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Abstract 

Integrated Probabilistic Risk Assessment (IPRA) for carcinogens  
A first exploration 
 
In 2007 the National Institute for Public Health and the Environment (RIVM) and 
Wageningen University developed the IPRA-method (Integrated Probabilistic 
Risk Assessment) to estimate which fraction of the population is affected by 
non-carcinogenic substances in food. Following research commissioned by the 
Dutch Food and Consumer Product Safety Authority (nVWA) the RIVM shows 
that the IPRA-method can also be applied to carcinogenic substances. 
 
In the IPRA-method the uncertainty in the available data is translated into 
confidence limits of the results. This gives a more realistic view on the potential 
health effect. This report describes how the required input data for the IPRA-
method and the results thereof need to be interpreted. 
 
As a result of the severe nature of the effect ‘cancer’ it is desirable that the 
extra risk of cancer following exposure to substances is very small, for example 
1 in a million. Measuring such low cancer incidences would require animal 
testing at a scale that is too large to be feasible. Therefore, these low risks 
cannot be measured in animal studies. In practice, measurable cancer 
incidences from animal experiments are linearly extrapolated to the desired low 
(non-measurable) cancer incidences.  
 
A case study with the carcinogenic mycotoxin aflatoxin B1 illustrates that the 
uncertainties in risk estimates related to carcinogenic substances are indeed 
very large. The currently applied linear extrapolation technique results in a 
single, supposedly conservative, risk estimate, without showing the associated 
uncertainties. The IPRA-method on the other hand does provide an indication of 
the uncertainty in the risk estimate. As such it may be a very promising tool for 
risk managers. The outcome of the method more realistically reflects to what 
extent quantitative statements on the risk can be made, given the available 
information. This allows the risk manager to make better informed decisions. 
 
Key words: IPRA, cancer risk assessment, probabilistic, CED, BMD, assessment 
factor, dietary exposure, MOE, linear extrapolation 
 



RIVM Report 320121002 

Page 4 of 55 



RIVM Report 320121002 

Page 5 of 55 

 

Rapport in het kort 

Integrated Probabilistic Risk Assessment (IPRA) voor 
kankerverwekkende stoffen  
Een eerste verkenning 
 
Het RIVM en de Wageningen Universiteit hebben in 2007 de IPRA-methode 
(Integrated Probabilistic Risk Assessment) ontwikkeld om te kunnen inschatten 
welk deel van de bevolking effect ondervindt van niet-kankerverwekkende 
stoffen in voeding. Uit onderzoek van het RIVM, in opdracht van de nieuwe 
Voedsel en Waren Autoriteit (nVWA) blijkt dat de IPRA-methode ook voor 
kankerverwekkende stoffen kan worden gebruikt.  
 
Met de IPRA-methode kan de mate van onzekerheid in de beschikbare gegevens 
vertaald worden in onzekerheidsmarges in de uitkomst. Hiermee wordt een 
realistischer beeld gegeven van het potentiële effect op de gezondheid. In het 
rapport staat beschreven hoe de gegevens waarmee de IPRA-methode rekent 
moeten worden geïnterpreteerd, evenals de daaruit afgeleide uitkomsten. 
 
Vanwege de ernstige aard van het effect ‘kanker’ is het wenselijk dat het 
additionele risico hierop als gevolg van de blootstelling aan een stof heel klein is, 
bijvoorbeeld 1 op de miljoen. Om zulke lage kankerincidenties te kunnen meten 
zouden zulke grootschalige dierproeven nodig zijn dat ze praktisch niet 
uitvoerbaar zijn. Omdat dergelijk lage risico’s niet waarneembaar in dierstudies 
worden in de huidige praktijk de meetbare kankerincidenties lineair 
geëxtrapoleerd naar de wenselijke lage kankerincidenties.   
 
Een casestudie met het kankerverwekkende schimmelgif aflatoxine B1 illustreert 
dat de onzekerheden in de risicobeoordelingen van kankerverwekkende stoffen 
inderdaad erg groot zijn. De op dit moment veel toegepaste lineaire 
extrapolatiemethode resulteert in een enkel, verondersteld conservatief, 
risicogetal, zonder de daarbij horende onzekerheden te laten zien. De IPRA-
methode levert daarentegen wel een indicatie van de onzekerheden in het 
geschatte risico. Daarom is de IPRA-methode een veelbelovend instrument voor 
risicomanagers om risico’s op kanker te schatten. Het resultaat van de methode 
maakt duidelijk in hoeverre een uitspraak gedaan kan worden over het risico, 
gegeven de beschikbare gegevens. Dit stelt risicomanagers in staat om beter 
onderbouwde beslissingen te nemen. 
 
Trefwoorden: IPRA, risicoschatting van kanker, probabilistisch, CED, BMD, 
assessment factor, blootstelling via voeding, MOE, lineaire extrapolatie 
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Summary 

 
IPRA (Integrated Probabilistic Risk Assessment) is a risk assessment approach 
that integrates probabilistic exposure assessment with probabilistic hazard 
characterization. So far, this approach was developed for and applied to non-
cancer effects in food. The present report explores the possibilities of applying 
IPRA for cancer risk assessment. 
We distinguish five possible ways of carrying out an IPRA for cancer: A. 
probabilistic MOE; B. the usual non-cancer IPRA; C. IPRA based on linear 
extrapolation; D. IPRA based on model extrapolation; E. IPRA based on time-to-
tumor. 
Approach E can only be applied in rare cases when time-to-tumor data are 
available. The other four approaches were fully worked out and applied to a case 
study with aflatoxin B1 as the model compound. For aflatoxin B1 approach A 
resulted in an MOE between 24 and 102 (90%-confidence interval) related to 
the 1st percentile of the population, showing that the uncertainty in the MOE was 
relatively small. 
Approach B resulted in an upper bound estimate (one-sided 95%-confidence 
limit) for the fraction of the population with cancer of 0.55%. The lower bound 
estimate of the risk was however < 0.0001%, illustrating that cancer risk 
estimates may be very uncertain. 
Approach C and D resulted in estimates of the so-called individual margin of 
exposure (IMoE), and in estimates of the fraction of the population, for various 
(individual) cancer risk levels. For instance, approach D estimated the fraction of 
the population for which the individuals would have a cancer risk of up to 1 in 
100 at a value between 0.34% and 31% (90%-confidence interval). Even 
though the uncertainty in this statement is large, it says more than conclusions 
from deterministic risk assessment, such as ‘risks cannot be excluded’, or ‘there 
is reason of concern’. The overall fraction of the population in approach D was 
estimated to lie between 0.009% to 1.8%, again illustrating the 
considerable uncertainties associated with cancer risk estimates. 
Comparing approach D with approach C (based on linear extrapolation) showed 
that the uncertainties associated with linear extrapolation are in reality very 
large. The currently applied (deterministic) linear extrapolation method 
disregards the uncertainties, while at the same time the deterministic output of 
the method pretends certainty. Therefore, quantitative statements about cancer 
risks should be avoided in the deterministic linear extrapolation method.  
We conclude that the IPRA method is a promising approach for risk assessment 
of carcinogens in food, because it provides an uncertainty range of the risk 
which more realistically reflects to what extent quantitative statements on the 
risk can be made, given the available information. This allows the risk manager 
to make better informed decisions. The choice between either IPRA approach B 
or D is a scientifically fundamental choice, for which appropriate scientific 
foundation is still lacking.  
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1 Introduction 

In risk assessment the exposure to chemicals below a health-based limit value 
such as a tolerable or acceptable daily intake (TDI or ADI) is generally regarded 
as being without appreciable risk of adverse human health effects. However, 
when exposure exceeds the health-based limit value it is unclear how severe the 
(adverse) effects might be and what fraction of the population might be affected 
(Slob, 2006). The typical conclusion in such situations is that health effects in 
the human population cannot be excluded. Van der Voet and Slob (2007) 
developed an integrated probabilistic risk assessment (IPRA) methodology that 
provides a more quantitative answer to the question of how large the risk might 
be for a given exposure situation. This is done by estimating two distributions: 
one for the ‘critical effect dose’ related to the individuals in the human 
population, and one for the dietary exposure related to individual humans. By 
combining these distributions the fraction of individuals having a higher 
exposure than their own ‘critical effect dose’ is obtained. This fraction, in 
combination with the specified critical effect, may be used as a measure of the 
health risk in the population. Furthermore, the IPRA approach facilitates a 
comprehensive evaluation of the various uncertainties involved in the risk 
assessment. 
 
The National Institute for Public Health and the Environment (RIVM) successfully 
applied the IPRA approach to assess the human health risks of six substances in 
food (Bokkers et al., 2009; Bokkers and Boon, 2010) for various non-cancer 
effects. So far, however, a similar methodology for cancer risk assessment has 
not been worked out.  
 
