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Stellingen 

1. Bij onderzoek aan de oxidatieve pentose-fosfaat-route in planten wordt in net algemeen 

te weinig rekening gehouden met het feit dat deze gelocaliseerd is in zowel het cytosol 

als in de plastiden. 

(dit proefschrift) 

2. De triose-hexose-fosfaat-cyclus in celsuspensies van de peen is altijd actief, 

onafhankelijk van de groeifase, omdat deze cyclus alleen gereguleerd wordt door de 

beschikbaarheid van koolstof-intermediairen. 

(dit proefschrift) 

3. Bij de verklaring van fysiologische verschillen in de reacties op glucose en fructose 

wordt ten onrechte geen rekening gehouden met de ongelijke 'compartimentatie' van 

glucokinase en fructokinase activiteit in het cytosol. 

(dit proefschrift) 

4. Zodra een behandeling van plantencellen leidt tot een sterk verhoogde ademhaling, zal 

hierdoor de gemeten activiteit van futiele cycli sterk onderschat worden. 

(dit proefschrift) 

5. Aangezien de respiratie van celsupensies bij een relatieve zuurstofspanning van 20% niet 

maximaal is, zal de ademhaling in intact, niet-fotosynthetiserend plantenweefsel beperkt 

worden door de zuurstofspanning in vivo. 

6. Indien futiele cycli een belangrijke rol spelen in de flexibiliteit van planten ten aanzien 

van nun milieu, zullen planten die een lage activiteit van deze cycli vertonen, slecht 

geadapteerd zijn aan het wisselende Hollandse weer en beter gedijen in een klimaat met 

constante zomers. 

7. De regulatie van futiele cycli in plantencellen vormt een aangrijpingspunt voor 

veredelaars van glas-tuinbouwproducten: de energie die planten in deze cycli steken zou 

beter gebruikt kunnen worden voor een verhoging van de opbrengst, omdat aanpassing 

van de koolstofhuishouding via deze cycli overbodig is in kassen. 



8. De aanpassing van zijn college-dictaten inzake de 'behandeling van homoseksualiteit' 

maakt, gezien het standpunt van de kerk, van bisschop Eijk een wolf in schaapskleren. 

9. Het fokprogramma om de Korenwolf te redden, in plaats van het behouden van het 

leefgebied waarin deze dieren teruggeplaatst zouden kunnen worden, geeft aan dat 

mensen vaak hun geweten sussen met kortzichtige redeneringen. 

10. Tijdens de zomeimaanden voorkomt een NEE-NEE sticker op de brievenbus de toevloed 

van folders en huis-aan-huis-bladen nauwelijks, waaruit blijkt dat de vakantie-bezorger 

ook niet leest. 

11. Het toiletgebruik wordt in veel openbare gebouwen onnodig verseksualiseerd door het 

instellen van aparte dames- en heren-toiletten. 

12. Een reclame-aanduiding als "zuurkool vers uit het vat" verhult de werkelijke aard van 

een voedingmiddel. 

Stellingen, behorend bij het proefschrift 'Metabolic cycles in primary metabolism of cell 

suspensions of Daucus carota L. analysed by 13C-NMR\ door Janhendrik Krook. 

Wageningen, 7 december 1999. 
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Voorwoord 

Aan het eind van mijn studie in Groningen, kreeg ik de mogelijkheid een stage te 

doen bij de vakgroep Moleculaire Fysica van de -toen nog- Landbouwuniversiteit 

Wageningen. Daaruit vloeide in 1992 een aanstelling voort als 010 bij de afdeling 

Plantenfysiologie: ik ging onderzoek doen aan de suikerhuishouding van planten-

cellen met behulp van 'NMR'. Veel mensen hebben hun steentje bijgedragen; 

anderen hebben zich 7 jaren afgevraagd wat ik in vredesnaam deed in Wageningen. 

Welnu, het wetenschappelijk eindverslag lees je in de volgende hoofdstukken, aan de 

gebeurtenissen die vooraf gingen -en met name de mensen die mij erbij hebben 

geholpen- wijd ik hier een paar woorden. 

De betreffende groepen Moleculaire Fysica en Plantenfysiologie bedank ik voor mijn 

stationering op hun grondgebied. Bij de vakgroep Moleculaire Fysica stond Adri de 

Jager altijd op de achtergrond om technische problemen direct uit de wereld te 

helpen, waardoor de schaarse meettijd efficient benut kon worden. Cor Dijkema 

heeft mij -met veel geduld- geleerd om de NMR-machine nauwkeurig af te stellen 

met behulp van de UNIX-software. De laatste jaren, de schrijffase, heeft Cor als 

copromotor de NMR-kant van de artikelen en hoofdstukken voor mij bewaakt. 

Bij de werkeenheid Moleculaire Biologie verdient Marijke Hartog alle eer. Zij heeft 

mijn onderzoek steeds voorzien van 'embryogene' celsuspensies. Marijke, jouw A10 

en A+ lijnen zijn in dit proefschrift verwerkt! 

Bij de werkgroep Plantenfysiologie, mijn vaste stekkie met laboratoriumruimte en 

kantoor, heb ik de meeste tijd doorgebracht. Ik heb daar de hele periode met fijne 

collega's mogen werken. Naast het echte werk was vooral de koffiehoek door de 

jaren heen een grote bron van inspiratie. Een aantal mensen verdient een extra 

bedankje, omdat zij mij vaak problemen hebben ontnomen. Wytske en Trees, 

bedankt voor het eindeloos verwerken van post, bestellingen en andere dingen. Jan 

en Ruth, als technische tovenaars hebben jullie vaak al 's ochtends om half negen 

mijn meetopstellingen gefixt! Op het lab zelf heb ik door de jaren heen heel wat 

collega's meegemaakt, die onontbeerlijk waren om de talloze problemen en 

proefopzetten te bespreken! Vooral Diaan, Marc & Mark hebben hun geestelijke 

ondersteuning gegeven. Mark, je was als kamergenoot ook onvergetelijk! Patrick en 

Wessel waren als "computer-assistants" altijd bereid om mijn gevecht met de diverse 



computers in goede banen te leiden. 

Vrij snel na mijn aantreden mocht ik een student begeleiden; samen met hem heb ik 

de eerste resultaten behaald, die het begin van de suiker-proeven in de andere 

hoofdstukken vormden. Andre, de resultaten in Hoofdstuk 5 zijn voor een deel van 

jou afkomstig! 

De maandelijkse besprekingen met mijn copromotor Dick Vreugdenhil en promotor 

Linus van der Plas, zetten alles altijd weer op een rijtje, waarna een eindeloze reeks 

nieuwe proeven vanzelf volgde. Het was dan ook een hele omslag om los te komen 

uit dit ritme en om het lab in te ruilen voor de tekstverwerker. Jongens, -ook voor jullie-

het zit er op! Ik heb de efficiente besprekingen van artikelen erg gewaardeerd, deze 

leidden altijd tot een betere volgende versie! 

In de afgelopen jaren is ook het leven buiten de universiteit heel belangrijk geweest. 

Naast alle dingen die ik heb meegemaakt met vrienden en kennissen, gaven ook alle 

mensen van het COC veel inspiratie en inzicht in het leven! De verschillende werk-

groepen waar ik mee heb samengewerkt, en de laatste IV2 jaar het bestuur, hebben 

in mijn hart een warm plekje veroverd. Hans, het volgende boekje is vrijwel 

volledig op jouw ouwe rammelbak getypt! 

Mijn familie wekte steeds de indruk er in te geloven dat ik dit boekje zou voltooien. 

Ik ben dan ook blij dat ik jullie kan laten zien waar ik mij de afgelopen jaren mee 

heb bezig gehouden. Mocht dit boekje niet tot duidelijkheid leiden, luister dan op de 

promotie zelf vooral naar mijn verhaaltje vooraf. Mam, alle zorgen en stimulering 

heb ik erg gewaardeerd: het is af! 

Janhendrik 
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Abbreviations 

ADPG ADP-glucose 

DW dry weight 

FBPase fructose-1,6-bisphosphatase 

FW fresh weight 

Ke effector concentration at half maximum activity 

K,,, substrate concentration at half maximum activity 

NMR nuclear magnetic resonance 

NTP nucleotide triphosphate 

OPPP oxidative pentose phosphate pathway 

PEMs proembryogenic masses 

PFP PPrdependent fructose-6-phosphate phosphotransferase 

PFK ATP-dependent fructose-6-phosphate phosphotransferase 

PPi (inorganic) pyrophosphate 

SPS sucrose phosphate synthase 

SUSY sucrose synthase 

UDPG UDP-glucose 

UGPase UDP-glucose pyrophosphorylase 

VACs large, vacuolated cells 



Chapter 1 

General introduction 



Introduction 

In plants photosynthesis is responsible for the primary production of carbohydrates. These 

carbohydrates are used as building blocks for biosynthesis and for respiratory purposes 

yielding ATP and reducing equivalents (NAD(P)H). ATP is used to supply the activation 

energy of biosynthetic reactions while in the reduction of nitrate and sulphate reducing 

equivalents are consumed. Carbon metabolism in green plants is complicated since they 

consist of a large number of different tissues and cell types, and sugars are synthesized and 

consumed simultaneously. However, since heterotrophic cell suspensions do not possess a 

photosynthetic apparatus, these cells will only take up and convert sugar. The amount of 

sugar supplied in the experiment is known, and suspension cultures generally form a 

relatively homogenous population of cells; representative samples can be taken easily and the 

partitioning of carbon between biomass production, storage carbohydrates and respiration can 

be determined. Therefore, heterotrophic cell suspensions are widely used as model-systems 

in research on carbohydrate and energy metabolism. 

Embryogenic cell suspensions 

Cells suspensions of Daucus carota often are not completely homogeneous since they are 

embryogenic. It was discovered in 1958 that suspension-cultured cells of Daucus, 

resuspended at low density in the absence of the auxin 2,4-D, form somatic embryos at high 

frequency (Steward 1958). These cell suspensions consist of different cell types, identified 

as clusters of small cytoplasm-rich cells, called proembryogenic masses ("PEMs"), large 

vacuolated cells ("VACs") and an intermediate state, the isodiametric cells (Fig. 1). Since 

cytoplasm-rich PEMs have a higher density than VACs, the different cell types can be 

separated by percoll density centrifugation (Ulmer and Flad 1979). PEMs show a high cell 

division activity and may differentiate into somatic embryos, while VACs show a low rate 

of cell division and low differentiating capacity. However, PEMs might develop from VACs 

and isodiametric cells, or vice versa, within Daucus carota suspension cultures (Steward 

1958; Toonen et al. 1994). 

Physiologically, the various cell types, i.e. PEMs and VACs, might differ significantly with 

respect to sugar and starch accumulation: PEMs store higher levels of sucrose and starch than 
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VACs (Wurtele et al. 1988). Dijkema et al. (1988) showed different ratios of 

sucrose/hexoses in the various cell types. 

ryr 

^ v / • • - " • 

'*tt.$/\J^'JHifc 

Figure 1 Photograph of cells of a 7 days old embryogenic batch culture of Daucus 
carota showing different cell types. P = proembryogenic mass, V = large 
vacuolated cell and I = isodiametric cell. Bar = 100 /nm. 

In addition, a cell line containing a high percentage of PEMs showed low label exchange 

from [l-13C]-glucose to [6-13C]-sucrose and hexoses, while a cell line with less PEMs showed 

a higher percentage of label exchange (Dijkema et al. 1990). Since this exchange is supposed 

to occur at the level of triose phosphates after which resynthesis of hexose (phosphates) 

occurs, the glycolytic and gluconeogenetic fluxes were suggested to be different in the 

various cell types. Furthermore, a relation between the embryogenic potential of PEMs and 

the level of glucose was proposed (Verma and Dougall 1977; Dijkema et al. 1988; Tremblay 

and Tremblay 1991). 



Sugar uptake 

In general, carbon dioxide fixation in plants takes place by photosynthesis in "source" tissues, 

after which specific transport sugars are translocated to the non-photosynthetic "sink" tissues. 

Although plants from some genera transport stachyose, raffinose or verbascose, e.g. in the 

Leguminosae family (Frias et al. 1999) or sorbitol as in the Rosaceae family (Beruter et al. 

1997), most higher plants translocate sucrose; this also applies to carrot (Hole and Dearman 

1994). Next to transport sugar, sucrose is generally known as a storage sugar in for instance 

red beet (Getz 1991) and carrot roots (Hole and Dearman 1994). In intact plants sucrose is 

transported through the phloem. Phloem loading is known to occur in the source 

apoplastically by means of sucrose carriers (Hole and Dearman 1994; Schulz et al. 1998) as 

in Fabaceae and Scrophulariaceae or symplastically via plasmodesmata in for instance 

Lamiaceae and Saxifragaceae (van Bel et al. 1994). In sink tissue, phloem unloading again 

might take place symplastically or apoplastically; in the latter case carrier-mediated sucrose 

uptake might take place in the sink parenchyma cells (Shakya and Sturm 1998). Also, 

hydrolysis of sucrose might take place in the apoplast, followed by concomitant uptake of the 

resulting hexoses. 

Heterotrophically grown cell suspensions take up their sugars from the apoplast. Cell 

suspensions generally possess high activities of cell-wall-bound invertase (Kanabus et al. 

1986; Callebaut et al. 1987); therefore it is most likely that they take up hexoses when 

sucrose is fed in the medium. Hexose carriers are reported for different plant species and are 

known to take up both glucose and fructose (Felker et al. 1991; Tubbe and Buckhout 1992). 

Different homologous hexose transporter proteins were reported for Ricinus communis 

seedlings showing different expression patterns in sink and source tissues (Weig et al. 1994). 

Furthermore, expression of a leaf sucrose transporter was found to be diurnally modified in 

Solarium tuberosum (Kuhn et al. 1997). Next to active uptake via carriers (Botha and 

Kennedy 1998), diffusion-like uptake is reported at high sugar concentrations (Stanzel et al. 

1988b; Botha and Kennedy 1998). These sugars are thought to pass the lipid bilayer through 

spaces between lipid and transmembrane protein molecules. It is supposed, that this leakage 

is much faster through the plasmamembrane than through the tonoplast, since the first 

contains much more proteins (Aked and Hall 1993). 
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In the research described in this thesis, batch-grown cell suspensions of Daucus carota L. 

were used to study the uptake of hexoses, and subsequent conversion into sucrose and starch. 

By using specifically labelled [1-13C]- and [6-13C]-glucose and fructose in nuclear magnetic 

resonance (NMR) experiments it is possible to follow these molecules through the different 

pathways in primary metabolism, e.g. glycolysis, gluconeogenesis and the oxidative pentose 

phosphate pathway (OPPP). 

Enzymes involved in hexose phosphorylation. 

Once taken up by the cell, glucose and fructose might be transferred to the vacuole (Preisser 

et al. 1992) or phosphorylated in the cytosol at the expense of ATP. Hexose phosphorylation 

is known to take place by specific fructokinases and unspecific glucokinases, the latter 

phosphorylating glucose preferentially, but, also showing affinity towards fructose and 

mannose (Doehlert 1989). Therefore, the latter enzymes are often called "hexokinases" 

(Schnarrenberger 1990; Renz and Stitt 1993). 

Fructokinases are known to be regulated by substrate levels and product inhibition (Renz and 

Stitt 1993). Furthermore, fructokinase might use UTP in addition to ATP (Yamashita and 

Ashihara 1988; Bayesdorfer et al. 1989; Schnarrenberger 1990). Hexokinases, on the other 

hand, are predominantly active with ATP and their activity with UTP is only low. 

Furthermore, hexokinases are not subject to product inhibition (Schnarrenberger 1990). 

Sucrose and starch accumulation 

Sucrose, synthesized in the cytosol may be stored either in the cytosol, in the vacuole or both 

(Preisser and Komor 1991; Preisser et al. 1992). A second, non-osmotic storage 

carbohydrate in plants is starch. Starch is synthesized inside the plastids after uptake of 

hexose phosphates from the cytosol (Hill and Smith 1991; Neuhaus et al. 1993; Ross and 

Murphy 1993). The conversion of hexose-phosphate into ADPG might also partially occur 

in the cytosol as found for cereals (Villand and Kleczkowski 1993). 

Starch consists of mainly a(l,4)-glucan with various amounts of side chains coupled via 

a(l,6)-glucose. Starch may reach high levels in typical storage organs like potato tubers, 

seeds of faba bean (Viola et al. 1991) or cereals (Keeling et al. 1988; Batz et al. 1992). The 



equilibrium between sucrose and starch synthesizing capacity is dependent on the species; 

Daucus carota roots and cell suspensions synthesize about equal amounts of sucrose and 

starch (Keller et al. 1988; Ross and Murphy 1993). 

Cycling of carbohydrates and the use of parallel enzyme systems 

Besides storage of sugars in sink tissues and degradation in respiratory metabolism, a 

continuous cycling of carbon within cells is a well known phenomenon in plants. During this 

cycling, metabolic pathways are active while their products are not used instantaneously 

(Plaxton 1996). Instead, as long as the end-products are not needed they are cycled back, 

resulting in a simultaneous synthesis and degradation of metabolites. Since these metabolic 

conversions do not result in net production of (carbon) metabolites which are converted by 

other pathways, they are called 'futile cycles'. Futile cycles are reported within the primary 

carbon metabolism between triose and hexose phosphates (Keeling et al. 1988; Hatzfeld and 

Stitt 1990; Viola et al. 1991; Kosegarten et al. 1995), between hexoses and sucrose (Dancer 

et al. 1990; Wendler et al. 1990), between hexoses and pentoses using the OPPP and the 

gluconeogenetic pathway from triose phosphates to hexose phosphates (Wagner et al. 1987; 

Ernes and Fowler 1983; Hartwell et al. 1996; Redingbaugh and Campbell 1998) and to a 

lesser extent between hexoses and starch (Stitt and Heldt 1981; Hargreaves and ap Rees 

1988). 

Furthermore, plants possess different enzymes catalyzing the same reactions with different 

regulatory mechanisms. These 'enzyme-couples' are often connected with the futile carbon 

cycles and may therefore play a role in the physiological basis of these cycles in plants. For 

example, ATP-dependent fructose-6-phosphate phosphotransferase (PFK) and PPrdependent 

fructose-6-phosphate phosphotransferase (PFP) both convert fructose-6-phosphate into 

fructose-1,6-bisphosphate (Tobias et al. 1992). However, PFP catalyzes an reversible 

reaction while the PFK-catalyzed conversion is not reversible. Also, for the reverse reaction 

of fructose-1,6-bisphosphate into fructose-6-phosphate a irreversible enzyme exists, i.e. 

fructose-l,6-bisphosphatase (FBPase). This enzyme plays a role in photosynthetic tissues 

(Stitt et al. 1987); in non-green tissues it might be absent and PFP might replace its function 

(Entwistle and ap Rees 1990). 
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Although futile cycles may have appreciable costs in terms of energy consumption, 

advantages are also suggested, e.g. by Wendler et al. (1990), Hatzfeld and Stitt (1990) and 

Plaxton (1996). Futile cycles as well as the presence of parallel enzyme systems catalyzing 

the same reaction might make plants flexible in dealing with changing environmental 

conditions which occur very often in field situations. In this way futile cycles enable plants 

to restore the equilibrium between metabolites, if suddenly the flow through one or more 

pathways changes (Black et al. 1987). Possibly the coupling of a reversible and an 

irreversible reaction, using PPj and ATP, respectively, in these cycles plays a role in 

maintaining the desired levels of ATP and PP, (Dancer and ap Rees 1989). 

Cycling through the OPPP 

The OPPP converts hexose-6-phosphate into pentose-5-phosphate, producing 2 NADPH for 

each C02 which is released. The resulting pentose-5-phosphates may be cycled back to triose 

phosphates and hexose-phosphates, which might enter the OPPP again. In this way, glucose-

6-phosphate might be completely oxidized, yielding only C02 and NADPH, the latter feeding 

biosynthetic and reduction-reactions (Ernes and Fowler 1983; Redingbaugh and Campbell 

1998). Alternatively, the OPPP is able to interconvert pentose, erythrose and heptulose 

sugars, which are used in the biosynthesis of nucleic acids, aromatic amino acids or 

secondary metabolites (Wagner et al. 1987; Hagendoorn et al. 1991; Hartwell et al. 1996). 

Cycling of hexoses through sucrose 

Sucrose is known to be synthesized by sucrose phosphate synthase (SPS) in the cytosolic 

compartment (Goldner et al. 1991; Zhu et al. 1997). Degradation might occur in the cytosol 

by sucrose synthase (SUSY) or invertase (Dancer et al. 1990; Wendler et al. 1990) resulting 

in cytosolic sucrose cycles. After synthesis sucrose is also transported into the vacuole where 

hydrolysis might take place by acid invertase. When the resulting hexoses are transferred 

back to the cytosol, they can again be used as precursors for sucrose synthesis, leading to 

a mixed "vacuolar/cytosolic" sucrose cycle (Goldner et al. 1991, Lee and Sturm 1996). 

In the cytosol, hexose (phosphates) might immediately enter the sucrose cycle again, while 

in the vacuole hexoses are "protected" from hexose phosphorylating enzymes as long as they 



are not transferred from the vacuole to the cytosol. 

Cycling between triose and hexose phosphates 

Young, meristematic tissue often possesses high hexose and sucrose importing (sink) 

properties as well as high sucrose hydrolysing activity by SUSY and high levels of PFP 

(Spilatro and Anderson 1988; Dancer and ap Rees 1989; Ashihara and Sato 1993). PFP is 

connected with triose-hexose phosphate cycling as was shown in antisense-PFP plants of 

Solanum tuberosum which had a much lower label exchange than the untransformed plants 

(Hajirezaei et al. 1994). It is still not clear whether PFP is working mainly in the glycolytic 

direction (Botha et al. 1992), the gluconeogenetic direction (Hatzfeld and Stitt 1990), or both 

(Hajirezaei et al. 1994). Tobias et al. (1992) and Sung et al. (1988) suggested that PFK may 

act as a maintenance enzyme supplying substrates for respiration, while PFP is an adaptive 

enzyme supplying intermediates for biosynthesis and cycling of sucrose. 

Measuring of metabolic fluxes 

In order to determine the dynamics of metabolic cycles in plants the flux of metabolites 

through the different pathways should be known. 13C-labelled hexoses were supplied to the 

cells to study the conversion rate of hexoses by the various metabolic pathways by means of 

nuclear magnetic resonance (NMR). Next to the level of labelled sugar, also the total level 

of sugar must be known to calculate the changes in labelling percentage in time. 

HPLC is a sensitive technique for measuring total sugar concentrations as low as 10 /xM. On 

the other hand, 13C-NMR is a less-sensitive method which requires concentrations in the mM-

range. Since natural abundance 13C is only 1.1%, sensitivity can be increased almost 100-fold 

by using labelled substrates. 

The resulting pattern of labelling percentages provides information about the flux and 

turnover rate of carbohydrates through the various pathways and cycles. 

13C-Nuclear Magnetic Resonance (NMR) 

NMR is a technique which has been developed already fifty years ago, but is used as a tool 

to study plant metabolism from the beginning of the seventies (Farrar and Becker 1971). 
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Various nuclei can be measured by means of NMR, e.g. 13C, 14N, 15N, 23Na and 31P (Farrar 

and Becker 1971; Leibritz 1996; Schneider 1997). In biological research 'H, 31P and 13C are 

most commonly used. 'H is predominantly used for probing water (movement) to gain 

information about compartmentation or transport of water. 31P is used for measuring 

phosphorylated cell components like sugar phosphates and nucleotide phosphates. 

Furthermore, its pH-dependence makes it very useful for determining the pH in 

compartmentation studies (Loughman et al. 1989; Fox and Ratcliffe 1990; Quiquampoix et 

al. 1993). Although 13C is a less sensitive nucleus compared to 'H and 31P, 13C-NMR can be 

used to measure glucose, fructose and sucrose in plant cells. Since the natural abundance of 
13C is only 1.1 %, it is possible to specifically label the sugar molecules at a certain position 

(Breitmaier and Voelter 1987; Dijkema et al. 1990). Commercially 99.9% [n-13C]-labelled 

sugars are available for nearly every carbon position in the glucose or fructose molecules. 

We used high resolution ID Nuclear Magnetic Resonance (NMR) to measure the "amplitude" 

of different "resonance frequencies", to determine the amount of labelled carbon atoms 

within glucose, fructose and sucrose after feeding 99.9 % [1-13C]- and [6-13C]-labelled 

glucose and fructose, in extracts of cell suspensions and in cell suspensions in vivo. A major 

advantage of in vivo NMR-measurements is that they can be done non-destructively and are 

applicable to living plants, tissues or cell suspensions. Therefore, it is possible to follow the 

fate of a labelled substrate by gathering successive data points from the same sample. 

Figure 2 gives examples of natural abundance reference spectra of 50 mM glucose (A), 

fructose (B) and sucrose (C); each carbon atom has its own resonance frequency (expressed 

in part per million relative to the basic frequency of a standard of tetra methyl silane). 

Secondly, molecules may appear in different conformations: i.e. an a- or B- ring of 6 atoms 

(pyranose) or of 5 atoms (furanose). Thirdly, each atom has its own "response factor" which 

may differ significantly between the nuclei of sucrose, fructose and glucose depending on the 

molecular localisation (and therefore relaxation behaviour). The response factors of known 

concentrations of 13C shown in Fig. 2 are used to calculate the concentration of label 

determined in the experiments. Carbons attached to -OH groups resonate in the range of 60-

105 ppm (Figs 2, 3), and carboxylic carbons (attached to -OOH groups) in the range from 

120-170 ppm (Fig. 4, Breitmaier and Voelter 1987). 



(A) n.a. 13C-NMR spectrum of glucose 

65 105 ppm 95 85 75 55 

Figure 2 Natural abundance (n.a.) spectra of 50 mM solutions of glucose (A), fructose 
(B) and sucrose (C) in Gamborg's B5 medium. Glucose (G) shows 12 -
partially overlapping- peaks corresponding to carbons 1-6 in a and 6 
configuration. Fructose (F) occurs mainly in the pyranose (p) and less in the 
furanose (f) form, both in the 15 configuration. Minor peaks are from a-
configurations. Sucrose shows 12 peaks of the B-furanose of the fructosyl- (SF) 
and a-pyranose of the glucosyl-unit (SG). Molecules: schematic drawings of 
carbon-skeletons of sugars; only the C-l and C-6 carbons are indicated, bold 
bars represent the -OH groups. 
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Figure 3 Representation of a natural abundance (n.a.) in vivo spectrum of 7 days old 
batch-cultured Daucus carota cells (A) and a spectrum of 14 days old Daucus 
carota cells after labelling with [l-13C]-glucose in an airlift-system for 5 h (B). 
Symbols are as in Fig. 1. Spectra in A and B are accumulated scans of 1-h 
measurements, resulting in a higher signal/noise ratio for labelled carbon 
resonances in B. 

