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Daphnia pulex 

Het snijvlak 

Onbarmhartig scherprechter. 

Niet op 

maar onder, 

in een ander blauw 

roeit onwetend het leger 

met miljoenen 

driftig voort. 

Adriaen Willemsz - 1999 



STELLINGEN 

1. De door grazers veroorzaakte kolonievorming in de groenalg Scenedesmus is een 
gei'nduceerd afweermechanisme. 
Dit proefschrift 

2. Grazergei'nduceerde kolonievorming is mogelijk in alle Scenedesmus soorten, mits 
de celdeling niet geblokkeerd is. 
Dit proefschrift 

3. De kolonie-inducerende stof in 'Daphnia-water' is niet, zoals recentelijk 
gesuggereerd is door Wiltshire en Lampert, het door Daphnia uitgescheiden 
ureum, maar een tot nu toe onopgehelderd carbonzuur. 
Wiltshire, K.H. & Lampert, W. ASLO-Meeting, 4 Feb. 1999 
Von Elert, E. & Franck, A. (1999) Journal of Plankton Research 21: 789-804 
Dit proefschrift 

4. De mening van Scheffer (1998) dat zelfs ernstige graasverliezen gecompenseerd 
kunnen worden door snelle reproductie van de alg, suggereert ten onrechte dat dit 
een goede strategic zou zijn om aan de zooplanktongraasdruk te ontkomen. 
Scheffer, M. (1998) Ecology of shallow lakes, Chapman & Hall, page 186 

5. Alle Scenedesmus soorten hebben het vermogen om ook eencellig te zijn. 
Trainor, F.R. (1998). Nova Hedwigia Beiheft 117 

6. De communicatie tussen aquatische organismen is vele malen beter dan die tussen 
onderzoekers. 

7. Het watervlooiencircus is een onbetrouwbare methode om de aanwezigheid van 
bestrijdingsmiddelen in het oppervlaktewater aan te tonen. 
De Geus-van der Eijk, J.G. (1997) Rapport Eijkpunt 'De watervlooientoets, een 
orienterend onderzoek naar de bruikbaarheid in akkerbouwgebieden.' 



8. Dat watervlooien minder goed groeien wanneer ze gevoerd worden met algen die 
gekweekt zijn bij een lage fosforconcentratie, wordt ten onrechte toegeschreven 
aan een directe minerale fosforlimitatie. 
Sterner, R. W. (1993) Ecology 74: 2351-2360 

9. In de algentaxonomie, en zeker in de Scenedesmus taxonomie, is het gebruik van 
moleculaire technieken een absolute noodzaak. 
Kessler, E. (1991) BotanicaActa 104: 169-171 

10. De levendige aandelenhandel impliceert dat de Homo economicus fictie is. 

11. Water is, bij 20°C en een druk van een atmosfeer, geen kleur- en geurloze 
vloeistof. 

12. Geen Daphnia, maar Pulex aquatilis. 

13. In den beginne was er ... chemische communicatie! 

14. Een consument produceert geen afval, hij houdt het over. 

15. De Amerikaanse droom is voor velen een nachtmerrie. 

16. Binnen een opleiding Aquatische Ecologie zou als onderwijselement een 
duikcursus opgenomen moeten worden. 

Stellingen behorende bij het proefschrift: 

The smell of water 
Grazer-induced colony formation in Scenedesmus 

Miquel Lurling 

Wageningen, 12 mei 1999. 



VOORWOORD 

Wat er ontbrak was een zee, maar opgroeien in de polder had ook zijn voordelen. Zo hoefde je 
slechts door een dun laagje klei om in het grondwater te geraken. En er was genoeg 
oppervlaktewater wat mijn ouders tot wanhoop dreef. Ze riepen allerlei watermonsters in het 
leven om me verre van de sloten, grindgaten en plassen te houden. Maar ja, na de bekende 
salamanders, kikkervisjes, stekelbaarsjes, bloedzuigers en wat al niet meer aan grotere water 
beesten te hebben gevangen wilde het met die watermonsters niet zo lukken tot grote frustratie 
van de kleine onderzoeker. Misschien moest ik het water beter bekijken en gelukkig verkreeg 
ik voor mijn twaalfde verjaardag mijn eerste microscoop. Water uit moeders bloemenvaas 
tezamen met hooi uit het konijnenhok een week incuberen en warempel een hele mysterieuze 
wereld ging voor me open. De sloten, vijvers, beken in de omtrek werden veelvuldig 
bemonsterd. Het veldwerk stopte abrupt met de ontdekking dat water met gemoute gerst en 
gist tot goddelijk genot kon leiden. De daarop volgende jaren stonden in het teken van vele 
expedities naar rokerige laboratoria waar tot diep in de nacht werd geexperimenteerd. Het 
woord watermonster kreeg ondertussen een andere betekenis. Duizenden monsters werden uit 
de Breukeleveense Plas gehaald om een indruk te krijgen van de invloed van wind en vis op 
het lichtklimaat onder water. Leuke vervolgprojecten volgden bij het Centrum voor 
Limnologie en het RIKZ te Middelburg, en nu nog een promotieplek. Die kwam er, alleen met 
algen en watervlooien. "Wat weet ik nu van algen en watervlooien?" Vijf jaar later stel ik me 
die vraag nog steeds, nu echter in de wetenschap dat ik bij lange na niet de enige ben. De 
toekomst is rooskleurig, er valt nog zoveel te onderzoeken en te ontdekken! 
"Wat kom jij hier doen?" was de eerste kennismaking als 'OiO' met de toenmalige vakgroep 
WKAO. Een bureau werd geconfisqueerd bij een andere vakgroep, een computer opgegraven 
op het kerkhof en een stoel verkregen van de nabijgelegen kerk. Met de 
'onderzoeksfaciliteiten' was het al niet veel beter gesteld, maar daarin lag ook een grote 
uitdaging. Levendige ruilhandel, creatief bestellen en een goede ondersteuning zorgden ervoor 
dat in een korte tijd het "Wagenings laboratorium voor plankton onderzoek" een begrip werd. 
Ondanks dat allerlei randvoorwaarden verbeterd konden en kunnen worden, werd er een 
topprestatie geleverd, de verwerving van internationale bekendheid. Wageningen werd in het 
plankton-onderzoek op de wereldkaart geplaatst, eventjes was het HET plankton-
infochemicalien bolwerk. Recentelijk las ik nog: " The laboratory at Wageningen is again 
adding to our fund of knowledge concerning predator induced alterations in Scenedesmus". 
Hier hebben heel wat personen in meer of mindere mate hun steentje aan bijgedragen. Een 
woord van dank is dan ook het minste: Allereerst mijn promotor: Beste Wim, we hadden niet 
zo vaak overleg, maar die keren dat we dat hadden gaven me telkens een zeer goed gevoel. 
Met name het gemak waarmee jij de zaken overzag was voor mij erg geruststellend. Bedankt 
voor alles. Beste Ellen, als mijn co-promotor, dagelijks begeleider en ontdekker van de 
chemische informatieoverdracht tussen watervlooien en algen, was je nauw bij mijn 
onderzoek betrokken. In de eerste fase kan dan ook gerust over ons onderzoek gesproken 
worden. Je kijk op het OiO-schap als een tweede puberteit bleek nog niet zo'n verkeerde 



inschatting. Ik wil je met name bedanken voor het al vroegtijdig stimuleren van 
congresbezoeken, het schrijven van artikelen en de vrijheid die me werd gegund om 
bijvoorbeeld een tijdje in het buitenland te vertoeven. Ich mochte geme Herr Professor 
Winfried Lampert vielen Dank sagen fiir die Moglichkeit einige Monaten in Seinem Labor zu 
arbeiten. Durch die weltklassische Laborausrustung des Max-Planck-Instituts und die gute 
Atmosphere war es ein Supererfahrung. An diese Stelle mochte ich auch die Ploner 
Wissenschaftler Klaus Plath, Claus-Peter Stelzer, Kristin Beck, Petra Limburg, en natuurlijk 
Maarten Boersma and Karen Wiltshire vielen Dank sagen fur die schone und lehrsame Zeit. 
Fred, bedankt voor je enorme relativeringsvermogen, hulp bij diverse bemonsteringen, 
determinaties en natuurlijk de vele kilometers hardlopen. Ronald, jouw technisch inzicht is 
van wezenlijk belang geweest, moet je alleen maar eens kijken naar die geklimatiseerde cellen 
met regelbare verlichting. Wendy, hartstikke bedankt voor het vertroetelen van mijn algen en 
beesten en voor de perfecte assistentie. Vaak was een half woord al voldoende; toch 'groene 
vingers' he? Frits, bedankt voor de assistentie bij verschillende chemische analyses. Marieke, 
ik vond het geweldig om een paar jaar met een heus plankton-AiO-zusje de problemen 
horende bij het experimentele onderzoek het hoofd te kunnen bieden. Bedankt voor de 
discussies, het hardlopen, de congresbezoeken en de fijne samenwerking. 
Daarnaast hebben ook vele studenten in meer of mindere mate een bijdrage geleverd aan de 
tot standkoming van dit proefschrift. Het besnuffelen van de randgebieden verschafte me veel 
nieuwe inzichten en ook de 'foutjes' waren vaak erg verhelderend: Johanna Minnaard, Bart 
Bardoel, Monique Zwiers, Jacco Maissan, Rob Exalto, Roy Geerts, Jeroen Knoef, Caroline 
Moermond, Remko Roosenboom, Frank Roozen en Esther van der Grinten hartstikke 
bedankt! 

Binnen de LUW heb ik een aantal keren gebruik kunnen maken van de Xe-PAM bij de 
vakgroep Plantenfysiologie, waarvoor ik Jan Snel hartelijk wil bedanken. Bij Entomologie 
kon gebruik gemaakt worden van een microbalans en was Marcel Dicke een belangrijke 
informatiebron over de rol van infochemicalien in de terrestrische wereld en de Y-buis 
olfactometrie, mijn dank daarvoor. 

Daarnaast zijn er nog vele in den lande en daarbuiten die op uiteenlopende wijze een bijdrage 
hebben geleverd aan de tot standkoming van dit proefschrift: Bedankt allemaal! 
Natuurlijk kan ik mijn familie en vrienden niet vergeten in een dankrede. Ze hebben er in 
ieder geval voor gezorgd dat er af en toe wat afleiding was en dat de vakidioterie me niet 
volledig in haar greep kreeg. Inge, jouw liefde, steun en betrokkenheid zijn van onschatbare 
waarde geweest de afgelopen jaren. Je was er altijd om op terug te vallen als het eventjes wat 
minder ging. Pap, mam, kei bedankt voor de steun en de interesse. Ontspanning was er ook in 
de sport, naast het al genoemde hardlopen met de fanatiekelingen, was er de 
vakgroepsdeelname aan de Veluweloop, het roeien op Koninginnedag, de 
volleybaltoernooitjes en natuurlijk het Waterteam dat hoge ogen scoorde in de 
bedrijvencompetitie zaalvoetbal: John, Michiel, Jeroen, Hrasko, Morten, Frits, Marco, 
Maurice bedankt voor de nodige afwisseling. 
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INTRODUCTION 

CHAPTER 1 

Introduction 

"The Precambrian trend from simple producer communities 

to producer-herbivore and producer-herbivore-carnivore 

communities can be viewed as a long-term natural 

cropping experiment resembling those performed by 

living ecologists" 

- S.M. Stanley 1973 
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CHAPTER 1 

1.1 ONE CELL... 

All organisms on earth are believed to originate from one cell born over 3.5 billion 

years ago in a soup of chemicals (Vidal, 1984; Doolittle et al., 1996). Comparison of enzyme 

amino acid sequences suggests that the common ancestor of pro- and eukaryotes lived about 

1.9 billion years ago (Doolittle et al., 1996). The first eukaryote probably originated from 

fusion of an Archaebacterium with a Gram-negative bacterium (Gupta & Singh, 1994). The 

precondition for this merging was a dramatic increase in atmospheric 02 produced by 

cyanobacteria after the oceanic Fe2+-pool had been exhausted (Schopf et al., 1983). The 

increased 02 level was toxic to most anaerobic bacteria favoring only those bacteria that had 

engulfed respiring bacteria (Vellai et al., 1998). These 'Ur-karyotes' are thought to have 

captured prokaryotic cells that were not digested but incorporated resulting in organelles, such 

as mitochondria and flagellae giving rise to heterotrophic flagellates (Vossbrinck et al., 1987; 

Lake, 1988; Margulis, 1993; Gupta & Singh, 1994; Van den Hoek et al, 1995). The 

heterotrophic flagellates are considered the ancestors of all fungi, protozoa, metazoa and 

eukaryotic algae on earth, whereas higher plants evolved from the green algae some 400-500 

million years ago (Valentine, 1978). For the evolution of algae the phagotrophic flagellates 

had to transform into photoautotrophic flagellates. Based on the theory of endosymbiontic 

origin of organelles, a Precambrian phagotrophic flagellate is believed to have taken up a 

cyanobacterium in a food vacuole that was not digested, but transformed and incorporated as a 

chloroplast (Perasso et al., 1989; Van den Hoek et al., 1995). A prerequisite for predators 

seemed the development of a nucleus or at least a fluid protoplasm as no phagotrophic 

prokaryotes are known (Margulis, 1993; Boraas et al., 1998). Because prokaryotes have stiff 

protoplasm they are unable to form pseudopodia and vacuoles meaning that they cannot feed 

phagotrophically (Van den Hoek et al, 1995). 

Regardless whether life on earth originated at the surface in abundant solar energy or at 

subsurface hydrothermal systems (Brandes et al, 1998), because of small size and short 

generation times single-celled organisms could colonize and exploit the earth, as long as 

liquid water was available. The planktonic mode of life may go back billions of years as 

indicated by unicellular prokaryotic microfossils (Vidal, 1984). Prokaryotic life remained 

almost exclusively unicellular for at least the first four-fifth of the history of life on earth 

(Valentine, 1978), because under conditions without predation, communities would have been 

structured by competitive interactions, favoring small, free-living cells with the most efficient 

surface-to-volume ratio (Boraas et al, 1998). 

Despite the success of unicellular organisms, multicellular organisms evolved. 

Multicellularity must have been advantageous as it is widespread (Hallam, 1990) and occurred 

independently in several unicellular lineages (Bonner, 1988). The selective advantage of 

exploitation of resources that no unicellular organisms could obtain is believed to have led to 

12 



INTRODUCTION 

the evolution of multicellular organisms (Valentine, 1978; Brown & Maurer, 1986). Thus, the 

evolution of multicellularity may be considered a key innovation opening resources from 

which the organisms were previously barred, a new adaptive zone (Simpson, 1953). 

Most research on the emergence of multicellular organisms has been focused on 

evolution of multicellular animals, the metazoa. The oldest metazoa, the sponges (Porifera) 

appeared approximately 800 million years ago (Miiller, 1997). The emergence of metazoa has 

been explained by two theories (Willmer, 1990; Ruvinsky, 1997): 

1. The colonial theory, based on aggregation of potentially free-living cells of a species in a 

colony where subsequent specialization resulted in such an interdependency that they had 

to remain together. 

2. The syncytial theory, based on the subdivision of one large single cell and suggesting that 

multinucleate protists developed cell membranes to become multicellular. 

It has been suggested that the Cambrian explosion of metazoa became possible after 

the evolution of modularization of distinct protein domains allowed the formation of mosiac 

proteins by exon-shuffling. This exon-shuffling is common to all metazoa, but apparently 

absent in plants (Miiller, 1997). Another basic element in the onset of multicellularity has 

been suggested to be the sexual process emerging from unicellular eukaryotes (Ruvinsky, 

1990; 1997). In the first evolutionary steps sex had nothing to do with reproduction, because 

cell fusion of opposite 'sexual' types resulted in a dihaploid cell and subsequent division in 

two meant that the number of cells had not been changed (Ruvinsky, 1997). Even today 

reproduction in most algae does appear uncoupled from the sexual process or cell conjugation 

(Van den Hoek et ah, 1995). The evolution of meiosis and subsequent adhesion and 

cooperation of mitotically reproduced cells (cf. colonial theory) may have led to multicellular 

metazoa (Ruvinsky, 1997). 

Among eight groups of eukaryotes that had evolved from the Ur-karyote into 

multicellular forms are three photoautotrophic phyla: Heterokontophyta, Rhodophyta and 

Chlorophyta (Van den Hoek et ah, 1995). Algal phyla such as the Chlorophyta date back to 

the end of the Precambrian some 600 million years ago (Vidal, 1984; Van den Hoek et ah, 

1995). The first unicellular eukaryotic algae appeared about 1800 million years before present 

(Schopf, 1994). In fact, the eukaryotic cell itself started as a multicellular organism, because 

of symbiosis with prokaryotic cells, resulting in one cell with integrated and specialized 

organelles (Gould, 1997). Multicellular photoautotrophs had already evolved at the end of the 

Precambrian, and some multicellular algae evolved more than a billion years ago (Gould, 

1999). These multicellular algae were probably near-shore benthic seaweeds (Han & 

Runnegar, 1992; Butterfield, 1997). Although late Proterozoic (700 million years ago) 

colonial cyanobacteria and acritarchs (photosynthetic eukaryotes) have been found (Vidal, 

1984), the proterozoic plankton remained profoundly undifferentiated (unicellular), 

presumably determined by the physico/chemical environment such as nutrient availability, 
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CHAPTER 1 

until an early Cambrian introduction of filter-feeding zooplankton (Butterfield, 1994; Logan et 

al, 1995). 

Despite advantages of sexual populations such as lower mutation load (Kondrashov, 

1993) or spreading of molecular symbionts (Hickey, 1993), multicellular photoautotrophs, and 

especially planktonic species, may have suffered severe competition from unicellular species 

and might have been out-competed. During most of the Proterozoic aeon (2500 - 540 million 

years ago) the autotrophic system was assumed to be saturated, self-limiting and biologically 

monotonous, with low morphological diversity (Stanley, 1973). The presence of numerous 

unicellular bacteria, cyanobacteria, algae and protozoa today suggests clear benefits of 

unicellularity. Nevertheless, multicellularity arose explosively in a relatively short period 

(Stanley, 1973; Valentine, 1978; Vidal, 1984; Gould, 1997). This leads to the hypothesis that 

phagotrophic predation by heterotrophic flagellates on the photoautotrophic organisms may 

have exerted a strong selection pressure on reduction of mortality that has given rise to the 

formation of multicellular organisms (Stanley, 1973; Boraas et al., 1998). The morphological 

response could have selected for a counter-adaptation in the flagellate and resulted in an 

"arms-race" that has been proposed as a driving force in the evolution of interacting species 

(Van Valen, 1973; Dawkins & Krebs, 1979) and that continues indefinitely (Schaffer & 

Rosenzweig, 1978). Hence, larger photoautotrophs were favored by natural selection since 

they could not easily be incorporated by phagocytosis and gave rise to the evolution of 

multicellular life on earth (Stanley, 1973). 

Recently, experimental evidence has been gathered that does seem to support this 

hypothesis. Phagocytosis by a mixotrophic flagellate resulted in a rapid shift from a 

unicellular algal culture to one dominated by colonies that were virtually immune to predation 

(Boraas et al., 1998). The phenomenon observed by Boraas and coworkers is probably clonal 

replacement, since they reported a "rare multicelled mutant" in their unicellular cultures. 

Moreover, they reported that the unicells were superior competitors and that colonies bred true 

(Boraas et al., 1998). 

Whether multicelled algae arose before metazoans, or metazoans, as a result of exon-

shuffling (Muller, 1997), sexuality (Ruvinsky, 1997) or a loss of cell wall (Vellai et al, 1998) 

slightly before metaphyta, it is evident that the evolution of grazing fundamentally had altered 

the community structure by relieving the resource limitation (Stanley, 1973). The metazoan 

grazers may have played a crucial role: 

"The exploitation of plankton by metazoan filter-feeders would have fuelled the 

explosion of Cambrian metazoan evolution. The coincident radiation of planktonic acritarchs 

becomes explicable as an adaptive response to micro-grazing activity" (Butterfield, 1994). 

14 



INTRODUCTION 

1.2 FRESHWATER PLANKTON 

In today's freshwater systems rather high species diversity (Hutchinson, 1961) and 

variation in growth form of algal taxa may be observed (Van Donk et al., 1999). In these 

variable environments the algae experience rapid nutrient and light changes, temperature 

fluctuations and variations in abundance of grazers (Sommer et al, 1986). 

Both algae and their pelagic predators belong to the plankton, a term which is derived 

from the Ancient Greek "TtXayKrocf' meaning wandering, and refers to all aquatic organisms 

that drift with water movements (Harris, 1986; Allaby, 1994). In general, plankton organisms 

have no or weak locomotory powers. All planktonic organisms are faced with the problem that 

they have to remain in the water column and photoautotrophic organisms in the euphotic zone, 

but that they have limited capacities to do so. In the continuous struggle for life, competitive 

interactions are considered a major driving force in determining the biological diversity 

(MacArthur, 1960; Sommer et al, 1986). Natural selection is presumed to result in the best 

adapted, optimal phenotypes (Cody, 1974). Since small-sized algae with a large surface-to-

volume ratio may grow more rapidly than larger ones (Turpin & Harrison, 1980; Smith & 

Kalff, 1982), in an aquatic environment selection pressure exists for small organisms that have 

the most efficient uptake of dissolved nutrients and lowest sinking losses (Reynolds, 1984). 

Another strong selective factor is predation by an entire assemblage of protozoan and 

metazoan grazers (Lehman, 1988). In these systems, the algae-consumer relation is of major 

importance because it is the first step in the pelagic food chain. There is a broad consensus 

that freshwater zooplankton feed mainly on nanoplankton, i.e. algae between 2-30 um in 

length (Sterner, 1989). The nanoplanktonic algae are often dominant genera in early spring 

(Sommer et al., 1986), but "the fate of these algae is to be grazed" (Reynolds et al, 1982). 

The high grazing rate on edible algae could favor larger algae that have a refuge from grazing 

(Sommer et al, 1986; Sterner, 1989). The variability in grazing pressure could, therefore, 

favor different algal assemblages during different seasons, especially if there is a trade-off 

between edibility and competition (Sterner, 1989). Most probably the release of nutrients by 

grazers is beneficial to the larger species (Lehman, 1980; Sterner, 1986) and therefore grazers 

may also influence the competition for nutrients among algae (Elser et al., 1988). 

In general, grazing and sedimentation appear the major algal loss processes operating 

(Reynolds et al. 1982). Assuming that multicellularity has evolved as a defense against 

predation, one could imagine an adaptive trade-off between defensive multicellularity and 

competitively advantageous unicellularity. This seems to be confirmed by the study of Boraas 

et al. (1998), who found unicellular Chlorella competitively superior to colonial ones. The 

formation of colonies was interpreted as a defense, because colonies experienced lower 

mortality through grazing than unicells did (Boraas et al, 1998). Defensive mechanisms may 

involve some costs (e.g. Dodson, 1984; 1989; Riessen, 1984; Harvell, 1986; Havel & Dodson, 

1987; Walls & Ketola, 1989; Petterson & Bronmark, 1997) and it has been suggested that 
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CHAPTER l 

when the costs of permanent defenses are high, cheeper inducible defenses will be favored 

(Rhoades, 1979; Harvell & Tollrian, 1999). Although costs may be difficult to detect (Spitze, 

1992; Lampert et al., 1994; Tollrian, 1995), the allocation of resources to predator-induced 

defensive structures implies fewer resources for growth and reproduction (Stearns, 1992). 

Especially since in the pelagic predation may vary heavily both on temporal and spatial scales 

(Havel, 1987), the evolution of temporary defenses should be favored compared to fixed 

defenses (Schlichting, 1989; Clark & Harvell, 1992). Since algae in the pelagic are small 

relative to their predatory enemies, they will probably not survive an encounter with a grazer 

(Van Donk et al, 1999). Especially since their "fate" is to be grazed (Reynolds et al., 1982), 

grazing will exert a strong selection pressure for traits that reduce mortality. A possible trait is 

that algae may use dissolved chemicals to detect the grazer before they encounter each other 

in order to elicit a defensive strategy, such as the formation of colonies (Hessen & Van Donk, 

1993). 

1.3 CHEMICAL INFORMATION 

From the 'Ur-soup' 3.5 billion years ago to today's water-bodies, all aquatic organisms 

have lived and live in an ocean of chemicals. Since "A living organism is constantly 

exchanging substances with the environment" (Maynard-Smith, 1997), chemical substances 

may play an important role in interactions among organisms. The chemicals are either directly 

advantageous (nutrients) or disadvantageous (toxins) or may elicit a physiological or 

behavioral response (information). Analogous to terrestrial systems chemical cues in the water 

may be used to find prey (e.g. Van Gool & Ringelberg, 1996), to avoid or resist predation 

(e.g. Havel, 1987), to warn conspecifics (e.g. Pijanowska, 1997), to influence competition 

(e.g. Gross et al., 1996) or to attract mates (e.g. Snell & Morris, 1993). These information 

conveying chemicals may be considered metabolic products that leak to the environment and 

fortuitously convey information (Liley, 1982), and are referred to as infochemicals according 

to the terminology described by Dicke & Sabelis (1988): 

"An infochemical is a chemical that, in the natural context, conveys information between two 

organisms, evoking in the receiving organism a behavioral or physiological response that is 

adoptively favorable to one or both organisms ". 

Infochemicals may be divided into two major groups: Pheromones, intra-specific 

infochemicals, and allelochemicals, inter-specific infochemicals (Fig. 1.1). Both groups can be 

further subdivided (cf. Dicke & Sabelis, 1988; Vet & Dicke, 1992). 

Theoretically, infochemicals may originate from every chemical process and may be 

involved in every interaction, simply because all organisms produce "odors" and thus 

potentially information. However, the suitability of an odor as infochemical depends on its 

detectability and reliability (Vet & Dicke, 1992; Steinberg et al, 1993). 
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INFOCHEMICAL 

PHEROMONE: infochemical that is 
pertinent to the biology of organism #1 and 
that evokes in a receiving organism #2 of 
the same species a response that is favorable 
to: 

Organism # 1: (+,-) pheromone 
Organism #2: (-, +) pheromone 
Both #1 & #2: ( + , + ) pheromone 

AlXELOCHEMICAL: infochemical that is 
pertinent to the biology of organism #1 and 
that evokes in a receiving organism #2 of a 
different species a response that is favorable 
to: 

Organism #1: allomone 
Organism #2: kairomone 
Both #1 & #2: synomone 

Figure 1.1: Infochemical terminology cf. Dicke & Sabelis (1988). 

Many aquatic organisms use kairomones and/or alarm pheromones to assess their risk 

of predation (Wudkevich et al., 1997). Consumer-induced defenses are common among 

freshwater and marine organisms: 

In the marine environment, organisms such as seaweeds, sponges and soft corals 

produce both secondary metabolites and spicules that serve as defenses against consumers 

(e.g. Harvell & Fenical, 1989; Hay et al., 1994). Several marine organisms may use cues from 

their predators in deploying their defenses. For example, bryozoans may produce spines 

(Yoshioka, 1982; Harvell, 1984), snails thicker shells (Palmer, 1985) and barnacles a 'bent' 

morph, with the rim of its aperture oriented perpendicular rather than parallel to its base 

(Lively, 1986), in response to cues from their predators. The American lobster has been shown 

to increase shelter use when exposed to predator-mediated infochemicals (Wahle, 1992). A 

grazing-mediated chemical defense in the unicellular marine alga Emiliania hwcleyi has been 

reoprted (Wolfe et al., 1997). In freshwater systems consumer-induced defenses may be found 

in fish, amphibians, amphipods, gastropods, zooplankton, protozoa and phytoplankton. 

Defenses among fish 

Prey fish may be informed by chemical cues from hunting predators (Von Frisch, 

1941) or injured conspecifics (Pfeiffer, 1974). As a response the prey fish may decrease their 

activity (e.g. Mathis & Smith, 1993), make rapid movements (e.g. Reed, 1969), show hiding 

or schooling behavior (e.g. Magurran, 1989) or avoid dangerous habitats (e.g. Keefe, 1993). 

The predator (pike Esox lucius) avoidance of prey fish (bleak Alburnus alburnus) may be 

influenced by abiotic and biotic variables such as light, the availability of food and the 

presence of alarm substances (Jachner, 1995; 1996; 1997). The fright response in fathead 

minnows (Pimephales promelas) including increased shelter use, dashing and freezing, was 

induced when the minnows were exposed to chemical stimuli from the predatory northern 

pike {Esox lucius), but not when exposed to chemical cues from nonpiscivorous peacock 
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gudgeons {Tateurndina ocellicauda) (Mathis et al., 1993). Sticklebacks (Culaea inconstans), 

finescale dace {Chrosomus neogaeus) and fathead minnows avoided areas marked with skin 

extract of sticklebacks indicating that the alarm substances may act both intra- and 

interspecific (Chivers & Smith, 1994). However, in juvenile rainbow trout (Oncorhynchus 

mykiss) anti-predator responses were only observed in response to skin extract of conspecifics, 

not to skin extract from swordtails {Xiphophorus helleri) (Brown & Smith, 1997). A similar 

observation was made for three-spined sticklebacks (Gasterosteus aculeatus) that exhibited 

significant increases in anti-predator behavior when presented with alarm substances from 

skin extract of conspecifics and four-spined stickleback (Apeltes quadracus), but not to 

swordtail skin extract (Brown & Godin, 1997). 

Besides behavioral responses, predator-induced morphological changes, i.e. a change 

in body shape towards a deeper body, in crucian carp (Carassius carassius) have been 

reported (Bronmark & Miner, 1992). In crucian carp, chemicals from injured conspecifcs did 

not elicit an induced defense, but chemicals related to the piscivorous diet of the predator did 

so (Bronmark & Petterson, 1994). In the absence of a predator, at high densities shallow-

bodied crucian carp gained twice as much body mass as predator-induced deep-bodied fish. 

Hence, in the absence of predators the inducible defense resulted in fitness costs (Petterson & 

Bronmark, 1997). 

Predator-induced defenses in amphibians, amphipods and gastropods 

The use of chemical cues to detect predatory fish is widespread among amphibians 

(Kats et al., 1988). Larval amphibians may increase shelter use (Kats et al., 1988) or reduce 

their activity in response to predator-associated chemicals (Skelly & Werner, 1990) at the 

expense of reduced growth and development (Skelly, 1992). Streamside salamander larvae 

(Ambystoma barbouri) have been shown to exhibit an adaptive 'sink to the bottom' response 

to chemical cues from predatory green sunfish (Lepomis cyanellus) (Sih & Kats, 1994). 

Tadpoles of gray treefrog (Hyla chrysoscelis) are relatively inactive and possess smaller, less 

colored tailfins when exposed to chemicals from predatory dragonfly larvae (Anax Junius). 

The predator-induced phenotype appeared less vulnerable to predation, but suffered greater 

mortality from other causes (McCollum & Vanbuskirk, 1996). 

The gastropod Gammarus lacustris decreased activity when exposed to predator 

kairomones from pike and larval dragonfly. Moreover, G. lacustris possesses an alarm 

pheromone as a similar response has been observed when exposed to crushed conspecifics 

(Wudkevich et al., 1997). Several freshwater snails have been reported to crawl out of the 

water in response to predator-associated chemicals (Covich et al., 1994). 
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Predator-induced defenses in zooplankton 

Predators that release defense-inducing infochemicals show a broad taxonomic 

distribution. Zooplanktivorous fish such as roach (Rutilus rutilus) and perch (Perca 

fluviatilis), dipterans of the genus Chaoborus, the hemipterans Notonecta and Anisops, and the 

copepod Epischura have been reported to induce defense mechanisms in cladocerans (for 

review Havel, 1987). However, the cue might also originate from injured conspecifics 

(Pijanowska, 1997). The most examined cladocerans are members of the genus Daphnia. 

Predator-induced defenses include morphological, behavioral or life history changes. Helmet 

growth (e.g. Hebert & Grewe, 1985; Hanazato, 1991; Tollrian, 1994), formation of neck-

spines (e.g. Dodson, 1989; Hanazato, 1990; Tollrian, 1994), crest formation (Grant & Bayly, 

1981), tail spine elongation and carapace broadening (Havel, 1985) are possible 

morphological features to avoid predation. Enhanced diel vertical migration (Ringelberg, 

1991; DeMeester, 1993; Loose et ai, 1993), swarming and somersaulting (Larsson & Dodson, 

1993; Pijanowska, 1994) are also induced by predator infochemicals. The life history of 

Daphnia is also influenced by unidentified infochemicals released from fish. Animals mature 

earlier at smaller size, clutches are larger and neonates smaller in presence of fish 

infochemicals (Stibor, 1992; Machacek, 1993; Reede, 1995). 

In rotifers, defenses against predation may be induced by chemicals released from 

carnivorous rotifers like Asplanchna, copepod predators like Mesocyclops, Tropocyclops, 

Epischura, and herbivorous competitors like Daphnia (Stemberger & Gilbert, 1987). Predator 

released chemical cues have been shown to induce spine formation and increase body size in 

several rotifer species (e.g. Gilbert, 1966; Gilbert & Stemberger, 1984; Stemberger & Gilbert, 

1984; 1987). 

Induced-defenses among protozoa 

Ciliates of the genus Euplotes alter their morphology as response to proteineous 

substances released from a variety of predators, such as the ciliate Lembadion, the rhizopod 

Amoeba proteus or the turbellarian Stenostomum (Kuhlmann & Heckmann, 1985; Kusch, 

1993; Kusch & Kuhlmann, 1994). The combination of large lateral wings, increased cell size 

and an additional dorsal crest appear highly effective in reducing predation (Kuhlmann & 

Heckmann, 1994), but involve energetic costs (Kusch & Kuhlmann, 1994; Wiackowski & 

Szkarlat, 1996). 

Induced-defenses among phytoplankton 

Although infochemically induced reactions have been reported frequently, especially 

in fish and zooplankton, very little is known about the role of infochemicals in the grazer-

phytoplankton interaction. The rapid response of the beat rate of the appendages of daphnids 

by cyanobacterial extracellular products may be an example of chemical information transfer 
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(Forsyth et al., 1992; Haney et al, 1995). Whether this is a defense strategy governed by the 

cyanobacteria or by Daphnia is unclear. An inducible morphological defense against a ciliate 

grazer {Pseudomicrothorax dubius) has been reported in two strains of the cyanobacterium 

Phormidium (Fialkowska & Pajdak-Stos, 1997). Several flagellate algae seem able to use 

grazer associated chemicals to express consumer-avoidance behavior (Hansson, 1996). Non-

flagellate green algae of the genus Scenedesmus may alter their morphology in order to reduce 

their vulnerability against grazing (Hessen & Van Donk, 1993; Lampert et al., 1994). 

Infochemicals released by competitors 

All of the above mentioned examples describe the effects of infochemicals excreted by 

predators (or by predator activity) that reduce the mortality of the prey species. However, also 

within a certain trophic level infochemicals may be acting. Several studies have reported 

effects in zooplankton by infochemicals released from potential competitors. Feeding in 

Daphnia is reduced by infochemicals released from congeners (Matveev, 1993) and 

conspecifics (Helgen, 1987). Feeding in the copepod Diaptomus is reduced by a high-

molecular weight chemical released from its competitor and predator Epischura (Folt & 

Goldman, 1981). Effects on fecundity have been reported in competing rotifers of the genus 

Brachionus (Halbach, 1969) and in cladocerans (e.g. Seitz, 1984; Hobaek & Larsson, 1990; 

Goser & Ratte, 1994; Burns, 1995; Cleuvers et al., 1997). Chemicals released from Daphnia 

induced a lower fecundity and decreased population growth rate in the rotifer Keratella 

(Conde-Porcuna, 1998). Pheromones may be involved in mate recognition in rotifers (Rico-

Martinez et al., 1996). 

Infochemicals from aquatic plants 

Analogous to terrestrial systems aquatic plants may use chemicals to defend 

themselves against grazing or to gain a better competitive position. The palatability of foliage 

to herbivores was reduced after artificial damage, even in undamaged leaves (Jeffries, 1990). 

Szecpanska (1978) has reviewed allelopathy between aquatic macrofytes. Growth inhibition in 

cyanobacteria by chemicals released from Ceratophyllum has been reported (Kogan et al, 

1972). Also Chara inhibits algal growth (Gibbs, 1973; Wium-Andersen, 1982; 1987), but 

Forsberg et al. (1990) found no allelopatic effects. The reduced algal growth in the presence 

of Stratiotes appeared due to nutrient competition rather than allelopathy (Brammer, 1979). It 

has been demonstrated that polyphenols released from Myriophyllum were responsible for 

observed algal inhibition (Gross et al, 1996). The interaction between macro fytes and 

zooplankton is merely providing a refuge for zooplankton and may in turn be beneficial for 

macro fytes because of enhanced algal mortality (Timms & Moss, 1984; Scheffer et al. 1993). 

On the other hand, Daphnia has been reported to swim away from Elodea, Nitella and 

Myriophyllum (Pennak, 1973; Lauridsen & Lodge, 1996). Daphnia has been shown to 
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respond to (planktonic) algal associated chemicals by preference for water with odor from 

edible food (Van Gool & Ringelberg, 1996). 

A sea of infochemicals 

From all reports on chemically mediated information transfer in aquatic systems one 

could get the impression that a water-body is a chaotic continuum of chemical information. 

Indeed, aquatic organisms live in an ocean of chemicals and probably in a sea of 

infochemicals. Numerous of those infochemicals may act simultaneously on one or more 

organisms of the same species or the same infochemical may affect numerous species. Most 

infochemicals are probably not excreted on purpose to convey information, in contrast with 

hormones in our body fluid. However, the amount and chemical diversity of human hormones, 

i.e. small molecules derived from amino acids, proteins, steroids and ecosanoids, clearly 

demonstrate that an enormous diversity of infochemicals may be present simultaneously 

(Stryer, 1988). In the marine environment, information molecules apparently possess a 

common structure consisting of low-molecular-weight peptides or peptide-containing 

molecules with a basic amino acid residue at the carboxyl terminus (Browne et al., 1998; 

Decho et al., 1998). In freshwater systems, however, the chemical information substances may 

be both proteins and small organic molecules (e.g. Parejko & Dodson, 1990; Tollrian & Von 

Elert, 1994; Peters-Regehr et al., 1997). 

Compared to other means of information transfer, for example by acoustic and visual 

cues, infochemical transmission in water is relatively undirected and slow. It depends on 

diffusion and is affected by water movement. However, the latter may not necessarily affect 

the organism's response to the chemical cue. It has been shown for oyster larvae that they do 

settle in response to a waterborne chemical cue in both still and flowing water (Turner et al., 

1994). Advantages are possible long-range and long-term transmissions, independence of light 

and insensitivity to obstacles (Liley, 1982). Thus, water appears an appropriate medium for 

chemical information transfer. 

1.4 SCENEDESMUS 

In pelagic freshwater systems, the position of the organisms in the different trophic 

levels corresponds with the time of interest in chemical information transfer. Since Karl von 

Frisch (1941) demonstrated the existence of infochemicals in fish interactions, the following 

decades a wealth on information has been gathered on infochemicals and chemical 

communication among fish (Liley, 1982). The last 10-15 years considerable attention has been 

focussed on variable predator-induced defenses in zooplankton (Havel, 1987), but, although 

Harvell (1984) suggested pronounced evolution of induced defenses in clonal taxa, such as 

algae (Havel, 1987), still very little is known about induced defenses in algal taxa. 
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Morphological variability seems widespread among phytoplankton, including 

cyanobacteria, diatoms and chlorophytes (Trainor et al, 1971), but research on causal factors 

focussed on the physico-chemical environment (e.g. Mur, 1971). The biological environment and 

especially the grazers were believed to feed on specific size classes of algae, thereby regenerating 

nutrients for larger grazing-protected cells (Lehman, 1980; Sommer et al, 1986; Sterner, 1989). 

However, it was known that the presence of grazers such as Daphnia could alter the morphology of 

phytoplankton. Aphanizomenon showed a shift from flakes in the presence of Daphnia to smaller 

flakes and single filaments in its absence (Lynch, 1980; Holm et al., 1983). Two chlorophytes, 

Chlamydomonas and Scenedesmus, showed colony formation in the presence of herbivorous 

zooplankton (Mikheeva & Kruchkova, 1980), but since this was reported in Russian it remained 

unknown elsewhere. A first attempt to examine grazer-induced colony formation was briefly 

mentioned by Fulton III & Paerl (1987b), but chemicals released from Daphnia ambigua appeared 

ineffective as colony-inducing agents in Microcystis. Also chemicals released from Daphnia 

magna were ineffective in inducing Microcystis colonies (Hessen & Van Donk, 1993). However, 

with Scenedesmus the latter investigators were more successful. 

Figure 1.2: Scenedesmus subspicatus unicell (left panel) and £>ap/m/a-induced eight-celled 

coenobium (right panel). From Hessen & Van Donk (1993). 

Hessen & Van Donk (1993) were the first who discovered that chemical substances 

released from a grazer, Daphnia, induced a morphological defense in the green alga 

Scenedesmus subspicatus. Unicellular populations of this alga were rapidly transformed into 

populations dominated by eight-celled coenobia that were protected from grazers (Fig. 1.2). 

In culture, whether actively growing, P-limited or in stationary phase their strain of S. 

subspicatus was unicellular (Van Donk & Hessen, 1993; Hessen & Van Donk, 1993), not 

unusual for laboratory strains (Trainor, 1998). A year later, the Daphnia-induced colony 

formation was confirmed by Lampert et al. (1994), using another Scenedesmus, S. acutus. A 
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dramatic increase in the number of eight-celled colonies was observed when the culture was 

exposed for 48 hours to medium with only 2% (v/v) medium from a Daphnia culture 

(Lampert et al, 1994). 

Scenedesmus is one of the commonest genera in freshwater systems with a worldwide 

distribution (Canter-Lund & Lund, 1995; Trainor, 1998), but morphologically also extremely 

variable (Trainor, 1991). Although Chodat (1913; 1926) already discussed phenotypic 

plasticity within the genus, his reports were dismissed as were scant other reports. 

"Pickled sampling at one point in time, rough examination, use of continuous cultures and 

prejudiced scientists who dismissed reports on phenotypic plasticity in Scenedesmus as 

irrelevant, all contributed that we ended up with approximately 1330 taxa nicely assembled 

by Hegewald & Silva (1988) in an "annotated catalogue of Scenedesmus and nomenclaturally 

related genera" (Trainor, 1998). However, intensive efforts by Trainor and co-workers 

revealed detailed information on Scenedesmus plasticity in several strains. Trainor and co

workers concluded that "many morphological expressions of Scenedesmus are not all 

separate taxa, but represent ecomorphs of a limited number of species...the number should be 

very low, not 1300, not 130, but perhaps closer to 13T (Trainor & Egan, 1990a). Moreover, 

"morphological stability of Scenedesmus in the field is an illusion" (Egan & Trainor, 1990). 

However, opening a textbook one will undoubtedly find Scenedesmus presented as a four- or 

eight-celled colony: its 'typical form'. Unicells are often not 'recognized' as Scenedesmus, 

and have been placed in other algal genera. Swale (1967) reported Chodatella-quadriseta-like 

unicells in an isolate of Scenedesmus armatus. Spiny Scenedesmus 'disintegrated' in the 

laboratory in Chodatella-subsalsa-like unicells (Fott, 1968). Trainor & Egan (1990b) clearly 

demonstrated Lagerheimia hindakii to be the unicellular stage of Scenedesmus. In a recent 

study, based on 18S rRNA analysis three strains of Chlorella fusca had to be placed within the 

genus Scenedesmus (Kessler et al., 1997). Spined unicells may resemble Chodatella, Franceia 

or Lagerheimia, whereas non-spiny unicells could resemble Ankistrodesmus, Chlorella, 

Oocystis, Raphidium and Selenastrum (Trainor, 1998). In the non-spiny subgenus 

(Euscenedesmus), during asexual reproduction, coenobia will be formed inside the parent cell 

wall. The initial cementing does not hold when the cells are released from the parent cell and 

the coenobium disintegrates into unicells (Nilshammer & Walks, 1974; Trainor, 1998). This 

appears the usual pathway for unicell formation in S. acutus and S. obliquus (Trainor, 1998). 

In the spiny subgenus (Desmodesmus), Scenedesmus may produce developmental unicells 

(true unicells) that simply do not cement together or degenerative unicells as a result of 

coenobium fragmentation (pseudounicells). Unicells that respond to morphogenetic 

substances released from grazers are considered true unicells (Trainor, 1998). The sequence of 

the formation of a Daphnia-induced eight-celled coenobium in the non-spiny S. acutus is 

presented in figure 1.3. 
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Figure 1.3: Asexual reproduction in Scenedesmus acutus: Formation of autospores inside the parental 

cell resulting in an eight-celled coenobium. 

An ordered sequence of ecomorph development has been reported in several spiny 

Scenedesmus (Egan & Trainor, 1990; Trainor, 1992a;b; 1993). Unicells appeared during 

logarithmic growth, spiny coenobia when cultures aged, finally resulting in short-spined and 

spineless coenobia (Trainor, 1993; 1995; 1998). In non-spiny Scenedesmus, so far no research 

on the sequence of ecomorph development has been undertaken. 

Several factors have been demonstrated to affect the morphological development in 

Scenedesmus. Formation of different ecomorphs will not only depend on photoperiod, 

nutrients, pH, temperature, cell density, age and growth rate (e.g. Overbeck & Stange-

Bursche, 1966; Swale, 1967; Trainor & Roskosky, 1967; Steenbergen, 1975; Trainor & 

Shubert, 1974; Gavis et al, 1979; Ramos-Cardenas & de Lara-Isassi, 1985; Holtmann & 

Hegewald, 1986; Egan & Trainor, 1989; 1990; Trainor, 1992a;b; 1993), but it will also 

depend on the grazers (Hessen & Van Donk, 1993; Lampert et al, 1994). The latter 

phenomenon not only confirmed that one taxon produced two distinct morphotypes, but also 

presents a plausible ecological explanation for the colony formation, i.e. defense against 

predation. Daphnia can easily ingest small Scenedesmus coenobia, but not large eight-celled 

coenobia (Hessen & Van Donk, 1993). Most coenobia will undoubtedly be too large to be 

grazed by protist grazers, such as the phagotrophic flagellates Paraphysomonas (Graver, 

1989) and Ochromonas (Boraas et al, 1998). 

In Scenedesmus coenobial cells may be arranged in several forms: linear, costulatoid 

(in staggered groups of four), alternating, irregular and dactylococcoid (Fig. 1.4). 
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Figure 1.4: Several arrangements of Scenedesmus coenobia 

1.5 THIS THESIS 

This thesis focuses on the morphological variability in the non-spiny Scenedesmus 

acutus Meyen. The examination of the phenotypic plasticity has been carried out with 

emphasis on the role of grazing-associated chemicals based on a cost-benefit analysis. 

Although the Daphnia-Scenedesmus interaction is used as a model system, several 

experiments were performed with other algae and zooplankters to ascertain more insight in the 

variability and taxonomic distributions of the investigated response. 

CHAPTER 2 reports on the effects of grazing-associated chemicals on the growth and 

development in the green alga Scenedesmus acutus Meyen. It turns out that the typical eight-

celled morph is only abundant in the presence of a 'Daphnia-factor'. 

To examine the effects of various factors on growth and colony formation in S. acutus 

a reliable biotest is of utmost importance. CHAPTER 3 reports on the development of such a 

biotest. It is shown that the induction of coenobia depends on the amount of algae grazed 

upon. Daphnia needs to feed on digestible food to induce coenobia. Another outcome is that 

only herbivorous zooplankton elicits a morphological response. Moreover, certain detergents 

trigger the unicell-colony transformation. 

CHAPTER 4 reports on the effect of different nutrient conditions on growth and 

morphology in S. acutus. The response of nutrient-replete and deplete cells to Daphnia-

infochemicals is examined. It appears that Z)ap/!w'a-induced colony formation may occur over 

under a broad range of nutrient conditions. 

In CHAPTER 5 the effects of various temperatures on growth and morphological 

development in S. acutus are examined. The inducible nature of coenobia formation suggests 

costs associated with this defensive trait. Analyses of possible costs associated with colony 
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formation, such as lower growth rates, hampered light harvesting and enhanced sedimentation 

are presented in CHAPTER 6. 

Benefits of coloniality are supposed to be a reduced grazing pressure. The effects of 

unicellular and colonial Scenedesmus on feeding behavior and life history characteristics of 

herbivorous zooplankton are presented in CHAPTER 7. 

To gain more insight into the taxonomic distribution of consumer-induced colony 

formation, in CHAPTER 8 the results are presented of biotests with several clones and species of 

Scenedesmus, with some other green algae, and some algae from other taxonomic groups. The 

Daphnia-'md.\xcoA colony formation appears not universal in Scenedesmus and is not restricted 

to the genus. An additional clogging of cells into large aggregates in the presence of live 

Daphnia was observed. No evidence was obtained to support grazer-induced spine formation 

in Scenedesmus or colony formation in Microcystis. 

CHAPTER 9 discusses the direct effects of grazing-associated chemicals on other 

zooplankters and reports the response in swimming behavior of Daphnia exposed to 

chemicals released from food and competitors. 

Finally, CHAPTER 10 summarizes the results presented in the previous chapters. 
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COLONY FORMATION IN SCENEDESMUS 

CHAPTER 2 

Herbivory related chemicals affect growth 
and morphological development 
in Scenedesmus acutus Meyen 

Parts of this chapter have been published in: 

Lurling, M. (1998) Journal ofPhycology 34: 578-586 

"Some still remain uncomfortable with 

the concept that an individual microalgal 

species can exhibit extensive phenotypic plasticity, 

even to the point of not incorporating 

essential facts into their research " 

- F.R. Trainor 1998 
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CHAPTER 2 

2.1 INTRODUCTION 

Herbivory is one of the main losses among algae (Sterner, 1989) and therefore a strong 

selection pressure exists on the development of traits that reduce mortality. Pelagic algae may 

use two strategies to reduce grazing losses, either avoid being ingested or, if ingested, avoid 

being digested. Many algae are notoriously plastic in morphology, growth and biochemical 

composition and variable traits have been interpreted as defense mechanisms against grazing. 

It is not surprising that zooplankton feeds with differing success on various phytoplankton 

species, primarily due to parameters like cell size, shape, cell wall structure and the presence of 

toxins. Changing environmental conditions, favoring different clones of the same species, could 

lead to replacement of one clone by another one (Wood & Leatham, 1992), possibly with a 

variation in the defensive trait. Another intraspecific change, phenotypic plasticity, occurs when 

changed environmental variables alter the defensive trait of cells belonging to the same clone 

(Schlichting, 1989; West-Eberhard, 1989). 

Algal species belonging to the genus Scenedesmus, one of the commonest genera of 

freshwater algae (Canter-Lund & Lund, 1995) in the Netherlands (Mur, 1971), vary in their 

phenotype. Scenedesmus exists as unicells or as two or more celled coenobia (e.g. Uherkovich, 

1966; Egan & Trainor, 1990). Formation of unicellular stages or coenobial ecomorphs depends 

on initial cell density (Egan & Trainor, 1989), nutrients and pH (e.g. Trainor & Roskosky, 1967; 

Ramos-Cardenas & de Lara-Isassi, 1985; Holtmann & Hegewald, 1986) and temperature 

(Trainor, 1992a,b; 1993). An ordered sequence of ecomorph development has been reported in 

Scenedesmus armatus Chodat (Trainor, 1992a), in S. communis Hegewald (Trainor, 1992b) and 

in S. subspicatus Chodat (Trainor, 1993). These changes are interpreted as cyclomorphosis 

(sensu Black and Slobodkin [1987]), driven by nutrients and temperature (Trainor, 1992a,b; 

1993). 

Chemicals released from grazers also induce morphological changes in Scenedesmus. 

Hessen & Van Donk (1993) discovered that chemicals released from the grazer Daphnia 

triggered the unicell-colony transformation in Scenedesmus subspicatus Chodat. In the presence 

of either live Daphnia or filtered water from a Daphnia culture, S. subspicatus formed numerous 

eight-celled coenobia and more rigid spines. The expressions of grazer-induced phenotypic 

plasticity do not seem to be restricted to spiny Scenedesmus species. Coenobia formation could 

also be induced in the non-spiny Scenedesmus acutus Meyen (Lampert et al, 1994). Those 

experiments were short-term experiments in which Scenedesmus cells were cultured for only a 

few days, and described the phenomenon of rapid transition from almost entirely unicellular 

populations to ones consisting of mostly eight-celled coenobia. The studies were not focused on 

the development of different Scenedesmus ecomorphs, but emphasized mostly the possible 

effects for the inducing animal, Daphnia. The studies examining the developmental morphology 

of Scenedesmus, however, did not take into account the possible effects of grazer (predator) 
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chemicals. Therefore, in this chapter the effects of chemicals released by Daphnia on the growth 

and morphological development of the non-spiny Scenedesmus acutus Meyen were examined. 

2.2 METHODS 

The green alga used in this study, Scenedesmus acutus Meyen, was derived from the Max-

Planck-Institute for Limnology (Plon, Germany). The algal cells were cultured in our laboratory 

in 1.0 liter chemostats on slightly modified WC-medium (Guillard & Lorenzen, 1972). The 

chemostats were continuously illuminated at an irradiance of 100 umolm"2s"' provided by 

circular fluorescent tubes (Philips TLEM 40 W/33RS) in a temperature-controlled chamber at 

20°C and at a dilution rate of 1.2 day"1. 

An inoculum of exponentially growing unicellular S. acutus was derived from the 

chemostats and was transferred into 300 ml cellulose-plug stoppered Erlenmeyer flasks 

containing 150 ml of medium. Each batch culture contained 134 ml autoclaved WC-medium, 1 

ml algal inoculum and either 15 ml additional WC-medium filtered through a 0.1 um membrane 

filter (controls) or 15 ml membrane-filtered test water (treatments). All filters had been rinsed 

with 200 ml nanopure water before use. The test water was produced prior to the experiment by 

allowing 200 adult Daphnia magna Straus to feed for 24 h on a 1.0 liter suspension of S. acutus 

(ca. 105 particles-ml"'; i.e. ca. 4 mg CI"') in a mixture of WC- and RT-medium (Tollrian, 1993). 

The batch cultures were incubated at 20°C on a rotating shaking table (80 rpm) and continuously 

illuminated from above by fluorescent cool-white tubes (Osram L 36W/21-840) at 100 umolm" 
2s" ' . Controls and treatments were run in quadruplicates for 35 days. The initial algal density 

was 7903 ± 28 particles-ml"' (ca. 14000 cells-ml"'). Algal densities and particle size distributions 

were determined routinely in the size range 3.0 - 20.0 um ESD (equivalent spherical diameter) 

using a Coulter Multisizer II (100 um capillary). For each replicate the number of cells per 

colony was determined microscopically by counting at least 120 aggregates (i.e. unicells as well 

as coenobia) in a subsample preserved in Lugol's fixative. Cell dimensions (length and width) of 

different ecomorphs were measured using a Leica Quantimet 500 MC image-analyzer coupled 

with a Nikon light-microscope at 600 x magnification. Both the WC-medium and the test water 

were analyzed for their total (in)organic C, inorganic-N and inorganic-P content. Total 

(in)organic carbon was determined using a TOC-analyzer (model 700, OI-Analytical). NH4
+-N, 

N027N03"-N and P0 4
3 -P were determined using a SKALAR autoanalyzer. 

Growth rates were calculated from increase in biovolumes and from cell multiplication. 

Total cell numbers were computed by multiplying the number of particles (determined by 

Coulter Multisizer II) by the number of cells per particle (determined by microscope). Growth 

curves were fitted by non-linear regression using Genstat 5 program (Genstat, 1993) according to 

the logistic curve model: 

c 

(l + e xp ( -£x ( r - a ) ) ) 
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where y = either cell number (ml1) or biovolume (un^-ml"1), t = time (d), a = curve bending 

coefficient, b = intrinsic rate of population increase (d1) and c = carrying capacity (cells-mf' or 

um3-mr'). Maximal growth rates (umax, d"1) were estimated from increase in cell number (N) and 

biovolume (V) from the first until the third day after inoculation according to umax = [ln(N3) -

ln(Ni)] * t"1. Model parameters (a, b and c) and the estimated Un^ were statistically compared 

applying one-tailed f-tests. Estimated p.max, based on both cell multiplication and increase in 

biovolume, were compared using two-way ANOVA, with the used estimation method and 

with/without Daphnia water as the two fixed effects. Cell dimensions (length and width) were 

statistically compared by one-way ANOVA (Sokal & Rohlf,1995). 

2.3 RESULTS 

Growth of S. acutus differed between populations cultured in pure medium (controls) or in 

medium with filtered water (10% v/v) from a Daphnia culture (treatments). Estimated 

parameters of the nonlinear logistic model based on cell numbers differed significantly between 

populations in the two media-types (Table 2.1). However, the model based on algal volume 

gives no significant difference in intrinsic rate of population increase (Table 2.1). The latter 

seems to be the result of increased cell volume in the treatments, making-up for reduced cell 

division rates. Exponential growth was only observed during the first 3 days (Fig. 2.1). 

Table 2.1: Estimated parameters (means ± 1 SE) of logistic growth model with a = curve bending 

coefficient, b = intrinsic rate of population increase (d1) and c = carrying capacity (cells-mf1 or um3-ml') 

and means (± 1 SE) of estimated exponential growth rates ((i,^), including t- and P-values off-tests. 

