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Propositions 

1. Postharvest physiological deterioration (PPD) is an inherent main constraint for cassava since 

at present wounding and mechanical damages cannot be prevented during the process of harvesting and 

handling of tuberous roots (this thesis). 

2. The development a good of transformation system for cassava, the availability of genes that 

trigger or control the process of PPD and the public acceptance are three important pre-requisites to 

overcome the PPD problem by genetic modification (this thesis). 

3. In plants, it is expected that programmed cell death (PCD) is necessary for growth and 

survival or in response to environmental stimuli and can occur on a local or large scale (Barlow, 1982. 

Science 260: 309-310). 

4. The traditional baker's yeast S. cerevisiae is less suited for high productivity of heterologous 

proteins than more unconventional yeasts, like K. lactis (Gelissen, G. and Hollenberg, C.P., 1996. Gene 

190: 87-97). 

5. Understanding the history of life becomes less hypothetical when fossils are available (Allard, 

R.W., 1999. Principle of Plant Breeding, 2nd edition, pp3-12). 

6. Sometimes, science is just like one of those riddles, where the answer is not only at the end of 

road, but on it as well. 

7. Digital technology applications in daily life make people more enjoyable at home and easier 

reachable. 

8. Experience is not only what happens to you, it could be what you deal with what happens to 

you (Aldous Huxley). 

9. There is no story without coincidence. 

Wtt&M (Chinese proverb). 

10. The fact that more Chinese students are coming to Wageningen University will not 

automatically lead to Wageningen University becoming more popular in China. 

Stellingen behorend bij het proefschrift: "Analysis of postharvest deterioration in tuberous roots of 

cassava (Manihot esculenta Grantz)" door Jiang HUANG. Wageningen, 3 december 2001. 
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Bibliographic Abstract 

This thesis deals with the analysis of postharvest physiological deterioration 

(PPD) in cassava tuberous roots at the physiological, biochemical and molecular 

level. By setting up a uniform visual system to monitor the induction and maintenance 

of PPD under the experimental conditions, amongst others physico-chemical 

properties of starch were characterized. Furthermore using this system, around 6,000 

TDFs (transcript derived fragments) were screened via 100 primer combinations using 

the cDNA-AFLP technique. 70 TDFs showing an up-regulated, a down regulated or a 

transiently expression pattern were isolated following the first 72 hours of PPD. 

Based on the sequence information, a functional catalogue of these TDFs was 

established. By concentrating on enzymes possibly involved in oxidative stress, 

biochemical results indicated that PPD may be a peroxidase-mediated process. Using 

a reverse genetics approach, the putative cassava dadl (defender against cell death 

gene 1) homologue was transformed into cassava FEC (friable embryogenic callus) 

lines. Transgenic plants were produced and characterized. 
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Chapter 1 

GENERAL INTRODUCTION 

POSTHARVEST PHYSIOLOGICAL DETERIORATION IN CASSAVA 

TUBEROUS ROOTS 



Chapter 1 

Cassava: an important crop in the tropical and sub-tropical regions 

Cassava (Manihot esculenta Crantz) is a member of the family of 

Euphorbiaceae, and is one of the oldest cultivated crops by human beings although 

the early history of cassava is still a mystery (Gulick, et al, 1983). It was reported 

that cassava has been cultivated in northern Amazonia more than 1000 years ago 

(Jones, 1959). Recently it was postulated that cassava is likely to be originated from 

wild M. esculenta populations along the southern region of the Amazon basin (Olsen, 

et al., 1999 and 2001). Cassava is a perennial shrub, and in general the tuberous roots 

can be harvested from 6 months to a year after planting. However, the tuberous roots 

can remain under the ground for longer periods before harvesting (Wenham, 1995). 

Normally stem cuttings are used to vegetatively propagate cultivated cassava. 

Traditional superior genotypes have been maintained as clones and the majority of 

wild species seem to be seed propagated (Gulick, et al, 1983). Cassava is an 

allotetraploid crop with 36 chromosomes (2n = 36) (Bai, 1987, Kalloo, et al, 1993), 

and its genome has a relatively high G + C content (Wong, et al, 1999). 

Cassava is a very important tuberous root crop in the tropical and sub

tropical regions in the world. Cassava is the world's fourth largest source of calories 

after rice, sugar cane and maize, feeding more than 500 million people in Africa, Asia 

and Latin America (Cock, 1985a, Best and Henry, 1994). In these regions, cassava 

can be used as food for human beings and feed for animals as well as a raw material 

for industrial purposes. The production of cassava tuberous roots was calculated 

around 172.4 million metric tons in developing countries in 1993, and it is estimated 

that the yield will reach around 290.3 million metric tons by 2020, which value is 

worth about 13,937 million USS (Scott, et al., 2000a). Beside the tuberous roots, 

cassava leaves can also provide an important source of vitamin A in some of the 

developing countries. Cassava can produce more dry matter per hectare than other 

root and tuber crops like potatoes, sweet potatoes or yams (Scott, et al., 2000a & 

2000b). As one of the most efficient starch - producing crops in the world, the 

productivity of cassava can be achieved by using minimum inputs (Nestel and Cock, 

1976). Cassava can grow under diverse conditions such as low soil fertility, high 

acidity soil and drought, where other crops like maize cannot grow. Especially, 

cassava can make use of limited resources in marginal agricultural land, which will 

attract small farmers' attention. With the rapid increase of the population in the 21st 

century, it is estimated that food production must be doubled by the year 2025, and 
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nearly tripled by 2050 in order to meet food needs in the future. Cassava, with its 

unique advantages, could contribute to the global food system to fit such enormous 

increases in food needs and to achieve food security in the 21st century. 

Cassava: the most efficient producer of starch 

The tuberous roots of cassava are rich in starch, which constitutes 85% of the 

root tissue based on the dry-weight content (Cock, 1985b). Cassava has higher starch 

contents than other tuber and root crops, and has a higher starch extraction ratio as 

well (Scott, et al, 2000a). Generally speaking, a natural and good quality starch will 

include the following properties: absence of color and taste, high quality texture, ease 

of gelatinization, resistance to industrial treatments and high digestibility. Cassava 

starch qualifies for some of these properties such as high maximum viscosity (but 

lower than potato) and low gelatinization temperature. It is known in Europe and the 

USA that cassava is the term usually applied to the tuberous roots, whilst tapioca is 

the name used for the starch and other processed products from cassava tuberous 

roots. Cassava starch can be widely applied in many industrial uses such as food 

processing, paper, textile and adhesive manufacturing and in oil drilling (Kay, 1987). 

Starch can also be used as a raw material for producing many derived sugar products 

like glucose, fructose, maltodextrins and mannitol, which have different specific 

characteristics and uses in food, chemical or pharmaceutical industry (Balagopalan, 

et al, 1988). Cassava starch can even be used as a source for baby foods in 

developing countries (Hamaker, et al., 1991, Pardio Sedas and Waliszewski Kubiak, 

1994). 

There are many cassava varieties grown in the different parts of the world, 

but generally they fall into two main categories, named bitter and sweet cassava 

depending on their contents of cyanohydrin (Douglas and William, 1984). For 

industrial purposes bitter varieties are most frequently used, because of a generally 

higher starch content. Sweet cassava is preferred for food due to taste and its dough 

forming ability. Although cassava is one of the most efficient starch producers among 

tuber and root crops, cassava starch only occupies a small percentage of the amount 

of internationally traded starch (Wenham, 1995). 
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Postharvest deterioration: an inherent main constraint for cassava 

One of the major problems limiting the possibilities of production, 

distribution and processing for cassava is the rapid deterioration in cassava tuberous 

roots after harvesting, which results in the problem that the tuberous roots have a very 

short storage life. Postharvest deterioration is an inherent constraint for cassava since 

wounding and mechanical damage cannot be prevented during the process of 

harvesting and handling of the tuberous roots. The final result of the rapid postharvest 

deterioration in the tuberous roots renders cassava totally unacceptable for human and 

animal consumption, as well as for industrial uses such as a processing resource for 

starch extraction. It is calculated that losses caused by postharvest deterioration are up 

to 25 percent of cassava tuberous roots after harvesting in the world (Jansen & 

Wheatlley, 1985, Wenham, 1995). 

Description and observation ofPPD (postharvest physiological deterioration) 

Postharvest deterioration in cassava tuberous roots is made up of two distinct 

types of deterioration, namely primary deterioration and secondary deterioration 

(Booth, 1975 and 1976). Primary deterioration, which is a complex physiological and 

developmental process and also called postharvest physiological deterioration (PPD), 

is initiated within 24 hours to 48 hours after harvesting cassava (Wheatley, 1982, 

Plumbley & Rickard, 1991, Wenham, 1995). The process of PPD in cassava tuberous 

roots depends on the cassava genotype and environmental conditions under which it is 

grown (Booth, 1975, Wheatley, 1982, Wenham, 1995). Secondary deterioration is the 

consequence of the former process and involves the actions of micro-organisms (like 

bacteria and fungi), which starts from 5 to 7 days after harvesting (Booth, 1975 & 

1976, Hirose & Data, 1984, Plumbley & Rickard, 1991). PPD in cassava tuberous 

roots is observed at the beginning as " vascular streaking ", which is described as a 

fine blue-black or brownish discoloration appearing as a ring around parenchymatous 

tissue in transverse sections (Averre, 1967, Mondaldo; 1973, Hirose, 1986). 

Afterwards the black color spreads rapidly on the whole surface of the tuberous roots, 

and this is called " vascular discoloration ". When checked under UV light, fresh cut 

cassava tuberous roots display a blue-violet fluorescence (Hirose and Data, 1984, 

Rickard, 1985). However, regions below the wounded tissue show a strong bright 

blue fluorescence, which increases in both intensity and size on the wound surface 

with time. The strong blue - yellow fluorescence develops in advance of the 
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appearance of visual symptoms of discoloration, but disappears in the areas where the 

discoloration has started (Hirose and Data, 1984, Rickard, 1985). 

Traditional storage techniques for cassava tuberous roots 

The best way to store cassava tuberous roots is to leave them in the ground 

for a long period (up to 3 years) until required, and then cassava may be harvested 

(Scott, et al, 2000a). With regards to two essential requirements of any storage 

system, at least, it is necessary that the product should lose as little weight as possible 

during storage and it must be of acceptable quality after storage. There are several 

disadvantages, however, of leaving cassava tuberous roots in the ground. First, this 

may unnecessarily occupy a large field. It was estimated that it would cost three 

quarters of a million hectares of agricultural land to keep all cassava tuberous roots in 

the soil (Ingram and Humphries, 1972). Second, it will lead to extra losses due to 

increasing the possibility of pathogens attacking when the tuberous roots remain in 

the ground too long (Ingram and Humphries, 1972). Furthermore, although the 

tuberous roots may continue to increase in size, they become more fibrous and woody 

during the period of storage (Rickard and Coursey, 1981). Also cassava tuberous 

roots cooking time increases due to this storage (Wheatley et al, 1985) and the 

content of extractable starch decreases (Booth and Coursey, 1974). Another simple 

storage method is to treat cassava tuberous roots with fungicide before packing them 

into plastic (polyethelene) bags, which can also delay the onset of PPD in cassava 

(Wheatley, 1989). However, this will cause environmental pollution and result in 

higher costs. Only in a few instances the successful storage of fresh cassava tuberous 

roots on a small scale has been recorded using high-cost systems, such as refrigeration 

and waxing (Singh and Marthur, 1953, IIT, 1973). Considering the conditions under 

which much of the world's cassava is grown, such techniques cannot be regarded as 

being generally widely applicable at present. Therefore, so far there is no good 

solution for the problem of PPD in cassava in the world. 

Mechanisms of PPD 

PPD is a complex developmental and physiological process accompanying 

the last phase of cassava tuberous root life cycle. The susceptibility of PPD is 

depending not only on a genetic component in cassava cultivars, but also on 

environmental effects such as soil conditions, relative humidity and temperature 
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where they are grown (Wheatley, 1982). Up to this date, however, the molecular 

mechanisms and biochemical pathways of the process of PPD in cassava tuberous 

roots are only poorly understood. 

PPD is stimulated by wounding or mechanical damage in cassava tuberous 

roots. In most plants, wounding and/or damage of tissue leads to a series of 

complicated wound responses that finally result in recovery from a wound and return 

to more normal physiological status. Cassava tuberous roots can reveal such a typical 

wound - healing response only at conditions of relative humidity (RH) of around 80% 

to 90%. Under this condition PPD can be suppressed since a periderm layer will be 

formed in cassava tuberous roots. But this response is much slower compared with 

other tuber and root crops like sweet potato and yam (Passam, et al., 1976). In 

environments with lower relative humidity (less than 80% RH), cassava tuberous 

roots can not develop this periderm layer and PPD initiates rapidly after harvesting. 

There are changes in respiratory rate during PPD in cassava tuberous roots and two 

respiratory rate peaks have been measured and observed in which the former peak is 

assumed due to the wounding, while the later peak is supposed to be related to PPD 

occurring in cassava tuberous roots (Hirose, 1986). 

Previous research indicated that secondary metabolites like polyphenols 

compounds, are related to the process of PPD in cassava tuberous roots (Plumbley 

and Rickard, 1991, Wheatley, 1982, Uritani, 1998 and 1999). It has been 

demonstrated that polyphenolics increased during the PPD process in cassava, notably 

scopoletin, scopolin and coumarins. Especially, the production of scopoletin and 

some of the scopolin related compounds seem to contribute to the increased 

fluorescence of discoloration during the process of PPD in cassava tuberous roots 

(Rickard, 1981, Buschmann, et al., 2000a). 

Several studies have shown that oxygen is necessary for initiation of the 

process of PPD (Averre, 1967, Booth, 1976 and 1977, Rickard, 1982). It has been 

assumed that oxidative stress is involved in PPD (Reilly, et al., 1999). Other 

researchers even suggested that PPD in cassava is an oxidative, perhaps peroxidase -

mediated process (Wheatley and Schwabe, 1985). Total peroxidase activity increased 

during PPD and novel peroxidases have been suggested to be induced following the 

process of PPD in cassava (Marriott, et al, 1979 and 1980, Plumbley and Rickard, 

1980). 
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There are many kinds of metabolism that are activated during PPD in 

cassava. It has been found that sugar contents increased and the amount of starch 

decreased during the process, while amylase activity was found to be present 

following the discoloration in cassava tuberous roots (Maini and Balagopal, 1978). It 

has also been shown that there are many changes in protein level which are not only 

caused by degradation and synthesis of existing proteins but also by de novo 

production of novel proteins (Beeching, et al, 1994, Wenham, 1995, Uritani, 1998 

and 1999). It was also reported that the amount and composition of membrane lipids 

were changing following the deterioration in cassava tuberous roots, which was 

hypothesized to be due to membrane disorganization or membrane degradation during 

the deterioration process in cassava tuberous roots (Tanaka, et ai, 1983, Lalaguna and 

Agudo, 1989). 

There is little research carried out on the signalling pathway or possible 

involvement of hormones during PPD in cassava tuberous roots. It has been reported 

that ethylene production occurred following the process of PPD (Plumbley, et al., 

1981). But the results suggested that ethylene did not show a direct relation to the 

development of PPD in cassava (Wenham, 1995). It was also found that by pre-

pruning treatments, which means leaving cassava stems of around 20 - 30 cm above 

the ground by cutting, PPD in tuberous roots can be delayed after harvesting two to 

four weeks later (Lazano, et al., 1978, Wheatley et al, 1985). This pruning treatment 

decreased dry matter (DM) and starch content in cassava tuberous roots (van 

Oirschot, et al., 2000). However, it was also found that this pre-harvest treatment did 

not show significant effects on ethylene production following the process of PPD in 

cassava (Hirose, et al, 1984). 

Modern biotechnology: a potential powerful tool to improve quality traits for cassava 

Previous results indicated that there is only a rather small proportion of the 

cassava varieties that did not show deterioration within one week after harvesting the 

tuberous roots (Wenham, 1995). Cassava, however, is a highly heterozygous 

allotetraploid crop, which makes it more difficult using traditional breeding methods 

to solve the PPD problem in cassava. Modern biotechnology, like genetic 

modification may provide a potential powerful tool to improve quality traits of this 

crop and/or create an improved new cassava genotype. 
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To develop a good transformation system and to isolate genes that trigger 

and/or control the process of PPD are two important pre-requirements for genetic 

modification. The first break-throughs for genetic transformation in cassava were 

reported in 1996 (Li, et al., 1996, Raemakers, et al, 1996, Schopke et al, 1996). The 

transgenic plants were produced either by microprojectile bombardment using friable 

embryogenic callus (FEC) lines (Taylor, et al., 1996) or by transformation of cassava 

somatic embryos derived from cotyledons with Agrobacterium tumefaciens and later 

forming adventitious shoots. In our lab, the progress of optimal transformation 

bombardment protocols for cassava is still on going (Snepvangers, et al, 1997, 

Muniyikwa, et al., 1998, Raemakers, et al., 2001). Very recently, another efficient 

and reproducible method, which was developed via Agrobacterium - mediated 

transformation using cassava FEC lines as starting materials, has become available as 

well (Schreuder, et al., 2001). 

The goal of this research 

Our research strategy is to improve quality traits of cassava tuberous roots 

and/or create an improved new cassava variety using modern biotechnology. This 

could be beneficial to sustainable economic development for small farmers in 

developing countries. Also this will contribute to facilitate the broader acceptance of 

cassava as a safe food product in the global food system for human beings and 

animals, as well as a resource of high quality of raw materials for industrial purpose. 

The purpose of this project is to gain more insight in the molecular mechanism of 

PPD in cassava and identify important metabolic pathways during PPD by isolating 

and identifying genes directly or indirectly involved in this process, focusing on the 

early stages of PPD in cassava tuberous root. Finally using reverse genetics 

approaches, it is anticipated that transfer of key genes in an antisense orientation will 

delay or even prevent the process of PPD in cassava tuberous roots. 

Outline of this thesis 

The general introduction gives a broad description of the importance of 

cassava, which may contribute to the global food system in order to meet the 

enormous food needs in the future. It is emphasized that PPD in cassava tuberous 

roots is an inherent problem for cassava, which limits the possibilities of production, 

distribution and processing for cassava. However, the molecular mechanisms and 
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biochemical pathways of PPD in cassava tuberous roots are little understood (Chapter 

1). 

