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1. 
Vier uit slib afkomstige anaerobe, meso- en neutrofiele en onderling 
afhankelijke micro-organismen groeien slechts onder strikte voorwaarden 
samen. 
Dit proefschrift 

2. 
Bij de bespreking van bacteriele aggregatie, bevoordeeld door begrazing door 
protozoen, hebben Bossier en Verstraete zich ten onrechte tot een 
theoretische beschouwing beperkt. 
Bossier P. en Verstraete W. 1996. Triggers for microbial aggregation in 
activated sludge? Appl. Microbiol. Biotechnol. 45, 1-6 
Gude H. 1979. Grazing by protozoa as selection factor for activated sludge 
bacteria. Microb. Ecol. 5, 225-237 

3. 
In 1995 was het achterhaald te stellen dat er slechts een obligaat anaeroob 
micro-organisme (namelijk Desulfomonile tiedjei) gei'soleerd was dat 
haloaromaten reductief dehalogeneerde. 
Slater J.H., Bull A.T. en Hardman D.J. 1995. Microbial dehalogenation. 
Biodegradation 6, 181-189 
Madsen T. and Licht D. 1992. Isolation and characterization of an anaerobic 
chlorophenol-transforming bacterium. Appl. Environ. Microbiol. 58, 2874-
2878 
Utkin I., Woese C. and Wiegel J. 1994. Isolation and characterization of 
Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium 
which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. 
Bacteriol. 44, 612-619 

4. 
De genetica is het recept, de fysiologie het gerecht; beiden zijn nodig en 
vullen elkaar aan. 

5. 
Bij de 3-chloorbenzoaat-omzetting door Alcaligenes sp. stam L6 is 
zuurstofafhankelijkheid op zich geen reden om een reductief 
dechloreringsmechanisme onwaarschijnlijk te noemen. 
Krooneman J., Wieringa E.B., Moore E.R.B., Gerritse J., Prins R.A. en 
Gottschal J.C. 1996. Isolation of Alcaligenes sp. strain L6 at low oxygen 
concentrations and degradation of 3-chlorobenzoate via a pathway not 
involving (chloro)catechols. Appl. Environ. Microbiol. 62, 2427-2434 
Groenewegen P.E.J., Driessen A.J.M., Konings W.N. en De Bont J.A.M. 
1990. Energy-dependent uptake of 4-chlorobenzoate in the coryneform 
bacterium NTB-1. J. Bacteriol. 172, 419-423 



6. 
Het is niet onmogelijk, maar zeker nog niet eenvoudig om specifieke actieve 
biomassa in biofilms te bepalen. 
Bauer-Kreisel P., Eiesenbeis M. en Scholz-Muramatsu H. 1996. Quantification 
of Dehalospirillum multivorans in mixed-culture biofilms with an enzyme-linked 
immunosorbent assay. Appl. Environ. Microbiol. 62, 3050-3052 
Davey H.M. en Kell D.B. 1996. Flow cytometry and cell sorting of 
heterogeneous microbial populations: the importance of single-cell analyses. 
Microbiol. Rev. 60, 641-696 

7. 
De constatering dat 2-broom-ethaansulfonaat niet alleen methanogenen, maar 
ook Eubacteria remt geeft aan dat het begrip "specifieke remmer" ook in dit 
geval niet in absolute zin moet worden begrepen. 
Loffler F.E., Ritalahti K.M. en Tiedje J.M. 1997. Dechlorination of 
chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of 
methanogens. Appl. Environ. Microbiol. 63, 4982-4985 

Stellingen behorend bij het proefschrift "Degradation of chlorobenzoates and 
chlorophenols by methanogenic consortia" van Karin A. Ennik-Maarsen, 
Wageningen, 28 april 1999. 
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1. INTRODUCTION 

Chapter 1 

INTRODUCTION 

1 . General introduction 

Chlorinated aromatic hydrocarbons have contaminated the environment 

through their use in industry as pesticides, solvents, dielectric and hydraulic 

f luids, heat transfer agents, and wood preservatives. They also originate f rom 

numerous industrial processes as byproducts in the manufacturing of other 

chlorinated compounds and in pulp bleaching effluents (Mohn & Tiedje, 1992; 

Dolfing & Beurskens, 1995; Field et al., 1995; Puhakka & Melin, 1996). For 

instance, chlorine bleaching effluents f rom paper factories contain 

chlorocatechols, -guaiacols, -phenols, and other chlorinated aromatic and 

aliphatic compounds (Lepisto & Rintala, 1994). As a consequence, 

halogenated compounds often enter wastewater treatment plants (Verstraete 

et al., 1996). In general, pollution w i th chlorinated compounds is problematic, 

because the majority of these compounds is toxic, l ittle biodegradable, or 

both. The presence of chlorinated compounds in soils, sediments, surface or 

subsurface waters, and the atmosphere often but not always indicates 

pollution by anthropogenic industrial activity. Chlorinated aromatic compounds 

are also produced in natural processes such as volcanic eruptions. 

Furthermore, various chlorinated compounds are excreted by diverse living 

organisms such as fungi, insects, worms and blue-green algae. The funct ion 

of such excreted chlorinated aromatic and aliphatic compounds for living 

organisms is usually to discourage a predator or competitor, because the 

chlorinated compound makes the prey distasteful, toxic, or both (Gribble, 

1994; De Jong et al., 1994). 

Chlorinated aromatic compounds have been shown to be susceptible to 

chemical t ransformation. They can be degraded by photochemical oxidation 

and reduction, by oxidation w i th for instance hydroxyl radicals and ozone in 

the absence of l ight, and by hydroxylation w i th hydroxyl radicals resulting 

f rom ultrasound sonication (Wong & Crosby, 1 9 8 1 ; Ollis et al., 1 9 9 1 ; Sedlak 

& Andren 1 9 9 1 ; Boncze fa / . , 1997; U rak ie fa / . , 1997). 

This thesis decribes the biodegradation and toxici ty of chlorinated 

aromatic compounds under methanogenic conditions. Most research under 

these anaerobic conditions has focused on the microbial degradation of 

1 



1. INTRODUCTION 

relatively simple compounds like mono- or dichlorinated benzoates and 

phenols (Mohn & Tiedje, 1992). Therefore, this and the fol lowing chapters wil l 

mainly deal w i th (mono- and di-) chlorinated benzoates and phenols. 

2. Biological degradation of aromatic compounds 

Since chlorinated aromatic compounds consist of an aromatic nucleus w i th 

one or more chlorine atoms attached to the aromatic ring, the microbial 

metabolism of aromatic compounds in general wil l be described f irst. Benzene 

is the simplest aromatic hydrocarbon. The six aromatic electrons are 

delocalized and this makes an aromatic compound much more stable (less 

reactive) than an aliphatic compound. A substituent on the ring affects the 

reaction rate and reaction mode, by activating or deactivating the aromatic 

ring and directing the attack to a certain position on the ring. The initial step 

of the transformation of aromatic compounds is different for prokaryotes (e.g. 

bacteria) and eukaryotes (e.g. fungi, mammals) (Rochkind-Dubinsky et a/., 

1987). Furthermore, in bacteria great differences exist for degradation of 

aromatics under aerobic and anaerobic conditions (Heider & Fuchs, 1997). 

Under aerobic conditions, oxygen does not only serve as a terminal 

electron acceptor, but is also a reactant in the initial attack of the benzene 

ring. The f irst transformation step in eukaryotes is catalyzed by a 

monooxygenase, which incorporates a single oxygen atom onto the benzene 

ring (Armstrong, 1987; Middelhoven, 1993; Parkinson, 1996). Bacteria 

oxidize the aromatic compound wi th a mono- or dioxygenase (Schlegel, 

1993). In a dioxygenase reaction both oxygen atoms f rom an oxygen 

molecule are incorporated into the ring at adjacent positions. Subsequently, 

t w o hydrogen atoms are removed by a dehydrogenase. The product f rom 

benzene dihydroxylation is catechol (1,2-dihydroxybenzene) (Figure 1a). 

Substituted benzenes can directly be dihydroxylated to substituted catechols. 

Alternatively, they are f irst oxidized and the product is subsequently 

dihydroxylated to (substituted) catechol. Phenol is oxidized by a 

monooxygenase and the product is catechol (Figure 1b) (Schlegel, 1993). The 

pathways for oxidation of toluene can start w i th a mono- or a dioxygenase 

reaction (summarized by Mikesell et a/., 1993). Central intermediates are 

catechol, protocatechuate (3,4-dihydroxybenzoate) and gentisate (2,5-

dihydroxybenzoate) (Fuchs et al., 1994). The opening of the ring can proceed 

if the molecule contains t w o hydroxyl groups ortho- or para-positioned. For 
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o/?/7o-positioned hydroxyl groups, there are t w o possible locations for ring 

cleavage: between the two hydroxyl groups or next to one hydroxyl group, 

called ortho- and mefa-cleavage, respectively (Rochkind-Dubinsky et al., 

1987). 

o, 
- > — 
2H 

benzene dioxygenase 

B 

phenol 

kA°H * 2H 

O, 

2H \ 
H,0 

monooxygenase 

cis-1,2-dihydro-1,2- dehydrogenase catechol 
dihydroxy-benzene 

OH 

OH 
catechol 

Figure 1. Initial hydroxylation reaction of benzene by a dioxygenase (A) and of phenol 
by a monooxygenase (B) (from Schlegel, 1993). 

Microbial degradation of aromatic compounds under anaerobic 

conditions is different f rom aerobic aromatic degradation, because oxygen can 

not serve as a reactant. In the absence of molecular oxygen, the aromatic 

degradation requires carbon dioxide, water, coenzyme A and ATP or addition 

of reducing equivalents. A general sequence of events has been described by 

Fuchs et al. (1994). Firstly, an activation of chemically little reactive 

compounds takes place, typically by carboxylation, hydroxylation, or 

coenzyme A thioester formation. This is fol lowed by reactions like reductive 

dehydroxylations or transhydroxylations to form one of the central 

intermediates. Known central intermediates are benzoyl-CoA, resorcinol (1,3-

dihydroxybenzene) and phloroglucinol (1,3,5-trihydroxybenzene). The central 

intermediate is attacked by reductases, fol lowed by hydrolytical cleavage of 
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the ring (Fuchs et a/., 1994). Some aromatic compounds degraded via the 

benzoyl-CoA pathway are presented in Figure 2, i llustrating the various 

activation reactions. Phenol, catechol and aniline are carboxylated, vanillate is 

demethoxylated, and benzyl alcohol is oxidized. Activation of 4-aminobenzoic 

acid occurs by CoA thioester formation. One of the possible pathways of 

anaerobic toluene degradation starts w i th a hydroxylation to benzyl alcohol 

(not shown in Figure 2) (Heider & Fuchs, 1997). Finally, reductive 

dechlorination of chlorophenols and chlorobenzoates is shown in Figure 2 (see 

section 2.1.1). 

2 . 1 . Biological degradation of chlorinated aromatic compounds 

2.1. 7 Initial degradation mechanisms 

Previous reviews have focused on the transformation or biodegradation of 

chlorinated aromatic hydrocarbons by eukaryotes, including mammals 

(Armstrong, 1987; Parkinson, 1996) and fungi (Haggblom, 1992). Therefore, 

this section only decribes the biodegradation mechanisms occurring in 

bacteria. 

The degradation of chlorinated aromatic compounds by bacteria can 

proceed in four ways (Haggblom, 1992; Commandeur & Parsons, 1994): 

(1) dehalogenation after ring cleavage, (2) oxidative dehalogenation, (3) 

hydrolytic dehalogenation and (4) reductive dehalogenation (Figure 3). 

Dehalogenation after ring cleavage (1) is a fortuitous reaction catalyzed 

by enzymes involved in the degradation of non-chlorinated compounds. The 

initial degradation steps before ring cleavage are analogous to the initial steps 

described for aromatic compounds. In case a chlorinated aromatic compound 

is oxidized, chlorocatechols are formed from e.g. chlorobenzoates, 

chlorobenzenes and chloroanilines in a reaction catalyzed by dioxygenases. 

Mono- and dichlorophenols w i th one non-substituted oA?/?o-position are 

oxidized by a dioxygenase or a monooxygenase, also resulting in the 

formation of chlorocatechols. 

Oxidative dehalogenation (2) is a fortuitous reaction as wel l . The 

chlorine atom is removed from the aromatic compound during catechol 

formation by a dehalogenating dioxygenase (Figure 3a). This has been 

described for degradation of lower chlorinated phenols and for 

chlorobenzoates by e.g. Pseudomonas strains (Haggblom, 1992). 



1. INTRODUCTION 

COOH 

COOH 

©0,3 ^ OH 

OH OH 

\ / 
COOH 

CO-SCoA 

\ 

CH,OH 

CHO COOH 

\ / 

COOH 

COOH 

C l NH, 

I 
CO-SCoA 

/ 
CO-SCoA 

Figure 2. Formation of benzoyl-CoA in the anaerobic degradation of some aromatic 
compounds (from Heider & Fuchs, 1997). From left to right: chlorophenol, vanillate, 
catechol, benzyl alcohol, chlorobenzoate, and aniline. 

Hydrolytic dehalogenation (3) is the replacement of the halogen atom by 

a hydroxyl group, derived from water (Figure 3b). A few examples of 

hydrolytic dehalogenation of chlorophenols and chlorobenzoates have been 

described. For instance, various bacteria convert 4-chlorobenzoate into 4-

hydroxybenzoate (Haggblom, 1992). 
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Reductive dehalogenation (4) of aryl chlorides occurs by hydrogenolysis 

(Mohn & Tiedje, 1992). In this reaction two protons and t w o electrons are 

involved and the chlorine is not replaced by a hydroxyl group but by a 

hydrogen atom (Figure 3c). The protons were shown to be derived f rom water 

for the reductive dehalogenation of 3-chlorobenzoate by Desulfomonile tiedjei 

(Griffith et al., 1992). Degradation by reductive dehalogenation has been 

shown for chlorobenzenes, -anilines, -catechols, -resorcinols, -phenols, 

-benzoates, -toluenes, and -phenoxyacetates, and polychlorinated biphenyls 

(PCBs) (Mohn & Tiedje, 1992, Ramanand et al., 1993). 

Combinations of the aryl dehalogenation types also occur. Higher 

chlorinated phenols, like pentachlorophenol (PCP), are first hydroxylated to a 

chlorinated para-hydroquinone. Rhodococcus chlorophenolicus strain PCP-1, 

later reclassified as Mycobacterium chlorophenolicum strain PCP-1 (Briglia et 

al., 1994), probably uses a monooxygenase for this transformation. This step 

is fol lowed by reductive and hydrolytic dechlorination steps, all before ring 

cleavage occurs. In the coryneform bacterium strain NTB-1 and 

Corynebacterium sepedonicum strain KZ-4, 2,4-dichlorobenzoate (2,4-DCB) is 

f irst reductively dechlorinated to 4-chlorobenzoate (4-CB), which is then 

hydrolytically dechlorinated (Van den Tweel et al., 1987; Groenewegen et al., 

1990; Romanov & Hausinger, 1996). From the herbicides 2,4-

dichlorophenoxyacetate (2,4-D) and 2,4,5-trichlorophenoxyacetate (2,4,5-T), 

f irst the ether bond is cleaved rendering chlorophenols, which subsequently, 

as stated above, can be degraded via several pathways (Haggblom, 1992; 

Commandeur & Parsons, 1994). 

In many cases, the specificity for a halogen atom is such that f rom a 

specific position on the ring, a chlorine, bromine, and iodine atom can be 

removed at similar rates, while the (small) fluorine atom is more diff icult to 

remove (e.g., Suflita et al., 1982; Van den Tweel et al., 1987; Van der 

Woude, 1996; Monserrate & Haggblom, 1997). During oxidative 

dehalogenation, the halogen atom which is fortuitously removed can be either 

chlorine, bromine, iodine, or fluorine (Haggblom, 1992; Commandeur & 

Parsons, 1994). Since fluorine analogs are usually not immediately 

defluorinated under anaerobic conditions, they are often used as a tool to 

examine degradation pathways of aromatic compounds (e.g., Aftr ing & 

Taylor, 1 9 8 1 ; Sharak Genthner et al., 1990; Londry et al., 1997; Boersma et 

al., 1998; Haggblom, 1998). However, a sulfate-reducing biculture has been 
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described, in which a Desulfovibrio-Uke microorganism is possibly responsible 

for defluorination, suggesting that defluorination occurs during an initial step 

in the degradation of 2- and 4-fluorobenzoate (Drzyzga eta/., 1994). 

R 

X 

O, 

2H T 
R,X-

dioxygenase 

OH 

OH 

B R 

hydroxylase OH 

R 

X 

2H X 
H+,X-

dehalogenase 

Figure 3. Oxidative (A), hydrolytic (B), and reductive (C) dehalogenation of haloaromatic 
compounds. R = e.g. COOH, OH, NH2; X = F, CI, Br, I (from Commandeur & Parsons, 
1994). 

2.1.2 Redox conditions 

Under oxic conditions, all three initial dehalogenation mechanisms (oxidative, 

hydrolytic, and reductive dehalogenation) have been found, while under 

methanogenic conditions, only reductive dehalogenation takes place 

(Haggblom, 1992; Mohn & Tiedje, 1992; Commandeur & Parsons, 1994). 

Degradation of chloroaromatics under methanogenic conditions wil l be 
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discussed in detail in section 2.2. Few investigations have concentrated on 

dehalogenation under other redox conditions. These wil l be discussed here. 

Some of these studies deal w i th the removal of other halogens than chlorine. 

Dehalogenation mechanisms have been clarified for several monohalo-

benzoates and -phenols (Table 1 and sections 2 . 1 . 2 . 1 . to 2 .1.2.4). 

2 .1.2.1 Sulfate-reducing conditions 

In the presence of sulfate, reductive dehalogenation has been observed in soil, 

wastewater t reatment reactors and aquatic sediments (e.g., Bosma et al., 

1988; Kohring et al., 1989b; Lepisto & Rintala, 1994; Hale Booth et al., 

1997). In some cases the reductive dehalogenation or other degradation steps 

were coupled to sulfate reduction (e.g., King, 1988; Yonezawa et al., 1994). 

In contrast, other authors observed that the rate or extent of reductive 

dehalogenation was negatively affected by sulfate (e.g., Kuhn et al., 1990; 

Madsen & Aamand, 1 9 9 1 ; Pecher et al., 1995; Chang et al., 1996, 1998). A 

coupling of sulfate reduction and chloroaromatic degradation was described in 

several other studies, but in these cases the dehalogenation type was unclear 

(Sharak Genthner et al., 1989a; Haggblom & Young, 1990; Haggblom et al., 

1993b, 1995; Kennes et al., 1996). The O-demethylation of 4 ,5 ,6-

trichloroguaiacol (1-methoxy-2,3-dihydroxy-4,5,6-trichlorobenzene) to 3,4,5-

trichlorocatechol was fol lowed by reductive dechlorination steps (Allard et al., 

1992). Masunaga et al. (1996) speculated that there would be other reactions 

additional to reductive dechlorination in the degradation of chlorophenols, 

because more substrate disappeared than was reductively dechlorinated. 

Sulfite, as well as thiosulfate and sulfate, could serve as an electron acceptor 

during the degradation of 4-halophenols by an enrichment f rom estuarine 

sediment (Haggblom & Young, 1995). In this enrichment, the dechlorination 

mechanism for 4-CP was found to be reductive dehalogenation while sulfate 

reduction also took place (Haggblom, 1998). 

Various sulfate-reducing bacteria have been isolated that can utilize 

haloaromatics (see also Table 2). Reductive dechlorination by D. tiedjei was 

under some conditions inhibited by sulfate (DeWeerd et al., 1991). An 

explanation for the difference in sensitivity to sulfate of resting cells (weak 

inhibition) and growing cells (strong inhibition) was given by Townsend and 

Suflita (1997). Sulfate can repress the induction of the dehalogenase gene 

expression but not the activity of the dehalogenase enzyme. Two other strains 

8 
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have been characterized less extensively. Strain DSL-1 is a marine isolate 

which debrominates 2,4,6-tribromophenol to 4-bromophenol (Steward et al., 

1995). Another sulfate-reducer, isolated from swine manure, grows on phenol 

or 4-chlorophenol as sole carbon and energy source (Boopathy, 1995). In the 

presence of sulfite, M. chlorophenolicum strain PCP-1 hydrolytically 

dechlorinates PCP and 2,3,5-trichlorophenol, while D. dehalogenans 

reductively dechlorinates 3-CI-4-0HPA (Uotila et al., 1992; Mackiewicz & 

Wiegel, 1998). 

In summary, chlorobenzoates, -benzenes, -phenols, bromophenols, 

2,3,4,5-tetrachloroanil ine, 4,5,6-trichloroguaiacol and 3,4,5-trichlorocatechol 

were degraded under sulfate-reducing conditions in the above mentioned 

investigations. The dehalogenating mechanisms found so far in the presence 

of sulfate or sulfite are reductive and hydrolytic dehalogenations. 

2 .1.2.2 Nitrate-reducing conditions 

Chlorophenols were reductively dechlorinated in soil slurries w i th active 

denitrif ication activity (Sanford et al., 1997). However, the dechlorination was 

not coupled to denitrif ication. Coupling of degradation of chlorobenzoates and 

2-chlorophenol (2-CP) to denitrification was shown to occur in freshwater and 

estuarine sediments, but in these cases the dehalogenation mechanism was 

unclear (Sharak Genthner et al., 1989a; Haggblom et al., 1993b, 1996; 

Kazumi et al., 1995a). The degradation of 4-CP in a denitrifying fluidized-bed 

reactor was established, although the degradation mechanism was unclear 

(Me l i ne fa / . , 1993). 

Several bacteria in pure culture are able to perform dehalogenation while 

nitrate is reduced. The coryneform bacterium strain NTB-1 hydrolytically 

dechlorinates 4-CB under denitrifying conditions. The energy for carrier-

mediated 4-CB uptake is supplied by denitrification (Groenewegen et al., 

1990). The denitrifying toluene-degrading bacterium strain T1 was genetically 

engineered, acquiring the nitrate-dependent ability to dechlorinate 4-CB 

hydrolytically (Coschigano et al., 1994). Desulfitobacterium dehalogenans 

reduces nitrate to ammonium while it reductively dechlorinates 3-chloro-4-

hydroxyphenylacetate (3-CI-4-0HPA) (Mackiewicz & Wiegel, 1998). Four 

denitrifying Pseudomonas strains utilize 2- or 4-fluorobenzoate, f rom which 

the fluorine atom is most probably lost fortuitously, while nitrogen evolves 

(Taylor et al., 1979; Schennen et al., 1985). In short, during the degradation 
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of chlorophenols and halobenzoates under nitrate-reducing conditions, the 

halogen atom is removed by hydrolytic dehalogenation, by reductive 

dehalogenation, or fortuitously. 

2 .1.2.3 Iron-reducing conditions 

Investigations on aryl dehalogenation under iron(lll)-reducing conditions f irst 

aimed to f ind a coupling between the formation of iron(ll) and the 

mineralization of chloroaromatics in aquatic sediments (Kazumi et a/., 1995a, 

1995b). Wi th evidence for this coupling, the possibilities for reductive 

dechlorination and hydrolytic dechlorination as the initial degradation step 

were discussed (Dolfing, 1996; Kazumi et a/., 1996). Neither mechanism 

could theoretically be ruled out. With 2-bromophenol a reductive 

debromination mechanism and a stoichiometric conversion of 2-bromophenol 

and Fe(lll) could be established (Monserrate & Haggblom, 1997). Reductive 

dechlorination of 3-CB in the presence of Fe(lll) has also been found in 

f reshwater sediments (Myers et a/., 1994). The degradation of chloroaromatic 

compounds in the presence of manganese(IV) has been investigated w i th 3-

CB and 2,4-D. 3-CB was reductively dechlorinated. The transformation 

mechanisms of 2,4-D were not clarified, nor was it examined whether Mn(IV) 

reduction and reductive dechlorination were coupled (Myers eta/., 1994). 

2 .1 .2.4 Photobiological conversion 

Under anoxic conditions in the presence of l ight, phototrophic bacteria such 

as Rhodopseudomonas palustris can utilize (chloro-)aromatic compounds. R. 

palustris strain WS17 metabolizes monohalobenzoates as a cosubstrate, when 

grown on benzoate (Kamal & Wyndham, 1990; Van der Woude et a/., 1994). 

For R. palustris strain DCP3 benzoate is not required for the degradation of 3-

CB and 3-bromobenzoate (Van der Woude et a/., 1994). In strain DCP3, high 

coenzyme A ligase activity and the presence of benzoate in cell extracts 

indicate that dechlorination of 3-CB, activated in the form of 3-chlorobenzoyl-

CoA, takes place before the aromatic ring is reductively attacked (Van der 

Woude, 1996). The R. palustris strains BAH2 and PL1 carboxylate 2-CP to 3-

CI-4-OHPA, which is subsequently reductively dechlorinated (to 4-

hydroxyphenylacetate) and further degraded (Noh etal., 1995). 
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Table 1. Overview of publications in which the dehalogenating mechanism of 
monochlorobenzoates and -phenols under anaerobic conditions has been established. 
The underlined publication numbers refer to hydrolytic dehalogenation; in all other 
cases, reductive dehalogenation took place. CB = chlorobenzoate; CP = chlorophenol. 

Chloroaromatic 
compound 

2-CB 

3-CB 

4-CB 

2-CP 

3-CP 

4-CP 

Condition 

Methanogenic 

1, 2 

1, 2, 3, 4, 5, 6 

-

1, 2, 13, 14, 
15, 16, 17, 18, 
19, 20, 21 

1, 2, 4, 16, 2 1 , 
28 

4, 14, 21 , 29, 
30 

Sulfate-
reducing 

-

1, 7, 8, 9 

-

1, 22, 23, 
24, 25 

23, 25 

23, 25, 31 

Denitrifying 

-

-

1 1 , V2 

26 

-

-

Phototrophic 

-

-

-

27 

-

-

Iron(lll)-
reducing 

-

10 

-

-

-

1 Sharak Genthner et al., 1989a; 2 Sharak Genthner et al., 1989b; 3 Suflita et al., 
1982; 4 Gibson & Suflita, 1986; 5 van der Woude et al., 1996; 6 Shelton & Tiedje, 
1994; 7 Townsend et al., 1997; 8 DeWeerd et al., 1991; 9 Townsend & Suflita, 1997; 
10 Myers et al., 1994; 11 Groenewegen et al., 1990; 12 Coschigano et al., 1994; 13 
Haggblom et al., 1993a; 14 Kennes et al., 1996; 15 Haggblom et al., 1993b; 16 Hale 
et al., 1990; 17 Basu et al., 1996; 18 Dietrich & Winter, 1990; 19 Zhang & Wiegel, 
1992; 20 Boyd et al., 1983; 21 Christiansen, 1995; 22 Haggblom & Young, 1990; 23 
Susarla et al., 1997; 24 Monserrate & Haggblom, 1997; 25 Liu et al., 1996; 26 
Sanford et al., 1997; 27 Noh et al., 1995; 28 Juteau et al., 1995; 29 Zhang & Wiegel, 
1990; 30 Armenante et al., 1995; 31 Haggblom, 1998. 

