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Stellingen 

1. Maternale blootstelling aan gehydroxyleerde PCB-metabolieten veroorzaakt bij 
nakomelingen van drachtige ratten subtiele gedragsveranderingen en versnelt de 
reproduktieve veroudering bij concentraties die slechts een orde van grootte boven de 
huidige PCB-metaboliet concentraties in humaan navelstrengbloed liggen (dit proefschrift). 

2. De produktie en het gebruik in een veelheid aan toepassingen van polygebromeerde difenyl 
ethers zou, gezien hun persistentie, bioaccumulatie en toxische effecten waaronder de 
verstoring van de schildklierhormoon-huishouding, zo snel mogelijk verboden moeten 
worden (dit proefschrift; The Swedish National Chemicals Inspectorate, 15 March 1999). 

3. De binding van stoffen aan TTR in vitro leidt niet per definitie tot een verstoring van de 
schildklierhormoon-huishouding in vivo (dit proefschrift). 

4. Bij het onderzoek naar de mogelijke endocriene verstoring van stoffen wordt de 
schildklierhormoon-achtige werking van stoffen geheel onderschat. 

5. Het voorstel van de Environmental Protection Agency (EPA) om vele chemicalien te testen 
op endocriene verstoring in vivo is noodzakelijk, maar is in strijd met hun eigen beleid ter 
beperking van het aantal dierproeven. 

6. De in vivo Micronucleus test zou voor registratie van stoffen niet gebruikt mogen worden 
indien niet duidelijk is of de betreffende stof het beenmerg bereikt. 

7. De IC50 concentratie (de concentratie waarbij 50% inhibitie optreedt) van een stof voor de 
remming van een cytochroom P450 enzym bij een substraatconcentratie geeft geen enkele 
extra informatie als de wijze van remming niet bekend is. 

8. Niets zal een grotere positieve invloed hebben op de gezondheid van de mens en de 
overlevingskansen van het leven op aarde dan de evolutie naar een vegetarisch dieet (A. 
Einstein, 1879-1955). 

Stellingen, behorende bij het proefschrift "In vitro and in vivo interactions of organohalogens with the 
endocrine system - the role of metabolites and implications for human health" van Ilonka A.T.M. 
Meerts, te verdedigen op vrijdag 2 november 2001. 



Learn from yesterday, 

live for today, 

hope for tomorrow. 

The important thing is to not stop questioning. 

Albert Einstein (1879-1955) 
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CHAPTER 1 

General introduction 

Preface 

The research described in this thesis was part of an international study funded by the European 

Community, focussed on the Risk of ENdocrine COntaminants on human health. The RENCO study 

was initiated at a time when an increasing number of papers showed that several classes of 

environmental contaminants were able to induce endocrine activity in vitro and in vivo. The detection 

of some of these endocrine active environmental contaminants (such as hydroxylated polychlorinated 

biphenyls, OH-PCBs) in human blood raised concern about the possible consequences for human 

health, especially because in vivo studies with pregnant rats and mice had shown that hydroxylated 

PCBs were able to accumulate in their fetuses. The RENCO study was aimed at investigating the 

possible human risks of background environmental exposure to endocrine active organohalogen 

compounds. Special emphasis was placed on hydroxylated polychlorinated biphenyls (PCBs) and 

related phenolic organohalogens with a high fetal accumulation potential. The work in this thesis 

presents the investigation of the toxic (endocrine mediated) potencies of "new" environmental 

contaminants, which were detected in human blood as part of the RENCO study. In the first part of 

the research the in vitro endocrine potency of selected brominated and chlorinated compounds was 

investigated. In the second part of the research, in vivo studies with an endocrine active model 

compound were performed in order to compare in vitro and in vivo endocrine activity and to predict 

the possible adverse effects of these compounds on human health. 

Organohalogen compounds - environmental occurrence 

During the last half century, vast quantities of diverse synthetic chemicals have entered the 

environment because of their extensive use in agricultural, industrial or household applications. These 

chemicals include herbicides, insecticides, fungicides, and industrial chemicals, like polychlorinated 

biphenyls (PCBs), and breakdown products of detergents (like e.g. nonylphenols). The source of entry 

in the environment is determined by the intended use of the compound. Herbicides, insecticides and 

fungicides are intentionally released into the environment at the point of application. PCBs and penta-

to nonylphenols are an example of unintentionally released compounds, which enter the environment 

by volatilisation, leakage or leaching either during a product's lifetime or after disposal. 



Chapter 1 

In addition, some chemicals (e.g. dioxins) are unintentionally produced as by-products of industrial or 

combustion processes. Dependent on their structure and the physico-chemical properties, compounds 

can be widely distributed and can bioaccumulate in the environment. The most persistent compounds 

are organohalogen compounds which possess a low water solubility and a high lipid solubility, that 

resist chemical and biological degradation, and are able to bioaccumulate in fatty tissues of living 

organisms. The contaminants determined in wildlife and humans in the highest concentration at the 

moment are polychlorinated biphenyls (PCBs), 2,2-bis(4-chlorophenyl)-l,l,l-trichloroethane (DDT) 

and hexachlorobenzene (see Figure 1.1). These organohalogen compounds belong to the class of 

persistent organic pollutants (POPs), meaning that they possess toxic characteristics, are persistent, 

are liable to bioaccumulate, are prone to long-range atmospheric transport and deposition, and can 

result in adverse environmental and human health effects at locations near and far from their sources 

(UN-ECE, 1998). 

PCB DDT 

m o o m 

m o o m 

PCB 

Figure 1.1. Structures of several persistent organic pollutants. PCB: polychlorinated biphenyl, DDT: 
2,2-bis(4-chlorophenyl)-l,l,l-trichloroethane, HCB: hexachlorobenzene (HCB), o: ortho, m: meta, p: 
para. 

Polychlorinated biphenyls (PCBs) andpolybrominated diphenyl ethers (PBDEs) - "old" versus 

"new " environmental contaminants 

Polychlorinated biphenyls (PCBs, Figure 1.1) are a group of chlorinated hydrocarbons consisting of 

209 possible congeners ranging from three monochlorinated isomers to the fully chlorinated 

decachlorobiphenyl isomer. Their physico-chemical properties are dependent on the degree of 

chlorination. Generally, PCBs with a high degree of chlorination have a low water solubility and high 

lipophilicity. PCBs were produced in large quantities as mixtures varying in the degree of 

chlorination. Their major use was as dielectric fluids in transformers and capacitors. Some of their 

applications resulted in direct or indirect releases into the environment and large amounts were 
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General introduction 

released due to inappropriate disposal, accidents and leaks from industrial facilities. PCBs have been 

identified in environmental samples as early as the 1960s (Jensen, 1966; Jensen, 1972; Koeman et al, 

1969, 1972, 1973) and can be detected in almost all compartments of the biosphere at the moment. 

Concentrations are particularly high in marine wildlife species at high trophic levels, such as in fish-

eating birds (Helander et al, 1982; Olafsdottir et al, 2001), seals (Addison and Stobo, 2001; 

Cleemann et al, 2000; Watanabe et al, 1999), whales (Minh et al, 2000) and polar bears (Letcher et 

al, 1995; Norstrom et al, 1998; Sandau, 2000). Even human milk samples and adipose tissue contain 

PCBs and other organohalogen compounds (Loganathan and Kannan, 1994; Noren, 1993; Schade and 

Heinzow, 1998). 

Because of the ban on the production and use of PCBs in the early 1980s, time trend studies 

now show a decline in PCB (and also DDT) concentrations in e.g. freshwater fish in the United States 

(Schmitt et al, 1999), in tissues of various biota (fish, seals, birds) of the Baltic Sea (Olsson et al, 

1997) and in mother's milk (Noren, 1993; Noren and Lunden, 1991; Schade and Heinzow, 1998). 

However, leakage of PCBs from old equipment, building materials, stockpiles and landfill sites 

constitutes a continued threat of PCB emission. Indeed, some time trend studies of PCB 

concentrations in human adipose tissue show no significant decline, thus indicating that humans are 

still continuously exposed to PCBs (Loganathan and Kannan, 1994). 

Unfortunately, PCBs are not the only environmental pollutants posing a threat to humans 

and wildlife. In addition to the organohalogen compounds which are on the list of persistent organic 

pollutants, several other organohalogens of which we know much less about are produced in high 

quantities at the moment. Over the last 10 to 15 years, increasing concentrations of a new class of 

organohalogen compounds, the polybrominated diphenyl ethers (PBDEs), have been measured in the 

environment and human tissues. PBDEs are used as additive flame retardants, at concentrations of 5-

30% in many different polymers, resins and substrates for applications in electronic devices, circuit 

boards in personal computers and television sets, building materials and textiles (Pijnenburg et al, 

1995; IPCS, 1994). The reason for using brominated compounds as flame retardants is based on the 

ability of halogen atoms, which will be released by thermal decomposition of the bromo-organic 

compound, to chemically reduce and retard the development of fire. The annual world production of 

flame retardants is roughly 600,000 metric tons, of which about 60,000 tons are chlorinated and 

150,000 tons are brominated compounds. Of the brominated flame retardants, about one third contain 

various brominated compounds (including polybrominated biphenyls), another third contain 

tetrabromobisphenol A and derivatives, and the last third contain PBDEs (OECD, 1994). 

The molecular structure of PBDEs is quite comparable to PCBs (Figure 1.2), however, as a 

result of the ether bridge between the two phenyl rings PBDEs are not able to adopt a planar 

conformation, regardless of the substitution pattern of the bromines. The theoretical number of 

possible PBDE congeners is also 209; the different congeners are divided into 10 groups (from mono-

to decabromodiphenyl ethers). Commercial mixtures of PBDEs contain an average bromine content 

substitution number of 5 (pentabromodiphenyl ether, pentaBDE), 8 (octabromodiphenyl ether, 

octaBDE) or 10 (decabromodiphenyl ether, decaBDE). The technical decaBDEs have the widest 

industrial use. The number of different congeners in each PBDE mixture is quite small compared to 

the number of PCB congeners commonly found in mixtures or in the environment (IPCS, 1994). This 
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is probably because the reaction used to synthesise brominated diphenyl ethers (i.e. direct 

bromination of diphenyl ether in the presence of a catalyst; IPCS, 1994) is fairly selective (Sjodin et 

al, 2000). 

BDE-99 

BDE-47 BDE-100 

Figure 1.2. Structure and ring positions of PBDEs, and structure of the most common PBDEs 
detected in the environment. BDE-47: 2,2',4,4'-tetraBDE; BDE-99: 2,2',4,4',5-pentaBDE; BDE-100: 
2,2',4,4',6-pentaBDE. 

PBDEs are lipophilic and their solubility in water is low. Commercial PBDEs are quite 

resistant to physical, chemical and biological degradation (IPCS, 1994). Because of their physico-

chemical properties and the application of PBDEs as additive flame retardants, which can leach and 

escape from the existing polymers much more easily than e.g. reactive flame retardants (IPCS, 1997), 

it is not surprising that PBDEs have been detected in the environment and in wildlife species. PBDEs 

have been identified in various biotic samples, such as fish-eating birds and marine mammals 

(Jansson et al, 1987), shellfish and sediment (Haglund et al, 1997), and also in human blood (Sjodin 

et al, 1999, 2000) and breast milk (Meironyte et al, 1999). So far, the total PBDE concentrations 

detected in wildlife and humans are lower than the concentrations of total PCBs. On a congener basis, 

the levels of individual PBDEs in these samples could be similar to those of individual PCB 

congeners. However, the levels of total PBDEs are lower because fewer congeners are present in 

technical mixtures and in the environment (Darnerud et al, 2001). The most dominant congeners 

found in wildlife and humans are generally 2,2',4,4'-tetraBDE (BDE-47), 2,2',4,4',5-pentaBDE 

(BDE-99) and 2,2',4,4',6-pentaBDE (BDE-100)1. Although decaBDE is not commonly found in 

wildlife and humans, this does not imply that decaBDEs do not pose a threat to the environment. 

1 The numbering of PBDE congeners is adapted from the International Union of Pure and Applied 
Chemistry (IUPAC) numbering system originally designed for PCBs (Ballschmiter and Zell, 1980). 
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DecaBDE is poorly absorbed in organisms, but debromination of decaBDE occurs in ultraviolet light 

and sunlight, leading to a formation of lower brominated PBDEs and various brominated 

dibenzofurans (Watanabe and Satsukawa, 1987), which can then be absorbed by organisms or 

humans. 

While the levels of PCBs in human blood have been shown to be stable or decreasing (as 

described earlier in this chapter), PBDE concentrations in human milk sampled in Sweden from 1972 

to 1998 increased from 0.07 to 4.02 ng/g lipid weight (Meironyte et al, 1999). Because PBDEs were 

shown to be widely distributed in the environment, the need for restrictions on certain PBDEs in 

different types of plastics and textiles is currently being discussed within the EU. The Organisation 

for Economic Co-operation (OECD) published a document with the recommendation to stop the use 

of mainly tetra- and pentaBDEs (OECD, 1994). 

Hydroxylated organohalogen compounds 

Although the metabolism of xenobiotics, including PCBs, generally results in the formation of more 

polar metabolites which are subsequently cleared from the organism, several hydroxylated 

metabolites of PCBs (OH-PCBs) have been identified in the blood of marine mammals, polar bears, 

fish-eating birds and humans (Bergman et al, 1994; Klasson-Wehler et al, 1998; Sandau et al, 2000; 

Sjodin et al,, 2000). The amount of OH-PCBs detected in human blood is at concentrations of 10-

30% of the parent PCB concentration (Sandau et al, 2000, Sjodin et al, 2000) but as high as 2-3 

times the parent PCB level in Polar bear blood (Sandau, 2000). Normally, hydroxylated aromatic 

compounds are not bioaccumulated in lipids, unless they are bound to proteins. The OH-PCBs 

retained in human blood possess a common structural element, namely an OH-group in the para-

position, or occasionally in the meto-position, with chlorine atoms on the adjacent carbon atoms, and 

at least one chlorine atom on the non-OH containing phenyl ring in the para-position (Letcher et al, 

2000). These structural elements are in accordance with the structural requirements for binding of an 

OH-PCB to human transthyretin (TTR), a transport protein in human blood which normally transports 

thyroxine (T4), the natural thyroid hormone (Lans et al, 1993). Figure 1.3 shows the resemblance of 

some OH-PCBs retained in human blood with T4. The majority of OH-PCBs detected in human blood 

are formed from the more persistent PCB congeners with 5 to 7 chlorine atoms (Klasson-Wehler et 

al, 1997; Sandau et al, 2000, Letcher et al, 2000). 

Hydroxylated and methoxylated PBDEs (OH-PBDEs and MeO-PBDEs) have been detected 

in various biotic samples from the Baltic Sea (Asplund et al, 1999; Haglund et al, 1997). 

Concentrations of OH-PBDEs in blood plasma from Baltic salmon were estimated to be about 30-50 

ng/g lipid weight, similar to concentrations of the major PBDEs in these samples (Asplund et al, 

1999), thus suggesting that also OH-PBDEs are selectively retained in blood plasma by binding to 

proteins. Apart from these anthropogenic sources of OH-PBDEs, certain marine sponges are able to 

form hydroxylated PBDEs (Carte and Faulkner, 1981; Fu et al, 1995). 
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CI CI 

4-OH-CB107 4-OH-CB187 4-OH-CB146 

Figure 1.3. The resemblance of several hydroxylated PCBs determined in human blood with the 
thyroid hormone thyroxine (3,3',5,5'-tetraiodo-L-thyronine, T4). 

Organohalogen compounds - toxicity 

PCBs and OH-PCBs 

The toxic effects of PCBs have been extensively studied and reported. PCBs induce a broad range of 

toxic effects, including hepatic porphyria (Vos and Koeman, 1970), neurotoxicity, developmental 

toxicity, reproductive toxicity, teratogenicity and carcinogenesis (reviewed in Peterson et ah, 1993; 

Safe 1990, 1994; Schantz 1996; Seegal 1996; Tilson and Kodavanti, 1997). The toxicity of PCBs is 

dependent on their chlorine substitution pattern, and is often divided into dioxin-like toxicity (in case 

of planar and mono-ortho PCBs) and non-dioxin-like toxicity (poly-ortho PCBs). The most toxic 

PCBs are the dioxin-like PCBs, of which the mechanism of action is mediated by the aryl 

hydrocarbon receptor (AhR; Poland and Knutson, 1982). Dioxin-like compounds have been shown to 

bind to this AhR after entering cells (Safe, 1992). The AhR then undergoes a process of activation 

and moves to the nucleus, where it is bound to specific elements (the dioxin response elements, DRE) 

on the DNA. This results in increased transcription of genes that possess a DRE element in their 

upstream control for expression, such as cytochrome P450 1A1 and 1A2 genes. Since AhR binding 

affinity, enzyme induction and toxic potencies correlate well over a wide range of different 

congeners, it is nowadays widely accepted that the AhR plays a major role in the onset of toxicity of 

many organohalogen compounds. The non-planar PCB congeners do not bind to the AhR and have 

been shown to induce toxic effects such as tumour promotion (Silberhorn et al, 1990; Van der Plas et 

al, 2000), alterations in plasma thyroid hormone (McClain et al, 1989; Barter and Klaassen, 1992, 

1994) and neurotoxicity (Seegal et al, 1990, 1996, 1997; Shain et al, 1991). The mono-ortho PCB 

congeners have intermediate toxicity and bind to the AhR with less affinity than planar congeners. 

During the last decades it has become evident that PCBs and especially OH-PCBs can 

directly interfere with the endocrine system, including the thyroid, retinoid, and estrogen system 
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(Brouwer and Van den Berg, 1986; Jansen et al, 1993; reviewed by Brouwer et al, 1998 and 

Brucker-Davis, 1998). The interactions of PCBs with these endocrine systems are described in more 

detail in the next paragraphs. 

Interactions of PCBs and OH-PCBs with the thyroid hormone system 

For OH-PCBs as well as parent PCBs and other organohalogen compounds (e.g. 2,3,7,8-

tetrachlorodibenzo-p-dioxin, DDT, hexachlorobenzene and pentachlorophenol) it is well known that 

thyroid hormone levels are affected in experimental animals (Brouwer, 1989; reviewed in Brouwer et 

al, 1998; Brucker-Davis, 1998). The interaction of (OH-)PCBs takes place at multiple levels of the 

thyroid hormone system, including the thyroid gland, the pituitary-thyroid feedback system, transport 

of thyroid hormones and enzymatic conversion of thyroid hormones. Decreased levels of circulating 

plasma thyroxine (T4) following PCB exposure have been shown in both adult (Byrne et al, 1987; 

Barter and Klaassen, 1994; Van den Berg et al, 1988) and developing organisms (Collins and Capen 

1980; Damerud et al, 1996; Morse et al, 1993, 1996a; Ness et al, 1993; Seo et al. 1995). All 

categories of PCB congeners (planar, nonplanar and mono-ortho PCBs) are able to alter thyroid 

function, although through different mechanisms. The main mechanism of thyroidogenic effects of 

planar PCBs is thought to be mediated through the AhR, namely the induction of UDP-

glucuronosyltransferases (UDP-GT). As a result of this induction, the biliary excretion of T4 is 

enhanced, leading to decreased plasma levels of T4 (Barter and Klaassen, 1992; Bastomsky, 1974; 

Van Birgelen et al, 1995). Indeed, there was a good and statistically significant relationship between 

decreased plasma T4 levels and induction of UDP-GT by TCDD, 3,3',4,4',5-pentachlorobiphenyl 

(PCB 126) or 2,3,3',4,4',5-hexachlorobiphenyl (PCB 156) in a 13 week feeding study in female rats 

(Van Birgelen et al, 1995). 

Nonplanar PCBs and especially OH-PCBs, which do not bind to the AhR and are not able 

to induce UDP-GT, have their thyroid effects mediated through several other pathways. The most 

pronounced effects of OH-PCBs on the thyroid hormone system are the binding to transthyretin 

(TTR), a thyroid hormone transport protein which forms a complex with retinol binding protein 

(RBP). Exposure of rats to 3,3',4,4'-tetrachlorobiphenyl (PCB 77) resulted in marked reductions of 

plasma thyroxine levels and retinol (Brouwer and Van den Berg, 1986). Further investigation showed 

a selective retention of a hydroxylated metabolite (4-OH-3,3',4',5-tetrachlorobiphenyl) in plasma of 

exposed rats which was able to bind to TTR (Brouwer et al, 1990). The competitive binding of this 

metabolite to TTR resulted in thyroxine displacement and disturbance of the TTR-RBP complex 

leading to increased glomerular filtration of RBP (Brouwer and Van den Berg, 1986). Exposure of 

pregnant mice to the same parent compound resulted in a high and selective accumulation of 4-OH-

3,3',4',5-tetrachlorobiphenyl in fetal mouse plasma and reductions in thyroid hormone levels 

(Darnerud et al, 1996). The binding of the metabolite to TTR was confirmed in both fetal and 

maternal plasma, and it was suggested that binding of OH-PCBs and also other phenolic 

organohalogen compounds to TTR in vivo may result in facilitated transport of OH-PCBs over the 

placenta to the fetal compartment, leading to decreased thyroid hormone levels in the maternal but 

especially the fetal compartment with possible consequences on fetal brain development. 

Administration of the commercial PCB mixture Aroclor 1254 to pregnant rats from gestation days 10 
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to 16 resulted in a selective accumulation of another PCB-metabolite (4-OH-2,3,3',4',5-pentaCB, 4. 

OH-CB107) in fetal plasma and brain, accompanied by low concentrations of T4 in dams and fetuses 

at GD20 and in neonates at PND4 and PND21 (Morse et al, 1996a), and long term effects on several 

neurochemical markers (Morse et al, 1996b) and brain serotonin metabolism in the exposed offspring 

(Morse et al, 1996c). This PCB-metabolite is one of the major metabolites detected in human blood 

(Bergman et al., 1994; Letcher et al., 2000; Sandau et al, 2000). 

The binding of OH-PCBs to TTR was further elucidated in in vitro competition binding 

studies using purified human TTR (Lans et al, 1993, 1994; McKinney et al, 1985; Rickenbacher et 

al, 1986). The affinities of OH-PCB congeners for TTR in vitro are up to 10 times higher compared 

to thyroxine itself (Lans et al, 1993). Also other organohalogen substances, such as halogenated 

phenols, can bind to TTR (Van den Berg, 1990). The presence of a hydroxy-group at the para or meta 

positions of the phenyl ring of PCBs, with at least one chlorine substitution at an adjacent position 

was thought to be an essential prerequisite for TTR binding (Lans et al, 1993). This was confirmed 

by X-ray crystallography studies with 4,4'-(OH)2-3,3',5,5'-tetrachlorobiphenyl (Lans, 1995). 

However, Chauhan et al. (1998) showed that also parent compounds were capable of binding to TTR, 

although with weak affinity. All OH-PCBs determined in human blood were shown to have high 

affinities for TTR in vitro (Lans et al, 1993). 

Another mechanism of action of OH-PCBs on the thyroid hormone system is their effects 

on metabolism. OH-PCBs can influence thyroxine metabolism by a strong inhibition of thyroxine 

sulfation, which has been shown in vitro (Schuur et al, 1998, 1999). Since sulfation is a major 

regulation pathway of T4 in the fetus, the interference of OH-PCBs with thyroid hormone sulfation 

may have consequences for the development of the fetus, and in particular for fetal brain development 

(Brouwer et al, 1998). Another effect of OH-PCBs on thyroxine metabolism is mediated via the 

inhibition of deiodinase activity, thereby preventing the formation of the active thyroid hormone 

3,3',5-triiodothyronine (T3; Adams et al, 1990; Lans, 1995; Rickenbacher et al, 1989). 

The thyrotoxic effects of PCBs have been suggested to form the basis for the developmental 

neurotoxicity observed following prenatal PCB exposure (Porterfield and Hendrich, 1993). Prenatal 

exposure to PCBs is known to result in numerous behavioural alterations including impaired learning 

and memory, altered activity levels, delayed development of reflexes, impaired acquisition of active 

avoidance tasks, and delayed development of auditory startle and air righting reflex (reviewed in 

Juarez de Ku and Meserve, 1994). For example, mice exposed in utero to the dioxin-like PCB77 have 

demonstrated spinning behaviour, hyperactivity and impaired acquisition of avoidance response 

(Tilson et al, 1979), and mice exposed during the early neonatal period exhibited depression of 

spontaneous motor behaviour (Eriksson et al, 1991). Effects of prenatal exposure to PCBs on hearing 

deficits were also reported (Goldey et al, 1995a). These hearing deficits could be partially prevented 

by T4 replacement (Goldey and Crofton, 1998). 
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Interactions ofPCBs and OH-PCBs with the estrogen system 

The estrogenic activities of commercial PCB mixtures administered to rats was already determined in 

the 1970s (Bitman and Cecil, 1970). 4-OH-2',4',6'-trichlorobiphenyl and 4-OH-2',3',4',5'-

tetrachlorobiphenyl were estrogenic in a rodent uterotrophic assay and were able to bind 

competitively to the estrogen receptor (Korach et al, 1988). However, these OH-PCBs were not 

environmentally relevant, since they have not been identified as persistent, retained metabolic 

products in human or wildlife blood samples. The OH-PCBs identified in human serum were mostly 

weakly anti-estrogenic (Moore et al, 1997). Recently, Kester et al. (2000) showed that several OH-

PCBs are extremely potent inhibitors of the human estrogen sulfotransferase (hEST) enzyme in vitro. 

The OH-PCB with the highest inhibition potency was 4-OH-CB107. Estrogen sulfation is a normal 

route of reversible inactivation of estradiol. As a result of the inhibition of estrogen sulfation, OH-

PCBs may increase the bioavailability of E2 in target tissues, thereby exerting an indirect estrogenic 

effect. 

PBDEs and OH-PBDEs 

At the beginning of the research described in this thesis, very little was known about the toxicity of 

PBDEs. Most of the studies with PBDEs were carried out using technical mixtures of which the 

purity was known in several cases, but the isomer composition was unknown. The available data 

showed no severe signs of toxicity in subacute and subchronic toxicity studies with deca-, octa- and 

pentaBDE preparations (IPCS, 1994; Norris et al, 1975a, 1975b). The target organs for toxicity of 

PBDEs were determined to be the liver, kidney and thyroid gland, which were enlarged and/or 

showed minor histopathological changes (IPCS, 1994). The most sensitive end point of PBDE 

toxicity in vivo appears to be effects on thyroid function, observed as induction of thyroid hyperplasia 

and alteration of thyroid hormone production (i.e. lowering of free and total T4 concentrations) in rats 

and mice (Darnerud and Sinjari, 1996, Fowles et al, 1994). PBDEs were also shown to induce 

cytochrome P450 1A1 and 1A2 in vitro (Hanberg et al, 1991) and in vivo (Von Meyerinck et al, 

1990), thus suggesting that several PBDEs are able to act via the AhR mediated signal transduction 

pathway. The level of CYP1A1/1A2 induction in rats of the commercial pentaBDE mixture Bromkal 

70 was the same as observed after Aroclor 1254 treatment (both given as a single dose of 300 mg/kg 

body weight). However, it is suggested that this dioxin-like activity may be partly attributed to 

possible impurities of brominated dioxin or furan compounds present in these mixtures (Darnerud et 

al, 2001). 

Possible adverse effects of endocrine active organohalogen compounds on human health 

The presence of organohalogen compounds in the environment with potential endocrine activity has 

lead to the hypothesis that exposure to these chemicals might alter the endocrine system, causing 

adverse developmental and reproductive effects in both animals and humans. However, human 

information on developmental reproduction and sexual behavioural effects of organohalogen 

compounds is scarce. The most well documented effects of organohalogen compounds on humans are 

neurodevelopmental effects. Clear evidence of developmental toxicity of dioxin-like compounds was 

observed in two cohorts (the Yusho and Yu-Cheng cohort) that were inadvertently exposed to 
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complex mixtures of PCBs and PCDFs (Kuratsune, 1989; Rogan et al, 1988). High exposed infants 

showed delays in attaining developmental milestones, and at the age of 8 to 13 years behavioural 

problems, intellectual deficits and growth retardation were evident (Chen et al, 1992; Peterson et al, 

1993). There were also sex-related effects, e.g. prenatally exposed boys had unusually high serum 

levels of estrogen, and had penises that are significantly smaller at puberty than those of age-matched 

controls (Guo et al., 1993). 

Exposure of human infants to background environmental levels of PCBs can also lead to 

subtle changes in development. Poorer psychomotor performance, poorer visual recognition memory 

and poorer performances in memory scales test have been reported in infants exposed to relatively 

high levels of PCBs (Gladen et al, 1988; Sauer et al, 1994; Jacobson et al. 1985, 1990; reviewed by 

Brouwer et al., 1995). There were also indications that increasing levels of PCBs in mother's milk 

correlated with subtle decreases in thyroid hormone levels in human infants (Koopman-Esseboom et 

al., 1994; Nagayama et al., 1996). It may thus be possible that background exposure to endocrine 

active (especially thyroidogenic) organohalogen compounds in humans can lead to subtle changes in 

the human endocrine system, thereby altering neurodevelopment in human infants. There is a good 

resemblance between neurodevelopmental changes observed following background exposure to e.g. 

PCBs and changes caused by a prenatal or early postnatal hypothyroid status (reviewed by Brouwer et 

al, 1998). 

Outline of the thesis 

The aim of the research described in this thesis was to investigate the possible endocrine activity of 

newly identified organohalogen substances in human blood (the polybrominated diphenyl ethers, 

PBDEs), and to predict the consequences of human exposure to endocrine active, especially phenolic 

organohalogens (e.g. hydroxylated metabolites of PCBs or PBDEs) on fetal and neonatal 

development. It was hypothesised that the toxicity profile of PBDEs would resemble the profile of 

PCBs. In addition, it was also hypothesised that the presence of several hydroxylated PCBs and 

PBDEs in human blood could be explained by their selective retention in the blood due to binding to 

human transthyretin, and that in vivo exposure of pregnant females to these phenolic organohalogens 

would lead to the transport of the compounds over the placenta and exposure of the unborn. This may 

result into long term adverse effects on the offspring. 

The possible interference of PBDEs and related brominated flame retardants with the 

endocrine system was investigated in vitro (described in part I). The ability of these compounds to 

bind to human TTR was determined using an in vitro T4-TTR competition binding assay (Chapter 2). 

Structural requirements elucidated from these studies were compared with the known structure 

activity relationships of related compounds. The possible estrogenic or anti-estrogenic activities of 

PBDEs and OH-PBDEs are presented in Chapter 3. Differently brominated bisphenol A compounds 

were included in these studies to investigate the structure activity relationship for thyroidogenicity 

(Chapter 2) and estrogenicity (Chapter 3) in more detail. In Chapter 4, the toxicity of PBDEs is 

summarized and compared with the mechanism of action of PCBs. The molecular interaction of two 

brominated phenols with transthyretin, determined in a collaborative study (Ghosh et al, 2000) using 



General introduction 

X-ray crystallography, is also discussed. In addition, the role of metabolites is discussed, and the 

choice for the model compound for in vivo studies is clarified. 

To be able to predict the possible adverse effects of human exposure to hydroxylated PCB 

or PBDE compounds, in vivo toxicity studies were performed. In part II in vivo studies are described 

that were performed with a model compound, the PCB metabolite 4-OH-2,3,3',4',5-

pentachlorobiphenyl (4-OH-CB107), which was already detected in relatively high quantities in 

human blood (described in part II). The uptake and distribution of 4-OH-CB107 was investigated in 

pregnant female rats and their fetuses {Chapter 5). Finally, the long-term effects of in utero exposure 

to 4-OH-CB107 on neonatal development, reproductive function, steroid hormone levels, behaviour 

and hearing in rat offspring were compared with effects induced by the parent compound {Chapters 6 

and 7). In Chapter 8 the in vivo effects are summarized. The overall impact and conclusions of the 

results described in this thesis are presented in Chapter 9. 
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CHAPTER 2 

Potent competitive interactions of some brominated flame retardants 
and related compounds with human transthyretin in vitro 

Abstract 

Brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), pentabromophenol 

(PBP), and tetrabromobisphenol A (TBBPA) are produced in large quantities for use in electronic 

equipment, plastics, and building materials. Because these compounds have some structural 

resemblance with the thyroid hormone thyroxine (T4), it was suggested that they may interfere with 

thyroid hormone metabolism and transport, e.g., by competition with T4 on transthyretin (TTR). In 

the present study, we investigated the possible interaction of several brominated flame retardants with 

T4 binding to TTR in an in vitro competitive binding assay, using human TTR and 125I-T4 as the 

displaceable radioligand. Compounds were tested in at least eight different concentrations ranging 

from 1.95 to 500 nM. In addition, we investigated the structural requirements of these and related 

ligands for competitive binding to TTR. We were able to show very potent competition binding for 

TBBPA and PBP (10.6- and 7.1-fold stronger than the natural ligand T4, respectively). PBDEs were 

able to compete with T4-TTR binding only after metabolic conversion by induced rat liver 

microsomes, suggesting an important role for hydroxylation. Brominated bisphenols with a high 

degree of bromination appeared to be more efficient competitors, whereas chlorinated bisphenols 

were less potent compared to their brominated analogues. These results indicate that brominated 

flame retardants, especially the brominated phenols and tetrabromobisphenol A, are very potent 

competitors for T4 binding to human transthyretin in vitro and may have effects on thyroid hormone 

homeostasis in vivo comparable to the thyroid-disrupting effects of PCBs. 

Based on: Meerts I.A.T.M., van Zanden J.J., Luijks E.A.C., van Leeuwen-Bol I., Marsh G., Jakobsson 

E., Bergman A., and Brouwer A. (2000). Toxicological Sciences 56, 95-104. 
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Introduction 

It is well established that several classes of environmental contaminants can affect thyroid gland 

morphology and hormonal status (for reviews see Brouwer et al, 1998; Brucker-Davis, 1998), but the 

exact mechanisms of interference are not fully understood. There are at least three different levels at 

which organohalogen contaminants are known to interact with the thyroid hormone system: at the 

thyroid gland, in thyroid hormone metabolism, and with thyroid hormone transport proteins. A 

number of chemicals have been reported to bind to transthyretin (TTR), one of the thyroid hormone-

binding transport proteins in plasma of vertebrate species. In particular, metabolites of the 

polyhalogenated aromatic hydrocarbons (PHAHs) such as hydroxylated polychlorinated biphenyls 

(OH-PCBs), hydroxylated polychlorinated dibenzo-/?-dioxins (OH-PCDDs), and pentachlorophenol 

(PCP) have been shown to bind to TTR in in vitro and/or in vivo studies (Brouwer et ah, 1988; Lans 

et al, 1993; McKinney and Waller, 1994; van den Berg et al, 1991; van Raaij et al, 1991). It is 

hypothesized that the binding of chemicals to TTR, thereby displacing the natural ligand 3,3',5,5'-

tetraiodothyronine (thyroxine, T4), leads to an increase in the clearance of T4 and a decrease in serum 

T4 concentrations (Darnerud et al, 1996), a common feature in animals that have been exposed to 

PHAHs (Brouwer et al, 1998; Brucker-Davis, 1998). 

