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Propositions 

1. Effluent salinity of pipe drains and tube-wells in the Indus plain can be predicted in a 
computationally efficient way by a combination of the one-dimensional vertical finite-
difference model SWAP for the variably saturated zone and a solute impulse response 
function based on stream functions for the saturated zone. This Thesis 

2. Drained areas in the Indus plain generally exhibit a time lag between the reclamation 
of the rootzone, and the reclamation of the complete soil-aquifer system. The 
implication is that farmers will benefit quickly from the drainage system but that long 
term solutions are required for the safe use and disposal of the effluent. This Thesis 

3. The solute impulse response function of the saturated zone for pipe drains in a thin 
aquifer and for tube-wells with a relatively long well screen, can be described by an 
exponential distribution that is based on the mixing reservoir approach. This Thesis 

4. In areas where fresh groundwater is overlying saline groundwater, pipe drains 
discharge water of lower salinity than skimming wells. This Thesis 

5. Consultants who propose a sub-surface drainage project because the existing surface 
drainage system is not working properly due to bad maintenance, should be sent back 
to primary school. 

6. Een bijkomend voordeel van de Engelse taal is dat "you" zowel "je" als "u" vervangt. 

7. Overheidsinstellingen die de door haar ontwikkelde produkten en diensten niet gratis 
beschikbaar stellen doen de belastingbetaler tekort. 

8. Er bestaat geen verband tussen algemene intelligentie en spelinzicht op het 
voetbalveld. Stelling op basis van Wjaar lidmaatschap van voetbalclub GVC, een 
vereniging met een relatief hoogpercentage aan studenten en afgestudeerden. 

9. Deskundigen vertellen ons dat het consumentenvertrouwen bepalend is voor de groei 
van de economie. Dit zou betekenen dat recessies simpelweg vermeden kunnen 
worden door het woordvoerdersgilde en de nieuwsmedia louter met optimisten te 
bevolken. 

10. Eens houdt het op (Maarten Koning in Het Bureau deel 4 door J.J. Voskuil). 

T.J. Kelleners. Effluent Salinity of Pipe Drains and Tube-Wells. A case study from the Indus 
plain. 28 Novermber 2001, Wageningen. 
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Abstract 

Kelleners, T.J., 2001. Effluent salinity of pipe drains and tube-wells. A case study from the Indus 
plain. Doctoral Thesis, Wageningen University, The Netherlands. 

Irrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity 
problems. Sub-surface drainage systems can be used to control the groundwater table and to 
facilitate the leaching of salts from the rootzone. In the Indus plain, pipe drains and tube-wells 
are used for this purpose. Regional water management requires that the development of the 
effluent salinity with time of these systems is known in advance. Numerical models based on the 
Darcy equation and the mass balance equation for water flow and the advection-dispersion 
equation for solute transport are powerful tools to predict the effluent salinity of pipe drains and 
tube-wells at field level. In advection-dominated transport problems, however, solute impulse 
response functions based on stream-functions constitute a more computationally efficient 
approach. 

A new modelling approach is presented that combines the one-dimensional vertical finite-
difference SWAP model for the variably saturated zone with a solute impulse response function 
for the saturated zone. This approach is applied to the Sampla experimental pipe drainage site 
in Haryana, India, the S-I-B-9 pipe drainage unit of the Fourth Drainage Project, Punjab, Pakistan 
and the Satiana tube-well Pilot Project, Punjab, Pakistan. Results show that the effluent salinity 
of pipe drains and tube-wells changes only gradually with time due to the low percolation from 
the irrigated fields and due to the large quantities of salts stored in the groundwater. Areas with 
relatively high percolation and a shallow depth of the impermeable layer (pipe drains at Sampla) 
still require 10 years before the effluent salinity has reduced to equilibrium levels. In contrast, 
desalinization of the rootzone generally takes only 1-3 years. The implication is that farmers will 
benefit quickly from the installation of a drainage system. However, for the safe use and disposal 
of the effluent, long term solutions are required. 

In the Indus plain, groundwater salinity usually increases with depth. In water scarce areas, the 
shallow fresh groundwater may be an important source of irrigation water. In waterlogged areas, 
where sub-surface drainage is installed to control the groundwater table, the presence of fresh 
groundwater bodies may result in a relatively low effluent salinity. The finite-element model 
SUTRA is used to study the behaviour of skimming wells and pipe drains in fresh-saline 
groundwater systems. The model is calibrated on two documented experiments with a skimming 
well and a scavenger well at Phularwan research farm, Punjab, Pakistan. Salt water upconing 
below the skimming well is particularly sensitive to the anisotropy factor of the aquifer. The 
relationship between aquifer anisotropy and the Electrical Conductivity (EC) of the pumped 
water is non-linear. The skimming well simulations show that water with an EC of -1.7 dS m"1 

can be pumped from a thin fresh groundwater body, provided that the pumping rate is low. Under 
the same circumstances, pipe drains yield a better effluent quality (EC of 1.2-1.3 dS m"1). With 
pipe drains, flow is restricted to the shallow fresh groundwater. The deeper saline groundwater 
is left untouched. The better effluent quality for pipe drains as compared to skimming wells, must 
be evaluated against the considerably higher installation costs for pipe drains. 

Keywords: anisotropy, aquifer, desalinization, effluent salinity, groundwater, irrigation, salt­
water upconing, soil salinity, stream-function, subsurface drainage 



Preface 

The idea for a study on the relationship between drainage technology and effluent salinity came 
from Bert Smedema of the International Program for Technology and Research in Irrigation and 
Drainage (IPTRID). I started working on this subject at ILRI in September 1993 under the 
guidance of Ruud van Aart. During this first period a literature review was written and two model 
studies were conducted. At the end of 1996, the original proposal was re-written to facilitate a 
PhD study. Subsequently, in April 1997, I was appointed as a PhD-student for the sub-
department of Water Resources of Wageningen University. My desk, however, remained at ILRI, 
which also continued to provide all the funds for the study. 

Reinder Feddes of the sub-department agreed to serve as my promotor. Jos van Dam, also of the 
sub-department, and Theo Boers and Hans Boonstra, both of ILRI, completed the support group. 
All four group members played an important role during the course of the study. Reinder 
provided detailed comments on all my drafts and, through his generally positive remarks, 
encouraged me to continue. Jos gave many valuable suggestions and helped me during my initial 
struggles with the SWAP model. Theo rigorously reviewed all my writings and made numerous 
suggestions for improvement. Finally, Hans, in his own way, gave a number of valuable 
comments, especially on the modelling of density-dependent flow. Reinder, Jos, Theo and Hans 
thanks for all your help! 