Chapter 2 describes how to set up a visual system to analyze PPD in cassava. 

In order to assess the quality of this system, several parameters like the contents of 

protein, starch, soluble sugars and nucleic acids were measured. Starch, the most 

abundant component in cassava tuberous roots, was investigated. Some of the 

physico-chemical properties of starch during the process of PPD in cassava were 

characterized. 

A prerequisite for applying molecular tools such as genetic modification to 

cassava is the isolation and characterization of genes, which trigger and /or control the 

process of PPD. In Chapter 3 we have investigated differential gene expression in a 

systematic way during the first 72 hours of the process of PPD by using cDNA-AFLP. 

A functional catalogue of transcription derived fragments (TDFs) was established. 

Through the data analysis, molecular insight of the process of PPD in cassava has 

been gained. 

The results of Chapter 3 indicated that genes involved in oxygen scavenging 

play an important role during the process of PPD in cassava tuberous roots. 

Furthermore in parallel with the molecular research, a biochemical approach was 

chosen by focusing on characterization of peroxidases during the process of PPD in 

cassava tuberous roots (Chapter 4). 

In Chapter 5 by taking the reverse genetic approach, the putative defender 

against cell death 1 (dadl) homologue from cassava was selected for transfer into 

cassava in an antisense orientation using particle gun bombardment. Transgenic 

plants were selected and analysis has been started. 

The final chapter is a general discussion, in which the results obtained in this 

thesis are discussed. Possible future developments are also discussed if finally an 

improved quality of cassava by delaying or preventing the process of PPD in cassava 

tuberous roots by genetic modification has been achieved. 
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POSTHARVEST PHYSIOLOGICAL DETERIORATION IN CASSAVA: A 

GERNERAL DESCRIPTION OF THE PROCESS AND ITS EFFECTS ON 

STARCH PROPERTIES 

Huang, J., Vermeesch, A., Suurs, L., Jacobsen, E., and Visser, R. G. F. 

Laboratory of Plant Breeding, Department of Plant Sciences, The Graduate School of 

Experimental Plant Science (EPS), Wageningen University, P.O.BOX 386, 6700AJ 

Wageningen, The Netherlands. 

Parts of this chapter were published in: Proceedings of the Fourth International 

Scientific Meeting of the Cassava Biotechnology Network (CBN), Salvador, Brazil, 

1999. Carvalho, L.J.C.B., Thro, A. M., and Vilarinhos, A.D., ed. pp 537 - 550. 

10 
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Abstract 

Tuberous roots of cassava are rich in starch which can be used for food, feed 

and industrial purposes. One of the major problems limiting the possibilities of 

production, distribution and processing for cassava is the rapid deterioration after 

harvesting, which leads to a fairly poor storage life of cassava tuberous roots. 

Postharvest deterioration is an inherent constraint for cassava, which consists of 

primary deterioration, called postharvest physiological deterioration (PPD) and 

secondary deterioration. PPD is a physiological process, while secondary deterioration 

is the result of the former process combined with microbial actions. The aim of this 

research was to study the process of PPD on different (physiological, molecular and 

biochemical) levels, especially focusing on the early stages of PPD in cassava. 

Cassava tuberous roots slices of two genotypes (M.Col 22 and Faroka) were cut and 

incubated under controlled conditions for various times (from 0 hr to 17 days). From 

these different samples several parameters were investigated like protein, nucleic acid, 

soluble sugar and starch contents during the process of PPD. These studies showed 

that fresh weight of the cassava tuberous roots was reduced mainly due to water loss 

(physical change). DNA contents decreased as well as starch contents during the 

process, while protein content remained stable. The contents of soluble sugars 

increased during a period of 7 days. Starch, being the main component of cassava 

tuberous roots on dry weight basis, was isolated from the tuberous root slices at 

different time points and used to determine some structural and physico-chemical 

properties. It was clear from the results that, although visible changes occurred like 

discoloration of the starch samples, the overall effect of PPD on starch quantity and 

quality as well as the structure was modest. Differences in rheological properties 

were only observed with starch samples isolated from day 12 or later. 

Key words: cassava, postharvest physiological deterioration (PPD), starch, Bohlin, 

differential scanning calorimetry (DSC). 
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Introduction 

Cassava is a highly versatile tuberous root crop in the tropical and 

subtropical regions in the world, and it can grow under conditions such as low 

fertility, high acidity soil and drought, where other crops like maize are not suitable. 

In these regions, cassava is an important food source for humans and animals. 

Cassava is the world's fourth largest source of calories as a crop after rice, sugar cane 

and maize (Ingram and Humphries, 1972, Cock, 1985a, Taylor, et al., 1999). The 

tuberous roots of cassava are rich in starch, which can be widely applied in many food 

and industrial uses such as food processing, paper, textile and adhesive manufacturing 

and in the oil drilling field (Kay, 1987). Starch, also is a kind of raw material for 

producing many derived sugar products like glucose, fructose, maltodextrins and 

mannitol, which have different specific characteristics and uses in food, chemical or 

pharmaceutical industry (Balagopalan, et al, 1988). Cassava starch can even be used 

as a source for baby foods in developing countries (Hamaker, et al., 1991, Pardio 

Sedas and Waliszewski Kubiak, 1994) since native cassava starch is more suitable for 

digestion than other starches, like for instance potato starch (Blanshard, 1994). There 

are many cassava varieties in the different countries where cassava is grown, but they 

can be roughly divided into two main categories with regard to industrial application, 

named bitter and sweet cassava depending on their contents of cyanohydrin (Douglas 

and William, 1984). For industrial purposes bitter varieties are most frequently used 

because of a higher starch content. Sweet cassava is preferred for food due to its taste 

and its dough forming ability. This is, however not absolute. As one of the most 

efficient starch producers among crops, cassava starch (also called Tapioca, see 

Chapter 1) makes up 85% of the tuberous root storage tissue based on dry-matter 

contents. However, tapioca only occupies a small percentage of the amount of 

internationally traded starch (Wenham, 1995). 

One of the major problems limiting the possibilities of production, 

distribution and processing for cassava, is the rapid deterioration after harvesting, 

which leads to a fairly poor storage life of cassava tuberous roots. It is generally 

assumed that the quality of starch in cassava tuberous roots decreases due to rapid 

deterioration (Maini and Balagopal, 1978, Wenham, 1995). Postharvest deterioration 

is an inherent constraint for cassava since mechanical damage and wounding can not 

be prevented during the harvesting and handling process of the tuberous roots. 

Postharvest deterioration in cassava consists of primary deterioration, and is later 

12 
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followed by secondary deterioration (Booth, 1976 and 1977, Hirose and Data, 1984). 

The primary deterioration, also called postharvest physiological deterioration (PPD), 

starts from 24 hrs to 48 hrs after harvesting the tuberous roots depending on the 

cassava genotype and the environmental conditions where cassava is grown (Booth, 

1976, Wenham, 1995). PPD is a complex physiological developmental process, in 

which many changes in gene expression stimulated by mechanical damage and/or loss 

of water are thought to be involved (Booth, 1976, Wenham, 1995). The secondary 

deterioration is a consequence of the former process, and is caused by microbial 

(bacterial and fungal) actions within 5-7 days (Plumbley and Rickard, 1991). 

However, up to date, the biochemical pathway and molecular mechanism of PPD in 

cassava tuberous roots are rather poorly understood. 

In this paper a general description about the PPD process in our experimental 

system, and several possible negative effects of the process of PPD in cassava 

tuberous roots are given. Since starch is the most abundant component in cassava 

roots, special emphasis is made on changes in the quantity and quality of starch due to 

the process of PPD as exemplified by some physico-chemical characterisations and 

structural analyses. 

Materials and Methods 

Cassava tuberous roots harvesting 

The ca. 1.5 year-old growing cassava tuberous roots attached to the stem of 

the cultivars of M.Col 22 (from Colombia) and Faroka (from Indonesia) were 

harvested carefully from the tropical greenhouse of Wageningen University without 

causing any extra damage to the tuberous roots. The tuberous roots were washed with 

tap water, followed by incubation in 75% ethanol for 5 minutes and rinsing with 

sterile water again. The clean cassava tuberous roots were cut into slices of 10 mm 

thickness inside a fume hood. The cassava tuber slices were put into petri-dishes with 

the covers on and incubated at 30°C with a relative humidity (RH) around 50%. After 

incubation for Oh, 6h, 12h, 24h, 36h, 48h, 72h, 96h, 6 days, 7 days, 12 days and 17 

days respectively, the samples of the different time points were frozen immediately in 

liquid nitrogen, and stored at -80°C for later analysis. 
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Isolation of DNA, protein, starch, and soluble sugars 

The plant materials were ground to a fine powder in a pre-cooled pestle with 

a mortar containing liquid N2. DNA was isolated from 100 mg of the different 

samples by using DNA Isolation Kits (BlOzym, The Netherlands) and the 

concentrations were measured by using a spectrophotometer (Pharmacia Biotech, 

England) at wavelengths of 260 nm and 280 nm. Starch was isolated from 150 mg of 

cassava tuberous root powder following the method described by Kuipers, et al, 

(1994). The contents of soluble sugars (sucrose, glucose and fructose) were also 

determined using Saccharose/D-Glucose/D-Fructose kits purchased from Boehringer 

Mannheim (Germany). According to the starch assay provided with the Boehringer 

Mannheim (Germany) Starch kits, 50 ul out of the supernatant from the last step was 

used for determination of the total amount of protein by using a Protein Assay ESL kit 

(Boehringer Mannheim, Germany). All the data from the different samples were 

adjusted to the changes of the fresh weight of the cassava slices during incubation. 

Amylose content and size and morphology of starch granules 

The apparent amylose content of starch samples was measured according to 

the description by Hovenkamp-Hermelink et al. (1989). Starch granule morphology 

was checked by light microscopy after staining the granules with iodine. Starch 

granule average size and size distribution was determined by a Coulter counter 

multisizer lie. For scanning electron microscopy (SEM), dried starch granule samples 

were critical-point dried, sputter coated, and observed using a JSM-6300F Scanning 

electron microscope. 

Rheological determinations 

Dynamic rheological properties of 8% starch suspensions (dry weight) at 

small deformations were determined by applying a small oscillating shear 

deformation using a Bohlin CVO controlled stress Rheometer. The rheometer was 

equipped with a concentric cylinder measuring geometry C25, which consists of a 

rotating bob (inner cylinder) located in a fixed cup (outer cylinder) with the sample 

contained in the annular gap between them. The pasting profile of 8% starch : water 

(w/v) suspension was obtained by heating the suspension to 90°C, where it was kept 

for 15 min followed by cooling to 20°C at a rate of 2°C/min and holding again for 15 
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min at 20°C. This process changing over a temperature range can be characteristic for 

the type of starch. The structural changes in gelatinization followed by re-

crystallisation of amylose during cooling result in changes in the rheological 

properties, which can be determined by a Bohlin Rheometer (Flipse, 1995). Estimated 

is the storage modulus (G') which is a measure of the energy stored and released per 

cycle of deformation and per unit of volume. 

Differential Scanning Calorimetry (DSC) 

DSC was performed with a Perkin Elmer Pyris I with a Neslab RTE-140 

waterbath-cooler. The instrument was calibrated with indium (mp = 156.6°C) and 

zinc (mp = 419.5°C) separately. 10 mg of starch (dry weight basis) was put into a 

stainless steel cup with 40 ul H2O. The cup was hermetically sealed and equilibrated 

overnight before analysis. The suspension was heated from 20°C to 100°C at a 

scanning rate of 10°C/min. Another empty cup was used as a reference. For each 

endotherm, the melting enthalpy AH (J/g) and the onset To (°C) were computed 

automatically. 

Results 

Visualisation of PPD in cassava tuberous roots 

In order to be able to analyse PPD in cassava, it is necessary to establish a 

uniform system, which shows the visible situation for initiation of PPD, and which 

allows spreading of the process of PPD in cassava tuberous roots under controlled 

conditions. After the cassava slices had been incubated at 30°C (RH around 50%) for 

17 days, the experiment was terminated. No visible signs of bacterial/fungal infection 

could be discovered during these 17 days in the cassava tuberous root slices. The 

typical phenomenon "vascular streaking" (Averre, 1967; Mondaldo, 1973, Hirose and 

Data, 1984) of PPD in the cassava tuberous roots can be observed at 24 hrs and 

afterwards (Figure 1). The so-called "vascular discoloration" (Averre, 1967, 

Mondaldo, 1973, Hirose and Data, 1984) during PPD can be visualised around the 72 

hrs time point and later (Figure 1). This intensified only in colour until 17 days when 

the experiment was terminated. When the cassava slices were observed under 

ultraviolet (UV) light, the slices at the time point of 0 hr showed a silver - bluish 
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Top Panel 

Lower Panel 

Figure 1. Examples of postharvest physiological deterioration (PPD) in cassava 

tuberous root slices in the uniform system for phenotypic visualisation of PPD of 

M.Col 22. Hours indicate the time that the slices were kept under the experimental 

controlled conditions. Top panel reveals the whole surface of the slices, whilst lower 

panel shows the enlarged parts within the slices indicated by arrows. 
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fluorescence, while, strong blue-yellowish fluorescence developed at the 12 hrs time 

point and afterwards, and finally hardly any fluorescence could be seen for the slices 

at 96 hrs or later under UV light. These observations fit to the previous descriptions of 

the phenomenon of the process of PPD in cassava tuberous roots (Hirose and Data, 

1984, Rickard, 1985). In all cases the cassava tuberous roots at the same time point 

showed the same visible phenomena of PPD. Figure 1 reveals that there is no visible 

sign for PPD in cassava tuberous roots at 0 hr and 6 hrs, while at 96 hrs, there is 

almost 100% visible PPD occurring in the cassava tuberous roots based on the scoring 

method of PPD as proposed by Wheatly (1982). No significant evidence for 

differences in the visible process of PPD could be found between the cassava varieties 

M. Col 22 and Faroka under the controlled conditions employed in these experiments 

(data not shown). Fresh weight of cassava tuberous roots decreased during the process 

of PPD in cassava. At 17 days, the fresh weight loss was almost 40 percent compared 

to the fresh weight at the start of the experiment (Figure 2). 

General changes in contents of nucleic acids, soluble sugars, protein and amy lose 

during PPD 

To monitor the system used for analysis of the process of PPD in cassava 

tuberous roots, several parameters were taken into account. During the process of 

PPD in cassava, the contents of DNA and protein from the samples of the different 

time points were measured and adjusted to the changes for fresh weight (Figure 3). 

After incubation for 12 days, the contents of DNA decreased (the DNA content at 12 

days is half the amount of that at 0 hr), opposite to the protein content, which 

remained unaltered. The same analysis was done for starch as well as soluble sugars 

(Figure 4). Starch decreased from 260 ug/mg at Oh to 130 ug/mg at day 12 and the 

amount of sucrose increased 4 times at day 7 compared to 0 h, while the contents of 

hexose increased 2 times at the point of day 7. Amylose content from the different 

samples remained similar, which is around 21.2% ± SD 0.89. 
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Figure 2. Fresh weight changes of cassava tuberous root slices of M.Col 22 
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Figure 3. Changes in DNA and protein contents during the process of PPD in the 

cassava variety M.Col 22 (the measurement based on the fresh weight). 
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Figure 4. Changes in soluble sugars and starch contents during PPD in M.Col 22. 

Abbreviation: FW = fresh weight. 

Figure 5. The morphology of starch granules of the cassava genotype M.Col 22 

during the process of PPD under scanning electron microscope (SEM). Arrows 

indicate damages of starch granules at day 12 and complete holes existing in the 

starch granules at day 17. 
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The size and morphology of starch granule during PPD 

The average size of the starch granules was measured by a Coulter Counter. 

No big differences in the different samples were evident during the process of PPD in 

cassava tuberous roots. For all the samples, the average starch granule sizes were 

found to be around 16 um, and there was no significant shift in the mean granule size 

for the various samples. No change in starch granule morphology could be discovered 

by light microscopy (data not shown). For SEM, there were no notable differences for 

size distribution and shapes of starch granules, however, it was clear that damages to 

the starch granules (pore - like structures) occurred at day 12, which resulted in holes 

existing on the starch granules at day 17 (Figure 5). No such damages were observed 

on the starch granules from the samples until day 12. The proportion of these 

damaged starch granules was around 1% at day 12, and did not increase dramatically 

at day 17. 

Physico-chemical properties of starch-water suspensions 

Bohlin analysis: 

Starch undergoes a series of changes called gelatinization during heating. 

The drastic swelling occurs in all directions. This is not reversible and takes place 

nearly simultaneously with melting of the crystal structure and is combined with 

amylose leaching out of the starch granule. This process can be characterised for 

starch. The structural changes during gelatinization result in variations in the 

rheological properties of starch, which can be measured by a Bohlin VOR Rheometer. 

The 8% starch-suspensions (dry weight) from the samples of day 1, day 2, day 3 and 

day 12, were analysed by Bohlin measurements (Figure 6). The storage modulus (G') 

from all the samples increased quickly from the first 10 to 18 minutes, afterwards 

decreasing and then reaching a steady state level for all the samples during heating 

and cooling. It is clear, however, that changes in G' were highly different for the 

starch at day 1 compared with the starches at the other time points. The peak 

temperature in gelatinization of all the starch samples is around 66 °C. Hardly any 

differences were observed among the starch at day 2, day 3 and even day 12. G' of the 

starch at day 1 increased sharply at 61 °C, while the starches for the other samples 

increased at a slightly higher temperature of around 62 °C, which can also be shown 

by DSC measurement. The different samples reached the peak of viscosity almost at 

the same time around 18 minutes after heating (pasting temperature about 70 °C), but 
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the viscosity peak of day 1 was much higher compared to the peaks of the samples of 

the other time points. 
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Figure 6. Bohlin gelatinization profile of 8% (dry weight) cassava starch suspensions 

during the process of PPD at day 1, day 2, day 3 and day 12 indicated in the figure as 

Cassava 1, 2, 3 and 12 respectively. 

DSC analysis: 

DSC is used for determination of phase transitions in many (in)organic, 

polymeric, food and biological materials. The measurements can be conducted 

dynamically as a function of temperature or isothermally as a function of time. Phase 
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transitions that can be investigated include crystallisation and melting of water, sugar, 

lipid, starch and other components, protein denaturation and retrogradation of starch. 