170 Ppm 

Figure 4 Example of the 13C03
2 resonance at 164.5 ppm in a 10% KOH solution with 

10 mM [l-13C]-glucose (resonating at 96.8 and 93.0 ppm) as internal 
reference. 
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Figure 3A shows an example of a natural abundance 13C-NMR spectrum of 7 days old 

Daucus carota cells. Figure 3B gives an example of 14 days old Daucus carota cells labelled 

with [l-13C]-glucose for 5 h. Next to [l-13C]-glucose (GJ also [l-13C]-fructose (FJ, sucrose-

glucosyl C-l (SGj) and fructosyl C-l (SF,) are observed. Furthermore, C-6 carbons are 

observed in fructose (F6) and sucrose (SG6 and SF6). 

Next to the sugars also C02 produced by the cells was determined. Figure 4 shows an 

example of the C03
2" resonance at 164.5 ppm and a reference of 10 mM [l-13C]-glucose 

resonating at 96.8 and 93.0 ppm. The differences in ratio of B and a-glucose C-l carbons 

in Fig. 2A and Fig. 4 are caused by differences in ionic composition of the solution 

(Gamborg's B5 medium versus 10% KOH), since ions influence the equilibrium between the 

a- and 6-conformation and relaxation behaviour of the spin labels. 

The observed exchange of label from C-l and C-6 carbons is supposed to occur at the level 

of triose phosphates, and thereby gives information about the glycolytic and gluconeogenetic 

flux; the difference in production of 13C02 from [1-13C]- and [6-13C]-glucose gives 

information about OPPP activity and the conversion from [l-13C]-glucose into sucrose and 

fructose gives information about the flux through the sucrose cycles. From the time-course 

of the subsequent appearance of label in glucose, sucrose and fructose conclusions can be 

drawn about the cellular localisation of the various sugar pools. 

High Performance Liquid Chromatography (HPLC) 

Total sugar levels were measured to calculate labelling percentages during the various 

experiments. Glucose, fructose and sucrose can be determined by a sugar-specific HPLC-

system of "DIONEX" to which a carbopac PA-1 column is connected which specifically 

binds -O" groups of carbohydrates at high pH (Tetteroo et al. 1995). Glucose, fructose and 

sucrose were eluted with 100 mM NaOH solution (Fig. 5A) and sugar-phosphates with a Na-

acetate gradient (Fig. 5B). The most abundant sugar phosphates in Daucus carota cells were 

glucose-6-phosphate, fructose-6-phosphate and glucose-1-phosphate. 
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Figure 5 Standard HPLC chromatogram of neutral sugars separated with 100 mM 

NaOH (A) and of phosphorylated sugars separated with a Na-acetate gradient 

(50-650 mM, right axis) in 20 mM NaOH on a DIONEX HPLC-system 

equipped with a carbopac PA-1 column at room temperature and 4 °C, 

respectively. 
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Scope of the thesis 

This thesis analyses the primary metabolism in Daucus carota cell suspensions, in order to 

understand more about the complex relationship between the different pathways, and the way 

they are regulated. Sugar uptake and conversion, including cycling of metabolites through 

different pathways were analyzed in logarithmic and stationary phase cells from batch 

cultures. 

In Chapter 2, special attention is paid to the question whether differences exist between the 

use of glucose and fructose by plant cells. Both molecules are formed by hydrolysis of 

sucrose and form the main carbon-source of the cells. The molecules resemble each other: 

the overall chemical formula is the same (Figs 2A,B). In addition, the phosphorylation 

products of glucose and fructose, glucose-6-phosphate and fructose-6-phosphate are known 

to be rapidly interconverted by the enzyme phosphoglucoisomerase. However, the stereo

chemical composition of glucose and fructose is different (Figs 2A,B) which might influence 

the stereo-specific uptake (Kanabus et al. 1988; Botha and Kennedy 1998) and 

phosphorylation (Doehlert 1989; Steward and Copeland 1993) and the regulation of gene 

expression by sugar sensing (Jang and Sheen 1994; Smeekens and Rook 1997). Sucrose 

cycling might be influenced by the difference in the inhibition of the degrading enzymes 

(Sebkova et al. 1995; Lee and Sturm 1996). A model is proposed in which glucose and 

fructose are taken up with different efficiencies by a hexose carrier in the plasmamembrane 

and are phosphorylated with different efficiencies by soluble fructokinases and mitochondrial-

associated hexokinases. 

The aim of the next two chapters (3 and 4) was to elucidate the extent to which carbon is 

cycled during different stages of batch cultured Daucus carota cells. Chapter 3 describes 

label exchange from C-l to C-6 carbons and the localisation of the OPPP in cytosol and 

plastids during long-term labelling of batch cultures grown for 14 days. Chapter 4 analyzes 

short-term labelling for 8 h of cells from different growth stages of batch-cultured cells. It 

was found that label exchange between C-l and C-6 carbons, the extent of cycling of sucrose 

and the amount of carbon cycling through the OPPP were dependent upon the growth stage 

and respiration rate. 

Chapter 5 describes the effect of PFP and the oxygen concentration on cycling of carbon 
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between hexose phosphates and triose phosphates and sucrose cycling in two carrot cell lines 

differing in the composition of cell types, i.e. PEMs and VACs. 

Finally, integrated models for the different carbon cycles described in the experimental 

chapters of this thesis are proposed for logarithmically growing cells (importing sugar and 

synthesizing storage sugars and starch) and stationary phase cells (mobilizing stored 

carbohydrates). The role of futile cycling of carbohydrates is discussed as a feature of plant 

metabolism necessary to overcome the changes in environmental conditions and stress factors 

to which plants are exposed. 
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Abstract 

Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as carbon 

source; either the glucose or the fructose was [l-13C]-labelled. In order to investigate the 

uptake and conversion of glucose and fructose during long-term labelling experiments in cell 

suspensions of Daucus carota L., samples were taken every two days during a two weeks 

culture period and sucrose and starch were assayed by means of HPLC and 13C-Nuclear 

Magnetic Resonance. The fructose moieties of sucrose had a lower labelling percentage than 

the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested 

to be responsible for this loss of label of especially C-l carbons. A combination of oxidative 

pentose phosphate pathway activity, a relatively high activity of the pathway to sucrose 

synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate 

could explain these results. Starch contained glucose units with a much lower labelling 

percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localised, 

oxidative pentose phosphate pathway was responsible for removal of C-l carbons of the 

glucosyl units used for synthesis of starch. Redistribution of label from [l-13C]-hexoses to 

[6-13C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a 

consequence of cycling between hexose phosphates and triose phosphates in the cytosol 

catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway 

mediated) sugar converting cycles exist in the cytosol and the plastid. 

Keywords: Daucus carota L. (cell suspensions), carbon-13 nuclear magnetic resonance 

(13C-NMR), carbohydrate cycling, oxidative pentose phosphate pathway, plastid 
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Introduction 

Heterotrophic plant cells growing in suspension cultures are dependent on import of 

carbohydrates from the medium. Sucrose which is usually used as the carbon source is very 

rapidly hydrolysed extracellularly by a cell-wall-bound invertase after inoculating the cultures 

and the resulting hexoses are taken up separately (Kanabus et al. 1986; Spilatro and 

Anderson 1988; Wickremesinhe and Arteca 1994). Although glucose and fructose are 

interconverted after phosphorylation, glucose is preferentially used compared to fructose in 

several plant cell suspensions as has been demonstrated for Catharanthus roseus (Sagishima 

et al. 1989), Glycine max (Spilatro and Anderson 1988), Daucus carota (Kanabus et al. 

1986; Dijkema et al. 1988, 1990) and Glycerrhiza glabra (Arias-Castro et al. 1993). This 

points to either a difference in the uptake of the two hexoses or in their phosphorylation 

efficiency, i.e. in glucokinase or fructokinase activity as was described by Renz and Stitt 

(1993) and Schaffer and Petreikov (1997). With the high initial sugar concentrations used in 

cell suspension cultures (50 mM) diffusion rather than carrier mediated uptake is the main 

route of uptake (Stanzel et al. 1988), implying that a difference in uptake is unlikely to 

occur. 

After phosphorylation, glucose and fructose are used either for respiration, for growth or for 

synthesis of storage materials: sucrose and starch. When [1-13C]-labelled hexoses are supplied 

to plant cells, this label will be found also primarily at the C-l positions of the cellular 

hexoses and the resulting hexose phosphates. A redistribution of label from C-l to C-6 

carbons has also been described, leading to C-6 labelled hexose phosphates that can be used 

for the synthesis of sucrose in the cytosol or for the synthesis of starch in the plastids. 

Hatzfeld and Stitt (1990) found for heterotrophic Chenopodium rubrum cell suspensions fed 

with [l-14C]-glucose 15-20% of the 14C-label at the C-6 carbons in sucrose. They concluded 

that intensive cycling of metabolites between hexose phosphates and triose phosphates occurs 

in vivo in the cytosol, resulting in the label redistribution from C-l to C-6 carbons. A 

relationship was found between this cycling and the activity of the reversible PPrdependent 

fructose-6-phosphate phosphotransferase (PFP): it probably plays a key role in the 

gluconeogenetic reaction from fructose-1,6-bisphosphate to fructose-6-phosphate in the 
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cytosol which is necessary for the production of C-6 labelled hexoses (Hatzfeld et al. 1990). 

In Chenopodium rubrum cells the redistribution of label from the C-l to the C-6 carbons was 

about the same in sucrose and starch; therefore they concluded that hexose phosphates which 

are used for starch synthesis are not subjected to triose phosphate cycling in the plastids of 

that species. However, they did report a lower redistribution of label in starch when [6-14C]-

glucose was used as a substrate instead of [l-14C]-glucose. Similar results obtained with 13C-

labelled glucose in Triticum aestivum endosperm (Keeling et al. 1988), led to the conclusion 

that probably a significant part of the oxidative pentose phosphate pathway may be located 

inside the plastid. Dieuaide-Noubhani et al. (1995) found redistribution of label from [2-13C]-

glucose to [l-13C]-hexose units in starch but not to [l-13C]-moieties of sucrose, thus 

concluding that the oxidative pentose phosphate pathway was nearly exclusively located in 

plastids of maize root tips. Viola et al. (1991), however, found for Solarium tuberosum tubers 

and Viciafaba seedlings nearly no label redistribution from [2-13C]-glucose to [l-13C]-hexose 

moieties in sucrose and [l-13C]-glucose units of starch, thereby concluding that the oxidative 

pentose phosphate pathway was not operating extensively in these tissues. Obviously the 

occurrence and detection of oxidative pentose phosphate pathway activity is dependent on the 

tissue examined and the labelling conditions. In all cases label was only applied during short-

time intervals ranging from 2 to 5 hours. 

Biochemical evidence for the occurrence of the oxidative pentose phosphate pathway in 

plastids is also reported. Emes and Fowler (1983) and Thom et al. (1998) found enzymes of 

the oxidative pentose phosphate pathway (glucose-6-phosphate dehydrogenase, 6-

phosphogluconate dehydrogenase, transaldolase, transketolase) in isolated amyloplasts of 

Pisum sativum roots and Capsicum annuum fruits, respectively. Schnarrenberger et al. (1995) 

found all enzymes of the oxidative pentose phosphate pathway to be present in the 

chloroplasts of Spinacia oleracea leaves. However, they found an incomplete set of enzymes 

of the oxidative pentose phosphate pathway in the cytosol. 

Next to the findings of oxidative pentose phosphate pathway activity during starch synthesis, 

evidence for a plastid localized oxidative pentose phosphate pathway was reported in relation 

to glutamate synthesis (Bowsher et al. 1992), fatty acid synthesis (Kang and Rawsthorne 

1996) and N02" reduction (Emes and Fowler 1983; Borchert et al. 1993; Hartwell et al. 
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1996). 

To further investigate the relevance of triose phosphate cycling and cycling of hexoses 

through the oxidative pentose phosphate pathway in sucrose and starch metabolism, 13C-

nuclear magnetic resonance (NMR) was used to continuously measure the uptake and 

conversion of glucose and fructose to sucrose and starch during long-term labelling 

experiments ranging from 2 to 14 days. To follow the fate of glucose and fructose 

independently, parallel experiments were carried out to measure the conversion of [1-13C]-

glucose in the presence of unlabelled fructose as well as the conversion of [l-13C]-fructose 

in the presence of unlabelled glucose. The incorporation of these specifically labelled carbon 

atoms into sucrose and starch and the redistribution of label from the C-l to the C-6 carbons 

can be followed within the same experiments (Keeling et al. 1988; Viola et al. 1991). 

In this report we deduce the existence of carbohydrate cycling in plants from the observed 

label distribution in sucrose and starch. Cycling in the cytosol between hexose-phosphates 

and triose phosphates mediated by PFP and cycling through the oxidative pentose phosphate 

pathway in both cytosol and plastids is suggested. 

Materials and Methods 

Cell suspensions 

After being initiated from hypocotyl-derived callus of Daucus carota L. cv. Flakkese 

(Zaadunie, Enkhuizen, The Netherlands) "Line 10" cell suspensions were kindly provided 

by Sacco C. de Vries and Marijke Hartog (de Vries et al. 1988). Cells were subcultured 

every 14 days by diluting 2 ml of packed cells in 50 ml Gamborg's B5 medium (Gamborg 

et al. 1968) supplemented with 2.3 ftM 2,4-D, 50 mM glucose and 50 mM fructose. 

Two parallel types of experiments were performed: one in which glucose was 99.9% [1-13C]-

labelled in combination with unlabelled fructose and one in which fructose was 99.9% [1-
13C]-labelled and glucose was unlabelled. 13C-labelled compounds were purchased from Isotec 

Inc. (Miamisburg, Ohio, USA). Samples were taken every two days. Cells were filtered over 

a Biichner funnel and washed 2 times with Gamborg's B5 medium without sugar, after which 
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they were frozen in liquid nitrogen and stored at -80 °C until freeze-drying in a Modulyo 

4k (Edwards, Crawley, Sussex, England). 

Sugar and starch determinations 

Soluble sugars were extracted by boiling 20 mg freeze-dried material in 1.5 ml 80% 

methanol for 15 minutes at 76 °C. Methanol was evaporated in a Speedvac (Savant 

Instruments Inc. Farmingdale, NY, USA) and the samples were dissolved in 2.25 ml ultra 

pure water (Millipore Intertech, Bedford, USA). For NMR spectroscopy, 50 /xl 2.5 M Na-

acetate at pH 5.9 was added as an internal reference and 200 jul D20 was added for field 

lock. The remaining water-insoluble pellet was washed two times in 80% methanol to remove 

all soluble sugars. Hereafter starch was solubilized in 80% dimethylsulfoxide/1.6 N HC1 at 

60 °C for 60 minutes in a shaking waterbath. The acid hydrolysate was neutralized with 

NaOH and buffered with 100 mM citrate/200 mM phosphate to pH 4.6 in a final volume of 

10 ml and further degraded by 20 mg (1400 U) Aspergillus amyloglucosidase (Fluka, Buchs, 

Zwitzerland) for 30 minutes at 55 °C. Dimethylsulfoxide was evaporated at 80 °C and the 

remaining glucose units were freeze-dried. The samples were diluted as described for sugar 

extracts. 

Soluble sugars and glucose units derived from hydrolysed starch were measured with a 

Dionex HPLC system (Dionex Corporation, Sunnyvale, CA, USA) using a Carbopac PA-1 

(guard)column coupled to a pulsed amperometric detector. Isocratic elution was performed 

with 100 mM NaOH for 15 minutes to separate glucose, fructose and sucrose. Peak areas 

were quantified using standard sugar solutions. 

13C-NMR 
13C-labelled sugars were analysed using a Brucker AMX-300 spectrometer (Brucker, 

Germany) equipped with a 10 mm internal diameter 13C probe. The Waltz sequence was used 

for two-level proton decoupling. For each spectrum 7200 FID's were collected in 8k data 

points using a 60° pulse and a pulse repetition time of 0.5 s. A line broadening of 3 Hz was 

used and zero-filling to 16k data points was applied prior to fourier transformation. The C-2 

resonance of acetate at 24.0 ppm was used as an internal reference for quantification. 
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Peak areas at 96.8 ppm (B-glucose C-l), 93.0 ppm (sucrose-glucosyl C-l), 63.3 ppm 

(sucrose-fructosyl C-6), 62.0 ppm (sucrose-fructosyl C-l), 61.5 and 61.4 ppm (6- and a-

glucose C-6) and 60.9 ppm (sucrose-glucosyl C-6) were integrated. Spectra of standard 

solutions containing 50 mM of the various compounds recorded under similar experimental 

conditions were used for a proper quantification of the C-l and C-6 carbons. The amounts 

of labelled C-l and C-6 carbons were added and divided by the total concentration of sugar 

in order to calculate the labelling percentage. Label redistribution between C-l and C-6 

carbons was expressed as percentage labelled C-6 carbons of the sum of labelled C-l and C-6 

carbons. 

Enzyme determinations 

PPrdependent fructose-6-phosphate phosphotransferase (PFP, EC 2.7.1.90) and ATP-

dependent fructose-6-phosphate phosphotransferase (PFK, EC 2.7.1.11) were assayed in 

freshly made extracts from freeze dried material. Ten to twenty mg samples were extracted 

in 1.2 ml buffer containing 50 mM HEPES at pH 7.5, 5 mM dithiotreitol, 5 mM Mg-acetate 

and 1 mM EDTA at 4°C. Low molecular weight components were removed on a Biogel P6 

column (BioRad, Veenendaal, The Netherlands) (modified after Appeldoorn et al. 1997). 

Enzyme assays were performed under optimal conditions in a final volume of 1.2 ml 

containing 100 mM Tris/ acetic acid at pH 8.0, 0.15 mM NADH, 5.2 mM fructose-6-

phosphate, 0.8 U aldolase, 0.8 U glycerol phosphate dehydrogenase and 0.8 U triose 

phosphate isomerase. In the PFK assay an additional 0.5 mM MgCl2 was added. For assaying 

PFP 4.3 iiM fructose-2,6-bisphosphate and 0.5 mM Mg-acetate were added. Reactions were 

started by the addition of 2.5 mM ATP (in the case of PFK) or 1.0 mM PP; (in the case of 

PFP) (modified after Hatzfeld et al. 1990). NADH conversion was measured using a double 

beam spectrophotometer operating at 340 nm (Shimadzu, Kyoto, Japan). 

Respiration measurements 

Oxygen uptake was determined by transferring 2.5 ml of cell suspension directly from the 

batch culture into an oxygen electrode (Rank Bros., Bottisham, Cambridge, UK). Oxygen 

uptake was followed for about 10 minutes at 25 °C while stirring the suspension. The amount 
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of hexoses respired per flask (called the cumulative respiration) was calculated from 

respiration data, by integration of the respiration rate divided by six, as a function of the 

amount of dry weight. 

Results 

Sugar uptake, cell growth and sugar content 

Figure 1A shows the disappearance of glucose and fructose from the medium, during growth 

of the carrot cells, measured by HPLC. The [l-13C]-labelled sugars were also measured by 

NMR, yielding similar results (data not shown). The disappearance of fructose from the 

medium was clearly delayed compared to that of glucose. During the first 6 days about 300 

mg of glucose was taken up by the cells, but fructose uptake was only 100 mg (25%, Fig. 

1A) and only 6.5 mg was present as free fructose (data not shown) in this period. From day 

6 on the uptake rate of fructose was comparable to that of glucose (approximately 85 and 75 

mg.flask1.d"1 respectively). 

Sugar degradation via respiration (Fig. IB) matched the production of dry matter (Fig. 1C): 

at the end of the culture about 50% of the initially added hexoses was converted to C02. 

Figure 1C shows that maximum dry weight was reached at day 10-12 (about 425 mg flask1). 

Total sucrose and starch levels increased in parallel and were maximal at day 12: about 16 

mg flask"1 for sucrose and about 18 mg flask"1 for starch. After day 12 both levels were 

decreasing due to depletion of medium sugars and continuing respiration. 

Labelling of the cells 

Labelling percentages were calculated by adding the amount of labelled C-l and C-6 carbons 

divided by the total amount of (labelled and unlabelled) sugars. Labelling percentages of the 

fructose moieties in sucrose were between 89-95% of that of the glucose moieties (Fig. 2). 

Labelling percentages for sucrose were generally higher than for starch (Fig. 2). Cells 

growing on a mixture of [l-13C]-labelled glucose and unlabelled fructose showed a more or 

less constant maximum labelling percentage from day 2 until day 8 for sucrose (60%) and 
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Figure 1 Decrease of total medium glucose ( O ) and fructose ( • ) (A), cumulative 
consumption of sugar in respiration, calculated as mg monosaccharides ( A ) 
(B), and increase of cellular sucrose ( V ), starch ( • ) and dry weight ( • ) (C) 
during the course of growth of Daucus carota cells in batch culture expressed in 
mg.flask" . Values are the means of two experiments. 
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from day 4 to day 8 for starch (22%, Fig. 2A). From day 8 the labelled glucose in the 

medium was almost exhausted and unlabelled fructose was taken up only (Fig. 1A); as a 

consequence labelling percentages decreased to about 18% for both sucrose and starch (Fig. 

2A). 

When cells were grown on a mixture of unlabelled glucose and [l-13C]-labelled fructose, 

labelling of cellular sugars and starch started during the first days of growth, although 

labelling did not exceed 12% for starch and 30% for sucrose during the first 8 days of 

culture (Fig. 2B). Labelling percentage increased after day 8, when unlabelled glucose had 

disappeared from the medium and the remaining 13C-labelled fructose was taken up by the 

cells. Maximum labelling of sucrose was 75% and was higher than that of starch which was 

maximal 25 %. 

Label redistribution from C-l to C-6 

Next to C-l labelled hexoses, also C-6 labelled carbons were detected in the NMR spectra. 

Label redistribution was expressed as percentage labelled C-6 carbons of total labelled (C-l 

and C-6) carbons (Fig. 3). Label redistribution within the glucosyl units of starch was always 

higher than in the glucose moieties of sucrose; they differed significantly as calculated with 

a paired Student t-test probability (p < 0.007) for both experimental data sets (i.e. labelling 

with [l-13C]-glucose or [l-13C]-fructose). However, label redistribution in the fructose 

moieties was significantly higher than in the glucose moieties of sucrose (Student t-test 

probability p < 0.055 for both data sets). Label redistribution increased during the culture 

period when cells were grown on [1-13C]-labelled glucose. This increase was larger for 

sucrose (both glucose and fructose moieties) than for starch (Fig. 3A). If cells were labelled 

with [l-13C]-fructose, label redistribution was more or less constant between day 4 and day 

10 for both sucrose and starch: fructose moieties of sucrose were labelled for about 25%, 

glucose moieties for about 20% and glucosyl units of starch for about 30% (Fig. 3B). 

PFP and PFK activity in relation to label redistribution 

Because label redistribution from C-l to C-6 carbons is thought to occur at the level of triose 

phosphates (Hatzfeld and Stitt 1990) and because PPrdependent fructose-6-phosphate 
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Figure 3 Redistribution of the incorporated label from the C-l to the C-6 carbons in 
glucose ( V ) and fructose moieties ( T ) of sucrose and in the glucosyl units of 
starch ( • ) during the course of growth of Daucus carota cells in batch culture 
grown on 99.9% labelled [1- 3C]-glucose and unlabelled fructose (A) or 99.9% 
labelled [1- C]-fructose and unlabelled glucose (B). Values are expressed as 
percentages of labelled C-6 carbons of total labelled carbons. 
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phosphotransferase (PFP) in the cytosol may account for the gluconeogenetic reaction 

responsible for this conversion (Hatzfeld et al. 1990), its activity was determined. Optimised 

PFP assays showed maximum activity in the logarithmic growth phase (Fig. 4). Its activity 

was of the same order of magnitude as that of ATP-dependent fructose-6-phosphate 

phosphotransferase (PFK), indicating that its activity is high enough to support the observed 

redistribution of label from C-l to C-6 carbons. 

3 6 9 12 15 
Time after inoculation (day) 

Figure 4 Activity of PPi-dependent fructose-6-phosphate phosphotransferase (PFP, T ) 
and ATP-dependent fructose-6-phosphate phosphotransferase (PFK, • ) 
expressed in U.g" DW during the course of growth of Daucus carota cells in 
batch culture. One Unit represents the amount of enzyme which liberates 1 umol 
product.min". 

Discussion 

Sugar uptake, cell growth and sugar content 

The preferential use of glucose by Daucus carota cell suspensions is consistent with reports 

about other plant cell suspensions. In the first 6 days of the culture about 100 mg of fructose 

and 300 mg of glucose was taken up from the medium (Fig. 1A). This 100 mg of fructose 

was far more than the cellular level of fructose present at that time: only 6.5 mg was 
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detected as free fructose {data not shown). Thus, fructose was already being metabolized, 

although to a much lesser extent than glucose. This result is consistent with the observations 

of Fig. 2B: cells grown on unlabelled glucose and I3C-labelled fructose showed some 

conversion of the 13C-labelled fructose resulting in 13C-labelled sucrose in the first 6 days. 

Labelling percentage of soluble sugars and starch 

About 50% of the hexoses was used in respiration (Fig. IB). From the incorporated hexoses 

only 5-10% of the 13C-label was present in monosaccharides, disaccharides and storage starch 

(Figs 1C, 2A,B). The remainder was used for synthesis of NMR invisible products other than 

starch, especially polymers like cell walls, lipids, proteins and polysaccharides. 

Because the labelling percentage of sucrose never exceeded 60% in cells grown on [1-13C]-

glucose (Fig. 2A) and 75 % in cells grown on [l-13C]-fructose (Fig. 2B) it was concluded that 

dilution of label could occur by a combination of uptake and conversion of unlabelled sugar, 

by unlabelled sugars which were already present in the cells and by metabolic pathways like 

the oxidative pentose phosphate pathway removing specific the C-l carbons of hexoses. 

The total labelling percentage (C-l and C-6 carbons) of the fructose moieties was slightly 

lower than that of the glucose moieties. This indicates that the labelling percentage of the 

fructose-6-phosphate pool (yielding the fructose moiety of sucrose) is lower than of the 

glucose-6-phosphate pool (responsible for the glucose moiety), independently whether [1-13C]-

glucose or [l-13C]-fructose was used by the cells. This may be explained by oxidative pentose 

phosphate pathway activity in the cytosol: C-l carbons are split off resulting in fructoses-

phosphate with a lower labelling percentage. This would only lead to the observed differences 

in labelling percentage if the interconversion of fructose-6-phosphate and glucose-6-phosphate 

is relatively slow compared to the flux of metabolites through the oxidative pentose phosphate 

pathway and the pathway responsible for sucrose synthesis (Fig. 5). 

