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ABSTRACT 

Vriezinga, C.A., 2000. Thermal runaway and Instability in microwave heated slabs, 

cylinders, and spheres, Ph. D. Thesis, Wageningen University, the Netherlands, 

144 pp., with English and Dutch summary, ISBN 90-5808-206-7 

This study analyzes the runaway of microwave (2450 MHz) heated slabs, cylinders, 

and spheres in free space. It is shown that the phenomenon can be described with an 

S-shaped response curve of steady-state temperature versus microwave power at any 

position within the sample. The analysis demonstrates that the direct influence of the 

temperature dependent loss factor in the absorption of electromagnetic energy is 

canceled by the attenuation constant. Runaway can be understood from the behavior 

of the waves within the sample. In foodstuffs the small decrease of the phase constant 

with increasing temperature causes resonance at certain temperature, which can be 

considered as the physical origin of runaway. So characteristic dimension of food 

samples have to be smaller than a quarter of the temperature dependent wavelength 

to prevent runaway. The investigation of a slab of alumina demonstrates that thermal 

runaway in ceramics with a dielectric loss factor exponentially increasing with 

increasing temperature is caused by the strongly increasing attenuation constant at 

high temperatures. This means that only relatively thick ceramic objects will not be 

damaged by the runaway. The physical and mathematical aspects of bistability are 

investigated for a system with a microwave power directly proportional to time. 

Keywords: microwave heating, thermal runaway, bistability, relaxation oscillations 
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Voorwoord 
Een proefschrift kan niet tot stand komen door de inspanning van een persoon 

alleen. Er is een omgeving nodig, die ruimte biedt aan de promovendus om te onder-

zoeken (niet al te zeer gehinderd door bestuurlijke perikelen en persoonlijke pro-

blemen), er zijn faciliteiten nodig (bijv. computers), er is stimulans nodig, er is 

overleg nodig, er is afstemming nodig, enz. Naast deze algemene zaken, van 

toepassing op iedereen die een werk verricht, is er de concrete hulp. De promo­

vendus kan tijdens zijn onderzoek terecht komen op voor hem onbekend terrein, of 

hij raakt in gevecht met computer programma's, of hij wordt geconfronteerd met 

extreem hoge eisen van uitgevers van wetenschappelijke tijdschriften, of hij komt op 

een andere manier vast te zitten. Dan is er concrete hulp nodig. 

Tal van mensen hebben in meer of mindere mate een bijdrage geleverd in het 

tot stand komen van dit proefschrift. Mijn dank gaat uit naar hen alien, maar de 

mensen die direct betrokken waren bij dit onderzoek, wil ik met name noemen. 

Om te beginnen wil ik de begeleidingscommissie, bestaande uit Gerard Bot, 

Johan Grasman, Wim Jansen en Paul Bartels bedanken. Gerard, bedankt voor het 

creeren van de ruimte voor dit onderzoek in een bestuurlijk zeer turbulente tijd en 

ook bedankt voor de vele adviezen op het terrein van de warmtetransport. Johan, 

welk een genoegen was het om te ontdekken dat dit onderzoek nauw verwant is aan 

een van jouw specialiteiten, de relaxatie oscillaties. Bedankt dat je de bedding en de 

stimulans hebt gegeven om daar iets mee te doen. Wim, nestor van de Nederlandse 

microgolf wereld, bedankt voor je enthousiasme en voor de wijze waarop je mij in 

de internationale wetenschappelijke wereld geintroduceerd hebt. Paul, bedankt voor 

je adviezen in relatie tot de praktijk van de microgolf verwarming. Met jou wil ik 

ook je beide collega's Eric Torringa en Eric Esveld bedanken. 

De eigenlijke inhoud van dit proefschrift bestaat voor het merendeel uit 

artikelen, gepubliceerd in gerenommeerde wetenschappelijke tijdschriften. Iedere 

publicatie is beoordeeld door een referee. Vaak was het oordeel zeer positief, maar 

ook waren er kritische kanttekeningen, die mij dwongen bepaalde stellingen opnieuw 

te overwegen en zo nodig te nuanceren. Op internationale congressen werd ik 

aangesproken op mijn werk of zocht ikzelf de discussie op. De onbekende referees 
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en het contact met de buitenlandse vakbroeders gaven mij het klankbord voor dit 

onderzoek. In dit verband wil ik drie mensen noemen. Dat zijn Gregory Kriegsmann, 

Lynn Johnson en Barmatz. De gesprekken met hen waren zeer stimulerend en 

motiveerden mij om door te gaan op de ingeslagen weg. 

De volgende persoon, die ik wil noemen, is mijn oud-collega Henk van 

Remmen. Samen met jou heb ik de eerste stappen gezet in de microgolf wereld. 

Bedankt Henk voor je steun en kameraadschap. 

Mijn dank gaat ook uit naar de totale fysica groep, waarin we ondanks de 

ogenschijnlijk verschillende onderzoeksgebieden als team opereren. Bedankt Edo 

Gerkema, Hennie Boshoven, Dane Bicanic, Wilko van Loon, Ies van Haneghem en 

Joost van Opheusden. Aan jullie denk ik bij concrete hulp op velerlei gebied. Rachel 

van Ooteghem en Paul van Espelo wil ik bedanken voor hun hulp bij het maken van 

mooie plaatjes. 

Mijn speciale dank gaat uit naar Josie Zeevat voor haar volkomen belangeloze 

correctie van het Engels. Mijn eerste publicatie voor het Journal of Applied Physics 

kreeg ik retour met de opmerking:"Very interesting article, but the English needs 

improvement". Zonder Josie zou het nog steeds in aanmerking komen voor 

improvement. 

Tot slot wil ik degenen bedanken, die mij het naaste staan. In de eerste plaats 

wil ik mijn erkenning uitspreken voor de positie die mijn vrouw Yt heeft ingenomen, 

namelijk naast mij, als een vriend. Ook de kinderen Sjoertje, Evert, Nelleke en 

Gerrit wil ik bedanken. Het was geweldig leuk om samen met jullie in de tijd te 

reizen, ook al geloofden jullie er soms niets van. In deze rij van naasten horen ook 

mijn ouders, mijn zus en mijn broer. Zij vertegenwoordigen de omgeving waarin ik 

ben opgegroeid. Mijn ouders hebben mij de ruimte, de faciliteiten en de stimulans 

gegeven om fysica te studeren, uitmondend in dit proefschrift. Aan mijn ouders, Yt 

en de kinderen draag ik deze thesis op. 
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Chapter 1 

General introduction 

formulation of the problem 

The use of microwaves (frequency 2450 MHz) has found its way into various 

applications in industry. Perhaps the largest consumer of microwave power is the 

foods industry where it is used for cooking, tempering, drying, pasteurization, 

sterilization, etc. (Decareau1, Mudgett2). Another application is the joining and 

sintering of ceramics (Metaxas3, Sutton4). Both foodstuffs and ceramics have in 

common that, within the dynamic range of operation, a slight increase of the 

microwave power causes the temperature of the irradiated sample to increase rapidly. 

This is the so-called thermal runaway phenomenon. Because of this foodstuffs and 

ceramics might become overheated. 

the aim of the investigation 

In this study the physical-mathematical modeling of the runaway effect is the 

leading theme. The understanding of this process is still somewhat empirical and 

speculative due to its highly nonlinear character. Therefore the runaway effect cannot 

be predicted accurately. Insight in the physical origin and the formulation of the 

conditions necessary for runaway, could lead to rules to prevent this, sometimes 

catastrophic, phenomenon. 

