimaliseerd worden. Daarom lijkt een 
scheidingsproces bij pH 7 aantrekkelijk. 

Het Linear-Driving-Force-mode\ beschrijft zowel de complexatie als decomplexatie 
snelheden van de enantiomeren door de enantioselectieve micellen. De complexatie is niet 
ogenblikkelijk, de karakteristieke complexatietijd benadert een uur. Decomplexatie van beide 
enantiomeren is zelfs trager, gelukkig, verbetert een snelle uitwisseling van gebonden L-Phe 
door ongebonden D-Phe de decomplexatiesnelheid van L-Phe. Dit uitwisselingsproces kan 
beschreven worden door een tweede orde LDF model. Omdat de enantioselectiviteit niet 
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snelheidsgecontroleerd is, wordt verwacht dat de selectoreffectiviteit ten voile benut wordt 
indien elke trap in evenwicht is. 

Gebruikmakend voor de Langmuir-isothermen is een model ontwikkeld dat de scheiding door 
enantioselectieve micellen in een serie van UF-eenheden beschrijft. Dit scheidingsmodel is 
gevalideerd door een serie van vijf trappen en door een benadering van een serie van 60 
trappen met een enkeltrapssysteem op werkbankschaal door sturing van de 
voedingsconcentraties van de enantiomeren. In beide systemen heeft het model bewezen de 
scheiding van beide enantiomeren adequaat te kunnen beschrijven. Dit gevalideerde 
scheidingsmodel is gebruikt om het aantal trappen te optimaliseren die nodig zijn om 
producten met hoge zuiverheid te verkrijgen. 

Berekeningen met het gevalideerde scheidingsmodel hebben aangetoond dat de volgende 
aspecten gebruikt kunnen worden om de prestatie te verbeteren van het meertrapssysteem: 

• Een toename van aD/L,int (intrinsieke enantioselectiviteit) tot 10 reduceert het benodigde 

aantal trappen om producten met hoge zuiverheid te verkrijgen drastisch. Hogere waarden 

van aD/L,int hebben nagenoeg geen effect op het benodigde aantal trappen. 

• Een afname in affiniteit maakt een toename in racemaatvoedingsconcentratie mogelijk. 

• De selectorconcentratie moet van dezelfde orde zijn als de voedingsconcentratie van een 

van beide enantiomeren (50% van de racemaatconcentratie). Verschillende 

microheterogene media bestuderend, zoals micellen, vesikels, gepolymeriseerde micellen 

en dendrimeren, heeft aangetoond dat van deze media alleen de twee laatst genoemde 

voldoende chiraalselectoren kunnen bevatten om Phe enantiomeren te kunnen scheiden 

bij de D,L-Phe oplosbaarheidsconcentratie (in de orde van 80 mM). 

• Tenslotte leidt de lage complexatiesnelheid tot een groot systeem. Verhoging van de 

complexatiesnelheid reduceert het volume van het systeem en daarmee ook de 

hoeveelheid selectoren die aanwezig zijn in het systeem. 

Dit onderzoek heeft duidelijk gemaakt dat UF van enantioselectieve micellen in een 
meertrapssysteem een veelbelovende nieuwe techniek is om op grote schaal enantiomeren te 
scheiden. Dit concept maakt gebruik van de voordelige aspecten van chromatografische en 
destillatieprocessen: preferente binding onder milde condities en het tegenstroomprincipe, 
respectievelijk. In het algemeen kan dit UF-proces toegepast worden voor iedere scheiding in 
waterachtige oplossingen, gekarakteriseerd door zwakke en snelle substraatinteracties en een 
hoge selectorconcentratie. 
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