MODEL: y = c / (1 + exp{-b x (; - a))) 

Vi = Cell number (ml1) 

r2 

a, 

fo, 
Ci 

f̂ max.1 

Controls 

0.949 

7.802 + 0.360 

0.603 ±0.119 

9.953 10" ± 3.99 105 

0.995 + 0.131 

Treatments 

0.983 

7.585 + 0.257 

0.420 ± 0.038 

6.744 10* ± 1.64 105 

1.242 ±0.048 

f-values 

0.491 

4.818 

7.434 

1.70 

df 

34 

34 

34 

22 

P-values 

0.313 

<0.001 

<0.001 

0.103 

y2 = Biovolume (utrf-ml"1) 

r2 

a2 

b, 

Cl 

Hnux,2 

Controls 

0.980 

9.318 ±0.381 

0.309 ±0.027 

9.35108±3.18107 

1.712 ±0.025 

Treatments 

0.972 

7.803 ±0.391 

0.365 ± 0.040 

7.94-108 + 2.80107 

1.752 ±0.044 

f-values 

2.775 

1.156 

3.328 

0.84 

df 

38 

38 

38 

30 

P-values 

0.004 

0.127 

0.001 

0.407 
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Figure 2.1: Growth (means ± 1 SD; n = 4) of Scenedesmus acutus in standard WC-medium (control) and 

in WC-medium with water (10% v/v) from a Daphnia culture {Daphnia water), expressed as In algal 

volume (upper panel) and as In cell numbers (lower panel). Also included the expression of dominant 

morphotypes in time (upper panel). 
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Figure 2.2: Expression of dominant morphotypes (unicells, 2-, 4- and 8-celled coenobia; rest-group 

includes 3-, 5-, 6-, and 7-celled coenobia) as proportion of Scenedesmus acutus populations cultured in 

standard WC-medium (upper panel) and in WC-medium with water (10% v/v) from a Daphnia culture 

(lower panel). 
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These exponential growth rates were not significantly different between control 

populations and treatment populations when based on either cell multiplication or increase in 

biovolume (Table 2.1). Also the two-way ANOVA indicated no significant differences in 

estimated umax between control and treatment populations (F = 2.27; P = 0.139). The used 

estimation method, however, had a significant effect on the estimation of Umax (F = 62.2; P < 

0.001); no significant interaction was observed (F = 3.22; P = 0.079). Although there was a 

tendency of higher exponential growth in the treatment populations (Table 2.1) gradually growth 

became lower in the treatment populations (Fig. 2.1) and resulted in significantly different 

carrying capacities of both groups of populations in both models (Table 2.1). 

While growth was unaffected during the first days, Scenedesmus morphology was changed 

drastically in the treatment populations. In the treatment populations, a rapid formation of four-

celled coenobia (47% of population on day 2) and eight-celled coenobia (38% on day 3) could be 

observed followed by a subsequent recovery of unicell abundance (Fig. 2.2). The control 

populations were dominated by unicells that made up more than 80% of the population. From 7 

to 14 days, the dominance of unicells in the control populations gradually decreased to 38% on 

day 11, while the proportion of four-celled coenobia concomitantly increased to 34% on day 11 

(Fig. 2.2). 

Meanwhile, after 15 days, as cultures reached carrying capacity, population composition 

seemed to stabilize and was more or less comparable between control and treatment populations 

(Fig. 2.2). 

The rapid morphological response of Scenedesmus in the treatments is also reflected in the 

mean number of cells per colony and in the mean particle volume (Fig. 2.3). The mean particle 

volume remained larger in treatment populations compared to the controls throughout the entire 

experiment. During the first 2 weeks, the treatments contained more cells per colony than the 

controls; in the following weeks, individual cell size, as reflected in cell volume, also appeared 

larger in treatments than in control populations (Fig. 2.4). 

The differences in cell size also were observed with image analysis. The major 

morphological differences occurred during the exponential growth phase. Hence, the presented 

analyses of cell dimensions in Table 2.2 are based on data derived during that period (i.e., days 2 

and 3). Cell dimensions of unicells and coenobia differed significantly between control 

populations and treatment populations (Table 2.2). In the treatment populations, two types of 

four-and eight-celled coenobia could be observed: relatively small-sized coenobia and large 

coenobia. The differences were due to both significantly increased cell lengths arid widths of 

coenobial cells in the larger size class (Table 2.2). 
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Figure 2.3: Morphological response expressed as means ± 1 SD of mean particle (colony) volume (in 

urn3; panel A) and cells per colony (panel B) of Scenedesmus acutus populations cultured in standard 

WC-medium (control) and in WC-medium with water (10% v/v) from a Daphnia culture (Daphnia 

water). 
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Table 2.2: Length and width dimensions (length, L x width, W; urn ± 1 SD) of unicells, 4-celled 

coenobia (small- and large-types), 8-celled coenobia (small and large) and cells belonging to 8-celled 

coenobia, including F- and P-values of one-way ANOVA's. Similar symbols a'bc within a column 

indicate homogenous groups that are not significantly different at th 95% level (Tukey's test). 

Morphotype 

Morphotype 

Unicells 

unicells 

Treatment 

small 4-celled large 4-celled small 8-celled large 8-celled 
Dimensions 

Length (ftm) Width (fim) 

Control 

Daphnia water 

15.7 (1.9)" 

16.5 (1.8)b 

5.4(1.0)a 

5.6(1.3)" 

4-Celled 

Small 

Large 

8-Celled 

Small 

Large 

Cells in 8-celled 

Coenobia 

Small 

Large 

One-way ANOVAs: 

Control 

Daphnia water 

Daphnia water 

One-way ANOVAs: 

Control 

Daphnia water 

Daphnia water 

One-way ANOVAs: 

Control 

Daphnia water 

Daphnia water 

One-way ANOVAs: 

Fi,m 

Fl.21 

FlM= 

F2,t5 

= 6.52; P = 0.012 

20.4 (3.6)a 

25.9 (3.l)b 

30.9(1.6)c 

= 20.9; P < 0.001 

22.5 (2.4)a 

30.7 (5.3)b 

56.6 (7.2)c 

= 122.8; P< 0.001 

12.0(0.8)" 

15.8(1.1)" 

19.9 (3.4)c 

= 56.4; P < 0.001 

FlXI 

F2.24 

1*2,41 

^2,43 : 

= 3.20; P = 0.077 

14.4 (3.9)" 

21.4(4.6)" 

25.5 (4.9)c 

= 12.9; P < 0.001 

19.9(1.4)" 

24.0 (2.4)" 

30.3 (4.4)c 

= 32.0; P< 0.001 

3.7 (0.4)" 

5.3(1.1)" 

9.5 (0.7)c 

= 232.7; P < 0.001 

Populations never consisted solely of unicells and two-, four- or eight-celled coenobia, but 

always contained a fraction of three-, five-, six-, and seven-celled coenobia and even some 

aggregates with more than eight cells (all indicated as rest-group in Fig. 2.2). Although the 

majority of the coenobia were isofacial alternating coenobia, costulatoid, linear and tetradesmoid 

coenobia also were observed. Some of the observed morphotypes are presented in figure 2.5. 

The NO2VNO3" and PO43" concentrations determined in both the control WC-medium and 

in the test water (WC and RT medium from a Daphnia culture) were similar. Only the NH4
+-N 

concentration was considerably higher in the test water (0.83 mg-1"1) compared to the WC 

medium (0.02 mg-1"1). Both total inorganic (TIC) and organic carbon (TOC) were slightly higher 
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in the test water with TIC concentrations of 16.7 and 19.2 mg-1 and TOC concentrations of 2.8 

and 3.9 mgT1 for WC and test water, respectively. 
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Figure 2.4: Cell volume (um3) of unicells and coenobial cells of Scenedesmus acutus cultured in 

standard WC-medium and in WC-medium with water (10%v/v) from a Daphnia culture (error bars 

represent ±1 SD). 

2.4 DISCUSSION 

Scenedesmus growth and development were strongly influenced by the presence of filtered 

Daphnia water. The formation of eight-celled coenobia in the treatment populations occurred 

during the exponential growth phase. Although often observed in the field (e.g. Uherkovich, 

1966; Krienitz, 1987), eight-celled S. acutus coenobia are rarely found in laboratory cultures. In 

our control populations, only a negligible fraction occurred as eight-celled coenobia. The 

occurrence in treatment populations of eight-celled coenobia during exponential growth when 

nutrients were still available in excess, strongly suggests grazing-associated chemicals to be the 

inducing agents rather than nutrients. In fact, S. acutus has been reported to remain mainly 

unicellular when cultured under varying nutrient conditions (Sterner et ai, 1993; Sterner & 

Smith, 1993; Lurling & Van Donk, 1997a) but to form coenobia within 2 days after exposure to 

grazing-associated chemicals (Lampert et ai, 1994; Van Donk et ai, 1999). Although 

ammonium and organic carbon concentrations were somewhat higher in the test water from the 

Daphnia culture, the addition of 15 ml test water to 135 ml algal suspensions resulted in such a 

dilution that these differences became negligible. Moreover, ammonium and urea (Lampert et 

ai, 1994; see CHAPTER 3 & 4), and organic carbon sources (Nagy-Toth et ai, 1992) had no 

effect on colony formation in S. acutus. 
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Figure 2.5: Scenedesmus acutus morphotypes. A: Large eight-celled coenobium. B: Small eight-celled 

coenobium. C: four-celled coenobium. D: Large unicell. E: Small Unicell. F: Irregular coenobium. 

After 1 week, coenobia gradually disappeared from the treatment populations, and began to 

resemble the control populations after ca. 11-12 days (see Figs. 2.2 and 2.3). Possibly, the 

gradually reduced inductive strength of the culture medium was due to inactivation by 
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biodegradation, including bacterial activity as absorption and incorporation of the inducing 

chemicals in the algal cells. Because of the reduced concentration of these chemicals and 

increased population size, gradually fewer cells were exposed to the inducing chemicals and 

eventually coenobia formation became negligible and disappeared. 

Besides coenobia formation, cell dimensions also increased in the treated populations. 

This increase in individual cell size does not seem to be a consequence of the induced colony 

formation, because both unicells and coenobial cells showed larger dimensions, but rather the 

result of an additional process. It may be a result of higher TOC levels (ca. 14% higher) in the 

treatment medium. Aqueous fuel oil extract increased significantly the cell dimensions and 

volume of several Scenedesmus species (Tukaj & Bohdanowicz, 1995). Nagy-Toth et al. (1992) 

reported increased cell dimensions of S. acutus when organic carbon sources were added to the 

medium. However, in their studies no formation of eight-celled coenobia was induced. In fact, 

some studies have reported unicell dominance in an organic carbon rich environment, i.e. 

sewage oxidation pond, soil extract media or the addition of glycolic acid (e.g. Mattoni et al, 

1965; Trainor, 1971; Siver & Trainor, 1981; 1983). By contrast glucose has been reported to 

favor coenobia formation in the non-spiny S. obliquus (Trainor, 1964). The colony-inducing 

chemical is most likely an organic molecule, too (Lampert et al, 1994). Therefore, no 

generalized statements on the effect of organic carbon on Scenedesmus morphology seem 

justified. 

The expression of four-celled coenobia in control populations resembles the reported 

cyclomorphosis of other Scenedesmus species. After dominance of unicells at the end of log-

growth, formation of mostly four-celled coenobia has been reported in the spined species S. 

subspicatus (Trainor, 1993), S. communis, and S. komarekii (Egan & Trainor, 1990). Analogous 

to observations by Egan & Trainor (1989) and Trainor (1993), a deflection in the growth curve 

(indicated with an arrow in Fig. 2.1) could be observed before the control populations changed 

from unicellular to four-celled dominance. Cell death just before the unicell-colony 

transformation seems the most probable cause. 

After the exponential growth phase, growth rates were reduced in the treatment 

populations resulting in a significantly lower carrying capacity. This may reflect either nutrient 

depletion in the cultures or a cell-size effect and hence reduced nutrient uptake. Nutrient-

depletion may be a result of the added Daphnia water, which was a mixture of WC- and RT-

medium. However, no differences in major nutrients between the WC-medium and the Daphnia 

water were measured. 

Costs of colony formation were not reflected in growth rates, which has also been 

observed by Hessen & Van Donk (1993) and Lampert et al. (1994). Benefits of remaining 

unicellular include smaller sinking velocities (cf. Reynolds, 1984) and an advantageous surface-

to-volume ratio in terms of nutrient uptake and light harvesting. In contrast, colonies may exceed 

the size of grazable particles and may experience a reduced grazing pressure (Hessen & Van 
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Donk, 1993). Small four- and eight-celled coenobia with dimensions of 26 x 21 urn and 31 x 24 

um, respectively, are protected only against small Daphnia. However, eight-celled coenobia with 

dimensions of on average 57 x 30 um, but up to 65 x 40 um, will undoubtedly confront even the 

largest Daphnia species with ingestibility problems. 

Because of clonal variability (e.g. Mladenov & Furnadzieva, 1995; 1997) in natural water 

bodies, an altered morphology of a Scenedesmus population could be the result of clonal 

replacement (Wood & Leatham, 1992) or phenotypic plasticity (West-Eberhard, 1989). The 

observed differences in growth and morphological development of S. acutus in the absence or 

presence of grazing-associated infochemicals clearly demonstrate that the effect of grazing also 

should be taken into account to explain the plasticity of Scenedesmus. Moreover, with increasing 

evidence on phenotypic plasticity in Scenedesmus, the frequently observed coenobia in nature 

and unicells in lab-cultures may be the result of both selective grazing on unicells and chemically 

induced coenobia formation rather than clonal replacement. 
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CHAPTER 3 

The biotest: 
an important tool to investigate 

coenobia formation in Scenedesmus 

Parts of this chapter are based on: 

Liirling, M. (1998) Journal ofPhycology 34: 578 -586 

Liirling, M., Van Donk, E. & Beekman, W. Accepted for publication in Verhandlungen der 

internationalen Vereinigungfur theoretische und angewandte Limnologie 

Liirling, M. & Beekman, W. Submitted to Limnology & Oceanography 

"We have seen that the members of the same class, 

independently of their habits of life, resemble 

each other in the general plan of their oganisation. 

The whole subject is included under the general name of 

morphology. This is the most interesting department 

of natural history, and may be said to be its very soul. 

-C.R.Darwin 1859 
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3.1 INTRODUCTION 

In the previous chapter a clear effect of unknown grazing-associated chemicals on 

growth and morphology of Scenedesmus acutus was demonstrated. However, several factors 

such as initial cell density, age of the culture, pH, nutrients and temperature may affect 

morphology and colony size (e.g. Trainor & Roskosky, 1967; Ramos-Cardenas & de Lara-

Isassi, 1985; Holtmann & Hegewald, 1986; Egan & Trainor, 1989; Trainor, 1992a, b; 1993). 

Organic carbon sources have been reported to increase cell dimensions and hence biovolume 

of several Scenedesmus species (Nagy-Toth etal., 1992; Tukaj & Bohdanowicz, 1995). 

Moreover, close examination of the media (Bristol's and medium 7) used in several 

studies after the Scenedesmus plasticity (e.g. Egan & Trainor, 1989a,b,c; Ramos-Cardenas & 

de Lara-Isassi, 1985) revealed the absence of an (in)organic carbon source, meaning that the 

major constituent (c. 50% of biomass) of an algal cell had to diffuse into the medium from the 

air. Hence, the occurrence of carbon limitation under these conditions is not unlikely. 

Among the factors involved in the ecomorph expression in Scenedesmus are several 

that are related to the amount of carbon available to the algae. As demonstrated in the 

previous chapter and in recent literature, the algal predator Daphnia releases a chemical 

substance that triggers the unicell-colony transformation in Scenedesmus (Hessen & Van 

Donk, 1993; Lampert et al., 1994). But Daphnia's are referred to as sloppy feeders. They 

ingest more food than they use for biomass and as a result many products are released from 

Daphnia (Peters, 1987), including organic carbon (Lampert, 1978), cyclic AMP (Francko & 

Wetzel, 1982), phosphorus (Peters & Rigler, 1973) and ammonia and amino acids (Gardner & 

Miller, 1981). The colony-inducing chemical is probably an organic molecule (Lampert et al, 

1994). Nagy-Toth et al. (1992) examined the effect of several carbon sources on the 

morphology of S. acutus, but did not report any formation of eight-celled coenobia. They 

discussed whether the dominance of unicells in the presence of glucose was a peculiarity of 

their strain or just the result of bubbling. Interestingly, glucose has been reported to induce 

coenobia in a non-spiny Scenedesmus strain (Trainor, 1964). Glucose being the major 

building block of cellulose could be released from the algal predator Daphnia, which is a 

sloppy feeder that may release 10-17% of the ingested carbon (Lampert, 1978). 

To test, for example, for the effects of nutrients, chemicals, or amount of medium with 

grazer-associated chemicals from zooplankton cultures, a reliable biotest is of uttermost 

importance. In this chapter, I first report experiments performed to establish a reliable 

bioassay, followed by biotests in which the influence of biotic and abiotic factors on coenobia 

formation in Scenedesmus acutus Meyen was examined. 
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3.2 DEVELOPMENT OF THE BIOTEST 

3.2.1 General 

A biotest should be simple, fast, but reliable. This means that as many factors as 

possible should be maintained constant. Therefore, to ensure a as constant as possible 

inoculum of test algae, the green alga Scenedesmus acutus Meyen was cultured in 1.0 litre 

chemostats on slightly modified WC-medium (Guillard & Lorenzen, 1972; Table 3.1). The 

chemostats were continuously illuminated at an irradiance of 125 umolm~2s"' provided by 

circular fluorescent tubes (Philips TLEM 40 W/33RS). The chemostats were positioned in a 

temperature-controlled chamber at 20°C and run with a dilution rate of 1.2 day"1. Harvested 

algae from the chemostat were used as inocula in batch cultures serving as tests. 

Table 3.1: Composition of algal growth medium (final concentrations in mg-l~ ). 

Major nutrients 

NaN03 

MgS04-7H20 

CaCl2-2H20 

Na2Si03-9H20 

H3BO3 

NaHC03 

K2HP04 

TESa 

mg-r1 

85.01 

36.97 

36.76 

28.42 

24.00 

12.60 

8.71 

85.00 

Trace elements 

Na2EDTA-2H20 

FeCl3-6H20 

MnCl2-4H20 

CuS04-5H20 

ZnS04-7H20 

NaMo04-2H20 

CoCl2-6H20 

Na3V04 

H2SeQ3 

mg-r1 

4.36 

1.00 

0.18 

0.001 

0.022 

0.022 

0.012 

0.0018 

0.0016 

a TES = N-Tris(hydroxymethyl)-methyl-2-aminoethane-sulphonic acid (C6H,5N06S); Sigma T-1375 

A second approach would be the use of continuous cultures themselves. A chemostat 

system in a steady state, with very low short-term noise and long-term drift, could be used as 

its own control before and after the addition of test-water, in fact a pulse perturbation (Boraas, 

1993). An advantage of chemostats is that they are controlled with a precisely defined nutrient 

environment. However, a disadvantage is that fewer cultures can be maintained or tests 

performed than with short-term batch cultures. To accommodate quickness and simplicity of 

the desired biotest, short-term batch culture growth experiments were prefered. At low 

inoculum size and relatively short experimental incubation periods, cultures will approximate 

steady state conditions. The set-up was partly based on the biotest as developed by Lampert et 

al. (1994). Nevertheless, chemostat cultures were used to examine the effect of nutrients, and 

growth rate (see §4.3 & 4.4) on morphology of S. acutus. 
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Initially, short-term batch experiments were performed without the colony inducing 

chemicals. These experiments had the main objective to examine the variability in 

Scenedesmus growth and morphology exhibited under various conditions. Some experimental 

conditions were chosen a priori, such as an incubation temperature of 20°C, the use of a 

shaking device to prevent sedimentation (80 rpm), continuous illumination from above at an 

irradiance of 125 umolm~2s"' (Osram L 36W/21-840 cool-fluorescent white tubes) and 100 

ml Erlenmeyer flasks. 

Algal densities and particle size distributions were determined using an electronic 

partical counter; Coulter Multisizer II (100 um capillary) or CASY-1 (150 urn capillary). The 

number of cells per colony was determined microscopically by counting at least 100 

aggregates (i.e. unicells as well as coenobia) in algal subsamples preserved in Lugol's 

fixative. Cell dimensions (length and width) of different aggregates were measured using a 

Leica Quantimet 500 MC image-analyzer coupled with a Nikon light-microscope at 500 x 

magnification. 

Growth rates were calculated from increase in biovolumes and from cell 

multiplication. Total cell numbers were computed by multiplying the number of particles 

(determined by Coulter) by the number of cells per particle (determined by microscope). 

Test-water with colony inducing Daphnia chemicals was produced prior to the 

experiments by allowing a few hundred adult Daphnia to feed on a suspension of S. acutus 

(ca. 4 mgCT1) in WC-medium. After 24 hours incubation at 20CC in the dark, the Daphnia 

were removed from the vessel and the medium was filtered. In their study, Lampert et al. 

(1994) showed that mean particle volumes were highly correlated with the mean number of 

cells per colony. Thus, for statistical comparison mean particle volumes could be used. I 

compared for 78 measurements the mean number of cells per colony with the mean particle 

volume (MPV), which revealed that both parameters were highly correlated (r2 = 0.770; Fig. 

3.1). The regression is: 

log(MPV) = 2.241 + 0.730 x log(cells colony"') 

This is close to the regression obtained by Lampert et al. (1994): 

log(MPV) = 2.127 + 0.726 x log(cells colony1) 

In both regressions, the slope is less than 1, which indicates that the individual cell sizes 

decrease with increasing colony size. However, under certain conditions detection of colony 

formation solely based on determinations of mean particle volumes may imply unjustified 

conclusions as cell dimensions could be increased rather than colony formation being induced. 

On the other hand, colony formation (cell division) may be triggered, but may not necessarily 

coincide with a proportional increase in mean particle volume, for example as a result of a 

limiting resource. In these cases microscopic analysis is of importance. 
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Figure 3.1: Relationship between the mean particle volume (urn) and the mean number of cells per 

particle in Scenedesmus acutus. Solid line represents linear regression, dotted lines the 95% confidence 

intervals. 

3.2.2 Plugs? 

Following Lampert et al. (1994) 100 ml Erlenmeyer flasks were selected as 

experimental vessels to be used in the biotest. Due to C uptake by the algae and a consequent 

rise in pH, replenishment of C from the air will occur (Portielje & Lijklema, 1995). Therefore, 

in a first experiment the effect of different sealing methods applied to experimental vessels on 

growth and morphology of S. acutus was examined to select for appropriate plugs to seal the 

experimental vessels. 

The coverings used were parafilm, silicon rubber plugs, cellulose plugs and cotton 

wool, while an additional series of Erlenmeyer flasks was not closed. Each Erlenmeyer 

contained 50 ml of S. acutus in WC-medium (without TES-buffer). The initial cell density 

was 45000 ± 450 particles-ml"1 (i.e 4.2-106 um3mr'). The different treatments were run in 

quadruplicates. The pH and temperature of the medium were recorded routinely using a pH 

96-meter (WTW). Cell dimensions of Scenedesmus were determined of samples taken after 48 

hours of incubation. Length and width of the unicells were statistically compared applying 

one-way ANOVA, followed by a Tukey's test. 

Application of different plugs on the experimental Erlenmeyer flasks resulted in 

different growth and cell morphology (Fig. 3.2). Open flasks and flasks closed with either 

cotton wool or cellulose-plugs supported the highest growth, while silicon-rubber plug 

stoppered or parafilm sealed flasks showed a reduced growth. The significantly smaller cell 

dimensions (Table 3.2), the courses of the measured pH and cell volume (Fig. 3.2) suggest 

47 



CHAPTER 3 

possible carbon limitation in silicon-rubber plug stoppered and in parafilm sealed flasks 

occurring already within one day. However, after 48 h also in the other treatments pH-values 

had increased dramatically. Based on this experiment, cellulose plugging was chosen for 

closure of experimental Erlenmeyer flasks. 
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Figure 3.2: Scenedesmus acutus growth based on total volume (A), S. acutus cell volume (B) and the 

course of the pH (C) in incubations with different sealings 
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Table 3.2: Mean length and width dimensions (± 1 SD; n = 4) of Scenedesmus acutus cultured for 48 

h in batches with different stops including F- and P-values of one-way ANOVA. Similar symbols AB 

within a column indicate homogeneous groups (Tukey's test). 
Plug-type 

Open 

Cotton-wool 

Cellulose 

Silicon-rubber 

Parafilm 

F-and 

P values 

Length (urn) 

17.6(2.4) A 

17.9(2.7) A 

17.2(2.9) A 

15.6(2.3) B 

14.9(1.3) B 

^4,196 = 12 .1 

P< 0.001 

Width (urn) 

7.1(1.5) A 

7.1 (1.7) A 

6.9(1.5) A 

4.3 (0.8) B 

3.7 (0.4) B 

^4,196 = 73.6 

P< 0.001 

3.2.3 Buffer & Carbon 

The WC medium contains only 1.8 mg CI"', but this seemed not to hamper 

Scenedesmus growth, as exponential growth was observed during the first 48 h (see Fig. 

3.2A). However, in cellulose plug stoppered flasks the pH increased to values above 10 (Fig. 

3.2C). Therefore, a buffer (TES = Af-Tris(hydroxymethyl)-methyl-2-aminoethane-sulphonic 

acid (C6Hi5N06S); Sigma T-1375) in a final concentration of 85 mg-l"1 was added to the 

medium. Moreover, the amount of carbon in the medium was varied and added in normal 

amount, 10 times and 25 times the standard amount of NaHC03. The effect of the buffer and 

carbon on growth and colony formation in S. acutus was examined both in the absence and 

presence of filtered medium from a Daphnia culture. 

The addition of the buffer resulted in lower pH values after 48 h than in the previous 

experiment (Fig. 3.3). Two-way ANOVA indicated no differences in the pH after 48 h that 

was 9.33 (± 0.30). 

Growth rates were not affected by the Daphnia water or the carbon content of the 

medium and were on average 2.079 (± 0.066) d"1. By contrast, two-way ANOVA indicated 

that the number of cells per colony was significantly affected by Daphnia water (F = 85.7; P 

< 0.001), but not by the amount of carbon (F = 0.21; P - 0.812). Although the individual cell 

volumes in control populations were increased at higher C-levels, with values of 142 (± 29.1), 

149.0 (± 18.5) and 171.3 (9.9) (am3 in standard, 10 times and 25 times carbon, respectively, 

the differences were not significant. 

Since the buffer did not seem to affect growth and morphology in a negative way, but 

kept the pH at reasonable values, and the addition of more carbon had no significant effect, it 

was decided to maintain the carbon as in the WC medium and add the buffer. The temperature 
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in this experiment was higher than the desired 20 ± 1 °C, but constant over the incubation 

period at 23.3 ± 0.4 °C, and could explain the high volume based growth rates. 

10 
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Daphnia water [ 1 *C] 
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Daphnia water [10*C] 
Control [25 *C] 
Daphnia water [25*C] 

0 12 36 48 24 

Time (h) 

Figure 3.3: Course of pH (lower panel) and number of cells per colony (upper panel) in 5. acutus 

cultured in the absence (Control; filled symbols) and presence of water from a Daphnia culture 

(Daphnia water; open symbols) in medium with the standard amount of carbon [1*C], 10 times [10*C] 

and 25 times the standard amount [25*C]. Error bars represent 1 SD (n = 4). 

3.2.4 Filters 

To separate dissolved zooplankton chemicals from algae, bacteria and debris a 

filtration step was included. However, filters may release extractable compounds that could 

influence growth and morphology of the test-algae. Therefore, the effect of filtration was 
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examined and compared with another separation technique, centrifugation. In a first 

experiment 0.1 (im membrane-filters (NC10) were rinsed with different amounts of nanopure 

water, 0, 50, 100, 200 and 500 ml respectively, before 10 ml WC-medium was filtered 

through it. Five ml filtrate from four filters was added separately to 45 ml S. acutus 

suspensions in 100 ml Erlenmeyer flasks. As control served incubations without test-water 

(Control) while incubations with 5 ml supernatant of medium from a Daphnia magna culture, 

centrifuged for 5 min. at 4000 rpm, served as a positive control, i.e. incubations in which 

colony formation was expected (Dm-Unfilt.). Tests were run in quadruplicate. After 48 h, 

colonies had not only been induced in incubations with Daphnia water without filtration (Dm-

Unfilt.), but also in incubations with medium filtered through non-rinsed filters (Fig. 3.4). 

Hence, ex tractable compounds from cellulose nitrate filters (NC10) induce colonies in 

Scenedesmus as well. 
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Figure 3.4: Effect of medium filtered through unrinsed and rinsed cellulose-nitrate membrane filters 

on mean particle volumes in S. acutus. Error bars represent 1 SD (n = 4). Similar symbols a,..,e 

represent homogeneous groups (Tukey test). NC-xml = Represents treatments with 5 ml filtrate from a 

cellulose nitrate membrane filter (NC10) after the filter had been rinsed with x ml water. DM-Unfilt. = 

treatments with 5 ml medium from a Daphnia magna cultured centrifuged at 4000 rpm (5 min.). DM-

NCx = treatments with 5 ml filtered medium from a Daphnia culture after the filter had been rinsed 

with x ml water. 

In a second experiment, filtrate from different filter types was tested on their possible 

effect on the algae. Aliquots of 25 ml WC-medium were filtered through glass-fiber (GF52), 
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mixed esters of cellulose (ME24) or cellulose nitrate (NC10) filters (all filters from Schleicher 

& Schuell, Germany). Filtrate (5 ml) was added to 45 ml of S. acutus suspensions in fresh 

WC-medium in 100 ml Erlenmeyer flasks with an initial algal density of 45000 particles ml"1. 

As control served incubations without test-water (Control) while incubations with 5 ml 

supernatant of medium from a Daphnia magna culture, centrifuged for 5 min. at 4000 rpm, 

served as a positive control, i.e. incubations in which colony formation was expected 

{Daphnia water). Based on the previous experiment, a treatment with glucose (1 mg-1"1) was 

added. Both mixed-esters and cellulose nitrate filters significantly induced colonies in 

Scenedesmus (Fig. 3.5). However, filtrate from GF-filters had no morphogenetic effect. 

Although Trainor (1964) observed glucose-induced colony formation in S. obliquus UTEX 

393, in this experiment glucose appeared not to induce colonies in S. acutus, which has also 

been found by Nagy-Toth et al. (1992). 
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Figure 3.5: Effect of medium run through different filters on mean particle volumes in S. acutus. Error 

bars represent 1 SD (n = 4). 

Based on these experiments, glass-fiber filters seemed most suited, although cellulose-

nitrate filters may still be used after rinsing or as a positive control to ensure a constant colony 

induction. Moreover, analysis of the filtrate may reveal the chemical structure of the inducing 

compounds and thus may lead to a more narrowed search for the "Daphnia factor". 

3.2.5 Inoculum size 

This experiment was designed to examine the effect of initial algal density on 

Da/?/wj'a-induced colony formation and growth in S. acutus. In previous experiments Lampert 

et al. (1994) used inocula of 1.25105 cells ml"1, while Hessen & Van Donk (1993) have used 
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5.4-105 cells-ml"1. These relatively heavy inocula could result in nutrient depletion or self-

shading and hence affect the growth rate. 

Series of three replicate flasks with or without Daphnia test-water (10% v/v) received 

different amounts of test-algae according the range 103, 104, 2.5-104, 5-104, 105 and 5-105 

particles-ml"1. 

Colony formation appeared negatively correlated with the initial algal density (Fig. 3.6 

panel A). The two-way ANOVA indicate a significant effect of inoculum size on the colony 

formation, a significant effect of the Daphnia water and a significant interaction (Table 3.3). 
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Figure 3.6: Effect on inoculum density on colony formation, expressed as mean particle volume 

(Panel A) and growth (Panel B) in S. acutus in the absence (Control) and presence of water from a 

Daphnia culture {Daphnia water). Similar symbols, a,..,f indicate homogeneous groups (Tukey's test). 

Table 3.3: F- and P-values of two-way ANOVAs on mean particle volumes (MPV in unr) and 

volume based growth rates (d1). 
MPV (urn3) Growth rate (day" ) 

Inoculum-size 

Daphnia water 

Interaction 

df 

5 

1 

5 

F 

49.0 

785.9 

29.0 

P 

<0.001 

<0.001 

<0.001 

df 

5 

1 

5 

F 

534.3 

22.7 

3.12 

P 

<0.001 

<0.001 

0.026 

Growth rates were significantly reduced with increasing inocula sizes (Fig. 3.6; panel 

B). Moreover, growth rates were significantly higher in treatments with Daphnia water 

compared to controls when initial algal density was below 5104 particlesmr1, while rates 

were similar above this density. This experiment could, however, not unravel whether the 
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lower colony formation at larger inocula sizes was due to reduced growth or due to a 

relatively reduced availability of inducing chemicals to individual cells. Concluding, an 

inoculum around 2.5-104 cells-ml"1 is advisable on the one hand to ensure sufficient algal 

biomass necessary for microscopical counting, on the other to prevent reduced growth and 

colony formation. 

In an additional experiment 5 ml test-water from a Daphnia culture was added to 20 

ml algal suspensions with initial concentrations of 0, 2103, 2104, 105, 2-105, 5-105 and 106 

particles-ml"1. After 24 hours these suspensions were filtered through a 0.1 um membrane 

filter and 20 ml was added to S. acutus in 30 ml fresh medium to examine the effect on 

coenobia formation. 

Colony formation was significantly affected (F6,i4 = 14.0; P < 0.001) by the 

pretreatment in a way that test-water from high pre-test algal concentrations resulted in 

significantly reduced colony formation (Fig 3.7). Growth rates were not significantly 

different {F(,,u = 2.75; P - 0.055), but a tendency to somewhat reduced growth in vessels 

with test-water from high pre-test algal densities could be observed (Fig 3.7). Thus it seems 

that the coenobia inducing compounds are inactivated when exposed to heavier inocula. 

Whether the colony-inducing chemicals are inactivated by passive adsorption to algal 

cells or by metabolic activity was examined in another experiment. In a first series, 20 ml 

test-water from a Daphnia culture was added to 30 ml algal suspensions with initial 

concentrations of 0, 2.5-104, 105, 510s and 106 particles-ml"1. In a second series, 20 ml test-

water was added to 30 ml medium without algae, to 30 ml with 106 particles-ml"', to 30 ml 

heat-killed algae equivalent to 106 particles-ml'1, and to 30 ml containing a 1:1 mixture of 

heat-killed and live algae corresponding to 106 particles-ml"1. 

After 24 hours, these suspensions were filtered through a glass-fiber filter and 5 ml 

was added to S. acutus in 45 ml fresh medium to examine the effect on coenobia formation. 

Colony formation was significantly affected (F^H - 16.8; P < 0.001) by the pretreatment in 

a way that test-water from high pre-test algal concentrations resulted in significantly reduced 

colony formation (Fig. 3.8). Growth rates were significantly different (F6M = 2.90; P = 

0.047), but this was due to one treatment (5-105 particles-ml"1) which was significantly 

different from the control (Fig. 3.8). Heat-killed algae, however, had no effect on the colony-

inducing chemicals. Test-water exposed to heat-killed algae remained active, whereas live 

algae significantly reduced the activity (F4JI0 = 17.7; P < 0.001) (Fig. 3.8). Growth rates 

based on biovolume were not different (F4,10 = 1.85; P = 0.196) with a mean (± 1SD) of 

1.646 ± 0.042 (n = 5). 
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le+6 

Pre-test algal density (particles ml ) 
Figure 3.7: Effect on the colony formation in S. acutus of Daphnia water exposed for 24 h to 

algal suspensions varying in density, prior to use in a biotest. Error bars represent 1 SD (n = 3). 

Closed symbols (•) refer to mean particle volumes, open symbols (O) to growth rates. Similar 

symbols (a,b,c) represent homogeneous groups that are not statistically different at the 95% level 

(Tukey's test). 

However, it should be noted that the strain S. acutus MPI is not axenic. The 

inactivation of colony-inducing activity could also be due to bacterial degradation. 

Therefore, antibiotics were added to S. acutus suspensions with Daphnia water and the 

growth and colony formation compared with incubations without antibiotics, but with 

(positive controls) or without Daphnia water (negative controls). Although the inoculum 

density was -4-104 particles-ml"1, and 5 ml test water was added, based on the observation 

that only a proportion of the S. acutus population occurred as eight-celled coenobia, it was 

hypothesized that this proportion would be enhanced in the presence of antibiotics. After 48 

h, one-way ANOVA indicated significant differences (F2,6, = 100.8; P < 0.001) in mean 

particle volumes, but Tukey's test revealed that only the negative controls were significantly 

different. The mean particle volumes (± 1 SD; n = 3) for negative controls, positive controls 

and treatments with antibiotics were 238.9 (27.0), 671.9 (8.9) and 598.5 (63.2) urn3, 

respectively. Growth rates were similar (F2,6 = 2.74; P = 0.143) and on average 1.69 (0.05) 

d"'. This experiment may not completely rule out bacterial degradation, but it rules out 

modification by bacteria attached to the algae. 
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Figure 3.8: The effect of exposure of Daphnia water to different amounts of Scenedesmus acutus 

(left panel; 0...106 particles-mi'1), and to live (S.a.106), heat-killed (boiled) or a 1:1 mixture of both 

(boiled & S.a.) on mean particle volume (MPV ± 1 SD; n = 3) and growth (± 1 SD) in Scenedesmus 

acutus. Similar symbols indicate homgeneous groups that are not significantly different at a 95% 

level (Tukey's test). 

3.2.5 Amount of test-water 

Different amounts of test-water, i.e. 0, 0.1, 1.0, 2.0, 5.0 and 10 ml, were added to 5. 

acutus suspensions in WC-medium. To produce the test-water, prior to the experiment 

approximately 100 Daphnia magna were transferred into 700 ml WC-medium with S. acutus 

as food (107 | im 3 mr ' ) . After 24 h, medium from this culture was filtered through a glass-fibre 

filter and used as test-water. An additional treatment received one adult D. magna ( - 4 mm), 

the biotest was run in triplicate. After 48 h, colony sizes, expressed as the mean particle 

volume, were measured. One-way ANOVA indicated significant differences (F^u = 46.2; P < 

0.001). Three homogeneous groups could be distinguished: 1) "0" and "0.1", 2) "1.0, 2.0", 

"5.0", "10" ml of test-water, and 3) the "one-live Daphnia treatment (Fig. 3.9). The addition 

of 1.0 ml (2% v/v) already significantly promoted coenobia formation however the response 

with 5.0 ml Daphnia water was ~10% larger. Hence, 5 ml was selected as standard amount of 

test-water to be added to test-algae in biotests. The volume based growth rates were 

significantly different among treatments (F6i l4 = 199.1; P < 0.001), however Tukey's test 

revealed that this was due to the treatments with one live Daphnia added. Omitting this 

treatment showed that the addition of different amounts of test-water had no effect on the 

volume based growth rates in S. acutus (7*5,12 = 149; P = 0.265) with a mean (± 1 SD) of 

1.479 (± 0.038) d"1. 
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Figure 3.9: Effect of different amounts of filtered water from a Daphnia culture (0.1 ... 10 ml) and of 

one live Daphnia added (Daphnia) on the mean particle volume (um3) of Scenedesmus acutus. Error 

bars indicate 1 SD (n = 3). Similar symbols a,b,c represent homogeneous groups. 
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Figure 3.10: Effect of different amounts of filtered water from a Daphnia culture (0, 0.5 and 5ml) on 

the mean particle volume (um3) of Scenedesmus acutus as a function of time (h). Error bars indicate 1 

SD (n = 3). 

The course of the mean particle volumes of incubations without Daphnia water, and of 

incubations that had received either 0.5 ml or 5.0 ml water from a high density D. magna 

culture was examined during 72 h. Mean particle volumes were maximal after 48 h incubation 

(Fig. 3.10). The decrease in MPV after 48 h could be a result of the increased algal biomass 

that affected growth and cell volume (§3.2.2) and reduced the activity of the Daphnia water 
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(§5.2.4). The decrease in the Daphnia water treatments was relatively stronger than in the 

controls. Moreover, at identical amounts of Daphnia water added (5 ml) an enormous 

difference in MPV between the two experiments occurred. In the latter experiment, the MPV 

was twice as high as in the former experiment. This could be due to differences in the algal 

physiology, despite the fact they were harvested from the chemostat, as the MPV in controls 

showed already a 21% difference. Initial densities were different with 2.5-104 particles-ml"1 and 

4.4-104 particles-ml"1 in the former and latter experiment, respectively. However, these 

densities do not seem to be the explanation, because then one would expect the opposite 

(§3.2.4). Other factors involved may be the Daphnia density, size and activity. 

3.2.6 Daphnia density and body-size 

When incubation water from 200 Daphnia l"1 was serially diluted, the induction of 

colonies decreased linearly and disappeared at ca. 50 Daphnia-Y1 (Lampert et ai, 1994). 

Moreover, starved Daphnia and Daphnia homogenate induced no colonies in Scenedesmus. 

Hence, the induction of colonies depends on the density of actively feeding Daphnia. 

Several studies have reported reductions in the feeding when animals were exposed to 

chemicals released from conspecifics (Helgen, 1987), congeners (Matveev, 1993) or competitors 

and predators (Folt & Goldman, 1981). Daphnia pulex showed a remarkable decrease in 

clearance rate with increasing population density (unpublished data). This negative interference 

(Goser & Ratte, 1994), being the result of both chemicals and touch, could influence the 

production of colony inducing chemicals. 

Test-waters from a Daphnia magna and a Daphnia pulex culture was used to examine 

the effect of incubation density on production of infochemicals. The D. magna (animals with a 

mean body length (± 1 SD) of 1.26 ± 0.22 mm) densities used were 0, 20, 50, 100, 200, and 400 

ind.l"1. After 24 h at 20°C in the dark, water from these incubations was centrifuged during 5 

min. at 4000 rpm and added to the test alga S. acutus. Colony formation expressed as mean 

particle volume increased significantly (F5i8 = 43.8; P < 0.001) with higher Daphnia densities 

(Fig. 3.11). Tukey's post-hoc comparison revealed three homogeneous groups: 1) '0, 20, 50'; 2) 

'20, 50, 100' and 3) '200, 400' D. magna\\ 

The other animal, D. pulex (animals with a mean body length (± 1 SD) of 1.23 ±0.16 

mm), was incubated at 0, 20, 40, 80, 120, 160, 200, 400 and 600 ind.l"'. After 21 h at 20°C in 

the dark, water from these incubations was filtered through a glass-fiber filter (GF52) and 5 ml 

filtrate was added to 45 ml fresh WC-medium inoculated with the test alga S. acutus. Again a 

significant increase (Fgig = 16.5; P < 0.001) of mean particle volume with Daphnia density was 

observed. Tukey's test revealed three homogeneous groups: 1) '0, 20, 40, 80, 120, 160, 200'; 2) 

'200, 400' and 3) '400, 600' D. pulex-Y1. 
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Figure 3.11: Effect of 5 ml water from cultures with different densities of Daphnia magna (filled 

symbols) and Daphnia pulex (open symbols) on mean particle volume (|im3) in Scenedesmus acutus. 

Error bars indicate 1 SD (n = 3). 

Starved animals have been shown to induce less colonies than well-fed ones (Lampert et 

ai, 1994). This suggests that the release of colony inducing compounds may be related to the 

activity of the grazer or more specifically to the amount of algae grazed upon. In a second 

experiment, the effect of medium from Daphnia magna cultures varying in body size and density 

on the colony formation in S. acutus was examined and related to the amount of algae harvested 

by the animals. Animals belonging to the same cohort of new-born D. magna were transferred 

into separate 100 ml tubes with S. acutus suspensions (~7.5 mgC-1"1) in WC-medium. After 24 h, 

the daphnids were removed from the test tubes, measured and placed in new tubes containing 

fresh food suspensions. The densities used were 0, 20, 50, 100, 200 and 400 daphnids per liter. 

Initially and after 24h the algal concentrations in the test tubes were measured in the range 3.0 -

20.0 ESD using the Coulter Multisizer II. Algal losses (AL) were calculated for each vessel 

according: 

AL = (biovolumecontrol - biovolumetteatment )x 3.9 • 10"7 (in mg C). 

The medium was then filtered through a glass-fiber filter (GF52) and 5 ml was used as test-water 

in a biotest with S. acutus as test-alga (run in triplicate). After 48 h of incubation, the mean 

particle volume, as a measure for colony size, was determined. 

Colony formation in S. acutus significantly increased with Daphnia density and with 

body size (Fig. 3.12). The dose-response of colony formation seemed to reach a plateau at ca. 

200 Daphnia]'1. However, body-size seems more linearly related to colony formation (Figs. 3.12 

&3.14). 
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Figure 3.12: Effect of 5 ml water from cultures with different densities and size classes of Daphnia 

magna on mean particle volume (um ) in Scenedesmus acutus. 

In both cases, increase in size or in density results in an increase in animal biomass. 

Hence, similar effects on colony formation were expected. However, colony formation seems 

not related to biomass, but to the feeding activity of the animals, as starved animals induced no 

colonies (Lampert et al., 1994). The amount of algae grazed by the daphnids per vessel (AL, in 

mgC-1"1) was calculated and plotted against the mean particle volumes obtained in the biotests. 

The colony formation appears significantly correlated with the algal loss (AL) in a positive 

manner meaning that higher algal grazing loss resulted in more colonies (Fig. 3.13). 
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Figure 3.13: Relationship between Scenedesmus losses due to grazing and the colony formation in the 

test-alga Scenedesmus acutus induced by chemicals associated with grazing. Solid line represents linear 

regression (MPV = 200.85 + 31.948 x GAB; r ^ 0.826). 
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Figure 3.14: Effect of 5 ml water from cultures of Daphnia magna with different size classes on mean 

particle volume (um3) in Scenedesmus acutus. Error bars indicate 1 SD (n = 3). Solid line represents 

linear regression MPV = 187.3 +129.9 x BL (r2 = 0.976). Open symbol (O) represents the control that 

was left out of the regression analysis. 

The highly significant linear correlation between the mean particle volume and the body-

size of Daphnia at a fixed density of 400 animals per liter (Fig. 3.14) suggests that the algae 

were proportionally grazed to the body-size of the animals. However, the feeding rate (FR) of 

Daphnia can be described by a power function of the body-size (BL) according to the equation 

(Lampert, 1987): FR = a x BLb 

The exponent of the power function b usually lies between 2 and 3, but varies with 

environmental conditions with food as an important factor (Lampert, 1987). The values of a and 
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b in the power function were estimated in an experiment with D. magna (200 animals per liter) 

fed with the green alga S. acutus and revealed a the power equation CR = 0.109 x BL2829 (r2 = 

0.992) (own unpublished data). 

Reaching a plateau at ca. 100-200 DaphniaY1 (Fig. 3.12) may be explained by a 

production of the inducing chemicals probably not proportional to the Daphnia density, instead 

of reaching the saturation point of the algal physiological response rate. Since the latter would 

approximate a mean number of cells per colony of 8 rather than the observed 5. The production 

of colony-inducing chemicals could be limited as a result of depletion of available food at the 

higher Daphnia densities. The amount of food grazed by the differently sized Daphnia was 

plotted against the densities used (Fig. 3.15). This revealed that at 100 Daphnia per liter and 

above an animal size of ~ 1.7 mm all the available food had been grazed upon (food conditions 

were M07 pm^ml"1 for 0.94 to 1.71 mm and 2107um3ml"1 for 1.98 to 2.44 mm animals). 
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Figure 3.15: Amount of algae grazed by differently sized Daphnia at various densities. 

3.2.7 Food concentration 

Water from incubations with high algal grazing losses induced more colonies in 

Scenedesmus than water with low grazing rates and hence contained more inducing chemicals 

(see § 3.2.6). The amount of available food to Daphnia may be an important factor affecting the 

production of colony inducing chemicals. To examine the effect of food concentration on the 

production of colony inducing chemicals, D. pulex (2.28 ± 0.28 mm) was incubated for 24 h at a 

fixed density of 300 animals l"1 on different amounts of Scenedesmus in RT-medium. Food 

suspensions ranged from 0 to 48.8 mg C-1"' S. acutus. After 24 h incubation at 20°C in the dark, 

water from these cultures was filtered through glass-fiber filters (GF52) and 5 ml filtrate was 

added to 100 ml Erlenmeyer flasks containing 45 ml S. acutus in WC-medium. The batches 
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were incubated for 48 h on a rotating shaking device (80 rpm.) at 20°C in continuous light of 

125 umolm~2s"'. Colony formation was determined by Coulter analysis and expressed as mean 

particle volumes (urn3) (Fig. 3.16). One-way ANOVA of mean particle volumes after 48 h 

incubation indicated significant differences between treatments (Fw,z2 = 15.3; P < 0.001). 

Tukey's test revealed that no colony formation was induced below an initial food concentration 

o f3mgCl" ' . 

Food concentration (mgC 1" ) 

Figure 3.16: Effect of food concentration for 300 Daphnia pulex l"1 on colony formation in Scenedesmus 

acutus. Error bars indicate 1 SD (n = 3). The solid line represents calculated MPV based on the amount 

of food grazed, the dotted line when food is inexhaustible (below 7.9 mg C 1"'). 

The clearance rate (CR) of 300 D. pulex per liter around the incipient limiting level (ILL 

-0.2 mg CI"1) was determined at 0.67 ml-ind.'h"'. Below the ILL the CR was considered 

independent of the food concentration [food], above the ILL the CR decreases according to 

y[f ,-,. The amount of food processed is considered equal to the amount ingested, the total 

algal loss (AL) was calculated from AL = CR x [food] x 300 x 24 (in ug C). Using the relation 

between MPV and algal biomass grazed (Fig. 3.13), but with the control particle volume as y0 

(MPV = 268.8 + 31.948 x AL), the calculated colony formation was in close match with the 

measured values (Fig. 3.16 solid line). The relatively high "threshold-level" was caused by 

complete removal of all food at low concentrations. Assuming an inexhaustible food pool at 

these low food concentrations the threshold-level for colony formation drops close to the ILL for 

this animal (Fig. 3.16 dotted line). 

A simple model, based on the relationships between body-size and grazing, density and 

grazing, and between the grazed amount of algae and colony formation (Fig 3.13), was used to 

calculate mean particle volumes (MPV). The food concentration (7.9 mg CI"1) and animal 

densities and sizes were similar as in the experiment of §3.2.6 (Fig. 3.12). Calculated MPV 
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reached a plateau as a result of complete food depletion (Fig. 3.17). Comparison of calculated 

and measured MPV at similar densities and animal body sizes revealed that the model explained 

75% of the variance (Fig. 3.18). 
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Figure 3.17: Calculated mean particle volumes (MPV, in um') in Scenedesmus as a function of Daphnia 

body-size (mm) and density (ind.•!"'). 
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Figure 3.18: Calculated vs. measured mean particle volumes (um"). Solid line represents linear 

regression (r2 = 0.751), dotted lines the 95% confidence intervals. 
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3.2.8 The biotest 

Experiments with the test-alga Scenedesmus acutus to evaluate the effect of various test-

waters on growth and morphology will be performed according to the following protocol for a 

biotest. 

THE BIOTEST: 

Inocula of the test-alga Scenedesmus acutus Meyen will be obtained from a chemostat 

that is run on slightly modified WC-medium in continuous light of at least 100 umol-m"2-s"' at a 

constant temperature of 20°C and with a dilution rate of 1.2 day"1. The test-algae will be 

incubated for 48 hours in 100 ml cellulose-plug stoppered Erlenmeyer flasks containing 50 ml 

medium with 10% v/v test-water at 20°C on a shaking device (80 rpm) in continuous light (125 

limolm^s"1). Incubations will be run at least in triplicate with an initial density below 5-104 

particles-mi"'. Test-water should be filtered through glass-fiber filters or through thoroughly 

rinsed cellulose-nitrate filters. Initially and after 48 hours the algal size distributions and 

densities will be determined using an electronic particle counter (if necessary the number of cells 

per colony will be determined using a microscope). 

3.3 BlOTESTS 

The grazing-associated colony inducing infochemicals may originate from the algae, from 

the grazers or from both. Infochemicals should be reliable and predictable, and inform the algae 

about the presence of active grazers (Vet & Dicke, 1992). One possible origin of infochemicals 

is the animal's digestive system as starved animals produce less inducing chemicals than well-

fed Daphnia (Lampert et al, 1994). On the other hand, the infochemicals could originate from 

the algae. During the "sloppy" grazing process, algal cell contents could be released into the 

environment, although algal homogenates have been reported to be ineffective as colony-

inducing agent for S. acutus (Lampert et al, 1994). 

The observations of possible enhanced growth {see Table 2.1) and altered morphology 

may suggest a role of growth substances, such as auxins (Bradley, 1991; Evans & Trewavas, 

1991). In fact, auxins have been found to affect Scenedesmus morphology (Nagy-Toth, 1964; in 

Nagy-Toth etai, 1992). 

3.3.1 Effect of starvation and food type 

In the first biotest series, the effect of actively feeding and starved Daphnia was 

examined. Twenty well-fed D. pulex (G-clone, obtained from the culture collection at the Max-
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Planck Institute for Limnology, Plon, Germany) were transferred in 100 ml WC-medium without 

food. After 24 h the animals were transferred into 100 ml fresh medium, but again without food. 

This procedure was repeated after 48 and 72 hours. After 72 hours, 10 animals were placed in 50 

ml S. acutus suspension (107 um^ml"1; ~4 mg CI"'), while the other 10 animals were placed in a 

suspension with spherical polystyrene beads ( 0 = 15 |im, 107 um3-mr'). After every 24 hours, 

medium was filtered and used as test-water in the biotests. As positive control served 

incubations that had received 5 ml filtered water from a well-fed D. pulex culture with a density 

of 200 animals-1"1. Controls were algal suspension without water from a Daphnia culture. 

Controls and treatments were run in quadruplicate. 

Medium from Daphnia incubations without food did not induce the formation of 

Scenedesmus colonies, neither did medium from a Daphnia culture which had been fed 

polystyrene beads (Table 3.4). Growth rates based on algal biovolumes of Scenedesmus 

populations in standard WC-medium or in medium with water from either starved or well-fed 

Daphnia were similar (F233 = 0.19; P = 0.827) and on average 1.70 ± 0.10 day"1. 

The mean particle volumes of Scenedesmus in treatments with water from Daphnia fed 

polystyrene beads were significantly larger than in the controls without Daphnia water. 

However, no difference with treatments that had received water from an incubation of beads 

without Daphnia was observed. Moreover, the mean particle volume was significantly lower 

than those of treatments with water from well-fed Daphnia cultures. Thus Daphnia need to feed 

actively on digestible food to produce the colony-inducing chemicals. 

Table 3.4: Effect of medium from Daphnia fed with Scenedesmus (Positive control), from starved 

Daphnia (No food) and from animals that have been fed with either algae (S. acutus) or polystyrene 

particles (Beads) after a 72 h starvation period on colony formation in Scenedesmus acutus expressed as 

mean particle volume (unr) ± 1 SD (n=4). 'Control' represents algal incubations without the addition of 

test water. 

Control 

No food 

Pos. Control 

S. acutus 

Beads 

Beads control 

one-way 

ANOVA 

24 h 

293.6 (17.2)A 

362.6 (13.4)B 

489.0 (19.7)c 

— 

— 

— 

F2|9= 136.4 

P< 0.001 

48 h 

228.7 (32.5)A 

260.0 (24.1)A 

504.8 (43.4)B 

— 

— 

— 

F2.9 = 78.0 

P< 0.001 

72 h 

247.3 (28.7)A 

243.8 (14.7)A 

500.5 (18.5)B 

— 

— 

— 

F2,9 = 188.3 

P< 0.001 

96 h 

221.0 (5.5)A 

— 

432.7 (30.3)B 

419.0 (40.8)B 

307.2 (4.5)c 

309.4 (2 l . l f 

F4.,5 = 50.3 

P< 0.001 
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To investigate the effect of algal food-type on production of colony-inducing chemicals, 

a biotest was performed with medium from Daphnia cultures that had been fed with different 

algae. Equal amounts (i.e. 107 um3-mT') of the following algal strains were used as food for 

Daphnia: 

\£)j Scenedesmus acutus Meyen MPI, 

(£) Chlamydomonas reinhardtii Dangeard NIVA-CHL 13, 

( f | Cyclotella sp. Kutzing NIVA-BAC 8, 

<3v:.( Rhodomonas lacustris Javornicky NIVA-8/82 and 

® Microcystis aeruginosa Kutzing strains NIVA-CYA 43, CYA 140 and CYA 228/1. 

All algae except S. acutus from the Max-Planck Institute for Limnology (Plon, 

Germany) were obtained from the Norwegian Institute for Water Research (NIVA, Norway). 

Twenty D. magna of the same cohort were incubated without any food for 48 h to empty their 

guts. Then, they were transferred into 100 ml suspensions of each food type and incubated for 

24 h in the dark at 20°C. Medium from each incubation was filtered through a glass-fiber filter 

(GF52) and used as separate treatments in the biotest, which was run in quadruplicate. The 

results are presented in figure 3.19. 
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Figure 3.19: Effect of water from Daphnia cultures fed different algal food on colony formation in 

Scenedesmus acutus expressed as mean particle volume (iim-1)- Error bars indicate 1 SD (n = 4). 

Because of non-homogeneous treatment variances, no ANOVA was performed. 

Nevertheless, figure 3.19 clearly shows that the mean particle volume of all treatments was 

67 



CHAPTER 3 

enhanced compared to the control. However, when strain CYA 228/1 had been the food, the 

effect seemed less pronounced. Most likely this was due to the lower feeding activity on this 

strain (Van der Grinten et al., in press). These experiments suggest that Daphnia need to feed 

on digestible food, not strictly on S. acutus to induce colonies, whereas the quality of the 

grazable food algae seems of minor importance (Fig. 3.19). 

