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STELLINGEN 

1. Het toenemende gebruik van geografische informatiesystemen maakt aanpassing van 
traditionele bodemkundige en agronomische karteringsactiviteiten zowel mogelijk 
als noodzakelijk {dit proefschrift). 

2. Aangezien fuzziness een eigenschap is van de werkelijkheidsperceptie moet het tot 
uiting worden gebracht in het conceptuele model waarmee geografische 
verschijnselen beschreven worden. Onzekerheden die betrekking hebben op 
onnauwkeurigheden en/of fouten komen daarentegen voor in elke 
terreinbeschrijving, ongeacht het conceptuele gegevensmodel (ditproefschrift). 

3. Het kwantificeren van onzekerheden in geografische databestanden dient te 
geschieden aan de hand van ruimtelijke modellen in plaats van met de nog veel 
gebruikte globale indices (ditproefschrift). 

4. In discussies over het al dan niet fuzzy zijn van vegetatietypen in ruimte en tijd dient 
te worden bedacht dat onzekerheid geen eigenschap is van een landschap, maar een 
kenmerk van onze kennis en perceptie van dat landschap. 

Droesen, W.J. (1999) Spatial modelling and monitoring of natural landscapes 
(Thesis Wageningen University). 

Sanders, M.E.(1999) Remotely sensedhydrological isolation: a key factor 
predicting plant species distribution in fens (Thesis Wageningen University). 

5. De opmars van desktop GIS-producten, die de koppeling van geografische 
databestanden en bijvoorbeeld tekstbestanden realiseren via paginageorienteerde 
ingebedde objecten, onderstreept de kracht van de papieren kaart als metafoor voor 
de geografische werkelijkheid. 

6. Een lokaal positioneringssysteem (LPS) is in de precisielandbouw meer op zijn 
plaats dan een globaal positioneringssysteem (GPS). 

7. Een wetenschapsgebied waarin men medeonderzoekers ziet als rivalen in plaats van 
collega's is nodig toe aan een nieuw paradigma. 

8. Het verwoorden van de stelligheid van een uitspraak met de term met aan zekerheid 
grenzende waarschijnlijkheid laat veel ruimte voor interpretatie, omdat deze term 
uitsluitend zekerheid uitsluit. 

9. De eco-toeristenindustrie zou vliegreizigers moeten weigeren. 

10. Universitaire internetsites geven vaak blijk van een grotere zorg voor vorm dan voor 
inhoud. 



11. De salariering, aard van werkzaamheden en het grotendeels ontbreken van verdere 
loopbaanmogelijkheden op de universiteit rechtvaardigen vervanging van de 
acroniemen AIO en OIO door OTO (Onderbetaald Tijdelijk Onderzoeker). 

12. Het promotieonderzoek van een echtgenoot en vader vergt grote inzet van vrouw en 
kind. 

Stellingen behorende bij het proefschrift 
Geographical Information Modelling for Land Resource Survey 
Sytze de Bruin, Wageningen, 30 mei 2000. 
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1 Introduction 

1.1 Background 

For many years, land resource survey was regarded as the recognition and 
subsequent mapping of different types of soil, vegetation, rocks, landforms or other land 
resources (Webster and Oliver, 1990, p. 1). The introduction of computer techniques 
initially did not change this, as it merely resulted in manual cartographic tasks being 
replaced by automation. The capabilities of early spatial analysis systems that emerged 
along with the map-making tools went little further than raster overlaying and subsequent 
visualisation using crude line printer graphics (Burrough and McDonnell, 1998). The 
poor graphical quality of these prints prevented them from being accepted as 
cartographic products. 

Pushed by technological developments and increased awareness of the importance of 
being able to manipulate large quantities of spatial information, geographical information 
systems (GIS) have become widely accepted in today's world (Burrough and McDonnell, 
1998; Longley et al., 1999). This has had, and will continue to have, major implications 
for land resources survey. No longer is the paper map, which previously dictated the 
form of spatial representation, the default data store and end-product of a survey. 
Geographic information theory provides surveying disciplines with a conceptual 
framework to formulate alternative and richer spatial representations that can be mapped 
onto data models provided by computer technologists (Molenaar, 1989, 1996; Raper, 
1999). Furthermore, digital technology has improved the accessibility of ancillary data 
(e.g. digital elevation models, remotely sensed imagery, postcode areas) and enables their 
utilisation in target database production, (e.g. Molenaar and Janssen, 1994; Gorte and 
Stein, 1998; Goovaerts, 1999). Unfortunately, there are disciplinary gaps between the 
different fields of study involved, so that new opportunities are not yet fully exploited in 
land resource survey. This stresses the need for more comprehensive studies exploring 
the utility of new concepts and methods. 

Another consequence of the common acceptance of GIS is that land resource 
databases are increasingly being used beyond disciplinary boundaries, for example, to 
support decision making (Goovaerts, 1997, 1999; Gorte, 1998; Eastman 1999). 
Likewise, they are used in combination with other data sets by environmental scientists 
engaged in modelling and monitoring physical processes on or near the earth's surface. 
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The greater distance between data producers and data consumers (Veregin, 1999) and 
integrated use of multiple data sets and physical response models (e.g. Heuvelink, 1993, 
1998a) raise the issue of uncertainty. 

Land resource databases are certainly not error free. Surveyors have to resort to 
sampling to obtain data on phenomena of interest. Exhaustively sampled data are usually 
only available in the form of non-exact, (weakly) correlated secondary data. Vague class 
definitions may contribute to further uncertainty. Although uncertainty modelling for 
spatial data has been the subject of much recent research (e.g. Foody et al, 1992; 
Goodchild et al, 1992; Altaian, 1994; Hunter and Goodchild, 1995; Fisher, 1998; 
Worboys, 1998; Kyriakidis et al, 1999), proposed methods and measures are only 
sparsely used in applied environmental research (Goovaerts, 1999). Additionally, two 
types of uncertainty (i.e. fuzziness and inaccuracy) are commonly confused in literature, 
although they differ in several key respects (Manton et al, 1994; Fisher, 1996; Lark and 
Bolam, 1997). 