The purpose of this report is to explore various approaches of IPRA that might 
be suitable for cancer risk assessment (Food and Consumer Products Safety 
Authority Question 9.1.32, 2010). These approaches are described in chapter 3, 
after giving some basic principles underlying cancer and non-cancer effects in 
chapter 2. In chapter 4 the selected approaches are evaluated by implementing 
them in the IPRA software and applying them to an example chemical: aflatoxin 
B1. This substance was also evaluated in the project on the risk assessment of 
substances in children, based on the Dutch National Food Consumption Survey 
in children aged 2 to 6 years (Boon et al., 2009), so that the conclusions based 
on that evaluation can be compared with those that would be drawn from the 
intended IPRA approaches in this report. The final chapter (chapter 5) contains 
the discussion and conclusions.  
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2 Basic principles 

2.1 IPRA for non-carcinogens 

In the integrated probabilistic risk assessment (IPRA) method, as developed by 
Van der Voet and Slob (2007) for application in dietary risk assessment, two 
distributions are estimated: one for the individual human dietary exposure 
(IEXP), and one for the individual (human) ‘critical effect dose’ (ICED). The IEXP 
distribution is estimated by applying dietary exposure modeling on data from 
food consumption surveys in combination with concentrations measured in foods 
(e.g., Slob, 2006). The human ICED is the hypothetical dose above which an 
individual would show a particular predefined effect. It is assumed that the 
human ICED varies among individuals, resulting in an ICED distribution, which 
can be estimated from dose-response data and additional assumptions. From 
the combination of the human IEXP distribution and the human ICED distribution 
the fraction of individuals with an IEXP exceeding their own ICED is derived. The 
ratio of ICED and IEXP is called the Individual Margin of Exposure (IMoE). 
Hence, individuals with an exposure higher than their own critical effect dose 
have an IMoE below one. The IPRA methodology for noncarcinogens has been 
applied to various compounds in food (Bokkers et al., 2009; Bokkers and Boon, 
2010; Bos et al., 2009; Bosgra et al., 2009; Müller et al., 2009; Muri et al. 
2009; Van der Voet et al., 2009). 
 

2.2 Cancer vs. non-cancer effects 

From a theoretical point of view, the whole concept of IPRA would be equally 
applicable to non-cancer and cancer effects. Yet, there are some issues that 
need special attention when dealing with cancer effects as opposed to non-
cancer effects. In current risk assessment practice, a clear distinction is made 
between non-cancer and (genotoxic) cancer effects, based on an assumed dose 
threshold to exist or not. This distinction determines which approach of hazard 
characterization should be followed. Unfortunately, the (non-)existence of a 
threshold is merely an assumption that can never be proven. But, more 
importantly, even if the existence of a threshold were beyond any doubt, the 
quantitative value of it will always remain unknown: dose thresholds are non-
observable. Therefore, the threshold assumption cannot be used for quantitative 
risk assessment purposes, and is not an issue in distinguishing IPRA for cancer 
or non-cancer effects (Slob, 1999).  
 
A more realistic difficulty in directly applying IPRA for cancer in the same way as 
for non-cancer is the following. The current (non-cancer) version of IPRA results 
in (among others) an estimate of the fraction of the human population that 
would be subject to the pre-defined effect, given a specific exposure situation. 
Given the large uncertainties involved in a risk assessment, the range of 
uncertainty in the estimated fraction will be large. Nonetheless, if the upper 
bound of that range is 1%, and the associated effect relates to 5% body weight 
reduction or to mild liver lesions, then even this upper bound estimate might be 
considered as a more or less acceptable risk. However, if the predefined effect 
relates to developing a specific cancer resulting from exposure, then 1% of the 
population would normally be considered as a very high risk, and risk managers 
might not be satisfied with this outcome.  



RIVM Report 320121002 

Page 14 of 55 

 
In other words, the main distinction between cancer and non-cancer effects is 
that for cancer much lower fractions of the population affected would be 
considered acceptable, and that these lower fractions are much lower than can 
be measured in a carcinogenicity study. This makes cancer risk assessment a 
greater challenge than assessments of many non-cancer risks.   
 

2.3 Interpretation of quantal dose-response data 

Most carcinogenicity studies report tumor incidences in relation to dose. From a 
statistical point of view tumor incidences are the same type of dose-response 
data as incidences of any non-cancer lesion, i.e. they are quantal data just as 
well. The previous report on IPRA for non-cancer effects (Bokkers et al., 2009) 
discussed the interpretation of quantal data and how this translates into a 
probabilistic hazard characterization. An essential point is that in quantal data 
only one severity of the lesion can be evaluated: it is implicitly defined as the 
borderline between response and no-response. For instance, the observed 
incidences may relate to, e.g., mild or to moderate lesions, and this directly 
determines the (only) severity level for which the hazard characterization can be 
done. In contrast, for a continuous endpoint, e.g., hematocrit, we could estimate 
the CED associated with any chosen severity level, say, 5%, 10% or 20% 
decrease.  
 
As Figure 1 (from: Slob, 1999) shows, the slope of quantal dose-response data 
is directly influenced by the variability of the animal population, but also 
experimental errors, such as dosing errors or remaining heterogeneity in the 
experimental conditions experienced by each animal. Bokkers et al. (2009) 
concluded that the slope of the dose-response for quantal data does not provide 
any information on intra-species variation in humans, and hence the ED50 of the 
dose-response was regarded as the (only) information useable for further 
(probabilistic) risk assessment. The ED50 is the dose at which the observed 
incidence is 50% (without correction for background response). The severity or 
degree of the effect associated with the ED50 is implicitly defined by the data, 
i.e. the cut-off between yes/no effect (e.g. mild or minimal lesion). In this 
interpretation quantal data do not provide any information on severity levels 
other than the single one as implicitly defined by the cut-off1.  
 

                                               
1 Or, when various severity levels have been scored, the ED50s associated with each severity level could be 

estimated, resulting in dose-information related to those specific severities.  
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Figure 1. Relation between quantal response (e.g., fraction of animals with 

atrophy; see lower panels) and underlying continuous response 
(degree of atrophy; see upper panels). 

 
In the left panels of Figure 1 the variation between the individual observations 
(animal heterogeneity plus experimental error) is relatively large, and in the 
right panels, relatively small, whereas the average (continuous) dose-response 
is the same. The (critical) effect size (CES) is the cut-off level above which the 
experimental observer classifies an animal as having atrophy. Thus, the shaded 
areas in the distributions reflect the expected percentages of animals considered 
as responders, which are given in the lower panels as a function of dose. Note 
that the ED10 moves to the ED50 when the variation between the animals 
and/or the experimental error is reduced (Slob, 1999). 
 

However, in the case of cancer dose-response data another interpretation of the 
dose-response relationship is possible. In this second interpretation it is 
assumed that each subject may be characterized by a (hypothetical) ‘individual’ 
dose-response, where the response is the probability that this particular 
individual will show cancer at any given dose. The fundamental difference 
between the two interpretations may be summarized as follows: 

 

Interpretation 1: A specific animal at a specific point in time (i.e. given the 
history of all circumstances that the animal went through) is characterized by a 
hypothetical ‘tolerance’ dose. If the animal had been treated with a higher dose, 
it will show the effect, if it is treated with a lower dose it will not show the effect.   

Interpretation 2: A specific animal at a specific point in time (i.e. given the 
history of all circumstances that the animal went through) is characterized by a 
hypothetical dose-response relationship. If the animal had been treated with a 
specific dose, this dose-response determines the probability that the animal will 
show the effect.  
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As a further illustration we apply dose X to 100 animals, and at the end of the 
study we observe that 30% of the animals show cancer. This can be interpreted 
in two ways: 

Interpretation 1: The tolerance doses of 30 specific animals were higher than 
the applied dose, while those in the other 70 animals were lower. Suppose we 
could repeat the experiment with the same animals (under identical conditions), 
then the same individuals would show cancer again.  

Interpretation 2: All individual animals had a 30% probability of getting cancer. 
So, in this respect the animals are identical. If we could repeat the experiment 
then the group of individuals showing cancer will be different.  

In other words, in interpretation 2 the realization of the cancer effect in a single 
individual is considered as the outcome of a stochastic process, analogous to 
throwing a coin or a dice. For instance, one might imagine that a single reactive 
molecule entering the nucleus could hit the DNA, but it is a matter of chance 
whether it hits a relevant gene or an irrelevant one. If this were (one of the) a 
critical event(s), then it is also a matter of chance if the animal would develop a 
tumor or not, given the specific circumstances.  

It should be noted that all factors that may influence the carcinogenic process 
have an impact on the tolerance dose in interpretation 1, and on the cancer 
probability in interpretation 2.  

 

Although the distinction between the two interpretations seems subtle or even 
academic, it has a direct impact on how a risk assessment should be worked 
out. As already discussed, interpretation 1 implies that only the ED50 is useable 
for further risk assessment. It estimates the dose above which the median 
human being would get cancer, and below which not (with probability = 1). 
Hence, in that case, the non-cancer IPRA as worked out for quantal data directly 
applies to cancer as well (i.e., IPRA based on ED50). However, under 
interpretation 2 the fitted dose-response curve could be regarded as an estimate 
of the mean of all the individual dose-responses. In that case, the dose-
response relationship predicts the probability of getting cancer at any given 
dose, which may be assumed to hold for the (average) test animal. Next, this 
relationship may be assumed to equally hold for the average human being 
(apart from an interspecies dose-factor). So, the ED10 in the animal is (after 
interspecies scaling) considered as an estimate of an equivalent dose in the 
median human being, at which he/she will have a probability of 10% of 
developing cancer. Further, in interpretation 2, a higher dose in the same 
individual will lead to a larger probability of developing cancer, and this will be 
regarded as more serious by the individual. In this interpretation higher cancer 
probabilities may be regarded as increasing severity levels, analogous to more 
serious degrees of anemia or liver lesions. So, the probability of developing a 
tumor (in an individual) could be treated as the degree of effect, and a severity 
level could be associated with any particular value of this probability (e.g., a 
tumor probability of 1 per 105 = slight, 1 per 104 = moderate, etc.). Note that 
this individual dose-risk relationship is a theoretical notion in the sense that it 
cannot be experimentally measured: the probability of cancer in a single 
individual cannot be observed, nor can a single individual be (chronically) 
exposed to different doses. 
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The next section discusses various approaches within IPRA that may be applied 
in the context of a cancer risk assessment. From these, approach B is based on 
interpretation 1, while approaches C and D are based on interpretation 2. For 
approach A this distinction is not relevant: it simply takes the BMDL10 as the 
point of departure, without further interpretation. In approach E the dose-
response relationship relates to time-to-tumor, which is a continuous endpoint, 
so the distinction between the two interpretations neither applies in this 
approach. 
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3 Various approaches for using IPRA for carcinogens 

This section contains a number of conceptually described potential approaches 
for using IPRA for carcinogens. Note that this discussion only relates to the 
hazard characterization part of the IPRA. In all approaches the exposure 
assessment part of the IPRA remains the same (see e.g. Van der Voet and Slob, 
2007; Van der Voet et al., 2009; Bokkers et al., 2009; Bokkers and Boon, 
2010).  
 

