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Extended summary 

Chemical fingerprinting methods (e.g. NMR, NIR and chromatography) in combination with 

chemometric techniques provide a powerful tool for verifying the authenticity of food and related 
commodities. In this integrated approach, a multivariate classification model is "trained" to 

distinguish between authentic and non-authentic food samples based on chemical fingerprinting 
data. After training, such a model can be used to determine whether a suspect food sample is 

authentic or not at a certain level of confidence. These authentication methods generally have the 
following characteristics:  

- The test is specifically developed for a single combination of commodity/product and 

authenticity question. 

- The test is based on a multivariate classification model. 

- The classification model is empirically derived (i.e. based on a reference dataset). 

- The fingerprinting data used for building the classification model is often of a non-targeted 

or semi-targeted nature. 
 
For application of such food authentication methods in a commercial context, integrated validation 

of the analytical and statistical aspects of the method is of utmost importance. However, protocols 
for validating such advanced methods are currently lacking. The aim of this report therefore is to 

describe a set of generic guidelines for validation of methods that are based on chemometric 
classification techniques. In addition, the report provides guidelines on how to develop and 

optimize such classification models. For the purpose of this report we limit the case to binary 
classifiers. 

Procedures for validation of regular analytical methods are laid down in various protocols such as 
Commission Decision 2002/657/EC and ISO 17025. Herein it is described 1) which performance 

characteristics need to be determined, and 2) which criteria have to be met for accepting the 
performance of the method. The methods described in this report are qualitative methods and 

according to existing protocols, performance characteristics required for validation of qualitative 
techniques include:  

- Detection capability 

- Specificity 

- Ruggedness 

- Stability 
 
For several reasons, however, these performance characteristics are not, or not directly, suitable 

in a multivariate context. Therefore, several modifications and alternatives are provided that can 
be used to assess the performance of the analytical aspects (fingerprinting method) as well as the 

statistical aspects (classification model).  

To assess the performance of the fingerprinting method, it is here proposed to use the average 

standard deviation of: 

- The duplicate measurements of the validation set. 

- The repeated measurements of several internal standards over time (stability). 
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The performance of the classification model can be assessed using a number of procedures to 

calculate the true positive rate (TPR) and true negative rate (TNR): 

- Using the individual duplicate (or triplicate) results. 

- Internal cross-validation using bootstrapping. 

- External validation using a new set of samples. 

- Using a permutation test. 
 

The most crucial aspect of the proposed validation procedure concerns external model validation. 
Only by external validation the generalization ability of the model can be assessed.  

The proposed criteria for acceptance of the performance characteristics for fingerprinting method 
are based on the average standard deviation of the duplicate samples that were used to build the 

model (i.e. training set), whereas the criteria for acceptance of the model performance are based 
on minimum values of the TPR and TNR as determined from the bootstrap distribution used for 

internal cross-validation.  

The generic approach described in this report is meant as a general guideline for validation of 

methods based on chemical fingerprinting in combination with chemometric modelling. It should 
be kept in mind that for each of the performance characteristics and criteria mentioned here, 

various alternatives exist which are equally valid or may even be better suited. As such, the 
optimal approach to validation will depend on the specific question at hand. 

  



 

 RIKILT Report 2011.022 5 

Contents 

Extended summary ....................................................................................................... 3 

1 Introduction ............................................................................................................ 7 

2 Development of a classification model ..................................................................... 8 
2.1 Raw data ........................................................................................................... 8 
2.2 Data pre-treatment ........................................................................................... 10 
2.3 Feature selection ............................................................................................... 11 
2.4 Building a classifier ............................................................................................ 11 
2.5 External validation of the classifier ....................................................................... 13 
2.6 Model conformance and interoperability ................................................................ 13 

3 Method validation .................................................................................................. 14 
3.1 Goal and scope ................................................................................................. 14 
3.2 Method of validation .......................................................................................... 15 
3.3 Status of the method ......................................................................................... 15 
3.4 Type of method ................................................................................................ 15 
3.5 Relevant performance characteristics ................................................................... 15 

3.5.1 Decision limit and detection capability ........................................................ 16 
3.5.2 Specificity .............................................................................................. 17 
3.5.3 Ruggedness (minor variations) .................................................................. 18 
3.5.4 Stability ................................................................................................. 19 
3.5.5 Additional performance characteristic; permutation test ................................ 20 

3.6 Criteria for acceptance of performance characteristics ............................................ 21 
3.6.1 Criteria for acceptance according to Council Directive 2002/657/EC ................ 21 
3.6.2 Alternative criteria for acceptance .............................................................. 22 

3.7 Experimental design .......................................................................................... 23 
3.8 Description of deviations from standard protocols for method validation .................... 24 

4 References ............................................................................................................. 25 
  



 

6 RIKILT Report 2011.022  

 

  



 

 RIKILT Report 2011.022 7 

1 Introduction 

The basic goal of food authenticity testing is to objectively verify the acclaimed specifications of 

some product or commodity with respect to its composition, typicality, production method and/or 
geographical origin. Such problems are commonly addressed by chemical fingerprinting methods 

such as NMR, MIRS, NIRS and chromatography in combination with chemometric classification 
techniques (see e.g. Charlton et al., 2002; Møller et al., 2005; Bevin et al., 2006; Bertelli et al., 

2010; Van Ruth et al., 2010). 