A second difficulty associated with the application of microwave heating is the 

nonuniform temperature distribution within the sample, linked to the uneven spatial 

dissipation of energy. Also this problem has its roots in the basic physics of the 

heating process and is related to the runaway problem. Therefore also the spatial 

distribution of energy dissipation has been studied. 
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starting-point of the investigation 

Thermal runaway, meaning that a slight increase of the applied microwave 

power causes the temperature of the irradiated sample to increase rapidly, has first 

been reported in the microwave sintering of ceramics (Brodwin et al.5). This process 

especially is seriously hampered by thermal runaway. Kriegsmann6 (1992) introduced 

the S-shaped response curve of a ceramic slab steady-state temperature versus 

microwave power as a plausible explanation of the observed runaway phenomenon. 

At the 4th International Conference on Microwave and High Frequency Heating 

(Goteborg, 1993) Stuerga et al.1 and Zahreddine8 demonstrated that the response 

curve of an isothermal slab of water could also be S-shaped. Based on this 

observation they introduced a new type of bistability. Heating an isothermal slab of 

water with the microwave power directly proportional to time would result in an 

instantaneous(l) jump of the slab temperature at a certain moment. They also claimed 

to have experimental evidence for their statement (Stuerga et al.9). This discovery 

drew much attention, because real macroscopic, bistable behavior is a remarkable 

phenomenon in physics. It justifies the choice of the topic for the present study. 

outline of the thesis 

Preceding the investigation of thermal runaway a study was made of the 

dissipated energy within an microwave irradiated object. This work was done in 

cooperation with the Agrotechnological Research Institute (ATO, Wageningen). It 

has led to an approximation in the form of a model from geometric optics with 

multiple reflections and interference of beams (Van Remmen and Vriezinga10). 

Knowledge of the interaction of electromagnetic waves with slabs, cylinders and 

spheres, including the implementation of equations in computer programs, was 

necessary for the comparison of the approximation with the exact solution based on 

Maxwell's equations. The theory on the microwave heating of slabs, cylinders and 

spheres is presented in Chapter 2. 

For a better understanding of the concept of bistability (as introduced by 

Stuerga et al.1) a thorough analysis of a microwave heated isothermal slab of water 

is necessary. This analysis can be found in Chapter 3. Besides the bistability in case 
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of a time-dependent power, the physical origin of runaway and the possibilities of 

avoiding runaway are investigated. 

The experimental evidence of Instability, which shows a notable curve of the 

• slab temperature versus time, including a (not instantaneous) jump, needs a 

theoretical foundation. In cooperation with mathematicians of Wageningen and 

Murcia University (Spain), this theoretical foundation has been developed and 

discussed. This mathematical analysis is formulated in Chapter 4. 

The microwave heated isothermal slab can be described by a relatively simple 

one-dimensional model. The next question is: Are the principles based on such a 

simple model also applicable to other objects than the slab? This is the subject of 

Chapter 5, which analyzes the microwave heating of isothermal slabs, cylinders and 

spheres of water. The aim of this article is to investigate how the geometry of the 

irradiated object influences runaway. The physics and mathematics of irradiated 

cylinders and spheres are rather sizeable. Where necessary reference has been made 

to Chapter 2. 

So far isothermal objects have been investigated with respect to runaway. The 

next step in this investigation is the analysis of real nonisothermal microwave heated 

samples. By doing so the other problem of microwave heating (the uneven spatial 

dissipation of energy within the sample) becomes part of the investigation. The non-

isothermal slab of water is discussed in Chapter 6. Besides the description of the 

runaway phenomena, it contains a comparison of temperature profiles calculated with 

a temperature dependent and a temperature independent permittivity. 

In addition to Kriegsmann6 the nonisothermal ceramic slab is analyzed in 

Chapter 7. The aim of this investigation is to find the physical origin of thermal 

runaway in the case of ceramics and to understand why the isothermal approach of 

Kriegsmann in his explanation of runaway is justified. Also the influence of 

resonance within the slab has been studied. 

As remarked in the beginning of this introduction, the physics of microwave 

heated foodstuffs and ceramics are rather similar. Therefore the runaway phenomena 

of both kind of materials have many aspects in common. A comparison of the 

thermal runaway phenomena of foodstuffs and ceramics can be found in Chapter 8. 
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General conclusions are presented at the end of this thesis in Chapter 9. 

The physical-mathematical modeling of the runaway effect and its consequen­

ces are reported in the articles (Ch.3-Ch.8) and in the general conclusions (Ch.9). 

The theory of microwave heating (Ch.2) has been written to account for the power 

formulas, which are used in the articles. Therefore this chapter contains a brief 

introduction to the electromagnetic description of the microwave heating process, 

starting with Maxwell's equations and ending at the wave equation and the general 

relation for the absorbed power (Section 2.1-2.4). For the calculation of the 

temperature the absorbed power has to be combined with the heat conduction theory 

(Section 2.10). The reader who is familiar with the general theory of microwave 

heating can easily skip over Chapter 2, after taking notice of Section 2.5, because the 

notation in this thesis differs from the conventional one. 

REFERENCES 
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Chapter 2 

Theory of microwave heating 

2.1. INTRODUCTION 

The microwave heating of dielectrics is caused by the interaction of the 

electromagnetic waves with permanent and induced dipoles of the irradiated sample. 

The free charges (free electrons, ions etc.) are responsible for an additional heating. 

The oscillating electromagnetic field causes alternating currents of the free charges, 

which yields ohmic heating. The interaction of the field and the dipoles also causes 

alternating currents, but the mechanism is different. The oscillating field rotates the 

dipoles. It is possible to describe the interaction of an electromagnetic field and 

molecules in terms of a damped harmonic oscillator (Feynman1). Using this model 

the "friction" in the rotation of the dipoles can be regarded as the origin of dielectric 

heating. 

It is not necessary to describe the details of this interaction. In this thesis the 

absorption of electromagnetic energy is expressed by a known complex permittivity 

or complex dielectric constant. The imaginary part of the dielectric constant, the so-

called dielectric loss factor, expresses the fact that the dielectric absorbs 

electromagnetic energy. By the introduction of the complex permittivity it is possible 

to describe the absorption of electromagnetic energy with Maxwell's equations and 

the Pointing vector in the complex formulation. Maxwell's equations contain the 

charge and current density of the free charges. The current density becomes part of 

the complex permittivity. The loss factor expresses the dielectric heating as well as 

the ohmic heating. The impact of the free charges does not vanish in the 

electromagnetic boundary conditions. There will be surface charges and surface 

currents. The analytical description of such a system (a mixture of a dielectric and 

conductor) is possible, but in this chapter the theory is limited to pure dielectrics. It 
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is assumed no free charges are present. 

The temperature of the irradiated sample increases during the heating process. 

This is described by Fourier's differential equation, where the source term 

corresponds to the absorbed electromagnetic energy. The problem of microwave 

heating is to find simultaneous solutions of electromagnetic and thermal equations. 

An analytical solution is hardly possible, because of the uneven spatial absorption of 

energy and because the permittivity depends on temperature. However formula's are 

needed for a better understanding of the heating process. For this reason the 

calculations in this chapter are limited to isothermal objects, where an analytical 

description of the absorbed power is possible. These solutions, combined with a 

numerical analysis, yield sufficient insight in the microwave heating process. 

This chapter starts with Maxwell's equations and the Pointing vector (section 

2.2-2.4). The electromagnetic wave equation and the general expression for the 

absorbed power are developed. The general theory can be found in many textbooks 

(e.g. Stratton2, Blok et al}, Reitz et al.4). A brief description of this theory, applied 

to an isothermal slab is found in Ayappa et al.5 

The power formula's for the isothermal slab are developed in section 2.6. The 

electromagnetic waves and the formula for the absorbed power in an isothermal 

cylinder (irradiated in two different ways) are described in the next two sections 2.7. 

and 2.8. The power formula for the isothermal sphere is developed in section 2.9. 

The general theory of electromagnetic waves in cylinders and spheres was deducted 

from Panofski et al.6 and Stratton2. 

Section 2.10. briefly outlines the heat conduction of the microwave heated 

sample, based on 6zi§ik7. 