Hexose phosphates are also transported from the cytosol to the plastids, where starch is 

synthesized via ADP-glucose (Keeling et al. 1988; Hatzfeld and Stitt 1990; Viola et al. 1991; 

Hill and Smith 1991; Neuhaus et al. 1993; Viola 1996). Thorbjornsen et al. (1996) reported 

ADP-glucose pyrophosphorylase to be present in the cytosol of Hordeum vulgare endosperm. 

They found one gene to encode for two different transcripts. One isoform is present in the 
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plastid and one in the cytosol (Thorbjornsen et al. 1998). In our experiments a difference in 

the total labelling percentage between sucrose and starch was found, indicating that the 

oxidative pentose phosphate pathway removed C-l label from hexose phosphates in the 

plastids before ADP-glucose was synthesised. 

Sucrose labelling reached a maximum of 75% (Fig. 2B); this labelling percentage quickly 

decreased as soon as labelled sugar in the medium was exhausted, indicating the fast turnover 

of sucrose in the cytosolic and vacuolar compartments as described by Wendler et al. (1990) 

and Dancer et al. (1990). Starch labelling never exceeded 25% and was less than the 

labelling percentage of sucrose for most of the growth period (Figs 2A,B). This can be 
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explained by the different label redistribution between C-l and C-6 carbons. 

Label redistribution from C-l to C-6 carbons 

Label redistribution from C-l to C-6 carbons in hexoses was demonstrated in plants by 

Keeling et al. (1988), Hatzfeld and Stitt (1990) and Viola et al. (1991). PFP (only present 

in the cytosol) is supposed to catalyse the essential reaction from fructose-l,6-bisphosphate 

to fructose-6-phosphate after label redistribution from C-l to C-6 carbons at the level of 

triose phosphates (Hatzfeld et al. 1990). Because label redistribution from C-l to C-6 carbons 

in sucrose was high (18-45%), PFP activity (responsible for the glyconeogenetic reaction) 

is expected to be in the same order of magnitude as PFK activity (responsible for the 

glycolytic reaction, Fig. 5). Optimised PFP and PFK assays did indeed show this (Fig. 4). 

Fructose moieties of sucrose always had a higher label redistribution from C-l to C-6 

carbons than glucose moieties (Figs 3A,B). This difference in labelling between glucose and 

fructose moieties of sucrose was also published before (Keeling et al. 1988; Hatzfeld and 

Stitt 1990; Viola et al. 1991). Probably cycling through the oxidative pentose phosphate 

pathway in the cytosol produced fructose-6-phosphate that has lost its label at the C-l 

position. Indeed, the NMR spectra showed that the difference in labelling was caused by a 

lower labelling of C-l carbons of the fructose moieties {data not shown). 

If the same pool of hexose phosphates, containing label at the C-l and C-6 carbons, is used 

for sucrose synthesis and starch synthesis, label partitioning over C-l and C-6 carbons is 

expected to be the same in sucrose and starch. This was indeed found for Chenopodium 

rubrum labelled with [l-14C]-glucose (Hatzfeld and Stitt 1990), for Triticum aestivum (Keeling 

et al. 1988) and for Solanum tuberosum and Viciafaba (Viola et al. 1991) labelled with [1-
13C]-glucose. These authors all proposed that no extra round of triose phosphate cycling 

occurs in the plastids, and concluded that imported hexose phosphates are directly built into 

starch. However, Fig. 3 showed differences in label redistribution between the glucosyl 

moieties in sucrose and the glucose units in starch, indicating that cycling does occur in 

plastids of Daucus cells. The lower starch labelling was found to be caused mainly by a 

lower labelling of the C-l carbons (data not shown). The increased label redistribution from 

C-l to C-6 carbons observed in the glucosyl units of starch in combination with the lower 
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labelling percentage could be explained by cycling of hexose phosphates through the 

oxidative pentose phosphate pathway in the plastids. This was also found for maize root tips 

(Dieuaide-Noubhani et al. 1995). These workers showed that experiments with [2-13C]-

glucose did result in synthesis of C-l labelled starch, and nearly no C-l labelled sucrose, 

indicating that the oxidative pentose phosphate pathway was exclusively located in the 

plastids in this tissue. 

Hatzfeld and Stitt (1990), Keeling et al. (1988) and Viola et al. (1991) all performed 

labelling experiments with a pulse labelling at short-term intervals varying from 2-5 h. They 

probably would not observe extensive cycling because steady-state conditions exhibiting 

oxidative pentose phosphate pathway activity in the plastids would not be reached during their 

treatments. Our experiments were performed by growing cell suspensions at a long-term 

interval for 2-14 d on medium containing 50% labelled hexoses. Steady-state conditions 

exhibiting extensive cycling during the 2 d intervals thus would be easily observed. 

Conclusion 

From literature it appears that the occurrence and detection of oxidative pentose phosphate 

pathway activity depends strongly on the species and tissue examined and the experimental 

set up. Our long-term labelling experiments of 2 weeks described here give a better insight 

into the available metabolic routes in plant cells than the short term labelling experiments 

published before. 

From the observed label redistribution from C-l to C-6 carbons in sucrose we conclude that 

in Daucus cells different types of cycling of hexoses phosphates occur. Firstly, cycling from 

hexose phosphates to triose phosphates and vice versa was probably catalysed by PFP in the 

cytosol. Secondly, the lower labelling percentage and the higher label redistribution from C-l 

to C-6 carbons in the fructose moieties as compared to glucose moieties in sucrose can be 

explained by the presence of oxidative pentose phosphate pathway activity in combination 

with a relatively slow equilibration of glucose-6-phosphate and fructose-6-phosphate in the 

cytosol. Finally, the lower labelling percentage of starch and the higher label redistribution 

between C-l and C-6 carbons in starch could be explained by the presence of a second, 

plastid-localised oxidative pentose phosphate pathway. 
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Abstract 

Cell suspensions of Daucus carota L. were grown in batch culture on 50 mM sucrose, 

100 mM glucose or 100 mM fructose. Sucrose was rapidly converted extra-cellularly into 

equimolar amounts of glucose and fructose, and glucose was then taken up preferentially. 

The impaired uptake of fructose could only partially be explained by the lower affinity of 

the hexose carrier in the plasmamembrane, fructose and glucose showing Km values of 

650 and 80 /xM, respectively. However, cells grown on fructose as the sole carbon source 

showed higher sugar uptake and conversion compared to glucose-grown cells. In vitro 

determination of hexose phosphorylating activities showed two distinct fractions: a soluble 

fraction containing mainly fructokinase activity (EC 2.7.1.4), and a membrane-bound, 

mitochondrial fraction showing similar amounts of glucose and fructose phosphorylating 

activity ("hexokinase", EC 2.7.1.1). Soluble fructokinase activity was thought to be 

connected with a "compartment" giving rise to a pool of UDPG resulting in structural cell 

components; as a result fructose-grown cells showed more production of biomass and a 

higher sucrose level compared to glucose-grown cells. About 95% of the hexokinase-

activity was bound to mitochondria. It is suggested that the membrane-bound 

phosphorylating enzyme(s) are present in a respiratory "compartment" making glucose a 

better substrate for respiration compared to fructose. The membrane-bound enzyme(s) 

phosphorylated fructose less efficiently compared to glucose (with an at least ten-fold 

higher Km value), which may result in a low initial respiration rate and less production of 

NTPs in fructose-grown cells. This might be the cause of the observed transient 

obstruction of the conversion of glucose-1-phosphate into UDP-glucose leading to 

glucose-1-phosphate accumulation. Furthermore, fructose-grown cells accumulated 

glucose up to 10-fold higher compared to glucose-grown cells, suggesting that glucose 

produced by the process of sucrose-cycling was inaccessible to the membrane-bound 

hexokinase. Although it is usually assumed that the cytosol contains one well-mixed pool 

of glycolytic intermediates, these results indicate that at least two functional pools might 

exist. A distinct physical location of the fructokinase and hexokinase might result in 

separated pools of glycolytic intermediates if the turnover rate of both pools is fast 
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compared to the diffusion between them. 

Uptake and phosphorylation ofhexoses 

Keywords: Daucus carota L. (cell suspensions), hexoses, (soluble) fructokinase, 

(membrane-bound) hexokinase, respiration, uptake 

Introduction 

Although glucose and fructose have similar molecular structures and are highly 

interconvertible in glycolysis, many plant cells respond differently to fructose and glucose 

with respect to uptake, conversion, growth and respiration. Different efficiencies for 

glucose and fructose with respect to growth were shown by Zwayyed et al. (1991), 

Gertlowski and Petersen (1993), Wickremesinhe and Arteca (1994) and Kanabus et al. 

(1986). 

Inhibition of fructose uptake by glucose is reported for Glycine max (de Klerk-Kiebert et 

al. 1983), Daucus carota (Kanabus^ et al. 1986; Dijkema et al. 1988, 1990) and 

Phaseolus vulgaris cell suspensions (Botha and O'Kennedy 1998). At concentrations up to 

2 mM a transmembrane-carrier is responsible for uptake of hexoses (Stanzel et al. 1988a; 

Sauer et al. 1990; Rausch et al. 1991; Verstappen et al. 1991). This carrier shows a 

higher affinity for glucose than for fructose; as a result glucose outcompetes fructose at 

these low concentrations (Botha and O'Kennedy 1998). At concentrations higher than 2 

mM (facilitated) diffusion through the plasma membrane will take place next to this car

rier-mediated uptake of hexoses (Stanzel et al. 1988b; Aked and Hall 1993; Botha and 

O'Kennedy 1998). 

Inside the cells glycolytic breakdown of glucose and fructose starts with phosphorylation, 

leading directly (for fructose) or indirectly (via glucose-6-phosphate for glucose) to 

fructose-6-phosphate; after isomerization of the hexose phosphates conversion is generally 

assumed to be identical for both sugars. The phosphorylation of fructose to fructoses-

phosphate by fructokinase is regulated by substrate and product inhibition and nucleotide 
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specificity. In most plants fructokinases phosphorylate only fructose (Yamashita and 

Ashihara 1988; Doehlert 1989) and show optimum activity at fructose concentrations of 

0.5 mM; at concentrations of 50 mM fructose they are inhibited for about 60% as is 

shown for developing Zea mays kernels (Doehlert 1989) and Lycopersicon esculentum 

fruit (Martinez-Barajas and Randall 1996). In the species mentioned above ATP is the 

preferred nucleotide triphosphate (NTP). Fructokinases from Acer pseudoplatanus cells 

(Huber and Akazawa 1986), Catharanthus roseus cells (Yamashita and Ashihara (1988) 

and Spinacia oleracea leaves (Schnarrenberger 1990) use UTP as the preferred phosphate 

donor. 

Kanayama et al. (1998) found 2 isoforms of fructokinase in Lycopersicon esculentum 

fruit. One isoform which showed inhibition by high levels of fructose was related to 

starch synthesis in pericarp tissue. A second isoform did not show this inhibition and was 

found at constant levels in all tissues and was proposed to be a maintenance enzyme. So, 

depending on the type of tissue and species the presence of different NTPs and the 

concentration of fructose might influence fructose phosphorylation. 

In contrast to fructokinases, glucokinases are known to be less sugar-specific and are able 

to phosphorylate other hexoses like fructose and mannose (Doehlert 1989; 

Schnarrenberger 1990; Renz and Stitt 1993; Steward and Copeland 1993). Therefore, 

they are more commonly entitled as "hexokinases". These hexokinases are also known to 

play a role in "sugar sensing" by transmitting signals for a broad range of hexoses 

concerning e.g. repression of photosynthetic genes in Zea mays seedlings (Jang and Sheen 

1994) and a-amylase genes in Oryza sativa (Umemura et al. 1998). In addition, these 

hexokinases are known to be partially bound to mitochondrial membranes (Renz et al. 

1993; Steward and Copeland 1993; Martinez-Barajas and Randall 1998) and chloroplast 

membranes (Singh et al. 1993). Hexokinases are known to be more active with ATP than 

with other NTPs (Yamashita and Ashihara 1988; Xu et al. 1989; Nakamura et al. 1991). 

Recently, hexokinases which are sensitive to inhibition by ADP are described for Zea 

mays (Martinez-Barajas and Randall 1998; Galina et al. 1999). 

Here we investigated whether the difference in glucose and fructose utilization by Daucus 

carota cells as found by Kanabus et al. (1986) and Dijkema et al. (1988; 1990) is caused 
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by a lower uptake rate or by a lower phosphorylation rate of fructose. Therefore, cells 

were grown in batch culture on glucose ("glucose-grown cells"), fructose ("fructose-

grown cells") or sucrose ("sucrose-grown cells"). The observed differences in conversion 

rate of glucose and fructose, in cell growth and in sugar content were explained by the 

properties of the uptake system and distribution of fructokinase and glucokinase activities 

within the cells. 

Materials and Methods 

Cell suspensions 

After being initiated from hypocotyl-derived callus of Daucus carota L. cv. Flakkese 

(Zaadunie, Enkhuizen, The Netherlands) "Line 10" cell suspensions were kindly provided 

by Sacco C. de Vries and Marijke Hartog (de Vries et al. 1988). Cells were subcultured 

every 12 days by diluting 2 ml of packed cells in 50 ml autoclaved Gamborg's B5 

medium (Gamborg et al. 1968) supplemented with 2.3 /JLM 2,4-D and 100 mM filter-

sterilized glucose or fructose or 50 mM sucrose. Samples were taken every two days. 

Cells were filtered over a Buchner funnel and washed 2 times with Gamborg's B5 

medium without sugar. Fresh weight was determined after which the samples were frozen 

in liquid nitrogen and stored at -80 °C. After freeze-drying in a Modulyo 4k (Edwards, 

Crawley, Sussex, UK) dry weight was measured. 

Sugar determinations: neutral sugars and phosphorylated intermediates 

Soluble sugars were extracted by boiling freeze-dried material in 80% methanol for 15 

minutes at 76 °C. Methanol was evaporated in a Speedvac (Savant Instruments Inc. 

Farmingdale, NY, USA) and the samples were dissolved in ultra pure water (Millipore 

Intertech, Bedford, USA). Soluble sugars were measured with a Dionex HPLC system 

(Dionex Corporation, Sunnyvale, CA, USA) using a Carbopac PA-1 column with similar 

guard column and pulsed amperometric detection (Tetteroo et al. 1995). Isocratic elution 

was performed with 100 mM NaOH for 15 minutes to separate glucose, fructose and 
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sucrose. Hexose phosphates were measured with the same system with the column cooled 

to 4 °C. To separate glucose-1-phosphate, glucose-6-phosphate and fructose-6-phosphate, 

elution was performed with 20 mM NaOH and a Na-acetate gradient: 50 mM from 0 to 

10 minutes, a linear gradient from 50 mM to 200 mM from 10 to 30 minutes and a linear 

gradient from 200 mM to 650 mM from 30 to 65 minutes (de Bruijn et al. 1999). Peak 

areas were quantified using standard sugar and standard sugar phosphate solutions 

measured under identical conditions. 

14C-hexose uptake 

[U-14C]-glucose (specific activity 317 GBq/mmol) and [U-14C]-fructose (specific activity 

612 GBq/mmol) were purchased from Amersham Life Science (Buckinghamshire, UK). 

Cells of 6 days old sucrose-grown cultures were washed 2 times with Gamborg's B5 

medium without sugar. After recovery of the cells for 2 hours at 25 °C, erlenmeyer 

flasks of 25 ml were incubated with 2.5 ml washed cells. At time zero 0.05 to 45 mM 

glucose or fructose supplemented with 716 to 1199 Bq 14C-labelled glucose or fructose 

was added. Inhibition of fructose uptake by glucose was tested at low and high 

concentrations by adding 0-2 mM unlabelled glucose to 2 mM labelled fructose and 0-18 

mM unlabelled glucose to 18 mM labelled fructose, respectively. After 15 minutes 

uptake was stopped by filtering the cells over a Buchner funnel and washing quickly 2 

times with Gamborg's B5 medium without sugar. Cells were dried on filter paper and 

radioactivity was determined using a liquid scintillation counter (Beckman LS6000TA, 

Beckman Instr. Inc., Fullerton, CA, USA). 

Glucokinase and fructokinase activity 

Fructokinase (EC 2.7.1.4) and glucokinase (EC 2.7.1.1) activities were assayed in freshly 

made extracts from freeze-dried material of 3 days old sucrose-grown cells. Twenty-five 

mg samples were ground in a mortar with a pestle and extracted in 1.2 ml buffer 

containing 50 mM HEPES at pH 7.5, 5 mM DTT, 5 mM Mg-acetate and 1 mM EDTA 

at 4°C. Extracts containing soluble and membrane-bound enzymes were separated in an 

eppendorf centrifuge at full speed for 5 minutes. Low molecular weight components in 
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the supernatant were removed on a Biogel P6 column (BioRad, Veenendaal, The 

Netherlands) (modified after Appeldoorn et al. 1997). Pellets containing insoluble cell 

components were washed with buffer and resuspended in 1.0 ml buffer and assayed 

separately for insoluble, membrane-bound glucokinase and fructokinase activity. Standard 

enzyme assays were performed in a final volume of 1.2 ml containing 100 mM Tris at pH 

8.0, 3 mM ATP, 0.22 mM NAD+ and 0.8 U glucose-6-phosphate dehydrogenase 

(Leuconostoc mesenteroides). For fructokinase, an additional 0.8 U 

phosphoglucoisomerase was added. Reactions were started by the addition of fructose or 

glucose. NAD+ reduction was measured using a double beam spectrophotometer operating 

at 340 run (Shimadzu, Kyoto, Japan). For insoluble enzymes, assay volumes were 

centrifuged in an Eppendorf centrifuge for 20 s at full speed after which the supernatant 

was measured immediately at 340 nm. Glucose and fructose saturation curves for 

glucokinase and fructokinase were carried out at 3 mM ATP. NTP saturation curves were 

determined for ATP and UTP at 50 mM glucose or fructose. 

Results 

Sugar uptake and cell growth 

Sugars disappeared from the medium in 6-8 days, depending on the type of sugar (Fig. 

1A). When cells were grown on 100 mM fructose sugar disappearance from the medium 

was low during the first 2 days and sugar had completely disappeared from the medium at 

day 6. When cells were grown on 100 mM glucose the lag phase was extended from 2 to 

4 days and medium depletion occurred after 8 days. Sucrose was completely hydrolysed 

within 2 days and thereafter glucose and fructose were taken up separately (Fig. 1A, 

dashed lines). From the resulting 50 mM glucose and 50 mM fructose, glucose was used 

preferentially: 50% of the glucose and 15% of the fructose had disappeared at day 4. 
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Figure 1 Medium sugars during the course of growth of Daucus carota cells in batch 
culture. Disappearance of sugar in fructose-grown cells ( • ) and glucose-grown 
cells ( O ). Symbols connected with dashed lines show disappearance of sucrose 
( A ) and changes in glucose ( O ) and fructose ( • ) and the sum of both ( V ) in 
the medium of sucrose-grown cells (A). Fresh weight in g.flask" (B) and dry 
weight in mg.flask" (C) for glucose-grown cells ( O ), fructose-grown cells ( • ) 
and sucrose-grown cells ( ̂  ). Values are the means of 3 replicates ± S.D. If not 
shown, S.D. is smaller than symbol. 
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From day 4 on the rates of the disappearance of glucose and fructose were about equal; 

after 6 days the glucose and after 8 days also the fructose had completely been taken up 

from the medium by sucrose-grown cells. 

Fresh weight of the cells increased from day 2 to day 10 (Fig. IB): sucrose-grown and 

fructose-grown cells reached the same fresh weight: about 11.5 g.flask"1; for sucrose-

grown cells, however, this fresh weight increase lagged somewhat behind. Fresh weight 

production of glucose-grown cells was slower and ceased at about 75% of that of 

fructose- and sucrose-grown cells at 8.5 g.flask1. 

Maximum dry weight productions (Fig. 1C) of fructose-grown and sucrose-grown cells 

were similar: about 500 mg.flask"1, while maximum dry weight production of glucose-

grown cells was reached 2 days later and was about 85 % of that of fructose- and sucrose-

grown cells (425 mg.flask"1). 

Uptake of 14C-hexoses 

Uptake of glucose and fructose was measured using 14C-labelled hexoses. Both glucose 

and fructose showed a biphasic uptake curve; in the range of 0 to 2 mM uptake 

characteristics fitted active uptake via a carrier, showing saturation (Michaelis Menten) 

kinetics with a Km value of about 80 /xM for glucose and 650 juM for fructose. For both 

sugars a Vma of about 0.35 /xmol.(g dry weight)"1 min"1 was determined (deduced from 

Lineweaver-Burk plots, inserts of Figs 2A,B). 

In the range of 5 to 45 mM uptake was diffusion-like as was concluded from the linear 

relationship between the rate of uptake and concentration. Uptake of fructose was not 

significantly different from that of glucose (Fig. 2, closed symbols). Uptake of fructose at 

low concentrations (2mM) in the presence of 2 mM glucose was about 20% of the uptake 

in the absence of glucose (Fig. 3A), while at high concentrations (18 mM) in the presence 

of 18 mM glucose fructose uptake was about 50% of the uptake without added glucose 

(Fig. 3B). Glucose uptake was inhibited for only 15% at concentrations of 2 mM of both 

glucose and fructose (data not shown). 
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Figure 4 Levels of glucose-6-phosphate (G-6-P, O ), fructose-6-phosphate (F-6-P, • ) at 
the right y-axis and glucose-1-phosphate (G-l-P, V ) at the left y-axis expressed 
as umol.g"1 DW during the course of growth of batch-cultured Daucus carota 
cells grown on 100 mM glucose (A), 100 mM fructose (B) or 50 mM sucrose 
(C). Values are the means of 3 replicates ± S.D. 
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Cellular content of sugars and sugar phosphates 

Glucose-6-phosphate, fructose-6-phosphate and glucose-1-phosphate were the most 

prominent phosphorylated intermediates. In all three cultures glucose-6-phosphate peaked 

at day 2. Fructose-6-phosphate also peaked at day 2, but decreased only gradually 

towards day 8 (Fig. 4). The most striking difference was the high level of glucose-1-

phosphate at day 2 in fructose-grown cells, being 10 times higher than in glucose-grown 

cells and 3 times higher than in sucrose-grown cells (Fig. 4). From day 4 on, the levels 

of sugar phosphates were rather comparable for all three culture conditions, roughly 5, 1 

and 7 /*mol.(g dry weight)"1 for glucose-6-phosphate, fructose-6-phosphate and glucose-1-

phosphate, respectively. 

Glucose-grown cells contained low levels of glucose (50 /jmol.(g dry weight)"1) and 

fructose (20 /xmol.(g dry weight)"1, Fig. 5A). On the contrary, fructose-grown cells 

contained high levels of glucose (up to 650 /nmol.(g dry weight"1)) and low levels of 

fructose (40 /umol.(g dry weight)"1, Fig. 5B). Sucrose-grown cells also showed low 

fructose levels (40 /xmol.(g dry weight)"1), while glucose was much lower (about 150 

ftmol.(g dry weight)1) than in fructose-grown cells (Fig. 5C). Sucrose increased to about 

400 jttmol.(g dry weight)"1 in glucose and fructose-grown cells and to about 600 jumol.(g 

dry weight)1 in sucrose-grown cells. The maximal level of hexose units was highest in 

fructose and in sucrose-grown cells: up to 1200 pimol hexose units.(g dry weight)"1 (Figs 

5B,C). In glucose-grown cells maximal levels did not exceed 550 /xmol hexose units.(g 

dry weight)"1 (Fig. 5A). The maximal level of hexose units expressed per fresh weight 

was about 75 /xmol for fructose and sucrose-grown cells and about 40 /tunol for glucose 

grown cells {data not shown). 

Soluble and membrane-bound fructokinase and glucokinase activity: kinetic properties 

The sugar saturation curve of soluble fructokinase showed an optimum with maximum 

activity at 0.5 mM fructose; at 50 mM fructose fructokinase was inhibited for about 60% 

compared to this optimum. Soluble glucokinase showed maximal activity at 50 mM 

glucose. At this concentration activity was about 20% of that of fructokinase, at a 

concentration of 0.5 mM the relative activity of glucokinase was much lower (Fig. 6A). 
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Figure 5 Levels of glucose ( O), fructose ( • ), sucrose ( ± ) and total hexose units ( • , 
dashed lines) expressed as umol.g" DW during the course of growth of batch 
cultured Daucus carota cells grown on 100 mM glucose (A), 100 mM fructose 
(B) or 50 mM sucrose (C). Values are the means of 3 replicates ± S.D. 
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The effect of different concentrations of ATP 

glucokinase was assayed at 50 mM fructose and 

higher activity with UTP as a phosphate donor 

towards ATP was higher. 

and UTP on soluble fructokinase and 

glucose. Fructokinase showed a slightly 

compared to ATP although the affinity 
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Figure 6 Kinetics of hexokinase and fructokinase activities in the soluble fraction (A,B) 
and the membrane-bound fraction (C,D) expressed as U.g" DW. Sugar-
saturation curves of fructokinase (FK, • ) and hexokinase (HK, O) measured at 
3 mM ATP (A,C). ATP ( O, • ) and UTP ( V, • ) saturation curves of 
fructokinase ( • , • ) and hexokinase ( O, V ) measured at 50 mM hexose (B, 
D). Extracts were prepared from 3 days old batch-cultured cells of Daucus 
carota grown on sucrose. One Unit represents the amount of enzyme which 
converts 1 umol hexose.min". Different batches were used for the experiments 
resulting in different absolute values in A, B. 
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Uptake and phosphorylation of hexoses 

Glucokinase activity was highest with ATP and maximal UTP dependent activity was 

about 35% of that of ATP activity (Fig. 6B). 

In the membrane-bound fraction, activity of glucokinase was much higher than in the 

soluble fraction (Figs 6B,D). Glucose showed higher affinity towards the membrane-

bound fraction with a Km value at least 10 times lower than for fructose (Fig. 6C). Both 

membrane-bound glucose and fructose phosphorylating reactions showed a higher affinity 

for ATP than for UTP: maximal UTP-dependent activities were 70% and 25% for 

glucokinase and fructokinase, respectively (Fig. 6D). 

Discussion 

Sugar uptake and cell growth 

Lineweaver-Burk plots of the uptake data of Figs 2A,B from 0.05 to 2 mM hexose 

resulted in a Vma of about 0.35 ftmol.(g dry weight)"1 for both glucose and fructose. At 2 

mM total uptake was only slightly higher; it was calculated that the diffusion-like 

component accounted for only 12% of the total uptake and it was concluded that at low 

concentrations of hexoses uptake was controlled mainly by carrier-mediated transport. 