The research on chemicals binding to transthyretin has been focused mainly on the 

polychlorinated dibenzo-p-dioxins (PCDDs) and biphenyls (PCBs), i.e., compounds that have been 

banned or are under control measures for further environmental reduction. Hydroxylated PCBs, 

especially those with a hydroxy group on meta or para positions with one or more adjacent halogen 

substituents, have been shown to be potent ligands for TTR (Lans et al, 1993; Rickenbacher et al, 

1986) because of their structural resemblance with thyroxine. Other organohalogen compounds that 

are extensively used at the moment, particularly the brominated flame retardants tetrabromobisphenol 

A (TBBPA) and polybrominated diphenyl ethers (PBDEs) (TemaNord, 1998), show an even closer 

structural relationship to thyroxine than the PCBs. Therefore, the possibility exists that these 

brominated flame retardants interact with TTR and other aspects of thyroid hormone metabolism. Of 

the brominated flame retardants in use today, about one-third are polybrominated diphenyl ethers 

(PBDEs), another one-third are tetrabromobisphenol A and derivatives, and the last third is composed 

of a variety of bromine-containing products, including polybrominated biphenyls (PBBs) (OECD, 

1994). The production volume of TBBPA in 1995 was approximately 60,000 tonnes per year (IPCS, 

1995). Its primary use is as a reactive intermediate in the production of flame-retarded epoxy resins 

used in printed circuit boards (IPCS, 1995). PBDEs are extensively used as flame retardants in 

plastics, paints, electrical components, and synthetic textiles (IPCS, 1994). They have been produced 

in large quantities since the 1980s, mostly as commercial mixtures such as Bromkal 70-5DE. TBBPA 

has been detected in sediment samples in Japan in concentrations of 0.5-140 ug/kg dry weight 

(Watanabe et al., 1983), but it is not normally detected in environmental biologic samples (IPCS, 

1995). 
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PBDEs have been found in various biotic samples, such as fish-eating birds and marine 

mammals (Jansson et al., 1987), shellfish and sediment (Haglund et al., 1997), and even in human 

blood (Sjodin et al., 1999) and breast milk (Meironyte et al., 1999). So far, the PBDE concentrations 

detected in wildlife and humans are lower than the concentrations of PCBs. However, Meironyte et 

al. (1999) showed that PBDE concentrations in human milk sampled in Sweden from 1972 to 1998 

increased from 0.07 to 4.02 ng/g lipid weight. Hydroxylated and methoxylated PBDEs (OH-PBDEs 

and MeO-PBDEs) have also been detected in various biotic samples from the Baltic Sea (Asplund et 

al., 1999; Haglund et al., 1997). Concentrations of the OH-PBDEs in blood plasma from Baltic 

salmons were estimated to be about 30-50 ng/g lipid weight, similar to concentrations of the major 

PBDEs in these samples (Asplund et al., 1999). 

Because of the high production volume of brominated flame retardants, the presence of 

these compounds in biotic samples, and their close structural resemblance with thyroxine, we 

examined the ability of several of these compounds and their metabolites (in the case of PBDEs) to 

bind to human TTR by an in vitro T4-TTR competition binding assay (Lans et al., 1993). Because no 

hydroxylated PBDEs were available at the time for this study, a method was designed to include 

microsomal activation in the T4-TTR competition binding assay. For comparison, three synthesized 

hydroxylated PBDEs with structural resemblance to the thyroid hormones 3,5-diiodothyronine (T2), 

3,3',5-triiodothyronine (T3) and 3,3',5,5'-tetraiodothyronine (thyroxine, T4) were also tested for their 

potency to compete with T4-TTR binding. The resulting structure-activity relationships were 

compared with the known structure-activity relationships of related (especially chlorinated) 

compounds. 

Materials and methods 

Chemicals 

All chemicals were of > 98% purity unless otherwise stated. 2,4,6-Tribromoaniline, 2,4-

dibromophenol (2,4-DBP; 95%), 2,3,5,6-tetrabromo-p-xylene, 2,3,4,5,6-pentabromotoluene, 

brominated bisphenol A diglycidyl ether, tetrabromobisphenol A (TBBPA, 97%), 

tetrachlorobisphenol A (TCBPA), pentabromophenol (PBP, 96%), bisphenol A (97%), 

4-phenoxyphenol, and hexabromobenzene were obtained from Aldrich Chemical Company (Bornem, 

Belgium). Bisphenol A diglycidylether, bisphenol A bis(2,3-dihydroxypropyl)ether, bisphenol A 

bis(3-chloro-2-hydroxypropyl)ether, 2,4,6-tribromophenol (TBP), and phenobarbital (PB) were 

purchased from Fluka Chemie (Buchs, Switzerland). 2-Hydroxy-2',4,4'-trichlorodiphenyl ether was 

from Ultra Science (N. Kingstown, RI). 

Pure PBDE congeners (> 98% pure) were synthesized as described elsewhere (Marsh et al., 

1999; Orn et al., 1996). Three hydroxylated brominated diphenyl ethers, 4-(2,4,6-

tribromophenoxy)phenol, 2-bromo-4-(2,4,6-tribromophenoxy)phenol and 2,6-dibromo-4-(2,4,6-

tribromophenoxy)phenol, were synthesized as described by Marsh et al. (1998) and were at least 99% 

pure. Monobromobisphenol A (MBBPA, containing 96.5% monobromobisphenol A and 3.5% 

dibromobisphenol A), dibromobisphenol A (diBBPA, containing 99.4% dibromo- and 0.6% 

tribromobisphenol A), and tribromobisphenol A (triBBPA, 100% pure) were synthesized by 

25 



Chapter 2 

bromination of bisphenol A using bromine in acetic acid at room temperature (Sara Rahm, 

unpublished). 
125I-L-3',5'-Thyroxine (spec. act. 46 uCi/ng) was purchased from Orange Medical (Tilburg, 

The Netherlands). Human prealbumin (transthyretin, TTR, 98% pure), clofibrate (CLOF), and 

3,3',5,5'-L-thyroxine (T4) were obtained from Sigma Chemical Company, St. Louis, MO. Tris, 

saccharose, methanol, ethanol, dichloromethane and diisopropyl ether (all analytical grade) were from 

Merck Chemical Company (Darmstadt, Germany). Biogel P-6DG desalting gel was obtained from 

Bio-Rad Laboratories (Richmond, CA). p-Naphthoflavone (P-NF), EDTA, and dimethylsulfoxide 

(99.9% pure) were obtained from Janssen Chimica (Geel, Belgium). NADPH was obtained from 

Boehringer (Mannheim, Germany). 

Bisphenol A and mono- and dibromobisphenol A were dissolved in ethanol and stored at -

20°C. Only 2,3,5,6-tetrabromo-p-xylene and 2,3,4,5,6-pentabromotoluene were dissolved in 

dichloromethane because they were not soluble in ethanol or dimethylsulfoxide (DMSO). All other 

compounds were dissolved in DMSO. 

Preparation of microsomes 

Nine male Wistar WU rats (14 weeks of age) were purchased from Charles River (Sulzfeld, 

Germany) and allowed to acclimatize for 2 weeks. They were kept in an artificial light-dark cycle 

(06:00 lights on, 18:00 h lights off), with room temperature at 21 ± 1°C and humidity at 50 ± 10%. 

Animals were provided rat chow (Hope Farms, Woerden, The Netherlands) and tap water ad libitum. 

To induce microsomes, three rats per group that were naive to chemical treatment were pretreated 

with P-naphthoflavone (P-NF, three daily ip injections of 30 mg/kg body weight dissolved in corn 

oil), phenobarbital (PB, 0.1% w/v in the drinking water for 7 days), or clofibrate (CLOF, four daily 

oral administrations of 200 mg/kg bw). One day after the last treatment, the rats were sacrificed under 

ether anaesthesia and the livers were removed. All procedures were approved by the Animal Welfare 

Committee of Wageningen University. Livers of rats from each treatment group were pooled and 

homogenized in ice-cold 0.1 M Tris-HCl buffer, pH 7.5 (3 ml/g liver), containing 0.25 M sucrose, 

using a Potter-Elvehjem tube and Teflon pestle. The homogenate was centrifuged for 30 minutes at 

9,000 x g (4°C). The resulting supernatant was centrifuged at 105,000 x g and 4°C for 90 min. The 

microsomal pellet was resuspended in 0.1 M potassium phosphate buffer (pH 7.5). Microsomes were 

stored in aliquots of 1 ml at -80°C until use. Protein concentrations were determined using the Bio-

Rad Coomassie blue assay (Bio-Rad, Richmond, CA), using BSA as a standard (Bradford, 1976). 

Metabolism ofPBDEs in vitro 

As almost no hydroxylated PBDEs have been synthesized so far, 17 PBDE congeners were 

metabolized by incubation with induced hepatic microsomes, as described for PCBs (Morse et al., 

1995) with slight modifications. Briefly, 10 uM of each PBDE congener was incubated with 1 mg/ml 

hepatic microsomes in a 0.1 M Tris-HCl buffer (pH 7.5) in a total volume of 2 ml. After 

preincubation for 2 min in a shaking water bath at 37°C, the reaction was initiated with NADPH (1 

mM). Metabolism was stopped after 30 min by the addition of 2 ml ice-cold methanol. After 

centrifugation, the supernatants were extracted twice with 2 ml diisopropyl ether by vortexing for 30s, 
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centrifugation at 1000 x g for 5 min, and then removal of the diisopropyl ether phase. The ether 

extracts were pooled, dried under nitrogen, and stored at 4°C until further analysis (but not longer 

than 1 week). Control incubations were carried out by performing identical incubations with the 

PBDE without the addition of NADPH. For determining the possible background of T4-TTR 

competition by microsomal extracts, incubations were also carried out without the addition of a 

PBDE to the microsomes. The extracts were dried by evaporation, and residues were dissolved in 50 

ul methanol prior to the T4-TTR competition binding studies. 

In vitro T4-TTR competition binding studies 

The analysis of the capacity of various compounds to compete with T4 binding to TTR was performed 

as described previously (Lans et al, 1993), with modifications. The assay mixture was a 0.1 M Tris-

HC1 buffer (pH 8.0) containing 0.1 M NaCl and 0.1 mM EDTA, 30 nM human TTR, a mixture of 
125I-labeled and unlabeled T4 (70,000 cpm, 55 nM), and competitors (cold T4, pure compounds or 

extracts) with increasing concentrations (at least eight different concentrations), in a total volume of 

200 ul. Control incubations contained 5 ul ethanol, methanol, DMSO, or dichloromethane (depending 

on the solvent used) instead of competitor. Total 125I-radioactivity added to each of the incubation 

mixtures was checked by gamma counting (Multi Prias, Packard Instrument Co., Meriden, CT). The 

incubation mixtures were allowed to reach binding equilibrium overnight at 4°C. After incubation, 

protein-bound and free 125I-T4 were separated on 1 ml Biogel P-6DG columns and spin-force eluted 

with 200 ul Tris-HCl buffer (1 min at 100 x g in a precooled centrifuge, Difuge, Hereaus) to reduce 

transit time on the column (about 30 s) in order to minimize possible dissociation of the complex 

(Somack et al, 1982). Radioactivity was determined in the eluate containing the protein-bound 125I-

T4-fraction and compared to control incubations. Nonspecific binding was also determined in each 

series of experiments by addition of 10 uM cold T4 and was less than 10%. 

In the case of pure compounds, the competitors were first diluted in 0.1 M Tris-HCl buffer 

(pH 8.0, containing 0.1 M NaCl, 1 mM EDTA) and added to the assay mixture in a concentration 

series from 10"9 to 10"4 M. To study possible competition binding of PBDE metabolites, extracts of 

microsomal incubations were diluted 0, 3, or 9 times in methanol and 5 ul was added to the 

incubation mixture as competitor. The maximum concentration of metabolites formed could thus be 

no more than 250 nM with 100% conversion. The maximum percentage of solvent in the assay 

mixture did not exceed 0.5%. Control incubations with microsomal extracts without PBDEs were 

used to determine possible background competition, whereas microsomal extracts from incubations 

with PBDEs but without NADPH were used to determine possible competition by the parent 

compound itself. 

Competition binding curves for pure compounds were made by plotting relative 125I-T4-

protein binding (% of control) against concentration competitor. For microsomal extracts, competition 

binding curves were made by plotting relative 125I-T4-protein binding (% of control, with control 

incubations of microsomes set to 100%) against the dilution factor, as no reference PBDE-metabolites 

are presently available. 
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In addition, for the bisphenol A analogues, the TTR binding potency increased with a higher level of 

bromination. The potency of triBBPA was 18 times less compared to TBBPA, whereas no or only 

slight competition was observed with di-, mono- and nonbrominated bisphenol A (approximately 19, 

11 and 7% competition reached at 500 nM, respectively, Table 2.2). Interestingly, replacing the 

bromine atoms by chlorine atoms in the bisphenol A core structure (e.g., tetrabromobisphenol A 

versus tetrachlorobisphenol A [TCBPA]) resulted in an almost 14 times lower TTR-binding 

competition potency (IC50 values of TCBPA and TBBPA were 106.8 ± 10.3 and 7.7 ± 0.9, 

respectively). The competition binding curves of diBBPA, triBBPA, TBBPA and TCBPA are given 

in Figure 2.1. 

120 

1 10 100 
concentration competitor (nM) 

1000 

Figure 2.1. Displacement of T4 from TTR by halogenated bisphenol A congeners. Data points are 
mean values ± SD of one representative measurement in duplicate. If no error bar is visible, it is 
smaller than the marker. Relative 125I-T4-TTR binding is presented as percentage of control value. 
Abbreviations used: diBBPA, dibromobisphenol A; triBBPA, tribromobisphenol A; TBBPA, 
tetrabromobisphenol A; TCBPA, tetrachlorobisphenol A. 

T4-TTR binding competition with microsomal extracts ofPBDEs 

In total, 17 different PBDE congeners (see Figure 2.2 for their structure) were tested before and after 

incubation with differently induced hepatic microsomes for T4-TTR competition binding potency by 

their possible metabolites formed. Because no reference PBDE metabolites were available at the time 

of this study, the competition potency of microsomal extracts could be investigated only by dilution 

technique. In Figure 2.3, a representative example of the T4-TTR competition binding by microsomal 

extracts is given. No competition of T4-TTR was observed with control microsomal incubations 

without NADPH (Fig. 2.3 [A and B], triangles) or without PBDE (Fig. 2.3 [A and B], circles), 

indicating that microsomes did not cause background competition and parent PBDEs were not able to 

bind to TTR. 
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PBDEs 

Figure 2.2. Core structure of polybrominated diphenyl ethers (PBDEs). 

Table 2.3. In vitro T4-TTR competition binding of extracts from polybrominated diphenyl ethers 
after incubation with liver microsomes enriched with CYP1 A, CYP2B or CYP4A3. 

PBDE 

15 

28 

30 

32 

47 

51 

71 

75 

77 

85 

99 

100 

119 

138 

153 

166 

190 

bromine 
substitution 

4,4' 

2,4,4' 

2,4,6 

2,4',6 

2,2',4,4' 

2,2',4,6' 

2,3',4',6 

2,4,4',6 

3,3',4,4' 

2,2',3,4,4' 

2,2',4,4',5 

2,2',4,4',6 

2,3',4,4',6 

2,2',3,4,4',5' 

2,2',4,4,,5,5' 

2,3,4,4',5,6 

2,3,3',4,4',5,6 

phenobarbital 
microsomes 
(CYP2B) 

++ 

++ 

++ 

-
++ 

++ 

+ 

++ 

++ 

+ 

+ 

++ 

++ 

-
-
+ 

-

3-naphthoflavone 
microsomes 
(CYP1A) 

++ 

+ 

++ 

+ 

-
-
+ 

+ 

+ 

-
-
-
-
-
-
-
-

Clofibrate 
microsomes 
(CYP4A3) 

-
+ 

++ 

+ 

-
+ 

+ 

+ 

+ 

-
-
-
-
-
-
-
-

Results are given as qualitative data: - = no competition with T4-binding, + = 20-60% competition, 
++ = more than 60% competition with T4 in comparison with control incubations (without NADPH or 
without compound). 
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Figure 2.3. T4-TTR competition binding of 2,4,4'-triBDE (BDE-28) (A) and 2,2',3,4,4',5'-hexaBDE 
(BDE-138) (B) prior to microsomal transformation with Phenobarbital (PB)-induced rat microsomes 
(triangles) and of PBDE-metabolites (squares) after microsomal transformation with Phenobarbital 
(PB)-induced rat microsomes. Data present mean ± SD. PB-micr., Phenobarbital-induced microsomes 
(circles). 

Incubation of PBDEs with PB microsomes (mostly P450 2B enriched) in the presence of NADPH 

resulted in the formation of metabolites that were able to compete with T4 binding to TTR, with the 

exception of incubation extracts from 2,4',6-triBDE (BDE 32); 2,2\3,4,4',5'-hexaBDE (BDE 138, 

Fig. 2.3B); 2,2\4,4',5,5'-hexaBDE (BDE 153); and 2,3,3',4,4',5,6-heptaBDE (BDE 190) (Table 2.3). 

P450 1A, P450 2B, and P450 4A3 enriched microsomes all catalyzed the formation of TTR-binding 

metabolites from 2,4,6-triBDE (BDE 30); 2,3',4',6-tetraBDE (BDE 71); 2,4,4',6-tetraBDE (BDE 75); 

and 3,3',4,4'-tetraBDE (BDE 77). 
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HydroxylatedPBDEs (OH-PBDEs) 
Three pure hydroxylated PBDEs (OH-PBDEs), synthesized for their structural resemblance with the 

thyroid hormones 3,5-diiodothyronine (3,5-T2), 3,3',5-triiodothyronine (T3), and 3,3',5,5'-

tetraiodothyronine (T4), were tested in the T4-TTR competition binding assay (Table 2.4, Figure 2.4). 

The relative potencies showed that the T4-like (2,6-dibromo-4-[2,4,6-tribromophenoxy]phenol) and 

T rlike (2-bromo-4-[2,4,6-tribromophenoxy]phenol) OH-PBDEs were 1.42- and 1.22-fold more 

potent, respectively, than T4, and the percentage competition at 500 nM exceeded that of the natural 

ligand (Table 2.4). 4-Phenoxyphenol and 2-hydroxy-2',4,4'-trichlorodiphenyl ether showed no 

interaction with human TTR. 

Table 2.4. In vitro T4-TTR competition binding by synthetic polybrominated diphenyl ether 
metabolites. 

Compound IC50 (nM)a> Relative 
Potency b) (* 107M-')C) 

Max. 
competitio 
n (%)d) 

Highest 
tested 
cone. 
(nM) 

Thyroxine (T4) 

4-Phenoxyphenol 

T2-OH-BDE 

T3-OH-BDE 

T4-OH-BDE 

2-OH-2',4,4'-
trichlorodiphenyl 
ether 

80.7 

n.d." 

199.2 ±12.3 

66.0 ± 0.98 

57.0 ±2.3 

n.d. 

1 

n.d. 

0.41± 0.02 

1.22 ±0.02 

1.42 ±0.06 

n.d. 

3.50 ±0.3 

n.d. 

1.28 ±0.33 

4.38 ±0.6 

5.09 ±0.20 

n.d. 

75 ±3.7 

10.3 ±0.2 

38.2 ±4.3 

86.1 ±5.0 

91.8 ±4.0 

2.1 ±0.3 

500 

5000 

500 

500 

500 

500 

Note. Results are presented as means ± SD of triplicate measurements. 
a> concentration of competitor at 50% competition 
"* calculated as ratio of IC50 (T4)/ IC50 (competitor) 

c> Binding affinity constants as determined by the Ligand program 
* Maximum percentage of competition reached at highest tested concentration 

n.d. = not determined, no displacement observed within the tested concentrations 
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Figure 2.4. Displacement of T4 from TTR by hydroxylated polybrominated diphenyl ethers 
resembling thyroid hormones. Data points are mean values ± SD of one representative measurement 
in duplicate. If no error bar is visible, it is smaller than the marker. Relative 125I-T4-TTR binding is 
presented as percentage of control value. Abbreviations: T2-like = 4-(2,4,6-tribromophenoxy)-phenol; 
T3-like = 2-bromo-4-(2,4,6-tri-bromophenoxy)phenol; T4-like = 2,6-di-bromo-4-(2,4,6-tribromo-
phenoxy)phenol. 

Discussion 

The results presented in this study clearly demonstrate for the first time that hydroxylated brominated 

flame retardants of several different classes are able to bind to human transthyretin in vitro, some with 

extremely high potency, e.g., TBBPA and PBP. This is an important finding, as brominated flame 

retardants are used extensively at present for a large variety of applications and can be detected in 

wildlife and humans (Bergman et al, 1999a; Meironyte et al, 1999; IPCS, 1997). The results of this 

paper thus indicate the possible capability of a large group of particularly brominated industrial 

chemicals to interfere with and potentially disrupt thyroid hormone transport and metabolism. 

The structure-affinity data of brominated (bis)phenols that can be deduced from this study 

are in good agreement with previous studies on several industrial chemicals, such as the chlorinated 

benzenes and their hydroxylated metabolites (den Besten et al., 1991 and van den Berg, 1990), or the 

hydroxylated PCBs (Brouwer et al, 1990; Brouwer and van den Berg, 1986; Cheek et al., 1999; Lans 

et al., 1993; Rickenbacher et al., 1986). First, the degree of bromine substitution appeared to play a 

crucial role in the binding potency, as (bis)phenols with a lesser degree of bromination showed lower 

or no competitive binding to TTR. These results are consistent with earlier studies performed with 

chlorinated phenols, showing an increased interaction of higher chlorinated phenols with transthyretin 

as compared to lower chlorinated phenols (den Besten et al, 1991; van den Berg, 1990). Second, the 

nature of the halogen substitution also plays a major role in the binding affinity of the compounds to 

TTR. TBBPA was the most potent competitor in this study (relative potency of 10.6 compared to the 

natural ligand), whereas TCBPA, with the only structural difference being the bromine atoms 

replaced by chlorine atoms, competed with T4-TTR binding with lesser potency than TBBPA. Higher 
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binding potency of brominated analogues over chlorinated ones was also observed for PBP (relative 

potency 7.14, this study) as compared to PCP (relative potency of 1.74 [van den Berg, 1990] and 2.50 

[denBestenrfa/., 1991]). 

Third, comparison of the relative potencies of TBBPA versus triBBPA versus diBBPA and 

PBP versus 2,4,6-TBP versus 2,4-DBP indicates that hydroxylation at the para position with one but 

preferably two adjacent halogen substituents, which is proposed to be the prerequisite for binding of 

hydroxylated PCBs to human transthyretin (Lans et al, 1993), is also an essential requirement in the 

binding of the brominated (bis)phenols to TTR. It is hypothesized that these lateral (3,3',5,5') 

halogens can occupy the binding pockets of TTR normally occupied by the diiodophenolic ring of the 

thyroxine molecule, as has been shown for 4,4'-(OH)2-3,3',5,5'-tetrachlorobiphenyl (Lans, 1995) and 

proposed for 3,3',4,4',5,5'-hexachlorobiphenyl (Rickenbacher et al, 1986). On the contrary, 

hydroxylation is not always a prerequisite for binding, as several parent PCBs have also been shown 

to interact with human TTR (Chauhan et al, 1998; Cheek et al, 1999; McKinney and Waller, 1994; 

Meerts, unpublished results; Rickenbacher et al, 1986). This is further substantiated by earlier 

findings on the existence of different binding modes of T4 to TTR, e.g., a forward mode with the 

phenolic ring pointing towards the center in the TTR binding site, and a reversed mode with the 

phenolic ring positioned towards the mouth of the channel entrance (De la Paz et al, 1992). In 

addition, our recent observations based on X-ray crystallography data on organohalogen-TTR 

complexes showed that the hydroxy group in PBP and TBP was not essential for binding to TTR 

(Ghosh et al, 2000). The mode of binding of these latter compounds to TTR differs from the binding 

of other organohalogen compounds identified so far and will be described in detail elsewhere (Ghosh 

et al, 2000). This different binding may explain the similar potency of, e.g., the single-ring structure 

PBP and the much larger double-ring structure TBBPA. 

Of the 17 PBDEs examined in this study, none of the parent compounds competed with T4-

TTR binding. In this case, metabolic conversion is most likely essential for the capability of PBDEs 

to displace 125I-T4 from TTR. The potency of a PBDE to compete with T4 on TTR appeared to be both 

congener- and metabolic enzyme-specific. CYP2B-enriched liver microsomes were able to catalyze 

the formation of PBDE metabolites that showed T4-TTR competition binding potency. Almost none 

of the higher brominated diphenyl ethers were capable of displacing T4 from TTR after microsomal 

incubation. Two explanations are possible for this observation, i.e., higher brominated diphenyl ethers 

were not metabolized by the differently enriched microsomal preparations, or the metabolites formed 

were not able to compete with T4 for binding to TTR. Further studies will be focused on the 

elucidation of the chemical identity of these PBDE metabolites. The results with the synthetic OH-

PBDEs resembling the thyroid hormones are in good agreement with the competitive binding with T4 

on TTR and other structural analogues (Andrea et al, 1980). However, the small difference in 

binding affinities between the T4-like and T3-like OH-PBDEs (the binding affinity of the T3-like OH-

BDE is a factor 1.1 smaller compared to the T4-like) cannot be explained at the moment. Comparing 

the binding affinities of the natural ligands T4 and T3 (3.5 x 107 and 3.2 x 106 M"1 respectively, i.e., a 

factor 11 difference [Andrea et al, 1980]), one would expect the affinity of the T3-like OH-BDE to 

differ from the T4-like in the same range. Further studies are necessary to determine the binding of 

these brominated thyroid hormone analogues to TTR in more detail. 
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The interaction of brominated flame retardants with transthyretin may indicate interaction 

with other thyroid hormone-binding proteins such as enzymes involved in thyroid hormone 

metabolism. Hydroxylated PCBs with high affinity for TTR have been shown to interact with 

iodothyronine 5'-deiodinase (Adams et al, 1990; Lans, 1995; Rickenbacher et al, 1989) and 

iodothyronine sulfotransferase (Schuur et al, 1998). However, the interaction of hydroxylated PCBs 

with thyroxine-binding globulin (TBG), the major thyroid hormone transport protein in humans, is 

very rare, and affinities are 100-fold lower than T4 (Cheek et al, 1999; Lans et al, 1994). This may 

indicate that the impact of compounds binding to transthyretin is lower in humans and nonhuman 

primates that possess TBG as the major thyroxin carrier. However, the binding of OH-PCBs/OH-

PBDEs to TTR may be involved in facilitated transfer of these compounds across the placenta and the 

blood-brain barrier, leading to relatively high levels in the fetus, and especially the fetal brain. Morse 

et al. (1996a) showed a strong accumulation of the PCB metabolite 4-hydroxy-2,3,3',4',5-pentaCB 

(4-OH-CB107) in plasma and forebrain of fetuses 20 days of age after exposure of the dams to the 

commercial PCB-mixture Aroclor 1254 from gestation days 10 to 16. This accumulation could be 

explained by competition between the 4-OH-CB107 and T4 for TTR binding, leading to a selective 

and facilitated transport of the metabolite over the placenta to the fetal compartment. The 

accompanying reduction in plasma T4 levels could be caused either by binding of the 4-OH-CB107 to 

TTR in vivo and/or amplified biliary excretion of T4 due to induction of UDP glucuronosyltransferase 

(UDPGT) by Aroclor 1254 (Barter and Klaassen, 1992; Morse et al, 1996a; van Birgelen et al. 

1995). However, exposure of pregnant rats to the 4-OH-CB107 alone resulted in decreased T4 levels 

in their fetuses without induction of UDP glucuronosyltransferase {Chapter 5), indicating that binding 

of a compound to TTR in vivo can result in lowered plasma levels of T4 in the rat. 

Surprisingly, TBBPA, which showed a high T4-TTR competitive interaction in vitro (this 

Chapter), showed no effects on thyroid hormone levels in fetuses 20 days of age after oral exposure 

of pregnant rats to 5 mg/kg body weight per day from gestation days 10 to 16 (Meerts et al, 1999). 

This may be explained by the poor absorption of TBBPA from the gastrointestinal tract in rats and its 

subsequently high fecal elimination after oral exposure (Meerts et al, 1999; IPCS, 1994), or its fast 

metabolism, especially to a monoglucuronide, which is excreted in the bile (Larsen et al, 1998). 

Reduced serum total and free T4 levels were also reported in mice and rats treated with the 

commercial mixture Bromkal 70 (containing about 40% of tetraBDE) and the pure congener 2,2',4,4'-

tetraBDE (dosage of 250 mg [= 515 umol]/kg body weight, Darnerud and Sinjari, 1996). The 

mechanism of this reduction was not investigated, but these results demonstrate that thyroid hormone 

homeostasis might also be a sensitive target of PBDEs (or metabolites) in vivo. In our study, 2,2',4,4'-

tetraBDE itself was not able to bind to TTR in vitro. Metabolic conversion of 10 uM 2,2',4,4'-

tetraBDE with CYP2B-induced microsomes gave rise to metabolites that competed with T4 for 

binding to TTR by more than 60%. The concentration of these metabolites could maximally be 250 

nM (with 100% conversion; see Materials and Methods section), but HPLC analysis revealed that 

only 10% of the total BDE-47 was metabolized (Meerts et al, unpublished results). Obtaining 

quantitative information about the potency of the formed metabolites is not possible, but our results 

strongly suggest that hydroxylated PBDEs are able to compete with thyroxine for TTR binding in 

vitro. 
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In conclusion, some brominated (bis)phenols and hydroxylated PBDEs were found to 

interact with human transthyretin in vitro with high affinity. The structural requirements of the 

brominated compounds were similar to those observed for the chlorinated compounds studied so far 

and also for the natural ligand itself. The resemblance between these brominated phenolic compounds 

and hydroxylated PCBs is striking with respect to TTR interaction. This suggests that at least some 

components of these classes of brominated flame retardants may also interfere in the thyroid hormone 

system in vivo and may cause possible adverse health effects similar to PCBs. Further studies are 

aimed at investigating the impact of the findings presented in this paper on the in vivo situation. 
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CHAPTER 3 

In vitro estrogenicity of polybrominated diphenyl ethers (PBDEs), 
hydroxylated PBDEs and polybrominated bisphenol A compounds 

Abstract 

Polybrominated diphenyl ethers (PBDEs) are used in large quantities as additive flame retardants in 

plastics and textile materials. PBDEs are persistent compounds and have been detected in wildlife and 

in human adipose tissue and plasma samples. In this study, we investigated the (anti)estrogenic 

potencies of several PBDE congeners, three hydroxylated PBDEs (OH-PBDEs), and differently 

brominated bisphenol A compounds in three different cell line assays based on estrogen receptor 

(ER)-dependent luciferase reporter gene expression. In human T47D breast cancer cells stably 

transfected with an estrogen-responsive luciferase reporter gene construct (pEREtata-Luc), 11 PBDEs 

showed estrogenic potencies, with concentrations leading to 50% induction (EC50) varying from 2.5 

to 7.3 uM. The luciferase induction of the most potent OH-PBDE [2-bromo-4-(2,4,6-

tribromophenoxy)phenol] exceeded that of estradiol (E2), though at concentrations 50,000 times 

higher. As expected, brominated bisphenol A compounds with the lowest degree of bromination 

showed highest estrogenic potencies (EC50 values of 0.5 uM for 3-monobromobisphenol A). In an 

ERoc-specific, stably transfected human embryonic kidney cell line (293-ERcc-Luc), the OH-PBDE 4-

(2,4,6-tribromophenoxy)phenol was a highly potent estrogen with an EC50 < 0.1 uM and a maximum 

35- to 40-fold induction, which was similar to E2. In an analogous ERP-specific 293-ERf$s-Luc cell 

line, the agonistic potency of the 4-(2,4,6-tribromophenoxy)phenol was much lower (maximum 50% 

induction compared to E2), but EC50-values were comparable. These results indicate that several pure 

PBDE congeners, but especially OH-PBDEs and brominated bisphenol A-analogues, are agonists of 

both ERa and ERp" receptors, thus stimulating ER-mediated luciferase induction in vitro. These data 

also suggest that in vivo metabolism of PBDEs may produce more potent pseudo-estrogens. 

Based on: Meerts I.A.T.M., Letcher R.J., Hoving S., Marsh G., Bergman A., Lemmen J.G., van der 

Burg B., and Brouwer A. Env. Health Perspect. 109, 399-407 (2001). 
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Introduction 

Polybrominated diphenyl ethers (PBDEs) are widely used as additive flame retardants in many 

different polymers, resins and substrates at concentrations ranging from 5 to 30% (IPCS, 1994). 

Because of the widespread production and use of PBDEs, their high binding affinity to particles, and 

their lipophilic characteristics, several PBDE congeners bioconcentrate and bioaccumulate in the 

environment in a manner similar to the structurally related polychlorinated biphenyls (PCBs) (IPCS, 

1994; De Boer et al, 1999; Pijnenburg et al, 1995). PBDEs have been detected in various biotic 

samples such as birds, seals, whales, and even in human blood, adipose tissue and breast milk (De 

Boer et al, 1998; Haglund et al, 1997; Jansson et al, 1987; Lindstrom et al, 1999; Meironyte et al, 

1999; Sjodin et al, 1999 and Stanley et al, 1991). The congeners 2,2',4,4'-tetraBDE (BDE-47), 

2,2',4,4',5-pentaBDE (BDE-99), and 2,2',4,4',6-pentaBDE (BDE-100) are generally the dominant 

congeners found in wildlife and humans. The relevance of PBDEs as environmental contaminants has 

been demonstrated by their accumulation in human breast milk, where concentrations in Swedish 

women have increased over the last 2 decades from 0.07 ng/g lipid weight in 1972 to 4.02 ng/g lipid 

weight in 1998 (Meironyte' et al, 1999). Although PCB concentrations in wildlife are still higher than 

PBDE concentrations, they are declining over the same time period. 

The most sensitive end points of PBDE toxicity in vivo are effects on thyroid function, 

observed as induction of thyroid hyperplasia and alteration of thyroid hormone production [i.e. 

lowering of free and total thyroxine (T4) concentrations] in rats and mice (Darnerud et al, 1996; 

Fowles et al, 1994). Consistent with these findings is the recent observation that several pure PBDE-

congeners were able to displace T4 from transthyretin (TTR; a plasma transport protein of thyroid 

hormones) in vitro, after metabolic conversion to hitherto unidentified metabolites (Meerts et al, 

2000, Chapter 2). These phenomena have also been observed for other organohalogen compounds 

such as PCBs and their hydroxylated metabolites (Brucker-Davis, 1998; Brouwer et al, 1998 and 

references therein). 

Another property that PBDEs share with PCBs and the polybrominated biphenyls (PBBs) is 

the dioxin-like, Ah receptor-mediated induction of cytochrome P450 1A1 and 1A2 in vitro (Hanberg 

et al, 1991) and in vivo (Von Meyerinck et al, 1990). Recently we demonstrated by means of an Ah 

receptor-mediated, chemically activated luciferase expression cell line (the Ah-CALUX-assay) (Aarts 

et al, 1995; Garrison et al, 1996 and Murk et al, 1996) that several pure di- to hepta-brominated 

PBDE congeners were able to act via this Ah receptor pathway in vitro as agonists and antagonists in 

a congener specific manner (Meerts et al, 1998). For example 2,3,4,4',5,6-hexaBDE (BDE-166) and 

2,3,3',4,4',5,6-heptaBDE (BDE-190) were relatively strong Ah receptor agonists with potencies 

comparable to the mono-ortho 2,3,3',4,4'-pentaCB (CB-105) and 2,3',4,4',5-pentaCB (CB-118) 

(Sanderson et al, 1996). 
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Some studies have indicated that hydroxylated PBDEs (OH-PBDEs) are of potential 

environmental importance. In liver microsomes of rats, several PBDE congeners were biotransformed 

to metabolites (Chapter 2). Orn and Klasson-Wehler (1998) demonstrated that 2,2',4,4'-tetraBDE 

(BDE-47) is biotransformed to OH-PBDEs in rats and mice. 3,5-Dibromo-2-(2,4-

dibromophenoxy)phenol is a hydroxy-BDE that has been identified in blood plasma of Baltic salmon 

(Asplund et ah, 1999) at levels similar to those of the major PBDE congeners. Information on the 

endocrine activity of hydroxylated PBDEs is presently limited to the ability of several OH-PBDEs to 

bind competitively to the thyroid hormone receptor (Marsh et ah, 1998) and to TTR (Meerts et 

al.,2000; Chapter 2). 

Studies showing that many industrial chemicals are weakly estrogenic compared to natural 

estrogens (Zava et ah, 1997; Jobling et ah, 1995 and Soto et ah, 1995) have raised concern about their 

safety. For example, o,p '-DDT, bisphenol A, nonylphenol, and various phthalates possess estrogenic 

activity (Jobling et ah, 1995). The presumption is that these xenoestrogens may disrupt normal 

endocrine function, which can lead to reproductive failure and cancer of estrogen-sensitive tissues in 

humans and wildlife (Colborn et ah, 1993). Anti-estrogenic activity by anthropogenic compounds has 

received less attention (Navas and Segner, 1998). Although the inhibition of hormone action and the 

resulting toxicological consequences have not been demonstrated conclusively, anti-estrogenic action 

could critically affect sensitive reproductive and developmental processes as well (Navas and Segner, 

1998). To date there have been no reports investigating the (anti-)estrogenic activities of PBDEs and 

OH-PBDEs. 