3.3.2 Algal constituents 

The previous experiments indicate that possibly algal constituents may be involved as 

colony-inducing agents. Therefore, the effect of algal constituents on colony formation in S. 

acutus was examined after exposure to 5 ml test-water from S. acutus homogenate (4 mg CI"') 

resuspended in WC-medium. In an additional treatment test-algae were exposed to 5 ml from 

a heat-killed S. acutus suspension (4 mg CI"1). Other treatments were run with 5 ml test-water 

from homogenated Cryptomonas pyrenoidifera Geitler NIVA 2/81 (4 mg C-l"1) resuspended in 

WC-medium or with 5 ml from a heat-killed C. pyrenoidifera suspension (4 mg C-l"1). As a 

positive control (i.e. a control in which colony formation should occur) served algal cultures 

that were exposed to 5 ml from a Daphnia culture (200 animals per liter) after 24 h of feeding 

on S. acutus (4 mg CI"1). Controls without test-water and all treatments with test-water were 

incubated in quadruplicates. 

In a second biotest the effect of auxins on S. acutus was examined. Indole-3-acetic acid 

(IAA), phenylacetic acid (PAA) and p-chlorophenoxyacetic acid (CPA, all chemicals from 

Sigma) were dissolved separately in ethanol (analytical grade) to a concentration of 10 g 1"'. 

Of each solution 50 ul was added in triplicate to different 50 ml S. acutus suspensions (final 

concentration of 10 ug-ml"1). As a positive control 5 ml from a 200 animals per liter Daphnia 

culture with 50 ul ethanol was used. 

Filtered medium from heat-killed and homogenated S. acutus and C. pyrenoidifera 

suspensions did not induce colony formation in S. acutus (Table 3.5). Auxins had little effect 

on colony formation too. Moreover, growth rates were not affected by the addition of auxins 

(Table 3.5). Therefore, the colony-inducing chemicals are probably not constituents of the 

algae themselves. Moreover, Daphnia needed to feed to induce colonies in Scenedesmus; 

starved animals induced no colonies, which is in agreement with observations made by 

Lampert et al. (1994) and Van Donk et al. (1999). Daphnia confronted with less edible algae 

such as the filamentous cyanobacterium Oscillatoria, induced no colonies in Scenedesmus, 

but feeding on edible algae such as Scenedesmus or Microcystis did induce colonies (Van 

Dorset al, 1999). 
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Table 3.5: Effect of medium from heat-killed (Boiled.) and homogenated algae (n = 4) and medium 

with auxins (n = 3) on colony formation, expressed as mean particle volume (MPV, in um3 ± 1 SD), 

in S. acutus, including growth rates (u, day"! ± \ §D) of auxin-treatments and F- and P-values of the 

one-way ANOVAs. Similar symbols A,B within a column indicate homogeneous groups that are not 

significantly different at the 95% level (Tukey's test). 

Treatment 

Control 

Pos. control 

Sa-homogenate 

Sa-boiled 

CV-homogenate 

O-boiled 

one-way 

ANOVA 

MPV (um3) 

283.6 (22.0)A 

575.1 (49.3)B 

242.8 (20.1)A 

257.5 (23.4)A 

248.1 (12.9)A 

228.0 (6.7)A 

Fs,lg= 109.3 

P< 0.001 

Treatment 

Control 

Pos. control 

Ethanol 

IAA 

PAA 

CPA 

MPV (um3) 

240.8 (14.7)A 

549.2 (55.1)B 

275.0 (7.5)A 

247.4 (7.4)A 

208.8 (13.0)A 

240.1 (6.9)A 

Fi>12 = 71.1 

P< 0.001 

Growth rate (d"1) 

1.40(0.05)A 

1.41 (0.06)A 

1.45(0.08)A 

1.41 (0.08)A 

1.45(0.05)A 

1.41 (0.04)A 

F5,12 = 0.43 

P = 0.820 

These results indicate that the colony inducing substances originate from the food-grazer 

interaction, i.e. from active grazers feeding on digestible food. The origin of these 

infochemicals remains, however, unsolved. Bacteria associated with both grazers and algae 

may play an important part in modifying or production of the infochemicals or precursors of 

it. 

3.3.3 Organic Carbon 

The organic carbon concentrations in Daphnia water are higher than in standard 

WC-medium (CHAPTER 2). Organic carbon sources could increase cell dimensions of S. 

acutus (Nagy-Toth et al, 1992) and hence influence the mean particle volumes. Nagy-Toth et 

al. (1992) examined the effect of several carbon sources on the morphology of S. acutus, but 

did not report any formation of eight-celled coenobia. They discussed whether the dominance 

of unicells in the presence of glucose was a peculiarity of their strain or just the result of 

bubbling. Interestingly, glucose has been reported to induce coenobia in the non-spiny 

Scenedesmus obliquus UTEX 393 (Trainor, 1964). Glucose being the major building block of 

cellulose could be released from the algal predator Daphnia, which is a sloppy feeder that may 

release 10-17% of the ingested carbon (Lampert, 1978). The colony-inducing chemical is 

most likely an organic molecule too (Lampert et al, 1994). Therefore the effect of several 

organic carbon sources on growth and morphology of S. acutus was examined. The 

compounds tested were glucose, fructose, urea, ascorbic acid and citric acid (all at a final 

concentration of 100 ugT1), while as additional controls two series with either 0.5 or 5 ml 
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from a Daphnia culture were run. The initial cell density was 2.8 (± 0.4)-10" particlesml"1 (i.e 

4.0 (± 0.6)-106 um3mr'). The test was run for 48 h in quadruplicate. 
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Figure 3.20: Effect of several organic carbon sources added to Scenedesmus acutus suspensions in a 

final concentration of 100 ugl"1. PC (=Positive Controls) represent incubations that received either 

0.5 or 5 ml from a Daphnia culture. Error bars represent 1 SD (n = 4). 

The addition of different organic compounds did not result in any formation of eight-

celled coenobia (Fig. 3.20), but the addition of medium from a Daphnia culture did (F724 = 

23.4; P< 0.001). 

One major difference between 'Daphnia water' and the separate organic compounds is 

that the former contains a mixture of numerous compounds. The negative result with glucose 

could be explained from the absence of another compound necessary to induce coenobia. It 

remains, however, fairly impossible to determine what compound or compounds are 

additionally necessary, but perhaps something energetic (Mur, pers. comment). "It could also 

be possible for the Daphnia factor to be a combination of nutrients, both the organic 

compound which has received attention and inorganic materials which would also be 

released. It would seem that the supplies of nitrogen and phosphorus are sufficient with or 

without Daphnia, but the latter could be providing a specific nutrient in a different form, e.g. 

ammonium rather than nitrate" (Trainor, 1998). Gons (1977) demonstrated the importance of 

the redox-state of the N-source, due to the high N-content of Scenedesmus cells up to almost 

11% of the dry-weight. Moreover, the efficiency for conversion of absorbed energy into 

biomass is influenced by the nature of the N-source, and is higher with urea and ammonium 

(-0.27) than with nitrate (~0.19-0.23) (Gons & Mur, 1975; Gons, 1977). 

Therefore, a biotest was performed to analyse more detailed the possible role of 

ammonium, urea and glucose on growth and morphology in S. acutus. The biotest was run in 

quadruplicate with an initial density of 2-104 particlesml"' according the scheme: 
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Control: 

I. 

II. 

III. 

IV. 

V. 

VI. 

VII. 

standard WC medium (control) 

standard WC medium + 0.5 mg-1'1 NH4C1 + 0.5 mg-1"1 Urea 

standard WC medium + 0.5 mg-1"' NH4C1 + 0.5 mg-1"1 Glucose 

standard WC medium + 0.5 mg-1"1 Urea + 0.5 mg-1"1 Glucose 

WC with NH4C1 as N-source (14.0 mg N-l"1) 

WC with Urea as N-source (14.0 mg N-l'1) 

WC with 1:1 Urea and NH4C1 (14.0 mg N-l"1) 

WC with NH4C1 as N-source + 0.5 mg-1"1 Glucose 

Again no effect of glucose or of different N-sources on growth and morphology of S. 

acutus was detected (Fig. 3.21). 

200 

6 
O > 

a. 

Control I II III IV V VI VII 

Figure 3.21: Effect of different N-sources and glucose on the mean particle volume (\irxfi) in 

Scenedesmus acutus. Error bars represent 1 SD (n = 4). For explanation of I-VII see text. 

S. acutus exhibited excellent growth and growth rates were identical regardless the 

addition of N, the redox-state of N or the presence of glucose (F724 = 1.25; P = 0.315). 

Although one-way ANOVA on the mean particle volumes indicated significant differences 

(F724 = 4.98; P = 0.001), Tukey's test revealed that this was caused by lower MPV in two 

treatments. In no treatments the MPV was significantly larger than in control populations and 

qualitative microscopic analysis revealed unicell dominance in all cultures. Hence, neither 

glucose nor ammonia and urea seem involved in the formation of colonies in S. acutus. 

3.3.3 Surface active compounds: a key to identification of the colony inducing chemicals'! 

The interesting phenomenon of colony formation in cultures with extractables from 

cellulose-nitrate filters was further examined. Glucose, being the major building block of 

cellulose, appeared ineffective as a colony-inducing chemical (see § 3.2.4 and 3.3.3). The 

effect of cellulose (Sigma, S-3504) and pectin (Sigma, P-8471) was investigated in a biotest in 
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which the chemicals were added separately in concentrations of 1 mgT1 to S. acutus 

suspensions. As positive control served incubations with filtered water from a well-fed 

Daphnia culture. However, these compounds could not induce colony formation in S. acutus 

(Table 3.6). 

Table 3.6: Effect of cellulose and pectin on mean particle volume (in urn^ ± 1 SD; n = 4) of 

Scenedesmus acutus. One-way ANOVA: F3 12 = 70.4; P < 0.001. 

Treatment 

Control 

Daphnia water 

Cellulose 

Pectin 

Mean particle volume 

318.9 (36.4) A 

561.9(13.2)B 

276.6 (21.6) A 

277.0 (48.0) A 

Apparently, other chemicals are released from the filters. More detailed information 

about the chemical composition of the used membrane filters was supplied by employees of 

the producing company (Schleicher & Schuell). Extractable compounds may reduce the filter 

dry-weight by 1.5% (pers. comm. Ir. S.P. Verboon, Schleicher & Schuell Nederland BV). 

Besides cellulose, also ethylacetate, methylketones, and detergents are present in the filters. 

More detailed information about the latter group was not delivered because they determine the 

pore-width of the filters. Nevertheless, based on this information a biotest could be performed 

in which 11 substances were tested of which substances V to XI represent commercially 

available detergents. Of each chemical, listed below, 10 ul was added to 50 ml S. acutus 

suspensions. As controls served incubations that received no test water, whereas positive 

controls had received 5 ml filtered medium (GF52) from a Daphnia culture. The biotest was 

run in triplicate. 

The chemicals tested are: 

I. 

II. 

III. 

IV. 

V. 

VI. 

VII. 

VIII. 

IX. 

X. 

XI. 

Ethylacetate 

2-butanon 

Di-isopropylketone 

Iso-butylmethylketone 

FFD6 

Epos 

MSD 

Brei 35 

Laurylsulphate 

Na-dodecyl-sulphate 

Etran 
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Figure 3.22: Effect of potential membrane-filter extractables (I-XI; for explanation see text) on mean 

particle volume (um^) of Scenedesmus acutus. 'Pos. Ctrl. ' represents a treatment with water (10% 

v/v) from a Daphnia culture. Error bars indicate 1 SD (n = 3). 

One-way ANOVA indicated significant differences (Fn26 = 126.2; P < 0.001) among 

the mean particle volumes of S. acutus populations after exposure to several potential 

membrane-filter extractables (Fig. 3.22). Tukey's test revealed that substances V was not 

different from the positive control (i.e. incubations with water (10%v/v) from a Daphnia 

culture in which colony formation was expected). Microscopic analysis showed colony 

formation in both the positive control and chemical 'V , with mean number of cells per colony 

(± 1 SD, n = 3) of 3.56 (0.12) and 4.08 (0.17), respectively. No colony formation was 

observed in the controls with 1.31 (0.19) cells per aggregate. The chemical ' V was FFD6, 

which is a detergent supplied by SKALAR that consists of water and of 45-47% of 

Sodiumdodecyl difenyl-oxide disulfonates. The latter substance is highly artificial and will 

certainly not be exuded by Daphnia. Moreover, this detergent will probably contain several 

by-products (Dr. T. Van Beek, Dept. Organic Chemistry, Univ. Wageningen, pers. comm.). 

Also chemical 'XI', sodium-dodecyl-sulphate, differed significantly from control 

populations. Both chemicals were examined further in an additional experiment, whereby both 

chemicals were added at different concentrations: 

FFD6 in 0, 0.02, 0.1, 0.2 and 1.0 al-ml"1 

Na-dodecyl-sulphate in 0, 5, 10, 50 and 100 jig-ml'1 

After 48 h, Scenedesmus populations exposed to the highest concentration Na-dodecyl-

sulphate were aggregated in enormous aggregates consisting of hundreds of cells. These 

particles were by far too large to be measured with an electronic particle counter. Hence, the 
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mean particle volume determined with the Coulter Multisizer II appeared not significantly 

different from the controls (Fig. 3.23; Panel A). 

The number of cells per colony was significantly enhanced, but at the highest 

concentrations counts were impossible (Fig. 3.23; Panel B). The large multicelled aggregates 

resulted in underestimation of the algal biovolume and thus in lower volume based growth 

rates. Growth rates (± 1SD) at the highest concentration were 1.15 (0.03) d', whereas the 

mean growth rates at the other concentrations was 1.75 (0.05) d"'. Volume based growth rates 

of S. acutus exposed to different concentrations of FFD6 were similar with a mean (± 1SD) of 

1.71 (0.06) d'1. Both the mean particle volume (Fig. 3.23; Panel C) and the number of cells per 

colony (Fig. 3.23; Panel D) were significantly larger when S. acutus was exposed to FFD6. 

Both chemicals significantly promoted colony formation in S. acutus MPI. One similarity is 

that both substances contain similar groups, i.e a Na-dodecyl-group. 

The previous experiment revealed that concentrations of 0.2 ul-ml"1 and 10 ug-ml"1 for 

FFD-6 and Na-dodecyl-sulphate, respectively, were sufficient to induce colonies in S. acutus 

MPI. Therefore, these concentrations were chosen to examine the effect on three strains of the 

spined S. subspicatus. 
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F igure 3 .23: Mean particle volume (um^) and mean number of cells per colony of Scenedesmus 

acutus exposed for 48 h to different concentrations of detergents (Na-dodecyl-sulphate, Panels A&B; 

FFD6, Panels C&D). Error bars represent 1 SD (n = 3). Similar symbols a . . .c indicate homogenous 

groups that are not significantly different (Tukey's test; P = 0.05). 
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The strain S. subspicatus NIVA-CHL 55 was obtained from the Norwegian Institute 

for Water Research (NIVA), strain RWTH was provided by Dr. Brigitte Goser at the 

University of Aachen (Germany), whereas strain UTEX 2594 was obtained from the 

University of Texas Culture Collection. The different strains were cultured for 48 h in 

triplicate in standard WC medium (controls), in medium with 5 ml from a Daphnia pulex 

culture and in medium with either FFD-6 or Na-dodecyl-sulphate (treatments). The initial 

algal density was 2.5-104 particles-mi"'. As algal control served incubations with S. acutus 

MPI. 

In control series with S. acutus MPI, colony formation was induced by all three 

treatments, but not in the controls in standard WC medium (Fig. 3.24). By contrast, in the 

spined S. subspicatus strains, colony formation was only induced by Na-dodecyl-sulphate 

(Fig. 3.24). 
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Figure 3.24: Colony formation, expressed as mean particle volumes (left panel) and mean number of 

cells per colony (right panel) in the non-spiny Scenedesmus acutus and three strains of the spined 

Scenedesmus subspicatus after 48 h incubation with either filtered medium from a Daphnia culture or 

in the presence of detergents FFD6 (0.2 ulml-0 or Na-dodecylsulphate (10 u-g-mr"1)- Error bars 

indicate 1 SD (n = 3). 

Another interesting surface active compound broadly used to keep Daphnia out of the 

surface film is 1-hexadecanol (CH3(CH2)14CH2OH) or cetyl alcohol. In a recent paper, high 

levels of cetyl alcohol decreased survival and reproduction in Daphnia, but the mechanism 

remained unclear (Desmarais, 1997). As at high concentration cetyl alcohol will not only 

appear at the surface, its strong surfactancy may affect the available algal food by clogging it 

into aggregates. The effect of cetyl alcohol on Scenedesmus was examined at a low dose of 
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100 ug per 50 ml algal suspension and at a high dose of 1 mg per 50 ml. However, the latter 

concentration contained too much cetyl alcohol particles for electronic particle counting. 

After 48 h of incubation, Scenedesmus had formed colonies in incubations that had 

received water from a Daphnia culture, and in both the low and high dose cetyl alcohol 

treatments (Table 3.7). In the presence of 1 mg cetyl alcohol, numerous large aggregates were 

observed. About 10% of the populations consisted of aggregates with more than 8 cells, 

compared to only 2% in the Daphnia water treatments. 

Table 3.7: Effect of cetyl alcohol (100 |xg and 1 mg added to 50 ml) on the mean number of cells per 

aggregate (± 1 SD; n = 4) and mean particle volumes (um3; ± 1 SD; n = 4). 

Sample Cells per colony Mean particle volume 

Control 1.38 (0.17) A 168.5 (18.1) A 

Daphnia water 2.82 (0.21) B 301.8 (15.4) B 

100 ug cetyl alcohol 2.22 (0.60) AB 223.8 (25.5) c 

1 mg cetyl alcohol 3.03 (0.54)B ND 

F- and P-values F312 = 12.1; P = 0.001 F19 = 44.3; P< 0.001 

Although cetyl alcohol may clog algae together and thereby affect the food availability 

to Daphnia, this appears to occur only at relatively high doses. Filtering the medium from a 

Daphnia culture with cetyl alcohol prior to experimentation will remove most if not all cetyl 

alcohol. Moreover, no cetyl alcohol has been added to Daphnia cultures used for the studies 

presented in this thesis. Therefore, Daphnia-induced colony formation is not the result of cetyl 

alcohol. 

Resuming, the discovery of artificial colony-inducing compounds may provide organic 

chemists with a useful clue to search more orientated for active groups and to solve piece by 

piece the Z)op/i«za-infochemical puzzle. 

3.4 ZOOPLANKTON AND COLONY FORMATION IN S. ACUTUS 

In the previous sections the effect of medium from Daphnia cultures on colony 

formation in Scenedesmus acutus was examined. In this section medium from different 

herbivorous zooplankton such as Ceriodaphnia (§3.4.1), Simocephalus (§3.4.2), Spirostomum 

(§3.4.3), and carnivorous zooplankton such as Bythotrephes and Leptodora (§3.4.4) was 

added to the cultures of Scenedesmus. The main objective was to examine the effect on 

Scenedesmus morphology in order to reveal whether the response is restricted to Daphnia, 
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whether it is a general herbivore effect or a zooplankton effect including carnivorous species. 

Also included in this section is a biotest with medium from a fish culture (§3.4.5). 

3.4.1 Ceriodaphnia reticulata 

The relatively small cladoceran Ceriodaphnia (± 0.7 mm) was incubated for 24 h 

in RT-medium with equal amounts of algae (S. acutus 107 um'-ml"1) at densities of 0, 40, 100, 

200, 400, 800 and 1600 animals per liter. After 24 h the algal disappearance rates were 

determined from decrease in algal volumes, followed by filtration of the medium that was 

used as test water in a biotest. Colony formation after 48 h incubation, expressed as mean 

particle volumes (in um3), was significantly promoted in incubations that had received 

medium from Ceriodaphnia incubations (F716 = 58.6; P < 0.001). Tukey's test revealed three 

homogeneous groups: 'Control, 0, 40, 100'; '200, 400' and '800, 1600' animals per liter. The 

mean particle volume reached a plateau of ~500 um3 at incubation densities above 800 

Ceriodaphnia per liter (Fig. 3.25). This could imply that the physiological response maximum 

of the algae was reached. The algae at the highest Ceriodaphnia densities were reduced to 

38% of the initial concentration hence overexploitation of the algal resource seemed not the 

explanation. 

Algal disappearance rate (d"1) 

200 
0 200 400 600 800 1000 1200 1400 1600 

Ceriodaphnia density (ind. 1") 
Figure 3.25: Colony formation in Scenedesmus acutus, expressed as mean particle volumes (nm^), as 

a function of Ceriodaphnia reticulata incubation density (•) and algal loss due to grazing (O). The 

dashed line represents linear regression, the dotted lines the 95% confidence intervals. 
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Crowding effects in the incubations could also account (partly) for the flattening as 

touch and interference at high densities may affect the grazing activity. As a result of 

crowding, the clearance rates were depressed at high animal densities. Clearance rates were 92 

ul-animaT'-h"1 at 40 Ceriodaphnia per liter but had dropped to 25 ulanimar'h"1 at 1600 

Ceriodaphnia per liter. The grazing loss of the algae (DR) was significantly correlated with 

the observed colony formation (MPV) according the linear relationship: MPV = 270.2 + 265.0 

*DR ( r ^ 0.942) (Fig. 3.25). 

3.4.2 Simocephalus vetulus 

The cladoceran Simocephalus (±2.1 mm) was incubated for 24 h in RT-medium with 

equal amounts of algae (S. acutus 107 um 3mr') at densities of 0, 20, 50, 100, 200, 400, and 

800 animals per litre. One-way ANOVA on both the number of cells per colony (F827 = 48.7; 

P < 0.001) and the mean particle volumes (F827 = 29.7; P < 0.001) indicated significant 

differences. Tukey's test revealed that medium from the Simocephalus incubations triggered 

colony formation in Scenedesmus (Table 3.8). 

Table 3.8: Effect of medium from Simocephalus vetulus cultures varying in density on colony 

formation in Scenedesmus acutus, expressed as mean particle volumes (MPV) and number of cells per 

colony (means ± 1 SD; n = 4). Similar symbols A...E within a column indicate homogeneous groups 

(Tukey's test; P = 0.05). 

Sample MPV (um^ ± 1 SD) Cells per colony (± 1 SD) 

Control 196.1 (19.3) A 1.40 (0.09)A 

Daphniawater 333.2 (18.1) D 3.32 (0.25) E 

0 5. vetulusl-l 219.1 (26.8) A B 1.70(0.21)8 

20 S. vetulus 1-1 254.8 (13.2) BC 2.18 (0.16) C 

50 S. vetulus 1-1 265.4 (4.0) C 2.52 (0.12) D 

100 5. vetulus 1-1 268.7 (12.1) C 2.12 (0.15) C 

200 5. vetulus H 241.9 (18.5) B 2.03 (0.21) C 

400 5. vetulus 1-1 276.6 (16.8) C 2.62 (0.28) D 

800 5. vetulus 1-1 347.5 (22.4) D 3.52 (0.25 )E 
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Figure 3.26: Percentage of unicells, 2-, 4-, and 8-celled coenobia in Scenedesmus acutus populations 

in the absence (Control & 0 S.v.) and presence of medium from Daphnia (DW) and Simocephalus 

(S.v.) cultures. 

3.4.3 Spirostomum ambiguum 

The freshwater ciliate Spirostomum ambiguum was transferred from a concentrated 

culture into WC-medium with S. acutus as food (107 um3-mr') at densities of 0, 250, 1000, 

2000 and 5000 per litre. After an incubation period of 4 days at 20°C in the very low light, the 

medium was filtered and used as test water in a biotest. As positive control served medium 

from an incubation of 100 D. magna per liter (~1.7 mm). 

One-way ANOVA indicated significant differences (F6 H = 92.9; P < 0.001), however, 

Tukey test revealed that this was due to the positive control with Daphnia water (Table 3.9). 

Medium from the Spirostomum incubations had no effect on the mean particle volumes of 

Scenedesmus cultures. 

Inspection of Spirostomum revealed the appearance of green particles inside the 

animals indicating the ciliates were feeding on the algae. 

3.4.4 Bythotrephes and Leptodora 

Both cladocerans are carnivorous species, primarily feeding on small zooplankton. The 

animals were collected from Petrusplaat water-reservoir (The Netherlands) and transferred 

into RT-medium with Ceriodaphnia as food. Based on the experiment with Ceriodaphnia (§ 

3.4.1) no Scenedesmus was added to prevent an effect of this species. Moreover, to all 

incubations, including the one without carnivorous zooplankter, 50 Ceriodaphnia were added. 

Bythotrephes longimanus was incubated at densities of 0, 50, 100, 200 and 500 per liter, 

Leptodora kindtii at a density of 100 animals per liter. After 24 h incubation in the dark at 

15°C the medium was filtered and used as test water in a biotest. An additional treatment was 
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run with filtered water from the Petrusplaat since the reservoir contained also Daphnia. As 

positive control served incubations with medium from a laboratory Daphnia culture, as 

negative control for the latter incubations with medium from incubations of algae without 

Daphnia. 

Table 3.9: Effect of medium from cultures of the freshwater ciliate Spirostomum ambiguum (Sp.), the 

carnivorous cladocerans Bythotrephes longimanus (By.) and Leptodora kindtii (Le.), and the fish 

Leuciscus idus (Fish) on the mean particle volumes (MPV ± 1SD, n= 3, in um3) of Scenedesmus 

acutus. GF represents additional control with filtered medium, Dno-S.a. = control with medium from 

algal culture without zooplankton, Daphnia water = positive control with medium from a Daphnia 

culture, Petrusplaat = treatment with water from the Petrusplaat. Similar symbols (A...E) indicate 

homogeneous groups (Tukey's test). 

Spirostomum ambiguum 

Sample 

Control 

Daphnia water 

0 Sp. r1 

250 Sp. r1 

lOOOSp.l1 

2000 Sp. V 

5000 Sp. I"1 

MPV 

203.9 (3.2) A 

278.7 (6.9) B 

200.1 (2.4) A 

192.0 (11.2)A 

195.4 (4.3) A 

189.1 (5.2) A 

187.0 (1.9) A 

Leuciscus idus 

Control 

Fish 

Daphnia water 

221.1 (23.4) A 

186.3 (16.9) A 

429.6 (67.6) B 

Bythotreph 

Sample 

Control 

Control-GF 

'Dno-S.a. 

OBy.V 

50 By. I"1 

100 By. 1"' 

200 By. I"1 

500 By. I"1 

100 le . I1 

Petrusplaat 

Daphnia water 

ss & Leptodora 

MPV 

283.7 (9.7) AD 

261.7 (29.3) AC 

244.4 (12.7) AC 

265.9 (37.8) AC D 

208.8 (6.2) B 

229.7 (14.9) B C 

198.3 (14.7) B 

191.2 (4.2) B 

242.2 (6.2) AC 

316.3(11.3) D 

403.6 (12.0) E 

The one-way ANOVA indicate significant differences in mean particle volumes 

among treatments (F,022 = 36.5; P < 0.001). Colony formation was significantly promoted in 

the Daphnia water treatment (positive control), but not in the other treatments. Mean particle 

volumes of Scenedesmus exposed to medium from Bythotrephes incubations appeared 

significantly smaller than in the controls (Table 3.9). 
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3.4.5 Leuciscus idus 

A freshwater fish (Leuciscus idus) was well fed with Daphnia prior to transfer into 10 

liter WC-medium. After 24 h incubation without food the medium was filtered and used as 

test water in a biotest. Treatments with medium from a culture of 200 Daphnia magna per 

litre (3.0 ± 0.2 mm) served as positive control. Medium from the fish incubation induced no 

colonies in Scenedesmus (Table 3.9), but the positive control did (F29 = 38.4; P < 0.001). 

3.5 DISCUSSION 

The morphological response of Scenedesmus acutus to zooplankton mediated 

chemicals is related to the amount of algae grazed upon. The type of food seems unimportant 

as long as it is digestible. Animals fed with ingestible, but indigestible particles, produced no 

colony-inducing chemicals, neither did starved animals. Scenedesmus did not respond to algal 

homogenates, thus the infochemical originates in the grazer, but most probably as a residual of 

the digestive process. Moreover, water that had contained carnivorous zooplankton evoked no 

colony formation. The differences seem directly related to the grazers diet, which, in fact, is 

not uncommon in the aquatic world. Crucian carp increased its body depth in response to 

predators (Pike, Perch) with a piscivorous diet. By contrast, perch fed chironomids had no 

effect (Bronmark & Petterson, 1994). Fathead minnows showed only a fright reaction to pike 

that had been fed with minnows, but not to pike fed with swordtails (Mathis & Smith, 1993). 

Also snails (Crowl & Covich, 1990) and sea anemones (Howe & Harris, 1978) showed 

different responses related to the predators diet. Identification of predators per se could be 

more advantageous than having to identify all predator species (Bronmark & Petterson, 1994). 

Thus a response to a general herbivore cue should be adaptive in habitats with variable 

grazing pressure from a zooplankton assemblage with various herbivores. 
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CHAPTER 4 

Nutrient-status and colony formation 
in Scenedesmus acutus 

Parts of this chapter are based on: 

Liirling, M. & Van Donk, E. submitted to Freshwater Biology 

"The integrative nature of the cellular physiology 

of phytoplankton is a clear indication that the 

organisms have the ability to track the changing 

external environment and to make adaptive changes 

which enhance their chances of survival" 

- G.P. Harris 1986 
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4.1 INTRODUCTION 

Several factors may influence the ecomorph expression in Scenedesmus species. 

Scenedesmus strains are known to produce unicells and coenobia (e.g. Chodat, 1926; 

Uherkovich, 1966; Trainor, 1998). In nature, the non-spiny Scenedesmus acutus mostly exists 

as coenobia and eight-celled colonies may be common (Krienitz, 1987). However, in most 

laboratory cultures, S. acutus exists as unicells, although cultures dominated by four-celled 

coenobia may also occur. Formation of either unicells or coenobia may depend on factors 

such as length of photoperiod (Steenbergen, 1975), pH (Trainor & Roskosky, 1967), 

temperature (Trainor, 1992a,b; 1993), nutrients (Ramos-Cardenas & de Lara-Isassi, 1985; 

Holtmann & Hegewald, 1986), age of the culture, initial cell density and the presence of a 

grazer may be involved (Egan & Trainor, 1989; Hessen & Van Donk, 1993; Lampert et al, 

1994). 

The number of cells per colony in Scenedesmus is also related to the amount of energy 

stored in the parent cell (Setlik et al, 1972) and may be directly proportional to growth rates 

(Siver & Freeda, 1982). Gavis et al. (1979) observed high proportions of eight-celled S. 

quadricauda at growth rates of 0.9 - 1.0 day"1, but not below 0.6 day"'. They used nitrate-

limited cultures, in which at strong N-limitation cultures were dominated by four-celled 

coenobia. Eight-celled coenobia appeared at moderate limitations (Gavis et al., 1979). Siver & 

Trainor (1981) showed that control of the unicellular stage in Scenedesmus was complex, but 

proposed that nitrogen, as ammonium, was the main factor involved. They did not report any 

growth rates, but observed high proportions of unicells at high light intensities and 

temperatures and thus presumably at higher growth rates. In the non-spiny S. acutus, at high 

growth rates the cultures were either dominated by unicells in the absence or by four- and 

eight-celled coenobia in the presence of water from a Daphnia culture (Lampert et al., 1994; 

Liirling, 1998). The mean number of cells per colony (± 1 SD) in S. acutus cultured under 

various nutrient conditions appeared 1.43 ± 0.22 (Sterner & Smith, 1993; Lampert et al., 

1994; Liirling & Van Donk, 1996; 1997a;b). 

Most culture media contain relatively high amounts of nitrogen and phosphorus 

compared to natural waters. In most natural waters the type of nutrient limitation likely to 

occur is N- or P-limitation, that may exhibit a high spatial and temporal variability (Butler et 

al., 1989). Nutrient limitation is not a rare phenomenon restricted to oligotrophic waterbodies, 

but may even occur around algal blooms in eutrophic lakes. For example, both P-limitation 

and N-limitation have been observed in hypertrophic lakes (Sommer, 1989; Van Donk et al., 

1993). Thus, in freshwater pelagic systems algae may not only experience variations in 

abundance of grazers, but also nutrient changes (Sommer et al., 1986). High grazing on small 

edible algae could favor larger algae that have a size-refuge from grazing (Sommer et al., 

1986) by the regeneration of nutrients (Lehman, 1980; Sterner, 1989) thereby influencing 

competition among algae (Elser et al, 1988). Also nutrient conditions (Sommer, 1988) and 
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fluctuations (Harrison & Turpin, 1982) may affect phytoplankton succession. These 

fluctuations may not only influence the community structure of the phytoplankton, but also 

the chemical composition and morphology of the algae present, which may influence the 

ingestibility and digestibility of algal cells and, hence, may affect zooplankton growth (Van 

Donk e/a/., 1997). 

Holtmann & Hegewald (1986) did not observe formation of eight-celled coenobia in S. 

pectinatus in the laboratory in five different media, but found the same alga in the field 

occurring with over 50% in this typical eight-celled morph. Moreover, cell dimensions were 

considerably larger in S. pectinatus from the field. The mean cell length and width in the 

laboratory were 17.7 and 3.7 urn, but in the field they were 30.3 and 4.6 um, respectively 

(Holtmann & Hegewald, 1986). Since bulk elements, such as carbon, vary little with growth 

conditions (Goldman & McCarthy, 1979) and may make up about 54% in Scenedesmus 

(Sterner, 1993), cells of S. pectinatus in the field could have contained around 30% more 

carbon than in the laboratory. 

When growing in a water-body or laboratory cultures, Scenedesmus cells will compete 

for several resources, including carbon, nitrogen, phosphorus and light. Most laboratory 

media, however, are low in carbon content, such as Z8 (Skulberg & Skulberg, 1990; Hessen & 

Van Donk, 1993), Chu (Lampert et al., 1994) and WC (Lurling, 1998), or even lack an 

(in)organic carbon source, such as Bristol's and medium 7 (Egan & Trainor, 1989a,b,c; 

Ramos-Cardenas & de Lara-Isassi, 1985) (see Table 4.1). 

Together with often relatively high algal densities this may result in carbon limited 

culture conditions, which could affect growth and morphology. In contrast, in most natural 

waters inorganic carbon rarely appears to be a limiting nutrient (e.g. Schindler, 1971; 

Schindler et al., 1972; Goldman et al, 1972), with average concentrations above 20 mg 

inorganic-C per liter (Goldman et al, 1974). 

Grazing is one of the most important loss-processes among algae (Reynolds et al, 

1982; Sterner, 1989). Therefore, one might expect that a strong selection pressure exist on the 

development of traits that reduce mortality through grazing. The most obvious way to 

withstand grazing pressure is through morphological changes such as size or cell wall shape 

(Lehman, 1988; Van Donk et al., 1997). In the presence of Daphnia, unicellular Scenedesmus 

are triggered into colonies presumably in order to reduce their vulnerability against grazing 

(Hessen & Van Donk, 1993; Lurling & Van Donk, 1996; CHAPTER 7). However, so far this 

response has only been demonstrated under nutrient-replete conditions. But is this response 

still possible under nutrient limitation because of reduced or arrested cell divisions due to a 

lack of building blocks? Would nutrient-limited Scenedesmus form colonies despite a reduced 

growth rate, or would there be a switch to another 'strategy'? One alternative 'strategy' may 

be the digestion-resistance hypothesis proposed by Van Donk and Hessen (1993). They 

provided evidence that P-starved Selenastrum and Scenedesmus pass largely intact through the 
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Different P-levels affected growth and morphology in S. acutus (Fig. 4.9). 
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Figure 4.9: Growth (Panel A) and mean particle volumes (um3; Panel B) of S. acutus in medium 

varying in P-content (0-100% P). Error bars indicate 1 SD (n = 3). 

Initially particle volumes increased at both 100% and 10% P and about 20% two- and 

10% four-celled coenobia were observed. After two days, the majority of the populations 

cultured at 10, 1 and 0% P consisted of unicells with means (± 1SD) of 79% (10), 85% (4) and 

86% (6), respectively. In populations cultured in standard medium (100% P), the proportion 

of unicells was 74% (12). Moreover, the composition of these 100% P populations showed 

more fluctuation during the course of the experiment (Fig. 4.10). After 5 days, unicells had 

dropped to 50% and eight-celled coenobia (10%) were observed (Fig. 4.10), but the latter 

disappeared in the consecutive days while concomitantly the proportion of unicells increased. 
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Figure 4.10: Number of cells per colony in S. acutus populations cultured at different P-levels (Panel 

A) and the proportion of unicells, two-, four- and eight-celled coenobia in 100% P (Panel B). The rest 

group represents three-, five-, six-, seven-, and multicelled (>8) coenobia. Error bars indicate 1 SD( n 

= 3). 
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4.4.3 Effect o/Daphnia infochemicals on P-limited Scenedesmus 

After one week, algae were taken from the various incubations grown at different P-

levels (§4.4.2) and transferred into six flasks with corresponding medium, of which three 

contained also water from a Daphnia culture (10% v/v). Since the Daphnia water contained 

phosphorus, P-levels were higher than 0%, 1% and 10% P and approximately 10, 11 and 20% 

of the standard amount. The initial algal density was 3104 particles-mi"1. For a period of four 

days samples were taken daily from each flask and analyzed for algal densities and particle 

volumes in the range 3.0 -20.0 urn equivalent spherical diameter using a Coulter Multisizer II 

(100 urn capillary). An increase in the mean particle volumes was interpreted as colony 

formation. For statistical comparison mean particle volumes may be used since the mean 

particle volumes are highly correlated with the mean number of cells per colony (Lampert et 

al, 1994; CHAPTER 3). However, since increased cell size seems to be a general phenomenon 

of chlorophytes under P-limitation, subsamples were taken after 48 and 72 h, fixed with 10% 

Lugol's solution and the number of cells per colony determined by microscope. The effect of 

Daphnia water at different P-levels on the mean particle volume was analyzed applying 

repeated measurements ANOVA. The mean number of cells per colony was compared using 

two-way ANOVA per date. 

Growth of Scenedesmus differed among populations cultured at different P-levels in 

the absence (controls) or presence of medium from a Daphnia culture (Fig. 4.11). 
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Figure 4.11: Growth of Scenedesmus acutus at different P-concentration varying from 0% to the 

normal amount in WC medium (100%) in the absence (filled symbols) and presence of medium from a 

Daphnia culture (open symbols). 

The two-way ANOVA on volume based growth rates determined over the first three 

days, indicated significant Daphnia water effect (F = 214.9; P < 0.001), P-concentration 

effect (F = 5074; P < 0.001) and interaction (F = 76.6; P < 0.001). The individual factors were 

tested against the interaction and revealed no Daphnia water effect (F = 2.80 < Fcrit = 10.1), 
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but a dominant P factor (F = 66.2 > Fcri, = 9.28). Thus, growth rates were influenced most by 

the amount of P in the medium. However, since Daphnia water was a significant factor too, 

separate Mests (two-tailed) were performed. At 0% and 1% P the addition of Daphnia water 

had significantly enhanced the growth rate (Table 4.6), as a result of higher P-levels in the 

Daphnia water treatments. 

Table 4.6: Growth rates (u, ± 1 SD) for S. acutus at different P-levels in the absence (control) or 

presence of medium from a Daphnia culture, including t- and P-values (n = 3). 
P-levels Growth control Growth Daphnia water t-value P-value 

0% 

1% 

10% 

100% 

0.099 (0.016) 

0.516(0.003) 

1.175(0.006) 

1.253(0.030) 

0.370(0.010) 

0.623 (0.014) 

1.182(0.028 

1.275 (0.005) 

25.1 < 0.001 

13.3 < 0.001 

0.41 0.699 

1.23 0.285 
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Figure 4.12: The mean particle volume (|im ) of Scenedesmus acutus cultured in media varying in P-

content (0 to 100% of normal WC medium) in the absence (filled symbols) and in the presence of 

medium from a Daphnia culture (open symbols). Error bars indicate 1 SD (n = 3). 

The addition of Daphnia water not only affected growth at low P-levels, but also 

influenced the morphology of the cells. At all four P-levels a significant increase in the mean 
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particle volume as a result of the addition of Daphnia water was observed (Fig. 4.12). The 

ANOVA with repeated measurements (time) indicated a significant Daphnia water effect (F = 

578.4; P = 0.002) and a significant P effect (F = 81.1; P < 0.001), but also a significant 

interaction (Fu,24 = 38.7; P < 0.001). Therefore, the individual factors were compared with 

the interaction which revealed a significant difference between the interaction and Daphnia 

water (F = 14.9 > 4.4), but not for P-level (F = 2.1 < 3.1) and time (F = 2.2 < 2.9). Thus, the 

Daphnia water factor was most dominant. 

The Daphnia water significantly enlarged the mean number of cells per colony (Table 

4.7). Two-way ANOVA indicated a significant Daphnia water effect on the number of cells 

per colony after 48 h (F= 86.9; P < 0.001) and 72 h (F=50.l;P < 0.001). 

Table 4.7: Mean number of cells per colony (± 1 SD; n = 3) of S. acutus after 48 h and 72 h incubation 

at four different P-levels (100% = standard amount of P). 
48h 

100% 

10% 

1% 

0% 

Control 

1.50(0.18) 

1.96(0.22) 

1.59(0.18) 

1.12(0.08) 

Daphnia water 

2.87 (0.76) 

3.73 (0.70) 

4.02 (0.70) 

3.17(0.51) 

72h 

100% 

10% 

1% 

0% 

Control 

1.60(0.32) 

1.95(0.55) 

1.71(0.27) 

1.35(0.11) 

Daphnia water 

3.16(0.21) 

1.72(0.38) 

3.57(0.51) 

2.66 (0.52) 

4.4.4 Concluding 

Under P-limitation, in the absence of medium from a Daphnia culture, S. acutus 

remained unicellular. However, even under considerable P-limitation, the formation of eight-

celled coenobia may be induced by infochemicals present in the filtered medium from a 

Daphnia culture (see 0% and 1%-P in Table 4.7 and Fig. 4.12). Because the formation of 

colonies is not a process of simple aggregation of free-living cells, but a result of vegetative 

reproduction, Daphnia induced colony formation may be acting as long as cell division in 

Scenedesmus is not hampered. 

4.5 EFFECT OF MEDIUM STRENGTH ON INDUCED COLONY FORMATION 

In this experiment the test alga S. acutus was cultured in WC-medium varying in 

strength from 1% of normal composition to 500% according the scheme: 1, 10, 25, 100, 250 

and 500%. Three replicate cellulose-plug stoppered 100 ml Erlenmeyer flasks contained 50 ml 

of algal suspension in the different media. An additional series of replicate flasks per medium 

type contained test-algae in WC-medium with 10% (v/v) test water from a D. pulex culture 

(300 animals per liter). WC-media with test water deviated from control flasks due to the 

addition of test water and had strengths compared to normal of 10.9, 19, 32.5, 100, 235 and 

460%. The conductivity of the different media varied between 6 and 1190 uS-cm"1. Initial 
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algal density was 12000 particles-ml"1 (-13000 cells-ml"1). Initially, and after 17, 24, 43, 49, 

65 and 72 h, cell densities and size distributions were determined using a Coulter Multisizer II 

(100 um capillary). The number of cells per colony was determined microscopically initially 

as well as after 24, 48, and 72 h by counting at least 100 particles (unicells and colonies) in 

subsamples preserved in Lugol's fixative. 

Different strength of the WC medium resulted in significantly different volume based 

growth rates among treatments. Repeated measurement ANOVA indicated significant 

differences among controls and treatments with Daphnia water (F\i2 = 22.8; P = 0.041) and 

among different media (Fs,io - 197.4; P < 0.001). The interaction (Daphnia factor x medium 

type) was also significant (Fs.io = 6.6; P = 0.006), but testing the individual factors against the 

interaction revealed that medium type was the most dominant factor (F = 29.9 > Fcrit = 3.7) 

influencing growth rate. Between 24 and 48 hours significant colony formation could be 

observed (Fig. 4.13 and 4.14). The repeated measure ANOVA on the mean particle volumes 

(Fig. 4.13) revealed a significant Daphnia factor (Fii2 = 690.7; P = 0.001) and medium type 

effect (F5>10 = 21.5; P < 0.001), but no interaction effect (F5,w = 2.5; P = 0.104). 
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Figure 4.13: Course of the mean particle volume (um3) of Scenedesmus acutus cultured in the absence 

(C) or presence of medium from a Daphnia culture (DW) in WC medium with different salt levels 

varying from 0.01 times (1%) to 5 times (500%) the normal amount (100%). Error bars represent 1 SD 

(n = 3). 

However, repeated measure ANOVA on the mean number of cells per colony (Fig. 

4.14) revealed only a significant Daphnia factor effect (F\t2 = 395.8 ; P = 0.003), but no 

medium type effect (F5,10 = 2.4; P = 0.109) and no interaction (F5jl0 = 0.9; P = 0.502). This 

means that regardless the strength of the medium colony formation is induced, but that the 

size of the colonies, expressed as mean particle volumes, strongly depends on the amount of 

available resources. This becomes clear when the mean particle volumes and the mean 
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number of cells per particle are plotted against each other (Fig. 4.15). The slope of the overall 

regression: log (mean particle volume) = 2.299 + 0.755 x log (cells colony"1) is < 1, which 

indicates lower cell volume in coenobial cells. Similar observations were made by Lampert et 

al. (1994) and in this thesis (CHAPTER 3). Linear regressions per medium strength were all 

significant (Table 4.8). 
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Figure 4.14: Course of the number of cells per colony in Scenedesmus acutus cultured in the absence 

(C) or presence of medium from a Daphnia culture (DW) in WC medium with different salt levels 

varying from 0.01 times (1%) to 5 times (500%) the normal amount (100%). Error bars represent 1 SD 

(n = 3). 
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Figure 4.15: Relation between the mean particle volume and the number of cells per colony in 

Scenedesmus acutus cultured in WC medium varying in composition from 0.01 times (1%) the normal 

amount of salts to 5 times (500%). Solid lines represent linear regressions. 
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Testing the regressions on significant differences among medium strength revealed 

that but only the differences in regression between the 1% and 25% and between 1% and 

100% medium were significant. Thus, the size of S. acutus cells (in volume-units) cultured in 

1% medium was significantly lower than the size of cells in the 25% and 100% medium. 

Table 4.8: Regressions of mean particle volume (MPV) on mean number of cells per colony (C/C) of 

Scenedesmus acutus cultured in medium varying in strength from 1% to 500% (i.e.0.01 to 5 times the 

standard amount of nutrients added), including r2 of the regressions and P-values of Mests for 

distinguishing significant differences between regression lines. 
Medium Regressions: P-values 

Strength log(MPV) = . . . x log(C/C) r2 1% 10% 25% 100% 250% 500% 

1% 

10% 

25% 

100% 

250% 

500% 

= 2.055 + 1.096 

= 2.234 + 0.827 

= 2.395 + 0.596 

.= 2.404 + 0.585 

= 2.382 + 0.697 

.= 2.349 + 0.709 

0.646 

0.494 

0.527 

0.563 

0.630 

0.803 

XXX 0.363 

XXX 

0.038 

0.308 

XXX 

0.041 

0.332 

0.932 

XXX 

0.110 

0.604 

0.507 

0.550 

XXX 

0.090 

0.607 

0.391 

0.432 

0.941 

XXX 

In the absence of Daphnia water, both the mean particle volume (r = 0.64; n = 54; P < 

0.001) and the individual cell volume (r = 0.47; n = 54; P < 0.001) were significantly 

correlated with the growth rates. In the presence of Daphnia water, the correlation was less 

strong between the mean particle volume vs. growth rate (r = 0.30; n = 54; P = 0.014) and cell 

volume vs. growth rate (r = 0.32; n = 54; P = 0.009). No correlation between growth rate and 

the number of cells per colony was detected (r = 0.05; n = 108; P = 0.304). Also when only 

data for 48 and 72 h were used and the set was separated in controls and Daphnia water 

treatments, no correlation was detected (r = 0.15; P = 0.191 and r = 0.21; P = 0.109, 

respectively, n = 36). 

Summarizing, different medium strength affected growth and cell size in S. acutus, but 

had no effect on Daphnia-indaced colony formation. Coenobia were induced at all strengths 

in the presence of Daphnia water, whereas the controls at all strengths remained unicellular. 

4.6 MEDIA & UREA 

Scenedesmus is mostly found in eutrophic waters where it appears to thrive (Trainor, 

1998). Using a high salt medium (Bristol's) Siver & Trainor (1981; 1983) demonstrated that 

unicells were formed in UTEX 2533 in response to ammonium and the internal carbohydrate 

content. In standard Bristol's they reported only 7% unicells and thus 93% coenobia, whereas 

the addition of ammonium (7.8 mg-1"1) and glycolic acid (39 mg-1"') resulted in 7% coenobia 

(Siver & Trainor, 1983). Based on these data one could expect S. acutus MPI to be colonial in 
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Bristol's. Later the Trainor laboratory developed a low salt medium (Medium 7) with nutrient 

levels similar to those encountered in nature to stabilize colony formation in the laboratory 

(Trainor, 1998). In the previous section, the modified WC (see Table 3.1) was used at different 

strengths. Here, a comparison will be made with two other media, one a high nutrient medium 

(Bristol's) and the other a low nutrient medium (Medium 7). 

Moreover, Wiltshire & Lampert (in prep.) proposed that urea would be the colony 

inducing substance, but that the C:N ratio of the alga is important too. Urea has been shown NOT 

to induce coenobia in Chu 12 (Lampert et al., 1994; own unpublished data) and WC medium 

(CHAPTER 3; see Figs. 3.20 and 3.21), but the urea concentration used may have been too low. 

Therefore, an experiment was performed with S. acutus cultured in WC-medium, Bristol's 

medium and Medium 7 (Controls), in the three media with medium from a Daphnia culture 

added (Daphnia water) and in additional series with urea (14 mg NT1) added. The initial 

densities were 14500 particles-mi"1 (1.65-106 un^-ml"1) in Bristol's and 21200 particles-mi"1 

(1.69-106 um3ml"') in WC and medium 7. 

Colony formation, as indicated by the mean particle volume, had occurred in the 

presence of Daphnia water in all three media (Fig. 4.16). Two-way ANOVA indicated a 

significant treatment effect (F = 371.0; P < 0.001), a significant medium effect (F = 9.70; P = 

0.001) and a significant interaction ( F = 17.1; P < 0.001). However, testing the individual 

factors against the interaction revealed a significant treatment effect, but no medium effect. 

Although the number of cells per colony was higher after two days in all media and 

treatments than at the start of the experiment, colony formation was significantly promoted in 

the Daphnia water treatments (Fig. 4.17). Numerous eight-celled coenobia were detected in the 

Daphnia water treatments, but not in the controls and urea treatments. 
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Figure 4.16: Effect of Daphnia water and urea on the mean particle volume in Scenedesmus acutus 

cultured in three different media. Error bars represent 1 SD (n = 3). 
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2 4 6 

Time (d) 
Figure 4.17: Effect of Daphnia water (Daphnia) and urea on the mean number of cells per colony in 

Scenedesmus acutus cultured in three different media. Error bars represent 1 SD (n = 3). 

Analogous to §4.5 no colony formation was observed in control population of S. acutus 

cultured in media varying in strength. However, Daphnia-indaced colony formation was 

observed in all media, regardless their strength. By contrast, no colony formation was induced 

by urea, which has also been observed in CHAPTER 3 (§3.3) and reported in literature (Lampert 

etal, 1994). 

4.7 DISCUSSION 

Many Scenedesmus strains may grow as coenobia or unicells under various conditions 

(f.e. Trainor, 1964; Trainor & Shubert, 1974; Holtmann & Hegewald, 1986). It was proposed 

that nitrogen, as ammonium, could be the main factor in controlling unicell formation (Siver 

& Trainor, 1981). However, S. acutus is also primarily unicellular in medium without 

ammonium as N-source as shown by literature data. The mean number of cells per colony (± 1 

SD) in S. acutus cultured under various nutrient conditions appeared 1.43 ± 0.22 (Sterner & 

Smith, 1993; Lampert et at, 1994; Liirling & Van Donk 1996; 1997a;b). In contrast, eight-

celled coenobia may be produced rapidly when this strain of S. acutus is cultured in medium 

with water from a Daphnia culture (Lampert et ai, 1994; Liirling, 1998). The algal predators 

Daphnia are sloppy feeders. They ingest more food than they assimilate and as a result many 

products are released from Daphnia (Peters, 1987), including organic carbon (Lampert, 1978), 

cyclic AMP (Francko & Wetzel, 1982), phosphorus (Peters & Rigler, 1973) and ammonium 

and amino acids (Gardner & Miller, 1981). Several of these excretion products have been 

tested, but all appeared negative in inducing colonies (Lampert et al., 1994; Liirling, 1998; 

CHAPTER 3). 
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Although in one specific treatment with reduced nitrogen up to 16% eight-celled 

coenobia were formed in S. acutus, nitrogen does not seem to be the main factor controlling 

morphology. The addition of water from a Daphnia culture resulted in populations dominated 

by the eight-celled morph, but both ammonium and urea appeared ineffective as colony 

inducing agent (Lampert et al, 1994; §3.3 and §4.6). Although recently proposed (Wiltshire 

& Lampert, in prep.), all experimental resuls were in direct conflict with the urea hypothesis. 

Ecologically a response to urea is unlikely as a defense, simply because other organisms, such 

as fish, excrete urea as well. One would expect Scenedesmus to respond to a general algal 

grazer chemical, rather than to a general animal substance. Since S. acutus did not respond to 

fish or to urea under several conditions, but did to Daphnia water (§3.3, §3.4 and §4.7), urea 

is definitely not the factor. Perhaps that urea under specific conditions may act as a 

morphogenetic factor, similar to glucose, that has been reported to induce coenobia in a non-

spiny Scenedesmus too (Trainor, 1964), but could also not be confirmed by others (Nagy-Toth 

et al, 1992; CHAPTER 3). Also the latest chemical analyses do not support the urea-

hypothesis. According to the chemical analysis the Daphnia factor is an olefinic low-

molecular-weight carboxylic acid (Von Elert, in press; Von Elert & Franck, in press). 

The effect of different nutrient conditions on the morphological development of S. 

acutus seems to differ from that of several spined Scenedesmus. Whereas coenobial cell 

number in spined Scenedesmus, like S. quadricauda, may be affected by nutrients, S. acutus 

seems insensitive and to remain mainly unicellular. However, within-species variation may be 

considerable. Statistical analysis of calculated colony sizes of five non-spiny strains of 

Scenedesmus cultured in five different media (Holtmann & Hegewald, 1986; presented in 

their Table 3) revealed no medium effect but a significant strain effect. Moreover, S. 

pectinatus strains that occurred in the field as ca. 50% eight-celled coenobia, failed to produce 

this morph in the laboratory under various nutrient conditions (Holtmann & Hegewald, 1986). 

Unfortunately, Holtmann & Hegewald do not discuss this phenomenon, neither the difference 

in individual cell size. 

In a 35 days investigation of the growth and morphology in non-treated S. acutus 

populations, eight-celled coenobia were found only in very low numbers, but four-celled 

coenobia appeared when cultures reached the stationary phase (see CHAPTER 2). During the 

course of that experiment non-limiting conditions probably have been changed into nutrient-

(N) and light-limiting conditions. Above an intracellular C:N ratio of about 12, S. acutus 

occurred mainly as unicells and colony formation seemed rare. The non-linear relationship 

between atomic C:N ratio and growth rate is in agreement with data for the same strain 

obtained by Sterner (1993). The number of cells per colony in Scenedesmus seems closely 

related to the amount of energy stored or protoplasm produced in the parent cell (Setlik et al., 

1972) and may be directly proportional to growth rates (Siver & Freeda, 1982). At high 

growth rates the formation of eight-celled coenobia has been reported to occur (Setlik et al., 
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1972; Gavis et al., 1979). The latter observed high proportions of eight-celled S. quadricauda 

at growth rates of 0.9 - 1.0 day"1, but not below 0.6 day"1 (Gavis et al, 1979). Combination of 

the results presented in the figures 4.6 and 4.7 suggests that induced colony formationmay 

occur at growth rates of approximately 0.1 d"1 and more (see Fig. 4.7). In the presence of 

medium from a Daphnia culture, cultures were dominated by eight-celled coenobia. The 

intracellular C:N ratios were, however, similar as were growth rates. Siver & Trainor (1983) 

demonstrated unicell/colony formation to be independent of growth rates by altering the 

medium composition. Also for the S. acutus strain used in this study formation of eight-celled 

coenobia was independent of growth rate, and occurred in the presence of Daphnia-water. In 

the absence the cultures were dominated by unicells. No trade-off between colony formation 

and growth rate was detected, which has also been observed by Hessen & Van Donk (1993) 

and Lampert et al. (1994). One could, however, expect no colony formation to occur when 

cell division is arrested since in Scenedesmus a parent cell divides inside the parental cell wall 

into several daughter cells that may be released as coenobium or single cells (Van den Hoek et 

al., 1995). This could be the case in P-starved S. acutus where a smaller increase in the mean 

particle volume was detected after the addition of Daphnia water than at higher P-levels {see 

§4.4). However, growth rates were non zero and microscopy revealed that even in strongly P-

limited cells grazer-induced coenobia formation had occurred. The significantly enhanced 

growth rates at low P-levels after the addition of Daphnia water was caused by the addition of 

P with this water. 

With S. armatus the addition of extra P to a dilute medium stimulated the production 

of unicells within three days, although growth rates were not affected (Shubert & Trainor, 

1974). It was hypothesized that at low P-levels (i.e 1% and 0%) after a few days coenobia 

would be formed, however, populations remained unicellular with a tendency of increased 

proportion unicells with declining P-levels. 