Common questions in food authentication studies for example include: “Are these eggs organic or 
not”, or “can we discern between wines from Bourgogne and wines from Bordeaux?” In statistics 

this translates to a binary classification problem. Binary classification is the task of classifying the 

members of a given set of objects into two groups on the basis of whether they have some 
property or not. More complex situations arise when one wants to discriminate between a set of 

objects into a number of groups (i.e. a multiclass classification problem). For the purpose of this 
report, however, we focus on binary classification problems only. 

A common approach in food authenticity testing is to develop a classification model (classifier) on 

the basis of a representative set of reference samples. In case of a binary classification problem, 
the reference samples belong to either one of the two classes and the allocation to these classes is 

known. The final classification model then provides a means to predict whether an unknown food 

sample is authentic or not at a certain level of confidence.  

Such an authenticity test has the following general characteristics:  

- The test is specifically developed for a single combination of commodity/product and 

authenticity question. 

- The test is based on a (binary) classification model (classifier). 

- The classification model is empirically derived (i.e. based on a reference dataset). 

- The fingerprinting data used for building the classification model is often of a non-targeted 

or semi-targeted nature. 
 

Validation of such an authenticity test requires that both the analytical as well as the statistical 
aspects are integrally evaluated and tested for compliance with the relevant performance criteria. 

Because such tests are based on an empirical model, it is of utmost importance to assess their 
generalization ability by external model validation.  

Official protocols and standards for validation of these aspects are currently lacking and the aim of 
this report is to describe a set of generic guidelines for in-house validation of a method for 

authenticity testing that are based on a combination of chemical fingerprinting techniques and 
chemometric classification models. In chapter 2 the different aspects relevant to the development 

of binary classification models are reviewed and discussed, whereas chapter 3 provides a 
proposed methodology for in-house validation of the aforementioned approach to authenticity 

testing. 
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2 Development of a classification model 

Development of a binary classification model consists of a number steps which are summarized in 

Figure 1. These steps are only briefly reviewed in this chapter, and the reader is referred to 
Massart et al. (1998) and Otto (1999) for further details. 

2.1 Raw data 
The raw fingerprinting data consist of multivariate/multichannel measurements (e.g. spectra) 
from a set of samples that belong to a number of known classes, which are regarded as different 

(sub)populations. For the purpose of this report the number of classes is limited to two (binary 
classification) and the measurement data is expected to be of a one dimensional nature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Flow chart showing the different steps in the model development and validation process. 

 
Obviously, one of the most important question in model development is to decide how many 

samples are required to built a realistic model that has sufficient generalization ability. 
Unfortunately the answer to this question is not trivial and depends on many factors including the 

size of - and variation within - the populations of interest, the extent up to which differences 

Data pre-treatment: transformation, normalization, smoothing, outlier detection 

Feature selection and feature reduction: decrease dimensionality of the data 

Building a classifier: select best performing classifier by internal cross-validation 

No 

External validation: predict class memberships for a new set of measurements  

Predictive quality of the model meets 
requirements of user? 

Yes 

Predictive quality of the model is supported 
by external validation? 

No 

Yes 

Validated prediction model 

Raw data input 
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between the groups are reflected by the chemical fingerprinting method as well as the stability of 

these differences over time.  

When there is no information about the variation in the data available beforehand, the proper 

amount of samples required for building a model can only be guessed. In the case that 
preliminary data is available from both populations, power analysis could be used to determine 

the minimum amount of samples required for model development (see e.g. Cohen, 1988). Power 
analysis is based on the effect size, which is usually calculated as the difference between the 

means of the two population normalized by the standard deviation of one population (assuming 
equal variance). Next, the effect size is used to calculate the amount of samples needed from both 

populations using a t test with a predefined power and α error. For an effect size below ~0.6, 
however, the amount of samples calculated by this method strongly depends on the effect size 

(Figure 2). An extension of this approach for a multivariate case, which is based on the 
Mahalanobis distance, has been described in Morse (1999). 

 
 

 

 

 

 

 

 

 

 

Figure 2 The amount of samples required for each class to test for a significant difference between the 
classes as a function of the effect size for a univariate case. Calculations assume equal variances of the 
classes and an equal amount of samples. 

 

Although power analysis can give some guidelines on the amount of samples needed for model 
building, one should be cautious when the outcome suggests that less than say 50 to 100 samples 

are required for each class. Such sparse models might not only give under- or overoptimistic 
results, but they could furthermore hamper feature selection (e.g. Jain and Zongker, 1997). At 

last it should be noted that multivariate classification methods can be very sensitive to large 
unbalances in the data, an it is therefore advisable to have roughly an equal amount of samples in 

each of the two classes (see e.g. Berrueta et al., 2007). 
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2.2 Data pre-treatment 
Data pre-treatment is a crucial step and includes one or more mathematical operations on the 
data including: 

- Pre-processing(e.g. mean centering and scaling) 

- Transformation (derivation, smoothing, baseline subtraction, Fourier transforms etc.) 