The power formula's are complicated and interpreting them in physical 

processes is difficult. Therefore, these formula's are simplified. This is the subject 

of section 2.11 of this chapter. The theorems about the special functions are from 

Spiegel8. 

Finally a list of symbols for this chapter is given. 
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2.2. MAXWELL'S EQUATIONS 

Microwave heating is a macroscopic phenomenon. The theory of classical 

electrodynamics provides the best way describing this process. Maxwell's equations: 

- . dDr . 
V*ff = —^ + Jr (1) 

at 

Supplied with compatibility equations 

V-D = p ( 3 ) 

V-B = 0 <4> 

where £ r and i / r a re the electric and magnetic fields, Dr e lectric displacement, Br 

magnetic induction, p r and Jr a re the charge density and current flux of the external 

charges (the free charges) . 

In the case of linear, non-instantaneously reacting materials D r , Br and Jr obey 

an equation of the form 

Qr(t,T) = f R(t',T) Er(t-t<) dt' (5) 

where R(t',T) is a response function characteristic of the quantity D r , Br o r / , and the 

material at the temperature T. The temperature is an external parameter , depending 

on position and t ime during the dielectric heating process, but is kept constant in this 

definition of linear medium. Let us consider the electric displacement to illustrate the 

mathematical description of the dielectric heating process . In accordance with 
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equation (5) we have 

Dr{r,t) = f[e0b(t) + %(r,t)] Er(r,t-t') dt' (6) 

where e0 is the permittivity in vacuum and % the (temperature dependent) response 

function. Assuming the electric field is turned on at t=0, equation (6) becomes 

Dr{r,t) = e0Er(r,t) + fx(.r,t) Er(r,t-t) dt' (7) 

We are interested in the response of materials to radiation of a particular (angular) 

frequency w. The complex electric and magnetic field E and H are introduced 

according to: 

Er(r,t) = Re(i(f)e-"°') and Hr(r,t) = Re(H(f)e10") (8) 

Alternatively eml can be used to express the time dependence. 

Many dielectric heating processes (e.g. Debeye's dipolar loss process) can be 

described by rotating dipoles returning to their equilibrium according to an 

exponential decay law. This process is expressed by the response function. 

X(r,t',T) -ae-^ (9) 

where a and the molecular relaxation time x depends on temperature at the position 

of the electric field. Substituting the decay law in (7) and using complex fields, yields 

i 

D(r)e -** = e0E(r)e "'"' + fae ,'he,u"'E(r)e ~iu" dt' (10) 
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D(r) = e0£(r) + - ^ 1 -e'"'e ' r t)£(r) Q n 

When T is small compared to t, the time dependence disappears and we are able to 

introduce a complex permittivity e. 

D(r) = eE(r) = e„(l+ -)E(r) K ' 
1 -f'G)T 

Thus, the complex dielectric constant K = e/e0 can be written as 

K = K » + -r— (13) 
1 - /COT 

where K0 (K„) is the dielectric constant at frequency 0 (°°). This expression 

corresponds to the formula of the dielectric constant for water. See eq.(2.5) in 

chapter 4. The (1 +ia>x) in eq.(2.5) is caused by the e,at choice in eq.(8) for the time 

dependence of the fields. 

This example illustrates the frequency dependence and the complex character 

of the permittivity, and the fact that many materials react instantaneously in 

microwave heating processes. For linear, isotropic and instantaneously reacting 

materials the following constitutive relations apply. 

D = e i B = \iH J = oE (14) 

where e is the permittivity, \i the permeability, and a the electric conductivity of the 

free charges within the medium. These quantities are temperature dependent. During 

the microwave heating process the temperature will change (in the case of runaway 
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very rapidly). Therefore D, B and J are time dependent. "The change in temperature 

acts as an extra generator of fields". In the complex formulation Maxwell's and 

compatibility equations read 

V x i = iu>\inH (15) 

V x H = -ioiEnE (16) 

V-D - p <17) 

V-fi = o (18) 

with 

Vn=ll+-^L a n d en=e+ — + ~r (19> 
O dr O) G) df 

With the condition of electro neutrality of the materials considered [which implies 

V(V-£)=0 ] eq.(16) can be inserted in eq.(15) to obtain the classical wave equation 

V2^ + k2E = 0 (20) 

where k2 = o>2 finen (21) 

k is called the complex wave number or propagation constant (in this thesis). The 

main problem in microwave heating is finding the solution of eq.(20). 

The complex permittivity is usually written as the sum or the difference of a 

real part e' and an imaginary part e", where e' and e" are positive numbers. 

e = z' ± it" (22) 

10 
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In this section we have to choose the sum to express the lossy character of the 

dielectric. Let us neglect the (dzldt)=(dtldT) (dT/dt) term in eq.(19) and assume that 

the electric conductivity o is a real number, then eq.(16) can be written as 

V x H = ( - /we + a)E = -iuz'i + (coe" + o)E (23) 

Thus, by choosing the plus sign in eq.(22) the dielectric conductivity o is increased 

by the dipolar relaxation QE ", expressing the extra absorption of electromagnetic 

energy. By choosing the e,at in eq.(8) for the time dependence of the fields, one is 

forced to choose the minus sign in eq.(22) to express the lossy character of the 

dielectric. 

2.3. POWER DISSIPATION 

The power flux associated with a propagating electromagnetic wave is represented 

by the Pointing vector 5. The time average flux for harmonic fields is given by 

<S> = -[(E*H*) + (E**H)] (24) 
4 

The average power dissipated per unit volume is 

D = -V-<S> (25) 

Inserting Maxwell's equations (15) and (16) in (24) and (25), yields 

(26) D = —[(£ * - e ) | £ | 2 + (u * -u )\H\2] 
4 

Writing e„ and fx,n as the sum of a real and imaginary part 

I . II . I . II /O-TN 

e = e + it and u = u + JU (II) 

11 
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gives the general expression for the absorbed power per unit volume 

D = - co fe^ i l 2 + u" |# |2] (28) 
2 

The e '"' convention in eq.(8) yields eq.(26) multiplied by a minus sign, but the 

convention obliges to choose eq.(27) with minus signs instead of plus signs, and the 

result (28) is the same. 

2.4. DIELECTRIC PROPERTIES 

In food systems, as well as in ceramics, the permeability \i is well approximated by 

its value fiQ in vacuum. This means that the magnetic part in the expression of the 

absorbed power (28) disappears. It is also assumed that there are no free charges. 

This study describes the behavior of pure dielectrics. The oscillating electromagnetic 

field rotates the permanent and induced dipoles of the material specimen. The 

specific character of this process is expressed by the complex permittivity e. This 8 

depends on the temperature of the irradiated object. Because the temperature 

increases with increasing time during the heating process, the time dependence of the 

permittivity has to be taken into account. Investigations have shown that the influence 

of the term d(ie)/d(o}t) of eq.(19) can be neglected (see chapter 6). With these 

considerations the main equations of the heating process reduce to 

V2^ + k2E = 0 (29) 

k2 = o>2n0e (30) 

D = -ue"\E\2 = -(X>E.K"\E\2 (3D 

2 2 o i l VD 

The permittivity is usually replaced by the dielectric constant K, which equals the 

permittivity divided by the permittivity of vacuum e0. The dielectric loss factor K" 

12 
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is the imaginary part of the dielectric constant. Representing the dielectric properties 

of materials in tabulating the values of K' and K" is customary. The propagation 

constant k is represented as a complex quantity 

k = a + j'P (32) 

where the phase constant (or real wavenumber) a and the attenuation constant P are 

related to the dielectric properties of the medium and frequency of radiation by 

a = — 
N 

K' (]/l +tan26 + 1) (33) 

P = ° 
N 

K' (v'l +tan25 - 1) (34) 

tan 5 (35) 

where c (=1/^^ fiQ) is the speed of light, so wlc is the propagation constant in 

vacuum. The use of a and P, instead of K' and K", gives more insight in the 

microwave heating process. 