In the experiment, the energy (temperature) necessary for melting can be determined 

using DSC. The increase in the moduli coincides with the first stages of crystallite 

melting (see T 0), which is the best reference for DSC measurement. Table 1 shows 

the results of the DSC analysis which reveal that there are no differences until day 12 

during the process of PPD in cassava tuberous roots as shown by the T 0 values. 

Table 1. DSC measurement for the 25% starch-water suspension. (T 0: temperature 

for onset of gelatinization, DM: dry matter, AH: enthalpy) 

sample 

0 

1 day 

2 day 

3 day 

12 day 

17 day 

DM (%) 

90.5 

90.0 

90.0 

90.0 

89.1 

89.1 

T0(°C) 

61.33 

61.73 

61.26 

61.41 

62.06 

62.21 

AH (KJ/g) 

11.75 

11.74 

11.82 

12.04 

12.13 

13.74 

Discussion 

PPD is a complex developmental physiological process during the last stage 

of the life cycle of cassava tuberous roots. From preliminary experiments, it was 

known that the process of PPD in cassava is influenced not only by environmental 

factors such as soil conditions, humidity, and temperature, but also by the cassava 

genetic background. It has been found that different cassava cultivars varied for the 

onset of PPD and the spread speed of the deterioration process (Booth, 1976). In our 

experimental facility, the cassava genotypes (M.Col 22 and Faroka) were growing in 

the tropical greenhouse of Wageningen University, and there was hardly any effect 

based on the environmental conditions for PPD in contrast to when these cultivars 

would have been grown in their natural environment. By taking the same size of 

cassava tuberous roots from 4 - 5 different plants as starting material and cutting the 
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tuberous roots into the same thickness of slices (10 mm) with almost the same 

mechanical damage treatment (wounding), it was tried to set up a uniform visual 

system for initiating PPD and keeping the same spreading speed during the process of 

PPD in cassava. In our system, the visualised hallmark of PPD in cassava, 'vascular 

streaking' and 'vascular discoloration' (Averre, 1967, Mondaldo, 1973, Hirose and 

Data, 1984) could be observed starting at 24 hrs and 72 hrs respectively. Afterwards 

only the colour intensity increased until day 17 when the experiment was terminated. 

The cassava slices within the same time point showed the same phenomenon of PPD 

appearing (Figure 1). No visible signs of bacterial/fungal infection could be 

discovered in the cassava tuberous roots under our experimental conditions. In fact, 

since M.Col 22 is highly sensitive to PPD, but fairly resistant to secondary 

deterioration (CIAT's Annual report, 1976), it confirms that only PPD occurs in 

M.Col 22 under our controlled conditions especially at rather low relative humidity 

(40 - 50%). This was also confirmed by later using the cDNA-AFLP method (Chapter 

3, Huang, et al., 2001). The fresh weight decrease during the incubation (Figure 2) 

was mainly due to a physical change (namely water loss). Through the experiments, 

Faroka seems also sensitive to PPD. 

Several parameters were measured from the samples in this uniform system 

to induce the PPD process in cassava. The reason that the DNA content decreased 

within 12 days (Figure 3) may be that some of the cells were dying and/or genomic 

DNA became degraded during the PPD process. Total protein content remained more 

or less unaffected (Figure 3) which suggested that, although changes of gene 

expression occurred during PPD in cassava, there is no influence of this on the protein 

level. 

As the main component of cassava tuberous roots on a dry weight basis, 

starch properties during PPD were characterised. It was clearly shown in Figure 4 

that starch content dropped during PPD as described before (Maini and Balagopal, 

1978, Wenham, 1995). The content of soluble sugars (hexose and sucrose) increased. 

Sucrose, which is the major form of translocatable carbohydrate, and the most 

abundant of the sugar, had increased much more than with hexose (Figure 4). Because 

of the presence and production of high levels of phenolic compounds and viscous 

polysaccharides that can interfere with enzyme isolation and analysis, biochemical 

characterisation of PPD might be difficult. During starch isolation, the colour of the 

starch of time point 24hr and later time points was yellowish (not shown), which 

23 



Chapter 2 

indicated that the quality of the starch declined during PPD in cassava tuberous roots 

as well. Further studies on the rheological determinations of starch were performed. 

The viscosity of the sample at day 1 is notably more variable compared with that of 

the other samples analysed by a Bohlin Rheometer (Figure 6). There was no dramatic 

difference in the T 0 value using DSC measurements (Table 1). Only the later time 

points of the process of PPD (from day 12) showed a slightly higher T 0 value. 

If differences do exist in the properties of starch, they must have a structural 

basis. In other words, the structure of the starch granules determines the properties of 

starch during the process of PPD in cassava. When using SEM to observe the 

morphology of starch granules for the different time points, damages were observed at 

day 12 and holes were found at day 17 on starch granule surfaces (Figure 5). Surface 

pores have been observed to exist on some corn, sorghum and millet natural starch 

granules (Fannon, et al, 1992, Hall and Sayre, 1970), which were supposed to make 

the starch granule interior accessible (Fannon, et al, 1993). No artifacts of processing 

or preparation of specimens for SEM were found to lead to these pores (Huber and 

BeMiller, 2000). However, such pores have never been discovered on natural cassava 

starch granules. These damages and holes on the starch granules are most probably 

caused by the process of PPD in cassava. 

The general conclusion from the results of these measurements is that 

although phenotypical differences were observed in the colour of the starch (but not in 

the size) and morphology of the starch granule as well as in the Bohlin measurements, 

the overall impression is that starch quality and quantity are not as affected as one 

might expect based on general assumptions of the process of PPD in cassava tuberous 

roots. 
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Abstract 

One of the major problems for cassava is the rapid deterioration after 

harvesting cassava tuberous roots, which is limiting the possibilities for production 

and distribution of cassava in the world. Postharvest deterioration is an inherent 

constraint for cassava since wounding and mechanical damage of the tuberous roots 

can not be prevented during harvesting. Postharvest deterioration includes postharvest 

physiological deterioration (PPD) and secondary deterioration. To date, the molecular 

mechanism and biochemical pathways of PPD are poorly understood. The aim of this 

project, which is focusing on the early stages (first 72 hrs), is to gain molecular insight 

and identify important metabolic pathways during the process of PPD in cassava 

tuberous roots. Finally by using reverse genetic approaches it is attempted to delay or 

even prevent the process of PPD in cassava tuberous roots. By using a new RNA 

fingerprinting method, called cDNA-AFLP, we have screened more than 6,000 TDFs 

(transcript derived fragments) via up to 100 primer combinations during the early 

process of PPD in cassava. Only 10% of the TDFs are developmentally regulated, 

while the other 90% are expressed throughout the process of PPD in cassava tuberous 

roots. Furthermore, in order to set up a functional catalogue of differentially expressed 

genes during PPD, 70 TDFs were selected and isolated based on their expression 

patterns, which were either up-regulated, down-regulated or transiently induced. 

Around 40 of these TDFs were found to be similar to known genes in databases. The 

other 30 TDFs represent mostly genes without known function. Through data 

analysis, it is shown that important biochemical and physiological processes, such as 

oxygen stress, carbohydrate metabolism, protein metabolism and phenolic compounds 

synthesis, are involved in PPD in cassava tuberous roots. 

Key words: cassava, catalogue, cDNA-AFLP, differentially expressed genes, 

postharvest deterioration. 
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Introduction 

Cassava is an important crop in the tropical and sub-tropical regions. In these 

regions cassava is the fourth largest calorie resource as a crop for humans and animals 

after rice, sugar cane and maize (Ingram and Humphries, 1972, Taylor, et al, 1999). 

Cassava can grow under conditions such as low fertility, high acidity soil and drought, 

where other crops like maize can not be grown. One of the major problems that limit 

the possibilities of production and distribution of cassava is the rapid deterioration 

after harvesting cassava tuberous roots, which results in a short storage life for 

cassava tuberous roots. Postharvest deterioration in cassava is an inherent constraint 

since wounding and mechanical damage of cassava tuberous roots can not be 

prevented during harvesting. In general, postharvest deterioration is divided into 

primary deterioration and secondary deterioration. Preliminary results indicated that 

primary deterioration is a complex physiological and developmental process, which 

starts from 24 hrs to 48 hrs after harvest depending on the cassava genotype 

(Plumbley & Rickard, 1991, Wenham, 1995). Secondary deterioration is the result of 

the former process and deterioration due to micro-organisms such as bacteria and 

fungi. Postharvest physiological deterioration (PPD) can be first observed as "vascular 

streaking" (Averre, 1967, Mondaldo, 1973 and Hirose, et al, 1983 and 1984) in 

cassava tuberous roots around 24 hrs after harvesting. The colour spreading which 

occurs rapidly on the whole surface of cassava tuberous roots is called "vascular 

discoloration" (Averre, 1967, Mondaldo, 1973, Hirose, 1983 and 1984) and takes 

place from 96 hrs afterwards in our system under controlled conditions (Chapter 2, 

Huang, et al, 1999). However, to date, little is known about the molecular 

mechanism and biochemical pathway leading to PPD in cassava. With the advance of 

biotechnology in agriculture, especially the break-through of developing a cassava 

regeneration system using friable embryogenic callus (FEC) lines (Taylor, et al 1996) 

and/or through organogenesis based on adventitious shoot formation (Li, et al, 1996), 

cassava transformation was made possible (Li, et al, 1996, Schopke et al, 1996, 

Raemakers, et al, 1996). This provides the possibility to make use of genetic 

engineering techniques to potentially solve the PPD problem in cassava. A 

prerequisite for applying molecular tools such as genetic modification to cassava is 

the isolation and characterisation of genes, which trigger and /or control the process of 

PPD. Our aim is to identify and isolate genes focusing on the early stages of primary 

deterioration, based on a RNA fingerprinting technique called cDNA-AFLP (Bachem 
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et al, 1996). Through the data analysis obtained with this method, it is shown that 

important biochemical and physiological processes during PPD in cassava tubers are 

switched on. Thus, more insight will be gained in the molecular basis of PPD in 

cassava tuberous roots. 

Materials and Methods 

Plant material preparation 

The plant materials were prepared as described previously (Chapter 2, 

Huang, et al., 1999). The samples from the different time points were collected and 

stored at -80°C for total RNA isolation. 

cDNA-AFLP fingerprinting and TDF isolation 

Around 2.5 g of plant material from the cassava tuberous root slices different 

time points and the control tissue (intact tuberous roots) was used for isolation of total 

RNA. Total RNA was also extracted from 1.5 g cassava tissues such as leaf, stem and 

petiole. The total RNA was isolated using the method as described previously 

(Bachem, et al., 1996). Since high levels of phenolic compounds and viscous 

polysaccharides are present and produced during the process of PPD in cassava 

tuberous roots, and also because cassava tuberous roots are rich in starch, which can 

interfere with the quality of total RNA and even influence cDNA synthesis later, extra 

phenol: chloroform steps were taken and high-speed centrifugation during extraction 

of total RNA was necessary. According to the cDNA-AFLP protocol (Bachem et al, 

1996), double stranded cDNA from different samples was synthesised. Two 

restriction enzymes TaqI (as a frequent cutter) and Asel (as a rare cutter) were chosen 

to cut the cDNA, which was used as the templates for the standard AFLP method 

(Vos et al, 1995). TDFs were isolated from the 5% AFLP polyacrylamide gels 

according to their expression patterns, which revealed up-regulated, down-regulated 

or transient induced expression during the first 72hrs of the process of PPD in cassava 

tuberous roots. 

Subcloning and sequencing of TDFs: 
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The isolated TDFs were amplified by PCR using the two primers without 

additional selective bases and the PCR products were directly subcloned into the 

vector system pGEM T-easy vector (Promega, USA). The sequencing was done by an 

automated sequencer. The sequences of the TDFs were compared to the sequences 

present in databases by using the BLAST 2.0 programs (Altschul, et al, 1997). If the 

BLAST programs did not find significant sequence similarity, then EST databases 

were searched as well. 

Results 

A uniform system for induction of the PPD process in cassava under controlled 

conditions 

A uniform system, which initiated the visible signs of PPD and kept the same 

spreading speed during the process of PPD in cassava tuberous roots, was set up 

(Chapter 2, Huang, et al, 1999). No visible signs of bacterial/fungal infection could 

be found in the cassava tuberous roots until 17 days after the initiation of the process 

of cassava PPD in this system. After that time, the experiment was terminated. No 

significant evidence for differences during the visible PPD process could be found 

between the cassava varieties M.Col 22 and Faroka under the controlled conditions 

employed in these experiments (Chapter 2, Huang, et al, 1999). 

Expression profiling by cDNA-AFLP during PPD in cassava 

cDNA-AFLP was used to analyse the expression profiling during PPD in 

cassava tuberous roots. The size arrangement of the expression patterns in the window 

of a 5% AFLP polyacrylamide gel ranged from around 1000 bp at the top to about 80 

bp at the bottom. The total pattern inside the window of an AFLP gel includes around 

60-70 bands. The typical expression patterns present in cDNA-AFLP during the 

process of PPD from Oh to 72h in cassava tuberous roots combined with the control 

tissue (T for the intact Tuber, P for Petiole, S for Stem, and L for Leaf) are displayed 

in Figure 1, in which a representative expression pattern is shown produced by 

choosing one primer combination (Ase I + selective extensions; AG, Taq I + selective 

extensions; AT). By using cDNA-AFLP, 4 different expression patterns can be 

detected during PPD in cassava tuberous roots; 1) induced expression (arrow A), 2) 

29 



Chapter 3 

1 kb-
| 0 | 6 112 | 241 36 |481 72 | T | P | S | L 
'I > 

l » 

- - - _ 1 

Days 

Atype(7V. ofTDFs] 

B type (1% ofTDFs) 

Ctype(J% ofTDFs) 

Dtyptf 90% OfTDFs] 

Figure 1 (left). cDNA-AFLP fingerprints of the templates prepared from cassava 

tuberous root slices from M.Col 22 following PPD from Oh to 72 h at the controlled 

conditions plus control tissues; intact tuberous root (T), leaf (L), stem (S) and petiole 

(P) choosing one primer combination {Ase I + (selective extensions) AG; Taq I + 

(selective extensions) AT}. 

Figure 2 (right). Schematic drawing of 4 different expressing patterns during PPD in 

cassava using cDNA-AFLP. A, B, C and D type indicating up-regulated, down-

regulated, transiently induced and constitutive expression separately. 
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decreased expression (arrow B), 3) transient expression (arrow C), and 4) constitutive 

expression (arrow D). Through running around 100 different primer combinations 

(plus 2 additional selective bases), a total of about 6,000 TDFs were screened during 

the first 72 hrs of PPD. By counting the expression patterns for 10 AFLP gels (40 

primer combinations), around 2165 TDFs showed a constitutive expression pattern 

which means almost 90% of the TDFs revealing constitutive expression (D type). 

Nearly 172 TDFs displayed an up-regulated expression pattern which indicates 

around 7% of the transcripts showing an up-regulated expression pattern (A type), 

more than half of them being induced at very early stages (first 48 hrs). About 59 of 

the TDFs are transiently induced, which accounts for ca. 2% of the transcripts (C 

type). Only 28 of the TDFs are showing a down-regulated expression pattern, which is 

about 1% of the TDFs (B type) in Figure 2. Therefore, extrapolating these results to 

the 100 primer combinations used means that in total around 5,400 TDFs show a 

constitutive expression pattern, nearly 420 TDFs reveal an up-regulated expression 

pattern, almost 120 TDFs are transiently expressed and only 60 TDFs display down-

regulated expression patterns. These results suggest that only 10% (7% plus 2% plus 

1%) of the genes are showing developmentally regulated expression patterns during 

the early stages (first 72hrs) of the primary deterioration process in cassava tuberous 

roots. Another interesting result from the cDNA-AFLP expression profile is that when 

TDFs show a constitutive expression pattern during PPD (D type), they also are 

expressed in all the control tissues (intact tuberous root, petiole, stem and leaf). When 

the TDFs display developmentally regulated expression patterns during PPD (A, B 

and C type), they are more variable expressed and sometimes even absent in some of 

the control tissues (intact tuberous root, petiole, stem and leaf) in Figure 1. 

A functional catalogue of the TDFs 

By running the different primer combinations plus 2 selective bases, around 

70 TDFs were selected for further study based on their expression profile, which 

showed an up-regulated, a down-regulated or a transiently induced expression during 

the first 72 hrs of PPD in cassava tuberous roots. These 70 TDFs were not present in 

intact cassava tuberous roots (T), but they are present either at 0 hr after cutting as 

well as in the other control tissue (Stem, Petiole, Leaf) or not. After subcloning and 

sequencing, the sequences of the TDFs were analysed in the database of NCBI (eg. 

BLAST) against the latest releases of the public nucleotide and protein sequences, 
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along with available EST sequence data. About 40 out of the 70 TDFs share high 

amino acid similarity to putatively known genes by blast and EST searching in the 

database, including 3 of the 70 TDFs that match sequence similarities to ribosomal 

protein, while 30 out of 70 TDFs do not show any sequence similarity in databases. 

All the identified TDFs with the best similarity accession number are presented in 

Table 1 (E values less than 0.001 are considered to be not similar to known genes.). 

Through the data analysis, a further functional classification based on the function of 

the predicted gene products by means of sequence similarity of the TDFs could be 

established. This reveals that some of the important biochemical and physiological 

processes are possibly involved in PPD in cassava tuberous roots (Table 1). 

Clustering these sequences shows that 39% of the TDFs with a predicted gene 

function is expected to be related to stress responses. 34% of the TDFs are expected 

to be involved in metabolic processes, 19% of the TDFs may be included in signal 

transduction and 7% of the TDFs are thought to play a role in development. The 

system, which we set up to imitate the PPD process under controlled conditions 

monitors PPD in cassava tuberous roots, functions well since both genes involved in 

oxygen scavenging (like peroxidase, and cytochrome P450 monooxygenase) as well 

as genes related to the metabolism of flavonoid compounds (flavanol synthase) are 

induced during PPD. Also genes involved in wound response like WIZZ 

(transcription factor upon wounding), pectinacetylesterase, expansin and heat shock 

70 proteins are either transiently induced or up regulated. Furthermore, genes related 

to protein metabolism like inosine 5'-phosphate dehydrogenase 1, isovalery-CoA 

dehydrogenase precursor, elongation factor 1-alpha, eukaryotic release factor 1 and 

translation factor EF-1 alpha like protein display an up-regulated or transiently 

induced expression during PPD in cassava tuberous roots. 