Figure 1.1 Research on the interface between five fields of study. 

1.2 Aim and scope 
As observed above, the increasing use of GIS has at least three major implications 

for land resources survey: 
• Alternative models for spatial representation have become available; 
• Increasingly, ancillary data can be used to support target database generation; 
• There is greater need for uncertainty analysis. 
However, owing to disciplinary gaps, the resulting opportunities and requirements are far 
from being fully adopted in practice. Against this background, the overall objective of 
this research is to explore and demonstrate the utility of new concepts and tools for 
improved land resource survey. This requires investigations on the interface between 
several fields of study, five of which are included in the current research (see Figure 1.1): 
land resource survey, geographic information theory, remote sensing, statistics, and fuzzy 
set theory. Capitalising on my own background in soil science and my colleagues' 
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experience in land cover mapping, the research concentrates on the survey of soil and 
land cover. 

Even with these restrictions, the subject remains too broad for comprehensive 
coverage in a study of this size. Therefore, the shaded inner circle in Figure 1.1, 
indicating the scope of this study, is smaller than the complete area of overlap of the five 
ellipses. Its actual size is not intended to reflect the relative contribution of this research, 
though. Several choices had to be made to keep the subject within manageable 
proportions, the most important of which are listed below. 
• The study focuses on representation of the terrain in a GIS database and on querying 

that database. It does not include, for example, dynamic process modelling in GIS; 
• The research deals with data uncertainty rather than data quality. The latter also 

concerns fitness for purpose (Unwin, 1995; Veregin, 1999) and would require 
analysis of the use of data, for example in risk-based policy; 

• The research does not deal with all aspects of uncertainty but focuses on fuzziness of 
class intensions and assessment of thematic accuracy. Their effect on the spatial 
extent of geographical features is also considered. 

• Terrain descriptions are essentially two dimensional (2D), or 2.5D at most. The only 
way the third spatial dimension is considered is by treating it (elevation) as an 
attribute. Temporal aspects are captured using a snapshot approach (Peuquet and 
Duan, 1995), i.e. by time stamping a sequence of spatial state descriptions; 

• Most concepts and tools are explored and demonstrated in either a soil survey or a 
land cover mapping context, but not both. 
The overall objective was broken down into various partial goals that are being 

addressed in Chapters 2 to 7 as indicated below and detailed in the introductions to the 
respective chapters. 

1.3 Outline of the thesis 

The core of this thesis (Chapters 3-7) is based on a series of five papers, by myself 
as the principal author, that have been or will be published in international peer-reviewed 
journals. These chapters cover different concepts and tools for improved land resource 
survey from the perspective of GIS use. Each chapter is introduced separately by stating 
its partial research goals and the relation to other research in the field. They are preceded 
by a general introduction to spatial modelling concepts and tools that are relevant to land 
resources survey (Chapter 2). These are only briefly discussed in Chapter 2, as they are 
further explored and exemplified by case studies in Chapters 3 to 7. 

Chapter 3 formulates and demonstrates a methodological framework that takes 
advantage of GIS capabilities to interactively formalise soil-landscape knowledge using 
stepwise image interpretation and inductive learning of soil-landscape relationships. It 
involves terrain description at successive levels of detail, information transfer between 
these levels, and explicit representation of expert decisions. 

Chapter 4 describes a method to improve conventional soil-landscape modelling by 
representing fuzzy transition zones between soil-landscape units. The method uses fuzzy 
c-means clustering of attribute data derived from a digital elevation model and employs a 
new procedure for cluster validity evaluation. 



4 Chapter 1 

Chapter 5 presents a probabilistic method to improve the accuracy of remotely 
sensed image classifications. First, an image is stratified using GIS-stored ancillary data. 
Next, a priori class probability estimates for each stratum are iteratively improved using 
intermediate classification results. The chapter also shows how posterior probability 
vectors can be used to represent local uncertainty in image classifications and in the 
results of subsequent analysis. 

Chapter 6 introduces the concept of spatial uncertainty, i.e. joint uncertainty about a 
spatial phenomenon at several locations taken together. It explores the use of two 
geostatistical tools, i.e. collocated indicator co-kriging and stochastic simulation, to 
evaluate uncertainty in area estimates derived from classified remotely sensed imagery 
and sampled reference data. 

Chapter 7 first explains the difference between membership grade and probability of 
membership and then exemplifies how these uncertainty measures can be combined to 
handle GIS queries expressed in verbal language. Such queries typically involve a 
mixture of uncertainties in the outcome of events that are governed by chance and in the 
meaning of linguistic terms. 

Finally, Chapter 8 concludes the thesis with a summary of the main findings and 
suggestions for further research. 

1.4 Location of the case studies 

The spatial modelling tools and concepts are demonstrated by five case studies from 
a common study area located around the village of Alora in the province of Malaga, 
southern Spain (see Figure 1.2). The Alora region is within the Betic Cordillera, the most 
western of the European Alpine mountain ranges, and includes part of the drainage basin 
of the river Guadalhorce. The climate is dry Mediterranean with an average annual 
precipitation of 531 mm and a dry period of 4.5 months (De Leon et ah, 1989). There is 
great variation in geology, landscapes and soils within short distances, and a variety of 
crops are grown. 

For the past nine years, Alora has provided the setting for a field training project of 
Wageningen University in which students and lecturers from several disciplines come 
together around the central theme of sustainable land use. Thanks to this project I could 
count on local expertise as well as free access to several relevant data sets, such as a 
digital elevation model, remotely sensed imagery, aerial photography and 
orthophotography. Hence the choice of area. Details of the study area and descriptions of 
the used data sets are provided in Chapters 3 to 7. 
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Figure 1.2 Location of the Alora region (indicated by the broken line) in the province of 
Malaga, southern Spain. 