2.2 Biodegradation of chlorinated aromatic compounds under methanogenic 

conditions 

2.2.1 Cometabolic conversions and halorespiration 

Reductive dehalogenation can occur as a co-metabolic reaction, resulting f rom 

the lack of specificity of enzymes and cofactors, but since the reductive 

dehalogenation reaction has a large negative Gibbs free energy change, the 

halogenated aromatic compound is a potential terminal electron acceptor 

(Dolfing & Harrison, 1992). Aspecific dehalogenation reactions have been 

11 
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reported for hexa- and pentachlorobenzene by the cofactors vitamin B12 and 

hematin, hexachlorobenzene by the methanogenic cofactor F430, and penta-, 

tetra-, and trichlorophenols by vitamin B12 (Gantzer & Wackett , 1 9 9 1 ; Smith & 

Woods, 1994). A specific reductive dechlorination reaction f rom which energy 

is conserved in an anaerobic respiration was f irst described for D. tiedjei 

(Mohn & Tiedje, 1992). Some reductively dechlorinating bacteria use only 

hydrogen or formate as electron donors for halorespiration, but for instance, 

Desulfitobacterium strains are also able to use organic compounds (lactate, 

pyruvate, butyrate, and yeast extract) (Holliger & Schumacher, 1994; Sanford 

et a/., 1996). The organization of the respiratory chain w i th chloroaromatic 

and chloroaliphatic compounds as electron acceptors is still unclear (Mohn & 

Tiedje, 1992; Holliger & Schumacher, 1994). The dehalogenating enzyme of 

D. tiedjei has been purified and may be an integral membrane protein (Ni et 

a/., 1995; Townsend & Suflita, 1996). Like the dehalogenase of D. tiedjei, the 

dehalogenating enzyme of Desulfitobacterium chlororespirans is a membrane 

bound reductase. Both use methyl viologen as an artificial electron donor 

(Loffler et a/., 1996). A number of bacteria is able to conserve energy f rom 

dechlorination, which suggests that the use of the chlorinated aromatic 

compound as a terminal electron acceptor leads to proton translocation (Table 

2). Tetrachloroethene dehalogenases have been studied in more detail. The 

dehalogenating enzymes of Dehalospirillum multivorans and Dehalobacter 

restrictus both contain a corrinoid. The electron transfer chain of D. restrictus 

contains a hydrogenase at the periplasmic side of the membrane and a 

dehalogenase at the cytoplasmic side, while the dehalogenase of D. 

multivorans is recovered in the cytoplasmic soluble fraction (Wohlfarth & 

Diekert, 1997). 

Dechlorination pathways have been examined in a number of 

investigations (for a discussion see Dolfing & Beurskens, 1995). 

Dechlorination is not necessarily the first degradation step, as was found for 

example w i th 2,4-dichlorophenoxyacetate and 3-chloro-4-hydroxybenzoate in 

samples f rom diverse anaerobic environments (Gibson & Suflita, 1986; Zhang 

& Wiegel, 1992). Dechlorination was either preceded or fol lowed by acetate 

cleavage of 2,4-dichlorophenoxyacetate (Gibson & Suflita, 1986). 

Dehydroxylation preceded dechlorination of 3-chloro-4-hydroxybenzoate or 

vice versa (Zhang & Wiegel, 1992). However, under methanogenic conditions, 

dechlorination takes place before ring cleavage (see section 1.1). This implies 

12 
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1. INTRODUCTION 

that the degradation of chlorinated aromatic compounds proceeds via the 

same central intermediates as the degradation of non-chlorinated aromatics. 

For many compounds the central intermediate is benzoate (or more precisely, 

benzoyl-CoA) (Figure 2). The further degradation of benzoate is a conversion 

to hydrogen, acetate, and carbon dioxide (Table 3). The conditions under 

which benzoate oxidation takes place and the role of methanogens and 

dechlorinating bacteria wil l be discussed below. 

2.2.2 Syntrophic degradation of chloroaromatic compounds 

Benzoate oxidation under standard conditions is an endergonic process: the 

Gibbs free energy change AG0 ' is positive. The AG0 ' value represents the 

situation in which the temperature is 298 K, the solute concentrations are 1 

mol/l i tre, the pH is 7 and the partial pressures of the gases are 1 a tm. When 

hydrogen is efficiently removed by hydrogen-consuming methanogenic 

archaea, the AG0 ' value becomes negative and the benzoate-oxidizer can 

convert benzoate. This interaction in which the hydrogen-producer (acetogen) 

depends on the methanogen for degradation of a substrate, and the 

methanogen depends on the hydrogen-producer for hydrogen supply, is called 

syntrophism. Beside benzoate conversion, degradation of other aromatic 

compounds like phenol and hydroxybenzoate also occurs syntrophically. In 

methanogenic environments, syntrophic interactions are common in the 

degradation of fat ty acids, amino acids, other organic acids, and alcohols 

(Schink, 1992; Stams 1994). 

In addition to hydrogen, formate and acetate may influence a syntrophic 

conversion. Formate and hydrogen can both be produced by acetogens and 

consumed by methanogens, and some methanogens are able to interconvert 

formate and hydrogen. In a few examples, acetate is essential for 

degradation, e.g. the anaerobic degradation of acetone (Platen & Schink, 

1987). Theoretical considerations and experimental evidence for the role of 

hydrogen, formate, and acetate have been reviewed (Stams, 1994; Schink, 

1997). 

The maximal hydrogen concentration for exergonic substrate conversion 

(10-32 Pa for different acetogens) is a little higher than the hydrogen 

threshold for methanogenesis (2.5-16 Pa for mesophilic methanogens) (Stams, 

1994). The benzoate-oxidizing bacteria strain BZ-2, Syntrophus buswellii and 

S. gentianae convert benzoate until a hydrogen concentration of 2000 , 25 
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1. INTRODUCTION 

and 100-1000 Pa is reached, respectively (Dolfing & Tiedje, 1 9 9 1 ; 

Wallrabenstein & Schink, 1994; Schocke & Schink, 1997). The concentration 

gradient between the hydrogen producer and the hydrogen consumer is rather 

gradual, al lowing only low substrate conversion rates, but it becomes steeper 

if the distance between the t w o microorganisms is reduced. Consequently, 

the hydrogen f lux, and thereby the syntrophic substrate conversion rate, 

increases (Schink & Thauer, 1988). 

For a chlorinated aromatic compound such as 3-CB, the microbial 

interaction is more complex. When the electron donor for dechlorination is 

hydrogen (or formate), t w o groups of hydrogen consumers compete for 

hydrogen (or formate). An example is a triculture of D. tiedjei, the syntrophic 

benzoate-oxidizing strain BZ-2 and Methanospirillum strain PM-1 . In this 

tr iculture reducing equivalents are shared between the dechlorinating bacteria 

and the methanogens apparently wi thout competit ion (Dolfing & Tiedje, 

1991). In the degradation of benzoate, three molecules of hydrogen are 

formed. One of these hydrogen molecules is required for reductive 

dechlorination of 3-CB, leaving t w o hydrogen molecules for methane 

formation. In the conversion of phenol or hydroxybenzoate, only t w o 

hydrogen molecules are released. During the breakdown of highly chlorinated 

compounds even more hydrogen molecules are invested in reductive 

dechlorination than are released in later stages of the mineralization. 

Therefore, when a highly chlorinated compound is the sole substrate, 

hydrogen supply is l imiting. Dechlorinating bacteria should have an advantage 

in the competit ion for hydrogen w i th methanogens, because the AG0 ' of the 

substrate conversion is inversely related to the steady-state concentration of 

hydrogen in a culture (Cord-Ruwisch et al., 1988). The AG0 ' is -33.9 kJ/mol 

H2 for methanogenesis and -130 to -171 kJ/mol H2 for reductive 

dechlorination of chloroaromatics (Stams, 1994; Dolfing & Harrison, 1992). 

The theoretical hydrogen threshold of dechlorinating bacteria is very low 

(Figure 4). The measured values for D. tiedjei, strain 2CP-1 and D. 

chlororespirans are in the range of 0.01-0.1 Pa (DeWeerd et al., 1 9 9 1 ; 

Sanford et al., 1996), and thus lower than reported for hydrogenotrophic 

methanogens (1-10 Pa) (Stams, 1994). 
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b 
40 h 

60 

hydrogenotrophic methanogenesis 
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10- 10-

Figure 4. The AG' values per reaction for reductive dechlorination, syntrophic benzoate 
oxidation and hydrogenotrophic methanogenesis under standard conditions, but with 
variation in the hydrogen partial pressure (see also Table 3). 

2.2.3 Effects of environmental conditions on the conversion of chloroaromatic 

compounds 

The affinity constant and maximal substrate conversion rate are not the only 

factors affecting chloroaromatic biodegradation rates. In addit ion, the 

bioavailability should be high enough and the degradation of chloroaromatic 

compounds at high concentrations can be limited by their toxici ty (Mohn & 

Tiedje, 1992; Holliger & Schumacher, 1994). Toxicity of compounds towards 

microorganisms can be expressed in several ways. A parameter to express 

toxici ty of chlorinated aromatics to methanogens and methanogenic granular 

sludge is the concentration that causes 5 0 % inhibition of the methane 

production rate (IC50 or 5 0 % IC). This value was 0.03 mM PCP for some 

methanogens and methanogenic granular sludge, while for 2-CP, 3-CB and 

chlorobenzene it was 3 mM or higher (Patel et al., 1 9 9 1 ; Sierra-Alvarez & 

Lettinga, 1991). Most chlorinated aromatic compounds have a high 

solvent/water partition coefficient (Sierra-Alvarez & Lettinga, 1 9 9 1 ; Kennedy 

et al., 1992). One can make use of this property during enrichment of specific 

dechlorinating microorganisms. In this approach, the concentration in the 

water phase is kept low to prevent toxic effects, while the substrate supply is 
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sufficient to provide a selective advantage for dechlorinating microorganisms. 

This method was applied to enrich for 1,2,3-trichlorobenzene-degrading 

microorganisms and resulted in high numbers of dechlorinating 

microorganisms, about 108/ml (Holliger et al., 1992). Chlorophenols and 

chlorobenzoates are better water soluble than chlorobenzenes, and are 

therefore usually sufficiently bioavailable. In soil, the adsorption of 

chlorophenols to particles depends on the soil type. Additionally, the organic 

matter in soil reduces the bioavailability of the chlorophenols. Likewise, 

bioavailability can be a limiting factor for the biodegradation in sediments 

(Puhakka & Melin, 1996). 

The pH can influence the degradation of chlorinated aromatic 

compounds in several ways (Dolfing & Beurskens, 1995). Chlorobenzoates are 

dissociated at neutral pH: the pKa values are 2-4 (Dolfing & Beurskens, 1995). 

However, for weak acids such as chlorophenols, the pH is more important, 

because the dissociation constants (pKa values) of chlorophenols are in the 

range of 5 to 9 (Kishino & Kobayashi, 1994). The undissociated acid acts as 

an uncoupler (Sikkema et al., 1995), but is also the form in which the 

chlorophenol is taken up when passive transport takes place. Furthermore, the 

pH optima of dechlorinating microorganisms are different. The dechlorinating 

bacteria listed in Table 2 prefer a pH near neutrality, while a 2 ,4,6-

trichlorophenol-dechlorinating enrichment f rom an anaerobic reactor only 

dechlorinated between pH 8 and 9 (Armenante et al., 1993; Togna et al., 

1995). 

Chlorobenzoate- and chlorophenol-degrading microorganisms differ in 

their temperature optima (see also Table 2). Samples f rom freshwater 

sediments had temperature optima for 2,4-dichlorophenol degradation 

between 30 and 43 °C (Kohring et al., 1989a; Zhang & Wiegel, 1990). 

Freshwater sediment microcosms, digested manure and granular sludge could 

reductively dechlorinate PCP or other chlorinated phenols at 50 to 55 °C 

(Larsen et al., 1 9 9 1 ; Mohn & Kennedy, 1992; Lepisto & Rintala, 1994). 

Thermophilic (75°C) reductive dechlorination of 3-CB to benzoate by 

cocultures has been reported as well (Maloney et al., 1997). Preliminary 

results indicated that at 75 °C reductive dechlorination by pure cultures of 

archaeal freshwater strains occurred and that 2,4-dichlorophenol was 

converted into phenyl acetic acid (Tuttle et al., 1996). 

Additional electron donors and nutrients are often supplied to stimulate 
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the degradation of chlorinated aromatic compounds (Mohn & Tiedje, 1992). 

Some effects that can result f rom electron donor addition are an enhanced 

dechlorination rate, a shorter lag phase, a greater extent of dechlorination, 

and a change in the dechlorination pathway (e.g., Gibson & Suflita, 1990; 

Kuhn et at., 1990; Hendriksen et at., 1 9 9 1 , 1992; Hendriksen & Ahring, 

1992; Holliger et at., 1992; Perkins et at., 1994; Basu et at., 1996). The 

supply of essential nutrients by for example yeast extract can also result in a 

higher dechlorination rate (Holliger et at., 1992). 

3. Construction of consortia from pure cultures and aggregation by anaerobic 

microorganisms 

In methanogenic environments, biodegradation is usually accomplished by the 

action of more than one microorganism, and methanogens are responsible for 

the final mineralization step. A number of different microorganisms, which 

together biodegrade an organic compound, is often referred to as a 

consort ium. Combining pure cultures in such a consortium can be useful for 

several purposes such as physiological and ecological studies and practical 

applications in bioremediation. Since some substrates are obligatory 

syntrophically degraded, the cocultivation of the involved microorganisms is 

even essential. However, additional microorganisms, like aceticlastic 

methanogens or dechlorinating bacteria, may influence the substrate 

conversion kinetics in obligate syntrophic degradation processes (Ahring & 

Westermann, 1987, 1988; Dolfing & Tiedje, 1 9 9 1 ; Dong et at., 1994a, b; 

Schocke & Schink, 1997). In addition, immobilized microorganisms have been 

studied (Jones et at., 1984; Dwyer et at., 1986; W u et at., 1996) and applied 

in biodegradation and bioremediation (Ahring et at., 1992; Cassidy et at., 

1996; Christiansen & Ahring, 1996b; Schmidt & Ahring, 1997; Horber et at., 

1998). When the syntrophic partners are immobilized, the interbacterial 

distances are shorter than when they are suspended in the l iquid, and 

consequently, the substrate conversion rate wil l be higher in the former 

si tuation. 

3.1 Construction of methanogenic consortia from pure cultures 

A thermophilic butyrate-degrading bacterium has been described that 

converted butyrate into acetate and hydrogen provided that a 

hydrogenotroph, Methanobacterium thermoautotrophicum, was present 
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(Ahring & Westermann, 1987). In a triculture with a thermophilic acetate-

utilizing methanogen, butyrate was completely mineralized into methane and 

carbon dioxide. In the triculture, the butyrate degradation rate was higher than 

in the biculture. Elevated hydrogen and acetate concentrations inhibited 

butyrate degradation, but inhibition by acetate could be reversed after addition 

of the aceticlast to the biculture of the butyrate degrader and M. 

thermoautotrophicum (Ahring & Westermann, 1988). Under mesophilic 

conditions, the syntrophic butyrate oxidizer Syntrophospora bryantii and the 

hydrogenotroph Methanospirillum hungatei converted butyrate faster in the 

presence than in the absence of the aceticlast Methanosaeta (Methanothrixj 

soehngenii (Dong et al., 1994a). Similar observations have been described for 

the mesophilic propionate-oxidizing bacterium Syntrophobacter fumaroxidans 

(Harmsen et a/., 1998). The propionate oxidation rate was higher in the 

presence than in the absence of M. soehngenii, but this methanogen could not 

replace M. hungatei (Dong et al., 1994b). Calculations showed that low 

acetate concentrations alone could not pull propionate oxidation. Syntrophus 

gentianae degrades benzoate in syntrophy with M. hungatei. Acetate and 

methane are formed by benzoate oxidation. There exists a residual benzoate 

concentration, but the residual concentration can be lowered when 

Methanosaeta concilii is added (Schocke & Schink, 1997). For the 

methanogenic degradation of isobutyrate, three successive conversions are 

performed in a triculture: isomerization to butyrate by strain WoG13, butyrate 

oxidation by Syntrophomonas wolfei and methane formation by M. hungatei 

(Matthies & Schink, 1992). Strain WoG13 grows by the fermentation of 

glutarate to butyrate, isobutyrate, carbon dioxide and small amounts of 

acetate. It also isomerizes butyrate and isobutyrate until approximately equal 

concentrations are reached. Growth on butyrate or isobutyrate by strain 

WoG13 is not possible. In the triculture, isobutyrate is completely converted 

via butyrate to acetate and methane. Hence, the addition of two extra species 

of microorganisms shifts the equilibrium of the isomerization reaction towards 

100% butyrate (Matthies & Schink, 1992). Desulfomonile tiedjei DCB-1 grew 

by the conversion of 3-CB to benzoate and chloride with hydrogen or formate 

as an electron donor with doubling times of 45 to 46 days (Mohn & Tiedje, 

1990). In a triculture with the syntrophic benzoate-degrading bacterial strain 

BZ-2 and the hydrogenotrophic methanogen Methanospirillum strain PM-1, the 

doubling time was 3 days (Dolfing & Tiedje, 1986). When benzoate was the 
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substrate, benzoate oxidation was accelerated in the presence of 3-CB, 

because the hydrogen partial pressure decreased when dechlorination 

occurred (Dolfing & Tiedje, 1991). The proximity of the consortial members 

was important, as was demonstrated by the decreased dechlorination rate 

when D. tiedjei was separated from the strains BZ-2 and PM-1 by a 

membrane, permeable for (chloro-)benzoate and hydrogen (Tiedje & Stevens, 

1988). 

In the above mentioned examples, syntrophic conversions are made 

possible by t w o syntrophic partners, but an extra microorganism does affect 

the kinetics of this syntrophic conversion. 

3.2 Aggregation by anaerobic microorganisms 

In anaerobic (industrial) wastewater treatment reactors, methane is the end 

product of the biodegradation process. Such reactors are strictly anaerobic 

environments in which the biomass grows as aggregates. This implies that the 

interbacterial distances are small and selection is dependent on both adhesion 

properties and growth kinetics. Biofilms develop on a carrier material and/or 

self-aggregation takes place via f locculant to granular sludge. Granular sludge 

develops in particular in Upflow Anaerobic Sludge Blanket (UASB) reactors (for 

a review, see Lettinga, 1995). Immobilization of cells and enzymes by gel 

entrapment, in which cell adhesion is not required, has been most often used 

in the biotechnological production of certain useful compounds, like amino 

acids, organic acids, antibiotics, steroids, and enzymes (Cassidy et a/., 1996). 

Anaerobic degradation by gel-entrapped microorganisms may result in similar 

kinetics for freely suspended and immobilized microorganisms (Jones et a/., 

1984), or may lead to significant differences between the t w o conditions 

(Dwyer et al., 1986). Studies concerning aggregation in sludge granules 

comprise granular sludge formation by self-aggregation of defined cultures 

(Wu et al., 1996) and incorporation of specific microorganisms in existing 

sludge (Ahring et al., 1992). 

Four different microorganisms, which together convert sucrose into 

methane and carbon dioxide, were immobilized in agar pellets (Jones et al., 

1984). Escherichia coli fermented sucrose to lactate, ethanol, acetate and 

hydrogen. Desulfovibrio vulgaris converted lactate and ethanol into acetate 

and reducing equivalents, which were partly used for sulfate reduction and 

released as hydrogen. Methanosarcina barker/' utilized acetate and 
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Methanobacterium formicicum utilized hydrogen and carbon dioxide. The total 

methane production and the methane production rate were higher when 

Acetobacterium woodii was present as wel l . A. woodii contributed to the pool 

of the methanogenic precursors acetate and hydrogen, since it could convert 

glucose or fructose as well as lactate or ethanol to acetate and hydrogen. The 

immobilization of this consortium in agar did not influence the total amount of 

methane produced nor the methane production rate (Jones et al., 1984). 

A phenol-degrading methanogenic enrichment consisted of a phenol-

oxidizing bacterium, a hydrogen-utilizing methanogen and an acetate-utilizing 

methanogen (Dwyer et al., 1986). These three microorganisms syntrophically 

degraded phenol into methane and carbon dioxide. The culture was 

immobilized in agar strands, containing a high biomass density (5 g protein/I 

gel). Phenol degradation kinetics of the immobilized consortium differed f rom 

those of non-immobilized cells, which was demonstrated by a decrease of the 

lag phase, of the apparent Km, and of the methane production rate. 

Furthermore, the immobilization matrix protected the cells f rom toxic effects 

of phenol. Both the change in the kinetics and the protection f rom toxici ty 

indicated a mass transfer l imitation of phenol (Dwyer et al., 1986). 

Wu et al. (1996) were able to construct methanogenic granular sludge 

in a UASB reactor f rom five microbial species. These microorganisms 

degraded a mixture of acetate, propionate, and butyrate, three important 

intermediates in anaerobic degradation processes. The syntrophically butyrate-

oxidizing bacterium strain BH aggregated w i th the hydrogenotrophic 

methanogen M. formicicum. The syntrophic propionate-oxidizing strain PT only 

aggregated when both M. formicicum and the aceticlast Methanosaeta sp. 

were present. This study revealed that these t w o methanogens were essential 

for granulation. The addition of the clump-forming Methanosarcina sp. altered 

the granule structure by making it more heterogeneous. The butyrate-oxidizing 

bacterium strain BH enhanced granulation. 

Granular sludge f rom a UASB reactor may be applied for the degradation 

of specific compounds to which it has not been exposed before. Adaptation of 

the sludge may take a long time period, and therefore, an alternative strategy 

was developed by Ahring et al. (1992). Small (200-ml) UASB reactors were 

inoculated w i th granular sludge and D. tiedjei. The influent containing 3-CB 

was first recirculated and subsequently the f low was gradually increased. 

Finally, the hydraulic retention t ime was reduced to a value below the 
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generation t ime of D. tiedjei, assuring that the cells were retained in the 

granules and did not grow in the l iquid. The activity of the granules was 

measured and the presence of D. tiedjei cells inside the granules was analyzed 

immunologically (Ahring et al., 1992). A similar approach was used w i th the 

PCP-dechlorinating bacterium Desulfitobacterium hafniense DCB-2, the 

acetate-utilizing methanogens Methanosarcina mazeii and Methanosaeta 

concilii, and the tetrachloroethene-dechlorinating bacterium Dehalospirillum 

multivorans (Christiansen & Ahring, 1996a, b; Schmidt & Ahring, 1997; 

Horber eta/., 1998). Moreover, a consortium was incorporated into granular 

sludge. This consortium consisted of the 3-CB-dechlorinating bacterium D. 

tiedjei, the syntrophic benzoate oxidizer Syntrophus buswellii and the 

hydrogenotrophic methanogen M. hungatei (Ahring et a/., 1992). The final 

dechlorination rate of the sludge granules was higher when the consortium 

was immobilized than when only D. tiedjei was inoculated. These studies 

showed that immobilization of an extra species into granular sludge is 

possible, resulting in an additional degradation ability. 

4. Outline of this thesis 

The aim of this thesis was to investigate the biodegradation kinetics of 

chloroaromatic compounds by consortia under methanogenic conditions. Since 

such substrates can inhibit methanogenic degradation, toxicity was studied as 

wel l . Chlorinated phenols and benzoates were chosen in this study, because 

the biodegradation of these compounds has been examined most extensively. 

To gain insight in the fate of chlorinated aromatics and their effects on 

anaerobic treatment of industrial wastewater, sludge granules f rom UASB 

reactors were used in toxicity and enrichment studies (Chapters 2 and 3). In 

Chapter 2 the toxic effects of monochlorophenols on the performance of 

methanogenic granular sludge under different experimental conditions are 

described. The ability of anaerobic sludges to degrade monochlorophenols and 

the enrichment of 2-chlorophenol degraders are described in Chapter 3. A 

defined 3-chlorobenzoate-degrading consortium is characterized in Chapters 4 , 

5 and 6. Four microbial species were required for the complete mineralization 

of 3-CB to methane, carbon dioxide and chloride, namely Desulfomonile 

tiedjei, Syntrophus buswellii, Methanospirillum hungatei and Methanosaeta 

concilii (Table 3) (Ferry et al., 1974; Mountfort & Bryant, 1982; Mountfort et 

a/., 1984; Patel, 1984; Shelton & Tiedje, 1984; DeWeerd et al., 1990; Patel 
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& Sprott, 1990). Chapter 4 reports how balanced growth was obtained and 

describes the effects of the composition of the medium on 3-CB conversion 

by the consortium. Adhesion of cells to carrier materials and the growth 

stimulating effects of carrier materials on the members of the consortium are 

described in Chapter 5. Chapter 6 describes the immobilization of the 

consortium in a K-carrageenan gel matrix and growth and substrate conversion 

of the immobilized consortium. The results presented in this thesis are 

summarized and discussed in Chapter 7. 

Table 3. Complete methanogenic conversion of 3-chlorobenzoate by a consort ium 
composed of four microbial species at t w o different pH2 values (Stams, 1994). 

Species Conversion AG' kJ/reaction 

1 atm H2 10'5 atm H2 

Desulfomonile tiedjei 3-CB + H2-> -125 -96.4 

benzoate" + H+ + CI" 

Syntrophus buswellii benzoate" + 7 H20 -> 

3 acetate" + 3 H2 + HC03" + 3 H + 

Methanospirillum hungatei 2 H2 + 0.5 HC03 + 0.5 H+ -> 

0.5 CH4 + 1.5 H20 

Methanosaeta concilii 3 acetate" + 3 H20 -> -93 -93 

3 CH4 + 3 HC03" 

+ 58.9 -26.8 

-67.8 -10.7 

Consortium 
3-CB" + 8.5 H20 ->• 

3.5 CH4 + CI" + 3.5 H+ + 3.5HC03" 
-226.9 -226.9 
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Chapter 2 

INFLUENCE OF MONOCHLOROPHENOLS ON METHANOGENIC ACTIVITY IN 

GRANULAR SLUDGE 

Karin A. Ennik-Maarsen, Annemarie Louwerse, Wim Roelofsen and Alfons J.M. 