Discussion 

Primary postharvest deterioration is a complex physiological and 

developmental process accompanying the last phase of the cassava tuberous roots life 

cycle. It is not only dependent on the environmental conditions but also on the genetic 

background of the cassava variety (Booth, 1976 and 1977, Wenham, 1995). To gain a 

better understanding of PPD, we undertook a molecular approach to isolate and 

identify genes expressed during the process of PPD in cassava tuberous roots, 
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focusing on the early stages (first 72hrs) of primary deterioration. For this it was 

necessary to develop a system to monitor for the PPD process from the onset and to 

follow the spread of PPD in cassava in a synchronous way before applying the cDNA-

AFLP technique. Herewith, we set up a phenotypic uniform test for inducing PPD in 

cassava tuberous roots (Huang, et al., 1999). Using the cDNA-AFLP method it was 

shown that three different developmentally regulated expression patterns could be 

detected with different primer combinations, which reveal up-regulated, down-

regulated and transiently induced expression patterns (Figure 1). Using the 

experimental test-system it was possible to reproduce the different expression patterns 

from experiment to experiment when using the same primer combination. 

Using the cDNA-AFLP method, we have, for the first time been able to 

systematically screen a large number of genes expressed during PPD in cassava 

tuberous roots. In principle, if the appropriate sets of restriction enzyme combinations 

are chosen in a given template cDNAs pool during PPD, almost all virtually expressed 

genes including rare messages can be detected by cDNA-AFLP (Bachem, et al., 

1998). In plants, it has been estimated that a total of between 16,000 to 33,000 genes 

are encoded on the genome (Gilson and Somerville, 1993, Meyerowitz, 1994, Cooke, 

et al., 1996). With recent rapid progress in genome sequencing and functional 

genomics, a more accurate estimation can be made. Results of the Arabidopsis 

chromosome sequencing progress shows that nearly 8,000 structural genes are present 

on Chromosome 2 and 4. The two chromosomes comprise around 30% of the genome 

in Arabidopsis (Li, et al., 1999, Mayer, et al, 1999). Thus approximately 25,000 

genes are likely to be encoded by the whole Arabidopsis genome. Most recently it has 

been indicated that the Arabidopsis genome contains 25,498 functional genes (The 

Arabidopsis Initiative, 2000). By running up to 100 primer combinations, in total 

around 6,000 TDFs were screened during the early stages of PPD in cassava tuberous 

roots using the cDNA-AFLP technique. 

It may be expected that a number of important processes occur during PPD. 

Amongst these are stress due to wounding, oxygen response and the deposition of 

various of phenolic compounds. Indeed several components of these processes were 

visualised and identified in the expression profile during PPD in cassava tuberous 

roots. For example, TDFs like A22, C7, C29 and C34 (Table 1) are thought to be 

involved in wounding response. The TDFs such as A8, C25 and C30 (shown in Table 

1) are expected to be related to oxygen response and TDF A21 (Table 1) shows 
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sequence similarity to a gene involved in the production of phenolic compounds. 

Uritani (1998 and 1999) has shown that there are changes in protein level such as 

degradation and novel synthesis of proteins, which indicates that protein metabolism 

may be important for PPD in cassava. We also isolated and identified TDFs pathway 

by the cDNA-AFLP method like A10, A14, C9a, C22, C35 and C38 (see Table 1) that 

are part of the protein metabolism. 

70 TDFs were isolated based on the expression patterns during the process of 

PPD. The TDFs can be functionally grouped based on the function of their predicted 

gene products (established by means of the sequence similarity). There are important 

processes involved in PPD, such as stress responses, carbohydrate, lipid, phenolic 

compounds and protein metabolism and signal transduction. Some of the TDFs may 

fit into two process classes or more. The majority of the isolated TDFs during PPD 

are the genes related to stress responses (39%) and metabolism (34%), followed by 

the genes involved in possible signal transduction pathways (19%) and the TDFs (7%) 

playing a role in development (see Table 1). Wounding of cassava tuberous roots 

leads to stress that, in turn switches on numerous signal transduction pathways. Thus, 

the classification and number of genes for the different categories are in line with 

what could be expected. 

In general, TDFs, which are isolated by cDNA-AFLP, are within or near to 

the protein-coding region of genes (Bachem, et al, 1998). However, nearly 43% of 

the TDFs reveal no match in databases. This might be due to similar genes in other 

organisms not being discovered yet or these types of genes with special functions, not 

being present in other organisms. With the rapid increase in sequence information 

available from yeast, C. elegans and Arabidopsis genome projects, the knowledge gap 

of the former possibility will be closed (Wambutt, et al, 2000). 

PPD is stimulated by mechanical damage and wounding in cassava tuberous 

roots. In a high humidity environmental condition (RH around 80%-90%), PPD in 

cassava tuberous roots can be prevented by forming a wound-healing periderm 

(Booth, 1976). However, the speed of the wound healing response in cassava is 

notably slower compared with other root crops like yam (Passam, et al., 1976). This 

indicates that cell wall metabolism may play a role as well during PPD in cassava 

tuberous roots. The TDFs such as A8, A21, A22, C7 and C25 (in Table 1), which are 

thought to be related to cell wall metabolism, indeed point into this direction. 
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Older research indicated that oxygen is required for primary deterioration in 

cassava (Averre, 1967, Booth, 1976 and 1977, Rickard, 1982). Furthermore, it has 

been shown that oxidative stress is involved in the process of PPD in cassava (Reilly, 

et al., 1999). There is evidence showing that oxidative stress may cause programmed 

cell death (PCD) in animals and plants (Amor, et al, 1998, Jabs, 1999, Piffanelli, et 

al, 1999). Three TDFs (A8, C25 and A12 in Table 1) were isolated with high 

sequence similarity to tobacco peroxidase (accession No. AB027753, Hiraga, et al, 

1999), pea cytochrome P450 monooxygenase (accession No. U29335, Frank, et al, 

1996)) and citrus defender against cell death 1 (dadl) (accession No. ABO 11798, 

Takaya, et al, 2000). These TDFs show either an up-regulated or a transiently 

induced expression during the first 72 hrs of PPD in cassava tuberous roots. It is 

known that cytochrome P450 monoxygenase mediates a wide range of oxidative 

responses that are related to the biosynthesis of plant secondary metabolites including 

phenylpropanoids and phytoalexins. Dadl is thought to be an evolutionarily 

conserved PCD inhibitor in animals and plants (Gallois, et al., 1997, Tanaka, et al, 

1997, Takaya, et al, 2000). Another antioxidant enzyme, catalase was also isolated 

from a cassava tuberous root cDNA library at 48hrs of primary postharvest 

deterioration. (Reilly, et al, 1999). It is believed that catalase plays an essential role in 

the defence against oxidative stress (Rocha, et al, 1996, Zamocky and Roller, 1999). 

Catalase can not only quickly eliminate hydrogen peroxide (H2O2) and other small 

organic peroxides to avoid toxicity, but also protect other cellular enzymes like 

superoxide dismutases (Michiels, et al, 1994). Catalases are supposed to prevent 

superoxide dismutases from inactivation by higher concentrations of H2O2 (Fridovich, 

1995). These findings strongly suggest that PCD may occur in the process of PPD in 

cassava tuberous roots. 

Currently, experiments are being done to check whether DNA laddering 

occurs during the process of PPD in cassava tuberous roots, which is the hallmark of 

PCD in animals and plants (Greenberg, 1996, Ryerson and Heath, 1996, Wang, et al, 

1996). 

Based on the function of putative gene products by means of sequence 

similarity of the TDFs, and combined with the expression profile as well as the 

important processes to be expected to occur during PPD in cassava tuberous roots, 

several candidate genes are selected for further study by transforming them into 

cassava in an antisense approach. 
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Chapter 4 

POSTHARVEST PHYSIOLOGICAL DETERIORATION IN CASSAVA 

TUBEROUS ROOTS: A PEROXIDASE - MEDIATED OXIDATIVE 

PROCESS? 

Huang, J., Hendriks, T., Suurs, L., Jacobsen, E., and Visser, R. G. F. 

Laboratory of Plant Breeding, Department of Plant Sciences, The Graduate School of 

Experimental Plant Science (EPS), Wageningen University, P.O.BOX 386, 6700AJ 

Wageningen, The Netherlands. 
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Abstract 

Progress has been made in molecular analysis of postharvest physiological 

deterioration (PPD) in cassava tuberous roots, focusing on the early stages. By using 

the cDNA-AFLP technique, a number of TDFs (transcript derived fragments) have 

been identified and isolated from the AFLP gels, which have shown an up - regulated, 

a down - regulated or a transiently induced expression pattern during the first 72 

hours of the PPD process in cassava tuberous roots. Through the functional catalogue, 

genes possibly important in oxidative stress like peroxidase and cytochrome P450 

monooxygenase, have been identified. To further assess the possible involvement of 

peroxidase (EC 1.11.1.7) in PPD, changes in peroxidase activity, isoenzyme pattern, 

and localization during PPD were determined. Both total and specific peroxidase 

activity increased during PPD. It was shown that the specific activity of peroxidase 

increased up to day 7 in line with the phenotypically developmental symptoms of the 

PPD process in cassava tuberous roots. At least 7 peroxidase isoenzymes in cassava 

tuberous roots could be observed on a native polyacrylamide gel and novel peroxidase 

isoenzymes were induced during the process of PPD. Using tissue printing, it was 

shown that the peroxidase activity is localized in the epidermal layers, parenchyma 

tissue and vascular bundles in cassava tuberous roots during the process of PPD. The 

results obtained indicate that indeed peroxidase may be involved in PPD in cassava. 

Key words; cassava, postharvest physiological deterioration, peroxidases, enzyme 

activity, tissue printing. 
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Introduction 

Cassava is an important tuberous root crop used for both food and feeding 

purposes, as well as a source for starch for many different applications, like in food 

processing, the manufacturing of paper, textile and adhesives, and even in oil drilling 

(Kay, 1987). Unfortunately, the production, distribution and processing of the cassava 

tuberous roots are severely hampered by a poor storage life caused by a rapid 

deterioration after harvest. Apparently cassava tuberous roots, unlike other 

underground storage organs such as yam and potato tubers, lack a rapid wound 

healing mechanism to protect the organ from deterioration (Passam, et al., 1976, 

Wenham, 1995). To solve the cassava storage problem, either by traditional breeding 

or biotechnological approaches, a complete understanding of the postharvest 

deterioration process is a prerequisite. 

In the process of postharvest deterioration of cassava roots, two stages can be 

distinguished: the primary or postharvest physiological (PPD) deterioration, and the 

secondary deterioration, which results from microbial infections following the former 

process (Booth, 1975 and 1976). PPD in cassava tuberous roots is a physiological 

developmental process that is initiated and/or accelerated by mechanical damage 

and/or water loss, and starts within 24-48 hours after harvest (Wheatley, 1982, 

Wenham, 1995). Changes in many metabolic pathways accompany PPD, like in 

carbohydrate, protein, lipid metabolism (Maini and Balagopal, 1978, Tanaka, et al, 

1983, Lalaguna and Agulo, 1989, Uritani, 1998 & 1999, Huang, et al, 1999), and the 

synthesis of polyphenols compounds (Wheatley, 1982). The molecular mechanisms 

underlying the initiation of PPD, however, are poorly understood. 

Recently, we initiated molecular analysis of PPD by a systematic survey of 

the changes in gene expression that accompany the early stages of PPD in cassava 

tuberous roots. Thick cassava root slices perpendicular to the root axis were used as a 

model system for this study. In the slices the first visible sign of PPD, a brown 

discoloration at the site of the vascular bundles called 'vascular streaking' (Mondaldo, 

1973, Averre, 1976, Hirose, 1986), appears about 24 hours after harvesting. Around 

72 hours after harvesting this browning rapidly spreads over the whole surface of the 

slices, a process referred to as 'vascular discoloration' (Hirose and Data, 1984, 

Rickard, 1985). Under the experimental conditions, PPD seems to develop uniformly 

in all slices, as indicated by the simultaneous appearance of both vascular streaking 

and discoloration (Chapter 2, Huang, et al., 1999). Using this model system, changes 
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in the gene expression during the first 72 hours of PPD were studied by an RNA 

fingerprinting technique called cDNA-AFLP (Bachem et al, 1996). From AFLP gels 

70 TDFs (Transcripts Derived Fragments) were selected that represented genes from 

which the expression was either up-regulated, down-regulated, or transiently induced. 

After sequencing, 30 TDFs showed no homology to transcripts from genes with a 

known function, whereas 40 TDFs were shown to be derived from transcripts 

encoding enzymes most likely involved in processes that occur during PPD, like 

carbohydrate and protein metabolism. In addition, several TDFs were found to 

represent genes that may be involved in stress responses, like wounding and oxidative 

stress, and in programmed cell death (Chapter 3, Huang, et al., 2001). 

In this paper the detailed analysis of two TDFs, TDFc25 and TDFa8, derived 

from transcripts encoding a putative cytochrome P450 monooxygenase and a 

peroxidase, respectively, are presented. As compared to apparently constitutively 

expressed genes, the expression of the cassava monooxygenase gene was up-regulated 

during PPD, whereas the expression of the peroxidase gene was transiently induced. 

For both genes the level of transcripts was highest 6 hours after the onset of PPD, but 

very low or absent in all other organs tested, including in intact cassava roots. In an 

attempt to further assess the possible involvement of peroxidase in PPD, changes in 

peroxidase activity, isoenzyme pattern, and localization during PPD were determined. 

Materials and Methods 

Plant material preparation 

Tuberous roots were harvested from about 1.5-year old, greenhouse-grown 

cassava plants (M Col 21). A uniform system for the onset of PPD in cassava was 

established as described previously (Chapter 2 and Chapter 3, Huang, et al, 1999 and 

2001) by cutting 1 cm thick slices perpendicular to the root axis and keeping them 

under controlled conditions. At different time points of deterioration (day 0, day 1, 

day 2, day 3, and day 7) slices were collected. For peroxidase activity determinations 

the samples were divided into two batches; one for peroxidase activity measurements 

and another for tissue printing. Cassava root slices for activity measurements were 

peeled. Subsequently the enzyme extracts were stored at - 20°C for later analysis after 
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freezing immediately in liquid nitrogen. Another batch of the slices was used for 

tissue printing without peeling. 

The cDNA-AFLP technique and the sequencing of TDFs 

The cDNA-AFLP method was performed during the process of PPD in 

cassava tuberous roots, and the TDFs were isolated, cloned and sequenced as 

described previously (Chapter 3, Huang, et al., 2001). The sequences of the TDFs 

were compared to the latest sequences present in public databases by using the 

BLAST 2.0 programs (Altschul, et al, 1997). 

Extraction and measurement of protein content and peroxidase activity 

5 grams of the tuberous root material were crushed in 5 ml TBS (0.02 M 

Tris-NaCl, pH = 7.5) in a Warring Blender, and centrifuged at 13,000g for 4 minutes. 

The supernatant was used for the measurement of protein content and peroxidase 

activity. 

Protein content was determined using the ESL-kit (Roche, Switerland) in an 

Ultrospec 2000 spectrophotometer (Amersham - Pharmacia Biotech). BSA (bovine 

serum albumin) was used as a standard reference for protein measuring. The extract 

was diluted 5 times with TBS buffer (0.02 M Tris-NaCl, pH = 7.5) before measuring. 

Peroxidase activity was determined according to Vallejos (1983) and 

Hendriks, et al, (1991) The reaction mix (1 ml) contained 50 mM NaAc buffer (pH = 

5), 4 mM guaiacol and 2.2 mM H202. After adding 10 ul of the tuberous root extract, 

the increase of the absorbance at 470 nm was followed for 1 min in an Ultrospec 

2000. Peroxidase activities were expressed as the increase in the absorption per min 

per fresh weight of tissue or protein content, respectively. Peroxidase activities per 

fresh weight of tissue were corrected for the changes in the fresh weight of the slices 

during the process of PPD (Chapter 2, Huang, et al, 1999). 

Electrophoresis and detection of peroxidase isoenzymes 

Electrophoresis was carried out on a precast polyacrylamide IEF 

(isoelectrofocusing) PhastGel (43 X 50 X 0.45 mm) in a pH range from 3 to 9 as 

described in Application File No. 100 from Pharmacia. Samples were applied on the 

gel in the middle using a 4 ul comb containing 6 wells. The program for the running 
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conditions was established on the control unit from the PhastSystem. The temperature 

was kept at 15 °C and the migration time was about 30 min. Peroxidase activity was 

detected by submerging the gel in the guaiacol reaction mix described above. After 

approximately 20 min of staining the gels were washed and photographed. 

Tissue printing and detection of peroxidase activity 

Freshly cut slices were prepared for the prints by slicing the samples into 

around 4-5 mm thick transverse segments from the upper surface. The protocol for 

tissue printing in cassava was according to Spruce, et al., (1987), Hendriks and van 

Loon (1990) and Gabriela, et al, (1996) with some modifications with respect to print 

time (about 1 min) and applied pressure (about 10 kg/slice). PVDF (polyvinylidene 

fluoride) transfer membranes from Poly Screen {NEW™ Life Science Products, Inc., 

USA) were used for tissue printing. Peroxidase activity was detected by submerging 

the prints in the guaiacol reaction mix described above. After approximately 20 

minutes of staining the prints were washed and photographed. 

Results 

Two TDFs reveal differential expression of cytochrome p450 monooxygenase 

and peroxidase genes during PPD 

Using the cassava PPD model system described previously (Chapter 2, 

Huang, et al, 1999), changes in the gene expression during the first 72 h of PPD were 

studied by cDNA-AFLP (Chapter 3, Huang, et al, 2001). From AFLP gels 70 TDFs 

(transcripts derived fragments) were selected that represented genes from which the 

expression was either up-regulated, down-regulated, or transiently induced. After 

isolation from gels, subcloning and sequencing, the sequences of the TDFs were 

compared to sequences in public databases. From this catalogue two TDFs, TDFc25 

and TDFa8, were selected for detailed analysis. 

When compared to TDFs derived from ever-present transcripts, supposedly 

representing constitutively expressed genes, the genes represented by TDFc25 and 

TDFa8 showed an up-regulated and a transiently induced expression pattern during 

the 72 hours after the induction of PPD (Figure 1). For both genes transcript levels 
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were very low or absent in tuberous roots at day 0, as well as in other organs, but 

reached their highest levels already 6 hours after the onset of PPD (Figure 1). 