- Aggregation (e.g. merging multiple copies of the same measurements) 
 
During data pre-treatment, missing values should furthermore be dealt with, either by row-wise 

deletion, replacement by some average value or by estimation of their value(s) using imputation. 
When missing values occur the categorical information about the samples (i.e. the class to which 

they belong), the class membership might be guessed based on additional information. 
Alternatively the sample could be left out for model building.  

At this point, also the variables that will be used for modelling are pre-selected whereas variables 
that contain no relevant information are discarded. This selection step is different from feature 

selection (section 2.3) in a sense that it is based on knowledge of the researcher. For example 
because a part of the spectrum is known to contain no useful information, or because the values 

of some variables are all below the detection limit. Although this seems trivial, this step should be 
clearly described so that the same procedures can be followed for the validation set. 

Furthermore, the raw data should be checked for outliers before further feature selection and 
model building. This is usually done by drawing a PCA score plot which reveals samples deviating 

from the bulk of the samples. Alternative approaches for multivariate outlier detection can be 
found in e.g. Hadi (1994) and Singh (1996). The decision to regard a sample as an outlier is up to 

a large extent arbitrary and leaving an odd sample out might imply that the initial model performs 
well under internal cross-validation, but lacks generalization power (i.e. the power to correctly 

predict the class membership of a new sample). In any case, the criteria used to define an outlier 
should be clearly described, moreover because the same criteria should be applied to the 

validation set. 

When the data set consists of duplicate or triplicate measurements, a more complex situation 

might arise; it can be that only one of the two or three duplicate or triplicate measurements is 
outlying, or it can be that the duplicate or triplicate measurements as a whole are outlying 

compared to the other sets. In the first case it would make sense to remove the one outlying 
measurement, but in the later case the choice for exclusion is not so trivial as the duplicate or 

triplicate results are internally consistent. 

In any case therefore, detection of outliers should be done before merging of the individual 

measurements by e.g. averaging. Merging of the data is important because retaining the duplicate 
or triplicate measurements in the dataset to artificially increase sample size should be avoided at 

all times (e.g. Berrueta et al., 2007). For triplicate measurements, taking the median values in 
stead of the averages will provide more robust results. 
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2.3 Feature selection 
In many fingerprinting datasets, the amount of variables outnumbers the amount of samples by 
far. This is often referred to as “the curse of dimensionality”, which easily leads to overfitting of 

the model during model building and optimization. Overfitting takes place if the model learns the 
idiosyncrasy of the data; then, the noise is modelled as well, and the model looses its 

generalization ability (Berrueta et al., 2007). Overfitting can be expected when the number of 
variables is larger than (N – c)/3, where N is the number of samples and c is the number of 

classes (see Defernez and Kemsley, 1997). 

Feature selection, also referred to as variable selection or feature reduction, aims to reduce the 

dimensionality of the data whereby maintaining the information content that is present. Especially 
when the data is of a high dimensional nature and/or has a high degree of redundancy, feature 

selection is strongly recommended. Different feature selection algorithms have been developed 
which can broadly be classified into three categories: filter, wrapper and embedded models (Zhao 

et al., 2010).  

The filter model relies on the general characteristics of data and evaluates features without 

involving any learning algorithm. Examples of such methods include standard deviation ranking or 
feature selection based on Fisher weights. In the first method only variables with a high standard 

deviation are retained for modeling, whereas in the second method variables are selected by 
evaluating the difference between the mean of the classes compared to their variance. This 

approach is similar to calculating the effect size (see section 2.1). 

The wrapper model requires a predetermined learning algorithm and uses its performance as 

evaluation criterion to select features. Algorithms with embedded models incorporate variable 
selection as a part of the training process, and feature relevance is obtained analytically from the 

objective of the learning model. Berrueta et al. (2007) also provides an overview of different 
variable selection as well as reduction approaches. As for the data pre-processing, it is important 

to clearly describe the variables selected for model building and to use the same set of variables 
in the external validation phase. 

2.4 Building a classifier 
There are many different supervised classification algorithms available, - e.g. support vector 
machines (SVM), artificial neural networks (ANN), classification and regression trees (CART), 

partial least squares discriminant analysis (PLS-DA), soft independent modelling of class analogy 
(SIMCA) etc. -, and selection of the optimal classification method is not trivial. An overview of 

available algorithms and their characteristics can be found in Massart et al. (1998) and Berrueta 
et al. (2007). 

A general distinction can be made between soft and hard classification methods. Soft classification 
techniques such as SIMCA and UNEQ build frontiers between each class and the rest of the 

universe. As these class boundaries are allowed to overlap, in some cases samples will be 
attributed to two or even more classes. When a sample falls outside all boundaries, it is regarded 

as an outlier. Hard classification techniques such as SVM, ANN and PLS-DA in contrast divide the 
hyperspace in as many regions as the number of classes. Because these regions do not overlap, 

such methods will attribute samples to a single class only. In most cases, hard models produce a 
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better discrimination between the classes and are preferred in the framework of authenticity 

testing. 