Stams 

Water Research 32, 2977-2982, 1998 

ABSTRACT 

The effects of monochlorophenols (MCPs) on volatile fatty acid degradation by 

methanogenic granular sludge from two full scale Upflow Anaerobic Sludge 

Blanket (UASB) reactors treating potato processing wastewater, were tested. 

Sludges 1 and 2 were derived from the first reactor, and sludge 3 from the 

second reactor. Methane production and utilization of acetate, propionate and 

butyrate were measured. Methane production by sludge 3 was more severely 

inhibited by MCPs (50% inhibition around 0.6 mM or less) than were sludges 1 

and 2 (50% inhibition above 1 mM). Aceticlastic methanogens, propionate-

degrading consortia and butyrate-degrading consortia of the two sludges had a 

different sensitivity. In sludge 3, the acetate utilization was most sensitive, 

while for the other sludges, butyrate utilization was inhibited most strongly. In 

an experiment with stored sludge, the inhibition was reversible, but depended 

on the exposure time. In addition, stored sludge was less active and more 

sensitive to MCPs compared to fresh sludge. An activation period after cold 

storage lowered the sensitivity of the sludge to 2-CP. These findings may be 

important when stored sludge is used to start up a reactor to treat wastewater 

that contains toxic compounds. 
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INTRODUCTION 

Halogenated phenolic compounds are used for wood preservation and as 

pesticides. They are formed during pulp bleaching and can also arise from 

natural sources (King, 1986; De Jong eta/., 1994; Rintala & Puhakka, 1994; 

Field et al., 1995). Degradation of chlorophenols (CPs) under anaerobic 

conditions is well established, but because of their toxicity, CPs can severely 

impede anaerobic treatment of wastewater from pulp- and paper-industry 

(Sierra-Alvarez et al., 1994). 

In general, toxicity of a series of analogous phenolic compounds appears 

to be correlated wi th their hydrophobicity, which can be expressed as the 1-

octanol/water partition coefficient (Sierra-Alvarez & Lettinga, 1991a). 

Monochlorophenols and monochloroanilines affect both the affinity constant and 

the maximum substrate conversion rate. Therefore, the toxic effect is most 

appropriately described as mixed inhibition (Davies-Venn et al., 1992; Kim et at., 

1994). Most likely, phenolic compounds affect the functioning of the 

cytoplasmic membrane. The effect of aromatic compounds on membrane 

processes is reviewed by Sikkema et al. (1995). 

There is some variation in the literature concerning the toxicity of 

halogenated aromatics to different bacterial groups. Colleran et al. (1992) 

reported that some important subpopulations in methanogenic sludges, i.e. 

aceticlastic methanogens, butyrate oxidizers and ethanol oxidizers, are similarly 

sensitive to halogenated aromatics, while hydrogenotrophs are less sensitive 

(Golden et al., 1994; Kim et al., 1996). In other studies, propionate degraders 

were found to be most sensitive (Johnson & Young, 1983; Wu et al., 1993), 

whereas Kim et al. (1994) described that ethanol degraders are not as sensitive 

as aceticlastic methanogens. For a range of different types of aerobic bacteria 

and Clostridia, Ruckdeschel et al. (1987) found no significant differences 

between species. Furthermore, Blum and Speece (1991) reported that inhibition 

of aceticlastic methanogens and of aerobic heterotrophs occurs in the same 

order of magnitude of concentrations for many toxic organic compounds. One 

explanation for the variation in literature data may be that the specific growth 

rates or the physiological state under the experimental conditions determine the 

sensitivity. The physiological state of cells may affect the tolerance of an 

inhibitory compound, as well as the accumulation of halogenated compounds in 

the cell. Indications for this have been reported by several authors. Fast-growing 
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Pseudomonas aeruginosa cells were more inhibited by 3-CP and 4-CP than 

slower growing cells (Gilbert & Brown, 1978). Metabolically active cells of the 

alga Chlorella sp. accumulated more lindane than did dead cells (Hansen, 1979). 

High substrate levels may increase the tolerance of toxic compounds. Glucose 

addition decreases sensitivity to 2,4-dibromophenol in anaerobic marine 

sediments (King, 1986). In addition, in some cases higher phenol concentrations 

decrease inhibition of activated sludge by CPs (Beltrame et a/., 1988). 

Furthermore, starvation results in a higher sensitivity of anaerobic granules 

towards pulp wastewater (Kudo eta/., 1991). 

The aim of our research was to study the toxicity of monochlorophenols 

(MCPs) on methanogenesis from acetate, propionate and butyrate by unadapted 

granular sludge. In addition, we studied effects of experimental conditions on 

the sensitivity of the sludge. 

MATERIALS AND METHODS 

Biomass. Methanogenic granular sludge was obtained from two Upflow 

Anaerobic Sludge Blanket (UASB) reactors both treating potato processing 

wastewater (Aviko, Steenderen, The Netherlands). During the weekends 

wastewater was not supplied. Instead, effluent water was recycled. Sludge was 

collected at different times (Table 1). Samples of reactor B consisted of smaller 

granules than samples from reactor A. Fresh samples of the sludges had a 

sludge volume index of 16 ml/g total solids. This sludge was not acclimated to 

MCPs. In the degradability test with sludge 3, the sludge was blended with two 

other types of methanogenic granular sludge, in a ratio of 1:1:1. One of these 

sludges was derived from a pilot plant UASB reactor, treating adsorbable organic 

halogens (AOX) (PAQUES, Balk, The Netherlands), the other was obtained from 

a full scale UASB reactor treating sugar refinery wastewater (CSM, Breda, The 

Netherlands). 

Anaerobic toxicity assay. A medium was used as described by Holliger et al. 

(1993), with the modification that fermented yeast extract was not added. The 

granular sludge was preincubated at 37°C with a volatile fatty acids (VFA) 

mixture (acetate, propionate and butyrate; 20 mM each). When sludge 2 had 

been stored for 3 months, it was preincubated for 3 days. In the other 

experiments, sludge was preincubated for 1 day. Then, the sludge was 
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centrifuged at 3100 x g for 5 minutes and rinsed wi th water. Sludge (2 ml, ±0.1 

g of volatile suspended solids (VSS) per bottle) was transferred to 117-ml serum 

bottles containing 20 ml of medium. The bottles were sealed wi th rubber or 

viton stoppers and aluminum crimp seal caps. The gas phase was replaced by 

1.8 bar N2/C02 (80:20, v:v). All bottles were incubated wi th the VFA mixture at 

37°C. No substrate was added in the endogenous activity controls. MCPs were 

added from aqueous stock solutions (20, 50 or 200 mM; pH 8-9). Each 

concentration was tested at least in duplicate. The gas phase was sampled 1 to 

2 times per day. The endogenous methanogenic activity was subtracted in the 

calculation of methane production. The specific methanogenic activity was 

calculated from the slope of the methane production versus time curve in a 

period of 3 days, but when stored sludge was examined a period of 6 days was 

used. Activity was expressed as percentage of control activity (% ACT); the 

percentage of inhibition (% INH) is complementary: % INH = 100-% ACT. 

Acetate consumption was estimated from disappearance of acetate, taking into 

account the acetate formed from propionate (factor 1) and butyrate (factor 2). 

The effect of exposure period to an MCP was tested wi th sludge 2, 

stored for 3 months. After 7 hours, 4 days or 7 days of incubation wi th 

substrate and MCP, sludge was centrifuged and washed twice wi th fresh 

medium at 4100 x g for 10 min. More than 95% of MCP was removed. Then, 

extra substrate was added without MCPs. 

Degradability test. The same medium was used as in the anaerobic toxicity 

assay. Sludge 1 , which had been stored for 2 months, was disintegrated under 

air; sludge 1 , stored for 4 months, was disintegrated under a N2/C02 

atmosphere; and the sludge 3 blend was used as intact granules. Sludge (1-2 

ml) was directly transferred to 117-ml serum bottles, containing 20 ml medium. 

The granular sludge was incubated at 37°C wi th a VFA mixture (acetate, 

propionate and butyrate; 5 mM each). After 1 day, one of the 

monochlorophenols was added in a concentration of 1 mM (sludges 1) or 0.1 

mM (sludge 3 blend). Degradation of phenol (10 mM) was tested wi th only 

sludge 1 , which had been stored for 2 months. Phenol was added f rom aqueous 

stock solutions (40 or 400 mM), pH 8-9. 
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Table 1. Characteristics of the sludges and experiments performed with the sludges. 

Sludge 
number 

1 

Date of 
sampling 

November 
1992 

Reactor 

A 

Average 
influent-
COD 

8 

Storage 
temperature 

4°C 

Storage 
time 

3 weeks 

Experiment 
type 

T 

2 months 

3 months 

4 months 

6 months 

D 

T 

D 

T 

2 March 
1994 

10 10°C 

3 months 

October B 9 
1994 

10°C 2 days 

3 months 

COD: Chemical oxygen demand in g/l 
T: Anaerobic toxicity assay 
D: Anaerobic degradability test 
a MCPs were added at the start of the experiment or were added later 

Analyses. Methane and VFA were analyzed wi th a Packard-Becker 417 or 

Chrompack CP9001 or CP9000 gas chromatograph as described previously 

(Stams et a/., 1993). VSS was analyzed according to Dutch Standard Methods 

(NEN 3235 4.1). MCPs were measured with an LKB high-performance liquid 

chromatograph equipped wi th a ChromSep column (100x3.0 mm) ChromSpher 

Pesticides and an LKB 2158 Uvicord SD UV-detector. The mobile phase was an 

acetonitrile-0.01 M H3P04 (20:80) mixture at a f low rate of 1 ml/min. The 

column was kept at room temperature. Samples (20uJ) were injected by a 

Spectra-Physics autosampler AS1000. 
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RESULTS AND DISCUSSION 
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Figure 1. Methane production by fresh sludge (sludge 2) on a mixture of volatile fatty 
acids, with or without 2-chlorophenol. 
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Figure 2. Utilization of volatile fatty acids by fresh sludge (sludge 2), in the presence and 
absence of 3 mM 2-chlorophenol. • : acetate; A : propionate; O: butyrate. —; control; - -: 
3 mM 2-CP. 

40 



2. TOXICITY TESTS 

Degradability of MCPs by the sludge. Phenol (10 mM) was transformed 

completely within 14 days of incubation, but the concentrations of the three 

MCPs stayed constant for 100 days in all sludge incubations. Therefore, it was 

concluded that, within the time course of the experiments, this sludge was not 

able to degrade MCPs. 

Toxicity tests with fresh sludge. Methane production by granular sludge was 

measured in time (Figure 1). Tests were performed on a time scale of days 

instead of hours, because sometimes the degradation of propionate or butyrate 

was not maximal yet during the first two days. This is illustrated in Figure 2. 

A toxicity test was performed with the three MCPs at different 

concentrations. The methanogenic activity of the sludge (referred to as sludge 

3) was inhibited more by 3-CP and 4-CP than by 2-CP (Table 2). This order can 

be related to solvent/water partition coefficients (Kishino and Kobayashi, 1994). 

The concentration that caused 5 0 % inhibition was around 0.6 mM for 2-CP and 

probably around 0.2 mM for 3-CP and 4-CP. For acetate-utilizing methanogenic 

granular sludges, 5 0 % inhibition by MCPs was reported to occur at 3.2 mM 2-

CP (Sierra-Alvarez & Lettinga, 1991a) and at 1.6 mM 2-CP or 4-CP (Golden et 

a/., 1994). Acetate-degrading methanogenic enrichment cultures were inhibited 

for 5 0 % at 0.8 to 4.7 mM MCP (Blum & Speece, 1991 ; Wang et a/., 1 9 9 1 ; 

Davies-Venn et a/., 1992). Apparently, sludge 3 had a very low tolerance to 

MCPs. Aceticlastic methanogenesis was inhibited stronger than syntrophic 

butyrate and propionate oxidation (Table 3). 

Earlier observations in an experiment w i th only 2-CP wi th sludge 2 

showed that butyrate oxidation was inhibited most strongly (Table 3). Inhibition 

of methanogenesis by this sludge was comparable to the inhibition observed in 

other methanogenic granular sludges (Sierra-Alvarez & Lettinga, 1991a; Golden 

et a/., 1994) and in methanogenic enrichment cultures (Blum & Speece, 1 9 9 1 ; 

Wang etal., 1 9 9 1 ; Davies-Venn eta/., 1992; Kim eta/., 1994). 

Although the two sludges were adapted to similar reactor conditions, 

they performed differently in the inhibition studies. This concerned the overall 

sensitivity as well as the relative sensitivity of several trophic groups. 
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Table 2. Inhibition of methanogenesis in different experiments. 

Sludge Storage time Compound CH4-production 
mmol CH4 g'' VSS day'1 

% INH 

3 weeks control 

1 mM 4-CP 

6.5 (0.9)" 

5.2 (0.4) 20 

3 months" control 

1 mM 2-CP 

3 mM 2-CP 

1 mM 3-CP 

3 mM 3-CP 

3 mM 4-CP 

3.0 (0.0) 

1.4(0.3) 

0 

0.3 (0.2) 

0 

0 

54 

100 

91 

100 

100 

control 

3 mM 2-CP 

5 mM 2-CP 

6.5 (0.6) 

1.1 (0.7) 

0 

83 

100 

3 months control 

1 mM 2-CP 

3 mM 2-CP 

4.2(0.1) 

1.9(0.3) 

0 

54 

100 

2 days control 

0.5 mM 2-CP 

1 mM 2-CP 

2 mM 2-CP 

3 mM 2-CP 

5 mM 2-CP 

0.5 mM 3-CP 

1 mM 3-CP 

2 mM 3-CP 

0.5 mM 4-CP 

1 mM 4-CP 

2 mM 4-CP 

6.4 (0.2) 

3.5 (0.1) 

2.0 (0.1) 

1.0(0.0) 

0.05 (0.02) 

0 

1.7 (0.3) 

0.6 (0.2) 

0 

1.6(0.1) 

0.62 (0.09) 

0 

46 

68 

85 

99 

100 

73 

90 

100 

75 

90 

100 

a The values in parentheses are standard deviations 
b Wi th sludge 1 , after 3 or 6 months storage, similar results were found 
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Table 3. Average VFA utilization rates of 2 fresh sludges. 

Sludge 

2 

3 

Activity 
mmol I"1 g 1 VSS 

Controls 

3 mM 2-CP 

Controls 

1 mM 2-CP 

1 mM 3-CP 

1 mM 4-CP 

day"1 
Acetate 

243 (4)a 

61 (16) 

350 (29) 

99(5) 

32 (3) 

27(2) 

Propionate 

68(2) 

29 (11) 

81 (7) 

40 (0) 

25(2) 

27(1) 

Butyrate 

82(3) 

9(5) 

91 (8) 

43(2) 

19(1) 

23(1) 

The values in parentheses are standard deviations 

The overall sensitivity, expressed as the percentage of inhibition of 

methanogenesis, has to be related to the characteristics of the granules. The 

specific methanogenic activity, the sludge volume index, and the ash content 

were almost equal for both sludges, but the amount of sludge per incubation 

was higher w i th sludge 3, the granules were smaller, they were collected at 

another t ime of the year and they had been stored for a short period of t ime 

(see Materials and methods). The smaller size of the granules may explain the 

higher sensitivity of sludge 3 in comparison wi th the other sludges. Smaller 

granules have relatively high surface areas, which may increase exposure of the 

bacteria to the MCPs. 

Changes in the relative sensitivities of the tested trophic groups may 

point at a population shift or an activity change of the trophic groups. In the 

case of a population shift, the aceticlastic population and, to a lesser extent, the 

propionate-oxidizing population, may have shifted to a more sensitive 

population. All tested populations are interdependent, because acetate 

accumulation can inhibit syntrophic degradation steps and syntrophic 

acetogenesis determines the maximum acetate utilization rate. This implies that 

a slight variation in species composition can have a pronounced effect. In the 

case of an activity change, the physiological state of the bacteria may have 

influenced the tolerance of MCPs, comparable wi th observations of Gilbert and 

Brown (1978), King (1986) and Beltrame et at. (1988). Disappearance of 
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acetate from the medium was usually more rapid than disappearance of 

propionate and much more rapid than disappearance of butyrate, except for 

sludge 3. On the other hand, when calculated activities of VFA degradation are 

compared, the differences are not so obvious. Activities on each volatile fat ty 

acid seemed to be somewhat higher wi th sludge 3 than wi th sludge 2. 

Particularly activity changes can be expected when the influent of the reactors 

varies. However, the influent was rather constant. So it seems more likely that 

in both reactors a slightly different population had developed. In any case, it is 

not possible to determine which of the tested trophic groups should be 

considered as the most sensitive group towards MCPs. 

Sensitivity of fresh and stored granular sludge. The activity of fresh and stored 

sludge (sludge 2), collected at the same time from the UASB reactor, was 

compared in the absence and presence of 2-CP. Stored sludge had a lower 

control methanogenic activity and exhibited a higher sensitivity to 2-CP, 

expressed as percentage inhibition (Table 2). The test wi th stored sludge was 

also performed in a slightly different way (data not shown). In that case, 2-CP 

was added after 3 days of incubation, while usually 2-CP was added 

immediately. For 2, 3 or 4 mM 2-CP % INH were respectively 4 0 % , 6 5 % and 

9 6 % . Addition of 1 mM 2-CP after 2 or more days of incubation w i th VFA, did 

not affect methane production significantly. Thus, the stored sludge became 

less sensitive to 2-CP than fresh sludge, exposed immediately to 2-CP. 

A decrease of methanogenic activity wi th a VFA mixture after cold 

storage of granular sludge has been documented before (Shin et al., 1993; Wu 

et al., 1995). The lower tolerance to toxicants seems to be correlated to the 

lower activity, but it is not a consequence of the lower activity, since this 

possibility was excluded in the toxicity tests wi th fresh sludge. Both the 

decrease in activity and the increase in sensitivity may be caused by 

disintegration of the sludge structure. The spatial orientation which is needed for 

syntrophic degradation might have been disrupted and the surface exposed to 

the toxicant might have increased as well. An activation period increased the 

tolerance of stored sludge significantly. In such a period bacteria may generate 

sufficient metabolic energy to prevent toxic effects. Other studies showed that 

non-limiting amounts of an energy source can decrease the toxicity of 

compounds (Gilbert & Brown, 1978; King, 1986; Kudo et al., 1 9 9 1 ; Mohanty et 

al., 1993). 
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Table 4. Second feeding experiment with stored sludge (sludge 2), fed with butyrate and 

exposed to 2-CP. 

2-CP 
concentration 

3 mM 

3 mM 

1 mM 

3 mM 

5 mM 

Duration of 
first feeding 

7 hours 

4 days 

7 days 

7 days 

7 days 

% ACT after 
first feeding 

n.c.a 

0 

17(2) 

2(1) 

0 

% ACT after 
second feeding 

90(15)" 

2(0) 

89(2) 

5(1) 

0 

a n.c: not calculated 
b The values in parentheses are standard deviations 

Effect of exposure time on inhibition. Toxicity may be reversible, but it also may 

become more severe when the toxicant has been removed and fresh substrate 

is added (Sierra-Alvarez & Lettinga, 1991b). Therefore, effects of exposure time 

were studied. Because in earlier experiments (Table 3) mainly butyrate oxidation 

was influenced by MCPs, these tests were only done wi th butyrate as substrate 

and 2-CP as toxicant (Table 4). In these incubations, there was hardly any 

acetate accumulation (data not shown). So methane production is directly 

related to butyrate oxidation. A second feeding was given: when (1) methane 

production had not started yet (7 hours), (2) the sludge was actively converting 

butyrate (4 days) or (3) butyrate had been converted completely (7 days). 

Methane production rates increased wi th time due to growth. Therefore, the 

methane production after the second butyrate feeding was expressed as 

percentage of the control activity after the second feeding. Restoration of 

activity depended on the concentration of 2-CP. Exposure to 1 mM 2-CP for 7 

days hardly led to prolonged inhibitory effects. For 3 mM 2-CP, only bottles wi th 

a very short exposure t ime restored activity within the t ime that the controls 

were active. For many toxic compounds, recovery of activity occurs when either 

the exposure t ime is short enough or the concentration is low enough (Parkin et 

ah, 1983; Yang & Speece, 1985). Data from this study wi th granular sludge 

exposed to 2-CP are accordingly. 
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CONCLUSIONS 

1. In accordance w i th other authors, we found that the isomer and 

concentration of the chlorophenol as well as the exposure t ime determine the 

toxicity of a chlorophenol. 3-CP and 4-CP were more toxic to the sludges than 

2-CP was. 

2. In addition to a lowered activity, as was described by others, storage of 

sludge also resulted in a higher sensitivity to 2-CP. However, a reactivation 

period of 2 to 3 days, preceding the exposure to 2-CP, resulted in a lower 

sensitivity to 2-CP. 

3. When two reactors received the same wastewater, the sludges that 

developed had similar activities on the available substrates like volatile fat ty 

acids. However, they did not exhibit similar sensitivity to chlorophenols to which 

they had never been exposed before. Therefore, toxicity data are limited in 

practical application. 
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Chapter 3 

REDUCTIVE DECHLORINATION OF 2-CHLOROPHENOL BY ENRICHMENT 

CULTURES 

Karin A. Ennik-Maarsen, Lars T. Angenent, Sandra E. van Hamel and Alfons 

J.M. Stams 

ABSTRACT 

Samples from anaerobic environments were studied for their ability to transform 

monochlorophenols under methanogenic conditions. Sludges from laboratory 

scale reactors adapted to either pentachlorophenol (PCP), benzoate or 

terephthalate, a peat slurry, and a mixture of polluted sediments were able to 

transform 2-chlorophenol (2-CP) under methanogenic conditions. In the sludges, 

reductive dechlorination of 2-CP to phenol occurred. In the peat slurry and in the 

sediment mixture, 2-CP was transformed to a product which is likely to be 3-

chlorobenzoate (3-CB). The PCP-adapted sludge was enriched further by 

repeated transfer in media containing 2-CP. This resulted in a culture that 

reductively dechlorinated 2-CP to phenol and carboxylated and dehydroxylated 

2-CP to 3-CB. Similarly, a culture, enriched from benzoate-adapted sludge, was 

obtained that dechlorinated 2-CP and dichlorophenols specifically at the ortho-

position. 
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INTRODUCTION 

Chlorophenolic compounds have been spread in the environment from several 

industrial sources, namely wood preservation, pulp bleaching effluents, and 

pesticide use, and by natural production (Field et al., 1995). Chlorophenols are 

toxic but biologically degradable under aerobic and anaerobic conditions 

(Haggblom, 1992). In general, the anaerobic degradation of chlorophenols starts 

w i th a reductive dechlorination step (Mohn & Tiedje, 1992). Degradation has 

been reported for all three monochlorophenols (MCPs) in anaerobic sludges, 

sediments, and soils (Mohn & Tiedje, 1992). Cultures enriched for MCP-

dechlorinating ability under methanogenic conditions have been described for 2-

CP (Genthner et al., 1989; Dietrich & Winter, 1990; Basu et al., 1996; Themel 

et al., 1996) and 3-CP (Genthner et a/., 1989). A culture which is able to 

dechlorinate 4-CP could only be maintained in the presence of sediment (Zhang 

& Wiegel, 1990). It appeared that sludges adapted to MCPs were able to 

dechlorinate higher chlorinated phenols as well (Boyd & Shelton, 1984; Mikesell 

& Boyd, 1986; Krumme & Boyd, 1988; Kong eta/., 1994). 

Several pure cultures have been described which reductively 

dechlorinate o/?/70-chlorinated phenols under methanogenic conditions (Cole et 

al., 1994; Utkin et al., 1994; Bouchard et al., 1996; Christiansen & Ahring, 

1996; Gerritse et al., 1996; Sanford et al., 1996). One of the isolates, strain 

2CP-1, belongs to the Cystobacteriaceae. Strain 2CP-1 utilizes a limited number 

of electron acceptors, namely 2-CP, 2,6-dichlorophenol (2,6-DCP), oxygen and 

fumarate, and it also dechlorinates 2,5-DCP (Cole et al., 1994). The other 

species known up to now all belong to the genus Desulfitobacterium. 

Desulfitobacterium species are more versatile in electron acceptor utilization 

(Sanford et al., 1996; Bouchard et al., 1996). D. dehalogenans and 

Desulfitobacterium strain PCE1 are able to dechlorinate 2-CP (Utkin et al., 1995; 

Gerritse et al., 1996). 

In this study, samples from methanogenic environments adapted to 

aromatic compounds, were investigated for their potential to transform MCPs. 

Furthermore, the metabolic capabilities of enrichments on 2-CP were 

characterized. One enrichment transformed 2-CP to phenol and 3-

chlorobenzoate. The other enrichment has a specifically orf/jo-dechlorinating 

activity. 
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MATERIALS AND METHODS 

Biological material. Pentachlorophenol(PCP)-degrading methanogenic granular 

sludge (sludge P) was obtained from a laboratory scale Upflow Anaerobic 

Sludge Blanket (UASB) reactor completely dechlorinating 6 mg/l PCP (PAQUES, 

Balk, The Netherlands). Benzoate-degrading methanogenic granular sludge 

(sludge B) was obtained from a 1-L scale UASB reactor, loaded with 0.17 mol 

benzoate I'1 day"1. Terephthalate-degrading methanogenic flocculent sludge 

(sludge T) was obtained from a 4 I hybrid reactor. A mixture of polluted 

samples, derived from aerobic and anaerobic sludges and sediments which had 

been stored for 1 year at 4°C, was used. A peat slurry was used, which had 

been prepared in the following way. The first 5 cm of drained fertilized clay-

containing peat, with 0.2 kg C kg"1, was suspended with 3 parts of anaerobic 

distilled water under a nitrogen atmosphere, and incubated at 15°C. The 

biological materials were stored at 4°C. 

Degradability test. Sludges B and P were homogenized with a mortar and pestle. 