Corresponding Km values for glucose and fructose in Daucus cells were about 80 fiM and 

650 /tM, respectively (Figs 2A,B), which is in agreement with reports on transmembrane 

hexose carriers by Sauer et al. (1990), Rausch et al. (1991) and Verstappen et al. (1991). 

At concentrations higher than 2 mM diffusion occurred next to this carrier-mediated 

uptake. Uptake of glucose and fructose at concentrations of 50 mM was due to diffusion 

for about 70-80% (Figs 2A,B). The diffusion-mediated component of glucose and fructose 

uptake appeared to be about the same (Figs 2A,B). Most of the active uptake of fructose 

could be abolished by excess glucose (Fig. 3A), while the diffusion-mediated component 

of uptake of fructose was only slightly suppressed by glucose (Fig. 3B). Fructose uptake 

from an equimolar mixture of 50 mM of both sugars, therefore, is expected to be about 

70% of that of glucose. However, fructose uptake was only 30% of that of glucose up to 

day 4 (Fig. 1A). Botha and O'Kennedy (1998) concluded for Phaseolus vulgaris cell 
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suspensions that differences in uptake, due to different affinities of the hexose carrier 

towards glucose and fructose could entirely explain the lower conversion rate of fructose; 

for Daucus carota cell suspensions, other factors seem to play an additional role. 

Different hexose and sucrose transporters are known, which are often tissue-specific 

(Weig et al. 1994). Burkle et al. 1998 reported a developmental-specific sucrose carrier 

expressed only in mature (source) leaves of Nicotiana tabacum. However, it is assumed 

that cell suspensions represent one type of tissue with respect to sugar uptake. Daucus 

carota suspension cultures grown on glucose or sucrose for 6 months showed the same 

higher biomass production when transferred to fructose-medium, indicating that probably 

the same set of membrane carriers and phosphorylating enzymes was present or rapidly 

induced after inoculation, irrespective of the carbon source on which they were grown 

previously. 

Our data suggest that in Daucus carota cells the conversion of fructose was impaired. 

However, fructose conversion was not impaired in cells growing exclusively on fructose 

(Figs 1A,B,C) suggesting that competition between glucose and fructose for the 

phosphorylating enzymes might occur. 

Soluble and membrane-bound fructokinase and glucokinase: kinetic properties 

Daucus cells showed two distinct fractions of hexose phosphorylating enzymes: a soluble 

fraction and a membrane-bound fraction. The soluble fraction contained mainly 

fructokinase and showed a higher activity with UTP as phosphate donor at concentrations 

above 0.5 mM NTP. Soluble glucokinase activity was most active with ATP but showed 

also some activity with UTP (Fig. 6B). It is concluded that the soluble fructokinase and 

glucokinase might use UTP in addition to ATP in vivo. 

Up to 90-95% of the glucokinase activity was found in the membrane-bound fraction 

(Figs 6A,C). It is concluded that glucose is mainly phosphorylated by the membrane-

bound enzyme(s). Steward and Copeland (1993) showed that 40% of the glucokinase 

activity was associated with mitochondria in Persea americana and Galina et al. (1995) 

found 45% of the glucokinase activity to be bound to mitochondria in Zea mays roots. 

These enzymes showed highest affinity towards glucose, although fructose might also be 
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Uptake and phosphorylation ofhexoses 

phosphorylated and the enzyme is often referred to as "hexokinase" (Doehlert 1989; 

Schnarrenberger 1990; Renz and Stitt 1993, Figs 6C,D). Steward and Copeland (1993) 

found only one hexokinase present in Persea americana, although Renz and Stitt (1993) 

showed 3 hexokinases to be present in developing Solanum tuberosum tubers. 

The Km value of the membrane-bound hexokinase for glucose was more than 10 times 

lower than for fructose (Fig. 6C). Therefore, this hexokinase might use glucose 

preferentially to fructose in vivo. In our view, cells growing on a mixture of glucose and 

fructose will phosphorylate fructose mainly in the soluble fraction (Figs 6A,B) and 

glucose will be mainly phosphorylated by the membrane-bound hexokinase (Figs 6C,D, 

7). ADP might inhibit glucose phosphorylation by mitochondrial hexokinase as was 

shown in Zea mays by Martinez-Barajas (1998) and Galina et al. (1999). The ATP/ADP 

ratio might be relatively low at the start of the culture priod; as a consequence glucose 

phosphorylation may be inhibited and glucose and sucrose-grown cells might show a 

longer lag-phase compared to fructose-grown cells. 

Bender et al. (1987) found that Daucus carota root explants incorporated 14C-glucose 

preferentially into malate and citrate while 14C-fructose was incorporated more in sucrose. 

Sagishima et al. (1989) found more 14C02 produced by Catharanthus roseus cells fed with 

[U-14C]-glucose, while [U-14C]-fructose was incorporated more in sucrose. Preliminary 

results also showed more 13C02 produced by [l-13C]-glucose than by [l-13C]-fructose in 

Daucus carota cells (results not shown). Sagishima et al. (1989) suggested that fructose 

was incorporated in sucrose by sucrose synthase activity. However, experiments with cell 

suspensions labelled with fructose always showed a similar labelling percentage of the 

glucose and fructose moieties of sucrose, excluding sucrose synthase as a major sucrose 

synthesizing enzyme (Wendler et al. 1990; Kosegarten et al. 1995; Krook et al. 1998). 

We suggest that glucose phosphorylation may well be coupled to mitochondrial 

respiratory activity and that fructose is a better substrate for the synthesis of structural 

cell components necessary for growth and accumulation of sugar and starch. 

It is suggested, therefore, that different "compartments" exist in the same cell: fructose 

will be phosphorylated by the soluble fructokinase creating a pool of glycolytic 

intermediates in a "compartment" resulting in structural components, while glucose 
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creates a pool of glycolytic intermediates surrounding the mitochondria in a 

"compartment" providing substrates for respiration (Fig. 7). 
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Figure 7 Proposed model for hexose uptake and conversion in Daucus carota cells grown 
in batch culture. Hexoses are taken up by carriers or diffusion. INV = invertase, P 
= phosphate group, PPi = pyrophosphate, UGPase = UDP-glucose pyrophos-
phorylase, SPS = sucrose phosphate synthase. Boxed metabolites depict 
accumulated sucrose and glucose. The dashed lines surrounding the 
phosphorylation-reactions show the "compartment" associated with respiration, 
preferentially using glucose and the "compartment" synthesizing structural 
components preferentially using fructose. 
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Uptake and phosphorylation of hexoses 

Both pools might be separated since the mitochondrial volume is only a few percents of 

the cytosolic volume (Winter et al. 1994). Exchange between these two pools is suggested 

to be limited, probably depending upon the number of mitochondria, their cellular 

localisation, their connection with the endoplasmatic reticulum and the rate of hexose 

converting reactions within each pool relative to the exchange rate between them (Fig. 7). 

Consequences of the distribution of fructokinase and hexokinase with respect to growth 

and sugar accumulation 

Since the mitochondrial hexokinase is far in excess compared to soluble glucokinase (Figs 

6A,C), glucose-grown cells mainly phosphorylate glucose in the respiratory 

"compartment" and relatively less glucose is phosphorylated in the structural components 

"compartment". As a result these cells show less biomass production (Figs 1B,C) and 

accumulated less soluble sugars compared to fructose-grown cells (Figs 5A,B). Since 

accumulated sugars are known to be located mainly in the vacuole (Preisser et al. 1992), 

it is suggested that less sugar accumulation in glucose-grown cells lead to less osmotic 

water uptake, thereby explaining the lower fresh weight (Fig IB) and the lower ratio of 

fresh weight and dry weight compared to fructose-grown cells (deduced from Figs 1B,C). 

In addition, glucose is the best substrate in the first phase of embryogenesis in 

differentiating cells of embryogenic cultures of Daucus carota (Verma and Dougall 1977), 

Asparagus officinalis (Levi and Sink 1992) and Cucumis sativus (Callebaut et al. 1986); in 

this phase high energy consumption takes place necessary for cell divisions (i.e. the 

formation of globular embryos). A correlation between high cellular glucose levels and 

embryogenic potential was reported for Daucus carota cells by Dijkema et al. (1988). In 

the second phase of embryogenesis, fructose was found to be a better substrate in 

Asparagus officinalis cells (Levi and Sink 1992). Higher growth rates when growing on 

fructose as a substrate were also reported for heterotrophic Daucus carota cells (Zwayyed 

et al. 1991) and Taxus cells (Wickremesinhe et al. 1994), for mixotrophic cells of 

Glycine max (Spilatro and Anderson 1988) and Carica papaya shoot explants (Drew et al. 

1993). 
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Cellular phosphorylated intermediates 

In all three culture types, the level of hexose phosphates increased after inoculation. It is 

assumed that hexoses were phosphorylated already during the lag phase, while enzymes 

required for production of structural cell components, cell division and sucrose 

accumulation still had to be synthesized or activated. After day two the level of hexose 

phosphates decreased again and growth started. 

The high levels of glucose-1-phosphate at the second day after inoculation in fructose-

grown cells (Fig. 4B) and to a lesser extent in sucrose-grown cells (Fig. 4C) obviously is 

a result of the supply of fructose as initial substrate. For an efficient turnover of glucose-

1-phosphate the UTP-level should be sufficient to support the reaction by 

uridinediphosphate-glucose pyrophosphorylase (UGPase) of glucose-1-phosphate into 

UDP-glucose (UDPG, Fig. 7), an important reaction product in growing plant cells 

because of its role in cell wall synthesis (Lawson et al. 1989) and sucrose synthesis 

(Wendler et al. 1990; Xu et al. 1989). As a consequence of the fast start of growth in 

fructose-grown cells (Figs 1A,B,C), the production of UTP in the lag phase might be 

insufficient to support the complete conversion of glucose-1-phosphate into UDPG, 

resulting in a transient accumulation of glucose-1-phosphate (Figs 4, 7). Nakano et al. 

(1989), Vella and Copeland (1990), Sowokinos et al. (1993) and Elling (1996) reported 

that UGPase had Km values of 74 to 170 yM for UTP. However, the Km value of Daucus 

carota UGPase was about 400 pM (results not shown), making fructokinase and UGPase 

compete for UTP at low levels of NTPs. 

Accumulation and cycling of sucrose and hexoses 

In general, hexose levels remained low during growth due to hexose phosphorylating 

activity (Fig. 6) and sucrose accumulated in the logarithmic growth phase (Fig. 5). 

However, glucose accumulated to 10-fold higher levels in fructose-grown cells compared 

to glucose-grown cells. Glucose accumulation followed the pattern of sucrose 

accumulation and fructose uptake (Figs. 1A, 5B), suggesting that the process of sucrose 

cycling, i.e. synthesis of sucrose from UDPG and fructose-6-phosphate in the cytosol and 

degradation of sucrose at the same time is responsible for the production of glucose and 
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fructose (Fig. 7) as proposed by Dancer et al. (1990) and Wendler et al. (1990). 

The observed retention of glucose was unexpected, because glucose was found to 

disappear from the medium and was found to be converted easily in glucose- and sucrose-

grown cells (Figs 1A, 5). Two explanations might be valid to explain the accumulation of 

glucose. Firstly, fructose might take over metabolism in fructose-grown cells in such a 

way that glucose phosphorylation is impaired. Secondly, glucose might be sequestered in 

the vacuole for osmotic purposes. However, further research should be performed to 

examine the validity of these hypotheses. 

Conclusion 

Our results are taken to indicate that two separate pools exist for glycolytic intermediates 

in Daucus carota cells: a pool localised in the cytosol associated with soluble fructokinase 

producing UDPG which results in the synthesis of sucrose and cell wall material and a 

pool surrounding the mitochondrial-bound hexokinase preferentially using glucose, 

serving as substrate for respiration. As a consequence, a different balance between 

production of biomass, sucrose synthesis and energy production was observed between 

fructose-grown and glucose-grown cells. 
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Abstract 

After a lag phase of two days batch-cultured, sucrose-grown suspension cells of carrot 

(Daucus carota L.) cv. Flakkese entered the exponential growth phase and started to 

accumulate sucrose and hexoses. Short-term feeding 13C-glucose in this period resulted in 

only minor labelling of sucrose or fructose. C02 production from [1-13C]- and [6-13C]-glucose 

revealed, that at least 40% of the added glucose passed through the oxidative pentose 

phosphate pathway (OPPP), up to 40% through the respiratory pathway while about 20% was 

incorporated in various cell components in the exponential growth phase. After about 11 days 

of culture the medium sugars were exhausted, cells entered the stationary growth phase and 

consumed stored sugar. Both neutral and acid invertase (EC 3.2.1.26) and sucrose synthase 

(EC 2.4.1.13) increased 50% from day 0 to day 11-13, thereafter their levels decreased 

again. Short-term feeding 13C-glucose resulted in the accumulation of labelled sucrose and 

fructose during the stationary growth phase. Sucrose labelling was transient, i.e. after 6 h 

its level started to decrease again. Labelled fructose, however, evolved slower and increased 

even after 8 h. In sucrose and fructose up to 20% of the I3C-label was exchanged from C-l 

to C-6 carbons, indicating intensive cycling of at least 40% of the carbon between hexoses 

and triose phosphates. In the stationary phase only 10% of the labelled glucose passed 

through the OPPP and about 30% passed through the respiratory pathway; the remaining 

60% was incorporated in cell constituents and sugars. Comparing the various cycles showed 

that the regulation of the OPPP operated relatively independently from cytosolic cycling of 

hexoses phosphates through sucrose and between hexose phosphates and triose phosphates. 

Key-words: metabolic cycles, oxidative pentose phosphate pathway, Daucus carota L. (cell 

suspensions), cytosol, vacuole, respiration 
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Short-term carbon cycling 

Introduction 

In heterotrophically growing plant cell suspensions sucrose is usually hydrolysed 

extracellularly by a cell-wall-bound invertase and the resulting hexoses are taken up (Kanabus 

et al. 1986; Dijkema et al. 1988, 1990). After phosphorylation the imported hexoses will be 

used for biosynthesis and for energy production. A common feature of plant cell suspensions 

grown in batch culture is a 10-14 days biphasic growth cycle (Kanabus et al. 1986; Dijkema 

et al. 1988, 1990; Wendler et al. 1990; Kubota and Ashihara 1993). In the first phase sugar 

uptake and conversion result in logarithmic growth and concomitant storage of sucrose and 

starch. In the second phase, when medium sugars are depleted, cells enter the stationary 

phase: cell growth declines and stored sucrose and starch are consumed for cell maintenance. 

Next to this growth-cycle related conversion of carbohydrates short-term cycling of 

carbohydrates has also been shown: futile cycles are a common feature of plant cell 

metabolism. Cycling of hexoses through the sucrose pool, cycling of hexose phosphates 

through the oxidative pentose phosphate pathway (OPPP) and cycling between hexose- and 

triose phosphates are reported in both cell suspensions and different kinds of plant tissues. 

Sucrose is subject to cycling by a continuous process of synthesis and degradation as was 

found in Saccharum cells (Dancer et al. 1990; Wendler et al. 1990). The activities of sucrose 

phosphate synthase, invertase and sucrose synthase and the compartmentation of sucrose and 

hexoses determine the net accumulation or breakdown of sucrose as was found in Acer 

pseudoplatanus cells (Huber and Akazawa 1986), Daucus carota roots (Lee and Sturm 1996) 

and Saccharum stem tissue (Zhu et al. 1997). 

The OPPP removes the C-l carbon from glucose phosphates. Hexoses labelled at the C-l 

carbon with either 13C or 14C therefore produce 13C02 and 14C02, respectively, when going 

through the OPPP while C-6 labelled hexoses do not. OPPP activity is reported in a range 

of species and tissues as Solanum tuberosum callus (Hemrika-Wagner 1985), isolated Pisum 

sativum plastids (Ernes and Fowler 1983) and Capsicum annum chloroplasts (Thorn and 

Neuhaus 1995). The OPPP is able to cycle the resulting pentose-phosphates back to hexose-

phosphates and triose-phosphates; as a result glucose-6-phosphate can be fully oxidised, 

thereby producing reducing equivalents (NADPH) for biosynthetic purposes (Kang and 
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Rawthorne 1996; Hartwell et al. 1996). Alternatively, the OPPP may be used as a source 

of pentose, erythrose and heptulose sugars for the biosynthesis of nucleic acids, aromatic 

amino acids and secondary metabolites (Hagendoorn et al. 1991). The OPPP is localised both 

in the cytosol and the plastids in some tissues as was postulated for Zea mays root tips by 

Frehner et al. (1990) and Averill et al. (1998). Krook et al. (1998) concluded that also in 

Daucus carota cell suspensions OPPP activity is present both in the cytosol and in the 

plastids. 

The combined actions of glycolysis and gluconeogenesis give rise to cycling of carbon 

between triose phosphates and hexose phosphates in which label is exchanged from C-l to 

C-6 carbons as was reported for Catharanthus roseus cells, Solarium tuberosum tubers and 

Zea mays endosperm by Hatzfeld and Stitt (1990) and germinating Triticum aestivum seeds 

(Keeling et al. 1988). This label exchange was supposed to occur at the level of triose 

phosphates (Hatzfeld and Stitt 1990); concomitant gluconeogenesis results in C-6 labelled 

hexose (phosphates). As a consequence, plants fed with C-l labelled glucose also produce 

C-6 labelled hexoses, sucrose and starch. Label exchange percentages up to 50% were 

reported in cells and tissues of various species (Keeling et al. 1988; Viola et al. 1991; 

Kosegarten et al. 1995; Krook et al. 1998). 

In all the reports published before, only one cycle was studied. Here, we report on different 

cycles operating together during a 14 days culture period of batch-grown cell suspensions of 

Daucus carota. Cells were fed with 13C-labelled glucose in short-term labelling experiments 

in an 'airlift-system', i.e. airlifted cells in a NMR-tube (Fox et al. 1989), to study the 

simultaneous cycling of hexose phosphates through the sucrose pool, the OPPP and between 

hexose phosphates and triose phosphates in vivo in relation to total carbohydrate 

consumption. Cells from the lag, exponential and stationary phase were used to measure the 

changes in relative contribution of each cycle during different growth phases. 
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Short-term carbon cycling 

Materials and Methods 

Cell suspensions 

After being initiated from hypocotyl-derived callus of Daucus carota L. cv. Flakkese 

(Zaadunie, Enkhuizen, The Netherlands) "Line 10" cell suspensions were kindly provided 

by Sacco C. de Vries and Marijke Hartog (de Vries et al. 1988). Cells were subcultured 

every 14 days by diluting 2 ml of packed cells in 50 ml Gamborg's B5 medium (Gamborg 

et al. 1968) supplemented with 2.3 /nM 2,4-D and 50 mM sucrose. Cells were grown at 

25 °C in 250 ml erlenmeyer flasks at an Innova 2300 orbital shaker (New Brunswick 

Scientific, Nijmegen, The Netherlands) at 100 rpm. 

NMR experiments 

Cells of day 1 (lag phase), day 5 (exponential growth phase) and day 11, 13 and 15 

(stationary growth phase) were harvested from batch cultures for NMR experiments. About 

6.6 ml of packed cells were washed two times with Gamborg's B5 medium without sugar and 

diluted in 16.5 ml total volume. Cells were pipetted into a 20-mm diameter NMR tube 

containing an airlift-system aerated with 100% 02 for oxygen supply and to maintain cell 

suspending (Fig. 1, Fox et al. 1989). At time zero 500 jttmol 99.9% enriched [l-13C]-glucose 

(g dry weight)"1 was added after which acquisition of the NMR spectra was started 

immediately. 13C-labelled compounds were purchased from Isotec Inc. (Miamisburg, OH, 

USA). In addition, experiments in which [6-13C]-glucose was added to the cells were 

performed. The outward gas flow was led through a 10 mm diameter tube containing 7.0 ml 

of 10% KOH solution which was sufficient to trap all the released 13C02 (Fig. 1). The KOH 

solution was refreshed every 2 h so release of 13C02 could be followed in time. Control 

experiments in which unlabelled glucose was used were also performed to determine natural 

abundance (1.1%) 13C02 production during the experiments. 

,3C-NMR of cells and C02 

13C-labelled sugars were analyzed using a wide bore AMX-300 spectrometer equipped with 

a 20 mm internal diameter 13C-probe (Brucker, Germany). 13C-labelled C02 was analyzed 
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using a 10 mm internal diameter 13C-probe; samples were prepared by mixing 2.20 ml 13C02-

containing KOH with 200 /xl D20 for field lock and 50 pi 500 mM [l-13C]-glucose as internal 

standard. The Waltz sequence and two-level proton decoupling were applied, 7200 and 3600 

FID's were accumulated in 8k data points using a 45° and 30° pulse and a pulse repetition 

time of 0.5 s and 2.0 s for spectra of cells and C02 samples, respectively. A line broadening 

of 3 Hz was used and zero-filling to 16k data points was applied prior to Fourier trans

formation. Peak areas at 164.5 ppm (C03
2~), 96.8 ppm (fi-glucose C-l), 64.8 ppm (fructose 

C-l), 64.2 ppm (fructose C-6), 63.3 ppm (sucrose-fructosyl C-6) and 62.0 ppm (sucrose-

fructosyl C-l) were integrated. Integral values out of spectra of standard solutions containing 

50 mM gluose, fructose and sucrose or 10 mM 99.9% enriched NaH13C03 recorded under 

similar experimental conditions were used for quantification of the C-l and C-6 carbons. 

CO2 
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C02-TRAP 

receiver-coil 

y^o2 

P i 

o 
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packed cell volume = 40 % 

Figure 1 Schematic drawing of the airlift-system. 1. The oxygen supply (100 ml.min") 
causes circulation of cells providing a homogeneous suspension. 2. Outward 
gas flow is led through a 10% KOH solution in order to trap the released CO2. 
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Short-term carbon cycling 

The exchange of label from C-l to C-6 carbons was expressed as percentage C-6 labelled 

carbons of total labelled (C-l and C-6) carbons. The amounts of labelled C-l and C-6 

carbons were added and divided by the total concentration of sugar measured by HPLC in 

order to calculate labelling percentages. Glucose, fructose and sucrose concentrations were 

determined from samples taken at 0, 4 and 8 h after starting the NMR-experiments by 

filtering cells over a Buchner funnel and washing 2 times with Gamborg's B5 medium 

without sugar, after which they were frozen in liquid nitrogen and stored at -80°C until 

freeze-drying in a Modulyo 4k (Edwards, Crawley, Sussex, England). 

Invertase and sucrose synthase activity 

Invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) were assayed in freshly made 

extracts from freeze-dried material. Samples of 20 mg were extracted in 1.2 ml buffer 

containing 50 mM HEPES at pH 7.5, 5 mM DTT, 5 mM Mg-acetate and 1 mM EDTA at 

4 °C. Low molecular mass components were removed on a Biogel P6 column (BioRad, 

Veenendaal, The Netherlands) (modified after Appeldoorn et al. 1997). Neutral and acid 

invertase assays were performed in a final volume of 300 fA containing 20 mM Na-

phosphate/citrate and 25 mM sucrose at pH 7.5 and pH 5.2, respectively. After incubation 

for 45 min at 30°C, reactions were terminated by boiling for 4 min. Glucose units were 

measured by means of HPLC as described in 'sugar determinations'. 

The sucrose synthase reaction was performed in an assay with a final volume of 100 jtl 

containing 100 mM MES at pH 8.0, 3 mM UDP and 200 mM sucrose. Samples were 

incubated for 30 min at 30°C, after which reactions were stopped by boiling for 4 min. 

UDP-glucose was determined in an assay with a final volume of 975 p\ containing 20 mM 

MES at pH 8.0, 0.13 mM NAD+ and 0.02 U UDP-glucose dehydrogenase (Boehringer, 

Mannheim, Germany). NAD+ conversion was measured at 30°C using a double beam -

spectrophotometer operating at 340 nm (Shimadzu, Kyoto, Japan). One Unit represents the 

amount of enzyme hydrolysing one jttmol sucrose min-1 at 30°C. 

Dry weight and sugar determinations 

Cells were harvested from batch culture and washed 2 times with Gamborg's B5 medium 
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after which cells were frozen in liquid nitrogen. After freeze-drying dry weight was 

determined. Soluble sugars were extracted by boiling 20 mg freeze-dried material in 1.0 ml 

80% methanol for 15 min at 76°C. Methanol was evaporated in a Speedvac (Savant 

Instruments Inc. Farmingdale, NY, USA) and the samples were dissolved in ultra pure water 

(Millipore Intertech, Bedford, USA). 

Soluble sugars were measured with a Dionex HPLC system (Dionex Corporation, Sunnyvale, 

CA, USA) using a Carbopac PA-1 (guard)column coupled to a pulsed amperometric detector 

Tetteroo et al. 1995). Isocratic elution was performed with 100 mM NaOH for 15 min to 

separate glucose, fructose and sucrose. Peak areas were quantified using standard sugar 

solutions. 

Respiration measurements 

Oxygen uptake was determined by transferring 2.5 ml of cell suspension directly from the 

batch culture or after washing and NMR-experiments into an oxygen electrode (Rank Bros., 

Bottisham, Cambridge, UK) equilibrated with air. Oxygen uptake was followed for about 10 

min at 25 °C while stirring the suspension. The amount of hexoses respired per flask was 

calculated by integrating oxygen consumption divided by six against the dry weight expressed 

as mg per flask. 

Differences between experimental series 

The growth rates of cell suspensions, and the exact timing of the consecutive growth phases 

differed considerably between various experimental series. The data for sucrose and fructose 

labelling and respiration rate show comparable differences. Therefore, calculating mean 

values of labelling of sucrose and fructose and respiration rate, in replicate experiments 

would not be meaningful since the physiological age of the cells is not the same for each time 

point of different experimental series. 
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Results 

Cell growth, sugar content and respiratory activity 

Figure 2 A shows the cumulative weights of total medium sugars, respired sugars and dry 

weight of the carrot cells. Medium sugars were exhausted after 11 days. During the first 8 

days about 50% of the total amount of hexose consumed was used for respiration and hexose 

and sucrose levels remained high, at levels of about 400 and 250 /nmol (g dry weight)"1, 

respectively (Fig. 2C). 

After day 8, cells entered the stationary growth phase: dry weight decreased while respiration 

continued. At day 15 about 75% of the initially supplied hexoses were used in respiration. 

Concomitantly, internal sugar levels dropped to about 20 /imol.(g dry weight)"1 (Fig. 2C). 