The choice of classifier should moreover be based on knowledge about the characteristics of the 

data in terms of the number of variables, the presence of multi-variate normality and the 
presence of non-linearity. Note that most classification tasks can be performed using linear 

methods such as LDA, CVA and PLS-DA, and non-linear methods such as SVM and ANN are rarely 
needed (Beruetta et al., 2007). Furthermore, LDA, UNEQ, CART, ANN and SVM appear especially 

sensitive to overfitting (Beruetta et al., 2007). Overfitting can also be an issue in PLS-DA and 
occurs when too many latent components are selected. These latent components, which are 

sometimes referred to as factors, are uncorrelated linear transformations of the original predictor 
variables, and are basically used to reduce the dimension of the data before performing DA. 

Finding the optimal classifier is usually this selection is done empirically, i.e. by comparing 
performance of various classification methods using internal cross-validation such as k-fold-cross-

validation or a bootstrapping approach. Note that leave-one-out cross-validation should be 
avoided because it has a strong tendency to overfitting and underestimating the true prediction 

error (Baumann, 2003). In general it is better to use leave-multiple-out cross-validation 
(Baumann, 2003), repeated-k-fold cross-validation (Cruciani et al., 1992; Baroni et al., 1992) or 

bootstrapping (see e.g. Efron and Gong, 1983). 

Internal cross-validation normally proceeds by taking the following steps: 

1. Split the samples into two groups: a training and a test set 

2. Train each classifier on training set, and test the classifier on the test set 

3. Repeat the previous steps many times 

4. Collect performance characteristics of each classification method 

5. Choose the classification method with the best performance 
 
The choice of the optimal classifier could be based on the best overall performance in terms of 

true positive rate and true negative rate or a similar measure of model performance. The true 
positive rate of the model is defined as: 

- True positive rate = True positives / (True positives + False negatives) 
 
And the true negative rate as: 

- True negative rate = True negatives / (True negatives + False positives) 
 
The true positive rate (also referred to as sensitivity, hit rate or recall) and the true negative rate 

(also referred to as specificity) are the basic performance characteristics of a classification model 
and can be easily derived from the confusion matrix (see Table 1). Herein, the authentic samples 

are the “positives” and the non-authentic samples the “negatives” under the hypothesis: 

H0 : The sample belongs the authentic population 

H1 : The sample does not belong to the authentic population (i.e. is not authentic) 

In authenticity testing, one is generally more worried about the false negatives (i.e. saying a truly 

authentic sample is not authentic, Type II error) than about the false positives (i.e. not noticing a 
not authentic sample, Type I error) because of financial and juridical consequences. As such, 

classification models with a high true positive rate but a lower true negative rate are generally 
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preferred over models with a high true negative rate and lower true positive rate. Obviously it is 

up to the user to decide whether the model’s predictive power is sufficient or not. 

If the predictive quality of tested models does not meet the desired criteria, an alternative set of 

classification algorithms, feature selection approach or data pre-processing could be considered. 
Alternatively, another fingerprinting method may be employed that provides a better classification 

model. Care should be taken when the model performs well under a specific set of conditions, but 
not under any of the other conditions. This might be an indication that the model is overfitted or 

otherwise overoptimistic. 

Table 1 Example of a 2x2 contingency table (also know as "confusion matrix"). 

 

 
Outcome of test 

Tr
ue

 id
en

tit
y 

Authentic Not authentic 

Authentic True positive (p=1-α) False negative (p=β) 

Not authentic False positive (p=α)  True negative (p=1-β) 

   

 

2.5 External validation of the classifier 
External validation is of great importance to assess the generalization ability of the method. In 

this approach, the model performance is evaluated using a new set of samples – the external 
validation set – which is then compared against the previously established performance criteria. 

This procedure is explained in more detail in the next chapter. 

2.6 Model conformance and interoperability 
To ensure model conformance and interoperability it is of importance that all details concerning 

the final model are recorded in a standardized way. A common standard for complex statistical 
models is the Predictive Model Markup Language (PMML). PMML is an XML-based markup 

language developed by the Data Mining Group (DMG; see http://www.dmg.org/). The markup 
language provides a way for applications to define models related to predictive analytics and data 

mining and to share those models between PMML-compliant applications.  

PMML consists of the a number of components in which information about various modelling 

aspects such as pre-processing steps, dealing with missing values, model details and validation 
are stored in a standardized way. PMML is supported by a range of software products including R, 

SPSS and Statistica. 
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3 Method validation 

This report focuses on in-house method validation, for which the procedures are laid down in 

RIKILT protocol RSV F0052 and related protocols. The procedures described herein are directly 
based on Council Directive 2002/657/EC and ISO 17025. For in-house validation at RIKILT, the 

method should be described using a standard protocol (RSV), and the validation process should be 
laid down in a validation plan (see RVS F0052). In the validation plan the following topics should 

be addressed: 

- Goal and scope of the method 

- Method used for validation 

- Status of the method  

- Type of method (qualitative/quantitative) 

- Performance characteristics 

- Criteria for evaluation of performance characteristic 

- Experimental design 

- Description of deviations from standard protocols for method validation 
 

These topics will be reviewed and discussed in the following sections. 

3.1 Goal and scope 
As mentioned in the introduction, the goal of authenticity testing is to verify the acclaimed 

specifications with respect to composition, typicality, production method and/or geographical 
origin of some commodity or commodity at a given level of confidence. The null hypothesis and 

alternative hypothesis for such a test would be: 

H0 : The sample is authentic 

H1 : The sample is not authentic  

In principle, the hypotheses could be defined the other way around and it is important to explicitly 

state the null and alternative hypothesis used for testing. 