2 Spatial modelling concepts 

2.1 Introduction 
The purpose of this chapter is to introduce several spatial modelling concepts that 

are relevant to land resources survey. The concepts are only briefly discussed, as they are 
further explored and exemplified in the case studies presented in Chapters 3 to 7 of this 
thesis. 

Acquisition of geo-information is always done with a particular view or model of 
real-world phenomena in mind. This view affects how geographic data is modelled in the 
computer and the way in which it can be used for further analysis. Therefore, I will start 
with a brief section on data models. Treatment of this subject is limited to the level of 
conceptual data modelling (Molenaar, 1996, 1998) and does not involve either logical 
data schemas or physical implementation of these on the computer. Next, there is a 
section on data acquisition and predictive mapping of land resources. The chapter ends 
with a section on uncertainty modelling. Frequently, reference is made to later chapters 
where more explanation is given and example applications are described. 

2.2 Data modelling 

2.2.1 Conceptual models of geographic phenomena 

A terrain description is inevitably an abstraction, or, in other words, a model of the 
real terrain it represents. Until recently, two fundamentally different conceptual models 
were used for representing geographic phenomena: the discrete object model1 and the 
continuous field model2 (Burrough, 1996). The discrete object model views the world as 
being composed of well-defined spatial entities. A key feature of this view is that each 
entity is assigned to only one of a set of clearly distinct categories or classes. Each object 
has an identity, occupies space and has properties. Objects are homogeneous within their 
boundaries, at least with respect to some properties (Frank, 1996). Examples are 
buildings, runways, farm lots, railways, etc. The continuous field model, on the other 

1 Also known as crisp object or exact object model. 
2 Also known as surface model. 
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hand, views geographic space as a - not necessarily smooth - continuum. It assumes that 
every point in space can be characterised in terms of a set of attribute values measured at 
geometric coordinates in a Euclidean space (Burrough and Frank, 1995). Examples are 
elevation and slope in an undulating landscape, concentration of algal chlorophyll in 
surface water, green leaf area index in an agricultural field, etc. 

These two data models are too restrictive when it comes to modelling phenomena 
that are conceived as nameable objects but without the object classes having clear-cut 
boundaries. Zadeh (1965) first introduced the concept of fuzzy sets to deal with classes 
that do not have sharply defined boundaries. Fuzzy sets are characterised by membership 
functions that assign grades of membership in the real interval [0, 1] to elements. The 
membership grade expresses the degree to which an element is similar to the concept 
represented by a fuzzy set. Membership in a fuzzy set is thus not a matter of yes or no but 
of a varying degree. Consequently, an element can partially belong to multiple fuzzy sets. 
Fuzzy set theory allows geographic phenomena to be modelled as objects whose 
boundaries are not exactly definable. Geographic space is then seen to be composed of 
elementary units that belong to classes having diffuse boundaries in attribute space. 
Presence of spatial correlation among these units - in fact a necessity for any kind of 
mapping (Journel, 1996) - ensures that they form spatially contiguous regions (Burrough 
et al., 1997). Each of these fuzzily connected regions represents an object with 
indeterminate boundaries or fuzzy object. The spatial extent of fuzzy objects can be 
determined by evaluating class membership functions in combination with adjacency 
relationships between geographic elements (Molenaar, 1998). 

Examples of phenomena that have been modelled using fuzzy set theory are: climatic 
regions (McBratney and Moore, 1985); polluted areas (Hendricks-Franssen et al, 1997), 
soils (Burrough et al, 1997), soil-landscapes (De Bruin and Stein, 1998; see Chapter 4), 
vegetation (Foody, 1992; Droesen, 1999), and coastal geomorphology (Cheng, 1999). 

2.2.2 GIS data structures 

The nature of digital computers imposes that computerised geographic data are 
always stored in a discretised form. There are two basic data structures to store 
geographic data in the computer: the vector structure and the raster structure. A third 
structure, based on object-orientated programming languages (see Burrough and 
McDonnell, 1998, pp. 72-74) is not treated here separately, because in essence it recurs 
to the basic structures. Besides, to date the implementation of object-oriented databases 
in GIS has been limited (Burrough and McDonnell, 1998). 

Figure 2.1 Point, line and polygon of the vector structure. 
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The vector structure uses points, lines and polygons to describe geographic 
phenomena (see Figure 2.1). The geometry of these elementary units is explicitly and 
precisely defined in the database. Points are geometrically represented by an (x, y) 
coordinate pair, lines consist of a series of points connected by edges, and polygons 
consist of one or more lines that together form a closed loop. The thematic attribute data 
of a vector unit reside in one or more related records. 

The vector structure is very suited to represent discrete geographic objects. It also 
lends itself to represent continuous fields and fuzzy objects (see Figure 2.2). For 
example, a triangular irregular network (TIN) based on a Delauney triangulation of 
irregularly spaced points provides a vector data model of a continuous field (Burrough 
and McDonnell 1998). 

/K^V~Y^yfC 

\ 1 J s j y ^ 

V| 
\ 

Degree of membership 

(a) (b) 

no 
H 0 - 0.4 

0.4-0.8 
0.8-1.0 

Figure 2.2 Vector representations of a continuous field (a) and a fuzzy object (b). Figure 2.2(a) 
is a perspective view of a TIN-based digital elevation model. Figure 2.2(b) shows Thiessen 
polygons that are shaded according to the degree to which they are part of the fuzzy object. 