The aim of this study was to determine the (anti-)estrogenicity of 17 PBDE congeners. We 

also examined three hydroxylated PBDEs that have halogen substitution patterns similar to those of 

thyroid hormones. The (anti-)estrogenic activity of these compounds was tested in vitro, using an 

estrogen-responsive luciferase reporter cell line (T47D.Luc) (Legler et ah, 1999). We compared the 

structure-activity relationships for (anti-)estrogenicity of PBDE and OH-PBDE congeners with 

numerous other brominated flame retardants, such as differently brominated bisphenol A compounds. 

We also tested the most potent PBDEs and OH-PBDEs observed in T47D.Luc cells for estrogen 

receptor specificity using 293 human embryonic kidney cells stably transfected with recombinant 

human estrogen receptor (ERoc or ERps) cDNA and the luciferase reporter gene construct (Seinen et 

ah, 1999; Lemmen, unpublished data; Kuiper et ah, 1998). 

Materials and Methods 

Chemicals 

The 17 PBDE congeners (> 98% pure; Figure 3.1, Table 3.1) were synthesized as described earlier 

(Marsh et ah, 1999; Orn et ah, 1996). Three OH-PBDEs, 4-(2,4,6-tribromophenoxy)phenol (T2-like 

OH-BDE), 2-bromo-4-(2,4,6-tribromophenoxy)phenol (T3-like OH-BDE) and 2,6-dibromo-4-(2,4,6-

tribromophenoxy)phenol (T4-like OH-BDE) (Figure 3.1) were synthesized as described by Marsh et 

ah (1998) and were at least 99% pure. We use the abbreviations for these OH-PBDEs (T2-like-, T3-

like-, T4-like OH-BDE) according to their resemblance in halogen substitution patterns to the thyroid 

hormones 3,5-diiodothyronine (3,5-T2), 3,3',5-triiodothyronine (T3) and 3,3',5,5'-tetraiodothyronine 

(T4). The core structure of PBDEs and the structures of the OH-PBDEs used in this study are shown 
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in Figure 3.1, including the structure of the analogue 4-phenoxyphenol. The numbering system for 

individual PBDE congeners is based on the numbering system applied to PCBs (Ballschmiter et al., 

1980). 

Br 
T4-like OH-BDE 

Br 

Br 

Br 

T,-like OH-BDE 

OH 

4-phenoxy-phenol 

Br 

OH Br 
XX 

Br ^ ^ ^ O H 

HO 

T3-like OH-BDE 

H CH 3 H 

=n OH 

Br CH 3 H 

MBBPA 

H CH 3 H 

HOH0-|^KC 
CH 3 Br 

OH HO^J) -9 \ 3 ~ 0 H HO \L/>~~ <f~(\= 
Br CH 3 Br Br CH 3 B r B r CH 3 Br 

diBBPA triBBPA TBBPA 

OH 

Figure 3.1. Structure of PBDEs, the three hydroxylated PBDEs, 4-phenoxyphenol and the differently 
brominated bisphenol A analogues. 

4-Phenoxyphenol and bisphenol A were obtained from Aldrich Chemical Company 

(Bornem, Belgium). 17|3-Estradiol (E2, 99%) and ethanol (100%, pro analysis) were purchased from 

Sigma Chemical Company (St Louis, MO, USA). ICI 182,780 was a gift from A. Wakeling, Zeneca 

Pharmaceuticals, Macclesfield, Cheshire, UK). 3-Monobromobisphenol A (MBBPA; 96.5% pure, 

with 3.5% 3,3'-dibromobisphenol A), 3,3'-dibromobisphenol A (diBBPA; 99.4% pure, with 0.6% 

3,3',5-tribromobisphenol A) and 3,3',5-tribromobisphenol A (triBBPA; 100% pure) were synthesized 

by bromination of bisphenol A using bromine in acetic acid at room temperature. The test chemicals 

and E2 were dissolved in ethanol or dimethyl sulfoxide (DMSO; 99.9% pure, Janssen Chimica, Geel, 

Belgium) for use in the in vitro assays. 

Cell culture 

We used the human T47D breast cancer cell line stably transfected with an estrogen-responsive 

luciferase reporter gene construct (pEREtata-Luc) (Legler et al, 1999) to study the in vitro 

(anti)estrogenic activity of PBDEs and OH-PBDEs. The T47D.Luc cells were cultured in a 1:1 

mixture of Dulbecco's Modified Eagle's (DMEM) medium and Ham's F12 (DF) medium (Gibco Brl, 

Life Technologies, Breda, The Netherlands) supplemented with sodium bicarbonate, nonessential 

amino acids, sodium pyruvate, and 7.5% fetal calf serum (heat-inactivated) at 37°C and 7.5% C02. 
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The preparation of the stably transfected 293-Luc cell lines (ERa and ER(3s) has been 

described in detail elsewhere (Seinen et al, 1999). Briefly, human 293 embryonal kidney (HEK) cells 

(ATCC, American Type Culture Collection, Rockville, MD, USA) were stably transfected with the 

pEREtata-Luc construct (Legler et al, 1999; Seinen et al, 1999) cotransfected with an antibiotic 

resistance gene. This cell line was subsequently transfected with a recombinant human estrogen 

receptor (ERa or a short form of ERp\ ERPs) cDNA and a different antibiotic resistance gene. The 

293-ERoc- and 293-ERfJs-Luc cell lines were cultured in a 1:1 mixture of DMEM and DF medium 

supplemented with 7.5% fetal calf serum (heat-inactivated) at 37°C and 7.5% C02. 

ER-CALUX assay 

We performed the T47D.Luc-based assay as described previously (Legler et al., 1999). The cells were 

trypsinized, resuspended in assay medium, and seeded in 96 well plates (Packard, Meriden, CT, USA) 

at a density of 5,000 cells per well in 100 |xl. The assay medium consisted of phenol red-free DF and 

fetal calf serum treated with 5% dextran-coated charcoal (DCC-FCS). DCC-FCS was prepared as 

described by Horwitz and McGuire (1978). After 24 h, when wells were approximately 50% 

confluent, the assay medium was renewed. After another 24 h, the assay medium was replaced by 

incubation medium (for preparation, see below), containing DMSO or ethanol stock solutions of the 

test compounds or estradiol. Solvent concentrations did not exceed 0.1%. The incubation medium was 

removed after an incubation of 24 h at 37°C in an atmosphere of 7.5% C02. Cells were washed twice 

with 100 jo.1 phosphate buffered saline (PBS) and subsequently lysed in 30 |il low salt (LS) buffer 

containing 10 mM Tris (pH 7.8), 2 mM dithiothreitol (DTT), and 2 mM 1,2-diaminocyclohexane-

N,N,N',N'-tetraacetic acid. After 10 minutes of incubation on ice, the 96 well plates were frozen at -

80°C for a minimum of 30 min and maximum of 1 day to lyse the cells. The plates were thawed on 

ice and shaken for 5 min at room temperature. We measured luciferase activity in a luminometer 

(Labsystems Luminoscan RS, Breda, The Netherlands) with automatic injection of 100 ju.1 flash mix 

(pH 7.8) per well containing 470 uM luciferin, 20 mM trycine, 1.07 mM (MgC03)4Mg(OH)2.5H20, 

2.67 mM MgS04, 0.1 mM EDTA, 5 mM ATP and 2 mM DTT (pH 7.8). 

293-ERa- and 293-ERj3s-Luc assay 

The 293-ERa- and 293-ERps-Luc-based assays were performed similarly to the ER-CALUX assay 

and have been described previously (Seinen et al., 1999; Kuiper et al., 1998). Briefly, cells were 

trypsinized and resuspended in assay medium composed of phenol red-free DF containing 30 nM 

selenite, 10 |ig/ml transferin, and 0.2% BSA supplemented with 5% DCC-FCS. The cells were seeded 

in 96-well plates at a density of 15,000 cells per well in 200 \i\ assay medium. After 48 hr the cells 

were 50-60% confluent, and the assay medium was replaced by incubation medium (i.e., containing a 

1,000-fold dilution of test compounds) as described for the ER-CALUX assay. After an incubation of 

24 hr at 37°C in an atmosphere of 7.5% C02, the plates were transferred to ice and the medium was 

removed by suction. Luciferase production was assayed as described above for the ER-CALUX 

assay. 

43 



Chapter 3 

Exposure of cells 

Before the T47D.Luc cell incubations, the PBDE and OH-PBDE stock solutions (prepared in DMSO) 

and the brominated bisphenol compounds (prepared in ethanol) were diluted 1,000-fold in assay 

medium in a 48 well plate (to obtain a solvent-concentration of 0.1% v/v) and thoroughly shaken, and 

100 ^1 was added to the cells in 96 well plates. The nominal concentration of the toxicants in the 

medium were 0.05, 0.1, 0.5, 1.0 and 5 (xM, and for potent compounds concentrations of 2.5 and 10 

(xM were also included. For each experiment, we included a complete E2 standard curve (1-100 pM, 

seven different concentrations in total). In addition, we tested three calibration points (0, 10 and 30 

pM E2) on every 96-well plate within an experiment. 

For the 293-ERa- and 293-ER|3s-Luc assays, the DMSO stock solutions of the tested 

compounds were diluted 1,000-fold in the appropriate assay medium. The nominal concentrations of 

the toxicants exposed to the cells were 1.0, 5.0 and 10 |xM. For each experiment a complete E2 

standard curve (0.001-10,000 pM in eight different concentrations) was included. For all three ER-

CALUX assays, we tested every toxicant concentration in triplicate and repeated each assay at least 

twice. 

Anti-estrogenic effects 

We tested the possible anti-estrogenic effects of the compounds in the ER-CALUX assay at the same 

nominal concentrations as for the estrogenic activity screening. The T47D.Luc cells were coincubated 

with an E2 concentration of 10 pM. This E2 concentration was the approximate EC50 for the induction 

of luciferase activity (Legler et ai, 1999). The percentage (v/v) of DMSO present during these anti-

estrogenicity incubations was 0.2%. An anti-estrogenic effect in this assay was defined by the 

capacity of a chemical to inhibit the luciferase activity induced by the approximate EC50 

concentration of E2. The percentage inhibition is calculated according to the equation 

7(%) = 100 
( L -L \ 

1 test_ control 
\ LE2 — Lcontrol J 

(1) 

where I is the percent inhibition, and Ltest, Lcmlmh and LE2 are the average luciferase activity of three 

test wells, three control wells and six wells incubated with 30 pM of E2, respectively. Using Equation 

1, a compound without antagonistic activity will show the same luciferase induction as 10 pM of E2, 

[i.e. 63.3 + 7.5% (see "Results")]. On each plate a positive control of 10 nM of the competitive ER 

antagonist ICI 182,780 was included in triplicate. ICI 182,780 produces virtually total antagonism of 

E2-induced luciferase activity at this concentration [i.e., activity measured is equal to solvent control 

levels (Legler et al, 1999)]. 
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Cytotoxicity 

We measured possible cytotoxic effects of the tested compounds in the bioassays using MTT activity 

(Denizot and Lang, 1986). To determine cytotoxic effects, we seeded cells and exposed them to the 

test compounds in the same manner as outlined in their corresponding assay procedures. 

Dose-response curves and statistics 

Possible dose-response relations were described by the sigmoidal function 

y = ao + &i/( 1 + exp((a2 - x)/a3)) (2) 

using SlideWrite Plus 4.0 (Advanced Graphics Software, Carlsbad, CA, USA), where y is the 

induction of luciferase activity compared to controls for estrogenic effects, or inhibition [I (%), 

Equation (1)] for anti-estrogenic effects, x is the logarithm of the dose, and ai is the maximum y-

value. We tested the significance of the data fits using one-way analysis of variance at/? < 0.05. 

Results 

Cytotoxicity 
In the concentration range of 0.01 to 10 uM, none of the incubations of the PBDEs or OH-PBDEs 

showed any significant effect on MTT activity relative to the solvent control (data not shown). 

Furthermore, no cytotoxic effect could be observed by microscopic examination in this concentration 

range. PBDE concentrations could not exceed 10 uM because of solubility problems and slight 

cytotoxic effects (data not shown). 

ER-CALUX assay based on T47D.Luc cells 
Estrogenic effects 

Seventeen PBDE congeners and 3 OH-PBDEs were tested in the T47D.Luc-based ER-CALUX assay 

for their estrogenic and/or anti-estrogenic properties. Eleven PBDEs exhibited luciferase induction 

(Table 3.1) in a dose-dependent manner (Figure 3.2). 

The most potent PBDE-congeners [2,2',4,4',6-pentaBDE (BDE-100) > 2,4,4',6-tetraBDE 

(BDE-75) > 2,2',4,6'-tetraBDE (BDE-51) > 2,4,6-triBDE (BDE-30) > 2,3',4,4',6-pentaBDE (BDE-

119)] showed EC50 values within a small concentration range of 2.5 to 3.9 uM (Table 3.1). These 

PBDE agonists were 250,000-390,000 times less potent than the natural ligand, E2. 
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Table 3.1. Estrogenic activity of polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs 
(HO-PBDEs) and brominated bisphenols in the ER-CALUX assay with T47D.Luc cells. 
Compound Bromine 

Substitution 

LOEC 

(mr 
Relative 

Potency 

(LOEC)* 

ECso 

(uM)c 

Relative 

Potency 

(ECso)' 

Max. 

luciferase 

induct. (%)' 

Estradiol 

PBDEs 
BDE-15 

BDE-28 

BDE-30 

BDE-32 

BDE-47 

BDE-51 

BDE-71 

BDE-75 

BDE-77 

BDE-85 

BDE-99 

BDE-100 

BDE-119 

BDE-138 

BDE-153 

BDE-166 

BDE-190 

4,4' 

2,4,4' 

2,4,6 

2,4',6 
2,2',4,4' 

2,2',4,6' 

2,3',4',6 

2,4,4*,6 

3,3',4,4' 

2,2',3,4,4' 

2,2',4,4',5 

2,2',4,4',6 

2,3',4,4',6 

2,2',3,4,4',5' 

2,2',4,4',5,5' 

2,3,4,4',5,6 

2,3,3',4,4',5,6 

1.0 xlO"6 

n.a.* 

0.5 

0.5 

0.05 

5.0 

0.5 

0.5 

0.5 

n.a. 

5.0 

5.0 

0.05 

0.05 

n.a. 

n.a. 

n.a. 

n.a. 

2.0 xlO'6 

2.0 xlO"6 

2.0 xlO"5 

2.0 xlO"7 

2.0 xlO"6 

2.0 xlO"6 

2.0 xlO"6 

2.0 xlO-1 

2.0 xlO'7 

2.0 xlO'5 

2.0 xlO5 

1.0 x10 s 

n.a. 

3.4 

5.1 

n.a. 

3.1 

7.3 

2.9 

n.a. 

n.a. 

2.5 

3.9 

2.9 xlO'6 

1.9 xlO"6 

3.2 xlO"6 

1.4 xlO'6 

3.5 xlO'6 

4.1 xlO" 

2.6 xlO'6 

100 

<1 

43 ±2 

114± 31 

85 ±13 

6 ± 1 

85 ±18 

62 ± 8 

53 ±10 

<1 
8 ± 1 

2 ± 1 

57 ±10 

25 ±4 

1±1 

<1 
<1 

<1 

HO-PBDEs 

2.0 xlO'6 

2.0 xlO5 

2.0 xlO" 

4-phenoxy-phenol 

T2-like OH-BDE 

T3-like OH-BDE 

T4-like OH-BDE 

0.5 

0.05 

0.5 

n.a. 

1.7 

0.1 

0.5 

5.8 xlO" 

1.0 xlO'4 

2.0 xlO"5 

195 ±17 

160±11 

119±22 

<1 

(Brominated) bisphenols 
Bisphenol A 

MBBPA 

DiBBPA 

TriBBPA 

TBBPA 

0.01 

0.1 

0.1 

0.5 

n.a. 

1.0 xlO-4 

1.0 xlO"5 

1.0 xlO"5 

2.0 xlO"6 

-

0.3 

0.5 

0.4 

>10 

-

3.3 xlO"5 200 ±15 

2.0 xlO-5 125 ±3.1 

2.5 xlO"5 136 ±1 

<1.0xlO"680±3 

<1 

Not achieved. 
* Lowest observed effect concentration; lowest concentration where luciferase activity is detected. 
b Ratio between dose of compound and estradiol needed to achieve an estrogenic effect (LOEC(E2) / LOEC 

(compound).). 
c Concentration at which the induction of luciferase activity is 50% of the maximum. 
d Ratio between EC50 of the compound and EC50 of estradiol 
e Per cent luciferase activity induced by the test compound, relative to the maximum luciferase activity of E2 (30 

pM). Maximum concentration of the test compounds was 10 uM, with the exception of BDE-47 and BDE-85 
(maximum: 5 uM). 
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Figure 3.2. Estrogenic activity of PBDEs in the T47D.Luc cells. Luciferase induction (%) relative to 
the maximum induction by E2 (30 pM) after 24 hr exposure to several concentrations of (A) BDE-28, 
-51, -75, -85, and -119, and (B) BDE-30, -32, -47, -71, and -100. Points are means (n = 3) ± SD 
(bars) for each concentration. 
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Figure 3.3. 
The estrogenic activity of 
hydroxy-PBDEs in the 
T47D.Luc cells. Luciferase 
induction (%) relative to the 
maximum induction by E2 

(30 pM) after 24-hr 
exposure to several concen­
trations of T2-like OH-BDE, 
T3-like OH-BDE, T4-like 
OH-BDE, and OH-DE (4-
phenoxyphenol). Points are 
means (n=3) + SD (bars) for 
each concentration. 

0.001 0.01 0.1 1 10 100 
concentration (nM) 

1000 10000 

The T4-like OH-BDE compound demonstrated no estrogenic effect up to 10 |xM (Figure 3.3). In 

contrast, the T3-like OH-BDE and T2-like OH-BDE showed the highest estrogenic potencies (EC50 

0.5 and 0.1 uM, respectively) among all compounds tested in this study (Table 3.1, Figure 3.3). The 

compound 4-phenoxyphenol was included for comparison because it is structurally analogous to the 

hydroxylated PBDEs. The T2-like and T3-like OH-BDEs induced maximum luciferase activity at 0.5 

uM and 1.0 uM respectively, and this maximum luciferase activity (160 ± 11 and 119 ± 22 %) 

exceeded that of the natural hormone E2 (Table 3.1). 

Of the brominated bisphenols tested, MBBPA and diBBPA showed estrogenic activities 

comparable to the T3-and T2-like OH-BDE, with EC50 values of 0.5 and 0.3 uM, respectively (Figure 

3.4, Table 3.1). The maximum luciferase activity of bisphenol A, MBBPA, and diBBPA exceeded the 

maximum activity induced by E2 (Figure 3.4). Bisphenol A and 4-phenoxyphenol had the highest 

maximum luciferase activity of 199 ± 15% and 195 ± 17%, respectively, relative to the maximum of 

E2 (set at 100%, Figure 3.4). Tetrabromobisphenol A (TBBPA) showed no estrogenic potency within 

the tested concentrations (Figure 3.4). 

Anti-estrogenic effects 

The anti-estrogenic potency of PBDEs was determined in the ER-CALUX bioassay by treating 

T47D.Luc cells with 0.01 to 10 uM concentrations of PBDEs in the presence of 10 pM of E2. Alone, 

this E2 concentration produced a luciferase induction of 63.3 ± 7.5% of the maximum (Table 3.2). At 

the 10 nM concentration, the ER antagonist ICI 182,780 completely inhibited the luciferase activity 

induced by 10 pM E2. Only 2,2',4,4',5,5'-hexaBDE (BDE-153), 2,3,4,4',5,6-hexaBDE (BDE-166), and 

2,3,3',4,4',5,6-hepta-BDE (BDE-190), which did not induce luciferase activity alone (up to 10 uM, 

Table 3.1), reduced E2-induced luciferase activity (Table 3.2). Moreover, these three PBDE congeners 

inhibited the E2-induced activity in a dose-dependent manner (Figure 3.5). 
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Figure 3.4. Estrogenic activity of differently brominated bisphenols in the T47D.Luc cells. Luciferase 
induction (%) relative to the maximum induction by E2 (30 pM) after 24-hr exposure to several 
concentrations of bisphenol A (BPA), MBBPA (mono), diBBPA (di), triBBPA (tri), and TBBPA 
(tetra). Points are means (n=3) ± SD (bars) for each concentration. 
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Figure 3.5. Anti-estrogenic activity of PBDEs in the T47D.Luc cells. The luciferase induction (%) 
relative to the maximum induction by E2 (30 pM) after 24-hr exposure to several concentrations of 
BDE-153 (2,2',4,4',5,5'-hexaBDE), BDE-166 (2,3,4,4',5,6-hexaBDE) and BDE-190 (2,3,3',4,4',5,6-
heptaBDE), in the presence of 10 pM E2 (with luciferase induction of 63.3 ± 7.5% of the maximum 
induction). Points are means (n=3) ± SD (bars) for each concentration. 
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between ER and THR interactions emphasizes that nonbromination of the phenolic ring is necessary 

for optimum interaction with the ER, which was also found for OH-PCBs (Korach et al., 1988; 

Connor et al, 1997). Conversely, like the interaction of the natural, iodine-containing T2, T3, and T4 

thyroid hormones with THR and TTR, increasing bromination in adjacent positions on the OH-

PBDEs increases THR and TTR binding affinity. The same is true for the brominated bisphenols. The 

ranking of estrogenic potency in the T47D.Luc cells of the brominated bisphenols was monoBBPA 

(EC50, 0.5 uM) ~ diBBPA (EC50, 0.3 uM) » triBBPA (EC50 > 10 uM) > » TBBPA, and was also 

the reverse order found for interaction with human TTR in vitro {Chapter 2). The addition of bromine 

atoms in the meta position of the aromatic ring (in diBBPA) had no significant effect on the 

estrogenic potency. This is in line with results published by Perez et al. (1998), where the 

estrogenicity of 2,2-bis(4-hydroxy-3-methylphenyl)propane (i.e. one methylgroup in the meta 

position of one aromatic ring) in a bioassay with MCF7 human breast cancer cells was not changed 

compared to bisphenol A. However, the introduction of two bromine atoms in the meta position of 

one aromatic ring drastically decreased the estrogenic potency (triBBPA, this study). 

In contrast to the OH-PBDEs, the major OH-PCBs identified in human serum were mostly 

anti-estrogenic but exhibited low to nondetectable estrogenic activities in several in vitro bioassays 

(Brotons et al., 1995). At concentrations as high as 10 M, several 4-OH-substituted PCBs were not 

estrogenic toward binding of rat uterine ER. Furthermore, the same OH-PCBs did not induce the 

proliferation of MCF7 human breast cancer cells, or the luciferase activity of transiently transfected 

HeLa.Luc cells and MCF7 cells. Unlike the present OH-PBDEs, these OH-PCBs possessed tri- to 

tetrachlorine substitution on the phenolic ring. In this study, only three of the PBDEs [2,2',4,4',5,5'-

hexaBDE (BDE-153), 2,3,4,4',5,6-hexaBDE (BDE-166) and 2,3,3',4,4',5,6-hepta-BDE (BDE-190)] 

showed anti-estrogenic activities with concentrations resulting into 50% inhibition (IC50 values) 

ranging from 0.8 to 3.1 uM. These PBDEs are likely not metabolized in situ because the congeners 

are hexa- or hepta-bromine substituted, have two para-bromines, and have no adjacent or ortho-meta 

brominated carbons. Since the T47D.Luc cells express a functional Ah-receptor, it may be possible 

that the anti-estrogenicity of these PBDEs is Ah-receptor mediated, as is the case for 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and several other anti-estrogens (Safe et al, 1998). BDE-153, -

166 and -190 induced the highest maximal luciferase activity in an Ah-receptor CALUX assay based 

on H4IIE.Luc cells, among the same set of 17 PBDEs (Meerts et al, 1998). 

The anti-estrogenicity of Ah receptor ligands is directly correlated to their affinity for the 

Ah receptor and their CYPlA-inducing potency (Safe et al., 1998). As shown for TCDD-treated 

MCF7 cells (Krishnan and Safe, 1993), the result is enhanced estrogen catabolism, and lower 

availability of estrogen to the cell. This correlation between structure-anti-estrogenicity- and 

structure-CYPl A-inducing potency has been shown for various halogenated aromatics such as TCDD 

and non-ortho PCBs in vivo and in vitro (Zacharewski et al., 1994; McKinney and Waller, 1994). The 

exact mechanism of anti-estrogenicity is probably specific to species, cell type, and the estrogen-

responsive gene. Other possible cellular mechanisms of Ah receptor-mediated anti-estrogenicity of 

BDE-153, -166 and -190 may be that the Ah receptor decreases the binding of the ER to the estrogen-

responsive element, or the Ah receptor could act as a repressor by inhibiting the binding of other 

transcription factors (ER) or the disruption of promotor function. 
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Interestingly, the OH-PBDEs induced luciferase to a higher maximum activity than the 

maximum induction generated by E2, though at higher concentrations. This has been shown for 

several other compounds mimicking the natural estrogen in reporter gene assays. Legler et al. (1999) 

reported this phenomenon for the environmental estrogens genistein, nonylphenol, bisphenol A, o,/?'-

DDT and methoxychlor in the same T47D.luc cells. Routledge and Sumpter (1996) showed that 

genistein and 4-tert-octylphenol induced luciferase activity at a higher level than estradiol in a 

recombinant yeast strain. The mechanism of this high induction is not yet resolved, but effects on 

luciferase stability or stimulation of the expression of the receptor or co-activation factors are 

hypothesized to be involved (Legler et al., 1999). 

We detected no striking differences in the relative binding affinities for the tested 

compounds between ERa or ER|3. However, the agonistic activity compared to E2 of BDE-30 and 

BDE-100 was much higher in the 293-ERoc- than in the 293-ERps-Luc cell line (Figure 3.6). 

Moreover, the agonistic activity of T2-like OH-BDE, but not 4-phenoxyphenol, was estrogen receptor 

dependent (Figure 3.6). The induction of luciferase compared to E2 by T2-like OH-BDE was much 

higher in the 293-ERa-Luc assay, whereas the induction of luciferase by 4-phenoxyphenol was not 

selective to either assay. This would suggest that the presence of a bromine atom adjacent to the 

phenolic hydroxyl group is a discriminating factor leading to a partial agonistic activity in the 293-

ERpVLuc cell line compared to a full agonistic activity in the 293-ERa-Luc cell line. 

In the same two ER-CALUX assays, polycyclic musk compounds were selective to the 293-

ERa-Luc but not the 293-ERps-Luc assay (Seinen et al., 1999). OH-PCBs with chlorine atoms only 

on the nonphenolic ring were found to bind with purified human ERa and ER(i with at least a 10-fold 

greater affinity than OH-PCBs with chlorine atoms on the phenolic ring (Kuiper et al., 1998). 

However, the binding preference was 2-fold greater for the ER(3 over the ERa. In the same study, 4-

OH-2',4',6'-trichlorobiphenyl and 4-OH-2',3',4',5'-tetrachlorobiphenyl highly induced luciferase 

activity in transiently transfected 293-ERa-Luc and 293-ERpVLuc cells, although the transactivation 

activity was higher in the 293-ERa-Luc cells. 

In conclusion, the results from this study clearly demonstrate that several pure PBDE 

congeners, but especially hydroxylated PBDEs and polybrominated bisphenol A compounds, induce 

the estrogen receptor signal transduction pathway in vitro. The estrogenic potencies of these flame 

retardants are in the same range as the well-known environmental estrogen bisphenol A. The 

structure-activity relationships of the PBDEs are in accordance with structure-activity relationships 

proposed for hydroxylated polychlorinated biphenyls. Further, the agonistic potency in vitro of 

estrogenic PBDEs and OH-PBDEs is preferential toward the ERa relative to ERp\ Because of the 

high-production volume of these compounds and their accumulation in the environment, further 

studies on the possible implications of these findings for the in vivo situation are necessary. 

Acknowledgements 

This research was financially supported by the European Commission, Environment and Climate 

Program (grants ENV-CT96-0170 and ENV-CT96-0204). 

55 



Chapter 4 

TTR is a tetrameric molecule formed by four identical polypeptide chains (each of 127 

amino acid residues). The subunits of TTR are linked together in such a way, that the three 

dimensional structure of TTR reveals a compact molecule with a channel running through its center. 

This channel contains two symmetry-related binding sites of the thyroid hormones. The thyroid 

hormone T4 can bind to TTR in different orientations, e.g. a "forward mode" with the phenolic ring 

pointing towards the center in the TTR binding site, and a "reversed mode" with the phenolic ring 

positioned towards the mouth of the channel entrance (De la Paz et al, 1992). The forward mode is 

the most common, because the hydroxyl groups of T4 bound to TTR form hydrogen bonds within the 

molecule. This formation of hydrogen bonds was suggested to be an important requirement for strong 

binding of compounds to TTR, and is observed for most ligands, including e.g. 4,4'-(OH)2-3,3',5,5'-

tetrachlorobiphenyl (Lans, 1995). However, examination of the PBP-TTR and the TBP-TTR 

complexes revealed a new mode of binding (Ghosh et al, 2000). In both complexes, PBP and TBP 

were bound to TTR exclusively in the reversed mode, which is very rare. The only other example of 

such exclusive reversed binding has been observed for flufenamic acid (Peterson et al, 1998). Thus, 

the results from our X-ray crystallography studies with PBP and TBP show that strong binding can 

also take place in the absence of the hydrogen-bond interaction. This is an important finding, since it 

may imply that an even larger number of organohalogen compounds have the potential to compete 

with thyroxine and consequently adversely affect the thyroid hormone system in animals and humans. 

In Chapter 3, the (anti-)estrogenic potency of the same set of 17 pure PBDE congeners, 

three synthetic OH-PBDEs and differently brominated bisphenols is described. PBDE congeners with 

the highest estrogenic activity were 2,2',4,4',6-pentaBDE (BDE-100), 2,4,4',6-tetraBDE (BDE-75) 

and 2,2',4,6'-tetraBDE (BDE-51). Their relative potencies compared to estradiol were 4.1 x 10"*, 3.5 

x 10"6 and 3.2 x 10"6, respectively. As a comparison, the estrogenic potency of the well known 

estrogenic compound bisphenol A was 3.3 x 10"5. The common structural features of PBDEs with 

estrogenic activity deduced from these studies resemble the ones observed for OH-PCBs, namely two 

ortho (2,6 substituted)-bromine atoms on one phenyl ring, at least one para-bromine atom (preferably 

on the same phenyl-ring as the ortho bromines), and nonbrominated ortho-meta or meta carbons on 

the other phenyl ring. In contrast with most OH-PCBs detected in human blood, which were anti­

estrogenic, only three of the tested PBDEs showed anti-estrogenic activity, namely 2,2',4,4',5,5'-

hexaBDE (BDE-153, IC50 = 3.1 uM); 2,3,4,4',5,6-hexaBDE (BDE-166, IC50 = 0.8 uM) and 

2,3,3',4,4',5,6-heptaBDE (BDE-190, IC50 = 1.0 uM). Since these same PBDE congeners also 

possessed dioxin-like activity as measured using an Ah receptor based reporter gene assay (CALUX) 

in H4IIE.luc cells (Meerts et al, 1998), it is postulated in Chapter 3 that the anti-estrogenicity 

observed for these PBDEs may be Ah receptor mediated. 

Comparison between the structural requirements of brominated compounds regarding their 

thyroidogenic or estrogenic activity reveals some interesting features. The most striking observation 

is the fact that in case of OH-PBDEs or brominated bisphenols, non-bromination on the phenolic ring 

is favoring the estrogenic potency of the compounds, whereas increasing adjacent bromination on the 

phenolic ring favors the thyroidogenic potency. Consequently, as discussed in Chapter 3, the ranking 
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order for OH-PBDEs and brominated bisphenols for estrogenicity was the complete reversed order as 

observed for thyroidogenicity. In Table 4.1 the ranking order of PBDEs and hydroxylated PBDEs 

regarding their estrogenicity, thyroidogenicity and dioxin-like activity is summarized. Table 4.2 

summarizes the ranking order of brominated (bis)phenols regarding their estrogenicity and 

thyroidogenicity. 

In conclusion, the results of the in vitro studies with PBDEs presented in this thesis show 

that the toxicity profile of PBDEs resembles the profile known for (hydroxy) PCBs, especially 

concerning their thyroidogenic potencies. An important question is, if these thyroidogenic potencies, 

e.g. the binding to TTR in vitro would have any consequences for the in vivo situation. Several studies 

are described in the literature addressing this question, using single PCB congeners or commercial 

PCB mixtures which were administered to pregnant rats and mice to examine the effects on the dams 

and the developing offspring. However, since the parent compounds used in these studies are able to 

exert adverse effects on their own, it is not possible to discriminate between the effects caused by 

metabolites that were formed in vivo and the effects caused by the parent compounds. This prompted 

us to investigate the possible adverse effects of in vivo exposure to a pure, hydroxylated compound, 

that was shown to bind to TTR, in more detail. For this purpose, the PCB metabolite 4-OH-

2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was chosen as a model compound, because it was 

detected in human blood, it was known to bind to TTR in vitro with a three times higher potency 

compared to the natural ligand T4 (see Chapter 5), and because exposure of pregnant rats to Aroclor 

1254 resulted in the selective retention of this metabolite in fetal plasma and tissues. As presented in 

the following Chapters, the presence of hydroxylated PCBs in human plasma that are able to bind to 

TTR may have toxicological consequences for the developing fetus. 
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CHAPTER 5 

Placental transfer of a hydroxylated polychlorinated biphenyl and 
effects on fetal and maternal thyroid hormone homeostasis in the rat 

Abstract 

Earlier studies at our laboratory indicated that several hydroxylated polychlorinated biphenyls (OH-

PCBs) detected in human blood could specifically inhibit thyroxine (T4) transport by competitive 

binding to the thyroid hormone transport protein transthyretin (TTR) in vitro. In the present study we 

investigated the effects of prenatal exposure to 5 mg/kg body weight of [14C]-labelled or unlabelled 4-

OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107), one of the major metabolites of PCBs detected 

in human blood, from gestation days (GD) 10 to 16 on thyroid hormone status and metabolism in 

pregnant rats and their fetuses at GD17 and GD20. 4-OH-CB107 is a metabolite of both 2,3,3',4,4'-

pentachlorobiphenyl (CB-105) and 2,3',4,4',5-pentachlorobiphenyl (CB-118). 

We were able to show the accumulation of 4-OH-CB107 in the fetal compartment. The 

fetal/maternal ratios at GD20 in liver, cerebellum and plasma were 11.0, 2.6 and 1.2, respectively. 

The [14C]-4-OH-CB107-derived radioactivity in plasma was bound to TTR in both dams and fetuses. 

Fetal plasma TT4 and FT4 levels were significantly decreased at GDI7 and GD20 (by 89% and 41% 

respectively at GD20). Fetal thyroid stimulating hormone levels were increased by 124% at GD20. 

The T4 concentrations in fetal forebrain homogenates at GD20 were reduced by 35%, but no effects 

could be detected on brain T3 concentrations. The deiodination of T4 to T3 was significantly increased 

in fetal forebrain homogenates at GDI7, and unaltered at GD20. In addition, no alterations were 

observed in maternal and fetal hepatic T4-UDP-glucuronosyltransferase activity, type I deiodinase 

activity and EROD activity. 

In conclusion, exposure of pregnant rats to 4-OH-CB107 results in the distribution of the 

compound in the maternal and fetal compartment, which is probably caused by the binding of the 

PCB metabolite to TTR. Consequently, TT4 levels in fetal plasma and brain samples were reduced. 

Despite reductions in fetal brain T4 levels, the active hormone (T3) in fetal brains remained 

unaffected. 