The sludges, the sediment mixture and the peat slurry were transferred to 117-

ml serum bottles containing 20 ml of medium. This medium was the same as 

described by Holliger et al. (1993), with the modification that fermented yeast 

extract was not added. A 5% (v/v) inoculum was used, but a 10% inoculum 

was applied for sludge P. The bottles were sealed with viton stoppers and 

aluminum crimp caps. The gas phase was replaced by 1.8 bar N2/C02 (80:20, 

v:v). All bottles were incubated at 37°C with a volatile fatty acids (VFA) mixture 

(acetate, propionate and butyrate; 5 mM each). After a few days, 2-CP, 3-CP or 

4-CP (Sigma Aldrich, Zwijndrecht, The Netherlands) was added in a 

concentration of 1 mM for sludge P and 0.1 mM for all other incubations. The 

choice for a preincubation period without CPs was based on the observation 

that reactivation after cold storage could reduce the toxic effect of CPs. For 

more details about this reactivation, the reader is referred to Chapter 2. 

Experiments with culture P. Culture P, obtained from the incubation with sludge 

P, was transferred (10%) to fresh medium containing 1 or 3 mM 2-CP and a 

VFA mixture (acetate, propionate and butyrate; 5 mM each). Other electron 

donors were tested as well (concentrations in mM in parentheses): formate (5), 

glucose (5), pyruvate (20), acetate (5), propionate (5), butyrate (5), and 1.8 bar 
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H2 /C02 (80:20, v:v). In addition, the effect of 2-bromoethanesulfonic acid (BrES, 

6 to 10 mM) and the effect of pasteurization (80°C for 1 h) on dechlorination 

were tested. From the second until the f i f th transfer 0.2 g/l yeast extract and 

after that 5 g/l yeast extract or 0 .5% (v/v) fermented yeast extract was added 

(Holliger et al., 1993). Several medium supplements were tried instead of yeast 

extract: 1 ^-naphthoquinone (0.2 mg/l), autoclaved granular sludge (10% v/v, 

Aviko, Steenderen, The Netherlands), rumen fluid (5% v/v). The following 

electron acceptors were added (concentrations in mM in parentheses): S04
2" (2 

or 20), N0 3 (3 or 30), 2,6-dichlorophenol (2,6-DCP, 0.1), 2,4,6-trichlorophenol 

(0.1), 3-CP (0.1), 4-CP (0.1). These electron acceptors were tested in the 

presence of an H2 /C02 atmosphere, fermented yeast extract and BrES. Both 3-

CP and 4-CP were tested in the presence of 2-CP (1 mM). Attempts to isolate 

the dechlorinating bacteria were done by incubation in agar roll tubes. 

Experiments with culture B. Culture B, obtained from sludge B, was transferred 

(maximally 1%) to fresh medium containing 0.1 or 0.5 mM 2-CP and 1 to 5 mM 

pyruvate. The following electron donors were tested: pyruvate, lactate, ethanol, 

formate, acetate, propionate, butyrate, benzoate, glucose, in a concentration of 

5 mM, a VFA mixture (acetate, propionate and butyrate; 5 mM each), 1 mM 

phenol, and 1.8 bar H2/C02 (80:20, v:v). The electron acceptor utilization was 

tested wi th pyruvate (20 mM) as electron donor for the following electron 

acceptors (concentrations in mM in parentheses): 2-CP (0.1) plus 3-CP (0.1), 2-

CP (0.1) plus 4-CP (0.1), 2,3-DCP (0.1), 2,4-DCP (0.1), 2,5-DCP (0.1), 2,6-DCP 

(0.1), N0 3 (30), fumarate (10), S04
2 (20), S203

2 ' (20), S03
2 (20), 3-chloro-4-

hydroxyphenylacetate (3-CI-4-OHPA, 20). Utilization of 3-chloro-4-hydroxy-

benzoate (3-CI-4-0HB, 1 mM) was tested wi th 5 mM pyruvate. The effect of 

BrES (10 mM), Mo04
2" (0.5 or 10 mM) and the effect of pasteurization (80°C 

for 1 h) on dechlorination were tested. In a few incubations, yeast extract (0.5 

g/l), fermented yeast extract ( 1 % v/v), or trypticase (0.5 g/l) was added. To a 

dilution series of the ninth transfer 2-CP (1 mM) and glucose or pyruvate (2.5 

mM) were added. 

Analyses. Methane, hydrogen, and VFA were analyzed wi th a Packard-Becker 

417 or Chrompack CP9001 or CP9000 gas chromatograph as described 

previously (Stams et al., 1993). Glucose and organic acids were analyzed on an 

LKB high-performance liquid chromatograph as described previously (Stams et 
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a/., 1993). Chlorophenolic compounds were measured as described in Chapter 2 

or on a TSP high-performance liquid chromatograph, wi th a SpectraSystem 

P2000 pump, an AS3000 autosampler and a UV1000 UV-detector. When the 

TSP HPLC was used, the mobile phase was an acetonitrile-0.01 M H3P04 

mixture wi th a volume ratio of 15:85. Sulfide was determined colorimetrically 

(Truper & Schlegel, 1964). N20 was measured wi th a gas chromatograph as 

described previously (Scholten & Stams, 1995). S04
2", S 0 3

2 , S 2 0 3
2 , N03", and 

N0 2 were analyzed wi th a high-performance liquid chromatograph (Scholten & 

Stams, 1995). N0 3 was also determined colorimetrically in 0.05 M perchloric 

acid at a wavelength of 210 nm. In some incubations, a product was formed 

that coeluted w i th 3-chlorobenzoate on HPLC. Further identification of this 

product was done wi th gas chromatography-mass spectrometry (GC-MS). 

Supernatant of a 1.2-ml sample was mixed wi th 2 ml methanol and 0.2 ml 

H2S04 for methylation. This mixture was incubated at 30°C for 30 minutes. 

Then, 1 ml chloroform and 2 ml water were added to each tube for extraction. 

The chloroform extracts were analyzed by GC-MS as described previously for 

hexachlorocyclohexane (Middeldorp et a\., 1996). 

RESULTS 

Transformation of MCPs by samples from anaerobic environments. The ability to 

transform MCPs was investigated in samples from different anaerobic 

environments. Methanogenic granular sludges which had not been adapted to 

aromatic compounds were not able to utilize MCPs, and neither was a granular 

sludge adapted to adsorbable organic halogens (AOX) (Chapter 2). Here, 

samples from environments containing aromatic compounds were investigated. 

In summary, in all samples, 2-CP was transformed (Figure 1A-E). 3-CP 

disappearance was measured only in the sediment mixture (Figure 1F). In none 

of the samples 4-CP transformation was established within 120 days. Products 

f rom MCP transformation were measured (Figure 1). With 3-CP, methane was 

formed from a volatile fat ty acids (VFA) mixture, but the 3-CP transformation 

was not reproducible and could not be enriched for. From 2-CP, sludges P and B 

produced phenol, while sediment and peat incubations formed a product 

coeluting on HPLC wi th 3-chlorobenzoate. Since the 2-CP transformation rate 

was highest in sludges P and B, these sludges were used for further 

enrichments on 2-CP. These enrichments will be discussed below. 
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Figure 1. Transformation of 2-CP ( • ) or 3-CP (-»•) and formation of phenol(D), 3-
chlorobenzoate ( • ) and methane ( + ) in samples from sludges P (A), B (B) and T (C), f rom 
a peat slurry (D) and from a polluted sediment mixture (E, F). Right y-axis: methane 
(mmol/l). In figure 1B and 1F, CP was repeatedly added. 
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Enrichment from pentachlorophenol-adapted sludge. Culture P degraded 2-CP in 

the presence of several electron donors (Table 1). The 2-CP degradation rate 

was highest with glucose. The dechlorination rate in the original sludge P was 

about 0.1 mmol I1 day1 (Figure 1). The enrichment degraded 2-CP at a lower 

rate (Table 1). Another difference with the original sludge was that the 

enrichment did not accumulate phenol. Culture P could degrade 2-CP at a high 

concentration, up to 5 mM. The dechlorinating activity was o/Y/?o-specific (Table 

2). 

Table 1. Transformation of 2-CP [umol I"1 day"1] by culture P in the presence of different 
electron donors. The numbers in parentheses are standard deviations. After the second 
transfer, an initial rapid dechlorination (phase 1) was followed by a slower dechlorination, 
when hydrogen, formate or no electron donor was added (phase 2). 

Electron donor 

-

Hydrogen 

Formate 

VFA 

Acetate 

Propionate 

Butyrate 

Glucose 

Pyruvate 

Dechlorination rate 

Second transfer 

25 (8)a, 7 (2)b 

42 (13)a, 13 (1)b 

39(6)a, 6(1)b 

30(10) 

55(7) 

Fourth transfer 

16(1) 

Eighth transfer 

29(1) 

32(2) 

34(3) 

31 (3) 

phase 1, day 4 to 15, and b, phase 2, day 15 to 77. 

A complex substrate, e.g. yeast extract, improved the 2-CP degradation 

rate. Autoclaved granular sludge, rumen fluid, and fermented yeast extract could 

replace yeast extract in this respect. Naphthoquinone, an essential vitamin for 

dechlorination by Desulfomonile tiedjei (DeWeerd et a/., 1990), completely 

inhibited the degradation of 2-CP. BrES, an inhibitor of methanogenesis, hardly 

55 



3. CHLOROPHENOL DEGRADATION 

affected the 2-CP degradation rate, but it was necessary for the further 

enrichment of the 2-CP-degrading bacteria. The degradation of 2-CP stopped 

after pasteurization. Some incubations were done wi th nitrate or sulfate as 

electron acceptor. After the reduction of all nitrate or sulfate, the cultures were 

transferred back to fresh medium containing 2-CP. It appeared that after one 

transfer without 2-CP the ability to degrade 2-CP was lost. 

Table 2. Electron acceptor utilization by culture P. 

Electron acceptor Utilization Product 

2-CP plus 3-CP 

2-CP plus 4-CP 

2,6-DCP 

2,4,6-DCP 

2-CP 

2-CP 

yes 

no 

phenol, 3-CB 

phenol, 3-CB 

phenol 

2H 

HCI 

OH 

^>vCI pn 

iyj 
OH 

^ > V C I 9H 

M H20 
COOH COOH 

Figure 2. Observed transformation mechanisms of 2-chlorophenol to phenol or 3-
chlorobenzoate 
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In addition to the ability to dechlorinate 2-CP to phenol, the culture was 

able to convert 2-CP to 3-chlorobenzoate. In the incubations of the tenth 

transfer, virtually all 2-CP was transformed to a product that coeluted wi th 3-

chlorobenzoate on HPLC. A methylated sample from this incubation was 

analyzed on a gas chromatograph equipped wi th a mass spectrometer. This 

analysis confirmed the presence of a monochlorobenzoate. The 3-

chlorobenzoate was most probably the product of a carboxylation and 

dehydroxylation of 2-CP (Figure 2). Unfortunately, attempts to isolate a 2-CP 

degrader failed and the 2-CP degrading activity was finally lost upon repeated 

transfer. 

Enrichment from benzoate-adapted sludge. Benzoate-adapted sludge formed 

methane f rom 2-CP and a VFA mixture. After one transfer, phenol and benzoate 

accumulated transiently to high concentrations. The dechlorination rates were 

1 1 , 19, and 31 (xrnol I"1 day"1, w i th the electron donors VFA, pyruvate, and 

hydrogen, respectively. From the second transfer only phenol was detected as a 

product (Figure 3). Analysis of samples from culture B established that no 3-

chlorobenzoate was produced. In general, the dechlorination rate did not exceed 

30 (xmol I"1 day"1. 

The maximal 2-CP concentration added to culture B was 1.4 mM. 

Several electron donors were tested (Table 3). First, hydrogen, formate, VFA 

and ethanol seemed the most favourable electron donors, but later the 

dechlorination rate appeared to be higher in the presence of glucose, pyruvate 

and acetate. Therefore, the transfers were continued wi th pyruvate as an 

electron donor. In addition to 2-CP, 2,4-dichlorophenol (2,4-DCP) and 2,6-DCP 

were dechlorinated at the o/?/?o-position (Table 4). 

Since the determined dechlorination rates were often much lower in 

later than in the initial transfers, attempts were done to improve the conversion. 

Incubations supplied wi th yeast extract dechlorinated 1.4 times faster than 

incubations without yeast extract. At 30°C the dechlorination rate was lower 

than at 37°C , which was the usual incubation temperature. Furthermore, 

culture B was incubated wi th alternative electron acceptors (Table 4). Fumarate, 

nitrate, sulfate, sulfite and thiosulfate were reduced by culture B. In case of 

nitrate, nitrite accumulated to a high concentration. The cultures were 

transferred wi th these electron acceptors two times. After two transfers in the 

presence of fumarate, nitrate, or sulfate, and in the absence of 2-CP, the 
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dechlorinating ability was lost, while after two transfers in the presence of 

thiosulfate and sulfite, the dechlorinating ability returned. The culture which had 

been transferred with thiosulfate instead of 2-CP, afterwards dechlorinated 2-CP 

after a long lag-phase. After alternating transfers in the presence of sulfite or 2-

CP, the dechlorinating activity was lost. 

Dechlorination continued in the presence of BrES and molybdate. This is 

in accordance with the findings that sulfate was not utilized by the 

dechlorinating bacteria (Table 4) and that no methane was produced. After 

pasteurization no dechlorination occurred. 

In the dilution series, only up to 10"3 diluted cultures dechlorinated 2-CP 

with glucose. The 105 dilution did not exhibit dechlorinating activity and neither 

did it show growth on glucose. In the series with pyruvate, the results were 

similar. Since culture B contained several morphologically different 

microorganisms, no further attempts were made to isolate the dechlorinating 

bacteria. 

10 
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Figure 3. Reductive dechlorination of 2-CP (•), utilization of pyruvate (O), and formation 
of phenol (•) and acetate (x) by culture B. CP was repeatedly added. 
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Table 3. Dechlorination of 2-CP by culture B in the presence of different electron donors. 
BrES was added to the incubations with formate and hydrogen. 

Electron donor 

Phenol 

Benzoate 

Glucose 

Pyruvate 

Lactate 

Formate, acetate. 
yeast extract 

Formate 

Hydrogen, acetate, 
yeast extract 

Hydrogen, 
extract 

Hydrogen, 

Ethanol 

Acetate 

Propionate 

Butyrate 

VFA 

yeast 

acetate 

Dechlorination 

Third transfer8 

-

-

+ 

+ 

+ 

+ +e 

+ +" 

+ +e 

-

+ + 

± 

+ + 

Sixth transfer 

1.0 

4.6 

2.3 

1.8 

1.1 

0.3 

1.4 

2.2 

0.8 

1.4 

Electron donor utilization 

Third transfer11 

no 

n.m.d 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

n.c. 

n.c. 

Sixth transfer0 

no 

yes 

yes 

yes 

yes 

n.c.' 

yes 

n.c. 

n.c. 

no 

a, third transfer, product formation after 3 weeks. -, no product, ±, less than 0.015 mM, 
+ , 0.015 to 0.05 mM, + + , 0.05 to 0.1 mM. 
b, after 3 weeks. 
c, after 8 weeks. 
d, n.m., not measured. 
e, the measured product is benzoate and not phenol. 
', n.c, not clear. 
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Table 4. Electron acceptor utilization by culture B. After two transfers with sulfuroxy 
anions, fumarate or nitrate ( 1 % inoculum), the cultures were transferred to medium 
containing 2-CP. 

Electron acceptor 

2-CP plus 3-CP 

2-CP plus 4-CP 

2,4-DCP 

2,6-DCP 

2,3-DCP 

2,5-DCP 

3-CI-4-OHPA 

3-CI-4-OHB 

NCy 

Fumarate 

so4
2-

s2o3
2-

S03
2' 

Utilization 

2-CP 

2-CP 

yes 

yes 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

yes 

Products 

phenol 

phenol 

4-CP 

2-CP, phenol 

N02~; no N20
 a 

succinate 

b 

b 

S203
2-; S04

2 ' " 

Dechlorination after 2 transfers 
with electron acceptor 

-

-

-

+ 

+ 

a, not tested for N2 
b, not tested for S2 

•production, 
-production. 

DISCUSSION 

The ability to dechlorinate monochlorophenols is present in sludge which was 

adapted to other aromatic compounds, namely PCP, benzoate or terephthalate, 

and in polluted sediment. The dechlorinating ability was not observed in 

unadapted sludge, nor in sludge adapted to adsorbable organic halogens (AOX) 

(Chapter 2). Possibly, the incubation period of about 120 days was not long 

enough for detectable degradation of all the MCPs, because it may take several 

months before detectable degradation starts (Mohn & Tiedje, 1992; Haggblom 

eta/., 1993; Kong eta/., 1994; Basu eta/., 1996). 

Except for 3-CP degradation in a sediment mixture, in this study the 
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dechlorinating ability is restricted to dechlorination of the o/Y/70-positioned 

chlorine atom. This is in accordance wi th the observations of a dominance of 

orf/70-dechlorinating microorganisms in acclimated sludges and a natural 

adaptation to o/?/?o-chlorinated phenols (Field et al., 1995). The preference for 

o/?/7o-dechlorination is explained by the carbon-chlorine bond charge, which is 

most negative at the o/?/?o-position (Cozza & Woods, 1992). The opposite 

preference, namely a specificity for meta- and pa/a-dechlorination, has been 

observed for chemical CP dechlorination by vitamin B12 (Smith & Woods, 1994). 

These authors proposed that the reaction mechanism was a nucleophilic 

aromatic substitution, which could explain the preference for meta- and para-

dechlorination, because nucleophilic substitution occurs at the position on the 

ring w i th the largest positive charge. Alternatively, Dolfing and Beurskens 

(1995) proposed that the redox potential of the redox couples resulted in this 

regiospecificity, because a higher redox potential of the redox couple implies a 

larger net energy gain. 

In this study, the transformation of 2-CP to 3-CB was observed in some 

of the incubations, namely in peat slurry, a sediment mixture, and in culture P. 

Bisaillon et al. (1993) described the transformation of 2-CP to 3-CB as being a 

cometabolic conversion of microorganisms that carboxylate and dehydroxylate 

phenol, in a culture enriched on phenol. 0/?/?o-substituted phenols were 

transformed to mete-substituted benzoates and this transformation was induced 

by phenol (Bisaillon et al., 1993). In culture P, carboxylation-dehydroxylation 

became eventually the most important transformation of 2-CP. However, if 2,6-

DCP was the substrate, phenol but no 3-CB was produced. Biodegradation of 

chlorinated phenolic compounds has been observed more frequently to fol low 

multiple pathways under methanogenic conditions. Although unacclimated 

anaerobic digester sludge dechlorinated PCP only at the o/?/7o-position, PCP 

dechlorination by acclimated sludge starts at the ortho, meta, or para position 

(Nicholson et al., 1992). 2,4,5-Trichlorophenoxyacetate is first converted to 

2,4,5-trichlorophenol and probably acetate by a reduction of the aryl ether bond 

in anaerobic digester sludge, while in a pond sediment and methanogenic aquifer 

material it is first transformed to a dichlorophenoxyacetate (Gibson & Suflita, 

1986, 1993). In a non-adapted pond sediment, 3-chloro-4-hydroxybenzoate is 

either first decarboxylated and then dechlorinated or vice versa (Zhang & 

Wiegel, 1992). Both 2-CP and 4-hydroxybenzoate are formed. In the presence 

of acetate, decarboxylation of 3-CI-4-OHB to 2-CP was the predominant first 
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degradation step, and 2-CP and benzoate accumulated transiently. As has been 

shown by Zhang and Wiegel (1992), in bioremediation an undesired 

transformation may be favoured if the conditions are not chosen correctly. In 

the samples described in this chapter, the 3-CB which was formed from 2-CP 

accumulated. However, 3-CB is expected to be mineralized in methanogenic 

environments, since at least one microorganism, Desulfomonile tiedjei, 

reductively dechlorinates 3-CB under methanogenic conditions (DeWeerd et a/., 

1990). In Chapters 4 , 5, and 6, the mineralization of 3-CB by a methanogenic 

consortium, containing Desulfomonile tiedjei, will be discussed. 

The rates of 2-CP transformation in cultures P and B were low compared 

to the enrichment of Dietrich and Winter (1990) and strain 2CP-1 (Cole et a/., 

1994), because the enrichment of Dietrich and Winter (1990) had a high 

dechlorination rate (about 1 mmol I"1 day"1) and tolerated a high concentration of 

2-CP (10 mM), and strain 2CP-1 (10 |ig protein ml"1) converted 2 mmol g 

protein"1 h"1, which is approximately 0.5 mmol I"1 day"1 (Cole et a/., 1994). 

However, culture B has a higher 2-CP tolerance than strain 2CP-1; complete 

inhibition of dechlorination by 2CP-1 occurs at about 1 mM 2-CP (unpublished 

results). The dechlorination rate of culture B is comparable to that of another 

enrichment (Basu eta/., 1996). 

The dechlorinating microorganisms in culture P were no methanogens 

and did not form spores. The dechlorinating bacteria did not utilize sulfate and 

nitrate, indicating that the dechlorinators were no sulfate or nitrate reducers. 

The dechlorinating microorganisms in culture B are no methanogens and 

do not form spores. They do not utilize sulfate, nitrate nor fumarate. There are 

indications that they are able to utilize sulfite and thiosulfate, but cannot 

compete w i th other microorganisms for these electron acceptors. First 

thiosulfate and later sulfate were formed from sulfite. Thiosulfate may have 

been formed by a chemical reaction of sulfite wi th sulfide. The formation of 

sulfate from sulfite or thiosulfate has been described for Desulfovibrio 

sulfodismutans, D. vulgaris, Desulfobacter curvatus and D. tiedjei (Bak & 

Pfennig, 1987; Mohn & Tiedje, 1990). These microorganisms disproportionate 

sulfite or thiosulfate to sulfate and sulfide. 3-CI-4-OHPA and 3-CI-4-OHB are 

structural analogs of 2-CP, which are not dechlorinated by culture B, although 

other ortho and meta dechlorinators utilize one or both of these chlorophenolic 

compounds. 3-CI-4-OHB is dechlorinated in a freshwater sediment (Zhang & 

Wiegel, 1992) and by Desulfomonile tiedjei and Desulfitobacterium 
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chlororespirans (DeWeerd & Suflita, 1990; Sanford et a/., 1996). 3-CI-4-OHPA 

is utilized as an electron acceptor by most Desulfitobacterium species described 

up to now (Utkin et a/., 1994; Christiansen & Ahring, 1996; Gerritse et a/., 

1996; Sanford et a/., 1996). Since 3-CI-4-OHPA is hardly toxic, it allows high 

growth rates by these dechlorinating microorganisms. 

In conclusion, our experiments confirm other observations that 2-CP 

degradation is more common than 3-CP and 4-CP degradation. Furthermore, in 

addition to reductive dechlorination of 2-CP, carboxylation-dehydroxylation of 2-

CP to 3-CB could be an important transformation of 2-CP in methanogenic 

environments. Moreover, a culture could be enriched from benzoate-degrading 

granular sludge, of which the dechlorination activity was directed to the ortho-

position of chlorophenols. 
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Chapter 4 

CONSTRUCTION AND GROWTH OF A 3-CHLOROBENZOATE-MINERALIZING 

METHANOGENIC CONSORTIUM CONSISTING OF FOUR MICROBIAL SPECIES 

Karin A. Ennik-Maarsen, Annemarie Louwerse and Alfons J.M. Stams 

ABSTRACT 

To study the complete degradation of 3-chlorobenzoate (3-CB) under 

methanogenic conditions, a consortium was composed of the following four 

microorganisms. Desulfomonile tiedjei reductively dechlorinated 3-CB to 

benzoate, Syntrophus buswellii oxidized benzoate syntrophically to acetate and 

hydrogen, Methanospirillum hungatei formed methane from hydrogen and 

carbon dioxide, and Methanosaeta concilii converted acetate to methane and 

carbon dioxide. We investigated under which conditions dechlorination and 

mineralization can take place. For the balanced growth of the four 

microorganisms, the growth medium had to be optimized and initially supplied 

with an electron donor (e.g. pyruvate). Chlorobenzoates but not chlorophenols 

were dechlorinated by the consortium, although these were known to be utilized 

by D. tiedjei in pure culture. Furthermore, the toxicity of 3-CB decreased its 

mineralization rate, because the applied concentrations of 3-CB (up to 5 mM) 

were inhibiting S. buswellii and the methanogens, especially M. concilii. 

Omission of the bicarbonate buffer had a positive effect on methane production 

and a negative effect on dechlorination. Based on cell counts it could be 

calculated that a stable coculture contained approximately 18% D. tiedjei, 70% 

S. buswellii, 10% M. hungatei, and 3% M. concilii. 
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INTRODUCTION 

Chlorinated benzoates are present in the environment as a result of their use as 

herbicides (Dolfing & Beurskens, 1995), and as products f rom aerobic 

degradation of polychlorinated biphenyls (Flanagan & May, 1993). Microbial 

degradation of chlorobenzoates takes place under aerobic as well as under 

anaerobic conditions. In the latter case, reductive dechlorination is often the first 

step in the breakdown of chlorobenzoates (Commandeur & Parsons, 1990). The 

microorganisms may benefit f rom the dechlorination of the chlorinated 

compound if it serves as a terminal electron acceptor (Mohn & Tiedje, 1992). 

Desulfomonile tiedjei was the first isolated bacterium able to 

dechlorinate chlorobenzoates reductively under methanogenic conditions 

(DeWeerd et a/., 1990). This bacterium was derived from a consortium 

degrading 3-chlorobenzoate (3-CB), in which three organisms were required for 

the breakdown of this chlorobenzoate (Shelton & Tiedje, 1984; Dolfing & Tiedje, 

1986). These three organisms, D. tiedjei, Methanospirillum PM-1, and strain BZ-

2, a syntrophic benzoate oxidizer, were extensively studied as a triculture 

(reviewed by Mohn and Tiedje, 1992). This coculture, consisting of one 

hydrogen producer and t w o hydrogen consumers, converted 3-CB into methane, 

acetate, and chloride. A similar conversion was realized by a triculture consisting 

of D. tiedjei, Syntrophus buswellii and Methanospirillum hungatei that were 

immobilized in methanogenic granular sludge of an Upflow Anaerobic Sludge 

Blanket reactor (Ahring et a/., 1992). 

In this study, a consortium of four organisms was constructed to 

accomplish complete mineralization of 3-CB to carbon dioxide, methane, and 

chloride. In order to optimize this complex metabolic conversion, we examined 

under which conditions 3-CB degradation and balanced growth of the four 

organisms can take place. The composition of the medium was adapted and the 

effect of other substrates and the toxicity of 3-CB were studied. 