13 
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2.5. ABOUT THE NOTATION 

The notation used in this thesis differs from the conventional one. Therefore a 

comparison is given. 

Conventional 

Er = Re (£ e + 'u ') 

V*£ - y2E = 0 

Y = propagation constant 

y = a + j'P 

a = attenuation constant 

P = phase constant 

Y = -Q2(e )u 
CO 

e = permittivity 

, i • >k e = e0(er - /e r ) 

/ . // e. - ie 

This thesis 

Er = Re (E e""") 

V2^ + k2E = 0 

^ = propagation constant 

k = a + J'P 

a = phase constant 

6 = attenuation constant 

or(e + —)u 
G) 

e = permittivity 

e = z! + / e " 

K = K ' + JKW 

e = relative permittivity 

er = dielectric constant 

e. = loss factor 

K = complex dielectric constant 
K' = dielectric constant 
K" = loss factor 

Many authors leave out the subscript r in the conventional symbols for dielectric 

constant and loss factor. 

Most of the calculations in this thesis are expressed in terms of the phase and 

attenuation constant, so by changing the meaning of a and p compared to the 

conventional meaning, this thesis can easily be read. 

14 
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2.6. THE POWER FORMULA OF A SLAB 

Consider a slab in free space, irradiated from one side by microwave radiation. The 

wave is a plane, harmonic one and impinges normally upon the material (Fig.l). 

E 

Plane p-wave 

air 

Figure 1. A slab, being irradiated from one side, in an echofree cavity. 

It is assumed that the slab is isothermal continuously. The field equation (29) 

becomes a one-dimensional differential equation. 

d2E 

dxJ 
+ k2E = 0 (36) 

with the solution 

El = Axe
ik'x + Bxe~ik'x 

(37) 

E2 = A2e "» + B2e (38) 

Ez = A3e (39) 

The subscript 1 refers to the space where the microwave source has been located, the 

subscript 2 belongs to the irradiated slab, and 3 refers to the free space at the rear 

side of the slab. The integration constants follow from the electromagnetic boundary 

15 
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conditions. 

d£, dE2 dE2 d£3 

E1=E2 ; = at x=0 and ^2=E3 ; = at x=L (40) 
dx dx dx dx 

The thickness of the slab is L. Introducing the reflection and transmission coefficient 

Rn and Tl2 according to, 

p - I B \,a« - *' *2 • T - \T \*iz" - Ul 
Kn -\Kn\e ~ , T ' ln ~ Iyi2 | e 

fcj +k2 kx +k2 
(41) 

makes it possible to write the electric field within the medium as 

i k, x „ 2 i k, L -i k, x 

E2 - Tn 1 -f!L! ' Ax (42) 

Adding the waves, going back and forwards within the slab, gives the same result. 

The sum of all the waves is a simple arimethic sum. The power flux of the incident 

wave (the microwave power) P equals 

P = - c e„ A 2 

2 0 "1 (43) 

The absorbed power as a function of the position x within the slab is 

.. 2^-i l i> \.-^*^.n„ r _ i„ ...A wlp v.-***.2** o „ , e ^-2\R,7\e ^cos(2a,L-2a,x+b,,) + \R,.\2e v*e 
D = P-K'\T, I2 ' 12 ' 2 2 12 ' 1 2 ' 

c 
* 2 I x 1 2 I 

l-2|JR12|
2e"2P2icos(2a2Z+2612) + |/e i2|

4e" lp2i 

(44) 

16 
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Integration over the slab yields the total amount of absorbed power 

D,„, = P — K? \ T M \ X 

tot 2 I 12 I - n 

c 2P, 

4P2
 ( 4 5 > 

(l-e~2Pl£) (l+|/f12|
2e"2P2i) - —|^12|e"2p2isin(a2I)cos(a2I+812) 

«2 

1-2|/J12|
2e P2 cos(2a2I+2512) + |^12 |

4e"4P2t 

In case of a slab, irradiated from two sides symmetrically (at the surface of the slab 

the incident waves are in phase), the same kind of calculation yields 

D = P * K" |r12 |
2 

(46) 

[1 -2\Rn\e "p2icos(a2i+812)+|/i12|
2

e ~
2^][e ~2^+e '^^'"Kle ~Pjicosa2(L-2x)] 

1 -2\Ru\
2e ^cos(2a2L+26n) + \Rn\

4e 

and 

_ _ (x> II i _ 12 1 
D,o, = P ~ K2 l^ial 7 - x (47) 

c [J, 

[1 -2\R„\e "p2icos(a2I+512) + |J?12|
2e ~2p2i] [1 -e "2p2 i+J-2

e ^sin(a2I)] 
K 2 

l-2|/?12|
2e"2P2Lcos(2a2I+2512) + |JR12|

4e"4P2i 

Because of the symmetry there is always a hot spot at the center of the nonisothermal 

slab. 

17 
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2.7. THE POWER FORMULA OF A CYLINDER (A) 

Consider an isothermal cylinder in free space, irradiated from one side by a plane, 

harmonic wave. The electric field vector Ez of the incident field is parallel to the 

central symmetry axis of the cylinder, while it propagates along the x-axis (Fig.2). 

Figure 2. A cylinder, being irradiated by a plane (Ez, Hy) wave from one side, in an 
echo free cavity. 

Expressing the wave equation (29) in polar coordinates r and (J) is convenient. 

d2E d2E i dE 1 ~-± + i ^ - i + k2 E =0 
r2 dp dr: dr 

(48) 

Substituting Ez(x,y) = R(r) $((()) splits the wave equation in two other equations 

+ « 2 $ = 0 d 2 $ .2, 

d(j>2 

with the solution <I> =c em(,> + d e <t> 4 - / / p-'"<t> 

(49) 

(50) 

where «=0, ±1 , ±2,... , because <E>((j)) = 0(<P+2TT). 

The second equation is the differential equation of Bessel. 

18 
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k2r2-^- + kr— + ( *V - n2)R = 0 , 5 n 

d(*r)2 d(*r) ^ 1 ; 

so J? (AT) = A J„ (kr) + B N„ (kr) (52) 

where J„ is the Bessel function of the first kind of order n, and N„ is the Bessel 

function of the second kind (Neumann's or Weber's function). 

The incident field equals Ax e
 ,kx. Using the generating function for Jn 

E-w" <53> 
x(»--)/2 

e ' 

the incident field becomes 

Axe
iKx =Ale

lkirm* = ̂  E ^. (*, O (0 " *'" * (54> 

The scattered field should read e'kr/V(r) for large values of r. Therefore, the scattered 

field is written as 

• = -'» 

where Hn = Jn + i Nn is the Hankel function of the first kind. 

The total field outside the cylinder is the sum of the incident and scattered field. 

E™ = *, E WW (0" e"* +A, E «. # (V> «"* <56> 
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Because the Neumann function becomes -°° for r - 0 , this function should be dropped 

in the description of the field within the cylinder. 

* . m ^ , E c.' .(V>«<"* (57) 

At the surface of the cylinder one has the conditions 

£ C » = £ < » . * <»=*<» ; H™=H*> (58) 

where 

I dE dE 
iu\i0Hr = — — and ~i<^i0H^ = —- (59) 

r o(p or 

Applying these boundary conditions, generates the an and cn. 

= [*, JJikjR) jfaR) - k2 Jn(ktR) • />,*)] (/)" ( 6 0 ) 

c - = ; ; 
*, Jn{k2R) #,(*,*) -1, ./„(*,*) #„(*,*) 

(61) 

The radius of the cylinder is R. The prime refers to the derivative with respect to kxr 

or k2r. The numerator of cn can be simplified by using recurrence formulas. 