Writing a thesis can be a lonely job. Luckily, some time was available during the past years to 
participate in some of the more regular ILRI activities. I was very fortunate to be able to spend 
some of my time teaching in ILRI's International Course on Land Drainage (ICLD) and in ILRI's 
tailor-made courses in India. I enjoyed the cooperation with Fons Jaspers (ICLD) and Henk 
Ritzema, Roland Oosterbaan, Karel Lenselink and Rob Kselik (India). Looking back, I must say 
that some of my best insights in land drainage developed while preparing or conducting classes 
(I am under the impression that the one person who learns most from a lecture is the lecturer). 

During my study, I cooperated with various individuals from India and Pakistan. I am greatly 
indebted to Dr M.R. Chaudhry of the International Waterlogging and Salinity Research Institute, 
Lahore, Pakistan andDrs S.K. Kamra, O.P. Singh, S.K. Gupta, D.P. Sharma andP.S. Kumbhare 
of the Central Soil Salinity Research Institute, Karnal, India for sharing their data and valuable 
insights with me. Also many thanks to R.K. Jhorar of the Haryana Agricultural University, Hisar, 
India for helping me out on many occasions. Much to my dismay, I had to remove all the "Hisar" 
calculations from Chapter 5 to maintain the overall balance in the thesis. However, part of the 
data from Hisar are incorporated in the Journal of Hydrology paper which was published in 2000. 

This thesis covers only a part of my research efforts over the past years. I also invested quite 
some time to study the effluent salinity of pipe drains in clay soils. I collected data from Portugal 
(Leziria Grande), Egypt (Nile Delta and Fayoum Oasis) and India (Chambal Plain). Part of this 
work was published in ILRI's annual reports 1996 and 1997. Unfortunately, I did not find the 
time to write a research paper for an international journal. Hopefully, I will find the time in the 
near future. Anyway, many thanks to Antonio Pissarra of the Associacao de Beneficiarios da 
Leziria Grande de Vila Franca de Xira, Portugal, Frank Croon of Arcadis-Euroconsult and Drs 
R.D. Sharma and K. V.G.K. Rao of the Rajasthan Agricultural Drainage Research Project, Kota, 
India, for all their help. 



During the course of this study, two students from Wageningen University collaborated with me 
as part of their MSc research work. Hugo Oosterkamp collected drainage effluent salinity data 
in Pakistan and looked at the possibilities for drainage water re-use. Reinier van Hoffen used the 
SWMS_2D model to simulate two-dimensional water flow and solute transport to a pipe drain 
in Egypt. Hugo and Reinier, I enjoyed working with you and I want to thank the both of you for 
all your hard work. During my study, I also collaborated with Dr D.K. Singh of the Water 
Technology Centre, New Delhi, India, who visited ILRI for about 6 months. Dr Singh, or rather 
D.K., you did a fine job in unravelling the mysteries of the SUTRA model for the simulation of 
density-dependent water flow and solute transport. Chapter 6 could not have been written without 
your help. 

Over the years I received much help from the people of the Haaff library. The persons behind the 
service desk never complained when I came up with one more list with requested papers. The 
Haaff proved to be an invaluable source of information forme. Piet, Leni, Petra, Marjan, Mariska 
and all the others... thanks! Thanks also to Luuk Wielstra and Jan Van Brakel of IAC for solving 
all my computer problems. Many other persons contributed to this thesis in one way or another. 
In random order: Hans Van Alphen, Jelle Beekma, Frans Cortenbach, Asher Hussain, Asad 
Sarwar, Jeroen Alberts, Johan Van Manen, Joop Van Dijk, Wouter Wolters, Willem Vlotman, 
Elisabeth Rijksen, Shaakeel Hasan, Marcel Schaap, Koen Roest, Meredith Naeff, Elly Verschoor 
and Rien Bos. I want to thank you all! 

For a long time, I was the only "young" person at ILRI. Luckily, this changed during the past 
year. Within the time frame of a few months, Catharien Terwisscha van Scheltinga, Herco Jansen 
and Paul-Willem Vehmeyer joined the institute. Our daily lunch break was always a welcome 
interruption from thesis writing. Catharien, Herco and Paul-Willem, I hope you will enjoy 
working at ILRI as much as I did! 

Thijs Kelleners 
Riverside, October 2001 
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Introduction 

1.1 Drainage of irrigated areas in arid and semi-arid zones 

Irrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity 
problems. Excess water in the crop rootzone and high soil salinity reduce transpiration and hence 
crop yields. The waterlogging problems are due to seepage from irrigation canals and percolation 
from irrigated fields which bring the groundwater table close to the soil surface. Salts are added 
to the soil with the irrigation water and through capillary rise from the shallow groundwater. 
These salts add up to the salts that are naturally present in the soil. Waterlogging and salinity 
problems occur mainly in areas with a flat topography (low natural drainage) and in local 
depressions that serve as sinks for water and salts from the surrounding areas. The International 
Food Policy Research Institute (1995) estimates that worldwide between 0.3 and 1.5 million ha 
of land are lost each year to waterlogging and salinity. Major affected areas can be found in the 
Central Asian Republics, China, India, Egypt, Irak, Pakistan and the United States. 

Several strategies can be followed when dealing with waterlogging and salinity problems. 
Improved irrigation design and management may reduce the recharge to the groundwater at 
regional scale and facilitate a better soil water and soil salinity management at field level 
(Hanson, 1989; Wolters, 1992). This strategy tackles the source of the problem, and should 
therefore be considered first. Where high groundwater tables and soil salinities persist, the 
growing of more salt tolerant crops or trees may maintain some agricultural productivity of the 
affected fields (Maas, 1990; Heuperman, 1993). This strategy can be described as "living with 
the problem". The retirement of specific lands with shallow groundwater tables and high levels 
of salinity has also been proposed (Swain, 1991; Belitz and Phillips, 1995). 

If the above measures do not solve the problems, or if the measures are not acceptable from a 
socio-economic point of view, the installation of sub-surface drainage systems can be considered. 
A sub-surface drainage system controls the groundwater table and facilitates the leaching of salts 
from the rootzone. The drainage system may consist of ditches, mole drains, pipe drains or tube-
wells. The choice for one of these systems is made on the basis of geo-hydrology, costs and the 
expected quality of the effluent. With the increasing scarcity of fresh water resources, especially 
in arid and semi-arid zones, the effluent quality is becoming increasingly important when 
drainage options are considered. Disposal of the effluent should not detriment the water 
resources downstream (Johnston et al., 1997). Furthermore, drainage effluent may be an 
important source of irrigation water in dry areas, provided that certain water quality criteria are 
met (Oster, 1994; Willardson et al., 1997). 

