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REDUCED−DIMENSION CLUSTERING

FOR VEGETATION SEGMENTATION

B. L. Steward,  L. F. Tian,  D. Nettleton,  L. Tang

ABSTRACT.  Segmentation of vegetation is a critical step in using machine vision for field automation tasks. A new method called
reduced−dimension clustering (RDC) was developed based on theoretical considerations about the color distribution of field
images. RDC performed unsupervised classification of pixels in field images into vegetation and background classes. Bayes
classifiers were then trained and used for vegetation segmentation. The performance of the classifiers trained using the RDC
method was compared with that of other segmentation methods. The RDC method produced segmentation performance that was
consistently high, with average segmentation success rates of 89.6% and 91.9% across both cloudy and sunny lighting condi-
tions, respectively. Statistical analyses of segmentation performance coupled with three−dimensional visualization of classifier
decision surfaces produced insight into why classifier performance varied across the methods. These results should lead to im-
provements in segmentation methods for field images acquired under variable lighting conditions.
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n important need for automation of field−level bio-
production processes is the ability to sense biologi-
cal objects that are key to the functional objective
of the process. While many sensing technologies

exist, machine vision has been shown to have great potential
as a sensor for a variety of field automation tasks such as ve-
hicle guidance (Han et al., 2002), implement guidance
(Slaughter et al., 1999), fruit harvesting (Pla et al., 1993), weed
control (Tian et al., 1997), and crop stress sensing (Kim et al.,
2000).

A key step in implementing machine vision systems for
vehicle−based sensing applications is robust segmentation of
vegetation from background in field images. Monochrome
images have been used for such applications. Segmentation of
monochrome field scene images is typically accomplished by
thresholding the intensity histograms, which typically have
bimodal distributions of pixel gray levels. Reid and Searcy
(1988) used a Bayes classifier to find the optimal threshold for
segmenting near−infrared (NIR) images of crop rows for
obtaining guidance information. Benson et al. (2003) adap-
tively segmented monochrome images of corn rows for
harvester guidance. Brivot and Marchant (1996) used two
thresholds and spatial processing to segment NIR field images
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of transplanted cauliflower plants into background, crop, and
weed classes.

Color imaging, as contrasted with monochrome imaging,
provides a three−dimensional red, green, blue (RGB) data
vector for each pixel and has been shown to be an effective
means of measuring and characterizing the growth of crop
plants (Tarbell and Reid, 1991), estimating leaf cover of crop
and weed canopies (Ngouajio et al., 1999), and discriminating
between crop and weed plants for weed control (Lamm et al.,
2002). For color images, a common segmentation approach is
to transform the three−dimensional data associated with each
pixel into a one−dimensional index and then to apply
histogram thresholding techniques similar to those used for
monochrome images. Shiraishi and Sumiya (1996) trans-
formed the RGB components into the NTSC Q chrominance
signal. A threshold on this signal was used to classify pixels as
either plant or background. Woebbecke et al. (1992, 1995)
investigated several different color indices that mapped the
three−dimensional color image data to one dimension. Thresh-
olding was then used to segment the images. Meyer et al.
(1998) further described a segmentation procedure that used
an excess green color index where the threshold was chosen by
observing where the “valley” of the excess green histogram
occurred in several images. Andreasen et al. (1997) segmented
images by thresholding the median filtered histogram of the
g−chromaticity coordinate.

Another approach to vegetation segmentation in color
images has been to incorporate spatial information into the
segmentation process. One approach has been to use active
contours constrained by an image energy model (Manh et al.,
2001). This approach was used to fit contours to the edges of
green foxtail seedlings. Benelloch and Rodas (1999) devel-
oped a dynamic binary model operating on a normalized
difference index (NDI) image for segmentation of crop and
weed from a field image. Perez et al. (2000) used two
thresholds applied to an NDI histogram to segment field
images and morphological dilation for iterative refinement of
the segmentation.