MATERIALS AND METHODS 

Organisms. Desulfomonile tiedjei strain DCB-1 (DSM 6799), Syntrophus 

buswellii (DSM 2612M), Methanospirillum hungatei strain SK (DSM 3595) and 

Methanosaeta concilii strain GP6 (DSM 3671) were obtained from the Deutsche 

Sammlung von Mikroorganismen (DSM, Braunschweig, Germany). 
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Media, culture conditions and chlorinated compounds. The chlorobenzoates and 

chlorophenols were obtained from Sigma Aldrich, Zwijndrecht, The Netherlands. 

An anaerobic bicarbonate-buffered mineral medium was used as described by 

Stams et al. (1993), w i th the following exceptions: the alkaline trace element 

solution did not contain IMa2Mo04, the vitamins were as described by DeWeerd 

et al. (1990), and the acid trace element solution was as described below. The 

final concentrations of the vitamins in the medium were as fol lows (in u.g/1): 

pyridoxine, riboflavin, calcium pantothenate, /D-aminobenzoate, cyano-

cobalamine, biotin, folic acid, lipoic acid, haemin, 45 each; nicotinamide 450 ; 

1,4-naphthoquinone 180. The acid trace element solution contained (with final 

concentrations in the medium in | iM): FeCI24H20 4 .75, MnCI24H20 0 . 3 1 , 

CoCI26H20 0.27, ZnCI2 0 .50, CuCI2 0 .10, H3B03 1.0, Na 2 Mo0 4 2H 2 0 0 .085, 

NiCI2 6H20 0 .054, HCI 50. In later studies, the acid trace element solution was 

replaced by the trace element solution used by Holliger et al. (1993) and 

thiamine was added (90 ng/l medium). M. concilii, D. tiedjei and M. hungatei 

were routinely grown wi th 20 mM acetate, 20 mM pyruvate wi th or wi thout 5 

mM 3-CB, and H2/C02 (80:20, v/v) as substrates, respectively. M. hungatei 

cultures also contained acetate (1 mM) or a combination of casein tryptic 

peptone (0.5 g/l), yeast extract (0.5 g/l) and acetate (4 mM). S. buswellii was 

grown as a coculture w i th M. hungatei, using 20 mM benzoate, or a mixture of 

10 mM benzoate and 10 mM crotonate as substrates. The four organisms were 

also subcultured as a coculture. The medium was inoculated wi th equal volumes 

of the four cultures (resulting in 1 to 10% inocula), or equal amounts of the 

cultures were used based on the ratio of optical densities. The medium 

contained 1 to 5 mM 3-CB. As additional substrates, 1 to 20 mM pyruvate, 1 

mM benzoate, or 2 .5% H2 (v/v) in the gas phase were provided. When 3-CB 

was depleted, it was replenished. Routinely, microorganisms were grown in 

120, 300, 600 , or 1200-ml bottles, containing a multiple of 50 ml medium and 

a gas phase of 1.8 bar N2/C02 or H2/C02 (80:20, v:v). 

Presence of electron donors. The cocultures were grown in the presence of 5 

mM 3-CB. For the culture derived from pure cultures and a biculture, the 

fol lowing cultures were used (5% inoculum): D. tiedjei, grown on pyruvate, 3-

CB and yeast extract, M. hungatei, g rown on H2/C02 (80:20, v:v), casein tryptic 

peptone, yeast extract and acetate, M. concilii, grown on acetate, and a 
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biculture of S. buswellii and M. hungatei, grown on benzoate and crotonate. For 

the consortium derived from a transferred coculture, a 10% inoculum was used 

from a culture grown on 5 mM 3-CB and 5 mM pyruvate. 

Utilization of electron acceptors. The consortium, grown on 10 mM 3-CB and 5 

mM pyruvate, was transferred (10% inoculum) to fresh media, in bottles wi th 

rubber or viton stoppers. The medium contained 5 mM 3-CB and 5 mM 

pyruvate. Theoretically, 23.75 mmol methane per litre medium could be 

produced from the amounts of 3-CB and pyruvate which were added to the 

cultures. When approximately this amount of methane had been produced, the 

fol lowing substrates were added to duplicate bottles (final concentrations in 

mM): 3-CB (1), 3,5-dichlorobenzoate (3,5-DCB) (0.1), 2,5-DCB (0.1), 2,3-

dichlorophenol (2,3-DCP) (0.01), or 2,5-DCP (0.01). To all bottles 1 mM 

benzoate was added. Controls contained 3-CB (1 mM) without benzoate. In 

other bottles, a mixture was used, consisting of the following substrates wi th 

concentrations in mM: 3-CB (0.1), 2,5-DCB (0.1), 2,5-DCP (0.1) and benzoate 

(1). 

Toxicity of 3-CB. Cultures of M. concilii and bicultures of S. buswellii and M. 

hungatei were transferred (10%) to a medium wi th different concentrations of 

3-CB, in duplicate. The bottles were supplied with 20 mM acetate and 0.1 mM 

FeCI3 for M. concilii and 10 mM benzoate for the biculture of S. buswellii and M. 

hungatei. Duplicate cultures wi th a 5% inoculum of M. hungatei were incubated 

wi th H2/C02 (80:20, v:v), casein tryptic peptone (0.5 g/l), yeast extract (0.5 

g/l), acetate (2 mM) and different concentrations of 3-CB. Methane production 

was used to estimate the specific growth rate. 

Effect of the presence of bicarbonate buffer. Cocultures of the four organisms, 

grown on 35 mM 3-CB and 5 mM pyruvate, were transferred (10%) in triplicate 

to medium from which sodium bicarbonate was omitted, and was or was not 

replaced by 50 mM NaCI to maintain the ionic strength. As" substrates, 5 mM 3-

CB and 2.5 mM pyruvate were added. Bottles wi th bicarbonate buffer were 

used as controls. 
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Cell counts. Suspended cells were counted wi th a Burker-Turk counting 

chamber using a microscope (Wild, Heerbrugg, Switzerland) at a magnification 

of 400 t imes. 

Protein determination. Cell pellets from 2 ml culture were resuspended in 1 ml 1 

M NaOH and boiled for 15 minutes. The samples were treated further according 

to the protein determination method of Lowry et al. (1951). 

Analytical methods. Methane, hydrogen and acetate were measured wi th a 

Packard-Becker 417 or Chrompack CP9001 or CP9000 gas chromatograph as 

described by Stams et al. (1993). Methane was also measured wi th a Packard-

Becker 417 gas chromatograph wi th a flame ionization detector, instead of a 

thermal conductivity detector. A molecular sieve 5A column was used (110 cm 

X 2.1 mm, Chrompack, Middelburg, The Netherlands) at 70°C. Nitrogen was the 

carrier gas, wi th a f low of 20 ml/min. Acetate, pyruvate and lactate were 

analyzed on an LKB high-performance liquid chromatograph as described 

previously (Stams et al., 1993). Benzoate and chlorobenzoates were measured 

on an LKB high-performance liquid chromatograph as described by Tros et al. 

(1996), or on a TSP high-performance liquid chromatograph, w i th a 

SpectraSystem P2000 pump, an AS3000 autosampler and a UV1000 UV-

detector. The mobile phase was an acetonitrile-5 mM H2S04 mixture wi th a 

volume ratio of 35:65. Chlorophenols were measured as described in Chapter 2. 

RESULTS AND DISCUSSION 

Development of a 3-CB-degrading tetraculture consortium. To study the 

complete mineralization of 3-CB under methanogenic conditions, a consortium 

was constructed, which consisted of the following four microorganisms. 

Desulfomonile tiedjei reductively dechlorinated 3-CB to benzoate and chloride, 

Syntrophus buswellii oxidized benzoate syntrophically to acetate, hydrogen, and 

carbon dioxide, Methanospirillum hungatei formed methane from hydrogen and 

carbon dioxide, and Methanosaeta concilii converted acetate to methane and 

carbon dioxide. A medium was developed that supported growth of all members 

of this consortium by replacing the acid trace element solution and adding 

thiamine. Inoculation of this medium wi th the four microorganisms of this 

consortium resulted in the complete degradation of 3-CB within 40 days of 
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incubation (Figure 1). Methane was produced as the final product of this 

incubation, but intermediary products accumulated transiently, starting wi th the 

apparent stoichiometric conversion of 3-CB into benzoate and the formation of 

large amounts of acetate. However, after the second addition of 3-CB, benzoate 

and acetate hardly accumulated. This showed that the microorganisms were 

adapted to the coculture conditions (Figure 1). 

50 ~ 

10 20 30 40 50 60 70 80 90 

Time in days 

Figure 1. Substrate consumption and product formation by the consortium growing on 5 
mM 3-CB and 20 mM pyruvate, and refed after 50 days with 5 mM 3-CB (arrow). 
Concentrations are in mmol/l medium.* :3-CB; 0:benzoate; •:pyruvate; A:lactate; 
•^:acetate; D:methane. 

Presence of electron donors. Initially, the consortium was composed of pure 

cultures and a biculture, and subsequently, it was transferred as a coculture. A 

triculture consortium has been shown to be very stable after transfer (Dolfing & 

Tiedje, 1986). After transfer of the consortium of four microorganisms, no 

activity was measured if 3-CB was the only substrate, although an initially 

composed consortium could grow on 3-CB (Figure 2).This could be explained by 

the dependence of D. tiedjei on S. buswellii for the electron donor hydrogen, 
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while S. buswellii could only release hydrogen if benzoate had been produced by 

D. tiedjei. Addition of benzoate, hydrogen or pyruvate resulted in an actively 3-

CB-degrading consortium. Pyruvate was chosen, because it was successful as 

an electron donor for 3-CB dechlorination by D. tiedjei in pure culture (Shelton & 

Tiedje, 1984). Since in the presence of hydrogen or benzoate product inhibition 

can take place of S. buswellii and D. tiedjei, respectively, pyruvate was routinely 

used as an electron donor after every transfer. As a consequence, the flow of 

the intermediary products changed: (1) initially, interspecies hydrogen transfer 

occurred mainly between S. buswellii and M. hungatei and (2) extra acetate, 

derived from pyruvate oxidation, was available for M. conci/ii. 

o * 
o 10 20 30 90 100 

Time in days 

Figure 2. Substrate consumption and product formation by the consortium growing on 5 
mM 3-CB. The consortium was composed of pure cultures of D. tiedjei, M.hungatei, and 
M. concilii, and a biculture of S. buswellii and M. hungatei. • :3-CB; *• :acetate; 
D:methane. 

Utilization of electron acceptors. Dechlorination of 3-CB, 3,5-dichlorobenzoate 

(3,5-DCB) and 2,5-DCB is strongly accelerated in the presence of a benzoate 

oxidizer (Dolfing & Tiedje, 1991). Mefa-substituted dichlorophenols (10 u.M) are 

dechlorinated by D. tiedjei cell suspensions (Mohn & Kennedy, 1992). We tested 

dichlorobenzoates and dichlorophenols as substrates for the consortium, with 

benzoate as an electron donor. In all cases except when 2,5-DCP was the 

substrate, the consortium produced methane from benzoate or chlorobenzoates 

(Table 1). The chlorobenzoate dechlorination rates were lower than for the 
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triculture consortium (Doifing & Tiedje, 1991). The chlorophenols were not 

dechlorinated within 20 days. It was expected that chlorophenols would be 

dechlorinated within this period, because Mohn & Kennedy (1992) reported 

dechlorination of 3 to 5 nmol I"1 day"1 by a culture wi th cell numbers that were 

about 10 times higher than the cell numbers of the consortium we tested. 

Table 1. Dechlorination rates and methane production rates in [mmol I'1 day'1], by a 
coculture grown on 5 mM 3-CB and 5 mM pyruvate. After the growth on 5 mM 3-CB and 
5 mM pyruvate, the bottles contained 60.4 (± 5.0) mg/l protein. 

Substrates 

3-CB without 
benzoate 

3-CB 

3,5-DCB 

2,5-DCB 

2,5-DCP 

2,3-DCP 

2,5-DCB, 
2,5-DCP, 3-CB 

dichloro benzoate 
dechlorination 

0.08 

0.05 

0.1 

dichlorophenol 
dechlorination 

0 

0 

0 

3-chlorobenzoate 
dechlorination 

0.5 

0.4 

0.1 

methane 
production 

1.2 

5.0 

2.1 

1.0 

0 

1.6 

1.4 

Toxicity of 3-CB. Doifing and Tiedje (1986) reported that for the triculture 

growing on 3-CB 3.2 mM 3-CB was optimal, while growth was decreased at 4.8 

mM 3-CB. Since we usually added 5 mM 3-CB, we collected more data on the 

toxicity of 3-CB to the separate microorganisms. Toxicity tests were performed 

wi th growing cultures of M. concilii, M. hungatei and of S. buswellii in coculture 

w i th M. hungatei (Table 2). M. concilii was inhibited by all tested 3-CB 

concentrations. M. hungatei and S. buswellii were partially inhibited at 

concentrations of 3 to 5 mM 3-CB. Both M. concilii and M. hungatei were more 

sensitive to 3-CB in these experiments than was expected from data of Patel et 

al. (1991). 

M. concilii appeared to be most sensitive to 3-CB. Since it also has the lowest 

specific growth rate, this microorganism limited the mineralization of 3-CB. 
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Table 2. Toxic effect of 3-CB on growing cultures of M. concilii, M. hungatei and a 
biculture of S. buswellii and M. hungatei. 

3-CB added 

(mM) 

0 

1 

3 

5 

Growth rate (day'! 

M. concilii 

0.064 (0.004)a 

0.048 (0.005) 

0.015 (0.010) 

0.024 (0.006) 

M. hungatei 

0.36 (0.05) 

0.41 (0.04) 

0.29 (0.004) 

0.23(0.14) 

S. buswelliil 
M. hungatei 

0.14(0.1) 

0.13(0.01) 

n.t.b 

0.10(0.06) 

Methane production 
(nmol M day1) 

S. buswelliil 
M. hungatei 

144(1) 

141 (11) 

n.t. 

92(8) 

The values in parentheses are standard deviations. b: n.t., not tested. 

Effect of the presence of bicarbonate buffer. The importance of the bicarbonate 

buffer was examined to get information about the effect of prolonged or 

continuous 3-CB degradation, during which the pH might change or during 

which the medium could not adequately be buffered (Figure 3). Bicarbonate was 

either omitted from the medium or replaced by the same concentration of 

sodium chloride. In the absence of buffer, the pH drop was indeed larger. The 

pH stayed in the range for growth of D. tiedjei on pyruvate (6.5-7.8) (DeWeerd 

et a/., 1990), but the lower pH reduced the dechlorination rate. 

In the absence of buffer, not replaced by sodium chloride, the methane 

production rate was higher and acetate accumulated to a lower level or not at 

all. This indicates that a higher growth rate of M. concilii was due to the 

reduction of the sodium ion concentration. Sodium ions, in concentrations 

ranging from 60 to 110 mM, do not inhibit growth of Methanosaeta soehngenii 

(Huser et a/., 1982). However, effects of sodium ion concentrations below 60 

mM on the growth rate of M. concilii in pure culture have not been described. 

Therefore, it may not be excluded that the increase in the growth rate of M. 

concilii may be an indirect effect occurring only in the consortium and not in a 

pure culture. 
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10 15 20 

Time in days 

10 15 20 

Time in days 

Figure 3. Substrate consumption, product formation and pH change in the consortium 
growing on 5 mM 3-CB and 2.5 mM pyruvate in presence (A) and absence (B) of a 
bicarbonate buffer. • :3-CB; D:methane; x: pH value. 
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Figure 4. Average cell and filament numbers [107 ml'1] from 60 cell counts of D. tiedjei, S. 
buswellii (A), M. hungatei, and M. concilii (B), in relation to the utilized concentration of 3-
CB. 

Cell counts. From the above described experiments and from experiments w i th 

the consortium not explicitly described in this chapter, data were collected 

about the cell numbers present in the batches (Figure 4). The ratio of the four 

microorganisms in the consortium could f luctuate, because M. concilii grew 

slower than the other microorganisms involved in the consortium and S. 

buswellii cell numbers sometimes seemed to decrease (possibly due to cell 
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lysis). From the average values of the cell and filament numbers the following 

ratio of the four organisms could be established: 18% D. tiedjei, 70% S. 

buswellii, 10% M. hungatei and 3% M. concilii. The percentages do not 

represent the percentages of the biomass, because the cell weights differ 

greatly. The protein contents per cell were approximately 0.3 pg for D. tiedjei, 

0.1 pg for S. buswellii, and 0.5 pg for M. hungatei. M. concilii usually tended to 

form large filaments. The ratio for the triculture consortium has been reported to 

be: 3 1 % D. tiedjei, 70% BZ-1, and 4% Methane-spirillum PM-1 (Dolfing & 

Tiedje, 1987). The relatively high numbers of M. hungatei that we found can be 

explained by the addition of pyruvate as an electron donor for D. tiedjei, which 

resulted in a larger amount of hydrogen available for methanogenesis. 

CONCLUSIONS 

A consortium consisting of four microorganisms mineralized 3-CB under 

methanogenic conditions. For a growing and 3-CB-mineralizing consortium, a 

specific growth medium as well as the initial presence of an electron donor (e.g. 

pyruvate) were required. The presence of pyruvate affected the ratio of cell 

numbers of the four microorganisms involved in the consortium. 

Dichlorobenzoates were degraded by the consortium, as has been described by 

other authors, but dichlorophenols were not. In accordance with other authors, 

toxic effects of 3-CB occurred in the mM-range, and 3-CB especially reduced 

the growth rate of M. concilii. The absence of bicarbonate buffer reduced the 

dechlorination rate and stimulated the methane production. 
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Chapter 5 

EFFECTS OF CARRIER MATERIALS ON THE DEGRADATION OF 3-

CHLOROBENZOATE BY A DEFINED METHANOGENIC CONSORTIUM 

Karin A. Ennik-Maarsen, Annemarie Louwerse and Alfons J .M. Stams 

ABSTRACT 

The degradation of 3-chlorobenzoate (3-CB) was studied under methanogenic 

conditions, using a consortium of the following four organisms: Desulfomonile 

tiedjei, a 3-CB-dechlorinating bacterium, Syntrophus buswellii, a syntrophic 

benzoate-oxidizer, Methanospirillum hungatei, a hydrogenotrophic methanogen, 

and Methanosaeta concilii, an aceticlastic methanogen. Complete mineralization 

of 3-CB took place in suspended batch cultures, in the presence of an added 

electron donor, e.g. pyruvate. Because of the possibility of interspecies 

hydrogen transfer between S. buswellii and both D. tiedjei and M. hungatei, the 

distance between these microorganisms was expected to affect 3-CB 

degradation. Therefore, we investigated the effects of the carrier materials 

glass, tef lon, polystyrene, activated carbon, vermiculite and hydroxyapatite on 

the growth kinetics and 3-CB degradation by the consortium and pure cultures. 

The presence of polystyrene stimulated the dechlorination process, while the 

presence of vermiculite and granular sludge stimulated consumption of pyruvate 

and acetate. The growth rates of pure cultures of M. hungatei and bicultures of 

S. buswellii and M. hungatei were hardly influenced by the presence of carrier 

materials. However, the growth of M. concilii was stimulated by vermiculite and 

polystyrene, while the growth of D. tiedjei was stimulated by polystyrene, 

vermiculite and hydroxyapatite. Since there was little surface attachment of the 

cells, the effects of the carrier materials were probably related to adsorption and 

desorption of nutrients and/or toxic compounds rather than a consequence of a 

reduced interbacterial distance. Since the lag phase for dechlorination and the 

transient acetate accumulation limited 3-CB mineralization, the increased activity 

of D. tiedjei and M. concilii appeared to be important for the overall degradation 

process. 
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INTRODUCTION 

In methanogenic environments, the oxidation of some reduced organic 

compounds, e.g. fatty acids and aromatic compounds, is endergonic under 

standard conditions. Therefore, these conversions can only take place when the 

products, particularly hydrogen, are efficiently utilized by methanogens (Schink 

& Thauer, 1988). The hydrogen-producing bacteria and hydrogen-consuming 

methanogens cooperate in a syntrophic relationship. The maximal hydrogen 

partial pressure for the oxidation reactions is in the same order of magnitude as 

the hydrogen threshold value for hydrogenotrophic methanogenesis. Therefore, 

the substrate conversion rates are relatively low. However, hydrogen diffusion 

and hence the hydrogen flux is accelerated when the distance between the 

syntrophic partners is small (Schink & Thauer, 1988; Stams, 1994; Schink, 

1997). It has been confirmed experimentally that some acetogenic bacteria and 

hydrogenotrophic methanogens are juxtapositioned in aggregates. For instance, 

in granular sludge, mixed microcolonies of propionate-oxidizing bacteria and 

hydrogenotrophic methanogens were detected (Grotenhuis et a/., 1991; 

Harmsen era/., 1996). 

A special case of syntrophic degradation is the conversion of 3-

chlorobenzoate (3-CB). A three-tiered 3-CB-degrading mixed culture with D. 

tiedjei, Methanospirillum PM-1 and strain BZ-2 was studied (Dolfing & Tiedje, 

1986). D. tiedjei reductively dechlorinates 3-CB with hydrogen as electron donor 

and produces benzoate. Strain BZ-2 converts benzoate into hydrogen, carbon 

dioxide and acetate. This reaction can only occur at a low pH2, which is realized 

by hydrogen consumption by D. tiedjei and Methanospirillum PM-1. This 

coculture, with one hydrogen producer and two hydrogen consumers, formed 

methane, acetate, and chloride from 3-CB in expected stoichiometries. Studies 

on the dechlorination by D. tiedjei as well as the interactions between the three 

members of the consortium have been reviewed by Mohn and Tiedje (1992). 

In order to study aggregation by 3-CB-converting microorganisms, D. 

tiedjei was incorporated in methanogenic granular sludge (Ahring et a/., 1992). 

In this way, the sludge gained the ability to dechlorinate 3-CB. In another 

immobilization study, a combination of D. tiedjei, the syntrophic benzoate 

oxidizer Syntrophus buswellii and M. hungatei were incorporated in sludge from 

a UASB reactor. Other methanogens, namely Methanosaeta concilii and 

Methanosarcina mazei, could also be incorporated (Schmidt & Ahring, 1997). 
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In this study, a consortium of four organisms was used to achieve 

complete mineralization of 3-CB to carbon dioxide, methane, and chloride. For 

this purpose, we added the aceticlastic methanogen M. concilii to a similar 

consortium as used previously by Dolfing and Tiedje (1986) and Ahring et al. 

(1992). To increase the 3-CB degradation rate, a variety of carrier materials 

were added that could stimulate adherence and hence result in reduced 

interbacterial distances. The effect of carrier materials on growth kinetics was 

examined and the attachment of the cultures to carrier materials was studied. 

MATERIALS AND METHODS 

Organisms. D. tiedjei strain DCB-1 (DSM 6799), S. buswellii (DSM 2612M), M. 

hungatei strain SK (DSM 3595) and M. concilii strain GP6 (DSM 3671) were 

obtained from the Deutsche Sammlung von Mikroorganismen (Braunschweig, 

Germany). Pseudomonas f/uorescens p62 was obtained from our culture 

collection. 

Media and culture conditions. P. fluorescens was cultivated in nutrient broth 

(BBL, Cockeysville, USA) (8 g/l) in shaken erlenmeyer flasks at 30°C. The other 

microorganisms were cultivated in an anaerobic bicarbonate-buffered mineral 

medium as described by Stams et al. (1993), but with the acid trace element 

solution replaced by the trace element solution used by Holliger et al. (1993) 

and vitamins as described by DeWeerd et al. (1990). The alkaline trace element 

solution did not contain Na2Mo04. The concentrations of the vitamins were as 

follows (in fxg/l medium): pyridoxine, riboflavin, calcium pantothenate, p-

aminobenzoate, cyanocobalamine, biotin, folic acid, lipoic acid, haemin, 45 

each; nicotinamide 450; 1,4-naphthoquinone 180; thiamine 90. M. concilii, D. 

tiedjei and M. hungatei were routinely grown with 20 mM acetate, 20 mM 

pyruvate and H2/C02 (80:20, v/v) as substrates, respectively. Bottles were 

inoculated with 10% of pregrown cultures. The medium used for M. hungatei 

contained additionally acetate (1 mM), or casein tryptic peptone (0.5 g/l), yeast 

extract (0.5 g/l) and acetate (4 mM). S. buswellii was transferred (10%) as a 

coculture with M. hungatei, with 20 mM benzoate. The four organisms were 

also subcultured as one coculture (experiments 1 and 2). The medium contained 

5 mM 3-chlorobenzoate (3-CB) and 5 mM pyruvate. When 3-CB was depleted, 

extra 3-CB (without pyruvate) was added. 

81 



5. CARRIER MATERIALS 

Materials and chemicals. 3-CB was used wi th a purity of 9 9 % (Sigma Aldrich, 

Zwijndrecht, The Netherlands). Glass microscope coverslips (Rofa-Mavi, 

Beverwijk, The Netherlands) and fluor ethene propene-teflon f i lm (Fluorplast, 

Raamsdonksveer, The Netherlands) wi th a surface area of 1.5 cm2 were used in 

adhesion tests. In the growth experiments, the following materials were used: 

glass beads (0.3 mm diameter, Tamson, Zoetermeer, The Netherlands), teflon 

beads (a batch w i th various diameters), polystyrene beads (0.125 mm-0.25 

mm, Akzo, Amsterdam, The Netherlands), vermiculite (powder or grained 0.25-

0.5 mm, Sigma-Aldrich), activated carbon ( ± 1 . 5 mm extra pure, Merck, 

Darmstadt, Germany), and hydroxyapatite (Merck). Granular sludge was derived 

from a full scale UASB reactor treating potato processing wastewater (Aviko, 

Steenderen, The Netherlands). Part of the sludge was y-irradiated at a dose of 

25 kGray and then washed wi th sterile medium. This sludge was autoclaved in 

the incubation bottles (20 minutes, 120°C). The rest of the sludge was 

autoclaved three t imes. First, it was autoclaved for 1.5 hours (120°C). After 

this, the sludge was incubated for one week at 37°C, washed wi th medium and 

autoclaved again (0.5 hours, 120°C). The sludge was distributed among the 

incubation bottles (10% (v/v) in the medium) and autoclaved for 20 minutes 

(120°C). 