In arid and semi-arid zones the drainage effluent quality is determined primarily by the salt 
content and the ion composition. The water captured by the sub-surface drainage systems is often 
highly concentrated with the major cations being Na+, Ca2+, Mg2+ and to a lesser extent K+. The 
major anions are CI", S04

2, HCOs" and C03
2 (Westcot, 1997). In regions with high-input 

agriculture, pesticides and fertilizers may also affect the effluent quality. Locally, toxic trace 
elements like Arsenic, Boron, Molybdenum and Selenium may cause problems (Ayers and 
Westcot, 1985). If these natural or man-made pollutants remain stored in the local groundwater 
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they may not pose a threat. Installation of a sub-surface drainage system, however, mobilizes the 
pollutants and conveys them into the surface water system. 

1.2 Drainage and water quality in the Indus plain 

The Indus plain forms a typical example of an irrigated area in an arid to semi-arid zone where 
sub-surface drainage systems are installed to combat waterlogging and salinity problems. The 
need for sub-surface drainage became urgent when after several decades of irrigation the 
groundwater table had risen from 30 m below soil surface at pre-irrigation times to ~ 1.5 m below 
soil surface (Ahmad and Chaudhry, 1988). The sub-surface drainage systems in the Indus plain 
consist of either "vertical" tube-wells or "horizontal" pipe drains. Because of the relatively sandy 
nature of the soil-aquifer system and the associated unstable soils, ditches and mole drains are 
not used. Also the loss of agricultural land, which is inherent to ditches, is for most farmers not 
acceptable. 

Salt load and ion composition of the drainage effluent are the primary water quality concerns 
in the Indus plain. Problems due to pesticides and fertilizers are still relatively small because 
agricultural inputs are generally low. Also no difficulties with toxic trace elements are reported. 
With regard to water quality in the Indus plain, a distinction is made between saline and fresh 
groundwater areas where the boundary lies at an Electrical Conductivity, EC of 1.5 dS m"1. In 
saline groundwater areas, drainage is provided by government funded pipe drains and tube-wells. 
Most of the saline effluent is disposed in surface drains and salt load is the main problem. In 
fresh groundwater areas, irrigation tube-wells take care of the sub-surface drainage requirements. 
As the pumped water is relatively high in Na+ ions, use of this water for irrigation may not only 
result in soil salinity problems but may also affect the structure of the soil (Van Hoorn and Van 
Alphen, 1994; Kuper, 1997). 

The continuing development of irrigation tube-wells in the Indus plain is nowadays resulting in 
over-pumping, leading in many fresh groundwater areas to falling groundwater tables. The bulk 
of the new tube-wells is installed by farmers who use the pumped water to supplement the 
limited canal water supplies. In e.g. the Pakistan part of the Indus plain, the number of farmer 
owned tube-wells has risen from only a few thousand in 1960 to approximately 450,000 at 
present (Sarwar, 2000). Developments in the Indian part of the Indus plain are probably not much 
different (e.g. Abrol, 1999). Strictly speaking, because of over-pumping, many fresh groundwater 
areas in the Indus plain do no longer have a sub-surface drainage problem. As a result of over-
pumping, saline groundwater may encroach towards fresh water tube-wells, turning these wells 
saline. 

In the Indus plain, agricultural water quality is expressed through three parameters; EC, Sodium 
Adsorption Ratio (SAR) and Residual Sodium Carbonate (RSQ. The EC, measured at a reference 
temperature of 25 °C, is an indicator for the total salt concentration. The SAR, defined as 
Na7v/(1/2Ca2++'/2Mg2+) (concentrations in meq l"1), is a measure for possible negative effects of 
Na+ on the structure of the soil. The RSC, defined as HC03 +C03

2 -Ca2+-Mg2+ (concentrations in 
meq 1"'), is an indicator of the danger that Na+ in the soil solution will increase more than 
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proportionally owing to the precipitation of especially Calcite CaC03 in the soil. The water 
quality standards used in Pakistan by the Water and Power Development Authority (WAPDA) 
are given in Table 1.1. These standards relate primarily to the usability of the water for the 
irrigation of crops. 

Table 1.1 Water quality standards used in 
for irrigation (Beg and Lone, 1992). 

Category EC (dS m"1) 

Usable 0-1.5 
Marginal 1.5-2.7 
Hazardous >2.7 

Pakistan by WAPDA to 

SAR (meq l'1)05 

0-10 
10-18 
>18 

assess the usability of water 

RSC (meq l1) 

<2.5 
2.5-5.0 
>5.0 

1.3 Scope and objective of this study 

It is widely accepted that sub-surface drainage design and management should be based on both 
water quantity and water quality criteria (Ayars et al., 1997). Many factors should be taken into 
account such as climate, geo-hydrology, soils and agricultural practices. Because of the large 
number of factors involved, and because of the large spatial and temporal variability in some of 
these factors, no fixed set of rules is available for the design and management of a drainage 
system. In view of these uncertainties, sub-surface drainage systems are often field tested by 
constructing pilot areas before being implemented on a large scale. These field tests, however, 
are costly and time consuming, and only allow the study of a limited number of designs and 
management scenarios. 

In the Indus plain, both pipe drains and tube-wells are used to provide sub-surface drainage in 
saline groundwater areas. It is generally believed that, after a certain reclamation period, pipe 
drains render a better effluent quality than tube-wells. The flow lines to pipe drains are shorter 
and therefore originate from usually less saline groundwater layers (Smedema, 1993). A direct 
comparison between the effluent of both technologies on the basis of field data alone is difficult 
because of two reasons: (1) pipe drains and tube-wells are generally not applied in the same area; 
(2) long term monitoring of discharge from the drainage systems and effluent quality is generally 
not done with sufficient intensity to allow firm conclusions. 

Traditionally, steady-state drain spacing and well spacing equations have been used for the 
design of sub-surface drainage systems (Ritzema, 1994; Boehmer and Boonstra, 1994). For pipe 
drains also transient drain spacing equations have been developed (e.g. Dumm, 1968). These 
equations allow a fair judgement of the effect of drainage on waterlogging and salinity in the 
rootzone. The prediction of drainage water quality, however, requires the use of hydrodynamic 
models that describe the motion of subsurface water towards the drainage media (Guitjens et al., 
1997). Specialized hydrodynamic models also facilitate a more detailed assessment of the 
moisture and the salinity status of the rootzone in response to drainage and their effect on crop 
growth (e.g. Simunek et al., 1994; Van Dam et al., 1997). 
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The objective of this study is to review the relationship between drainage technology (pipe drains 
and tube-wells) and the effluent salinity in the Indus plain. Field data from existing drainage 
schemes and pilot areas are combined with hydrodynamic models to quantify this relationship. 
The hydrodynamic models allow the identification of the most dominant processes and facilitate 
long term predictions. The results of this study will assist irrigation and drainage engineers with 
the selection of the proper drainage method, taking into account the expected effluent salinity. 
Application of the results is however restricted to relatively coarse textured soil-aquifer systems 
as found in the Indus plain. For clay soils, for example, the dominant processes are likely to be 
different (e.g. Rycroft and Amer, 1995; Bronswijk et al., 1995; Groen, 1997). 