A
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In order for a segmentation algorithm to be practical for
outdoor vehicle−based sensing, it must automatically divide
feature space into vegetation or background classes for
particular conditions and provide classification results with a
low computational burden. In particular, daylight is an
extremely variable light source and can be a confounding
factor to a machine vision system that is designed to operate
in outdoor conditions.

Daylight varies in illuminance and illuminant color.
Typical daylight illuminance varies from 102,000 lux (lu-
mens/m2) under direct sunlight to 1000 lux under cloudy
conditions (Williamson and Cummins, 1983), which is greater
than the dynamic range of a CCD camera. Thus the aperture
or exposure must be adjusted to compensate for the effects of
intensity variation. Illuminant color of daylight is often
represented by its correlated color temperature (CCT). The
CCT of daylight varies depending on the sun altitude angle and
as a function of cloud cover (Wyszecki and Stiles, 1982).

Pla et al. (1993) developed a color segmentation algorithm
for locating citrus fruits for robotic harvesting under outdoor
lighting conditions. This segmentation algorithm was based
on the dichromatic reflection model (Klinker, 1993). The polar
coordinates for each pixel’s color vector were calculated.
Then, working in polar coordinate directional space, the polar
angle relative to a white illuminant was calculated. Class
thresholds based on the polar angle in the directional space
were used to segment pixels into various classes.

Tian and Slaughter (1998) developed a color image
segmentation algorithm that addressed both issues of lighting
variation and real−time performance. First, each pixel vector
was transformed to the chromaticity coordinates associated
with it. To minimize user intervention and to make the training
process as automatic as possible, k−means cluster analysis
(MacQueen, 1967) was applied to a sample of pixel chromatic-
ity coordinates from the training image. Then the user
determined which clusters should be associated with plant or
background classes. Second−order class statistics were then
estimated and used to determine the Bayes discriminant
functions for each class, resulting in a Bayes classifier that
divided RGB color space into plant and background color
regions. Using the classifier, a look−up table (LUT) that
mapped each color combination to background or plant classes
was generated. The LUT was used for real−time segmentation
of field images.

For cluster analysis to effectively group pixels with similar
colors, the effect of large intensity variance must be mini-
mized. Tian and Slaughter (1998) thus mapped pixel values to
chromaticity coordinates and performed cluster analysis in the
plane represented by them. Further investigations (Steward
and Tian, 1998) found that this method resulted in incorrect
segmentation of low−intensity pixels due to transformation
instability for these colors (Kender, 1976). A linear trans-
formation that separated color information from intensity was
investigated. Use of this transformation suggested that more
clusters should be used, even though the data should be
divided into two clusters corresponding to vegetation and
background classes (Steward and Tian, 1998). In addition, the
use of four or more clusters required user input to associate
clusters with the background and vegetation classes based on
visual observation. It is desirable for this procedure to be
unsupervised to eliminate the need for human input. These
limitations provided motivation for the development of the
reduced−dimension clustering technique.

The goal of this research was to further understand
vegetation segmentation algorithms for color field images.
Specific objectives were to: (1) develop an improved method,
the reduced−dimension clustering (RDC) algorithm, for
training a Bayes classifier for vegetation segmentation,
(2) compare the performance of several Bayes classifiers with
those generated with the RDC, and (3) develop visualizations
of classifier decision surfaces in RGB color space to better
understand classifier strengths and weaknesses.

MATERIALS AND METHODS
DATA COLLECTION AND HAND SEGMENTATION

A 3−CCD camera (model XC−003, Sony America, New
York, N.Y.) was used to acquire images of two rows of
soybeans and the interrow area. The camera was mounted at
a height of 3.35 m (11 ft) on a custom−made camera boom
(fig. 1) for a Patriot XL sprayer (Tyler Industries, Benson,
Minn.). A 12.5 to 75 mm, F 1.2 zoom lens (model M6Z 1212,
Computar, CBC (America) Corp., New York, N.Y.) was used
to image a 1.1 × 0.8 m (43 × 33 in.) area with a 12.5 mm zoom
setting. Images were taken with the aperture set at F 8 for
sunny conditions and F 5.6 for overcast sky conditions with the
shutter speed at 1/250 s. The color temperature was set at
5600 K with manual white balance set at a −2 dB blue channel
gain and a −20 dB red channel gain. The camera had a
resolution of 768 × 494 pixels.