With respect to the scope of the test the following points should be described: 

- The commodity or product for which the test applies 

- The production area or producers for which the test applies 

- Optional: the production period for which the test applies 
 

It is important to describe the commodity or product for which the test applies in detail. This 
includes not only the truly authentic commodity or product (i.e. positive group), but also similar 

not authentic commodities or products (negative group). For the authentic commodity this 

description should furthermore include information about which property or characteristic the 
authenticity is based on (e.g. geographical origin, typical composition/ingredients, type of 

production method or year of production). 

Because the model used for testing is based on a representative set of samples from a confined 
region and/or number of producers, the test will – at least at first instance – only be valid for that 
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region and/or those producers, or similar producers within the region concerned. Preferentially, 

the generalization ability of the model should be motivated using additional knowledge about the 
variation in the data. 

Unless the data is representative for all relevant production periods, or unless the temporal 
variation is deemed of lesser importance, also the specific production period(s) for which the test 

is valid should be included in the description of the scope. Again, this should preferentially be 
motivated by additional knowledge about the variation in the data. 

3.2 Method of validation 
In general, the method of validation depends on the matrix-analyte combination (see RVS F0052). 
For certain matrix-analyte combinations legislative protocols have already been defined, and these 

should be followed. In all other cases, validation should proceed according to RVS A0906. This in 
principle also applies for the validation of methods for authenticity testing as described in this 

report. However, RVS A0906 was not developed for integral validation of untargeted fingerprinting 

methods in combination with binary classification models. This report therefore provides a set of 
alternative procedures for validation of such methods. 

3.3 Status of the method 
With respect to status, a method can be classified as “conformable to a reference method”, 
“similar to a reference method” or “own method” (see RVS F0052). The methods for authenticity 

testing will at first instance be developed as an own, or in-house, method, and this implies that 
the relevant requirements are to be defined by the RIKILT, or alternatively by the customer for 

which the method is developed. 

3.4 Type of method 
Two basic types of methods can be discerned; quantitative and qualitative methods. In general, 

an authenticity test is a qualitative test (yes/no) for which quantitative statements are made 
about the confidence level of the test. In Council Directive 2002/657/EC, two types of qualitative 

methods are recognized: screening methods and confirmatory methods. Whereas screening 
methods are generally used as a rapid method to detect suspicious samples at a given level of 

confidence, confirmatory methods allow to confirm the presence or absence of a substance 
beyond any reasonable doubt. As such, a method for authenticity testing as described in this 

context will generally classify as a screening method. 

3.5 Relevant performance characteristics 
The relevant performance characteristic that are required for method validation depend on the 
type of method as well as the status of the method. The relevant performance characteristics that 

are required for validation of a screening method according to RVS A0906 and Council Directive 
2002/657/EC include: 

- Detection capability 

- Specificity 

- Ruggedness 
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- Stability 
 

For a confirmatory method, in addition also the decision limit (CCα) is required. For clarity, the 
definitions of these terms are summarized in Table 3. To be applicable in the context of a method 

for authenticity testing, the above performance characteristics have to be translated in some way. 
When this is not possible, suitable alternatives are provided. 

3.5.1 Decision limit and detection capability 

The decision and limit (CCα) and detection capability (CCβ) are related to the analytical precision 
around a certain permitted limit of some substance. In case no permitted limit has been 

established, blanks or fortified blanks are used to determine the decision limit and detection 
capability (see Council Directive 2002/657/EC). The decision limit and detection capability are 

required to ensure that decisions about compliance of a sample are not faulty because of 

measurement uncertainty. 

In the case of authenticity testing, the terms compliant and non-compliant would usually translate 
to authentic and non-authentic. In this case, however, the permitted limit cannot be expressed as 

a single value because the boundaries of the classes are determined by some multivariate 
function. It would moreover be impractical to determine the analytical precision of the method 

along the trajectories of such functions. It is therefore concluded that CCα and CCβ can not be 
directly translated to a multivariate setting and that alternative performance characteristics have 

to be defined.  

As an alternative to the CCα and CCβ it is proposed to determine the predictive power of the model 

under additional measurement uncertainty. When for example the samples were measured in 
duplicate or triplicate, - and assuming the model has been built from their average values -, the 

effect of measurement uncertainty can be evaluated by predicting the class memberships based 
on the individual measurement series. The false positive and negative rate can then be 

determined for each individual series, which can then be compared to the criteria for acceptance 
as described in section 3.6. 

When no duplicate or triplicate measurements are available, alternative test sets can be prepared 
by adding increasing amounts of noise to the existing dataset. This can for example be done by 

adding (Gaussian) noise to each of the variables by letting the standard deviation of the noise 
vary proportionally with the standard deviation of the variable. Using these sets to assess the 

model robustness against noise could be used to find a cut-off value for the acceptable amount of 
analytical variation. Because the artificial noise will in general have different properties than real 

noise, this approach might yield less realistic results.  