Based on: Meerts I.A.T.M., Assink Y., Cenijn P.H. van den Berg J.H.J., Weijers B.M., Bergman A, 

Koeman J.H., and Brouwer A. Submitted. 
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Introduction 

Polychlorinated biphenyls (PCBs) are widespread, persistent environmental pollutants which have 

been reported to cause a variety of toxic effects, including neurotoxicity, developmental toxicity, 

reproductive toxicity and carcinogenesis (reviewed in Peterson et al, 1993; Safe 1990, 1994; Schantz 

1996; Seegal 1996). In recent years it has become evident that exposure to PCBs can also lead to 

thyroid hormone disturbances in laboratory animals, wildlife and even humans as reviewed by 

Brouwer et al. (1998). Decreased levels of circulating plasma thyroxine (T4) following PCB exposure 

have been shown in both adult (Byrne et al. 1987; Barter and Klaassen, 1994; Van den Berg et al, 

1988) and developing organisms (Collins and Capen 1980; Darnerud et al., 1996; Morse et al, 1993, 

1996a; Ness et al, 1993; Seo et al 1995). Plasma thyroid hormone levels can be decreased by 

xenobiotic compounds by at least three known mechanisms. Firstly, a direct effect of compounds on 

the thyroid gland can lead to a decreased synthesis of thyroid hormones, which has been reported in 

rats after exposure to the commercial PCB-mixture Aroclor 1254 (Collins and Capen, 1980). 

Secondly, the reduction in thyroid hormone levels can be caused by enhanced biliary excretion of T4 

due to the induction of UDP-glucuronosyltransferases (UDP-GT) (Barter and Klaassen, 1992; 

Bastomsky, 1974; Van Birgelen et al, 1995). The third known mechanism involved in reduced 

plasma T4 levels is the observed binding of PCB metabolites to the plasma thyroid hormone transport 

protein, transthyretin (TTR), thereby displacing the natural ligand T4 (Brouwer et al, 1986; Darnerud 

et al, 1996; Morse et al, 1996a; Rickenbacher et al, 1986). 

Transthyretin (TTR) is the only thyroid hormone binding plasma protein that is synthesised 

both in liver and brain. It is suggested to serve a role in mediating the delivery of T4 across the blood-

brain barrier and the maternal to fetal transport through the placenta (Southwell et al, 1993; Schreiber 

et al, 1995). In addition, TTR plays an essential role in the determination of free T4 levels in the 

extracellular compartment of the brain, which is independent of the homeostasis of T4 in the body 

(Schreiber et al, 1995). T4 in the brain is then converted to the active thyroid hormone, 

triiodothyronine (T3) by specific deiodinases (type II deiodinase). An increasing number of chemicals 

have been reported to bind to human TTR in vitro. Parent PCB congeners (Chauhan et al, 1998; 

Cheek et al, 1999; Rickenbacher et al, 1986) but especially hydroxylated metabolites of PCBs, 

dibenzo-p-dioxins and dibenzo-p-furans (Lans et al, 1993) showed competitive binding to human 

TTR. Recently we were able to detect a new class of compounds, the brominated flame retardants 

(e.g. polybrominated diphenyl ethers, brominated bisphenols), with high in vitro T4-TTR competition 

binding potency (Meerts et al, 2000; Chapter 2). The in vivo effects of the high binding affinity of 

xenobiotics such as hydroxylated polychlorinated biphenyls (OH-PCBs) to TTR is hypothesised to 

result in (i) a selective retention of these compounds in plasma, (ii) facilitated transport of the 

metabolites over the placenta to the fetal compartment and (iii) decreased maternal and fetal plasma 

T4 levels by competition with the natural ligand T4 (reviewed by Brouwer et al, 1998). Several 

studies support this hypothesis. Bergman et al. (1994) detected several OH-PCBs, with high in vitro 

T4-TTR binding potency, in human serum and wildlife samples environmentally exposed to PCBs. 

Exposure of rats to 3,3',4,4'-tetrachlorobiphenyl resulted in selective retention of hydroxylated 

metabolites in plasma and caused marked reductions in plasma thyroxine levels (Brouwer et al, 
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1990) and vitamin A transport (Brouwer and Van den Berg, 1986) via their binding to TTR. In 

addition, maternal exposure of rats to Aroclor 1254 from gestation days 10 to 16 resulted in selective 

accumulation of the metabolite 4-OH-2,3,3\4',5-pentachlorobiphenyl (4-OH-CB107) in fetal plasma 

and brain (Morse et ah, 1996a) and was accompanied by very low concentrations of T4 in both 

tissues. In a comparable study conducted in mice, Darnerud et al. (1996) showed a high and selective 

accumulation of 4-OH-3,3',4',5-tetrachlorobiphenyl in fetal mouse plasma and reductions in thyroid 

hormone levels after maternal exposure to 3,3',4,4'-tetrachlorobiphenyl. They were able to identify 

the metabolite in fetal plasma bound to TTR. 

In vivo toxicity data on the effects of hydroxylated PCB-congeners on thyroid hormone 

homeostasis are scarce, since most in vivo studies are conducted with parent compounds that can exert 

effects of their own (e.g. induction of UDP-GT) and undergo metabolism in the exposed animal to 

different metabolites. Therefore, in the present study we investigated the effects of maternal exposure 

to the synthesised PCB-metabolite 4-OH-CB107 on maternal and fetal rat thyroid hormone 

homeostasis. To determine maternal to fetal transfer, we also studied the uptake and distribution of 

[14C] radiolabeled 4-OH-CB107. We chose this metabolite, because it was one of the major 

metabolites identified in human blood samples (Bergman et al., 1994), and was shown to accumulate 

in fetal plasma and brain after maternal exposure to Aroclor 1254 (Morse et al, 1996a). Furthermore, 

4-OH-CB107 was shown to be a metabolite, formed via a 1,2-shift of a chlorine atom, of 2,3,3',4,4'-

pentachlorobiphenyl (CB-105) and of 2,3',4,4',5-pentachlorobiphenyl (CB-118) (Sjodin et al, 1998). 

Both PCB congeners are present in adipose tissue of humans and wildlife and can thus slowly be 

biotransformed to the 4-OH-CB107 that is retained in the blood. We especially focused on testing the 

hypothesis that binding of a PCB metabolite to transthyretin in vivo would lead to facilitated transfer 

of the compound to the fetal compartment resulting in decreased thyroid hormone levels in fetal 

plasma and brain. 

Animals, Materials and Methods 

Chemicals 

4-Hydroxy-2,3,3',4',5-pentachloro-[14C]biphenyl (specific activity: 15.6 mCi/mmol) was prepared 

from 3,4-dichloroiodo-[14C]benzene, prepared from 3,4-dichloro-[14C]aniline after this compound had 

been methylated with diazomethane and reacted with iodine, and 2,3,6-trichloro-4-iodoanisol via an 

Ullman reaction (Bergman et al, 1990). 4-Hydroxy-2,3,3',4',5-pentachloro-[14C]biphenyl was 

isolated in a chemical and radiochemical purity > 98%. Unlabelled 4-hydroxy-2,3,3',4',5-

pentachlorobiphenyl (4-OH-CB107) was synthesised as described by Bergman et al. (1995). 

Isopropanol, bovine serum albumin, sucrose, Tris, hydrogen peroxide (H202), potassium hydroxide, 

Triton X-100, diisopropyl ether, dithiotreitol, methanol (all solvents were analytical grade) were 

purchased from Merck Chemical Company (Darmstadt, Germany). Human prealbumin (transthyretin, 

TTR, 98% pure) was obtained from Sigma Chemical Company, St. Louis, MO, USA. [125I]-L-3',5'-

Thyroxine (spec. act. 46 uCi/(xg) was from Orange Medical (Tilburg, The Netherlands). 
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Animals 

All experimental procedures involving animals were approved by the Animal Welfare Committee of 

the Wageningen University. Wistar WU rats (60 females, 30 males; 14 weeks old) were purchased 

from Charles River (Sulzfeld, Germany) and allowed to acclimatise for three weeks. Throughout the 

experiment, animals were kept in an artificial 12 h:12 h light-dark cycle with lights on at 06:00 h. 

Room temperature was maintained at 21 ± 2°C and humidity at 50 ± 10%. Animals were provided rat 

chow (Hope Farms, Woerden, the Netherlands) and tap water ad libitum. 

After the acclimatisation period two females were placed in a cage with one male overnight 

from 17:00 to 8:00 hr. Copulation was examined each morning by checking the presence of sperm in 

the vaginal smear. When spermatozoa were found, this day was designated as day 0 of gestation 

(GD0) and females were housed individually. Body weight of the dams was measured throughout 

gestation. On day 10 of gestation the pregnant rats were divided randomly into the different treatment 

groups and transferred to a macrolon, stainless steel cage to facilitate the collection of faeces. 

Study on uptake and distribution of f^CJ-labelled 4-OH-CB107 in dams and fetuses. 

For investigating the uptake and distribution, six pregnant rats received a daily oral dose of 2.3 |iCi 

[14C]-labelled 4-OH-CB107 per kg body weight diluted with unlabelled 4-OH-CB107 for a total 

exposure dose of 14.6 jimol (5 mg) 4-OH-CB107 per kg bw per day from gestation days 10 to 16. 

The metabolite was dissolved in corn oil, 5 mg/2 ml. Faeces and urine were collected daily. On GDI7 

and GD20, three dams per time point were sacrificed under ether anaesthesia and maternal blood was 

collected via the vena cava in heparinized tubes. Maternal kidneys, liver, adrenals, pancreas, lungs, 

thymus, forebrain, cerebellum, brown adipose tissue, skeletal muscle and abdominal fat were 

collected for radioactivity analyses. Individual placental/fetal units were carefully removed from the 

uterus. Fetuses were separated from the placenta, blotted dry with tissue paper and weighed. Fetal 

trunk blood, obtained by decapitation, was collected in heparinized tubes, pooled per litter and stored 

on ice until plasma was prepared for thyroid hormone analysis and radioactivity determinations. From 

17 days old fetuses, livers and brains (separated in forebrain and cerebellum) were collected and 

pooled per litter. From 20 days old fetuses, lungs and kidneys were additionally collected and pooled 

per litter. Organs and placentas were rinsed with 0.9% sodium chloride, blotted dry with tissue paper, 

weighed and stored at -80°C. Carcasses were stored at -20°C. Cages were rinsed with 200 ml Triton 

X-100 at the end of the experiment to determine losses of radioactivity. Maternal and fetal plasma, 

liver and brain samples were also used in biochemical assays described below (n = 3 per time point). 
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Study on biochemical effects of'4-OH-CB107 in dams and fetuses 

In a parallel experiment, pregnant rats received a daily oral dose of 0 or 5 mg 4-OH-CB107 per kg 

body weight dissolved in corn oil (2 ml/kg body weight) from GD10 to GD16. On GD17 and GD20, 

four dams per time point and exposure were sacrificed under ether anaesthesia and maternal blood 

was collected via the vena cava in heparinized tubes. Fetuses were removed and weighed. Fetal trunk 

blood was collected in heparinized tubes and pooled per litter. Fetal liver and thymus were collected, 

weighed, frozen on dry ice and pooled per litter. Fetal brains were removed, separated into forebrain 

and cerebellum, and frozen on dry ice. One fetal forebrain was saved separately for thyroid hormone 

analysis, the remaining forebrains and cerebella were pooled per litter for analysis of thyroid hormone 

metabolism and stored at -80°C. From the dams, liver, brain, thymus and plasma were isolated, 

frozen in liquid nitrogen and stored at -80°C until analysis. 

Tissue radioactivity concentrations 

Approximately 60 to 100 mg of tissues or tissue homogenates and 25-50 ul of the plasma samples 

were dissolved in 1 ml Soluene-350 (Packard, St. Louis, MO, USA) in glass scintillation vials. 

Samples were bleached with 0.5 ml 30% H202, and total radioactivity was measured two days later 

with 20 ml Hionic Fluor scintillation fluid (Packard) in a Packard 1600 liquid scintillation counter 

(LSC). Faecal samples were homogenised with a mortar under liquid nitrogen. Aliquots (± 50 mg) of 

faeces homogenates were exactly weighed and solubilized with 1 ml Soluene-350 at 50°C during 1-2 

hours in closed glass scintillation vials. After addition of 0.5 ml isopropanol samples were incubated 

at 50°C for another 2 hours. Samples were bleached by the addition of 0.6 ml 30% H202, and total 

radioactivity was measured two days later with 20 ml Hionic Fluor by LSC. The carcasses of dams 

and fetuses were dissolved in 700 ml (dams) or 200 ml (fetuses) 1.5 M potassium hydroxide 

containing 20% ethanol (v/v). After homogenisation using an Ultra Turrax 0.5 ml aliquots (in total 

n=10) were bleached with 0.6 ml 30% H202 and total radioactivity was measured two days later with 

20 ml Hionic Fluor. The efficiency of counting was determined by quenching correction curves for 

the various additions and scintillation fluids. In order to estimate total radioactivity concentrations in 

plasma and skeletal muscle, the total weight of plasma and skeletal muscle was set at 4% and 40% of 

the total body weight, respectively. 

Sample processing for biochemical purposes 

Livers were thawed on ice and homogenised in ice-cold 0.1 M Tris-HCl buffer, pH 7.5, containing 

0.25 M sucrose (3 ml/g liver) using a Potter tube. The homogenate was centrifuged for 30 minutes at 

9,000xg (4°C). The resulting supernatant was centrifuged for 90 minutes at 105,000xg and 4°C. The 

microsomal pellet was resuspended in 0.1 M phosphate buffer (pH 7.5). Microsomes were stored in 

aliquots of 1 ml at -80°C until further analysis. 

Maternal and fetal (pooled per litter) forebrains were homogenised in a Potter tube in 8 

volumes ice-cold 0.1 M Tris-HCl buffer (pH 7.5) containing 1 mM dithiotreitol and stored at -80°C 

until further analysis. Protein levels in different tissue fractions were determined using the BioRad 

Protein reagent (Bradford, 1976). 
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Thyroid hormone analysis 

Plasma total T4 (TT4), free T4 (FT4) and total T3 (TT3) were analysed in duplicate using 

chemiluminescence kits. Plasma thyroid stimulating hormone (TSH) concentrations were analysed 

with a specific rat TSH immunoassay. All kits were purchased from Amersham (Amersham, 

Buckinghamshire, UK). 

Brain T4 and T3 concentrations were determined by specific RIAs in purified extracts, as 

described before (Morreale de Escobar et al, 1985). Briefly, maternal and fetal forebrain and 

cerebellum samples were homogenised in methanol, extracted in chloroform-methanol and back-

extracted into an aqueous phase. This aqueous phase was purified through Bio-Rad AG 1x2 resin 

columns (Bio-Rad Laboratories, Richmond, USA), and the iodothyronines were eluted with 70% 

acetic acid, which was evaporated to dryness. The iodothyronines were analysed in highly sensitive 

RIAs in duplicate at two different dilutions. Recovery of the extraction procedure was determined in 

each homogenate by the addition of tracer amounts of [13II]-T4 and [125I]-T3. 

Thyroid hormone metabolism 

Hepatic microsomal T4 uridine diphosphoglucuronosyl transferase activity (UDP-GT) was 

determined as described by Beetstra et al. (1991) and Visser et al (1993). In short, microsomes (1 mg 

protein per ml) were incubated for 30 minutes at 37CC with 1 uM T4 and 50,000 cpm [125I]-T4, 5 mM 

uridine 5'-diphosphoglucuronic acid, 3.75 mM MgCl2 and 0.125% (w/v) BSA in 75 mM Tris-HCl-

buffer (pH 7.8). The final reaction volume was 0.2 ml. The reaction was stopped by addition of 0.2 ml 

ice-cold methanol, and after centrifugation 0.2 ml supernatant was mixed with 0.8 ml 0.1 N HC1. The 

amount of [125I]-T4 glucuronide was analysed by Sephadex LH-20 chromatography (Rutgers et al, 

1989). 

Hepatic type I 5'-deiodinase activity (D-I) was measured in duplicate in microsomes as 

described by Mol and Visser (1985). Briefly, microsomes (25 ug protein/ml) were incubated for 30 

minutes at 37°C with 1 uM rT3 and 100,000 cpm [125I-rT3] in 0.1 M phosphate buffer (pH 7.4) 

containing 2 mM EDTA and 5 mM DTT. The final reaction volume was 0.2 ml. The reaction was 

stopped by addition of 0.75 ml 0.1 M HC1, and the produced [125I] was separated from the reaction 

mixture by Sephadex LH-20 chromatography according to Rutgers et al. (1989). Blanks contained 

microsomes, inactivated by heating. 

Brain type II thyroxine 5'-deiodinase activity (D-II) was analysed as described by Visser et 

al. (1982) with slight modifications. Briefly, brain homogenates (0.8 mg protein/ml) were incubated 

with 2 nM T4 and ± 50,000 cpm [125I]-T4, 500 nM T3 and 1 mM propyl-2-thiouracil in 0.1 M 

phosphate buffer pH 7.2 containing 1 mM EDTA and 25 mM DTT in a total volume of 0.2 ml. 

Incubations were carried out at 37°C for 60 minutes. The reaction was stopped on ice by the addition 

of 0.1 ml 7% (w/v) BSA, followed by 0.5 ml 10% (w/v) trichloroacetic acid. The tubes were 

centrifuged at 4000 rpm in an Eppendorf centrifuge for 5 minutes and the amount of radioiodide 

released was determined in 0.5 ml of the supernatant using Sephadex LH-20 chromatography as 

described above. Blanks contained brain homogenates, which were inactivated by boiling for 10 

minutes. 
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Ethoxy- and pentoxyresorufln-O-deethylase activity 

Ethoxyresorufin-O-deethylase (EROD) activity was measured according to the method of Burke et al. 

(1977) adapted for the use in 96 wells plates and a fluorospectrophotometric plate reader (Cytofluor 

2350, Millipore, Etten-Leur, the Netherlands). The reaction was performed with 0.1 mg liver 

microsomal protein per ml in 0.1 M Tris-HCl (pH 7.8) containing 0.4 uM ethoxyresorufin (ER), 1 

mg/ml BSA and 0.1 mM NADPH in a total volume of 0.2 ml. The reaction mixtures were 

preincubated at 37°C for 2 minutes, and the reaction was started by the addition of NADPH. 

Reactions were stopped after 10 minutes by adding 50 ul 1 M NaOH. The formation of resorufin was 

detected fluorimetrically (excitation 530 nm, emission 590 nm) and compared with a calibration curve 

(0-150 nM resorufin). Incubations were carried out in duplicate and results were corrected for blank 

microsomal incubations without NADPH. 

Pentoxyresorufin-O-deethylase (PROD) activity was measured following the same 

procedure as described above for EROD, with final concentrations of 2 uM pentoxyresorufin (PR) 

and 0.1 mg microsomal protein/ml. 

Plasma protein separation and l'25I]-T4 competition binding 

To determine the binding of the PCB-metabolite to plasma proteins in vivo, plasma samples from 

[l4C]-4-OH-CB107 treated animals (dams and fetuses) were separated by polyacrylamide 

gelelectrophoresis (PAGE) as described by Brouwer and Van den Berg (1986). In addition, the 

determination of [125I]-T4-competitive binding to specific plasma proteins was performed as described 

by Lans et al. (1993) and Darnerud et al. (1996). In short, plasma samples for gel slices (40 ul) were 

mixed 1:1 with a 50 mM Tris/38 mM glycine buffer (pH 8.3) containing 4.5% saccharose. Plasma 

samples for [125I]-T4 competition binding (25 ul) were incubated overnight with 100,000 counts per 

min [l25I]-T4 (in 5 ul 50 mM Tris-HCl buffer, pH 8.0) at 4°C. Aliquots of 20 ul of the different 

samples were run on a 10% native separating gel for 4 hours at 4°C at a constant current of 50 mA. 

Each gel also contained plasma samples for protein staining (5 ul) and pure BSA and human TTR as 

a reference. After electrophoresis, the part of the gel containing the reference proteins was stained in 

0.04% Coomassie Brilliant Blue in 3.5% perchloric acid for 60 min, and subsequently destained with 

7% acetic acid for 24 h to determine the position of the proteins on the gel. The part of the gel for 

radioactivity measurements was frozen on the glass plate at -20°C overnight. The acrylamide gel was 

subsequently sliced into 1 mm pieces by a standardised procedure. Proteins in slices containing [i4C]-

4-OH-CB107-derived radioactivity were first eluted by incubating the gel slices in tubes with 1 ml 

water overnight at 4°C. Four ml of scintillation fluid was added (Ultima Gold, Packard) the next day 

and the amount of radioactivity in each gel slice was quantified by LSC. Gel slices containing plasma 

samples incubated with [125I]-T4 were placed in RIA tubes and counted directly in a y-counter (Cobra 

Auto Gamma Counter, Canberra Packard). The PAGE gel profile was made by plotting the [125I]-T4-

radioactivity against the migration distance on the gel. 
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In vitro T4-TTR competition binding study with 4-OH-CB107 

The in vitro potency of 4-OH-CB107 to compete with T4 for binding to human transthyretin was 

performed as described by Lans et al. (1993) with modifications (Meerts et al, 2000; Chapter 2). 

Briefly, 30 nM human TTR, a mixture of [125I]-labelled and unlabelled T4 (70,000 cpm, 55 nM), and 

4-OH-CB107 (in concentrations ranging from 10"9 to 10"4 M) were dissolved in 0.1 M Tris-HCl-

buffer (pH 8.0, containing 0.1 M NaCl and 0.1 mM EDTA). The incubation mixture was allowed to 

reach binding equilibrium overnight at 4°C. Protein-bound and free [125I]-T4 were separated on 1 ml 

Biogel P-6DG columns and spin-forced eluted with 0.2 ml Tris-HCl buffer (1 minute at lOOxg in a 

precooled centrifuge, Difuge, Hereaus). Radioactivity in the eluate containing the protein-bound 

[125I]-T4 was determined by gamma counting and compared to control incubations. The competition 

binding curves for T4 and 4-OH-CB107 were made by plotting relative [125I]-T4-protein binding (% of 

control) against concentration competitor. 

Statistical analysis 

Data are presented as mean values (± SEM). Comparisons between two groups of animals were 

performed using Student's t test. 

Results 

Faecal and urinary [*4C]-4-OH-CB107 excretion 

Faecal elimination of [14C]-4-OH-CB107 derived radioactivity was high. After one day exposure 

(GD11), 15.1 ± 1.8% of the administered dose could be detected in the faeces (Figure 5.1), but at 

GD13 this level was raised to 60.6 ± 6.5% of the total dose administered. 

faeces dose administered 

10 11 12 13 14 15 16 17 18 

gestation day 

Figure 5.1. Cumulative faecal excretion of [14C]-derived radioactivity from pregnant rats after oral 
exposure to 5 mg [14C]-4-OH-CB107 per kg per day from gestation day 10 to 16. Data are expressed 
in dpm (result of one representative animal). 
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At GD17 and GD20, 78.4 ± 6.1% and 93.8 ± 6.9% of the total dose was excreted in the faeces, 

respectively. Urinary excretion was lower than 1% of the total given dose (data not shown). The 

average recovery of radioactivity per rat for animals dissected at GDI 7 or GD20 was 91.2 ± 6.3% and 

97.2 ± 5.3%, respectively. 

Tissue distribution of[uC]-4-OH-CB107 

In the pregnant rat, high levels of [14C]-4-OH-CB107 derived radioactivity could be detected in 

plasma, liver and skeletal muscle on whole organ basis (Table 5.1). Organ levels in pregnant rats were 

higher at gestation day 17, i.e. one day after the last treatment, compared to gestation day 20. 

Significant decreases in radioactivity concentrations at GD20 could be detected in kidneys, thyroid 

and forebrain when levels were expressed in nmol per gram fresh weight, and in adrenals and 

forebrain when expressed in nmol per total organ. 

Table 5.1. Distribution of [14C]-4-OH-CB-107 derived radioactivity in maternal tissues at GD17 and 
GD20, after oral exposure to 5 mg/kg bw from GD 10 to 16. 

Tissue/organ 

Age 

Plasma 

Liver 

Kidney 

Lung 

Thyroid 

Thymus 

Adrenals 

Pancreas 

Forebrain 

Cerebellum 

Skeletal muscle 

Abdominal fat 

Brown adipose tissue 

nmol/g tissue or nmol/ml 

GD17 

39.02 ±3.51 

4.85 ± 0.48 

4.51 ±0.4 

4.27 ±1.20 

3.79 ±0.19 

3.22 ±0.66 

3.12 ±0.34 

2.95 ±0.35 

1.47 ±0.08 

1.52 ±0.09 

1.17 ±0.25 

1.96 ±0.04 

2.96 ±0.19 

GD20 

32.3 ± 5.09 

3.17 ±0.07 

2.86 ±0.02* 

3.07 ± 0.62 

1.54±0.18** 

3.16 ±0.89 

2.52 ± 0.06 

2.16 ±0.10 

0.96 ±0.12* 

1.16±0.34 

0.28 ± 0.09 

1.18 ±0.63 

2.19 ±0.58 

nmol/organ 

GDI 7 

415.5 ±7.27 

49.08 ±4.31 

7.70 ±0.12 

4.96 ±1.32 

0.074 ± 0.02 

1.05 ±0.15 

0.23 ± 0.02 

1.49 ±0.20 

1.84 ±0.07 

0.68 ± 0.01 

97.4 ±12.1 

— 

— 

GD20 

374.7 ± 6.90 

32.84 ±1.44 

4.10±0.17 

3.32 ±0.87 

0.04 ± 0.01 

0.92 ± 0.29 

0.15 ±0.003* 

0.73 ±0.09 

1.20 ±0.14* 

0.55 ±0.18 

30.8 ±8.5 

— 

— 

Data are expressed as nmol per g tissue (first columns) or nmol per total organ (last 
columns), and presented as mean ± standard error, n = 3 per time point. * Significantly 
different from GD17,p < 0.05; **p < 0.01. 

The distribution in the fetal compartment was different from that in dams (Table 5.2). There 

is a substantial accumulation of [14C]-4-OH-CB107 derived radioactivity in the fetal compartment. 

The total radioactivity concentrations in the fetal compartment were 51.7 ± 3.2% of the total maternal 

concentrations. Significantly higher amounts of radioactivity could be detected in fetal liver, forebrain 

and cerebellum, whereas fetal plasma levels were comparable to maternal levels (Table 5.2). 
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Fetal/maternal liver ratios were as high as 15.9 ± 0.6 at GD17 and 11.0 ± 1.2 at GD20 

(Table 5.3). In addition, although levels in maternal organs tend to decrease from gestation days 17 to 

20, amounts of [14C]-4-OH-CB107 in fetal liver and cerebellum increased when corrected for total 

tissue weight, though not significantly. 

Table 5.2. Distribution of [14C]-4-OH-CB-107 derived radioactivity in fetal tissues at 
GDI7 and 20, after exposure of 5 mg/kg bw to the dams from GD 10 to 16. 

Tissue/organ 
Age 

Plasma 

Liver 

Kidney 

Lung 

Forebrain 

Cerebellum 

Placenta 

nmol/g tissue or nmol/ml 
GD17 

n.a. 

89.41 ±8.17* 

n.a. 

n.a. 

3.11 ±0.03**** 

2.87 ±0.03*** 

6.22 ± 0.46 

GD20 

37.2 ±5.14 

35.12 ±8.91* 

5.28 ±0.88 

4.08 ± 0.24 

1.54 ±0.49 

2.63 ±0.34 

5.02 ±1.01 

nmol/organs (pooled per mother) 
GD17 

— 

58.7 ±9.18 

— 

— 

2.02 ±0.11 

0.99 ± 0.02**** 

35.8 ±3.66 

GD20 

66.6 ±13.8* 

89.08 ±10.1 

1.76 ±0.05* 

4.69 ± 0.56 

1.69 ±0.40 

1.42 ±0.24* 

28.6 ±5.41 

Data are expressed as nmol per g tissue (first columns) or nmol per total organ (last two 
columns), and presented as mean ± standard error, n = 3 per time point, 
n.a.: not analysed; * significantly different from maternal levels at the same time point,/? < 
0.05; mp < 0.005; ****p < 0.0005. 

Body and organ weights 

No effects were observed on maternal body weight gain, mean and total fetal body weight, number of 

implantation sites, resorptions, number of fetuses, or sex ratio (data not shown). In addition, absolute 

and relative organ weights from dams (liver, brain, kidneys, adrenals, thyroid, thymus, spleen, 

pancreas) and fetuses (liver, brain, kidneys, lungs) were not affected by maternal exposure to 5 mg 4-

OH-CB107 per kg body weight from gestation days 10 to 16. 

Plasma thyroid hormone levels 

Thyroid hormone analysis revealed a significant decrease in maternal total thyroxine (TT4) levels of 

49% on GDI7 and 38% on GD20 (Figure 5.2A) following exposure to 5 mg 4-OH-CB107 per kg 

body weight from GD10 to GD16. Maternal free thyroxine (FT4, Figure 5.2B) and total 

triiodothyronine (TT3, Figure 5.2C) levels were not significantly reduced. At GD20, fetal total 

thyroxine (TT4) levels were drastically decreased by 89% and FT4-levels were also significantly 

reduced by 41% after in utero exposure to the PCB-metabolite (Figure 5.3A,B). 
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Table 5.3. Fetal/matemal ratios of [14C]-4-OH-CB-107 derived radioactivity at day 17 and 20 of 

gestation, after maternal exposure to 5 mg/kg bw from gestation day 10 to 16. 

Tissue/organ 

Plasma 

Liver 

Kidney 

Lung 

Forebrain 

Cerebellum 

Age 

Foetal/maternal ratios3' 

GDI 7 

— 

15.9 ±0.6 

— 

— 
2.1 ±0.1 

1.9 ±0.1 

GD20 

1.2 ±0.1 

11.0± 1.2 

1.8 ±0.1 

0.9 ±0.1 

1.1 ±0.1 

2.6 ±0.2 

a) Fetal/maternal ratios were calculated with levels expressed as nmol/g or nmol/ml 
(see Table 5.2). Fetal samples were pooled per litter. N = 3 per time point and 
exposure group. 

Fetal TT4 levels on GDI7 could only be detected in the control group (0.3 ±0.1 nM). The level in 4-

OH-CB107 exposed fetuses was below the detection limit of 0.09 nM, suggesting a decrease of at 

least 70% compared to the control group. Due to the small sample size these measurements could not 

be repeated. Fetal plasma levels of thyroid stimulating hormone (TSH) were significantly increased 

by 124% after 4-OH-CB107 treatment (Figure 5.4). Maternal TSH-levels were unchanged. 

Brain thyroid hormone levels 

At GDI7, fetal cerebellum T4 and T3 levels were not significantly changed (Table 5.4). Forebrain T4 

levels at GD20 were significantly reduced by 35% in 4-OH-CB107 treated animals. Cerebellum T4 

levels at GD20 were also reduced, though not significantly (p = 0.051). No reductions in fetal T3 

levels could be detected in forebrain or cerebellum at GD20. 
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Figure 5.2. Plasma levels of maternal total thyroxine (TT4, A), free thyroxine (FT4, B) and total 
triiodothyronine (TT3, C) after oral exposure to 5 mg 4-OH-CB107/kg bw from gestation days 10 to 
16. Results are presented as mean ± SEM (n = 7). Statistically significant differences from controls in 
Student's t-test are given by * (p < 0.05). 
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Figure 5.3. Plasma levels of fetal total thyroxine (TT4, A) and free thyroxine (FT4, B) after oral 
exposure to 5 mg 4-OH-CB107/kg bw from gestation days 10 to 16. Results are presented as mean ± 
SEM (n = 7). Statistically significant differences from controls in Student's t-test are given by * (p < 
0.05) and **** (p < 0.001). 
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Figure 5.4. Plasma levels of thyroid stimulating hormone (TSH) in dams and fetuses following 
prenatal exposure of rats to 5 mg 4-OH-CB107 per kg bw from gestation days 10 to 16. Results are 
presented as mean ± SEM (n = 7 per exposure and time point). Statistically significant differences 
from controls in Student's t-test are given by * (p < 0.05). 
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Table 5.4. Fetal brain thyroid hormone levels. 

Exposure Corn oil 4-OH-CB107 
ng T4 or T3 per g tissue 

Gestation day 17 

Forebrain T4 n.a. n.a. 

Forebrain T3 n.a. n.a. 

Cerebellum T4 0.53 ± 0.08 (6) 0.49 ± 0.06 (6) 

Cerebellum T3 0.14 ± 0.02 (6) 0.12 ± 0.01 (6) 

Gestation day 20 
Forebrain T4 1.79 ±0.09 (4) 1.16 ± 0.07 (5) **** 

Forebrain T3 0.91 ± 0.06 (4) 0.80 ± 0.05 (6) 

Cerebellum T4 1.38 ± 0.13 (4) 1.10 ± 0.04 (5) 

Cerebellum T3 0.18 ± 0.02 (4) 0.16 ± 0.01 (6) 

Data are presented as mean ± S.E.M. The number of animals 
is given in parentheses, n.a.: not analysed. **** Significantly 
different from corn oil, p < 0.001. 

Thyroid hormone metabolism 

Maternal and fetal hepatic microsomal type I deiodinase activities and T4 uridine 

diphosphoglucuronosyl transferase activity (UDP-GT) were not altered by exposure to 4-OH-CB107 

(data not shown). 

The activity of brain type II 5'-thyroxine deiodinase (D-II) in forebrain homogenates from 

17-day-old fetuses is very low compared to 20-day-old fetuses and maternal levels at GDI7 and 

GD20. A significant increase of 67% compared to controls was observed at GD17 after exposure to 4-

OH-CB107 (Figure 5.5). However, in 20-day-old fetuses, brain D-II levels were unaffected. D-II 

levels in maternal forebrain homogenates were decreased following exposure to 4-OH-CB107, though 

not significantly. 

Ethoxy- andpentoxyresorufin-O-deethylase activity 

No effects were detected on maternal and fetal hepatic microsomal ethoxyresorufin-O-deethylase 

(EROD) and pentoxyresorufin-O-deethylase (PROD) activity (data not shown). 
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Figure 5.5. Type II thyroxine 5' 
deiodinase (D-II) activity in forebrain 
homogenates from dams and fetuses at 
gestation day 17 and 20, following 
prenatal exposure to 0 (corn oil) or 5 mg 
4-OH-CB107 per kg bw from gestation 
days 10 to 16. Results are presented as 
mean ± SEM (n = 7). Statistically 
significant differences in Student's t-test 
are given by * (p < 0.05). 
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Plasma protein separation and [ 5I]-T4 competition binding 

Plasma protein separation from animals treated with [14C]-labelled 4-OH-CB107 revealed the binding 

of [14C]-label to transthyretin in both maternal and fetal plasma (Figure 5.6). The identification of the 

transthyretin peak was based on co-migration of the TTR reference. In vitro T4-competition binding 

with maternal and fetal plasma and separation of the plasma proteins by gel electrophoresis showed 

two peaks with [125I]-T4 bound radioactivity in maternal and three peaks with radioactivity in fetal 

plasma (Figure 5.7). The first peak is unbound radioactivity, which is left at the front of the gel. The 

second peak represented transthyretin, and the last one represented free T4. The third peak, which was 

observed in fetal plasma only, could not be identified. The binding of [125I]-T4 with maternal plasma 

showed a significant decrease of 45% in the amount of [125I]-T4 bound to TTR in 4-OH-CB107 

treated dams compared to controls (Figure 5.7a). The unbound radioactivity can be detected at the 

front of the gel. In fetal plasma, this shift in the position of radioactivity is not very clear (Figure 

5.7b). The amount of [125I]-T4 bound to TTR in fetuses treated in utero with 4-OH-CB107 was 

slightly though not significantly decreased. 

In vitro T4-TTR competition binding study with 4-OH-CB107 

The binding affinity (Ka) and IC50-value of 4-OH-CB107 as determined in the in vitro T4-TTR 

competition binding assay were 1.19 (± 0.01) x 108 M'1 and 24.4 ± 2.2 nM, respectively (Figure 5.8). 

The relative potency compared to the natural ligand T4 (IC50 of 80.7 nM) was 3.3 ± 0.3. 
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Figure 5.6. Distribution of [14C]-derived radioactivity in maternal (left) and pooled fetal (right) 
plasma at gestation day 20 after native polyacrylamide gelelectrophoresis. Pregnant rats were exposed 
to 5 mg [14C]-labelled 4-OH-CB107 per kg bw from gestation days 10 to 16. 
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Figure 5.7. Distribution of [ I]-T4-derived radioactivity in maternal (left) and pooled fetal (right) 
plasma after in vitro incubation with [125I]-T4 and native PAGE. Pregnant rats were treated with corn 
oil (dotted lines) or 5 mg 4-OH-CB107 per kg body weight from gestation days 10 to 16. 
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Figure 5.8. Displacement of T4 from TTR by 4-OH-CB107. Data points are mean values ± standard 
deviation of one representative measurement in duplicate. If no error bar is visible, it is smaller than 
the marker. Relative [l25I]-T4-TTR binding is presented as % of control value. 