Transcript levels of the gene represented by TDFa8 were very low or absent again 72 

hours after the onset of PPD. 
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Figure 1. Expression pattern of genes important to oxygen scavenging (such as 

TDFa8 & TDFc25) during the early stages of PPD in cassava tuberous roots using 

cDNA-AFLP. Numbers indicate the hours after the start of incubation of the cassava 

slices under the experimental controlled conditions. Note that the 12-hour lane in the 

top panel was a drop out. As a control two constitutive bands are shown in both 

panels. Abbreviations: R = cassava intact tuberous roots, L = leaves, P = petioles, and 

S = stems. 

The 410 bp TDFa8 sequence revealed a 231 bp open reading frame (ORF), 

followed by a TGA stop codon, and a 130 bp untranslated region (UTR). The 77 

amino acid sequence deduced from the open reading frame showed a high sequence 

similarity with several plant peroxidases (EC 1.11.1.7), like from tobacco, peanut, 

tomato, and Arabidopsis thaliana (Figure 2). Apparently TDFa8 was derived from a 

transcript encoding a cassava peroxidase. 
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Figure 2. An alignment of the derived amino acid sequence of TDFa8 (underlined) 

with other peroxidases sequences from tobacco (accession number:AN027753), 

peanut(accession number: M37637), tomato (accession number: X94943), and 

Arabidopsis (accession number: X90997). Identical amino acids are highlighted by a 

solid box. 

Sequencing of the 230 bp TDFc25 revealed a 105 bp open reading frame 

(ORF), followed by a TGA stop codon, and a 57 bp untranslated region (UTR). The 

open reading frame encoded a putative 36 amino acids-long peptide that showed most 

high sequence similarity with cytochrome p450 monooxygenase in pea (accession no. 
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U20335, E value of le-07, Frank, et al., 1996), and also a high similarity (82%) with 

spring vetch. It is therefore highly likely that TDFc25 was derived from a transcript 

encoding a cassava cytochrome p450 monooxygenase. 

From the results above it could be concluded that TDFc25 and TDFa8 

represent a cytochrome p450 monooxygenase gene and a peroxidase gene that are 

differentially expressed during the process of PPD. The expression of both genes is 

quickly elevated after the onset of PPD, i.e within 6 hours, suggesting at least that 

their respective products may have a role in the early stages of PPD. 

Cassava peroxidases may be involved in the process of PPD in tuberous roots 

In other plant species multiple-copy gene families encode both cytochrome 

p450 monooxygenases and peroxidases. For example, in Arabidopsis there may be as 

many as 273 different cytochrome p450 monooxygenase genes and in Arabidopsis 

and rice more than 40 peroxidase genes (Yamamoto and Sasaki, 1997, 0stergaard, et 

al, 1998). At the protein level this possibly results in the presence of highly 

homologous members of the respective enzymes, and may be a complicating factor in 

the assessment of the possible function in PPD of the cytochrome p450 

monooxygenase and peroxidase encoded by the genes represented by TDFc25 and 

TDFa8, respectively. As compared to cytochrome p450 monooxygenases, however, 

plant peroxidase isoenzymes are easy to detect after electrophoresis and staining for 

enzyme activity. In a first attempt to at least assess a possible role of peroxidase in 

PPD, it was decided to study changes in peroxidase activity during this process in 

cassava tuberous roots, in particular with respect to localization and isoenzyme 

pattern. 

Tissue printing was used to study the distribution of soluble peroxidase 

activity in the different root tissues. The tissue printing experiments showed that at 

day 0 peroxidase activity was hardly detectable in the slices (Figure 3). At day 1, 

however, peroxidase activity was detected in nearly all tissues, but most prominently 

in or near the epidermis and the vascular bundles. A very similar pattern was observed 

at day 2, though total activity seemed a little lower. This decrease in activity seemed 

to continue, because the level of activity was lower again at day 3 (Figure 3) and at 

day 7 had become almost entirely undetectable (not shown). 
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The tissue print results suggested that there is a considerable increase in 

peroxidase activity during the first 24 hrs of PPD and particularly in or near the 

epidermis and vascular bundles. The localization of peroxidase activity in the vascular 

bundles seems to correlate with the occurrence of vascular streaking, the first visible 

sign of PPD (Mondaldo, 1973, Averre, 1976, Hirose, 1986). The distribution of the 

phenomenon of vascular streaking in cassava suggests that PPD starts in the internal 

tissues of the tuberous root. In the next experiments attention was focussed on the 

changes in peroxidase activity in the internal root tissues, i.e. in root slices from 

which the peel had been removed. 

Ar'iQ VB 

pi 

Day 1 

PA 

Day 2 Day 3 

Figure 3. Tissue printing of cassava peroxidase isoenzymes during the PPD process 

in cassava tuberous roots. Prints were prepared by fresh transverse cuts from slices of 

day 0, 1, 2, & 3. Abbreviations: C = cortex region; E = epidermal layers; PA = 

parenchyma tissue; PI = pith; VB = vascular bundles. 
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As shown in Figure 4, in the internal root tissues both total and specific 

activity of peroxidase increased almost in a linear fashion during the first 7 days of 

PPD up to a level 20 times higher than at day 0. In accordance with previous 

observations (Chapter 2, Huang, et al., 1999), total protein content of the slices 

remained virtually constant during PPD, only showing a slight decrease after day 4. 

1.20 

Figure 4. Peroxidase activity during the process of PPD in cassava tuberous roots. 

Shown are both the activity per minute per gram of fresh weight and the specific 

activity per minute per microgram of protein. 

The continuous increase of peroxidase activity in the internal root tissues 

seemed in contrast to the results obtained by tissue printing (Figure 3), which 

suggested a decrease in peroxidase activity after day 1. In fact, the decrease in 

peroxidase activity in the tissue prints was rather puzzling because it suggested 

peroxidase(s) being degraded or inactivated, whereas peroxidases are known to be 

very stable. However, during PPD experiments, there is a considerable loss of water 

from the root slices (Chapter 2, Huang, et al, 1999). Upon progress of PPD the loss 

of water may cause a hampering of the transfer of proteins from the root slices 
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towards the filter, and thus resulting in a decrease in the detection of peroxidase 

activity. Furthermore, the peroxidase activity detected upon tissue printing may 

reflect only part of the total peroxidase activity measured in the extracts. The tissue 

printing technique has proven particular useful in the detection of soluble peroxidases 

present in the apoplast (Hendriks and Van Loon, 1990, Reid, et al., 1992, Gabriela, et 

al., 1996). For the detection of peroxidases in the cell, e.g. in the vacuole, this 

technique might lack sensitivity because the transfer is limited to peroxidases released 

by single damaged cells at the surface of the slices only. 
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Figure 5. Cassava peroxidase isoenzymes measurement during the process of PPD in 

cassava tuberous roots by IEF electrophoresis after enzyme activity staining, pi values 

are indicated at the right. 
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IEF electrophoresis (pH range from 3 to 9) was used to analyze peroxidase 

isoenzyme composition in cassava inner root tissues during PPD. As shown in Figure 

5, at least 7 peroxidase isoenzymes were detected in the extracts upon electrophoresis 

and staining for peroxidase activity. Most of the peroxidase isoenzymes were present 

already at day 0 (e.g. bands at pi 3.0, 5.0, 5.2, 6.0 & 9.0), and some of them showed 

an increase in activity during PPD (e.g. bands at pi 5.2, pi 6.0 and pi 9.0). Other 

peroxidase isoenzymes, e.g. bands at pi 4.0 and pi 7.4, seemed to be produced de 

novo within 24 h after the onset of PPD in cassava. None of the peroxidase 

isoenzymes showed a decrease in activity, which further strengthens the notion that 

the decrease in peroxidase activity during PPD observed by tissue printing is an 

artifact. 

The increase in the activity of the peroxidase isoenzymes during PPD 

seemed to last up to day 7, suggesting that their production continued at least up to 

that day. The activity of the peroxidase isoenzymes with pi 4.0 and pi 7.4, however, 

hardly changed after the day they became visible, i.e. day 1 (Figure 5). When 

compared with the level of transcript of the peroxidase gene represented by TDFa8 

(Figure 1), it seems that the de novo synthesized isoenzymes are the most likely 

candidates to be encoded by this gene. 

Discussion 

PPD is a complex physiological and developmental process, which is the 

final phase in the cassava tuberous root life cycle. Using the cDNA-AFLP method, a 

large number of differentially expressed genes during the PPD process in cassava 

tuberous roots were studied (Chapter 3, Huang, et al, 2001). TDFa8 and TDFc25, 

representing genes that were differentially expressed during the first 72 hours of PPD, 

were isolated from cassava tuberous roots. Their expression pattern revealed that the 

genes represented by TDFa8 and TDFc25 were expressed only during the PPD 

process and not in control tissues, such as intact tuberous roots and leaves. Based on 

sequence analysis, TDFa8 and TDFc25 are most likely obtained from transcripts of 

genes encoding peroxidase and cytochrome p450 monooxygenase, respectively. The 

localization of peroxidase activity was shown to be mainly restricted to vascular 

bundles and parenchyma tissues in cassava tuberous roots following the process of 
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PPD. Both total and specific activity of cassava peroxidases in the internal tissues 

increased during the process of PPD. 

Cytochrome P450 monoxygenases mediate as terminal oxidases a wide range 

of oxidative responses that are related to the biosynthesis of plant secondary 

metabolites, including phenylpropanoids and phytoalexins (Frank, et al, 1996). It has 

been shown that the phenolic compounds, i.e. scopoletin and scopolin, might be 

associated with visible signs of PPD in cassava (Rickard, 1981 and 1985, Wheatley 

andSchwabe, 1985). 

Plant peroxidases are supposed to play a role in development, defense 

responses and even signal transduction pathways (Hiraga, et al, 2001). Most plants 

possess a large number of peroxidases, and their expression profile is influenced by 

environmental stimuli and is often developmentally regulated and tissue specific 

(Cassab and Warner, 1988). More than 40 independent ESTs (expressed sequence 

tags) of different peroxidases are expressed in Arabidopsis and rice (Yamamoto and 

Sasaki, 1997, 0stergaard, et al., 1998). Furthermore, 21 peroxidase genes have been 

identified in rice recently and all these peroxidase genes revealed unique expression 

profiles (Hiraga, et al., 2001). Different peroxidases are expected to have different 

functions in various physiological processes. These functions include scavenging of 

peroxide, lignification, suberization, cross-linking of cell wall polysaccharides and/or 

proteins, phenol oxidation and hormonal signaling (0stergaard, et al., 1998). 

PPD is accompanied by an increase in peroxidase activity, particularly in 

epidermis and vascular bundles. This increase is caused by the enhancement of the 

activity of peroxidase isoenzymes already present, as well as by newly synthesized 

isoenzymes. Together with the observed expression pattern of the peroxidase gene 

represented by TDFa8, this suggests that peroxidases are involved in PPD in cassava. 

Especially the rapid appearance of peroxidase activity in the vascular bundles is 

interesting since during PPD, both "vascular streaking" and "vascular discoloration" 

are visualized in vascular bundles and around parenchyma regions in the tuberous 

roots. In transgenic tobacco, enhanced activity of a soluble apoplastic peroxidase 

caused an increase in wound - induced browning (Lagrimini, 1990). These results 

suggest that peroxidases may be associated with the occurrence of "vascular 

streaking" and "vascular discoloration" during PPD in cassava tuberous roots. The 

peroxidase gene represented by TDFa8 might code for one of the peroxidase 
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Abstract 

In this paper the isolation of a TDF (transcript derived fragment), named 

TDFal2, is described, which exhibits a differential expression pattern during the first 

72 hours of PPD in cassava. TDFal2 showed most sequence similarity with some of 

the representative dadl (defender against apoptotic death 1) homologues from other 

species like Arabidopsis, apple, rice, human, mouse and C. elegans. Southern 

hybridisation results suggest that dadl has a low copy number in the cassava genome. 

Transformants were prepared using particle bombardment of cassava FEC (friable 

embryogenic callus) lines with DNA carrying the putative cassava dadl homologue in 

an antisense orientation under the control of the CaMV 35s promoter. Two strategies 

were taken for the production of transgenic plants: one based on luciferase screening 

only and one on kanamycin plus luciferase selection. It was proven that cassava FEC 

lines could be bombarded with a mixture of two different isolated plasmids and that 

co-transformation occurred at a high frequency for the first time. In total 94 

transgenic lines, carrying the dadl gene, were obtained. However, only 6 of them 

regenerated into plants. This low percentage was caused by an intrinsic low capacity 

of the used FEC lines to regenerate into plants. The transgenic nature of the plants 

was confirmed by Southern blotting using the luciferase gene as a probe. One 

transgenic line showed new phenotypic changes i.e. early senescence in leaves, which 

might be attributed to the expression of the introduced dadl gene. The possible 

reasons for this alternative morphology in the transgenic plant are given and 

discussed. 

Key words: programmed cell death, defender against apoptotic death gene 1 (dadl), 

friable embryogenic callus, cassava, postharvest physiological deterioration (PPD). 
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Introduction 

One of the approaches to investigate the process of PPD is based on the 

biochemical characterization of enzymes possibly crucial to oxidative stress in 

cassava tuberous roots. It is assumed that PPD is a peroxidase - mediated oxidative 

process (Chapter 4). Reactive oxygen species (ROS) are induced rapidly following 

oxidative stress, and are involved in many processes such as programmed cell death 

(PCD), regulation of gene expression and signal transduction (Nose, 2000, Bethke 

and Jones, 2001). It is indicated that oxidative stress can also influence the cell cycle 

progress in plants (Reichheld, et al., 1994). Plenty of evidence shows that oxidative 

stress leads to PCD in animals and plants (Amor, et al, 1998 & 2000, Jabs, 1999, 

Piffanelli, et al, 1999). In cassava, two TDFs (transcript derived fragments) important 

to oxidative stress, which share the best sequence similarities to tobacco peroxidase 

(accession No. AB027752 and E value = 4e-32, Hiraga, et al, 1999) and pea 

cytochrome P450 monooxygenase (accession No. U20335 and E value = 6e-8, Frank, 

et al, 1996), have been identified and isolated through a systematical analysis of 

changes in gene expression during the first 72 hours of the process of PPD (Chapter 

4). Catalase, another gene playing an essential role in defense against oxidative stress 

(Rocha, et al, 1996), was isolated from a cassava tuberous root cDNA library 48 hrs 

after the start of PPD (Reilly, et al, 1999). H202, one of the ROS, which is known to 

trigger PCD response in animals and plants (Tenhaken, et al, 1995, Jabs, 1999, 

Bethke and Jones, 2001), was found to be produced at early stages of PPD in cassava 

tuberous roots (Buschmann, et al, 2000b). Furthermore, a TDF (named TDFal2) 

sharing a high sequence similarity with defender against apoptotic death 1 (dadl) 

cDNA was also putatively identified and isolated during the process of PPD in 

cassava using the cDNA-AFLP technique. It has been suggested that PCD may be 

involved in the process of PPD in cassava (Chapter 3, Huang, et al, 2001). 

PCD is a broader term related to an active physiological process of cell death 

under genetically controlled mechanism(s) (Ellis, et al, 1991, Greenberg, 1996). PCD 

is expected to be an integral essential part of normal developmental stages to 

selectively remove unwanted cells or harmful cells in response to a range of intrinsic 

or extrinsic stimuli (Willams and Smith, 1993). Considerable research indicates that 

PCD also occurs in the plant kingdom just like in the animal kingdom, while the 

mechanism(s) of PCD in plants are less well understood (Havel and Durzan, 1996, 

Pennel and Lamb, 1997, Lam, et al, 1999). In plants, PCD is thought to play a role in 
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many developmental processes such as senescence, xylogenesis, aleurone deletion, 

the death of the root cap cells, and somatic embryogenesis. PCD also takes place 

during the interaction between plants and environmental factors (Pennel and Lamb, 

1997). Apoptosis is a kind of PCD with striking events which include a set of distinct 

morphological and biochemical changes like condensation of the nucleus and 

chromatin, fragmentation of nuclear DNA at internucleosomal regions, membrane 

blebbing and the formation of apoptotic bodies (Schwartzman and Cidlowski, 1993). 

DNA laddering is believed to be one of the hallmarks of apoptosis in animal and plant 

cells. However, not all PCD can be discovered these features just like in apoptosis 

(Schwartz, et al, 1993). 

The dadl gene was first isolated from human beings and mapped the human 

chromosome (Apte, et al., 1995), and later isolated from C. elegans. It has been 

shown to "rescue" a temperature-sensitive hamster cell line mutant from apoptosis 

after expression (Nakashima, et al., 1993, Sugimoto, et al., 1995). It was also shown 

that dadl is a subunit of an oligosaccharyltransferase that is located in the 

endoplasmic reticulum (ER) membrane (Kelleher and Gilmore, 1997) and supposed 

to be functioning in N-linked glycosylation down-regulation of apoptosis (Sanjay, et 

al., 1998). However, over-expression of dadl in mice did not have an effect on 

apoptosis rather than to influence cell division (Hong, et al., 1999). Intriguingly, 

expression of the dadl homologues from Arabidopsis and rice also showed the same 

"rescue" function as the ones from human and C. elegans as apoptosis suppressor 

(Gallois, et al., 1997, Tanaka, et al., 1997). More recently, more plant dadl 

homologues have been isolated from pea, apple and citrus (Orzaez and Granell, 1997, 

Dong, et al, 1998, Moriguchi, et al, 2000). 

There is no information on the characterisation of dadl gene(s) in cassava. 

Our main interest is to delay the process of PPD in cassava tuberous roots after 

harvesting through regulation of the process of PPD and/or PCD by creating 

transgenic cassava. 

At the moment there are different protocols available for the transformation 

of cassava. One method is based on organogenesis (Li, et al., 1996). The other 

methods are based on the use of FEC (friable embryogenic callus). FEC consists of 

small, spherical shaped, pre-globular units and transgenic plants were produced via 

particle bombardment (Raemakers, et al, 1996, Schopke, et al, 1996, Munyikwa, et 

al., 1998). Schopke, et al., (1996) used kanamycin as a selective marker, and 
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Raemakers, et al., (1996) and Munyikwa, et al., (1998) used luciferase activity for the 

selection of transgenic tissue. Kanamycin based selection yielded a much higher 

number of transgenic lines per bombarded dish than luciferase selection. On the other 

hand almost all tissues obtained from luciferase selection were capable to regenerate 

into transgenic plants, whereas with kanamycin selection only a fraction of the tissues 

yielded transgenic plants (Schopke, et al., 1996). 