The Y/C (S−video) output of the camera was routed to a
PXC200 (Imagenation, Beaverton, Ore.) color frame grabber
installed in a Pentium−based portable computer. The frame
grabber had a resolution of 640 × 486 pixels and converted the
analog video signal to 24−bit digital color images. Each pixel
corresponded to an area approximately 0.002 × 0.002 m. The
images were grabbed when the computer was triggered by the
user and written to Windows bitmap files with 24−bit color
resolution. Images were taken while the sprayer was moving
with a slow forward travel speed of 0.6 km/hour (0.4 miles/
hour) to minimize motion effects.

Two sets of images were acquired on June 29, 1998: one set
consisting of 129 images in the morning under overcast sky
conditions, and the other set consisted of 138 images in the
afternoon under sunny conditions. Four images were selected
from the cloudy condition image set, and another four were
selected from the sunny condition image set for further
analysis. These eight images were manually segmented by a
person painting the vegetation pixels in the images with a
common color using Paint Shop Pro (Jasc Software, Inc.,
Minneapolis, Minn.). The great time and tedium required to do
this process limited the number of images in the data set.

Figure 1. Physical location of the Sony XC−003 camera used to collect
the images analyzed in this research.
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Figure 2. Scatter plot of pixel values in RGB color space for a field image acquired in (a) cloudy and (b) sunny lighting conditions. The lower cylin-
drical cluster in each plot consists mainly of vegetation pixels.

REDUCED−DIMENSION CLUSTERING

The data from the field images tended to cluster into two
cylindrical regions emanating from the origin of RGB color
space (fig. 2). The background pixel cylinder axis was
collinear with the intensity axis. The plant pixel cylinder had
an axis whose angle with the green coordinate vector was
smaller than that of the background pixel cylinder. Chromatic-
ity coordinates map to color vectors starting at the origin of
RGB color space (Steward, 1999). These vectors can be
described by a spherical coordinate system (Pla et al., 1993).
In a real case, sensor noise and variations in object color will
cause the points to deviate from a straight line, leading to a
cylindrical cluster. These observations were consistent with
the dichromatic reflection model (Klinker, 1993; Shafer,
1985). Since objects of different colors group along color
vectors, it would be expected that a segmentation algorithm
that grouped data according to this structure would have better
performance.

Reduced−dimension clustering (RDC) is a K−means−
based algorithm that clusters data to color vectors using
perpendicular distance to a vector as the proximity index,
instead of clustering to points in color space. Each color vector
has its endpoint fixed at the origin and is free to rotate about
the origin as clustering takes place (fig. 3). The procedure is
called “reduced−dimension clustering” because the proximity
index ignores the variation of the data along the length of the
cluster vector. Intensity variation thus has little influence on
clustering. However, the intensity of each data point is first
compared with a minimum intensity threshold. If the intensity
is lower than the threshold, then the data point is placed in a
low−intensity cluster since low−intensity pixels have little
color information. The RDC algorithm calculates distances
between individual data points and each cluster line by the
following equation:

( ) kkii uuxx •−=ikz  (1)

where
zik = perpendicular distance between data point i and

cluster line k
xi = vector from the origin to the ith data point
uk = unit vector associated with cluster line k.
Each data point was grouped with the nearest cluster line

based on this calculation. After each iteration, each cluster line
angle was updated with the average of the angles of all data
points vectors associated with that cluster line, weighted by the

Figure 3. The perpendicular distance from each cluster line to each data
point is calculated. Each data point is clustered with the closest cluster
line.

magnitude of those vectors. This weighting was used since the
color signal−to−noise ratio was greater for the higher−intensi-
ty pixels. Each angle was then used to find the three compo-
nents of the vector. The components of the kth cluster line
vector were thus calculated by:
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where
yjk = jth component of the kth cluster line vector
Nk = number of data points clustered in the kth cluster
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where xij is the projection of xi on the jth axis.
Clustering continued until the algorithm converged to a

particular set of cluster line orientations with no change in
orientation from the previous orientation (fig. 4).