Respiration rate was 3 /*mol 02.(g dry weight)"1.min1 initially and increased up to 5 jumol 

02.(g dry weight)"1.min"1 during the lag phase (day 1-4). From day 4 to day 8 the respiration 

rate remained constant at 5 /xmol 02.(g dry weight) '.min1, whereas from day 8 it gradually 

decreased towards 3 /xmol 02.(g dry weight)"1.min"1 (Fig. 2B, open symbols). When cells 

were transferred to an airlift-system, respiration rate increased 1.5-4-fold (Fig. 2B, closed 

symbols), depending on the growth phase of the cell culture. 

Figure 2D shows the time course of the activities of sucrose-degrading enzymes: sucrose 

synthase, neutral and acid invertase increased gradually by about 50% towards day 11-13; 

thereafter activities of all three enzymes decreased again. 

Short-term labelling of the cells 

Batch cultured cells were harvested, washed with fresh medium lacking sugar and incubated 

with 500 /tmol [l-13C]-glucose.(g dry weight)1 in order to follow the incorporation of label 

into other soluble sugars. Lag phase 1-day-old and exponentially growing 5-days-old cells 

showed less than 15 and 5 /tmol.(g dry weight)"1 incorporation of label into sucrose and 

fructose, respectively (Figs 3A,B). In the stationary phase (11-13 days-old-cells) labelled 

sucrose accumulated up to 60 /*mol.(g dry weight)"1 at 3 h after adding the labelled glucose 

and its level remained high until 5-6 h. After 5-6 h the applied 13C-glucose had disappeared 

from the medium (data not shown) and the level of labelled sucrose started to decrease again 
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(Fig. 3A). In cells of 15 days old a more or less steady level of 35 /xmol.(g dry weight)"1 was 

reached. 

• ^ \airlift 

batch \ o-o—-—a \ 

X \ _ 
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Time after inoculation (day) 
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Figure 2 (A) Partitioning of carbon during the course of growth of Daucus carota cells 
grown in batch culture expressed in mg.flask" Cumulative representation of 
total medium sugar (black area), dry weight (white area) and respiration 
(hatched area). The latter was calculated by dividing the respiration rate by 6 as 
a function of dry weight in mg.flask" , (B) the respiration rate of cells taken 
directly from batch ( O ) or after a 4 h-treatment in the airlift-system ( • ), 
expressed in |j,mol 02.g" DW.min" , (C) cellular content of glucose ( O ), 
fructose ( • ) and sucrose ( V ) in umol.g" DW and (D) the amounts of 
soluble acid invertase ( • ), neutral invertase ( • ) and sucrose synthase 
( O ) expressed as U.g" DW. One Unit represents the amount of enzyme 
which hydrolyses 
experiments. 

1 umol sucrose.min" Data of a representative series of 
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Short-term carbon cycling 

The rate of fructose labelling was only half of that of sucrose labelling and was increasing 

even after 8 h (Fig. 3B). Labelled glucose is not depicted since no discrimination can be 

made between internal and externally supplied glucose in this experimental set-up (Fig. 1). 

Total sugar levels changed during the 8 h labelling period: 1 to 5-days-old cells showed 

initially high sugar levels, that gradually decreased, while the initially low levels of sugars 

in 11 to 15-days-old cells rose slightly (Figs 3C,D). 

Labelling percentages of sucrose and fructose during the NMR experiments were calculated 

for time points 4 and 8 h after starting the experiment. Figure 3E shows that the labelling 

percentage of sucrose in logarithmically growing cells of 5 days old did not exceed 8%. Cells 

of 1 day old showed a slightly higher labelling percentage up to 20%. Sucrose labelling 

percentage was about equal for cells from day 11, 13 and 15 and was maximally 80-95% 

after 8 h. Fructose labelling percentage (Fig. 3F) was correlated with age: maximally 20% 

in cells of 1 day old towards 85% in cells of 15 days old. Cells of 5 days old (logarithmic 

growth phase) showed a very low labelling of about 2 /imol.(g dry weight)1 (2%). 

The percentage of C-6 labelled carbons in fructose was calculated (Tab. 1). For cells of 1 

and 5 days old the fructose C-6 signal at 64.8 ppm was not detectable; for cells of 11, 13 

and 15 days old the labelling percentage of C-6 carbons was constant at 18-20%. 
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Time after adding [l-13C]glucose (h) Time after adding [l-13C]glucose (h) 

Figure 3 Profile of C-labelled sucrose (A) and fructose (B) and changes in total 
sucrose (C) and total fructose (D) expressed as umol.g"1DW, and changes in 
labelling percentage calculated as the sum of labelled C-l and C-6 carbons of 
sucrose and fructose divided by total (labelled and unlabelled) sucrose (E) and 
fructose (F) during an 8-h treatment with " C-glucose in the airlift-system of 1 
( O ) 5 ( • ), 11 ( • ), 13 ( • ) and 15 ( • ) days-old-cells of Daucus carota 
grown in batch culture with sucrose as carbon source. Data of a representative 
series of experiments. 
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Short-term carbon cycling 

Table 1 Percentage labelled C-6 of total labelled (C-l and C-6) carbons of free fructose 
in batch cultured cells of different age, after incubation with 500 /xmol [1-13C]-
glucose g"1 DW in an airlift-system, n.d.: C-6 carbons were not detectable in 
the spectra. Values are means of time-points 3,4,5 and 6 h ± S.D. 

Day 

1 

5 

11 

13 

15 

Percentage C-6 

in fructose 

n.d. 

n.d. 

18.3 + 2.5 

18.1 + 4.6 

19.8 ± 5.1 

Respiration measured by 02 consumption 

In Fig. 4 the respiration rate of cells of 1 day old taken directly from batch is compared to 

that of cells during the NMR experiment. Absolute values of respiration were half of that of 

1 day old cells presented in Fig. 2B, that were from a different experimental series; 

apparently there is a considerable variation in basal respiration rate in-between experiments. 

However, increase of respiration after washing the cells quickly for 2 times in fresh medium 

was 4-fold in both experiments (Figs 2B, 4). During the period of the NMR experiments 

respiration was about constant. The 02 concentration used to aerate the cells in the NMR-tube 

(20% or 100%) did not significantly influence the respiration rate as determined in the 

oxygen electrode at 20% 02. 

Respiration measured by 13C02 production 

Incubation of cells with [l-13C]-glucose or [6-13C]-glucose resulted in production of 13C02 

which was trapped by leading the outgoing gas through a 10% KOH solution for 8 h (Fig. 

1). This 13C02 production was corrected for natural abundance 13C which was measured 
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using unlabelled glucose and accounted for 19-39% of total trapped 13C02. 

During the first week cells consuming [6-13C]-glucose released 40% of the added label as 
13C02, decreasing to about 30% in cells in the stationary phase. Cells fed with [1-13C]-

glucose released up to 80% of the label as 13C02 in the first week decreasing to 40% in the 

second week (Fig. 5). 

In Fig. 6 the rate of C02 release during the NMR experiment for cells of 7 and 14 days old 

is depicted. The difference in C02 release between cells fed with [1-13C] and [6-13C]-glucose 

occurred mainly from 2 to 6 h. After 6 h, when labelled glucose was completely taken up 

(data not shown) the rate of 13C02 production remained constant for both labelling conditions. 

batch 0 4 8 

Time after washing 
and transfer to airlift (h) 

Figure 4 Respiration of 1-day-old cells of Daucus carota during the 8 h- incubation of 
the cells in an airlift-system aerated with 20% (open bars) or 100% oxygen 
(hatched bars). T=0 is directly after washing the batch cultured cells 2 times in 
fresh medium. Means of 3 replicates ± S.D. out of a representative series of 
experiments. 
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0 3 6 9 12 15 
Time after inoculation (day) 

Figure 5 Percentage of added [1-I3C] ( O ) or [6-l3C]-labelled ( • ) glucose recovered 
as CO3 " in a 10% KOH solution during 8 h-incubation in an airlift-system of 
Daucus carota cells originally grown in batch culture on sucrose. Pooled data 
of 2 series of experiments. 

0 2 4 6 8 10 12 
Time after adding 13C-glucose (h) 

Figure 6 Respired 13C02 during uptake and conversion of 500 umol.g"1 DW [1-13C]-
(open symbols) or [6- C]-glucose (closed symbols) by 7-days-old ( V, T), 
and 14-days-old ( O,0 ), batch-grown cells of Daucus carota incubated in an 
airlift-system. CO3 " was trapped in a 10% KOH solution in 2-h intervals. 
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Discussion 

Cell growth and long-term sucrose cycling in batch culture 

Hexose levels might be low in the cytosol since active kinases are present (Chapter 3, Fig. 

6) and hexoses might be channelled into the vacuole as was shown for Nicotiana tabacum 

leaves (Heineke et al. 1994) and Saccharum cell suspensions (Preisser et al. 1992). Sucrose 

is thought to be taken up in the vacuole by a passive carrier-mediated process as found in 

vacuoles of Saccharum cells (Preisser and Komor 1991) or as an ATP/PPrdependent process 

taking place under well-energized conditions parallel to the uptake of hexoses as shown for 

Pisum sativum mesophyll cells (Guy et al. 1979) and Beta vulgaris roots (Getz 1991). 

It was shown by Zhu et al. (1997) that sucrose accumulation is determined by the difference 

in sucrose phosphate synthase (SPS) and invertase activity. Goldner et al. (1991) showed in 

Saccharum stem tissue that sucrose accumulation was positively correlated to cytosolic SPS 

and inversely correlated to vacuolar acid invertase activity, indicating that accumulated 

sucrose might be localised in the vacuole. Huber and Akazawa (1986) showed that the 

activities of sucrose synthase and neutral invertase are about the same in Acer pseudoplatanus 

cells. In Daucus carota cells, Stommel and Simon (1990) reported about twice as much acid 

invertase protein compared to neutral invertase. In our Daucus carota cells, all three sucrose 

hydrolysing enzymes were present and neutral and acid invertase activities were twice and 

three times higher than that of sucrose synthase (SUSY), respectively (Fig. 2D). For Daucus 

carota, a Km-value of 20 mM sucrose was reported for both neutral and alkaline invertase, 

while fructose and glucose are inhibitors with Kj values of 15 and 30 mM, respectively (Lee 

and Sturm 1996). Fructose was also found to be an inhibitor of Solanum tuberosum acid 

invertase (Isla et al. 1991, 1998). Glucose and fructose concentrations of 360 /tmol.(g dry 

weight)"1 at day 1-9 were found in Daucus carota cells (Fig. 2C) corresponding to about 25 

pimol.(g fresh weight)"1 (assuming a mean dry matter percentage of 7.5%) which might be 

equivalent to at least 25 mM, depending on the intracellular localisation. As a consequence 

of the high hexose concentration in the vacuole, acid invertase will not be active under these 

conditions and sucrose accumulates. 

Since hexose levels were supposed to be low in the cytosol, cytosolic neutral invertase might 
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Short-term carbon cycling 

permit sucrolysis giving rise to cytosolic sucrose cycling as was observed by Dancer et al. 

(1990) and Wendler et al. (1990). SUSY shows a higher Km value of 87 mM for sucrose and 

lower Kj values of 17 mM for fructose and 4 mM for glucose compared to invertases in 

Daucus roots (Sebkova et al. 1995). Furthermore, the level of UDP-glucose (UDPG) might 

be high in the logarithmic growth phase as was found for Nicotiana tabacum cells by Meyer 

and Wagner (1985); therefore sucrolysis catalysed by SUSY will be inhibited, making 

invertase a more likely candidate for cytosolic sucrose cycling in the logarithmic growth 

phase. In addition, high levels of UDPG in this period might stimulate sucrose synthesis by 

SPS (Fig. 7). It is suggested that both inhibition of acid invertase in the vacuole by high 

levels of hexoses and a high rate of sucrose synthesis by SPS due to high levels of UDPG 

are responsible for sucrose accumulation during the logarithmic growth phase. 

After day 8 fructose and glucose levels declined to 20 ftmol.(g dry weight)"1 (Fig. 2C), 

corresponding to about 1.5 mM; this is considerably lower than the K; values of SUSY and 

invertases for glucose and fructose. Both cytosolic sucrolysis by neutral invertase and by 

SUSY and vacuolar sucrolysis by acid invertase might take place now. 

Short-term labelling of cells: sucrose cycling, triose phosphate cycling and respiratory activity 

Five days old cells (logarithmic growth phase) showed labelling percentages of less than 8% 

for sucrose (Fig. 3E) and less than 2% for fructose (Fig. 3F) when incubated with 500 pmol 

[l-13C]-glucose.(g dry weight)"1. The calculated respiration rate of 880 /xmol hexoses.(g dry 

weight)"1.(8 h)"1 (derived from Fig. 2B) was consistent with the disappearance of this 500 

pimol added hexose and the decreasing sucrose level of about 380 fimol hexose units.(g dry 

weight)1 (deduced from Fig. 3C). In view of the decrease of the level of sucrose and the low 

labelling of sucrose and fructose it is concluded that most of the phosphorylated hexoses were 

used in respiration rather than for sucrose synthesis; sucrose cycling as reported by Wendler 

et al. (1990) and Dancer et al. (1990) therefore might be limited in this period. 

Stationary phase cells (11-15 days old) showed an increase of labelled and total sucrose up 

to about 60 /xmol.(g dry weight)1. When medium glucose was exhausted after 6 h, total 

sucrose levels started to decline again. After 8 h nearly the complete pool of sucrose was 

labelled (up to 80-95%, Fig. 3E). Increase of labelled fructose was slower but labelling 
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increased even after 8 h, suggesting that sucrolysis was responsible for the increasing 

labelling of fructose. The retention of labelled fructose (Fig. 3B) after 8 h suggests 

compartmentation of hexoses inside the vacuole since hexose phosphorylating capacity is high 

(Chapter 3, Fig. 6). In our view sucrose is subject to simultaneous synthesis in the cytosol, 

transport to the vacuole and subsequent breakdown by acid invertase. The evolving hexoses 

remained in the vacuole for several hours under well energized conditions (i.e. sugar 

consumption coupled to high respiratory activity (Fig. 7)). At day 13 respiration was 180 and 

320 /xmol hexose.(g dry weight)1.(8 h)1 in batch and airlifted cells, respectively (deduced 

from Fig. 2B). This indicates that batch-grown cells with a depleted sugar pool in the 

medium respired internal substrates; in airlifted cells fed with 500 jumol.(g dry weight)"1 [1-
13C]-glucose 320 /imol.(g dry weight)"1 was respired and 180 jumol.(g dry weight)"1 remains 

for conversion into biomass and storage sugars during that 8 h experiment. 

Cells of 1 day old showed 25% labelling for both sucrose and fructose (Figs 3E,F), 

indicating that lag-phase cells were intermediate between the logarithmic phase (low 

labelling) and stationary phase (high labelling) with respect to respiration and sugar synthesis. 

About 18-20% of the C-l label was exchanged to C-6 carbons (Tab. 1), indicating that up 

to 40% of the hexoses cycled between triose phosphates and hexose phosphates (Fig. 7) 

before they were incorporated in sucrose and hexoses. This is consistent with reports about 

Chenopodium rubrum cell suspensions (Hatzfeld and Stitt 1990), Triticum aestivum seeds 

(Keeling et al. 1988), Solarium tuberosum tubers and seeds of Viciafaba (Viola et al. 1991) 

which were labelled for 1-4 h. However, it is considerably lower than found during long-

term labelling of cell suspensions of Solarium tuberosum and Daucus carota: labelling 

percentages up to 50% were reported by Kosegarten et al. (1995) and Krook et al. (1998, 

Chapter 2), respectively. Treatment of cells or tissues during short-term labelling experiments 

often causes severe stress responses like an increased respiration rate (Fig. 2B). It is 

suggested that under these conditions the flow from triose-phosphates is in the direction of 

glycolysis; as a consequence of the resulting lower levels of fructose-1,6-bisphosphate and 

triose phosphates less cycling between triose- and hexose phosphates might occur and the rate 

of sucrose synthesis might decrease. 
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Figure 7 Flow of [1- C]-glucose through the triose-hexose phosphate, the sucrose cycle 
and the oxidative pentose phosphate pathway in Daucus carota cells grown in 
batch culture. Hydrolysis of sucrose takes place in the cytosol in the 
logarithmic growth phase and both in the cytosol and vacuole in stationary 
phase cells. Metabolic cycles are encircled by dashed lines. Glucose, fructose 
and sucrose, accumulating in the vacuole during the logarithmic phase are 
encircled. Small circles on membranes indicate transmembrane-carriers. P = 
phosphate group, SPS = sucrose phosphate synthase, INV = invertase, SUSY = 
sucrose synthase, UDPG = UDP-glucose, GAP = glyceraldehyde-3-phosphate, 
DHAP = dyhroxyacetone phosphate. 
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Cycling through the OPPP and respiration 

When cells were washed and supplied with 500 /xmol glucose.(g dry weight)1, respiration 

rate increased within 5 min (Fig. 4); this increase was higher in cells of one day old (about 

four times) than in cells of 13-15 days old (about one and a half times, Fig. 2B). During the 

subsequent NMR-experiment respiration was almost constant, irrespective of the oxygen 

concentration of 20 or 100% (Fig. 4). Such a sudden increase is suggested to occur via 

activation of already present respiratory pathway components; the capacity of this pathway 

is often higher than its actual activity as was found for e.g. Petunia hybrida cells (van 

Emmerik et al. 1994). The capacity was maximal in lag phase cells suggesting that the 

availability of one or more nutrients in the medium is responsible for the synthesis of extra 

components of the respiratory pathway. In continuous cultures of Petunia hybrida cells grown 

at low cell density respiration remains high, suggesting that maintenance costs were high due 

to this low cell density (de Gucht and van der Plas 1995). It is suggested by van Emmerik 

et al. (1994) that at low cell densities cells are prepared for oncoming cell divisions which 

require high energy production by respiratory activity. Although the Daucus cells used in our 

experiments were kept at high density, i.e. a packed cell volume of about 40%, the lack of 

cell-cell contacts or signal-compounds in the first hours after resuspension of the cells in 

fresh medium may cause comparable effects. 

In the oxidative pentose phosphate pathway (OPPP) 13C02 is primarily released from [1-13C]-

glucose, while during complete degradation of glucose in glycolysis and the tricarboxylic acid 

cycle 13C02 is released from both [l-13C]-glucose and [6-13C]-glucose (Fig. 7). Therefore, 
13C02 released from [6-13C]-glucose was taken as a measure for glucose respired via 

glycolysis and 13C02 released from [l-13C]-glucose minus [6-l3C]-glucose was assigned to in 

vivo OPPP activity. In the first week both glycolysis and OPPP used 40% of the added sugar 

leaving 20% that is incorporated in NMR-invisible compounds. In stationary phase cells 30% 

was used in glycolysis, 10% by the OPPP and 60% of the 13C-label was built into soluble 

sugars (Figs 3C,D) and NMR-invisible compounds. This was consistent with reports for 

Solanum tuberosum callus (Hemrika-Wagner 1985), who also found a higher OPPP-

dependent 14C02 production in the induction phase of callus growth, parallel to a higher in 

vitro activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase 
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activity. Similar increases in enzymes of the OPPP were found in Catharanthus roseus cells 

during the logarithmic growth phase and were explained by the higher demand of pentose 

sugars and NADPH for the synthesis of nucleic acids (Ishida and Ashihara 1993). Also, 

synthesis of lipids (Kang and Rawthorne 1996) and the reduction of nitrite (Ishida and 

Ashihara 1993; Hartwell et al. 1996) during the logarithmic growth require high activity of 

the OPPP. When cells enter the stationary phase as a result of sugar-exhaustion of the 

medium, the pentose phosphate pathway activity decreased more than did glycolysis, parallel 

with the decreased need for the synthesis of cell components (Fig. 2A). Glycolysis continued 

to fulfil its role in energy production necessary for cell maintenance. 

The results presented in Fig. 6 show that a short-term pulse-labelling results in non-linear 

reactions: 13C02 evolved slowly during the first 2 h, and the difference between [1-13C]- and 

[6-13C]-glucose was only small. It was concluded that labelled glucose entered the cytosol, 

became phosphorylated and saturated the pool of cytosolic hexoses in a period of 2 h. From 

2 to 6 h different amounts of 13C02 evolved from [1-13C]- and [6-13C]-glucose, indicating that 

labelled hexose phosphates cycled intensely through the OPPP. From 6 h onwards, the rate 

of 13C02 production is the same for [1-13C]- and [6-13C]-glucose. All labelled glucose has 

been taken up and it was concluded that label between C-l and C-6 carbons has equilibrated 

completely. Only 13C-label derived from the degradation of 13C-labelled sucrose and hexoses 

(in 11-15 days old cells, Figs 3A,B) as well as from NMR-invisible compounds like lipids 

and proteins contribute to the continuing release of 13C02. 

However, a few considerations have to be made about the interpretation of these 

measurements. From Tab. 1 it was concluded that up to 20% of label was exchanged from 

C-l to C-6 carbons in hexoses and sucrose. If at the same time 20% of the C-6 label was 

transferred to C-l carbons of hexoses and only one pool of hexose (phosphate) was present 

in the cells (Fig. 7), the actual OPPP activity would be considerably underestimated. 

Although earlier work on batch-grown Daucus cells showed OPPP activity in the plastids as 

well (Chapter 2, Figs 2,3) only minute quantities of labelled starch were found after labelling 

for 8 h indicating that nearly no labelled hexoses entered the plastids in these short-term 

experiments {results not shown), suggesting that only a cytosolic-localised pool of hexose 

phosphates is playing a role in OPPP activity during the experiments. However, the presence 
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of more than one pool of hexose phosphates in the cytosol (Chapter 3) might further 

complicate the interpretation of the data of [1-13C]- and [6-13C]-glucose conversion. 

Conclusion 

It is proposed that, as a consequence of the increased respiration in the airlift-system, less 

hexose phosphates are available for cycling between hexoses and sucrose and between triose 

phosphates and hexose phosphates. In contrast, the presence of hexose phosphates cycling 

through the OPPP seemed to be relatively unaffected by a high respiration rate. Label 

exchange from C-l to C-6 carbons in hexose phosphates might even lead to an 

underestimation of the measured OPPP activity. 

These metabolic cycles are suggested to play a role in intact plants in adaptations to quickly 

changing environmental conditions: the activities of metabolic pathways are higher than their 

actual needs and the produced metabolites are cycled back as long as the need for them is 

limited (Wendler et al. 1990). 

Acknowledgements 

We wish to thank Sacco C. de Vries and Marijke Hartog of the Laboratory of Molecular 

Biology of the Wageningen University for supplying cell suspensions of Daucus carota L.. 

This work was financially supported by the Foundation of Life Science (SLW) subsidized by 

the Netherlands Organisation of Scientific Research (NWO). 

78 



Chapter 5 

The triose-hexose phosphate cycle and the sucrose cycle 

in carrot (Daucus carota L.) cell suspensions are controlled 

by respiration and PP^ fructose-6-phosphate phosphotransferase 

'Janhendrik Krook, 2Klaas A.E. van't Slot, 'Dick Vreugdenhil, 
3Cor Dijkema and 'Linus H.W. van der Plas 

'Laboratory of Plant Physiology, Wageningen University, 

Arboretumlaan 4, 6703 BD Wageningen, The Netherlands 
2present address: Max-Planck-Institut fur Ziichtungsforschung, 

Carl-von-Linne Weg 10, D-50829 Koln, Germany 
3Laboratory of Molecular Physics, Wageningen University, Dreijenlaan 3, 6703 HA 

Wageningen, The Netherlands. 

submitted to Journal of Plant Physiology 

79 



Abstract 

Short-term 13C-labelling was applied to two different lines of Daucus carota L. cell 

suspensions. The AlO-line, containing 10% proembryogenic masses (PEMs) and 90% large, 

vacuolated cells (VACs), showed a 2 times higher label exchange from C-l to C-6 carbons 

within sucrose and hexoses than the A+-line, containing 80% PEMs. This label exchange 

is known to be caused by cycling of carbon from hexose phosphates to triose phosphates and 

vice versa, in which ATP-dependent phosphofructokinase (PFK, EC 2.7.1.11) catalyses the 

glycolytic reaction and PPrdependent phosphofructokinase (PFP, EC 2.7.1.90) the 

gluconeogenetic reaction. The ratio of extractable PFP/PFK was 3 times higher in the AlO-

line compared to the A+-line. However, PEMs and VACs from one line showed identical 

PFP/PFK ratios and identical label exchange. It is concluded that the level of PFP is 

genetically determined and that this level influences the amount of label exchange from C-l 

to C-6 carbons in hexoses and sucrose in Daucus carota cells. High levels of the reversible 

enzyme PFP might give plants the advantage to respond adequately to quickly changing 

demands for substrates for either glycolytic or gluconeogenetic reactions. 

Both triose-hexose phosphate cycling and respiration were higher when suspensions were 

aerated with 100% 02 instead of 6% 02. It is concluded that high respiratory activity both 

stimulated the flow of hexose phosphates into the respiratory pathway and the back-flow from 

triose to hexose phosphates. However, total labelled sucrose was higher at 6% than at 100% 

02, indicating that more hexose phosphates were available for sucrose synthesis at 6% 02. 

Furthermore, PEMs accumulated higher levels of sucrose than VACs, indicating that sugar 

metabolism was differently regulated in PEMs and VACs. 

Keywords: ATP-dependent fructose-6-phosphate phosphotransferase (PFK), carbon-13 

nuclear magnetic resonance (13C-NMR), Daucus carota L. (cell suspensions), PPrdependent 

fructose-6-phosphate phosphotransferase (PFP), respiration, triose-hexose phosphate cycling 
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Carbon cycles and respiration 

Introduction 

Futile cycling of metabolites is a well known property of plant cell metabolism: cycling of 

hexose phosphates through the oxidative pentose phosphate pathway (Wagner et al. 1987; 

Hartwell et al. 1996), cycling between hexoses and sucrose (Wendler et al. 1990; Zamski 

and Barnea 1996) and cycling between hexose monophosphates and triose monophosphates 

(Hatzfeld and Stitt 1990) have been reported. In the triose-hexose phosphate cycle exchange 

of label from C-l to C-6 carbons occurs at the level of triose phosphates (Hatzfeld and Stitt 

1990). After feeding [l-13C]-hexoses simultaneous glycolytic and gluconeogenetic activity 

results in [1-13C]-labelled and [6-13C]-labelled sucrose and hexoses. C-l and C-6 labelled 

carbons can be observed in a 13C Nuclear Magnetic Resonance (13C-NMR) spectrum in vitro 

(Krookefa/. 1998) and in vivo (Keeling et al. 1988; Dijkemaef al. 1990; Viola et al. 1991). 