Discussion 

The results of the present study show that maternal exposure to the PCB-metabolite 4-OH-2,3,3',4',5-

pentaCB from gestation days 10 to 16 results in considerable transfer of this metabolite from the 

mother to the fetus, thereby affecting both maternal and especially fetal thyroid hormone levels. 

Detection of 4-OH-CB107 bound to transthyretin in fetal and maternal plasma suggests that binding 

of a compound to TTR in vivo can lead to facilitated maternal to fetal transfer, decreased maternal and 

fetal plasma T4 levels and decreased fetal brain T4 levels. Hepatic UDP-glucuronosyltransferase 

(UDP-GT) levels were not induced in dams or fetuses, indicating that this mechanism did not play a 

role in the observed decrease in plasma thyroid hormone levels as shown for e.g. TCDD and parent 

PCB-compounds (Van Birgelen et al, 1995; Darnerud et ai, 1986). 

The internal dose of [14C]-4-OH-CB107 in pregnant dams was low, since most of the 

radioactivity was excreted in the faeces. However, relatively high levels of [14C]-4-OH-CB107 

derived radioactivity could be detected in the fetal compartment (i.e. 52% of the total maternal 

concentrations), indicating a high placental transfer of the compound. At gestation days 17 and 20, 

fetal liver, forebrain and cerebellum levels were all higher than maternal levels, whereas fetal plasma 

levels were almost equal to maternal plasma levels (fetal/maternal ratio of 1.16 ± 0.03 at GD20). The 

approximate 16- and 11-fold higher levels in fetal livers at gestation day 17 and 20, respectively, 

compared to maternal livers are striking. This may be due to the fact that the liver is one of the major 

sites of TTR synthesis in the body (Dickson et al, 1985). In addition, the 3.3 fold higher affinity of 4-

OH-CB107 for TTR in vitro compared to the natural ligand T4 (this study) and the observed in vivo 

binding of [14C]-4-OH-CB107 (this study) derived radioactivity are in line with this explanation. 

Significant reductions (approximately 90%) in fetal plasma TT4 levels at GD20 could be 
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detected after maternal exposure to 4-OH-CB107, with fetal plasma metabolite levels of 12.7 ug/g on 

wet weight basis. As a comparison, rats exposed to 5 or 25 mg/kg Aroclor 1254 in the same 

experimental setup resulted in a 52% or 74% decrease in fetal plasma TT4, respectively, with fetal 

plasma 4-OH-CB107 concentrations of approximately 0.6 and 1.6 ug/g (Morse et al, 1996a). The 

higher decreases in fetal free T4 levels and maternal total and free T4 levels after Aroclor 1254 

exposure can be explained by the additional induction of hepatic UDP-GT by Aroclor 1254 and 

consequently induced biliary excretion of T4 after glucuronidation. Surprisingly, exposure of pregnant 

mice to one single i.v. dose of 50 umol (= 17.1 mg) per kg body weight of another PCB-metabolite, 

4-OH-2',3,3',4',5-pentaCB (5.9 fold higher affinity for TTR in vitro compared to T4, Lans et al., 

1993) resulted in an only 14% reduction of fetal plasma T4 levels compared to control levels (Sinjari 

and Darnerud, 1998). However, comparison with this latter study is difficult, since the route of 

exposure, species and time point of analysis were all different. 

Fetal plasma thyroid stimulating hormone levels were significantly increased at GD20, 

indicating that the hypothalamus-pituitary-thyroid (HPT) axis was stimulated in the fetuses. This was 

expected, since reductions in plasma T4 levels are responsible for regulating fetal plasma TSH levels 

(Morreale de Escobar et al, 1993). However, stimulation of this HPT axis occurs at a stage when the 

setpoint of homeostatic control is being developed, and it is possible that these disturbances might 

have a prolonged effect on the homeostatic control of thyroid hormones in these animals. Morse et al. 

(1996a) reported normal levels of plasma thyroid hormones in offspring exposed prenatally to 5 

mg/kg Aroclor 1254 at day 21 postpartum, but a statistically significant elevation of plasma TT4 

levels in male offspring at 90 days postpartum. 

Despite the very low T4 levels in fetal plasma, fetal brain T4 levels were reduced only in 

forebrain and cerebellum homogenates at GD20, and not at GDI7. It should be stated however, that 

brain T4 and T3 levels at GDI7 were very difficult to measure because of small sample sizes, and we 

only used cerebellum samples at GDI7 for thyroid hormone analysis. No changes were observed in 

brain T3 levels at GD17 or GD20. The induction of brain type II 5'-thyroxine deiodinase (D-II) is a 

well known response of the rat brain to maintain brain T3 levels when circulating T4 concentrations 

are decreased (Silva and Matthews, 1984; Ruiz de Ofia et al, 1988; Obregon et al., 1984), and has 

been reported before in fetal and neonatal rats after maternal exposure to 3,3',4,4',5,5'-

hexachlorobiphenyl (Morse et al, 1993) and Aroclor 1254 (Morse et al, 1996a). Maternal exposure 

to Aroclor 1254 caused a significant decrease in fetal forebrain T3 levels only after exposure to 5 

mg/kg bw, and not to 25 mg/kg body weight per day. 

The accumulation of 4-OH-CB107 in fetal forebrain and cerebellum may have an effect on 

the neurodevelopment of the offspring. In a comparable study by Morse et al (1996a), exposure of 

pregnant rats to Aroclor 1254 from GD10 to 16 resulted in long term alterations in glial and neuronal 

cell marker proteins in the offspring (Morse et al, 1996b), and significant increases in 5-

hydroxytryptamine (5-HT) metabolism (Morse et al, 1996c). These adverse effects were likely 

caused by 4-OH-CB107, since this metabolite accumulated in fetal brains after maternal exposure to 

Aroclor 1254. Concentrations of 4-OH-CB107 in fetal brains (determined by GC/MS analysis) at 

GD20 were approximately 0.16 ppm on fresh weight basis (Morse et al, 1996a). In the current study, 

maternal exposure of rats to 5 mg/kg 4-OH-CB107 resulted in concentrations of 0.90 ppm 4-OH-
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CB107 in fetal cerebellum and 0.53 ppm in fetal forebrain. In total, the brain 4-OH-CB107 levels in 

this study were approximately 9 times higher compared to maternal exposure to 25 mg/kg Aroclor 

1254. Therefore, we performed another study to investigate the effects of maternal 4-OH-CB107 

exposure on the development and behaviour of the offspring in more detail. These results will be 

presented in a separate publication (see Chapter 7). 

OH-PCBs can also exert several other effects on the endocrine system. OH-PCBs have been 

reported to interact with thyroid hormone metabolising enzymes, such as iodothyronine 5'-deiodinase 

(Adams et al, 1990; Lans, 1995; Rickenbacher et ah, 1989) and iodothyronine sulfotransferase 

(Schuur et al., 1998) in vitro. In addition, some OH-PCBs competitively bind to the estrogen receptor 

(ER) and exhibit estrogenic activity in the mouse uterus (Korach et al., 1988). Recently, Kester et al. 

(2000) demonstrated that various environmentally relevant OH-PCBs were extremely potent 

inhibitors of human estrogen sulfotransferases. 

In conclusion, exposure of pregnant rats to the PCB-metabolite 4-OH-CB107 results into 

drastic reductions in fetal plasma thyroid hormone concentrations, and to an accumulation of the 

compound in fetal liver, brain and plasma. It is suggested that the observed binding of 4-OH-CB107 

to TTR may play a role in the retention of the metabolite in plasma, in the maternal to fetal transport 

and in the distribution of 4-OH-CB107 in the fetal compartment. The question remaining is whether 

this possible mechanism is also operating in humans. Even though in humans thyroxine binding 

globulin is the main thyroid hormone transport protein in the blood, TTR still plays a role in 

mediating the delivery of T4 across the blood-brain barrier, transporting T4 into the cerebrospinal fluid 

and transferring maternal-to-fetal T4 over the placenta (Calvo et al, 1990; Southwell et al, 1993). In 

fact, current determinations of 4-OH-CB107 levels in human maternal plasma and cord blood show 

approximately three fold higher levels in cord blood (Bergman et al., 1999b), suggesting that indeed 

transport of OH-PCBs to the human fetus is possible. If this facilitated transport is also operating for 

other organohalogen compounds, further investigation is needed into the possible consequences of 

exposure to these compounds on neuronal development of the offspring. 
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CHAPTER 6 

Effects of/« utero exposure to 4-hydroxy-2,3,3',4',5-
pentachlorobiphenyl (4-OH-CB107) on developmental landmarks, 

steroid hormone levels and female estrous cyclicity in rats 

Abstract 

Previous studies at our laboratory revealed that the polychlorinated biphenyl metabolite 4-OH-

2,3,3',4',5-pentaCB (4-OH-CB107), one of the major metabolites of PCBs detected in human blood, 

accumulated in fetal liver, brain and plasma and reduced maternal and fetal thyroid hormone levels 

after prenatal exposure to pregnant rats from gestation days 10 to 16 {Chapter 5). Recently, we started 

to investigate the effects of 4-OH-CB107 on behavioral and reproductive development of rat 

offspring from postnatal days 0 to 310. In this paper, the effects on estrous cycle and steroid hormone 

levels are reported. Effects caused by 4-OH-CB107 only were compared with effects observed by the 

parent compound mixture Aroclor 1254, which was found to give rise to an accumulation of mainly 

4-OH-CB107 in fetuses following maternal exposure. 

The most pronounced 4-OH-CB107 related developmental effects were seen on female 

estrous cyclicity and plasma estradiol concentrations. A significant and dose dependent prolongation 

of the estrous cycle length (4 to 7 days) was observed in 75% (0.5 mg/kg 4-OH-CB107) and 82% (5.0 

mg/kg 4-OH-CB107) of female offspring determined between the age of 210 to 231 days, compared 

to 64% of Aroclor 1254 (25 mg/kg) exposed offspring. Prolongation was primarily due to a 

prolongation of the diestrous stage, resembling a state of pseudopregnancy. Nevertheless, 

reproductive capabilities of female F! offspring appeared to be normal. Strikingly, plasma estradiol 

concentrations in female rat offspring at the age of 11 months were significantly increased (by 50%) 

in the proestrous stage after exposure to 5 mg 4-OH-CB107 per kg body weight. No effects on 

estradiol levels were observed in Aroclor 1254 treated animals. 

In males, no effects were observed on preputial separation during development, male 

accessory sex organ weights (prostate, testis, seminal vesicle and cauda epididymis) or testosterone 

levels at the age of 11 months. These results indicate that in utero exposure to 4-OH-CB107 leads to 

reproductive changes that may reflect early signs of reproductive senescence in female offspring at a 

relative early stage in life. The possible impact on neurobehaviour following exposure to 4-OH-

CB107 will be reported elsewhere. 

Based on: Meerts I.A.T.M., Hoving S., van den Berg J.H.J., Weijers B.M., Swarts H.J., van der Beek 

E.M., Bergman A, Koeman J.H., and Brouwer A. Submitted. 
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Introduction 

Polychlorinated biphenyls (PCBs) are environmental contaminants causing a broad range of toxic 

effects (reviewed in Brucker-Davis, 1998; Brouwer et al, 1998; Peterson et al, 1993; Safe, 1990, 

1994; Seegal, 1996; Tilson and Kodavanti, 1997). Dependent on the number and position of the 

chlorine substituents, PCBs can be metabolized to hydroxylated PCBs (OH-PCBs) in animals via an 

arene oxide intermediate, catalyzed by cytochrome P450s 1A and 2B (Safe, 1994). Hydroxylated 

metabolites of PCBs have been identified in the blood of marine mammals, polar bears, fish-eating 

birds and humans (Bergman et al, 1994; Klasson-Wehler et al, 1998; Sandau et al, 2000; Sjodin et 

al,, 2000), at concentrations of 10-30% of the PCB concentration in human blood (Sandau et al 2000, 

Sjodin et al 2000) but as high as 2-3 times the PCB level in Polar bear blood (Sandau, 2000). Several 

potentially adverse effects of OH-PCBs on the endocrine system have been reported. Hydroxylated 

PCBs present in human plasma were shown to competitively inhibit binding of the natural thyroid 

hormone thyroxine (T4) to its transport protein transthyretin (TTR) (Lans et al., 1993, 1994). In 

addition, the activities of hepatic type I iodothyronine deiodinase (ID-1) and iodothyronine 

sulfotransferases (both enzymes involved in the intracellular metabolism of thyroid hormones) were 

inhibited by OH-PCBs (Adams et al., 1990; Lans et al, 1993; Rickenbacher et al, 1989 and Schuur 

etal, 1998). 

The binding of OH-PCBs to TTR in vivo is thought to facilitate the transport of this 

metabolite across the placenta from the mother to the fetus, thereby affecting maternal but especially 

fetal thyroid hormone levels (reviewed by Brouwer et al, 1998). Earlier studies at our laboratory 

showed a selective accumulation of the PCB-metabolite 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl 

(4-OH-CB107) in fetal and neonatal rats after maternal exposure to Aroclor 1254 from gestation day 

10 to 16 (Morse et al, 1996a). Thyroid hormone levels in the exposed fetuses and neonates were 

significantly decreased. It was hypothesized that the decrease in plasma thyroid hormone levels was 

caused by the competitive binding of 4-OH-CB-107 to TTR, which was observed for this compound 

in vitro (Lans, unpublished results, Meerts et al, submitted, Chapter 5). In a recent study we were 

able to support this hypothesis (Meerts et al, submitted, Chapter 5). Exposure of pregnant rats to 14C-

radiolabelled 4-OH-CB107 from gestation days 10 to 16 resulted in a selective accumulation of 4-

OH-CB107 in fetal livers, brain and plasma, measured at gestation days 17 and 20. Polyacrylamide 

gel electrophoresis of maternal and fetal plasma revealed the binding of 4-OH-CB107 to TTR. 

Consequently, maternal but especially fetal total thyroxine (TT4) levels at gestation day 20 were 

significantly decreased by 38% and 89%, respectively. 

A prenatal or early postnatal hypothyroid status is known to severely affect the normal 

development of the brain and sexual organs. Effects on brain development include disorders of 

neuronal process growth (Stein et al, 1991), disruption of the expression pattern of neurotrophins, 

nerve growth factor, and brain derived neurotrophic factor (Nevue and Arenas, 1996), and 

interference in neurotransmitter systems (Seegal, 1996). Several of these effects have also been 

observed following in utero and lactational exposure of rats to PCBs. Exposure of rats to Aroclor 

1254 resulted in alterations in regional brain serotonin metabolism and in glial and neuronal cell 

markers (Morse et al, 1996c). Exposure of rats to Aroclor 1016 from gestation day 8 through 

86 



Effects of in utero exposure on development 

weaning caused elevations in regional dopamine concentrations in rat offspring (Seegal, 1992, 1994). 

Studies with individual PCB congeners revealed that the structure of the congener and the age of the 

animal at the time of exposure were important variables for the observed effects on brain dopamine 

levels. 

In addition to the above mentioned effects of PCB-induced hypothyroidism on brain 

development, it is also possible that the relatively high concentrations of hydroxylated PCB congeners 

in plasma or brain of fetal rats have a direct effect on brain development and/or reproduction. 

Hydroxylated PCBs are known to induce uncoupling of oxidative phosphorylation in mitochondria 

(Lans et al., 1990; Narasimhan et al., 1991), and inhibition of intercellular communication (de Haan 

et al., 1994). Some hydroxylated PCBs also possess (anti-) estrogenic activities (Korach et al., 1988, 

Moore et al., 1997). The OH-PCBs identified in human serum were mostly anti-estrogenic (Moore et 

al, 1997). Recently, Kester et al. (2000) reported extremely potent inhibition of human estrogen 

sulfotransferase activity in vitro by environmentally relevant OH-PCBs, suggesting that OH-PCBs 

indirectly induce estrogenic activity by increasing estradiol bioavailability in target tissues. 

The aim of the current study was to investigate the potential impact of in utero exposure to 

4-OH-CB107 on the development of rat offspring and the possible long-term effects on sex steroid 

hormone levels and reproduction. Effects on brain development were also investigated, but will be 

reported elsewhere (see Chapter 7). Pregnant rats were exposed to 0.5 or 5 mg of 4-OH-CB107 from 

gestation days 10 to 16. To discriminate between the effects caused by parent compounds and 

hydroxy-metabolites one group of animals was dosed with the parent compound mixture Aroclor 

1254. 

Animals, Materials and Methods 

Chemicals 

4-Hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was synthesized as described by Bergman 

et al. (1995) and at least 99.9% pure. The nomenclature used is adapted from Letcher et al. (2000). 

Aroclor 1254 was kindly donated by Prof. Dr. M. van den Berg (Ritox, University of Utrecht, The 

Netherlands). Dichloromethane and Tris were purchased from Merck Chemical Company (Darmstadt, 

Germany). 125I-Estradiol, estradiol antiserum and goat anti rabbit gamma globulin were obtained from 

Diagnostic Products Corporation (DPC, Breda, The Netherlands). Pregnen-(4)-dion-(3,20), 17(3-

estradiol and bovine serum albumin were obtained from Sigma Chemicals Co. (St. Louis, MO, USA). 

[1,2,6,7-3H] -progesterone was purchased from Amersham (Buckinghamshire, UK). Progesterone 

antiserum was produced as described in Van der Meulen et al. (1988) and Mattheij and Swarts 

(1995). Testosterone was obtained from DRG (Marburg, Germany). Ultima Gold liquid scintillation 

fluid was purchased from Canberra Packard (Packard, St. Louis, MO, USA). 

Animals and treatment 

All experimental procedures involving animals were approved by the Animal Welfare Committee of 

Wageningen University. Wistar WU rats (60 females, 30 males; 14 weeks old) were purchased from 

Charles River (Sulzfeld, Germany) and allowed to acclimatize for three weeks. Throughout the 
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experiment, animals were kept in an artificial 12-h:12-h light-dark cycle with lights on at 06:00 h. 

Room temperature was maintained at 21 ± 2°C and humidity at 50 ± 10%. Animals were provided rat 

chow (Hope Farms, Woerden, the Netherlands) and tap water ad libitum. 

After the acclimatization period two females were placed in a cage with one male from 

17:00 to 8:00 hr the next day. Copulation was examined each morning by checking the presence of 

sperm in the vaginal smear. When spermatozoa were found, this day was designated as day 0 of 

gestation (GD0) and females were housed individually. On day 10 of gestation the pregnant rats were 

divided randomly into the different treatment groups and transferred to a macrolon, stainless steel 

cage to facilitate the collection of PCB-contaminated feces. In total 52 pregnant rats (13 per exposure 

group) were dosed by oral intubation with 0, 0.5 or 5 mg 4-OH-CB107 per kg body weight per day 

dissolved in corn oil (2 ml/kg) from gestation days 10 to 16. For comparison of the effects of 4-OH-

CB107 with effects caused by parent PCB congeners, a fourth group of rats was dosed with 25 mg 

Aroclor 1254 per kg body weight from gestation days 10 to 16. In a former study it was observed that 

this dose level of Aroclor 1254 resulted in an amount of 4-OH-CB107 in the fetal compartment in the 

same range as observed after in utero exposure to 5 mg/kg 4-OH-CB107 (Meerts et al, Chapter 5). 

Maternal body weights were monitored daily throughout gestation. On day 20 of gestation, 

pregnant females were transferred to bedding material. At birth, i.e. postnatal day (PND) 0, live 

offspring were counted and sexed. Individual pups and the dams were weighed on PND 1, 4, 7, 14, 

and 21, and after weaning body weights of the offspring were monitored weekly until sacrifice. On 

PND 4, litters were adjusted to 4 males and 4 females. Generally, this required the termination of 

excess offspring. However, in a few cases where a litter contained less than eight pups or the sex 

distribution was not permissive, the standardized litter required pups from two dams. To maintain 

litter independence, no dam was allowed to contribute pups to more than one litter. In addition, pups 

transferred from one litter to another were not used for any analysis. The standardized litter became 

the experimental unit and all treatment mean values reported are litter based. Liver, kidneys, brain and 

thymus were weighed. The remaining offspring were numerically marked on their feet to identify 

individual animals within a litter. 

Developmental landmarks 

During the study, a number of developmental landmarks of all litters were recorded in a blind fashion. 

Treatment groups were decoded only after termination of the animals when all analyses were 

completed. On PND 1 and PND 4, anogenital distance (AGD) and crown-rump length (CRL) were 

measured on each pup by means of a micrometer, capable of resolution to 0.01 mm. AGD was 

measured in both sexes as the distance from the anterior edge of the anus to the base of the genital 

tubercle. Measurements of AGD and CRL were done by one person, to avoid individual variations. 

Each individual pup was additionally examined for the following developmental landmarks: pinna 

detachment (starting on PND 1), age at the onset of hair growth, age at bilateral eye opening (starting 

on PND 12). 

Following weaning at PND 21, pups were housed with littermates in unisexual groups, two 

pups per cage. Dams were sacrificed at PND 21 under ether anaesthesia and blood was collected via 

the vena cava in heparinized tubes for thyroid hormone measurements. Liver, kidneys, adrenals, 
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thymus, brain, spleen, uterus and ovary were collected, blotted dry and weighed. All organs were 

frozen in liquid nitrogen and stored at -80°C. 

Female pups were examined daily for vaginal opening, starting at PND 30. The age at 

preputial separation (Korenbrot et ah, 1977) in male offspring was examined from PND 35 until a 

complete preputial separation in all males was achieved. After puberty, the offspring was split into 

two cohorts; one cohort (n = 41 litters with 2 males and 2 females per litter) was housed individually 

and used for behavioural studies which will be reported elsewhere. From the other cohort (n = 41 

litters, 2 males and 2 females per litter), females were also housed individually to study estrous 

cyclicity and reproduction as described below. Male offspring from this cohort were housed in 

unisexual groups with 2 animals per cage until dissections at about 11 months of age. 

Reproductive capability of female offspring 

Female vaginal estrous cyclicity was monitored for 21 days, starting at PND210, by daily evaluation 

of the vaginal smears (between 8:00 and 10:00 hr and at other times as needed). Differentiation of the 

cells during the four days of the estrous cycle was determined microscopically according to Staples 

and Geils (1965). Due to the effects found on the length of the estrous cycle (cf. Results), a study was 

conducted to determine the reproductive capability of the female offspring. The females were split 

into two cohorts; one cohort stayed in unisexual groups with 2 females per group until necropsy at 

about 12 months of age to determine possible long term adverse effects on sex steroid parameters. 

The other cohort (n = 41) was housed individually, and after 2 weeks mating with untreated males (16 

weeks old, Charles River, Sulzfeld, Germany) was started (1:1). Copulation was examined each 

morning by checking the presence of sperm in the vaginal smear. When spermatozoa were found, this 

day was designated as day 0 of gestation (GD0). If no spermatozoa were found, the female was 

remated up to two weeks with a stud male. The number of matings was recorded. Pregnant females 

were sacrificed at GD20 under ether anaesthesia. Maternal blood was collected via the vena cava in 

heparinized tubes, and plasma was prepared and stored at -80°C for measuring thyroid hormones, 

estradiol, progesterone and testosterone. Maternal body weight, ovarian weights, and the number of 

corpora lutea (examined with a microscope), implantation sites and embryos were recorded. 

Additionally, maternal liver, kidneys, spleen, brains and thymus were weighed. From the fetuses, sex 

was determined and liver, brain and thymus were removed and weighed. 

Long term effects on male and female hormone levels 

Male offspring and the female cohort that was not used for the reproductive capability study were 

dissected at about 11 months of age (PND 310 - 320) to determine possible long term adverse effects 

on sex steroid parameters. To avoid the effects of stress on serum steroid hormone levels, the animals 

were killed by decapitation within 15 s of removal from their cages. Dissections were conducted 

between 08:00 and 12:00 to minimize circadian influences on testosterone and estradiol levels. Trunk 

blood was collected in eppendorf tubes (for serum preparation) and heparinized tubes (for plasma) for 

hormone analysis. Immediately after collection of the blood, the brains were dissected rapidly (within 

5 minutes) and separated in different regions for neurotransmitter analyses (described elsewhere). 

Weights measured at dissection included body, liver, kidneys, adrenals, spleen, thymus and pituitary 
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gland. From the males, testes, prostate, seminal vesicle and cauda epididymis were weighed 

additionally. The coagulating glands were detached from the seminal vesicles and care was taken to 

avoid expression of fluids from these organs. From the females, uteri and ovary were weighed. 

Estrous cycle stage was estimated at dissection from the appearance of the uterus as either estrous 

('ballooning') or non-estrous. 

Measurement of sex steroids 

Before estradiol measurements, 100 ul plasma was extracted three times with 1.25 ml 

dichloromethane in glass tubes by vortexing for 30 s, centrifugation at l,000xg for 5 minutes and 

collection of the dichloromethane phase. The dichloromethane phases were pooled, evaporated to 

dryness in a Savant Speed Vac vacuum concentrator and 175 ul phosphate buffered saline containing 

0.1% (w/v) BSA was added to each tube. After thoroughly vortexing, estradiol concentrations were 

measured in triplicate as described by Palm et al. (1999). The extraction efficiency, determined by the 

addition of tracer amounts of 125I-E2 before extraction of the plasma, was 94.2 ± 2.84% for plasma 

from pregnant rats and 95.5 ± 2.32% for non-pregnant rats. 

Progesterone concentrations were measured in triplicate in unextracted plasma, diluted 20 

times in phosphate buffered saline containing 0.1% (w/v) BSA, as described by Van der Meulen et al. 

(1988) and Mattheij et al. (1995). Testosterone concentrations were measured in duplicate in 

extracted serum using a commercial ELISA kit (DRG, Marburg, Germany). Testosterone was 

extracted from 200 ul serum using the extraction method described above for estradiol analysis. The 

extraction efficiency was determined by comparing extracted standard samples with the non-extracted 

standards and was 95.3 ± 0.6%. 

Statistical analysis 

Statistical analysis was performed using the SPSS statistical software package. Differences between 

the number of pups and organ weights were analyzed by means of analysis of variance (ANOVA). 

Levene's test was used to evaluate homogeneity of variances, and the Bonferroni test was used to 

compare individual treatment means when ANOVA indicated that significant differences were 

present. For the evaluation of body weight development until sacrifice, ANOVA with repeated 

measures was used, with age as factor. For hormone determinations, one pup per litter was used. 

Nonparametric analysis used the Kruskal-Wallis ANOVA by ranks. When this indicated significant 

differences, treatment ranks were compared to the control group by the Wilcoxon-Mann-Whitney test. 

Categorical data were analyzed by Chi-square analysis. 

In all cases, the litter was the independent experimental unit and data from individual male 

and female offspring were assumed to be representative of the litter. Where more than one male or 

female from a given litter was evaluated, the results were averaged to form a litter mean. In all cases 

significance was set &\.p < 0.05. 
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Results 

PO Fertility 

Of the 52 exposed females, 11 were false positive (i.e., spermatozoa were found on GD 0 but the 

female was not pregnant). Unfortunately, 5 false positive females were randomly assigned to the 

lowest 4-OH-CB107 exposure group (0.5 mg/kg), resulting in only 8 litters in this group. The corn 

oil, 4-OH-CB107 (5 mg/kg) and Aroclor treated groups all contained 11 litters (Table 6.1). All 

pregnant dams delivered without complications, and no effects could be observed on length of 

gestational period, litter size, sex ratio (Table 6.1), number of live fetuses, late gestational death, 

number of resorptions or postnatal death (data not shown). In addition, treatment of dams with 4-OH-

CB107 or Aroclor 1254 caused no overt signs of toxicity in dams and offspring as assessed by visual 

inspection (data not shown). 

Growth and Development 

Male and female body weight gain of the offspring were slightly, but not significantly, reduced by 

maternal exposure to Aroclor 1254 (data not shown). At PND 4, male body weights from 4-OH-

CB107 treated animals were significantly higher (p < 0.01) compared to Aroclor treated animals 

(Table 6.1). Crown-rump lengths (CRL) of male and female offspring exposed to 0.5 mg 4-OH-

CB107 per kg body weight were significantly higher compared to Aroclor treated offspring. When 

corrected for crown rump lengths of the animals, female anogenital distances (AGD/CRL-ratio) of the 

Aroclor treated animals were significantly increased by 16% compared to controls (Table 6.1). 

The onset of bilateral eye opening was significantly earlier in male and female offspring 

exposed to Aroclor 1254 via the dams. The day of vaginal opening was not changed by either 4-OH-

CB107 or Aroclor 1254 exposure (Table 6.1). In all groups, vaginal opening occurred at 

approximately PND 34-36 (8-11 litters per exposure group). Male preputial separation was completed 

at PND 43-44 in all treatment groups. 

Organ weights of dams (PQ) and neonates (Ft) 

At PND 21, maternal body weights and absolute or relative weights of the collected organs (liver, 

kidneys, adrenals, thymus, brain, spleen, uterus, ovary) of treated animals showed no differences 

compared to the control group. Absolute and relative liver weights from male and female offspring at 

PND 4 were significantly increased following exposure to Aroclor 1254 (44% and 38%, respectively, 

for relative liver weights, Table 6.2). Relative thymus weight at PND 4 was significantly reduced in 

both male (23%) and female (27%) offspring exposed to Aroclor 1254 in utero. 

Estrous cyclicity in F ; 

The average estrous cycle length of female offspring (Fj) monitored at the age of 210 to 231 days was 

significantly prolonged in females exposed in utero to 5 mg 4-OH-CB107 per kg body weight (Figure 

6.1 A). The prolongation of the estrous cycle was caused by an increased length to 4-7 days of the 

diestrous stage (normal length 2 days), which lasted more than 4 days in 50% and 64% of the females 

in the 0.5 and 5 mg/kg 4-OH-CB107 treatment group, respectively (Figure 6.IB). 
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Table 6.1. Effects on developmental landmarks in rat offspring following in utero exposure to 4-OH-
CB107 or Aroclor 1254 from gestation days 10 to 16. 

Parameters Control 4-OH-CB107 

(0.5 mg/kg) 

4-OH-CB107 

(5.0 mg/kg) 

Aroclor 1254 

(25 mg/kg) 

No. of litters 

Litter size 

Gestational period 

Male to female ratio (%) 

Body weight PND 4 Male 

Female 

AGDa) PND 4 Male 

Female 

Male 

Female 

Male 

Female 

Pinna detachment0' Male 

Female 

Eye opening* Male 

Female 

Age at vaginal opening 

Age at preputial separation 

CRLb) PND 4 

AGD/CRL ratio 

11 

11.7 ±0.3 

21.5±0.1 

1.26 ±0.14 

8.60 + 0.16 

8.29 ±0.18 

3.69 ±0.12 

1.52 ±0.08 

49.50 ±0.42 

48.74 ±0.41 

0.074 ± 0.002 

0.031 ±0.002 

3.8 ±0.2 

3.9 ±0.2 

16.8 ±0.1 

16.7±0.1 

36.4 ±1.1 

43.9 ±0.5 

10.9 ±0.3 

21.8 ±0.1 

1.30 ±0.53 

9.20 ± 0.26** 

8.87 ±0.25 

3.87 + 0.17 

1.64 ±0.06 

50.52 ±0.52* 

49.51 ±0.53* 

0.074 ± 0.004 

0.033 ± 0.001 

4.1 ±0.2 

4.1 ±0.2 

16.6 ±0.2 

16.6 ±0.3 

34.4 ±0.6 

44.0 ±1.1 

11 

10.9 ±0.4 

21.6 ±0.2 

1.27 ±0.24 

9.50 ± 0.46** 

9.08 ±0.41 

4.04 ± 0.08* 

1.64 ±0.05 

50.52 + 0.68 

49.44 ± 0.58 

0.080 + 0.001 

0.033+0.0001 

3.6 ±0.2 

3.7 ±0.2 

16.5 ±0.2 

16.5 ±0.2 

33.9 ±0.4 

44.1 ±0.5 

11 

10.5 ±0.4 

21.7±0.1 

1.00 ±0.17 

8.11 ±0.17 

8.20 ±0.17 

3.63 ±0.12 

1.74 ±0.07 

48.33+0.28 

47.11 ±0.34 

0.077 ± 0.002 

0.036 ±0.001* 

4.0 ±0.2 

3.7 ±0.1 

16.1 ±0.2* 

15.8 ±0.2** 

34.0 ±0.6 

43.4 ±0.5 

Data are given as mean ± S.E.M. * = significant difference from control, p < 0.05; ** p < 0.01; * = 
significant difference from Aroclor 1254, p < 0.05; mp < 0.01 
a) anogenital distance (in mm) 
b) crown-rump length (in mm) 
c' age at pinna detachment (in days) 
d) age at bilateral eye opening (in days). 
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Table 6.2. Organ weights of male and female offspring at PND 4. 

Organ 

PND 4, male 

Control 

n = 8 

4-OH-CB107 
(0.5 mg/kg) 

n = 0a ) 

4-OH-CB107 
(5.0 mg/kg) 

n = 6 

Aroclor 1254 
(25 mg/kg) 

n = 3 

Liver (g) 0.28 ±0.01 0.30 ±0.02 0.36 ±0.02* 
Rel. liver weight (%)b) 3.40 ± 0.06 3.48 ± 0.08*™ 4.91 ± 0.10**** 
Kidney (g) 0.11 ±0.002 0.12±0.006# 0.10±0.006 
Rel. kidney weight (%) 1.26 ±0.03 1.25 ±0.02 1.23 ±0.04 
Thymus (mg) 22 ±0.8 24 ±1.5™ 13 ±0.3**** 
Rel. thymus weight (%) 0.26 ± 0.01 0.26 ±0.01™ 0.17 ±0.01**** 
PND 4, female n = 8 n = 8 n = 7 n^5 
Liver (g) 0.29 ±0.02 0.32 ±0.01" 0.30 ±0.02* 0.40 ±0.03*** 
Rel. liver weight (%) 3.56 ±0.23 3.60 ±0.12™* 3.38 ±0.12™* 4.93 ±0.16**** 
Kidney (g) 0.11 ±0.004 0.12 ±0.004 0.12 ±0.006 0.11 ±0.009 
Rel. kidney weight (%) 1.28 ±0.02 1.34 ±0.03 1.32 ±0.02 1.35 ±0.07 
Thymus (mg) 21 ±1.2 24 ±0.1** 22 ±1.8* 15 ±0.1** 
Rel. thymus weight (%) 0.25 ± 0.01 0.27 ±0.01 0.25 ± 0.01 0.19± 0.01**** 

Data are given as mean ± S.E.M. * = Significant difference from control,/? < 0.05; **p < 0.01; ***p 
< 0.005; **** p < 0.001; * = significant difference from Aroclor 1254,/? < 0.05; mp < 0.01; ***p < 
0.005; m##p< 0.001 

a) At PND 4, there were no males left for autopsy after standardization of the litters in this exposure 
group. 

b) Percentage of total body weight. 