The raster data structure comprises a grid of n rows x m columns. Each element of 
the grid holds an attribute value or a pointer to a record storing multiple attribute data of 
a geographic position. The raster structure has two possible interpretations (Figure 2.3): 
the point or lattice interpretation and the cell interpretation (ESRI, 1994a; Fisher, 1997; 
Molenaar, 1998). The former represents a surface using an array of mesh points at the 
intersections of regularly spaced grid lines. Each point contains an attribute value (e.g. 
elevation). Attribute values for locations between mesh points can be approximated by 
interpolation based on neighbouring points (Figure 2.3a). The cell interpretation 
corresponds to a regular tessellation of the surface. Each cell represents a rectangular 
area using a constant attribute value (Figure 2.3b). 
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Figure 2.3 Point interpretation (a) and cell interpretation (b) of the raster structure. 

The spatial resolution of a raster refers to the step sizes in x (column) and y (row) 
directions. In the case of a point raster these define the distances between mesh points in 
the terrain. In a cell raster they define the size of the sides of the cell. Given the 
coordinates of the raster origin, its spatial resolution and information on projection, the 
geographic position of a raster element is referred to implicitly by means of the row and 
column indices. 

Like the vector structure, the raster structure is capable of representing all three 
conceptual models described in Section 2.2.1. Figure 2.3 shows raster representations of 
a continuous field. Figure 2.4 shows examples of cell rasters representing a discrete 
object and a fuzzy object. 
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Figure 2.4 Cell raster representations of a discrete object (a) and a fuzzy object (b). 

The choice of using either the raster structure or the vector structure to model 
geographic information used to be an important conceptual and technical issue. At 
present, the data structures are no longer seen as mutually exclusive alternatives (Unwin, 
1995; Burrough and McDonnell, 1998). Molenaar (1998) showed that the vector and 
raster structures have similar expressive powers. Table 2.1 summarises how both 
structures enable representation of all three conceptual models of geographic phenomena. 
In addition, earlier problems regarding the quality of graphical output and data storage 
requirements of raster systems have largely been overcome with today's computer 
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hardware and software. Many GIS now support both structures and allow for conversion 
between them. Yet, if a GIS analysis involves multiple data sets these are usually 
required to be in the same structural form (Burrough and McDonnell, 1998). 

Table 2.1 Possible implementations of the three conceptual models of geographic 
phenomena in vector structure and raster structure. 

Conceptual 
model Vector structure Raster structure 

Continuous 
field 

Exact 
object 

Fuzzy 
object 

Create a TIN by means of a 
Delauney triangulation of 
irregularly spaced sample points 

Assign object identifier to 
geometrical element(s) belonging to 
the object; this is equivalent to 
relating geometrical element(s) to 
the object via part of links that are 
valued either zero or one 

Relate geometrical elements to 
fuzzy object viapart o/links in 
[0, 1] interval 

Discretise field into point raster or 
cell raster; assign attribute values to 
raster elements 

Assign object identifier to raster 
cells belonging to the object; this is 
equivalent to relating raster cells to 
the object viapart o/links that are 
valued either zero or one 

Relate raster cells to fuzzy object 
viapart o/links in [0, 1] interval 

2.2.3 Classification and geometric partitioning 

Irrespective of the data structure, spatial modelling always requires geographic space 
to be partitioned into a finite number of geometrical elements. If these elements, denoted 
Xj, are disjoint, they together constitute the geometric universe of the spatial model M, 
or more briefly, the map geometry, GM = {x\, x2,..., x„}. Each elementary unit is linked to 
a single thematic description consisting of a one or more valued attributes. If the attribute 
data is denoted x,, with index y referring to they'th element in GM, then XM = {xb x2, ..., 
x„} denotes the attribute space or feature space of M. Objects in Mean be distinguished 
because they have dissimilar descriptions1. For many GIS applications the differences 
will be primarily thematic. Contiguous geometrical elements sharing the same thematic 
description then belong to one object, at least for the purpose of the survey. 
Classification is a helpful tool to check for this condition. In this context, elements are 
considered to belong to one and the same (data) class if they are described using the 
same set of attributes and if they have similar attribute values. 

1 Molenaar (1994, 1998) introduces the concept map universe, U^, as the set of all objects 
occurring in a map M. Reference to a Uwat this stage assumes a set of known objects. This is an 
unrealistic assumption in a surveying context where objects are yet to be established. Moreover, 
the geometry of objects having an uncertain extent is modelled in GM rather than VM (see 
Molenaar, 1998, p. 198). 
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The term class intension refers to the definition of a class as given by the properties 
that determine class membership. A class is crisp if its intension is clearly defined. In that 
case there are well-defined criteria to determine whether an element should be considered 
a member of the class (Molenaar, 1998). This results in a crisp membership function: 

\\ if x , meets the criteria for membership in A, 

[0 otherwise. 

A system of c classes for which ^ J fiA(\j) = l V j e {1,...,«}, i.e. the classes A{ 

are disjoint and exhaustive with respect to the elements x,, leads to a thematic partition of 
XM. The one-to-one link between elements in XM and those in GM (see above) implies 
that a thematic partition of XM generates a geometric partition of GM (cf. Molenaar, 
1998, pp. 141-142). 

In Section 2.2.1 fuzzy sets were introduced as a means to deal with spatial objects 
with indeterminate boundaries. A fuzzy set has a weakly defined intension, i.e. the 
criteria that define whether an element is a member of the set, or class, are vague. 
Consequently, membership in a fuzzy set A{ is allowed to be partial: 0 < fiA ( x ; ) < 1. If 

/iA.(Xj) = \, element x, has properties that completely match the central notion 

represented by At. If /x^(xy) = 0, the properties of x, definitely exclude it from 

membership in A,. Otherwise the membership function takes an intermediate value. A 

systemofc fuzzy classes for which ^ c / l / < ( x J ) = l V ye{l,...,«} generates a fuzzy 

thematic pseudopartition of XM (Klir and Yuan, 1995), and hence a fuzzy geometric 
pseudopartition of GM- Presence of spatial correlation of data from nearby elements leads 
to their grouping into spatially contiguous regions. The latter can be interpreted as 
objects with a fuzzy extent after evaluating adjacency relationships between geographic 
elements (Molenaar, 1998). 