The irreversible conversions between fructose-6-phosphate and fructose-1,6-bisphosphate are 

catalyzed by the glycolytic enzyme ATP:fructose-6-phosphate phosphotransferase (PFK) and 

the gluconeogenetic enzyme fructose-l,6-bisphosphatase (FBPase). FBPase plays a role in 

photosynthetic starch synthesis but was reported to be absent in the cytosol of non-green 

tissue (Entwistle and ap Rees 1990; Hatzfeld and Stitt 1990). After the discovery of a PP r 

dependent phosphofructokinase in bacteria in the seventies (Reeves et al. 1974; O'Brien et 

al. 1975), its existence in plants was discovered in 1979 in pineapple leaves (Carnal and 

Black 1979). This enzyme catalyses the reversible reaction between fructose-6-phosphate and 

fructose-1,6-bisphosphate with PPS as a phosphoryl donor in the glycolytic reaction and P; as 

a phosphoryl acceptor in the gluconeogenetic reaction. 

Hatzfeld and Stitt (1990) proposed that this enzyme, called PPi:fructose-6-phosphate 

phosphotransferase (PFP), is responsible for the observed cycling of carbon between triose 

phosphates and hexose phosphates in plants. Since this reaction is in near-equilibrium in vivo, 

the direction of the reaction will be determined by the concentration of its substrates fructose-

6-phosphate, fructose-1,6-bisphosphate, PPi and P; (Stitt 1989; Hatzfeld and Stitt 1990). In 

addition, the activity will be determined not only by the amount of enzyme, but also by its 

activator fructose-2,6-bisphosphate (van Schaftingen et al. 1982; Hatzfeld et al. 1990). 

The amino acid sequence of PFP is homologous to that of PFK from plants and mammals 
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(Carlisle et al. 1990). PFK of mammals is stimulated by fructose-2,6-bisphosphate in a 

similar way as PFP of plants, while PFK of plants is not affected by fructose-2,6-

bisphosphate (Hue and Rider 1987). 

fructose-
6-P 

FBPase PFK PFP 

fructose-
1,6-bisP 

aldolase 

dihydroxy glycer-
acetone-P aldehyde-3P 

those phoshate 
isomerase 

PFP is thought to play a role when high metabolic activity requires tuning of different 

pathways and during unfavourable circumstances like low temperature in roots (Black et al. 

1987). PFP is abundant in sink-tissues, e.g. developing buds or (young) roots during sucrose 

import and degradation. Hatzfeld and Stitt (1990) found the level of PFP to correlate with 

the level of sucrose synthase (SUSY) in Chenopodium rubrum cell suspensions during the 

logarithmic growth phase when sucrose was simultaneously synthesized by sucrose phosphate 

synthase (SPS) and degraded by SUSY, the latter yielding fructose and UDP-glucose 

(UDPG). When PFP is active in the gluconeogenetic direction, the PP; produced can 

subsequently be used by uridinediphosphate glucose pyrophosphorylase (UGPase) to convert 

UDPG into glucose-1-phosphate and UTP (Huber and Akazawa 1986; Zhu et al. 1997). 

A role of PFP in glycolysis is also suggested. Botha et al. (1992) described that 

logarithmically growing cell suspensions of Phaseolus vulgaris show a high respiration rate; 

the calculated PFK activity was insufficient to account for the observed high glycolytic 

activity. Therefore, they suggested that PFP may act in the glycolytic direction during high 

respiratory activity in these cells. 

82 



Carbon cycles and respiration 

In addition to the findings that PFP might determine the label exchange between C-l and C-6 

carbons by cycling triose phosphates back to hexose phosphates, it was suggested in earlier 

experiments on Daucus carota cell suspensions that respiratory activity may also have an 

effect. The oxygen concentration might influence label exchange from C-l to C-6 carbons 

by determining the respiratory activity and as a consequence the flow of hexose phosphates 

to triose phosphates through glycolysis and the subsequent consumption of glycolytic end-

products by the citric acid cycle in the mitochondria 

Here, we report observations on two embryogenic carrot (Daucus carota L.) cell lines, 

differing in the relative amounts of clustered small cytoplasm-rich cells named 

proembryogenic masses (PEMs) and single, large vacuolated cells (VACs) (Steward 1958; 

de Vries et al. 1988; Toonen et al. 1994). PEMs are thought to be meristematic, actively 

growing cells which store sucrose and starch while VACs are elongated, metabolically less 

active cells (Halperin and Jensen 1967; Wurtele et al. 1988). One line contained 10% PEMs 

(AlO-line) and a second line 80% PEMs (A-1-line) (de Vries et al. 1988). The AlO-line 

produced a higher percentage of labelled C-6 carbons in sucrose and hexoses after feeding 

[l-13C]-glucose than the A+-line (Dijkema et al. 1990); these authors suggested that this was 

due to the high abundance of VACs which might show higher label exchange from C-l to 

C-6 carbons than PEMs. However, this was inconsistent with the findings for Acer 

pseudoplatanus cells (Huber and Akazawa, 1986) and for developing seeds of Phaseolus 

lunatus (Xu et al., 1989) that meristematic cells and tissues often show higher levels of PFP. 

Hatzfeld and Stitt (1990) showed that high levels of PFP were accompanied by high 

percentages of label exchange from C-l to C-6 carbons in hexoses and sucrose in 

logarithmically growing batch-cultured cells of Chenopodium rubrum. 

In order to investigate these apparently contradictory results, PEMs were separated from 

VACs and uptake of [l-13C]-glucose and conversion into [1-13C]- and [6-13C]-labelled sucrose 

and fructose was monitored and compared to the ratio of in vitro PFP/PFK activity. 

Furthermore, the A10 and A+-line were aerated with high and low 02, to monitor the effect 

of the 0 2 concentration on the respiration rate and label exchange from C-l to C-6 carbons. 
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Materials and Methods 

Cell suspensions 

Cell suspensions were initiated from hypocotyl-derived callus of Daucus carota L. cv. 

Flakkese ("AlO-line") and cv. San Valery ("A+-line") (de Vries et al. 1988). Cells were 

subcultured every 14 days by diluting 2 ml of packed cells in 50 ml Gamborg's B5 medium 

(Gamborg et al. 1968) supplemented with 2.3 IJM 2,4-D and 50 mM sucrose. For the A+-

line 2 /xM BAP was added which was necessary to maintain the large amount of PEMs. 

When BAP was omitted from the medium, the amount of PEMs decreased to 10%, similar 

to that of the AlO-line. 

Separation of proembryogenic masses and vacuolated cells 

Cells of day 7 were harvested from batch cultures and sieved over 200, 125 and 50 ion nylon 

filters. Ten ml of cells (with a packed cell volume of about 40%) between 50-125 /xm were 

put on top of a percoll gradient consisting of 5 ml 40% percoll, 10 ml 30% percoll, 10 ml 

20% percoll and 10 ml 10% percoll (Ulmer and Flad 1979). Gradients were centrifuged at 

200g for 20 minutes with low-acceleration and low-brake in a MSE Mistral 3000? swing-out 

centrifuge (Fisions Scient. Equipm., Crawley, West Sussex, UK). After centrifugation the 

fractions of 10 and 20% percoll, mainly consisting of vacuolated and isodiametrically shaped 

cells, were pooled ("VACs") as well as the fractions of 30 and 40% percoll, consisting of 

mainly proembryogenic masses ("PEMs"). The procedure was carried out under sterile 

conditions in a laminar flow cabinet. After washing 3 times with fresh medium lacking sugar 

to remove the percoll, the cells were given the opportunity to recover overnight on an orbital 

shaker at 25 °C in the same medium without sugar. 

NMR experiments 

Separated cells of 7 days old (20-30% packed cell volume) or cells of 14 days old washed 

with fresh medium lacking sugar and sieved over a 500 tim nylon filter (40% packed cell 

volume) were pipetted into a 20-mm diameter NMR tube containing an airlift-system for 

oxygen supply and suspending the cells (Chapter 4, Fig. 1; Fox et al. 1989). Cells were 
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Carbon cycles and respiration 

aerated with 100% or 6% 02 (10% C02, 84% N2) to determine label exchange percentages 

from C-l to C-6 carbons in sucrose and fructose. At time point zero 500 ftmol 99.9% [1-
13C]-labelled glucose (g dry weight)' was added after which acquisition of the NMR spectra 

was started immediately. 13C-labelled glucose was purchased from Isotec Inc. (Miamisburg, 

Ohio, USA). Total respiration during a 9 h incubation period was measured by feeding a 

parallel sample 500 /nmol unlabelled glucose.(g dry weight)"1 during aeration with 1/99. 6/94, 

20/80 or 100/0% 02/N2. Evolving C02 was trapped in 10% KOH solution (w/v) after which 

the 13C02 was determined by NMR. Total respired (13C02 +
 12C02) C02 was calculated by 

multiplying the amount of 13C02 by 91, since natural abundance 13C is 1.1%. 

In vivo 13C-NMR of cells and determination of 13C02 

13C-labelled sugars were analyzed in vivo using a wide bore AMX-300 spectrometer (Bruker, 

Germany) equipped with a 20 mm internal diameter 13C probe. 13C-labelled C02 was 

analyzed using a 10 mm internal diameter 13C probe; samples were prepared by mixing 2.20 

ml 13C03
2-containing KOH with 200 \A D20 for field lock and 50 \A 500 mM [l-13C]-glucose 

as internal standard. The Waltz sequence and two-level proton decoupling were applied, 7200 

and 3600 FID's were accumulated in 8k data points using a 45° and 30° pulse and a pulse 

repetition time of 0.5 s and 2.0 s for spectra of cells and C02 samples, respectively. A line 

broadening of 3Hz was used and zero-filling to 16k data points was applied prior to Fourier 

transformation. Peak areas at 164.5 ppm (C03
2~), 96.8 ppm (fi-glucose C-l), 93.0 ppm (a-

glucose C-l and sucrose-glucosyl C-l), 64.8 ppm (fructose C-l), 64.2 ppm (fructose C-6), 

63.3 ppm (sucrose-fructosyl C-6), 62.0 ppm (sucrose-fructosyl C-l) were integrated. Spectra 

of standard solutions containing 50 mM of sucrose, glucose and fructose or 10 mM 99.9% 

labelled NaH13C03 and 10 mM 99.9% labelled [l-13C]-glucose as internal reference recorded 

under similar experimental conditions were used for quantification of the C-l and C-6 

carbons. The exchange of label from C-l to C-6 carbons was expressed as the percentage 

labelled C-6 carbons from total labelled (C-l and C-6) carbons. 
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Sugar determinations 

Soluble sugars were extracted by boiling 20 mg freeze-dried material in 1.0 ml 80 % 

methanol for 15 minutes at 76 °C. Methanol was evaporated in a Speedvac (Savant 

Instruments Inc. Farmingdale, NY, USA) and the samples were dissolved in ultra pure water 

(Millipore Intertech, Bedford, USA) (modified after Tetteroo et al. 1995). 

Soluble sugars were measured with a Dionex HPLC system (Dionex Corporation, Sunnyvale, 

CA, USA) using a Carbopac PA-1 (guard)column coupled to a pulsed amperometric detector. 

Isocratic elution was performed with 100 mM NaOH for 15 minutes to separate glucose, 

fructose and sucrose. Peak areas were quantified using standard sugar solutions. 

Enzyme determinations 

PPrdependent fructose-6-phosphate phosphotransferase (PFP, EC 2.7.1.90) and ATP-

dependent fructose-6-phosphate phosphotransferase (PFK, EC 2.7.1.11) were assayed in 

freshly made extracts from freeze dried material. Ten to twenty mg samples were extracted 

in 1.2 ml buffer containing 50 mM HEPES at pH 7.5, 5.0 mM dithiotreitol, 5.0 mM Mg-

acetate and 1.0 mM EDTA at 4°C. Low molecular mass components were removed on a 

Biogel P6 column (BioRad, Veenendaal, The Netherlands) (modified after Appeldoora et al. 

1997). Enzyme assays were performed in a final volume of 1.2 ml containing 100 mM 

Tris/acetic acid at pH 8.0, 0.15 mM NADH, 5.2 mM fructose-6-phosphate, 0.8 U aldolase, 

0.8 U glycerol phosphate dehydrogenase and 0.8 U triose phosphate isomerase. Reactions 

were started by the addition of 1.0 mM PP, for PFP (modified after Hatzfeld et al. 1990) or 

1.0 mM ATP for PFK. For PFP an additional 4.3 fiM fructose-2,6-bisphosphate and 0.5 mM 

Mg-acetate and for PFK 0.5 mM MgCl2 were added. NADH conversion was measured at 

30°C using a double beam spectrophotometer operating at 340 nm (Shimadzu, Kyoto, Japan). 

Respiration measurements 

Oxygen uptake was determined by transferring 2.5 ml of cell suspension directly from the 

batch culture or after washing and NMR-experiments into an oxygen electrode (Rank Bros., 

Bottisham, Cambridge, UK) equilibrated with air. Oxygen uptake was followed for about 10 

min at 25 °C while stirring the suspension. The amount of hexoses respired per flask was 
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calculated by integrating oxygen consumption divided by six against the dry weight expressed 

as mg per flask. 

Differences between experimental series 

The growth rates of cell suspensions, and the exact timing of the consecutive growth phases 

differed considerably between various experimental series. Since sugar accumulating 

capacity, enzyme levels and respiration rate are growth phase-dependent, sugar labelling and 

absolute PFP and PFK-values show also differences between the different experimental series 

when measurements of the same day are compared. As a consequence, calculating mean 

values in replicate experiments would not be meaningful since the physiological age of the 

cells is not the same for each time point of different experimental series. Therefore, 

representative data are shown for each experiment. 

Results 

Effects of 02 concentration on uptake and conversion of glucose, and on triose-hexose 

phosphate cycling. 

Oxygen concentrations of 6% and 100% were used to aerate cells in the airlift-system. After 

addition of 500 /iinol [l-13C]-glucose.(g dry weight)"1 cells started to take up glucose at a rate 

of about 50-200 /jmol glucose.(g dry weight)1.h1, depending on the oxygen concentration 

and the cell line. At 6% 02 the A+-line took up and converted the glucose about twice as 

fast as the AlO-line. At 100% 02 nearly all labelled glucose had been taken up after 5-6 h 

(AlO-line) or4 h (A+-line) while the final level of glucose in the A+-line was slightly lower 

than in the AlO-line. At 100% 02, the rate of glucose uptake was 2-3 times higher than that 

at 6% 02 (Figs 1A,D). 

At 6% 02 at least two times more 13C-label was built into sucrose and fructose compared to 

100% 0 2 (Figs 1 B,C,E,F). Generally more labelled sugars were found in the A+-line (Figs 

1E,F) than in the AlO-line (Figs 1B,C). Cellular glucose could not be measured since cellular 

and medium-localised glucose are observed as one signal in the NMR experiment. 
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Figure 1 Uptake (A, D) and conversion (B, C, E, F) of 500 umol [l-l3C]-glucose.g"' DW 
in an air-lift-system by 14-days-old Daucus carota cells originally grown in 
batch culture on sucrose. Disappearance of glucose from the medium at 6% ( V ) 
and 100% ( • ) O2 (A, D), conversion into sucrose ( O ) and fructose ( • ) at 6% 
O2 (B, E) and at 100% O2 (C, F). Representative data of different series of 
experiments. 
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Carbon cycles and respiration 

The difference in label exchange from C-l to C-6 carbons between the A10- and A+-line 

was most pronounced at the start of the experiment when cells were aerated with 6% 02: the 

percentage C-6 labelled carbons of total labelled carbons in the fructose moieties of sucrose 

was about 2 times higher in the AlO-line at that time (Fig. 2). Label exchange in the glucose 

moieties of sucrose and in free fructose was similar (data not shown). The percentage of C-6 

labelled carbons was constant for the AlO-line at 6% 0 2 (about 18%); at 100% 0 2 the 

percentage labelled C-6 carbons increased after 4 hours from 15 to 23% for this cell line 

(Fig. 2A). In the A+-line the percentage of labelled C-6 carbons increased at 6% and 100% 

02: from 7 to 14% and 13 to 17%, respectively (Fig. 2B). At 100% 0 2 the percentage C-6 

carbons was higher compared to that at 6% 02 (Figs 2A,B), except in the AlO-line for the 

first 4 hours (Fig. 2A). 

A+-line 

Time after addition [l-13C]glucose (h) Time after addition [l-13C]glucose (h) 

Figure 2 C-6 labelled carbons as percentage of total labelled (C-l and C-6) carbons of the 
fructose moiety of sucrose after addition of 500 umol [1- C]-glucose.g" DW in 
an airlift-system to 14 days old Daucus carota cells orgininally grown in batch 
culture on sucrose. Cells of the AlO-line (A) and A+-line (B) were aerated with 
6% O2 ( V ) or 100% O2 ( • ). Representative data of different series of 
experiments. 
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Total respired carbon during the NMR-experiments was determined by measuring the total 

amount of 13C02 produced during 9 h incubation of cells of the AlO-line with 500 ^mol.(g 

dry weight)"1 natural abundance glucose in an airlift-system aerated with different oxygen 

concentrations. These values were multiplied by 91 to calculate total (13C02 +
 12C02) C02 

production. Figure 3 shows that respiration in the AlO-line at 6% 0 2 was about half of that 

at 100% 02, being 1.7 and 3.4 mmol C02.(g dry weight)"1.9 h1. From these data it was 

calculated that in a 9 h incubation period about 285 and 570 /jmol hexoses were respired at 

6% and 100% 02 , respectively. 

Conversion of [l-nC]-glucose and total sugar levels in PEMs and VACs. 

Density centrifugation of the 50-125 fixa fraction yielded separated PEMs and VACs 

populations; VACs of both the A10 and A+-line contained no proembryogenic masses. 

PEMs contained a 20-fold purified population of proembryogenic masses as was observed 

microscopically. The purity of PEMs of the A+-line was somewhat higher than that of the 

AlO-line (data not shown). 
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Figure 3 Total respiration during an 9 h incubation period expressed in mmol CCh.g 
DW.9 h" of batch-cultured, sucrose-grown Daucus carota cells of the AlO-line 
in an airlift-system aerated with 1, 6, 20 or 100% O2 after addition of 500 umol. 
g" DW natural abundance glucose. 
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Carbon cycles and respiration 

Figure 4 shows the conversion of [l-13C]-labelled glucose into labelled sucrose and fructose 

in separated PEMs and VACs in an airlift-system aerated with 100% 02. In general, maximal 

labelling of sucrose was much higher in PEMs than in VACs on a dry weight basis. A 

tendency to peak-labelling between 4-7 hours was observed in PEMs of the AlO-line (150 

/tmol.(g dry weight)"1), after which labelling decreased again (Fig. 4A). PEMs of the A+-

line showed a more or less steady level of labelled sucrose between 4-8 h (Fig. 4C). Sucrose 

labelling in VACs was much lower than in PEMs, reaching levels of 40-60 /imol.(g dry 

weight)"1 (Figs 4B,D). 

8 9 10 

Time after addition [l-13C]glucose (h) 

8 9 10 

Time after addition [l-13C]glucose (h) 

Figure 4 Accumulation of C-labelled sucrose ( O ) and fructose ( • ) expressed in 
umol.g"1 DW after addition of 500 umol [1- 3C]-glucose.g_1 DW to separated 
proembryogenic masses (PEMs) (A, C) and vacuolated cells (VACs) (B, D) of 
the AlO-line (A, B) and A+-line (C, D) in an airlift-system aerated with 100% 
O2. Isolated PEMs and VACs were given the opportunity to recover overnight in 
Gamborg's B5 medium without sugar, at 25°C at an orbital shaker after 
separation from 7-days-old, batch-cultured cells of Daucus carota grown on 
sucrose. Data of representative series of experiments. 
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The rate of fructose labelling was slower than that of sucrose and reached a more or less 

stable level in all cell populations after a lag phase of 1-3 h. In PEMs fructose labelling was 

much lower than sucrose labelling and levelled off at about 40 ^tmol.(g dry weight)1. In 

VACs fructose accumulation showed a different pattern: in the AlO-line fructose reached a 

level similar to that of sucrose (about 30-40 /*mol.(g dry weight)"1, Fig. 4B) and in the A+-

line fructose labelling was much lower than sucrose labelling reaching only 10 /xmol.(g dry 

weight)1 (Fig. 4D). 

In Fig. 5 the total sugar levels are depicted directly after separation of the PEMs and VACs, 

before the NMR-experiment. In general, PEMs contained 1.5-2 times more sucrose than 

VACs. PEMs and VACs of the A+-line contained relatively high ratios of sucrose/fructose 

and glucose/fructose compared to the AlO-line. Both types of cell populations of the AlO-line 

contained more sugar per g dry weight than those from the A+-line. 
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Figure 5 Total concentration of glucose (open bars), fructose (black bars) and sucrose 
(hatched bars) expressed in ujnol.g" DW in separated proembryogenic masses 
(PEMs) and vacuolated cells (VACs) of the AlO-line (A) and the A+-line (B) of 
7-days-old batch-cultured Daucus carota cells grown on sucrose. Sugar 
concentrations were measured directly after separation of the PEMs and VACs 
at 4°C. Means of 3 determinations ± S.D. 
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Figure 6 C-6 labelled carbons as percentage of total (C-1 and C-6) labelled carbons of the 
fructose moieties of sucrose after addition of 500 ^mol [1- C]-glucose.g" DW 
to PEMs and VACs in an airlift aerated with 100% O2 (A). The ratio of in vitro 
PFP and PFK activities directly after separation of the cells at 4°C (B). The 
respiration rate in jjmol Cte.g DW.min" directly after the labelling-experiment 
(C). Proembryogenic masses (PEMs, open bars) and vacuolated cells (VACs, 
hatched bars) were isolated from 7-days-old batch cultures of the A 10-line and 
the A+-line of Daucus carota grown on sucrose. Means of time points 3, 4, 5, 6, 
7 h (A), means of duplicate determinations (B, C). 
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Label exchange, the ratio ofPFP/PFK, and respiration rate in PEMs and VACs. 

During the logarithmic growth, the percentage of C-6 labelled carbons of total labelled (C-l 

+ C-6) carbons in the fructose moieties of sucrose was about 10 for PEMs and VACs of the 

AlO-line and about 4 for PEMs and VACs of the A+-line, respectively (Fig. 6A). This was 

2-4 times lower than the label exchange for non-separated, stationary phase cells (Fig. 2). 

The corresponding ratios of PFP/PFK were similar for PEMs and VACs from each cell line 

being about 2.0 and 0.7 for the A10 and A+-line, respectively, indicating that the AlO-line 

contained much more PFP relative to PFK than the A+-line (Fig. 6B). This difference was 

mainly caused by the 3-fold higher level of PFP in the AlO-line while the levels of PFK were 

similar (data not shown). The respiration rates of isolated PEMs and VACs were determined 

after the NMR-experiment. Figure 6C shows that the respiration rate expressed as /*mol 

02.(g dry weight)"1, min"1 was higher for PEMs than for VACs, especially in the A+-line. 

Respiration of PEMs of the A10- and A+-line was similar while the respiration rate in VACs 

was about 1.5 times higher in the AlO-line compared to the A+-line. 

Discussion 

Effect of the oxygen concentration on triose phosphate cycling in the A10 and A+-line 

An oxygen concentration of 6% resulted in at least two times more sucrose and fructose 

labelling (Figs 1B,C,E,F) in both lines than 100% 02. Figure 3 showed that at a 

concentration of 100% 0 2 respiration was about two times higher than at 6% 02. In parallel, 

glucose utilization was about 2 times higher at 100% than at 6% 02 (Figs 1A,D). 

Apparently, glucose phosphorylation and the concomitant glycolytic activity and the synthesis 

of sucrose were highly affected by the medium oxygen concentration, possibly by 

determining the amount of hexoses used in glycolysis: 100% 02 resulted in less hexose 

phosphate available for sucrose synthesis while more sugar was channelled towards the 

respiratory pathway. This indicates, that the cells in the airlift were still not saturated with 

02 at an aeration with 100 ml.min1 6% 02 and perhaps even at aeration with pure 02 . 
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However, the cytochrome c and alternative oxidase of Petunia hybrida were reported to be 

saturated at about 12 fiM and 60 /*M 02, respectively, which corresponds to 1 and 5% 0 2 

(Hoefnagel et al. 1992). Since cultures of Daucus carota consist of relatively large cell 

clumps (up to 500 ^m in diameter), intercellular and intracellular diffusion of 0 2 in this 

system might limit the respiration rate. 

The label exchange from C-l to C-6 carbon in the AlO-line ranged from 15-23%; this is 

consistent with reports for Chenopodium rubrum cells (Hatzfeld and Stitt 1990), Triticum 

aestivum (Keeling et al. 1988), Solanum tuberosum tubers and Viciafaba seeds (Viola et al. 

1991), labelled for 1-4 h. Label exchange in the A+-line was lower, ranging from 7-17%. 

During incubation of A+-line cells at 100% 02 label exchange from C-l to C-6 carbons was 

higher than at 6% 02. Aeration of the AlO-line with 100% 0 2 finally also led to a higher 

label exchange than with 6%. Apparently, a higher rate of respiration at 100% 0 2 leads at 

the same time to a high flow of triose phosphates in the glycolytic direction and a high 

gluconeogenetic backflow of triose phosphates towards hexose phosphates. In the AlO-line, 

label exchange increased from 14 to 20% between 4 and 6 h after start of the incubation at 

100% 02 , concomitant with the exhaustion of medium sugar (Figs 1A, 2A). Obviously, the 

continued high respiration caused increasing label exchange from C-l to C-6 carbons within 

a decreasing labelled hexose (phosphate) pool due to continuing sucrose cycling and triose-

hexose phosphate cycling (Fig. 7). 

In separated cell populations from 7-days-old cultures the percentage of C-6 labelling was 

about 10% in fractions of the A10 and 4% in fractions of the A+-line, respectively (Fig. 

6A). This was 2-4-fold lower than in 14 days-old-cells, reaching values of 17-23 % (Fig. 2A). 

Cultures of 7 days old consist of logarithmically growing cells which possess a higher 

respiration rate (Chapter 4, Fig. 2B) and a higher capacity of sucrose accumulation (Chapter 

4, Fig. 2C,D) than 14 days old cultures. Therefore, the partitioning of hexose phosphates 

between triose phosphates and sucrose, and partitioning of triose phosphates between 

glycolysis and gluconeogenesis might be differently regulated in these different types of 

experiments. 