Growth experiments. Several growth experiments were performed under the 

culture conditions described above. A 10% inoculum was used wi th or wi thout 

20 g/l carrier material unless stated otherwise. Only changes in the culture 

conditions for the consortium (experiment 1 and 2), D. tiedjei (experiment 3 and 

4), M. concilii (experiment 5 and 6), S. buswellii p\us M. hungatei (experiment 7 

and 8), and M. hungatei (no experiment number) are described here. In 

experiment 1 and 2, a 1 % inoculum of the four-membered consortium was used 

wi th or wi thout 20 g/l carrier material or 10% (v/v) granular sludge. In 

experiment 2, also a preincubation of media wi th vermiculite was tested. For 

this, bottles wi th medium and vermiculite were incubated 7 days without buffer 

and without sulfide. The bottles were centrifuged and decanted and in this way 

most of the vermiculite was removed. Afterwards, the gas phase was changed 

to N2 /C02 , and buffer, sulfide, and inoculum were added. In experiment 4 , the 

inoculum size was 5 x 105/ml instead of 10% (approximately 1 x 107/ml), and 

the substrates were 5 mM pyruvate and 1 mM 3-CB. In experiment 6, the 

complete medium was prepared a few days before incubation. 
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In experiment 1, few samples from the liquid phase were taken, so that 

numbers of cells and amounts of materials would be minimally influenced. The 

gas phase was sampled frequently to determine when 3-CB would be 

completely mineralized. From 5 mM 3-CB and 5 mM pyruvate, maximally 23.75 

mmol/l medium methane could be produced. When the methane concentration 

approached 23.75 mmol/l medium, suspended cells and filaments were counted. 

Then, the materials were washed (0,9% NaCI, for 1 day) to see if attached cells 

would desorb from the materials (Wiesel et al., 1993). A sample of the 

supernatant was counted. The bottles with vermiculite or polystyrene were 

washed again for one day. Polystyrene and vermiculite were allowed to 

precipitate. The precipitates were transferred to four bottles with fresh medium 

in a flow chamber. In the bottles, 20 mM pyruvate, benzoate, or acetate, or 

H2/C02 (80:20, v/v) was added. 

Formation of products was used to estimate the specific growth rate. In 

experiment 2, the lag phase for dechlorination was estimated from methane 

production, because methane concentrations could be measured more 

accurately than 3-CB concentrations. It was assumed that dechlorination and 

benzoate oxidation had the same lag phase. Chloride release was used to 

calculate the dechlorination rates. In the presence of glass, the dechlorination 

rates were estimated from the 3-CB concentrations. During benzoate oxidation 

and methane production by the biculture S. buswellii/M. hungatei it was difficult 

to distinguish whether or not exponential growth occurred. Because of this, the 

activity was estimated by assuming a constant methane production rate. 

Suspended cells or filaments were counted with a BCirker-Tiirk counting 

chamber using a microscope (Wild, Heerbrugg, Switzerland) at a magnification 

of 400 times. 

Analytical methods. Methane and acetate were measured with a Packard-Becker 

417 or Chrompack CP9001 or CP9000 gas chromatograph as described by 

Stams et al. (1993). Methane was also measured with a Packard-Becker 417 

gas chromatograph with a flame ionization detector, instead of a thermal 

conductivity detector. A molecular sieve 5A column was used (110 cm X 2.1 

mm, Chrompack, Middelburg, The Netherlands) at 70°C. Nitrogen was the 

carrier gas, with a flow of 20 ml/min. Acetate and pyruvate were analyzed on 

an LKB high performance liquid chromatograph as described previously (Stams 

et al., 1993). Benzoate and 3-CB were measured on an LKB high performance 
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liquid chromatograph as described by Tros et al. (1996). The mobile phase was 

an acetonitrile-5 mM H2S04 mixture wi th a volume ratio of 35:65. Chloride was 

analyzed wi th a Micro-chlor-o-counter as described previously (Holliger et al., 

1992). 

RESULTS 

A tetraculture consortium constructed from pure cultures is able to grow on 3-

CB if an electron donor, for instance pyruvate, is initially present. This 

consortium is stable upon transfer (Chapter 4). To get insight into the 

physiological effects of the addition of carrier materials on the 3-CB-degrading 

consortium several experiments were done wi th the consortium and individual 

members of this consortium. The substrate conversion kinetics, as affected by 

the presence of carrier materials, as well as adhesion data were collected. 

Attachment of the consortium to carrier materials during growth. The 

attachment of the complete consortium was studied in growing cultures. It was 

expected that attached organisms would benefit f rom the presence of carrier 

materials, because interspecies distances would be lowered and fluxes of 

especially hydrogen would be increased. 

Addition of activated carbon and hydroxyapatite resulted in a strong 

inhibition of 3-CB conversion. In all other incubations, 3-CB was completely 

mineralized. Counts of suspended cells and filaments were performed for 

controls, and incubations wi th glass, tef lon, vermiculite or polystyrene (Table 1). 

Since the numbers of cells in suspension were not significantly lowered in the 

presence of the tested carrier materials in comparison wi th control bottles, 

adhesion could not explain the enhancement of 3-CB mineralization in the 

presence of vermiculite or polystyrene. 

After the suspended cells had been counted, the materials were 

washed. Attached cells desorbing from the materials were counted. High 

numbers were released from polystyrene and especially from vermiculite to the 

medium (Table 1). This indicated that the organisms had been attached loosely 

to these materials or had been coprecipitated wi th the materials. After another 

day of washing, polystyrene and vermiculite were allowed to precipitate. The 

precipitates were transferred to bottles wi th different substrates. In case of 

vermiculite, methane formation was found wi th pyruvate, acetate or hydrogen 
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but no methane was found in the presence of benzoate. In case of polystyrene, 

methanogenic activity could be measured wi th pyruvate, but w i th benzoate, 

hydrogen, or acetate no activity was observed. Since syntrophic benzoate 

oxidation did not take place, S. buswellii was probably not present in sufficient 

numbers in these bottles. This may be explained by the small size of S. buswellii 

cells. The possible loss of S. buswellii cells and the release of many cells during 

the washing steps of vermiculite indicated that rather coprecipitation (mainly of 

larger cells and filaments) but not attachment had occurred. A similar effect of 

polystyrene was expected, because both vermiculite and polystyrene consist of 

small light particles. 

Table 1. Average cell counts in 107/ml from experiment 1. 

Species 

Inoculum cell counts 

Final cell counts of controls 

Final cell counts with 
carrier materials 

Washed vermiculite 

Washed polystyrene 

D. tiedjei 

0.06 

1 

0.9 

0.2 

0.7 

S. buswellii 

0.4 

14 

16 

7 

2 

M. hungatei 

0.05 

6 

4 

2 

2 

M. concilii 

0.01 

0.3 

0.2 

0.04 

0.2 

Adhesion tests with pure cultures. The initial attachment of microbial cells was 

tested in short term (4 h) adhesion tests. We used Pseudomonas fluorescens as 

a reference bacterium and found it to adhere well to both glass and teflon 

surfaces as was previously described (Rijnaarts et a/., 1993). D. tiedjei and S. 

buswellii adhered weakly to moderately and M. hungatei adhered even less 

(Table 2). M. concilii seemed to adhere weakly, although it is known to be 

hydrophobic and to form aggregates. In this experimental setup the adhesion 

properties of M. concilii were underestimated, because adhesion of f i lamentous 

organisms is l imited. In this short term test without agitation, contact of the 

cells w i th the surface is determined by diffusion and filamentous organisms 

diffuse very slow (Rijnaarts et al., 1993). 
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Table 2. Mean numbers of adherence (range in parentheses). The standard deviations 
were 50 to 100%. 

D. tiedjei 

S. buswellii 

M. hungatei 

M. concilii 

P. fluorescens 

Initial density 

(108/ml) 

5 

5 

4 

1 

5 

Numbers adhered (106/cm2) 

glass 

0.2 (0.06-0.40) 

0.4(0.19-0.70) 

0.05 (0.02-0.12) 

0.009 (0.003-0.024) 

0.5 (0.3-1.1) 

teflon 

0.3 (0.05-0.85) 

0.5 (0.26-0.94) 

0.12(0.03-0.27) 

0.01 (0.001-0.017) 

1.5 (0.5-2.5) 

Effects of materials on the conversion of 3-CB by the consortium. Attachment 

seemed not to be an explanation for the stimulatory effects of some of the 

materials on growth kinetics of the consortium (experiment 1 in Table 3). In the 

presence of vermiculite and polystyrene, the lag phase for methane production 

was approximately 16 days, while in the controls it was 23 days. The addition 

of teflon had no effect, while in the presence of glass, the results were not 

reproducible. By detailed measurement of the conversion steps of 3-CB, more 

information would be gained about the type of effect the carrier materials had. 

Since all organisms of this consortium could be incorporated in granular sludge 

(Ahring eta/., 1992; Schmidt & Ahring, 1997), and in experiment 1, addition of 

vermiculite and polystyrene reduced the time required for complete 

mineralization of 3-CB while the effect of glass was unclear, glass, vermiculite, 

polystyrene and killed granular sludge were included in this experiment 

(experiment 2). Since addition of vermiculite could have had an effect by 

coprecipitation as well as by inorganic nutrient release or uptake (England et a/., 

1993), two types of incubations were done. In the first case, as in experiment 

1, vermiculite was present in the bottles during the incubation of the 

consortium. Alternatively, vermiculite was added to and later removed from the 

bottles before addition of the consortium. The latter case was referred to as 

vermiculite preincubation. After the bottles were preincubated with addition of 

vermiculite, only a small part of the vermiculite was left during the incubation of 

the consortium. Coprecipitation could only play a minor role in the bottles, 

preincubated with vermiculite, but cation exchange could still be important. 
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5. CARRIER MATERIALS 

Substrate conversions were used to determine growth rates (Table 3) and to 

estimate lag phases of the different populations. Dechlorination of 3-CB seemed 

neither exponential nor linear in t ime. For calculations it was assumed to be 

linear (Table 4). In most cases, 3-CB dechlorination started later than pyruvate 

consumption. Therefore, pyruvate as well as hydrogen may have served as 

electron donor for dechlorination. 

In experiment 2, intermediary products accumulated transiently (Figure 

1). The controls first formed acetate from pyruvate, which took 20-25 days. At 

that t ime benzoate accumulation started, although methane production started 

within 1 to 2 weeks. In the controls, benzoate accumulated to approximately 

0.4 mM. After 40 days, all 3-CB was dechlorinated. In the first 40 days, no 

acetate degradation occurred. In the controls, complete mineralization of 3-CB 

took 90 days. The average lag phase for growth of D. tiedjei on pyruvate was 5 

to 10 days, but there was no lag phase for growth on pyruvate in the presence 

of granular sludge. 

Table 4. Effects of carrier materials on substrate utilization [mmol I'1 day'1] of pure and 
mixed cultures. C, controls; G, glass; T, teflon; P, polystyrene; V, vermiculite; VP, 
vermiculite preincubation; GS, granular sludge. When the standard deviation was larger 
than 25% or when the substrate conversion rate could not be calculated accurately, a 
range is given. 

Experiment 2 4 7 8 

D. tiedjei Culture 

Substrate 

C 

G 

T 

P 

V 

VP 

GS 

consortium 

3-CB 

0.35 

0.21 

0.45 

0.17 

0.33 

0.11-0.37 

3-CB 

S. buswelliil 
M. hungatei 

benzoate 

0.65 

0.66 

0.63 

0.67 

S. buswelliil 
M. hungatei 

benzoate 

0.84 

1.01 

0.029 

0.058 
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In the presence of glass beads, the lag phase for dechlorination was 

more than 48 days and in addition, the lag phase for growth of M. concilii was 

prolonged, compared to the controls without carrier materials. The 

dechlorination rate, and as a result the benzoate oxidation rate, was lower in the 

presence of glass beads than in the absence of carrier materials. After 110 

days, 3-CB was completely converted into methane, carbon dioxide and 

chloride. 

Several positive effects were found wi th polystyrene, vermiculite and 

granular sludge. The addition of polystyrene mainly shortened the lag phase for 

dechlorination (Figure 1). Because of this shorter lag phase for dechlorination, 

the mineralization of 3-CB was completed in a shorter period, namely 50 to 110 

days, w i th an average of 80 days. The addition of vermiculite enhanced 

particularly the growth rates of D. tiedjei (on pyruvate) and M. concilii. For the 

growth rate of M. concilii, this effect was even stronger in bottles which had 

been preincubated wi th vermiculite. Acetate accumulated to high concentrations 

in the controls, w i th glass, and wi th polystyrene, but not w i th vermiculite 

(Figure 1). Hence, the complete mineralization of 3-CB took 50 days for the 

bottles incubated wi th vermiculite and 40 days for bottles preincubated wi th 

vermiculite. In the presence of vermiculite, the lag phase for benzoate formation 

was less than 20 days. In the presence of granular sludge, benzoate started to 

accumulate immediately (max. 0.08 mM), so the lag phase for dechlorination 

was negligible. The addition of sludge also provided 0.3 to 1 mM extra acetate, 

which is a small amount compared to the acetate transiently produced from 

pyruvate and 3-CB. Methane production started immediately (Figure 1). The 

mineralization of 5 mM 3-CB was completed in 40 to 70 days. 

Effects of materials on kinetics of pure cultures and a biculture. The effects of 

the presence of carrier materials on the growth rates or substrate utilization 

rates in the consortium may be characteristic for the coculture or for the 

individual members. Therefore, the substrate kinetics of growing cultures of M. 

hungatei, D. tiedjei, M. concilii and a biculture of S. buswellii and M. hungatei in 

the presence and absence of carrier materials were analyzed. 

None of the carrier materials enhanced the growth rate of M. hungatei 

(results not shown). The growth of D. tiedjei was somewhat stimulated by 

vermiculite, but not by polystyrene (experiment 1 in Table 3; Figure 2). 
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Figure 1. Substrate consumption and product formation by the consortium (experiment 2 
in Table 3 and 4) in the absence of carrier materials and in the presence of polystyrene, 
vermiculite and granular sludge. Concentrations are in mmol/l medium. •:pyruvate;«:3-
CB; 0:benzoate;-»-:acetate; D:methane. Axontrol; B:polystyrene; C:vermiculite; D:sludge. 

Only under the growth conditions of experiment 4 , polystyrene enhanced the 

dechlorination rate, but not the growth rate on pyruvate (Table 3 and 4), which 

explains the shortened lag phase of the consortium in experiment 2. The growth 

rate of M. concilii was higher in the presence of vermiculite and also slightly 

higher in the presence of polystyrene (experiment 5 in Table 3). For the biculture 

of S. buswellii and M. hungatei, the methane production rates were compared 

(experiments 7 and 8 in Table 4). In experiment 8, vermiculite addition led to a 
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higher methane production rate, compared to the controls. However, in 

experiment 7, the presence of vermiculite did not result in a higher methane 

production rate than in the other bottles. In the presence of hydroxyapatite the 

growth rate of D. tiedjei increased in comparison wi th the incubations in the 

absence of carrier materials (experiment 3 in Table 3), the growth rate of M. 

concilii decreased (experiment 6 in Table 3), and the activity of the biculture 

was completely inhibited. This explained the slow dechlorination and methane 

production by the consortium in the presence of hydroxyapatite (experiment 1). 

c 
CD 
O 
c 
o 
O 

10 20 

Time in days 

Figure 2. Pyruvate consumption (solid lines) and acetate production (dashed lines) by D. 
tiedjei in pure culture (experiment 3 in Table 3) in the absence of carrier materials and in 
the presence of vermiculite and activated carbon. •:control; •:vermiculite; •*•:activated 
carbon. 

DISCUSSION 

A 3-CB-degrading consortium was studied in the presence of carrier materials 

w i th the goal to improve the 3-CB mineralization rate. The attachment of the 

consortium members to the carrier materials played no significant role. However, 

some carrier materials affected the growth rates or the substrate conversion 

rates of the consortium or its individual members positively. 

The presence of polystyrene, vermiculite and granular sludge influenced 

3-CB mineralization by the consortium positively. This largely reflects the 
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observed effects w i th pure cultures of D. tiedjei and M. concilii. In pure cultures 

the most pronounced positive effects were found on the growth rate of M. 

concilii, w i th the addition of vermiculite and polystyrene. The growth rates or 

methane production rates of the other microorganisms were less affected or not 

increased in the presence of carrier materials in comparison w i th the cultures 

grown in the absence of carrier materials. However, the higher growth rate of 

M. concilii had a large impact on the time required for complete mineralization of 

3-CB by the consortium. This is illustrated by the effect of polystyrene 

compared to the effect of vermiculite and of sludge. In the presence of 

polystyrene, due to an increased dechlorination rate or a reduction of the lag 

phase, the complete mineralization of 3-CB was performed in a slightly shorter 

period than in the control bottles. In the presence of vermiculite and sludge the 

growth rate of M. concilii was higher than in the absence of these carrier 

materials. With vermiculite, mineralization was achieved in approximately 40 to 

50 days, which was much less time than was needed wi th polystyrene. In two 

bottles wi th sludge the time needed for complete mineralization was even 

shorter than w i th vermiculite. One explanation for the beneficial effect of carrier 

materials may be that aceticlastic methanogenesis occurred so slowly, 

compared to dechlorination and benzoate oxidation, that it would always be the 

rate-limiting degradation step. This would imply that improvement of the 

process could only occur via stimulation of M. concilii. Alternatively, the large 

impact of acetate degradation might be explained by the prevention of acetate 

accumulation. Acetate accumulation inhibits benzoate oxidation by syntrophic 

benzoate-oxidizing bacteria (Dolfing & Tiedje, 1988; Warikoo et al., 1996). In 

some bottles, a concentration of 20 mM acetate was reached. This is in the 

range of the K, for benzoate oxidation by strain BZ-2 and strain SB, which are 

40 mM and 10 mM acetate, respectively (Dolfing & Tiedje, 1988; Warikoo et 

al., 1996). Furthermore, the Gibbs free energy change of benzoate oxidation 

depends on the acetate concentration. This implies that a decrease of the 

acetate concentration should either result in a higher hydrogen partial pressure 

as was reported for syntrophic benzoate oxidation by Syntrophus gentianae 

(Schocke & Schink, 1997), or a higher substrate oxidation rate, which has been 

observed for instance for syntrophic propionate oxidation (Dong et al., 1994). 

However, in experiment 2 the growth rate on benzoate was not affected by the 

presence of vermiculite or sludge. Therefore, it seems more likely that acetate 

conversion is the rate-limiting step for complete mineralization of 3-CB. This 
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implies that the time required for the complete mineralization of 3-CB is 

decreased in the presence of vermiculite or sludge in comparison wi th the 

control cultures, because the growth of the aceticlastic methanogens is 

increased. 

The dechlorination rates of the control bottles in experiment 2 are 

comparable to dechlorination rates of a similar consortium previously reported by 

Dolfing and Tiedje (1986, 1991a, 1991b). After growth on 3.2 mM 3-CB, the 

consortium contained 22-26 mg/l protein, and dechlorinated 17-27 ^iM 3-CB/h 

(Dolfing & Tiedje, 1991a; Dolfing & Tiedje, 1991b). The doubling time wi th 

benzoate as a substrate in experiment 2 was similar to the doubling time of the 

three-membered consortium (Dolfing & Tiedje, 1986). 

The consortium was expected to aggregate or to attach to carrier 

materials, for the following reasons. Methanosaeta, D. tiedjei and strain BZ-2 

form aggregates in syntrophic cocultures (Wu et a/., 1996; Tiedje & Stevens, 

1988). M. hungatei is motile and thus able to move towards its syntrophic 

partner. M. hungatei also adheres to some hydrophilic polymers (Verrier et a/., 

1988). In the growing consortium and in the adhesion tests we found little 

attachment. Possibly, the applied growth conditions were not optimal for 

attachment, or the strains had lost their ability to attach. 

The presence of polystyrene affected the dechlorination in the 

consortium, by reducing the lag phase. In a pure culture of D. tiedjei, the 

presence of polystyrene mainly affected the dechlorination rate, and it had less 

effect on the growth rate on pyruvate. So, coprecipitation of D. tiedjei and M. 

concilii w i th polystyrene did not give rise to a higher growth rate of these 

microorganisms than in cultures incubated without carrier materials. The 

presence of polystyrene could have influenced dechlorination and 

methanogenesis in several other ways, not correlated to coprecipitation. 

Adsorption of 3-CB to the polystyrene beads could have reduced the toxicity of 

3-CB (Dolfing & Tiedje, 1986), but there was no measurable adsorption. Small 

molecules, like styrene, 1-phenyl ethanol, or phenyl acetate may have diffused 

from the polystyrene beads. A low concentration of these toxic monomers, 

leaking from polystyrene, might have enhanced activity aspecifically. These 

molecules might also have induced 3-CB dechlorination. Because polystyrene 

seemed to affect especially dechlorination, induction of dechlorination seems 

most likely. However, the mentioned compounds have not been reported to act 

as inducers of dechlorination by D. tiedjei (Mohn & Tiedje, 1992). 
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Vermiculite was found to coprecipitate w i th cells and the presence of 

vermiculite could also have had an influence on the growth rate of D. tiedjei and 

M. concilii because of its great cation exchange capacity. In experiment 2, the 

growth rate of M. concilii was even higher in the bottles which were 

preincubated w i th vermiculite than in the bottles which were incubated w i th 

vermiculite. Since the preincubation was followed by centrifugation during 

which the medium was exposed to oxygen, an effect of vermiculite on the 

redox potential is less likely. Buffering of the pH and coprecipitation of cells 

probably played a minor role, because after the preincubation w i th vermiculite, 

only the smallest particles were left. It seems more likely that vermiculite 

adsorbed toxic metals, which were partially irreversibly removed after the 

preincubation. Furthermore, the iron concentration in solution might have been 

raised in the presence of vermiculite as well as after the preincubation of 

vermiculite. An effect on the iron concentration has been reported by Murray 

and Van den Berg (1981). In that study, a methanogenic enrichment on acetate 

was incubated wi th various carrier materials. The acetate conversion rate in the 

presence of carrier materials and in the presence of clay suspension supernatant 

was higher than in the absence of carrier materials. The high acetate conversion 

rate was due to an increased soluble iron concentration. 

In the presence of granular sludge no lag phase was observed for 

pyruvate consumption, dechlorination and methane production. We did not f ind 

higher dechlorination rates than in the control bottles. The effect of the 

presence of granular sludge on dechlorination has been studied for an 

enrichment on polychlorinated biphenyls (Middeldorp, 1997). The lag phase for 

dechlorination was greatly reduced in the presence of granular sludge, while the 

dechlorination rate was much less affected. The effect on the lag phase was not 

due to redox potential changes, because the redox potential w i th sludge hardly 

differed from the controls. It has been suggested that the positive effect of the 

sludge was due to the supply of essential growth factors (Middeldorp, 1997). 

Effects of the carrier materials on syntrophic benzoate oxidation by S. 

buswellii and M. hungatei could not be demonstrated in the biculture and the 

consortium. This is in accordance wi th the lack of attachment of the syntrophic 

partners. Although the organisms in the consortium seemed to have lost their 

ability to attach to surfaces, carrier materials still had a strong effect on the lag 

phases of degradation steps, and/or the growth of the populations which are 

involved in this consortium. By the reduction of the lag phase for dechlorination 
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and the height and duration of the transient acetate accumulation, complete 

mineralization of 3-CB could be achieved in a shorter time period in the presence 

than in the absence of carrier materials. 
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Chapter 6 

A 3-CHLOROBENZOATE-DEGRADING METHANOGENIC CONSORTIUM 

IMMOBILIZED IN CARRAGEENAN GEL BEADS 

Karin A. Ennik-Maarsen, Annemarie Louwerse and Alfons J .M. Stams 

ABSTRACT 

A tetraculture consortium was able to degrade 3-chlorobenzoate (3-CB) under 

methanogenic conditions. This consortium consisted of Desulfomonile tiedjei, a 

3-CB-dechlorinating bacterium, Syntrophus buswellii, a syntrophic benzoate-

oxidizer, Methanospirillum hungatei, a hydrogenotrophic methanogen, and 

Methanosaeta concilii, an aceticlastic methanogen. The tetraculture was 

immobilized in K-carrageenan gel beads wi th K+ as counterion. After the 

immobilization step, the protein content as well as the 3-CB conversion rate 

increased in t ime, indicating that growth occurred. Moreover, microscopic 

examination revealed the formation of microcolonies inside the gel beads. The 

immobilized cells had a lower specific 3-CB conversion rate than suspended 

cells, but the activity of the immobilized cells was maintained for a longer t ime 

period. Effects of varying cell ratios on the conversion of different substrates 

were examined. Addition of extra D. tiedjei or M. hungatei cells resulted in an 

increase of the 3-CB dechlorination rate, and addition of extra D. tiedjei cells led 

to an increased 3,5-dichlorobenzoate dechlorination rate. Extra S. buswellii cells 

led to an increase of the conversion rate of benzoate, but not of 3-CB unless 

crotonate was present as an additional electron acceptor. Since the cell ratios 

affected the interbacterial distances and thereby the hydrogen diffusion rate 

f rom S. buswellii to the hydrogen consuming D. tiedjei and M. hungatei, a 

calculation of the minimal distances was made. The changes in the minimal 

interbacterial distances could explain the measured changes in the substrate 

conversion rates. 
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INTRODUCTION 

For the anaerobic degradation of organic compounds under methanogenic 

conditions the action of several microorganisms is required. Fermentation 

products and some aromatic compounds like benzoate are converted into 

acetate plus hydrogen in obligatory syntrophic conversions performed by 

acetogens. Substrate conversion by the acetogen can only proceed if hydrogen 

is maintained at a very low concentration by a hydrogen-consumer, usually a 

methanogen. This implies that the substrate conversion rate is determined by 

the hydrogen flux. The hydrogen flux itself, as described by Fick's diffusion 

equation, is affected by the cell densities of hydrogen producers and hydrogen 

consumers in two ways. Firstly, the surface area from which hydrogen diffuses 

is determined by the cell density of the hydrogen producer, and secondly, the 

distance between the hydrogen producer and the hydrogen consumer is 

determined by the cell densities of the hydrogen producer and the hydrogen 

consumer (Schink & Thauer, 1988; Stams, 1994; Schink, 1997). 

A locally raised cell density can result from the immobilization of cells. 