Methods for constructing membership functions can be divided into expert 
judgement-based and data-driven approaches. The Keys to Soil Taxonomy (Soil Survey 
Staff, 1996) are a well-known system of crisp membership functions that have been 
constructed on the basis of expert knowledge. Partitional or hierarchical cluster analysis 
of a multivariate data set (e.g. Van Ryzin, 1977; Gordon, 1981) can be used to obtain 
data-dependent crisp membership functions. The former divide the entire data set of n 
elements into a specified number (c) of disjoint groups. The latter produce hierarchically 
nested sets of thematic partitions (see Figure 2.5). The partitional fuzzy c-means 
clustering algorithm (Bezdek, 1981) is frequently used to construct fuzzy membership 
functions. On the other hand, Klir and Yuan (1995) describe several direct and indirect 
methods to construct fuzzy membership functions on the basis of expert knowledge. 
Membership functions derived from expert knowledge are also known as semantic 
import models (Burrough and McDonnell, 1998). 
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Figure 2.5 Example of a classification hierarchy. The dashed lines separate hierarchical 
levels of the classification system. 

2.2.4 Classification hierarchy 

A classification hierarchy can be represented as an inverted tree showing relations 
between nested thematic partitions (see Figure 2.5). Sectioning a crisp classification 
hierarchy at any level, as illustrated by the dashed lines in Figure 2.5, will produce a 
partition of the elements into disjoint groups. Each class of a lower level partition is 
wholly contained within a single class of a higher level partition (Gordon, 1981). In a 
downward direction along the tree class intensions become more specific, so that the 
elements' descriptions are specialised. In the opposite case the descriptions of the 
elements become more generalised. 

Hierarchical cluster analysis creates a classification hierarchy by analysing the data 
using some measure of thematic proximity (Gordon, 1981). Classification hierarchies can 
also be obtained by dissection or agglomeration of classes on the basis of expert 
judgement. Similarly, fuzzy classes belonging to a pseudopartition of XM can be 
combined to generate a fuzzy pseudopartition at a higher hierarchical level (e.g. De 
Bruin and Stein, 1998; see Chapter 4). Whereas membership in the union of crisp classes 
is uniquely determined by the membership grades in the individual classes, there exist 
many fuzzy union operators that have validity in different contexts (Klir and Yuan, 
1995). It can be checked that agglomeration of fuzzy classes by standard fuzzy union (i.e. 
I1 A KJA ( x

 y ) = max[/^/( (x j )> ̂ A (x j ) ] ) does not necessarily produce a higher level fuzzy 
pseudopartition of XM and hence Gu. In that context the bounded sum operator (i.e. 
/j,Aj]oA2(\j) = min[l,fiAi(\j) +fiAi(Xj)]) is more appropriate. Note that for this 

particular purpose the upper bound (unity) is non-restrictive so that 

A^2(x,-) = Mx,-) + /U(x,.). 
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2.2.5 Hierarchical object relationships 

Just as there exist spatial objects that are composed of several related geometrical 
elements, there exist composite objects made up of multiple elementary objects. The 
upward relationships between elementary units and higher level objects are expressed in 
part o/links. In general, these links are established on the basis of rules that evaluate two 
types of criteria (Molenaar, 1993, 1998): 

• Criteria specifying the classes of the elementary units that are considered for 
aggregation; 

• Criteria specifying the geometric and topological relationships among these elements. 

Connectivity (of line segments) and adjacency (of area elements) are important 
topological relationships in this respect. For example (see Figure 2.5), adjacent areas 
classified as open coniferous forest, thickly wooded land and forest replant may be 
aggregated to represent a contiguous forest object. In this particular example aggregation 
conformed to a classification hierarchy1. Often this is not the case as classification 
hierarchies and aggregation hierarchies are quite different. 

City 

Residential area 

Houses 

Industrial area 1 

\ / 
Roads Parks Factories 

/ 
\ 

Roads 1 

Commercial area 

/ 

Shops 

\ X 
Roads Offices 

Figure 2.6 Hierarchical relationships between elementary and aggregated objects. The 
dashed lines separate aggregation levels (after Molenaar, 1993). 

Figure 2.6 shows an example of a functional aggregation hierarchy2. The figure 
illustrates the semantic difference between upward links in a classification hierarchy and 
those in an aggregation hierarchy. In a classification hierarchy, classes are linked to 
higher level classes by is a links. For example, a citrus crop is a tree crop, and land 
covered by a tree crop is agricultural land (see Figure 2.5). The links are valid wherever 
the citrus crop is located, irrespective of the neighbouring crops. On the other hand, 
upward links in an aggregation hierarchy are part o/links. For example, a road segment 
R can be part of a residential, an industrial, or a commercial area, each of which is part 
of the city (see Figure 2.6). To determine the type of area of which R actually forms a 

1 This type of aggregation is referred to as class driven aggregation (Molenaar, 1998). 
2 Functional aggregation, on the other hand, requires completely different thematic description 

of aggregate objects, so that other classes should be defined (see Figure 2.6). 
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part it is necessary to evaluate its adjacency relationships with objects of the type house, 
park, factory, office and shop. 

Spatial objects that are considered elementary at one scale may be regarded as 
composite objects at larger scales, whereas they may hold too much detail for 
representation and analysis at smaller scales. When elementary objects are aggregated, so 
will part of their attribute values. At the same time some data may be discarded as they 
hold no significance for the composite objects. Usually, the geometric description of 
lower level objects is lost as a result of merging. Consequently, a terrain description at a 
higher aggregation level contains less detail than a description of elementary objects. In 
the opposite direction, disaggregation of composite objects requires that additional 
information be included in the terrain description (De Bruin et ah, 1999; see Chapter 3). 