1.4 Limitations of this study 

In this study, sub-surface drainage is treated as a local flow problem. This allows a detailed 
assessment of the flow and transport processes at field level. The aquifer in the Indus plain, 
however, is extensive and essentially unbounded. This implies that, in reality, regional flow 
processes will interact with the local flow processes. In saline groundwater areas, exclusion of 
regional flow is likely to overestimate the reclamation rate of the soil-aquifer system. Regional 
inflow of saline groundwater into the drained areas will present a continuous source of salts. The 
extent to which the reclamation rate is overestimated (and the effluent salinity underestimated) 
depends on the amount of irrigation water that percolates to the groundwater in the drained areas 
as compared to the surrounding undrained areas and on the local geohydrologic conditions. 
Examples of studies that include the interaction between local and regional flow processes can 
be found in Fio and Deverel (1991), Pohll and Guitjens (1994), Eching et al. (1994) and Vaughan 
et al. (1999). 

Several investigations have shown the benefits of integrating irrigation and drainage water 
management at field level. Careful irrigation water management limits percolation losses to the 
groundwater and reduces the drainage requirements (Hoffman et al., 1978). Conjunctive use of 
canal water and drainage water for irrigation may achieve good crop yields while limiting 
drainage water disposal problems (Rhoades et al., 1992). Shallow or controlled drainage 
increases the contribution of the shallow groundwater to the crop water requirement, reduces the 
discharge from the drainage systems and diminishes the need for irrigation water (El-Atfy et al., 
1991; Ayars, 1996; Manguerra and Garcia, 1996; Ayars et al., 1999). Although very relevant, 
these issues are not addressed in this study. In the Indus plain the prospects of integrating 
irrigation and drainage water management at field level are bleak because of the small 
landholdings, the rigidity of the Warabandi irrigation system and the generally low degree of 
organization of the farmers. 

Compared to irrigation water, drainage effluent shows elevated levels of all major ions due to 
concentration of the soil water and the shallow groundwater by evapotranspiration. Also a shift 
in ion composition can usually be noticed. Percentage-wise, Na+ and CI" increase while Ca2+, 
Mg2+, HC03" and S04

2" decrease. This is due to the leaching of Na+ and CI" from the irrigated 
soils and the precipitation herein of calcite CaC03, gypsum CaS04-2H20, sepiolite 
Mg4Si6015(OH)2-6(H20) and others (Christiansen, 1973; Simunek et al., 1996; Kuper, 1997). 
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Exchange of cations between the solid phase adsorption complex and the soil solution, and 
dissolution processes also result in a shift in the ion composition. In this study, ion composition 
is only incorporated through the SAR and RSC parameters discussed in Section 1.2. A more 
thorough discussion on ion composition with regard to effluent quality is hampered by a lack of 
reliable field data. For the same reason, the model applications in Chapters 5 and 6 consider only 
the EC of the drainage effluent. Examples of model studies that do incorporate the ion 
composition can be found in Ayars et al. (1981) and Simunek and Suarez (1994). 

1.5 Outline of the thesis 

In Chapter 2 the theory of water flow and solute transport in porous media will be discussed. The 
presented equations form the basis of the finite-element model SUTRA (Voss, 1984), the finite-
element model SWMS_2D (Simunek et al., 1994) and the vertical one-dimensional finite-
difference model SWAP (Van Dam et al., 1997), which will all three be used in this study. 
Chapter 2 also includes a section on the calculation of soil evaporation and crop transpiration. 

The theory of solute travel time to pipe drains and tube-wells in steady-state flow fields is treated 
in Chapter 3. The stream-function concept is explained, which allows the delineation of 
streamlines in the groundwater. The presented theory facilitates the calculation of solute impulse 
response functions which describe the transport characteristics of the aquifer in a computationally 
efficient way. 

Chapter 4 describes the study areas in the Indus plain. First, a general description of the Indus 
plain as a whole is given. Subsequently, the study areas are discussed: the Sampla experimental 
pipe drainage site, Haryana, India, the Satiana tube-well Pilot Project, Punjab, Pakistan and the 
Fourth Drainage Project (pipe drains), Punjab, Pakistan. The Phularwan experimental skimming 
well site, Punjab, Pakistan, which will be used to study density-dependent water flow and solute 
transport to pipe drains and tube-wells, is discussed in Chapter 6. 

In Chapter 5 a new modelling approach is presented that is designed specifically to facilitate long 
term predictions of soil and effluent salinity in irrigated and drained areas. The general idea is 
to couple the SWAP model for water flow and solute transport in the variably saturated zone with 
a solute impulse response function for the saturated zone. The modelling approach is applied to 
the study areas described in Chapter 4. In Chapter 5, the SWMS_2D model is used to assist in 
the calibration of the soil hydraulic properties, especially the horizontal and vertical hydraulic 
conductivities in the saturated zone. 

The modelling of density-dependent water flow and solute transport to pipe drains and tube-wells 
with the SUTRA model is discussed in Chapter 6. The SUTRA model is calibrated and validated 
with data from a skimming well experiment and a scavenger well experiment at the earlier 
mentioned Phularwan site. The calibrated model is subsequently used to study the effluent 
salinity of skimming wells and pipe drains under conditions where fresh groundwater is 
overlying saline groundwater. The effluent salinity of pipe drains in a completely saline soil-
aquifer system is also simulated. 
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Finally, in Chapter 7, the summary and conclusions of this study are presented. 
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Media 

In this chapter, the theory and modelling of water flow and solute transport in porous media is 
discussed. The chapter starts, however, with a brief section on the calculation of soil evaporation 
and crop transpiration (Section 2.1). The relationships described in Section 2.1 are incorporated 
in the one-dimensional vertical finite-difference SWAP model (Van Dam et al., 1997), and are 
used to describe water fluxes between the porous media and the atmosphere. 

The water flow and solute transport equations are presented in Sections 2.2 to 2.4. These 
equations form the basis of the finite-element model SUTRA (Section 2.2), the finite-element 
model SWMS_2D (Section 2.3) and the vertical one-dimensional finite-difference model SWAP 
(Section 2.4), which will all three be used in this study. All three models use the analytical 
Mualem-Van Genuchten (MVG) model to describe the soil hydraulic properties. The MVG 
model is discussed in Section 2.5. Finally, Section 2.6 discusses the description of a pipe drain 
in a finite-element mesh. 