At last, it is important to realize that none of these tests tell something about the generalization 

ability of the model (i.e. how well the model can predict new samples), and as such they are not 
part of the external model validation procedure. Such a test does however provide a cheap way of 

assessing the susceptibility of the model to analytical variation and gives a first indication of how 
well the model can accommodate additional variation in the data. 
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Table 2 Definition of relevant performance characteristics for validation of screening methods according 
Council Directive 2002/657/EC. Definition of stability taken from RIKILT protocol F0052. Note that the 
decision limit is not required for screening methods (only for confirmative methods). 

Performance characteristic Definition 

Decision limit (CCα) 
The limit at and above which it can be concluded with an error 
probability of α that a sample is non-compliant. 

Detection capability (CCβ) 

The smallest content of the substance that may be detected, identified 

and/or quantified in a sample with an error probability of β. In the case 
of substances for which no permitted limit has been established, the 

detection capability is the lowest concentration at which a method is 
able to detect truly contaminated samples with a statistical certainty of 

1 – β. In the case of substances with an established permitted limit, 
this means that the detection capability is the concentration at which 
the method is able to detect permitted limit concentrations with a 

statistical certainty of 1 – β. 

Specificity 

The ability of a method to distinguish between the analyte being 
measured and other substances. This characteristic is predominantly a 

function of the measuring technique described, but can vary according 
to class of compound or matrix. 

Ruggedness 

The susceptibility of an analytical method to changes in experimental 

conditions which can be expressed as a list of the sample materials, 
analytes, storage conditions, environmental and/or sample preparation 

conditions under which the method can be applied as presented or with 
specified minor modifications. For all experimental conditions which 
could in practice be subject to fluctuation (e.g. stability of reagents, 

composition of the sample, pH, temperature) any variations which 
could affect the analytical result should be indicated. 

Stability 
The susceptibility of an analytical method as a result of sample storage 

and analyses. 

 

3.5.2 Specificity 

In the context of the analytical methods described in Council Directive 2002/657/EC, the 
specificity refers to the ability of the method to discriminate between the analyte and any other 

compounds (see Table 2). This definition is slightly different from the definition of specificity – or 
true negative rate – as used in chemometrics and machine learning (see Table 1). In terms of a 

method for authenticity testing, the specificity could be translated as the ability to correctly 
classify samples from the not authentic class, whereas the sensitivity – or true positive rate – 

refers to the ability to correctly classify samples from the authentic class. 

The true positive rate and true negative rate are often used to choose an optimal classification 

algorithm as well as to optimize the classification model by a leave-multiple-out cross-validation 
or a bootstrap approach (see section 2.4). After model optimization, the final TPR and TNR are 

then calculated by autoprediction (i.e. calculating the TPR and TNR using all the samples), and 
presented as the final power of the test. It is well known, however, that the true positive rate and 
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true negative rate as derived in this way are optimistic estimators of the “true” model TPR and 

TNR.  

 

 

 

 

 

 

 

 

 

Figure 3 Bootstrap distribution of the TPR and TNR of an artificial dataset consisting of two partially 
overlapping clusters classified using PLS-DA with 6 latent components. Both clusters consist of 1000 
samples and 20 variables of which 5 are relevant (i.e. non-noisy). Bootstrap distribution generated by 
1000 realizations leaving out 200 samples. The true positive and true negative rate calculated using all 
samples (autoprediction) is 0.96 and 0.93 respectively. 

 

As an alternative to the autopredicted true positive rate and true negative rate it is suggested to 
use the mean or median of the TPR and TNR as calculated from many non-parametric bootstrap 

cycles (typically >1000) of the original model. This approach does not only allow to determine the 
mean or median TPT and TNR, but also allows to calculate some measure of dispersion (e.g. 

standard variation). In non-parametric bootstrapping, a test set of N samples are repetitively 
selected randomly from the training set with replacement (e.g. Efron and Gong, 1983). The 

distribution of the true positive rate and negative rate is then established from the model 
outcomes at each of the cycles. Herein it is important that the test sets are sufficiently large to 

prevent erroneous outcomes (e.g. Brereton, 2006; Isaksson et al., 2008). An example based on 

data from two artificial clusters classified using PLS-DA is shown in Figure 3. 

3.5.3 Ruggedness (minor variations) 

The ruggedness of a method is mainly related to its susceptibility to variations in the experimental 

conditions. To evaluate the ruggedness of a method, samples should be measured under varying 
experimental conditions such as pH, time of preparation, device setting etc, which is usually done 

using a factorial design (see Council Directive 2002/657/EC).  

A similar approach can be used to test the ruggedness of a classification model. In this case, 
however, one would be more interested in generalization ability of the model, - i.e. how well the it 

predicts the class memberships for a set of newly collected samples -, than in the effects caused 

by using different experimental conditions. Not so much because the effects of varying 
experimental conditions are deemed irrelevant, but the effects are considered of lesser importance 

compared to the differences within the population of authentic and non-authentic samples. 
Moreover, the analytical method used for fingerprinting will often be already validated, albeit 
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maybe for a more specific purpose (e.g. determination of water content by NIR, fatty acid content 

by GC etc.).  