2.3 Data acquisition and mapping 

2.3.1 Primary and secondary data 

After choosing a conceptual data model (i.e. continuous field, discrete object or 
fuzzy object), a desired level of spatial detail (i.e. resolution or aggregation level), and 
the thematic attributes for which data are to be recorded, systematic data collection can 
commence. In a land resources survey this typically involves collecting a small sample of 
precisely measured primary data (ground truth) as well as a larger or even exhaustive 
sample of related secondary data. 

Because soil is hidden below the surface, it can only be examined at a limited 
number of locations. Predictive mapping of soil properties at unvisited locations may 
well benefit from complementary data on external indicators such as landscape 
morphology, vegetation and surface colours (e.g. Hall and Olson, 1991; Soil Survey 
Division Staff, 1993; Slater et ah, 1994). Land cover, on the other hand, is readily visible 
on the surface. Yet, if large areas of land are to be mapped it is not feasible to obtain 
complete area coverage by field survey methods alone (e.g. Gillespie et ah, 1996). As 
satellite remote sensing provides a synoptic view of the Earth's surface it allows for 
timely and consistent acquisition of regional and global land cover data (Barnsley et al., 
1997). 

2.3.2 Soil survey 

Using the soil-landscape model, soil surveyors classify and delineate bodies of soil 
on the landscape by directly examining « 0 . 1 % of the soil below the surface (Hudson, 
1990, 1992). The conventional soil-landscape model adopts the discrete object view. It is 
built on the concept of soil-landscape objects. These are terrain units resulting from the 
interactions of the five factors affecting soil formation, i.e. parent material, climate, 
organisms, relief and time (Jenny, 1941; Hall, 1983; Hudson, 1990, 1992; Hall and 
Olson, 1991; Hewitt, 1993). They are conceived as being spatially organised in larger 
landscape units according to an aggregation hierarchy (Soil Survey Division Staff, 1993, 
pp. 9-11). Boundaries between soil-landscape objects can be recognised and mapped as 
discontinuities on the earth's surface, and usually coincide with abrupt changes in the soil 
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cover. Visual interpretation of aerial photography may play a substantial role here (De 
Bruin et al., 1999; see Chapter 3). The relevance of the boundaries for soil mapping is 
checked using field observations such as widely spaced augerings and soil pits. Soil-
landscape objects are grouped into a limited number of classes, often referred to as map 
units (Soil Survey Division Staff, 1993), each with a characteristic soil cover. The soil 
cover is usually described with reference to some system of soil classification (e.g. Soil 
Survey Staff, 1996). Burrough et al. (1997) called this conceptual model the 'double 
crisp' model because identified soil groups are assumed to be crisply delineated in both 
taxonomic space and in geographic space. 

The discrete object view adopted in the original soil-landscape model is an 
approximation and a simplification of a more complex pattern of variation. Boundaries 
between soil-landscape units are often transition zones rather than sharp boundaries. It is 
inappropriate to assign sites within a transition zone to any single soil-landscape unit. 
Rather, these sites should be assigned partial membership in two or more units 
(Lagacherie et al., 1996). This can be achieved by adopting a fuzzy object view. De 
Bruin and Stein (1998), see Chapter 4, explored the use of fuzzy c-means clustering of 
attribute data derived from a digital elevation model (DEM) to represent transition zones 
in the soil-landscape. 

Another modification of the soil-landscape model is based on viewing landscape and 
target soil properties as correlated continuous fields. The modification relies on Jenny's 
(1941) factors of soil formation, but rather than viewing the soil-landscape as being 
composed of discrete objects it adopts a continuous fields view. One approach has been 
to generate multilinear regression models relating a sparse sample of soil data to an 
exhaustive set of attribute data derived from a DEM. The regression models are then 
used to predict the target variables to the grid nodes of the DEM (Moore et al, 1993; 
Odeh et al, 1994; Gessler et al., 1995). A serious drawback of using simple regression 
for spatial prediction is that it takes no account of the spatial dependence among 
locations. Response variables are estimated from local explanatory variables using global 
regression equations. These equations are not exact inasmuch as they do not honour 
measured data values at their locations. Additionally, any information from nearby sites 
is ignored. Therefore, regression does not make full use of the data (Atkinson et al., 
1994). 

On the contrary, geostatistical methods exploit rather than ignore spatial dependence 
of sample data. In geostatistics, spatial variability of a property is considered as a 
realisation of a random function that can be represented by a stochastic model (e.g. 
Isaaks and Srivastava, 1989, pp. 198-236). The geostatistical method of spatial 
prediction is called kriging. At its simplest, kriging is no more than a method of weighted 
averaging of the sampled values of a property Z within a neighbourhood n (Webster and 
Oliver, 1990). However, there are several kriging methods that allow the incorporation of 
secondary data in the interpolation process (e.g. Goovaerts, 1997, 1999). Some kriging 
variants are specially adapted to predict categorical variables (e.g. soil classes). In this 
thesis the use of these methods is explored in the context of land cover mapping rather 
than soil surveying (Chapter 6). 
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2.3.3 Land cover classification 

Satellite remote sensing has become an important tool in land cover mapping, 
providing an attractive supplement to relatively inefficient ground surveys. The 
elementary unit of a remotely sensed image is the pixel (picture element). A recorded 
pixel value is primarily a function of the electromagnetic energy emitted or reflected by 
the section of the earth's surface that corresponds to the sensor's instantaneous field of 
view (IFOV). Sensor systems typically collect data in several spectral bands (e.g. the 
Thematic Mapper sensor on Landsat 5 has seven spectral bands). It is usually assumed 
that the energy flux from the IFOV is equally integrated over adjacent, non-overlapping 
rectangular cells; the pixels' ground resolution cells. In practice, most sensors are centre 
biased such that the energy from the centre of the IFOV has most influence on the value 
recorded for a pixel (Fisher, 1997). The IFOV of a sensor can also be smaller or larger 
than the ground resolution cell. However, in a well-designed sensor system the ground 
resolution cell will approximate the instantaneous field of view of the instrument 
(Strahler et al, 1986). 