3.1 Approach A: MOE applied to cancer 

A recently proposed approach for cancer risk assessment is the Margin of 
Exposure (MOE; expressed as a ratio)2 between a Point of Departure (PoD, e.g. 
Benchmark dose) obtained from the critical dose-response data and the 
estimated human exposure level (O’Brien et al. 2006; Benford et al., 2010a). 
This approach can be easily incorporated in an IPRA approach. In line with this 
‘deterministic’ MOE approach the tumor incidence dose-response data are used 
to estimate the BMD10, the dose at which10 % of the animal population is 
affected. But, while the deterministic MOE approach uses the lower limit of the 
confidence interval (the BMDL10) as the numerator of the MOE, IPRA uses the 
complete uncertainty distribution around the BMD10. The distributions for the 
extrapolation factors, as usually applied in IPRA, will be omitted in this case, 
analogous to the deterministic MOE. But the variation and uncertainty related to 
exposure is fully included in the IPRA. This approach of IPRA will result in a 
distribution of the MOE.  
 
The additional value of applying IPRA is that the uncertainty in the MOE is 
quantified. This may prevent erroneous conclusions in ranking MOEs associated 
with different carcinogens, given the current exposure situation. The reason for 
this is that deterministic MOEs assessed for different substances may differ in 
the level of conservatism. For instance, one MOE might be based on a very 
conservative exposure estimate due to lack of data, while another MOE is based 
on a more realistic exposure estimate in the case that the exposure data are 
good. This will result in different MOEs, even if the underlying risks are the 
same. Therefore, simply ranking MOEs without considering the different levels of 
uncertainties involved may result in unjustified conclusions on relative risks.   
 
It should be kept in mind that the MOE approach does not apply inter- and 
intraspecies factors. Further, the BMD used is usually associated with a cancer 
risk of 10%. Therefore, MOEs should be much larger than 1 before they could be 
regarded as ‘no reason of concern’. Attempts have been made to define a MOE 
reference value, below which there would be ‘no reason of concern’, for instance 
four orders of magnitude (Barlow et al., 2006). The IPRA concept of IMoE 
(individual margin of exposure) as used in IPRA below (chapter 3) is 
fundamentally different, because it does take inter- and intraspecies differences 
and their uncertainties into account.  
 

                                               
2 Note that this MOE is not the same as the IMoE defined in IPRA 
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Assumptions: 
The MOE can be characterized as an assumption-poor approach. The basic 
assumption is: 
The dose-response in animals is a model for the dose-response in humans.  
 
Output: 
The IPRA will result in a confidence interval for the MOE, which we define as the 
ratio BMD10/E, where E is the 99th percentile of the IEXP distribution. This ratio 
is an estimate based on uncertain data, and the confidence interval around it 
results from both the uncertainties in the exposure data and in the dose-
response data3. The drawback of being assumption-poor is that the output of 
this approach is not easy to interpret, in the sense that it remains unclear how 
any given value of a MOE relates to potential risk levels in the human 
population. For instance, the MOE of 10,000 as a reference level for no concern, 
as proposed by Barlow et al., 2006, has no solid basis, and is an indication at 
best. 
 

3.2 Approach B: IPRA method for non-carcinogens applied to cancer 

Approach B is in fact the existing methodology of IPRA as developed for non-
carcinogens (for examples, see Bos et al., 2009; Muri et al., 2009; Müller et al., 
2009; Bokkers et al., 2009). This approach is based on interpretation 1. As 
mentioned in section 2.3, under interpretation 1, the ED50 from a quantal dose-
response relationship is the only information that is used in the risk assessment. 
The assumption is that each individual can be characterized by a tolerance dose, 
and the ED50 from the animal study is an estimate of the tolerance dose for the 
median animal. This animal tolerance dose is then scaled (using the interspecies 
extrapolation factor) to the median human being. Next, it is assumed that 
individuals differ in the tolerance dose, reflected by the intraspecies distribution. 
So, the fraction of the population with cancer derives from the intraspecies 
distribution around the scaled animal ED50.  
 
Assumptions:   

1. Quantal data are subject to interpretation 1 (see section 2.3).   
2. Potential interspecies differences in sensitivity for the specific chemical 

between the median animal and median human can be covered by the 
same uncertainty distribution as for non-cancer. This means that 
potential differences in sensitivity between test animal and human are 
assumed to be not fundamentally different for cancer or non-cancer. 
Regarding the toxicokinetic4 part of interspecies differences this seems 
plausible, for the toxicodynamic5 part this is unclear. 

3. In the human population there may be interindividual differences in 
sensitivity for the specific chemical, i.e. individuals may have different 
tolerance doses. The assumption is that the variability in human 
tolerance doses is of the same order of magnitude as the intraspecies 

                                               
3 Note the difference between variability and uncertainty: Variability is an intrinsic property of a parameter and 

is inherent to the system being modeled, whereas uncertainty represents ignorance or partial lack of knowledge 

and is thus dependent on the current state of knowledge. 
4 Toxicokinetics describes the distribution and elimination of the chemical in the body, resulting in the internal 

dose at the tissue level. 
5 Toxicodynamics describes the interaction of the substance with the target tissue, resulting in the biological 

effect. 
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variation for non-cancer effects. Again, for toxicokinetic differences this 
might be a plausible assumption, while for toxicodynamic differences it 
has been argued that inter-individual human variability in cell cycle 
control and DNA repair would result in additional intraspecies variation 
as compared to non-cancer effects (Barlow et al. 2006). The latter 
assumption could be taken into account in any specific application of 
IPRA, if considered appropriate. 

4. The fraction of the IMoE distribution with IMoE below 1 is interpreted as 
the fraction of the population that will develop cancer (after lifelong 
exposure).  

 
Output: 
The output of approach B is comparable to the IPRA output for non-cancer 
effects:  

1. The fraction of individuals with an exposure exceeding their own 
individual tolerance dose (analogous to critical effect dose for non-
cancer effects), i.e. the dose where the individual would develop cancer. 
For risk managers such output would only be helpful if that fraction is 
sufficiently low. While theoretically very low fractions can be calculated 
in IPRA, the problem is that they largely depend on the intraspecies 
distribution, which is in fact an assumed distribution with very little 
(quantitative) support from data.  

2. The individual margin of exposure (IMoE) for a chosen (e.g. 1st) 
percentile of the population. It should be noted here that the IMoE 
approach is, in the current software, based on Monte Carlo calculations, 
so that the estimated fraction of the population is limited by the number 
of Monte Carlo runs. For instance, when the number of runs is chosen to 
be one million, risk below than one in a million are beyond reach. 
In interpreting the estimated IMoE, the seriousness of the effect could 
be taken into account in a semi-quantitative way: a more serious effect 
would call for a larger IMoE, and hence for cancer the 1st percentile of 
the IMoE distribution should normally be substantially larger than 1 
before it could be concluded that there is ‘no reason of concern’, 
analogous to the deterministic MOE. How much larger is hard to say, but 
not as much as for the MOE of approach A because inter- and 
intraspecies differences are already accounted for in the IMoE.  

 

3.3 Approach C: Linear extrapolation 

Next to the MOE approach (approach A) another current method in risk 
assessment of carcinogens is that of linear extrapolation, and this forms the 
basis of approach C. In linear extrapolation, a straight line is ‘drawn’ from the 
dose with an observable tumor incidence (the PoD) to the tumor incidence in the 
controls, with the aim to obtain the dose at which a low, acceptable (but 
unobservable) incidence would occur. Note that approach C (just as approach D, 
see section 3.4) is based on interpretation 2 of the dose-response data.  
 
In this study the linear extrapolation approach is worked out in the IPRA 
philosophy as follows. A series of models is fitted to the dose-response data and 
for those models that fit the data sufficiently well the BMD10 is assessed, 
together with an uncertainty distribution (using bootstrapping). The 
bootstrapped uncertainty distributions are joined to one overall uncertainty 
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distribution for the BMD10. The distribution for doses at lower risk levels is then 
simply obtained by dividing the distribution by the relevant factor (e.g., for risk 
1 per 1000 this factor is 100, which is the ratio of 1 per 10 to 1 per 1000). For 
each of the BMD distributions obtained (i.e. related to various nominal risk 
levels) the IPRA can be applied in the usual way.  
 
Assumptions: 

1. Tumor incidence data are subject to interpretation 2 (see section 2.3). 
In this interpretation different ‘degrees’ of developing cancer can be 
defined, i.e. in terms of the probability that it will actually happen (in a 
given individual). Therefore, the IMoE distribution can be estimated for 
any ‘severity’ level, where a low/high severity level is a small/large 
cancer risk (in a given individual).   