SEGMENTATION PERFORMANCE COMPARISON

Bayes classifiers were trained using four different methods
on the eight images, resulting in 4 × 8 = 32 different
classifiers. The first method transformed the pixel data into
chromaticity coordinates. This transformation is a normaliza-
tion by pixel intensity, and thus the method was called NOR
(Tian and Slaughter, 1998). K−means cluster analysis was
performed in the chromaticity coordinate plane with four
cluster centers. One cluster center was associated with the
vegetation class in every training image except two cloudy
images with high vegetation densities where two clusters
better represented the vegetation class than one. After pixel
labeling, each classifier was trained in the chromaticity
coordinate plane.

Two other methods were similar to the first method, but a
linear coordinate transformation was used to map the data into
a coordinate system that concentrated the variation in color
into two coordinates that spanned the color plane (Steward,
1999). The transformation to one coordinate was equivalent to
the excess green color index (Woebbecke, 1995). K−means
cluster analysis was performed with four cluster centers, and
classifier training was done in the resulting color plane. One
method associated one cluster with the plant class and was

Figure 4. Flowchart of the reduced−dimension clustering algorithm. At
completion, each data point is assigned to a cluster.

called EG1 for excess green−one cluster. For the other, called
EG2, two clusters were associated with the plant class.

The last method, called RDC, used the RDC algorithm with
three clusters. A vector for the plant class represented one
cluster, and another represented the background class. The
third cluster was composed of data points with intensities less
than a threshold of 15. In contrast to the other methods, the
RDC algorithm did not require user intervention since there
was a smaller angle between the cluster vector representing the
plant class and the green coordinate axis, making association
with the plant class easily automated.

The eight images were segmented by each of the 32 classi-
fiers. Each segmented test image was compared pixel−by−pix-
el with the corresponding hand−segmented image. From these
comparisons, the segmentation success rate (SSR) of each test
image was computed. The SSR was defined by:

( )
TT

BPTT

BP

IIBP

+
+−+=SSR  (4)

where
PT = number of pixels manually segmented as plant in the

image
BT = number of pixels manually segmented as background

in the image
IB = number of pixels incorrectly segmented as back

ground based on the hand−segmented image
IP = number of pixels incorrectly segmented as plant

based on the hand−segmented image.
Thus, for any image and classifier, SSR was the ratio of the

number of pixels classified in agreement with hand segmenta-
tion relative to the total number of pixels.

STATISTICAL ANALYSIS

Mixed linear model analyses of the SSR data were
performed using the SAS Mixed Procedure (Ver. 8.2, SAS
Institute, Inc., Cary, N.C.). A standard approach to analysis
described in Kuehl (2000, pp. 232−255) was used. For each
combination of segmentation method, training image, and test
image, the SSR score was computed, resulting in a total of 4 ×

8 × 8 = 256 data points. Scores for identical training and test
images were excluded to avoid an exaggeration of segmenta-
tion performance leaving a total of 224 data points for mixed
linear model analysis. Segmentation method (NOR, EG1,
EG2, RDC), lighting condition of the training image (cloudy
vs. sunny), and lighting condition of the test image (cloudy vs.
sunny) were included as fixed main effects. The four cloudy
and four sunny images used in the study were viewed as
samples from broader image populations to which our results
were to be generalized. Thus, training image nested within
training condition and test image nested within test condition
were modeled as random factors. All interactions were
included in the mixed model. Interactions involving one or
more random terms were modeled as random effects. The
method−of−moments approach was used to compute all
standard errors and determine appropriate error terms for all
tests of interest. Satterthwaite’s method (Satterthwaite, 1946)
was used to approximate degrees of freedom for error terms
formed by a linear combination of mean squares. In order to
achieve roughly constant error variance required by the
statistical methods, the SSR scores were transformed by the
arcsine−square−root transformation (Kuehl, 2000, p. 134)
prior to mixed linear model analysis. Identical analyses were
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conducted on the untransformed data, which led to the same
conclusions. Results were reported on the original SSR scale
for ease of interpretation.