Since the addition of a buffer resulted in similar pH among treatments, colony 

formation did seem independent of pH. Also the strength of the medium seems unimportant 

(§4.5 and §4.6). The availability of dissolved inorganic carbon may become limiting to 

Scenedesmus cultures when the carbon dioxide flux between the air outside and inside the 

experimental vessel is hampered (see §3.2.2 & 3.2.3). Under carbon limitation S. acutus cells 

were significantly smaller. However, cellulose plugging ensured sufficient diffusion that 

replenishment of carbon dioxide could occur during a period of 48 h, which is sufficient to 

examine Z)ap/zwa-induced colony formation in non-spiny Scenedesmus. Literature data on the 

cell volume of the same strain of S. acutus cultured in chemostats revealed a mean cell 

volume (± 1 SD) of 67 (15) urn3 (Lampert et al., 1994; Lurling & Van Donk, 1996; 1997a,b; 

De Lange & Van Donk, 1997). Most probably all these cultures were carbon/light limited due 

to high algal biomass. The cell volume of around 60 urn3 in flasks with parafilm or silicon 
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rubber sealing (§3.2.2) is close to the value obtained from literature. That high algal densities 

may cause smaller cells is also observed when biotests performed by Lampert et al. (1994) 

and Lurling (1998) are compared. The former used heavy inocula of 1.2510s cellsml*1, while 

the latter used inocula below 5-104 cellsml"1. The mean particle volumes in both studies differ 

significantly (Mest: t = 7.9; df = 9; P < 0.001) with mean values (± 1 SD) of 142 (11) and 253 

(30) um3, respectively. The effect of carbon availability on cell size will undoubtedly affect 

the colony size, as cells are bigger. A highly significant correlation exists in S. acutus between 

the mean particle volume and the mean number of cells per colony (Lampert et al, 1994; 

CHAPTER 3). With an individual cell volume of 60 um3 this yields an eight-celled coenobium 

of 285 um3. However, when unicells have a cell volume of 200 um the eight-celled coenobia 

will be 962 um3. The difference will of course also be reflected in cell dimensions that could 

affect their susceptibility to grazers. Lampert et al. (1994) found no differences in the uptake 

of unicells and colonies by Daphnia. Under their culturing conditions eight-celled coenobia 

will have hardly exceeded dimensions of 30 * 20 um and would still have been ingestible by 

small 1 mm Daphnia. Relatively small eight-celled coenobia in S. acutus with mean 

dimensions of 24 x 19 um were also found by Lurling & Van Donk (1997c) when they used 

heavy inocula of 1.4105 cells-ml"1. By contrast, when low inocula were used S. acutus eight-

celled coenobia with dimensions of 57 x 30 um and up to 65 * 40 um were observed (Lurling, 

1998; CHAPTER 2). These large coenobia could confront even the largest grazers with 

ingestibility problems (cf. Burns, 1968). 

Increased carbon levels had no effect on colony formation both in the absence and 

presence of medium from a Daphnia culture neither had the strength of the used medium. Cell 

volume was increased at higher carbon levels, but reduced at lower medium strengths. Thus, 

the availability of carbon seems important in determining the cell size, not in determining the 

amount of cells per colony. 

Although only short-term experiments were employed, no effects of carbon, nitrogen, 

phosphorus and medium strength on colony formation in S. acutus were detected. The cultures 

remained unicellular even at cell densities far above ca. 1000 cells ml"1. Hence, low cell 

density as unifying principle for unicell development in the genus Scenedesmus (Egan & 

Trainor, 1989b) does not seem so necessary in several Scenedesmus strains. The non-spiny S. 

obliquus (Lurling, 1999) and several other Scenedesmus spp. occur as unicells in the 

laboratory (CHAPTER 8) even at high densities and for long-term periods. S. abundans from 

the field formed unicells in the laboratory (Fott, 1968) and also S. armatus seemed to occur 

mainly as unicells (Tukaj et al., 1996). Despite that unicells may be common in Scenedesmus 

(e.g. Swale, 1967; Fott, 1968; Trainor, 1979; Holtmann & Hegewald, 1986; Krienitz, 1987; 

Egan & Trainor, 1989a,b; Trainor & Egan, 1990; Hessen & Van Donk, 1993) they are but 

only occasionally reported from nature. This led to a hypothetical seasonal life history of 
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Scenedemus with unicells occurring in early spring (Egan & Trainor, 1989a). But why would 

unicells occur only in spring especially since sufficient literature data exist on unicellular 

Scenedesmus under a wide range of nutrients and cell densities? Trainor (1979) observed that 

unicells disappeared when incubated in dialysis sacks in the field or when cultured in pond 

water in the laboratory. Interestingly, in another study ten years later the same strain produced 

unicells in the same pond water (Egan & Trainor, 1989a). We now have sufficient evidence 

that grazers are involved in Scenedemus plasticity, by both selective grazing on small, 

unprotected morphs and chemical induction of large protected morphs. Perhaps, grazers in the 

pond may account for the different observations by Trainor (1979) and Egan & Trainor 

(1989a). Scenedesmus unicells have been reported in a sewage oxidation pond (Mattoni et al., 

1965), where the number of large grazers may be low, as well as in river water when effluent 

from a sewage plant was added (Shubert & Trainor, 1974). 
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CHAPTER 5 

Daphnia-induced colony formation in 
Scenedesmus acutus: Ecomorph expression 

at different temperatures 

Parts of this chapter are based on: 

Liirling, M. & Van Donk, E. submitted to Journal ofPhycology 

"Wij noemen planten, die wij niet eten ofnoodig 

hebben onkruid; streken waar wij niet leven 

kunnen wildernis; wij zoeken aan alle dingen 

die zijde op, die eene betrekking heeft op ons 

en vergeten daarbij, dat het niet de waarheid 

der natuur is, maar onze eigenliefde, die ons 

zulk een verkeerd oordeel over de wereld buiten 

ons ingeeft." 

-G.H.Rissikl860 
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CHAPTER 5 

5.1 INTRODUCTION 

In aquatic systems algae experience rapid nutrient and light changes, temperature 

fluctuations and variations in abundance of grazers (Sommer et al., 1986). The environmental 

variables change at different temporal and spatial scales and algae may respond in different 

ways (Harris, 1986). Many algae are notoriously plastic in morphology, growth and 

biochemical composition. Changing environmental conditions may favor different clones of 

the same species that may lead to the replacement of one clone by the other (Wood & 

Leatham, 1992), or changed environmental conditions may alter a specific trait within one 

clone, which is defined as phenotypic plasticity (Schlichting, 1989; West-Eberhard, 1989). 

One of the commonest freshwater green algae, Scenedesmus, has been shown 

extremely phenotypically plastic i.e. all species exhibit an extensive morphological variability 

(Trainor, 1991; 1998). An ordered sequence of ecomorph development has been reported in 

Scenedesmus armatus Chodat (Trainor, 1992a), in S. communis Hegewald (Trainor, 1992b) 

and in S. subspicatus Chodat (Trainor, 1993). These morphological changes are considered a 

cyclomorphosis (sensu Black & Slobodkin, 1987) driven by nutrients, temperature or a 

chemical cue from a grazer. In the presence of the grazer Daphnia (Crustaceae) unicellular 

Scenedesmus are triggered into colonies to reduce their vulnerability against grazing (Hessen 

& Van Donk, 1993; Lurling & Van Donk, 1996). The phenomenon of grazer-induced colony 

formation has been demonstrated in both spined S. subspicatus (Hessen & Van Donk, 1993) 

and non-spiny S. acutus Meyen (Lampert et al., 1994). Various nutrient conditions, in the 

absence of Daphnia, did not affect colony size in S. acutus and cultures remained dominated 

by unicells (see CHAPTER 4). However, one important environmental factor that was 

considerably constant in these studies was the temperature of 20 - 22°C. 

Temperature may have a pronounced effect on Scenedesmus growth and morphology 

(Trainor, 1998). Metabolic processes related to photosynthesis and biosynthesis are 

profoundly affected by temperature (Rhee & Gotham, 1981; Davidson, 1991). At low 

temperatures the rate of carbon fixation and cell division may be reduced (Morgan & Kalff, 

1979; Davidson, 1991), and excess of photosynthates may be accumulated as starch (Coesel & 

Wardenaar, 1990), thereby increasing the amount of carbohydrates per cell, whereas protein 

and lipids may decrease (Aaronson, 1973). 

Temperature may not only have a clear effect on algal growth rate (Goldman & 

Carpenter, 1974; Harris, 1986), but it may also influence drastically the morphological 

appearance of cells. In general, cell size seems to increase with lower temperatures (e.g. 

Morgan & Kalff, 1975; 1979; Rhee & Gotham, 1981; Trainor, 1992b; 1995; 1998). Moreover, 

S. subspicatus appeared coenobial at 10°C, while unicells were dominant at 22°C (Trainor, 

1993). In S. communis populations, at 22°C the proportion of eight-celled coenobia was less 

than 5% (Egan & Trainor 1989), but at 10°C over 80% eight-celled coenobia occurred 

(Trainor, 1992b). By contrast, at 10°C S. kisii Hortobagyi remained completely unicellular. In 
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this species both coenobia and spine formation were suppressed at low temperature (Trainor, 

1995). In S. quadricauda (Turpin) Brebisson cultures were dominated by unicells at 20°C, but 

by four-celled coenobia at 30°C (Steenbergen, 1978). 

Additionally, temperature may affect the response of Scenedesmus to infochemicals 

released from grazers as physiological processes of the algae may be altered. Temperature has 

been reported to result in pronounced effects on defensive morphology in Daphnia (Hanazato, 

1991), growth of Daphnia exhibiting a predator-avoidance strategy (Sakwinska, 1998) and 

their vulnerability to predation (Dodson & Wagner, 1996). Moreover, temperature may affect 

degradation and production of colony-inducing chemicals. The production of colony inducing 

chemicals seems directly related to the amount of food processed by grazers such as Daphnia. 

Since the temperature effect on food ingestion by Daphnia results in an optimum (Lampert, 

1987), and has a positive effect on excretion (Peters & Rigler, 1973), the production of 

infochemicals is most likely influenced by temperature as well. 

5.2 ECOMORPH EXPRESSION AT DIFFERENT TEMPERATURES 

5.2.1 Methods 

An inoculum of exponentially growing unicellular S. acutus was derived from the 

chemostat and was transferred into 300 ml cellulose-plug stoppered Erlenmeyer flasks 

containing 150 ml of medium. Each batch culture contained 134 ml autoclaved WC medium, 

1 ml algal inoculum and either 15 ml additional WC medium filtered through a glass fiber 

filter (controls) or 15 ml filtered test water (treatments). The test water was produced prior to 

the experiment by allowing 200 adult Daphnia magna Straus to feed for 24 h on a 1.0 1 

suspension of S. acutus (ca.105 particles-ml"1; i.e. ca. 3.5 mgCT1) in WC medium. The batch 

cultures were incubated at four different temperatures 9.5°; 16.5°; 24° and 29°C. The cultures 

were shaken manually once a day and continuously illuminated from above by fluorescent 

cool-white tubes (Osram L 36W/21-840) at 125 umol-m"2-s"'. Controls and treatments were 

run in quadruplicates for 28 days. The initial algal density was 12000 particles-ml"1 {ca. 14000 

cells-ml"1). Algal densities and particle size distributions were determined routinely in the size 

range 3.0 - 20.0 um ESD (equivalent spherical diameter) using a Coulter Multisizer II (100 

um capillary). For each replicate the number of cells per colony was determined 

microscopically by counting at least 100 aggregates (i.e. unicells as well as coenobia) in a 

subsample preserved in Lugol's fixative. Growth curves were fitted by non-linear regression 

using the regression wizard in SigmaPlot 4.0 program according the model: 

Ln (biovolume) =yo + ax (1 - exp(-r x t)) 

where / = time (d) and r = intrinsic rate of population increase (d"). Maximal growth rates 

("max, d"1) were based on the increase in algal volume (V) over the first two days according 

the equation: fimx = ln(Vt/Vo) x At"1. Estimated fimx were compared using two-way ANOVA, 

111 



CHAPTER 5 

with temperature and absence/presence of Daphnia water as the two fixed effects. The 

population growth rates (r) were compared applying two-tailed /-tests. 

5.2.1 Results 

Growth of S. acutus was similar in populations cultured in standard medium (controls) 

or in medium with filtered water (10% v/v) from a Daphnia culture (treatments), but differed 

among populations cultured at different temperatures (Fig. 5.1; Table 5.1). 
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Figure 5.1: Growth of Scenedesmus acutus, expressed as In of biovolume, cultured for four weeks at 

four temperatures in the absence (filled symbols, Controls) or presence of medium from a Daphnia 

culture (open symbols, Treatments). Error bars indicate 1 SD (n = 4). 

Table 5.1: Intrinsic rates of population increase (r ± 1 SE) obtained from non-linear regression using 

the model Ln (biovolume) = Y0 + a x (1 - exp(-r x t)), with r = intrinsic rate of population increase (d" 

'), including r2 of the fit. 
Temp. 

9.5°C 

9.5°C 

16.5°C 

16.5°C 

24°C 

24°C 

29°C 

29°C 

Treatment 

Control 

Daphnia water 

Control 

Daphnia water 

Control 

Daphnia water 

Control 

Daphnia water 

r(d-) 

0.0406 (0.0057) 

0.0510(0.0053) 

0.2292 (0.0057) 

0.2263 (0.0062) 

0.3394 (0.0147) 

0.3406 (0.0144) 

0.2844 (0.0210) 

0.2934 (0.0203) 

r1 

0.993 

0.995 

0.999 

0.998 

0.994 

0.994 

0.984 

0.986 
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The population growth rates (r) of 0.05 d"1 at 9.5°C and 0.23 d"1 at 16.5°C were 

significantly different from each other and from growth at the higher temperatures. Growth at 

24°C (r * 0.34 d"1) or 29°C (r * 0.29 d"1) was not significantly different (Table 5.2). 

Table 5.2: P-values of two-tailed Mests performed on the estimated intrinsic rates of population 

increase (r) among treatments (C = controls, Dw = Daphnia water). 
Temp. 

9.5-C 

9.5-Dw 

16.5-C 

16.5-Dw 

24-C 

24-Dw 

29-C 

29-Dw 

9.5-C 

XXXX 

0.256 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

9.5-Dw 

XXXX 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

16.5-C 

XXXX 

0.756 

0.002 

0.002 

0.064 

0.038 

16.5-Dw 

XXXX 

0.002 

0.002 

0.056 

0.034 

24-C 

XXXX 

0.956 

0.098 

0.338 

24-Dw 

^ 

XXXX 

0.092 

0.130 

29-C 

XXXX 

0.774 

29-Dw 

XXXX 

The two-way ANOVA on exponential growth rates (umax) revealed a significant 

temperature effect (F = 3553; P < 0.001), a significant Daphnia water effect (F = 17.4; P < 

0.001), but no interaction effect (F = 0.58; P = 0.631). Separate two-tailed Mests for /imm 

showed significantly different growth rates among control and treatment populations at three 

of four temperatures (Table 5.3). Not only maximal growth rate was affected during the first 

days, but also Scenedesmus morphology was changed drastically in the treatment populations 

at warmer temperatures (16.5°, 24° and 29°C). In the first two days colony formation was 

promoted by Daphnia water (Fig. 5.2). In the treatment populations a rapid formation of four-

celled and eight-celled coenobia could be observed followed by a subsequent recovery of 

unicell abundance (Fig. 5.2). The control populations were dominated by unicells. However, 

when populations aged the dominance of unicells in the control populations gradually 

decreased to about 20-25%, while the proportion of four-celled coenobia concomitantly 

increased to about 50-60% (Fig. 5.2). After 14 days, population composition seemed to 

stabilize and was more or less comparable between control and treatment populations (Fig. 

5.2). This process is clearly temperature dependent and at 9.5°C not only four-celled 

coenobia, but also eight-celled coenobia were formed that made-up 20% of control- and 35% 

of treated populations (on day 18). At the end of the experiment, populations were more or 

less comparable. 
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Figure 5.2: Proportion of unicells, two-, four-, and eight-celled coenobia in Scenedesmus acutus 

populations grown for four weeks at four temperatures in the absence (left panels) and presence of 

medium (10% v/v) from a Daphnia culture (right panels). The rest-group represents three-, five-, six-, 

seven- and multicelled aggregates. 
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Table 5.3: Maximal growth rates ( /w , d'\ ± 1 SD; n = 4) of Scenedesmus acutus cultured at four 

temperatures in the absence (Control) or presence of Daphnia water (Daphnia water), including /- and 

P-values of f-tests. 
Temp.°C Control Daphnia water 

9.5 0.453(0.033) 0.496(0.011) 2.48 0.048 

16.5 1.232(0.057) 1.263(0.036) 0.93 0.387 

24 1.839(0.015) 1.874(0.015) 3.27 0.017 

29 1.729(0.030) 1.797(0.011) 4.26 0.005 
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Figure 5.3: The mean number of cells per colony in Scenedesmus acutus cultured for four weeks at 

four temperatures in the absence (Control) or presence of medium from a Daphnia culture (Daphnia 

water). Error bars indicate 1 SD (n = 4). 
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The rapid morphological response of Scenedesmus in the treatments is also reflected in 

the mean number of cells per colony (Fig. 5.3) and in the mean particle volume (Fig. 5.4). The 

mean particle volume remained larger in treated populations compared to the controls 

throughout the entire experiment. The mean number of cells per colony in control and treated 

populations depended on the temperature. At the two warmest temperatures (24° and 29°C), 

only during the weeks 1-2 the treatments contained more cells per colony than the controls. At 

16.5°, however, during 2-3 weeks colony size in the treatments was larger, whereas at 9.5°C 

this period lasted almost 4 weeks. Individual cell size, as reflected in cell volume, also 

appeared larger in treatments than in control populations although differences were small (Fig. 

5.5). During 2 weeks the differences in cell volume among cells cultured at 9.5°C and at 

higher temperatures were considerable. However, after 18 days cell volume became 

comparable among populations. 

Populations never consisted solely of unicells and two-, four- or eight-celled coenobia, 

but always contained a fraction of three-, five-, six-, seven-celled coenobia and even some 

aggregates with more than eight cells (all indicated as rest-group in Fig. 5.2). At 9.5°C 

numerous cells and coenobia had irregular shapes, while this was not observed at higher 

temperatures where the majority of coenobia were isofacial, alternating coenobia. 
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Figure 5.4: The mean particle volume (um3) of Scenedesmus acutus populations cultured for four 

weeks at four temperatures in the absence (Control) or presence of medium from a Daphnia culture 

{Daphnia water). Error bars indicate 1 SD (n = 4). 
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400 

10 15 20 25 30 

Time (d) 

Figure 5.5: The mean cell volume (um3) of Scenedesmus acutus cultured for four weeks at different 

temperatures in the absence (Control) or presence of medium from a Daphnia culture {Daphnia water). 

Error bars indicate 1 SD (n = 4). 

5.3 EFFECT OF TEMPERATURE ON GROWTH AND GRAZER-INDUCED COLONY FORMATION 

Temperature affects the growth rate of the algal populations (e.g. Cloern, 1977; Harris, 

1986; Ojala, 1993). Therefore, the mean number of cells per colony, the mean cell volume and 

the mean colony volume at the end of the exponential growth phase were used for comparison 

of the effects of temperature and infochemicals on morphology in S. acutus. Incubations run 

at 9.5°, 16.5°, 24° and 29°C were analyzed to the full extent in the previous section (§5.2). An 

additional series of experiments was run in quadruplicates at 11.2°, 13.5°, 14.7° and 17.1°C 

respectively. The experiments were run analogous to the experiments described in §5.2. 

Growth rates (n, day"1) were determined during the exponential growth phase and 

were based on the number of cells (N) and on the algal volume (V) according the equation: u 

= In (Nt/No) x At"1. The number of doublings per day was calculated using growth rates based 

on cell numbers: D<j = uceUs/ln2. 

Estimated growth rates and morphological characteristics were compared using two-

way ANOVA, with temperature and absence/presence of Daphnia water as the two fixed 

effects. 

Growth rates on the basis of cell numbers (Fig. 5.6) were significantly affected by 

temperature (F = 299.0; P < 0.001), but not by Daphnia infochemicals (F = 1.61; P = 0.211). 

No interaction effect was detected (F = 0.98; P = 0.457). On the basis of volume, however, 

besides a temperature effect (F = 1880; P < 0.001), growth rates were also influenced by 

Daphnia chemicals (F = 6.94; P = 0.011). Again no significant interaction effect was 

observed (F = 1.12; P = 0.369). Comparison of growth rates based on cell numbers with rates 
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based on volume revealed significant differences for controls (F = 51.9; P < 0.001) and for 

treatments (F = 170.1; P < 0.001). Only at the two highest temperatures volume based growth 

rates were not higher than cell number based growth rates. The number of doublings per day 

varied between 0.41 at 9.5°C and 2.3 at 24°C. 
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Figure 5.6: Effect of temperature on growth rates (u, d') of S. acutus in standard medium (Controls) 

and in medium with 10% (v/v) water from a Daphnia culture (Treatments). Error bars indicate 1 SD 

(n = 4). 

The expression of morphotypes varied within a population in time, between populations in the 

absence and presence of Daphnia infochemicals, and at different temperatures (see Fig. 5.2). 

The number of cells per colony and the mean particle volume at the end of the exponential 

growth phase were used for comparison of the effects of temperature and infochemicals on 

colony formation in S. acutus (Fig. 5.7). Two-way ANOVA on the mean number of cells per 

colony at the end of the exponential growth phase indicated a significant temperature effect (F 

= 36.7; P < 0.001), a significant Daphnia water effect (F= 445.5; P < 0.001) and a significant 

interaction effect (F = 3.84; P = 0.002). The individual factors 'temperature' and 'Daphnia 

water' were compared with the MS for the interaction. Both of the individual factors were 

significant compared with the interaction, therefore the individual factors dominate and the 

interaction may be ignored (Burke, 1998). Tukey's test revealed that the numbers of cells per 

colony in control populations at 9°C were similar to those in Daphnia water treated 

populations at warmer temperatures (Fig. 5.7). 
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Figure 5.7: Effect of temperature and Daphnia infochemicals on colony size in S. acutus expressed as 

the number of cells per colony (upper panel) and the mean particle volume (um3, lower panel). Error 

bars indicate 1 SD (n = 4). Similar symbols in upper panel 'a...e' indicate homogeneous groups that 

are not statistically different at the 95%-level (Tukey test). 

The different incubation temperatures not only affected growth and colony 

development in S. acutus, but also had an effect on the individual cell size, expressed as mean 

cell volumes, at the end of the exponential growth phase (Fig. 5.8). Two-way ANOVA 

revealed a significant temperature effect (F = 38.6; P < 0.001), no effect of Daphnia water (F 

= 0.74; P = 0.394) and a significant interaction effect (F = 4.93; P < 0.001) on the mean cell 

size of S. acutus. The individual factors were tested against the interaction and the 

temperature appeared significantly different (F= 7.83 > Fcrt, = 3.79). Hence, temperature was 

the dominant factor. Since no statistically significant difference between cell volume of 

control and treatment populations was found, linear regression analysis was performed on all 

data. The cell volume was significantly reduced at higher temperatures (Fig. 5.8). 
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Figure 5.8: Effect of temperature on cell size in S. acutus, expressed as mean cell volume (um3), 

grown in standard medium (Controls) and in medium with 10% (v/v) water from a Daphnia culture 

(Treatments). Error bars indicate 1 SD (n = 4). Solid line represent linear regression: Cell volume = 
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Figure 5.9: Colony formation in S. acutus expressed as the mean particle volume (um3, ± 1SD, n = 3) 

of populations exposed to filtered water (10%v/v) from Daphnia cultured at different incubation 

temperatures. 

5.4 INFOCHEMICAL PRODUCTION AT DIFFERENT TEMPERATURES 

Daphnia magna was exposed to 5 different temperatures of 5°, 9°, 14°, 18° and 22°C 

to examine the effect of temperature on the production of infochemicals. Twenty non-egg 

bearing animals (mean body length ± 1 SD: 1.68 ± 0.07 mm) were transferred into 100 ml 

120 



RESPONSE TO TEMPERA TURE 

RT-medium with S. acutus as food (4.5 mg CI"1) and stored at different temperatures in the 

dark. After 24 h the animals were transferred into new vessels with 100 ml food suspensions 

under the same conditions. Again after 24 h the medium was filtered and used as test-water in 

a standard biotest that was run in triplicate. 

Medium from Daphnia incubations at different temperatures all contained colony 

inducing chemicals as the mean particle volume in all treatments was clearly higher than in 

the controls without water from a Daphnia culture (Fig. 5.9). No ANOVA was performed 

because the Fmax test revealed heterogeneous variances (Fmax » Fcrit), which was caused by 

the very low within group variance of the 22°C treatments. 

5.5 DISCUSSION 

Temperature had a clear effect on growth and morphological development in the green 

alga Scenedesmus acutus. Growth rate, colony size as well as individual cell size were 

affected by temperature. Moreover, Daphnia-induced colony formation appeared operating 

over a broad range of temperatures. 

The Scenedesmus cell volume increased significantly at lower temperatures. Larger 

cell size of unicells and cells in colonies is not restricted to non-spiny Scenedesmus, but has 

also been observed in the spined S. armatus (Trainor, 1992a) and S. communis (Trainor, 

1992b). This phenomenon could be a result of reduced growth as, in general, cells appear 

smaller at the maximum growth rate (Harris, 1986) which is influenced by the temperature 

according the van net Hoff s law. Cell volumes were measured at the end of the exponential 

growth phase, nevertheless at lower temperatures the total algal biomass appeared lower. 

Inasmuch algal biomass affects the availability of nutrients, smaller cell size at higher 

temperatures could be a result of carbon limitation as both higher cell densities and higher 

temperatures reduce the available carbon. Unicells and smaller colonies at higher 

temperatures may be advantageous because of a lower viscosity of the water. 

The lower carrying capacity in treatment populations found in the experiment 

presented in CHAPTER 2 {see Fig. 2.1; Table 2.1) was not observed in the experiments reported 

here. The major difference between the experiments was that in the latter also the test-water 

from a Daphnia culture consisted of WC medium instead of RT medium. 

The morphological expression at temperatures above 11°C was similar to the 

morphological development in S. acutus reported in CHAPTER 2. The formation of eight-celled 

coenobia at low temperatures, in the absence of infochemicals, has also been reported for the 

spined S. subspicatus (Trainor, 1993). The growth rates are in agreement with the growth rate 

for S. communis at 10°C (0.06 d"1) and 22°C (0.44 d"1) (Trainor, 1992). Moreover, the intrinsic 

rates of population increase at 16.5°C (0.23 d") and 24°C (0.34 d"1) are in good agreement 

with the growth rate of control populations at 20°C (0.31 d"') (Lurling, 1998). The number of 
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cells per colony in Scenedesmus is related to the amount of energy stored (Setlik et al., 1972) 

and may be proportional to growth rates (Gavis et al., 1979; Siver & Freeda, 1982). However, 

Siver & Trainor (1983) demonstrated that unicell production was not determined by growth 

rate, but rather by the chemical composition of the medium. Gavis et al. (1979) observed at 

high growth rates eight-celled S. quadricauda coenobia, but not at low growth rates. In 

contrast, here, eight-celled coenobia were observed at high temperatures and high growth 

rates only in the presence of Daphnia water, but at low temperatures (and growth rates) also in 

the absence of Daphnia water. Thus, in S. acutus growth rates seem not to be a major factor in 

determining the colony size. 

In the presence of Daphnia water more eight-celled coenobia were observed, the 

proportion of coenobia was larger at all four temperatures, and the coenobia formation 

occurred faster than in control populations. In the absence of Daphnia water when cultures 

had reached steady-state four-celled coenobia were formed analogous to the spined species S. 

subspicatus (Trainor, 1993), S. communis, and S. komarekii (Egan & Trainor, 1990). The 

medium from the Daphnia culture contained more organic carbon and ammonium (Liirling, 

1998). Nagy-Toth et al. (1992) examined the effect of several carbon sources on the 

morphology of S. acutus, but did not report any formation of eight-celled coenobia. Also 

ammonium and urea were ineffective as colony inducing agents (CHAPTER 3 and 4; Lampert 

et al., 1994). Moreover, the combination of ammonium and organic carbon has been shown to 

favor unicell formation (Siver & Trainor, 1983). Nevertheless, the colony-inducing compound 

is probably an organic molecule with a low molecular weight (Lampert et al., 1994). The 

chemical structure has not been resolved yet, but considerable progress has been made (Von 

Elert, pers. comment). The Daphnia factor may be characterized as an olefinic carboxylic acid 

(Von Elert & Franck, in press). 

Initially, the Scenedesmus cell volume increased significantly at lower temperatures. 

At low temperature larger cell size of unicells and coenobial cells is not restricted to S. acutus, 

but has also been observed in Scenedesmus sp. (Rhee & Gotham, 1981), in the spined S. 

armatus (Trainor, 1992a) and S. communis (Trainor 1992b). S. communis colonies appeared 

38.5 urn wide at 10°C, but only 11 \xm at 22°C (Trainor, 1992b). Also four-celled S. 

quadricauda coenobia were differently sized at low (11°C) and high (35°C) temperature, with 

colony widths of 41.3 and 13.6 um, respectively (Komarek & Ruzicka, 1969). In both S. 

subspicatus and S. abundans unicells were larger at a low temperature of 10°C than at a warm 

temperature of 25°C (see Table 6 on page 240 in Trainor, 1998). This phenomenon could be a 

result of reduced growth, as in general cells appear smaller at the maximum growth rate, 

which is influenced by the temperature (Harris, 1986). However, in this study, at cold 

temperature cell volumes gradually declined and became similar to those of cells cultured at 

warmer temperatures. Also Trainor (1998) reported a decline in unicell dimensions after a 

prolonged time at low temperature. Initially, at cold temperatures the total algal biomass was 
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lower compared to cultures at warmer temperatures, because of reduced growth. Inasmuch 

algal biomass affects the availability of resources smaller cell size at higher temperatures 

could be a result of carbon/light limitation due to high algal densities. As population density 

increased at low temperature cell size concomitantly declined. In previous experiments (see 

CHAPTER 4) it appeared that the availability of inorganic carbon played a significant role in 

determining the cell size of unicells in S. acutus, but was not involved in the amount of cells 

per colony. Thus, the availability of carbon/light might explain the differences in cell size, but 

not the phenomenon of colony formation at low temperatures, which seems a common 

response in Scenedesmus (Trainor, 1993). The response at low temperatures in the absence of 

a chemical trigger from a predator seems puzzling, because why invest in a defense when no 

predator is present? After 18 days, the control populations consisted of 20% of eight-celled 

coenobia (see Fig. 5.2). Formation of S. acutus coenobia at low temperature may be tolerable 

because of the higher viscosity of the water that reduces the size effect on sedimentation, but 

sinking velocities of coenobia still exceeded those of unicells (Conway & Trainor, 1972; 

CHAPTER 6). The coenobia formation at low temperatures in the absence of a chemical trigger 

released from grazers may indicate a general over-wintering strategy governed by 

Scenedesmus. In the fall negatively buoyant colonies may develop which settle to the 

sediment and over-winter. Here, at cold temperature and in low light or darkness coenobia 

will disintegrate (Dehning & Tilzer, 1989). In the dark, also the cell volume will decrease 

because of carbohydrate respiration (Morgan & Kalff, 1975). In spring, when temperatures are 

favorable, along with sufficient nutrients and low grazer abundancy, unicells are released. 

These data seem to support the concept of a seasonal life history as presented by Egan & 

Trainor (1989). 

Small sized organisms with a large surface-to-volume ratio may grow more rapidly 

than larger organisms (Turpin & Harrison, 1980; Smith & Kalff, 1982). However, volume 

based maximal growth rates in Daphnia water treatments appeared somewhat higher than in 

the controls. Perhaps this is caused by the production of additional wall material necessary to 

cement cells together in a coenobium (Trainor, 1998). In previous studies, deflections in the 

growth curve were examined just prior to populations changing from unicellular to four-celled 

dominance indicative of cell death (Egan & Trainor, 1989; Trainor, 1993; Lurling, 1998). 

Also during the grazing process massive algal cell death might occur and cell contents could 

be released into the environment. However, both algal homogenates and auxins appeared to be 

ineffective as colony-inducing agent or growth stimulator (CHAPTER 3; Lampert et al, 1994; 

Lurling, 1998). Thus, the colony inducing chemicals are probably not constituents of the algal 

cells. The flexibility of ecomorph expression and somewhat higher growth rates when 

grazing-associated chemicals are present strongly suggest that costs may be involved, because 

otherwise the defensive colonial form would be the norm (Dodson, 1989). Costs of colony 

formation were not reflected in growth rates, which has also been observed by Hessen & Van 
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Donk (1993) and Lampert et al. (1994), but may be attributed to sinking out of the euphotic 

zone. Small coenobia and unicells posses a better buoyancy than large coenobia (Conway & 

Trainor, 1972; see CHAPTER 6) and could maintain a position in the water column where 

conditions are favorable to support excellent growth (Siver & Trainor, 1981). 

It was hypothesized that low temperature populations would be dominated by 

coenobia and warm water populations by unicells, because the size effect on sinking could be 

tolerable at low but not at high temperatures due to the viscosity of the water (Lampert et al., 

1994). Although still grazer-induced coenobia formation occurred at low temperature, under 

nutrient-replete conditions, unicells and coenobia were larger at the lower temperatures than at 

the warmer temperatures. Moreover, more coenobia occurred at lower temperatures. These 

differences in cell- and colony size will undoubtedly have an effect on settling velocities of 

the different morphs. However, as follows from Stoke's law, the difference in densities 

between alga and water might be reduced and might compensate (partially) for the size effect 

on sinking. These observations seem to support the hypothesis of Lampert et al. (1994). If 

expressed as the mean number of cells per colony, grazer-induced colony formation was 

highest at the lowest temperature. By contrast, predator-induced morphological defenses in 

Daphnia, such as spination (Havel, 1985), helmet length (Hanazato, 1991) and crest size 

(Grant & Bayly, 1981) all were significantly higher and larger at warmer temperatures. The 

weaker response at higher incubation temperatures could be a result of significantly higher 

algal biomass and hence relatively fewer active compounds. These high algal biomass 

coincide with the biomass in a previous experiment at which induced coenobia gradually 

disappeared from the treated populations (Liirling, 1998). 

In nature Daphnia abundance may vary considerably during a season and will be 

lowest during winter and summer (Sommer et al., 1986). There will be definitely numerous 

grazers other than Daphnia present in a water body of which several may trigger the unicell-

colony transformation (Van Donk et al., 1999). But a process as grazing will probably be 

reduced at low temperature (Burns & Rigler, 1967), thereby lowering the excretion of colony 

inducing compounds. Thus, grazer-induced colony formation could be less important during 

those periods. In the summer period, Scenedesmus could flourish, whereas in autumn at low 

temperature the initially larger and heavier cells and coenobia may sink to deeper water layers 

and over-winter. In spring a new population could be established, perhaps simply by wind-

induced resuspension of a few small unicells, but what temperature is favorable? Wasmund 

(1992) determined optimal temperatures for growth of S. abundans and S. obliquus around 

24°C or higher. In contrast, he observed the highest biomass of S. abundans and S. obliquus in 

winter-spring at temperatures from 1 to 14°C (Wasmund, 1992). In his study, Wasmund 

(1992) concluded that grazing was the most important factor determining the development of 

a Scenedesmus population in nature. Indeed, grazers may affect Scenedesmus populations by 

both selective feeding on small morphotypes and chemical induction of eight-celled coenobia 
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and even large multicelled aggregates (Hessen & Van Donk, 1993). However, Scenedesmus 

growth and morphology is influenced by several other factors such as nutrients, light and 

temperature (Trainor, 1998) that all could interact with the Scenedesmus grazer interaction. 

Moreover, Scenedesmus may not only display variability in colony formation, but also in the 

formation of spines, bristles, mucilage, cell wall thickness and biochemical composition that 

all could hamper ingestion and digestion by grazers. Illustrative is the apparent conflicting 

reports on digestibility of Scenedesmus cells. Scenedesmus is considered excellent food for 

Daphnia (Lampert, 1977), whereas others have reported digestion resistance of Scenedesmus 

(e.g. Horn, 1981; Levitan, 1987; Kerfoot, 1987). A major difference is that the latter observed 

Scenedesmus from the field and isolated cells from Daphnia feces, while the former used 

laboratory cultures. Is there a connection between the presence of grazers and the thickness of 

the cell wall or was the lake Scenedesmus perhaps P-limited? Under phosphorus limitation the 

cell wall of Scenedesmus is thickened (Tilberg et al., 1984), a phenomenon also observed in 

Chlamydomonas (Van Donk et al., 1997) that could result in digestion resistance (Van Donk 

& Hessen, 1993; Van Donk et al, 1997). Thus, it does seem that Scenedesmus may have 

evolved several defensive strategies to resist grazing, i.e. either avoid ingestion or digestion, 

however, interactions with other important factors such as temperature and nutrients have to 

be kept in mind. 
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COSTS & COLONY FORMATION 

CHAPTER 6 

Grazer-induced colony formation in 
Scenedesmus: 

Costs of being colonial? 

Parts of this chapter are based on: 

Lurling, M. & Van Donk, E. Submitted to Oikos 

Liirling, M. (1999) Journal ofPhycology 35: 19-23 

"Evaluating the role of costs as a constraint in the 

evolution of inducible defenses continues to be a complex issue. 

Costs studies need carefully specify different types of costs, 

and rarely can all possible costs be considered. " 

- R. Tollrian & CD. Harvell 1999 
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CHAPTER 6 

6.1 INTRODUCTION 

Pelagic photoautotrophic organisms are confronted with conflicting allometries of selection 

pressure (Lehman, 1988). The dependence on light puts a constraint on the size of algae, because 

the algal cells have to remain in suspension preferably in the euphotic zone. Moreover, dissolved 

nutrients must pass through the semi-permeable membrane into the cell. Thus, algal cells have to 

remain small with a favorable surface-to-volume ratio enabling fast growth and low sinking loss 

(Reynolds, 1984). However, algae are not only subjected to sedimentation, but also to other loss 

processes such as grazing, wash out, parasitism and death that all may result in the disappearance 

of viable cells from the euphotic zone (Reynolds & Wiseman, 1982). In general, grazing and 

sedimentation appear the major loss processes operating (Reynolds et al, 1982). Algae face the 

risk of mortality from an entire assemblage of grazers and an effective way to withstand grazing 

pressure is through increase in size (Lehman, 1988). Thus, in the pelagic one could imagine an 

adaptive trade-off between defensive large sized algae and competitive advantageous small sized 

organisms (Boraas et al, 1998). 

The grazer-induced colony formation in Scenedesmus may be interpreted as an anti-grazer 

defense to reduce their vulnerability against grazing (Hessen & Van Donk, 1993; Lurling & Van 

Donk, 1996; Van Donk et al, 1999; see CHAPTER 7). One might expect costs associated with 

grazer-induced colony formation, because otherwise the defensive form would be the norm 

(Dodson, 1989). Potential costs involved with colony formation are: 

1). Reduced nutrient and light harvesting expressed in lower growth rates. 

2). Enhanced sinking. 

Altered surface to volume ratios may influence the nutrient uptake by colonial cells and 

colonies may absorb less light energy per surface area as a result of the so called "package-effect" 

(Kirk, 1994), which could result in lower growth rates. However, no clear effects on growth rates 

have been observed yet (Hessen & Van Donk, 1993; Lampert et al, 1994; Lurling & Van Donk, 

1997a; Lurling, 1998). 

In Scenedesmus a parent cell divides up, inside the parent cell wall, into a number of 

daughter cells, which subsequently form a new colony or fail to form a colony and become unicells 

(Van den Hoek et al, 1995). Especially in the non-spiny Scenedesmus strains the path from parent 

cell to release of unicells or colonies is similar, since a cOenobium is formed inside the mother cell 

that either rapidly disintegrates or remains colonial (Nilshammar & Walles, 1974; Trainor, 1998). 

Hence, no large differences in growth rates are to be expected between parent cells producing 

colonies or unicells, but costs may be more apparent between colonies and unicells. As differences 

may be small a sensitive method to estimate costs of induced colonies is desired. The good 

correlation between the Photosystem II (PSII) electron flow and the rate of C-fixation in algae 

(Kolber & Falkowski, 1993; Geel, 1997) and algal growth rate (Hofstraat et al, 1994; Geel, 1997) 

indicates that estimation of costs may be derived from chlorophyll fluorescence. Therefore, the 
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PSII-efficiency was estimated during the unicell-colony transformation and among populations of 

induced colonies and non-induced unicells at different light intensities. 

Faced with the problem of sinking out of the euphotic zone, costs may also be attributed to 

enhanced sedimentation rates of colonies as according to Stake's law large particles sink faster than 

small ones (Reynolds, 1984). Since Scenedesmus unicells and small coenobia possessed a better 

buoyancy than large coenobia (Conway & Trainor, 1972) they may be able to maintain a position 

in the upper water layers where conditions are favorable to support good growth (Siver & Trainor, 

1981). However, the biochemical composition of grazer-induced colonies may be slightly changed 

with less protein and somewhat higher amounts of fatty acids per unit dry-weight reducing their 

density and thereby their sinking (Liirling et al, 1997; see CHAPTER 7). Therefore, sinking rates of 

Scenedesmus populations cultured in the absence (mainly unicellular) and in the presence of grazer 

(Daphnia) infochemicals were determined. 

6.2 LIGHT-HARVESTING AND PSII-EFFICIENCY 

6.2.1 Package-effect 

Absorbance of intact cells will differ noticeably from that of dispersed thylakoid fragments, 

which is referred to as the package-effect (Kirk, 1994). This package-effect may exert a 

considerable influence on the light-harvesting capability of algae varying in size; specific 

absorption coefficients decrease with increasing cell sizes (e.g. Haardt & Maske, 1987; 

Sathyendranath et al, 1987; Kirk, 1994). To examine the influence of the package-effect on 

specific absorption by Scenedesmus, four strains of S. obliquus Turpin were cultured in the 

presence and absence of Daphnia water in a standard biotest, which was run in triplicate. The 

specific absorption coefficient (m^mg-chl-a1) was derived from absorption spectra, normalized per 

unit (mg) chlorophyll-a concentration at its red peak around 675 nm. The chlorophyll-a and 

phaeopigment concentrations were determined according to the Dutch standard method (NEN-

6520) using a Beckmann DU-64 spectrophotometer. 

The specific absorption coefficient decreased with increasing colony size of Scenedesmus 

(Fig. 6.1). Not only size, but also changes in pigment composition could account for some variation 

in the absorption. However, two-way ANOVA revealed no significant differences in chlorophyll-a 

content between Scenedesmus exposed to Daphnia water compared to controls (F = 0.12; P = 

0.736). Hence, effects on growth may be expected as colonies absorb less light per unit biomass 

than unicells do. 
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Figure 6.1: Relation between the specific absorption coefficient of Scenedesmus chlorophyll at the red 

maximum (670-680 run) and colony size, expressed as mean particle volumes (um^). 

6.2.2 PSII-efficiency 

The green alga Scenedesmus acutus Meyen cultured in our laboratory in a 1.0 liter aerated 

chemostat on WC-medium (Guillard & Lorenzen, 1972). The chemostat was continuously 

illuminated at 100 umolm2s~' provided by circular fluorescent tubes (Philips TLEM 40W/33RS) 

in a temperature controlled chamber at 20°C and with a dilution rate of 1.2 day"1. Prior to the 

experiments, S. acutus from the chemostat were transferred into a 300 ml cellulose-plug stoppered 

Erlenmeyer flask containing fresh and sterile WC-medium. After 24 hours of adaptation to the 

desired light intensity of 120 umolm"2s"' algae from the Erlenmeyer flask were used as inocula in 

the experiments. In the experiments, S. acutus was transferred into 100 ml cellulose-plug stoppered 

Erlenmeyer flasks containing 50 ml of medium. Each batch culture contained S. acutus in 

autoclaved medium (controls) or in WC-medium with 5 ml membrane filtered water from a 

Daphnia culture (treatments). In a first experiment 4 replicates were used and 5 in a second 

experiment. The batch cultures were incubated for 3 days on a rotating shaking device (80 rpm.) at 

20°C in continuous light of 120 umol -mV. The initial densities were 2.410" cellsml"1 and 3.8-104 

cellsml"1 in the first and the second experiment, respectively. Algal densities and particle size 

distributions were determined in the size range 3.0-25.0 um equivalent spherical diameter (ESD) 

using the Coulter Multisizer II (100 um capillary). The number of cells per colony was determined 

microscopically by counting at least 120 aggregates (unicells as well as colonies) in a subsample 

preserved in Lugol's fixative. Cell dimensions (length and width, um) were measured using a 

Leica Quantimet 500 MC image analyzer coupled with a light-microscope at 500 x magnification. 

Growth rates (u, d"1) were estimated from changes in algal biovolume (V) during the three day 

incubation period according to the equation: u = In (V/V0) x Af'. 
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The efficiency of Photosystem II (PSII) electron transport (<|>PSn) was determined using a 

slightly modified version of the Xe-PAM fluorometer (Schreiber et al., 1993; Geel et al., 1997; 

Geel, 1997). The Xe-PAM is equipped with two halogen lamps for actinic and saturating light and 

a photodiode detector for detection. The white measuring light of the Xenon flash lamp for 

excitation is restricted to 400-560 run by a 4 mm colour filter (Schott BG39). Emission is detected 

above 650 nm and the detector is protected from actinic and measuring light using two filters 

(Balzer R65 and Schott RG 645). The actinic light was adjusted with neutral density filters, the 

saturating light with an intensity of 5500 umol-m"2-s"' was filtered through a 650 nm short-pass 

filter (Balzer DT Cyan special). Irradiance was measured with a Skye photometer equipped with an 

integrating (PAR) quantum sensor (Geel et al., 1997). 

In the first experiment, the actinic light intensities used were 4.4; 8.5; 15.0; 33.5; 51.8; 97.7; 

119.2; 171.5; 226 and 319 umolm~2-s~'. In the second experiment only actinic light of 120 umolm" 
2s"' was used. After dark adaptation for 30 minutes at 20°C, fluorescence of the algae (F0 and Fm) 

was measured in a temperature controlled DW2/2 oxygen electrode chamber (Hansatech, UK). 

Fluorescence nomenclature was according to Van Kooten & Snel (1990). At different actinic light 

intensities the actual (F) and maximal (F'm) fluorescence was measured and the mean of 5 

measurements was used to calculate the efficiency of PSII e"-fiow as (F'm - F)/F'm. Fluorescence 

measurements were performed with Scenedesmus at the end of the 3 day incubation period in 

experiment 1 and during the 3 day incubation period in experiment 2 at the beginning (t = 0), and 

consecutively after 24, 32, 48, 55 and 72 hours of incubation. Chlorophyll-a analysis was 

performed according to the Dutch standard method NEN-6520 using a Beckmann DU-64 

spectrophotometer. 

6.2.3 Results PSII-efficiency 

- Colony formation: 
In the first experiment, the exposure of S. acutus to water from a Daphnia culture 

significantly promoted the formation of colonies (Fig. 6.2). Both the mean particle volume (t = 7.3; 

P < 0.001) and the mean number of cells per particle (t = 26.3; P < 0.001) had significantly 

increased in treatments. The unicells were similarly sized in both controls and Daphnia water 

treatments with dimensions (mean length x width ± 1 SD) of 17.4 (2.2) x 5.1 (0.8) um (n = 60) and 

17.0 (1.9) x 5.7 (0.9) um (n = 40), respectively. The dimensions of grazer-induced coenobia as 

observed in the treatments were on average 25.5 (3.4) x 22.1 (3.7) um (n = 40) for four-celled and 

37.2 (5.5) x 25.4 (3.2) um (n = 40) for eight-celled coenobia. At the end of the experiment, no 

differences in the chlorophyll-a content among control and treated populations were observed (t = 

0.6; P = 0.546) with a mean (± 1 SD) of 507 (73) ug-1'1. 

In the second experiment, mean particle volumes of S. acutus were significantly larger in 

the presence of medium from a Daphnia culture (Fig. 6.2). The initial increase in volume in the 

controls reflects increased parental cell size. At the end of the experiment, the chlorophyll-a content 
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of control and treated populations were similar (/ = 0.1; P = 0.956) with a mean (± 1 SD) of 588 

(62)ugl-'. 
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Figure 6.2: The course of the mean particle volume (urrw) in cultures of Scenedesmus acutus grown in the 

absence (Control) and presence of filtered medium (10% v/v) from a Daphnia culture (Daphnia water) 

from the second experiment (left panel A) and both the mean particle volumes and mean number of cells 

per colony after 48 h in the first experiment (right panel B). Error bars represent 1 SD. 

- Growth rate: 
In both experiments examining the effect of morphology on PSII-efficiency, no significant 

differences in growth rates among populations cultured in the absence or presence of medium from 

a Daphnia culture were detected. In the first experiment, both control and treated populations 

expressed excellent growth with mean rates (± 1 SD; n = 4) of 1.39 (0.01) and 1.42 (0.03), 

respectively (P = 0.09). In the second experiment growth rates were 1.40 (0.03) and 1.43 (0.03) for 

control and treated populations, respectively (P = 0.06). The Mests yielded low P-values due to 

small within group variation. 

- PSII-efficiency: 

No differences in <|)PSII of control and treated S. acutus were detected in both experiments 

(Figs. 6.3 & 6.4). The PSII-efficiency decreased with increasing light intensities as a result of 

increased non-photochemical quenching. In the second experiment, repeated measures ANOVA 

indicated no Daphnia water effect on (|)PSII (F= 0.80; P = 0.422), but a significant time effect (F = 

143.5; P < 0.001). The <|>PSII had significantly increased during the course of the experiment, 

which could be the result of lower light intensities per alga due to higher algal biomass. 
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Figure 6.3: The quantum efficiency of PSII charge separation in the light (0Psn) of unicellular (Control) 

and colonial {Daphnia water) Scenedesmus acutus at different light intensities. Error bars indicate 1 SD (n 

= 4). 
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Figure 6.4: The quantum efficiency of PSII charge separation at 120 umol-m2-s' ('I'psn) ' n time (h) °f 

Scenedesmus acutus in the absence (Control) and presence (Daphnia water) of 10% (v/v) medium from a 

Daphnia culture. Error bars indicate 1 SD (n = 5). 

6.3 METABOLIC COSTS REFLECTED IN GROWTH RATES OF INDUCED COENOBIA? 

The gross growth rate (u,, day"1) was estimated from changes in population density (N0, N,) 

and algal biovolume (V0, V,) between the start and the end of the biotests (the loss rate X. was 

assumed equal to zero) according to the equation: u = ln(N,) - ln(N0) x (At)"'. 

Growth rates determined in the previous section were not significantly different among 

non-treated and treated cultures. For the analysis in this section, volume based growth rates of 14 

biotest-experiments were joined. Statistical analysis revealed no differences between u of control 

populations and u of S. acutus cultured in the presence of water from a Daphnia culture (two-tailed 

t-test: t = 1.66; p = 0.470; df = 100). The within group variation was, however, considerable. The 

growth rates were on average (± 1 SD) 1.619 (0.200) d"1 for the controls and 1.648 (0.202) d"1 for 

133 



CHAPTER 6 

the treatments. Moreover, after examination of all biotests in this study one can only conclude that 

volume based growth rates in the presence of Daphnia water are not lower than in the absence. 

6.4 SEDIMENTATION 

6.4.1 Stake's law 

A constraint put on algal size is that the cells have to remain in suspension preferably in the 

euphotic zone. Below the compensation level, in the aphotic zone, respiration losses exceed gross 

photosynthesis. No growth occurs and eventually the cells may die because of a lack of the energy 

source light. Hence, algae should try to remain in suspension. Therefore, sedimentation may be a 

strong selective factor that favors the evolution of adaptations that reduce the sinking loss. 

According to the modified Stake's equation: 

V s ^ . g - r ^ - p Jxp - r v cp J 1 (6.1) 

in which vSED = the sedimentation velocity (m-d"1), g = the earth's acceleration (9.8 ms2), r = radius 

of particle (m), pa = density of algal particle (kg-m3), pm = density of medium (kg-m3), r\ = 

dynamic viscosity (kgm's1) and cpa = form resistance of algal particle (-), algae can modify their 

size, density and/or form resistance to reduce sedimentation. The most important factor seems the 

size as the radius is squared in the equation. However, plotting literature data of the logarithm of 

average particle radius against the logarithm of mean sedimentation rates reveals a straight-line 

relationship, which is proportional to r rather than r2 (Fig. 6.5). In fact, the exponent for r was 0.66 

rather than 2, which is close to 0.7 as reported by Waite et al. (1992), suggesting that density and/or 

form resistance co-vary with size (Reynolds, 1984). 

5 10 20 

Mean particle radius (um) 

Figure 6.5: Log-log plot of vĝ D (m d"l) against corresponding ra (|im) values. (Redrawn from data 

presented by Smayda, 1970; Titman & Kilham, 1976; Burns & Rosa, 1980; Reynolds, 1984; Waite et al, 

1992; Visser et al, 1996). Straight line indicates linear regression log vSED = -0.772 + 0.661 x log ra (r = 

0.626; n = 42), dashed lines represent 95% confidence intervals. 
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6.4.2 Sinking of Scenedesmus 

Sedimentation experiments were designed according the SETCOL procedure (cf. Bienfang, 

1981). The sedimentation rate was calculated from the net change in vertical algal biomass 

distribution within a sedimentation column (Fig. 6.6) after a finite time: — 

The mean sinking velocity (vSED, m-d"') was calculated h 

from the algal concentration at the settling region near the 

r 
'- 'si 

c ^sed 

bottom (C^ , the algal concentration remained in suspension (Csus), Figure 6.6: SETCOL 

the initial algal concentration (C0), the height between the sampling ports (h) and the elapsed time 

(t) according to the equation: 

vSED = (Csed-CsJxC0-'xhxt-1 (6.2) 

In a first experiment, sinking velocities were determined for S. subspicatus populations 

cultured in the absence and presence of one live Daphnia. A second experiment was conducted 

with unicellular S. acutus and mainly four-celled S. communis, while in a third and fourth 

experiment S. acutus populations cultured in the absence or presence of filtered medium form a 

Daphnia culture were used. The morphological characteristics of the strains used are presented in 

Table 6.1. 

Table 6.1: The mean number of cells per colony (± 1 SD) and the mean particle volume (MPV in um ;̂ ± 1 

SD) for the Scenedesmus strains used in SETCOL-experiments. 
Exp. 

I 

II 

III 

IV 

Scenedesmus strain 

S. subspicatus 'controls' 

S. subspicatus 'one live Daphnia' 

S. acutus 

S. communis 

S. acutus 'controls' 

S. acutus 'Daphnia water' 

S. acutus 'controls' 

S. acutus "Daphnia water' 

Cells per colony 

1.998(0.221) 

5.142(0.355) 

1.124(0.032) 

3.450(0.309) 

1.255(0.032) 

3.172(0.090) 

2.455 (-) 

5.672 (-) 

MPV (um^) 

70.4(3.3) 

217.2(42.3) 

58.6 (0.4) 

844.5 (14.3) 

107.1 (4.0) 

476.8 (33.8) 

193.3 (13.9) 

329.5(21.4) 

In all four experiments, the sinking velocities of the 'colonial' populations exceeded those 

of the 'unicellular' ones (Fig. 6.7). Significant differences per experiment were detected by {-tests. 

Separate Mests revealed that in Exp. II, III and IV the sinking velocities of the colonial populations 

were significantly higher than in the unicellular populations (Table 6.2). 
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Figure 6.7: Sinking velocities (md') of unicellular and colonial Scenedesmus species in four SETCOL-

experiments, including dominant morphorypes of strains used in Exp.I and II. Error bars indicate 1 SD. 

In Exp. I, the high within group variance resulted in no statistically significant differences, 

but also in this experiment the colonial populations had higher sinking velocities. In S. acutus, the 

measured sinking velocities (v^J from Exp II, III and IV are correlated with both the mean 

numbers of cells per colony and the mean particle volumes (Table 6.2). 

Table 6.2: P- and /-values of /-tests on the sinking velocities ( v^ ) per experiment including results of 

regressions between vsecj of Scenedesmus acutus and the mean number of cells per colony (C/C) or the 

mean particle volume (MPV). 
Exp. 

I 

II 

III 

IV 

/-value 

2.77 

11.9 

3.73 

4.98 

P-value 

0.109 

<0.001 

0.014 

0.003 

Regression Scenedesmus acutus 

Vsed-C/C: vsed = 0.089 +0.046 x C/C 

Vsed-MPV: vsed = 0.100 + 4.9310-4xMPV 

Correlation (r) and P- value 

r = 0.832; n = 5; P = 0.040 

r = 0.821; n = 5; P = 0.044 

6.6 DISCUSSION 

In larger cells or colonies the relatively smaller surface to volume ratio may reduce the rate 

of nutrient uptake (Reynolds, 1984), that could result in lower rates of growth (Banse, 1976). 