2.1 Soil evaporation and crop transpiration 

Various methods are available to calculate daily potential evapotranspiration. Generally, the 
Penman-Monteith method is used which is recommended by the FAO (Smith, 1993; Allen et al., 
1998): 

\(K-G)+PS"S a 
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where Aw is the latent heat of vaporization [L2 T"2], pw the density of water [M L"3], ETp the 
potential evapotranspiration rate [L T"1], Av the slope of the saturated vapour pressure curve [M 
L"1 T2 0 1 ] , /?„ the net radiation [M T"3], G the soil heat flux [M T3], pa the air density [M L"3], 
cp the specific heat of the air [L2 T"2 0'1], es the saturation vapour pressure [M L"1 T"2], ea the 
actual vapour pressure [M L"1 T"2], y3 the psychometric constant [M L"1 T2 0"1], rs the crop 
resistance [T L"1] and ra the aerodynamic resistance [T L"1]. 

The two crop specific parameters rs and ra in (2.1) are generally not available. Use of the 
hypothetical reference crop concept of the FAO circumvents this problem. In this concept, the 
evapotranspiration of a reference crop is multiplied with crop factors, kc [-] to obtain the potential 
evapotranspiration for a specific crop (Smith, 1993; Allen et al., 1998). 

The potential evaporation rate of the soil, Ep [LT1] depends on the development stage of the crop 
and can be calculated from (Belmans et al., 1983; Van Dam et al., 1997): 
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where /ris the extinction coefficient for global solar radiation [-] and LAI the Leaf Area Index 
[L2 L"2]. Recent approaches estimate AT as the product of the extinction coefficient for diffuse 
light, which varies with crop type, and the extinction coefficient for direct visible light (Van Dam 
et al., 1997). In this thesis a value K= 0.6 is used for all crops as was proposed by Belmans et al, 
(1983). 

The potential transpiration rate of the crop, Tp [L T"1] equals the potential evapotranspiration rate, 
ETp (corrected for the time needed to evaporate interception water), minus Ep (Van Dam, 2000): 

/ 
r p = 

ET 
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(2.3) 

where Pir is intercepted precipitation rate [L T"1] and ET^ the potential evapotranspiration rate 
[L T1] of the wet crop, as calculated with Eq. (2.1), assuming rs = 0. 

Von Hoyningen-Hune (1983) and Braden (1985) measured interception of precipitation for 
various crops. They proposed the following general formula for canopy interception: 

P=a,LAl 1 

1 + 
a.LAI 

(2.4) 

where Pr is precipitation rate [L T"1], a{ an empirical coefficient [L T"1] and b{ the soil cover 
fraction {-LAI I 3.0) [-]. In principle a^ must be determined experimentally. For ordinary 
agricultural crops it may be assumed that a{ - 0.25 cm d"1 (Van Dam et al., 1997). 

The actual transpiration rate depends on the root water uptake which will be discussed in Section 
2.4. The actual soil evaporation rate, £, [L T~'] is calculated by: 

£a=min(£p,£max,£emp) (2.5) 

where Emix is the maximum evaporation rate [L T1] which the top soil may deliver (calculated 
from Darcy's law) and E the evaporation rate [L T1] according to an empirical function. 

Empirical soil evaporation functions may be useful if Darcy's law is not valid for the top few 
centimetres of the soil. At shallow depths, Darcy's law may fail because of splashing rain, crust 
formation, vapour diffusion through air filled pores and cultivation practices (e.g. Feddes and 
Bastiaanssen, 1990; Van Dam et al., 1997). In this thesis the Boesten and Stroosnijder (1986) 
functions are used to calculate £„ ' 
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££emp=££p
 for E £

P * # (2.6a) 

E^/^EV2 for Ev# <2-6b> 
where /?p is the so-called Boesten parameter [L14]. 

The parameter /?p must be calibrated for local conditions. From micro-lysimeter studies in the 
Netherlands, Boesten and Stroosnijder (1986) found 0.44 </?p <0.63 cm'-4. The Boesten and 
Stroosnijder functions are reset (£,Etmf - E^p - 0) if rainfall >0.5 cm d"1. 

2.2 Two-dimensional pressure and density driven water flow and solute transport in 
porous media 

Flow in porous media is generally described by the Darcy equation. For density-dependent flow 
in a vertical cross-section, this equation may be written as: 

w 
ir~—-

-^-+Pgl\ ij=h2 (2.7) 

I dxJ J 
where qt is the specific discharge in the i direction [L T1], kr the relative permeability to fluid 
flow [-], ktj the permeability tensor [L2], /i the fluid viscosity [M L"1 T"1], p the fluid pressure [M 
L"1 T"2], Xj the jth coordinate direction [L], p the fluid density [M L"3], g the gravitational 
acceleration [L T2] and TJ} = 1 indicates the vertical direction (j = 2), while tjj = 0 indicates the 
horizontal direction (j = 1). In Eq. (2.7) it is assumed that the vertical coordinate x2 = z points 
positive upwards. 

The basic mass balance equation for flow in porous media is expressed as (Bear, 1979): 

-aT-*?"*-5* (2-8) 

where £is the porosity [-], 5W the relative saturation [-], t the time [T] and Sk a sink term [M L"3 

T1]. 

The term on the lefthand side of Eq. (2.8) represents the total change in fluid mass contained in 
the void space with time. For calculations, it is necessary to express the time derivative in terms 
of the primary variables p and C, where C is the solute concentration [MM1] on mass basis. For 
p = p(p,Q, the time derivative in (2.8) can be expanded so that (Bear, 1979; Voss, 1984): 

35, N 

s ps +sp—: f1*-£ir->^ 
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where Sop is the specific pressure storativity [L T2 M"1]. The Sop term is determined by the porous 
matrix compressibility, a [L T2 M"1] and the fluid compressibility, p [L T2 M'1] according to 
(Voss, 1984): 

S=(l-e)a+e{3 (2.10) 

It should be noted that the concepts upon which the specific pressure storativity is based, do not 
exactly hold for unsaturated porous media. The error introduced in (2.9) by summing the 
storativity term with the term involving (dSJdp) is, however, insignificant as (dSJdp)»Soft 

(Voss, 1984). 

Substitution of (2.7) into (2.9) yields the final form of the fluid mass balance equation: 

sw/rf„, 
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(2.11) 

Solute transport in porous media can be described by the following advection-dispersion equation 
(after Voss, 1984): 

=-—00^,0+— 
dt dx. dx. 

^ V | H - \ C (2.12) 

where Di} is the hydrodynamic dispersion tensor [L2 T'1]. 

Terms describing solute adsorption and production/decay processes have not been included in 
(2.12). These processes are not considered in this study (Chapter 1). 