Fi Fertility 

The percentage of mated female F] offspring (age approximately 260 days) with litters was 64% (corn 

oil), 88% (0.5 mg/kg 4-OH-CB107), 73% (5.0 mg/kg 4-OH-CB107) and 91% (Aroclor 1254). No 

effects were observed on the number of matings attempted, the number of resorptions or implantation 

sites, the number of dead or life fetuses, total litter weight, mean fetal body weight or sexe ratio (data 

not shown). A slight but not significant increase was observed in the number of corpora lutea (CL) in 

the left (27%, Figure 6.2A) and right (43%, Figure 6.2B) ovary of pregnant female offspring exposed 

in utero to 0.5 mg/kg 4-OH-CB107. Strikingly, in animals exposed to 5.0 mg/kg 4-OH-CB107 no 

differences could be observed in the number of CL in the right ovary, whereas in the left ovary this 

number was increased by 36% compared to control animals (p = 0.09). Maternal absolute and relative 

organ weights (liver, spleen, kidneys, adrenals, thymus) of females offspring at PND 260 exposed in 

utero to 4-OH-CB107 or Aroclor 1254 were not different from corn oil treated females (data not 

shown). In addition, no effects could be observed on F2 fetal absolute and relative organ weights 

(liver, kidney, brain, thymus) at GD20. 
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Figure 6.1. Estrous cycle length (A) and percentages of females with a diestrous stage of 4-7 days (B) 
in offspring, monitored from 210 to 231 days post partum, following in utero exposure to 4-OH-
CB107 or Aroclor 1254. Abbreviations used: 4-OH-CB107 (0.5) = offspring exposed in utero to 0.5 
mg/kg from GD10 to GDI6; 4-OH-CB107 (5) = offspring exposed in utero to 5 mg/kg 4-OH-CB107 
from GD10 to GD16. Statistically significant differences from control are given by * (p < 0.05), ** (p 
< 0.01) or ****(p< 0.001). 
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Figure 6.2. Number of corpora lutea in the left (A) and right (B) ovarium of pregnant female 
offspring at the age of 260 days, following in utero exposure to 4-OH-CB107 or Aroclor 1254. 

Organ weights ofFt males and females at 11 months 

At 11 months of age, no significant differences were observed in body weights, absolute and relative 

weights of adrenals, kidneys, liver, spleen, thymus in both male and female offspring exposed in 

utero (data not shown). In addition, male accessory sex organ weights (prostate, testis, seminal vesicle 

and cauda epididymis) were not affected (Table 6.3). In females from the high 4-OH-CB107 dose 
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group, the weights of the left ovary were significantly increased by 2 1 % compared to females from 

the low 4-OH-CB-107 dose group (Table 6.3). 

Table 6.3. Sex organ weights of male and female rat offspring (F,) at PND 325. 

4-OH-CB107 4-OH-CB107 Aroclor 1254 
Organ Control (0.5 mg/kg) (5.0 mg/kg) (25 mg/kg) 

Males n= 11 n = 8 n= 11 n= 11 

Prostate 0.42 ± 0.02 0.47 ± 0.02 0.48 ± 0.03 0.39 ± 0.02 

Seminal vesicle 1.58 ±0.06 1.69 ±0.10 1.61 ±0.07 1.51 ±0.07 

Testis left 1.76 ±0.09 1.57 ±0.18 1.85 ±0.03 1.81 ±0.03 

Testis right 1.83 ±0.03 1.59 ±0.18 1.85 ±0.04 1.80 ±0.03 

Females n = 1 1 n = 8 n = l l n = l l 

Ovarium left (mg) 46 ± 1.1 43±1.2$ 52 ±1.9 45 ±2.6 

Ovarium right (mg) 46 ± 2.4 48 ± 2.0 48 ± 1.7 43 ± 1.6 

Paired ovarian weight (mg) 92 ±2.1 91 ±3.5 99 ±3.3 88 ±3.7 

Uterus (swollen) 1.43±0.14(7) 1.10±0.09(7) 1.36±0.15(6) 1.06±0.11(6) 

Uterus (not swollen) 0.71 ±0.05 (7) 0.68 ±0.06 (4) 0.75 ± 0.05 (6) 0.68 ± 0.04 (10) 

Data are given as mean ± S.E.M. 
s = significantly different from 4-OH-CB107 (5 mg/kg), p < 0.05. 

Sex steroid hormone levels 

Plasma estradiol concentrations of pregnant F! offspring (PND 260) showed no significant 

differences, although levels in animals treated in utero with 0.5 mg/kg 4-OH-CB107 showed an 

increase in estradiol concentrations of approximately 56% (data not shown). Due to high standard 

deviations, this increase was not significant. 

At 11 months of age, plasma estradiol concentrations in female F[ offspring in the pro-

estrous stage, determined by the appearance of a swollen uterus at necropsy, were significantly 

increased in the 5 mg/kg 4-OH-CB107 treatment group by approximately 230% compared to control 

animals (Figure 6.3). Estradiol concentrations of female Fl offspring of which the uterus was not 

swollen showed no significant differences. 

Plasma progesterone levels were unaltered in pregnant Fi animals (data not shown). In 

addition, progesterone levels at 11 months of age showed no differences between the exposure groups 

(Table 6.4). However, estradiol/progesterone ratios were, not significantly, increased in the 5 mg/kg 

4-OH-CB107 exposed female offspring in the pro-estrous stage (Table 6.4). 

Serum testosterone levels were decreased by 26% (though not significantly) in male 

offspring at 11 months of age of the 5 mg/kg 4-OH-CB107 dose group (data not shown). Testosterone 

levels measured in pregnant female F[ offspring showed no differences between the treatment groups 

(data not shown). 
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Figure 6.3. Plasma estradiol concentrations in 11 months old female offspring in pro-estrous stage, 
exposed in utero to 4-OH-CB107 or Aroclor 1254. Statistically significant differences from control 
are given by ** (p < 0.01). 

Table 6.4. Plasma progesterone (ng/ml) levels and estradiol/progesterone ratios in female offspring at 
the age of 11 months following in utero exposure to 4-OH-CB107 or Aroclor 1254. 

Exposure Corn oil 4-OH-CB107 4-OH-CB107 

(2 ml/kg) (0.5 mg/kg) (5 mg/kg) 

Aroclor 1254 

(25 mg/kg) 

Proestrous stage (ballooning uterus) 

Progesterone 

E/P ratio"; (xlO"3) 

30.1 ±4.3 36.6 ±8.8 36.2 ±8.9 

0.65 ±0.21 0.50 ±0.13 1.55 ±0.5 

23.6 ±2.1 

0.44 ±0.12 

Diestrous stage (no swollen uterus) 

Progesterone 

E/P ratio 

59.5 ±9.3 47.6 ±8.2 75.6 ±8.5 

0.25 ± 0.09 0.29 ± 0.08 0.13 ± 0.03 

68.5 ±9.2 

0.12 ±0.04 

The data are presented as mean ± standard error (SEM). 
a> E/P-ratio = estradiol/progesterone ratio. 
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Discussion 

In the present study the adverse effects caused by in utero exposure to a PCB-metabolite were 

compared with the effect caused by a commercial PCB-mixture (Aroclor 1254). The PCB-metabolite 

used, 4-hydroxy-2,3,3',4',5-pentaCB (4-OH-CB107), is one of the major OH-PCBs detected in 

human blood (Bergman et ah, 1994) and was shown to accumulate in the blood and brain of fetuses 

and neonates exposed in utero to Aroclor 1254 (Morse et al., 1996a). To our knowledge, this is the 

first study investigating the possible long-term effects following in utero exposure to a PCB-

metabolite on development, sex steroid hormone levels and female reproduction. 

The most pronounced developmental effect observed following exposure to 4-OH-CB107 

was a striking and dose related prolongation of the estrous cycle in female offspring, measured 

between PND 210-231. This prolongation was also observed in the Aroclor 1254 treated animals, but 

less pronounced. The total length of the estrous cycle was significantly prolonged in female offspring 

exposed to 5 mg 4-OH-CB107, indicating that this effect is caused primarily by hydroxylated PCBs 

instead of parent PCB congeners. Aroclor 1254 and Ah receptor binding PCB congeners have been 

reported to induce several adverse effects on mammalian endocrine function. For example, 

prolongation of the estrous cycle (by an increasing length of the diestrous stage) and a delay in the 

first estrous was observed in female rats after transplacental and translactational exposure to 30 mg/kg 

Aroclor 1254 for 1 month (Brezner et al., 1984). The increased length of the estrous cycle in female 

offspring in our study was also a result of a prolonged diestrous stage, determined by the appearance 

of large amounts of leucocytes in the vaginal smears. A stage representing 11-20 days of diestrous is 

known as pseudopregnancy (De Feo, 1967). In the present study, the total length of the diestrous 

stage did not exceed 7 days. In addition, the prolongation of the diestrous stage had no effects on the 

fertility of the females in this experimental study. However, the disturbances in estrous cycle length 

may indicate that females exposed in utero to especially the PCB-metabolite 4-OH-CB107 may show 

signs of reproductive senescence at an earlier stage in life compared to corn oil treated females. The 

first stage of reproductive senescence in rodents is an increase in mean cycle length. Most aging rats 

then enter a stage of persistent vaginal cornification (PVC), which is often followed by a repetitive 

pseudopregnancy and finally persistent anestrus (Finch et ah, 1984). 

Strikingly, plasma estradiol levels in 11-month old female offspring were significantly 

increased by 230% in the 5 mg/kg 4-OH-CB107 exposed group (in the pro-estrous stage). High 

plasma E2 values are often observed in aging rats with a prolonged estrous cycle (Lu et al, 1994). It is 

demonstrated that greater amounts of plasma E2 in middle aged rats during successive estrous cycles 

gradually diminishes the neuroendocrine responsiveness to the positive feedback effect of E2 on LH 

secretion (LaPolt et ah, 1988). Another possible explanation may be the recently published results by 

Kester et al. (2000), who showed that OH-PCBs, including 4-OH-CB107, are extremely potent 

inhibitors of the human estrogen sulfotransferase (hEST) in vitro. In fact, 4-OH-CB107 was one of 

the strongest of the 32 tested compounds with an IC50 of 0.15 - 0.25 nM. Estrogen sulfation is a 

normal route of reversible inactivation of estradiol. As a result of the inhibition of estrogen sulfation, 

OH-PCBs may increase the bioavailability of E2 in target tissues, thereby exerting an indirect 

estrogenic effect or mimicking the increase in plasma E2 levels observed in aging female rats. 
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4-OH-CB107, used as a model PCB-metabolite in this study, is also known to possess anti­

estrogenic activity in vitro in HeLa cells, or in human T47D breast tumour cells transfected with an 

estrogen responsive luciferase gene construct (Moore et al, 1997; Meerts, unpublished results). In 

addition, Moore et al. (1997) showed that 4-OH-CB107 significantly displaced [3H]E2 from the rat 

uterine cytosolic estrogen receptor, though < 50% displacement was observed at the highest 

concentration used (10~3 M). It is thus very unlikely that the observed increases in E2 in our study are 

caused by binding of the metabolite to the estrogen receptor. 

Next to the above mentioned effects of 4-OH-CB107 on the estrous cycle length and 

estradiol concentrations, all other developmental effects observed were caused by the parent 

compound (Aroclor 1254) only. These effects include a significant increase in the female anogenital 

distance/crown-rump length ratio (AGD/CRL), an indicator of circulating androgen concentrations 

over time or of decreased androgen responsiveness. This may indicate a possible partial 

'masculinization' of female offspring by Aroclor 1254 treatment. In addition, exposure to 25 mg/kg 

Aroclor 1254 significantly accelerated eye opening in the offspring by one day. Similar effects have 

been observed using either TCDD (Gray et al, 1997; Theobald and Peterson, 1997) or Aroclor 1254 

(Goldey et al, 1995a). The effect on eye opening is most likely caused by a direct effect of the 

compound used (i.e. PCBs or TCDD) and not caused by the accompanying hypothyroidism observed 

in treated offspring, since hypothyroidism is typically associated with a delay in this developmental 

landmark (Adams et al, 1989; Goldey et al, 1995b). From the present study it can be concluded that 

accelerated eye opening is most likely an effect of parent PCB congeners, and not their metabolites. 

In conclusion, maternal exposure to the PCB-metabolite 4-OH-CB107 results in a 

significant increase of the estrous cycle length and increased estradiol/progesterone ratios. The effects 

of the PCB-metabolite are sex-related, since no effects could be detected on male accessory sex organ 

weights or testosterone levels at postnatal days 310 to 325. The well-known developmental effects of 

Aroclor 1254 (accelerated eye opening in treated offspring, increased AGD/CRL in female offspring), 

also shown in this study, could not be observed in offspring exposed to 4-OH-CB107 only. The 

adverse effects of 4-OH-CB107 on neurotransmitter levels and brain development in rat offspring 

exposed in utero will be published elsewhere (see Chapter 7). 

Acknowledgements 

The authors wish to thank the colleagues from the Toxicology group of the Wageningen 

University for their assistance at the animal autopsy. We also wish to thank Suzanne Arts, Wilma 

Blauw, Gerrit van Tintelen, Maria Faassen-Peters and Rene Bakker for skilful assistance during the 

animal study. The authors are very grateful to Tatiana Cantillana for synthesis of the PCB-metabolite. 

This research was financially supported by the European Commission, Environment and Climate 

Program (ENV4-CT96-0170). 

98 



CHAPTER 7 

Developmental exposure to 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl 
(4-OH-CB107): Long term effects on brain development, behaviour and 

brain stem auditory evoked potentials in rats 

Abstract 

Neurotoxic effects caused by polychlorinated biphenyls (PCBs) have been reported in both humans 

and animals. The purpose of the present study was to compare the possible developmental neurotoxic 

effects of a PCB metabolite, 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107), with a mixture of 

parent PCB congeners (Aroclor 1254), which was found to give rise to an accumulation of mainly 4-

OH-CB107 in fetuses following maternal exposure. Pregnant female Wistar WU rats were exposed to 

0.5 or 5 mg 4-OH-CB107, or 25 mg Aroclor 1254 per kg body weight from gestation days 10 to 16. 

Plasma thyroid hormone levels were significantly decreased in male and female offspring of all 

treatment groups at postnatal day 4 (PND 4). Behavioural experiments using an open field paradigm 

revealed an impaired habituation in male offspring of all treatment groups at PND 130, whereas no 

effects in female offspring were observed. Passive avoidance experiments indicated significant 

influences on the time course of step-down latencies across trials in exposed male rats. Catalepsy 

induced by the dopamine receptor blocker haloperidol showed increases in latencies to movement 

onset in female offspring of the low dose (0.5 mg/kg) 4-OH-CB107 exposure group compared to 

Aroclor 1254 treated offspring at PND 168-175. In contrast, male offspring exposed to 4-OH-CB107, 

or Aroclor 1254 showed decreases in latencies compared to control animals. Brain stem auditory 

evoked potentials (BAEPs) measured in male and female offspring at PND 300-310 showed 

significant increases in auditory thresholds in the low frequency range. In the frequency range from 1 

to 4 kHz, peak II latencies in the BAEP were increased in males exposed to 5 mg/kg 4-OH-CB107, 

but the differences failed to reach statistical significance. A significant treatment-related overall effect 

was observed on latencies of peak II after click stimulation in both sexes. Male offspring exposed to 

4-OH-CB107 exhibited dose-dependent, though not significant prolongations of peak II latency. 

Measurements of neurotransmitter levels revealed that developmental exposure to Aroclor 

1254 affects both the dopaminergic and serotonergic system, whereas exposure to 4-OH-CB107 

affects dopaminergic and noradrenergic systems, with slight but not significant effects on the 

serotonergic system. 
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These results indicate that the PCB metabolite 4-OH-CB107 is able to induce long term 

effects on behaviour and neurodevelopment. The observed effects for 4-OH-CB107 are similar to, but 

in some aspects different from the effects observed after Aroclor 1254 exposure. 

Based on: Meerts I.A.T.M., Lilienthal H., Seegal R.F., Brosch K.O., Hoving S., van den Berg J.H.J., 

Weijers B.M., Bergman A, Koeman J.H., and Brouwer A. 

Introduction 

In utero and lactational exposure to polychlorinated biphenyls (PCBs) may result in developmental 

effects in the offspring of laboratory animals (reviewed by Brouwer et al, 1995). These 

developmental effects include alterations in thyroid hormone homeostasis (Morse et al, 1996a; 

Brucker-Davis 1998; Brouwer et al., 1998), neurobehavioural effects (Tilson et al, 1990; Tilson and 

Kodavanti, 1997, Schantz et al, 1995, Seo et al, 1995, Lilienthal et al. 1997), reproductive and 

endocrine effects (Peterson et al, 1993, Hany et al 1999a,b) and neurochemical effects (Seegal, 

1996; Morse et al, 1996c). The adverse effects caused by PCBs are dependent on the time of 

exposure and the structural characteristics of the PCB congener. For example, ortho-substituted PCB 

congeners reduce brain dopamine concentrations in both adult rats and rats exposed in utero through 

weaning, whereas coplanar, dioxin-like PCB congeners affect neurotransmitter levels predominantly 

after in utero exposure (Seegal et al, 1996). It is postulated that the changes in neurochemical 

parameters in PCB-exposed offspring may be causatively linked to the observed neurobehavioural 

changes such as locomotor activity, delayed spatial learning, and active and passive avoidance 

(Seegal et al, 1996; Schantz et al, 1995; Seo et al, 1995). The mechanism by which PCBs interfere 

with neuronal development causing long term effects on neurobehaviour is unknown, but PCB-

induced hypothyroidism (reviewed in Brouwer et al, 1998) as well as the observed changes in 

neurotransmitter levels are suggested to play a role. Perinatal exposure to Aroclor 1254 is known to 

reduce fetal and neonatal thyroid hormone levels in rats (Morse et al, 1996a). Long term effects 

observed in offspring exposed perinatally to Aroclor 1254 are e.g. alterations in serotonin metabolism 

in several brain areas (Morse et al, 1996c) and a selective low-frequency hearing loss (Goldey et al, 

1995). Goldey and Crofton (1998) showed that this hearing loss could be partially prevented by T4 

replacement. 

Previous studies at our laboratory have shown that exposure of pregnant rats to Aroclor 

1254 from gestation days 10 to 16 resulted in a substantial accumulation of mainly one hydroxylated 

metabolite (2,3,3',4',5-pentachlorobiphenyl, 4-OH-CB107) in the fetal compartment, especially in the 

brain (Morse et al, 1996a). This PCB metabolite is one of the major metabolites identified in blood 

samples of seals, rats and humans (Bergman et al, 1994, Sjodin et al, 1999). 4-OH-CB107 is a 

metabolite of 2,3,3',4,4'-pentachlorobiphenyl (CB-105) and of 2,3',4,4',5-pentachlorobiphenyl (CB-

118) (Sjodin et al, 1998). The presence of 4-OH-CB107 in blood plasma of humans and wildlife, its 

observed accumulation in brain from animals exposed to Aroclor 1254, and its potency to induce 

drastic decreases in thyroid hormone levels following prenatal exposure (Meerts et al; submitted, 
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Chapter 6), prompted us to investigate the potency of 4-OH-CB107 to induce possible 

neurobehavioural and neurochemical changes in rat offspring exposed in utero. To compare the 

effects observed by 4-OH-CB107 with effects caused by parent PCBs, one group of animals was 

dosed with Aroclor 1254. 

Animals, Materials and Methods 

Chemicals 

4-Hydroxy-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was synthesized as described by Bergman 

et al. (1995) and at least 99.9% pure. Aroclor 1254 was kindly donated by Prof. Dr. M. van den Berg 

(Ritox, University of Utrecht, The Netherlands). 

Animals and treatment 

All experimental procedures involving animals were approved by the Animal Welfare Committee of 

Wageningen University. Wistar WU rats (60 females, 30 males; 14 weeks old) were purchased from 

Charles River (Sulzfeld, Germany) and allowed to acclimatize for three weeks. The rats were 

maintained in macrolon cages in rooms with 50 ± 10% humidity and 21 ± 2°C, in an artificial 12-

hr 12-h light-dark cycle with lights on at 06:00 h. Rat chow (Hope Farms, Woerden, the Netherlands) 

and tap water were supplied ad libitum. After the acclimatization period two females were placed in a 

cage with one male overnight from 17:00 to 8:00 hr. Copulation was examined each morning by 

checking the presence of sperm in the vaginal smear. When spermatozoa were found, this day was 

designated as day 0 of gestation (GD0) and females were housed individually. On day 10 of gestation 

the pregnant rats were divided randomly into the different treatment groups and transferred to a 

macrolon, stainless steel cage to facilitate the collection of PCB-contaminated faeces. 

Pregnant females (13 per exposure group) received a daily oral dose of 0, 0.5 or 5 mg 4-OH-CB107 

per kg body weight dissolved in corn oil (2 ml/kg body weight) from gestation days 10 to 16. For 

comparison of the effects of the PCB-metabolite with effects caused by parent PCB congeners, a 

fourth group of rats was dosed with 25 mg Aroclor 1254 per kg body weight from gestation days 10 

to 16. This dose level was chosen since 25 mg/kg Aroclor 1254 given to pregnant rats gave rise to a 

PCB metabolite production equivalent to 5 mg/kg of 4-OH-CB107 (Morse et al, 1996a). Maternal 

body weights were monitored daily throughout gestation and lactation. On day 20 of gestation, 

pregnant females were transferred to bedding material and were given paper tissues to make a litter. 

The offspring were counted, inspected for signs of overt toxicity and weighed at birth (PND 0), 

PND1, 4, 7, 14 and 21. After weaning, body weights of the offspring were monitored weekly until 

sacrifice. On PND 4, litters were standardized to 4 males and 4 females. Generally, this required 

culling of excess offspring. However, in a few cases the standardized litter required pups from two 

dams. To maintain litter independence, no dam was allowed to contribute pups to more than one litter. 

In addition, pups transferred from one litter to another were not used for any analysis. The 

standardized litter became the experimental unit and all treatment mean values reported are litter 

based. The pups were numerically marked on their feet to identify individual animals within a litter. 
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Excess pups were decapitated at PND4 and trunk blood was collected for thyroid hormone analysis. 

Liver, kidneys, brain and thymus were weighed. 

Following weaning at PND 21, pups were housed with littermates in unisexual groups, two pups per 

cage. After puberty, the offspring was split into two cohorts. One cohort (n = 41 litters with 2 males 

and 2 females per litter) was used for examining reproductive effects (described in Meerts et al, 

submitted; Chapter 6). Animals from the other cohort (also 41 litters with 2 males and 2 females per 

litter) were housed in unisexual groups. At least two weeks before the onset of behavioural testing, 

animals were housed individually in unisexual groups. 

Thyroid hormone analysis 

Plasma total T4 (TT4), free T4 (FT4) and total T3 (TT3) were analysed in duplicate using 

chemiluminescence kits and plasma thyroid stimulating hormone (TSH) concentrations were analysed 

with a specific rat TSH immunoassay. All kits were purchased from Amersham (Amersham, 

Buckinghamshire, UK). The intra- and interassay variations were below 10% for all hormones. 

Behavioural testing 

Behavioural tests were conducted in naive male and female offspring. Only one randomly selected 

male and female rat per litter was used for one behavioural test. The experiments were performed in a 

blind fashion. 

At PND 130, locomotor activity of male and female offspring was measured in an open 

field paradigm following the procedures described in Hany et al. (1999a). Briefly, 8 males and 8 

females per exposure group (from different litters) were placed in a white octagonal arena with a 

diameter of 75 cm for 9 minutes, subdivided into three intervals of three minutes each. The open field 

was evenly illuminated by indirect light provided by two lamps (40 W each). The movements of the 

animals were recorded by a video camera, which was connected to a digital image processing system 

(Ethovision, Noldus, Wageningen, The Netherlands). The plane of the open field was subdivided in 

an inner zone, measuring 50 cm in diameter, and an outer zone, consisting of the remaining outer 

ring. 

The passive avoidance behaviour was studied in a step down task at PND 130 as described 

in detail by Weinand-Harer et al. (1997). In short, a 1 mA footshock with a 1-s duration was used in 

the conditioning trial. Subsequently, step-down latencies from a platform were tested 5 minutes, 4 

hours and 24 hours after the conditioning, with a maximal duration of 180 s per trial. 

Between PND 168 and 175, catalepsy induced by the dopamine receptor blocker 

haloperidol was tested in male and female offspring as described by Weinand-Harer et al. (1997). 

Only females in the diestrous stage of the estrous cycle were used for the test. Haloperidol was 

injected intraperitoneally at a concentration of 0.3 mg/kg body weight, and the animals were tested 30 

min and 60 min after injections by placing the rat in three postures: (i) placing both front paws on a 

horizontal bar 9 cm above the surface, (ii) putting the rat on a grid, with a 10 degrees deviation from 

the vertical plane, and (iii) placing the paws in four different holes of a box. Time for retraction of the 

first paw and descent latency, latency to movement onset, and retraction of a front leg and a hind leg 
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were determined on conditions (i), (ii), and (iii), respectively. If the rat failed to move one paw, 

testing was terminated at 180s on all conditions. 

Brain stem auditory evoked potentials 

Between PND300 to 310 auditory thresholds and peak latencies were studied in male and female 

offspring by recording brain stem auditory evoked potentials (BAEPs) using methods adapted from 

Lilienthal and Winneke (1996). The animals were housed individually during two weeks before the 

start of the BAEP measurements. The animals were sedated with an i.p. injection of ketamine (90 

mg/kg body weight for males, 55 mg/kg body weight for females) and maintained on xylazine (3.5 

mg/per kg body weight for males, and 3 mg/kg body weight for females). Rats were placed on a 

heating pad to prevent from cooling. Needle electrodes were placed under the skin at the vertex and 

behind both ears. The ground electrode was contralateral to the stimulated right ear. The left ear was 

occluded by a tissue plug in the outer ear channel. Impedance was 5 kii at the maximum. 

Brain stem auditory evoked potentials were recorded on a Pathfinder II (Nicolet Inc., 

Madison, WI) after stimulation with rarefaction clicks using a shielded high frequency piezo 

loudspeaker and a SM 700 multisignal auditory generator. Clicks were presented at seven different 

sound pressure levels (72, 62, 52, 42, 32, 22, and 12 dB, re. 20 uPa) using a repetition rate of 11.1 Hz. 

The pulse width was set to 50 us. In addition, BAEPs evoked by tone pips at different frequencies 

(20, 16, 8, 4, 2, 1, and 0.5 kHz) were recorded at sound pressure levels (SPL) ranging from 88 to 8 

dB. Because of the general lower hearing capacity at the lower frequency border in rats, higher sound 

pressure levels, up to 110 dB, were used at 0.5 kHz for threshold determination. Tone pips with 

frequencies below 4 kHz were delivered by shielded TDH 39P earphones. Sound pressure levels were 

calibrated with a precision sound level meter (type 2230, Briiel & Kjaer) equipped with a 0.5" 

condenser microphone (type 4165, Briiel & Kjaer). The whole set-up was calibrated using a 

pistonphon (type 4220, Briiel & Kjaer). 

For recording, the sweep duration was set at 8 ms. Sweeps were sampled with a rate of 62.5 

kHz. For each BAEP 1000 sweeps were averaged using the artefact rejection. For the determination 

of thresholds, sound pressure level was progressively lowered until even the most prominent peak No. 

II was no longer identified in the BAEP. 

Dissections 

Dams were sacrificed at weaning (PND21) under ether anaesthesia and blood was collected via the 

vena cava in heparinized tubes for thyroid hormone measurements. Liver, kidneys, adrenals, thymus, 

brain, spleen, uterus and ovary were collected, blotted dry and weighed. 

Male and female offspring were sacrificed between postnatal days 310 to 325. The animals 

were killed by decapitation within 15 s of removal from their cages. Dissections were conducted 

between 08:00 and 12:00. Trunk blood was collected in Eppendorf tubes (for serum preparation) and 

heparinized tubes (for plasma) for hormone analysis. Brains were dissected rapidly on ice (within 5 

minutes) and separated into the following regions: lateral olfactory tract (LOT), prefrontal cortex 

(PFC), frontal cortex (FC), caudate nucleus (CN), and nucleus accumbens (NA). Brain regions were 

weighed, immediately frozen in liquid nitrogen and stored at -80°C until analysis of biogenic amines. 
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Measurement of biogenic amines 

Brain regions were thawed by the addition of 10 volumes of ice cold 0.2N perchloric acid containing 

100 mg/1 of ethylene glycol-bis-(B-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and 

homogenized on ice with an ultrasonic tissue disruptor (Vibra cell, Sonics& Materials Inc. Danbury, 

CT, USA) for 30 seconds. The regional brain levels of the neurotransmitters dopamine (DA), 5-

hydroxytryptamine (5-HT), and norepinephrine (NE) as well as the DA metabolites 3,4-

dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-

hydroxyindole-3-acetic acid (5-HIAA) were determined by HPLC separation and electrochemical 

analysis as described before (Seegal et ah, 1986). 

Statistical analysis 

Statistical analyses were performed using the SPSS or SAS statistical software package. Depending 

on the data structure different statistical analyses were conducted. The data of the open-field and 

passive avoidance test were assessed by analysis of variance (ANOVA) with repeated measures on 

the factor time. Wilk's Lambda was used to analyze within subjects effects. The catalepsy data were 

analyzed with the median test (Siegel, 1952). BAEP results were analyzed using multivariate analysis 

of variance (MANOVA) with repeated measures on the factors SPL and rate. Sex was included as an 

independent factor together with treatment in the multivariate analysis. In addition, preplanned 

univariate ANOVA's with repeated measures on one factor, SPL or rate, were calculated and separate 

ANOVA's were conducted for each gender. Following significant overall F-tests post hoc comparison 

of group means was performed using the Ryan-Einot-Gabriel-Welsch multiple range test. 

Data on regional brain biogenic amine levels and thyroid hormone levels were evaluated 

with one-way analysis of variance (ANOVA). Levene's test was used to evaluate homogeneity of 

variances, and the Bonferroni test was used to compare individual treatment means when ANOVA 

indicated that significant differences were present. When the Levene's test was significant, a log 

transformation of the data was performed prior to ANOVA. 

Results 

Body and organ weights 

No effects were observed on maternal body weight gain, mean and total fetal body weight, number of 

implantation sites, resorptions, number of fetuses per litter, or sex ratio following prenatal exposure to 

4-OH-CB107 or Aroclor 1254 from gestation days 10 to 16 (data not shown). Developmental 

landmarks (i.e. pinna detachment, age at eye opening, anogenital distance, crown rump length, age at 

vaginal opening and preputial separation), estrous cyclicity and F! reproduction effects observed 

following 4-OH-CB107 or Aroclor 1254 exposure are reported elsewhere (Meerts et al., submitted; 

Chapter 6). 

Plasma thyroid hormone levels 

Plasma thyroid hormone and thyroid stimulating hormone (TSH) levels from 4-OH-CB107 or Aroclor 

1254 exposed dams showed no significant differences relative to controls at 21 days postpartum (data 
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not shown). However, four days after birth (PND 4), male and female neonatal total thyroxine (TT4) 

levels were significantly decreased in all exposure groups (Figure 7.1 A). The decrease in TT4 levels 

was highest in the Aroclor 1254 exposed group (66% and 42% decrease in male and female offspring, 

respectively, compared to control animals). Plasma FT4 levels at PND 4 showed a dose dependent, 

though not significant, reduction in 4-OH-CB107 exposed male offspring compared to controls 

(Figure 7.IB). Aroclor 1254 exposed male offspring also showed a decrease in FT4 levels, but this 

was not significant possibly because of the low number of animals in this group (N = 6). In female 

offspring, the effects on FT4 levels were less pronounced (Figure 7.IB). 

Plasma TT3 levels at PND 4 were decreased in both male and female offspring of the 

Aroclor 1254 exposed animals, but this reduction was only significant in males (Figure 7.2). No 

decreases in TT3 levels were observed in offspring exposed to 4-OH-CB107. In addition, neonatal 

TSH levels were not affected at PND 4 in both male and female offspring of the different treatment 

groups (data not shown). 

At 11 months of age, no differences could be observed in thyroid hormone or TSH levels in 

male and female offspring (data not shown). 

• com oil QPCB-OH0 5 OPCB-OH5.0 •Aroclor1254 Ocornoil 0PCB-OHO.5 BPCB-OH5.0 •Aroclor 1254 

9 i! 8 
male 

B 4 

8 8 6 11 8 11 11 
male female 

Figure 7.1. Total thyroxine (TT4, A) and free thyroxine (FT4, B) levels in male and female offspring at postnatal 
day 4 (PND 4) following maternal exposure to corn oil, 4-OH-CB107 (PCB-OH) or Aroclor 1254. * Significant 
differences from Aroclor 1254 (p < 0.05); m (p < 0.01);.* Significant differences from control (p < 0.05); ** p < 
0.01; ***p<0.005; ****/>< 0.001. The number of different litters is given at the base of each column. 
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Dcornoil C]PCB-OH0.5 BPCB-OH5.0 •Aroclor1254 
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Figure 7.2. Total triiodothyronine (TT3) levels in male and female offspring at postnatal day 4 (PND 
4) following maternal exposure to corn oil, 4-OH-CB107 (PCB-OH) or Aroclor 1254. * = 
significantly different from control (p < 0.05); * = significantly different from Aroclor 1254 (p < 
0.05). The number of different litters is given at the base of each column. 

Behavioural tests 

Locomotor activity 

In male offspring, all exposed groups showed a significantly higher overall locomotor activity in the 

open field paradigm in the last 3 minutes compared to controls (Fig. 7.3A). There was a significant 

interaction between exposure and time [F(6,52)=3.37; p < 0.05] as well as a significant quadratic 

contrast for exposure [F(3,27)=3.52; p < 0.05], indicating a different time course of activity in 

different treatment groups. Post hoc testing revealed significant elevations of locomotor activity in all 

exposed groups in comparison to controls during the last 3 minutes of the measuring period (p < 

0.05). No effects could be seen in female offspring (Figure 7.3B). There was also no exposure-related 

difference in the preference for the outer or inner zone in both sexes (data not shown). 

Passive avoidance 

There were no exposure-related differences in avoidance latencies in female rats at PND 130. Data 

indicated a reduction of latencies 4 hours after the conditioning trial in male rats of the low dose 4-

OH-CB107 group, but not in the high dose group (Figure 7.4A). According to ANOVA with repeated 

measures, there was a significant interaction between exposure and time [F(6,52)=2.24; p < 0.05] and 

a significant quadratic contrast, illustrating exposure-related differences in the course of latencies 

across the trials [F(3,27)=4.98; p<0.05]. In addition, the reduction of latencies in the low dose 4-OH-

CB107 group was significant in comparison to controls and the high dose group 4 h after the 

conditioning trial according to post hoc testing (p < 0.05). To verify these subtle changes, the 

measurements were repeated by testing naive littermates at PND 290 (Figure 7.4B). 

106 



In utero exposure to 4-OH-CB107 and brain development 
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en 
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Dcornoil EPCB-OH0.5 BPCB-OH5.0 •Aroclor1254 Dcornoil 0PCB-OHO.5 BPCB-OH5.0 •Aroclor1254 

Figure 7.3. Total distance (in cm) travelled by male (A) and female (B) rats in the whole arena of the 
open field. * = Significantly different from control (p < 0.05). PCB-OH = 4-OH-CB107. Total 
number of litters per exposure group was eight, except for male offspring exposed to 0.5 mg/kg 4-
OH-CB107(N = 7). 

Again, a significant interaction between time and exposure was detected [F(6,54)=2.47; p < 0.05] as 

well as a significant linear contrast [F(3,28)=2.97; p < 0.05]. A steady increase in latencies across the 

trials could be observed only in the Aroclor 1254 group, whereas a plateau was reached in all other 

groups. These differences could not be attributed to different treatment groups according to post hoc 

tests. 
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0 min 5 min 4h 24 h 0 min 5 min 

Figure 7.4. Latencies (in sec) in the passive avoidance task from naive males at PND 130 (A) and 
PND 290 (B). Between brackets the number of litters per exposure group is given, a = marginally 
different from 4-OH-CB107 5 mg/kg; p < 0.1; b = marginally different from corn oil; p < 0.1; * = 
significantly different from Aroclor 1254; p < 0.05; l = significantly different from 4-OH-CB107 5 
mg/kg; p < 0.05. Abbreviations used: PCB-OH = 4-OH-CB107. 
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Catalepsy 
In males, significant differences between groups were detected in the latency to move a front paw on 

the grid (Figure 7.5A,B). Sixty minutes after haloperidol injection, the time needed to move the front 

paw was significantly reduced in rats treated with the low dose of 4-OH-CB107 (0.5 mg/kg;/> < 0.05) 

and rats treated with Aroclor 1254 (p < 0.01) compared to controls. The values of the high dose group 

of 4-OH-CB107 were changed in the same direction, though not significantly. No significant 

treatment related effects were detected in males on the bar or the box. 
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PCB-OH 0.5 (7) PCB-OH 5 (9) corn oil (9) PCB-OH 0.5 (7) PCB-OH 5 (9) AC (7) 

Figure 7.5. Latency to move a front paw on the grid in males, 30 minutes (A) and 60 minutes (B) 
after the challenge with haloperidol. Median, 25% and 75% quartiles are presented. Between brackets 
the number of litters per exposure group is given. Significant difference to control group: * p < 0.05; 
** p < 0.01. Abbreviations used: PCB-OH = 4-OH-CB107; AC = Aroclor 1254. 