2. Assumption on interspecies uncertainty: the same as approach B. 
3. Assumption on intraspecies variation and uncertainty: the same as 

approach B, but intraspecies variation is now defined as variation in 
human equipotent doses, i.e. individual doses associated with the same 
cancer probability.  

4. The fraction of the IMoE distribution with IMoE below 1 is interpreted as 
the fraction of the population the individuals of which have a given 
(specified) probability of developing cancer due to the exposure of the 
carcinogen considered.  

 
Output: 
The typical output is the same as in approach B (i.e. in terms of the IMoE for the 
1st percentile of the population, or in terms of an estimated fraction of the 
population) but now these outcomes can be calculated for various risk levels, 
where risk is interpreted as the degree of the effect (in terms of cancer risk) 
that an individual would be subject to. As a result, risks are expressed in two 
dimensions: a fraction of the population, and the cancer risk associated with the 
individuals in that fraction of the population. For example: 2% of the population 
has a cancer risk of 1:10,000. 
In all cases the output is accompanied with the associated uncertainties 
(confidence intervals).  
 

3.4 Approach D. Model extrapolation (and model-averaging) 

Approach D differs from approach C in the way of low-dose extrapolation: 
instead of linear extrapolation, extrapolation from a fitted model is performed, 
or rather, from a series of fitted models that were found to result in a 
reasonable fit. The variation in outcomes between different models will tend to 
increase with smaller risk levels, due to the fact that an increasing extent of 
extrapolation is involved. So, in this approach, the ‘model uncertainty’, which 
will be large for low risks, is taken into account.  For an illustration, see Table 1 
(upper part), where, over a series of fitted models the minimum of the BMDLs 
and the maximum of the BMDUs are reported. These results relate to typical 
carcinogenicity dose-response data (see Figure 2). The ratio 
max(BMDU)/min(BMDL) is given in Table 1 as a measure of uncertainty (a high 
ratio means a large difference between BMDU and BMDL and therefore a high 
uncertainty). This illustrates that the uncertainty in the BMD estimate rapidly 
increases with smaller risk levels. 
The advantage of approach D over linear extrapolation (approach C) is that it 
provides a more realistic confidence interval for the dose at a given (low) risk, 
because it takes model uncertainty into account. The width of this confidence 
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interval will depend on the quality of the data. As an illustration, compare the 
uncertainty ratios for a large study using 2280 animals for NDMA (Peto et al., 
1991a, b), summarized in Table 2, with those in Table 1: the ratios are much 
smaller for the study with the large number of animals and doses.  
For a given severity level (e.g. cancer risk = 1 per 104), the confidence interval 
around the BMD resulting from approach D can be compared to the result from 
linear extrapolation (approach C). If the confidence interval of approach D 
includes doses much higher than those resulting from approach C, this indicates 
that the estimates from linear extrapolation method were probably conservative. 
So, by comparing the results of the two methods it becomes visible to what 
extent linear extrapolation might be conservative (for a further illustration of 
this idea, see Figure 2. The latter depends on the quality of the data, although it 
should be noted that data as those underlying Table 2 are rare in practice.  
Just as described for linear extrapolation (approach C), the overall uncertainty 
associated with the BMD is quantified by joining the individual bootstrap 
distributions (related to different models). This implies that all accepted models 
receive equal weight. It would probably be better to join the individual 
distributions by giving weights based on the log-likelihood associated with each 
model, analogous to model averaging approaches (e.g., Wheeler and Bailer, 
2007, 2008). The latter has not yet been implemented in the IPRA software.  
 
Assumptions 

1. Tumor incidence data are subject to interpretation 2 (see section 2.3). 
In this interpretation different ‘degrees’ of developing cancer can be 
defined, i.e. in terms of the probability that it will actually happen (in a 
given individual). Therefore, the IMoE distribution can be estimated for 
any ‘severity’ level, where a low/high severity level is a small/large 
cancer risk (in a given individual).   

2. It is assumed that the ‘true’ dose-response is (close to) one of the 
curves resulting from fitting the usual suite of models to the data.  

3. See approach C.  
4. See approach C.  
5. See approach C.  
6. The models are fitted with the shape parameter constrained such that 

the slope at dose zero if finite. The underlying assumption is that a 
linear low-dose response relationship is worst-case in the case of 
genotoxic carcinogens. 

 
Output: 
Obviously, the uncertainties calculated in approach D will be larger than in 
approach C, since this approach aims to take into account all possible shapes for 
the dose-response curve, rather than just a linear shape below the BMD10. See 
also Figure 2.  
The output can be represented in two different forms.  

1. Similar as described in Approach C, i.e. results for various fixed levels of 
risks. 

2. The overall expected fraction of the population with cancer. See 
Appendix C for the computational details.  



RIVM Report 320121002 

Page 24 of 55 

Table 1. Minimum BMDL and maximum BMDU for the models available in 
PROAST fitted to the data in Figure 2.  

extra risk  1 per 10 1 per 103 1 per 104 1 per 105 
min(BMDL) 1.14 0.0118 0.00118 0.000118 
max(BMDU) 4.02 1.04 0.722 0.526 
ratio max/min 3.5 88 612 4458 

 
 
Table 2. Minimum BMDL and maximum BMDU for the models available in 

PROAST fitted to liver tumors in the NDMA study (Peto et al., 1991a,b), 
which used 2280 animals and 16 dose groups.  

extra risk 1 per 10 1 per 103 1 per 104 1 per 105 
min(BMDL) 0.0291 0.000442 0.0000444 4.44E-06 
max(BMDU) 0.0503 0.00859 0.00701 0.00334 
ratio max/min 1.7 19 158 752 
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Figure 2. Dose-response data used for Table 1, together with fitted log-logistic 

model. Triangles: males: circles: females.  
 

3.5 Approach E. Time-to-tumor 

For various reasons, both theoretical and practical, time-to-tumor data (i.e. data 
that describe the time it takes to develop a tumor in each individual animal) 
would form a better starting point for cancer risk assessment than using tumor-
incidence data as considered in the four previous methods. Such data are 
however scarce, and in many cases hard to generate: in many tissues the 
tumors are only visible after section.  
A theoretical option would be to estimate the time-to-tumor dose-response from 
tumor incidence data, by considering a specific type of models (the ‘latent 
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variable’ models, LVMs) available in the PROAST software (see Appendix A). This 
approach appears to be not practically applicable, given the limited information 
available in typical dose-tumor incidence data. Therefore, as yet, the time-to-
tumor approach could only be used if time-to-tumor has actually been 
measured. In these (rare) cases, IPRA can be based on an analysis of these 
data, in the same way as for non-cancer data. It should be noted here that the 
benchmark response (BMR) for the response ‘time-to-tumor’ would be at least 
around 5% (to avoid extrapolation), which would probably considered as a 
severe effect: if the tumor were lethal, this would imply a 5% reduction in 
lifespan. Nonetheless, extrapolation to lower BMRs involves a smaller low-dose 
extrapolation step than the usual step needed for tumor incidences (e.g. from 1 
per 10 down to 1 per 106, which is five orders of magnitude). This would 
constitute one of the advantages of using time-to-tumor data.  
 

3.6 Summary of the differences between the five approaches 

Table 3 summarizes the differences between the five approaches. The 
uncertainty and variability in the dietary exposure is completely included in all 
five approaches in the same way. The inter- and intraspecies differences are 
fully taken into account in all approaches, except approach A. The interpretation 
of the dose-response data (tolerance dose vs. stochastic process) is not relevant 
for approaches A and E, while approach B (tolerance-dose) differs in this aspect 
from approaches C and D (stochastic process). The five approaches particularly 
differ in the PoD that is used. Finally, the uncertainties in the dose-response 
data are taken into account by a full uncertainty distribution for the PoD in all 
five approaches.  
 
Table 3. Summary of the five approaches 
Approach Uncertainty

/variability 
in exposure 

Inter- and 
intraspecies 
extrapolation 

Inter-
pretation 

Point of 
Departure 

Uncer-
tainty in 
PoD 

A: MOE + - - 
BMDx 
  (x=10% 
  risk) 

distr 

B: non-
cancer 

+ distr 1 ED50 distr 

C: linear 
extrapol. 

+ distr 2 
BMDx 
  x=risk 
  level 

distr 

D: model 
extrapol. 

+ distr 2 
BMDx 
  x=risk 
  level 

distr 

E: time-
to-tumor 
(TTT) 

+ distr - 

BMDx 
 x=percent 
  reduction 
  in TTT 

distr 

+ : fully taken into account 
- : not applicable 
interpretation 1 and 2: see section 2.3 of this report 
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4 Case study: aflatoxin B1 

We considered aflatoxin B1 as the model chemical for illustrating the various 
options for a carcinogenic IPRA. This chemical was also included in Boon et al. 
(2009), which discussed the risk assessment of dietary exposure to 
contaminants and pesticide residues in young children in the Netherlands. The 
MOE (margin of exposure) was found to be somewhat lower than 100, similar to 
the value found in O’Brien et al. (2006) for the general (adult) population. This 
low value would be a reason of concern according to EFSA (Barlow et al., 2006), 
and thus a higher-tier probabilistic assessment is appropriate.  
 

4.1 Exposure assessment 

The exposure characterization was performed using the same data and methods 
as described in Boon et al. (2009). For a detailed description of the exposure 
characterization the reader is referred to that report. Here we report the 
summary results of the exposure assessment for children, aged 2 to 6 year 
(Table 4). Note that the same exposure data were used in all IPRA approaches 
discussed.  
 