Reynolds (1984; Fig. 66) provides evidence that the maximal growth rates are significantly 

reduced in larger cells or colonies (r = 0.531; n = 16; P = 0.017), but below a particle volume of 

~104 um3 this correlation is lost (r « 0.25; n = 13; P « 0.2). Scenedesmus generally has particle 

volumes below ~104 p.m3 and in this study no negative effect of colony size on growth was 

observed. As pointed out in § 6.1 this could be due to the fact that the path from parent cell to 

unicells or colonies in S. acutus is more or less similar and thus no large differences may be 
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expected. Moreover, between unicells and induced colonies no differences in the PSII-efficiency 

were observed. Especially at low light conditions differences were expected since theoretically 

costs would be measurable when no compensation is possible, for example when some resource, in 

this case light, is limiting. Although no differences in chlorophyll-a content between the two 

morphotypes was found, the pigment composition of induced colonies seems slightly different in a 

way that they are better adapted to low light which could explain that no effects on PSII-efficiency 

were found (Wiltshire, unpublished data). 

The regression between the mean particle volume and the mean number of cells per colony 

has revealed a slope of less than 1 (see Fig. 3.1), which indicates that the individual cell size 

decreases with increasing colony size (Lampert et al., 1994). However, this implies that when total 

algal volume is not reduced in Daphnia water treatments, the total cell number will be enhanced. 

By other means, cell multiplication will be enhanced, which is clearly demonstrated in the 

experiment with different S. obliquus strains where the number of doublings per day was 

significantly higher in three strains exposed to Daphnia water (§ 6.2.7; see §8.2.2. and Fig. 8.4 

therein). It could, therefore, be possible that the colony inducing substance is used as substrate for 

growth that has an effect on wall formation, because in a colony additional material is necessary in 

a cementing substance (Trainor, 1998). Siver & Trainor (1981; 1983) demonstrated that the 

unicell/colony transformation in Scenedesmus is independent of growth rate, but could be achieved 

by altering the chemical environment. In this study, chemicals excreted from the grazer Daphnia 

altered the environment. Apparently, no metabolic costs are associated with colony formation in 

the laboratory, which has also been reported by Hessen & Van Donk (1993) and Lampert et al. 

(1994) (Table 6.3). However, these reports seem in direct conflict with the unicell-superiority-

hypothesis and the observation of competitive superior unicellular Chlorella (Boraas et al., 1998). 

Table 6.3: Growth rates (n, d1; ± 1SD) of Scenedesmus cultured without (controls) or with filtered water 

from a Daphnia culture (treatments). 
Scenedesmus Temperature °C Controls Treatments 

S. subspicatus' 

S. subspicatus' 

S. acutus2 

20 

20 

22 

0.35 (0.09) 

0.65 (0.06) 

1.32(0.07) 

0.39(0.10) 

0.60(0.11) 

1.35(0.04) 

'Hessen & Van Donk (1993) 

'Lampert et al. (1994) 

Faced with the problem of sinking out of the euphotic zone, costs of grazer-induced colony 

formation may also be attributed to enhanced sedimentation rates of colonies. Colonies had higher 

sinking rates than unicells, which has also been reported by Conway & Trainor (1972). The 

measured sinking rates (0.07 - 1.68 m-d"1) are in good agreement with literature data for 

Scenedesmus that vary from 0.07 to 1.1 m-d"' (Titman & Kilham, 1976; Burns & Rosa, 1980; 
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Trainor & Egan, 1988; Visser et al., 1996). The unicellular and the colonial Scenedesmus 

populations were not comprised of just unicells or eight-celled colonies, but consisted of a mixture 

of unicells and different coenobia (two- to eight-celled). Hence, sinking rates were an average of 

the population instead of one specific morph. Nevertheless, in S. acutus the sinking velocities 

increased with an increased colony size. 

Although unicells possessed more buoyancy than colonies (Conway & Trainor, 1972) not 

only Scenedesmus unicells, but also forms with bristles, multispined coenobia and gametes are 

morphotypes with a greater resistance to sinking (Trainor, 1969; 1992; Lukavsky, 1991). 

Especially bristles reduce sinking in Scenedesmus (Conway & Trainor, 1972). These bristles may 

occur in spined and non-spiny Scenedesmus (Trainor & Burg, 1965; Burg & Trainor, 1967; 

Massalski et al., 1974) and even in S. acutus (Marcenko, 1973), but no bristles were observed in 

the experiments. Thus probably size and density were the most important factors determining S. 

acutus sinking here. 

Unicells may not only settle slower than colonies, but could also more easily be 

resuspended or moved to upper water layers. Sinking to deeper water layers could imply reduced 

growth as light and temperature may be lower. In a water body, light intensity (7) gradually 

decreases over depth (z) according the Lambert-Beer's law: 

/ z = ^ " t a (6-3) 
where k = total vertical attenuation coefficient (m1), that is comprised of k^,, k|lumic, ka,J,ae and k ^ ^ 

and z = depth (m). Since light provides the energy for growth, algal growth fi(I) is a function of the 

irradiance available for photosynthesis at a given depth: 

^/=Amax77—T (6-4) 
Ay + 1 

The Kj = the half-saturation light intensity for Scenedesmus (3.5 W-m"2 » 160 umolm"2-s"' 

according to Rhee & Gotham, 1981). The vertical position of an algal cell in time is determined by 

its size, shape and density according to: Az = v^ At, with vSED = 2gr2-(pa-pm) x (9n(pa)"
1. The 

effect of differently sized cells, with different settling rates, will result in different vertical positions 

in time and, hence, in differences in growth. Consider a hypothetical unicell and colony at the 

surface of water with a k of 2 m'1 and in 1000 umolm'V light have settling rates of 0.05 and 1.0 

m-d"', respectively. After 12 h the theoretical growth rate of the colony will be reduced to 87% the 

rate of the unicell, because of sedimentation (Fig. 6.8). 

Here growth was only affected by light with a constant incident irradiance and not limited 

by other resources, the vertical attenuation coefficient was assumed constant over depth, spectral 

shifts over depth did not occur and the v^ was constant because the algae had a fixed morphology. 

Nevertheless, colonies will sink faster and even if they disintegrate after a certain period their 

vertical position may be different from unicells with lower sinking rates. Inasmuch colonies could 

experience lower growth rates than unicells, grazer-induced colony formation in S. acutus may 

have evolved because of the trade-off between sinking and reduced vulnerability to grazers. 
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sed (in d'1) 

Figure 6.8: Computed growth rates ((H) in time (h) for cells with different settling velocities (m-d-l). 

The trait colony formation is, however, only one of the potential anti-grazer defenses in 

Scenedesmus (Fig. 6.9). The genus Scenedesmus may be subdivided into two subgenera, 

Scenedesmus containing the non-spiny and Desmodesmus containing the spined species (Kessler et 

al, 1997). Spines may be effective against small predators, whereas bristles of over 100 um long 

may form a net that may discourage even larger grazers (Trainor & Egan, 1988). Thick cell walls 

and mucilage may give Scenedesmus resistance to digestion (Horn, 1981; Levitan, 1987; Van 

Donk & Hessen, 1993). Mucous could also be involved in the easy attachment of Scenedesmus to 

substrates thereby leaving their pelagic habitat (Often & Willemse, 1988) analogous to flagellates 

that may adjust their recruitment to the water column in response to grazing pressure (Hansson, 

1996). Some chemical compounds in Scenedesmus could be toxic to grazers and may even kill 

Daphnia (Boersma & Vijverberg, 1995). 

A defense could also be constitutive under conditions when grazers are always present or 

when the environment is highly predictable (Dodson, 1989; Bronmark & Petterson, 1994). 
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Figure 6.9: Potential defenses in Scenedesmus: Spines, Bristles, Mucilage, Colonies, Thick cell wall and 

Toxicity. 

In surface waters, grazers are always present, but the abundance, activity and taxonomic 

composition may vary greatly both on spatial and temporal scale. Scenedesmus is exposed to an 

assemblage of grazers varying from small protozoan to large metazoan predators. Daphnia can 

easily ingest unicells and small Scenedesmus coenobia (Lampert et al, 1994), but not large eight-

celled coenobia (Hessen & Van Donk, 1993). Most coenobia will undoubtedly be too large to be 

grazed by protist grazers, such as the phagotrophic flagellate Paraphysomonas (Grover, 1989). A 

fixed defense, or a phenotypic stability with four- or eight-celled coenobia as the most dominant 

morphs, would still confront Scenedesmus with the problem of sinking. Although bristles but also 

spines reduce the sinking in Scenedesmus, colonies still experience higher sinking losses than 

unicells (Conway & Trainor, 1972). Since no metabolic costs were detected and based on the 

plastic nature of the defense, costs have to be attributed to sinking out of the euphotic zone. This 

could, however, also be interpreted as an escape in time since Scenedesmus is capable of surviving 

prolonged periods of darkness (Dehning & Tilzer, 1989), where coenobia disintegrate and unicells 

may serve as inocula for subsequent blooms (Dehning & Tilzer, 1989; Egan & Trainor, 1989a,b). 

However, one has to keep in mind that even in the absence of grazers Scenedesmus may express 

considerable morphological variability (Trainor, 1998). Grazing is only one of the selection 

pressures that has shaped Scenedesmus plasticity. 
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CHAPTER 7 

Impact of grazer-induced colony 
formation in Scenedesmus on 

herbivorous zooplankton 

Parts of this chapter are based on: 

Lurling, M. & Van Donk, E. (1996). Oecologia 108: 432-437 

Lurling, M., De Lange, H.J. & Van Donk, E. (1997). Freshwater Biology 38: 619-628 

"Grazing pressure is not a constant force on the many 

diverse species that compose the phytoplankton communities, 

and it is unlikely that antiherbivore compromises 

are directed against single zooplankton species" 

- J.T. Lehman 1988 
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7.1 INTRODUCTION 

In aquatic ecosystems planktonic herbivores are confronted with a broad range of both 

edible and inedible algal taxa. Edible algae are considered easily encountered, ingested and 

digested by rotifers, copepodes, and cladocerans. Among the most successful species of 

zooplankton in freshwater systems are members of the suspension feeding genus Daphnia. It 

is commonly accepted that their success depends on the ability to feed efficiently on a wide 

size range of particles. Clear relationships between the grazers' body-size and the size of 

edible particles exist (Burns, 1968). The upper limit of edible particles depends on the 

grazers' body size, and generally this limit is lower for smaller daphnids. The dietary width is 

mainly determined by the upper limit since the lower size limit does not differ much among 

species (DeMott, 1982; 1986). This means that in situations where large algae, inedible for a 

small species A, but still edible for a larger species B, are more abundant, the species B will 

ultimately dominate the zooplankton community. Natural phytoplankton assemblages can be 

highly variable in species composition and there is broad consensus that dominance of 

inedible algal species is promoted when grazing pressure on edible algal taxa is high (Sommer 

etal., 1986). 

It is known from several studies that Daphnia can alter the morphological appearance of 

phytoplankters. Aphanizomenon shows a shift from flakes in the presence of Daphnia to 

single filaments or smaller flakes in its absence (Lynch, 1980; Holm et al., 1983). Synedra 

occurs as colonies consisting of dozens to hundreds of cells in presence of Daphnia, but as 

single cells in its absence (Sterner, pers. comm). Also Scenedesmus can form large multicelled 

aggregates in the presence of Daphnia and eight-celled coenobia may be common when 

infochemicals released from grazing Daphnia are present (Hessen & Van Donk 1993, 

Lampert et al., 1994; This thesis). The presence of large and heavily spined colonies of 

Scenedesmus subspicatus reduces grazing by Daphnia magna (Hessen & Van Donk, 1993), 

but when fed non-spiny colonies of S. acutus no depressed grazing by D. magna was observed 

(Lampert et al, 1994). The colonies of the non-spiny S. acutus may, however, exceed the size 

of grazable particles for juveniles and small zooplankters. Therefore, in this chapter the effects 

of different Scenedesmus morphotypes on feeding and growth of herbivorous zooplankton are 

examined. 

7.2 ROTIFERS 

7.2.1. Animals 

The rotifers Brachionus calyciflorus and Keratella quadrata were obtained from the 

culture collection at the Max-Planck-Institute for Limnology (Plon, Germany). Both rotifer 

species were cultured separately in a climate-controlled room at 20 ± 1°C on WC-medium 

with S. acutus as food. B. calyciflorus was cultured in a 350 ml chemostat system with a 
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dilution rate of 0.35 d" , while K. quadrata was cultured in a 350 ml batch system and fed 

every two days with S. acutus (1 mg C-1"). 

7.2.2. Ingestion experiments 

Ingestion (IR) and clearance rates (CR) of B. calyciflorus and K. quadrata feeding 

on Scenedesmus were determined with 14C-labelled algae analogous to the method described 

by Rothhaupt (1995). Algae (10 ml) were harvested from the culture vessels and added to 

40-ml fresh WC-medium (non-induced) or WC medium with rotifer exudates (induced) in 

100-ml cellulose-plug-stoppered Erlenmeyer flasks. The 50-ml algal suspensions were 

incubated with 2.5 MBq NaH14C03 for 24 h at 95 ftmol-m'V continuous light provided from 

above by daylight fluorescent tubes (Osram L18W/19 5000 Deluxe daylight). Additional 

algal suspensions were not labeled but received 1 ml from a NaHC03 solution (12.6 g l"1) to 

allow determination of algal morphological characteristics. Labeled algae were centrifuged 

twice and resuspended in WC medium. The algal concentrations in carbon equivalents (mg 

C-1'1) were determined using a calibration curve of extinction at 800 nm vs. carbon content. 

Aliquots of 50 fx\ labeled algae were pipetted into scintillation vials. Experimental animals 

were pipetted from the cultures into 10 ml unlabeled food in 50 ml bottles and allowed to 

adapt to the desired food concentration. After at least 1 h of adaptation 25 ml labeled food 

with a similar concentration was added, and 2 x 1 ml food suspension was pipetted from the 

bottles and inserted into scintillation vials. After 10 minutes the experimental animals were 

collected on a 52 fim sieve, rinsed with de-ionized water, narcotized in carbonated water 

and killed in a Petri-dish with a few drops of formaldehyde (37%). Groups of 12 

(Brachionus) or 25 animals (Keratella) were pipetted into scintillation vials. An additional 

vial was filled with a similar aliquot of fluid from the Petri-dish, but without rotifers, to 

check for background radioactivity. The rotifers were dissolved overnight at 60°C in 300 /xl 

of tissue solubilizer (Soluene 350, Packard). Rotifers and 50 fil samples of labeled food 

were counted with 5 ml water absorbing scintillation cocktail (Instant scint-gel II plus + 5 % 

Carbo-sorb, Packard), 1 ml labeled food samples were counted with 3.5 ml scintillation 

cocktail. The activity of the samples was measured in a Tri-Carb 1900CA liquid scintillation 

analyzer (Packard). Clearance and ingestion rates were calculated according to Peters 

(1984). 

7.2.3. Results rotifer grazing 

Rotifers were fed with 3 size classes of Scenedesmus, unicellular ("small") and 

colonial S. acutus ("medium") and colonial S. armatus ("large"). The morphological 

characteristics, such as cell dimensions and colony size, of unlabeled algae differed between 

the algal size classes (Table 7.1). 
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Table 7.1: Morphological characteristics of Scenedesmus size classes used as food for the rotifers 

Keratella quadrata (Kq) and Brachionus calyciflorus (Be) presented as mean particle volumes (MPV, 

urn3), mean number of cells per colony, equivalent spherical diameter (ESD, urn) and cell dimensions 

(length x width, um). 

Scenedesmus size MPV (um3) Cells colony" ESD (um) Cell dimensions (length x width, um) 

Kq Be Kq Be Kq Be Unicells 4-celled 8-celled 

Small S. acutus 126 219 1.2 1.6 5.7 6.9 15x5 17x12 

MediumS. acutus 355 382 3.1 3.8 7.9 8.3 16x6 22x17 33x25 

Large S. armatus 695 2130 4.2 5.5 9.6 14.4 18x7 23x23 42x26 

Differently sized Scenedesmus affected the feeding of both B. calyciflorus (Fig. 7.1) and K. 

quadrata (Fig. 7.2). Clearance rates decreased gradually with increased food concentration. 

B. calyciflorus had the highest clearance rates with medium sized S. acutus (4.3 ± 0.5 

fd-h1), K. quadrata with small S. acutus (7.4 ± 1 . 4 /xlh"1). The feeding of the rotifers on 

differently sized algal food showed remarkable differences. In K. quadrata larger sized 

Scenedesmus resulted in reduced clearance and ingestion rates. However, B. calyciflorus 

had the highest clearance and ingestion rates on medium sized Scenedesmus. 
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Figure 7.1: Clearance rates (mlind. 'h1 : Panel A) and ingestion rates (ng Cind'h"1: Panel B) for 

Brachionus calyciflorus feeding on 14C-labeled small unicellular ( • ) , medium sized (O) or large 

colonial Scenedesmus (A) at different food concentrations (in mg C liter"1). Error bars represent 1 SD 

(n = 8). 
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Figure 7.2: Clearance rates (ml- ind/'-h"1: Panel A) and ingestion rates (ng Cind"'h"1: Panel B) for 

Keratella quadrata feeding on 14C-labeled small unicellular ( • ) , medium sized (O) or large colonial 

Scenedesmus (A) at different food concentrations. Error bars represent 1 SD (n = 5). 

To unravel whether the lowest CR and IR when feeding on S. armatus was due to algal 

size or the taste of an unknown food species, B. calyciflorus that had been cultured with S. 

acutus as food, was offered five different Scenedesmus species. Although all five strains had 

been cultured in the absence of a colony inducing zooplankton factor, they were not similarity 

sized (Table 7.2). 

Table 7.2: Characteristics of five Scenedesmus species fed to B. calyciflorus. 
Scenedesmus species MPV (urn ) Cells colony" - dominant morphs ESD (um) 

S. acutus 

S. armatus 

S. falcatus 

S.quadricauda 

S. subspicatus 

200 -2.0 - 1,2 and 4 celled coenobia 6.7 

730 -3.8 - 2 and 4 celled coenobia 9.9 

177 ~1.5 - 1 and 4 celled coenobia 6.3 

139 ~1.2 - 1 and 2 celled coenobia 5.8 

96 -1.2 -1 and 4 celled coenobia 4.9 

Differences in IR and CR of rotifers feeding on the various species were observed, but 

no major differences between animals feeding on S. acutus or S. armatus were detected (Fig. 

7.3). At low food concentration, B. calyciflorus fed even better on S. armatus than on S. 

acutus. Hence, the lower IR and CR in the former experiment were probably due to a size 

effect rather than different algal taste. 
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Figure 7.3: Clearance rates (mlind. 'h1 : Panel A) and ingestion rates (ng Cind'h"1: Panel B) for 

Brachionus calyciflorus feeding on ' C-labeled Scenedesmus acutus ( • ) , S. subspicatus (O), S. 

quadricauda (A), S. falcatus (A) and S. armatus ( • ) at low (~0.5 mg CI"1) and high (~5 mg CI"1) food 

concentrations. Error bars represent 1 SD (n = 12). 

7.3 Cladocerans 

7.3.1 Animals 

In a first experiment (§ 7.3.2) the relatively small cladoceran Ceriodaphnia reticulata 

was used, isolated from lake Zwemlust (The Netherlands) and cultured in the laboratory on 

modified WC medium with S. acutus as food. In a radiotracer-experiment (§ 7.3.3), Bosmina 

longirostris, isolated from lake Zwemlust, and the daphnids Daphnia cucullata TJ33 and D. 

galeata were used. The former daphnid was obtained from the culture collection at the Center 

for Limnology (NIE-CL, The Netherlands), the latter species was isolated from lake 

Zwemlust. All daphnids were cultured in the laboratory at 20°C in 1 liter jars on RT medium 

(Tollrian, 1993) with S. acutus as food. 

7.3.2 Ceriodaphnia grazing on Scenedesmus 

The non-spiny S. acutus was offered in three size classes to Ceriodaphnia: mainly 

unicells (-85 urn3 per particle), mainly 2- and 4-celled coenobia (-250 um3) and mainly 4-

and 8-celled coenobia (-600 um3). Spined Scenedesmus were offered in similar size classes, 

but as different species: S. subspicatus, unicellular (-60 um3), 2-4 celled S. quadricauda 

(-220 um3) and mainly 4-celled S. protuberans (-600 um3). 

A five day old cohort of Ceriodaphnia was used in the experiment with animals 

having a body-length between 0.68 and 0.73 mm. Ten Ceriodaphnia were transferred in 50 ml 

Scenedesmus suspensions of similar biovolumes (5106 um 3 mr ' ) in 100 ml cellulose-plug 

stoppered Erlenmeyer flasks. The different Scenedesmus treatments were then incubated in 

quadruplicate for 18 h on a rotating shaking device in continuous light (100 umol-m"2s"'). 

Four incubations per Scenedesmus size class and species were incubated without 

Ceriodaphnia and served as controls. Algal biovolume and number of particles were 
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determined initially and after 18 h incubation in the size range 3.0 - 25.0 um ESD using a 

Coulter Multisizer II (100 um capillary). Clearance rates were calculated from Coulter data, 

corrected for growth in the controls, according the equation (7.1): 

CR = 
[ln(C,8-C0)-ln(Blg-B0)J 

At 
(7.1) 

Where CR = clearance rate (mlind'-h"'), Cis = algal concentration in control after 18 h, Co = 

initial algal concentration in control, B^ = algal concentration in treatment after 18 h, VE = 

volume of medium in the experimental vessels (ml) en N = the number of Ceriodaphnia per 

Erlenmeyer. 

The clearance rates of Ceriodaphnia were significantly affected by the different 

Scenedesmus size classes (Fig. 7.4). Two-way ANOVA indicated a significant size effect (F = 

4.83; P = 0.021), but no significant difference between non-spiny and spined species (F = 

0.42; P = 0.526) and no significant interaction effect (non-spiny/spined x size: F= 0.91; P = 

0.421). Tukey's test revealed two homogeneous groups, whereby feeding on S. quadricauda, 

S. protuberans and the largest S. acutus size-class was significantly reduced compared to 

feeding on the smallest size-classes, the unicellular S. subspicatus and S. acutus. 
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Figure 7.4: Clearance rates (mlind.'h1) of Ceriodaphnia reticulata feeding on equal amounts of 

either non-spiny or spined Scenedesmus of different size classes (see text for more details). Error bars 

represent 1 SD (n = 4). 

7.3.3 Grazing experiment with small cladocerans and C-labelled Scenedesmus 

Ingestion and clearance rates were determined in radio-tracer experiments for Bosmina 

longirostris, Daphnia cucullata and D. galeata feeding on unicellular or colonial 
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Scenedesmus. The labeled algae cultured as described in section 7.2.2 were centrifuged and 

resuspended in WC-medium. The food concentrations in carbon equivalents (mg CI"1) were 

determined using a calibration curve of the extinction at 800 nm vs. carbon content. One 

concentration (0.6 mg C-1"1) was used for B. longirostris, a higher concentration (1.0 mg CI"1) 

for D. cucullata, while three concentrations were used for D. galeata, low (0.1 mg CI"1), 

intermediate (0.5 mg CI"1) and high food (1.0 mg CI"1). Experimental animals were pipetted 

from the cultures into 10 ml (Bosmina) or 25 ml (Daphnia) unlabeled food in 50 ml bottles 

and allowed to adapt to the desired food concentration. After 1 h adaptation, 25 ml labeled 

food with a similar concentration was added, and 2 x 1 ml of the suspension was immediately 

transferred into scintillation vials. 

After 5 minutes for Daphnia or 10 minutes for Bosmina the experimental animals 

were collected on a 52 /nm sieve, rinsed with de-ionized water, narcotized in carbonated 

water and killed in a Petri-dish with a few drops of formaldehyde (37%). Groups of 6 

Bosmina were pipetted into scintillation vials, while Daphnia's were pipetted individually 

into vials after their length had been measured. An additional vial was filled with a similar 

aliquot of fluid from the Petri-dish, but without animals, to check for background 

radioactivity. The animals were dissolved and the activity measured as described in section 

7.2.2. Clearance and ingestion rates were calculated according to Peters (1984). 

7.3.3.1 Bosmina longirostris 

Both clearance rate and ingestion rate of Bosmina were significantly reduced (Mest; P < 

0.001) when the animals were offered large colonial Scenedesmus (Table 7.3). 

Table 7.3: Mean clearance rates (± 1 SD; mlind.'h"1) and ingestion rates (ng Cind.'h"') of Bosmina 

longirostris feeding on similar concentrations (-0.6 mg CI'1) of l4C-labeled unicellular or colonial 

Scenedesmus. 
Food type Cells-colony"' Clearance rate (mlind.'h1) Ingestion rate (ng Cind'h"1) N~ 

Unicells 1.55(0.25) 0.041 (0.007) 25.88 (4.54) W~ 

Colonies 4.24(0.11) 0.011(0.002) 6.90(1.22) 8 

7.3.3.2 Daphnia cucullata 

Clearance rates and ingestion rates of D. cucullata were lower when fed with colonial 

Scenedesmus than if a similar concentration unicells (1 mg C-1"1) was the food (Fig. 7.5). A t-

test to check for differences between the regression lines revealed no significant differences 

for the clearance rates (t = 1.50; df =24; P = 0.073), however, ingestion rates were 

significantly different (t = 5.98 df = 24; P < 0.001). 
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7.3.3.3 Daphnia galeata 

Two-way ANOVA on clearance rates (CR) of D. galeata indicated a significant food type 

effect (F = 35.2; P = 0.028) and a significant effect of food concentration (F = 54.2; P = 

0.018). At low (0.1 mg CI'1), intermediate (0.5 mg CI"1) and high food levels (1.0 mg CI"1) 

clearance rates on colonies were significantly lower than rates on unicells (Table 7.4). 

However, two-way ANOVA on mean ingestion rates (IR) indicated no food type effect (F = 

4.24; P = 0.176) and no effect of food concentration (F = 2.07; P = 0.326). Moreover, two-

way ANOVA indicated no significant differences in body-length of the experimental animals, 

which were on average 0.95 (± 0.13) mm. 
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Figure 7.5: Clearance rates (ml-ind.'-h1: Panel A) and ingestion rates (ug Cind'h"1: Panel B) of 

Daphnia cucullata feeding on ,4C-labeled unicellular (•) or colonial (O) Scenedesmus (~1 mg CI'1). 

Straight lines represent linear regressions, dotted lines the 95% confidence intervals. 

Table 7.4: Mean clearance rates (CR ± 1 SD; mlind."'-h"1) and mean ingestion rates (IR ± 1 SD; mg 

Cind'1h"') of Daphnia galeata feeding on 14C-labeled unicellular or colonial Scenedesmus at food 

concentrations of-0.1, 0.5 and 1.0 mg CI"1, including mean (± 1 SD) body-lengths of animals per 

Food type 

Unicells 

Colonies 

Unicells 

Colonies 

Unicells 

Colonies 

mgCl"1 

0.1 

0.1 

0.5 

0.5 

1.0 

1.0 

IR 

0.026(0.010) 

0.014(0.013) 

0.072 (0.038) 

0.032 (0.020) 

0.122(0.053) 

0.039 (0.043) 

CR 

0.263(0.100) 

0.144(0.130) 

0.143 (0.058) 

0.064 (0.039) 

0.122(0.053) 

0.039 (0.043) 

Body-length 

0.90 (0.10) 

0.92(0.11) 

0.93 (0.12) 

0.97(0.12) 

1.02(0.17) 

0.98(0.14) 

N 

15 

18 

18 

20 

21 

13 
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1A GROWTH OF DAPHNIA ON UNICELLULAR AND COLONIAL SCENEDESMUS 

Life-table experiments were performed to investigate the effect of unicellular or colonial 

S. acutus on the life history of two Daphnia species, D. cucullata and D. pulex. 

7.4.1 The algal food and experimental animals 

The food algae were cultured in two 1.0 liter chemostats on either 20% Z8 medium 

(Skulberg & Skulberg, 1990) or on water from lake Zwemlust (The Netherlands) enriched 

with Z8 nutrients and filtered through a 0.2 am membrane filter. During the course of the 

experiment 81 ± 7% of S. acutus cultured in the chemostat on 20% Z8 medium occurred as 

unicells with mean cell dimensions (± 1 SD) o f l 0 ( 2 ) x 4 ( l ) um. The average number of 

cells per particle was 1.30 (0.12) with a mean particle volume (± 1 SD) of 85.0 (6.6) um3. The 

lake water appeared suitable to induce colonies in Scenedesmus (Liirling & Van Donk, 

1997b). In the chemostat with filtered lake water 30 ± 5% of the S. acutus remained 

unicellular, 21 ± 8 % was four-celled, 22 ± 10% occurred as eight-celled, while the remaining 

colony sizes (i.e. 2-, 3-, 5-, 6-, 7- and more than eight cells per colony) made up the rest of the 

population. The mean dimensions (± 1 SD) of an eight-celled coenobium were 27 (8) x 21 (3) 

um. On average 4.03 (0.47) cells formed a colony with a mean particle volume (± 1 SD) 

413.0 (79.9) um3. The chemostats were continuously illuminated by circular fluorescent tubes 

(Philips TLEM 40W/33RS) at an irradiance of 125 umol-m"2s"' in a temperature controlled 

chamber at 20°C and with a dilution rate of 1.2 d" . 

The cladoceran Daphnia pulex (adult female - 3 - 4 mm) was isolated from Lake 

Zwemlust (The Netherlands) and has been cultured for over a year in the laboratory. A clone 

(Tj33) of the smaller species Daphnia cucullata (adult female -0.8 -1.1 mm) was obtained 

from the culture collection of the Centre for Limnology (Nieuwersluis, The Netherlands). 

Animals were cultured at 20°C in 1 liter jars containing a suspension of S. acutus in 0.45 um 

filtered lake water. 

7.4.2 Grazing by D. cucullata and D. pulex 

Two size classes of D. pulex and D. cucullata were fed with either unicellular or 

colonial S. acutus resuspended in filtered lake water. A cohort of D. pulex and one of D. 

cucullata were transferred into separate 1 liter beakers containing lake water filtered through 

0.2 um. Then, 10 D. pulex and 20 D. cucullata were selected and transferred into separate 100 

ml algal suspensions (unicellular algae -1 mg CI"1). The used algal biovolumes were similar 

for both treatments. The animals were fed with either unicellular algae from the 20% Z8 

chemostat or colonial algae derived from the lake water chemostat. 

The tests were run for 3 h in the dark at 20°C in quadruplicate. Algal suspensions 

without zooplankters served as referent. Total algal volumes between 3.0 and 20.0 um ESD 
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were determined at the beginning of the experiments and after 3 h of grazing using the Coulter 

Multisizer II. Clearance rates (CR, mlind."1 h"1) were computed from Coulter data. 

Algae harvested from both chemostats and fed to two size classes of each Daphnia 

revealed great differences in clearance rate between the two zooplankters (Table 7.5). D. 

pulex showed no differences in clearance rate when fed unicellular or colonial Scenedesmus, 

while D. cucullata showed depressed clearance rates when fed colonies compared to unicells. 

Table 7.5:Mean clearance rates (± 1 SD; mlind.'h"1) of Daphnia cucullata and D. pulex feeding on 

unicellular or colonial Scenedesmus acutus, including mean (± 1 SD) body-lengths of animals per 

series. 

Body-size (mm) Clearance rate (mlind. -h ) 

D. pulex 

1.02(0.09) 

2.48(0.13) 

D. cucullata 

0.60 (0.06) 

1.09(0.12) 

Unicellular food 

0.24(0.10) 

0.97 (0.05) 

Unicellular food 

0.32 (0.06) 

0.61(0.11) 

Colonial food 

0.19(0.08) 

0.87 (0.26) 

Colonial food 

0.03 (0.02) 

0.19(0.12) 

Two-way ANOVA indicated a significant Daphnia species (F = 49.8; P < 0.001) and 

food type (F = 18.8; P < 0.001) effect, but no interaction effect (F = 3.1; P = 0.057) on 

clearance rates. Post-hoc comparisons showed that only D. cucullata had lower clearance 

rates when feeding on colonial Scenedesmus. Comparison between the smaller size class of D. 

pulex and the larger size class of D. cucullata, which in fact are similarly sized, reveals that 

both species had similar clearance rates when fed colonies, but that the adult D. cucullata had 

a significantly higher clearance rate than juvenile D. pulex when fed unicells. 

Inasmuch in the presence of coenobial Scenedesmus the clearance rate of D. cucullata 

was reduced, it seems that those coenobia with dimensions of 30 x 20 um exceeded the size 

range of easily ingestible particles. 

7.4.3 Design Daphnia life-history experiments 

Life-table experiments with both Daphnia cucullata and D. pulex were conducted to 

investigate the influence of altered algal morphology on growth and reproduction. Animals 

belonging to the same cohort were placed individually in 100 ml tubes containing log-phase S. 

acutus in 0.45 um filtered lake water (Lake Maarsseveen, The Netherlands). Newborns from 

the third clutch were collected within 20 h of birth and put together in a 500 ml beaker. For 
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each series neonates of D. pulex and D. cucullata (15 respectively 14) were selected from this 

beaker and placed individually in 100 ml test tubes containing 60 ml of a unicellular or 

colonial S. acutus suspension in 0.45 um filtered lake water. Both Daphnia species were fed 

with equivalent biovolumes of unicellular or colonial algae (i.e. 8106 urn'-ml"1, yielding 

approximately 3 mg C-1"1). The tubes were incubated at 20°C in the dark to prevent algal 

growth. The animals were transferred daily into clean tubes containing fresh medium. Length 

was recorded and the animals were examined daily for molting. Time needed to reach 

maturity, survival and number of newborns were recorded. Newborns were removed from the 

tubes. Growth and reproduction were measured until the animals reached the fourth adult 

instar and consequently had released their third clutch, because the population growth rate is 

mainly determined by the first three clutches (Porter et al, 1983; Vanni & Lampert, 1992). 

The intrinsic rate of population increase (r) was estimated using the Euler equation (7.2): 

l = ie-"l„mx (7.2) 
x=0 

where r = rate of population increase (d"), x = age class (0...N), lx = probability of surviving 

to age x, mx = fecundity at age x. Because of the impossibility of computing standard errors of 

the population parameter r directly, a jackknifing method was used to calculate them (Meyer 

et al., 1986). For both daphnids r values, age and length at maturity were compared by 

applying Mests. Numbers of newborns were statistically compared applying two-way 

ANOVA. 

7.4.4 Results life-history experiment 

Growth of D. pulex, as increase in body length in time, shows no differences between 

animals fed unicellular or animals fed colonial Scenedesmus (Fig. 7.6; Panel A). This in 

contrast with D. cucullata in which a significant difference in increase in body length 

occurred (Fig. 7.6; Panel B). After 16 days, body size of D. cuculllata fed with colonies was 

significantly smaller than that of animals reared on unicells (Mest; P < 0.001), at 1.01 ± 0.04 

and 1.13 ± 0.07 mm, respectively. 

Age at maturity was not affected by the different food types in both Daphnia species (/-

test; P = 0.760 and P = 0.767 for D. pulex and D. cucullata, respectively). Neither was the 

length at maturity in D. pulex (P = 0.595), however in D. cucullata length at maturity was 

significantly lower when fed colonies (P = 0.008; Table 7.6). 

The number of live neonates released per mature female differed significantly between 

successive clutches in D. pulex (F = 43.8; P < 0.001). However, no significant effect of 

unicellular or colonial food (F= 0.34; P = 0.565) was found. D. cucullata had more offspring 

in all three clutches when fed unicells compared to clutch-size of animals grown on colonial 

Scenedesmus (Fig. 7.7). Two-way ANOVA indicated no significant clutch (F = 2.2; p = 

0.123) and interaction effects (F= 1.1;/? = 0.361), but a significant food type effect (F= 21.5; 
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P < 0.001) on reproduction. Tukey's post-hoc comparison revealed that there were 

significantly more D. cucullata offspring in the third clutch when they were fed unicells than 

for animals fed colonies. 
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Figure 7.6: Relationship between age (d) and carapace length (mm) of Daphnia pulex (Panel A) and 

D. cucullata (Panel B) grown on unicellular ( •) or colonial (O) Scenedesmus acutus. Error bars 

represent 1 SD. 
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Figure 7.7: Mean clutch sizes (± 1 SD) of D. pw/ex (Panel A) and D. cucullata (Panel B) grown on 

either unicellular (gray bars) or colonial (open bars) S. acutus. 

The Daphnia intrinsic rate of population increase (r) was similar for D. pulex on both 

food types (P = 0.757), but significantly different for D. cucullata (P = 0.020). Feeding on 

colonial Scenedemus resulted in a lower D. cucullata growth rate (Table 7.6). 
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Table 7.6: Population growth rate (r ± 1 SD), age and length at maturity (± 1 SD), interclutch duration 

(± 1 SD) and survival to day 16 of Daphnia pulex and D. cucullata fed unicellular or colonial 

Scenedesmus acutus. 
Scenedesmus 

Food type 

Growth rate 

(r, d"1) 

Age at Length at 

maturity (d) maturity (mm) 

Interclutch 

Duration (d) 

Survival 

(%) 

D. pulex 

Unicells 

Colonies 

0.44 (0.06) 

0.42 (0.07) 

5.4 (0.7) 2.29 (0.07) 

5.4(1.4) 2.31(0.09) 

2.82 (0.39) 

2.86 (0.64) 

67 

73 

D. cucullata 

Unicells 

Colonies 

0.25 (0.05) 

0.18(0.05) 

6.8(1.9) 

6.6(1.4) 

0.92 (0.05) 

0.86 (0.05) 

2.78(1.00) 

2.77 (0.61) 

86 

78 

7 .5 BIOCHEMICAL COMPOSITION OF UNICELLS AND DAPHMA-INDUCED COLONIES IN 

SCENEDESMUS 

In the previous section (§ 7.4) an effect of colonial Scenedesmus on growth of D. 

cucullata was observed. However, as colonies have a different surface to volume ratio, their 

chemical composition may also differ from that of unicells. Besides morphological features, 

also mineral and biochemical composition of the algae may affect zooplankton growth. 

Several studies have shown that P-limited cells are poorer food for Daphnia than N-limited 

cells, which are of intermediate quality, while nutrient-sufficient cells are highest in quality 

(Groeger et al., 1991; Mitchel et al, 1992; Sterner et al. 1993). Recently, interest has focused 

on the role of fatty acid (FA) composition of phytoplankton in determining the food quality 

for zooplankton. Some studies suggest that polyunsaturated fatty acids (PUFA's) like EPA 

(eicosapentaenoic acid, 20:5co3) and DHA (docosahexanaenoic acid, 22:6co3) may improve 

the quality of algae as food for zooplankton (Ahlgren et al., 1990; Muller-Navarra, 1995a). In 

this section, therefore, special attention will be paid to the biochemical composition of 

unicellular and colonial ecomorphs of Scenedesmus emphasized on fatty acid composition. 

7.5.1 Species and cultures 

The green algae Scenedesmus obliquus Kiitzing NIVA-CHL 6 and Scenedesmus 

subspicatus Chodat NIVA-CHL 55 were obtained from the culture collection of the 

Norwegian Institute for Water Research (NIVA, Norway). A subculture of Scenedesmus 

acutus Meyen was derived from a chemostat culture at the Max-Planck Institute for 

Limnology (Plon, Germany). The algae were cultured in 1.0 liter chemostats on COMBO-

medium (Kilham et al., 1999), continuously illuminated by circular fluorescent tubes (Philips 
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TLEM 40W/33RS) at an irradiance of 125 umol-m^s"1 in a temperature controlled room at 20 

± 1 °C and with a dilution rate of 1.0 d"1. 

The cladocerans Daphnia magna Straus and D. cucullata Sars were obtained from the 

Centre for Limnology (Netherlands Institute of Ecology, Nieuwersluis). Animals were 

cultured in 1 liter jars containing a suspension of S. acutus in COMBO medium in a 

temperature controlled chamber at 20°C under a 14:10 h L:D cycle. 

7.5.2 Colony-induction: 

For the production of colony inducing infochemicals, about 100 non-egg bearing D. 

magna were collected from culture vessels and transferred into a flask with 500 ml of 

COMBO and a suspension of S. acutus (-45.000 cellsml"1; biovolume of 5.4106 um3mr'; ~2 

mg C 1"'). Two replicate flasks were incubated for 24 h in the dark at 20CC. After this period 

water from both flasks was combined, filtered and used as test water in a colony induction 

experiment. This induction experiment was performed in 300 ml Erlenmeyer flasks containing 

150 ml Scenedesmus-COMBO suspensions in triplicate. Each flask contained 115 ml of 

COMBO medium, a 10 ml inoculum of unicellular log-phase Scenedesmus from a chemostat 

and either 25 ml of additional COMBO medium (controls) or 25 ml of test water (treatments). 

In an additional treatment two live D. magna were added to 150 ml algal suspensions of S. 

obliquus and S. subspicatus. The flasks were incubated in triplicate on a shaking table at 20 

°C, continuously illuminated from above by fluorescent cool-white tubes (Philips TL 36W/82) 

at -125 umolm^s"1. After an incubation period of 3 days, subsamples were taken and algal 

densities and particle size distributions were determined in the range 3.0 - 25.0 um equivalent 

spherical diameter (ESD) using a Coulter Multisizer II (100 um capillary). For each replicate 

at least 100 aggregates (i.e. unicells and coenobia) of Scenedesmus were also counted in a 

subsample preserved in Lugols fixative using a Nikon light-microscope at 600x 

magnification. Both the mean particle volumes (um3) and the mean number of cells per 

colony were determined. The algae were concentrated by centrifugation, freeze-dried and 

stored at -20 °C until further biochemical analysis. 

The three Scenedesmus species showed different responses to the D. magna 

infochemicals. Formation of coenobia was clearly promoted by infochemicals in the two non-

spiny species, S. acutus (/-test; P < 0.001) and S. obliquus (F2,6 = 2788; P < 0.001) in the 

presence of medium from a D. magna culture. The one-way ANOVA was also highly 

significant for the spined S. subspicatus (Fjfi = 3045; P < 0.001: Table 7.7). A Tukey test 

revealed that significant colony formation was promoted in S. subspicatus exposed to live 

Daphnia, but not in S. subspicatus exposed to filtered water from D. magna culture. The one

way ANOVA for this species was highly significant because of the very small within group 

variations. 

155 



CHAPTER 7 

Table 7.7: Mean particle volumes (MPV in um3, ± 1 SD) and mean number of cells per colony 

(Cel/Col ± 1 SD) in Scenedesmus in response to Daphnia magna infochemicals. Algae were incubated 

without infochemicals (Control), with 17% (v/v) filtered water from a D. magna culture (Filtrate), and 

with 17% filtrate and two live Daphnia added (Daphnia). 

Treatment 

Control 

Filtrate 

Daphnia 

Scenedesmus acutus 

MPV 

74(5) 

337 (5) 

Cel/Col 

1.3(0.1) 

4.8 (0.6) 

Scenedesmus obliquus 

MPV 

51 (0.4) 

281 (4) 

241 (4) 

Cel/Col 

1.2(0.1) 

6.5 (0.3) 

6.9 (0.4) 

Scenedesmus subspicatus 

MPV 

117(10) 

113(11) 

192 (14) 

Cel/Col 

2.7 (0.3) 

2.9 (0.2) 

3.6(0.1) 

7.5.3 Biochemical analysis 

Unicellular and colonial ecomorphs of Scenedesmus were analyzed for total protein, 

total carbohydrates, total lipid content and fatty acid composition. Total protein content was 

determined according the method as described by Lowry et al. (1951). Carbohydrates were 

measured using the anthrone method (Hassid & Abraham, 1957). Total lipid content was 

determined following the method described by Meyer & Walther (1988). For fatty acid 

analysis ca. 1 mg of freeze-dried algae was transferred into 10 ml tubes, and C21:0 

(heneicosaenoic acid) was added as internal standard. Fatty acids were extracted with 2 ml 2:1 

v/v chloroform/methanol (analytical grade), vortexed and centrifuged. After repeating this 

extraction twice, supernatants were joined and washed with demineralized water with 0.88% 

NaCl (according to Folch et al., 1957). The lipid esters were transmethylated at 80°C during 4 

hours in 1 ml of 3% H2SO4 in dry methanol, and extracted with hexane. The fatty acids were 

analyzed on a Hewlett Packard 5890A Gas Chromatograph, with a very polar 50 m silica 

column. 
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Figure 7.8: Biochemical composition (total protein, carbohydrate and lipid content) of 

Scenedesmus from control, filtrate, and Daphnia (as in Table 7.7) as a percentage of frozen dry-

weight. 
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There was no clear and consistent change in total protein, carbohydrate and lipid 

content between the unicellular and colonial ecomorphs of the three Scenedesmus species 

(Fig. 7.8). However, fatty acid concentrations differed between ecomorphs (Table 7.8). 

Table 7.8: Fatty acid composition (FA) as % of dry-weight for three Scenedesmus species, both in 

unicells and colonies. (Filtrate = Scenedesmus incubated with filtrate from 200 Daphnia magna l"1, 

Daphnia = Scenedesmus incubated with filtrate + 2 live D. magna added, nd = not detected). 

Scenedesmus acutus Scenedesmus obliquus Scenedesmus subspicatus 

Fatty acid Unicells Filtrate Unicells Filtrate Daphnia Unicells Filtrate Daphnia 

C16:0 0.511 

C16:lco7 0.314 

C16:3co4 nd 

C16:3co? nd 

C16:4w3 1.190 

C17:0 nd 

C18:0 0.509 

C18:lco9 nd 

C18:lco7 nd 

C18:2co6 1.537 

C18:3co6 0.053 

C18:3co3 1.891 

C18:4co3 0.543 

4.732 

nd 

nd 

nd 

2.262 

nd 

1.340 

nd 

nd 

nd 

nd 

nd 

12.439 

1.442 

0.114 

nd 

nd 

1.197 

nd 

0.354 

0.522 

0.065 

0.345 

nd 

2.136 

0.292 

2.352 

0.313 

nd 

nd 

2.682 

nd 

0.396 

0.941 

0.082 

0.753 

nd 

4.039 

0.475 

2.188 

0.056 

0.993 

nd 

1.735 

nd 

0.270 

0.775 

0.074 

0.599 

nd 

2.790 

0.367 

3.375 

0.148 

nd 

0.113 

0.464 

nd 

0.731 

0.836 

0.077 

0.477 

nd 

1.337 

0.314 

1.647 

Nd 

Nd 

Nd 

0.522 

Nd 

0.197 

0.491 

0.044 

0.409 

Nd 

1.271 

0.246 

4.965 

0.364 

nd 

nd 

nd 

0.495 

0.247 

2.664 

0.085 

1.762 

nd 

3.420 

1.021 

Total Fa's: 

SAFA's: 

MUFA's: 

PUFA's: 

SAF A/UFA 

co3/co6 FA's 

6.548 

1.020 

0.314 

5.214 

0.098 

2.278 

20.772 

6.072 

0 

14.701 

0.207 

6.467 

1.796 

0.701 

3.970 

0.226 

10.495 

12.033 

2.749 

1.335 

7.948 

0.173 

9.557 

8.954 

2.459 

0.904 

5.591 

0.220 

8.163 

7.872 

4.106 

1.061 

2.705 

0.759 

4.435 

4.819 

1.844 

0.536 

2.440 

0.378 

4.970 

14.578 

5.262 

3.134 

6.203 

0.424 

2.520 

Total fatty acids as percentage of freeze dry-weight increased in colonies compared to 

unicells due to an increase in both UFA and SAFA (Fig. 7.9). In S. acutus and S. obliquus 

ratios of mono-unsaturated (MUFA) and polyunsaturated fatty acids (PUFA) was lower in 

colonies indicating a stronger relative share of PUFA. The saturated fatty acids (SAFA) 16:0 

and 18:0, and the unsaturated (UFA) 18:4co3 were present in all samples, while EPA (20:5co3) 
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and DHA (22:6co3) were absent from all samples. The <B3/CO6 fatty acid ratio showed no 

significant differences in colonies compared to unicells. 

Figure 7.9: Fatty acid (FA) composition (SAFA = totally saturated FA, MUFA = monounsaturated 

FA, and PUFA = polyunsaturated FA) of unicellular and colonial Scenedesmus as a percentage of 

frozen dry-weight. 

7.6 EFFECTS OF SCENEDESMUS MORPHOLOGY AND BIOCHEMICAL COMPOSITION ON 

DAPHNIA GROWTH 

In this section the results of short-term grazing experiments and life-history 

experiments with Daphnia magna and D. cucullata will be related to the morphological and 

biochemical features of different Scenedesmus ecomorphs determined in section 7.5. 

7.6.1 Grazing experiment 

A grazing experiment was performed with 2 size classes of D. magna and D. cucullata 

to examine the effect of different Scenedesmus ecomorphs (unicells versus coenobia) on the 

grazing rates of daphnids. 

Different ecomorphs were obtained by incubating S. obliquus in COMBO-medium, in 

COMBO medium with 10% (v/v) of 0.1 um filtered water from a Daphnia culture and in 

COMBO with water from a Daphnia culture plus one live D. magna. After a 48 h incubation, 

3 different algal size classes were obtained. Cell dimensions (length and width, u.m) of S. 

obliquus unicells and eight-celled coenobia preserved in Lugol's fixative were measured using 

an image analysis system (SIS, Soft Imaging Software®) at 500 x magnification. Five animals 

were taken from two cohorts of D. magna, 5 adults and 10 juveniles from two D. cucullata 

cohorts and transferred separately into 50 ml S. obliquus suspensions. The algal biovolumes as 
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food amounts were similar for each treatment and on average (mean ± 1 SD) 4.7 ± 0.04-106 

um3-mr', yielding a carbon content of approx. 1.75 mg CI'1. Three replicate bottles were used 

for each algal size class, while 2 bottles per algal class without daphnids served as controls. 

The bottles were incubated for 3 h in the dark at 20°C and manually shaken every 30 min. 

Initially and after 3 h of grazing, algal volumes were determined in the range 3.0 - 25.0 um 

ESD using the Coulter Multiszer II and clearance rates (mlind"'h1) were computed. 

Clearance rates were compared applying two-way ANOVA, with the four different Daphnia 

classes and the three Scenedesmus size classes as the two factors, followed by a Tukey's-test. 

The short term grazing experiment revealed clear effects of algal morphology on the 

clearance rates of the daphnids (Fig. 7.10). The three algal size classes had mean particle 

volumes of 89, 224 and 476 um3, and mean number of cells per colony of 1.8, 3.0 and 6.8, 

respectively. 

0.65 1.16 

Body-length Daphnia cucullata (mm) 

1.2 

0.9 

0.6 

0.3 

0.0 

ESSi 1.8 cells colony1 

I I 3.0 cells colony"1 

^ S 6.8 cells colony' 

it 1 
0.95 1.64 

Body-length Daphnia magna (mm) 

Figure 7.10: Effect of Scenedesmus obliquus with different percentages of eight-celled coenobia (1, 

21 and 74%, i.e. 1.8, 3.0 and 6.8 cells per colony) on clearance rates (ml Daphnia'h') of two size 

classes of D. cucullata (left panel) and D. magna (right panel). Error bars represent 1 SD (n = 3). 

The smallest S. obliquus size class consisted of only 1% 8-celled coenobia, the 

intermediate class had 21% and the largest contained 74% large 8-celled coenobia with 

dimensions (length ± 1 SD x width ± 1 SD) of 34 ± 6 x 19 ± 3 um (n = 30). Unicells had 

dimensions of l l ± 2 x 7 ± l um (n = 30). The D. magna cohorts had mean body-lengths (± 1 

SD) of 0.95 ± 0.07 and 1.64 ± 0.08 mm, while the D. cucullata cohorts were 0.65 ± 0.07 and 

1.16 ± 0.07 mm. Feeding on equal biovolumes of unicellular or colonial S. obliquus resulted 

in a statistically significant Daphnia species (F = 81.1; P < 0.001) and food type effects (F = 

8.9; P = 0.001), but the interaction between these two factors was not significant (F= \.2;P = 

0.339). Tukey post-hoc comparison revealed that the clearance rate of large D. magna was 
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significantly higher than the rates of the other daphnids. The clearance rates of adult D. 

cucullata and small D. magna were significantly higher when feeding on unicells of S. 

obliquus than on large colonies of the same species. 

7.6.2 Life table experiments 

Cohorts of both Daphnia species had been reared in 1 liter jars on S. acutus in 

COMBO-medium. Life history experiments were conducted analogous to the procedure 

described in section (§7.4.5), but now with the freshwater medium COMBO instead of filtered 

lake-water. Both species were fed equal amounts of algae, i.e. equivalent biovolumes (5-106 

um3-mr', yielding a carbon content of 1.9 mg CI"1). On average, unicellular S. acutus had a 

volume (± 1 SD) of 87 ± 6 um3, while colonial ecomorphs were 489 ± 32 um3. 

Size at maturity was not significantly influenced when daphnids were grown on either 

unicellular or colonial S. acutus (/-test: D. magna: P = 0.143; D. cucullata: P = 0.219). 

Feeding on colonies seemed to result in an older age at maturity in D. cucullata (Table 7.9), 

however, the difference was not significant (P = 0.086). Age at first reproduction also did not 

vary significantly with food type (D. magna: P = 0.068; D. cucullata: P = 0.164). Mean 

interclutch duration of the first three adult instars was significantly prolonged in D. cucullata 

when colonies were the food (P = 0.024), but not in D. magna (P = 0.812) (Table 7.9). 

Table 7.9: Intrinsic rate of population increase (r ± 1 SD, d"1), age at maturity (AM ± 1 SD, d), length 

at maturity (LM ± 1 SD, mm), age at first reproduction (AFR ± 1 SD, d), clutch sizes (± 1 SD), mean 

interclutch duration (ID ± 1 SD, d) and survival (% to day 18) of Daphnia cucullata and Daphnia 

magna fed either unicellular or colonial Scenedesmus. 
Life-history 

Parameters 

r 

AM 

LM 

AFR 

1st Clutch 

2nd Clutch 

3rd Clutch 

ID 

Survival 

Daphnia 

On unicells 

0.22 ± 0.04 

6.0 ±0.7 

0.88 ±0.03 

8.6 ±1.4 

2.3 ±0.6 

3.7 ±0.7 

5.0± 1.7 

2.6 ±0.5 

50 

cucullata 

On colonies 

0.15 ±0.04 

6.6± 1.1 

0.86 ±0.06 

9.9 ±2.6 

1.8 ±0.6 

2.5 ±1.2 

3.0± 1.1 

3.3 ±1.3 

47 

Daphnia 

On unicells 

0.31 ±0.02 

7.0 ±0.0 

2.84 ±0.08 

10.5 ±0.5 

10.3 ±1.5 

12.5 ±0.8 

8.2 ±1.8 

4.0 ±1.6 

86 

magna 

On colonies 

0.30 ± 0.02 

7.0 ±0.0 

2.81 ±0.04 

10.8 ±0.4 

9.6 ±1.2 

8.8 ±1.2 

7.2 ±1.8 

4.1 ±0.4 

100 

The number of newborns produced was lower in all clutches when animals were 

reared on colonial S. acutus compared to animals fed with unicells (Table 7.9). This resulted 
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for D. magna in a significant clutch (brood number)(F = 25.3; P < 0.001), food type (F = 

24.1; P < 0.001) and interaction effect (F = 7.7; P = 0.001). These results imply a different 

response of the three consecutive clutches to unicellular or colonial food. Tukey's post-hoc 

comparison revealed significant differences in clutch size among successive instars of D. 

magna and also that the clutch size of the second brood was significantly different between 

animals fed either unicells or colonies. The two-way ANOVA for D. cucullata also indicated 

a significant clutch (F = 9.6; P = 0.001) and food type effect (F = 10.3; P = 0.004), but the 

interaction was not significant (F = 1.9; P = 0.169). Survival did not differ between 

treatments, but was higher for D. magna than for D. cucullata. The intrinsic rate of population 

increase r was significantly lower for daphnids feeding on colonial Scenedesmus than when 

they were fed with unicells (/-test: D. magna: P = 0.035; D. cucullata: P < 0.001; Table 7.9). 

7.7 DISCUSSION 

Considerable attention has been focused on the grazing activity of herbivorous 

zooplankton on phytoplankton. Extensive information exists on the highly different feeding 

success of zooplankton on various algal species. This is primarily owing to chemical and 

morphological properties of the various phytoplankton species. Clear relationships exist 

between the grazers' body size and the maximum size of spherical beads that can be ingested 

(Burns, 1968). Porter (1977) noted that spherical algae above ~ 45 um could not be ingested 

by the largest Daphnia species. Also hardness of algae influences their ingestibility, 

flagellates are more readily ingested than diatoms (DeMott, 1995). Large gelatinous colonial 

chlorophytes may be ingested, but are hardly digested by zooplankters like Daphnia (Porter, 

1973; 1976), resulting in depressed zooplankton growth rates (Vanni & Lampert, 1992; 

Stutzman, 1995). Zooplankton feeding on cyanobacteria is often limited because of the size 

and toxicity of blue-greens (Lampert, 1981; 1987; Fulton & Pearl, 1987; DeMott & Moxter, 

1991). Extracellular substances released from cyanobacteria inhibit grazing activity of 

Daphnia (Ostrofsky et al., 1983; Haney et al, 1994), while mucous excretion by diatoms 

inhibits copepod grazing (Malej & Harris, 1993). Apparently, phytoplankters have evolved a 

set of defense mechanisms against grazing depending on parameters like size, cell-wall 

structure, hardness, mucous excretion and toxicity. In general, due to the selection pressure 

genotypes with better defenses will have gained an advantage above genotypes with worse or 

no defenses resulting in an adaptation to predation (Pianka, 1983). This advantageous form 

may be genetically fixed and therefore permanent or mobilized only when necessary (Dodson, 

1989). Grazing pressure on algae varies temporally (Horn, 1981; examples in Sterner, 1989) 

and spatially in aquatic systems favoring the evolution of defenses to reduce mortality through 

grazing (Havel, 1987; Lehman, 1988). Often metabolic costs are associated with mobilizing 

defense mechanisms (Riessen, 1984; Dodson, 1989; Kusch & Kuhlmann, 1994), implying that 
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genotypes with fixed defenses have lower fitness than genotypes that mobilize defenses only 

when necessary (Havel, 1987; Larsson & Dodson, 1993). However, in Scenedesmus these 

allocation costs have not been detected and may even be absent. In spined Scenedesmus, 

fewer spines per cell are produced when cells are cemented together in a colony compared to 

unicells (Trainor, 1998). Thus, the material necessary to cement cells together may be derived 

from material otherwise used for the formation of spines. By contrast, in the non-spiny 

Scenedesmus, some additional cementing material is required to form colonies. Nevertheless, 

this does not seem to result in reduced growth suggesting that either allocation costs are too 

small to be detected or absent. One could claim that under these conditions the inducible 

defense will eventually become fixed, simply because no costs are associated with it. 