Here, the isolation of TDFal2 that exhibits a differential expression pattern 

during the early stages of the PPD process in cassava tuberous roots is reported. It 

shares a high sequence similarity to dadl homologues in the public databases. To try 

to unravel a possible link between PCD and PPD in cassava, a reverse genetic 

approach was chosen to select the putative cassava dadl as a candidate gene. The 

transformation of cassava FEC via particle bombardment using luciferase screening 

and kanamycin plus luciferase selection was described. The transgenic plants, 

carrying the putative cassava dadl homologue in antisense, were investigated in this 

chapter. 

Materials and Methods 

Establishing an uniform system for the induction of the PPD process in cassava 

tuberous roots 

Tuberous roots from around 1.5-years old cassava plants (M.Col 22 and 

Faroka) were harvested from the greenhouse of Wageningen University. The plant 

materials were prepared and an uniform system for the induction and maintenance of 

the same speed spreading during the process of PPD in cassava was set up as 

described previously (Chapter 2, Huang, et al, 1999). The different samples of 

various time points of deterioration were collected and stored at - 80 °C for analysis 

after freezing immediately in liquid nitrogen. 

Plant tissues and culture media 

FEC lines of the genotype TMS 60444 were initiated as described by Taylor, 

et al., (1996). Totally 6 lines were collected (line A, B, C, D, E, F), which all were 

used in the experiments. The media used were as follows; solid FEC proliferation 

medium (GD6) consisting of Gresshoff and Doy (1972) salts and vitamins, 60 g/1 
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sucrose, 10 g/1 micro agar and 10 mg/1 picloram. Liquid proliferation medium (SH6) 

made up of Schenk and Hildebrandt (1972) salts and vitamins, 60 g/1 sucrose and 10 

mg/1 picloram. FEC maturation medium containing Murashige and Skoog (1962) salts 

and vitamins, 10 g/1 micro agar, 20 g/1 sucrose (MS2) plus 1 mg/1 picloram. Torpedo-

shape somatic embryos were transferred for further maturation to MS2 supplemented 

with 0.1 mg/1 BA. Green somatic embryos were cultured for plant formation on cotton 

plugs saturated with liquid MS2 and 1.0 mg/1 BA. Shoots were rooted on MS2 

medium. In all media the pH was adjusted to 5.7-5.8 before autoclaving and plant 

tissues were cultured in a growth chamber with a temperature of 30 °C, photoperiod 

of 12 hours and an irradiance of 40 |imol/sm2 PAR. 

Construction of TDFal2 in an antisense orientation and other plasmids 

The TDFal2 was subcloned into the vector pJIT 125 (Guerineau and 

Mullineaux, 1993) by a PCR-aided cloning approach. The vector pJIT 125 kindly 

provided by Dr. J.F. Guerineau, John Innes Institute, UK), contains the genes coding 

for luciferase (Luc) and (^glucuronidase (GUS) both driven by the CaMV 35s 

promoter and terminated by the CaMV 35s polyA region. The TDFal2 was cloned 

into the vector pJIT 125 to replace the GUS gene at the BamH I sites. The two 

primers used for cloning were designed as follows: upper one: 5' -

CGATTGACGATGG^JCCTGACC - 3' and lower one: 5' 

TATTTACATATCAAGTCG^rCCTAAAAA - 3'. The PCR product, which only 

included the putative coding sequence, was around 200 bp containing two restriction 

enzyme BamH I sites (GATTCC). This PCR fragment was first digested with 

restriction/ enzyme BamH I and then directly cloned into the pJIT 125 vector in the 

BamH I site, which leads to the 35s-dadl-polyA, 35s-luciferase-polyA construct 

(pCasdadl). The construct possessed the antibiotic resistant gene (ampicillin) for 

selection of the bacteria carrying the pCasdadl vector. The antisense TDFal2 

constructs were identified by the PCR analysis using different primer combinations: 

one primer from the CaMV 35s region (5'-TGCCCAGCTATCTGTCACTTTA -3') 

and two primers from the TDFal2 internal regions (upper one: 5'-

GCGGTTTTCACTGCTCTGATT- 3' & lower one: 5'-

TTGCTGATTTTGTCCTCTGC- 3')- The prepared construct is shown in Figure 1. 
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35s Dad1 PoiyA 

Figure 1. Schematic representation of the plasmid pCasdadl containing the putative 

cassava dadl homologue in antisense within the vector pJIT 125 in the BamH I sites. 

Besides the pCasdadl plasmid, the vectors pJIT64 and pDC2 have been 

used. pJIT64 (Guerineau & Mullineaux, 1993) was also kindly provided by Dr. J.F. 

Guerineau (John Innes Institute, UK) and pDC2 was kindly provided by Plant Genetic 

Systems, Belgium. pJIT64 also contains the luciferase gene flanked by the double 

CaMV 35S promoter and the CaMV 35S terminator. pDC2 contains the (3-

glucuronidase gene flanked by the Agrobacterium dual TR2' (Velten, et al, 1984) 

and the CaMV 35S terminator and the neomycin phosphotransferase gene flanked by 

the TR 1' promoter (Velten, et al, 1984) and the nos terminator. 

Particle bombardment 

20 |ag of plasmid DNA (in the case of co-transformation 10 (xg of each 

plasmid) was coated onto 10 |dg of gold particles (1.6 |am) by using the coating 

protocol as described by Raemakers, et al. (1996). 
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In the first experiment 6 different FEC lines of TMS 60444 (18 months old) 

were bombarded with particles coated only with DNA of the pCasdadl plasmid. 

Around 100 mg FEC was used per bombardment. After bombardment, the FEC was 

transferred to liquid SH6 medium. Two weeks later the FEC was collected on solid 

GD6 medium and assayed for luciferase activity. Each luciferase (luc) spot plus the 

tissues in a radius of 0.5-1.0 cm around the luc spots were subcultured as an 

individual line in liquid SH6 medium. Two weeks later, the FEC was assayed again 

for luciferase activity. Lines without luciferase activity were discarded and lines with 

4 or more luc spots were used for subclump division (Raemakers, et al., 1999). 

Subclump division started with subculturing the tissues around 0.5 to 1.0 cm diameter 

per luc positive spot. The tissue was divided as fine as possible on GD6 medium. Two 

weeks later the Petri dish was covered with small clumps of FEC tissue. Only the luc 

positive clumps were subcultured. For this the clumps were divided in subclumps and 

cultured on GD6 medium. This selection procedure was repeated 2-3 rounds or more 

before the positive tissue was cultured for plant regeneration. 

The best responding line of the first experiment was also used in the second 

experiment. In this experiment the FEC was either bombarded with DNA of the 

plasmid pCasdadl or with a mixture of pCasdadl/pDC2. The pCasdadl bombarded 

FEC was treated as in the first experiment. The pCasdadl/pDC2 callus was first 

cultured in liquid SH6 medium and two weeks later it was divided very finely over a 

nylon sheet cultured on GD6+10 mg/1 kanamycin. Three weeks later the nylon sheets 

with on top the callus were transferred to fresh medium. After 6 weeks of culture the 

number of clumps per bombarded dish was recorded and luc positive clumps were 

cultured for plant regeneration. 

In the third experiment FEC of one line was bombarded with either 

pCasdadl/pDC2 or with pJIT64/pDC2 as a control. The aim of this experiment was to 

determine if bombardment with DNA of the putative cassava dadl homologue has a 

negative effect on plant regeneration of transgenic lines. The FEC was cultured as 

described for the second experiment. 

Assays for reporter gene activity 

Plant tissue was sprayed with 0.15 mg ml"1 firefly luciferin. Luciferase 

activity was measured using the luminometer (VIM intensified CD camera and 

Argus-50 photon counting image processor of Hamamatsu Phototronic Systems). 
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A modified histochemical GUS assay of Jefferson, et al, (1987) was made. The assay 

solution included 0.2 M Na2HP04, 0.2 M NaH2P04, 10% triton XI00, 10 mM 

Na2EDTA, 0.5 mM potassium ferrocyanide, 20% hydrogenperoxide and 0.96 mM 5-

bromo-4-chloro-3-indolyl P-D-glucuronide cyclohexylamine salt (overnight 

incubation at 37 °C in the dark). 

Total RNA isolation and the cDNA-AFLP method 

The total RNA from the samples of different time points during the process 

of PPD in cassava and from control tissues (intact tuberous roots and leaf) were 

isolated as described previously (Chapter 3, Huang, et al., 2001). The templates used 

for cDNA-AFLP were prepared and the cDNA-AFLP procedure was performed based 

on the method developed by Bachem, et al. (1996). 

TDFA12 isolation, subcloning and sequencing 

According to the differential expression patterns during the process of PPD, 

TDFal2 was isolated from the polyacrylamide AFLP gel and amplified using the non

selective extension primer combination (Ase I and Taq I anchor). The PCR product 

was directly cloned into the pGME - T easy vector (Promega, USA). The sequencing 

was done by an automated sequencer and the sequence of TDFal2 was compared to 

the latest sequences present in the public databases by using the BLAST 2.0 program 

(Altschul, et al., 1997). 

Genomic DNA isolation and Southern blot 

The plant materials were ground to a fine powder in a pre-cooled pestle with 

a mortar containing liquid N2. Genomic DNA was isolated from the cassava leaf using 

the DNA Isolation Kit (BlOzym, the Netherlands). The DNA was digested with 

different restriction enzymes and electrophoresed on 1% agarose gels. Then DNA was 

transferred to Hybond N+ filter in 0.4 M NaOH/0.6 M NaCl solution. Hybridisation 

and washing steps were performed according the Hybond N manual. 32P - labelled 

DNA probes were obtained by random priming using the ra/z'primer™ II Kits 

(Amersham Pharmacio Biotech, UK). 
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Confirmation of the transgenic plants by Southern blot 

The transgenic plants were confirmed by Southern blot using the luciferase 

gene as a probe. This probe was made by PCR using the primers; upper one: 5'- ACG 

CCTTTGGAATGTTTACAT 3' and lower one: 5'-

CGGTTGTTACTTGACGGCGAC 3', which resulted in a PCR product of around 

800 bp. The PCR reaction conditions were as follows: denaturation at 94 °C for 4 

minutes, then 30 cycles at the condition of 94 °C for 30 seconds, 62 °C for 1.5 

minutes, 72 °C for 1 minute, and finally followed by 4 minutes extension at 72 °C. 

Results 

TDFal2 showing a differential expression during the process of PPD in cassava 

tuberous roots reveals a high sequence similarity to dadl homologues. 

A molecular approach was taken to analyse changes of gene expression 

patterns in cassava focusing on the early stages (first 72 hours) of the PPD process. It 

was possible to systematically screen a large number of expressed genes during the 

process of PPD in cassava by using the cDNA-AFLP technique in our uniform system 

for initiating and maintaining the speed of the process of PPD in cassava tuberous 

roots (Chapter 2 & 3, Huang et al., 1999 and 2001). In principle, genes that reveal an 

up-regulated, a down-regulated or a transiently induced expression pattern during the 

PPD process are attractive. Based on the cDNA-AFLP technique, a TDF (named 

TDFal2) fulfilled these requirements (Figure 2). Figure 2 shows that TDFal2 exhibits 

an up-regulated expression pattern during the first 72 hours of PPD in cassava by 

choosing the primer combination No.44 (Ase I anchor plus selective extension AA) 

and No.77 (Taq I anchor plus selective extension TC). The size is around 430 bp in 

the polyacrylamide AFLP gel. After isolation, subcloning and sequencing, it was 

found that TDFA12 shares a high sequence similarity with dadl cDNA (best 

sequence similarity accession No. AB011798, E value of 3e-42, Takaya, et al., 2000) 

in the public databases. 

By searching the latest release sequence information in the public databases, 

it was found that dadl genes from different origins have very high conserved 

sequences. The full length (encoding plus 3' & 5' untranslated region) of dadl cDNA 

is around 600-700 bp, encoding a protein of about 115 amino acids with a predicted 
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•TDFal 

Figure 2. Expression pattern of TDFal2 during the process of PPD using the primer 

combination No.44 and No.77 in cDNA-AFLP (http://www.DPW.WAU.NL/PV/). 

Numbers indicate the hours of incubating the cassava slices under the controlled 

conditions. 
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Figure 3. Alignment of the amino acid sequence derived from TDFal2 (underlined) 

and 7 other dadl sequences from various origins. Arabidopsis (accession number 

AF030172 and AC005314), apple (accession number U68560), rice (accession 

number D89726), human (accession number A54437), mouse (accession number 

U22107), C. elegans (accession number; S59116). Homologous amino acids are 

indicated by a solid box. 
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molecular mass of around 12.5 kDa. Further sequence analysis using the DNASTAR 

4.2 software packages {DNASTAR Inc., USA), showed that TDFal2 is around 430 bp 

in length including 85 amino acid residues in the coding region along with a TAA 

stop codon plus about 140-nucleotides in the 3' UTR (untranslated region), and that it 

shares a high sequence homology with some of the representative dadl genes from 

other species such as Arabidopsis, apple, rice, human, mouse and C. elegans. In 

Figure 3, sequence similarities of TDFal2 with other dadl homologues from various 

species are displayed. 

The organisation of the putative dadl homologue in the cassava genome 

High quality genomic DNA was isolated from cassava to check the potential 

copy number of dadl gene(s) in the cassava genome. The cassava genomic DNA was 

digested with various restriction enzymes such as BamH 1, EcoR I, EcoR V, Hind III, 

Nco I, and the digested DNA fragments were hybridized with the TDFal2 fragment 

as a probe. The Southern blot shows that dadl is present as a low copy number gene 

in the cassava genome (Figure 4A). 

Selection of transgenic lines 

Particle bombardment was used to introduce the putative cassava dadl 

homologue into the cassava genotype TMS60444 using FEC lines. In the first set of 

experiments selection of transgenic tissue was based on the activity of the luciferase 

gene (Chia, et al., 1994). Transient expression was observed 2 days after 

bombardment of FEC. The highest luc activity observed was around 11,500 

photons/15 seconds on one Petri-dish. Six FEC lines of TMS60444 were bombarded 

with pCasdadl. Two weeks after bombardment the Petri dishes were assayed again 

for luc activity. The amount of emitted photons had decreased with at least 90% 

compared to the first measurement at 2 days after bombardment. Luc activity was 

only seen as small spots. There is a large difference between the lines with respect to 

the number of luc spots (Table 1). The B line had the lowest number and the C line 

possessed the highest number of luc spots. A maximum number of 17 spots were 

observed in one Petri dish. Almost 300 spots were subcultured as individual lines. 

Three weeks later 106 lines still contained luc positive tissue. However, only in 52 

lines, 4 or more luc spots per Petri dish were detected. Further subculture resulted in 

34 stably transformed lines: 32 were derived from the C line and 2 from the D line. 
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The overall efficiency in this experiment was around 0.4 transgenic line per 

bombarded dish. In the next set of experiments the overall efficiency of subclump 

division was compared with kanamycin selection. 

Table l: Number of luciferase positive lines obtained after bombardment of different 

FEC lines with pCasdadl (around 100 mg FEC units used per line, expressed as the 

means of 15 bombarded dishes per line) 

FEC line 

A 

B 

C 

D 

E 

F 

luciferase spots 

(2 weeks after 

bombardment) 

1.5 

1 

10.5 

1.6 

3.5 

1.1 

luciferase positive lines 

(5 weeks after 

bombardment) 

0 

0 

3.2 

0.2 

0 

0 

luciferase positive lines 

(9 weeks after 

bombardment) 

0 

0 

2.1 

0.1 

0 

0 

Because pCasdadl does not contain the nptll gene, the FEC was bombarded 

with a mixture of pCasdadl/pDC2. Based on the results of Table 1, line C was chosen 

as starting material. Two weeks after bombardment the FEC was divided finely over 

nylon filters and cultured on GD medium supplemented with 10 mg/1 kanamycin. 

After about 4 weeks of culture small colonies of FEC became visible. Two weeks 

later all the colonies were tested for luc activity. The luc negative colonies were also 

tested for gus activity. The luc positive colonies were first cultured as individual lines 

and 3 weeks later a small part of each individual line was tested for gus activity. The 

results of both the luc and gus assays are shown in Table 2. 

In total 150 clumps were selected. 32 percent of these clumps were luc 

negative and gus positive suggesting that only DNA from pDC2 was integrated into 

these cells. Sixty eight percent of the colonies were both luc and gus positive, 

suggesting that integration of DNA of both pDC2 and pCasdadl had occurred. 
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Table 2. Number of vigorously growing colonies on the kanamycin containing 

medium 6 weeks after bombardment. 

Average colonies # Nature of transgenic colonies after kanamycin selection ' 

Plasmids (per bombarded dish) Luc Vgus + Luc Vgus + Luc 7gus " Luc Vgus ' 

pCasdadl/pDC2 4.7 68% 32% 0% 0% 

pJIT64/pDC2 5.6 57% 38% 0% 0% 

(*: In total 20 dishes with pCasdadl/pDC2 and 10 dishes with pJIT64/pDC2 were 

bombarded, a total of 150 colonies were evaluated for luciferase and gus activity.) 

Plant regeneration from the putative dadl positive FEC lines 

34 luciferase positive lines derived from subclump division (bombardment 

with pCasdadl) and 60 from kanamycin selection (bombardment with 

pCasdadl/pDC2) were cultured for maturation. Most of the luc positive lines were 

derived from FEC line C; only 2 lines were derived from line D. After 4 weeks of 

culture on maturation medium both luc positive lines derived from the D line yielded 

the first somatic embryos. For the transgenic lines derived from the C line this was 3-

5 weeks later. In total 56 somatic embryos were isolated from line D. Only 19 of the 

94 cultured transgenic lines derived from line C, yielded somatic embryos and the 

number of somatic embryos per line varied from 1 to 20. The ability to form mature 

somatic embryos was not restricted to a specific selection regime. Raemakers, et ah, 

(1996) had shown that the number of somatic embryos of a particular line could be 

increased by culturing green somatic embryos for secondary somatic embryogenesis. 