Table 4. Summary data of the intake of aflatoxin B1 by children (age 2-6 y) 
 Percentiles of exposure  

(ng/kg bw/d) 
 P50 P95 
Aflatoxin B1 exposure 
(95% CI) 

0.8 
(0.6-0.9) 

1.9 
(1.5-2.5) 

 
4.2 Dose-response analysis  

Several investigators have studied the carcinogenic potential of aflatoxins in vivo 
using laboratory animals. The principal tumors induced were liver tumors (IARC, 
2002; JECFA, 1998).  
The PROAST software6 was used to apply dose-response modeling to the dose-
response data on liver tumors observed in three different studies: Newberne 
(1965), Wogan et al. (1974), and Butler and Barnes (1968). In fitting dose-
response models, the data from these three studies were combined (with study 
as a covariate regarding the potency parameter b). As an illustration Figure 3 
shows a dose-response derived from the data of the three studies. Here the log-
logistic model is applied to describe the data from Butler and Barnes, 1968 (left 
curve and circles), Newberne (1965) (middle curve and triangles), and Wogan et 
al. (1974) (right curve and plus-signs). Only the study by Wogan et al. (1974) is 
considered relevant for risk assessment, as the other two studies did not apply 
chronic exposure (O’Brien et al., 2006). These two studies are merely used as 
additional information on the shape of the dose-response (the statistical analysis 
showed that the three studies can be described by the same curve with only 
parameter b differing among studies).  
In the Wogan study groups of male Fischer rats (initial number unspecified) 
were fed a diet containing 0, 1, 5, 15, 50 or 100 µg aflatoxin B1/kg of diet. 
These feed concentrations corresponded to doses of 0.05, 0.1, 0.3, 2 and 
4 µg/kg bw/d, respectively (assuming default body weight male rats 500 g and 
default feed consumption male rats 20 g/d; O’Brien, 2006). When clinical 

                                               
6 www.proast.nl 
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deterioration of animals was observed all survivors in that treatment group were 
killed. The incidences of hepatocellular carcinomas are reported in Table 5. 
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Figure 3. Dose-response data of liver tumor incidence against the log10 dose 

(ppb). The curves obtained with the log-logistic model are shown as an 
illustration. Data are from Butler and Barnes, 1968 (triangles), 
Newberne, 1965 (circles, two circles per dose indicates male and female 
data), and Wogan et al., 1974 (plus symbols). 

 
Table 5. Incidences of liver tumors in male rats after prolonged exposure to 

various doses of aflatoxin B1 (Wogan et al., 1974).  
Dose (ppb) No. animals with 

liver tumor 
Group size 

0 0 18 
1 2 22 
5 1 22 
15 4 21 
50 20 25 
100 28 28 
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Appendix B summarizes the results for the usual suite of models (e.g. EFSA, 
2010) fitted to the liver tumor incidence data. Seven of the nine models were 
accepted by the goodness-of-fit test for p>0.01, and therefore all these models 
were included in deriving the uncertainty distributions for the various BMDs 
used.  
 
The BMD distributions were derived by the parametric bootstrap method, i.e. by 
generating datasets from the fitted model, refitting the model to the artificial 
data and recalculating the BMD in each run (number of runs = 1000). This was 
repeated for each of the models accepted by the data. The distributions of the 
‘bootstrapped’ BMDs are summarized in Table 6 by their lower 5th (BMDL) and 
upper 95th (BMDU) percentiles. BMD distributions were derived for consecutively 
increasing steps in extra risk from 1 per 10 up to 1 per million, denoted as 1e-1 
to 1e-6, respectively. In addition the ED50s (= dose at 50% incidence) with 
their confidence intervals were estimated for each model (except for the Gamma 
model, for which estimation of the ED50 is not implemented in the PROAST 
software). 
 
The BMDs and ED50s in ppb are translated into μg/kg bw/day by multiplying the 
values in ppb by 0.04, according to O’Brien (2006). The distributions obtained 
for each model were combined to obtain an overall BMD uncertainty distribution 
(Table 6 and Figure 4). The diverging BMD distributions from the individual 
models result in multimodal BMD distributions, especially for lower extra risks. 
Table 6 also shows the BMD distributions for various risk levels as derived by 
linear extrapolation from the BMD10 distribution.  
 
Table 6. Summary of the BMD and ED50 distributions obtained with all seven 

accepted models, combined. BMD(L/U)s are in µg/kg bw/d. Graphical 
representations of the distributions are given in the corresponding 
panels of Figure 4. 

Approach B 
  
ED50 (L)c 7.6e-1 
ED50 (U)c 1.4 
Figure 4 A 
  

 

Approach C 
BMRa 10-1 b 10-2 10-3 10-4 10-5 10-6 
BMDL 1.6e-1 1.6e-2 1.6e-3 1.6e-4 1.6e-5 1.6e-6 
BMDU 5.2e-1 5.2e-2 5.2e-3 5.2e-4 5.2e-5 5.2e-6 
Figure 4 B C E G I K 
       
Approach D 
BMRa 10-1 b 10-2 10-3 10-4 10-5 10-6 
BMDL 1.6e-1 1.9e-2 2.1e-3 2.2e-4 2.2e-5 2.2e-6 
BMDU 5.2e-1 2.0e-1 1.1e-1 6.5e-2 4.3e-2 3.0e-2 
Figure 4 B D F H J L 
       
a defined as extra risk 
b  For BMR = 10%, results for approaches C and D are identical 
c L = lower bound, U = upper bound estimate 
 
 



RIVM Report 320121002 

Page 30 of 55 

 

(A) BMR = ED50, approach B

log10 ED50 (ug/kg bw /dy)

F
re

qu
en

cy

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0
50

0
10

00
15

00

(B) BMR = 1e-1, approach C & D

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-1.0 -0.8 -0.6 -0.4 -0.2

0
20

0
40

0
60

0

(C) BMR = 1e-2, approach C

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-2.0 -1.8 -1.6 -1.4 -1.2

0
20

0
40

0
60

0

(D) BMR = 1e-2, approach D

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-2.0 -1.5 -1.0 -0.5

0
20

0
60

0

(E) BMR = 1e-3, approach C

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-3.0 -2.8 -2.6 -2.4 -2.2

0
20

0
40

0
60

0

(F) BMR = 1e-3, approach D

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

0
40

0
80

0
12

00

 
(G) BMR = 1e-4, approach C

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-4.0 -3.8 -3.6 -3.4 -3.2

0
20

0
40

0
60

0

(H) BMR = 1e-4, approach D

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

0
40

0
80

0

(I) BMR = 1e-5, approach C

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-5.0 -4.8 -4.6 -4.4 -4.2

0
20

0
40

0
60

0

(J) BMR = 1e-5, approach D

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-5 -4 -3 -2 -1

0
50

0
15

00

(K) BMR = 1e-6, approach C

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-6.0 -5.8 -5.6 -5.4 -5.2

0
20

0
40

0
60

0

(L) BMR = 1e-6, approach D

log10 BMD (ug/kg bw /dy)

F
re

qu
en

cy

-6 -5 -4 -3 -2 -1

0
50

0
15

00

 
Figure 4. Uncertainty distributions for ED50 and BMDs (µg/kg bw/d) associated 
with various BMRs obtained by combining the bootstrap results from all seven 
accepted models.
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As expected, the width of the distributions, i.e., the uncertainty in the BMD, 
increases with lower extra risk levels when model uncertainty is taken into 
account (see plots headed ‘model extrapol’), while the distributions remain 
narrow when linear extrapolation is applied. This is caused by the fact that the 
upper bounds are much higher in ‘model extrapolation’. The lower bounds of the 
distributions are similar between ‘model extrapolation’ and ‘linear extrapolation’. 
The latter is related to the fact that in ‘model extrapolation’ the models were 
constrained to have finite slope at dose zero, which effectively means that from 
all dose-response shapes allowed in the analysis, the linear shape (at low doses) 
is the worst case shape. See Figure 5 for a further illustration.  
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Figure 5. Illustration of the fact that the lower confidence limit for the BMD at 

lower risks for approach D (model extrapolation) is similar to that for 
approach C (linear extrapolation), while the upper bound for approach D 
may by much higher than for approach C. Approach D allows dose-
response curves such as the two dashed curves, reflecting two possible 
dose-response relationships that are compatible with the observed 
responses, but differ widely at lower risks levels. However, they remain 
at the right side of the straight line, which reflects linear extrapolation.  

 
4.3 Extrapolation factors 

The animal derived BMD distributions are extrapolated to the human population 
using an interspecies and intraspecies extrapolation factor (EF). Table 7 gives an 
overview of the EF distributions that were applied in this aflatoxin case study.  
Interspecies extrapolation is performed in two steps: 

1. allometric scaling to account for interspecies differences in body size 
2. applying an EF for interspecies differences in kinetics and dynamics 

(Bokkers and Slob, 2007).  
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To achieve allometric scaling the following factor was applied:  

 

powerscaling

bwanimalmean

bwhumanmean






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


1

, 

where the mean human bw is set at 80 kg and the mean male rat bw at 500 g 
(O'Brien et al., 2006). The allometric scaling power is assumed to be in the 
range of 0.65 to 0.75. To account for this uncertainty, the scaling power is 
described by a (normal) distribution with a mean of 0.7 and SD of 0.033. This 
SD follows from assuming that the 5th and 95th percentiles of the distribution are 
0.65 and 0.75, respectively. These assumptions translate into a lognormal 
distribution for the allometric factor with GM = 4.6, and GSD = 1.2.  
 