In females, a marginally significant increase (p < 0.1) was observed in the latency to 

remove a front paw on the grid in the low dose 4-OH-CB107 group compared to controls 30 minutes 

after haloperidol injection (Figure 7.6A). In Aroclor 1254 treated females, this increase was more 

pronounced (p < 0.05). Sixty minutes after haloperidol injection, the latency was marginally reduced 

(p < 0.1) in the low dose 4-OH-CB107 group compared to the high dose group (Figure 7.6B). 

Latencies to retract a front leg or a hind leg from the box in females 30 minutes after haloperidol 

injection were significantly increased in the low dose PCB-OH group compared to Aroclor treated 

females (data not shown). 

Brain stem auditory evoked potentials 
Auditory thresholds 

For the tone pips, there were significant treatment-related influences on auditory thresholds at 0.5 kHz 

[F(3,56)=4.64; p < 0.05] and 2 kHz [F(3,56)=2.87; p < 0.05] in a two-way ANOVA with gender and 

treatment as independent factors. Gender exerted a significant effect at 0.5 kHz (p < 0.05), but not at 2 

kHz (p< 0.1). 

In females, auditory thresholds were significantly affected by exposure at 1 kHz 

[F(3,34)=3.39; p< 0.05)]. Thresholds were elevated in Aroclor 1254 exposed females compared to all 

other groups, the mean increases to controls measuring 1.7, 4.7 and 1.7 dB at 0.5, 1, and 2 kHz, 
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respectively, but statistical significance (post hoc test, p < 0.05) was obtained only for the difference 

between Aroclor 1254 treated females and female rats exposed to 5 mg/kg 4-OH-CB107 (Figure 7.7). 

This outcome was supported by a significant interaction between frequency and treatment [F{ 18,204) 

= 2.27; p< 0.01] across all frequencies. There were no significant auditory threshold deficits in males 

(data not shown), only a marginally significant treatment effect at 500 Hz [F(3,22) = 2.60; p < 0.08]. 
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Figure 7.6. Latency to move a front paw on the grid in females, 30 minutes (A) and 60 minutes (B) 
after the challenge with haloperidol. Median, 25% and 75% quartiles are presented. Between brackets 
the number of litters per exposure group are given, a = marginally different from 4-OH-CB107 (5 
mg/kg); p < 0.1; b = marginally different from corn oil; p < 0.1; * = significantly different from corn 
oil.p < 0.05. Abbreviations used: PCB-OH = 4-OH-CB107; AC = Aroclor 1254. 

With the exception of a significant overall gender effect [F(l,58) 

exposure related effects were detected on click thresholds. 

4.44; p < 0.05], no 

Peak latencies 

Analysis of peak II at different frequencies and sound pressure levels (SPL) revealed a significant 

interaction between SPL and treatment at the 500 Hz frequency in males [,F(12,84) = 2.43; p < 0.05, 

data not shown]. Representative traces of BAEPs at 1 kHz and 88 dB are shown in figure 7.8. Latency 

values of peak II at 1 kHz are given for three different sound pressure levels in Table 7.1. Compared 

to all other groups, male animals treated with 5 mg/kg 4-OH-CB107 exhibited the highest latency 

values at all frequencies and SPL tested. In addition, 4-OH-CB107-induced prolongation of peak II 

latency was dose-dependent at all levels used at 1 kHz. However, differences failed to reach statistical 

significance. Similar results were obtained for 2 kHz and 4 kHz (data not shown). 
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Figure 7.7. Auditory thresholds at different tone frequencies in female offspring at PND 300-310 
following maternal exposure to corn oil, 4-OH-CB107 (PCB-OH) or Aroclor 1254. * = Significantly 
different from Aroclor 1254, p < 0.05. The number of animals from different litters used per treatment 
group is given between brackets in the legend. 

After click stimulation using different SPL, there was a significant main effect for exposure 

on peak II latency in both sexes [F(3,54)=3.06; p < 0.05]. According to post hoc tests, there were no 

significant differences between genders. Latency values for peak II are shown in Table 7.1 (for 1 

kHz) and 7.2 (for clicks). Male rats exposed to 4-OH-CB107 exhibited dose-dependent increases in 

peak II latencies on all, but the lowest SPL in comparison to controls and Aroclor 1254 treated rats. 

Representative BAEP traces for clicks at 72 dB are shown in Figure 7.9. According to post hoc tests, 

there was a significant difference between males exposed to the low dose of 4-OH-CB107 and 

Aroclor 1254 treated animals at the lowest SPL (p < 0.05). All other differences were not significant. 

In females dose-dependent increases in latencies due to metabolite exposure were observed 

only at the three lowest SPLs, but there were no significant differences between groups. Also, no 

significant differences were observed on latencies of peak IV and the interpeak latency between II 

and IV (data not shown). 
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Peak II latency, 1 kHz, 88 dB, males 

0,62 /iV 

A1254 

PCB-OH 5.0 

PCB-OH 0.5 

Corn oil 

0.8 2.4 4.0 ms 

Figure 7.8. Grand averages for BAEPs at 1 kHz and 88 dB SPL, abscissa 0.8 ms/div, ordinate 0.620 
uV/div, groups from bottom to top, corn oil, PCB-OH 0.5 (=4-OH-CB107; 0.5 mg/kg bw), PCB-OH 
5.0 (=4-OH-CB107; 5 mg/kg bw), A1254 (= Aroclor 1254). The stimulus artefact was removed from 
the traces. 

Peak II latency, click, 72 dB, males 

A1254 
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0.8 2.4 4.0 ms 

Figure 7.9. Grand averages for BAEPs after click stimulation at 72 dB SPL, abscissa 0.8 ms/div, 
ordinate 0.620 uV/div, groups from bottom to top, corn oil, PCB-OH 0.5 (=4-OH-CB107; 0.5 mg/kg 
bw), PCB-OH 5.0 (=4-OH-CB107; 5 mg/kg bw), A1254 (= Aroclor 1254). The stimulus artefact was 
removed from the traces. 
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Table 7.1. Latency of peak II at different frequencies and sound pressure levels (SPL) 

Exposure 

SPL (dB) 48 68 

1kHz 

88 

Female offspring 

Corn oil 1.987 ±0.047 1.818 ±0.032 1.774 ±0.044 
4-OH-CB107(0.5) 2.087 ±0.049 1.918 ±0.042 1.881 ±0.065 
4-OH-CB107(5) 2.040 ±0.035 1.838 ±0.024 1.806 ±0.043 
Aroclorl254 2.040 ±0.037 1.866 ±0.033 1.768 ±0.025 

Male offspring 
Corn oil 1.961 ±0.028 1.803 ±0.025 1.737 ±0.041 
4-OH-CB107(0.5) 1.995 ±0.047 1.840 ±0.024 1.739 ±0.046 
4-OH-CB107(5) 2.088±0.125 1.934±0.115 1.818 ±0.146 
Aroclorl254 1.986 ±0.027 1.778 ±0.020 1.646 ±0.059 

Data are presented as mean ± SE. * = significantly different from Aroclor, 
p < 0.05. Abbreviation used: PCB-OH = 4-OH-CB107, SPL = sound pressure level. 

Biogenic amines 
3,4-Dihydroxyphenylacetic acid (DOPAC) levels were significantly decreased by 37% (p < 

0.05) in the nucleus accumbens (NA) of male offspring exposed to 5 mg/kg 4-OH-CB107 

compared to control animals (Table 7.3). 

In the caudate nucleus (CN), DOPAC levels were significantly lower in the 5 mg/kg 4-OH-

CB107 group compared to Aroclor 1254 (p < 0.01), but not compared to controls. In females, a slight 

though not significant increase in DOPAC levels was observed in 4-OH-CB107 and Aroclor 1254 

treated animals compared to controls in the NA, and a slight but not significant decrease in DOPAC 

levels in the CN of the 5 mg/kg 4-OH-CB107 dose group. 

5-Hydroxyindole-3-acetic acid (5-HIAA) levels were significantly increased in the frontal 

cortex (FC) of Aroclor 1254 treated male offspring compared to controls (by 62.5%) and 4-OH-

CB107 (by 50%) treated animals. The same trend, though not significant, is visible in female 

offspring. In the caudate nucleus (CN) 5-HIAA levels were significantly increased by 50% (p < 0.01) 

in males from the low 4-OH-CB107 group compared to Aroclor 1254 treated animals. 

The concentrations of homovanillic acid (HVA) in the CN of male animals were 

significantly decreased by 22.5% (p < 0.05) in the high 4-OH-CB107 group compared to controls. No 

effects were observed on the ratio of DOPAC/DA and 5-HIAA/5-HT in different brain regions in 

both male and female offspring. 
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Table 7.3. Biogenic amine concentrations (ng/mg tissue, fresh weight) in different brain regions of 
male and female offspring at the age of 11 months, following in utero exposure to 4-OH-CB107 or 
Aroclor 1254 from gestation days 10 to 16. 

Male 

DOPAC 

DOPAC 

5-HIAA 

5-HIAA 

HT 

HVA 

HVA 

DOPAC/ 

DA (%) 

Female 

DOPAC 

DOPAC 

5-HIAA 

5-HIAA 

HVA 

HVA 

DOPAC/ 

DA (%) 

Brain 

region 

NA 

CN 

FC 

CN 

FC 

PFC 

CN 

CN 

NA 

CN 

FC 

CN 

PFC 

CN 

CN 

Control 

2.63 ±0.19 (10) 

2.27±0.10(11) 

0.024 ±0.002 (11) 

0.020 ± 0.001 (11) 

0.012±0.001(11) 

0.033 ± 0.006 (9) 

0.71 ±0.02 (10) 

16.0 ±1.0 (10) 

3.20 ±0.34 (8) 

3.25 ±0.37 (9) 

0.037 ± 0.003 (9) 

0.025 ± 0.001 (9) 

0.051 ±0.009 (9) 

0.73 ± 0.05 (9) 

36.4 ± 5.7 (9) 

4-OH-pentaCB 

(0.5 mg/kg) 

2.25 ± 0.37 (7) 

2.24 ± 0.23 (7) 

0.023 ± 0.002* (6) 

0.027 ± 0.003™ (7) 

0.011 ±0.001* (6) 

0.043 ± 0.007 (4) 

0.63 ± 0.06 (7) 

20.7 ±1.6 (7) 

4.21 ±0.23 (7) 

3.41 ±0.42 (8) 

0.039 ± 0.003 (8) 

0.031 ±0.001 (7) 

0.077 ±0.014 (8)" 

0.76 ±0.10 (8) 

41.2 ±8.1 (8) 

4-OH-pentaCB 

(5.0 mg/kg) 

1.66 ±0.21* (10) 

1.86 ±0.14" (11) 

0.026 ± 0.002" (10) 

0.021 ±0.001 (10) 

0.014 ±0.001 (10) 

0.024 ± 0.004 (6) 

0.55 ±0.03* (11) 

16.7 ±0.9" (11) 

4.16 ±0.39 (10) 

2.83 ±0.21 (10) 

0.037 ± 0.003 (9) 

0.029 ± 0.002 (9) 

0.049 ± 0.005 (9) 

0.61 ±0.04 (10) 

29.0 ± 4.0 (9) 

Aroclor 1254 

(25 mg/kg) 

2.50 ± 0.27 (8) 

2.70 ±0.21 (8) 

0.039 ± 0.004** (8) 

0.018 ±0.002 (8) 

0.021 ±0.004* (8) 

0.023 ± 0.004 (6) 

0.66 ± 0.04 (8) 

22.2 ± 2.0* (8) 

4.32 ±0.33 (10) 

3.76 ±0.43 (10) 

0.045 ± 0.003 (9) 

0.029 ± 0.002 (9) 

0.034 ±0.005 (10) 

0.67 ±0.07 (10) 

46.0 ±6.4 (10) 

Data are given as mean ± S.E.M. * = significant difference from control, p < 0.05; ** p < 0.01; * = 
significant difference from Aroclor 1254, p < 0.05; ** p < 0.01. The number of litters per exposure 
group is given between brackets. 

Discussion 
The purpose of the present study was to compare the possible developmental effects caused by the 

PCB-metabolite 4-hydroxy-2,3,3',4',5-pentaCB (4-OH-CB107) with parent compounds, using the 

commercial PCB mixture Aroclor 1254. The data obtained demonstrate that prenatal exposure to 4-

OH-CB107 can induce adverse developmental neurotoxic effects on its own which are similar, but 

also partly different from these caused by parent PCB congeners. 

Maternal exposure to 4-OH-CB107 or Aroclor 1254 resulted in a significant decrease in 

plasma total thyroxine (TT4) levels in both male and female offspring 4 days postpartum. The TT4 

reductions in the 5 mg/kg 4-OH-CB107 exposure group at PND 4 (approximately 34%) were less 

severe compared to reductions observed in fetuses at GD20 (reduction of 89%, Meerts et al., 

submitted). This phenomenon was also observed after exposure of dams to 25 mg/kg Aroclor 1254 in 
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a similar experimental setup (Morse et al, 1996a). The fact that Aroclor 1254 exposed offspring 

showed a more severe reduction in TT4 levels at PND 4 compared to the 4-OH-CB107 exposed 

offspring (this study) whereas the reduction in fetal TT4 levels was lower in Aroclor 1254 exposed 

compared to 4-OH-CB107 exposed fetuses (Meerts et al, submitted) might be explained by kinetic 

differences between 4-OH-CB107 and Aroclor 1254. It is very likely that 4-OH-PCB107 will be 

distributed and diluted in growing neonates and eliminated faster than the parent compounds. In 

addition, in neonates dosed with Aroclor 1254, the production of metabolites including 4-OH-CB107 

will continue, giving rise to a more continuous exposure to 4-OH-CB107 compared to 4-OH-CB107 

treated offspring. 

The observation that serum TSH levels in Aroclor 1254 treated offspring 4 days postpartum 

do not respond to the reductions in thyroxine (T4) levels, is consistent with earlier findings (Goldey et 

al, 1995a; Hood et al, 1995; Liu et al, 1995; Morse et al, 1996a). Fetal TSH levels at GD20 were 

also not increased following Aroclor 1254 exposure (Morse et al, 1996a). It is hypothesized that PCB 

congeners and/or their metabolites mimic thyroid hormones (Rickenbacher et al, 1986; McKinney 

and Waller, 1994) and possibly bind to thyroid hormone receptors in the pituitary, thereby blocking 

TSH release. In contrast, in fetuses following maternal exposure to 5 mg 4-OH-CB107/kg body 

weight from gestation days 10 to 16, fetal TSH levels at GD20 were significantly increased by 124% 

most likely as a response to decreased T4 levels (Meerts et al, submitted). At PND 4 (this study), 

TSH levels in 4-OH-CB107 treated neonates were comparable to control levels in corn oil treated 

offspring. TSH levels were also unaffected in offspring at the age of 11 months. 

The observed increase in locomotor activity in the offspring in the last 3 minutes of the trial 

in the open field test indicates an impaired habituation in all exposed groups. Habituation was 

observed in the control animals, whereas all exposed groups exhibited elevated activity levels in the 

last 3 min. Increased activity is a well known effect caused by PCB mixtures, ortho-substituted and 

coplanar congeners in rats (Lilienthal et al 1990; Holene et al, 1995; Jacobson and Jacobson, 1997; 

Schantz et al, 1995; Hany et al. 1999b). 

Also in mice, increased locomotor activity has been reported to occur in adult animals after 

pre- and postnatal exposure to Aroclor 1254 (Storm et al, 1981), or neonatal exposure to coplanar 

(Eriksson et al, 1991; Eriksson and Fredriksson, 1998) and ortAo-chlorinated PCBs (Eriksson and 

Fredriksson, 1996). Agrawal et al. (1981) showed that elevated levels of locomotor activity induced 

by developmental exposure of mice to a high dose of 3,3',4,4'-tetrachlorobiphenyl was associated 

with decreased dopamine concentrations in the corpus striatum. In this study, using low to moderate 

doses of Aroclor 1254 and/or 4-OH-CB107, no significant changes were observed in brain dopamine 

concentrations in both male and female offspring exposed in utero. However, concentrations of the 

dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were slightly decreased in the 

caudate nucleus from male and female offspring exposed to 5 mg/kg 4-OH-CB107, and slightly 

increased in the caudate nucleus of Aroclor 1254 exposed offspring, suggesting that both 4-OH-

CB107 and Aroclor 1254 are able to exert effects on dopamine metabolism or synthesis. In contrast, 

Morse et al (1996c) showed only alterations in serotonin metabolism in rat brain following prenatal 

exposure to Aroclor 1254 in the same experimental setup. 
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The passive avoidance data indicate subtle changes in the course of latencies across the 

three trials following the conditioning trial. Latencies were reduced in young adult males of the low 

dose group treated with 4-OH-CB107, whereas in older males dose-dependent, though not significant, 

reductions were found 24 h after conditioning. Similar latency decreases were detected in rats 

prenatally exposed to 2,2',4,4'-tetraCB and, in particular, 3,3',4,4'-tetraCB (Weinand-Harer et al. 

1997). The authors suggested that the PCB effects on thyroid hormone levels might partly explain the 

observed effects on neurochemical processes and behaviour. Iodine deficient rats also showed a 

poorer performance in the passive avoidance task, accompanied with reduced levels in T4 and 

elevated TSH levels (Overstreet et al, 1984). However, the fact that maternal exposure to Aroclor 

1254 did not cause alterations in passive avoidance in the present study suggests that mechanisms 

other than reduced thyroid hormone levels during development mediate long-lasting influences on 

this neurobehavioural task. 

The catalepsy test is a standard pharmacological test to investigate extrapyramidal side 

effects of neuroleptic compounds due to blocking of dopamine D2 receptors in the neostriatum. In 

this study, haloperidol-induced catalepsy was used to examine effects on striatal function caused by 

4-OH-CB107 or Aroclor 1254. Male rats treated with 4-OH-CB107 or Aroclor 1254 showed 

decreases in the latencies to movement onset. This suggests alterations in the interaction between the 

serotonergic and dopaminergic system, since it is known that catalepsy induced by dopamine receptor 

antagonists can be completely antagonized by the administration of serotonin receptor agonists 

(Wadenberg, 1996). This is in line with the biogenic amine concentrations measured in the brain of 

both 4-OH-CB107 or Aroclor 1254 treated animals. Effects of developmental exposure to Aroclor 

1254 on the concentrations of 5-HT and 5-HIAA are in general accordance with effects found 

following neonatal hypothyroidism. Savard et al. (1984) showed significant increases in 5-HT and 5-

HIAA levels in many discrete brain nuclei in the forebrain, midbrain and hindbrain following 

neonatal hypothyroidism. Exposure to 4-OH-CB107 resulted in less pronounced neurochemical 

effects. However, the observed decreases in latencies of movement onset in the catalepsy test (this 

study) indicate that neurotransmitter functions may have been influenced following 4-OH-CB107 

exposure aside from post mortem concentrations of neurotransmitters. The observed differences 

between males (late latency decreases) and females (early latency increases) may be due to 

differences in kinetics of haloperidol in both genders, with males showing an earlier onset of 

catalepsy than females, resulting in more rapid expression and decay of the response. 

The precise mechanism by which Aroclor 1254 or the PCB metabolite alter concentrations 

of neurotransmitters is unknown. 4-OH-CB107 is known to exert anti-estrogenicity in vitro (Moore et 

al, 1997; Meerts, unpublished results). High concentrations of this metabolite in the developing brain 

may influence CNS dopaminergic and serotonergic function, since there appear to exist interactive 

relationships between estrogens and DA as well as between estrogens and 5-HT (Rubinow et al. 

1998; recent review in McEwen and Alves, 1999). Another explanation might be the recently reported 

extremely potent inhibition of human estrogen sulfotransferase activity (in vitro) by environmentally 

relevant hydroxylated PCBs (Kester et al, 2000). The authors showed that 4-OH-CB107 was one of 

the strongest of the 32 tested compounds with an IC50 of 0.15 - 0.25 nM. This suggests that 4-OH-
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CB107 might indirectly induce estrogenic activity by increasing estradiol bioavailability in target 

tissues. 

The effects on auditory thresholds in Aroclor 1254 treated offspring are visible only in the 

low frequency range (500 Hz to 4 kHz). This is in line with effects observed so far concerning the 

influence of thyroid hormone deficiencies on auditory thresholds (Goldey et al. 1995a). In addition, 

the results shown for Aroclor 1254 treated animals are in line with results presented by Goldey et al. 

(1995b) and were related to hair cell loss in the apical part of the cochlea (Crofton et al. 2000a). 

Animals treated with 4-OH-CB107 showed no increase in BAEP thresholds, suggesting that this 

metabolite exerts no deleterious effects on the cochlea. However, the slight prolongation of latencies 

in metabolite exposed groups may indicate effects on the neural part of the auditory system. 

Alternatively, this may be explained by the recent observations of Crofton et al. (2000b), who showed 

in cross-fostering studies that lactational exposure to Aroclor (postnatally) is the major cause of 

ototoxicity 

In conclusion, maternal exposure to the PCB-metabolite 4-OH-CB107 can exert adverse 

effects on neurotransmitter levels and brain development in rat offspring, that are both similar to and 

partly different from the effects observed following Aroclor 1254 exposure. 
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CHAPTER 8 

Summary of in vivo studies 

In the second part of this thesis, in vivo studies are described which were performed to assess the 

consequences of prenatal exposure to hydroxylated compounds on the development of the offspring. 

For this purpose, the PCB metabolite 4-OH-2,3,3',4',5-pentaCB (4-OH-CB107) was selected as a 

model compound. 4-OH-CB107 has both thyroidogenic (see Chapter 5) and anti-estrogenic (Moore et 

al., 1997) potencies in vitro and it is one of the major metabolites detected in human blood (Bergman 

etal., 1994). 

Before being able to determine the effects of in utero exposure to 4-OH-CB107 on the 

development of the offspring, information about the uptake and distribution of 4-OH-CB107 in 

pregnant rats and their fetuses was necessary. To determine these parameters, rats are usually exposed 

to a single dose of the compound in a radiolabelled form, and the elimination of the labelled 

compound is followed during a selected number of days. At the end of the study, radioactivity is 

determined in several organs. This study strategy is not applicable in the case of PCB-metabolites, 

since these compounds will normally be eliminated much faster compared to their parent compounds. 

In addition, the purpose of the study on the uptake and distribution of 4-OH-CB107 described in 

Chapter 5 was to assess the internal exposure of fetuses to 4-OH-CB107 using the same dosing 

regimen as for the subsequent studies on the possible adverse effects in offspring following in utero 

exposure to 4-OH-CB107. Therefore, in the study described in Chapter 5, pregnant rats were exposed 

orally to [l4C]-labelled 4-OH-CB107 from gestation days 10 to 16. 

The uptake of [14C]-4-OH-CB107 in pregnant rats was low, i.e. 78% of the total 

administered dose was excreted in the faeces at gestation day 17 (GDI7) and almost 94% at GD20. 

Despite this high faecal elimination, relatively high levels of the [14C]-4-OH-CB107-derived 

radioactivity were determined in maternal but especially fetal tissues. Of the total dose absorbed, 51.7 

± 3.2% was present in the fetuses, indicating that the placenta forms no barrier for 4-OH-CB107. In 

addition, fetal levels of [14C]-4-OH-CB107 in pooled livers and plasma samples were 11 times and 

1.2 times higher, respectively, compared to maternal levels at GD20. As a result of 4-OH-CB107 

exposure, fetal plasma TT4 and FT4 levels at GD20 were drastically decreased by 98% and 41%, 

respectively. In maternal plasma, only TT4 levels were reduced (by 38% at GD20). 
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In line with the results from Morse et al. (1996a), fetal brain T4 concentrations were 

decreased, but T3 concentrations were unaffected. Interestingly, [14C]-4-OH-CB107 derived 

radioactivity was bound to TTR in both maternal and fetal plasma. In vitro T4-TTR competition 

binding studies with 4-OH-CB107 revealed a 3.3 fold higher binding potency of 4-OH-CB107 

compared to the natural ligand T4. It is suggested that this selective interaction with TTR, the major 

plasma thyroid hormone transport protein in rats, may explain the observed reductions in fetal thyroid 

hormones and the distribution of 4-OH-CB107 in the fetal compartment. 

Chapters 6 and 7 describe the effects of in utero exposure to the PCB metabolite 4-OH-

CB107 on the development of the offspring. We were interested in the comparison of the effects 

caused by the PCB-metabolite and effects caused by parent PCB compounds. Therefore, an additional 

group of rats was exposed to 25 mg/kg Aroclor 1254. Because of the drastic reductions in fetal 

plasma T4 levels following exposure to 5 mg 4-OH-CB107 per kg body weight {Chapter 5), two 

metabolite dose groups were used in the studies presented in Chapters 6 and 7, i.e. 0.5 mg/kg and 5 

mg/kg body weight. Exposure of pregnant rats to 4-OH-CB107 did not affect the development of the 

offspring {Chapter 6), as examined by recording well known developmental landmarks, such as the 

anogenital distance, crown-rump length, pinna detachment, and the age at the onset of hair growth, 

bilateral eye opening, vaginal opening (females) or preputial separation (males). The developmental 

effects observed following in utero exposure of rats to Aroclor 1254 are in line with previous findings 

reported in several studies. For example, Aroclor 1254 treated offspring showed a significantly earlier 

onset of bilateral eye opening, which has been observed by Goldey et al. (1995a). As discussed in 

Chapter 6, this effect is most likely caused by a direct effect of PCBs and not caused by the induced 

hypothyroidism, since hypothyroidism normally results in a delay of bilateral eye opening. Female 

offspring exposed to Aroclor 1254 showed a statistically significant increase in the anogenital 

distance/crown rump length ratio, which has also been observed by Goldey et al. (1995a) and for 

TCDD by Gray et al. (1997) and Theobald and Peterson (1997). 

The most striking result presented in Chapter 6 was the effect of 4-OH-CB107 on the 

estrous cycle in female offspring, which was determined from postnatal days 210 to 231. The length 

of the estrous cycle was dose dependently prolonged, because of an increase in the length of the 

diestrous stage. Aroclor 1254 exposed female offspring also had a prolongation of the estrous cycle, 

although less pronounced compared to 4-OH-CB107 exposed offspring, indicating that this effect is 

most likely induced by the metabolite. At 11 months of age, plasma estradiol levels were significantly 

increased in offspring exposed in utero to 5 mg/kg 4-OH-CB107, and unchanged in Aroclor 1254 

treated offspring, again indicating that this effect might be metabolite-mediated. Possible mechanisms 

to explain these observations on estrous cyclicity and estradiol concentrations are discussed in 

Chapter 6. 

Several subtle effects on behaviour were observed in both Aroclor 1254 and 4-OH-CB107 

exposed offspring {Chapter 7). An increased locomotor activity compared to controls in the last 3 

minutes of the trial in an open field test was observed in all treatment groups. This indicates an 

impaired habituation. In the passive avoidance test, very subtle differences were observed between 
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Aroclor 1254 exposed and 4-OH-CB107 exposed offspring. Aroclor 1254 exposed offspring showed 

a steady increase in latencies across the trials, whereas in all other groups a plateau was reached. In 

the catalepsy test, male offspring of all exposed groups showed decreases in latencies to movement 

onset, whereas female offspring of the exposed groups showed increases in latencies to movement 

onset. These differences between the sexes are difficult to explain, since many different mechanisms 

may play a role. Both dopamine and serotonin concentrations can affect the degree of catalepsy, and 

in addition, the metabolism of haloperidol may also be different in both genders resulting in e.g. 

earlier onset of catalepsy in males compared to females, leading to a more rapid expression and decay 

of the response in males. 

Measurement of dopamine and serotonin concentrations in brain regions of male and female 

offspring revealed effects on both dopaminergic and serotonergic systems in Aroclor 1254 exposed 

offspring. Serotonin (5-hydroxytryptamine, 5-HT) and its metabolite, 5-hydroxy-indoleacetic acid (5-

HIAA) were significantly increased in the frontal cortex of male offspring exposed in utero to 

Aroclor 1254 compared to the levels in control animals. In addition, the ratio between 3,4-

dihydroxyphenylacetic acid (the dopamine metabolite DOPAC) and dopamine (DA) in the caudate 

nucleus of male offspring of the Aroclor 1254 exposure group was significantly increased. The same 

trends, although not significant, could be observed in female offspring. Strikingly, treatment of rats to 

4-OH-CB107/kg per day from GD10 to 16 resulted in the offspring in changes in the dopaminergic 

system only. The concentration of the dopamine metabolites DOPAC and homovanillic acid (HVA) 

were decreased in the nucleus accumbens and caudate nucleus, respectively, in male offspring of the 

5 mg/kg 4-OH-CB107 treatment group. Increases in 5-HT and 5-HIAA have also been shown in brain 

regions of rats following neonatal hypothyroidism. However, the fact that these increases were not 

observed in 4-OH-CB107 treated rats favours the explanation that in case of Aroclor 1254 treated 

offspring a direct effect of parent PCB congeners on serotonin metabolism may lead to changes in the 

concentrations of both 5-HT and 5-HIAA, instead of the indirect effect caused by the Aroclor induced 

hypothyroidism. 

Effects on auditory thresholds {Chapter 7) were mainly observed for Aroclor 1254 treated 

offspring, and are in line with the results described by Goldey et al. (1995b). In 4-OH-CB107 treated 

offspring, only a slight prolongation of the latencies was observed, but no effects could be seen on the 

brain stem auditory thresholds. This is in line with the recent publication of Goldey et al. (2000b) 

who were able to show that postnatal hypothyroidism caused by exposure to Aroclor 1254 is the 

major cause of ototoxicity (Goldey et al, 2000b). 

In conclusion, prenatal exposure to the PCB metabolite 4-OH-CB107 can result in 

endocrine disrupting effects and effects on neurobehaviour, which are quite similar but in some ways 

different from the effects observed following Aroclor 1254 exposure. Metabolite-induced effects are 

(i) decreases in fetal and neonatal thyroid hormone levels, (ii) increases in the length of the estrous 

cycle in female offspring, (iii) increased estradiol concentrations in female offspring in the pro-

estrous stage at the age of 11 months, (iv) alterations in brain dopamine metabolism and (v) slight 

prolongations of latencies in brain stem auditory evoked potentials. Table 8.1 summarizes the 

differences in effects observed for Aroclor 1254 and 4-OH-CB107 presented in this thesis. 
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Table 8.1. Comparison of the effects observed following in utero exposure to 4-OH-CB107 or 

Aroclor 1254. 

Observation 4-OH-CB107 Aroclor 1254 

AGD/CRL ratio (PND4) 

Day of eye opening 

Estrous cycle length in female 

offspring (PND210-231) 

Plasma E2 in female offspring 

(11 months old) 

Fetal TT4 (GD20) 

Fetal FT4 (GD20) 

Fetal TSH (GD20) 

Maternal TT4 (GD20) 

Maternal FT4 (GD20) 

Maternal TT3 (GD20) 

Neonatal TT4 (PND4) 

Neonatal FT4 (PND4) 

Neonatal TT3 (PND4) 

Locomotor activity at PND130 

Catalepsy 

BAEP: auditory thresholds 

BAEP: peak latencies 

Brain biogenic amines 

no effect 

no effect 

T t (prolonged) 

TT 

li 
TT 
I 
No effect 

No effect 

u 
No effect 

No effect 

Impaired habituation in S 

Reduced latencies (grid, S); 

Increased latencies (grid, ? ) 

No effects 

Prolongation of peak II latenciesb) 

Effects on dopaminergic system 

(DOPAC and HVA increased in 

CN) 

Tin? 
accelerated 

T (prolonged) 

no effect 

W 

no effecta) 

U'> 
Ua) 

No effect 

1 (only significant in cj) 

Impaired habituation in S 

Reduced latencies (grid, <S). 

$: no significant effects. 

Threshold elevated at low 

frequencies (0.5, 1 and 2 kHz) 

No effect 

Effects on dopaminergic 

(DOPAC/DA increased in CN) 

and serotonergic system (5-

HIAA and 5-HT increased in 

FC) 

a) Presented in Morse et at, 1996a. 
b) Effect was not statistically significant. 
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General discussion 

The research presented in the first part of this thesis {Chapters 2, 3 and 4) describes a number of in 

vitro studies on the possible endocrine active potencies of polybrominated diphenyl ethers and related 

brominated aromatic hydrocarbons, fairly new compounds of which some have already been 

identified in human blood. The in vivo studies described in the second part of this thesis were 

performed to assess the possible long-term adverse effects of exposure to endocrine active 

compounds in rats. For this purpose, a model compound (4-hydroxy-2,3,3',4',5-pentachlorobiphenyl, 

4-OH-CB107) with in vitro thyroidogenic and anti-estrogenic potencies was chosen, and the studies 

were focused on fetal and neonatal development, since the developing fetus is extremely vulnerable to 

changes in the endocrine system {Chapters 5, 6, 7 and 8). 

In vitro endocrine active potencies of polybrominated diphenyl ethers and related compounds 

The in vitro T4-TTR competition binding studies revealed that hydroxylated brominated flame 

retardants of several different classes were able to bind to human TTR. Compounds with the highest 

binding potency were TBBPA and PBP, both compounds having bromine substituents next to the 

hydroxyl group. An important conclusion of the results obtained on brominated diphenyl ethers was 

that metabolic conversion to most likely hydroxylated PBDEs is a prerequisite for interactions with 

TTR. This conclusion is supported by the fact that the higher brominated diphenyl ethers, which will 

probably not be metabolized because of the steric hindrance of the extensive bromine substituents, 

were not capable to interact with TTR before or after metabolic conversion. In addition, PBDEs as 

parent compounds did not show any competition with T4 before metabolic activation, whereas after 

metabolic activation all di- to pentabrominated diphenyl ethers tested showed T4-TTR competition 

binding potencies. Unfortunately, hydroxylated PBDEs of these congeners were not available, so it 

was not possible to determine the structure affinity relationships for hydroxylated PBDEs. 

The structure affinity relationships that were deduced from the brominated (bis)phenols in 

Chapter 2 are in agreement with earlier reports from Den Besten et al. (1991), van den Berg (1990), 

Brouwer et al. (1990), Cheek et al. (1999), Lans et al. (1993) and Rickenbacher et al. (1986). In 

addition, X-ray crystallography studies revealed a new mode of binding of the single ring compounds 

pentabromophenol (PBP) and 2,4,6-tribromophenol (TBP) to TTR (summarized in Chapter 4; 

published by Ghosh et al., 2000). In these studies it was observed that PBP and TBP bound to TTR in 

a reversed mode, e.g. a bromine atom positioned in the centre of the TTR binding channel instead of 

the hydroxy-group, which is the more common mode of binding. These data indicate that the 

hydroxyl group is not always a prerequisite for binding of a compound to TTR. Consequently, it can 
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thyroid hormone levels, can influence development both in utero and postnatally, through 

transplacental and lactational passage. The lactational transfer of PCB metabolites will be much lower 

or absent, resulting in only in utero exposure in case of pure PCB metabolites. Goldey et al. (2000b) 

were able to show that ototoxicity is especially caused by postnatal and not prenatal exposure of rats 

to Aroclor 1254. 

Implications of exposure to especially thyroidogenic compounds for human health 

An important question in toxicological studies performed in laboratory animals is, if the effects that 

are observed in rats will also be relevant for the human situation. In rats, transthyretin is the major 

thyroid hormone transport protein in the blood. In humans however, thyroid hormone binding 

globulin (TBG) is the major thyroid hormone binding protein and interaction studies with 

hydroxylated PCBs and TBG revealed that the OH-PCBs that were able to interact with TTR, showed 

no interaction at all with TBG (Lans et al, 1994). This would imply that binding of a compound to 

TTR will very probably not have consequences for human health. However, TTR is known to be the 

major thyroid hormone binding protein in the cerebrospinal fluid (CSF) and it is very probably the 

main transporter of T4 in the placenta. Given the fact that most hydroxylated PCBs that have been 

detected in human blood have T4-TTR competition binding potencies and their structures fulfil the 

structural requirements for binding of a compound to TTR (see also Chapter 1), it can not be 

excluded that TTR binding in the cerebrospinal fluid and placenta may facilitate the uptake of toxic 

PCB metabolites in the brain and fetus and may also have adverse effects on the kinetics of T4. 