A common approach to extract land cover data from remotely sensed imagery is by 
multispectral classification. The usual assumptions are that the image scene is composed 
of discrete, crisply bounded, homogeneous land cover regions that are larger than the 
sensor's ground resolution cells (//-resolution: Strahler et al., 1986). However, several 
classifiers allowing alternative assumptions have been proposed (Robinove, 1981; Wang, 
1990a,b; Foody, 1992, 1997; Eastman, 1997), but these will not be discussed in this 
thesis. In conventional supervised image classification, a pixel is regarded as a sample 
from one of a known number (c) of land cover populations (classes), each having a 
characteristic spectral response pattern. The aim is to assign the pixel to the correct class, 
in which it has full membership. Spectral response patterns are obtained from training 
data for which the true classes are known. Usually sample means and sample variance 
matrices are used as the parameters of normal class probability densities. 

Bayes' classification rule assigns a pixel, x, characterised by its spectral feature 
vector x, to the category C, for which it attains maximum posterior probability 
P(x e C,|x), or more briefly, P (Q |x) : 

where P(x|C() is the probability of x, conditional to C, and P(Ct) is the prior 

probability of C, irrespective of x (Duda and Hart, 1973). The prior probability P(Cj) is 

an initial estimate of the proportion of pixels that belongs to a particular category C,. 
Classification can benefit from stratification of the image, particularly if prior 
probabilities estimates are available for each stratum (Strahler, 1980; Hutchinson, 1982). 
Gorte and Stein (1998) developed an algorithm that uses intermediate classification 
results to iteratively adjust prior probabilities related to spatial strata. De Bruin and Gorte 
(2000), see Chapter 5, used this algorithm to improve land cover classification after 
stratifying Landsat TM imagery on the basis of geological map units. 
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Image classifiers typically ignore the spatial component of data or even assume that 
data vectors in neighbouring pixels are independent, but clearly this is not so. Failure to 
account for spatial dependencies can result in increased classification error rates and 
representations that are patchier than the true scene (Cressie, 1991, pp. 501-504). 
Chapter 6 presents a geostatistical method to update image derived class probabilities of 
type (2.1) by conditioning on a sample of high accuracy land cover data. 

2.4 Uncertainty modelling 

2.4.1 Types of uncertainty 

The fact that any landscape description is a model based on a limited sample of 
measured target attribute data implies that it is never completely certain. One kind of 
uncertainty already referred to concerns fuzziness of the class intensions used in a 
landscape description. Fuzziness is directly related to the fuzzy object world view (see 
Section 2.2.1). 

Uncertainty may also denote a recognition of possible error in the reported value 
(Couclelis, 1996). In this respect it is closely related to accuracy, which is usually 
defined as closeness of estimates to values accepted to be true (Unwin, 1995). Regardless 
of the conceptual model, any terrain description is affected by the latter kind of 
uncertainty. Consider, for example, a statement of the type x e Au or fiA(x) = l, i.e. 

element x belongs to set Ax (Molenaar, 1993, 1996, 1998). An example of such a 
statement is: location x belongs to a high region. Fuzziness then concerns the definition 
of A\ (high). Is the class intension crisply defined, e.g. by an elevation exceeding 500 m, 
or is it defined by a fuzzy membership function? Regardless of the definition of A\, a 
statement /iA (x) = 1 may be inaccurate because the attribute value of x contains 

measurement error and/or there is insufficient evidence to assign x to A\. For example, 
the elevation of x may be derived from a digital elevation model so that it is likely to be 
in error. Or, instead of elevation, air pressure is measured using a precision instrument. 
In that case the evidential support for definite assignment of x to A\ may be lacking. 

A third kind of uncertainty is due to lack of precision. Precision refers to the 
granularity or resolution at which an observation is made, or information is presented 
(Worboys, 1998). It can be expressed in terms of number of bits, or significant digits or 
level of generalisation of a classification system. High precision certainly does not imply 
a high level of accuracy (Unwin, 1995). In this thesis, the fuzziness (Chapters 4 and 7) 
and error or accuracy related (Chapters 5-7) aspects of uncertainty are explored. In the 
remainder of this section they are referred to as fuzziness and inaccuracy respectively. 

2.4.2 Error modelling for inaccuracy assessment 

Map inaccuracies cannot be calculated for complete landscape descriptions, since 
this would require knowledge of accurate values for every mapped location. If this were 
the case, inaccuracy could simply be eliminated by substitution. Error modelling, on the 
other hand, allows an indication of the possible magnitude or distribution of inaccuracies 
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for spatial attributes to be given (Isaaks and Srivastava, 1989, pp. 489-497; Goodchild et 
al, 1992; Heuvelink, 1993, 1998a). 

Measures commonly used in error modelling are error variances, confidence 
intervals, and probability distributions. In a terrain description, an error variance 
represents the expected squared deviation from a reported local value; i.e. the variability 
component not accounted for by the model. A confidence interval reports an interval, 
rather than a single estimate, as well as a probability that the true value falls within this 
interval. Probability distributions specify ranges of possible values, each with an 
associated probability of occurrence. They also allow error modelling for random 
categorical variables. These are random variables on a nominal scale, taking only one 
from an unordered set of discrete values'. Probability distributions provide considerably 
more information than error variances or confidence intervals as they model the extent 
and distribution of possible departure from reported values. Combined with a loss (or 
utility) function, probability distributions allow the risk involved in alternative decisions, 
made on the basis of landscape descriptions that are likely to contain error, to be 
evaluated (Isaaks and Srivastava, 1989; Goovaerts, 1997, 1999; Gorte, 1998; Kyriakidis, 
1999). 

As the term implies, error modelling always requires a model specifying prior 
concepts (decisions) about the spatial phenomenon under study (Goovaerts, 1997, p. 
442). Therefore, error modelling is to some extent a subjective enterprise, with different 
models giving different results. In this thesis, an example from remotely sensed image 
classification is used to illustrate implications of some modelling choices on error 
estimation (Chapter 6). 