Testing the model’s predictive power using a new set of samples is generally referred to as 

external model validation. The essential questions for the external validation procedure are: I) 
which samples to use, and II) how many samples to include? Selection of new samples should 

preferably be based on knowledge about the main sources of variation within the population. 
Moreover, they should fall within the previously defined scope of the method (see section 3.1). In 

general it is advisable to collect new samples both from additional producers as well as from 
previously sampled producers/areas. The latter allows to evaluate the temporal effects. If deemed 

important, other factors could be considered as well such as the production method or storage 
conditions. 

To determine the appropriate sample size the power analysis approach as discussed in section 
2.1. could be used to provide a rough guideline. Obviously, the sample size shouldn't be too small, 

because otherwise the performance characteristics such as the TPR and TNR cannot be assessed 
with sufficient resolution. For example when only 20 samples are taken from the authentic group 

and 20 samples from the non-authentic group, the "resolution" of the predicted TPR and TNR is 
limited to 0.05 (e.g. 0.95, 0.90, 0.85 etc.). 

Before the new set of measurements is used to evaluate the classification model, it is advisable to 
determine analytical quality of the new measurements and compare it with the results for the 

original ones (see section 3.6.2). Assuming that the samples were analyzed in duplicate the 
average standard deviation of the validation set (SDval) can be calculated using: 
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Where di,j is the difference between the i-th duplicate pair for the j-th variable, N is the number of 

of duplicate pairs in the set of external validation samples used to validate the classification model 
and k is the number of variables. 

3.5.4 Stability 

The stability expresses the susceptibility of the method as a result of sample storage and analysis. 
Guidelines for evaluation of the stability can be found in Council Directive 2002/657/EC. The 

approach basically boils down to repeated analysis of a set of samples stored under for several 

periods. For testing the stability of an analyte in a matrix, sample material should be analyzed at 
T=0 (fresh) and after one, two, four and 20 weeks while stored at least at -20 °C or lower if 

required. 
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In the context of authenticity testing a similar approach can be followed by using a set of 

reference samples of both the positive and negative group. By repeated analysis of these 
reference samples, for example according to the scheme in Table 4, the average standard 

deviation SDr(T) can be calculated from the difference of each measurement at T>0 and the 
measurement at T=0 using: 
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Where di,j(T) is the difference between the i-th duplicate pair for the j-th variable, N is the number 
of duplicate pairs and k is the number of variables. Note that a duplicate pair in this context refers 

to the measurement of a reference sample at T=0 and at T>0. The time for which the SDr(T) falls 
within the limits provided in section 3.6.2 can then be taken as the maximum storage time.  

Table 4 Example of a measurement scheme of different aliquots for testing the stability. 

Group T=0 (fresh) T = 1 week T = 2 weeks T = 4 weeks T = 20 weeks 

Positive 5  5 5 5 5 

Negative  5 5 5 5 5 

 

3.5.5 Additional performance characteristic; permutation test 

A very useful measure of model performance can be derived a using permutation test. This test 
evaluates whether the specific classification of the individuals in the two designed groups is 

significantly better than any other random classification in two arbitrary groups (Golland et al. 
2005; Mielke and Berry 2001). Using this approach, the distribution of the true positive rate and 

true negative rate of the model are determined during many cycles in which each time a different 
randomly ordered classification scheme is used. 
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Figure 4 Distribution of the true positive rate of a PLS-DA classification of a two-cluster dataset using 
many random permutations of the true class labels (left), and the bootstrap distribution of the TPR using 
the true classes and leaving out 20% of the data during each cycle (right; same dataset as used for 
Figure 3). The 95th percentile of the TPR of the randomized classification is 0.75, which is considerably 
lower than the lower range of the TPR as determined by bootstrapping the model using the true 
classification.  

 
Using the calculated mean and standard deviation, the upper limit of e.g. the 95% confidence 

interval can be established for both the true positive rate and true negative rate. Alternatively, the 
upper 95th or 99th percentile of the distribution can be used as the upper limit of the one-sided 

95% or 99% confidence interval. This gives an objective measure against which the mean TPR 
and TNR can be evaluated against (see section 3.6.1). An example based on a PLS-DA 

classification of an artificial dataset is given in Figure 4. 

3.6 Criteria for acceptance of performance characteristics 
In section 3.5, a number of alternative performance characteristics were reviewed which are 

summarized in Table 5. The next step in model validation is to compare these performance 
characteristics with predefined criteria for acceptance. For regular screening methods, these 

criteria are laid down in Council Directive 2002/657/EC. These are however not suitable for 
evaluation of the alternative performance characteristics as reviewed in this report, and 

alternative criteria are discussed in section 3.6.2. 

3.6.1 Criteria for acceptance according to Council Directive 2002/657/EC 

The performance characteristics required for validation of screening methods according to Council 

Directive 2002/657/EC include the detection capability, the specificity, ruggedness and stability. 
For three of the characteristics, - including the detection capability, ruggedness and stability -, no 

specific criteria for acceptance are provided by the Council Directive. This is because these 

characteristics basically describe the limitations of the method in terms of measurement 
uncertainty, factors that influence the results as well as the maximum time a sample can be 

stored. It is not possible to formulate general criteria for these characteristics and it depends on 
the requirements of the user whether the performance of the characteristics is acceptable or not. 
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The only performance characteristic for which a strict criterion is formulated concerns the 

specificity of the method. According to Council Directive 2002/657/EC the chance of a Type II 
error should be < 5%, which implies that the TPR should be larger than 95%). This criterion is 

used as well for purpose of validation of a method for authenticity testing (TPRmean > 0.95%; see 
Table 5). 