The hydrodynamic dispersion tensor, D,y, is given by (Bear, 1972): 

\q\ 
(2.13) 

where aL and a^ are the longitudinal and transverse dispersivities [L], respectively, Dm the porous 
medium ionic or molecular diffusion coefficient [L2 T"1] and 4, the Kronecker delta function [-] 
(4,- = 1 if i =j, and 8tj = 0 if i * j). 

Equations (2.10)-(2.13) are generally solved on a fixed spatial grid, so that pressures and 
concentrations are associated with fixed points or volume elements in space. This is called the 
Eulerian method (Bear, 1972). 

Fluid density, while a weak function of pressure, p is primarily dependent upon solute 
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concentration, C. Using a first order Taylor expansion about a base (reference) density, the fluid 
density can be given as a linear function of solute concentration (Voss, 1984): 

P=Po+^(C-C0) (2.14) 

where C0 is a base solute concentration [M M"1] and p0 the fluid density [M L"3] at C = C0. In this 
study it was assumed that p0 = 1000 kg m"3 for C0 = 0 and that dpidC = 700 kg m~3. 

The equations described in this section form the basis of the U.S. Geological Survey finite-
element model SUTRA (Voss, 1984). Initial conditions are/?(*,) and C(x,) for the complete flow 
domain. Boundary conditions for the flow equation may consist of specified pressure, p 
(Dirichlet condition) and specified fluid mass flux, qm [M L2 T"'] (Neumann condition). 
Boundary conditions for the solute transport equation are strictly related to the boundary 
conditions for the flow equation. Solute concentration, C of any fluid that enters the flow domain 
must be specified. The spatial coordinate system may be either Cartesian (x,y) or (x,z) or, in case 
of radial symmetry, radial-cylindrical (r,z). Time-dependent boundary conditions can be 
programmed by the user in a special subroutine of the source code. The SUTRA model may also 
be used to simulate the transport of thermal energy in the groundwater and solid matrix of the 
aquifer. 

2.3 Two-dimensional water flow in terms of pressure head and hydraulic conductivity 

If the effects of differences in fluid density can be neglected, water flow is described more 
conveniently in terms of pressure head, h [L] and hydraulic conductivity, K^ [LT1]. The pressure 
head is related to the fluid pressure through: 

h=— (2.15) 

The hydraulic conductivity tensor, Ktj is defined as: 

K/-&L (2.16) 

Combining Eqs. (2.11) and (2.15)-(2.16), neglecting changes in storativity, and redefining the 
sink term results in the following flow equation for two-dimensional water flow in a vertical 
cross-section with root water uptake (Bear, 1979; Simunek et al., 1994): 

dd=J_ 
dt dx. 

KrK,A 

dh 
— + 77 
dx. J 

1 

- W (2.17) 
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where #is the volumetric water content [-] (=aSw), Kr the relative hydraulic conductivity [-], and 
5a the actual soil water extraction rate by plant roots [T1]. 

Equation (2.17) is the governing flow equation in the U.S. Salinity Laboratory finite-element 
SWMS_2D model (Simunek et al., 1994). To calculate water flow, h{x^) constitutes the initial 
condition over the entire flow domain. Boundary conditions may consist of prescribed pressure 
heads, h (Dirichlet type), and prescribed flux, qw [L T"1] (Neumann type). These boundary 
conditions may be time-dependent. In addition, the model facilitates the specification of an 
atmospheric boundary condition, a head-discharge relationship (Cauchy type) and a free drainage 
boundary condition. The SWMS_2D model is also capable of simulating solute transport with 
the advection-dispersion equation. 

2.4 One-dimensional vertical water flow and solute transport in the unsaturated zone 
with root water uptake 

For one-dimensional vertical water flow in the unsaturated zone, Eq. (2.17) may be written as 
(Richards, 1931; Feddes et al., 1988): 

dt d dt dz 
KK\ — + \ 

' s| dz 
Sa(z) (2.18) 

where Cd is the differential water capacity (dffldh) [L"1], z the vertical coordinate [L] and Ks the 
saturated hydraulic conductivity [L T1]. Note that h + z- (p, the hydraulic head [L]. 

The actual root water flux in (2.18) can be calculated from (Van Dam et al., 1997): 

5.fe) = <Vtatyz) (2.19) 

where a„, is a reduction factor due to water stress [-], a^ a reduction factor due to salinity stress 
[-] and 5p the potential soil water extraction rate by plant roots [T1]. In this study, 5p linearly 
declines with depth according to (Prasad, 1988): 

S**W 
^i-iil 

I * , , , 
(2.20) 

where Tp is the potential transpiration rate [L T1] and zT is the depth of the root zone [L]. 

The relative importance of water and salinity stresses on root-water uptake for conditions where 
both stresses occur simultaneously is still unclear (e.g. Homaee, 1999). In this thesis the water 
and salinity stresses are considered multiplicative (Eq. 2.19). The reduction factor a„, is a 
function of soil water pressure head, h and potential transpiration rate, Tp (Fig. 2.1). The 
reduction factor aK is a function of the Electrical Conductivity of the saturation extract, ECt of 
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the soil water (Fig. 2.2). 

h, o.o 
h (cm) 

Figure 2.1 Reduction function for root water 
uptake, a^ as a function of soil water pressure head, 
h for different potential transpiration rates, Tp (after 
Feddes et al., 1978). 

0.0 threshold 

EC. (dS m') 

Figure 2.2 Reduction function for root water 
uptake, aK as a function of soil salinity, ECt. 

The actual transpiration rate, !Ta [L T"1] can now be calculated as: 

= /Sa(z)dz (2.21) 

For vertical solute transport in the unsaturated zone with root water uptake, and with the volume-
based solute concentration c [M L"3] instead of the mass-based solute concentration C [M M"1], 
Eqs. (2.12) and (2.13) may be combined into the following advection-dispersion equation 
(neglecting fluid density effects): 
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d(dc)_ d(qc) , d 
dt dz dz m L a 

0\) 
-A ~aM^c (2-22) 

where acf is a root uptake concentration factor [-]. In this study it is assumed that acf = 0. 

The Millington and Quirk (1961) relationship can be used to calculate the porous medium 
diffusion coefficient, Dm: 

a 7/3 
D , = D w - (2.23) 

£ 

where Dw is the solute diffusion coefficient in free water [L2 T1]. 

The equations discussed in this section form the basis of the one-dimensional vertical finite-
difference SWAP model which is a joint development of Alterra and Wageningen University 
(Feddes et al., 1978; Van Dam et al., 1997; Kroes et al., 1999). Initial conditions for the water 
flow and solute transport calculations with SWAP consist of h(z) and c(z), respectively. The soil 
surface constitutes the top boundary. The boundary condition at the top boundary depends on the 
soil moisture status of the soil and on the direction and magnitude of the surface fluxes. During 
the iterative solution of Richards' equation the boundary condition may switch from flux-
controlled (q) to pressure head-controlled (h), and vice versa. A schematic overview of the 
criteria is given by Van Dam et al. (1997) and Van Dam (2000). 