Table 7. EF distributions (all lognormally distributed). 
Effect Allometric 

factor 
Interspecies 
TK & TD 

P95 of 
intraspecies 
factor is in 
the range: 

Intraspecies 

Liver tumors GM=4.6 
GSD=1.2 

GM=1 
GSD=2 

5-20 GM=1 
GSD=3.6 
df=21 

GM:  geometric mean 
GSD: geometric standard deviation 
 
For potential toxicokinetic and toxicodynamic differences between rat and 
human the usual EFinterspecies distribution was used (Bokkers and Slob, 2007; 
Bokkers et al., 2009), i.e. GM = 1 and GSD = 2. 
 
The variability in sensitivity within the whole human population is accounted for 
by an intraspecies EF. In IPRA this variability is based on expert judgment, 
expressed in terms of a factor between the 50th and 95th (P95) percentile of the 
human sensitivity distribution, reflecting by how much the individual BMD of the 
sensitive 5% of the population might be lower than that of the average (= 
median) individual. Since this factor itself is uncertain, an assumption is made 
about the range of potential values; in this case it is assumed that this factor 
lies somewhere between 5 and 20. This (uncertain) information can be 
translated into a lognormal distribution with GM = 1 and GSD = 3.6 for 
reflecting the variability, and an associated chi-squared distribution of 21 
degrees of freedom for the GSD, reflecting the uncertainty in the assumed 
variability. For a detailed description of the construction of the intraspecies EF, 
see Van der Voet et al. (2009). 
 

4.4 Probabilistic risk assessment 

Approach A 
The 1st percentile of the distribution of the MOE (ratio BMD10/IEXP) was found to 
be somewhere between 24 and 102 (90%-confidence interval), i.e., 99% of the 
population would have an MOE larger than that (see Table 8). Around 65% of 
the uncertainty in this value was attributable to uncertainty in the BMD10, and 
around 25% to uncertainties in the concentration data (see Figure 6).  
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Table 8. Results for approach A. 

1st percentile of MOE distribution 
BMR 

L05 L95 
1e-1 24 102 
L05: 5% lower confidence bound 
L95: 95% upper confidence bound 
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Figure 6. Contribution of various sources of uncertainty (Monte Carlo, 

consumption data, concentration data, processing factor and BMD) to 
the overall uncertainty associated with the 1st percentile of the MOE 
distribution.  

 
 
Approaches B, C, and D 
As opposed to approach A, approaches B, C and D do apply distributions for 
assessment factors. Further, for these three approaches the usual output from 
IPRA can be produced, i.e. (i) in the form of confidence intervals for the 
individual margin of exposure (IMoE) associated with the 1st percentile of the 
population, and (ii) in the form of the fraction of the population with an 
exposure that is higher than his/her personal dose associated with a given 
degree of effect. The first type of output is shown in Figure 7 and Table 9, the 
second in Figure 8 and Table 10.  
 
Approach B 
If cancer dose-response data (where response is in terms of incidences) are 
interpreted in the same way as quantal data for non-cancer (interpretation 1, 
see section 2.3) then approach B applies, where the hazard characterization is 
based on the ED50. Since the upper confidence interval in Figure 7 is larger than 
one (or zero on the log-scale used) this indicates that 99% of the population 
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would not get cancer from aflatoxin B1 exposure. However, since the lower 
confidence bound of the IMoE for the 1st percentile of the population is quite 
close to one, this indicates that the fraction of the population that would get 
cancer might not be much smaller than 1%. This is more precisely shown in 
Table 10: the upper confidence limit of the fraction of the population with cancer 
is 0.55%. Such a result might have been interpreted as sufficiently protective by 
risk managers in the case of many non-cancer effects, such as mild 
histopathological lesions. However, since cancer is considered to be a much 
more serious effect than mild histopathological lesions, the statement that 
99.45% of the population would not get cancer might not satisfy risk managers.  
 
Approach C and D 
Approaches C and D are based on the second interpretation of the tumor 
incidence data (see section 2.3), i.e., the observed incidences are interpreted as 
individual risks. In that case doses at lower risks can be estimated based on the 
observed dose-response in animals. In approach C this is done by linear 
extrapolation from the BMD10 (upper part of Figures 7 and 8), while in approach 
D this is done by extrapolating from the various models that were found to be 
compatible with the data (lower part of Figures 7 and 8). As an example, 
consider the 4th confidence interval from the bottom of Figure 7. Here, the 
complete confidence interval for the 1st percentile of the IMoE distribution 
related to a 10-3 risk is below 1 (= 0 on log-scale). This implies that the persons 
in the 1st percentile of the population would have a cancer risk of at least 1 in 
1000 (=10-3 or 1e-3). Note that the relatively high risk in these individuals may 
be due to a relatively high exposure and/or due to being relatively sensitive to 
aflatoxin B1 (i.e., at a given exposure they would have a higher cancer risk than 
the average sensitive person).  
 
Figure 8 shows another way of summarizing the results: in terms of the 
estimated fraction of the population that would have a particular cancer risk. For 
instance, the fraction of the population that would have a cancer risk of 1 in 100 
(or lower) is somewhere between 0.34% and 31% according to approach D, and 
somewhere between 0.77% and 34% according to approach C (see Table 10).  
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Figure 7. The 1st percentile of the IMoE (=ICED/IEXP) distribution (on log10 

scale), given as 90%-confidence intervals. Left axis: individual cancer 
risk; right axis: IPRA approach B, C (linear extrapolation) or D (model 
extrapolation).  

 
Table 9. Confidence intervals for the 1st percentile of the IMoE distribution  

1st percentile of IMoE distribution 
BMR 

P05 P95 P05 P95 
     
Approach B 1.4 38   
 

 

  

 

  
  Approach D  Approach C 
BMR (extra risk)     
10-1 (10%) 0.22 7.3   
10-2 (1%) 3.8e-2 1.7 3.3e-2 1.1 
10-3 5.7e-3 0.85 4.2e-3 8.3e-2 
10-4 1.3e-3 0.49 4.7e-4 7.3e-3 
10-5 9.4e-5 0.30 5.0e-5 8.5e-4 
10-6 

 

7.9e-6 0.23 

 

4.0e-6 6.5e-5 
P05 and P95: 5% lower and 95% upper confidence bounds 
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Figure 8. The percentage of the population with IMoE < 1 (i.e. IEXP > ICED). Dots are the 

best estimates and whiskers represent the 90% confidence interval. The x-axis 
is on logit-scale, to improve visibility of extreme fractions. Left axis: individual 
cancer risk; right axis: IPRA approach B, C (linear extrapolation) or D (model 
extrapolation). The confidence intervals reflect the fraction of the population for 
which the cancer risk is smaller than or equal to the value given at the y-axis.  

 
Table 10. Confidence intervals for the fraction (%) of the population with  
IMoE < 1 

Fraction (%) of population with IMoE < 1 
BMR 

P05 P95 P05 P95 
     
Approach B 

 

<1.0e-4* 0.55 

 

  
        
  Approach D   Approach C 
BMR (extra risk)     
10-1 (10%) 8.0e-3 6.9   
10-2 0.34 31 0.77 34 
10-3 1.3 79 23 87 
10-4 2.3 98 80 100 
10-5 5.4 100 98 100 
10-6 

 

8.6 100 

 

100 100 
P05 and P95: 5% lower and 95% upper confidence bounds 
* Lower risks could not be calculated because the number of Monte Carlo runs used was 
one million here. 
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The results from approach D as summarized in Table 10 and Figure 8 are rather 
complex, and for risk management purposes it would be helpful to simply have 
an estimate of the expected fraction in the overall population with cancer. The 
procedure of how to calculate this is summarized in Appendix C.  
For the aflatoxin B1 case this resulted in a 90%-confidence interval (two-sided) 
of 0.009% to 1.8%.  
 
4.5 Relative contribution of sources of uncertainty 

Figure 9 shows the relative contribution of various sources of uncertainty to the 
1st percentile of the IMoE distribution. These results show some striking 
features. First of all, the uncertainties related to exposure hardly contribute at 
all in all approaches. It may be noted that in this case the exposure information 
is relatively good, although the concentrations are likely positively biased due to 
targeted sampling (Boon et al. 2009). Further, in an IPRA based on the ED50 or 
BMD10 the uncertainty is dominated by interspecies extrapolation. This also 
holds for approach C (linear extrapolation). But in approach D the uncertainty in 
the BMD is by far the largest contributor, making the other uncertainties 
relatively unimportant.  
 
4.6 Comparing IPRA results with simple linear extrapolation  

It is interesting to compare the results from the IPRA approaches B and 
D with the simple linear extrapolation method as currently applied in 
various countries and organizations. Based on the lowest BMDL10 of 3.3 
ppb (see Appendix B), which is equivalent to 132 ng/kg bw, and the 
median exposure estimate of 0.8 ng/kg bw for children (age 2-6 y; see 
table 4) the simple linear extrapolation method results in a risk (point 
estimate) of 0.061%.  
 
IPRA approach B resulted in a 90%-confidence intervals for the expected 
fraction of the population with cancer with an upper bound of 0.55% 
(see Table 10), while approach D resulted in an upper bound of 1.8% 
(see end of section 4.3). Both these values are higher than the point 
estimate from the classical linear extrapolation. This is due to the fact 
that the simple linear extrapolation method does not take inter- and 
intraspecies differences into account. The latter was confirmed by 
calculating the confidence interval for risk using approach D, but with 
both extrapolation factors omitted: in that case the upper bound was 
very close to the point estimate from classical linear extrapolation.  
 