VISUALIZATION

Matlab (Mathworks, Natick, Mass.) script language was
used to generate graphical representations of the decision
surfaces associated with the classifiers. RGB color space was
sampled at five intensity level intervals, and at each sample,
the value of each discriminant function was calculated. The
largest discriminant function value associated with a plant
class was subtracted from the values of the background class
discriminant functions. A scalar field was thus generated.
Color space regions more likely to be background pixels had
negative values, and those more likely to be plant pixels had
positive values. Isosurfaces at the boundaries of these regions
represented classifier decision surfaces.

RESULTS AND DISCUSSION
Significant interaction between segmentation method and

test condition was detected (F3,24.4 = 12.26, p < 0.0001). Thus
segmentation methods were compared separately for cloudy
and sunny test conditions. Significant differences among the
four methods were detected under cloudy test conditions
(F3,28.8 = 6.47, p < 0.005) and under sunny conditions (F3,28.8 =
8.04, p < 0.001). Under cloudy test conditions, EG2 exhibited
the best performance followed by RDC, NOR, and EG1. When
controlling the overall probability of one or more type I errors
using a Bonferroni adjustment to account for six pairwise
comparisons among means, both EG2 and RDC had signifi-
cantly better performance than EG1 at the 5% significance
level. All other differences were not significant at the 5% level
(table 1). Under sunny test conditions, RDC exhibited the best
performance followed by EG1, NOR, and EG2. The RDC,
EG1, and NOR means were not significantly different from
one another, but each of these methods had a mean that was
significantly greater than the EG2 mean (table 2). Again, the
Bonferroni method was used to bound the probability of one
or more type I errors at 5%.

The variation in performance of the EG1 and EG2 methods
across lighting conditions was a salient result. For these two

Table 1. Segmentation performance under cloudy conditions.

Method Average SSR (%)[a]

EG2 90.9 a
RDC 89.6 a
NOR 85.2 ab
EG1 81.9 b

[a] Letters indicate methods that are not significantly different from one
another when the probability of one or more type I errors is controlled at
the 5% level.

Table 2. Segmentation performance under sunny conditions.

Method Average SSR (%)[a]

RDC 91.9 a
EG1 90.5 a
NOR 90.1 a
EG2 81.8 b

[a] Letters indicate methods that are not significantly different from one
another when the probability of one or more type I errors is controlled at
the 5% level.

methods, a linear transformation mapped the data to two coor-
dinates that spanned the color plane orthogonal to the intensity
vector. While this linear transformation minimized the effect
of intensity variation without introducing the non−ideal ef-
fects associated with chromaticity transformation, it also re-
sulted in Bayes decision surfaces that were parallel to the
intensity axis. Since vegetation pixels were clustered along a
vector that was not parallel to the decision surfaces, one cluster
often contained a mixture of vegetation and background pix-
els. Thus this procedure typically resulted in one cluster corre-
sponding to the vegetation class, two corresponding to the
background, and the remaining cluster with an uncertain clas-
sification.

In the EG1 method, only one cluster consisting of the most
saturated green pixels was associated with the vegetation
class. This association resulted in the decision surface between
vegetation and background pixels being further from the
intensity axis than that produced by the EG2 method. Under
cloudy conditions, EG1 had lower performance because the
vegetation pixels tended to have a lower intensity and were
thus closer to the intensity vector in the vegetation cluster
(fig. 2a). More vegetation pixels were on the background side
of the decision surface and were thus segmented incorrectly.
However, under sunny conditions, the intensity of the
vegetation pixels tended to increase and be further away from
the intensity axis (fig. 2b). Since the decision surface was
parallel to the intensity axis, more of the plant pixels were on
the plant side of the decision surface, resulting in higher
segmentation performance. The opposite effect occurred with
the EG2 method in which two clusters were associated with the
plant class, resulting in a decision surface that was again
parallel, but closer, to the intensity axis.