The bottom boundary of the vertical one-dimensional SWAP model is either in the unsaturated 
zone or in the upper part of the saturated zone where the transition takes places to three-
dimensional groundwater flow. The bottom boundary condition can be of the following types 
(Van Dam et al., 1997): (1) specified pressure head, h or groundwater level as a function of time 
(Dirichlet type); (2) specified flux, q as a function of time (Neumann type); (3) a head-discharge 
relationship (Cauchy type); (4) free drainage; and (5) free outflow at a soil-air interface. The 
boundary conditions for the solute transport equation are strongly related to the boundary 
conditions for the water flow equation. Solute concentration, c of any flux that enters the flow 
domain must be specified. 

2.5 Description of the soil hydraulic properties 

The numerical models mentioned in the previous sections require information on the relationship 
between Sw, p and kr (SUTRA), or alternatively, 0, h and Kr (SWMS_2D and SWAP). In 
principle, these relationships can be given in tabular format. Description of the soil hydraulic 
properties with the functions of Mualem (1976) and Van Genuchten (1980) is however more 
convenient, as only a few parameters are required. Also several databases exist that describe the 
soil hydraulic properties of different soils with the MVG functions (e.g. Carsel andParrish, 1988; 
Leij et al., 1996; Wosten et al., 1998; Wosten et al., 2001). 
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First, a dimensionless saturation, 5e is defined: 

S -S 6-0 
^ f / = y 7 (2.24) 

where 5wr is the residual saturation [-], 0r the residual volumetric water content [-] and 6S the 
saturated volumetric water content [-]. 

The relationship between 5W and/? (SUTRA) and between 0and h (SWMS_2D and SWAP) is 
written as (Van Genuchten, 1980): 

Se(p)= for p<0 (2 25a) 

Se(p) = l for p>0 (2.25b) 

Se(h)= for h<0 f2 25c» 

St(h) = l for h>0 (2.25d) 

where ap [M"1 L T2], aj, [L"1], n [-] and w [-] are empirical parameters, with m = 1-1/n. 

The relationship between Sw and kr, and between #and Kr is written as (Mualem, 1976; Van 
Genuchten, 1980): 

kT(Se)=Kt(Se)=Se
 A[l-(1 -Se "

!)"f ( 2-2 6 ) 

where /I is an empirical parameter [-]. 

2.6 Description of a pipe drain in a finite-element mesh 

The description of a pipe drain in a two-dimensional (x,z) finite-element mesh has been discussed 
by Fipps et al. (1986). Basically two approaches can be followed: (1) The drain is represented 
by a hole in the finite element mesh. This requires extremely small elements near the drain in 
order to obtain accurate flow rates (e.g. Gureghian and Youngs, 1975; Zaradny andFeddes, 1979; 
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De Vos, 1997); (2) Description of the drain by a single node. Accurate drain flow rates may be 
obtained with this approach by adjusting the permeability (or hydraulic conductivity) of the 
elements surrounding the drain using results from electric analog experiments (Vimoke et al., 
1962; Rogers and Fouss, 1989; Simunek et al., 1994). In this study the single node approach was 
followed because it is computationally efficient. 

Adjustment of the permeability, k (SUTRA) or the hydraulic conductivity, K (SWMS_2D) of the 
elements surrounding the drain is as follows: 

*drain=*Cdrain (2.27a) 

^dra in^Qrain (2.27b) 

where kdldlin is the adjusted permeability [L2], Kiain the adjusted hydraulic conductivity [L T1] and 
CdI^n the correction factor [-]. 

The correction factor, C^,, is a function of the effective drain diameter, dc{! [L] and the side 
length of the square formed by the elements surrounding the drain. For the exact calculation of 
C^,,, the reader is referred to Vimoke et al. (1962). Values of de{{ for different drain tubes are 
provided by Mohammad and Skaggs (1983). Rogers and Fouss (1989) have shown that C^,, 
must be reduced by a factor 2 in order to obtain consistency between the finite-element model 
and the electric analog experiments of Vimoke et al. (1962). 
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Theory of Solute Travel Time to Pipe Drains and Tube-
Wells in Steady-State Flow Fields 

Numerical models that use a combination of the Darcy equation and the basic mass balance 
equation and the advection-dispersion equation in (x,z) or (r,z) coordinates (Chapter 2) perform 
well if the solute transport is dispersion-dominated. In advection-dominated transport problems, 
however, these models suffer from numerical dispersion and artificial oscillations, especially in 
the region of sharp concentration fronts (Kinzelbach, 1986; Bear and Verruijt, 1987). In order 
to minimize numerical errors, small discretization in time and space is needed, which requires 
considerable and sometimes prohibitive computationally effort, especially when considering 
field-scale problems (Crane and Blunt, 1999). 

In irrigated agriculture, solutes are distributed along the soil surface with the irrigation water or 
are initially present in the soil-aquifer system. Pipe drains or partially penetrating tube-wells 
usually present small and isolated outflow surfaces. For such flow systems, outflow 
concentrations are controlled almost exclusively by advective mixing, resulting from the 
convergence of the flow towards the drainage media (Duffy and Lee, 1992). Under these 
circumstances, Lagrangian methods constitute a computationally more efficient approach to 
describe solute transport than the Euler methods discussed in Chapter 2. 

In Lagrangian methods, solute concentration is associated with fluid elements which move with 
the prevailing velocity field. The positions that are occupied by the elements as time passes 
constitute a path-line (Bear, 1972). As a fluid element moves along its pathline, its concentration, 
provided the transport is purely advective, does not change (Crane and Blunt, 1999). The travel 
time, T [T] between some reference point s0 and some point s on a path-line, is given by: 

r=t-tn= l—ds 
J v o= -< " (3.1) 

where v is the advective displacement velocity [LT1]. 

Equation (3.1) is valid for transient flow fields. Solution of (3.1) still requires elaborate 
computations as v changes both in space and time. Considering the long solute travel times which 
are generally found for pipe drains and tube-wells in extensive aquifers, it is practical to assume 
that the flow field is at steady-steady (e.g. Jury, 1975; Raats, 1978; Kamra et al., 1991a). For 
steady-state flow fields, path-lines coincide with streamlines. Where streamlines are defined as 
instantaneous curves that are at every point tangent to the direction of the velocity at that point. 
The condition of tangency can be expressed mathematically as (Frind and Matanga, 1985): 

qo<ds=0 1 = 1,2,3 (3.2) 

Streamlines can be calculated using the stream-function concept (Bear, 1972). The required 
stream-function values can be determined analytically (for some specific cases) or numerically. 
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Both methods will be discussed in this chapter. The actual calculation of solute travel times from 
the streamline pattern is explained in Section 3.6. 