These results illustrate the problem that simple linear extrapolation as 
currently applied by some countries does not allow for potential inter- 
and intraspecies differences. It is sometimes argued that the latter 
differences are already accounted for by the fact that linear 
extrapolation is conservative. However, such arguments make the 
procedure highly non-transparent. In IPRA potential inter- and 
intraspecies differences are fully taken into account.  
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Figure 9. Contribution of various sources of uncertainty (intra- and interspecies 

extrapolation, BMD, processing factor, concentration data, consumption 
data, Monte Carlo) to the overall uncertainty associated with the 1st 
percentile of the IMoE distribution for several IPRA approaches.  
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Figure 10. Summary of estimated risks for aflatoxin B1. The lines represent the 

confidence intervals for risk resulting from the various methods. The 
lower plot zooms in on the right part of the x-scale. 

 Lin.extrap.: the classical linear extrapolation method; 
 Approach D, no EFs: same as approach D, but with inter- and 

intraspecies extrapolation factor omitted; 
 Approach D, less potent: a virtual chemical, based on aflatoxin B1, but 

with potency 1000-fold lower (see section 5 for a further discussion).  
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4.7 Conclusions on cancer risks from aflatoxin B1 exposure  

The MOE established for the population of children considered here was 
somewhat lower than reported in Benford et al. (2010b) and similar to the 
lowest of three reported values in O’Brien et al. (2006). Boon et al. (2009) who 
used the same exposure data in children (2-6y) found a similarly low MOE as we 
did. Boon et al., 2009 concluded that risks could not be excluded.  
 
Approach B estimated the fraction of the population developing cancer from 
aflatoxin B1 exposure between < 0.0001% and 0.55%. Here, the lower 
confidence bound could not be quantified more precisely than < 0.0001% 
because we used one million Monte Carlo runs. Despite the large uncertainty in 
the estimated risk, this result does give some indication of potential risks. For 
instance, instead of concluding that risks cannot be excluded, this result says 
that a risk as large as 1 in 200 cannot be excluded.  
Approach C does not provide information on the most important uncertainty in 
cancer risk assessment, i.e. the uncertainty related to low-dose extrapolation. 
Approach D shows that these uncertainties are huge, and therefore approach D 
has, from a scientific point of view, preference over approach C as in this way 
the uncertainties are made visible.   
Approach D gives some more specific information than approach B, by providing 
risk in two dimensions, such as: between 1% and 80% of the population would 
be subject to a chance of developing cancer of 1 in 1000 (or smaller); see Table 
10, fourth row of approach D. Such results are somewhat difficult to interpret, 
and the other output from approach D provides a simpler result: the overall 
fraction of the population with cancer is estimated to lie between 0.009% and 
1.8% (two-sided 90%-confidence). This indicates that even the lower confidence 
bound of the risk estimate (around one in 10,000) would be considered as 
rather high by current standards.  
 
In these conclusions it is assumed that the exposure as measured in the young 
children will remain at that level for the rest of their lives. In many cases dietary 
exposure (expressed per kg body weight) tends to decrease with age, but for 
aflatoxin B1 there appears to be a rise in exposure at adulthood due to the 
occurrence of aflatoxin B1 in products like coffee. Therefore, the risks based on 
exposures in young children do not necessarily overestimate risks resulting from 
exposures during the whole lifespan.  
 
Boon et al. (2009) point out that the concentration data on aflatoxin B1 in foods 
are probably biased (upwards) as they are based on targeted samples. It is hard 
to estimate by how much the exposure may have been overestimated due to the 
targeted sampling. It seems unlikely however that this bias would be so large 
that generating new data based on representative samples would reduce the 
cancer risks established in this study to negligible risks. But it could be that they 
would substantially decrease the estimated risks.  
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5 Discussion, conclusions and recommendations 

5.1 Discussion 

 
The results for the various IPRA approaches applied to aflatoxin B1 give rise to 
some general conclusions.  
 
The MOE approach can be relatively easily extended to an IPRA approach, 
resulting in a quantification of the uncertainty around the MOE (approach A). In 
the case of aflatoxin B1 the uncertainties involved (i.e. in exposure and in dose-
response) are relatively small. It should be noted here that the potential bias in 
the concentration data was ignored in the IPRA (because the magnitude of the 
bias is unknown). The resulting value of the MOE was roughly in line with earlier 
findings (e.g. O’Brien et al., 2006; Benford et al., 2010b) and would be 
considered as a ‘reason of concern’, but more specific conclusions (e.g. which 
fraction of the population is at risk?) cannot be drawn. But the extension of the 
MOE approach by IPRA approach A can be beneficial in ranking various 
chemicals: the standard MOE approach may result in ranking that is partly 
governed by differences in levels of conservatism actually at stake in the 
different chemicals assessed. The IPRA approach of the MOE will avoid that.  
 
In approach B (‘non-cancer’ approach based on ED50) the conclusion would be 
that the fraction in the population of getting cancer from aflatoxin B1 exposure is 
estimated to be lower than 0.55% (Table 10). So, it can be stated that the 
fraction of the population developing cancer due to aflatoxin B1 exposure could 
be close to 1%.  
 
Approach C and D give additional information on various risk levels, either in the 
form of the IMoE related to, e.g., the 1st percentile of the population, or in terms 
of the fraction in the population that would be subject to a given risk level. The 
specific thing about approaches C and D is that cancer risk is assumed to vary 
among individuals. Therefore, the risk can be expressed in two dimensions, such 
as: x% of the population is subject to a (individual) cancer risk of up to y%. 
Usually, cancer risk is defined as the incidence of cancer cases in the exposed 
population, i.e. in terms of one dimension. The two separate dimensions of 
cancer risk in approaches C and D give insight into the variation in (individual) 
risks within the population, resulting from variation in exposure and/or in 
individual sensitivity to the chemical in developing cancer.  
 
Of course, the risk in two dimensions, as provided by approach D, can always be 
reduced to one dimension, i.e. in terms of expected fraction of cases in the 
overall population. Representing the risk in this way is easier to interpret. For 
the aflatoxin B1 case study the expected fraction in the overall population was 
estimated to lie somewhere between 0.009% and 1.8%. This result can be 
compared to that from approach B, which resulted in an estimated fraction 
between < 0.0001% and 0.55%. This shows that the upper bound estimate in 
approach D is somewhat higher. In addition, approach D provided a lower bound 
estimate, while approach B did not (i.e., the lower bound was smaller than 
0.0001 %).  
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Both Figure 7 and 8 illustrate that approach D is favorable over approach C, 
since the former allows for the fact that the low end of the dose-response could 
be nonlinear and that the degree of the potential deviation from linear is 
unknown. Hence, approach D provides a better reflection of the uncertainties 
involved, thereby possibly preventing that the highly conservative results from 
approach C are over-interpreted as being close to reality. Clearly, the results 
from linear extrapolation could be far off, and approach D makes this directly 
visible.  
 
The aflatoxin B1 case study illustrated the application of IPRA for a chemical 
where the risks are high. To get some idea what would happen if the IPRA 
method is applied to a chemical with a larger MOE, we applied IPRA approach D 
once more, but now after replacing the dose units in the toxicity study from 
μg/kg into mg/kg body weight. This could be regarded as a virtual chemical that 
is 1000-fold less potent than aflatoxin B1 (with an MOE of around 100,000). The 
result is represented by the bottom confidence interval in Figure 10. In this 
case, the upper confidence bound is around 10-3 %, or one in 100,000, so that in 
this case it could be safely concluded that the cancer risk would be minimal. 
Note that in the case of this less potent carcinogen, the confidence interval is 
very wide, with a very small value for the lower confidence bound. This can be 
understood from the general phenomenon: the lower the risk, the larger the 
associated uncertainty in its value.  
 

5.2 Conclusions 

The conclusions of this study are 
1. The uncertainties in estimates of low cancer risks (or of doses associated 

with low risks) may be very large, and point estimates of cancer risks 
(when provided without the associated uncertainty margins) have 
limited value. Limit values, such as the VSD (virtually safe dose) are 
currently based on low risks (such as 10-4 or 10-6). It may be assumed 
that such limit values will lead to low risks, but interpreting the nominal 
risk values that were used in the extrapolation as being realistic risk 
levels is not justified  

2. The IPRA methodology (in particular approaches B and D) offers a tool 
for evaluating the uncertainties that are involved in estimating cancer 
risks due to exposure to carcinogens. By making the uncertainties in the 
final risk estimate visible a more realistic picture of potential risks is 
provided.  

3. The extension of the MOE approach by IPRA approach A can be 
beneficial in ranking various chemicals (for the current exposure 
situation): the standard MOE approach may result in ranking that is 
partly governed by differences in levels of conservatism actually at stake 
in the different chemicals assessed. The IPRA approach of the MOE will 
avoid that.  

4. It is unclear to what extent the current linear extrapolation approach is 
conservative, as is often supposed, because potential inter- and 
intraspecies variation are ignored in this method. Nevertheless, linear 
extrapolation within the framework of IPRA (approach C) does result in a 
conservative estimate of the risk, since potential inter- and intraspecies 
differences are included in the analysis. However, approach D 
extrapolates to low risks by taking model uncertainty into account, and 
therfore gives a much better picture of potential cancer risks and the 
uncertainties involved. 
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5. The choice between approach B and D depends on a fundamental issue: 
did some individual animals get cancer (while others did not) because 
they had a lower tolerance for the carcinogen, or because they had bad 
luck? Most risk assessors would probably assume that carcinogenesis is 
a stochastic process, in which case approach D would be favorable. 
However, as long as there is no better scientific foundation for choosing 
either B or D, it is advisable to simply use both. It might be that in 
practice they will usually not give widely different results, just as we 
found for the aflatoxin case.  