Since fructose-l,6-bisphosphatase is absent in many non-green tissues (Entwistle and ap Rees 

1990), PFP is supposed to account for the observed C-l to C-6 label exchange in sucrose and 
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hexoses in Daucus carota cells as was suggested in earlier work on Chenopodium rubrum 

cells (Hatzfeld and Stitt 1990). The AlO-line which contained more VACs showed in general 

higher levels of label exchange from C-l to C-6 carbons compared to the A+-line (Fig. 2), 

which led to the working hypothesis put forward in the introduction, that the level of PFP 

might be higher in VACs than in PEMs in Daucus carota cell suspensions. 
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Figure 7 Uptake and conversion of [1- C]-glucose by PEMs and VACs of Daucus 
carota cells originally grown in batch culture on sucrose. Effects of PFP and 
oxygen concentration on the triose-hexose phosphate cycling and sucrose cycles 
are shown. INV = invertase, PFK = ATP:fructose-6-phosphate 
phosphotransferase, PFP = pyrophosphate:fructose-6-phosphate phospho
transferase, SPS = sucrose phosphate synthase, SUSY = sucrose synthase, 
UGPase = UDP-glucose pyrophosphorylase, UDPG = UDP-glucose. Sucrolysis 
might take place both in the cytosol and, after uptake of sucrose, in the vacuole. 
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PFP and C-l to C-6 label exchange in PEMs and VACs. 

Comparing the two cell lines, PFP/PFK ratios were higher in the AlO-line in parallel with 

a higher percentage of labelled C-6 carbons than in the A+-line, suggesting that the different 

levels of PFP are connected with the differences in triose-hexose phosphate cycling. The 

A+-line, normally cultured in the presence of BAP, contained a high number of PEMs, 

while both PEMS and VACs of this cell line showed a low percentage label exchange from 

C-l to C-6 and a low PFP/PFK ratio compared to PEMs and VACs of the AlO-line (Figs 

6A,B). When the A+-line was grown in the absence of BAP, this resulted in a culture which 

resembled the AlO-line with respect to the amount of PEMs (10% PEMs), but showed the 

same low labelling percentage of C-6 carbons as the A+-line cultured in the presence of 

BAP (results not shown). It is concluded that the label exchange from C-l to C-6 carbons in 

hexoses and sucrose is connected with the level of PFP and is genetically determined. 

Therefore, label exchange from C-l to C-6 carbons is not related to the presence of PEMs 

or VACs in Daucus carota cell suspensions. The postulated positive correlation between 

sucrose accumulation and PFP activity in meristematic tissues like logarithmically growing 

Acerpseudoplatanus cells (Huber and Akazawa 1986), Chenopodium rubrum cells (Hatzfeld 

and Stitt 1990) and Saccharum stem tissue (Zhu et al. 1997) was not found when comparing 

PEMs and VACs of Daucus carota of either the A10 or A+-line, as PEMs from both lines 

showed high sucrose accumulation despite the large difference in PFP activity (Figs 4, 6). 

Although the ratio of PFP/PFK was different for cells of the A10 and the A-1-line (Fig. 6B), 

PFK levels were similar. PFK is thought to act as a "maintenance" enzyme producing 

substrates for respiration; therefore, this enzyme is expected to reach similar levels in 

identical tissues of related plant species and cell lines. PFP is thought to play an important 

role as an "adaptive" enzyme, since its reversible action is known to be in near-equilibrium 

in vivo (Sung et al. 1988; Ashihara and Sato 1993). It might be responsible for adjusting the 

equilibrium between the different pools of hexose phosphates, triose phosphates, P: and PP; 

during periods of high metabolic activity (Black et al. 1987; Stitt 1989; Hatzfeld and Stitt 

1990). Therefore, PFP activity might differ largely between tissues and species which show 

differences with respect to biosynthetic capacity or stress-resistance (Black et al. 1987). The 

observed ratio of PFP/PFK of about 2 in the AlO-line coincided with that reported for 
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Chenopodium rubrum cells (Hatzfeld and Stitt 1990), Zea mays kernels (Tobias et al. 1992) 

and Vigna mungo seeds (Ashihara and Sato 1993). In the A+-line the ratio of PFP/PFK was 

relatively low compared to the AlO-line. Therefore, it is suggested that the maintenance 

pathway and adaptive pathway are more closely coupled in this line giving rise to less 

metabolic flexibility. 

PFP is activated by fructose-2,6-bisphosphate (van Schaftingen et al. 1982; Stitt 1990). 

Except from the role of fructose-2,6-bisphosphate in photosynthetic tissues (Stitt et al. 1983; 

Scott and Kruger 1995), its concentration was found to be about 0.1-0.3 nmol.(g fresh 

weight)"1 in non-green tissues like Solatium tuberosum tubers and Daucus carota roots 

(Hajirezaei and Stitt 1991) and Glycine max cell suspensions (Spilatro and Anderson 1988) 

which might be 1-3 /*M in the cytosol supposing a cytosolic localisation and a cytosolic 

volume of 10%. This is more than 100 times higher than its Ke-value of 4-22 nM (Kombrink 

et al. 1984; Spilatro and Anderson 1988; Trevanion and Kruger 1991; Hajirezaei and Stitt 

1991) suggesting that the PFP enzyme is fully activated by fructose-2,6-bisphosphate. PFP 

activity, therefore, might be determined by the levels of its substrates. Stitt (1990) and 

Hajirezaei et al. (1994) showed that PPj, Pi; fructose-6-phosphate and fructose-1,6-

bisphosphate levels might be saturating in vivo, making both the glycolytic and the 

gluconeogenetic reaction possible. 

To explain the simultaneous increase in the rate of glycolytic and gluconeogenetic reactions 

at high levels of 02 , it is suggested that the level of phosphoenolpyruvate decreases as a 

consequence of the high respiratory activity at 100% 02, leading to a decrease of the 

allosterical inhibition of PFK by phosphoenolpyruvate (Dennis and Greyson 1987; Huppe and 

Turpin 1994). This stimulates the glycolytic conversion of fructose-6-phosphate into fructose-

1,6-bisphosphate mediated by PFK. These higher levels of fructose-l,6-bisphosphate might 

not only support a higher respiration rate (Fig. 3), but also stimulate the gluconeogenetic 

conversion of fructose-l,6-bisphosphate and P, into fructose-6-phosphate and PP, via PFP 

(Fig. 7). For Daucus carota storage root fructose-1,6-bisphosphate aldolase a K,„ value of 

6 /iM is reported for fructose-1,6-bisphosphate (Moorhead and Plaxton 1990). The Km values 

of PFP for fructose-1,6-bisphosphate are reported to be 5, 20 and 23 pM in Solanum 

tuberosum tubers (Stitt 1989), Camellia pollen (Nakamura et al. 1992) and Ricinus communis 
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seedlings (Kombrink et al. 1984), respectively, making PFP and aldolase compete for 

fructose-l,6-bisphosphate, probably leading to increases in the reaction products of both 

enzymes and to both glycolytic and gluconeogenetic conversions. 

Gluconeogenetic PFP activity produces PPi; which is supposed to be used for the cytosolic 

conversion of UDPG into glucose-1-phosphate and UTP by UGPase after hydrolysis of 

sucrose by sucrose synthase (SUSY, Huber and Akazawa 1986; Xu et al. 1989; Fig. 7). 

UTP, in turn, might be used to phosphorylate the released fructose since fructokinases are 

known to be active with UTP in addition to ATP (Yamashita and Ashihara 1988; 

Schnarrenberger 1990; Chapter 3). Therefore, high PFP activity might be connected with 

SUSY-mediated cycling of sucrose (Huber and Akazawa 1986; Hatzfeld and Stitt 1990). It 

is hypothesized, that the AlO-line, showing high levels of PFP, might contain higher levels 

of SUSY than the A+-line, showing low levels of PFP. 

At low 0 2 concentrations the respiration rate is lower (Fig. 3) and less hexose phosphates are 

converted to fructose-l,6-bisphosphate and triose-phosphates: as a consequence more hexose 

phosphates are available for sucrose synthesis (Figs 1B,C,E,F). In addition, lower PFP 

activity might produce less PPi and, as a consequence, sucrose degradation by SUSY and 

UGPase might also be lower (Fig. 7) and sucrose labelling might reach higher levels at those 

low 0 2 concentrations (Figs 1B,C,E,F). 

In vivo labelling of PEMs and VACs of the A10 and A + -line. 

PEMs and VACs of both the A10 and A+-line were separated from 7 days old cultures on 

density gradients. Glucose, fructose and sucrose levels were still high at the start of the 

NMR-experiments (Fig. 5) since sugar levels decreased only slightly during recovery 

overnight in Gamborg's B5 medium without sugar {results not shown). 

After addition of 500 /xmol [l-13C]-glucose.(g dry weight)1, fructose labelling started later 

and with a lower rate than sucrose labelling in both PEMs and VACs (Fig. 4); therefore, it 

is suggested that fructose evolved from sucrolysis. Fructose can only accumulate when 

protected from the high activity of fructokinase in Daucus cells (Chapter 3). Therefore, 

simultaneous synthesis and hydrolysis of sucrose only in the cytosol, would probably not 

result in accumulation of labelled fructose. It is concluded that sucrose is at least partially 
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transported to the vacuole after being synthesised in the cytosol, in both PEMs and VACs 

of the A10 and A+-line (Fig. 7). 

PEMs of both the A10 and A+-line showed higher steady-state levels of sucrose than VACs 

(Figs 5A,B) and also accumulated higher levels of labelled sucrose in the airlift (Figs 4A,C). 

Parallel to a higher level of sucrose, higher levels of starch were also observed in PEMs 

(results not shown), which was reported earlier by Wurtele et al. (1988). It is concluded, 

therefore, that PEMs have a higher sucrose and starch accumulating capacity than VACs, 

indicating that these cells resemble meristematic, carbon importing tissues. Apparently, 

PEMs and VACs are different with respect to primary metabolism, although these differences 

were not related to the ratio of PFP/PFK (Fig. 6). 

Conclusion 

Both PFP and the 02 concentration were found to be related with label exchange from C-l 

to C-6 carbons within sucrose and hexoses. PEMs accumulated higher levels of sucrose than 

VACs, indicating that sugar metabolism was differently regulated in both cell types. 

However, PEMs and VACs of one cell line were identical with respect to label exchange 

from C-l to C-6 carbons and the ratio of PFP/PFK, indicating that these properties are 

genetically determined in the investigated Daucus carota cell lines. High levels of PFP are 

supposed to enable plants to adjust the equilibrium between the flow of carbon to glycolysis, 

the pathway leading to synthesis of sucrose and to structural cell components when 

environmental conditions change strongly. 
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Chapter 6 

General Discussion 

A model for uptake and conversion of glucose and fructose, 

and for cycling and storage of hexoses, sucrose and starch 

in carrot suspension cells. 
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Introduction 

This thesis presents a study of the primary carbon metabolism in plant cells using different 

techniques. Besides the classical way of measuring enzyme activities, and sugar and starch 

levels by invasive techniques, in vivo and in vitro 13C-NMR were used to follow the pathway 

of sugar molecules and of certain atoms within these molecules. 

With this combined approach, information was gathered about metabolic cycles in the lag-, 

logarithmic- and stationary growth phase of batch-grown suspension cells of carrot (Daucus 

carota). Differences between glucose and fructose as a carbon source were studied. We were 

able to qualify and quantify the uptake and conversion of glucose and fructose into 

glycolysis, the oxidative pentose phosphate pathway (OPPP) and respiration. Short-term 13C-

labelling was applied to suspension-cultured cells of Daucus carota to get information on the 

flexibility and dynamics of plant metabolism. Cycling of hexoses through sucrose, i.e. 

synthesis of sucrose in the cytosol and concomitant hydrolysis in either the cytosol or the 

vacuole was analyzed. Furthermore, cycling of hexose phosphates through the OPPP in 

cytosol and plastids and cycling between hexose and triose phosphates in the cytosol were 

observed. Long-term labelling was applied to get information on sucrose and starch 

metabolism occurring during a 14 days growth period in batch culture. 

The relationship between the observed metabolic cycles and sugar uptake, biomass production 

and respiration, and the cellular compartmentation of these metabolic cycles was analyzed. 

The observed characteristics will be discussed in this chapter in the context of plant-specific 

metabolic pathways, properties and regulations. 

Glucose and fructose uptake and conversion 

Chapter 3 describes the difference between glucose and fructose as a substrate for growth and 

energy production in carrot cells. Because of the high activity of the abundant enzyme 

phosphoglucoisomerase, interconverting glucose-6-phosphate and fructose-6-phosphate 

(Ashihara et al. 1988; Schnarrenberger et al. 1995), it was hypothesized that both sugars 

would have an equal impact on growth and energy production. However, when glucose and 

fructose were supplied together, glucose was converted preferentially in Daucus cells. On the 

contrary, it was shown that fructose given as the sole carbon source resulted in a shorter lag 
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phase and higher biomass production as compared to glucose. Although different hexose and 

sucrose transporters are known, which are often tissue and development-specific (Weig et al. 

1994; Burkle et al. 1998), it is assumed that cell suspensions represent one type of tissue 

with respect to sugar uptake. Daucus suspension cultures grown on glucose or sucrose for 

6 months showed the same higher biomass production when transferred to fructose-medium, 

indicating that probably the same set of membrane carriers and phosphorylating enzymes was 

already present or rapidly induced after inoculation, irrespective of the carbon source on 

which the cultures had been grown before. Reports of Spilatro and Anderson (1988), 

Zwayyed et al. (1991), Levi and Sink (1992) and Drew et al. (1993) also showed that 

fructose gave more biomass compared to glucose. In Chapter 3, it was shown that the 

maximal uptake rates of glucose and fructose were about the same when supplied separately. 

Although at low concentrations (up to 2 mM), glucose and fructose competed for the hexose 

carrier, this could only partially explain the difference between glucose and fructose 

conversion, suggesting that phosphorylation should be differently regulated in a competitive 

way. 

Daucus cells showed two distinct fractions of sugar phosphorylating activities: a soluble 

fraction converting mainly fructose and a membrane-bound fraction capable of converting 

both glucose and fructose. However, the membrane-bound enzymes showed a 10-fold higher 

glucose phosphorylating activity next to a 2-fold higher fructose phosphorylating activity than 

the soluble enzymes. Furthermore, the membrane-bound enzymes showed a 10-fold higher 

affinity towards glucose as compared to fructose. It is concluded that the soluble fraction 

consists of mainly specific fructokinases, while the membrane-bound fraction consists of a 

different set of one or more unspecific hexokinases. It was shown by several authors that a 

significant part of the hexokinases are attached to the mitochondrial outer membrane (Steward 

and Copeland 1993; Galina et al. 1995, 1999). As a consequence, glucose as a carbon source 

might provide a pool of glycolytic intermediates surrounding the mitochondria and might 

therefore be a better substrate for respiration than fructose. Tubers of Solanum tuberosum 

cotransformed with a yeast invertase and a bacterial glucokinase, which showed higher levels 

of especially glucose, also showed a markedly increased respiration rate. However, this 

glucokinase was assumed to be a soluble enzyme and not specifically localised at the 
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mitochondrial site (Trethewey et al. 1998). 

The first eukaryotic algae might have been developed by a process of "assimilation", i.e. 

uptake of bacteria by other bacteria. The assimilated bacteria developed to specialized 

organelles, i.e. mitochondria and chloroplasts (endosymbiontic theory, Whatley and Whatley 

1981). The resulting unicellular algae used the plastids for sugar degradation, and lost the 

ability of cytosolic glycolysis and starch synthesis. Possibly as a result, nowadays many 

unicellular algae do not posses a cytosolic glycolytic pathway and do not synthesize sucrose. 

Only the chloroplast shows a complete glycolytic pathway in which starch rather than sucrose 

is the substrate for glycolysis (Whatley and Whatley 1981; Huppe and Turpin 1994). Plastids 

and chloroplasts still take up glucose phosphates as their carbon source, also in higher plants. 

The conversion of glucose into glucose-6-phosphate by mitochondrion-bound hexokinase 

might result in a pool of hexose phosphates in the respiratory "compartment"; the resulting 

pyruvate will be used in mitochondrial respiration. 

For fructose a pathway might have developed leading to structural components (cell wall 

components) and sucrose in the cytosol. In this view, sucrose might have been the key to the 

development of higher plants, since it is involved in energy production by glycolysis and 

respiration (Sung et al. 1988), synthesis of storage carbohydrates (Whittaker and Botha 1997) 

and transport of carbon from source to sink tissues (van Bel et al. 1994). It is suggested that 

glucose alone is insufficient to fulfil all these jobs simultaneously, while the occurrence of 

fructose and glucose supplied the plant cell with parallel regulatory mechanisms to coordinate 

these different tasks at the same time. 

Geiger et al. (1998) also found for slices of growing potato tubers that feeding 14C-glucose 

led to an increase in respiration, while 14C-sucrose led to an increase in starch synthesis 

within 20 minutes. Since ADP-glucose (ADPG) and 3-phosphoglycerate levels did not 

increase, they proposed that the imported sucrose was involved in a specific signal -

transduction pathway leading to stimulation of starch synthesis. However, this explanation 

was not based on the demonstration of the existence of such a signal-transduction pathway. 

An alternative explanation might be that sucrose taken up by potato tuber slices, which is 

degraded by sucrose synthase (SUSY), results in UDP-glucose and fructose rather than in 

free glucose (and fructose). These products of sucrolysis might be available throughout the 
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cytosol and used for starch synthesis, while externally fed 14C-glucose might be primarily 

phosphorylated by mitochondrion-bound hexokinase, leading to glucose-6-phosphate in the 

mitochondrial environment which resulted in an increased respiration. 

Next to the described localization of hexokinase in the respiratory "compartment" and 

fructokinase randomly in the cytosol, cell compartments separated by biological membranes 

such as the plastids and the vacuole are essential to independently regulate glycolysis, OPPP, 

and sucrose and starch metabolism within one single cell as will be discussed in the next 

paragraphs. 

Sucrose cycling 

Chapter 4 describes short-term effects in vivo, during labelling of cells of different 

developmental stages in an airlift-system. Respiration was 1.5-fold higher in the stationary 

growth phase and 4-fold higher in the logarithmic growth phase compared to the 

corresponding cells from batch culture. It was shown that sucrose cycling occurred in 

stationary phase cells when growth and respiration rates were relatively low, i.e leaving 

enough hexose phosphates for sucrose synthesis. In short-term experiments with 

logarithmically growing cells respiration was high and no hexose phosphates were available 

for sucrose synthesis and cycling. However, during long-term labelling experiments sucrose 

cycling also occurred in logarithmically growing cells, as appeared from the production of 

(labelled) sucrose and fructose in experiments in which cells were grown on ([l-13C]-labelled) 

glucose. It is concluded, that during the whole period of batch culture cycling of sucrose was 

an integral part of metabolism of Daucus cells. 

Regulation of sucrose metabolism is complex, since synthesis and degradation might take 

place in the same compartment as well as in separate compartments (Chapter 7, Figs 1,2). 

Synthesis is assumed to be localized in the cytosolic compartment and to be catalyzed by 

sucrose phosphate synthase (SPS, Goldner et al. 1991; Zhu et al. 1997), but cellular 

hydrolysis of sucrose might be catalyzed by 3 different enzymes: in the cytosol by neutral 

invertase or sucrose synthase (SUSY), and in the vacuole by acid invertase. All three 

enzymes increased in Daucus carota cells in the logarithmic growth phase when sucrose was 

stored and during the stationary growth phase when sucrose was degraded. When all sucrose 
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was consumed, the levels of the sucrose-degrading enzymes decreased again. 

Hexoses and sucrose are transported into the vacuole (Preisser et al. 1992, Heineke et al. 

1994). Guy et al. (1979), Thorn and Komor (1984), Briskin et al. (1985), Getz (1991), 

Rausch (1991) and Davies (1997) found that ATP stimulates this uptake by means of a 

H+/antiport-system as might be expected to be functional in well-fed cells. Inside the vacuole 

sucrose is hydrolysed to a minor extent since the resulting glucose and fructose strongly 

inhibit further acid invertase action permitting sucrose storage in the vacuole (Lee and Sturm 

1996). 

SUSY and neutral invertase in the cytosol are also strongly inhibited by fructose in vitro 

(Sebkova et al. 1995; Lee and Sturm 1996). However, as a consequence of the uptake of 

hexoses into the vacuole and the strong hexose phosphorylating activity in the cytosol, the 

level of hexoses in the cytosolic compartment might be low. Furthermore, we suggest that 

UDP-glucose (UDPG) levels are high in the logarithmic growth phase as was found for 

Nicotiana tabacum cell suspensions by Meyer and Wagner (1985), well above the Km for 

UDPG in the sucrose synthesizing direction of SUSY (Vella and Copeland 1990; Elling 

1996). Furthermore, feeding [l-13C]-fructose resulted in nearly equal labelling of the fructose 

and glucose moieties within sucrose, therefore SPS rather than SUSY must be responsible 

for sucrose synthesis. In addition, feeding fructose as the sole carbon source resulted in 

cellular glucose, indicating that sucrolysis probably took place by invertase action and not 

by SUSY. Although SUSY was found to be present during the whole culture period, it is 

concluded that neutral invertase is responsible for sucrose cycling in the cytosol and that 

SUSY probably shows very low activity in vivo in both directions in the logarithmic growth 

phase. 

In the stationary phase lower levels of ATP (Meyer and Wagner 1985; Kubota and Ashihara 

1993) might cause lower HVATPase and H+/PPase activities on the tonoplast resulting in 

a lower membrane potential. As a consequence, hexoses are mobilised to the cytosol to 

sustain the need for carbon necessary for cell maintenance. The inhibition of acid invertase 

in the vacuole then will be abolished, resulting in further hydrolysis of stored sucrose. 

Concomitant with the decrease of total cellular sugars and NTPs, UDPG levels will decline 

(Meyer and Wagner 1985) and as a result, sucrose degradation in the cytosol might also 
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occur by SUSY. It is concluded that additional to sucrose cycling by neutral invertase also 

SUSY in the cytosol and acid invertase in the vacuole become active in the stationary growth 

phase, resulting in activation of the SUSY-mediated and "vacuolar" sucrose cycles. This is 

consistent with short-term labelling of stationary phase cells which are sugar-starved in which 

enough hexose phosphates are available for synthesis of sucrose. Labelled fructose was 

retained, while sucrose labelling was found to be transient. Obviously, hydrolysis of sucrose 

took place in the vacuole, since sucrolysis in the cytosol would not permit fructose 

accumulation due to the abundant hexose phosphorylating activity. It is proposed that if 

sucrose reaches a certain level in the cytosol, transport into the vacuole takes place where 

sucrolysis might occur, if hexose levels are low enough to permit invertase activity, leading 

to limited accumulation of fructose (and glucose) in the cytosol. 

Since embryogenic cell suspensions undergo changes in time, with respect to embryogenic 

potential and sugar accumulation, suspensions were newly initiated every 6 months. The ratio 

of sucrose :hexoses shows profound differences between the different experimental series 

(Chapter 3, Fig. 5 versus Chapter 4, Fig. 2C). Dijkema et al. (1988) showed that this 

changing ratio of sucrose:hexose correlated with the life-span of embryogenic cell 

suspensions. The embryogenic potential of a just initiated suspension of one month is 

maximal, and in parallel it shows high amounts of PEMs and high levels of intracellular 

glucose (and to a lesser extent fructose). As the suspension ages, the ratio of hexoses/sucrose 

decreases. However, it appeared that the maximal amount of hexose units within glucose, 

fructose and sucrose taken together was between 1000-1200 ftmol.(g dry weight)"1 in all 

experiments, suggesting that total sugar accumulation did not change. Sucrose accumulation 

is determined by the difference in SPS and invertase activity in Saccharum stem tissue (Zhu 

et al. 1997), in carrot roots (Zamski and Barnea 1996) and in cell suspensions of Saccharum 

(Wendler et al. 1990, Goldner et al. 1991). Since it is suggested that young, just initiated 

carrot lines containing relatively large numbers of PEMs resemble meristematic tissues with 

high levels of glucose (Dijkema et al. 1988), it is suggested that they have relatively high 

levels of sucrose hydrolysing enzymes. In other words: embryogenic cells might show a large 

flow of metabolites through the sucrose cycle which may provide the cells with a continuous 

source of glucose (phosphates) for maintaining the high respiratory activity, necessary for 
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the primary events in embryogenesis (Kikuta and Masuda 1981). However, at the moment 

we can only speculate on differences in the ratio between SPS and invertase in the various 

lines used in this work. 

Oxidative pentose phosphate pathway activity 

In chapter 2 experiments are described in which batch cultures were grown on a mixture of 

glucose and fructose; either the glucose was [l-13C]-labelled and the fructose unlabelled or 

the fructose was [l-13C]-labelled and the glucose not labelled. One might expect that glucose 

would be used primarily in the respiratory "compartment" and fructose would be used in the 

structural cell components "compartment". However, labelling with [l-13C]-glucose resulted 

in a 2 times higher labelling percentage of sucrose compared to labelling with [l-13C]-fructose 

in the first week of batch-culture. Obviously, glucose was taken up and converted 

preferentially to fructose, not only for respiratory metabolism but also for synthesis of 

sucrose in the structural cell "compartment". It is concluded that in this experimental set-up 

exchange of hexose phosphates between the respiratory "compartment" and the structural 

component "compartment" is considerable, or that glucose phosphorylation by the soluble 

phosphorylating enzymes is relatively large. 

Chapter 2 showed that feeding [l-13C]-glucose or [l-13C]-fructose to batch-cultured cells both 

resulted in [l-13C]-labelling of the glucose and fructose moiety of sucrose. The C-l labelling 

of the fructose moiety was always slightly lower than of the glucose moiety. This could be 

explained by cytosolic OPPP activity which consumes glucose-6-phosphate, removes its C-l 

label and, via transaldolase and transketolase reactions, finally produces triose phosphates. 

The triose phosphates can be shuttled back to fructose-6-phosphate via the gluconeogenetic 

pathway resulting in a lower C-l labelling than in the initial glucose-6-phosphate. 

Apparently, the flow of carbon through the OPPP is quick compared to the phosphogluco-

isomerase reaction, the latter being responsible for the equilibration of glucose-6-phosphate 

and fructose-6-phosphate. 

Furthermore, if fructose is phosphorylated in the structural component "compartment" there 

is a close link primarily between the pool of hexose phosphates in the cytosol and the 

enzymes of the OPPP, localized in the same compartment; as a result fructose is a better 
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substrate for cycling through the OPPP than glucose, thus, [l-13C]-fructose gives lower 

labelling than [l-13C]-glucose. 

The same hexose-phosphate pool as used for synthesis of sucrose is assumed to be used by 

the plastids to synthesize starch. In general, it is assumed that glucose-6-phosphate is 

transported from the cytosol into the plastids (Kang and Rawthorne 1996). Inside the plastids 

at least half of the hexose phosphates flows through the OPPP before being incorporated into 

starch resulting in a much lower labelling percentage of starch as compared to sucrose 

(especially at the C-l carbons). It is concluded that conversion from hexose phosphate into 

ADPG took place in the plastid as was found for all dicots studied, but not for cereals 

(Villand and Kleczkowski 1993; Thorbjarnsen et al. 1998). 