-.n + l 
2 (0" 

(62) 71 R [ k2 j'n{k2R) Hn{k,R) - t , . / ,(*,*) #„'(*,*) ] 

According to eq.(31) the absorbed power as function of the position (r,(t>) is 

20 
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D - \ ^ X IE .̂(V)«'"*I2 (63) 

For the total amount of absorbed power one has 

271 R +, 
1„~J'A* r f I T . r / i _ x - M > | 2 _ J A J . - ( 6 4 > 

*=0 r=0 

1 // . 2 

r=0 

-we^^,2 2u r [ |cj2 |y0(V)l2 + 2El cJ2 k.(V)l2 i r d r 

2 

and 

|K ( * j r ) | 2 '•d'* = 
•=o 

k2 R Jn*(k2R)J^k2R) - k* R Jn(k2R) j'n\k2R) _ <65) 

-4 i a2 p2 

P2 R Re{J*nj'n) + «2 * /mC/.V.') 

- 2 cc2 P 2 

and I c_ 12 

4/(Ttz/Jz) (66) 

| M ' l 2 K I2 + kl\j\2\H'\2 - k.{k,j'HJ*H'* + KJ'*H*JH'') 
l L R i i R l l l B l l B l 1 x Z fl II R B Z R H R R ' 
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2.8. THE POWER FORMULA OF A CYLINDER (B) 

This section describes the irradiation of the cylinder by a plane, harmonic wave 

(Ey, Hz) instead of the wave (Ez, Hy) as formulated above (Fig.3). 

Figure 3. A cylinder, being irradiated by a plane (Ey, Hz) wave from one side, in an 
echofree cavity. 

This means that the role of the electric and magnetic components has been changed. 

On the analogy to the former calculations the magnetic field will be 

*.} = A« £ ' . (v> (0" •'•• + 4 , E «. *.(V> e'n* (67) 

H? =AH E caJn(k2r)e'" (68) 

where AH is the amplitude of the magnetic component of the incident field. The 

boundary conditions read 

Hm = H™ r.0) _ W (2) (69) 
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X dH dH 
-icocE = and ' " e £ A = — ' - (70) 

r r 3(j) * 8r 

These conditions yield 

[k2 Jn(k2R) jfaR) - *, JfaR) J&2R)] ( i )" (71) 

kx HfaR) JfaR) - k2 Jn(k2R) HfcR) 

k2 [jfcR) #„(*,*) - JJjkf) / / > , * ) ] ( /)• 
cn = (72) 

t , • / > , * ) #.(*,*) - k2 Jn(k2R) # > , * ) 

or 

- 2 * 2 (/)"
+1 

', = ; ; (73) 
Tit,* [ k^k^H^R) - k^k^H^R) ] 

According to eq.(31) the absorbed power equals 

D - -coe0K2 ( \Ex | + | £ r | ) (74) 

In polar coordinates 

n 1 // 1 fl
dH^l2 , 1 ^ ( 2 ) | 2 , (75) 

D = —OJE.K, ( r + r ) v ' 
2 ° co2|e2|2 9r ' r d(|) 

Using recurrence formulas for Bessel functions this can be written as 
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i lib \2A2 

2 co2|eJ2 

41 (76) 

[ I V . + E C . C - i -Jr.+i) cos(«<f))|2 + | J > , (•/,.,+•/,_,) sin(«<j>)|2 ] 
B=l 

The incident wave is a plane, harmonic one. This means that AH
2 = e0 A^IHQ , where 

Ax is the amplitude of the electric component Ey of the incident field. With eq.(30) 

the factor of (75) before the brackets becomes 

I a) e0 < A l- (77) 

Integrated over (J) 

1 // . 2 1 

2 l K
2 l 

r=0 " = 1 

4| * 2 | 2 / (7T 2 * 2 * 2 ) 

iVJV.'l2 + *,2k'l2l*J2 " M^'.VX* - V.'X'X) 

The integral over r is known, see eq. (65). 

(78) 

(79) 
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2.9. THE P O W E R F O R M U L A O F A SPHERE 

An isothermal sphere is irradiated from one side by a p lane harmonic wave in free 

space (Fig.4) . 

^ z 

2R 

Figure 4. A sphere, being irradiated by a plane (Ex , Hy) wave from one side, in an 
echo free cavity. 

In spherical coordinates (r,Q,$) the wave equation reads 

1 a . 23£\ 1 a , . r,dE 
—-H'- —) ( s i n 6 — ) + 

i d2E 

r*dr dr r
2sin6 36 36 r2sin26 d<b2 + k2E = 0 (80) 

This is a vector equation. The solution for one component i|r of the electric field (the 

scalar equation) is well known. The substitution \^=J{r)7(6,<J)), where y=$((|)) 7(6), 

generates three other equations. The first one is the Bessel equation 

; 2 i !£ + X*E_ + [x2 _ / ( / + 1 ) _Ij = 0 

dx2 dx 4 (81) 

where x=kr andf=g/V(kr). Sof(r) equals Zl+Vl{kr) /V(kr) , where Zl+l/i refers to the 

Bessel, Neumann or Hankel function of order l+Vi. The second equation reads 

d 2 $ 

dc|>2 
+ OT2$ = 0 (82) 
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with the solution 0=a cos(m<$>)+b sin(/w<j)) and m=0,±l,+2,.. .The third equation 

is Legendre's associated differential equation. 

2. d2T ( 1 - x ' ) ^ - - 2x — + [1(1 + 1) 
dx2 dx 

m 

1 -x' 
-] T = 0 (83) 

where x=cos(0). The solution is a combination of the associated Legendre functions 

of the first (/>/") and second (<2/*) kind. Summarizing 

(84) 

The function Y,m is the spherical harmonic of order (l,m) ; / is a positive integer and 

m=l, l-l, 1-2, . . .,-/. If I|J is a solution of the scalar equation, then Vi|; and 

r x Vx|f are solutions of the vector equation. Applying this theorem, results in two 

set of equations: the electric and magnetic multipole fields. The electric multipole 

fields (E-type) are 

Er = ELllz^Y^Qd) ; Ee = I -l [ rZ ; ( fe . ) ]A [r / '» (0>(t, ) ] 
r Ar 30 

7 = tm d 

r sin0 dr 

£ Am 

•[rrjCb-Myfce,*) ; Hr = 0 
(85) 

^ H sino \ H do 
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The magnetic multipole fields ( M-type) are 

E. = 0 ; Ee = - ^ - 2pr) r,"(6,<|» 
sinU 

% = -ikzfkr) j-[Y?$m : Hr = ^ 1 !^z{kr) T,m{B.to 
fx r (86) 

" e = 
^ H r dr do 

H. <t> \ 
£ *" -^-[«J(*r)]7l"(e,<|)) 
H r sin 6 dr 

where 

zfkr) 
\ 2kr 

ZMn{kr) (87) 

Introducing even and odd functions is customary. The even function has a factor 

cos(mc|)), while the odd function contains a factor sin(mcj)). The aim is to write the 

incident, scattered and transmitted field in terms of the multipole fields. The incident 

field is a plane harmonic wave (Ex, Hy), propagating in the direction of the +z-axis. 

it,; iJfcjr cos6 
Ex = Axe

 ,z ix = Axe ' (sin0 coscp ir + cos0 coscj) iQ - sin(|) z\) (88) 

with the property 

« " •""" = E ' ' ( 2 / + 1) j/ik^PfrosQ) (89) 
/=i 

Comparing (88), (89), and the corresponding expressions for H , to the multipole 
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fields, results in 

Ex = A, J2^1LlL [ £ ( / , i ; odd) + 4 ( / , l ; even) ] 

(90) 

H = -.* £ ^ 1 - i i l l I £ * ( / . ! ; odd) + jyB(/ , l ;even) ] 
/=! *, /(/ + 1) 

The zt(kr) corresponds to the Bessel function j,(kr) in this expansion. 

The scattered field should be described with the Hankel function, because for large 

r we have 

h,(kr) = j,(kr) + iit,(kr) = (-/) ,+ I — (91) 
kr 

Corresponding reasoning yields the scattered field. 