Immobilization of cells is achieved by self-aggregation, attachment to a carrier 

material, or entrapment in a gel matrix. The physiological consequences of 

immobilization, the immobilization techniques, and the practical applications of 

immobilized cells have been studied extensively (see the review by Cassidy et 

al., 1996). In many studies, the substrate utilization rates and product formation 

rates are higher for immobilized cells than for suspended cells, but in a few 

other studies the growth rates of immobilized cells were lower. The specific 

methanogenic activity is maintained somewhat longer for alginate imbedded 

than for suspended Methanosarcina barken cells converting methanol (Scherer, 

1981). In some cases, the sensitivity of immobilized cells to toxic compounds is 

lower than that of suspended cells, as has been shown for a phenol-degrading 

methanogenic enrichment culture (Dwyer et al., 1986). Cells imbedded in agar 

had a higher tolerance to phenol than non-immobilized cells. Additionally, the 

apparent Km for phenol was lower and the lag period for phenol degradation was 

shorter for immobilized cells. However, the phenol mineralization rate decreased 

upon cell immobilization (Dwyer et al., 1986). 

A 3-chlorobenzoate (3-CB)-degrading consortium has been studied in a 

triculture, consisting of freely suspended cells of Desulfomonile tiedjei, 

Methanospirillum PM-1 and the benzoate-oxidizing bacterium strain BZ-2 
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(Dolfing & Tiedje, 1986; reviewed by Mohn and Tiedje, 1992). Cells of D. 

tiedjei, Syntrophus buswellii and Methanospirillum hungatei were immobilized by 

self-aggregation in methanogenic granular sludge in an Upflow Anaerobic Sludge 

Blanket reactor (Ahring et a/., 1992). In this consortium, D. tiedjei reductively 

dechlorinated 3-CB to benzoate and chloride, S. buswellii oxidized benzoate 

syntrophically to acetate and hydrogen, and M. hungatei formed methane f rom 

hydrogen. A consortium consisting of D. tiedjei, S. buswellii, M. hungatei and 

the aceticlast Methanosaeta concilii was able to mineralize 3-CB completely to 

methane, carbon dioxide and chloride (Chapter 4). Attachment of the 

consortium consisting of four microorganisms to carrier materials is described in 

Chapter 5. Here we describe a study on the gel entrapment of the consortium. 

The physiological impact of gel entrapment on 3-CB degradation and growth of 

the consortium was investigated by studying the 3-CB degradation rate, the 

growth yield and the colony formation in a carrageenan gel. Furthermore, the 

effects of additional cells on the conversion rates of several substrates were 

examined. 

MATERIALS AND METHODS 

Organisms. D. tiedjei strain DCB-1 (DSM 6799), S. buswellii (DSM 2612M), M. 

hungatei strain SK (DSM 3595) and Methanosaeta concilii strain GP6 (DSM 

3671) were obtained from the Deutsche Sammlung von Mikroorganismen 

(Braunschweig, Germany). 

Chemicals. Chlorobenzoates were derived from Sigma Aldrich, Zwijndrecht, The 

Netherlands. For the immobilization of the cells, K-carrageenan (Genugel X0828, 

A/S Kobenhavns Pektinfabrik, Lille Skensved, Denmark) was dissolved (4% or 

5% w/v) in medium without buffer, Na2S, vitamins and CaCI2. Subsequently, it 

was autoclaved and stored at 50°C until use. 

Media and culture conditions. All microorganisms were cultivated in a medium 

as described in Chapter 5. In the immobilization experiments as well as in the 

suspended culture experiments that served as controls, NaHC03 was replaced 

by KHC03 (final concentration 50 mM), and 30 or 50 ml medium was used in 

120-ml bottles. 

The four microorganisms were subcultured as a coculture. The medium 
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contained 1 to 5 mM 3-chlorobenzoate (3-CB) and 2.5 or 5 mM pyruvate. When 

3-CB was depleted, extra 3-CB (without pyruvate) was added. In experiments 3 

and 4 , additional amounts of pure cultures were used. The pure cultures were 

cultivated wi th 20 to 40 mM pyruvate plus 1 mM 3-CB (D. tiedjei), 40 mM 

crotonate (S. buswellii), H2/C02 (80:20, v:v) plus 1 mM acetate (M. hungatel), 

and 80 to 200 mM acetate plus 1 mM cysteine (M. concilii). 

Table 1. Immobilization procedures. Specifications for the different experiments. 

Experiment 

1A 

1B 

1C 

2 

3 

4 

Dripping 
method 

pump + vessel 

syringe 

syringe 

pump + vessel 
or syringe 

syringe 

syringe 

Decane 
layer 

+ 

-

+ 

-

-

-

KCI (M) 

0.75 

0.1 

0.1 

0.1 

0.1 

0.1 

Temperature 

10°C 

RTb 

RT 

10°C 

RT 

RT 

Distribution 
method 

Fa 

Rc 

R 

F 

F 

Ad 

Aseptic 

+ 

-

-

+ 

+ 

-

Anaerobic 

-

+ 

+ 

-

-

+ 

a: Distribution of the beads into bottles with medium was done in a flow chamber 
b: RT, room temperature 
c: KCI solution was replaced by medium 
d: Distribution of the beads into bottles with medium was done in an anaerobic chamber 

Immobilization procedures. A carrageenan solution was gently mixed wi th an 

equal volume of a bacterial suspension at 37°C, yielding a 2 .5% or 2 % 

carrageenan solution (w/v). Different methods were applied to add this mixture 

dropwise in a solution containing KCI (Table 1). One method was to use a 10 or 

20 ml syringe wi th a needle (diameter 1 mm) (Kierstan & Coughlan, 1985). The 

other method was to pump the mixture through tubings into a conic vessel 

(content 50 ml) wi th a needle (diameter 1 to 2 mm) (Hulst et a/., 1985). With 

the syringe the average diameter of the beads was about 4 mm and wi th the 

vessel about 5 mm. In the KCI solution, the beads were allowed to harden 

during 1 h. Subsequently, the beads were distributed among bottles containing 

medium. The head space was flushed and one or several substrates were 

added. 
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In experiment 1A, 10 g beads (approximately 10 ml) was added to 50 

ml medium. Acetate, benzoate, glucose, 3-CB plus pyruvate (all 5 mM) and 

H2 /C02 (80:20, v:v) were added as substrates. Controls contained a suspended 

culture (10% inoculum) and 3-CB plus pyruvate, 5 mM each. Other controls 

contained sterile medium in the beads instead of a culture (empty beads) and 

acetate, benzoate, glucose, or 3-CB plus pyruvate (5 mM). In experiment 1B, 10 

ml beads per bottle were used to which 50 ml medium was added. As 

substrates 5 mM 3-CB plus pyruvate were given. In experiment 1D, 50 ml 

medium was added to 4 ml beads. The controls contained a suspended culture 

(4% inoculum). Both the immobilized and suspended cultures were fed 5 mM 3-

CB, 0.5 mM benzoate and 0.5 mM pyruvate. In experiment 1 , all incubations 

were done at least in duplicate, except those containing empty beads and the 

glucose incubations, which served as negative controls. 

In experiment 2, 10 g beads were added to a bottle w i th 50 ml medium. 

As substrates, 5 mM 3-CB and 1 mM pyruvate were added, or the same 

substrates w i th additionally 1 mM benzoate were used. All incubations were 

done in triplicate. Controls (in duplicate) contained 5 ml of a coculture, w i th the 

same substrate combinations as the bottles wi th beads. The inoculum contained 

about 5 mg/l protein. The sum of the cell numbers were 1.7x108 cells/g beads 

and 3.3x107 cells/ml suspension. 

In experiment 3, cultures were diluted in medium without CaCI2, Na2S, 

NaHC03 and vitamins, before they were added to the carrageenan solution, and 

5 g beads were added to 50 ml medium. The following substrates were 

provided: 5 mM 3-CB plus 1 mM pyruvate (duplicate), 5 mM 3-CB plus 1 mM 

benzoate (duplicate), 5 mM 3-CB (one bottle), and 5 mM benzoate (one bottle). 

Controls were supplied w i th the same substrates. The consortium which was 

used as inoculum contained 7x107 D. tiedjei, 3x108 S. buswellii, 5x107 M. 

hungatei and 1x107 M. concilii per ml. The inoculum size in the beads was: 

0 . 1 % , 1 % , 5 0 % D. tiedjei, 0 . 1 % , 1 % , 1 % S. buswellii, 5%, 5%, 1 % M. 

hungatei and 5%, 5%, 5 0 % M. concilii in series 1 , 2 and 3, respectively. In 

order to obtain higher numbers of two microorganisms, extra cells were supplied 

from pure cultures w i th higher cell numbers, resulting in high inoculum sizes 

wi thout exceeding the available volume, i.e. the volume equal to that of the 

carrageenan solution. Since the beads occupied 10% of the volume of the 

medium, the inoculum size calculated for the total volume of the medium was 

10 times lower. Controls received the same or a 10 times greater inoculum size 
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in the medium. In the latter case, the average distances between the cells would 

equal those between the imbedded cells. 

In experiment 4 , 0.5 to 2.5 I cultures were harvested by centrifugation 

at 48000 x g for M. hungatei and 27500 x g for all other cultures. The cultures 

were washed in medium without CaCI2 and vitamins and resuspended in 

approximately 2 to 3 ml. A consortium suspension was mixed wi th 5 ml 

carrageenan solution and supplemented wi th a similar solution without 

carrageenan or w i th a pure culture suspension, until a volume of 10 ml was 

reached. To 30 ml medium 3 g beads were added (in triplicate). The beads were 

incubated on a rotary shaker wi th 5 mM 3-CB, for 1 14 days or overnight. 

Experiments. In experiment 1 , substrate consumption and product formation 

was measured. Experiment 1A without cells was a control to examine if the 

concentration of the substrates would be influenced by the presence of 

carrageenan. In experiment 2, after utilization of the substrates, 3-CB was 

replenished twice. After the experiment the protein content was determined. 

The yield was estimated, taking into account the minimal and maximal amounts 

of 3-CB and protein removed by sampling. In experiment 3, cell numbers were 

counted in the control incubations. The beads from immobilized consortium 

incubations were examined microscopically after utilization of the substrates. An 

interference contrast microscope (Nikon Optiphot) equipped wi th a CCD camera 

was used. In experiment 4 the addition of extra D. tiedjei, S. buswellii or M. 

hungatei was tested. On successive days the medium and the gas phase were 

replaced. Substrate was added, and samples were taken during 6 hours. The 

expected value (E(x)) of the distance (x) from S. buswellii to the closest D. 

tiedjei and/or M. hungatei cell was calculated wi th the assumptions that there 

was no influence of neighbouring S. buswellii cells, that cells were distributed 

homogeneously, and that cells did not occupy a volume themselves, w i th the 

equation E(x) = 0 .55396 C1 '3. Cell numbers (C) of D. tiedjei and/'or M. hungatei 

are in cell numbers per | im3 . 

Protein determinations. Cell pellets from 2 ml culture were resuspended in 1 ml 

1 M NaOH and boiled for 15 min. The samples were treated further according to 

the protein determination method of Lowry et al. (1951). From cultures which 

would be immobilized, cell pellets were resuspended in 1 ml 0.5 M NaOH. These 

suspensions were boiled for 30 min. The protein content was determined 
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according to the method of Bradford (1976). The preparation of immobilized 

cells for protein determination was performed according to the slightly modified 

method described by Smith et al. (1991). At the end of experiment 2 and 4 , a 

known amount of beads was frozen at -70°C and then freeze dried for at least 

40 h. Freeze-dried carrageenan beads were incubated in distilled water at 60°C 

for at least 30 min and thereby dissolved. Then, an aliquot of the suspension 

was mixed wi th an equal volume of 1 M NaOH and boiled for 30 min. The 

protein content was determined according to the method of Bradford (1976). In 

these experiments, the standard was bovine serum albumin in a solution w i th 

the same concentration of carrageenan as the samples. 

Cell counts. Suspended cells were counted wi th a Burker-Turk counting 

chamber using a microscope (Wild, Heerbrugg, Switzerland) at a magnification 

of 400 t imes. 

Analytical methods. Methane, hydrogen and acetate were measured wi th a 

Packard-Becker 417 or Chrompack CP9001 gas chromatograph as described by 

Stams et al. (1993). Methane was also measured wi th a Packard-Becker 417 

gas chromatograph wi th a flame ionization detector, instead of a thermal 

conductivity detector. A molecular sieve 5A column was used (110 cm X 2.1 

mm, Chrompack, Middelburg, The Netherlands) at 70°C. Nitrogen was the 

carrier gas, wi th a f low of 20 ml/min. Acetate, pyruvate and lactate were 

analyzed on an LKB high-performance liquid chromatograph as described 

previously (Stams e ra / . , 1993). Benzoate and chlorobenzoates were measured 

on an LKB high-performance liquid chromatograph as described by Tros et al. 

(1996), or on a TSP high-performance liquid chromatograph, w i th a 

SpectraSystem P2000 pump, an AS3000 autosampler and a UV1000 UV-

detector. The mobile phase was an acetonitrile-5 mM H2S04 mixture w i th a 

volume ratio of 35:65. Chlorophenols were measured as described previously 

(Chapter 2). 

RESULTS 

Immobilization procedures. Carrageenan is a carbohydrate polymer produced by 

seaweeds. It is known to meet physiological constraints when it is used as a 

matrix for imbedding bacteria. In order to obtain spherical strong gel beads, 
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several authors varied the conditions for the actual immobilization step. These 

variations include cooling below 10°C, use of 0.1 or 0.75 M KCI to collect the 

beads, and a passage through a decane layer to obtain perfect spheres (Tosa et 

a/., 1979; Wijffels et a/., 1991). In the experiments described here we varied the 

temperature, the KCI concentration, the presence or absence of a decane layer, 

as well as the dripping method and the distribution method (experiments 1 and 

2 in Table 1). The choice of the immobilization method was found to be crucial 

for the activity of the consortium in the beads (experiments 1 and 2, results not 

shown). The presence of a decane layer above the hardening solution severely 

inhibited microbial growth. Additionally, it seemed that 0.75 M KCI led to 

inhibition of substrate conversion. However, even after being pumped through 

tubings and a vessel, experiencing a temperature drop from 37°C to 10°C, and 

being briefly exposed to oxygen, the consortium was still capable of converting 

3-CB at a high rate. 

Effect of immobilization on substrate conversion and growth. The effect of 

immobilization on the activity, the specific activity and the maintenance of the 

activity were studied in growing cultures which received three consecutive 

additions of 3-CB. After the first substrate addition, the dechlorination rate was 

lower wi th immobilized cells than wi th cells that were suspended (Table 2). 

Furthermore, the dechlorination rate was lower when benzoate was supplied as 

a substrate additional to 3-CB and pyruvate than when only the latter two 

substrates were added. Dechlorination and methane production started 

immediately in immobilized cultures to which benzoate had been added as well 

as in the suspended cultures with and without benzoate, which served as 

controls. After the third addition of 3-CB, no benzoate accumulation occurred, 

which implied that the benzoate oxidation rates were equal to the dechlorination 

rates. When 3-CB had been added for the third t ime, all immobilized cultures 

immediately started to dechlorinate and to form methane, while only one of the 

suspended cultures converted 3-CB during the first four days. In summary, the 

dechlorination rates and methane production rates rather decreased than 

increased upon immobilization, but the activity of the immobilized cultures was 

maintained for a longer time period. 
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Table 2. 3-CB conversion rates, final protein contents and estimated yields (Yest) of the 
consortium immobilized and supplied three times w i th 5 mM 3-CB. In the first feeding also 
pyruvate or pyruvate plus benzoate were present (0.5 mM). 

First feeding 3-CB Third feeding 3-CB Protein Yest. 
(mmol/l day) (mmol/l day) (mg/l) (g protein/mol 3-CB) 

Immobilized cells 0.28(0.03)" 0.68(0.14) 77(16) 4.6-8.0 
(3-CB, pyruvate)8 

Controls 0.38 (0.06) 0.72 90.02) 57 (2) 2.8-4.8 

Immobilized cells 0.26(0.02) 0.85(0.12) 114(13) 7.1-11.6 
(3-CB, pyruvate, 
benzoate) 

Controls0 0.31 (0.01) 0.48 53 2.8-4.8 

a: because t w o of the six incubations had low activity, they were supplied wi th 3-CB only 
once or tw ice. Therefore, average values of the 3-CB conversion rate after the third 
feeding, the protein content, and the yield are based on four replicates 
b: standard deviation in parentheses 
c: one of the t w o incubations was not active after the third feeding 

Growth of the consortium in a carrageenan matrix. To study the pattern of 

colony formation, the consortium was entrapped in carrageenan at low cell 

densities. Additional cells of one of the hydrogen consumers were imbedded to 

provide a low hydrogen partial pressure for benzoate oxidation by S. buswellii. 

Because the maximum specific growth rate of M. concilii is low compared to 

that of the other three consortium members, M. concilii was also added in 

higher numbers, relative to the ratio for a stable consortium (Chapter 4). 

Methane production was only observed in immobilized consortia 

containing elevated cell numbers of D. tiedjei and M. concilii. The two active 

immobilized consortia had been either fed with 3-CB and pyruvate or with 3-CB 

and benzoate. Colonies of D. tiedjei, S. buswellii, and M. hungatei were visible 

(Figure 2). The shapes of the colonies of S. buswellii were globular, while those 

of D. tiedjei were moon-shaped, and the colonies of M. hungatei were rope-like. 

Furthermore, single D. tiedjei cells and filaments of M. concilii were visible. It 

was examined whether cells imbedded in the proximity of a syntrophic partner 

would grow, and cells far from a syntrophic partner would not. However, no 

spatial orientation of colonies of S. buswellii and D. tiedjei or M. hungatei was 
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observed. 

Colony formation was compared wi th the changes in the cell numbers of 

the suspended cultures, serving as controls. In all control cultures, cell numbers 

of S. buswellii and M. hungatei increased. In the controls wi th a 10 times higher 

inoculum size than in the immobilized cultures, cell numbers of D. tiedjei and M. 

concilii stayed constant, while in the controls wi th the same inoculum size as 

the immobilized consortium, D. tiedjei numbers clearly increased and M. concilii 

numbers hardly increased. The presence of colonies of D. tiedjei, S. buswellii, 

and M. hungatei, and the absence of colonies of M. concilii in the beads was in 

accordance wi th the inoculum size in the beads and wi th the increase in cell 

numbers in the controls wi th the same inoculum size as the immobilized 

consortium. 

Figure 1. Microcolonies of S. buswellii (large, globular), M. hungatei (large, rope-like), and 
D. tiedjei (small, moon-shaped) grown in a K-carrageenan gel bead with 5 mM 3-CB and 1 
mM pyruvate. 
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Table 3. Substrate conversion rates [umol/h] of the consortium, immobilized in high 
biomass densities. Substrates were provided in a concentration of 1 mM unless stated 
otherwise. The values in parentheses are standard deviations. The protein contents per 
bottle were, in mg, with extra D. tiedjei 20, controls 7.6, with extra S. buswellii 24, 
controls 12, with extra M. hungatei 5.3, controls 4.5. Values are marked if the substrate 
conversion rate was significantly altered in the presence of additional cells (*, increase, #, 
decrease, a = 0.10). 

Substrate 

3-CB 

3-CB (5 mM) 

3-CB 
(with benzoate) 

3-CB 
(with 
crotonate) 

benzoate 

benzoate 
(5 mM) 

benzoate 
(with 3-CB) 

extra D. tiedjei 

-

9.0 (0.5) 

13.3(0.1) 

14.8(0.7) 

17.4(1.5) 

+ 

10.2 (0.4)* 

16.8 (0.3)* 

16.3(0.9)* 

19.5 (0.7)* 

extra S. buswellii 

-

8.9 (0.1) 

12.8 (0.1) 

9.5 (0.3) 

5.9(1.0) 

14.1 (0.9) 

18.2 (0.5) 

+ 

8.2 (0.5)# 

11.1 (0.7)# 

9.2 (0.3) 

7.5(0.8)* 

35.7 (0.6)* 

21.9 (3.7) 

extra M. hungatei 

+ 

5.9(0.2) 6.5(0.2)* 

6.2(0.5) 7.7(1.1)* 

7.5(1.3) 7.9(1.8) 

Activity tests with varying cell ratios. The effect of the cell numbers of 

syntrophic partners on the substrate degradation rate was tested in beads in 

which the consortium was immobilized in high cell numbers per volume. 

Additionally, extra cells were added from a pure culture of D. tiedjei, S. 

buswellii, or M. hungatei. Since high cell numbers were used, it was assumed 

that cell g rowth was negligible and that thus the cell ratios and interbacterial 

distances stayed constant during the experiments. 

A high activity was achieved within one or two days. In contrast to 

incubations of growing cultures, these cultures did not require a substrate 

additional to 3-CB. The intermediary products benzoate and acetate, which 

accumulated in other experiments, were only found in very low concentrations. 

In general, higher substrate conversion rates were found wi th benzoate 

than wi th 3-CB as the substrate (Table 3). In the presence of benzoate, 3-CB 
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dechlorination rates were higher than in the absence of benzoate, while in the 

presence of crotonate, the 3-CB dechlorination rates were lower. After the 

addition of a dichlorobenzoate, the conversion of 3-CB or benzoate on the 

subsequent day(s) was inhibited by the remaining amount of dichlorobenzoate 

(Table 4). 

Table 4. Substrate conversion rates [nmol/h] of the consortium, immobilized in high 
biomass densities. Substrates were provided in a concentration of 1 mM. The values in 
parentheses are standard deviations. The protein contents per bottle are denoted above 
Table 3. Values are marked if the substrate conversion rate was significantly altered in the 
presence of additional cells {*, increase, a = 0.10). 

Substrate 

3,5-DCB 

3,5-DCB 
(with acetate) 

2,5-DCB 

3-CB 
after 2,5-DCB 

benzoate 
after 3,5-DCB 

extra D. tiedjei 

+ 

6.2(0.4) 9.1 (0.2)* 

6.3(0.3) 7.4(0.1)* 

extra S. buswellii 

+ 

5.3(2.1) 5.8(0.4) 

extra M. hungatei 

+ 

1.4(0.2) 1.7(0.5) 

0.28(0.06) 0.41 (0.09)* 

1.4(0.1) 1.7(0.5) 
1.9 (0.3) 2.1 (0.6) 

3.5(0.9) 5.5(1.0)* 

The addition of extra cells of one species resulted in an increase (factor 

1.1 to 2.5) of the substrate conversion in many cases (Tables 3 and 4). The 

calculated change of the inverse of the minimal distance (d1) f rom S. buswellii 

to the nearest syntrophic partner cell correlated wi th higher 3-CB dechlorination 

rates in the presence of additional M. hungatei cells (factor 1.1 to 1.2) and the 

lower 3-CB dechlorination rates in the presence of additional S. buswellii cells 

(factor 0.9) (Table 5). In the latter case, lower cell numbers of D. tiedjei, M. 

hungatei and M. concilii were present in the incubations wi th additional S. 

buswellii cells than in the control incubations. With additional D. tiedjei cells, the 

d 1 f rom S. buswellii to D. tiedjei increased wi th a factor of 3.1 and the d"1 f rom 

S. buswellii to D. tiedjei or M. hungatei increased w i th a factor of 2.6, while the 

3-CB and 3,5-DCB dechlorination rates only increased wi th a factor of 

108 



6. IMMOBILIZATION IN GEL BEADS 

approximately 1.2. However, when 3,5-DCB was the substrate, the 3-CB 

dechlorination rate in the presence of additional D. tiedjei cells increased wi th a 

factor of 2.0 wi th (not shown) and 1.6 without acetate as a cosubstrate (Figure 

2). The largest effects on the substrate conversion rates were found wi th 

additional S. buswellii cells, when benzoate was the substrate. In these 

incubations, the benzoate conversion rate increased wi th a factor of 2.5. The 

numbers and therefore the surface area of the S. buswellii cells were 7.9 times 

larger when extra S. buswellii cells were added than in the control incubations. 

Together w i th the decrease in the d 1 f rom S. buswellii to a syntrophic partner 

(factor 0.9), this would allow a maximal increase of the benzoate oxidation rate 

w i th a factor of 7.2, if there were no diffusion limitations or limitations in the 

hydrogen consumption rate by M. hungatei. Unexpectedly, extra D. tiedjei 

resulted in a higher benzoate conversion rate in the absence of 3-CB. 

1-5 ^ 

0 1 2 3 4 5 6 

Time in hours 

Figure 2. Conversion of 3,5-dichlorobenzoate by the concentrated consortium immobilized 
in K-carrageenan gel beads in the absence (A) and presence (B) of additional D. tiedjei 
cells. x:3,5-dichlorobenzoate; •:3-CB; O:benzoate; •»• :acetate; D:methane. 
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Table 5. The calculated expected value of the distance in urn from S. buswellii to the 
closest D. tiedjei and/or M. hungatei cell in the experiments in which the consortium was 
immobilized in high biomass densities, with or without extra cells of one species. 

From S. buswellii to 
D. tiedjei 

From S. buswellii to 
M. hungatei 

From S. buswellii Xo 
either hydrogen consumer 

Extra D. tiedjei 

+ 

4.0 1.3 

4.6 4.6 

3.4 1.3 

Extra S. buswellii 

+ 

4.4 4.8 

5.4 5.9 

3.8 4.1 

Extra M. hungatei 

+ 

4.0 4.0 

4.4 3.0 

3.3 2.7 

DISCUSSION 

A methanogenic tetraculture, degrading 3-CB, was successfully immobilized in 

K-carrageenan gel beads. Depending on the purpose of the experiment, the 

immobilization method was varied. Although a decane layer above the hardening 

solution was not toxic to the bacteria in other studies (Buitelaar et a/., 1989; 

Wijffels et a/., 1991), the presence of a decane layer severely inhibited bacterial 

activity in our experiments. Therefore, the beads that were used in the 

experiments described here were not completely spherical. Growth of the 

microbial cells in the beads was confirmed wi th protein determinations, an 

increase of the 3-CB-degrading activity in time (Table 2), and colony formation 

(Figure 1). The appearance of the three-dimensional colonies of M. hungatei 

differed from the round, lobed surface colonies, grown on agar (Ferry et a/., 

1974). 

Especially when high initial cell numbers were used, the 3-CB 

degradation rate was very high, up to 0.56 mmol I"1 h-1 in the presence of extra 

D. tiedjei cells. For practical applications, in for instance wastewater treatment, 

carrageenan seems not to be suitable, because natural gel materials, particularly 

carrageenan, are dependent of specific counterions and have a low stability 

when exposed to mechanical forces. For such purposes, synthetic gels could be 

used, because they do not have these disadvantages (Leenen eta/., 1996). 