Thus, Daucus carota cells show separate OPPP activities in the plastids and the cytosol. 

Separated OPPP activities were also found in Catharanthus roseus cells by Ishida and 

Ashihara (1993): they found two isozymes of 6-phosphogluconate dehydrogenase, one in the 

cytosol and one in the plastid. Cytosolic 6-phosphogluconate dehydrogenase-deficient 

genotypes from Zea mays showed inhibited plastidic nitrite reduction, suggesting that 

cytosolic NADPH can be transported into the plastids in this tissue (Averill et al. 1998). 

However, Kang and Rawthorne (1996) showed that externally supplied NADPH does not 

affect lipid synthesis in isolated Brassica napus plastids. Thus, cytosolic OPPP might 

cooperate in plastidic biosynthetic reactions by supplying NADPH, depending on the kind 

of tissue and species. 

The flux through the OPPP might be determined by regulation of the activity of the key-

enzymes by the NADPH/NADP ratio (Fahrendorf et al. 1995) or by the affinity of the 

enzyme glucose-6-phosphate dehydrogenase towards NADPH which might inhibit its activity 

(Bredemeyer and Esselink 1995). Glucose-6-phosphate was found to achieve levels of at least 

5 ptmol.(g dry weight)1 in carrot cells, which might be at least 4 mM assuming a dry matter 

percentage of 7.5% and a cytosolic volume of 10%. Hexose phosphate levels therefore 

should not be limiting for starch synthesis and plastidic OPPP activity, since a level of 4 mM 

hexose phosphates is high enough to saturate the hexose phosphate carriers in the plastid 

membranes (Thorn et al. 1998) and the key enzymes of the OPPP (Borchert et al. 1993; 

Bredemeyer and Esselink 1995). 
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In Chapter 4 it was shown that the 4-fold increased respiration of logarithmically growing 

cells in an airlift, sincerely affected sucrose synthesis and/or hydrolysis: 40% of the added 

labelled glucose was used by glycolysis in short-term labelling experiments of exponentially 

growing cells and no labelled sucrose was measured. However, about the same amount of 

labelled glucose flows through the OPPP at that time. In stationary phase cells, although the 

respiration rate increased only 1.5-fold in airlifted cells, still 30% of the labelled glucose was 

used by glycolysis while only 10% entered the OPPP. These results were taken to indicate 

that the increased respiration in logarithmically growing cells did not reduce OPPP activity 

to a large extent, suggesting that the levels of the key-enzymes of the OPPP regulated its 

activity rather than availability of its substrates or the ratio of NADP/NADPH as was also 

described for Solarium tuberosum callus by Hemrika-Wagner (1985) and in Catharanthus 

roseus cells (Ishida and Ashihara 1993). 

From the much lower labelling percentage of starch as compared to sucrose in batch grown 

cells, it was concluded that the OPPP-cycles in the cytosol and plastids function 

independently, at least in logarithmic phase cells. Since in airlift experiments nearly no 13C-

labelled starch was found, the question arose whether all [l-13C]-hexose phosphates that were 

transferred into the plastids cycled through the OPPP, losing their label, or that no hexose 

phosphates were transported into the plastids at all in this type of experiments. Therefore, 

it was unclear if the OPPP activity may be confined to the cytosol during short-term labelling 

experiments or was also active in the plastids. 

In isolated Brassica oleracea bud plastids Neuhaus et al. (1995) showed that carbohydrates 

appearing from starch degradation do not enter the OPPP, suggesting that plastidic OPPP 

activity might be confined to periods of starch synthesis in the logarithmic growth. In this 

view, the OPPP might be down-regulated if the availability of nutrients like phosphate, sugar 

and nitrate is low. During the logarithmic growth phase of batch cultures nutrients are 

present in excess, while phosphate and sugar are known to be exhausted in the stationary 

growth phase. Thus, OPPP activity might be regulated by coarse control rather than by 

metabolic control of its enzymes. 

During a batch culture of 14 days the profile of starch (labelling) fluctuated less than that of 

sucrose. Stitt and Heldt (1981) and Stitt and Steup (1985) suggested cycling of starch, i.e. 
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General Discussion 

a simultaneous synthesis and degradation of starch in Spinacia oleracea leaves. However, 

Hargreaves and ap Rees (1988) concluded for Pisum sativum roots that turnover of starch 

was much lower than turnover of sucrose. This might be connected with the difference in 

localisation of storage starch and storage sucrose: (insoluble) granules in the plastids and 

random distribution in the cytosol or vacuole, respectively. Keeling et al. (1988) showed that 

starch degradation was confined to the surface of the starch granules of developing Triticum 

aestivum grains. The latter was concluded from experiments in which starch granules were 

isolated after labelling with [l-13C]-glucose for 4 h and were treated with amyloglucosidase. 

Only the outer layers yielded labelled glucose units, while the inner layers were still 

unlabelled. Apparently, starch cycling might occur but was limited to the easily accessible 

outer-layers of the granules. Cycling of starch might be relatively low in "storage" starch in 

typical storage tissues like plastids of logarithmic growth phase cells of Daucus carota 

suspensions, compared to "transient" starch formed in chloroplasts of photosynthetic tissues 

during day time, since storage starch shows a higher density, more a-(l,6) branches and 

larger granules than transitional starch (French 1975; Stitt and Steup 1985). 

Triose phosphate cycling and PFP 

Chapter 5 considers a metabolic reaction which is also present in many bacteria and fungi 

but not in warm-blooded animals: the reversible reaction from fructose-6-phosphate to 

fructose-1,6-bisphosphate. It was suggested before in Chenopodium rubrum cells that PP r 

dependent fructose-6-phosphate phosphotransferase (PFP) was responsible for the observed 

label exchange (Hatzfeld and Stitt 1990) and it was demonstrated with Solanum tuberosum 

tubers that antisense-PFP plants showed less label exchange (Hajirezaei et al. 1994). In a cell 

line of Daucus carota showing a high label exchange from C-l to C-6 carbons in sucrose and 

hexoses (A10) also more PFP was present compared to a line with less label exchange (A+). 

Label exchange from C-l to C-6 carbons was found to be about 14-24% in cells of the A10-

line in the airlift-system after 8 h labelling. This was consistent with the results reported by 

other authors applying short-term labelling to a variety of plant tissues (Keeling et al. 1988; 

Hatzfeld and Stitt 1990; Viola et al. 1991). Oxygen concentrations of 100% led to a higher 
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percentage of label exchange during the short-term labelling of cells in an airlift-system than 

6% 02. It was concluded that at higher 02 concentrations the glycolytic reaction from 

fructose-6-phosphate to fructose-1,6-bisphosphate and (triose phosphates) was stimulated in 

the airlift. The Km values of PFP for fructose-1,6-bisphosphate and aldolase are similar (Stitt 

1989; Moorhead and Plaxton 1990), resulting in competition of the gluconeogenetic and 

glycolytic reactions for fructose-1,6-bisphosphate. As a result of the higher level of fructose-

1,6-bisphosphate the gluconeogenetic reaction, leading to a higher percentage of C-6 labelled 

hexose (phosphates) and sucrose increased. At the same time, the carbon flux through 

glycolysis increased to fulfil the need for respiratory substrates, as was concluded from the 

2-fold higher respiration in the presence of 100% 0 2 compared to 6% 02. 

Label exchange during long-term labelling of batch cultured cells was found to achieve values 

of 45 % in Daucus carota and 50% in Solarium tuberosum cell suspensions (Kosegarten et al. 

1995). Respiration rate was lower in batch culture than in airlift-experiments. Therefore, next 

to the respiration rate and the level of PFP, a third parameter apparently influences the 

observed label exchange from C-l to C-6 carbons. Figure 3 from Chapter 2 showed, that 

batch-cultured cells grown on [l-13C]-glucose and unlabelled fructose gave these high values 

of label exchange especially after day 8, when medium glucose was already completely taken 

up by the cells. Continued label exchange within the cellular pools of intermediates by the 

various metabolic cycles, will lead to a further increase of the C-6 labelling percentage 

finally resulting in equal labelling of C-l and C-6 carbons. It is therefore concluded that the 

percentage label exchange is determined by the level of PFP, the respiration rate and the 

incubation period. 

In Chapter 5 we already concluded that the extractable amount of PFP will be fully activated 

by fructose-2,6-bisphosphate. Dancer and ap Rees (1989) suggested, that PFP is extremely 

powerful in maintaining the desired concentration of cytosolic PP;, due to its high activity. 

However, Hajirezaei et al. (1994) showed that antisense-PFP plants had no visible phenotype 

and had identical PP, levels but lower levels of starch and glycolytic intermediates 

downstream of triose-phosphates. Also, label-exchange from C-l to C-6 carbons in sucrose 

and hexoses was much lower. They concluded, that PFP is probably catalyzing a 

gluconeogenetic reaction and glycolytic reaction at the same time, but is not exclusively 
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General Discussion 

responsible for maintaining the desired level of PP,. 

PPi may also evolve from other reactions than gluconeogenetic PFP activity. By activation 

of building blocks for the biosynthesis of macromolecules, e.g. UDPG for sucrose and cell 

walls and ADPG for starch, PP, is produced in the reaction of hexose phosphates with ATP 

or UTP. In animal physiology these reactions are known to be irreversible due to 

pyrophosphatase activity, resulting in low or undetectable cytosolic PPrlevels. PPi; therefore, 

might be seen as a by-product of the activation of precursors for biosynthetic processes. 

However, in Spinacia oleracea leaves PP, levels of about 0.3 mM were found in the cytosol 

(Gross and ap Rees 1986); therefore the reaction of glucose-1-phosphate and UTP into 

UDPG and PP, is thought to take place in both directions (in different growth stages). 

Plastids contain pyrophosphatases; as a result PPj is absent and the reaction from glucose-1-

phosphate and ATP into ADPG and PPi is unidirectional, resulting in rapid synthesis of 

starch (Weiner et al. 1987). Cytosolic pyrophosphatases are also shown in Solanum 

tuberosum leaves (Rojas-Beltran et al. 1999) and tubers (Niek J.G. Appeldoorn, personal 

communication) although their function is still unknown. Transformed plants of Nicotiana 

tabacum and Solanum tuberosum containing a bacterial pyrophosphatase expressed in the 

cytosol, showed much lower levels of PPj accompanied by much lower growth rates and 

metabolite levels (Jelitto et al. 1992), indicating that PPS is an essential and integral part of 

plant metabolism (Sung et al. 1988; Stitt 1998). In conclusion, although the gluconeogenetic 

flux of metabolites mediated by PFP is considerable, it is not exclusively responsible for 

determining the level of PPj in plants. 

PPi might be used in alternative reactions in primary metabolism next to the ATP-dependent 

counter-enzyme at different places in the cell, e.g. PPj- and ATP-dependent fructose-6-

phosphate phosphotransferase in the cytosol and H+-PPase and H+-ATPase at the tonoplast 

(Stitt 1998). It is supposed by different authors, that although the PPrenzymes often catalyse 

reversible near-equilibrium reactions and may play a role in restoring the equilibrium 

between the various pools of intermediates, these enzymes may play a role in PPi 

consumption during periods of phosphate limitation. Indeed, ATP levels were found to 

decrease about 4-fold at low levels of P, (Hoefnagel et al. 1994), suggesting that PP r 

dependent enzymes might play a role during such circumstances. Some PPj-dependent 
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enzymes are reported to be induced by low levels of Pi( such as PFP in Brassica nigra 

seedlings (Theodorou and Plaxton 1994). Furthermore, PP, is a by-product of activation of 

building blocks produced for anabolic processes, i.e. the reaction of ATP or UTP with 

glucose-1-phosphate resulting in ADPG for starch and UDPG for sucrose and cell walls 

(Huppe and Turpin 1994). PPj then might just be a waste product which, in plants, developed 

to an extra energy buffer next to ATP. PP; might built up during periods of sufficient 

nutrients as was found during the logarithmic growth of Catharanthus roseus cells (Kubota 

and Ashihara 1993); utilization might take place during (short) periods of anoxia or 

phosphate limitation to maintain (high) metabolic activity. 
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Summarizing conclusions 
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In the work described in this thesis, uptake and conversion of sugar by cells of batch-grown 

suspensions of Daucus carota L. were studied. Invasive techniques (measurements of enzyme 

activities and sugar and starch levels) and non-invasive techniques (13C-NMR) were used to 

follow the pathway of sugar molecules and of certain atoms within these molecules to analyze 

"futile" cycles between hexoses and sucrose, between hexoses and pentoses using the 

oxidative pentose phosphate pathway (OPPP) and between triose and hexose phosphates. 

The activities of the various metabolic cycles were analyzed in logarithmic phase cells in 

relation to sugar uptake and storage of carbohydrates and in stationary phase cells in relation 

to consumption of stored carbohydrates. Plant cell metabolism appeared to excel both in 

metabolic cycling and in substrate conversions by parallel enzymes catalyzing similar 

reactions like PP r and ATP-dependent fructose-6-phosphate phosphotransferase (PFP/PFK) 

and invertase/sucrose synthase (SUSY). 

Figure 1 summarizes the events in the lag and logarithmic growth phase including their 

cellular compartmentation. Sugar metabolism starts with uptake of hexoses, since high levels 

of cell wall-bound invertase hydrolyse all the external sucrose. It was concluded that at the 

start of the logarithmic growth phase sugars are present in excess resulting in a fully active 

glycolytic, respiratory and oxidative pentose phosphate pathway. More ATP and building 

blocks than necessary for maintenance of the cells give rise to synthesis of new enzymes and 

precursors necessary for growth. After a few days cells start dividing and enter the 

logarithmic growth phase. Production of biomass and synthesis of sucrose and starch are 

coupled processes. 

Fructose-6-phosphate is synthesized in the cytosol by soluble fructokinase activity, and acts 

as a substrate for the invertase-mediated sucrose cycle and the triose-hexose phosphate cycle 

in the cytosol. Via glucose-6-phosphate, a substantial part of the fructose is substrate for 

synthesis of UDP-glucose necessary for sucrose and cellulose synthesis in the cytosol and 

apoplast, respectively. Furthermore, glucose-6-phosphate is used in the OPPP-cycle in the 

cytosol and in the plastids, and for starch synthesis in the plastids. Glucose will be 

phosphorylated by the mitochondrial-associated hexokinases and supply substrates to the 

respiratory pathway. Exchange between glucose-6-phosphate in the respiratory 

"compartment" and structural component "compartment" also occurs, although limited. 
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Concluding summary 

LOGARITHMIC GROWTH PHASE: ANABOLIC PATHWAYS 
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Figure 1 Uptake and conversion of glucose and fructose in logarithmically growing cells. 
Cytosolic and plastidic OPPP cycles are present and cycling between triose 
phosphates and hexose-phosphates in the cytosol takes place. Invertase-mediated 
cycling between hexoses and sucrose takes place only in the cytosol. Sucrose is 
stored in the vacuole and starch in the plastids. Only major metabolites are 
shown. PFP = PPj-dependent fructose-6-phosphate phosphotransferase, INV = 
invertase, SPS = sucrose phosphate synthase. 

Due to the high hexose phosphorylating activity, the levels of hexoses are relatively low and 

the levels of hexose phosphates and UDPG are relatively high in the cytosol; as a result 

sucrose is synthesized and the sucrose cycle mediated by invertase is active, while the 

sucrose cycle mediated by SUSY is inactive. Excess sucrose will be taken up into the 

vacuole, where it is protected from hydrolysis as long as the levels of hexoses are high 

enough to inhibit acid invertase activity. Cycling of carbon between triose and hexose 
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phosphates was observed by the occurrence of [6-13C]-labelled sucrose and hexoses after 

feeding [l-13C]-glucose or fructose (Fig. 1). 

In the logarithmic growth phase high activity of the OPPP was observed, even when 

respiration was increased 4-fold by dilution of the cells. Therefore, it is concluded that OPPP 

activity was not subject to extensive metabolic regulation. It is suggested, that OPPP activity 

takes place in the cytosol during the whole culture period; the OPPP in the plastids probably 

was only active in the logarithmic growth phase (Fig. 1). 

STATIONARY GROWTH PHASE: CATABOLIC PATHWAYS 
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Figure 2 Mobilization of stored sucrose and starch in stationary phase cells. Cycling of 
OPPP and cycling between triose phosphates and hexose phosphate in the 
cytosol and cycling of sucrose in both the cytosol and the vacuole take place. The 
plastidic OPPP cycle probably is not active. Accumulated metabolites are boxed. 
Only major metabolites are shown. PFP = PPj-dependent fructose-6-phosphate 
phosphotransferase, INV = invertase, SUSY = sucrose synthase, SPS = sucrose 
phosphate synthase. 
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Concluding summary 

As soon as the external supply of carbon is exhausted, cytosolic carbohydrates and, via 

respiratory control, the resulting ATP decrease. Reverse reactions with respect to stored 

sucrose and starch occur. In the stationary growth phase, hexose units released from stored 

sucrose and starch are used in glycolysis to fulfil the demand of substrates for cell 

maintenance. Both the OPPP activity and the growth rate decline in this period because of 

the lack of carbon for the production of new cells (Fig. 2). 

If external hexoses are supplied to these cells, low OPPP cycling and high sucrose cycling 

are observed (Fig. 2), indicating that the OPPP activity is down-regulated by coarse control 

of its enzymes rather than by availability of sugar. Furthermore, (cytosolic) triose-hexose 

phosphate cycling was observed, which was related to the level of PPrdependent fructoses-

phosphate phosphotransferase (PFP) which catalyzes the gluconeogenetic reaction from 

fructose-1,6-bisphosphate into fructose-6-phosphate. Hydrolysis of sucrose by invertase and 

SUSY in the cytosol and by acid invertase in the vacuole takes place in the stationary growth 

phase and result in activity of the "cytosolic" and the "vacuolar" sucrose cycles. 

The above described phenomena imply that plants have multiple ways to control carbon 

metabolism and carbon partitioning in cells and tissues. "Environmental" conditions in batch 

cultured cells with respect to humidity and temperature will be rather constant, and changes 

in availability of nutrients and oxygen will only occur gradually. The meaning of the 

described high activities of metabolic cycles might thus be redundant under the controlled 

conditions in the laboratory. However, in field-grown plants these properties might be 

essential to survive adverse environmental conditions. 
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In dit proefschrift is de dynamiek van de suikerhuishouding van planten beschreven. De 

opname en verwerking van de meest-voorkomende suikers, de enkelvoudige hexoses 

glucose en fructose en het dubbelsuiker sacharose, zijn onderzocht en hun weg door de 

verschillende stofwisselingsroutes is gevolgd. Opname van suikers is bepaald met behulp 

van 14C-gemerkte suikers en kolom-chromatografie. De verwerking van suikers is 

gemeten aan de capaciteit van sleutelenzymen van de verschillende routes. Met behulp 

van niet-destructieve NMR- ('kernspinresonantie') metingen kon de weg van 13C-gemerkte 

suikers gevolgd worden waardoor opeenvolgende stappen in de stofwisselingsroutes 

bepaald konden worden. Een groot voordeel van NMR is dat de techniek toepasbaar is op 

levend, intact materiaal zonder dat dit geextraheerd hoeft te worden, zodat het lot van de 

gemerkte suiker aan een monster in de tijd vervolgd kan worden. 

De activiteiten van de verschillende stofwisselingsroutes zoals de glycolyse, de 

gluconeogenese, de oxidatieve pentose-fosfaat-route en de ademhaling zijn aan cel-

suspensies gemeten tijdens de logaritmische groeifase, waarin snelle groei plaatsvindt, en 

tijdens de stationaire fase, waarin geen groei meer optreedt. Met deze benadering kon de 

relatie tussen de suikeropname, de groei en de activiteit van de verschillende 

stofwisselings-routes worden vastgesteld. 

In dit onderzoek zijn celsuspensies als proefsysteem gebruikt, omdat hierbij de 

samenstelling van het voedingsmedium en de milieucondities goed controleerbaar zijn; 

bovendien zijn celsuspensies ook min of meer homogene 'weefsels'. Celsuspensies van de 

peen (Daucus carota L.) werden gekweekt in voedingsmedium met glucose, fructose of 

sacharose als koolstofbron. De sacharose in het voedingsmedium werd door celwand-

invertase binnen een dag gesplitst in glucose en fructose. Glucose werd sneller 

opgenomen en verwerkt dan fructose; dit kon gedeeltelijk worden verklaard doordat de 

transport-eiwitten in de celmembraan een hogere affiniteit voor glucose hebben. Verder 

bleek dat er twee 'pools' van hexose-fosforylerende enzymen zijn. Deze verzorgen de 

omzetting van glucose en fructose in glucose-6-fosfaat respectievelijk fructose-6-fosfaat. 

In het cytoplasma van peen-cellen komen hexose-fosforylerende enzymen voor die 

voornamelijk fructose omzetten; de gevormde intermediairen bevinden zich vrij in het 
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cytosol en worden in de eerste plaats gebruikt om sacharose en bouwstenen voor 

celwanden te vormen. De tweede 'pool' van hexose-fosforylerende enzymen is 

geassocieerd met membranen en bezit 2-20 keer zoveel fosforylerende activiteit; uit de 

literatuur blijkt dat deze enzymen waarschijnlijk met mitochondrien geassocieerd zijn. Ze 

hebben een 10 keer hogere affiniteit voor glucose dan voor fructose; hieruit is 

geconcludeerd, dat glucose bij voorkeur wordt gefosforyleerd door deze 'mitochondriele' 

fractie. Dit leidt tot een aparte 'pool' van metabolieten binnen de eel, die makkelijk in de 

mitochondrien worden opgenomen. Deze resultaten leidden tot de hypothese dat er 2 

'pools' van glycolytische intermediairen zijn: een afgeleid van fructose(-fosfaat) 

resulterend in biomassa en een afgeleid van glucose(-fosfaat) resulterend in ademhaling en 

energie-productie. 

Eenmaal gefosforyleerd vindt er ook uitwisseling plaats tussen hexose-fosfaten uit beide 

'pools'. Bovendien kunnen glucose-6-fosfaat en fructose-6-fosfaat binnen een 'pool' in 

elkaar worden omgezet door het enzym fosfoglucoisomerase. Hierna zijn glucose-6-fosfaat 

en fructose-6-fosfaat equivalent en leggen dezelfde biochemische routes af. 

Tijdens de fase waarin logaritmische groei optreedt, worden hexoses uit het 

voedingsmedium opgenomen, gefosforyleerd en omgezet in nieuw celmateriaal en 

reservestoffen: sacharose wordt gemaakt in het cytosol en opgeslagen in de vacuole en 

zetmeel wordt gemaakt en opgeslagen in zetmeelkorrels in de plastiden. Een deel van de 

koolstof wordt verademd in de mitochondrien. Wanneer de suiker in het medium uitgeput 

is en geen groei meer optreedt, worden opgeslagen zetmeel en sacharose gehydrolyseerd 

en gebruikt voor de celademhaling. 

Tijdens beide groeifases worden hexose(-fosfaten) veelvuldig onderworpen aan snelle, 

kortdurende cycli: koolstof-intermediairen worden omgezet van A in B, waarna B weer 

via een andere route wordt omgezet in A. Dergelijke omzettingen worden 'futiele cycli' 

genoemd: ze lijken op het eerste gezicht geen functie te hebben, maar algemeen wordt 

aangenomen dat ze planten(cellen) flexibel maken: allerlei stofwisselings-routes zijn reeds 

actief ook als de producten nog niet nodig zijn. Indien de behoefte aan een product 

plotseling toeneemt als gevolg van zich wijzigende omstandigheden kan de eel hier snel 

op inspelen. 
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13C-gemerkte suikers maken het mogelijk om de verschillende reactie-producten van zo'n 

cyclus zichtbaar te maken en van elkaar te onderscheiden. De verdeling van de "3C-labeF 

over de verschillende suikers, en over verschillende atomen van die suikers leert iets over 

de activiteit van de verschillende cycli, en hun plaats in de eel. De NMR-techniek is dan 

ook bij uitstek geschikt om dergelijke futiele koolstof-cycli te meten. Zo zijn er cycli 

tussen hexoses en sacharose en tussen hexose-fosfaten en triose-fosfaten. De oxidatieve 

pentose-fosfaat-route gebruikt hexose-fosfaten, en zet deze via pentose-fosfaten weer om 

in triose-fosfaten en hexose-fosfaten. De activiteit van deze cycli is afhanklijk van de 

ontwikkelingsfase van de plantencellen. 

In de logaritmische groeifase werden een sacharose-cyclus, de oxidatieve pentose-fosfaat-

route en de hexose-triose-fosfaat-cyclus waargenomen in het cytosol. Daarnaast was de 

oxidatieve pentose-fosfaat-route ook actief in de plastiden, zoals werd geconcludeerd uit 

de 13C-verdeling in zetmeel die duidelijk afweek van die in sacharose. 

Tijdens de stationaire fase was er niet alleen een stroom van koolstof-intermediairen in de 

richting van suikerafbraak en ademhaling: toevoeging van een kleine hoeveelheid 13C-

glucose resulteerde ook dan in activiteit van een sacharose-cyclus en de hexose-triose-

fosfaat-cyclus in het cytosol. Twee extra sacharose-hydrolyserende enzymen, een in het 

cytosol en een in de vacuole werden actief. Zetmeel-synthese en activiteit van de 

oxidatieve pentose-fosfaat-route in de plastiden werd niet meer waargenomen in de 

stationaire fase. 

Voor een van de futiele cycli, de hexose-triose-fosfaat-cyclus, kon worden aangetoond dat 

de activiteit afhankelijk is van de hoeveelheid van een van de sleutelenzymen, PFP, die 

genetisch bepaald is. Verder wordt de activiteit van de triose-hexose-fosfaat-cyclys 

bepaald -via de ademhalingssnelheid- door de beschikbaarheid van koolstof-

intermediairen. Voor de oxidatieve pentose-fosfaat-route kon worden aangetoond dat ze 

relatief ongevoelig is voor de ademhalingssnelheid en waarschijnlijk alleen gereguleerd 

wordt door de hoeveelheden van de enzymen die betrokken zijn bij deze cyclus. 

Uit deze resultaten is geconcludeerd, dat planten(cellen) veel stofwisselings-processen via 

parallelle enzym-systemen aan- en uit- kunnen schakelen. Een aantal futiele cycli is 

voortdurend actief, terwijl andere afhankelijk zijn van de groeifase. Zowel de parallelle 

142 



Samenvatting 

enzymsystemen als de futiele cycli maken permanent onderdeel uit van de basale 

stofwisseling in planten; dit is waarschijnlijk essentieel voor een snelle en soepele 

regulatie van de koolstof-stromen onder sterk wisselende milieucondities, zoals die onder 

natuurlijke omstandigheden veelvuldig voorkomen. 
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