In this way, plants could be regenerated from transgenic lines, which yielded only a 

low number of somatic embryos. This technique was also applied here. Secondary 

somatic embryogenic cultures were obtained from somatic embryos of 12 luciferase 

positive lines. 

In the next step of the regeneration process somatic embryos were cultured 

for germination into plants. Somatic embryos of in total 12 lines were cultured and 

plants were obtained from in total 6 lines. In the other 6 lines the somatic embryos 

failed to germinate properly. Two plants were obtained from FEC bombarded with 

both pCasdadl/pDC2 grown on the kanamycin containing medium followed selection 
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for luc activity (line 5 and 34) and 4 plants from pCasdadl selected only by luc 

activity (line 1,4, 11 and 12). 

Low capability of plant regeneration for the FEC lines 

In the experiments described here only 6 out of 94 lines germinated into 

plants. The reason for this low efficiency might be due to the introduction of the 

putative cassava dadl gene, which might have a negative effect on plant regeneration 

or the FEC line itself having a low capability to develop into plants. This was 

investigated. First the same FEC line was bombarded with a mixture of pJIT64/pDC2 

DNA. The number of luc positive lines produced with the pJIT64/pDC2 mixture was 

slightly higher than after bombardment with pCasdadl/pDC2. The capability of 

luciferase positive cultures to regenerate into mature somatic embryos was almost the 

same for both. To test the second hypothesis non-transformed FEC of different lines 

were cultured for regeneration. The results of different lines for both maturation and 

germination are shown (Table 3). Four of the 6 tested lines yielded more than 1000 

somatic embryos per 100 mg cultured FEC. The first somatic embryos appeared after 

3 weeks of culture. Two lines, B and C, yielded less than 100 somatic embryos and 

the first appeared after 4-5 weeks of culture. The C-line gave the lowest number of 

somatic embryos. Also germination of somatic embryos in this line was considerably 

lower than in the other tested lines. 

Table 3. Capability of different FEC lines to form mature somatic embryos and 

subsequently plants. 

line Mature somatic embryos (SE) SE which germinate into a plant (%) 

73 

54 

12 

46 

65 

58 

(Data are the means of 2 replications; 100 mg FEC per replication was cultured for 9 

weeks.) 
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A 

B 

C 

D 

E 

F 

>1000 

84.7 

29 

>1000 

>1000 

>1000 
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The morphology of the transgenic plants 

In total 6 transgenic lines derived from FEC lines regenerated into plants. No 

dramatic phenotypic differences were observed compared with the normal control 

when these transgenic plants were grown in vitro except for transgenic line 5. 

Senescence in the leaves of transgenic line 5 seemed to occur earlier compared with 

that of the control plants in vitro (Figure 5A). Whether this also exists in the 

greenhouse will have to be assessed. So far attempts to transfer line 5 to the 

greenhouse failed. The other lines, which were transferred to the greenhouse, were all 

growing slower and showed a different leaf shape (Figure 5B). 

1 2 3 4 5 IkoRI EcoRI EcoR. I EcoRI 

21 kb 

Figure 4A. Southern blot of high quality genomic DNA of cassava digested with 

enzymes BamH I (lane 1), EcoR I (lane 2), EcoR V (lane 3), Hind III (lane 4) and 

Nco I (lane 5). TDFal2 from cassava was used as a probe indicating a low copy 

number of dad 1 existing in the cassava genome. 4B. Southern hybridization of cassava 

genomic DNA from transgenic plants 5, 12 and 34, bombarded with pCasdadl or 

pCasdadl/pDC2 plasmids, carrying the putative cassava dadl gene in an antisense 

orientation. A PCR-amplified coding sequence of the luciferase gene was used as a 

probe. 
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Confirmation of the transgenic nature by Southern blot 

Since the size of the putative cassava dadl TDF is rather small, the PCR 

product from the luciferase gene was used as a probe to check the transgenic nature of 

the transformants. It was shown that 3 of the transgenic lines carried the luciferase 

gene (line 5, 12 and 34), which means that these 3 transgenic plants probably also 

carried the putative dadl gene (Figure 4B). The transgene copy number integrated 

into the chromosomes seemed to vary between the different transformants based on 

the intensity of the bands. 

Figure 5A. In vitro phenotypes of a non-transgenic control cassava plant after tissue 

culture regeneration and the transgenic line 5 carrying the putative cassava dadl 

homologue in an antisense orientation driven by the CaMV 35s promoter. 5B. 

Greenhouse grown non-transgenic control cassava plant after tissue culture 

regeneration and the transgenic line 12 with the putative cassava dadl homologue in 

an antisense orientation driven by the CaMV 35s promoter. 

Discussion 

A large number of expressed genes have been systematically screened during 

the first 72 hours of the PPD process in cassava tuberous roots, which is a complex 

physiological process (Chapter 3, Huang, et al., 2001). Using the cDNA- AFLP 

method, it is reported here that TDFal2, which exhibited a differential expression 
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pattern during the process of PPD in cassava, was isolated. The result obtained from 

Southern blot analysis suggested that dadl may have a low copy number in the 

cassava genome like in apple (Dong, et al., 1998) and in pea (Orzaez and Granell, 

1997). Very recent results suggested that the functional part of the dadl gene might be 

within the C - terminal region (Maskshima, et al. 2000). The data indicated that the 

dadl gene lacking 20 amino acid residues from the N-terminal part still exhibited the 

ability to complement the Chinese hamster cell line mutation, while a dadl gene only 

missing 4 amino acid residues from the C-terminal region, had no "rescue" function at 

all. TDFal2 (about 430 bp) is a part of the transcribed fragment of the full-length 

dadl cDNA (around 600-700 bp) including the C-terminal part. DNA laddering is one 

of the hallmarks of apoptosis. However, we could not detect DNA laddering during 

the process of PPD in cassava tuberous roots, which suggests that cell death may be 

due to a different mechanism like PCD existing in the barley aleurone layer (Fath, et 

al, 1999) (data not shown). 

It is expected that physiological deterioration only occurs after harvesting of 

cassava tuberous roots, which results in loss of its quality. This suggests that after 

harvest cassava tuberous roots shift to a kind of senescence situation due to PPD. 

Here the isolated putative dadl homologue from cassava showed an up-regulated 

expression during the process of PPD, which is in contrast with the expression pattern 

of the full-length dadl homologue from pea which was down-regulated during 

senescence of flower petals in pea (Orzaez and Granell, 1997). Considering the results 

from Southern blot analysis of dadl genes, this contrast could be explained since 

different homologues from the dadl gene family in cassava could have diverse 

functions and show variable expression patterns. A similar expression pattern as in 

cassava occurred in apple, which also showed an up regulated expression pattern in 

leaf, flower and during fruit ripening as well (Dong, et al., 1998). Moreover, the apple 

dadl mRNA seemed to be highly expressed in vascular bundles of flowers. If a 

similar expression pattern of the dadl gene could also be observed in vascular tissues 

following PPD in cassava tuberous roots, which is in line with the location of the 

visual symptoms of "vascular streaking" and "vascular discoloration", it would 

indicate that the putative dadl homologue from cassava plays a role in PPD in 

cassava. 

Here the antisense approach was taken in order to unravel the potential 

function of dadl in PPD of cassava, since it is expected that down regulation of the 
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expression level of the dadl gene will accelerate the process of PPD in cassava. Also 

generally speaking the antisense effect can be more easily observed compared with 

the sense approach. Previously cassava FEC lines have been used to produce 

transgenic plants (Raemakers, et al., 1996, Schopke, et al., 1996, Munyikwa, et al., 

1998). In general FEC used for genetic modification yields non-chimeric transformed 

plants since FEC units have a single cell origin (Taylor, et al, 1996). In addition 

somatic embryos are easy for DNA delivery since the origin of proliferating 

embryogenic tissue is present at or near the surface of the older embryos (Hansen and 

Wright, 1999). When the selection was based on the activity of the luciferase gene, 

around 50% of the transgenic lines regenerated plants (Raemakers, et al., 1996, 

Munyikwa, et al., 1998). Here less than 1% of the lines regenerated into plants (Table 

3). It was shown that this low percentage was mainly due to the used FEC line which 

itself has a very low ability to regenerate plants compared to other lines. This makes it 

painstakingly clear that selection of FEC lines for particle bombardment should not 

only be based on its ability to produce transgenic callus lines, but also on its 

capability to regenerate into plants. 

The results described here show for the first time, that cassava FEC lines can 

be bombarded with mixtures of DNA from two different plasmids and that co-

transformation occurs at relatively high frequencies (Table 2). This may open the 

road for multiple gene transformation in cassava using simultaneously more than one 

plasmid. 

It was known that delivery of foreign DNA by particle bombardment under 

suitable selection conditions is able to stably integrate into the chromosomes of the 

nucleus of transgenic plants. Southern blot analysis confirmed that some of the 

transgenic plants were carrying the target gene (Figure 4B). Since equal amounts of 

DNA were loaded, the band intensities are an indication for the copy numbers of the 

integrated transgenes in the plants. Particle bombardment for direct delivery of DNA 

generally could lead to complicated patterns of target DNA integration in plants. It 

was shown that indeed the copy number of the transgene was different between the 

transgenic cassava plants (Figure 4B). It is reported that the use of particle 

bombardment to deliver only a so-called "minimal gene cassette" (promoter, open 

reading frame, plus terminator without the vector backbone sequence) into plants can 

result in low transgene copy numbers, simple expression patterns and high expression 

(Fu, et al., 2000). Figure 5B showed that the transgenic plants were growing slower 
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than the control plants, which might be due to somaclonal variation or the antisense 

effects of the target gene. It was reported that old FEC lines have a high chance of 

somaclonal variation (Raemakers, et ai, 1999). The FEC lines used in the 

experiments described here were 1.5 years old, which is not that old, however, it is 

important to use very young FEC lines for bombardment in the future to minimise 

occurrence of somaclonal variation. Transgenic line 5 expressed earlier senescence in 

leaves in comparison with the control plants (Figure 5A). This phenomenon has never 

been observed in non transformed plants derived from FEC lines or transformed 

plants containing marker genes, or other genes (Raemakers, personal 

communication), thus indicating possible effects of the dadl gene. It is known that 

senescence is an oxidative process that is considered as general deterioration of 

cellular metabolism (Pastori and Rio, 1997). In plants, the best-studied example of 

senescence is leaf tissue. Leaf senescence is thought to represent a modified plant 

form of PCD (Jones and Dangl, 1996). The senescence syndrome includes damage of 

chlorophyll, proteins, lipids and nucleic acids, which leads to yellow leaf, and finally 

cell death (Gan and Amasino, 1997). This transgenic line will be moved into the 

greenhouse for further studies. 

More transgenic plants carrying the putative cassava dadl homologue have 

to be produced so that further investigation can be performed on these transgenic 

plants in the future. This will shed more light on the function of the cassava dadl gene 

during the process of PPD in the tuberous roots. 
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Cassava {Manihot esculenta Crantz) is the fourth largest source of calories 

after rice, sugar cane and maize in the world, which feeds more than 500 million 

people in the tropical and sub-tropical regions. Cassava, one of the most efficient 

carbohydrate-producing crops, is rich in starch in its tuberous roots which can be 

widely applied for food and non-food purposes. In spite of being one of the oldest 

cultivated crops by human beings (Gulick, et al., 1983), cassava breeding is less 

advanced than other root and tuber crops like potato. Cassava is a highly 

heterozygous allotetraploid and vegetatively propagated crop. Furthermore, cassava 

has an irregular flowering time and low seed production. These natural characteristics 

result in the fact that a traditional breeding approach is more difficult and time 

consuming for cassava. These, vice versa, offer opportunities for cassava to become a 

more suitable crop by genetic modification to improve its agricultural quality traits. In 

order to provide more and better cassava as a food integrated into the global food 

system for the world's rapid population growth in the future (Scott, et al., 2000a and 

2000b), genetic modification becomes a potential powerful technology to improve 

valuable quality traits for cassava using existing cultivars. The work described in this 

thesis is the result from the analysis of postharvest physiological deterioration (PPD) 

in cassava tuberous roots at different (physiological, biochemical and molecular) 

levels. More insight into the mechanisms of PPD in cassava has been gained. Finally, 

the use of genetic modification as a tool to potentially improve root quality by 

prolonging the shelf life of cassava tuberous roots after harvesting is further 

discussed. This could be of benefit to sustainable economic development for small 

farmers in developing countries (http://books.nap.edu/html/transgic). 

An efficient transformation system and isolated genes available are two 

essential pre-requisites for genetic modification. Especially the development of a 

good transformation system is necessary before gene technology can be used 

efficiently. In addition, transgenic plants as an assay system can also make it possible 

to study gene function and regulation of, for example, developmental processes in 

plants. It was first reported in 1996 that several laboratories had achieved the break

through for transformation of cassava (Li, et al, 1996, Raemakers, et al, 1996, 

Schopke et al., 1996) either by microprojectile bombardment using friable 

embryogenic callus (FEC) lines (Taylor, et al., 1996) or by transformation of cassava 

somatic embryos derived from cotyledons with Agrobacterium tumefaciens and later 

forming adventitious shoots. Since then advances for transformation of cassava have 
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been made (Snepvangers, et al, 1997, Gonzalez, et al, 1998, Li., et al, 1998, 

Muniyikwa, et al, 1998). However, practical and routine transformation protocols are 

still required to be established (Sarria, et al, 2000, Zhang, et al, 2000a, Raemakers, 

et al, 2001, Schreuder, et al, 2001). It was also reported that transgenic cassava 

plants could be obtained by electroporation using protoplasts isolated from FEC 

(Sofiari, et al, 1998). The selection used for the cassava transgenic tissues can 

roughly be classified into chemical selection using antibiotics such as paromycin, 

geneticin or hygromycin as a selective marker (Li, et al, 1996 and 1998, Schreuder, 

et al, 2001), or herbicides such as Basta as a selective agent (Snepvangers, et al, 

1997, Sarria, et al, 2000). Non-invasive selection by the visual luciferase activity 

(Raemakers, et al, 1996), or a combination of chemical selection with a visual screen 

marker (luciferase) (Muniyikwa, et al, 1998) are also used. In the future, one of the 

plant transformation approaches is to eliminate selectable markers due to public 

concerns raised about the use of antibiotic genes for selection. This can be achieved 

by crossing the selective marker(s) afterwards through meiotic recombination or 

employing non-antibiotic marker systems. For cassava the former approach is not 

very likely due to the natural properties of cassava cultivars. More recently an 

antibiotic-free selection system, a so called positive system using mannose as the 

selection agent was developed in cassava transformation (Zhang, et al, 2000b, Zhang 

and Puonti-Kaerlas, 2000). This positive selection system is based on either xylose 

(Haldrup, et al, 1998a and 1998b) or mannose (Joersbo, et al, 1998 and 1999) and 

has also been applied to potato, tomato and sugar beet. The principle for this selection 

is based on the fact that plants cannot make use of mannose (or xylose) directly. The 

uptake of mannose results in starvation and prevents growing due to the accumulation 

of mannose-6-phosphate. If plants can synthesize the E.coli phosphomannose 

isomerase, which can convert mannose-6-phosphate to easily metabolisable fructose-

6-phosphate, then plants will be able to deploy mannose as a sole carbon source. The 

mannose positive selection for cassava FEC suspension is dependent on the sucrose 

content in the medium and the low regeneration capacity has still to be resolved 

(Zhang, et al, 2000b). 

Postharvest deterioration is an inherent constraint for cassava after harvesting 

which leads to a very poor storage life of the harvested tuberous roots. Postharvest 

deterioration, which is one of the major problems limiting the further possibilities of 

production, distribution and processing of cassava, includes primary deterioration and 
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secondary deterioration. Primary deterioration, so called postharvest physiological 

deterioration (PPD) is a complex physiological process depending on the 

environmental situation and the cassava genotype. Secondary deterioration is the 

result of the former deterioration and involves the action of micro-organisms such as 

bacteria and fungi. To analyze PPD in cassava tuberous roots, a system to mimic the 

process of PPD in cassava tuberous roots is required. For this purpose, a phenotypical 

visualized uniform system for the onset and maintaining the same spreading speed 

during the process of PPD in cassava under experimental conditions was developed 

and several parameters were investigated in this system (Chapter 2). However, starch, 

the most abundant component in the tuberous roots, seems to be less influenced 

during the PPD process as was expected. This could be due to the fact that 

environmental aspects have a more pronounced effect on PPD in cassava tuberous 

roots than the genetic make-up of the cassava genotype. Making use of this uniform 

system to better understand the molecular mechanism of PPD in cassava, a systematic 

survey of gene expression at the early stages of PPD in cassava focusing on the first 

72 hours was carried out (Chapter 3). Using cDNA-AFLP (Bachem, et al., 1996), 

several expression patterns could be detected at the first 72 hours following the 

process of PPD in cassava tuberous roots (Figure 1). 70 TDFs (transcript derived 

fragments) exhibiting an up-regulated, a down-regulated or a transient expression 

pattern during the first 72 hours of the PPD process in cassava, were isolated after 

using around 100 AFLP primer combinations. Based on the sequence information, a 

functional catalogue of these TDFs was established in this thesis. Based on the 

molecular analysis of PPD in cassava and other research about PPD, a biochemical 

approach focusing on the enzymes potentially important to oxidative stress, like 

peroxidase (EC 1.11.1.7), was made. The specific activity and localization as well as 

the expression of peroxidase during the process of PPD was investigated in cassava 

tuberous roots (Chapter 4). Results were obtained indicating that PPD might be a 

peroxidase-mediated oxidative process. 