The three−dimensional isosurface plots produced for
classifier visualization (fig. 5) provided visual evidence for the
above explanation. For both the EG1 (fig. 5b) and EG2
(fig. 5c) methods, the decision surfaces were parallel to the
intensity axis. The only difference between the two decision
surfaces was the additional region associated with the
background class in the EG1 decision surface as compared
with the EG2 decision surface. The decision surfaces associat-
ed with the NOR method (fig. 5a) were not parallel to the
intensity axis but met at a point at the origin. This decision
surface collapsed to a point, resulting in unstable classification
for low−intensity pixels as observed earlier (Steward and Tian,
1998). The RDC decision surface was also not parallel to the
intensity axis and produced a decision surface that wrapped
around the vegetation cluster. The use of a low−intensity
cluster near the origin effectively classified low−intensity
pixels as pixels with indistinguishable color. For the classifiers
developed in this research, this cluster was associated with the
background class under the assumption that the background
would tend to consist of darker pixels. The pixels in this cluster
could, however, be classified as either plant or background
based on their connectivity to other background or plant
pixels.

For all of the decision surfaces, decision surfaces existed
behind the background class in the three−dimensional plots,
indicating that pixels in these regions would also be classified
as vegetation. These decision surfaces are produced by the
other half of the typical hyperbolic surface produced by the
Bayes classifier. These surfaces do not typically cause
segmentation errors because they only classify highly satu−
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(a)

(c)

(b)

(d)

Figure 5. Examples of decision surfaces produced by each classifier: (a) NOR classifier, (b) EG1 classifier, (c) EG2 classifier, and (d) RDC classifier.
Pixels in the solid region of the color space are segmented as background. Those in the hollowed out region are segmented as vegetation.

rated reds or purples (i.e., colors that do not typically appear
in natural agronomic field scenes) as plants.

The performance results were also confirmed by observing
binary images resulting from segmentation with each of the
methods for cloudy conditions (fig. 6) and sunny conditions
(fig. 7). In these images, visual assessments supported the
above observations. For example, the binary images produced
with EG1 segmentation revealed the loss of plant pixels for
both cloudy and sunny cases (figs. 6c and 7c) when compared

with the images produced by EG2 (figs. 6d and 7d). The EG2
method had poor segmentation performance under sunny
conditions because many background pixels were misclassi-
fied as vegetation. In the case of the NOR method, the
low−intensity pixels associated with cracks in the soil tended
to be classified as plants and were visible as contorted lines in
both binary images (figs. 6b and 7b). The segmentation results
of the RDC method provided good segmentation results
consistently across both conditions (figs. 6e and 7e).

(a) (b) (c)

(d) (e)

Figure 6. Segmentation of an example image acquired under cloudy conditions by the following methods: (a) hand segmentation, (b) NOR, (c) EG1,
(d) EG2, and (e) RDC.
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(a) (b) (c)

(d) (e)

Figure 7. Segmentation of an example image acquired under sunny conditions by the following methods: (a) hand segmentation, (b) NOR, (c) EG1,
(d) EG2, and (e) RDC.

CONCLUSIONS
Through this work, the following conclusions can be

drawn:
� The reduced−dimension clustering method was developed

based on theoretical considerations about the shape of data
clusters in RGB color space from field images and resulted
in Bayes classifiers that produced high segmentation per-
formance consistently with average SSR values of 89.6%
and 91.9% across both cloudy and sunny lighting condi-
tions, respectively.

� Statistical analysis of classifier performance produced re-
sults that were consistent with qualitative assessments of
binary images produced by the classifiers.

� Visualization of classifier decision surfaces increased un-
derstanding of how the color space was being divided and
provided insight into the meaning of the segmentation per-
formance from the different segmentation methods.
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