V^EV -^T- [«/ 4c l •• o d d > + */ 4 c ! ; even> i (92) 
,=1 *, / ( / + 1) 

together with the corresponding formula for Hs. The field outside the sphere is the 

sum of the incident and scattered field. The field within the sphere reads 

£ ( 2 ) = i , E — ^-^~ I c, 4 C . 1; odd) + d, 4 / , 1; even) ] 
z=i *, /(/ + 1) 

(93) 

Hm =-AxY
l— ^ - ^ - [ c, 4 ( / , l ; o d d ) + rf, 4 ( / , l ; even ) ] 

i=i k. 1(1 + 1) 

In spherical components 
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— bn Jn + m(kir) dP"(C°!. } C0S4> S i n 0 ( W ) 

2k2r d(cos0) 

'8 A\ ̂ E«" 
B = l 

2» + l 7H dP (cos0) 
[ an J.*inW 

2k2r d(cos 0) 

n+1 dP (cos8) 

t2r do 

(95) 

**W^,E'" 
2n + l 

„=i «(n + l ) > 

7T; dP (COS0) 

2/fc2r d0 

n + 1 d.P,(cOS0) 
+ /* . < -7— ^+i/2(V) - - W V ) > . „. 1 sin(t> 

V d(cos0) 

(96) 

where Pn are the Legendre polynomials and Pn
l correspond to the associated 

Legendre functions of the first kind. 

At the surface of the sphere one has the following boundary conditions. 

„o> = Hm 

O) ^ pO) _ £?(2) , £?P) £ 1 ' + £ " ' = E. <t> ^ e 

< + <> = < + *? 
(97) 

The coefficients a„ and bn can be found by applying these conditions. 
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an = *lV/*,*2 [ Jtt+m{kxR) #+3 /2(M> - H^ik.R) Jn+m(ktR) ] / 

[ ^ 1 (n + l) Jn+m{k2R) Hn+m(klR) - ( 9 8 ) 

K 

~ k2 Jn^klR) Hn.mW> + kl Jn + mW) Hn+m{k,R) ] 

bn = k{Sjkxk, [ Jn+m{kxR) Hn+m(klR) - Hn^(k.R) Jn+in(klR) ] / 

K~k. (99) 
[ J^± (l-n) Jn+m(k2R) Hn+m(klR) -

K 

~ kA J
n^

k,R) H
n,miKR) + *,*2 Jn.m(k2*) H^k.R) ] 

where R is the radius of the sphere. The numerator of an and bn can be written as 

-2i ( kl k2)
Vi 17i R (applying the recurrence formulas for Bessel functions). 

The absorbed power is 

D = I co e0 < (\Ef + | £ e |
2
 + \Etf) ( 1 0 0 ) 
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2.10. THE HEAT CONDUCTION 

The absorbed power D is the source term in Fourier's differential equation (the heat 

balance or heat conduction equation). 

p C a r ( r , ° = V-(K Vr(r,0) + D(r,T) (101) 
p dt 

where p is the material density, Cp is the specific heat capacity, K is the thermal 

conductivity, and Tis the temperature, depending on position and time. 

We write an energy balance for the boundary surface 5, as 

-* , | I | = k{T\ - Ta) + em, o (T* \ - T*a) (102) 

where dldnt denotes differentiation along the outward-drawn normal at the boundary 

surface 5,. The symbol ht is the heat transfer coefficient related to the convective heat 

loss. The radiative heat loss is expressed by the second part of the equation with emi 

the emissivity of the surface, and o the Stefan-Boltzmann constant. Ta, the ambient 

temperature, equals the initial temperature of the sample at t=0. 

The slab is described with a one-dimensional model. 

p c dTOcJl _ ±{K dT0cA) + D{%) ( 1 0 3 ) 
p dt dx dx 

K H = h(T - Ta) + em a (7"4 - T*) , x=0 
dx 

-K — = h(T - Ta) + em a (T4 - T*) , x=L 
dx 

(104) 
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The thermal boundary conditions (102) are parts of the heat balance in case of 

isothermal objects. For an isothermal slab one reads 

P C L-^- = -2h(T-Ta) - lem a{TA - T*) + DM (105) 
at 

The isothermal cylinder 

p c nR2-^- = -2nR[h(T-Ta) + em o(TA - T*)] + DM (106) 
at 

The isothermal sphere 

p C -TiR3— = -4nR2[h(T-TJ + em a(T* - T4)] + Dti 
" 3 dr 

(107) 

The total ammount of absorbed power for an isothermal slab Dlot (45) equals the 

microwave power P times an absorption function D,. In chapter 3 and 4 the effect 

of a time dependent microwave power P(t) is studied, where D,ol is written as P(f)D,. 

It should be emphasized that this is only correct, if P{f) is a slowly varying function 

compared to the 2450 MHz oscillations of the electromagnetic field. 
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2.11. APPROXIMATIONS OF POWER FORMULA' S 
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The equations of the total amount of the absorbed power are complicated and 

interpreting them in physical processes is difficult. A simplification of the formulas 

is necessary. This is done for two material specimens: Water (as an example of a 

foodstuff) and alumina (A1203, as an example of a ceramic). The dielectric properties 

are shown in fig. 5 and fig. 6. 

THE SLAB 

The simplification of eq.(45) is easy. For both materials 512 is about -n. Neglecting 

small terms 

water Dm * P *, < |T12 |2 - I l— (108) 
2 P j 1 - 2\Rm\2e P 2cos(2a , I ) 

-" IT I2 _ L 
'"" * *» "2 ' » ' 2 p V* " ' ( 1 0 9 ) 

alumina Z> ~ P k. K" \T.,\2 —— (1 - e Vl ) 

THE CYLINDER 

The equations for the total amount of absorbed power for the (A)-cylinder (64), (65), 

and (66), have been formulated in terms of Bessel and Hankel functions. These are 

difficult to interpret. Therefore, these functions are replaced by sine and cosine 

functions. For x is large, we have 

N(x) 
N 

2 M7I U . 

— cos(* - — - —) 
TZX 2 4 
_ (HO) 

2 . . «TC 71. 

— sin(x - - —) 
7tx 2 4 

The x equals k{r (kx= 51.3 m"1) or k2r (for water k2~ 430 m"1, for alumina k2~ 162 

m"1). The application of these theorems generates 
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Z> = P k. K, c 2 x 
2B It I 
^ H 2 1*21 

[ | c j z { (1 -e H 2 ) - — - e 2 cos(2a2#) } + 
a . 

-22^ |c |2{ (1 ~e ) e Vl cos(2a2R - nil) } ] 

where 

k j 2 = [ 44 ,1^1 .^] / Wt + MK+e-**) - 2«1*,0-'"4M) + 

(111) 

+2(*j2-|jfc2|
2)e"2P2*{ sin(2a2R-niz) - l-^—cos(2a2R-nil) } ] 

(112) 
2kA 

"l 1*21 

Write 

I , 2 4 * 1 2 

I - 1 1 2 I 
t ' + l * , ! 2 ^ * , ^ ( 1 1 3 ) 

I*i21 = — 5 tan(812) 2 , , i " 2 , , 

Jfc,+|Jfc2|
z+2Jfcja2 *i~l*2l 

Neglect the factor exp(-4p2i?) in the denominator of (112) and use 812 = -n. 