Table 5 Overview of performance characteristics for screening methods according to Council Directive 
2002/657/EC and alternative performance characteristics for validation of classification models for 
authenticity testing and criteria for acceptance. 

Performance characteristic Alternative for authenticity test Criteria for acceptance 

Detection capability 
Model robustness against analytical 

variation/noise 

TPRvar > TPRmin 

TNRvar > TNRmin 

Specificity 
Mean TPR and TNR from bootstrap 
distribution  

TPRmean > 0.95 
TNRmean > user defined TPR  

Ruggedness 

Analytical variation of validation set 

and model performance under 
external validation 

SDval < SDlim 

TPRval > TPRmin 
TNRval > TNRmin 

Stability Stability (modified approach) SDr(T) < SDlim 

- 
Upper limit of TPR and TNR from 

permutation test 

TPRupper < TPRmin  

TNRupper < TNRmin  

 

3.6.2 Alternative criteria for acceptance  

In the previous sections, the true positive rate and true negative rate determined at various 
instances: 

1. TPRvar and TNRvar: TPR and TNR calculated by predicting the class memberships of the 

individual duplicate or triplicate measurements using the final classification model. 

2. TPRmean and TNRmean; mean (or median) TPR and TNR derived from bootstrap distribution 

of the TPR and TNR. 

3. TPRval and TNRval: TPR and TNR calculated by predicting the class memberships for a set of 

new samples using the final classification model. 

4. TPRupper and TNRupper: The upper limit (e.g. 95th percentile) of the distribution of the TPR 

and TNR derived using randomized class memberships (permutation test). 
 
As a criterion for acceptance of the different TPRs and TNRs calculated under point 1 to 4, a value 

for TPRmin and TNRmin should be defined. For this purpose it is proposed to use the lower e.g. 5-th 
percentile of the bootstrap distribution of the TPR and TNR.  

Furthermore, the criterion for acceptance of the TPRmean is that it should be larger than 0.95, 

which is similar to the criterion for the sensitivity as defined by Council Directive 2002/657/EC. 

For acceptance of the TNRmean no criterion is provided, and this should be determined by the user 
itself. 
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According to the set-up described in section 3.5.3 and 3.5.4, the average standard deviation is 

calculated for both the duplicate measurements of the external validation set as well for the 
analysis of the references samples after different storage times. These values should be compared 

to some previously established measure of the analytical variation of the method. Provided that 
the samples that were used to build the model were analyzed in duplicate, the average standard 

deviation of the duplicates of the original data can be used to formulate a criterion. A criterion 
SDlim is here defined as: 
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Where di,j is the difference between the i-th duplicate pair for the j-th variable, N is the number of 
of duplicate pairs in the set of samples used to build the classification model and k is the number 

of variables.  

Obviously, the analytical variation in the external validation set should be smaller than the 

criterion provided above. If this is not the case, the external validation procedure will most likely 
fail to produce a good prediction. For determining the stability of the method, the storage period 

before SDr(T) > SDlim should be denoted as the maximum storage time for the sample material. It 
is however possible that SDr(T) does not show a clear trend, for example because it decreases 

again after some period. In this case, the data should be rigorously checked for outlying or 
anomalous results.  

3.7 Experimental design 
The experimental design for validation of a method for authenticity testing involves assessment of 
relevant performance characteristics (section 3.5) which are to be compared to the criteria for 

acceptance (section 3.6). For the order in which the different performance characteristics are 
described we have followed Council Directive 2002/657/EC. In practice it is however more cost-

efficient to first determine the characteristics that do not require additional sampling and analysis 
which include: 

- The predicted true positive and negative rate based on the duplicate measurements (section 

3.5.1) 

- The mean/median of the true positive and negative rate as determined by bootstrapping 

(section 3.5.2) 

- The upper limit of the true positive and negative rate as determined by the permutation test 

(section 3.5.5). 
 

Only when these parameters give acceptable results, other characteristics can be determined such 

as model performance under external validation (section 3.5.3) and stability (section 3.5.4). 
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External validation is probably the most important aspect of the validation of any classification 

model and special attention should be paid to setting up a rigorous sampling design. Apart from 
estimating the minimum amount of samples to be collected from both the authentic and non-

authentic populations (see section 3.5.3), general guidelines for a design are difficult to provide. 
In each specific case, different choices will be made depending on the scope of the test as well as 

the sources of variation within the population. 

At last it should be stressed that the chemical analysis of the external validation samples should 

be performed in the exact same manner as for the original samples. The same applies to the data 
pre-treatment, outlier detection and feature selection steps. Preferentially all data pre-treatment 

feature selection, model building and model validation procedures are therefore laid down in the 
form of a number of scripts or as a mark-up language such as PMML. 

3.8 Description of deviations from standard protocols for 
method validation 

In this section of the validation plan, any deviations from the standard protocol should be 
described. Because there is no standard protocol available for validation of the methods described 

in this report, it is advisable to describe the complete procedure used for model development and 
validation in the validation plan. 
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