Indeed, the human placenta does not seem to be a barrier for hydroxylated PCB-metabolites. Studies 

in human cord blood and maternal blood revealed that the ratio of hydroxylated compounds in cord 

blood (representing fetal blood) compared to maternal blood is approximately 1, indicating that OH-

PCBs can cross the placenta very easily. The ratio of parent PCBs in cord blood compared to maternal 

blood is below 0.5, thus parent PCBs are transported to the human fetus in a much smaller amount 

than their metabolites (Bergman et al, 1999b). 

In the 1980s, human studies have also confirmed that PCBs could pass the placenta and that 

higher cord serum PCB levels were associated with lowered birth weights (Fein et al, 1984). In 

addition, children with higher in utero PCB exposure showed delayed central nervous system 

functioning (Jacobson et al, 1990) and reductions in cognitive function at the age of 4 years 

(Jacobson and Jacobson, 1993). A study performed in the Netherlands showed a statistically 

significant negative correlation between human milk dioxin and PCB-levels and plasma T4 and T3 

levels (Koopman-Esseboom et al, 1994). It is not clear if the effects of PCBs on thyroid hormone 

levels and metabolism may have had consequences for brain development in humans, or that 

hydroxy-PCBs themselves may have affected human brain development directly. 

It is too early to predict the possible consequences of the observed effects on estrous 

cyclicity in female rat offspring for the human situation. Despite the prolonged diestrous stage in 

female rats, no adverse effects could be seen on the reproductive capacity of these females (e.g. the 

number of matings attempted) or on their fetuses (no effects on the number of resorptions or 
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implantation sites, the number of dead or life fetuses, total litter weight, mean fetal body weight or 

sexe ratio). However, in our study we did not investigate the development of the fetuses. More 

detailed studies on the development of the F2-offspring will be necessary to determine if there are any 

consequences on reproduction. In addition, studies on the sexual development of the brain in female 

rats exposed in utero will help to discriminate between effects caused by 4-OH-CB107 directly, or 

effects that are related to the changes in steroid or thyroid hormones. Preliminary research on the 

number of spinal nuclei of the Bulbocavernosus (SNB), a sexually dimorphic nucleus in the ventral 

horn of the fifth and sixth lumbal segments of the rat spinal cord, revealed that the number of SNB 

cells in females exposed to 5 mg/kg 4-OH-CB107 was significantly higher compared to control 

group. In males, exposure to 4-OH-CB107 or Aroclor 1254 both resulted in a significant higher 

number of SNB cells compared to corn oil treated rats (van der Beek, unpublished results). The SNB 

contains motor neurons whose axons innervate the bulbocavernosus muscle, which is attached to the 

base of the male penis. The SNB is almost absent in female rats. Injection of female rats with 

testosterone on PND2 results in the development of the SNB (Breedlove et ah, 1982). The higher 

number of SNB cells in females exposed to 4-OH-CB107 suggests that 4-OH-CB107 may increase 

endogenous androgen production, since androgen and not estrogen concentrations regulate the 

number of SNB cells (Breedlove, 1997). However, in this case one would also expect to see effects on 

the weights of the male accessory organs, and this was not observed (Chapter 6). To clarify the 

mechanism and the onset of the observed effects regarding e.g. the sexual development of the brain 

(number of SNB cells) and the irregular cyclicity of the female offspring, further studies should be 

focused on the sexual development and steroid hormone levels in exposed offspring during different 

stages of life (e.g. neonatal, puberty, early adult and adult stages). Although these mechanisms are not 

clarified yet, it can be stated that in case PCB-metabolites are also able to induce reproductive 

senescence in humans at an earlier stage of life, this may have serious effects on human reproduction, 

especially in a time period when the average age of females having their first child is increasing. 

Human individuals as well as wildlife species are unintentionally exposed to numerous 

chemicals of anthropogenic origin. Unfortunately, most of these man-made compounds have been 

neither tested nor evaluated for their hazard potential. In 1990, the European Union published the so-

called EINECS list listing 100106 "existing substances" that were on the European market during 

1971 to 1981 (European Inventory of Existing Chemical Substances). For only about 5000 of these 

chemicals the data needed to evaluate many of their potential effects on human health and/or the 

environment exist (Vallack et ah, 1998). In addition, only for a few hundred of these chemicals there 

is sufficient knowledge to perform a full hazard assessment. Although data on most of the toxicity 

endpoints are available, only very limited data is available for chronic endpoints such as effects of a 

compound on the endocrine system. The results presented in this thesis show that thyroidogenic 

compounds, including hydroxylated PCBs, may be able to exert adverse effects on brain development 

and reproduction. Especially on the reproductive system, the hydroxylated PCB showed more effects 

compared to the parent compounds. Humans are exposed to both parent PCB congeners and their 

metabolites. Exposure to parent PCB congeners will lead to a continuous exposure to metabolites, 

since these will be formed via metabolism in vivo. 
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The concentration of the metabolite determined in fetal plasma of rats exposed to 5 mg/kg 

4-OH-CB107 at gestation day 20 was 12.7 ug/g wet weight. Considering the fact that the average 

number of fetuses per dam was 13 in this study, this would mean that each fetus was exposed to 

approximately 0.98 |xg 4-OH-CB107 per g wet weight. A recent study of Sandau (2000) revealed that 

the concentration of total PCB-metabolites measured in umbilical cord plasma from Canadian women 

was in the range of 103 - 1750 pg/g wet weight. Thus, OH-PCB concentrations in the umbilical cord 

of humans are still at least 560 times lower compared to the levels determined in rats exposed in utero 

to 5 mg/kg 4-OH-CB107 (see Chapter 5). However, in rats exposed to 0.5 mg/kg 4-OH-CB107 

effects on behaviour and estrous cyclicity were also visible, whereas the difference between plasma 

levels of these rats with the human situation at the moment is only one order of magnitude. 

Overall, it can be concluded that continuing exposure to compounds such as PBDEs, PCBs 

and their metabolites, as well as halogenated phenols, which show an endocrine disrupting potency 

(e.g. thyroidogenic and estrogenic) may pose a threat on the development of human infants. Although 

PBDEs have a lower impact on e.g. thyroid hormone levels in rodents (Zhou et al., 2001) compared 

to coplanar PCBs (Seo et al, 1995), they may add to the effects caused by 'historic' contaminants like 

PCBs. Preliminary data published by Hallgren and Darnerud (1998) in fact show some evidence that 

co-administration of PBDEs and PCBs (Aroclor 1254) or chlorinated paraffins has an additive effect 

on the reduction of T4 levels. Therefore, future research aimed at finding possible associations 

between exposure to organohalogen substances and the effects on human development should include 

phenolic metabolites as well as their parent congeners. In case of endocrine active compounds, there 

is some concern that pregnant women may be at risk for possible hormone disruption, since 

developing fetuses and infants are especially responsive to small changes in e.g. thyroid hormone 

levels. An additional risk factor that has to be kept in mind in case of thyroid hormone disrupting 

compounds are women with iodine deficiency. About twelve percent of the general population and 

about 15 percent of women of childbearing age in the United States are iodine deficient (Hollowell et 

al., 1998). It is thus recommended that screening of compounds for their possible endocrine active 

potencies is included in the testing protocols preferably at an earlier stage of product development in 

order to prevent the release of these substances onto the market. 
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Samenvatting 

Het onderzoek dat in het eerste deel van dit proefschrift is beschreven {Hoofdstukken 2,3 en 4) betreft 

enkele in vitro studies, die zijn uitgevoerd om mogelijke endocriene werking van polygebromeerde 

difenyl ethers en gebromeerde aromatische koolwaterstoffen te onderzoeken. Deze stoffen zijn 

relatief recent in het milieu aangetoonde verbindingen, waarvan enkele inmiddels in humaan bloed 

zijn aangetoond. De in vivo studies, beschreven in het tweede deel van dit proefschrift, zijn uitgevoerd 

om de mogelijke lange termijn effecten te onderzoeken van blootstelling van ratten aan endocrien 

actieve verbindingen. Voor dit doel is gebruik gemaakt van een modelverbinding (4-hydroxy-

2,3,3',4',5-pentachloorbifenyl, 4-OH-CB107) waarvan bekend is dat deze in vitro 

schildklierhormoon-achtige en anti-oestrogene werking vertoont. De in vivo studies waren vooral 

gericht op de foetale en neonatale ontwikkeling, omdat de ontwikkelende foetus extreem gevoelig is 

voor veranderingen in het hormonale systeem (Hoofdstukken 5, 6, 7 en 8). 

In vitro endocriene activiteit van polygebromeerde difenyl ethers en hieraan gerelateerde 

verbindingen 

De in vitro T4-TTR verdringingsstudies toonden aan dat gehydroxyleerde gebromeerde 

vlamvertragers uit verschillende klassen kunnen binden aan humaan TTR. Verbindingen met de 

hoogste verdringingsactiviteit zijn TBBPA en PBP, beide stoffen bevatten broomsubstituenten direct 

naast de hydroxy-groep. Een belangrijke conclusie van de resultaten die verkregen zijn met de 

gebromeerde difenyl ethers in de T4-TTR verdringingsstudies is dat metabole omzetting tot 

hoogstwaarschijnlijk gehydroxyleerde PBDEs een vereiste is voor interactie van PBDEs met TTR. 

Deze conclusie wordt ondersteund door het feit dat de hoger gebromeerde difenyl ethers die 

waarschijnlijk niet gemetaboliseerd worden als gevolg van de sterische hindering door de grote 

broomsubstituenten, geen interactie vertonen met TTR voor of na metabole omzetting. Tevens 

vertonen PBDEs als uitgangsstof geen competitie met T4 voor metabole activatie, terwijl na metabole 

activatie alle geteste di- tot pentagebromeerde difenyl ethers enige T4-TTR verdringing bezitten. 

Helaas waren er op het moment van het onderzoek geen gehydroxyleerde PBDEs van deze 

congeneren beschikbaar, zodat het niet mogelijk was een struktuur-affiniteitsrelatie van 

gehydroxyleerde PBDEs af te leiden. 

De struktuur-affmiteitsrelaties die kunnen worden afgeleid uit de studies met gebromeerde 

(bis)fenolen in Hoofdstuk 2 zijn in overeenstemming met eerdere bevindingen van Den Besten et al. 

(1991), van den Berg (1990), Brouwer et al. (1990), Cheek et al. (1999), Lans et al. (1993) en 

Rickenbacher et al. (1986). 
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Met behulp van rontgendiffractie kristallografie werden tevens nieuwe bindingskarakteristieken 

ontdekt bij de binding van de enkele-ring verbindingen pentabroomfenol (PBP) en 2,4,6-

tribroomfenol (TBP) aan TTR (samengevat in Hoofdstuk 4; gepubliceerd in Ghosh et ah, 2000). Uit 

deze studies bleek dat PBP en TBP aan TTR binden in een zogenaamde 'omgekeerde' volgorde, met 

een broomatoom in het centrum van het bindingskanaal van het TTR eiwit, in plaats van de hydroxy-

groep die zich normaal gesproken in deze positie bevindt. Deze resultaten tonen aan dat een hydroxy-

groep niet altijd een vereiste is voor de binding van een stof aan TTR. Derhalve kan worden 

geconcludeerd dat meerdere verbindingen met T4 een interactie kunnen aangaan voor TTR binding 

dan tot nu toe werd aangenomen. 

De resultaten met de gebromeerde difenyl ethers en de gebromeerde bisphenol A derivaten 

in de ER-CALUX studies toonden aan dat zeven van de 17 onderzochte PBDEs een zodanige 

oestrogene activiteit bezitten dat EC50-waarden bepaald konden worden. De extracten van PBDEs na 

microsomale incubatie met de verschillend gei'nduceerde microsomen zijn ook onderzocht volgens de 

methode die beschreven is in Hoofdstuk 2. Echter, in deze microsomale extracten kon geen enkele 

oestrogene werking gemeten worden (de resultaten zijn niet getoond). De mogelijkheid bestaat dat de 

concentratie van de metabolieten in deze extracten te laag was om een meetbaar oestrogeen effect te 

verkrijgen. Dit is het gevolg van de grote verdunning die nodig is in de ER-CALUX studies (1000 

maal) en het feit dat de oestrogene werking van verbindingen zeer laag is ten opzichte van 

bijvoorbeeld de schildklierhormoon-achtige werking,. De oestrogene werking van de PBDEs met 

oestrogene activiteit is een orde van grootte lager vergeleken met de bekende oestrogene stof bisfenol 

A. De oestrogene werking van de gesynthetiseerde gehydroxyleerde PBDEs T2-OH-BDE en T3-OH-

BDE is in dezelfde orde van grootte als bisfenol A. Zoals reeds bediscussieerd in Hoofdstuk 4 bezitten 

de drie anti-oestrogene PBDEs (BDE-153, -166 en -190) ook dioxine-achtige werking. Een andere 

interessante bevinding is, dat de oestrogene werking van T2-OH-BDE afhankelijk is van de 

oestrogeen receptor. De oestrogene werking van deze OH-BDE was in de 293-ERa cellijn hoger dan 

in de 293-ERps-luc cellijn. 

Nadelige lange termijn effecten na in vivo in utero blootstelling aan een gehydroxyleerde PCB-

metaboliet met schildklierhormoonachtige en anti-oestrogene werking 

Het onderzoek dat is beschreven in de Hoofdstukken 5, 6 en 7 is uitgevoerd om een schatting te 

kunnen maken van de mogelijke nadelige gevolgen van in utero blootstelling aan endocrien actieve 

verbindingen in ratten. Er werd verondersteld dat binding van stoffen aan TTR zou kunnen leiden tot 

een vergemakkelijkt transport van de stof van de moeder naar de foetus. Er was tot op dat moment 

slechts een beperkt aantal studies uitgevoerd waarin deze veronderstelling is onderzocht, en bijna 

geen enkele studie was gericht op de mogelijke lange termijn effecten van in utero blootstelling aan 

een stof die T4 van het TTR kan verdringen. 

Om deze vraag te beantwoorden zijn twee in vivo studies uitgevoerd, waarin drachtige 

ratten werden blootgesteld aan een PCB-metaboliet (4-OH-2,3,3',4',5-pentaCB, 4-OH-CB107) 

gedurende dag 10 tot en met 16 van de dracht. In de eerste in vivo studie is de maternale en foetale 
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verdeling van de PCB-metaboliet onderzocht. Uit deze studie bleek, dat er in het foetale deel hoge 

concentraties van 4-OH-CB107 aangetoond konden worden. Tevens waren maternale, maar vooral 

foetale TT4-niveaus drastisch verlaagd. Deze resultaten, samen met de detectie van de stof gebonden 

aan TTR in matemaal en foetaal plasma, verifieerden de hypothese dat binding van een stof aan TTR 

kan leiden tot een vergemakkelijkt transport van deze stof van de moeder naar de foetus, en derhalve 

kan resulteren in verlaagde plasma T4-niveaus in moeder en foetus (Hoofdstuk 5). Er kan echter niet 

worden geconcludeerd dat alle verbindingen die in vitro aan TTR kunnen binden dezelfde effecten 

zullen laten zien als 4-OH-CB107. De mogelijkheid om in vivo effecten te veroorzaken is sterk 

afhankelijk van de kinetiek van een stof. Tetrabroombisfenol A (TBBPA), een stof met een zeer hoge 

in vitro T4-TTR verdringingsactiviteit, gaf in vivo geen veranderingen in foetale thyroxineniveaus na 

blootstelling van drachtige ratten gedurende dag 10 tot en met dag 16 van de dracht. Waarschijnlijk 

wordt dit veroorzaakt door de lage opname van TBBPA in ratten via orale toediening (Meerts et al, 

1999). 

In de tweede in vivo studie zijn de lange termijn effecten van in utero blootstelling aan 4-

OH-CB107 onderzocht en vergeleken met de effecten die veroorzaakt worden door een commercieel 

mengsel van PCBs, Aroclor 1254 (Hoofdstukken 6 en 7). De lange termijn effecten veroorzaakt door 

4-OH-CB107 op de oestrus cyclus, neurotransmitter concentraties in de hersenen, en gedrag in de 

nakomelingen waren wel degelijk anders dan de effecten veroorzaakt door Aroclor 1254 (samengevat 

in Hoofdstuk 8). Het meest opzienbarende effect van de PCB-metaboliet was het effect op de oestrus 

cyclus, waargenomen in ratten van 7-8 maanden oud. Omdat de effecten op de oestruscyclus 

duidelijker waren in 4-OH-CB107 behandelde nakomelingen in vergelijking met Aroclor 1254 

behandelde nakomelingen, kan worden geconcludeerd dat dit effect voornamelijk wordt veroorzaakt 

door prenatale blootstelling van ratten aan 4-OH-CB107. De seksuele cyclus van een jonge rat duurt 

normaal gesproken 4-5 dagen, en wordt onregelmatig naarmate de rat ouder wordt, vanaf ongeveer 

200 dagen en ouder. Neonatale blootstelling aan oestrogene stoffen (bijvoorbeeld oestradiol benzoaat 

vanaf de geboorte gedurende 10 of meer opeenvolgende dagen) leidt direct na de vaginale opening tot 

het continue di-oestrus syndroom (Aihara en Hayashi, 1989). Het is niet bekend of de oestruscyclus al 

verstoord was ten tijde van de vaginale opening in de nakomelingen die zijn blootgesteld aan 4-OH-

CB107, omdat de oestrus cyclus alleen in de volwassen vrouwtjesrat is onderzocht. De hogere 

oestradiol (E2)-concentratie in plasma van nakomelingen (vrouwtjes) van de groep blootgesteld aan 5 

mg/kg 4-OH-CB107 komt overeen met hogere E2-niveaus die gevonden worden in volwassen ratten 

in het continue di-oestrus stadium. Voordat de cyclus onregelmatig wordt laat een volwassen 

vrouwtjesrat een verlaagde LH-reactie zien als gevolg van het positieve terugkoppelingseffect van E2. 

Men denkt dat hogere E2-concentraties in volwassen ratten tijdens opeenvolgende oestruscycli 

uiteindelijk de neuro-endocriene reactie van het terugkoppelingseffect van E2 op LH secretie 

vermindert (Lu et al., 1994). Tevens bestaat het vermoeden dat dit proces versneld kan worden door 

een grote concentratie oestrogeen vlak voor of na de geboorte (Hayashi en Aihara, 1989). 

Concluderend uit deze gegevens is het mogelijk dat blootstelling van vrouwtjesratten aan 4-OH-

CB107 kan leiden tot een vervroegde reproductieve veroudering in vergelijking met ratten die zijn 

blootgesteld aan mai'solie. 
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Uit de resultaten van de in vivo studie beschreven in Hoofdstukken 6 en 7 kan worden 

geconcludeerd dat blootstelling van ratten aan een gehydroxyleerde PCB-metaboliet kan leiden tot 

nadelige gedragseffecten. Er kan echter niet worden geconcludeerd dat negatieve effecten op de 

hersenontwikkeling het gevolg zijn van de hypothyroi'de staat tijdens de ontwikkeling door 

blootstelling aan 4-OH-CB107, of het gevolg van directe interacties van 4-OH-CB107 op (het 

metabolisme van) de neurotransmitters in de hersenen. De concentraties 4-OH-CB107 in foetaal 

plasma op dag 20 van de dracht zijn hoger in ratten die in utero zijn blootgesteld aan 5 mg/kg 4-OH-

CB107 (deze studie) dan de in vivo gevormde 4-OH-CB107 concentraties in ratten na blootstelling 

aan Aroclor 1254 (Morse et al, 1996a). De effecten van Aroclor 1254 op de hersenontwikkeling en 

het gehoor zijn duidelijker dan de effecten veroorzaakt door 4-OH-CB107. Dit kan worden verklaard 

door het feit dat de blootstelling van stoffen die schildklierhormoon-niveaus kunnen verlagen zoals 

PCBs en dioxines via transplacentale overgang en via de moedermelk kan plaatsvinden en derhalve 

de ontwikkeling in utero en postnataal kan bei'nvloeden. Dit laatste zal in geval van PCB-

metabolieten lager of zelfs afwezig zijn, resulterend in enkel in utero blootstelling bij zuivere PCB-

metabolieten. Goldey et al. (2000b) toonden aan dat gehoortoxiciteit specifiek veroorzaakt wordt door 

postnatale en niet prenatale blootstelling van ratten aan Aroclor 1254. 

Gevolgen van blootstelling aan vooral schildklierhormoon-achtige verbindingen voor de 

gezondheid van de mens 

Een belangrijke vraag bij toxicologische studies die zijn uitgevoerd op laboratorium dieren is of de 

effecten die zijn waargenomen in ratten ook relevant zullen zijn voor de humane situatie. In ratten is 

transthyretine het belangrijkste eiwit voor het transport van schildklierhormonen in het bloed. In de 

mens is dit echter thyroxine bindend globuline (TBG), en interactie studies met gehydroxyleerde 

PCBs en TBG toonden aan dat de OH-PCBs die interactie vertoonden met TTR, geen enkele 

interactie vertoonden met TBG (Lans et al., 1994). Dit zou betekenen dat de binding van een stof aan 

TTR waarschijnlijk geen gevolgen zou hebben voor de gezondheid van de mens. Echter, TTR is het 

belangrijkste schildklierhormoon bindend eiwit in de cerebrospinale vloeistof (CSF) en het is hoogst 

waarschijnlijk het belangrijkste transport van T4 in de placenta. Gezien het feit dat de meeste 

gehydroxyleerde PCBs die in het (humane) bloed worden aangetoond T4-TTR verdringing laten zien 

en nun structuren voldoen aan de structurele voorwaarden van een stof voor binding aan TTR (zie ook 

Hoofdstuk 2), kan het niet worden uitgesloten dat TTR binding in de cerebrospinale vloeistof en de 

placenta de opname van toxische PCB metabolieten in de hersenen en de foetus kan 

vergemakkelijken, en tevens een effect kan hebben op de kinetiek van T4. De humane placenta blijkt 

inderdaad geen barriere te zijn voor gehydroxyleerde PCB-metabolieten. Onderzoek naar de 

concentraties van gehydroxyleerde verbindingen in humaan navelstrengbloed (representatief voor 

foetaal bloed) en maternaal bloed toonde aan dat de ratio van gehydroxyleerde verbindingen in 

navelstrengbloed in vergelijking met maternaal bloed ongeveer 1 is. Dit betekent dat OH-PCBs de 

placenta erg makkelijk kunnen passeren. De ratio tussen PCBs in navelstrengbloed en maternaal 

bloed is lager dan 0.5, waaruit blijkt dat PCBs zelf in een veel lagere hoeveelheid worden 

getransporteerd van de moeder naar de foetus dan de metabolieten (Bergman et al, 1999b). 
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In de tachtiger jaren hebben humane studies ook bevestigd dat PCBs de placenta kunnen 

passeren. Tevens werden hogere PCB concentraties in navelstreng serum geassocieerd met lagere 

geboortegewichten (Fein et al, 1984). Kinderen met een hogere in utero blootstelling aan PCB 

vertoonden vertraagde nineties van het centrale zenuwstelsel (Jacobson et al, 1990) en verlagingen in 

de cognitieve functie op de leeftijd van 4 jaar (Jacobson en Jacobson, 1993). Een in Nederland 

uitgevoerde studie toonde een statistisch significante negatieve correlatie aan tussen dioxine- en PCB-

concentraties in humane melk en plasma T4 en T3 niveaus (Koopman-Esseboom et al, 1994). Het is 

niet duidelijk of de effecten van PCBs op de schildklierhormoon-niveaus en metabolisme hebben 

geleid tot de gevolgen voor de humane hersenontwikkeling, of dat de hydroxy-PCBs zelf de humane 

hersenontwikkeling direct hebben be'invloed. 

Het is nog te vroeg om te voorspellen wat de mogelijke gevolgen van de waargenomen 

effecten op de oestrus cyclus in de vrouwelijke nakomelingen van de ratten zullen zijn voor de 

humane situatie. Ondanks het verlengde di-oestrus stadium in vrouwtjes ratten zijn geen nadelige 

effecten waargenomen wat betreft de reproductiecapaciteit van deze dieren (zoals bijvoorbeeld het 

aantal paringen dat noodzakelijk was) of op hun foetussen (geen effect op het aantal resorpties of 

implantatieplaatsen, het aantal dode of levende foetussen, totale nestgewicht, gemiddelde foetale 

gewicht of seksratio). In deze studie is echter niet gekeken naar de ontwikkeling van de foetussen. 

Om te bepalen of er enige gevolgen zijn voor de voortplanting is het noodzakelijk om meer 

gedetailleerde studies uit te voeren waarin de ontwikkeling van de F2-nakomelingen nader wordt 

onderzocht. Tevens zullen studies gericht op de seksuele ontwikkeling van de hersenen van in utero 

blootgestelde vrouwtjesratten helpen om een onderscheid te kunnen maken tussen de effecten die 

rechtstreeks veroorzaakt zijn door 4-OH-CB107 en effecten die het gevolg zijn van de veranderingen 

in steroid- of schildklierhormonen. 

Voorlopige resultaten van een onderzoek naar het aantal spinale kernen van de 

Bulbocavernosus (SNB), een seksueel dimorfe kern die zich in het ventrale deel tussen het vijfde en 

zesde segment van de ruggengraat van de rat bevindt, toonden aan dat het aantal SNB cellen in 

vrouwtjes blootgesteld aan 5 mg/kg 4-OH-CB107 significant verhoogd was ten opzichte van de 

controle groep. In mannetjes resulteerde de blootstelling aan 4-OH-CB107 of Aroclor 1254 beide in 

een significant verhoogd aantal SNB cellen ten opzichte van controle dieren (van der Beek, 

persoonlijke communicatie). De SNB bevat motor neuronen waarvan de axonen in de spier van de 

bulbocavernosus eindigen. Deze spier is gehecht aan de basis van de mannelijke penis. De SNB is 

bijna geheel afwezig in vrouwtjesratten. Injectie van vrouwtjesratten met testosteron op de 2e dag na 

de geboorte (PND 2) resulteert in de ontwikkeling van de SNB (Breedlove et al, 1982). Het grotere 

aantal SNB cellen in vrouwtjes blootgesteld aan 4-OH-CB107 suggereert dat 4-OH-CB107 mogelijk 

in staat is de endogene androgeen productie te verhogen, daar androgeen concentraties (en niet 

oestrogeen concentraties) het aantal SNB cellen reguleert (Breedlove, 1997). Als dit het geval is zou 

men echter ook effecten verwachten op de gewichten van de mannelijke geslachtsorganen, en dit kon 

niet worden aangetoond (Hoofdstuk 6). Om dit mechanisme op te helderen en tevens de start van de 

waargenomen effecten betreffende de seksuele ontwikkeling van het brein (aantal SNB cellen) en de 

onregelmatige oestrus cyclus van de vrouwtjes nakomelingen te onderzoeken, zouden vervolgstudies 

gericht moeten worden op de seksuele ontwikkeling waarbij steroidhormoon niveaus in blootgestelde 
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nakomelingen van verschillende leeftijd worden onderzocht (bijvoorbeeld neonataal, of tijdens de 

puberteit, het vroege volwassen en volwassen stadium). Hoewel deze mechanismen nog niet zijn 

opgehelderd kan worden geconcludeerd dat indien PCB-metabolieten in staat zijn vervroegde 

reproductieve veroudering ook te kunnen induceren bij mensen, dit emstige gevolgen kan hebben 

voor de voortplanting van de mens, vooral nu de gemiddelde leeftijd waarop een vrouw haar eerste 

kind krijgt steeds hoger wordt. 

Mensen, maar ook in het wild levende dieren worden onbedoeld blootgesteld aan veel 

verschillende chemicalien die gemaakt zijn door de mens. Tot dusver is het grootste deel van deze 

verbindingen niet getest of geevalueerd op hun mogelijke gevaren. In 1990 heeft de Europese Unie 

een lijst gepubliceerd (de EINECS lijst, de Europese Inventaris voor bestaande Chemische Stoffen) 

waarin 100106 bestaande stoffen genoemd worden die op de Europese markt waren gedurende 1971 

tot 1981. Voor slechts ongeveer 5000 van deze stoffen zijn resultaten beschikbaar die nodig zijn voor 

de evaluatie van de mogelijke effecten op de humane gezondheid en/of het milieu (Vallack et al, 

1998). Van slechts enkele honderden van deze chemicalien is voldoende bekend om een volledige 

risicoschatting te maken. Hoewel de resultaten van de meeste toxicologische eindpunten beschikbaar 

zijn, is er slechts weinig bekend van de chronische eindpunten zoals de effecten van een stof op het 

endocriene systeem. De resultaten die beschreven zijn in dit proefschrift tonen aan dat 

schildklierhormoon-achtige verbindingen, waaronder gehydroxyleerde PCBs, een mogelijk nadelige 

invloed kunnen hebben op de hersenontwikkeling en de voortplanting. Vooral op het gebied van de 

voortplanting gaven de gehydroxyleerde PCBs meer effecten in vergelijking met hun uitgangsstofTen. 

Mensen worden naast deze uitgangsstoffen (de PCB congeneren) ook blootgesteld aan hun 

metabolieten. Blootstelling aan de uitgangsstof kan tevens leiden tot een continue blootstelling aan 

metabolieten, omdat deze via metabolisme in vivo gevormd worden. 

De concentratie van de metaboliet in het plasma van foetale ratten, die zijn blootgesteld aan 

5 mg/kg 4-OH-CB107, op dag 20 van de dracht was 12.7 ug/g nat gewicht. Gezien het feit dat het 

gemiddelde aantal foetussen per rat 13 was in deze studie, zou dit betekenen dat elke foetus 

blootgesteld is aan ongeveer 0.98 jig 4-OH-CB107 per g nat gewicht. Een recente studie van Sandau 

(2001) toonde aan dat de totale PCB-metaboliet concentraties, gemeten in navelstreng plasma van 

Canadese vrouwen, varieert van 103 -1750 pg/g nat gewicht. OH-PCB concentraties in humaan 

navelstreng bloed zijn dus nog steeds ten minste 560 keer lager dan de concentraties die gevonden 

zijn in de ratten na in utero blootstelling aan 5 mg/kg 4-OH-CB107 (zie Hoofdstuk 5). Echter, ook in 

de ratten blootgesteld aan 0.5 mg/kg 4-OH-CB 107 waren effecten op het gedrag en de oestrus cyclus 

zichtbaar, terwijl het verschil tussen plasma concentraties van deze ratten en de humane situatie op dit 

moment slechts een orde van grootte is. 

Samenvattend kan worden geconcludeerd dat continue blootstelling aan verbindingen zoals 

PBDEs, PCBs en hun metabolieten, maar ook gehalogeneerde fenolen, die een mogelijk endocrien 

verstorende werking bezitten (bijv. schildklierhormoon-achtig of oestrogeen), een bedreiging kan 

vormen voor de ontwikkeling van het kind. Hoewel PBDEs minder effecten laten zien wat betreft 

bijv. de sehildklierhormoon-niveaus (Zhou et al., 2001) in knaagdieren ten opzichte van coplanaire 

PCBs (Seo et al, 1995), is het mogelijk dat de effecten in totaal mogen worden opgeteld. Voorlopige 

resultaten gepubliceerd door Hallgren en Darnerud (1998) tonen aan dat er inderdaad enig bewijs is 
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voor een additief effect wat betreft de verlaging van T4 niveaus bij gelijktijdige toediening van 

PBDEs en PCBs (Aroclor 1254) of gechloreerde paraffine. Het is derhalve noodzakelijk dat bij 

volgend onderzoek dat gericht is op het vinden van associaties tussen blootstelling aan 

organohalogene verbindingen en de effecten op de humane ontwikkeling niet alleen de 

uitgangsstoffen maar juist ook de fenolische metabolieten worden meegenomen in de analyses. In 

geval van endocrien actieve stoffen is het waarschijnlijk dat zwangere vrouwen een extra risico lopen 

voor mogelijke hormoonverstoring omdat de ontwikkelende foetus extra gevoelig is voor kleine 

veranderingen in bijv. schildklierhormoonniveaus. Een extra risicofactor waaraan gedacht moet 

worden zijn vrouwen met een jodium deficientie. Ongeveer twaalf procent van de algemene 

bevolking en ongeveer 15 procent van de vrouwen in een leeftijd waarop ze kinderen kunnen krijgen 

zijn jodium deficient (in de Verenigde Staten, Hollowell et al., 1998). Het is daarom van groot belang 

dat het testen van stoffen op hun mogelijke endocriene activiteit in een eerder stadium van de 

productontwikkeling wordt uitgevoerd om zo de verspreiding van dit soort stoffen in het milieu te 

kunnen voorkomen. 
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Abbreviations 

2,4-DBP 2,4-dibromophenol 

3,5-T2 3,5-diiodothyronine 

4-OH-CB107 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl 

4-OH-DE 4-phenoxyphenol 

5-HIAA 5-hydroxyindole-3-acetic acid 

5-HT 5-hydroxytryptamine 

AGD anogenital distance 

AhR arylhydrocarbon receptor 

P-NF P-Naphthoflavone 

BAEPs brain stem auditory evoked potentials 

BPA bisphenol A 

CALUX chemical activated luciferase gene expression 

CL corpora lutea 

CN caudate nucleus 

CLOF clofibrate 

CRL crown-rump length 

CYP450 cytochrome P450 

DA dopamine 

D-II type II 5'-thyroxine deiodinase 

DDT 2,2-bis(4-chlorophenyl)-1,1,1 -trichloroethane 

DecaBDE decabromodiphenyl ether 

DiBBPA dibromobisphenol A 

DMSO dimethyl sulfoxide 

DOPAC 3,4-dihydroxyphenylacetic acid 

DRE dioxin response elements 

E2 estradiol 

EC50 concentration causing 50% of the maximum effect 

EINECS European Inventory of Existing Chemical Substances 

E/P-ratio estradiol/progesterone ratio 

ER estrogen receptor 

EROD ethoxyresorufin-0-deethylase 

FC frontal cortex 

FT4 free thyroxine 

GD gestation day 

HCB hexachlorobenzene 

hEST human estrogen sulfotransferases 

HPT-axis hypothalamus-pituitary-thyroid axis 

HVA homovanillic acid 

IC50 concentration causing 50% inhibition 

ID-1 type I iodothyronine deiodinase 

IPCS International Programme on Chemical Safety 
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Ka binding affinity constant 

LOT lateral olfactory tract 

MeO methoxylated 

MBBPA monobromobisphenol A 

NA nucleus accumbens 

NE norepinephrine 

OctaBDE octabromodiphenyl ether 

OECD Organisation for Economic Co-operation 

OH- hydroxylated 

PB phenobarbital 

PBBs polybrominated biphenyls 

PBDEs polybrominated diphenyl ethers 

PBP pentabromophenol 

PCB polychlorinated biphenyl 

PCDD polychlorinated dibenzo-p-dioxin 

PCDF polychlorinated dibenzofuran 

PCP pentachlorophenol 

pentaBDE pentabromodiphenyl ether 

PFC prefrontal cortex 

PHAHs polyhalogenated aromatic hydrocarbons 

PND postnatal day 

POPs persistent organic pollutants 

ppm parts per million 

PROD pentoxyresorufin-O-deethylase 

PVC persistent vaginal cornification 

RENCO Risk of endocrine contaminants (EU-project) 

RBP retinol binding protein 

SNB spinal nucleus of the Bulbocavernosus 

SPL sound pressure levels 

T2-like OH-BDE 4-(2,4,6-tribromophenoxy)phenol 

T3-like OH-BDE 2-bromo-4-(2,4,6-tribromophenoxy)phenol 

T4-like OH-BDE 2,6-dibromo-4-(2,4,6-tribromophenoxy)phenol 

T3 triiodothyronine 

T4 tetraiodothyronine 

TBP 2,4,6-tribromophenol 

TCBPA tetrachlorobisphenol A 

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin 

TBBPA tetrabromobisphenol A 

TriBBPA tribromobisphenol A 

TetraBDE tetrabromodiphenyl ether 

TSH thyroid stimulating hormone 

TTR transthyretin 

UDP-GT uridine diphosphoglucuronosyl transferase activity 
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