• 12 = F 2 l e \Ta\ (114) 
I I I I -

k2~\t I2 

1+2 !—!-^ e P2sin(2a2J?-HTi) 
^ + |fc2|

2+2fc,a2 

36 



Theory of microwave heating 

It can be demonstrated that 

*12 

*i2 + l*: 

Finally' 

*>„ = 

-W 
2 | 2+2*,a 2 

eve have 

P k, K2 |r„ 

1*12 

12 _ 

where k. < \k,\ and P, < a. (115) 

X 

2P2 

(1-e HH - —-cos(2a2R) (l-e 2 ) - —-e 2 cos(2a2R-mt) 

[ ? >E * 
1 - 2|/J12|e

 2P2Ssin(2a2i?) »=i 1 - 2\Rn\e ^lRsm(2a2R-nv:) 

(116) 

The terms in this series have equal weight. In the original expression (64) the terms 

decrease with increasing order, where n is large. Which terms one has to take into 

account, depends on the radius R. For very thick cylinders ( R> 10 cm) the zero 

order term of (116) is enough. For cylinders with a radius between 0.5 and 10 cm 

a very good approximation (compared to the numerical analysis) has been achieved 

by the combination of the first and second order term. Neglecting the small factors 

in this sum, results in 

water D,o/ * P *, < |T12|
2 - 1 L - ( 1 1 7 ) 

202 1 + 2\Rn\
2e ^cos(2a2I) 

" I T H J _ ( l - e'
2^) 

2P2
 ( } (H8) 

alumina Dm ~ P k{ K2 | r i 2 |2 —^ (1 - e H2 ) 

where L is the diameter of the cylinder. The approximation of alumina (118) is quite 

rough, but this is done to emphasize the difference in the physical origin of thermal 
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runaway in water and alumina. The development of eq. (78) and (79) of the cylinder 

(B) in sine and cosine functions is accordingly. The result is the same. 

THE SPHERE 

The integration of (100) over the volume of the sphere, with the approximation 

(110), yields two kinds of terms. 

202* B 
\a |2 —- [(l-e"4p2*)cos(2a2tf-n7i) + — (1 +e ^lR)sm(2a2R-rtn:)] (119) 

4TI | * 2 |P 2 a2 

2M 9 R 
l*J — r ~ ^ T K 1 - e > + e sin(2a2/?-»Ti:)] (120) 

4 7T | Jfc2 [ p 2 a 2 

The numerators of |a„|2 and \b„\2 are proportional to 4fc,|&2|/(Tu R2)2 while the 

denominators are complicated expressions with Bessel and Hankel functions. See eq. 

(98) and (99) for the definition of numerator and denominator. This means 

i 2 M 
D ~Pk ^ ± k . i (121) 

1 2 P 2
 ! n*R2 

In the first approximation the Dm is temperature independent, because K / is divided 

by B2 (See fig.5 and fig.6). The factor exp(2P2/?) becomes part of the denominator 

of an and bn in the same way as has been done to the slab and the cylinder. 
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2.12. LIST OF SYMBOLS 

Whenever the description refers to electric or magnetic field, the complex amplitude 

of the field is meant. Real fields are discerned from the complex fields by the 

addition real. 

symbol description unit introduced 

in section 

A integration constant in R(kr) 

Ax real amplitude of incident electric field 

component 

A 2 , A l integration constants in field expressions 

AH real amplitude of incident magnetic field 

component 

a integration constant 

a integration constant in $(4)) of sphere 

at coefficient in the sum of the scattered 

electric field of the sphere 

an coefficient in the sum of the scattered 

electric field component of the cylinder 

an coefficient in the sum of the scattered 

magnetic field component of the cylinder 

a„ coefficient in the sum of the electric field 

components within the sphere 

B integration constant in R(kr) 

Bl,B2, B3 integration constants in field expressions 

B complex amplitude of magnetic induction 

Br real magnetic induction 

b integration constant in <&((j)) of sphere 

b, coefficient in the sum of the scattered 

electric field of the sphere 

V/m 

A/m 

2.7 

2.6 

2.6 

2.8 

2.2 

2.9 

2.9 

2.7 

2.8 

2.9 

2.7 

2.6 

2.2 

2.2 

2.9 

2.9 
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bn coefficient in the sum of the electric field - 2.9 

components within the sphere 

c velocity of light m/s 2.4 

c integration constant in Q>{§) of cylinder - 2.7 

c, coefficient in the sum of the electromagnetic - 2.9 

field within the sphere 

cn coefficient in the sum of the electric field - 2.7 

component within the cylinder 

c„ coefficient in the sum of the magnetic field - 2.8 

component within the cylinder 

Cp specific heat capacity 

D time average dissipated power 

Dtol total amount of absorbed power 

in slab per unit area 

in cylinder per unit distance 

in sphere 

D complex amplitude of electric displacement 

Dr real electric displacement 

d integration constant in 3>((|)) of cylinder 

d, coefficient in the sum of the electromagnetic 

field within the sphere 

E complex amplitude of electric field 

ET real electric field 

EE electric component of electric multipole field 

EH electric component of magnetic multipole field 

Es scattered electric field of sphere 

EP electric field within sphere 

EY,E2, E3 component of the electric field in medium 

1 ,2 or 3 

Er, E^, EZ polar components of the electric field - 2.7 

40 

J/kgK 

W/m 3 

W/m 2 

W/m 

W 

-

C/m2 

-

-

-

V/m 

-

-

-

-
_ 

2.10 

2.3 

2.6 

2.7 

2.9 

2.2 

2.2 

2.7 

2.9 

2.2 

2.2 

2.9 

2.9 

2.9 

2.9 

2.6 
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Er
a\E^l\ polar components of the electric field - 2.7 

Ez
w outside the cylinder 

E®\E^2), polar components of the electric field - 2.7 

Ez
2) within the cylinder 

E}2), Ey2\ rectangular components of the electric - 2.8 

Ez
(2) field within the cylinder 

Er, Ee, E^ spherical components of the electric field - 2.9 

Er
m,Ee

w, spherical components of the electric field - 2.9 

E^{1) outside the sphere 

E®\ Ed
(2\ spherical components of the electric field - 2.9 

E^2) within the sphere 

em emissivity - 2.10 

emi emissivity at surface / - 2.10 

fij) radius dependent function - 2.9 

g abbreviation offV(kr) - 2.9 

H complex amplitude of magnetic field - 2.2 

Hr real magnetic field A/m 2.2 

HE magnetic component of electric multipole field - 2.9 

HM magnetic component of magnetic multipole - 2.9 

field 

Hs scattered magnetic field of sphere - 2.9 

H(2) magnetic field within sphere - 2.9 

Hr, H^, HZ polar components of the magnetic field - 2.7 

HT
m,H^a\ polar components of the magnetic field - 2.7 

Hz
l) outside the cylinder 

Hr
(2\H^2\ polar components of the magnetic field - 2.7 

Hz
{2) within the cylinder 

Hx
(2),Hy

(2), rectangular components of the magnetic - 2.8 

Hz
2) field within the cylinder 

Hr, He, HQ spherical components of the magnetic field - 2.9 
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I /O) i / ( D 

H, ( 2 > , tfe
<2), 

A 

A, 
h, 
i 

J 

I 
Jn 

Ji 

K 

k 

L 

L 

K 

n, 
P 

P„Pn 
pm 

Q,m 

spherical components of the magnetic field 

outside the sphere 

spherical components of the magnetic field 

within the sphere 

Hankel function of the first kind of order n 

heat transfer coefficient 

heat transfer coefficient at surface i 

Hankel function in zt 

imaginary unit 

unit vector of x-axis 

spherical unit vectors 

compl.ampl.of current flux of free charges 

real current flux of free charges 

Bessel function of the first kind of order n 

Bessel function in zt 

thermal conductivity 

thermal conductivity at surface i 

complex propagation constant 

propagation constant in air 

complex propagation constant in medium 2 

slab thickness 

diameter of cylinder 

Bessel function of the second kind of order n 

(Neumann's or Weber's function) 

Neumann function in z, 

power flux of incident field 

Legendre polynomial of order / or n 

associated Legendre function of the first 

kind of order (/, m) 

associated Legendre function of the second 

kind of order (/, m) 

2.9 

2.9 

-

W/m2K 

W/m2K 

-

-

-

-

-

A/m2 

-

-

W/mK 

W/mK 

m1 

m1 

-

m 

m 

-

. 

W/m2 

-
. 