However, environmental costs (cf. Tollrian & Harvell, 1999) are most likely the major costs 

for the algal cells operating in the system of grazer-induced colony formation. As presented in 

CHAPTER 6, induced colonies experience higher sinking losses than unicells do. The unicell-

colony transformation was triggered by an infochemical released from well-fed Daphnia. In 

the presence of large eight-celled coenobia of S. subspicatus, heavily armoured with spines, 

grazing by D. magna was reduced (Hessen & Van Donk, 1993). In contrast, Lampert et al. 

(1994) found no reduction in uptake of unicells or coenobia of S, acutus by D. magna. A 

similar result was obtained when colonial S. acutus was fed to D. pulex {see Table 7.5) and D. 

magna {see Fig. 7.10). However, D. cucullata feeding on colonial S. acutus instead of unicells 

showed a clearly depressed clearance rate {see Figs. 7.5 and 7.10; Table 7.5). Moreover, 

smaller zooplankters such as rotifers, Ceriodaphnia and Bosmina had clearly lower clearance 

rates on colonies than on unicells. Also protozoa may experience reduced grazing success 

when confronted with colonial Scenedesmus (e.g. Goulder, 1972; Grover, 1989) or Chlorella 

(Boraas et al., 1998). Although it does seem that colonies are not protected from large 

metazoan grazers, such as large Daphnia and copepods, these organisms themselves are more 

vulnerable to predation by fish than smaller zooplankters. The reduced ability to ingest 

colonial Scenedesmus clearly indicates that grazer-induced coloniality is effective as a defense 

against numerous grazers, including several Daphnia species. 

Morphology & biochemistry 

The biochemical composition of the unicellular and colonial ecomorphs of 

Scenedesmus was similar. The colonies showed only a modest decrease in total protein and an 

increase in total lipid content. Interestingly, large size may confer higher sinking rates 

(Reynolds, 1984; see CHAPTER 6), but changes in biochemical composition (i.e., increased 

lipid content) may increase buoyancy. Total protein, carbohydrate and lipid contents are 

similar to values reported in literature for Scenedesmus (Piorreck et al., 1984; Groeger et al, 

1991; Ahlgren et al., 1992; Sterner, 1993). Total fatty acids (FA) as a percentage of dry-

weight showed a clear increase in colonies, which may reflect an increase in the total lipid 
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content of colonial Scenedesmus. The percentage of FA in unicellular S. acutus (~7%) as a 

percentage of dry-weight resembled the value of 9% reported by Muller-Navarra (1995b) and 

the 12% found by Ahlgren et al. (1992). Some studies suggest that PUFA, especially EPA 

(20:5co3) and DHA (22:6co3), may improve the quality of algae as food for zooplankton 

(Ahlgren et al, 1990; Muller-Navarra 1995a & b). However, EPA (20:5co3) and DHA 

(22:6a>3) were not detected in our Scenedesmus species, in contrast with Ahlgren et al. (1992) 

and Muller-Navarra (1995) who found, respectively, traces of EPA and DHA in S. acutus. 

However, Ahlgren et al. (1990) did not detect any EPA or DHA in S. acutus, neither did De 

Lange & Van Donk (1997) nor Weers & Gulati (1997) suggesting that EPA and DHA are 

difficult to detect in Scenedesmus. If these PUFA were present in our Scenedesmus, the 

concentrations are probably too low to play an important part in determing the quality of the 

alga as food for Daphnia. 

The short term grazing experiment revealed a marked decrease in the clearance rates 

of small Daphnia when feeding on colonial S. obliquus compared to the clearance rates when 

feeding on unicells. Apparently, colonial S. obliquus exceeded the maximum size of ingestible 

particles which is directly related to Daphnia body size (Burns, 1968). A similar observation 

was made when D. cucullata was fed colonial S. armatus and S. acutus (§7.3 and §7.4). 

McCauley & Downing (1985) and Bern (1990) also found depressed feeding of D. cucullata 

on particles larger than ca. 18 um. Boersma & Vijverberg (1995) suggested that culture 

conditions of S. obliquus can make this alga toxic to Daphnia. The results presented here, 

however, indicate that this was probably not the case since large D. magna showed no 

differences in clearance rate when exposed to different ecomorphs of S. obliquus. The largest 

size class of S. obliquus was obtained by incubation in presence of one live Daphnia. 

Although Daphnia exudates have been reported to reduce the feeding of congeners (Matveev, 

1993) and conspecifics (Helgen, 1987), those chemicals are obviously not involved in our 

experiment. The largest D. magna did not show depressed clearance rates when exposed to 

colonies, strongly suggesting that the morphological properties of S. obliquus rather than 

allelochemicals from Daphnia are responsible for the reduced feeding of the smaller daphnids. 

Both species of Daphnia exhibited reduced rates of intrinsic population growth (r) 

when feeding on colonial Scenedesmus in comparison to unicells (Table 7.9). In D. cucullata 

the reduction in r was about 32%. However, in D. magna this reduction was only 5% and the 

difference was only significant because of small within group variation. The small clutch sizes 

of D. magna of the second and third brood indicate that the adult daphnids were food limited. 

Probably the 60 ml food suspensions were depleted by these large Daphnia. Although this 

food limitation could obscure any effects of food type on population growth, no large 

differences in r are expected for D. magna as clearance rates were similar for 1.6 mm D. 

magna feeding on unicellular or colonial Scenedesmus. The r value for D. magna is lower 

than values of ~0.38-0.40 d"1 reported in literature (Goulden et al, 1982; Enserink, 1995). For 
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the much smaller cladoceran D. cucullata food depletion was probably not a problem. 

However, different sinking rates of unicellular (-0.15 md"1) and colonial S. acutus 

populations (~ 0.3 md"1) could have resulted in lower suspended food levels in the test tubes 

with colonial S. acutus.. For the large D. magna this may not have been a major problem as 

the animals were observed mainly at the bottom of the tubes. By contrast, D. cucullata was 

mainly observed in the center of the tube, about 7 cm from the bottom. The lower r value of 

D. cucullata feeding on colonies resembles the effect of resource depression (Boersma & 

Vijverberg, 1994) and could be the result of reduced ingestion because of less food particles 

in suspension and more difficulties in harvesting these food particles. 

Results show that the fatty acid and biochemical compositions are similar in single 

cells and in infochemically induced colonies of Scenedesmus. However, clearance rates are 

reduced in small Daphnia when exposed to large colonial Scenedesmus. Therefore, the 

negative influence of colonial Scenedesmus on growth and feeding of small Daphnia can be 

attributed to the morphological features rather than the biochemical composition. 
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CHAPTER 8 

Daphnia-induced colony formation 
in phytoplankton 

Parts of this chapter are based on: 

Liirling (1999). Journal ofPhycology 35: 19-23 

Lurling, M. & Beekman, W. Accepted for publication in Phycologia 

Van der Grinten, E., Lurling, M. & Burger-Wiersma, T. Accepted for publication in Verhandlungen der 

internationalen Vereinigungfur theoretische und angewandte Limnologie 

"The next step would appear to be a confirmation 

of the predator-induced results with more... 

algal species and genera... 

is the genus Scenedesmus really unique?" 

-F.R. Trainorl998 
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8.1 INTRODUCTION 

The colonial growth form is widespread among phytoplankton. For example, among the 

Cyanophyceae there are colonial and filamentous forms. All species belonging to the 

Bacillariophyceae are unicellular or colonial coccoid algae (Van den Hoek et al, 1995). Most 

members of the class Chrysophyceae are unicellular or colonial flagellates (Sandgren, 1988) and 

members of the Chlorophyceae are unicellular or colonial, coccoid or palmelloid. This latter 

class is comprised of about 355 genera, encompassing 2650 species, and almost entirely 

restricted to freshwater habitats (Van den Hoek et al, 1995). The order Volvocales consists of 

unicellular and colonial flagellates, while the non-flagellate Chlorophyceae are covered in the 

order of Chlorococcales. 

A high degree of phenotypic plasticity is characteristic of the algal genus Scenedesmus 

(Trainor, 1991), one of the commonest genera of freshwater algae (Canter-Lund & Lund, 1995), 

and a representative of the "colonial" Chlorococcales (Trainor, 1998). The order of 

Chlorococcales, which contains about 215 genera with approximately 1000 species, is almost 

entirely restricted to freshwater habitats. The genus Scenedesmus contains more than 100 species 

(Uherkovicz, 1966; Hegewald, 1982). Although a member of the colonial Chlorococcales, in 

culture Scenedesmus often fails to form colonies but remain in the unicellular 

"Chodatella/Chlorella" stages (Fott, 1968; Van den Hoek et al, 1995; Trainor, 1998). 

The well-known fact that many clonal algal isolates loose their typical colonial or 

filamentous appearance after some generations in the laboratory suggests that some factor is 

absent in the culture media (Van Donk et al, 1999). For Scenedesmus subspicatus (Hessen & 

Van Donk, 1993) and S. acutus (Lampert et al, 1994) the factor triggering their "typical" 

appearance in the field may originate from grazing Daphnia. In contrast, no Daphnia-mduced 

formation of colonies in the (unicellular) cyanobacterium Microcystis aeruginosa was found 

(Fulton III & Paerl, 1987; Hessen & Van Donk, 1993). These previous experiments did, 

however, not elucidate whether the phenomenon of Daphnia-mduced colony formation is 

restricted to members of Scenedesmus, to the Chlorococcales, or perhaps more widespread 

among representatives of other algal classes or phyla. 

In this chapter I report results of biotests performed with 9 representatives (comprising 

23 strains) of the algal genus Scenedesmus (§ 8.2), of 9 representatives of other Chlorophyceae 

(§ 8.3), 2 species of Bacillariophyceae (§ 8.4) and 5 strains of Cyanobacteria (§ 8.5). In all tests, 

chemical information substances were produced by Daphnia which were incubated for 24 h at a 

density of -300 animals l"1 on S. acutus (ca. 4 mg C-l"1) in WC medium. The biotest for 

representatives of the Chlorophyceae was identical to the test as described in the previous 

CHAPTER 3. However, biotests for diatoms and cyanobacteria were slightly different and were 

run at a 16:8 h lightdark cycle, for more than 48 h and at lower irradiance in the case of 

cyanobacteria. 
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8.2 SCENEDESMUS (CHLOROCOCCALES; CHLOROPHYCEAE) 

Strains of the non-spiny Scenedesmus acutus (4), S. falcatus (1), 5. obliquus (5), S. 

obtusiusculus (1), and of the spined S. armatus (1), S. gutwinskii (3), S. protuberans (1), S. 

quadricauda (3), and S. subspicatus (4) were examined for inter- and intraspecific variance in 

£>ap/im'a-induced colony formation. The test algae were grown axenically in 300 ml batch 

cultures on WC medium in 100 umolm"2s'' continuous light (provided by Osram L 36W/21-

840 cool-fluorescent white tubes) at 20°C on a rotating shaking table. 

Prior to the biotests an inoculum of 5 ml per strain was transferred into 50 ml fresh and 

autoclaved WC medium. After 4 days incubation, exponentially growing algae were taken from 

these cultures and used as inocula in the biotests, which were run in triplicate or quadruplicate 

for 48 h. 

8.2.1 Scenedesmus acutus Meyen 

Four different strains of S. acutus were used in two replicate biotest-experiments; both 

were run in triplicate. Scenedesmus acutus MPI was obtained from the Max-Planck-Institute for 

Limnology (Plon, Germany). Strain UTEX 72 (abbreviated to U72) was obtained from the 

culture collection of the University of Texas (U.S.A.) and the strains UTCC 7 (T7) and 10 (T10) 

were obtained from the Saskatchewan Research Council (Canada), but originate from the 

University of Toronto Culture Collection (UTCC). S. acutus MPI was inoculated at 2.5-10" 

particles-mr1 (3.45105 um3ml"'). The three other strains were inoculated at similar algal 

biovolumes, i.e. 3.45105 um3mr'. 

The results of both biotests were joined and two-way ANOVA indicated no Daphnia-

water effect on the mean particle volume (F = 0.07; P = 0.799), a significant strain effect (F = 

21 A; P < 0.001) and a significant interaction (F = 37.5; P < 0.001). Separate t-tests revealed 

significant larger mean particle volumes in Daphnia-water treatments compared to controls in 

the strains MPI (t = 5.05; P < 0.001) and T10 (t = 3.70; P = 0.002), no difference for strain U72 

(t = 1.90; P - 0.086) and a significantly smaller mean particle volume for Daphnia-wdXer 

treatments in strain T7 (t = 8.65; P < 0.001). 

The variability in response of S. acutus to Daphnia-water appeared considerable. Colony 

formation occurred in strain MPI, not in the treatment populations of strains U72 and T10, while 

colonies were observed in control populations of strain T7, but not in treatments (Fig. 8.1). 

However, variability in Daphnia-induced colony formation in strain MPI was low. In 10 

separate biotests the average mean particle volume (um3) in control populations was 265.0 (± 

21.1) um3 and in treatments 527.5 ± 53.4 um3. Although one-way ANOVA indicated 

significantly different mean particle volumes between controls (F930 = 4.75; P < 0.001) and 

between treatments (F930 = 6.09; P < 0.001), Tukey's test revealed that the ANOVAs were only 

significant because of one experiment and small within group variation. Therefore, strain MPI 
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was chosen as positive control in the following biotests, i.e. a treatment in which always colony 

formation should occur when exposed to Daphnia infochemicals. 
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Figure 8.1: Colony sizes of 4 strains of S. acutus, expressed as mean particle volumes (um3), after 48 h 

in control incubations and incubations with 10% (v/v) water from a Daphnia culture. Error bars indicate 

1 SD (n = 3). 

8.2.2 Scenedesmus obliquus (Turpin) Kiitzing 

Five strains of S. obliquus were exposed to Daphnia water in a standard biotest (run in 

triplicate). Incubations with S. acutus MPI served as positive control. The strain S. obliquus 

NIVA-CHL6 was obtained from the Norwegian Institute for Water Research (NIVA, Norway). 

The strains UTEX 78, UTEX 1450 and UTEX 2630 were obtained from the culture collection of 

the University of Texas (U.S.A.) and strain SAG 276-1 was obtained from the culture collection 

of the University of Gottingen (Germany). 

After 48 h, all control populations were strongly dominated by unicells, while coenobia 

occurred in the treated cultures. However, considerable variation in the response of S. obliquus 

strains to grazing-associated infochemicals was observed. In strain NIVA-CHL6, 20% of the 

treatment populations consisted of irregular aggregates with more than eight cells per colony. In 

the strains UTEX 78 and UTEX 2630, less than 5% of those aggregates were observed, while no 

colonies with more than eight cells were detected in the strains UTEX 1450 and SAG 276/1. 

Eight-celled coenobia were observed in the strains NIVA-CHL6 (12%), UTEX 78 (21%), 

UTEX 1450 (25%), and UTEX 2630 (26%), but were rare in SAG 276/1 (2%). The latter 

remained mainly unicellular with over 80% unicells in the treated cultures. In strain UTEX 
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1450, over 50% of the treated populations were comprised of four-celled coenobia. Colony 

formation was reflected in the mean particle volumes and mean number of cells per colony for 

each strain after 48 h incubation (Fig. 8.2). 

Two-way ANOVA indicated a significant Daphnia-water (F = 141.6; P < 0.001), a 

significant strain (F = 141.6; P < 0.001) and a significant interaction (F = 42.5; P < 0.001) 

effect on the mean particle volume. The individual factors were compared with the MS for the 

interaction, which revealed no significant effects of the factors (F = 3.40 and F = 3.33). Two-

way ANOVA on the mean number of cells per colony indicated also a significant Daphnia-

water (F = 325.5; P < 0.001), a significant strain (F = 27.0; P < 0.001) and a significant 

interaction effect (F = 17.6; P < 0.001). Comparison of individual factors with the interaction 

MS indicated a significant Daphnia-v/ater effect (F = 18.5), but no strain effect (F = 1.54). 

Therefore, Wests were performed separately to evaluate for each strain the effect of Daphnia 

water on the mean particle volume and cells per colony (Fig. 8.2). 
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Figure 8.2: Mean particle volumes (um3; panel A) and cells per colony (panelB) in 5 strains of S. 

obliquus cultured in the absence (Controls) and presence of water (10% v/v) from a Daphnia culture 

(Daphnia water). Incubations with S. acutus MPI served as positive control. Error bars indicate 1 SD (n 

= 3), ** a significance level of P < 0.01, and NS not significant. 
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In strain SAG 276/1, no significant difference in mean particle volumes between controls and 

treatments was found, and the Mest for cells per colony was only significant because of small 

within-group variation. In the other four strains, Mest showed that both the mean particle 

volumes and the number of cells per colony were significantly higher in treated than in the 

control populations (see Fig.8.2). Growth rates based on cell numbers and on algal volume 

differed among strains (Fig. 8.3A). Moreover, the presence of filtered medium from a Daphnia 

culture affected the growth rates in the strains NIVA-CHL6, UTEX 78, 1450 and 2630, but not 

in SAG 276/1. 
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Figure 8.3: Growth rates (u, d->) based on cell numbers (panel A) and biovolumes (panel B), number of 

doublings per day (panel C) and chlorophyll-a concentration (panel D) in five strains of S. obliquus 

cultured in the absence (Control, open bars) and presence of water (10% v/v) from a Daphnia culture 

(Daphnia water, filled bars). Error bars represent 1 SD (n = 3). ** indicates a significance level of P < 

0.01, * of P < 0.05 and NS indicates not significant (P > 0.05). 

Growth rates based on cell numbers tended to be slightly higher in the treatments than in 

the controls, while the opposite tendency was observed for growth rates on a volume basis (Fig. 
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8.3B). The number of doublings per day varied between 1.24 (± 0.05) and 2.29 (± 0.20) (Fig. 

8.3C). The chlorophyll-a concentration differed significantly between strains (F = 8.43; P < 

0.001), but was not affected by Daphnia chemicals (F = 0.12; P = 0.736) (Fig. 8.3D). Cell 

dimensions (length and width in um) of unicells and eight-celled coenobia were measured using 

a Leica Quantimet 500 MC image analyzer coupled with a Nikon light microscope at 500 x 

magnification. Dimensions of both unicells and eight-celled coenobia differed significantly 

among S. obliquus strains (Table 8.1). Moreover, differences among strains in the most 

prominent eight-celled coenobial form were found. In NIVA-CHL6 costulatoid {see Fig. 8.4A) 

and irregular coenobia (Fig. 8.4B) were found, linear coenobia (Fig. 8.4C) were dominant in 

UTEX 78, costulatoid coenobia in UTEX 1450 and 2630, while alternating (Fig. 8.4D) and 

costulatoid coenobia were observed in SAG 276/1. 

A: Costalutoid B: Irregular C: Linear D: Alternating E: Unicells 
Figure 8.4: Eight-celled coenobia (A,B,C and D) and unicells (E) observed in Scenedesmus obliquus. 

Table 8.1: Length and width dimensions (|im ± 1 SD) of unicells and eight-celled coenobia in five 

strains of S. obliquus, including F- and P-values of one-way ANOVAs. Similar symbols a>b>c within a 

column indicate homogeneous groups that are not significantly different at the 95% level (Tukey's test). 
S. obliquus 

Strain 

NIVA-CHL6 

UTEX 78 

UTEX 1450 

UTEX 2630 

SAG 276/1 

One-way F 

ANOVA P 

Start experiment (t = 0) 

Unicells (n= 15) 

13.8 (1.0)ax 6.8 (0.5)a 

10.2 (l .l)bx 5.1 (0.4)b 

10.4 (0.9)b x 4.9 (0.4)b 

10.1 (1.3)bx 5.4 (0.7)b 

9.9(1.3)bx5.0(0.6)b 

32.2 31.3 

<0.001 <0.001 

End experiment (t = 48 h) 

Unicells (n= 15) 

17.1 (2.3)ax 9.0 (1.3)a 

13.3 ( l . l ) bx 5.9 (0.8)b 

15.1 (1.4)cx 7.4 (1.0)c 

12.5 (1.6)bx 6.3 (1.5)bc 

13.2 (2.0)bx 5.8 (1.5)b 

18.3 17.9 

<0.001 <0.001 

8-celled coenobia (n = 15) 

41.8(8.8)ax26.8(10.4)a 

30.4 (2.5)bx 17.4 (1.7)b 

39.9 (6.0)a x 24.2 (2.4)*c 

31.3 (2.8)bx 21.1 (2.2)bc 

30.5 (7.6)b x 25.6 (6.2)ac 

11.6 8.37 

<0.001 <0.001 
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8.2.3 Scenedesmus quadricauda (Turpin) Brebisson 

S. quadricauda strain NIVA-CHL 7 was obtained from the Norwegian Institute for 

Water Research (NTVA, Norway), strain UTEX 76 was obtained from the culture collection of 

the University of Texas (U.S.A.), and strain Fll was obtained from the Saskatchewan Research 

Council (Canada). The organisms were transferred weekly into fresh medium and adapted to the 

environmental conditions for three months. The population composition of the inocula is 

presented in Table 8.2. The test was run in quadruplicate with an initial density of 1.3 104 

particles-ml"1. 

Table 8.2: The mean number of cells per colony (c/c) and the composition of the inocula of 

Scenedesmus populations as percentage unicells, two-, four-, and eight-celled coenobia. Rest indicates 

three-, five-, six-, seven- and multicelled (>8) colonies. 
Strain 

CHL7 

Fl l 

U76 

MPI 

1 

39 

76 

4 

74 

2 

27 

13 

68 

10 

4 

29 

9 

24 

12 

8 

— 
— 

— 

1 

rest 

5 

2 

4 

3 

c/c 

2.26 

1.46 

2.49 

1.64 

In the three S. quadricauda strains tested, Daphnia water induced no colony formation 

(Fig. 8.5). Two-way ANOVA on the mean particle volume indicated a significant Daphnia 

water effect (F = 53.0; P < 0.001), a significant strain effect (F = 3958; P < 0.001) and a 

significant interaction (F= 56.1; P < 0.001). The individual factors were tested against the MS 

of the interaction that revealed a significant strain effect (F33 = 70.6 > Fcrit = 6.59), but no 

Daphnia water effect (F, 3 = 0.95 < Fciit = 10.1). Because of this significant strain effect separate 

Mests were performed to examine for each strain the effect of Daphnia water on the mean 

particle volume (Fig. 8.5A). Also for the number of cells per colony the two-way ANOVA 

indicated a significant Daphnia water effect (F = 20.0; P < 0.001), a significant strain effect (F 

= 414; P < 0.001) and a significant interaction (F = 11.5; P < 0.001). Hence, the same 

procedure as for mean particle volume was performed on the mean number of cells per colony 

(Fig. 8.5B). Both procedures clearly showed colony formation in the positive control, i.e. S. 

acutus MPI, but not in the S. quadricauda strains. 
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Figure 8.5: Effect of Daphnia water on the mean particle volume (Panel A) and the number of cells per 

colony (Panel B) in three strains of S. quadricauda, including P-values of/-tests. MPI represents positive 

controls with S. acutus. Error bars indicate 1 SD (n = 4). 

The composition of the populations varied among the strains used (Table 8.3). S. 

quadricauda strains NTVA-CHL7 and Fl 1 were dominated by unicells both in the absence and 

presence of Daphnia water, whereas strain UTEX 76 was dominated by eight-celled coenobia. 

However, at the beginning of the experiment no eight-celled coenobia were present in this strain 

(Table 8.2). 

Table 8.3: Composition of Scenedesmus population after 48 hours in the absence (C) or presence (DW) 

of medium from a Daphnia culture (10% v/v) as percentage (± 1SD) unicells (1), two-, four- and eight-

celled coenobia. The rest group represents three-, five-, six-, seven- and multicelled (>8) coenobia. 

Strain-* 

cells! 

NIVA-CHL7 

C DW 

Fll 

C DW 

UTEX 76 

C DW 

S. acutus MPI 

C DW 

1 

2 

4 

8 

rest 

86 (4) 88 (1) 92 (3) 

5 (2) 7 (0.6) 5 (2) 

5 (2) 2 (0.8) 1 (0.5) 

2 (0.5) 1 (0.4) 1 (0.4) 

2(0.3) 2(0.5) 1(1) 

96(1) 

3(1) 

1 (0.4) 

14(7) 10(4) 96(3) 45(3) 

12(5) 6(2) 2(1) 23(6) 

14(4) 10(4) 1(0.8) 15(2) 

50(13) 63(2) — 8(3) 

10(2) 11(4) 1(1) 9(4) 

Growth rates based on algal volume differed among strains (Table 8.4). Two-way 

ANOVA indicated a significant Daphnia water effect (F = 4.83; P = 0.038), a significant strain 

effect (F = 192.3; P < 0.001) and no interaction (F = 1.96; P = 0.147). Separate r-tests for each 

strain showed no differences in growth among control and treated cultures (Table 8.4). Thus, 

Daphnia water had no effect on the growth rates. 
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Table 8.4: Volume based growth rates (d_l ± 1SD) of four strains of Scenedesmus cultured for 48 hours 

in the absence (Control) or presence of medium from a Daphnia culture (Daphnia water), including t-

and P-values of/-tests. 
Strain Control Daphnia water / 

CHL7 1.22(0.04) 1.24(0.09) 0.59 0.578 

Fl l 1.15(0.12 1.29(0.03) 2.27 0.063 

UTEX76 0.89(0.03) 0.94(0.08) 0.96 0.374 

MPI 1.68(0.03) 1.67(0.02) 0.63 0.549 

Dimensions of unicells differed significantly among S. quadricauda strains (Table 8.5). 

Two-way ANOVA on cell length indicated no Daphnia water effect (F = 0.24; P = 0.673), but a 

significant strain effect (F= 169; P = 0.006). Also the two-way ANOVA on cell width indicated 

no Daphnia water effect (F = 13.4; P = 0.067) and a significant strain effect (F= 1143; P < 

0.001). Thus, Daphnia water had no effect on the cell dimensions of S. quadricauda unicells. 

Unicells produced by strain NTVA-CHL7 always possessed two spines, unicells produced by 

strain UTEX 76 possessed two, or four spines, whereas strain F l l unicells were spineless (Fig. 

8.6). One-way ANOVA indicated significant differences in spine length among treatments 

(F364= 9.9; P < 0.001). However, Tukey's test revealed that this was caused by a significant 

difference between strain NIVA-CHL7 and UTEX 76. No Daphnia water effect on spine 

number and length was detected. The mean length (± 1 SD) of the spines was 6.4 (1.5) um in 

UTEX 76 and 8.9 (1.5) um in NIVA-CHL7. Eight-celled coenobia were only prominent in 

strain UTEX 76 and the coenobia always possessed four spines. Separate Mests on the length, 

width and spine length were performed to evaluate differences between control and treated 

populations. However, as for unicells no effect of Daphnia water on length, width and spine 

length was observed (Table 8.5). 

Table 8.5: Length and width dimensions (± 1 SD) of unicells (1) and eight-celled (8) coenobia, 

including the length of spines (um) of Scenedesmus cultured in the absence (Control) and presence of 

medium (10% v/v) from a Daphnia culture (Daphnia water). 

Strain 

CHL7 (1) 

F l l (1) 

UTEX 76 (1) 

MPI (1) 

UTEX 76 (8) 

Control 

Length 

10.0 (0.9) 

6.9(1.5) 

15.3 (4.0) 

18.5 (2.2) 

42.0 (6.6) 

Width 

7.2(1.2) 

5.1 (1.6) 

8.5 (2.0) 

7.7(1.5) 

13.2(1.8) 

Spines 

Length 

6.3(1.4) 

— 

9.5(1.3) 

— 

7.8(1.5) 

Daphnia 

Length 

9.7(1.5) 

6.9(1.5) 

16.3 (4.5) 

— 

43.1 (6.2) 

water 

Width 

7.1 (1.2) 

4.9(1.3) 

8.9 (2.8) 

— 

13.6(1.3) 

Spines 

Length 

6.6(1.8) 

— 

8.4(1.5) 

— 

7.7(1.2) 
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Morphological forms 

Differences among strains in the most prominent morphological forms were found. In S. 

quadricauda NIVA-CHL7 unicells had two spines and two-and four-celled coenobia were linear 

in shape bearing four spines (Fig. 8.6A). In strain Fl 1, unicells were spineless (Fig. 8.6B). Strain 

UTEX 76 contained a few unicellular forms, including both unicells and pseudo-unicells, and 

linear eight-celled coenobia (Fig. 8.6C). 

Figure 8.6: Unicells and four-celled coenobia of S. quadricauda strain NIVA-CHL7 (A), Fll (B) and 

UTEX 76 (C). 

8.2.4 Scenedesmus subspicatus Chodat 

Four strains of the spined S. subspicatus were examined on Daphnz'a-induced colony 

formation. The strain NIVA-CHL 55 was obtained from the Norwegian Institute for Water 

Research (NIVA, Norway). Strain RWTH was obtained from the University of Aachen 

(Germany). Strains UTEX 2532 and UTEX 2594 were obtained from the University of Texas 

(U.S.A.). 

In a first biotest, the mean particle volume hardly differed between control and treatment 

populations (Fig. 8.7). Two-way ANOVA showed no Daphnia-water effect (F = 2.76; P = 

0.116), a significant strain effect (F= 8.81; P = 0.001) and no interaction (F= 1.28; P = 0.314). 

NIVA-CHL 55 was the first strain in which Daphnia-induced colony formation was observed 

(Hessen & Van Donk, 1993), but here hardly showed a response. Therefore, the biotest was 

repeated (Fig. 8.7A). The two-way ANOVA of this second biotest indicated a significant 

Daphnia water effect on the mean particle volume (F = 6.29; P = 0.019). Separate Mests were 

performed and showed a significant difference between controls and treatments in strain NIVA-

CHL 55 (t = 3.79; P = 0.010), but not in the other strains RWTH (t = 0.34; P = 0.748), UTEX 

2532 {t = 1.08; P = 0.322) and UTEX 2594 (t = 0.94; P = 0.382). Although the MPV in strain 

NIVA-CHL55 was significantly larger in the latter biotest, hardly any colony formation had 

been induced and no eight-celled coenobia were detected. Microscopic analysis of subsamples 

taken from the second biotest revealed that grazer-induced colony formation had only occurred 

in the positive control with the non-spiny S. acutus MPI (Fig. 8.7B). The population 
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composition varied among strains (Table 8.6). Unicells were abundant in all strains, but in strain 

UTEX 2532 also a considerable proportion of the population consisted of four-celled coenobia. 

1 

"o 
o 
t - l 

u 

Figure 8.7: Effect of medium from a Daphnia culture (Daphnia water) on the mean particle volumes 

(Panel A) and the mean number of cells per colony (Panel B; including P- values off-tests) in four strains 

of Scenedesmus subspicatus. Pos. Ctrl indicates a positive control with S. acutus MPI. 

Table 8.6: Composition of Scenedesmus populations after 48 hours in the absence (C) or presence (DW) 

of medium from a Daphnia culture (10% v/v) as percentage (± 1SD) unicells (1), two-, four- and eight-

celled coenobia. The rest group represents three-, five-, six-, seven- and multicelled (>8) coenobia. 
Strain-* 

ceilsT 

MPI 

C DW 

NTVA-CHL55 

C DW 

RWTH 

C DW 

UTEX 2532 

C DW 

UTEX 2594 

C DW 

1 78(6) 21(10) 84(5) 80(3) 

2 9(3) 16(2) 7(3) 11(2) 

4 5(3) 30(3) 2(1) 3(1) 

8 2(1) 16(3) - - 1(1) 

rest 6(4) 17(10) 7(4) 6(3) 

78(4) 79(2) 48(15) 60(13) 77(2) 69(3) 

14(2) 12(1) 7(4) 9(3) 9(4) 17(3) 

2(1) 3(1) 39(15) 18(9) 3(1) 4(1) 

1(1) 1(1) 1(1) 4(3) 1(1) — 

5(4) 5(4) 5(3) 9(7) 10(4) 10(7) 

The experiment with this strain was repeated in 20% Z8 medium and performed as 

described by Hessen & Van Donk (1993). Again hardly any colony formation occurred. The 

MPV (± 1 SD) of control and treated cultures were 78.1 (6.7) and 104.4 (4.9) urn3, respectively, 

while the mean number of cells per colony were 1.47 (0.18) and 1.80 (0.20), respectively. 

Growth rates were similar and 0.69 (0.13) and 0.67 (0.12) d"1, respectively. 

In their study, Hessen & Van Donk (1993) added 1 ml filtered water from a Daphnia 

culture to 50 ml algal suspension and used heavy inocula of 5.4-105 cellsml"', but also longer 

incubation times (68 h). After 44 h already 41% of the treated populations consisted of eight-

celled coenobia, while this proportion had further increased to 50% after 68 h (Hessen & Van 
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Donk, 1993). Therefore, incubations with S. subspicatus NIVA-CHL55 cultured in the absence 

and presence of filtered water from a Daphnia culture were followed for a period of 96 h. 

However, again no increase in mean particle volumes was detected (Fig. 8.8). Volume based 

growth rates over the four day period were similar (t = 0.22; P = 0.840) and on average 0.90 ± 

0.03 d"1. Maximal growth was measured over the first two days with mean rates (± 1 SD) of 1.16 

(0.13) and 1.20 (0.04) for control and treated cultures, respectively. 

S 
3. 

ft 

150 

125 -I 

100 

75 

50 

25 

0 

-//-

/ 

Control 
Daphnia water 

T 

96 48 72 

Time (h) 

Figure 8.8: Mean particle volume (um3) in S. subspicatus NTVA-CHL55 cultured for 4 days in the 

absence (Control) and presence of water (10% v/v) from a Daphnia culture (Daphnia water). Error bars 

represent 1 SD (n = 3). 

8.2.5 Scenedesmus gutwinskii Chodat 

The three strains of S. gutwinskii tested on Daphnia-induced colony formation, i.e. 

strains B3-15, B8-7 and B8-27, were isolated by Dr. Fumie Kasai. After 48h, no colony 

formation had occurred in S. gutwinskii (Fig. 8.9). 
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Figure 8.9: Mean particle volumes (um )̂ in three strains of S. gutwinskii cultured in the absence 

(Control) and presence of water from a Daphnia culture (Daphnia water). Error bars represent 1 SD (n = 

4). 
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Two-way ANOVA indicated no Daphnia water effect (F = 1.52; P = 0.233), a significant strain 

effect (F = 23.3; P < 0.001) and no interaction (F = 1.05; P = 0.372). Also for biovolume based 

growth rates (u, d"1) no Daphnia water effect (F = 3.58; P = 0.075), a significant strain effect (F 

= 55.4; P < 0.001) and no interaction (F= 0.30; P = 0.747) was found. 

8.2.6 Other Scenedesmus strains 

The species Scenedesmus armatus Chodat, S. falcatus Chodat, S. obtusiusculus Chodat 

and S. protuberans Fritsch were exposed to Daphnia water in a standard biotest. S. armatus and 

S. falcatus were obtained from the Max-Planck-Institute for Limnology (Plon, Germany). S. 

obtusiusculus was obtained from the University of Turku (Finland), while S. protuberans was 

derived from the University of Amsterdam (The Netherlands). The different species were 

incubated in quadruplicates in the absence (Control) and presence of water (10% v/v) from a 

Daphnia culture (Daphnia water). One series was run with S. armatus, S. obtusiusculus and S. 

protuberans, whereas incubations with S. acutus MPI served as positive control. An additional 

series was run with S. acutus MPI, T10, UTEX 72 and S. falcatus Chodat. 

Separate Mests (two-tailed) showed a significant effect of Daphnia water on the mean 

particle volumes in S. acutus MPI, S. armatus, S. obtusiusculus and in S. protuberans (Fig. 

8.10). 
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Figure 8.10: Mean particle volumes (nm^) for four strains of Scenedesmus cultured in the absence 

(Control) and presence of water (10% v/v) from a Daphnia culture (Daphnia water), including P-values 

of Mests. Error bars represent 1 SD (n = 4). 

Microscopy subsamples from all incubations but S. armatus were lost. Analysis of the S. 

armatus samples revealed no difference (Mest; P = 0.308) between the mean number of cells per 

colony (± 1 SD) of control populations (4.63 ± 0.20) and treated populations (4.82 ± 0.19). The 

S. armatus stock culture appeared contaminated with S. acutus that caused the significantly 
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increased particle volumes in treated populations. Whether S. obtusiusculus and S. protuberans 

were contaminated remains unsolved, but based on the low mean particle volumes of S. 

obtusiusculus it seems safe to assume no contamination in this strain. The majority of S. armatus 

appeared as four-celled coenobia, very low numbers of pseudo-unicells were observed (Table 

8.7). 

Table 8.7:Composition of S. armatus populations, as percentage of unicells and two-, four, eight-celled 

coenobia, cultured for 48 h in the absence (Control) and presence of medium from a Daphnia culture 

{Daphnia water). 
S. armatus 

Control 

Daphnia water 

1 

1(1) 

2 (0.5) 

2 

6(1) 

5 (0.5) 

4 

70(1) 

68(5) 

8 

19(3) 

20(3) 

rest 

4(1) 

5(4) 

In the second series, two-way ANOVA on the mean particle volume (MPV) indicated a 

significant Daphnia water effect (F = 66.7; P < 0.001), a significant strain effect (F = 47.2; P < 

0.001) and a significant interaction ( F = 12.7; P < 0.001). Separate Mests showed significantly 

larger MPV in treatments of S. acutus MPI and S. falcatus, but no difference in the strains S. 

acutus T10 and UTEX 72 (Fig. 8.11 A). Also for the number of cells per colony the two-way 

ANOVA indicated a significant Daphnia water effect (F=67.\;P < 0.001), a significant strain 

effect (F = 22.5; P < 0.001) and a significant interaction (F = 8.97; P < 0.001). Separate Mests 

showed not only significantly larger number of cells per colony in treatments of S. acutus MPI 

and S. falcatus, but also in S. acutus UTEX 72 (Fig. 8.1 IB). Thus, although the MPV was not 

significantly larger in treated populations of UTEX 72, colony formation had occurred after 

exposure to Daphnia water. This is also reflected in the population composition (Table 8.8). 

After 48 h in the presence of Daphnia water, the proportion of unicells in UTEX 72 had 

dropped, whereas the proportion of eight-celled coenobia had increased. Control populations 

remained dominated by unicells in all four strains, but dropped in three strains after 48 h 

exposure to Daphnia water. Only in strain S. acutus T10 no colony formation was observed 

(Table 8.8). 

Dimensions of unicells and eight-celled coenobia of the different S. acutus strains were 

measured. Two-way ANOVA on unicell length indicated no Daphnia water effect (F = 0.57; P 

= 0.504), but a significant strain effect (F= 84.0; P = 0.002). Also the two-way ANOVA on 

unicell width indicated no Daphnia water effect (F = 0.52; P = 0.523), but a significant strain 

effect (F= 30.4; P = 0.010). Thus, Daphnia water had no effect on the cell dimensions of S. 

acutus unicells. However, unicells had significantly different dimensions among strains (Table 

8.9). 
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Figure 8.11: Effect of medium from a Daphnia culture {Daphnia water) on the mean particle volumes 

(Panel A) and the mean number of cells per colony (Panel B) in four non-spiny strains of Scenedesmus. 

Error bars represent 1 SD, also given P- values off-tests. 

In strain T10 a small and a large unicell-type was distinguished, that were significantly 

different sized (Fig. 8.12; Table 8.9). Eight-celled coenobia were observed in strain MPI and 

UTEX 72. In the latter strain, in the presence of Daphnia water two significantly different sized 

coenobia types were observed (Fig. 8.12; Table 8.9). 

Table 8.8: Composition of Scenedesmus populations after 48 hours in the absence (C) or presence (DW) 

of medium from a Daphnia culture (10% v/v) as percentage (± 1SD) unicells (1), two-, four- and eight-

celled coenobia. The rest group represents three-, five-, six-, seven- and multicelled (>8) coenobia. 

Strain—* 

cells! 

MPI 

C DW 

UTEX 72 

C DW 

UTCC 10 

C DW 

S.falcutus 

C DW 

1 90(4) 42(3) 56(5) 29(11) 67(14) 68(8) 79(8) 32(4) 

2 6(2) 14(5) 14(8) 4(3) 12(3) 12(3) 9(2) 11(3) 

4 2(0.5) 24(8) 9(7) 13(5) 13(8) 10(5) 3(2) 27(1) 

8 — 7(5) 11(8) 47(17) 1(3) 2(2) 2(2) 17(5) 

rest 2(2) 13(4) 10(5) 7(1) 7(5) 8(2) 7(4) 13(3) 

Different morphotypes were observed. In S. armatus the populations were dominated by 

four- and eight-celled coenobia, both morphotypes were bearing four spines (Fig. 8.12). In S. 

acutus MPI, unicells were spineless and eight-celled coenobia were always alternating. In strain 

T10 small and large unicells were observed and coenobia appeared irregular (Fig. 8.12). Strain 
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UTEX 72 contained spineless unicells and besides small and large eight-celled coenobia also 

costulatoid and alternating coenobia (Fig. 8.12). 

Table 8.9: Length and width dimensions (± 1 SD) of unicells and eight-celled coenobia of three strains 

of Scenedesmus acutus cultured in the absence (Control) and presence of medium (10% v/v) from a 

Daphnia culture (Daphnia water). 

Strain 

MPI unicell 

MPI 8 celled 

U72 unicell 

U72 small 8 

U72 large 8 

T10 small unicell 

T10 large unicell 

Control 

Length 

18.1(1.5) 

— 

15.3 (2.3) 

— 

34.7 (5.9) 

12.2(1.8) 

7.4(1.2) 

Width 

7.2(1.3) 

— 

5.9 (0.9) 

— 

23.9(3.7) 

7.7(1.2) 

4.9(1.2) 

Daphnia 

Length 

18.5 (1.5) 

36.9 (8.3) 

14.4(1.5) 

25.1 (3.3) 

36.6(5.1) 

12.8(1.4) 

8.7 (0.9) 

water 

Width 

8.0(1.7) 

25.3(3.1) 

6.0 (0.8) 

19.1 (2.1) 

25.5 (3.8) 

7.4(1.1) 

4.9(1.0) 

(D 

S. armatus S. acutus T10 S. acutus UTEX 72 

Figure 8.12: Different morphotypes of S. armatus, S. acutus UTCC 10 and S. acutus UTEX 72. 

8.2.7 Scenedesmus in the presence of live Daphnia 

In a first experiment, S. acutus MPI and S. obliquus SAG 267/1 were cultured in the 

absence and presence of 1 D. galeata (2.4 ± 0.2 mm) in 100 ml Erlenmeyer flasks with 50 ml 

20% Z8 medium. In a second experiment, S. subspicatus NIVA-CHL55 and S. obliquus NTVA-

CHL6 were cultured in 300 ml Erlenmeyer flasks with 150 ml COMBO medium (Kilham et al., 

1999) in the absence or presence of two D. magna. The former experiment was incubated for 48 

h, the latter for 69 h. In a third experiment, S. acutus MPI was incubated for four days in the 

absence and presence of Daphnia and water from a Daphnia culture. This experiment was run in 
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50 ml WC medium in 100 ml cellulose plug stoppered Erlenmeyer flasks. All three experiments 

were run in triplicate. 

In experiment I and II, based on both mean particle volumes and microscopy colony 

formation had occurred in the presence of live Daphnia (Fig. 8.13). Coulter analysis indicated 

the presence of numerous small particles in medium from the cultures with live Daphnia, 

probably faeces, bacteria and algal debris. Moreover, in the presence of Daphnia and already 

visual by eye were giant aggregates of algae and debris (Fig. 8.14). These particles were by sure 

too large to be measured with the electronic particle counter. For example in S. obliquus, image 

analysis showed mean aggregate dimensions (length x width, ± 1 SD) of 69 (33) x 55 (31) um. 
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Figure 8.13: Mean particle volumes (bars) and mean cells per aggregate (symbols) in four strains of 

Scenedesmus cultured in the absence and presence of live Daphnia. Error bars represent 1 SD (n = 3). 

Also in the third experiment, colony formation was significantly promoted in the 

presence of either water from a Daphnia culture or live Daphnia (Fig. 8.15). Despite the 

presence of giant aggregates, the mean particle volume in the presence of live Daphnia are lower 

than those of S. acutus cultured in the presence of filtered water from a Daphnia culture, because 

of the high proportion of small particles in the medium. 
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Figure 8.14: Giant 
Scenedesmus acutus 
aggregate in the 
presence of live 
Daphnia. 
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Effect of water from a Daphnia culture (open symbols) and a live Daphnia (filled triangles) 

particle volumes in S. acutus during a four days incubation period. Error bars represent 1 

The formation of these aggregates had already occurred after 21 h of incubation (Fig. 

8.16). Microscopic analysis revealed that 44 ± 10% (± 1SD) of the algae were aggregated in 

these particles with on average 19.8 ± 12.6 cells per aggregate (± 1SD; n = 20). The cells were 

probably not aggregated as a result of viable gut passage, because faeces analysis showed empty 

cells (Fig. 8.16). 
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Figure 8.16: Faecal pellet collected from a Daphnia fed with Scenedesmus acutus comprised of 

numerous empty cells (left panel) and subsequent clogging of viable cells on such pellets (right panel). 

8.2.8 Daphnia-induced colony formation in Scenedesmus subspicatus 

The negative results with all spined strains do seem puzzling, because the phenomenon 

of Daphnia-induced colony formation has been reported first in a spined strain (Hessen & Van 

Donk, 1993). Moreover, the result has been confirmed for a spined Scenedesmus at the Dept. of 

Biological Sciences, University of Wisconsin (P. VanderPuy, pers. comment). Then in the 

presence of live Daphnia after 69 h a slight increase in the number of cells per colony has been 

observed (§5.2.7). This suggests that the biotest developed for the non-spiny S. acutus, may be 

applicable only to the non-spiny members of Scenedesmus. Therefore, a different experimental 

setup was chosen for testing the spined Scenedesmus on Daphnia-induced colony formation. 

The spined S. subspicatus UTEX 2594 was incubated in fresh WC medium in the 

absence (controls) or presence of one live D. pulex (treatments). The incubations were placed on 

a rotating shaking device (80 rpm) in a climate-controlled cabinet at 20°C and illuminated using 

a 16:8 h light/dark-cycle. Since the number of cells per colony of S. subspicatus, in the presence 

of one Daphnia was slightly higher after 69 h (see § 8.2.7), the incubation period was prolonged 

to 14 days. Moreover, the daphnid was removed after 72 h to overcome selective feeding on 

unicells and small coenobia. 

Exponential growth was observed in both controls and treatments during the first three 

days. The growth rates were 0.976 (± 0.023) d"1 for controls and 0.885 (± 0.088) d"' for 

treatments. Despite the grazing activity by the daphnid these growth rates were not significantly 

different (t = 1.73; P = 0.159). After three days colony formation was induced as the mean 

number of cells per colony (t = 4.29; P = 0.013) was significantly higher in the treatments than 

in control populations (Fig. 8.17). The colony formation was not just a result of selective 

removal of smaller algal particles since the number of cells per colony further increased for four 

more days after the daphnid had been removed. 

In conclusion, colony formation in a spined Scenedesmus could be induced by Daphnia, 

but the time needed for the expression of an altered morphology was considerably longer than 
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for non-spined Scenedesmus. In the presence of live Daphnia, algae, debris and bacteria will be 

excreted from the animal thereby affecting the sterility of the algal suspension. This could affect 

colony formation in Scenedesmus (Trainor, 1998). The apparent ineffectiveness of filtered 

Daphnia water (see Fig. 8.8) could also be a result of bacterial activity needed for modification 

of the infochemical. However, in S. acutus the addition of antibiotics had no effect on the 

Daphnia-induced colony formation (see CHAPTER 3, page 55). 
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Figure 8.17: Morphological response expressed as the mean number of cells per colony (panel A) and as 

the mean particle volume (in um->; panel B) of Scenedesmus subspicatus UTEX 2594 cultured in the 

absence of one live Daphnia (Controls) or for three days in the presence of one Daphnia (treatments). 

Error bars represent 1 SD (n = 3). 

8.3 OTHER CHLOROPHYCEAE 

The effect of Daphnia water on growth and morphology of 9 different chlorophytes was 

examined in standard biotests (Fig. 8.18; Table 8.10). Besides in the positive control, in six of 

the tested Chlorophyceae the addition of Daphnia water had a significant effect on the mean 

particle volume (Table 8.10). Microscopy revealed that only in the two Coelastrum species the 

increase in the mean particle volume was caused by colony formation. In those two species the 

proportion of large multicelled aggregates (i.e. >16 cells) was increased, but unicells remained 

the most prominent morph. 
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Figure 8.18: Mean particle volumes (um3 ± 1 SD) for nine species of Chlorophyceae cultured in the 

absence (Control) and presence of water (10% v/v) from a Daphnia culture {Daphnia water). As positive 

control served incubations with S. acutus. 

Table 8.10: Chlorophyte strains examined on .Dap/jm'a-induced colony formation, including /-and P-

values of ?-tests of mean particle volume (MPV) and cells per colony of control and treatment 

populations. 

MPV (umJ) Cells/colony 

Strain /-value 

2.40 

7.72 

7.54 

8.01 

4.45 

1.11 

1.29 

21.4 

11.8 

f-value 

0.074 

0.002 

0.002 

0.001 

0.011 

0.346 

0.266 

O.001 

O.001 

/-value 

— 

— 

1.03 

9.47 

6.47 

— 
— 

1.55 

1.41 

P-value 

— 

— 

0.361 

O.001 

0.003 

— 

— 

0.196 

0.232 

1) Ankistrodesmus bibraianus Korshikov SAG 278-1 

2) Ankistrodesmus falcatus Ralfs NIVA-CHL 8 

3) Chlorella vulgaris Beijerinck NIVA-CHL 19 

4) Coelastrum microporum Nageli SAG 217-la 

5) Coelastrum sphaericum Nageli SAG 32.81 

6) Micractimium pusillum Fresenius CCAP 248/1 

7) Pediastrum duplex Meyen SAG 261-3a 

8) Planktosphaeria maxima Bischoff/Bold CCAP 65/1 

9) Selenastum capricornutum Printz NIVA-CHL 1 

The mean number of cells per colony (± 1 SD) was 2.44 (0.23) and 5.01 (0.41) in control 

and treated C. microporum cultures, respectively, while in C. sphaericum these numbers were 

2.84 (0.97) and 7.12 (0.61), respectively. Spherical unicells were 10 ± 1 um in size in C. 

microporum (including the mucous layer 18 ± 3 urn) and 21 ± 5 um in C. sphaericum. The large 

aggregates had mean dimensions (length x width, ± 1 SD) of 82 (11) x 77 (12) um and 88 (17) x 

60 (12) um in C. microporum and C. sphaericum, respectively. 
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8.4 BACILLARIOPHYCEAE 

The diatoms Asterionella formosa CCAP 1005/9 and Synedra tenuis CCAP 1080/2 were 

obtained from the Culture Collection of Algae and Protozoa (CCAP, Windemere, UK). The 

algae were cultured for 3 days in the absence (control) and presence of Daphnia water (10% 

v/v), and in the presence of one live Daphnia. The algae were cultured in Z8 medium enriched 

with silicate at 20°C in 175 umol-m"2s"' at a 16:8 h light:dark-cycle. The inoculum cultures were 

mainly uni- and bicellular with mean number of cells per aggregate of 1.9 and 1.5 for A, formosa 

and S. tenuis, respectively. The initial density differed slightly among the two species and was 

6106 urn3-ml"1 for S. tenuis and 9.8-106 um^ml"1 for A. formosa. 
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Figure 8.19: Mean number of cells per aggregate and the mean particle volumes (um3) for S. tenuis 

cultured in the absence (Control) and presence of water from a Daphnia culture (Daphnia water), and in 

the presence of one live Daphnia (Live Daphnia). Error bars represent 1 SD, similar symbols ct,P,a, b 

homogeneous groups that are not different at a 95%-level (Tukey test). 

After three days, variation among the three replicates per treatment in A. formosa was 

considerable. One-way ANOVA indicated no differences in the mean particle volumes (F2f> = 

0.32; P = 0.741). The mean particle volume (± 1 SD) was 368.9 (60.2) urn3. However, in S. 

tenuis, one-way ANOVA indicated significant differences in MPV among treatments (F26 = 

8.30; P = 0.019). Microscopic analysis revealed that the proportion of unicells had slightly 

decreased from 70% in the controls to 60% in the treatments and that some large aggregates with 

more than 10 cells were formed. This caused a small but significant increase in the number of 

cells per colony (F26 = 17.0; P = 0.003). The mean number of cells per aggregate (± 1 SD) and 

the mean particle volumes (± 1 SD) for S. tenuis are presented in Fig. 8.19. 
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8.5 CYANOPHYCEAE 

8.5.1 Oscillatoria and Aphanizomenon 

Filamentous cyanobacteria have been reported to appear as flakes in the presence of 

Daphnia but as single filaments in their absence (Lynch, 1980; Holm et al, 1983). Moreover, 

unicellular cyanobacteria may often occur as large numbers held within a common mucilage 

envelope, but fail to do so in laboratory cultures. As representatives of filamentous cyanobacteria 

Oscillatoria agardhii NTVA-CYA 29 (order Oscillatoriales) and Aphanizomenon flos-aqua 

NIVA-CYA 142 (order Nostocales) were selected. The former cyanobacterium is a 

representative of a genus in which the trichomes are never united into colonies and no mucilage 

sheat is present, whereas the latter may occur as flakes (Van den Hoek et al, 1995). Stock 

populations were cultured in WC-medium at 20°C in 45 umol-m -̂s"1 at a 16:8 h light:dark-cycle. 

The cyanobacteria were transferred into 300 ml Erlenmeyer flasks containing 150 ml of fresh 

WC-medium (control), medium with 10% (v/v) medium from a Daphnia culture (300 animals 

per liter), or with one live Daphnia added (treatments). After two and seven days, the 

incubations were microscopically examined for the presence of flakes and the filament density 

was determined using a Biirker-Turk counting chamber with a volume of 0.9 mm3. However, no 

flakes were formed and all cyanobacteria remained present as single filaments even in the 

presence of live D. pulex. The growth rates (± 1 SD) were 0.27 (0.08) and 0.22 (0.08) day1 for 

Oscillatoria and Aphanizomenon, respectively. 

8.5.2 Microcystis 

In a second experiment three strains of the unicellular cyanobacterium Microcystis 

aeruginosa (NTVA-CYA 43, 140 and 228/1; order Chroococcales) were selected. The colonial 

morphology of Microcystis may clearly reduce feeding in zooplankters like Daphnia (Fulton III 

& Paerl, 1987a), but chemicals released from Daphnia ambigua (Fulton III & Paerl, 1987b) or 

D. magna (Hessen & Van Donk, 1993) appeared ineffective as colony-inducing agents. On the 

other hand, several strains of Microcystis are among toxin producing phytoplankton. Numerous 

variants of the Microcystis toxin, microcystin, have been isolated and purified (Codd et al, 

1989). Especially the variant microcystin-LR may exert strong toxic effects on herbivorous 

zooplankton (e.g. DeMott et al, 1991; Haney et al, 1994; Reinikainen et al, 1994; 1995). 

Abiotic factors, such as light-intensity (Watanabe & Oishi, 1985), and biotic factors, such as 

grazing (Benndorf & Henning, 1989) may cause variability in Microcystis toxicity. Hence, 

besides the possible effects of medium from a Daphnia culture on growth and morphology also 

the amount of microcystins were examined. 

Induction experiment 

Prior to the experiment 400 adult Daphnia magna were transferred into 1 liter WC-

medium with a 1:1 mixture of S. acutus and M. aeruginosa CYA 43. After 48 h of grazing, 
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water was filtered through a glass-fiber filter and used as test-water in a biotest to examine the 

inducibility of MC (-LR) by Daphnia chemicals. This biotest was run in 300 ml cellulose-plug 

stoppered Erlenmeyer flasks containing 150 ml of medium. Controls contained Microcystis in 

fresh WC-medium, while treatments contained 135 ml fresh medium + 15 ml test-water. Both 

were run in quadruplicate. The batches were incubated in a climate controlled chamber at 20°C 

in 45 umol-m'̂ s"1 with a 16:8 h light:dark cycle. Each day the algal size distributions and 

densities were determined in the range 2-20 urn using a Coulter Multisizer II (100 um capillary). 

A subsample was preserved in Lugol's fixative upon microscopic analysis. After 14 days, the 

exponentially growing cells were harvested by filtration and analyzed on their microcystin 

content. Microcystins (MC) were extracted by solid phase extraction and determined by reversed 

phase HPLC using MC-LR as external standard according to the method as described by Lawton 

et al. (1994). 