6. For both approaches B and D the uncertainties in the estimated cancer 
risk for the model compound aflatoxin B1 are so high that it remains 
unclear if aflatoxin B1 is a risk for humans. It should be noted here that 
the exposure to aflatoxin is overestimated since the concentration data 
are based on targeted sampling. This uncertainty is not taken into 
account in the case study. 

7. Approach D results in (a confidence interval for) the overall risk in terms 
of the expected ‘number of cases’, but it can also give insight in the two 
dimensions of cancer risk: the fraction of the population, and the 
individual cancer risk associated with the individuals in that fraction. This 
can be useful as in different frameworks different acceptable risks are 
employed. In expressing the risk in this two-dimensional manner it is 
also possible to calculate the consequences of certain interventions 
(leading to reduced concentrations in food) in terms of ‘fraction of 
population at risk’, for various risk-levels. 

8. Within exposure situations where a relatively high MOE is found, an IPRA 
analysis might result in an upper limit of the estimated risk that is 
relatively small. In such cases it may be possible to conclude that the 
risk is acceptable based on IPRA, i.e. based on a method that takes the 
uncertainties in the available information into account. 

9. In principle, the IPRA approaches are suitable for non-genotoxic 
carcinogens as well. It should be noted however that for non-genotoxic 
carcinogens it is usually assumed that the development of tumors 
follows from a change in another endpoint, e.g. cytotoxicity, which is 
seen as the direct cause of the observed tumors. When an assumption 
can be made on the extent (effect size) of cytotoxicity required for 
causing tumors, this effect size can be used in IPRA in the usual way (for 
non-carcinogenic effects). 

 
5.3 Recommendations 

Obviously, providing quantitative statements on cancer risks due to exposure to 
carcinogens is a difficult problem. Different methods are being used, each with 
its own limitations, depending on country or international organization. Some of 
the latter do not consider estimating cancer risks, which are typically far beyond 
the range of observation, justified. Indeed, as the present report showed, the 
uncertainties in estimated cancer risks can be huge. This indicates that current 
practices of cancer risk assessment need to be reconsidered, possibly leading to 
proposals for adjustments of the strategies and approaches of cancer risk 
assessment. The consequences of such proposed changes for risk manager 
decisions and for risk communication need to be evaluated before implementing 
them. In this process it will be useful to have more case studies available like 
the one for aflatoxin. This may help in working out a general strategy of cancer 
risk assessment in which MOE and IPRA are lower and higher tiers of 
assessment, respectively.   
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While this aim primarily focuses on the Dutch situation, it is important to have 
an international discussion as well. It may be considered to organize a workshop 
with representatives of the important international parties. Having the case 
studies for various carcinogens available at that point is desirable. 
 
Further research would be needed to find scientific support for either approach B 
or D within IPRA. One option is to investigate the behavior of dose-responses of 
carcinogens in general, e.g. by comparing genotoxic and non-genotoxic 
carcinogens, using historical dose-response data.  
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Appendix A Time-to-tumor dose-response with tumor 
incidence data 

 
The latent variable models describe a quantal dose-response (i.e. dose-
incidence) by assuming an underlying ‘continuous’ dose-response (i.e. relating 
to continuous observations), and for the case of tumor incidences this latent 
variable can be interpreted as the time-to-tumor dose-response. We 
investigated if this approach would be practically applicable, and found that the 
problem is that the required parameters needed for deriving a PoD for time-to-
tumor are hard to estimate, due to large correlations in the parameter 
estimates. If the LVM model is a simple exponential model (with parameters a 
and b only), it is even impossible to identify a PoD for time-to-tumor. For 
models with more parameters (i.e. exponential or Hill models 3 to 5 in the 
PROAST notation) the time-to-tumor is identifiable in the strict sense, but hardly 
in a statistical sense due to the large correlations between the estimates. One 
option might be to investigate if a priori information of the variation in time-to-
tumor can be found from historical data, and if this variation is more or less 
constant among studies. If so, this prior information could be used to reduce the 
number of free parameters (possible using Baysian methods).  
Another point is that the interpretation of LVM models as time-to-tumor would 
only apply to tumor-bearing animals. For specific tumors, the relationship 
between time-to-tumor and tumor incidence may be disturbed by competing 
tumors (e.g. as a cause of premature deaths). 
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Appendix B Fitted models to the tumor incidence data 
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Figure B1. Dose-response data of liver tumor incidence against the log10 dose 

(ppb). Curves of the seven accepted models are shown; the (A) two-
stage, (B) log-logistic, (C) log-probit, (D) Weibull, (E) gamma, (F) 
exponential (E3), and the (G) Hill (H2) model. Data are from Butler 
and Barnes, 1968 (triangles), Newberne, 1965 (circles, two circles per 
dose indicates male and female data), and Wogan et al., 1974 (plus 
symbols).  
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Figure B1, continued 
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Table B1. Summary of the dose-response analysis. For each model the BMD and 

confidence interval is reported for various values of BMR.  BMD(L/U)s 
are in ppb, and relate to the Wogan et al. study. 

Model log-
likeli-
hood 

no. of 
para-

meters 

Accep-
ted a 

BMR 

b 
BMD BMDL BMDU 

Full -121.31 21 -     
One-stage -135.42 4 no     
Two-
stage-b 

-133.9 5 yes 1e-1 5.6 4.7 9.4 

    1e-2 5.9e-1 4.9e-1 13e-1 
    1e-3 5.9e-2 5.0e-2 1.4e-1 
    1e-4 5.9e-3 5.0e-3 1.4e-2 
    1e-5 5.9e-4 5.0e-4 1.4e-3 
    1e-6 5.9e-5 5.0e-5 1.4e-4 
    ED50 28 22 35 
log-
logistic-b 

-136.5 5 Yes 1e-1 8.7 5.9 13 

    1e-2 2.7 1.5 5.2 
    1e-3 0.86 0.37 2.1 
    1e-4 0.28 9.5e-2 0.84 
    1e-5 8.9e-2 2.4e-2 0.35 
    1e-6 2.9e-2 6.3e-3 0.15 
    ED50 25 19 33 
log-probit-
b 

-136.48 5 yes 1e-1 9.4 6.5 14 

    1e-2 4.1 2.5 6.7 
    1e-3 2.2 1.2 4.0 
    1e-4 1.3 0.68 2.7 
    1e-5 0.87 0.41 1.9 
    1e-6 0.59 0.26 1.4 
    ED50 25 19 33 
Weibull-b -134.53 5 yes 1e-1 5.3 3.5 8.5 
    1e-2 0.75 0.37 1.7 
    1e-3 0.11 3.9e-2 0.38 
    1e-4 1.6e-2 4.1e-3 8.3e-2 
    1e-5 2.4e-3 4.5e-4 1.9e-2 
    1e-6 3.5e-4 4.8e-5 4.0e-3 
    ED50 25 19 32 
Gamma-b -134.92 5 yes 1e-1 5.0 3.3 8.3 
    1e-2 0.76 0.34 2.0 
    1e-3 0.12 3.5e-2 0.54 
    1e-4 1.9e-2 3.6e-3 0.15 
    1e-5 3.1e-3 3.6e-4 4.2e-2 
    1e-6 5.0e-4 3.6e-5 1.2e-2 
Logistic-b -139.11 4 no     
a GoF=0.01 
b extra risk except for ED50 
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Table B1. continued 
Model log-

likeli-
hood 

no. of 
para-

meters 

Accep-
ted a 

BMR 

b 
BMD BMDL BMDU 

E4-b -137.22 5 yes 1e-1 11 8.1 15 
    1e-2 2.0 1.3 3.6 
    1e-3 0.22 0.14 0.49 
    1e-4 2.2e-2 1.4e-2 5.1e-2 
    1e-5 2.3e-3 1.4e-3 5.1e-3 
    1e-6 2.3e-4 1.4e-4 5.1e-4 
    ED50 29 21 38 
H2-b -137.34 4 yes 1e-1 5.0 3.8 7.0 
    1e-2 0.84 0.54 2.1 
    1e-3 0.10 6.0e-2 0.91 
    1e-4 1.1e-2 6.1e-3 0.47 
    1e-5 1.1e-3 6.1e-4 0.27 
    1e-6 1.1e-4 6.1e-5 0.16 
    ED50 23 17 30 
a GoF=0.01 
b extra risk except for ED50 
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Appendix C Calculating the overall fraction in the population 
with cancer in approach D 

The overall fraction in the population with cancer can be calculated in approach D by the 
following steps.  
 
It starts from the estimated exposure distribution, and this distribution is then 
adjusted to a distribution of equivalent animal doses (by multiplying rather than 
dividing by the relevant extrapolation factors). In short, the procedure is as 
follows (for a given uncertainty bootstrap run, indicated as ‘current’): 
- Draw a Monte Carlo sample (Exposs) from the current exposure distribution 
and a Monte Carlo sample (Intras) from the current intraspecies distribution. 
- Sample one of the accepted models, and next, sample one of the plausible 
regression parameter vectors (as obtained by parametric bootstrapping from the 
fitted model).  
- Multiply all the values in Exposs by the current interspecies factor. 
- Multiply the adjusted Exposs with Intras (element by element), resulting in an 
equivalent animal dose distribution. 
- For each value in the equivalent animal dose distribution, calculate the risk 
based on the curve defined by the sample in the second step, and calculate the 
mean of these risks. 
 
By repeating these steps for each uncertainty bootstrap run, the confidence 
interval for the expected fraction in the human population is obtained.  
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