2.7 

2.10 

2.10 

2.9 

2.2 

2.9 

2.9 

2.2 

2.2 

2.7 

2.9 

2.10 

2.10 

2.2 

2.6 

2.6 

2.6 

2.11 

2.7 

2.9 

2.6 

2.9 

2.9 

2.9 
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Qr(t,T) 

R 

R 

R, R(r) 

R(t,T) 

^12 

r 

s, 
<s> 
T 

T, 7(0) 

Ta 

Ti2 

t 

X 

X 

Y(d,<$>) 

Y,m 

^1+1/2 

z, 

symbol for Dn Br or Jr 

radius of the cylinder 

radius of the sphere 

radius dependent function 

response function 

complex reflection coefficient from 

medium 1 to medium 2 

position vector 

surface i 

time average power flux 

temperature 

fheta dependent function 

ambient temperature 

complex transmission coefficient from 

medium 1 to medium 2 

time 

abbreviation of kr in Eq.(81) 

abbreviation of cos(0) in Eq.(83) 

theta and phi dependent function 

spherical harmonic function of order (/, m) 

Bessel, Neumann or Hankel function of 

order /+1/2 

abbreviation of Zl+1/2\/(n/2kr) 

-

m 

m 

-

-

-

m 

m2 

W/m2 

K 

-

K 

-

s 

-

-

-

-

~ 

-

2.2 

2.7 

2.9 

2.7 

2.2 

2.6 

2.9 

2.10 

2.3 

2.2 

2.9 

2.10 

2.6 

2.2 

2.9 

2.9 

2.9 

2.9 

2.9 

2.9 

Coordinates 

x, v, z rectangular coordinates m 2.2 

r, (J), z polar coordinates m, rad, m 2.7 

r, 0, (|) spherical coordinates m, rad, rad 2.9 
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Greek symbols 

a 

a2 

P 
P2 
8 

812 

e 

e' 

e" 

Eo 

e„ 

< 

C 
K 

*0 

K„ 

K' 

K" 

K2' 

K2" 

M 

Mo 

Mn 

Mn' 

Mo" 

P 

P 

Pr 
a 

a 

phase constant 

phase constant of medium 2 

attenuation constant 

attenuation constant of medium 2 

loss angle 

amplitude of Ru 

complex permittivity 

real part of E 

imaginary part of e 

permittivity in vacuum 

time dependent complex permittivity 

real part of en 

imaginary part of en 

complex dielectric constant 

dielectric constant at o)=0 s~' 

dielectric constant at o)=°° s"1 

dielectric constant, real part of K 

dielectric loss factor, imaginary part of K 

dielectric constant of medium 2 

dielectric loss factor of medium 2 

complex permeability 

permeability of vacuum 

time dependent complex permeability 

real part of ^n 

imaginary part of /un 

density 

comp. ampl. of charge density of free charges 

charge density of free charges 

Stefan-Boltzmann constant 

electric conductivity of free charges 

m"1 

m1 

m"1 

m1 

rad 

rad 

-

C2/Nm2 

C2/Nm2 

C2/Nm2 

-

C2/Nm2 

C2/Nm2 

-

-

-

-

-

-

-

-

Tm/A 

-

Tm/A 

Tm/A 

Kg/m3 

-

C/m3 

W/m2K4 

S/m 

2.4 

2.6 

2.4 

2.6 

2.4 

2.6 

2.2 

2.4 

2.4 

2.4 

2.2 

2.3 

2.3 

2.4 

2.2 

2.2 

2.4 

2.4 

2.8 

2.6 

2.2 

2.4 

2.2 

2.3 

2.3 

2.10 

2.2 

2.2 

2.10 

2.2 
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T 

T12 

* , * ( < ! > ) 

X(r, t) 

Y 

0) 

molecular relaxation time 

amplitude of Tn 

phi dependent function 

time dependent electric susceptibility 

component of electric field 

angular frequency 

s 

rad 

-

C2/Nm2s 

-

s-1 

2.2 

2.6 

2.7 

2.2 

2.9 

2.2 
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ABSTRACT 
The dissipation of electromagnetic energy within a microwave heated layer has been 
analyzed. It has been shown that the dissipation oscillates as a function of 
temperature, regardless of the material specimen. This oscillation, combined with 
the heat loss, is found to be responsible for thermal runaway phenomenon in 
isothermal slabs. Based on such an observation, a general rule to prevent thermal 
runaway was developed. Slab temperature analysis for time dependent microwave 
power indicates that the concept of bistability is not the appropriate term to describe 
the observed jumps in temperature. 
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3.1. INTRODUCTION 

The application of microwave heating in, for example the food industry is 

seriously hampered by two problems which have their roots in the basic physics of 

the heating process. The first difficulty is the uneven spatial dissipation of energy 

within foodstuffs. The second difficulty is the catastrophic phenomenon of thermal 

runaway in which a slight change of microwave power causes the temperature to 

increase rapidly. In this article we will study the second problem. The motive for this 

research was the introduction of the concept of bistability in microwave physics. 

According to Stuerga1, the temperature of a microwave heated slab, when irradiated 

by microwave power directly proportional to time, shows bistable behavior.. As usual 

the bistable phenomenon is accompanied by a hysteresis loop. Stuerga also claims to 

have found experimental evidence for this idea. However, up to now the predicted 

hysteresis loop has never been found. 

A number of bistable phenomena exist in physics. Probably the one which is 

best known is the phase transition of vapor into liquid. A vapor may be compressed 

to a pressure well above the vapor pressure of the liquid without condensation taking 

place and, on the other hand, a liquid may be heated well above its boiling point 

without boiling. Both processes are limited to certain values of pressure above 

(below) at which condensation (boiling) starts. This is a typical metastable or bistable 

phenomenon. This bistable behavior can be described according to the Van der Waals 

equation, which is very remarkable because it is an equation of state related to a gas 

and contains nothing about phase transitions. Van der Waals law suggests bistability, 

but for a complete understanding the theory of phase transitions has to be added. 

It seems that the same kind of situation is present in microwave physics. 

Fourier's differential equation suggests bistability (for time dependent microwave 

power), but this is insufficient for a complete understanding. The purpose of the 

study described in this article was to develop a kind of phase transition theory, 

aiming to explain and support the idea by Stuerga. 

The phenomena of thermal runaway and bistability are closely related. In fact 

the idea of bistability was inspired by thermal runaway. This is why the first part of 

this article contains a study of dissipation which, combined with heat losses, might 
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result in thermal runaway. The aim was to find the origin of the runaway process and 

hope that it would lead to the real explanation of bistability. A side product of this 

part of the investigation resulted in a rule to eventually prevent thermal runaway. In 

the final part of the article the concept of bistability in microwave heating is 

discussed. 

3.2. THE ORIGIN OF THERMAL RUNAWAY IN ISOTHERMAL SLABS 

Consider a layer of specimen material, irradiated from one side by microwave 

radiation with a frequency of 2450 MHz. The wave is a plane, harmonic one and 

impinges normally upon the material. In order to explain the principles of thermal 

runaway, the simplest possible system was conceived. The absence of reflection from 

the cavity in which the actual experiment was performed, is assumed. This means 

that the initial wave is reflected, absorbed, and transmitted (Fig.l). 

a i r ( 1 ) 
p l a n e 
m i c r o w a v e 

s l a b ( 2 ) a i r ( 1 ) 

Figure 1. A layer, being irradiated from one side, in an echofree cavity 

It is also assumed that the temperature throughout the layer is the same at every 

moment. This can be achieved by taking a liquid as the medium and mixing it in such 

a way that the spatial equalization of temperature is much faster than the process 

causing temperature increase. This process is due to the dissipation of 

electromagnetic energy within the slab. Under these conditions simple relationships 

evolve, which indicate the reasons for thermal runaway in isothermal slabs. 

Initially a system without convective and radiative thermal losses is 

considered. The differential equation, describing the relationship between 

temperature Tand time t, (Fourier's law) reads: 
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