Immobilized in high cell numbers per volume, the consortium converted 

benzoate at a higher rate than 3-CB, which is opposite to the findings wi th the 
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triculture consortium described by Dolfing and Tiedje (1991). Since in our 

experiments relatively high numbers of M. hungatei were present in balanced 

cultures (Chapter 4), competition occurred for hydrogen between D. tiedjei and 

M. hungatei. Wi th extra cells of M. hungatei or D. tiedjei, probably the hydrogen 

partial pressure decreased, resulting in a higher benzoate oxidation rate, a higher 

hydrogen production rate and therefore a higher 3-CB dechlorination rate. When 

benzoate was the substrate, there was sufficient benzoate supply and sufficient 

hydrogen removal capacity by M. hungatei to allow a higher benzoate oxidation 

rate by S. buswellii than when 3-CB was the substrate. This is in accordance 

w i th the observations that wi th additional S. buswellii cells, but not w i th 

additional M. hungatei cells, a higher benzoate conversion rate was observed in 

comparison wi th the control incubations. 

As was expected, in the experiments in which high cell numbers were 

immobilized, the 3-CB dechlorination rate was affected by the addition of the 

cosubstrates benzoate and crotonate. While addition of benzoate resulted in a 

larger amount of hydrogen available for dechlorination, and thus a higher 

dechlorination rate, a lower dechlorination rate was observed after addition of 

crotonate which may have served as an extra electron sink. Approximately one 

third of the hydrogen was used for 3-CB dechlorination, one third for 

hydrogenotrophic methanogenesis and one third for crotonate reduction to 

butyrate (not shown). The exact ratio was dependent on the relative cell 

numbers, because wi th additional S. buswellii cells and fewer D. tiedjei, M. 

hungatei and M. conci/ii cells, less methane and more butyrate accumulated in 

comparison wi th in the control incubations. 

The specific substrate conversion rates for 3-CB and benzoate f rom 

incubations w i th high biomass densities were higher than those reported for a 

triculture consortium (Dolfing & Tiedje, 1991). In the control incubations, 

specific 3-CB dechlorination rates were in the range of 0.8 to 1.8 mmol g 1 total 

protein h 1 and specific benzoate oxidation rates were between 1.2 and 2.3 

mmol g"1 total protein h"1. The specific activities for 3-CB were somewhat higher 

than Dolfing and Tiedje (1991) reported, namely 1.0 mmol g"1 total protein h" \ 

while for benzoate the activities of the tetraculture were two to four times as 

high as the 0.6 mmol g"1 total protein h"1 reported by Dolfing and Tiedje (1991). 

The higher specific activities of cultures containing high cell numbers, also 

compared to growing tetracultures (experiment 2), are probably due to the 

reduction of the interbacterial distance, although effects of the immobilization 
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method and protein determination method may not be excluded. In experiment 

2, the cells were briefly exposed to oxygen during the immobilization, and cells 

that died as a result of the oxygen exposure did contribute to the protein 

content. 

In this study, mass transfer limitations have not been considered in the 

interpretation of the specific activity changes when extra cells of one species 

were added. In general, effects of biomass imbedded in a polymer matrix have 

not been quantified adequately. However, most of the substrates and 

intermediary products (3-CB, benzoate, acetate, crotonate and butyrate) have 

similar diffusion coefficients. This excludes the possibility that in the presence of 

extra D. tiedjei cells, the 3-CB dechlorination rate was limited by diffusion 

through the gel, since the substrate conversion rate was higher when benzoate 

was the substrate than when 3-CB was the substrate. It is possible that in the 

presence of extra S. buswellii cells, the conversion rate of benzoate was limited 

by diffusion through the gel. 

The work presented here shows that the effects of individual members 

of syntrophic consortia can be studied in immobilized cell systems, as the 

interbacterial distances can be f ixed, enabling the quantification of hydrogen 

diffusional effects. 
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Chapter 7 

SUMMARY AND CONCLUDING REMARKS 

Pollution of the environment with chlorinated organic compounds mainly 

results from (agro)industrial activity. In many studies, biodegradation is 

examined under anaerobic conditions, because highly chlorinated compounds 

are more easily degradable under anaerobic than under aerobic conditions 

(Field et a/., 1995). Problems arise because these compounds can inhibit 

methane formation and the microorganisms which are able to degrade these 

compounds may be absent in the methanogenic environment, like for instance 

wastewater treatment plants. This thesis concentrates on chlorinated aromatic 

compounds and aims to examine their biodegradation kinetics by 

methanogenic consortia. The biochemical degradation mechanisms of 

aromatic compounds under anaerobic conditions differ greatly from the 

aerobic conversions, because under aerobic conditions, oxygen is a reactant, 

while under anaerobic conditions, other activation steps are involved. The 

degradation of chlorinated aromatic compounds requires the elimination of 

chlorine atoms. Under methanogenic conditions, the initial degradation step is 

a reductive dechlorination. This conversion may yield biological useful energy, 

if the chlorinated compound is utilized as a terminal electron acceptor. The 

product of the reductive dechlorination step is an aromatic compound. For 

some of these compounds, for instance benzoate and phenol, the oxidation to 

acetate, carbon dioxide and hydrogen is endergonic under standard 

conditions. Therefore, this conversion can only occur when hydrogen-

consuming organisms are present, which in turn depend on hydrogen-

producers for substrate supply. This relationship is called syntrophism. 

Methanogenic archaea can act as syntrophic partners. Hydrogen can also be 

an electron donor for some dechlorinating microorganisms. Consequently, for 

the complete degradation of chlorinated aromatic compounds under 

methanogenic conditions, a consortium of different types of microorganisms is 

needed. Furthermore, the distance for hydrogen diffusion between syntrophic 

partners determines the conversion rate of the aromatic compounds. The 

interbacterial distances are small when the microorganisms exist as 

aggregated biomass in and/or on carrier materials, or as floes or granules 

without the need for carrier materials. In upflow anaerobic sludge blanket 
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(UASB) reactors, the microorganisms are auto-immobilized as granular sludge. 

These aspects are dealt w i th in Chapter 1 . 

Chapter 2 describes the toxici ty of monochlorophenols (MCPs) to 

granular sludge f rom a UASB reactor. Methane production f rom a mixture of 

acetate, propionate and butyrate was measured to test the influence of MCPs 

on the activity of the sludge. Since other substrates in addition to acetate 

were used, the sensitivity of syntrophs was also determined. The 

concentration, the isomeric form and the exposure t ime of the MCP 

determined the inhibition of methane formation. Different sensitivities were 

found for sludges, developed in reactors which had received similar influents, 

which may be due to differences in the population composition or the granule 

size. After cold storage of the sludge, the methane production rate decreased, 

and the sensitivity towards 2-chlorophenol (2-CP) increased. However, an 

activation period after cold storage could reduce the toxic effect. Inhibition of 

methane production occurred by MCP concentrations that were in the mM-

range. A similar sensitivity to 2-CP was found for a 3-chlorobenzoate(3-CB)-

degrading consortium (see Chapters 4 , 5 and 6). Monochlorobenzoates 

(MCBs) were hardly toxic to the methanogenic granular sludge. 

The biodegradation of MCPs was studied in samples f rom different 

anaerobic environments, most of which were granular sludges f rom UASB 

reactors (Chapter 3). 2-CP was transformed by granular sludge, a sediment 

mixture and a peat slurry. The f irst intermediary products which accumulated 

were phenol and most probably 3-CB. This indicated that 2-CP was 

reductively dechlorinated to phenol as well as carboxylated and 

dehydroxylated to 3-CB. Two enrichment cultures were obtained f rom the 

granular sludge. One converted 2-CP to phenol and later to 3-CB. 

Unfortunately, this culture lost its 2-CP-degrading activity. The other 

dechlorinated 2-CP and dichlorophenols specifically at the o/?/70-position, and 

did not form 3-CB. 

Chapters 4 , 5 and 6 describe the dechlorination and subsequent 

mineralization of the model compound 3-CB by a defined consort ium, 

consisting of four microorganisms. Desulfomonile tiedjei reductively 

dechlorinated 3-CB to benzoate, Syntrophus buswellii oxidized benzoate 

syntrophically to acetate and hydrogen, Methanospirillum hungatei formed 

methane f rom hydrogen and carbon dioxide, and Methanosaeta concilii 

converted acetate to methane and carbon dioxide. The growth conditions 
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were varied to optimize the dechlorination as well as the mineralization of 3-

CB (Chapter 4). In addition, the effects of carrier materials (Chapter 5) and of 

the immobilization of the consortium in a gel (Chapter 6) are described. In 

Chapter 4 , the composition of the 3-CB-degrading consortium is described. 

The growth medium was optimized to obtain balanced growth of the 

consort ium. D. tiedjei utilized hydrogen for the dechlorination of 3-CB to 

benzoate, while hydrogen was only produced when S. buswellii oxidized 

benzoate. Therefore, to initiate the 3-CB conversion, an additional electron 

donor, e.g. pyruvate, was required. This contrasts w i th observations of 

Dolfing and Tiedje (1986), who studied a consortium consisting of D. tiedjei, 

the benzoate-oxidizing strain BZ-2 and Methanospirillum strain PM-1 , and 

observed no dependence of an additional electron donor. Furthermore, the 

substrate spectrum, the toxicity of 3-CB towards individual consortium 

members and the necessity for buffering capacity were studied. Based on cell 

counts it was found that a stable consortium consisted of about 1 8 % D. 

tiedjei, 7 0 % S. buswellii, 1 0% M. hungatei, and 3% M. concilii. 

Chapter 5 describes the effects of carrier materials on the 3-CB-

degrading consort ium. The consortium was incubated wi th 3-CB and pyruvate 

in the presence of a range of carrier materials. In the presence of polystyrene, 

the length of the lag phase for dechlorination was decreased. In the presence 

of vermiculite and granular sludge the consumption rates of pyruvate by D. 

tiedjei and acetate by M. concilii were higher than in the their absence. As a 

result, these three carrier materials decreased the time period for complete 

mineralization of 3-CB. Attachment of the consortium cells to the carrier 

materials was not an explanation for the stimulatory effects, because in pure 

cultures, similar effects were observed. Furthermore, cells adhered only 

weakly to glass and teflon sheets, and the majority of the cells in the 

consort ium grew in suspension. The conditions for aggregation or adherence 

may not have been optimal, because Ahring et al. (1992) described the 

incorporation of D. tiedjei, S. buswellii and M. hungatei in granular sludge in a 

UASB reactor. On the other hand, Wu et al. (1996) described aggregation of 

syntrophic fa t ty acid-oxidizing bacteria w i th a few species of methanogens, 

but not w i th M. hungatei. Nevertheless, an improvement of the pyruvate and 

acetate consumption rates or the shortening of the lag phase for 

dechlorination could reduce the t ime for complete degradation of 3-CB up to 

5 0 % . 
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Immobilization of the consortium in K-carrageenan gel beads is described 

in Chapter 6. It was demonstrated that 3-CB degradation and g rowth occurred 

in the gel beads. Subsequently, cells grown in suspension were concentrated 

and immobilized in different ratios. An increased dechlorination rate was 

achieved w i th extra D. tiedjei cells (for 3-CB and 3,5-dichlorobenzoate) and 

w i th extra M. hungatei cells (for 3-CB). Addition of extra S. buswellii cells 

only resulted in a higher specific activity of D. tiedjei cells. In that case, 

immobilized cell numbers of D. tiedjei, M. hungatei, and M. concilii were lower 

than wi thout extra S. buswellii. The specific activity was around 1 x 10"15 mol 

3-CB D. tiedjei cell"1 h'1 in most of these experiments. In pure cultures w i th 

pyruvate, the dechlorinating activity of D. tiedjei is 0.1 pmol 3-CB ce l l 1 day 1 , 

i.e. 4 x 10"15 mol 3-CB cel l1 h"1 (Tiedje et a/., 1987). The interbacterial 

distances were determined by the cell densities. Therefore, a variation of the 

cell ratios had to affect the rate of the hydrogen diffusion between S. 

buswellii and the t w o hydrogen consumers, D. tiedjei and M. hungatei. The 

minimal interbacterial distances were calculated and compared w i th the 

substrate conversion rates. Indeed, the changes in the calculated distances 

could, at least partially, explain the changes in the measured substrate 

conversion rates. Unfortunately, better g rowth of cells in the proximity of 

syntrophic partner cells could neither be established wi th carrier materials 

(Chapter 5) nor in gel beads (Chapter 6). The performance of the immobilized 

consort ium was not tested in continuous f low reactors (which would be more 

like wastewater treatment plants), but in batch cultures a high activity was 

achieved (up to 0.56 mM/h) and only low concentrations of intermediary 

products accumulated transiently. 

In conclusion, the toxici ty tests depict the sensitivity of granular sludge 

to MCPs and MCBs. Stored sludge which in practice is used again would 

perform better when the exposure to toxic compounds is preceded by a 

reactivation period. Furthermore, as has been frequently observed, 2-CP was 

most easily biodegraded, while the other two MCPs were not or hardly 

degraded. Methanogenic degradation of 2-CP has been observed to proceed 

via phenol. Here we found another pathway via 3-CB. In addit ion, it was 

possible to grow a completely mineralizing consortium on 3-CB. However, an 

external electron donor was important, and, under starting condit ions, 

indispensable. The consortium did not aggregate nor adhere to surfaces, but it 

could convert 3-CB at a high rate when immobilized in a gel matrix. 
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7. SUMMARY 

Dechlorination could be accelerated by an increase of the cell numbers of the 

dechlorinators or the hydrogenotrophic methanogens and not of the 

syntrophic benzoate oxidizers. In the presence of carrier materials, st imulation 

of the growth of the dechlorinating bacteria or the aceticlastic methanogens 

decreased the t ime period required for mineralization. 
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Chapter 8 

SAMENVATTING 

Milieuvervuiling met gechloreerde verbindingen is vooral een gevolg van 

(agro)industriele activiteit. Veel onderzoek naar de omzettingen van 

gechloreerde verbindingen door micro-organismen is gericht op de afbraak 

onder anaerobe (zuurstofloze) omstandigheden, omdat hoog-gechloreerde 

verbindingen (verbindingen die veel chlooratomen bevatten) onder anaerobe 

omstandigheden beter afbreekbaar zijn dan onder aerobe omstandigheden. Er 

ontstaan problemen omdat deze verbindingen methaanvorming (biogas-

vorming) kunnen remmen en de micro-organismen die deze verbindingen 

kunnen afbreken niet in alle gevallen aanwezig zijn. Deze micro-organismen 

zijn bijvoorbeeld vaak afwezig in afvalwaterzuiveringsinstallaties. In dit 

proefschrift is het onderzoek gericht geweest op een groep gechloreerde 

aromaten (benzoaten en fenolen) en heeft als doel gehad de afbraak van die 

verbindingen door methaanvormende consortia van micro-organismen te 

bestuderen. De biochemische mechanismen voor de afbraak van aromaten 

onder anaerobe omstandigheden verschillen sterk van die onder aerobe 

omstandigheden, omdat onder aerobe omstandigheden zuurstof een reactant 

in de afbraak is en er onder zuurstofloze condities (dus) andere 

reactiemechanismen nodig zijn om de aromatische ring af te breken. Bij de 

afbraak van gechloreerde aromaten komt er een extra stap bij, waarbij het 

chlooratoom verwijderd wordt . Onder omstandigheden waarbij methaan wordt 

gevormd (methanogene condities) begint de afbraak van chloorverbindingen 

met een reductieve dechlorering. Het chlooratoom wordt vervangen door een 

waterstofatoom. Deze omzetting kan biologisch bruikbare energie opleveren 

als de chloorverbinding als terminale electronenacceptor van een 

ademhalingsketen wordt gebruikt. Na de reductieve dechlorering blijft er een 

aromaat over (bijvoorbeeld benzoaat of fenol), die vervolgens geoxideerd 

wordt to t acetaat, waterstof en kooldioxide. Deze oxidatie van benzoaat en 

fenol levert geen energie onder standaardomstandigheden, maar kost juist 

energie. De reactie kan daardoor alleen verlopen als waterstof wordt 

weggenomen door een waterstofconsumerend partner-organisme, dat zelf 

voor de aanvoer van waterstof weer afhankelijk is van de waterstofproducent. 

Er is hier sprake van een syntrofe omzett ing. De micro-organismen die als 
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syntrofe partner van een benzoaat- of fenol-oxiderende bacterie kunnen 

optreden, zijn bijvoorbeeld methanogene archaea. Verder kunnen ook sommige 

dechlorerende bacterien waterstof als electronendonor gebruiken. Bij de 

volledige afbraak van een gechloreerde verbinding tot kooldioxide, methaan en 

chloride is dus een consortium van verschillende micro-organismen nodig. 

Tenslotte bepaalt de afstand tussen de syntrofe partners, in verband met de 

afstand voor de waterstofdif fusie, de omzettingssnelheid van de aromatische 

verbinding. De afstanden tussen de bacterien zijn kleiner als de micro-

organismen niet vrij zweven in de vloeistof, maar aggregaten vormen op en/of 

in dragers of, zonder dragers, als vlokken of korrels. In anaerobe 

opstroomreactoren, de zogenaamde UASB-reactoren (een afkorting van 

Upflow Anaerobic Sludge Blanket reactor), aggregeren de micro-organismen 

spontaan tot een compacte biomassa, het korrelslib. Deze literatuurgegevens 

worden in Hoofdstuk 1 besproken. 

Hoofdstuk 2 beschrijft de toxiciteit van monochloorfenolen (MCPs) voor 

korrelslib uit een UASB-reactor. Als maat voor de invloed van MCPs op de 

activiteit van het korrelslib werd methaanvorming uit een mengsel van 

acetaat, propionaat en butyraat gebruikt. Ook kon door het gebruik van meer 

substraten dan alleen acetaat ook de gevoeligheid van syntrofen voor MCPs 

worden bepaald. De remming van methaanvorming was afhankelijk van de 

concentratie, de MCP-isomeer en de duur van de blootstell ing. Slibmonsters 

uit reactoren die vergelijkbaar afvalwater ontvingen, verschilden in hun 

gevoeligheid voor MCPs. Deze waarnemingen zijn mogelijk veroorzaakt door 

verschillen in de soortsamenstelling van de bacterien of een ongelijke 

korrelgrootte. Het slib werd koud bewaard en opnieuw getest. De 

methaanvormingssnelheid was lager en de gevoeligheid voor 2-CP hoger. 

Echter, door een reactiveringsperiode na koude opslag verminderde het 

toxische effect. Remming van methaanvorming door MCPs vond plaats in het 

mM-gebied. 

De afbraak van MCPs werd bestudeerd in monsters uit verschillende 

methanogene milieus, hoofdzakelijk korrelslib uit verschillende UASB-reactoren 

(Hoofdstuk 3). 2-CP werd omgezet door korrelslib, sedimentmateriaal en veen. 

De eerste intermediaire stoffen die ophoopten waren fenol en waarschijnlijk 3-

chloorbenzoaat (3-CB). Dit wees erop dat 2-CP zowel reductief gedechloreerd 

werd to t fenol als gecarboxyleerd en gedehydroxyleerd tot 3-CB. Er werden 

twee ophopingen uit het slib verkregen. Een daarvan zette 2-CP eerst om in 
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fenol en later in 3-CB. Deze cultuur verloor na verloop van ti jd zijn 2-CP-

afbrekende activiteit. De andere dechloreerde 2-CP en dichloorfenolen 

specifiek op de o/?/?o-plaats en vormde geen 3-CB. 

De Hoofdstukken 4 , 5 en 6 beschrijven de dechlorering en de 

daaropvolgende mineralisatie (tot kooldioxide, methaan en chloride) van de 

modelverbinding 3-CB door een gedefinieerd consortium van vier soorten 

micro-organismen. Desulfomonile tiedjei dechloreerde 3-CB reductief to t 

benzoaat, Syntrophus buswellii oxideerde benzoaat syntroof to t acetaat en 

waterstof, Methanospirillum hungatei vormde methaan uit waterstof en 

kooldioxide en Methanosaeta concilii zette acetaat om in methaan en 

kooldioxide. Om de dechlorering en de uiteindelijke mineralisatie van 3-CB te 

optimaliseren werden de groeicondities gevarieerd (Hoofdstuk 4). Daarnaast 

werden de effecten van dragermaterialen (Hoofdstuk 5) en van de inbedding 

van het consortium in een gel (Hoofdstuk 6) bestudeerd. In Hoofdstuk 4 wordt 

de constructie van het 3-CB-afbrekende consortium beschreven. Voor een 

evenwichtige groei van de vier micro-organismen van het consort ium werd het 

medium geoptimaliseerd. D. tiedjei gebruikte waterstof als electronendonor 

voor de dechlorering van 3-CB, terwij l de productie van waterstof alleen 

plaatsvond als S. buswellii benzoaat oxideerde. Voor het opstarten van de 3-

CB-omzetting moest daarom een extra electronendonor worden toegevoegd, 

bijvoorbeeld pyruvaat. Verder werden het substraatspectrum, de toxiciteit van 

3-CB voor de individuele soorten uit het consortium en het effect van een 

buffer bestudeerd. Een evenwichtig consortium bestond uit ongeveer 1 8 % D. 

tiedjei, 7 0 % S. buswellii, 1 0% M. hungatei en 3% M. concilii als percentage 

van het aantal cellen. 

In Hoofdstuk 5 worden de effecten van dragermaterialen op het 3-CB-

afbrekende consortium beschreven. Het consortium zette 3-CB en pyruvaat 

om in aanwezigheid van een aantal dragermaterialen. In aanwezigheid van 

polstyreenbollen was de aanloopfase voor de dechlorering begon verkort. In 

aanwezigheid van gemalen vermiculiet of dood korrelslib zette D. tiedjei 

pyruvaat sneller om en vormde M. concilii sneller methaan uit acetaat. Als 

gevolg hiervan duurde de volledige mineralisatie van 3-CB in aanwezigheid van 

polystyreen, vermiculiet of slib korter. De stimulerende werking van deze 

materialen kon niet verklaard worden door hechting van de cellen aan de 

dragermaterialen (en dus een verkorte afstand tussen de syntrofe partners), 

want in reinculturen traden vergelijkbare effecten op. Bovendien hechtten de 
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cellen slecht aan glasplaatjes en teflonplakjes. Verder groeiden er evenveel 

cellen vrij zwevend in de vloeistof met dragermateriaal als zonder. Mogelijk 

waren de omstandigheden voor aggregatie of hechting aan dragers niet 

optimaal. Door de versnelde omzetting van pyruvaat en acetaat of de 

verkorting van de aanloopfase voor dechlorering kon niettemin de benodigde 

ti jd voor volledige mineralisatie van 3-CB tot 5 0 % worden teruggebracht. 

In Hoofdstuk 6 werd onderzocht hoe net 3-CB-afbrekend consortium 

kon worden ingebed in gelbolletjes, bestaande uit K-carrageen (een agar-achtig 

polysaccharide). 3-CB-afbraak en celgroei in de gelbollen werden aangetoond. 

Vervolgens werden voorgegroeide cellen geconcentreerd en in verschillende 

verhoudingen in de gel ingebed. Een hogere dechloreringssnelheid werd 

bereikt met extra D. tiedjei-ceWen (met 3-CB en 3,5-dichloorbenzoaat) en met 

extra M. hungatei-ceWen (met 3-CB). De toevoeging van extra S. buswellii-

cellen leidde alleen tot een hogere specifieke activiteit van D. tiedjei-ceWen. In 

dat geval waren de aantallen ingebedde cellen van D. tiedjei, M. hungatei en 

M. concilii lager dan in de bollen zonder extra S. 6tyswe///7-cellen. Met de 

celdichtheden veranderen ook de afstanden tussen de cellen. Dit betekent dat 

met een verandering in de verhoudingen tussen de aantallen van de 

verschillende soorten ook de waterstofdiffusiesnelheid van S. buswellii naar D. 

tiedjei en M. hungatei veranderde. De minimale interbacteriele afstanden 

werden berekend en vergeleken met de gemeten substraatomzet-

tingssnelheden. Inderdaad konden de veranderingen in de berekende 

afstanden de veranderingen in de substraatom-zettingssnelheden ten minste 

deels verklaren. Helaas kon niet worden aangetoond dat de nabijheid van 

syntrofe partnercellen leidde tot een verhoogde groeisnelheid, noch met 

dragermaterialen (Hoofdstuk 5), noch in gelbollen (Hoofdstuk 6). Het gedrag 

van het ingebedde consortium is niet in continue reactoren getest, die een 

beter modelsysteem zouden zijn voor afvalwaterzuiveringsinstallaties. 

Niettemin werden in batchculturen hoge omzettingssnelheden behaald (tot 

0 ,56 mM per uur) en tussenproducten hoopten zich tussentijds in slechts lage 

concentraties op. 

De belangrijkste conclusies kunnen als volgt worden samengevat. De 

uitgevoerde toxiciteitstesten geven een beeld van de gevoeligheid van 

korrelslib voor MCPs. Koud bewaard slib was na een reactivatie voorafgaande 

aan de blootstelling aan toxische stoffen minder gevoelig. Hiervan zou gebruik 

gemaakt kunnen worden bij het (her-)opstarten van een UASB-reactor. Verder 
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werd, zoals in verschillende andere studies ook is gevonden, 2-CP het 

makkelijkst afgebroken, terwijl 3-CP en 4-CP niet of nauwelijks afgebroken 

werden. Naast de bekende methanogene afbraakroute voor 2-CP via fenol 

werd tevens een route via 3-CB gevonden. Op 3-CB kon een consortium 

groeien, dat 3-CB volledig mineraliseerde. Echter, de aanwezigheid van een 

electronendonor was van belang en in het begin noodzakelijk. Het consortium 

aggregeerde niet en hechtte niet aan dragermaterialen, maar ingebed in 

gelbollen kon het 3-CB met een hoge snelheid omzetten. Door de toevoeging 

van extra cellen van de dechlorerende bacterien of van de 

waterstofverbruikende methaanbacterien, maar niet door toevoeging van de 

benzoaat-omzettende bacterien, kon de dechloreringssnelheid worden 

verhoogd. In aanwezigheid van dragermaterialen werden dechlorerende 

bacterien en acetaat-afbrekende methaanbacterien gestimuleerd, hetgeen 

leidde tot een verkorting van de benodigde tijd voor mineralisatie. 
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