The most important application of cDNA-AFLP in this study was to identify 

differentially expressed genes. Especially the cDNA-AFLP technique is an effective 

method for a large-scale identification and isolation of genes, which are differentially 

expressed in specific tissues during a particular developmental stage or in response to 
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certain stress (Bachem, et al, 2000, Durrant, et al., 2000). Compared with the 

microarray-based technologies including cDNA and oligonucleotide microarrays, the 

cDNA-AFLP technique does not require sequence information in advance and is 

highly sensitive as well as relatively low in costs. Recently, it was reported that the 

EST (expression sequence tags) project from cassava has been started (Suarez, et al., 

2000). A programme package called GenEST that establishes a potential bi

directional link between ESTs data and the expression profiles produced by cDNA-

AFLP has become available (Qin, et al, 2001). Furthermore the cDNA-AFLP 

technique can be adapted so that each TDF band in the AFLP gel is really a response 

to one particular cDNA (Breyne and Zabeau, 2001). Accumulating information on 

ESTs from cassava combined with cDNA-AFLP expression profile data may provide 

a more powerful tool for gene discovery and functional genomics in cassava. 

basal expression 

Tuberous roots develop into mature roots 

' | vascular streaking intact tuberous roots 

Figure 1. Schematic presentation of differential gene expression patterns during the 

process of PPD in cassava tuberous roots. Class I and Class III reveal an up-regulated 

expression pattern but Class III shows a low basal level of expression during cassava 

tuberous root development and this level increases during the process of PPD. Class II 

exhibits a transient expression mode during PPD. Class IV displays a down- regulated 

expression pattern during the PPD process. Class V shows a constitutive expression 

during the process at the same level as during cassava tuberous root development. 
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The molecular genetic map of cassava, mainly based on RFLP (restriction 

fragment length polymorphism) markers, was constructed in 1997 which included 20 

linkage groups covering around 60% of the cassava genome (Fregene, et al., 1997). 

Afterwards, cassava microsatellites were added to further saturate the cassava genetic 

map (Chavariaga-Aguirre, et al., 1998). Recently, an investigation on SSR (simple 

sequence repeat) markers in the cassava genome was performed in order to set up an 

SSR - based molecular genetic map of cassava, which can generally be integrated into 

the existing RFLP framework of genetic maps (Liu, et al, 1996, Taramino and 

Tingey, 1996). These efforts provide a possibility to make use of marker-assisted 

genetic analysis and selection of important agronomic traits in cassava breeding. 

Further research could be made to map these TDFs in a Fl population of a cassava 

cross population in which PPD has been phenotypically evaluated using a candidate 

gene approach. 

There are two dimensions to further confirm expression profiling of the 

isolated TDFs direcly to the PPD process using our phenotypically uniform system 

for PPD in cassava tuberous roots. One is based on using a different cassava variety 

which shows a diverse sensitivity to PPD. Another is based on choosing the same 

cassava clone, but with a pre-pruning treatment which shows delayed symptoms of 

PPD. A small number of cassava clones less sensitive to deterioration exists, which 

means that PPD in the tuberous roots starts only after one week after harvest 

(Wenham, 1995). It is known that the cultivar ofM.Col 22 used in our experiments is 

highly sensitive to PPD. If another cassava cultivar with low susceptibility of PPD 

would be taken, the expression patterns of these isolated TDFs could have been 

further investigated using cDNA micro-array. The same approach could also be 

executed using the same variety but with pre-prunning treatment. The confirmed 

TDFs can be used as diagnostic molecular markers for indicating PPD in cassava 

tuberous roots at different stages. 

Based on a systematical survey of changes in gene expression during PPD and 

a biochemical analysis of enzymes important to oxidative stress by focusing on 

peroxidase, it was strongly suggested that PCD (programmed cell death) might be 

involved in the process of PPD in cassava tuberous roots (Chapter 3 and 5). The main 

purpose of the project was to create transgenic cassava to influence /or delay the 

process of PPD in the tuberous roots after harvesting. Using a genetic transformation 

strategy, an attempt was made to down-regulate the levels of enzymes/genes involved 
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in the process of PPD in cassava by employing a reverse genetic approach. Therefore, 

the putative cassava dadl homologue was introduced into cassava FEC lines using the 

luciferase gene as a selective marker by particle bombardment. The transgenic 

cassava plants carrying the putative dadl (defender against cell death 1) homologue in 

an antisense orientation were investigated (Chapter 5) in order to answer questions 

like: What is the function of the putative cassava dadl gene during the process of PPD 

in cassava tuberous roots? What kind of possible link is present between PPD and 

PCD in cassava? If PCD plays a crucial role in PPD in cassava tuberous roots, it is 

important to determine the function of gene(s) that might regulate PCD. The first 

transgenic cassava plants have been obtained, but it is clear that more cassava 

transgenic plants with the putative dadl homologue have to be produced for further 

analysis. 

To produce transgenic cassava with a delayed process of PPD in the tuberous 

roots after harvesting, the current effort focused on the modification of expression 

levels of genes possibly involved in this process (Chapter 5). Higher expression levels 

can possibly be achieved by taking a strong or process-induced promoter, selecting 

only "one copy" transgenic plants to prevent the problem of gene silencing, using a 

matrix attachment region (MAR) sequence flanking the transgene, etc. A root-specific 

promoter or, more preferably, a PPD-induced promoter is theoretically the most 

accessible approach for cassava. Further research will go into this direction. 

PPD in cassava tuberous roots is a complex physiological process. There are 

many metabolic pathways involved in this process in cassava (Chapter 3). It has 

become clear that many of the desired agronomic traits under development will 

require the simultaneous engineering of multiple genes or an entire pathway (Miflin, 

2000). Therefore, transfer of a single gene or several genes individually into cassava 

can possibly not solve the PPD problem entirely. Further improvement of cassava 

transformation systems will be required, including methods for the introduction of 

multiple genes into cassava. 

Finally, it can be expected that transgenic cassava plants which may exhibit 

less or even no PPD in the tuberous roots will facilitate the broader acceptance of 

cassava as a food product for human beings and animals as well as industrial 

applications in the future. 
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One of the major problems limiting the further expanding possibilities of 

production, processing and distribution for cassava (Manihot esculanta Crantz.) is the 

rapid deterioration, which results in very short storage life of the tuberous roots after 

harvesting. Postharvest deterioration in cassava is an inherent constraint since 

wounding and mechanic damages cannot be prevented during the process of 

harvesting and handling of the tuberous roots. General speaking, postharvest 

deterioration in cassava tuberous roots is made up of primary deterioration and 

secondary deterioration. Primary deterioration is a complicated physiological 

deterioration, called postharvest physiological deterioration (PPD), which starts from 

24 hours to 48 hours after harvest depending on environmental conditions and the 

cassava genotype. Secondary deterioration is the result of the former process 

combined with the activity of microorganisms like bacteria and fungi. It is generally 

initiated from day 5 to day 7. 

A system mimicking PPD in the tuberous roots of cassava was set up under 

pre-set experimental conditions with tuberous root slices, revealing the same 

phenotypical symptoms for the onset of PPD and maintaining the same spreading 

speed. In this uniform system, so called "vascular streaking" was first observed 

around 24 hours, whilst "vascular discoloration" appeared after about 72 hours. 

Afterwards only the color intensity increased until the experiment was terminated. No 

presence of bacteria and fungi could be observed in this experimental system. To 

monitor the system, several parameters were investigated like the amount of nuclear 

acids, protein, starch, and soluble sugars, etc. Starch, as the most abundant component 

in cassava tuberous roots received more attention. Emphasis was placed on 

characteristics of some of the physico-chemical properties of starch. The general 

conclusion from the results is that not only the quantity but also the quality of starch 

decreased following PPD in cassava, as shown by the differences of the morphology 

of the starch granules and the Bohlin profile. However, the overall impression is that 

these changes of the starch properties are not as much affected as one might expect 

based on general assumptions of the process of PPD in cassava tuberous roots. 

There was little information available about genes related to the process of 

PPD in cassava at the start of the project. In order to understand the complex 
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operations involved in PPD, it is essential to identify the potentially important 

components of its genetic program, even including those that might not be directly 

involved in PPD in cassava. Research has focused on the early stages of the process of 

PPD in the tuberous roots. One strategy is to isolate transcripts that are differentially 

expressed during PPD in cassava. A systematic survey of changes in gene expression 

was performed using the cDNA-AFLP technique. In total about 6,000 TDFs 

(transcripts derived fragments) were screened and 70 TDFs showing an up-regulated, 

a down-regulated or a transiently expression pattern during the first 72 hours of PPD 

were isolated using around 100 AFLP primer combinations. A functional catalogue of 

these TDFs was established based on comparing their sequence information in the 

databases. This yielded molecular insight into the process of PPD in cassava. The data 

analysis suggested that several processes were switched on during the complex PPD 

process in cassava tuberous roots, such as protein metabolism, carbohydrate 

metabolism, phenolic biosynthesis, and cell wall metabolism. 

Through the functional catalogue of the TDFs based on the sequence 

information, a set of the TDFs was grouped into a set of putative genes possibly 

crucial to oxygen scavenging, like peroxidase and cytochrome p450 monooxygenase. 

In parallel to the molecular analysis of PPD, a biochemical approach was taken to 

characterize enzymes probably important to oxidative stress focusing on peroxidase 

(EC 1. 11.1.7) during PPD in cassava. It was shown that the specific peroxidase 

activity increased and this increasing accompanied the development of the 

phenotypical symptoms of PPD in cassava. Novel peroxidase isoforms seemed to be 

synthesized and the activity was mainly localized in the parenchyma tissue, the 

vascular bundles and the pith during PPD in the tuberous roots. These results 

indicated that PPD might be a peroxidase-mediated oxidative process. 

The data obtained strongly indicated that PCD (programmed cell death) is 

possibly involved in the process of PPD in cassava (Chapter 3 and Chapter 4). A TDF 

with a high sequence similarity to the putative dadl (defender against cell death 1) 

homologue revealing a differential expression pattern was isolated in the first 72 

hours of PPD in cassava. Southern hybridization results indicated that dadl has a low-

copy number in the cassava genome. Transformation was achieved using particle 

bombardment of cassava FEC (friable embryogenic callus) lines with DNA carrying 

the putative dadl homologue from cassava driven by the CaMV 35s promoter. Two 

strategies were taken for the production of transgenic plants: one was based on 
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luciferase screening only and the other one on kanamycin plus luciferase selection. It 

was shown that cassava FEC lines could be bombarded with a mixture of two 

different DNA plasmids and that co-transformation occurred at a high frequency. In 

total 94 lines carrying the putative dadl gene in an antisense orientation were 

obtained; however, only 6 of them regenerated into plants. This low percentage was 

caused by an intrinsic low capacity of the used FEC lines to regenerate into plants. 

The transgenic nature of the plants was confirmed by Southern blot analysis. One 

transgenic line showed earlier senescence in leaf, which might be attributed to the 

expression of the introduced dadl gene. Leaf senescence is a modified PCD in plants. 

More transformants carrying the putative cassava dadl homologue will be produced 

in the future, which will shed light on the function of the putative dadl homologue 

from cassava during the process of PPD in the tuberous roots. 

Cassava is a vegetatively propagated and highly heterozygous allotetraploid 

crop. These natural properties lead cassava to become a difficult crop through 

traditional breeding since inheritance of desirable characters is difficult to be 

predicted. These, vice versa, offer an opportunity for cassava to become a more 

suitable crop by using genetic modification to improve its agronomic traits, for 

example to create transgenic cassava, in which the process of PPD in the tuberous 

roots is delayed or less. This thesis is a first step into the unraveling of the problem of 

PPD in cassava tuberous roots. More research is needed by a combination of 

molecular genetic and physiological analysis in order to create more progress in this 

field. Also we can make use of marker-assisted genetic analysis of PPD to map the 

isolated TDFs in a Fl cross population in which phenotypical characterization has 

been evaluated. The mapped TDFs could also be employed as diagnostic molecular 

markers to further improve screening for PPD efficiency in the cassava germplasm 

pool. 
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Een van de grootste problemen bij het grootschalig verspreiden en gebruiken van het 

tropische gewas cassave {Manihot esculenta Crantz) is de snelle verrotting van de geoogste 

wortelknollen. Vanwege dit probleem, bekend onder de engelse naam Postharvest 

Deterioration (PD), is de bewaarbaarheid van vers geoogste wortelknollen zeer beperkt. De 

wortelknollen dienen binnen enkele dagen na de oogst verwerkt te worden waardoor de 

mogelijkheden voor alternatieve toepassingen van de wortelknollen, waarbij bewaarbaarheid 

een rol speelt, maar moeizaam van de grond komen. PD is een complex fysiologisch proces 

dat in een primaire en een secundaire fase kan worden verdeeld. Het primaire proces, ook wel 

bekend onder de naam Postharvest Physiological Deterioration (PPD), start relatief kort na de 

oogst en duurt, afliankelijk van het cassave genotype, 3 tot 5 dagen. Het secundaire proces is 

het gevolg van een combinatie van PPD en de activiteit van micro-organismen, zoals 

bacterien en schimmels, en begint rond dag 5 na de oogst. 

In dit onderzoek werd een experimenteel systeem opgezet dat het volgen van de 

ontwikkeling van het proces van PPD in wortelknolweefsel en in de tijd mogelijk maakte. Dit 

uniforme systeem, uitgetest in twee verschillende cassave genotypen MCOL 22 en Faroka, 

toonde de reeds eerder beschreven biochemische processen bekend onder de naam 'vascular 

streaking' en ' vascular discoloration' na respectievelijk 24 uur en 72 uur. Vascular streaking 

is een proces waarbij vanuit de vaatbundels een donkere kleur zichtbaar wordt. Vascular 

discoloration is het proces waarbij de donkere kleur zich door de hele knol uitbreidt. Beide 

processen zijn het gevolg van de vorming van schadelijke fenol verbindingen. Aanwezigheid 

van bacterien en schimmels kon worden uitgesloten waarmee dus duidelijk alleen het primaire 

proces PPD bestudeerd kon worden middels dit experimentele systeem. Om de invloed van 

PPD op allerlei basale processen in de knol te onderzoeken werden de hoeveelheden suikers, 

zetmeel, eiwit en nucleine zuren op verschillende tijdstippen bepaald. Aangezien de 

wortelknol naast water veel zetmeel bevat werden ook allerlei fysisch chemische en 

rheologische eigenschappen van het zetmeel onderzocht. De algehele conclusie uit dit deel 

van het onderzoek was dat niet alleen de hoeveelheid maar ook de kwaliteit van het zetmeel 

achteruit ging tijdens PPD. De veranderingen in het zetmeel waren echter lang niet zo 

dramatisch als dat men algemeen in de literatuur veronderstelde. 

Bij het begin van dit project was er absoluut geen informatie voorhanden over de aard 

en aantallen genen die een beslissende rol bij PPD zouden kunnen spelen. Het opgezette 
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experimentele uniforme systeem om PPD te initieren en te volgen in de tijd leende zich 

uitstekend om met behulp van een RNA vingerafdruk techniek op zoek te gaan naar zulke 

genen. Een systematische analyse van genexpressie gedurende de eerste 72 uur van PPD werd 

uitgevoerd gebruikmakend van de techniek cDNA-AFLP. In totaal werden 6000 

expressiebanden zichtbaar gemaakt door 100 primercombinaties te gebruiken. Van deze 6000 

banden vertoonden er 70 een patroon dat duidde op achtereenvolgens een toenemende 

expressie, een afnemende expressie of een transiente expressie. De 70 banden, van grootte 

varierend van 100 tot 500 basen, werden gei'soleerd en hun basenvolgorde werd bepaald. 

Door de basenvolgorde te vergelijken met basenvolgorden van bekende genen in zogenaamde 

databestanden was het mogelijk om aan circa 60% van deze banden een bekende functie toe te 

schrijven. De datavergelijking liet zien dat bij PPD zeer veel verschillende processen een rol 

spelen zoals eiwit metabolisme, suiker metabolisme en celwand metabolisme. Een meer 

gedetailleerdere analyse liet zien dat er ook banden gei'soleerd waren die coderen voor 

enzymen zoals peroxidase, catalase en cytochroom P540 monooxygenase. Deze enzymen 

spelen een rol bij het wegwerken van zuurstof radicalen, die schade aanrichten aan de cellen. 

Een gedetailleerde analyse van het optreden en de rol van verschillende perioxidases tijdens 

het proces van PPD, zowel via activiteitsbepaling als via in situ weefsel hybridisatie, wijst in 

de richting dat PPD een peroxidase afhankelijk oxidatief proces is. Daarnaast werden 

aanwijzingen verkregen, onder andere door de isolatie van een band die sterke homologie 

vertoonde met het zogenaamde DAD-gen (Defender Against cell Death), dat 

geprogrammeerde celdood een rol speelt bij PPD in cassave. 

Cassave is een vegetatief vermeerderd zeer heterozygoot allotetraploid gewas. Deze 

natuurlijke eigenschappen maken dat cassave een moeilijk gewas is in de veredeling. De 

overerving van gewenste eigenschappen is slecht te voorspellen en de periode die nodig is om 

gewenste eigenschappen in het gewas te introduceren zeer lang. Omgekeerd maakt dit dat 

cassave in potentie een zeer geschikt gewas is om met behulp van genetische modificatie te 

veredelen. 

Door transformatie met behulp van 'particle bombardment', een methode waarbij 

DNA op kogeltjes gecoat in plantenweefsel wordt geschoten, werd getracht om 

getransformeerde cassave planten te maken waarin PPD vertraagd of zelfs helemaal afwezig 

zou zijn. Speciaal cassave weefsel, Friable Embryogeen Callus (FEC) werd gebruikt voor de 

transformatie en regeneratie. Het DAD-gen werd in antisense orientatie samen met een 

reporter of selectie gen, het luciferase of het kanamycine resistentie gen, ingebracht. In totaal 

werden 94 FEC lijnen verkregen die het DAD gen bevatten. Echter slechts 6 lijnen konden 
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geregenereerd worden tot planten. Dit extreem lage percentage werd veroorzaakt door een 

zeer lage regeneratiecapaciteit van de gebruikte lijn. Deze lijn was geselecteerd voor zijn hoge 

transiente transformatie efficientie maar bleek naderhand een zeer slechte regeneratie 

efficientie te bezitten. Het transgene karakter werd vastgesteld in een aantal planten waarvan 

er een een zeer snelle veroudering liet zien in bladeren. Aangezien bladveroudering een 

speciale vorm van geprogrammeerde celdood is zou dit erop kunnen duiden dat DAD 

inderdaad een ingang zou kunnen zijn om iets aan PPD in cassave te doen. Meer 

onafhankelijke transformanten moeten gemaakt en bestudeerd worden teneinde dit te 

bevestigen. 

Dit proefschrift is een eerste stap op weg naar de moleculaire ontrafeling van het 

probleem van PPD. Meer onderzoek is nodig, onder andere door een combinatie van 

moleculair genetische en fenotypsiche data uit splitsende populaties, om vooruitgang te 

boeken op dit belangrijke terrein. 
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