Microcystin (MC) analysis revealed that both CYA 140 and CYA 228/1 contained MC 

(and MC-LR), but not CYA 43. The total MC-content per cell in strain CYA 228/1 was 

significantly higher than in CYA 140 (F = 46.5, P < 0.001). However, two-way ANOVA 

indicated no significant difference in MC-contents between controls without and treatments that 

had been cultured with 10% (v/v) water from a Daphnia culture (F = 1.59, P = 0.232). The MC-

LR contents per cell were similar between CYA 140 and CYA 228/1 (F = 4.\\,P = 0.065) and 

also between controls and treatments (F= 2.03, P = 0.180). Because the mean particle volume in 

CYA 228 is considerably larger than in CYA 140, the microcystin-content was standardized per 

unit biovolume (Fig. 8.20). 
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Figure 8.20: Total- and LR-microcystin content (in ng-nm"3) in Microcystis aeruginosa CYA 140 and 

CYA 228 cultured for two weeks in the absence or presence of filtered medium from a Daphnia culture 

(+ DW). Error bars indicate 1 SD (n = 4). 
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Now two-way ANOVA indicated no significant differences in total-MC content between 

CYA 228 and CYA 140 (F = 0.77; P = 0.396) and between controls and treatments (F= 1.61; P 

= 0.229). The MC-LR contents were significantly lower in CYA 228 (F = 71.5; P < 0.001), but 

no differences were observed between controls and treatments (F = 0.83; P = 0.381). Hence, 

neither total-MC nor MC-LR contents were influenced by Daphnia infochemicals. 

Although the growth rates were significantly different between strains (F = 32.9; P = 

0.029), no different growth rates between controls and treatments within one strain (F = 0.24; P 

= 0.670) were observed (Table 8.11). Moreover, growth rates based on either number of particles 

or on biovolumes were similar (Mest: P = 0.622). The mean particle volume (um3) was 

somewhat larger in Daphnia water treatments in strain CYA 140 and CYA 228, but the increase 

was marginal and microscopic analysis showed no colony formation (Fig. 8.21). 

Table 8.11: Growth rates (n, d~l), based on total algal volume or on number of cells, for three 

Microcystis aeruginosa strains cultured in the absence (Control) or presence (Daphnia water) of medium 

from a Daphnia culture. 

Controls 

Daphnia water 

CYA 43 

0.291 

0.277 

H-cell numbers 

CYA 140 CYA 228 

0.281 0.221 

0.293 0.211 

CYA 43 

0.272 

0.266 
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Figure 8.21: Course of the mean particle volume (nm^) for Microcystis aeruginosa CYA 228 cultured 

for 16 days in the absence (Control) or presence of medium from a Daphnia culture (Daphnia water). 

Error bars represent 1 SD (n = 4). 
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8.6 DISCUSSION 

The 23 Scenedesmus strains showed a considerable variation in colony formation when 

exposed to filtered water (10% v/v) from aDaphnia culture. In these experiments 8 of 23 strains 

were responsive on this trait, i.e. ~35% of the tested strains. Most of the responding strains were 

non-spiny Scenedesmus: 64% of the tested non-spiny strains were responsive, while only 4% of 

the spined strains showed Daphnia-induced colony formation. Colony formation was one 

morphological trait examined in this study. Daphnia-induced spine formation was examined in 

three strains, but the spine number and length was not affected. Other potential defensive traits 

such as cell wall thickness, mucous production (Van Donk et al., 1998), toxicity (Boersma & 

Vijverberg, 1995), and the presence of bristles (Trainor & Burg, 1965; Massalski et ah, 1971) 

which all could hamper ingesting and digestion by zooplankters were not examined. 

In biotests with S. subspicatus, S. quadricauda, and S. gutwinskii none of the tested 

strains showed formation of eight-celled coenobia in the presence of Daphnia infochemicals. 

Although S. subspicatus NIVA-CHL55 has been reported to respond to Daphnia infochemicals 

by formation of numerous 4-and 8-celled coenobia (Hessen & Van Donk, 1993), no 

infochemically induced colony formation was observed in this study. Among experiments after 

44h of incubation, Hessen & Van Donk (1993) found considerable variation in the proportion of 

infochemically induced eight-celled coenobia with -6% and 41% in the experiments II and III, 

respectively. This difference may have been the result of the use of a shaking device in the latter 

experiment. However, in this study always a shaking device has been used, but without any 

effect on colony formation. Also a longer incubation time appeared without any effect (see Fig. 

8.8). By contrast, in the presence of live Daphnia a somewhat higher proportion of colonies was 

found in S. subspicatus. The susceptibility of Scenedesmus to Daphnia infochemicals may be 

affected by other factors such as the physiological state of the algal cells or other traits may be 

involved in the defensive strategy. Examination of figure 1 in Hessen & Van Donk (1993) 

suggests an increase in spine length in connection with colony formation. The unicellular S. 

subspicatus has spines with a length of ~2 urn, the eight-celled morph bears spines of ~3.5 um. 

This increase in spine length could also occur in unicells exposed to Daphnia infochemicals, but 

has not been examined in this study. However, in the spiny S. quadricauda no effect of Daphnia 

exudates on the formation of spines was detected. In §8.2.8, a different setup was chosen to 

examine Daphnia-induced colony formation in a spined Scenedesmus. A biotest was run for 14 

days in which the treatments were run with a live Daphnia. After three days the live Daphnia 

was removed and the incubations were followed. Formation of eight-celled coenobia was 

observed in these treatments, but not in the controls. Thus, the biotest used in this chapter to 

examine grazer-induced colony formation in Scenedesmus, is only useful for the non-spiny 

strains. 

Eight-celled coenobia were also formed in both control and treated cultures in strain 5. 

quadricauda UTEX 76. Thus, in this strain eight-celled coenobia were formed independent of 
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Daphnia water. The strain UTEX 76 was considered S. quadricauda, but has been redefined as 

S. communis (Hegewald 1977). In the study by Egan & Trainor (1990), UTEX 76 produced 

always unicells with 5-7 spines, but here this alga produced larger unicells with 2-4 spines. The 

length of the spines is, however, comparable among both studies. Moreover, in both studies 

eight-celled coenobia were easily formed in UTEX 76, when growth rates were high. Several 

factors have been reported to affect the coenobial cell number in S. quadricauda, such as light-

rhythm (Steenbergen, 1975), nutrients (Steenbergen, 1978) and growth rate (Gavis et al., 1979). 

The number of cells per colony in Scenedesmus seems closely related to the amount of energy 

stored or protoplasm produced in the parent cell (Setlik et al, 1972) and may be directly 

proportional to growth rates (Siver & Freeda, 1982). However, all studies were performed with 

only one strain. By contrast, in this study a considerable within-'species' variation in growth and 

morphology was observed. Light field and nutrients were similar among cultures, whereas 

growth rates varied among strains. Gavis et al. (1979) reported 90% eight-celled coenobia at 

growth rates around 1.0 day"', but here at a growth rate of ~0.9 day"1 50-60% eight-celled 

coenobia occurred in strain UTEX 76, whereas at a growth rate of ~ 1.2 day"1 in strain NTVA-

CHL7 only 2% eight-celled coenobia were observed. A difference between the studies is that 

Gavis et al. (1979) run chemostats, whereas in this study short-term batch experiments were run. 

At low inoculum size and the relatively short incubation time of 48 h employed in this study, 

cultures will approximate steady state conditions. The unicell-colony transformation might occur 

independent of growth rate by altering the chemical environment (Siver & Trainor, 1983), such 

as the addition of Daphnia water. 

In the non-spiny strains considerable within-species variation in grazer-induced coenobia 

formation was observed. In S. acutus and S. obliquus, two of four and four of five strains showed 

induced colony formation, respectively. A different physiological state could be involved, but no 

major differences in physiological states were evident as cultures exhibited excellent growth and 

environmental conditions were similar. Inactivation of the infochemicals may occur by 

adsorption to the cell surface or metabolic activity (see §3.2.3). However, this may not be the 

reason for the different responses observed here. For example, in the experiment with S. 

obliquus different cell numbers per strain were inoculated, as a result of normalization to algal 

volume, but the cell numbers of the non-responsive strain were intermediate. Moreover, resource 

limitation was unlikely at the low inoculum size and relative short-term incubation period (48 h) 

employed in this study. 

Different culture conditions did not affect the morphological appearance of S. obliquus 

strain SAG 276/1, populations which consisted of over 90% of unicells (Hegewald, 1982; 

Holtmann & Hegewald, 1986). Nevertheless, SAG 276/1 is able to produce coenobia, as they 

were always present in very low numbers. Even if the strain SAG 276/1 responded to Daphnia 

chemicals, the eight-celled coenobia of this strain with dimensions of 30 x 25 urn will hardly be 

protected against Daphnia larger than 1.1-1.2 mm (Burns, 1968), which is a common size for 
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animals in nature (Lurling & Van Donk, 1997). The same holds true for eight-celled coenobia of 

S. obliquus strains UTEX 78 and 2630 and the four-celled coenobia of UTEX 1450 and NTVA-

CHL6. 

In S. acutus, based on the mean particle volumes from the first two biotests, it was 

suggested that Dap/iw'a-induced colony formation had only occurred in strain MPI. When this 

test was repeated including a treatment with the non-spiny S. falcatus, microscopy revealed that 

Daphni'a-induced coenobia formation not only had occurred in strain MPI, but also in UTEX 72 

and in S. falcatus. Moreover, in UTEX 72 control populations consisted of 10% of eight-celled 

coenobia, whereas only 1% eight-celled were found in strain UTCC 10. 

The non-spiny "species" examined in this study were morphologically difficult to 

identify as separate taxa. For example, S. acutus MPI had morphological characteristics more 

identical to S. obliquus UTEX 1450 than the latter had to S. obliquus SAG 276/1. Chodat (1926) 

used in his description of plasticity in Scenedesmus the name S. obliquus for numerous non-

spiny Scenedesmus including S. acutus. Also distinguishing S. acutus from S. falcatus could give 

some difficulties, as more or less identical unicells may be present in the cultures. Some authors 

could explain this by contamination, but more likely the species concept in non-spiny 

Scenedesmus needs reconsideration. Analogous to Trainor & Egan's (1990) criticism on the 

Scenedesmus catalogue of Hegewald & Silva (1988) with approximately 1330 taxa, based on 

phenotypic plasticity this species number will be definitely much lower. On the trait colony 

formation, S. acutus MPI seems closer to several S. obliquus strains than to the UTCC S. acutus 

strains used in this study. Since morphological identification of Scenedesmus is extremely 

difficult, and similar morphotypes may be genetically different, analysis of ribosomal and ITS 

(internal transcribed spacer region) DNA (Rausch et ai, 1989) may be very useful in unraveling 

phylogenetic relationships among Scenedesmus. In a recent study, sequence analyses of 18S 

rDNA from 16 Scenedesmus species suggested a division in two subgenera, the non-spiny 

species in Scenedesmus and the spined species in Desmodesmus (Kessler et ai, 1997). Also 

among different genotypes undoubtedly a variation in response to grazer chemicals will be 

demonstrated. 

Gradually, more information is gathered on Scenedesmus plasticity. It is evident that not 

only abiotic factors such as nutrients, temperature and salinity (e.g. Trainor, 1992a, b; 1993; 

1995; Mur, 1971; Wasmund, 1992), but also biotic factors such as the presence of grazers affect 

the morphological development in some Scenedesmus. The phenomenon of grazer-induced 

coenobia formation seems widespread, but not universal among Scenedesmus. Since about 43% 

of the tested strains were responsive on this trait, one can not claim that grazing-associated 

chemicals evoke a universal physiological response in Scenedesmus. 

The phenomenon of Dap/m/a-induced colony formation seems not restricted to the genus 

Scenedesmus as colonies were formed in Coelastrum (Table 8.12 and see Fig. 8.22). In two-third 
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of the strains the addition of Daphnia water resulted in a significantly increased cell volume. 

This increase was also observed in the cyanobacterium Microcystis aeruginosa. 

Figure 8.22: Unicellular Coelastrum sphaericum (left panel) and a colonial aggregate (right panel). 

Moreover, grazer-induced morphological changes seem not restricted to the Chlorophyceae, but 

may also occur in diatoms, as Synedra showed a somewhat enlarged particle volume in the 

presence of Daphnia water and live Daphnia because of the presence of large aggregates. These 

large aggregates were commonly observed in the presence of live Daphnia. This process of cell 

aggregation seems caused by clogging of live cells onto faecal pellets. These aggregates were 

already visible within one day and thus aggregation seems a more rapid process than the 

chemically induced colony formation. Also Hessen & Van Donk (1993) reported the occurrence 

of large multicelled aggregates with mean diameters of 50 um in the presence of live Daphnia. 

They referred to it as a culture phenomenon, but there is no reason to assume that the formation 

of multicelled aggregates will be restricted to the laboratory. From the marine world, 

flocculation of algae, "marine snow", is a well-known phenomenon that may be caused by 

heterotrophic flagellates (Nygaard & Hessen, 1994) and that inhibits copepod grazing (Malej & 

Harris, 1993). In freshwater systems, grazing Daphnia may release 10-17% of the ingested 

carbon as DOC (Lampert, 1978), that could be involved in clogging of algae. Especially during 

high zooplankton abundancy enhanced sedimentation of algae because of formation of large 

aggregates may contribute significantly to the clear-water phase. Perhaps the higher 

Scenedesmus sedimentation losses in the presence of zooplankton than in the absence (Visser et 

al., 1996) were a result of both colony formation and formation of multicelled aggregates. By 

contrast, these large aggregates may be colonized by protozoa, such as vorticellid ciliates (Fig. 

8.23), a phenomenon not uncommon in nature (f.e. figure 407 in Canter-Lund & Lund, 1995). In 

the presence of Daphnia, both may benefit from this interaction. The ciliates may have a refuge 

from Daphnia, the Scenedesmus could have a refuge from both Daphnia and ciliates, but may 

also be kept in suspension for longer period because of the water movements caused by the 

ciliates acting as an engine. 
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Table 8.12: Green algal strains tested for Daphnia-induczd colony formation in a standard biotest 
Algal taxon Colony formation 

Ankistrodesmus falcatus NIVA-CHL 8 NO 

Ankistrodesmus bibraianus SAG 278/1 NO 

Chlorella vulgaris NIV A CHL 19 NO 

Coelastrum microporum SAG 21771a YES 

Coelastrum sphaericum SAG 32.81 YES 

Micractinium pussilum CCAP248/1 NO 

Pediastrum duplex SAG 261/3a NO 

Planktosphaeria maxima CCAP 65/1 NO 

Raphidocelis subcapitata NIVA-CHL 1 NO 

Scenedesmus acutus MPI YES 

Scenedesmus acutus f. alternans UTEX 72 YES 

Scenedesmus acutus UTCC 7 NO 

Scenedesmus acutus UTCC 10 NO 

Scenedesmus armatus MPI ?? 

Scenedesmus falcatus MPI YES 

Scenedesmus gutwinskii B3-15 NO 

Scenedesmus gutwinskii B8-7 NO 

Scenedesmus gutwinskii B8-27 NO 

Scenedesmus obliquus NIVA-CHL 6 YES 

Scenedesmus obliquus UTEX 78 YES 

Scenedesmus obliquus UTEX 1450 YES 

Scenedesmus obliquus UTEX 2630 YES 

Scenedesmus obliquus SAG 276/1 NO 

Scenedesmus obtusiusculus Univ. Turku ?? 

Scenedesmus protuberans Univ. A'dam ?? 

Scenedesmus quadricauda NIVA-CHL 7 NO 

Scenedesmus quadricauda Fl 1 NO 

Scenedesmus quadricauda UTEX 76 NO 

Scenedesmus subspicatus NIVA-CHL5 5 NO - YES * 

Scenedesmus subspicatus RWTH NO 

Scenedesmus subspicatus UTEX 2532 NO 

Scenedesmus subspicatus UTEX 2594 NO " YES* 

~" * Hessen & Van Donk (1993), * 14 day-biotest (see § 5.2.5) 

Since several strains seem not to gain an advantage by colony formation, this trait may 

reflect a response to grazing in general rather than to Daphnia in particular. In numerous waters, 

Scenedesmus is not exposed to large Daphnia, but is confronted with several much smaller 

grazers such as rotifers, ciliates, and phagotrophic flagellates. Unicells will probably not survive 
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an encounter with one of these grazers, and may use dissolved chemicals to detect these grazers 

prior to encounter. 

Figure 8.23: A vorticellid ciliate has settled on a large aggregate of Scenedesmus acutus in the presence 

of live Daphnia. 

Stanley (1973) suggested that multicellularity might have evolved as a defense to 

phagocytosis. Recent evidence has revealed that protozoan grazers caused a unicellular 

Chlorella culture to change into one with numerous colonies (resulting in a culture dominated by 

eight-celled colonies!), which were protected from protozoan grazing (Boraas et al, 1998). 

These authors suggest mutations as the driving force, but this mechanism seems very unlikely 

for the responsive strains in this study. Moreover, it seems unlikely that for example SAG 276/1 

and UTCC 10 have lost their ability to respond to grazers by mutation, especially since eight-

celled coenobia were observed. Nevertheless, the dogma of random genetic mutation is firmly in 

place, but seems an assumption rather than scientific fact (Sheldrake, 1991). Certain bacteria 

have reported to employ directed mutations in the stress conditions where such a mutation was 

necessary to survive (Cairns et al, 1988; Hall, 1988). Boraas et al. (1998) provide clear evidence 

that a multicellular form, that was a rare mutant in unicellular culture, was selected over unicells 

by phagotrophic predation. This "rare mutant" could imply the presence of two genotypes in 

their culture and thus they may have observed a phenomenon of clonal replacement. The 

colonial form breeded true and remained colonial for years even at low flagellate densities, but 

"active photosynthesis and continued interaction with the predator are essential to maintain the 

colonial algae" (Boraas et al., 1998). 
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CHAPTER 9 

The smell of algae and competitors 

Parts of this chapter are based on: 

Lurling, M. & Van Donk, E. submitted to Aquatic Ecology 

Roozen, F., Lurling, M. & Plath, K. submitted to Journal of Plankton Research 

"Humans have a complete set of organs which 

are traditionally described as non-fucntional, 

but which, if seen in any other mammal, 

would be recognized as part of a pheromone system' 

-A. Comfort 1971 
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9.1 INTRODUCTION 

Chemical substances play an important role in plankton interactions. Theoretically, 

infochemicals may originate from every chemical process and may be involved in every 

interaction, simply because all organisms produce "odors" and thus potentially information 

(Dicke, 1988). The energy transfer from algae to herbivores may be influenced by chemicals 

acting between algal species, between algae and zooplankters, between zooplankton 

themselves and between zooplankton and their predators. In the previous chapters, research 

effort has been focused on the infochemicals flowing from zooplankton to algae and more 

specifically to Scenedesmus. The unidentified infochemical has to be defined as a kairomone, 

since the response in the receiving organism is beneficial to the receiver {Scenedesmus) but 

not to the emitter (a zooplankter). The induced anti-grazer response in Scenedesmus affects 

the energy-flow from primary producers to consumers. However, from all reports on induced 

defenses and chemical information transfer in aquatic systems {see Tollrian & Harvell, 1999; 

this thesis CHAPTER 1), it may be hypothesized that numerous infochemicals may affect this 

energy flow. Growth inhibiting substances among algae, such as an allelochemical from the 

cyanobacterium Fischerella that inhibits growth in several Scenedesmus strains (Gross et al., 

1991), the capability of Daphnia to respond to algal odors (Van Gool & Ringelberg, 1996) 

and the negative effects of grazers on each other (Folt & Goldman, 1981; Goser & Ratte, 

1994; Goser, 1997) may affect the energy flow from algae to consumers. In this chapter, no 

attention will be paid to natural algicides and interactions among phytoplankters, but some 

exploration into the possible role of chemical information transfer 1) from algae to 

zooplankters and 2) among zooplankters will be undertaken (Fig. 9.1). 

Chemicals that convey information from algae to zooplankton may be of major 

importance as they may influence the energy transfer between algae and their consumers 

(Larsson & Dodson, 1993). Infochemicals from algae should inform Daphnia about the 

location, quantity and quality of the algal food. In fact, Van Gool & Ringelberg (1996) 

demonstrated that Daphnia is attracted by odors associated with edible algal food. Daphnia 

has been shown to distribute themselves horizontally to a larger extent in a chamber with high 

algal concentrations (Jakobsen & Johnson, 1987) or with algal extracts (Lauren-Maatta et al., 

1997). 

In food gradient experiments Daphnia showed the strongest aggregation response at 

intermediate food levels, and avoided high food levels (Neary et al., 1994). Daphnia may 

perceive signals from toxic cyanobacteria as information associated with danger that may 

result in immediately reduced food intake (Haney et al., 1995) and altered swimming behavior 

(Haney, 1993). The potential ability of Daphnia to locate high quality algal patches could 

have strong effects on population dynamics and may be one of the factors involved in swarm 

formation. In that respect, it would be interesting to examine whether Daphnia is capable of 

distinguishing algae belonging to the same species but differing in palatability and quality. 

198 



ALGAL ODORS & CROWDING CHEMICALS 

However, an alternative hypothesis is that Daphnia may not use infochemicals from algae, but 

the concentration of algal cells as mechanism to locate these regions (Cuddington & 

McCauley, 1994; Neary et al., 1994). Also in the study of Porter et al. (1982), Daphnia 

appeared unable to locate and detect algal patches and diaptomid copepods have been reported 

not to respond to algal odors too (DeMott & Watson, 1991). Therefore, in the first part of this 

chapter (§9.2 and §9.3) an Y-tube olfactometer (Takabayashi & Dicke, 1992) was used to 

examine the effects of algal odors, algal cells and algal color on swimming behavior of 

individual Daphnia. 

Figure 9.1: 
(+,-) on the 

Potential infochemical flows (^) examined in this chapter and the effect they couldjiave 

energy flow from the pelagic primary producers d§gn) to herbivorous zooplankton ̂  )• 

ildjia-

Daphnia may not only respond to 'odor' from its food, but also to odors from 

competitors and predators (e.g. Larsson & Dodson, 1993; Pijanowska, 1994; Kleiven et al., 

1996). This response could result in altered horizontal distributions and the formation of 

swarms (e.g. Davies, 1985; Larsson & Dodson, 1993; Pijanowska, 1994; Kvam & Kleiven, 

1995; Kleiven et al., 1996). Daphnia may often form dense swarms (e.g. Colebrook, 1960; 

Ratzlaff, 1974; Malone & McQueen, 1983) at the cost of an increase in exploitative 

competition (Folt, 1987; Jakobson & Johnson, 1988b; Tessier, 1983; DeMott, 1989 for 

review). Swarms or aggregates may be the result of abiotic factors, such as wind (George & 

Edwards, 1976; Malone & McQueen, 1983) or water currents like Langmuir circulations 

(George & Edwards, 1973), but swarms may also be easily broken by wind-induced water 

currents (Irvine, 1989). The observation of Irvine that Daphnia aggregated more on calm days 
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suggests a behavioral activity (Irvine, 1989). Thus, swarms could also be the result of 

biological interactions between organisms belonging to similar or different species in similar 

or different trophic levels. However, swarming strongly depends on food availability 

(Jakobson & Johnson, 1987; Cuddington & McCauley, 1994; Neary et al, 1994; Kleiven et 

al., 1996). Inside a swarm, animals compete for resources and infochemicals released from 

crowding competitors may strongly affect the receiving animals thereby influencing 

competition (e.g. Folt & Goldman, 1981). 

Zooplankton infochemicals may influence zooplankters directly by inducing various 

behavioral and physiological responses or indirectly by altering the algal food. 

For example, Stirling (1995) reported that D. galeata mendotae performed vertical migration 

only in response to fish that had been fed with conspecifics, while D. magna responded on 

freshly crushed conspecifics (Pijanowska, 1997). Several studies have reported feeding or 

reproduction changes in zooplankton by chemicals released from potential competitors. 

Halbach (1969) reported that survival and fecundity of the competing rotifers Brachionus 

calyciflorus and B. rubens were reduced when animals were reared in preconditioned water. 

The filtering rate of the copepod Diaptomus tyrrelli was reduced by a high-molecular weight 

chemical released from its competitor and predator Epischura nevadensis (Folt & Goldman, 

1981). Feeding in Daphnia is reduced by infochemicals released from congeners (Matveev, 

1993) and conspecifics (Helgen, 1987). Chemicals released from crowded D. cucullata (Seitz, 

1984) and Daphnia magna (Hobffik & Larsson, 1990; Burns, 1995) improved the reproduction 

in conspecifics. However, reductions in reproduction by intraspecific substances were 

reported for Simocephalus vetulus (Perrin, 1989), Daphnia magna (Guisande, 1993; Goser & 

Ratte, 1994; Cleuvers et al., 1997), Daphnia carinata (Matveev, 1993) and Daphnia hyalina 

(Burns, 1995). Moreover, intraspecific chemicals resulted in less but larger and heavier 

neonates in D. magna that contained more lipids and survived longer starvation periods 

(Cleuvers et al., 1997). Crowded congeners had either no effect or reduced the fecundity in 

Daphnia cucullata, D. hyalina and D. magna (Seitz, 1984; Hobask & Larsson, 1990). 

Thus, chemicals released under crowding conditions may influence life-history 

parameters of Daphnia. In the second part of this chapter the effects of chemicals released 

from crowded D. cucullata and D. pulex on life-history parameters of congeners and 

conspecifics are examined. The crowding conditions used in the experiments were based on 

previous field observations of the shallow Lake Zwemlust (The Netherlands), where Daphnia 

densities can go up to 300-600 animals 1"' (own observations; Van Donk et al., 1990a & b) 

and literature data. Davies (1985) reported swarms with more than 1000 Daphnia per liter, 

while Kvam & Kleiven (1995) measured up to 4000 animals per liter during the day and still 

1/10 during the night. In the laboratory, a situation was mimicked when Daphnia migration 

(horizontal as well as vertical swarm disintegration) was impossible and consequently when 

animals were continuously exposed to infochemicals released from competitors. In order to 
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investigate whether the effects of crowded conditions can be explained by the mere presence 

of simple excretion products such as urea or ammonia the effect of these substances on life-

history characteristics of Daphnia pulex was tested. 

9.2 Y-TUBE OLFACTOMETER 

The Y-tube olfactometer is an Y-shaped glass tube, with an internal diameter of 3.5 

cm, one side with two arms 12 cm in length (at an angle of 75°) and one basal leg with a 

length of 13 cm (Fig. 9.2). The two arms served as inflows for the two test-media that were 

pumped into the tube by two peristaltic pumps (Gilson Minipuls 3), each with a rate of 7.2 

mlmin"1. Blue colored water added to one of the inflows resulted in a laminar pattern, what 

indicated that the two media did not mix during the experiments, but remained separated in 

the outflow-leg. The experimental set-up was based on the one given by Van Gool & 

Ringelberg (1996). 

The Y-tube was placed horizontally in a white bath containing the artificial freshwater 

COMBO-medium (Kilham et ah, 1995). The position was marked so that the tube could be 

placed in the same position every experiment. About 60 cm above the bath a lamp caused an 

illumination of 45 umol.m"2.s"'. At the start of each experiment, the Y-tube olfactometer was 

connected with the two inflows. One Daphnia was placed in the leg, 4 cm from the end, and 

the leg was connected with the outflow. 

Medium A 

Light 
White bath + medium 

Peristaltic pumps 
Medium B 

Figure 9.2: Experimental set-up and the Y-tube olfactometer. 
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A cover was put over the bath and only let the light pass through a small window 

above the place where the Daphnia was inserted in the Y-tube. The window served as an 

optical trap to ensure that each Daphnia started at the same position, and covered the full 

width of the tube, so that the Daphnia was able to contact both media during the incubation 

time of five minutes. The incubation of five minutes is too small to get one half of the Y-tube 

completely filled with the inflowing medium. Theoretically this should take about 25 minutes 

at the rate of 7.2 ml-min"1. However, the experiments with coloured water showed, that after 

five minutes the colour already reached the end of the tube. This indicates that test-water 

should also reach the end of the tube after five minutes, and that the Daphnia should be able 

to come in contact with it. 

The Daphnia was released by lifting the cover and was expected to swim against the 

current of the inflows. Daphnids that reached a distance of 9 cm into one of the inflow-arms 

were scored and marked, those that did not score after another five minutes were also marked. 

Each Daphnia was only used once and in one experiment about 40 animals were used. 

After each run, the Y-tube was cleaned with hot water and a brush. After five runs the 

two inflows were changed to prevent possible position effects. The light field was checked 

after every ten runs with a LICOR LI-185B photometer, and the inflow rates were checked 

with a 10 ml pipette. 

The binomial test was used to test whether the Daphnia had made a significant choice. 

The null hypothesis belonging to the experiments with the Y-tube olfactometer is given by: 

P(odour) = P(clean) = 0.5, which means that there is no preference for one of the two media. 

In some experiments (Exp. II and III see below) the swimming-time of Daphnia was 

measured. This measurement started when the test organism crossed a line, marked 2 cm from 

the starting position (away from the end of the outflow-leg), and stopped when Daphnia had 

scored, or after five minutes. To test the differences in swimming-time belonging to the 

choices for both media, the t-test for unequal variances and the Wilcoxon Rank Sum test were 

used. 

9.2.1 Plankton organisms 

Daphnia magna was obtained from the Centre for Limnology (Nieuwersluis, the 

Netherlands) and Daphnia pulex G-clone originated from the culture collection of the Max-

Planck Institute for Limnology (Plon, Germany). The two Daphnia species were cultured 

separately in artificial RT-medium (Tollrian, 1993), and were fed with the green alga 

Scenedesmus acutus. All animal cultures were maintained in a temperature-controlled room at 

20°C in low light with a day-night interval of respectively 16 and 8 hours. The green-alga 

Scenedesmus acutus or its odor, was used in the test-media. These algae were cultured in a 1 

liter chemostat with the artificial COMBO-medium (Kilham et al, 1999), with a turnover 

time of one day. The chemostat was placed in a temperature-controlled room at 20°C with 
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constant light of about 100 jimol-m"2-s''. Nitrogen-limited algae were obtained by placing 

algae from the chemostat in a batch culture with COMBO-medium that contained NaCl 

instead of NaNCh. After six days the algae were strongly N-limited and could be used for the 

experiments. 

9.2.2 Experiments 

The different experiments needed different preconditioned test-media and test-

organisms. 

I. In the first series of experiments, the effect of odor from non-limited and N-limited 

Scenedesmus on the swimming behaviour of Daphnia magna and D. pulex was examined. 

Algal-odor of non- and N- limited algae was obtained by inoculation of Scenedesmus in clean 

COMBO-medium (N-limited in medium with NaCl instead of NaNOa) at a concentration of 

MO4 parts-ml"1. This density is about 0.25 mgC-1"1 and was based on the Incipient Limiting 

Level (ILL) for Daphnia magna grazing on Scenedesmus acutus (Muck & Lampert, 1984). 

After one day of incubation, the medium was filtered through 0.45 um and the nitrate was 

collected in dark flasks and used in the experiments against clean 0.45 um filtered COMBO-

medium. The clean medium and the medium with algal odor were compared in pH, 

conductivity and color. The latter was done by spectrophotometric analysis. One day before 

the experiments, the daphnids were put in clean COMBO-medium with enough Scenedesmus 

acutus as food. 

II. The second series of experiments comprised a first experiment (Ha) in which well 

fed Daphnia magna was offered the choice between clean medium and medium with live S. 

acutus cells. In a second experiment (lib) well fed D. magna was offered the choice between a 

low and a high food level. The third and fourth experiments were replicates of the first (Ha), 

but now with starved D. magna (lie) and with D. magna cultured in the presence of fish (lid). 

The algal concentrations used in the experiments Ha, lie and lid were MO4 parts-ml'1. This 

medium was tested against the non-filtered clean COMBO-medium. In the experiment lib the 

algal concentrations were 5-103 parts-ml"1 in the low food inflow and 2-10 parts-ml"1 in the 

high food inflow. Moreover, in these experiments the swimming-time of Daphnia was 

measured. This measurement started when the test organism crossed a line, marked 2 cm from 

the starting position (away from the end of the outflow-leg), and stopped when Daphnia had 

scored, or after five minutes. 

The experimental Daphnia were cultured in three different ways to obtain animals that 

were well fed, starved and had been exposed to fish. Well-fed Daphnia were put in clean 

COMBO-medium with enough Scenedesmus acutus as food a day before the experiment. 

Starved animals were obtained by transferring them two-days before the experiment into clean 
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COMBO-medium without food. Fish exposed animals were placed in an aquarium with 

medium, food and two fish {Leuciscus idus), but separated by a plankton-net. 

III. The third series of experiments was designed to evaluate whether fed (Ilia) and 

starved (Illb) Daphnia are capable to discriminate between clean medium and medium with a 

green color and perhaps a 'chlorophyll-odor' The color of the Scenedesmus acutus was 

simulated by the chlorophyll-a of the alga Anacystis ridulans (Sigma). The amount of 

chlorophyll-a used in the test-medium was comparable to the amount of this pigment in a 

concentration of 1-10 parts^. acutus)-m\~. Again swimming-speeds were determined. 

9.3 RESPONSE OF DAPHNIA TO ALGAL ODOURS, CELLS AND COLOUR 

The experiments with clean odourless medium in both arms of the Y-tube showed that 

the null hypothesis could not be rejected. Daphnia magna and Daphnia pulex showed 

comparable numbers of individuals scoring for either arm with 50-50% and 45-55%, 

respectively (N=20). This indicates that no environmentally induced position effect was 

present during the experiments. 

I. In the first series of experiments the null hypothesis could not be rejected. Daphnia 

pulex as well as Daphnia magna had no preference for the medium with infochemicals of (N-

limited) Scenedesmus acutus or for the clean medium. When Daphnia could chose between 

two different qualities of S. acutus, i.e. between medium that had contained non-limited and 

nitrogen-limited cells, the null hypothesis could not be rejected as well (Fig. 9.3). Although no 

significant effect of the differently odored media was observed, the response to similar 

treatments was significantly larger (P = 0.023) for D. magna than for D. pulex according to 

the Wilcoxon Rank Sum test. 

II. Daphnia magna had no preference for clean medium or medium containing algae 

(Ha) (Fig. 9.4). The swimming speeds for animals with respect to the choice made were not 

significantly different (Fig 9.5; P = 0.68). Also when two different food levels were offered to 

Daphnia (lib) the null hypothesis could not be rejected, although 63% (n = 38) of the D. 

magna scored the higher concentration (Fig. 9.4). However, the swimming speed was 

significantly (Fig. 9.5; P = 0.03) lower for animals in the high food concentration compared 

with the low algal concentration. Daphnia that had been in an aquarium with fish (lid) had no 

preference for either clean medium or medium with algae (Fig. 9.4). Thus again the null 

hypothesis could not be rejected. 

The swimming speeds were not significantly different (Fig. 9.5; P = 0.25). Starved 

Daphnia, however, (lie) showed a different response. Of a total of 30 animals 25 (i.e. 83%) 

did not score, but wanted to swim with the water current. From the five individuals that did 

score, four (80%) chose the medium with S. acutus cells. 
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Figure 9.3: Response in Y-tube olfactometer of Daphnia pulex and D. magna toward clean medium or 

odored medium from non-limited and N-limited green alga Scenedesmus acutus. The numbers indicate 

the number of animals that made a specific choice. 
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Figure 9.4: Response of D. magna in Y-tube olfactometer toward clean medium or medium with algal 

cells (11a, lie & lid) or toward medium with a low (5-103 particlesml"1) or high algal concentration 

(2-104 particlesml"1). D. magna was well fed (Ha & lib)-, starved (He)-, or cultured in the presence of 

fish-odor (lid). 
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Figure 9.5: Swim velocities (cm min"1) of D. magna related to the specific choice for a medium in the 

Y-tube olfactometer, including P- values of /-tests (see text). 

III. Both experiments (Ilia and b) showed that the null hypothesis could not be 

rejected (Table 9.1). In experiment Ilia, Daphnia that scored the medium with chlorophyll-a 

swam significantly slower than those who preferred clean medium (Fig. 9.5; P = 0.01). In 

experiment Illb starved Daphnia showed the same response as the starved ones in exp. lib. A 

majority did not score, but wanted to swim along the current. The ones that did score were 

evenly distributed between the clean medium and the medium containing chlorophyll-a. 

However, no significant differences in swimming-speeds were detected (Fig. 9.5; P = 0.14). 

Table 9.1: Numbers and precentages of D. magna that choose in Y-tube olfactometer clean or 

chlorophyll-a containing media, including % -values. 
Experiment 

Ilia well fed D. magna 

nib Starved D. magna 

Clean vs. chl-a 

23-17 

5 - 4 

% 

58-42 

55-45 

I1 

0.47 

0.06 

No choice 

11 

The data obtained in the previous experiments do not support the results obtained by 

Van Gool & Ringelberg (1996). However, several factors differed between the experiments. 

To unravel this discrepancy an additional experiment was performed with Daphnia galeata x 

hyalina (clone 02) obtained from the culture collection of the University of Amsterdam 

(kindly provided by Dr. T. Reede). This animal was cultured in aged and filtered lake 

Maarsseveen (MV) water and fed with S. acutus. The D. galeata x hyalina was offered the 

choice between filtered MV water and MV water with algal odor. S. acutus was harvested 
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from the chemostat, centrifuged at 2000 rpm and resuspended with MV water. This procedure 

was repeated twice. The resuspended algae were then transferred into 5 liter 0.45 um filtered 

MV water at a final concentration of 2104 particles-mi"1. The 5 liter Erlenmeyer flask was 

incubated for 24 h at 20°C in continuous light of 100 umolm^s"1 followed by a filtration to 

separate the algae from the MV water. This filtered "algal-odored" MV water was tested 

against clean filtered MV water. Prior to the experiment an experiment was conducted with 

only clean filtered MV water. This test revealed that no environmentally induced position 

effect was present (Fig. 9.6). The experiment showed that again the null hypothesis could not 

be rejected (Fig. 9.6). 

Daphnia galeata x hyalina 
Clean Scenedesmus 

p = 0.434 N=59 

P - 0.500 W=51 

Clean Clean 

100 80 60 40 20 0 20 40 60 80 100 

Percentage of choice 

Figure 9.6: Response of D. galeata x hyalina in Y-tube olfactometer in clean MV water or when MV 

water was odoured with the green alga S. acutus, including P-values. 

9.4 DAPHNIA - DAPHNIA 

The behavioural response of Daphnia magna and D. pulex to intra- and inter-specific 

infochemicals was investigated in a Y-tube olfactometer. The Daphnia were investigated on 

their ability to distinguish between clean RT-medium and RT-medium that had contained 

conspecifics or congeners. The latter was produced by adding 600 well-fed Daphnia to 3 liter 

clean RT-medium without any food. After 24 h the animals were separated from the medium 

that was filtered through a 0.45 um filter and used in the bioassay. 

Both Daphnia species showed no preference for either the clean medium or medium 

that had contained conspecifics, but prefered the clean medium above medium previously 

inhabitated by congeners (Table 9.2). 
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Table 9.2: Numbers and precentages of D. magna and D. pulex that choose in Y-tube olfactometer 

clean or odored medium, including % -values (*: P < 0.05). 
Test species 

D. magna 

D. pulex 

Odor 

D. magna 
D. pulex 

D. pulex 
D. magna 

Clean vs. 

18-22 
29-11 

14-20 
25-15 

odor % 

45-55 
73-27 

41-59 
63-37 

x1 

0.20 

4.05* 

0.53 
1.25 

These experiments clearly revealed that Daphnia is able to alter its distribution in 

response to chemicals from other daphnids. However, they only responded to medium that 

had contained congeners, the interspecific signaling causing them to choose the clean 

medium. Interestingly, both species showed a preference for the clean medium when medium 

from congeners was the alternative, but not in the case of an alternative with medium from 

conspecifics. The swim-away response is often related to low food conditions (Kleiven et al., 

1996), but in these experiments the animals were well fed and the exposure time in a run of 

maximally 10 minutes seems to short to starve the animals. The experimental animals did not 

encounter any food in the Y-tube runs that could influence their behaviour and their response. 

Nevertheless, Daphnia seems capable of responding to chemicals released from congeners. 

9.5 CROWDING CHEMICALS: COSTS OF LIVING TOGETHER 

9.4.1 Plankton organisms 

Daphnia pulex De Geer (adult female ca. 3-4 mm) was isolated from Lake Zwemlust 

(The Netherlands) and has been cultured for several years in the laboratory. A clone (Tj33) of 

the smaller species Daphnia cucullata Sars (adult female ca. 0.8-1.1 mm) was obtained from 

the culture collection of the Centre for Limnology (Nieuwersluis, The Netherlands). Animals 

were cultured at 20°C in 1 litre jars containing a suspension of Scenedesmus acutus in 

COMBO medium (Kilham et al., 1995.). The green alga Scenedesmus acutus Meyen was 

cultured in a 1.0 litre chemostat on COMBO medium at an irradiance of 125 umol quanta m"2 

s"1 in a temperature controlled chamber at 20°C with a dilution rate of 1.2 d"1. In the chemostat 

S. acutus was mainly unicellular with dimensions of 14 x 4 um. 

9.4.2 Life history experiments 

Life history experiments were conducted for D. cucullata and D. pulex. Newborns from 

cohorts reared in 1 liter jars on S. acutus in COMBO were collected within 24 h of birth and 

joined in a 500 ml beaker containing only COMBO. For each series 15 neonates were selected 

from this beaker and transferred individually into 125 ml test tubes containing 90 ml of S. 

acutus in standard COMBO or in "crowded" COMBO. The latter was filtered (0.45 um) 

medium from culture vessels crowded with either D. cucullata or D. pulex, further referred to 
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as "Cucullata" or "Pulex" water, respectively. Three 1 liter jars per Daphnia species were 

used and crowding conditions at the end of the experiment were 4.89 ± 0.67 mg DW-1'1 for D. 

cucullata and 10.50 ± 1.63 mg DW-1"1 for D. pulex. Every day the animals were transferred 

into clean vessels containing 1 liter of fresh food suspension, while the "crowded" vessel 

water was filtered (0.45 um) and used as test water in the life table experiments. The 125 ml 

test tubes, each with one experimental animal, were incubated in a temperature controlled 

room at 18°C in low light intensity of ca. 4 umolm"2s"' using a 16:8 h light-dark cycle. Both 

Daphnia species were fed equal amounts of algae, i.e. equivalent biovolumes of 1.01 ± 0.01 x 

107 um3ml"1 (i.e.. ~80 000 cellsml"1 yielding a carbon concentration of ~3.9 mg C-l"1). The 

animals were transferred daily into clean tubes containing fresh medium, were inspected for 

molting and length was measured. The experiment was run as described in section 7.4.3. 

The standard-medium and both crowded media were analyzed for their total 

(in)organic-C, inorganic-N and inorganic-P content. Total (in)organic carbon was 

determined using a TOC-analyzer (model 700, OI-Analytical). NH4
+-N, N027N03"-N and 

P04
3 -P were determined using a SKALAR autoanalyzer. Moreover, pH and conductivity of 

the different media were measured routinely. 

A second experiment was conducted with D. pulex in order to examine the effect of 

elevated ammonia/urea levels in crowded water on life history parameters. The experiment 

was performed analogous to the former experiment, only with one species (D. pulex) and 10 

experimental animals per treatment. The highest ammonia concentration measured was ~1 

mg l"1 ("Pulex"-water). (In Lake Zwemlust the highest ammonia concentration measured in 

1996 was 0.92 mg NH^-N-l"1, in crowded medium the highest level was 0.83 mg NH^-N-l"1). 

Therefore in two series daily either 1.0 mg-i"1 ammonia or urea was added to the (uncrowded) 

medium. Additionally, length of neonates of the third clutch was recorded and their dry-

weight determined using a microbalance (Mettler ME 130). 

9.4.3 Results 

The pH (8.14 ± 0.54) and conductivity (330 ± 21 uS-cm"1) of the control medium and 

crowded water types were similar throughout the entire experiment. Crowded water had 

affected the life history parameters of Daphnia. In D. cucullata animals seemed to mature at 

older age in crowded water (Table 9.3), but differences were not significant. Also length at 

maturity was not significantly influenced. However, in D. pulex age at maturity was 

significantly different between animals reared in the three water types. One-way ANOVA 

indicated significant differences in length at maturity of D. pulex grown in different water 

types. Tukey's test revealed that animals reared in control medium were significantly smaller 

at maturity than animals in "Cucullata" water (Table 9.3). This is also reflected in the body 

length at successive instars (Fig. 9.7A), where D. pulex instars 4 and 5 in „Cucullata" water 

are significantly larger than animals in the other water types. In D. cucullata the adult instars 
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reared in crowded water were smaller compared to animals grown in control medium (Fig. 

9.7B). The repeated measure ANOVAs with instar as repeated measurements revealed 

significant water type effects for body-length of D. pulex (F = 4.45; P = 0.032) and D. 

cucullata (F= 11.7; P = 0.001). 

Reproductive rates were highest for animals reared in control medium (Fig. 9.8). In 

both Daphnia species a reduction in number of new-borns was observed when animals were 

cultured in crowded water. In D. pulex the reduction in offspring was most pronounced in 

animals grown in "Cucullata" water (Fig. 9.8A), while D. cucullata clutch sizes were most 

reduced in animals reared in "Pulex" water (Fig. 9.8B). 
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Figure 9.7: Body-length (mm) of Daphnia cucullata (Panel A) and Daphnia pulex (Panel B) of 

successive instars in standard medium (Control) and in medium crowded with either D. pulex ('Pulex') 

or D. cucullata ('Cucullata'). Error bars represent 1 SD. 

Mainly in the second brood, D. pulex produced parthenogenetic ephippia. 23% of the 

animals developed ephippia in "Pulex" water, 64% in "Cucullata" water, while no ephippia 

occurred in the control group in control medium. Ephippial broods were in all cases followed 

by an empty brood pouch in the successive adult instar. Both were omitted from reproduction 

analysis, rather than scored as zero or as two. In D. cucullata no ephippia were produced in 

the three clutches, but egg degeneration occurred (only in "Pulex" water) in the first, second 

and third clutch, in 22%, 33% and 83% of the broods, respectively. No eggs were developed 

completely in these broods. The repeated measure ANOVA for number of newborns revealed 

no significant instar (F = 6.77; P = 0.052), water-type (F = 2.18; P = 0.229) and interaction 

effects (F = 2.03; P = 0.183) for D. pulex. For D. cucullata only a significant instar effect (F = 

22.3; P = 0.043) was detected, but no water-type (F = 1.56; P = 0.390) and interaction effects 

(F= 5.67, P = 0.061). 
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Figure 9.8: Clutch sizes of the first three broods of Daphnia pulex (Panel A) and Daphnia cucullata 

(Panel B) grown in standard medium (Control) or in medium crowded with either D. pulex ('Pulex') or 

D. cucullata ('Cucullata'). Error bars indicate 1 SD. 

The body-length, however, of the new-born D. pulex was significantly different (F = 

145.2; P < 0.001) in the three medium-types (Fig. 9.9A), while no differences (F = 1.24; P = 

0.380) were observed in D. cucullata (Fig. 9.9B). D. pulex neonates born in crowded water 

were significantly larger than animals born in control medium. 
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Figure 9.9: Body-length of new-born Daphnia pulex (Panel A) and D. cucullata (Panel B) released 

from the first three broods from mothers grown in either standard medium (Control) or in medium 

crowded with either D. pulex ('Pulex') or D. cucullata ('Cucullata'). Error bars represent 1 SD. 

Survival was defined as percentage of animals that had survived until the end of the 

experiment. Survival differed between the experiments and was always highest in the control 

group (Table 9.4). The observed mortality was not caused by senescence since the 

experiments were stopped when the animals had reached the fourth adult instar. The higher 

mortality in D. cucullata probably reflects a higher sensitivity to handling. The observed 
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differences in life history parameters resulted in different population growth rates (r) for both 

species (Table 9.4). Two way ANOVA indicated a significant differences between the two 

Daphnia species (F = 265.2; P - 0.004) and a significant difference in r among treatments (F 

= 21.2; P = 0.045). In both species r was significantly lower for Daphnia grown in 

"Cucullata" water compared to control water, while r of animals cultured in "Pulex" water 

was significantly lower compared to "Cucullata" water. 

Table 9.4: Rates of population increase (r, d"1; means ± 1 SE), age at maturity (AM, d; means ± 1 

SD), size at maturity (SM, mm; means ± 1 SD) and survival (S, %) until the end of the experiment of 

Daphnia pulex and Daphnia cucullata g rown on Scenedesmus acutus in non crowded (Control) and 

crowded ("Pulex" or "Cucullata") medium, including F-and P-values of one-way-ANOVAs. Different 

symbols per vertical column (a'b'c) indicate statistically significant differences at a 9 5 % level (Tukey 's-

test). 

Daphnia cucullata r(d"') SM (mm) AM (d) S (%) 

Control ~~ ~ 07T2y(6 :003) a O90 (0T05 ) lJ~(lj6) 6 0 ~ 

"Pulex" 0.005 (0.007)b 0.93 (0.04) 9.1 (2.0) 38 

"Cucullata" 0.068(0.003)° 0.92(0.07) 8.4(0.8) 43 
F2i26=1.83 F2,26 = 2.39 

P = 0.180 P = 0.111 

Daphnia pulex 7(F) SM (mm) AM (d) Sl%T 

"Control " 0.30l"(0r0"01)a T92TOJ08)1 7 ^ (047" 100 

"Pulex" 0.225 (0.002)b 2.03 (0.05)b 9.8 (0.7)b 86 

"Cucullata" 0.260 (0.001)c 2.08 (0.06)b 7.2(0.6)° 93 

F2,39 = 21.6 F2j39 = 74.3 

P< 0.001 P< 0.001 

The NCV/NO3" concentrations in the standard WC medium and in both crowded media 

were similar (Table 9.5). The PO4 " concentration was lower in both crowded media, while the 

NH / concentrations were considerably higher in both crowded media compared to standard 

medium. Both total inorganic (TIC) and organic carbon (TOC) were similar in standard 

medium and medium crowded with D. cucullata, but somewhat higher in the 'Pulex' medium 

(Table 9.5). 

212 



ALGAL ODORS & CROWDING CHEMICALS 

Table 9.5: Total inorganic carbon (TIC), organic carbon (TOC), NH4
+-N, N027N03"-N and P04

3"-P 

concentrations (mg-11) in standard, non-crowded WC medium (Control) and in crowded medium 

('Cucullata' and 'Pulex'). 
Medium TIC TOC P<V"-P N027N03-N NH4

+-N 

Control 

'Cucullata' 

'Pulex' 

16.7 

16.3 

20.2 

2.8 

2.9 

4.2 

4.2 

0.7 

3.2 

12.2 

10.3 

11.6 

0.02 

0.45 

0.83 

Also in the second life-history experiment the population growth rate of Daphnia grown 

in crowded "Pulex" water was lowest. Some distinct differences were observed between 

experimental D. pulex reared in crowded water or in ammonia or urea enriched water. In 

ammonia enriched water, size at maturity was significantly reduced (Table 9.6). 

Table 9.6: Rates of population increase (r, d"1; means ± 1 SE), age at maturity (AM, d; means ± 1 SD), 

size at maturity (SM, mm; means ± 1 SD), survival (S, %) until the end of the experiment and body 

length (JL, mm; means ± 1 SD) and dry-weight (W, ng ind"1; means ± 1SD) of juveniles from the 3rd 

broods of Daphnia pulex grown on Scenedesmus acutus in non crowded (Control), crowded ("Pulex") 

medium, and standard medium enriched with 1.0 mg l"1 ammonia or urea, including F-and P-values of 

one-way ANOVAs. Different symbols per vertical column (,'b'c) indicate statistically significant 

differences at a 95% level (Tukey's-test). 

D. pulex r (d"') SM (mm) AM (d) S (%) JL (mm) W (ug-ind"') 

Control 0.374 (0.014)a 1.86(0.09)" 7.0(1.0) TOO 0.68 (0.02)a 3.04 (0.35)" 

"Pulex" 0.296 (0.005)b 1.86(0.07)a 7.6(0.4) 100 0.78 (0.02)b 3.98 (0.68)b 

"Ammonia" 0.311 (0.009)ab 1.77(0.09)b 7.2(0.8) 90 0.67 (0.03)a 2.80 (0.39)a 

"Urea" 0.355 (0.013)ab 1.88(0.07)a 7.3(0.9) 100 0.68 (0.02)a 2.79 (0.34)a 

F3>4=12.1 F3,35=3.49 F3,35=l-07 F3,35=52.2 F3,i2=5.58 

P = 0.018 P = 0.026 P = 0.376 p< 0.001 P =0.012 

No ephippia were produced (in contrast to 10% in "Pulex" water) and although clutch 

sizes were reduced similar to crowded water (Fig. 9.10A) at similar body lengths clutches in 

crowded water were significantly lower (Table 9.7) than clutch sizes in ammonia water or the 

control group (Fig. 9.10B). Newborns (of third broods) were significantly larger in crowded 

water compared to animals born in control medium, or ammonia or urea enriched medium 

(Table 9.6). The dry-weight of neonates born in crowded water was significantly higher than 

for neonates in the other water types (Table 9.6). Hence, the observed changes in life-history 
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parameters of Daphnia can not solely be attributed to a simple excretion product, but may be 

the result of some unknown soluble chemical released from feeding Daphnia. 

Table 9.7: Regressions of clutch size (CS) on body length (BL) of Daphnia pulex grown on 

Scenedesmus acutus in non crowded (Control), crowded ("Pulex") water, and water enriched with 1.0 

mg l"1 ammonia, including t- and P-values of /-tests for distinguishing significant differences between 

regression lines. 

Regression P-values Mests 

Daphnia pulex t P df 
Control CS =-41.697+ 24.569*BL 0.839 Control 3.56 < 0.001 55 

vs.'Tulex" 
"Pulex" CS =-27.494+16.458*BL 0.906 Control vs. 0.93 0.178 53 

Ammonia 
"Ammonia" CS = -35.929+ 21.811*BL 0.805 "Pulex" vs. 2.25 0.014 52 

Ammonia 

60 
C c a. 

25 -

20 -

^^m Control 
1 1 "Pulex" 
K W l Ureum 
tilssM Ammonium 

£ io 

• Control 
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Figure 9.10: Clutch sizes of Daphnia pulex grown in standard medium (Control), medium crowded by 

conspecifics ('Pulex'), and in standard medium enriched with either ammonium or ureum (1 mgT1) 

(Panel A). Clutch sizes in relation to body-length (mm) of the mothers are give in Panel B. Solid lines 

represent linear regressions, dotted lined the 95% confidence limits. Error bars indicate 1 SD. 

9.6 DISCUSSION 

Y-tube olfactometer 

In their innovative study Van Gool & Ringelberg (1996) showed that Daphnia could 

distinguish between water with odors from different algae when clean odorless water was the 

alternative. This is in contrast with the results presented here, where Daphnia did not alter its 
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horizontal swimming-behavior to the presence of infochemicals from Scenedesmus acutus. 

The differences may be due to the different Daphnia species used in the experiments. In this 

study among D. pulex and D. magna a significant difference in response to the presence of 

chemicals from the green-alga S. acutus was detected. However, the experimental animals 

used in these experiments belonged to clonal cultures, hence, their behavior may not even be 

representative for the species. Another difference is that in these experiments an artificial 

medium was used instead of filtered lake-water. The latter still may contain several potential 

cues, whereas the former, although unlikely, could imply an unknown stress to the animals. 

To unravel this an additional experiment was performed with Daphnia galeata x hyalina 

(clone 02) obtained from the culture collection of the University of Amsterdam. This animal 

was cultured in aged and filtered lake Maarsseveen (MV) water and fed with S. acutus. When 

D. galeata x hyalina was offered the choice between filtered MV water and MV water with 

algal odor again the null hypothesis could not be rejected {see Fig. 9.6). Thus even with the 

same species the results of Van Gool & Ringelberg (1996) could not be repeated. Despite 

filtration of the MV water and collection in a dark flask, bacterial or photolitical degradation 

of the algal odors could have occurred, especially regarding the almost 20 hours needed to 

conduct this experiment with 59 animals. Another possibility may be that the odors are 

volatile and hence were lost from the vessel during filtration or that they were absorbed to the 

filter. 

The Y-tube olfactometer has been proven very useful in entomological research. 

However, an important difference between chemical information transfer in air and water is 

that in the water the diffusivity of a molecule is significantly lower than in the air. According 

to Strickler (1975) this diffusivity is smaller than the speed of a planktonic animal implying 

that it would not recognize conspecifics, competitors or predators head on, but rather by 

swimming in the wake. For algae the question arises if Daphnia is capable of smelling the 

algae from a distance, as most of the algae wander through the water column by the mercy of 

water movements. Therefore, algae and their exudates may spatially not be separated to a 

great extent. Moreover, as Daphnia respond to algal odor they should also respond to the algal 

cell itself, but in our experiments they did not. On these aspects conflicting reports appear 

from literature. Daphnia may be attracted by odors associated with edible algal food (Van 

Gool & Ringelberg, 1996; Lauren-Maatta et al, 1997), by high algal concentrations (Jakobsen 

& Johnson, 1987), by intermediate food levels (Neary et al, 1994), by the concentration of 

algal cells rather than the presence of algal odors (Cuddington & McCauley, 1994; Neary et 

al., 1994), or they may not be attracted at all (Porter et al., 1982). In the latter study, Daphnia 

appeared unable to locate and detect algal patches. 

When two different food concentrations were available D. magna did not adjust its 

horizontal position towards one of the concentrations, but the swimming-speed was 

significantly reduced when swimming in the medium with the higher concentration of algae. 
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Also both the rate of turning and the vertical component of swimming in D. magna have been 

reported to decrease at increased food levels (Young & Getty, 1987). Cuddington & 

McCauley (1994) made a similar observation when investigating the swimming-speed of D. 

pulex, suggesting that Daphnia is able to alter its behavior to the change in its filtering rate. 