2.4.3 Inaccuracy of classified imagery 

Remotely sensed image classifiers typically report only the most likely class for each 
pixel. Classification output thus does not differentiate between pixels being spectrally 
similar to a single class and those presenting spectral similarity with two or more classes 
(Foody et al., 1992; see Figure 2.7). Usually, an accuracy statement is provided in the 
form of an overall classification accuracy measure (producer's accuracy or user's 
accuracy) or a confusion matrix, also known as a misclassification or error matrix. The 
producer's accuracy indicates the probability that a reference pixel is correctly classified, 
and so is a measure of omission error. The user's accuracy, on the other hand, is an 
experimental estimate of the probability that a classified pixel actually represents the 
reported category on the ground, and is thus related to commission error. The confusion 
matrix allows these and other inaccuracy measures for individual categories to be 
calculated (Aronoff, 1982; Congalton et al., 1983 Rosenfield and Fitzpatrick-Lins, 1986; 
Story and Congalton, 1986; Congalton, 1991). 

An obvious shortcoming of confusion matrix-derived measures is their implicit 
assumption of homogeneity over the mapped area (Goodchild et al, 1992). Conversely, a 
model of local inaccuracies is obtained by viewing the unknown class of a pixel as a 

1 Categorical variables and crisp sets are related in the sense that a category is a crisp set. Thus, 
if x is an element and the random categorical variable S(x) takes the value s, for x, then x is a 
member of a crisp set C„ i.e. Ct= {x\ S(x) = S;}. 
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random variable. The vector of posterior probabilities from Bayes' classification rule 
(Eq. 2.1) may then be used to provide an estimate of its conditional distribution, given 
the remotely sensed spectral response (Goodchild et ah, 1992; Foody et ah, 1992; Van 
der Wei et ah, 1998). This approach, which implicitly assumes that the random variables 
in neighbouring pixels are independent, has also been demonstrated by De Bruin and 
Gorte (2000; see Chapter 5). 

Besides neglecting spatial dependence between pixels, the approach based on 
Equation 2.1 does not make full use of available reference data as it ignores their spatial 
component. It does not consider data locations nor does it use spatial dependence models 
that may be derived from the reference data. Kyriakidis (1999) and De Bruin (2000), see 
Chapter 6, proposed geostatistical methods to update image derived class probabilities by 
conditioning on a sample of high accuracy data. These methods not only enable 
improved modelling of local classification inaccuracies, but also allow assessment of 
spatial inaccuracy, i.e. the joint uncertainty about the class label at several pixels taken 
together (e.g. objects). Spatial inaccuracy is modelled by stochastic simulation, i.e. 
generating multiple equiprobable realisations of the joint distribution of attribute values 
in space (Zhu and Journel, 1993; Journel, 1996; Goovaerts, 1997, 1999). 
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Figure 2.7 Overlap between two classes C\ (+) and C2 (o) in a two band spectral space. 
Based on spectral data alone, the pixel of unknown class (A) cannot unambiguously be 
assigned to either class. 

2.4.4 Combining fuzziness and inaccuracy 

The above error models assume that each geometric element belongs to a single 
class that can be positively identified once sufficient data has been collected. Presence of 
mixed pixels invalidates this assumption. In this thesis, multiple class membership at the 
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pixel level is further explored insofar as it is due to fuzzy class intensions1. Fuzzy class 
intensions impose extra modelling efforts as the inaccuracy and fuzziness aspects of 
uncertainty will co-occur. Fuzzy set theory and probability can be used together to model 
both aspects of uncertainty in combination. In Chapter 7 this is demonstrated by 
calculating the expectation of a fuzzy membership function defined on a random 
variable. Chapter 7 also introduces the concept of a fuzzy probability qualifier (or fuzzy 
probability) to deal with vague selection criteria in answering queries on probabilistic 
data. 

1 Mixed pixels may also be due to discrete object boundaries crossing a pixel's ground 
resolution cell or presence of sub-pixel objects (Fisher, 1997; De Bruin and Molenaar, 1999). 





Formalisation of soil-landscape knowledge 
through interactive hierarchical disaggregation1 

Abstract 
The soil-landscape model strongly depends on scarcely documented expert 

knowledge. In this paper a methodological framework is formulated that takes advantage 
of a GIS to interactively formalise soil-landscape knowledge using stepwise image 
interpretation and inductive learning of soil-landscape relationships. It examines 
topology to keep record of potential part of relationships between terrain objects 
denoting discontinuities in soil formation regimes. The relationships are used to visualise 
the pathway along which terrain objects have been derived. They can be applied in 
similar areas to facilitate image interpretation by restricting possible lower level terrain 
objects. The framework may adopt different methods to describe soil variation in relation 
to a terrain description. It is illustrated using stratification of soil texture data according 
to terrain object classes in a case study within the Guadalhorce basin in southern Spain. 
The degree of association between terrain object classes and particle size classes 
increased from 6% to 38% in three steps of image interpretation. 

3.1 Introduction 
The soil-landscape model (Hudson, 1990, 1992) regards the landscape as a mosaic 

of soil-landscape objects that can be grouped into a limited number of classes, each with 
a characteristic soil cover. Boundaries between soil-landscape objects can be recognised 
and mapped as discontinuities on the earth's surface, usually coinciding with abrupt 
changes in the soil cover. Visual image interpretation plays a substantial role in soil-
landscape modelling. Remotely sensed images provide a synoptic view of the survey 
area, in which an interpreter can detect zones of rapid change in one or more soil forming 
factors. 

1 Based on: De Bruin, S., Wielemaker, W.G., and Molenaar, M., 1999. Formalisation of soil-
landscape knowledge through interactive hierarchical disaggregation. Geoderma 91, 151-172. 
© 1999 Elsevier Science B.V. 