Also in the presence of chlorophyll-a D. magna altered its swimming speed. This indicates 

that Daphnia can detect the green color or associated odor, however, they did not choose for 

the green colored medium. In these experiments it did seem that D. magna was capable of 

perceiving signals from the environment concerning algal density and green color, but only 

when they were inside such an environment. They did not adjust their horizontal distribution 

towards it. 

It does seem that the mechanism used by Daphnia to locate the algae is linked to their 

feeding activity. The lower swimming speed in the high algal concentrations suggests that as a 

result aggregation in high food regions could occur. 

Starved animals hardly swam upstream that could indicate a diminished rheotaxis. In 

their study, Cuddington & McCauley (1994) noted that the ability of Daphnia to locate local 

regions of high food depended on the food concentration. At low food conditions the animals 

were not able to find these high food regions. 

Daphnia responded to medium that contained odors from congeners, but not 

conspecifics. Since both Daphnia magna and D. pulex responded, this suggests the existence 

of species-specific compounds. However, the experiments can not rule out a simple 

concentration effect. Suppose animal A responds only above a threshold level a, but produces 

the active compound at a level p with (5 < a, while animal B responds below a, but produces 

the chemical at a level y with y > a, then A will only respond in medium from B and B only in 

medium from A. Nevertheless, Daphnia responded by preference of the clean medium when 

medium with odors from congeners was the alternative. The experimental animals were well 

fed, but the runs were performed in medium without any food. Since the dispersal of 

aggregated animals has been shown to depend strongly on the food availability (Jakobson & 

Johnson, 1987; Cuddington & McCauley, 1994; Neary et al, 1994; Kleiven et al, 1996), a 

possible influence of the absence of food can not be ruled out. However, then one would also 

expect a swim-away response when exposed to medium from conspecifics. 

With an Y-tube olfactometer a significant choice between two differently treated 

media may be found, but when Daphnia does not make a choice, this still could imply that the 

animals perceive the infochemicals, but simply do not respond to them. Only when Daphnia 

shows a clear response, than something can be said about the behaviour of the test-organism. 

To tackle this problem, it might be important to use a different method than the Y-tube 

olfactometer, such as a multi-channel circular flow-through chamber (Cuddington & 

McCauley, 1994), including interactions among organisms. 
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The responses observed could result in aggregation of animals by reduced swimming 

speed at high algal densities, by avoidance of areas with competitors. When aggregated 

Daphnia may experience costs due to an increase in exploitative competition (Folt, 1987; 

Jakobson & Johnson, 1988b; Tessier, 1983; DeMott, 1989 for review). Inside the aggregates 

the animals may thus experience reduced food availability, but will also be exposed to 

chemicals released from competitors. The results from section 9.5 evidently show that 

infochemicals released from feeding Daphnia influence growth of congeners and 

conspecifics. The use of an artificial medium (COMBO) is necessary for this type of research 

to ensure that no infochemicals are already present in the medium and to ensure a constant 

quality of the medium. In filtered lake-water due to changes in the lake or due to storage 

differences may occur, obscuring any effects. The pH and conductivity of control medium and 

crowded medium types were similar hence differences in Daphnia response may be attributed 

to soluble inhibitory substances released from grazing Daphnia. As each animal was placed 

individually in either clean medium or crowded medium, the effects observed must be due to 

a difference among the media. It is evident that the animals swap from a quantitative to a 

qualitative reproduction (Cleuvers et al., 1997) even when food is abundant. Since the media 

differ because of crowding, something in the medium triggers a response in the animals and 

this can hardly be something else as chemicals dissolved in the crowded medium. Goser 

(1997) ruled out a possible effect of the algal food and concluded that the Daphnia chemicals 

are "unspecific metabolic substances'. Most probably these chemicals are related to the 

grazing activity of the animals, and since grazing is essential to Daphnia, I thus consider all 

excretory products essential as well. One could claim that the high densities used to obtain 

crowded medium are unrealistic, however, they may not be uncommon in shallow lakes, 

ditches and ponds in the Netherlands. Moreover, Goser & Ratte (1994), Goser (1997) and 

Cleuvers et al. (1997) demonstrated that crowding chemicals might be acting at much lower 

densities. 

Effects on life history parameters of Daphnia were remarkable. Mortality was higher in 

animals reared on crowded medium. Also for the competing rotifers Brachionus calyciflorus 

and B. rubens corresponding results have been reported (Halbach, 1969). Similar to findings 

of Hobffik & Larsson (1990), Matveev (1993), Goser & Ratte (1994) fecundity was 

considerably reduced by Daphnia infochemicals. Interestingly, D. pulex produced ephippia in 

"Cucullata" medium, some in "Pulex" medium and none in control medium, while D. 

cucullata produced no ephippia at all. This latter species has been reported to produce (empty) 

ephippia in 26% of the broods when exposed to 1:1 crowded medium from D. pulex and fish 

in combination with low food and short daylight (Spaak, 1995). Hobaek & Larsson (1990) 

found no resting egg formation in D. magna when cultured in crowded "Pulex" medium. 

Ephippia production has been reported to be negatively correlated with food availability and 

positively with culture density of conspecifics due to an increased encounter rate (Carvalho & 
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Hughes, 1983). In our experiments the experimental animals did not experience a higher 

encounter rate. Hence, the observed ephippia production in D. pulex may be explained by 

somekind of infochemically triggering of ephippia production in combination with low light 

(Kleiven et al., 1992). Parthenogenetic ephippia production as observed in our experiments 

has reported to occur in several D. pulex clones (Hebert et al., 1989). Apparently, just 

crowded medium is not sufficient for D. cucullata to switch to ephippial eggs despite 

'stressful' circumstances. D. cucullata produced no ephippia, but showed an increase in egg 

mortality in "Pulex" water. Boersma & Vijverberg (1995) reported 9% - 70% non-developed 

eggs in D. cucullata and explained it by an unknown deficiency of the natural seston. These 

values are similar to the 22-83% observed in our experiment. Factors such as high pH 

(Vijverberg et al., 1996), temperature, parasites, food quantity and quality have been 

suggested to influence egg mortality (refs. in Boersma & Vijverberg, 1995). However, our 

data indicate that also chemicals released from competitors may cause egg mortality in 

Daphnia, but this phenomenon seems highly species specific and clearly needs further 

investigation. Apparently, the response in both Daphnia species to chemicals released by the 

other is different (D. cucullata produced no ephippia, but had severe egg degeneration), 

nevertheless the effect on reproduction is similar, namely reproduction is strongly reduced. 

The maximum rate of population increase in D. cucullata of 0.12 d"1 corresponds well 

with values reported in literature of 0.12 d"1 (Ebert & Jacobs, 1991) and 0.11 d"1 (Boersma & 

Vijverberg, 1994). Contrary to the results presented here, Seitz (1984) found that water from 

mass cultures of D. cucullata was good for culturing both D. cucullata and D. hyalina, while 

water from D. hyalina was good for D. hyalina, but not for D. cucullata. These deviating 

results may originate from differences in biomass of animals in his mass cultures and from 

differences with the mass cultures. Assuming that the excretion of infochemicals is directly 

related to biomass, equal amounts of 200 Daphnia-Y1 in the mass cultures as used by Seitz 

(1984) would mean approximately a 5 fold higher biomass in the D. hyalina cultures. For 

example, D. pulex mass cultures contained ca. 600-700 animalsT1 and a ca. 10 fold higher 

biomass than Seitz's D. hyalina cultures. These observations agree with the proposed reaction 

norms for Daphnia growth and reproduction in response to crowding as reported by Burns 

(1995). 

The maximal value of r for D. pulex in the experiments varied between 0.30 d"1 (1st life 

table exp.) and 0.37 d"1 (2n exp.) in the control groups. The deviation between the two 

experiments may be due to some maternal effects (Brett, 1993). However, this seems not to 

affect the conclusions since reductions in r in crowded "Pulex" water in both experiments 

were of similar magnitude. The r-value is somewhat lower than values of 0.40 d"1 as reported 

by Lynch (1989). The lower temperature of 18°C used in our experiments may account 

partially for this deviation. In the used test tubes Daphnia infochemicals may accumulate and 

may affect growth, or the used experimental tubes may be to small to support maximal 
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growth. However, measurements on algal concentrations in the test tubes revealed that algal 

concentrations were 63 ± 12% of initial concentrations (in control group), with maximal 

clearance rates (mean ± 1 SD) of animals measured in the control group of 1.40 ± 0.42 ml-ind" 

'•h'1. Although algae could sedimentate to the bottom of the test tubes during the 24 h 

incubation period, D. pulex was frequently observed at the bottom of these tubes. Hence food 

limitation was not likely to have occurred in the test tubes. 

The reduction in population increase r was strongest in "Pulex" medium for both 

species, but relatively strongest in D. cucullata. The higher impact of "Pulex" medium may 

for some part originate from a higher Daphnia biomass in the culture vessels. The higher r-

value for D. pulex reared in "Cucullata" water than in "Pulex" medium is caused by the 

significantly reduced age at maturity and consequently generation time in "Cucullata" 

medium. This could also be interpreted as a strategy governed by D. pulex to establish a better 

competitive position. 

Elevated ammonium levels were measured in the crowded medium types (up to nearly 1 

mgT1). Nevertheless, neither ammonium nor ureum seemed to be responsible for the 

differences between the used water-types. Although ammonium had a considerable impact on 

life-history parameters, the effects of crowding are probably not the result of ammonium, but 

more likely the effect of an unknown chemical released from feeding daphnids. Illustrative is 

the significantly different quality (in terms of biomass) of the newborns. 

Another explanation for the observed differences in life-history parameters may be an 

altered feeding behavior. Chemical inhibition of grazing in crowding conditions has been 

reported for D. pulex (Helgen, 1987) and other daphnids (Matveev, 1993). Those effects 

resemble the feeding rate inhibition of the copepod Diaptomus tyrelli by chemicals released 

from its competitor and predator Epischura nevadensis (Folt & Goldman, 1981). 

Daphnia responded different to crowding-chemicals from congeners and conspecifics. 

In both species clutch sizes (of second and the third brood) were more reduced in water from 

congeners than from conspecifics. Similar results have been found for D. cucullata (Seitz, 

1984). Hobcek & Larsson (1990) reported a different response for reproduction of D. magna 

to crowded water from conspecifics (slightly stimulating) and the congener D. pulex (strongly 

inhibiting). Also in rotifers intraspecific effects on fecundity were weaker than interspecific 

(Halbach, 1969). In contrast, Burns (1995) found no differences in response of D. galeata or 

D. hyalina to inter- or intraspecific crowding chemicals. Whether different chemicals, 

different concentrations or whether the animal's ability to distinguish between inter- and 

intraspecific infochemicals is involved, remains unclear. However, indications for different 

chemicals exist (Goser, 1997). The crowding chemicals from D. magna are unstable (Goser & 

Ratte, 1994; Goser, 1997), but crowding chemicals from D. pulex remain active for prolonged 

periods (Goser, pers. comm.). 

219 



CHAPTER 9 

This phenomenon may indicate a chemical feedback mechanism that enables Daphnia 

to respond to a future food limitation. Chemicals associated with high competitor densities, 

which will occur just before food limitation, will enable the daphnids to switch from a more 

quantitative reproduction to a more qualitative one (Cleuvers et al, 1997). In that respect, the 

larger and heavier neonates produced in crowded water can be interpreted as better quality 

offspring (Tessier & Consolatti, 1991) since they do have higher resistance to starvation than 

smaller offspring (Gliwicz & Guisande, 1992), which has been confirmed recently by 

Cleuvers et al. (1997). 

Overall, it does seem that infochemicals from algae will not affect the energy flow from 

phytoplankton to consumers such as Daphnia. However, examples of rapid reductions in 

Daphnia feeding activity as a result of cyanobacterial excretory products (Haney et al., 1995) 

have to be kept in mind. By contrast, crowding chemicals may have a clear effect on the 

phytoplankton-grazer interaction. 
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CHAPTER 10 

Summarizing discussion 

"So long as individual scientist believe, 

and behave to the belief, 

that the essence of success in science 

is the freedom to discover the right experiment 

and then to do it according to one's own lights, 

all the social structures that connect scientists to one another 

will be based solely on each scientist's latest piece of individual work: 

a hobbesian world of each against all" 

- R. Pollack 1997 
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"Scenedesmus is a freshwater colonial green alga which has a world wide 

distribution" (Trainor, 1998). However, besides numerous coenobia variants, many 

Scenedesmus produce unicells. For example, S. abundans from the field formed unicells in the 

laboratory (Fott, 1968) and also S. armatus did occur mainly as unicells (Tukaj et al, 1996). 

In culture, unicells may be very common (f.e. Hegewald, 1982; Holtmann & Hegewald, 1986; 

Trainor, 1998), even at cell density far above ca. 1000 cellsml"1. Hence, low cell density 

(Egan & Trainor, 1989b) does not seem a prerequisite for unicell development in several 

Scenedesmus strains. In this study, all strains produced unicells and an investigation of 

literature data shows that the phenomenon of unicellular Scenedesmus is widespread in the 

genus (Table 10.1). 

Table 10.1: Scenedesmus species for which the formation of unicells has been reported. 
S. abundans Fott (1968) 

S. acuminatus Krienitz (1987); Mladenov & Furnadzieva (1995) 

S. acutiformis Hegewald (1982) 

S. acutus Krienitz (1987); Nagy-Toth et al. (1992); Lampert et al. (1994); CHAPTER 8 

S. armatus Swale (1967); Trainor & Egan (1990); Tukaj & Bohdanovicz (1995); Tukaj et al. 

(1996); CHAPTER 8 

S. basiliensis Trainor & Hilton (1963) 

S. falcatus Krienitz (1987); Mladenov & Furnadzieva (1995); CHAPTER 8 

S.kissii Trainor (1995) 

S. microspina Tukaj & Bohdanovicz (1995) 

S. obliquus Hegewald (1982); Holtmann & Hegewald (1986); Wasmund (1992); CHAPTER 8 

S. obtusiusculus Kylin & Das (1967); Krienitz (1987) 

S. pectinatus Holtmann & Hegewald (1986) 

S. pseudobernardii Krienitz (1987) 

S. quadricauda Overbeck & Stange-Bursche (1966); Steenbergen (1978); CHAPTER 8 

S. subspicatus Hessen & Van Donk (1993); Trainor (1993); CHAPTER 8 

The species list in table 10.1 is undoubtedly far from complete, but includes already 64 

strains. Despite that unicells may be common in Scenedesmus they are but occasionally 

reported from nature (e.g. Krienitz, 1987). This led to a hypothetical seasonal life history of 

Scenedemus with unicells occurring in early spring (Egan & Trainor, 1989a). But why would 

unicells occur only in spring, especially since sufficient literature data exist on unicellular 

Scenedesmus under a wide range of nutrients and cell densities? And why are there that few 

reports of unicellular Scenedesmus from the field? Trainor (1979) observed that unicells 

disappeared when incubated in dialysis sacks in the field or when cultured in pond water in 
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the laboratory. Interestingly, in another study ten years later the same strain produced unicells 

in water from the same pond (Egan & Trainor, 1989a). Since grazers may be involved in 

Scenedemus plasticity, by both selective grazing on small, unprotected morphs and chemical 

induction of large protected morphs, they might account for the different observations by 

Trainor (1979) and Egan & Trainor (1989a). One explanation could be that due to the activity 

of grazers unicells are produced only in very low numbers, which experience an enormous 

mortality. Another reason may be that unicells are simply not recognized as Scenedesmus. 

Unicells may resemble species described in at least eight other green algal genera (Trainor, 

1998). In a recent study, Kessler and co-workers using sequence analyses of 18S rDNA 

showed that three taxa of the unicellular Chlorella and one of Kermatia are in fact unicellular 

Scenedesmus (Kessler et ai, 1997)! 

An additional consideration is the phenomenon that cultures may respond differently 

at a later date after years in the laboratory as "if they turned off a certain process" (Trainor, 

1998). The suggested inactivation of genes by accumulation of storage products in not 

actively growing cultures (Trainor, 1998) does not apply to cultures used in this study since 

cultures were maintained actively growing in liquid medium for years by regular transfer into 

fresh medium. Another alternative explanation may be mutation of colonies into unicells that 

are competitively superior. Although Boraas et al. (1998) proposed mutation as the driving 

force in changing a unicellular culture into one dominated by colonies under the pressure of 

grazing, the occurrence of the opposite in our cultures is very unlikely for several reasons: 

1) Unicells were formed rapidly, but colonies were always present albeit often in very low 

numbers. 

2) In several cultures a rapid unicell-colony transformation could be observed, either induced 

by Daphnia chemicals or not. 

3) In culture, unicells seemed not competitively superior as growth rates between unicells 

and (induced) colonies were similar. 

The capability of unicell production is widespread among the genus Scenedesmus (Table 

10.1) and perhaps all Scenedesmus may have this capacity (Trainor, 1998). The unicells may 

provide an excellent dispersal mechanism to Scenedesmus (Trainor, 1998), and they also 

experience the lowest sinking losses (Conway & Trainor, 1972; CHAPTER 6). 

Scenedesmus, as by definition all photoautotrophic planktonic organisms, are faced 

with the problem that they have to remain in the euphotic zone of a water column. Thus in an 

aquatic environment, selection pressure exists for small organisms that have the most efficient 

uptake of dissolved nutrients and lowest sinking losses (Reynolds, 1984; Lehman, 1988). 

Assuming that coloniality has evolved as a defense against predation, one could imagine an 

adaptive trade-off between defensive coloniality and competitively advantageous 

unicellularity (Boraas et ai, 1998). The advantage of unicells may be a prolonged position in 
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the upper water layers, whereas colonies may sink to deeper water with lower light intensities 

and presumably lower temperatures. 

The apparent stability of colonial Scenedesmus in the field could also reflect a constitutive 

defense as might be expressed under conditions when grazers are always present or when the 

environment is highly predictable (Dodson, 1989; Bronmark & Petterson, 1994). In surface 

waters, grazers are always present, but the abundance, activity and taxonomic composition 

may vary greatly both on spatial and temporal scales. Daphnia can easily ingest small 

Scenedesmus coenobia (Lampert et al. 1994), but not large eight-celled coenobia (Hessen & 

Van Donk, 1993; CHAPTER 7). Most coenobia will undoubtedly be too large to be grazed by 

protist grazers, such as Paraphysomonas (Grover, 1989) and Loxodus (Goulder, 1972), and 

also several other zooplankters, such as Ceriodaphnia and rotifers may experience reduced 

ingestion. The grazer-induced colony formation can be interpreted as a defense, since the 

algae clearly benefit from a reduced feeding activity of grazers (CHAPTER 7). A fixed defense, 

or a phenotypic stability with four- and eight-celled coenobia as the most dominant morphs, 

could also be a solution to deal with grazing, but would still confront Scenedesmus with the 

problem of sinking. Especially bristles but also spines reduce the sinking in Scenedesmus, 

however, colonies still experience higher sinking losses than unicells (Conway & Trainor, 

1972). One would expect allocation or metabolic costs associated with the induced colony 

formation, with a demand for additional cementing wall material (Trainor, 1998). Since no 

metabolic costs were detected and because of the plastic nature of the defense, costs were 

assigned to sinking out of the euphotic zone (CHAPTER 6). These external or environmental 

costs (cf. Tollrian & Harvell, 1999) may be the only detectable costs. Enhanced sinking of 

Scenedesmus out of the euphotic zone could, however, also be interpreted as an escape in time 

since Scenedesmus is capable of surviving prolonged periods of darkness (Dehning & Tilzer, 

1989). In the dark the coenobia disintegrate and unicells may serve as inocula for subsequent 

blooms (Dehning & Tilzer, 1989; Egan & Trainor, 1989a,b). 

In their study, Boraas and co-workers (1998) reported a 'stable' colonial morph that is 

competitively inferior to unicells. The colonial form breeds true, but "active photosynthesis 

and continued interaction with the predator are essential to maintain the colonial algae" 

(Boraas et al., 1998). This statement suggests that also in Chlorella the colonies may 

disintegrate in the dark. Moreover, a continued interaction necessary to maintain the colonies 

could imply that the induced phenotypic adaptations gradually faded away as has been 

observed in the ciliate Paramecium (Jollos, 1921). Perhaps epigenetic inheritance may be 

involved, whereby the altered phenotype may persist through many cell divisions even when 

the inducing stimulus has disappeared (Maynard-Smith, 1990). It has been argued that the 

epigenetic inheritance systems, responsible for cellular memory, may have played a vital role 
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in the transition from unicellularity to multicellularity (Jablonka, 1994). Therefore, it may be 

interesting to examine if Scenedesmus pseudounicells form more coenobia than true unicells. 

In a system such as described by Boraas et al. (1998) with a 'stable' colonial morph 

and a unicellular morph, clonal replacement will occur when grazing pressure changes. When 

two Scenedesmus species are present in a water body, for example unicellular non-spiny S. 

acutus and four- and eight-celled spined S. communis, without grazing S. acutus will most 

likely dominate because of lower sinking losses. However, since colonial S. communis is 

protected against grazing, but unicellular S. acutus is not, the former may become the most 

dominant under grazing conditions, despite higher sedimentation losses (Fig 10.1). 

No-grazing 1 Grazing 

/ 1 

/-' 1 
1 

Unicells 

Colonies 

Time-

Figure 10.1: Increase in unicellular and colonial Scenedesmus subjected to size-dependent 

sedimentation in the absence and presence of grazing. 

In an experiment not reported previously, 5 Ceriodaphnia were added to 50 ml 

suspensions of S. acutus, S. communis and their '1:1' mixture, all at identical food 

concentrations of 5-106 um3mr', whereas incubations withouit Ceriodaphnia served as 

controls. After 48 h, growth rates of Scenedesmus in Ceriodaphnia treatments of the '1:1' 

suspensions (t = 5.03; P = 0.007) and the S. acutus food suspensions (t = 3.22; P = 0.032) 

were significantly reduced because of grazing. However, the S. communis suspensions in the 

presence of Ceriodaphnia had identical growth rates to populations grown in it's absence (t = 

0.33; P = 0.758). Moreover, after 48 h, in the absence of Ceriodaphnia the '1:1' suspensions 

contained 6.5% S. communis on a volume basis, whereas in the presence of Ceriodaphnia this 

proportion was 10.8%. The data of this simple experiment suggest that despite the initial high 

growth of unicellular S. acutus they may eventually be out competed by S. communis. 

However, at higher Ceriodaphnia densities, S. acutus will be induced (CHAPTER 3) to form 

protective colonies (CHAPTER 7). 

Grazer-induced colonies may be protective against numerous small grazers, but in 

Scenedesmus several strains do not seem to gain an advantage by colony formation, since the 

coenobia would still be ingestible by Daphnia. The trait may reflect a response to grazing in 
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general rather than to Daphnia in particular. In numerous waters, Scenedesmus is not exposed 

to large Daphnia, but is confronted with several much smaller grazers such as rotifers, ciliates, 

and phagotrophic flagellates. Unicells will probably not survive an encounter with one of 

these grazers, and may therefore use dissolved chemicals to detect these grazers prior to 

encounter. The phenomenon of grazer-induced coenobia formation could be interpreted as a 

defense mechanism against grazing, as grazing rates for relatively small Daphnia were 

suppressed when the proportion of eight-celled coenobia in the food was high (Hessen & Van 

Donk, 1993; Liirling & Van Donk, 1996; Van Donk et al., 1999; CHAPTER 7). 

The morphological response of Scenedesmus acutus to zooplankton mediated 

chemicals is related to the amount of algae grazed upon (CHAPTER 3). The type of food seems 

unimportant as long as it is digestible. Animals fed with ingestible, but undigestible particles, 

produced no colony-inducing chemicals, neither did starved animals. Scenedesmus acutus did 

not respond to algal homogenates, thus the infochemical originates in the grazer, but most 

probably as a residual of the digestive process. Moreover, water that had contained 

carnivorous zooplankton evoked no colony formation (CHAPTER 3). The differences seem 

directly related to the grazers diet, which, in fact, is not uncommon in the aquatic world. 

Crucian carp increased its body depth in response to predators (Pike, Perch) with a 

piscivorous diet. By contrast, perch fed chironomids had no effect (Bronmark & Petterson, 

1994). Fathead minnows showed only a fright reaction to pike that had been fed with 

minnows, but not to pike fed with swordtails (Mathis & Smith, 1993). Also snails (Crowl & 

Covich, 1990) and sea anemones (Howe & Harris, 1978) showed different responses related 

to the predators diet. Identification of predators per se could be more advantageous than 

having to identify all predator species (Bronmark & Petterson, 1994). Thus a response to a 

general herbivore cue should be adaptive in habitats with variable grazing pressure from a 

zooplankton assemblage with various herbivores. 

Daphnia induced colony formation did occur in both nutrient replete and deplete 

cultures (CHAPTER 4). In the absence of Daphnia infochemicals, cultures consisted mostly of 

unicells, the proportion of unicells always appeared higher under nutrient-limiting conditions 

than under non-limited conditions. 

At times the pool of dissolved nutrients may become limited, the growth rate may drop 

and the quality of the algae may change. Especially non-selective grazers, such as members of 

the genus Daphnia, will be confronted with the variability in food quantity and quality. 

Numerous studies have been devoted to the nutritional inadequacy of nutrient-limited algae as 

food for Daphnia. In most studies that examined the effect of P-limited algae on Daphnia 

growth the food species was a chlorophyte (e.g. Groeger et al., 1991; Mitchell et al, 1992; 

Urabe & Watanabe, 1992; Sterner, 1993; Sterner et al, 1993; Van Donk et al, 1997; Kilham 

et al., 1997; Sundbom & Vrede, 1997; Liirling & Van Donk, 1997; DeMott, 1998). Three 
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mechanisms have been proposed to explain the poor food quality of P-limited algae (mostly 

chlorophytes): 

1) The mineral limitation hypothesis suggesting a direct P limitation of Daphnia (e.g. 

Hessen, 1992; Urabe & Watanabe, 1992; Sterner, 1993). 

2) The HUFA-hypothesis suggesting that a biochemical component, such as unsaturated fatty 

acids, may be limiting to Daphnia (e.g. Brett, 1993; Muller-Navarra, 1995; Ahlgren et al., 

1997; Brett & Muller-Navarra, 1997). 

3) The digestion-resistance hypothesis suggesting that a thickened cell wall reduces the 

digestibility of P-limited green algae (Van Donk & Hessen, 1993; Van Donk et al., 1997). 

Daphnia growth is based on food consumption according the equation: growth = 

quantity x quality (Brett & Muller-Navarra, 1997). In grazing and growth experiments food 

suspensions are supplied in equal amounts of carbon or biovolume to Daphnia to evaluate the 

effect of altered food quality. However, in a hypothetical pelagic with just ingestible 

chlorophytes qualitative and quantitative changes in the algal food population may occur 

concomitantly. Algal growth rates will drop under nutrient-limitation and P-limited 

chlorophytes may experience higher sinking losses as a consequence of increased density and 

size, both negatively affecting the resistance against sedimentation. 

Several studies have reported increased sinking rates for nutrient-limited algae (e.g. 

Smayda, 1974; Titman & Kilham, 1976; Waite et al., 1991). The increase in cell size and 

concomitant change in biochemical composition seems a general phenomenon in chlorophyte 

algae. For example, the mean cell volume of an average non-limited green alga appeared 

around 84 um3, while the same alga under P-limitation was 152 um (based on Van Donk & 

Hessen, 1993; 1995; Kilham et al, 1997; Sundbom & Vrede, 1997; Lurling & Van Donk, 

1997). Assume a spherical cell shape, densities for lipids, proteins and carbohydrates of 0.85, 

1.3 and 1.5 gml"1, respectively, a biochemical composition (percentage of dry-weight) of 60% 

proteins, 20% carbohydrates and 20% lipids for non-limited and 25% proteins, 50% 

carbohydrates, and 25% lipids under P-limitation, and 85% water per cell. Based on these 

assumptions sinking velocities may be estimated according to modified Stake's equation: 

VSED = 2-g-r2-(pa-pm) X (9-Tl-CPa)"1 

in which vSED = the sedimentation velocity (m-d"1), g = the earth's acceleration (9.8 m-s"2), 

radius of particle (m), pa = density of algal particle (kg-m"3), pm = density of medium (kg-m"3), 

n = dynamic viscosity (kgrn^s1) and cpa = form resistance of algal particle (-). 

Solely based on size, at 20°C sinking velocities for the hypothetical P-limited chlorophyte are 

about 1.2 times larger, 0.194 vs. 0.236 md"1. However, taking the shift in biochemical 

composition into account sinking velocities more than double (2.2 times), 0.194 vs. 0.434 m-d" 

'. This theoretical value is close to the 100% higher sinking rate in P-limited S. quadricauda 

(0.4 vs. 0.2 m-d"1) measured by Titman & Kilham (1976). Thus, in the hypothetical pelagic, 

cultures could experience lower grazing losses because not only fewer cells fit in the animals' 
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gut, because of larger cell size, but also more cells may sink thereby reducing the grazable 

proportion of a population. 

Another aspect that has not been taken into account is the phenomenon that P-limited 

Scenedesmus may still built coenobia (CHAPTER 4). The coenobia could not only have a size 

refuge from small Daphnia, but may also have higher sinking rates than P-limited unicells. So 

far, in many studies changes in quality of P-limited Scenedesmus for Daphnia have been 

accredited to mineral P-limitation. The mechanism seems valid and has gained considerable 

support (Hessen, 1992; Sterner, 1993; DeMott, 1998). The question that arises is whether the 

mineral limitation hypothesis would be accepted if not unicellular S. acutus from high-density 

cultures had been used as food, but for example large coenobial Scenedesmus. In spined 

Scenedesmus, such as S. armatus (Shubert & Trainor, 1974) and S. quadricauda (Overbeck & 

Stange-Bursche, 1966), in dilute media with low P-levels cultures were dominated by 

coenobia, whereas higher P-levels resulted in dominance by unicells. The algal food would 

probably not support good Daphnia growth. However, for examining the mechanism it may 

be justified to use Scenedesmus acutus, but what if a normal procedure would have been to 

grow Daphnia on cryptophytes or diatoms instead of chlorophytes? It is doubtful whether the 

mineral limitation hypothesis would have been accepted (Brett, in prep.). P-limited diatoms 

and cryptophytes may support good growth in Daphnia that is equal to or even higher than the 

growth of Daphnia fed with non P-limited chlorophytes (Muller-Navarra, 1995 a; Lurling & 

Van Donk, 1997). One of the alternative hypotheses, the digestion resistance hypothesis, has 

been rejected in recent papers by DeMott and co-workers (DeMott, 1998; DeMott et al., 

1998). However, the criticism on the digestion resistance hypothesis is derived from indirect 

measurements, rather than carefully designed experimentation. One could claim that the 

results of DeMott are at least biased by the use of non-axenic cultures. With high dilution 

rates and P in excess, the bacteria in the culture will by no means compete severely with the S. 

acutus cells. However, dropping the dilution rate and lowering the P-input significantly will 

not only result in accumulated photosynthates in the medium, but will also favor the bacteria 

that are superior competitors for P. Thus, relatively more P may end up in the bacteria that 

may still be harvested by the Daphnia. The cell wall thickening proposed by Van Donk & 

Hessen (1993) had already been demonstrated in P-limited Scenedesmus about 10 years 

earlier (Tilberg et al., 1984). The cell wall thickness was reduced rapidly after normal 

photosynthesis had been resumed by the addition of P. That Daphnia may have difficulties in 

digestion of the cell wall has been observed before in Scenedesmus. In several studies 

Scenedesmus have been isolated from Daphnia faeces (Horn, 1981; Levitan, 1987, Van Donk 

& Hessen, 1993). Thus, Scenedesmus could have evolved several traits to reduce mortality 

through grazing. A worthwhile attempt could be electron-microscopic analysis of the 

digestive process or flowcytometric analysis of Daphnia faeces sorting various particles for 

examination of viability. 
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In non-spiny strains of the subgenus Acutodesmus {Scenedesmus cf. Kessler et al., 

1997), grazer-induced colony formation may be a common strategy. By contrast, in spined 

members of Desmodesmus colony formation seems not easily induced by grazer-chemicals, 

although reported first in a spined Scenedesmus (Hessen & Van Donk, 1993). Nevertheless, in 

the presence of live Daphnia more coenobia were detected and when grazers are present also 

in spined Scenedesmus eight-celled coenobia may be induced (CHAPTER 8). In conclusion, 

spined Scenedesmus respond in a different way to grazers than non-spiny strains. This was 

also observed in CHAPTER 3, where two detergents were found that appeared effective in 

inducing colonies in S. acutus. However, evaluating the effect on spined S. subspicatus 

revealed that only Na-dodecyl-sulphate was effective in inducing coenobia during the course 

of a standard biotest. Inasmuch S. acutus and S. subspicatus strains are often used as test 

organisms in toxicity-tests (e.g. Twiss et al., 1989; Kiihn & Pattard, 1990; Conrad et al, 1993; 

Corradi & Gorbi, 1993; Saenz et al., 1993; Fournadzhieva et al., 1995; Carrasco & Sabatier, 

1997), the variability among species and strains may impose serious implications to these 

tests. Tukaj & Bohdanowicz (1995) demonstrated diesel-fuel-oil induced morphological 

changes in three Scenedesmus species, but noted that changes in cell shape, unicell 

production, coenobia organization and abnormalities were species-dependent. So far in 

toxicity testing merely effects on growth rates have been examined. However, in the plastic 

Scenedesmus morphological changes may occur independent of growth rates (Siver & 

Trainor, 1981; 1983; Trainor, 1998; CHAPTER 3) and different morphologies may have an 

effect on species interactions (Liirling & Van Donk, 1996; Van Donk et al., 1998; CHAPTER 

7). Therefore, such tests may benefit from the inclusion of examination on morphological 

appearance of Scenedesmus. Especially when testing certain effluents or surface waters using 

Scenedesmus as test organism filter extractables or grazing-associated chemicals could result 

in induced colony formation and may influence the test. It should be noted that the effect 

could be greatly reduced by rinsing the filters thoroughly prior to use. 

The enormous variability within and among members of the green algal genus 

Scenedesmus together with the taxonomic chaos (Kessler, 1991) puts clear constraints on the 

use of Scenedesmus sp. as a 'standard' test-organism in toxicity tests. Conrad et al. (1993) 

showed that S. subspicatus was not suitable for algal herbicide monitoring based on 

fluorescence and suggested Chlorella fusca as an alternative test-organism. However, in a 

recent study based on 18S rDNA analysis three strains of Chlorella, including strain C-l.1.10 

used by Conrad et al. (1993), had to be placed within the genus Scenedesmus] (Kessler et al., 

1997). 

As a result of environmental heterogeneity several morphotypes may be present 

simultaneously. Mortality by grazing is only one of the pressures faced by algae. "The 

realistic challenge to algae in nature is to resist mortality from a complex array of grazers 
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and to exploit nutrients on many different spatial and temporal scales....The conflicting 

allometries of selection pressure, where large sizes are favored to avoid grazers but small 

cells are favored for energy and nutrient acquisition, are the types of conflicts that probably 

generated the morphological and physiological diversities of phytoplankton" (Lehman, 

1988). Indeed, Scenedesmus strains may respond dramatically to changes in both their 

biological and chemical environment, and may express considerable phenotypic plasticity 

within a taxon in the absence of grazers (Trainor, 1998). In this study, the non-spiny S. acutus 

appeared mainly unicellular under a wide range of conditions, unless exposed to grazing-

associated chemicals. The formation of eight-celled coenobia, the typical protective morph, 

occurred within 48 h in non-spiny Scenedesmus and could take a few days in spined species. 

Harvell & Tollrian (1999) have listed four prerequisites for the evolution of an inducible 

defense: 

1). The selective pressure of the inducer has to be variable and unpredictable 

2). The necessity of a reliable and detectable cue 

3). The defensive response must be effective 

4). There should be a trade-off between the tax paid and the benefits of the response 

The four specific ecological conditions necessary for the evolution of an inducible 

anti-grazer response in Scenedesmus are indeed met: 

Ad 1). Grazers are always present, but grazing pressure may vary considerably on temporal 

and spatial scales. 

Ad 2). The cue appeared to be related to the activity of the inducer, and does seem restricted 

to herbivorous zooplankton. 

Ad 3). The formation of eight-celled coenobia is an effective strategy in reducing mortality 

through grazing by numerous grazers. 

Ad 4). Sinking out to deeper water layers may confront the algae with a serious cost that may 

offset benefits. 

So far, it has become clear that phenotypic plasticity is not only restricted to 

multicellular organisms, but that it may be widespread among phytoplankton, where both 

abiotic and biotic factors may affect the morphology, physiology and behavior of the cells. 

Further research could focus on factors such as light quality and quantity or on other 

organisms. Diatoms may be worthwhile examining, other chlorophytes that build colonies, 

flagellates that actively avoid areas with grazers (Hansson, 1996) and definitely cyanobacteria 

that showed not only some increase in cell size after exposure to grazer-infochemicals, but 

also a tendency to enhanced production of toxins (CHAPTER 8). It may be worth to examine 

the toxicity in cyanobacteria, but also in freshwater Haptophyta especially since grazing-

activated chemical defense in the marine haptophyte Emiliania huxleyi has been demonstrated 

(Wolfe et al., 1997). Besides colony formation, toxicity and migration, other potential 
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defensive traits in algae are worthwhile examining, such as cell-wall thickening, mucous 

formation and the formation of spicules, bristles and spines. Spine formation and spine length 

in Scenedesmus did not change in the presence of Daphnia infochemicals (CHAPTER 8), but 

might occur in combination with coenobia formation (cf. Hessen & Van Donk, 1993). Spines 

may be considered a constitutive defense, reducing mortality through grazing by numerous 

protist grazers. Since constructing material is required for the formation of spines, one could 

expect metabolic costs associated with it. These costs could be reflected in lower growth rates. 

Comparison of volume-based growth rates of the non-spiny Scenedesmus with the spined 

strains (used in CHAPTER 8), revealed significantly (t = 2.49; P = 0.023) higher growth rates (± 

1 SD) for non-spiny strains (1.275 ± 0.233 d"1) than for spined strains (1.039 ± 0.179 d"1). 

Further research could focus on the grazing success of heterotrophic flagellates and ciliates on 

spined and non-spined Scenedesmus and the effect grazing may have on algal species 

competition. This could be examined in mixed-species predator-prey continuous cultures 

(Boraas, 1993). 

Scenedesmus was able to detect the presence of grazers, but no evidence was found to 

support the hypothesis that Daphnia may be able to locate regions of high quality algal food 

by means of chemical cues (CHAPTER 9). However, Daphnia did respond in a behavioral way 

by avoidance of medium that had contained congeners and in life-history shifts that affected 

growth and reproduction. This chemical warfare could be beneficial to the algae, although 

Daphnia may aggregate because recycling of food increases the digestibility (Kersting, 1991). 

The phenomenon of grazer-induced colony formation in Scenedesmus can be 

interpreted as an inducible defense at the expense of higher sinking losses. The phenomenon 

is not restricted to Scenedesmus and because of the enormous plasticity in phytoplankton, 

numerous species may eventually turn out not only to respond to abiotic, but to biotic agents 

too. It is, however, of utmost importance that the active compounds are chemically 

characterized. After chemical characterization the occurrence of the active compounds may be 

determined in the field, a research area that until now has received little attention. 

Nevertheless, the future seems bright since organic chemists are currently making progress 

with the chemical characterization ofthe Daphnia infochemical(s). 
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SUMMARY & SAMENVATITNG 

SUMMARY 

In aquatic systems, the phytoplankton - zooplankton relation is of major importance 

because it is the first step in the pelagic food chain. It is well known that zooplankton feed 

with a highly variable success on phytoplankton, primarily owing to algal characteristics such 

as size, shape, cell wall texture, nutritional quality and toxicity. Algae are present in a broad 

variety of shapes and may express an enormous variability in their morphology, physiology 

and behavior depending on environmental variables. Because algae depend on solar energy 

they have to remain in the upper water layers as long as possible. Moreover, they have to 

compete with other algae for dissolved nutrients. This means that in an aquatic environment 

selection pressure exists for small organisms since these have the most efficient uptake of 

nutrients and light and lowest sinking losses. By contrast, mortality through grazing by an 

entire assemblage of protozoan and metazoan grazers will exert a strong selection for traits 

that reduce this mortality through grazing. An effective way to resist grazing is by a dramatic 

increase in size. However, this confronts the algae with conflicting allometries of selection 

pressures. 

Since algae are small relative to their predatory enemies, they may not survive an 

encounter with a grazer. Therefore, it may be profitable to detect a grazer before they 

encounter each other in order to elicit a defensive strategy. In a predictable environment 

temperature and day length could be good predictor of danger. However, in aquatic systems, 

grazing fluctuates considerably on temporal and spatial scales and chemical cues may be used 

instead. All organisms exchange constantly chemicals with their environment and those 

chemicals that are essential in the biology of the grazer and are detectable by the algae may 

prove potential indicators of danger. They convey information and are referred to as 

infochemicals. This thesis focuses on the role of infochemicals in the interaction between 

algae and zooplankton, with emphasis on the Scenedesmus (algae) - Daphnia (waterflea) 

relation. 

In the presence of filtered medium from a Daphnia culture, the non-spiny 

Scenedesmus acutus formed numerous eight-celled colonies (coenobia) (CHAPTER 2). 

However, in control populations, i.e. in the absence of Dop/im'a-infochemical, S. acutus 

remained unicellular and formed only four-celled colonies when cultures reached stationary 

phase. The induced colony formation appeared reversible as eight-celled colonies gradually 

disappeared from the treated populations. 

A prerequisite for further exploration of the phenomenon of Daphnia-'mdviced colony 

formation is the development of a reliable biotest (CHAPTER 3). Inoculum algal density, 

carbon availability and filter-type are some of the factors that affected the Daphnia-induced 

colony formation. Analysis of filter extractables revealed that at least two detergents might 

cause S. acutus to shift rapidly from a completely unicellular population to one dominated 

with colonies. The production of the .Dap/jw'a-infochemical is related to the amount of food 
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processed by the animals. Starved animals or animals fed with ingestible but non-digestible 

beads were ineffective in inducing colonies. Neither algal homogenates nor auxins and several 

organic carbon sources have colony inducing activity. The infochemical does seem to 

originate from the Daphnia-food interaction, or better from the grazer-algal food interaction 

as several herbivorous zooplankters were able to induce colonies in S. acutus, whereas 

carnivorous zooplankton and fish were ineffective (CHAPTER 3). Simple excretion products, 

such as ammonia and urea alone or in combination with organic carbon sources were 

ineffective as colony inducing agents (CHAPTERS 3 & 4). 

Scenedesmus plasticity has, however, not only been shaped by the activity of grazers, 

but also by other selective forces. Several factors are known that may influence the growth 

and morphological development in Scenedesmus and among them nutrient availability 

(CHAPTER 4) and temperature (CHAPTER 5) are important ones. In culture, with relatively high 

algal densities carbon limitation may occur. The availability of inorganic carbon appeared 

ineffective in inducing colonies, but had a clear effect on cell size. Neither N- nor P-limitation 

resulted in the formation of numerous, eight-celled coenobia. In general, under nutrient 

limitation cultures were dominated by unicells. However, despite the limitation, by adding 

Daphnia water, colonies still could be induced. One of the criticisms on use of artificial 

growth media is the excessive amount of nutrients in most of them. However, using media of 

various strengths showed no differences in morphological appearance of S. acutus, both in the 

absence and presence of Daphnia water. It appears that as long as cell division is not 

hampered grazer-induced colony formation may occur. 

Temperature not only affected growth, but also the morphological development in S. 

acutus (CHAPTER 5). At low temperatures growth was reduced, but cell- and colony size 

increased. Under a broad range of temperatures from 9° to 29°C, the addition of Daphnia 

water significantly increased the proportion of eight-celled coenobia. The smaller size at 

higher temperature supports the hypothesis of a trade-off between sinking and size. 

An analysis of potential costs associated with grazer-induced colony formation was 

initially directed on metabolic costs (CHAPTER 6). However, no reductions in growth and 

photosystem II efficiency were detected in induced colonies. Higher sinking losses of induced 

colonial Scenedesmus populations were measured. Hence, costs may be assigned to enhanced 

sinking out of the euphotic zone into darker and colder water layers, thereby significantly 

reducing growth rates. The strategy may, however, not be completely lethal, as Scenedesmus 

is known to be capable of surviving for prolonged periods on the sediments. 

One of the prerequisites for interpreting the grazer-induced colony formation as an 

induced defense is that the response has to be effective in reducing mortality through grazing. 

In CHAPTER 7, the grazing success of several zooplankton species, such as the rotifers 

Keratella and Brachionus and the cladocerans Bosmina, Ceriodaphnia and Daphnia, was 

analyzed. Food intake was reduced in all smaller grazers, but not in the largest Daphnia 
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species. Moreover, growth of the small Daphnia cucullata was reduced when offered colonial 

S. acutus. These reductions appeared not the result of an altered biochemical composition of 

induced colonies. 

So far, the effect of grazing-associated infochemicals had only been examined for the 

non-spiny S. acutus. In CHAPTER 8, 23 different Scenedesmus strains, 9 different other 

chlorophytes, 2 diatom species and 5 strains of cyanobacteria were investigated. In 35% of the 

Scenedesmus a positive response to the addition of Daphnia water was observed. Most 

responding appeared the non-spiny strains, i.e. 64% in contrast to the 4% for spined 

Scenedesmus. Not only is the trait colony formation only one of the potential defensive traits, 

it also appeared that the biotest was only suited for examining non-spiny Scenedesmus. 

The grazer-induced colony formation appeared not to be restricted to the genus 

Scenedesmus, since two Coelastrum strains were responsive too. Also in the diatom Synedra 

and the cyanobacterium Microcystis cell size was increased in the presence of Daphnia water. 

Moreover, the latter showed a tendency to higher toxin levels when cultured in the presence of 

medium from a Daphnia culture (CHAPTER 8). 

Another phenomenon often observed in the presence of live Daphnia, is the 

aggregation of live cells onto fecal pellets (CHAPTER 8). These large aggregates will 

undoubtedly be inedible to grazers and may be an additional process affecting the energy flow 

from algae to their consumers. 

In CHAPTER 9, experiments were performed to evaluate the ability of Daphnia to 

locate algae by means of chemical cues. No evidence for such a mechanism was detected. 

However, the animals did seem to avoid water with odors from congeners. Moreover, water 

from crowded Daphnia cultures had clear effects on growth and reproduction in two Daphnia 

species and may have an effect on the phytoplankton-grazer interaction. 

Summarizing the various experiments described in this thesis, the phenomenon of 

grazer-induced colony formation in Scenedesmus can be interpreted as an inducible defense at 

the expense of higher sinking losses. The phenomenon is not restricted to Scenedesmus and 

because of the enormous plasticity in phytoplankton, numerous species may eventually turn 

out not only to respond to abiotic but to biotic agents as well. 
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SAMENVATTING 

De predator-prooi relatie tussen algen en watervlooien is een van de belangrijkste 

interacties in een aquatisch systeem, omdat het de eerste schakel vormt in de pelagische 

voedselketen. Het is bekend dat algen (het fytoplankton) een rijke schakering aan 

verschijningsvormen ten toon spreiden, maar ook dat niet iedere alg even kwetsbaar is voor 

graas. Met name de grootte, de vorm, de celwandstractuur en eventuele giftigheid bepalen in 

een belangrijke mate het graassucces door watervlooien (het zooplankton) op de verschillende 

algen. 

Omwille van hun fotosynthetiserende activiteit, zijn algen in sterke mate afhankelijk 

van zonlicht. Dit betekent dat ze zo lang mogelijk in de bovenste waterlagen moeten zien te 

verblijven. Daarnaast dienen ze er een zo efficient mogelijke nutrientenvoorziening op na te 

houden om de concurrentie om voedingsstoffen in hun voordeel te beslechten. Kortom, in het 

open water ligt er een sterke selectiedruk op de ontwikkeling van kleine algen met de 

thermodynamisch meest voordelige oppervlakte/volume- ratio en kleinste sedimentatie 

verliezen. Algen hebben echter niet alleen te maken met uitzinken en concurrentie, ook de 

aanwezigheid van een hele batterij aan grazers (de watervlooien) zal een sterke selectiedruk 

doen gelden op de ontwikkeling van mechanismen om mortaliteit door graas te 

minimaliseren. Een van de meest effectieve afweermechanismen is een aanzienlijke toename 

in grootte. Dat houdt echter in dat algen te maken hebben met selectiemechanismen, die 

tegengesteld werken. 

Vanwege hun geringe omvang zullen algen in het algemeen een ontmoeting met een 

grazer niet overleven. Het is voor deze algen daarom noodzaak deze grazers waar te nemen 

voordat ze elkaar tegen komen. Door afwezigheid van organen is het gebruik van visuele en 

akoestische informatie onmogelijk voor de alg onmogelijk. In een voorspelbare leefomgeving 

kunnen temperatuur en daglengte als betrouwbare voorspellers voor de aanwezigheid van 

grazers dienen ware het niet dat de graasdruk een enorme variatie laat zien in zowel 

ruimtelijke als temporele zin. De continue uitwisseling van chemische stoffen door 

organismen met hun omgeving maakt het mogelijk om dergelijke uitscheidingsproducten als 

voorspellers voor de aanwezigheid van grazers te gebruiken. Deze chemische verbindingen 

bevatten in zo'n geval informatie en worden ook wel aangeduid met de term: infochemicalien. 

In dit proefschrift is er met name gekeken naar de rol van infochemicalien in de interactie 

tussen algen en watervlooien, waarbij de nadruk lag op de interactie tussen de groenalg 

Scenedesmus en de watervlo Dafnia. 

In aanwezigheid van gefiltreerd water uit een Dafnia cultuur, vormde de alg 

Scenedesmus acutus voornamelijk acht-cellige kolonies (HOOFDSTUK 2). In afwezigheid van 

dit Dafnia water bleef de cultuur gedomineerd door enkelcellige Scenedesmus en werd er een 

toename aan viercellige kolonies waargenomen naarmate de populaties verouderden. De 

gei'nduceerde kolonievorming bleek een omkeerbaar proces. 
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Om de fenotypische plasticiteit in S. acutus en dan met name de Z)o/ma-gei'nduceerde 

kolonievorming nader te onderzoeken, werd een biotest ontwikkeld (HOOFDSTUK 3). 

Verschillende factoren, zoals beginconcentratie alg, hoeveelheid en dichtheid aan 

watervlooien, voedingstoestand van de watervlo, hoeveelheid koolstof voor de alg, en het 

gebruikte filtertype, bleken een aanzienlijke invloed te hebben op de kolonievorming in S. 

acutus. Zo werd gevonden dat kolonievorming gei'nduceerd kan worden door detergenten 

vrijkomend uit bepaalde membraanfilters. Het natuurlijke kolonie-inducerende stofje, uit de 

Dafnia, blijkt sterk gerelateerd aan de hoeveelheid voedsel die door de watervlo is verwerkt. 

Gehongerde watervlooien en beesten die onverteerbaar 'voedsel' voorgeschoteld kregen 

produceerden geen kolonie-inducerende infochemicalien. Ook simpele Dafnia 

uitscheidingsproducten, zoals ammonium en ureum, verschillende organische 

koolstofverbindingen, gehomogeniseerde algen en plantengroeihormonen waren niet effectief 

als kolonie-inducerende substanties (HOOFDSTUK 3 & 4). Daarnaast werd alleen een respons 

in S. acutus waargenomen wanneer blootgesteld aan gefiltreerd medium uit een herbivore 

zooplankton cultuur, maar niet wanneer medium uit een carnivore zooplankton- of viscultuur 

werd toegediend (HOOFDSTUK 3). 

Het is bekend dat diverse omgevingsfactoren de kolonievorming in Scenedesmus 

kunnen bei'nvloeden. Twee van de belangrijkste factoren zijn de aanwezigheid en concentratie 

van voedingsstoffen (HOOFDSTUK 4) en de temperatuur (HOOFDSTUK 5). Zowel de 

hoeveelheid koolstof, als de concentraties aan stikstof en fosfor waren nauwelijks van invloed 

op de kolonievorming in S. acutus. In het algemeen werden voedingsstofarme kweken 

gekenmerkt door een dominantie aan enkelcelligen. Desalniettemin kon in iedere kweek, 

gecultiveerd in medium varierend in sterkte van zeer voedselarm tot zeer rijk, de vorming van 

achtcellige kolonies verkregen worden door water uit een Dafnia kweek toe te dienen. Dus 

zolang de celdeling niet volledig geblokkeerd is, is Z)q/wa-gei'nduceerde kolonievorming 

mogelijk. 

De temperatuur had niet alleen een aanzienlijk effect op de groei van S. acutus, maar 

ook op de morfologische ontwikkeling (HOOFDSTUK 5). Bij lage temperatuur werd de groei 

gereduceerd en de vorming van kolonies gestimuleerd. Desondanks stimuleerde de toediening 

van Dafnia water de vorming van achtcellige kolonies. In warmer water waren eel- en 

koloniegrootte kleiner dan in kouder water. De geringere grootte in warmer water kan duiden 

op een aanpassing om uitzinken te voorkomen en ondersteunt daarmee de hypothese dat er 

een balans kan bestaan tussen defensieve kolonievorming en versnelde sedimentatie uit de 

eufotische zone. 

De grazer-gei'nduceerde kolonievorming suggereert dat er kosten verbonden zijn aan 

deze flexibele afweer, omdat anders de beschermende kolonievorming altijd gehandhaafd zou 

worden. Vanwege extra celwandmateriaal nodig als cement tussen de cellen in een kolonie en 

de veranderde oppervlakte/volume-ratio en daarmee samenhangende zelfbeschaduwing en 
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verminderde voedingsstoffen opname, werd een geringere groei van gei'nduceerde kolonies 

verwacht. Er werd echter geen lagere groeisnelheid van kolonies gemeten en ook de 

efficientie van het fotosysteem II was niet verschillend van die van eencelligen (HOOFDSTUK 

6). Metabole kosten konden niet worden aangetoond. Kosten verbonden aan kolonievorming 

bleken te kunnen worden toegeschreven aan het versneld uitzinken van kolonies. 

Om grazer-gei'nduceerde kolonievorming daadwerkelijk als een afweer te kunnen 

interpreteren, dient er een duidelijk voordeel voor de alg te zijn. Hiertoe werden verschillende 

zooplankton soorten, zoals de rotiferen Keratella and Brachionus, en de cladoceren Bosmina, 

Ceriodafnia en Dafnia, gevoerd met eencellige- en kolonievormige Scenedesmus 

(HOOFDSTUK 7). De voedselopname was beduidend lager voor alle kleinere grazers wanneer 

kolonies als voedsel werden aangeboden, maar dit gold niet voor de grotere Dafnia. Daarnaast 

groeide de kleine Dafnia cucullata beduidend slechter op kolonievormige S. acutus. De lagere 

groei bleek niet het gevolg van een veranderde biochemische samenstelling van de kolonies, 

maar kon worden toegeschreven aan een geringere voedselopname. 

Om een indruk te verkrijgen van de algemeenheid van het fenomeen grazer-

gei'nduceerde kolonievorming, werden 23 verschillende Scenedesmus stammen, negen andere 

groenalgen, twee diatomeeen en vijf cyanobacterien onderzocht (HOOFDSTUK 8). In 35% van 

de Scenedesmus werd een positieve respons op de toediening van Dafnia water gevonden. Het 

vaakst bleek het om een niet-stekelige Scenedesmus te gaan. Kolonievorming is slechts een 

van de mogelijke afweermechanismen en het is dan ook mogelijk dat andere stammen anders 

reageren, maar duidelijk werd in ieder geval dat de biotest ontwikkeld voor S. acutus vooral 

geschikt is voor de niet stekelige Scenedesmus stammen. Grazer-gei'nduceerde 

kolonievorming is niet beperkt tot het geslacht Scenedesmus, daar dit fenomeen ook in twee 

Coelastrum soorten kon worden aangetoond. Bovendien werd er een geringe toename in de 

koloniegrootte van de diatomee Synedra en de cyanobacterie Microcystis gevonden. Deze 

laatste liet ook een geringe toename in het toxine gehalte zien (HOOFDSTUK 8). Een ander 

regelmatig optredend fenomeen is de vorming van grote meercellige aggregaten in 

aanwezigheid van levend zooplankton. Het samenklonteren van cellen kan naast de 

gei'nduceerde kolonievorming een belangrijk effect hebben op de energiestroom van algen 

naar grazers. 

In HOOFDSTUK 9 zijn experimenten uitgevoerd om te achterhalen of watervlooien bij 

het lokaliseren van algen gebruik maken van infochemicalien. Er is echter geen bewijs voor 

het bestaan van zo'n mechanisme gevonden. Water waarin concurrenten hadden gezeten werd 

daarentegen gemeden door de Dafnia. Bovendien had dit water een negatief effect op de groei 

en voortplanting van de Dafnia en daarmee op de energiestroom tussen algen en watervlooien. 

Samenvattend kan gesteld worden dat het fenomeen van grazer-gei'nduceerde 

kolonievorming in Scenedesmus een gei'nduceerd afweermechanisme is, met als voordeel een 

lagere mortaliteit door graas, en als nadeel een verhoogde sedimentatie van kolonies. Het 
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fenomeen is niet beperkt tot Scenedesmus en rekeninghoudende met de enorme plasticiteit in 

algen, kan uiteindelijk blijken dat vele, zoniet alle algen op een of andere wijze reageren op 

biotische omgevingsfactoren. 
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