3.1 The stream-function concept in a vertical cross-section 

For flow in a vertical cross-section, the vector product in (3.2) can be expanded as: 

1x *z 

dx dz 
=0 

so that: 
qxdz-qzdx=0 

(3.3) 

(3.4) 

where x is the horizontal coordinate [L], qx the specific discharge [L T"1] in the jc-direction and 
qz the specific discharge [LT1] in the z-direction. 

The stream-function ifr= i/Kx,z) [L2 T l] is defined, which is a constant along a streamline (Bear, 
1972): 

dx dz 
(3.5) 

Z " 

dv|//dzf V2=Vi+Av 

v|/,=constant 

Figure 3.1 Relationship between Darcy flux 
and stream function (after Frind and 
Matanga, 1985). 

Comparison of (3.4) and (3.5) leads to (see also Fig 3.1): 
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_dilr 

dz 

dip 
' dx 

(3.6a) 

(3.6b) 

In a two-dimensional system, a stream-tube is defined by its two bounding streamlines, say fa 
and fa2 (where fa2 = fa + A#). It can be shown that the flux through this stream-tube is equal to 
A ̂ (Anderson and Woessner, 1992). In other words, the Darcy discharge through a stream-tube 
is equal to the numerical difference between the two bounding streamlines (Frind and Matanga, 
1985). A drawback of using the stream-function concept is the fact that sources and sinks inside 
the flow domain generally cannot be handled (Fogg and Senger, 1985). 

3.2 Governing equation for two-dimensional flow in a vertical cross-section 

The derivation of the partial differential equation of the stream function is generally based on the 
assumption that the flow is irrotational, i.e. that the curl of the hydraulic gradient vector (Vx-V0) 
is equal to zero (Bear, 1972; Matanga, 1993). 

Because -V^= <?, I Ktj (Darcy equation), Vx-V^can be written as (Frind and Matanga, 1985): 

Vx M =0 (3.7) 

where Ktj is the hydraulic conductivity [L T"1] tensor. In matrix notation, Ktj is given as: 

«,r •j 

\K 

K 
L w 

f 1 
xz 

K 
zz\ 

(3.8) 

For groundwater flow in a vertical cross-section: 

ZZ X* 

-K K 
IX XX 

(3.9) 

v,hsa\K\=KjaKa-K1BKar 

Expansion of (3.7) for a vertical cross-section results in: 
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_d_ 

dx 

K K„. 

\Krx \KVZ 

d_ 

dz 

K"n+
K"n Q + Q 

\K\HX \Kr 

=0 (3.10) 

so that: 

dx 

K 

^1 -r£* K 

K 
XX 

~\K\ 
d_ 

dz 

K 
zz_ 

\K\ 
5iL 
\K\ 

=0 (3.11) 

Substitution of (3.6) into (3.11) yields: 

dx{ \K\ dx \K\ dz) dz[ \K\ dx \K\ dz, 
(3.12) 

If the coordinate axes are oriented along the principal directions of permeability, Eq. (3.12) 
reduces to: 

d 
dx 

{ 1 dA 
{K^dxj 

d 
dz 

\ 1 di 
l * ~ < ^ (3.13) 

Equation (3.13) is valid for inhomogeneous anisotropic media (Bear, 1972). The equation can 
be solved numerically with standard groundwater flow codes after minor adjustments in the input 
(Anderson and Woessner, 1992). The equation can also be solved with a spreadsheet (Olsthoorn, 
1998). Solution of the more general Eq. (3.12) requires a specialized flow code (e.g. Frind and 
Matanga, 1985). 

3.3 Governing equation for axi-symmetric flow in a vertical cross-section 

For axi-symmetric flow in a vertical cross-section, Eq. (3.6) can be re-written as: 

1 di// 

2nr dz 

1 difr 
2nr dr 

(3.14a) 

(3.14b) 

where r is the radial coordinate [L] and qr the specific discharge [L T"1] in the r-direction. 
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The stream-function ip= ip{r,z) has dimensions [L3 T1]. With (r,z) coordinates instead of (x,z) 
coordinates, the derivations as given in Eqs. (3.7)-(3.11), result in the following alternative 
expression for (3.12): 

1 
/ 

dr\ 2nr 

K„ dipf ^zrdi/r 
\ \K\ dr |AT| dz)) dz 

1 
2-nr 

K n dip K dip 

\ \K\ dr \K\ dz) 

\ 
(3.15) 

With the coordinate axes oriented along the principal directions of permeability, (3.15) becomes: 

d_ 

dr 

1 dip 

2nrKzz dr dz 
1 dip 

2nrKrr dz 
(3.16) 

Unlike Eq. (3.13), Eq. (3.16) cannot be used directly because of the \lr factor in the first term 
on the lefthand side of (3.16). This problem is solved by differentiating the first term on the 
lefthand side of (3.16) with respect to r (Olsthoorn, 1998): 

to yield: 

1 d]P+_}_d_( J_d]P\ + J_ li _Li^| =, 
2nr2K__ dr 2nr dr[ K^ dr J 2nrdz\ Krr dz 

(3.17) 

rK dr + dr\ K dr dz 
_}_dip 
K„dz 

(3.18) 

Equation (3.18) is again valid for inhomogeneous anisotropic media (Bear, 1972). The equation 
can be solved with a spreadsheet as discussed by Olsthoorn (1998). 

3.4 Analytical solution of the stream function for a pipe drain in a two-layered soil 

Several investigators derived analytical expressions for the stream function in pipe-drained soils 
for various conditions. A summary is given in Table 3.1. All studies mentioned in Table 3.1 
describe the pipe-soil system by considering a vertical cross-section perpendicular to the 
alignment of the drains. Studies concerning sloping lands and interceptor drainage have not been 
included in the table (see Van der Ploeg et al., 1999). 
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Table 3.1 Summary of analytical expressions for the stream function in pipe-drained soils. 

Field conditions Reference 

-Pipe drain in a single-layered soil under ponded 
conditions 
-Pipe drain in a two-layered soil under ponded 
conditions 
-Pipe drain in a two-layered soil underlain by an 
artesian aquifer under ponded conditions 
-Pipe drain in a single-layered soil 
-Pipe drain in a single-layered soil underlain by an 
artesian aquifer 
-Pipe drain in a two-layered and a three-layered soil 
-Pipe drain in a single-layered aquifer of infinite 
depth 
-Pipe drain which is part of a dual-pipe subirrigation-
drainage system 
-Dual-depth pipe drainage system under ponded 
conditions 
-Pipe drain in soil of finite depth and in soil with 
infinite depth under partial ponding 

Kirkham (1949) 

Kirkham(1951) 

Kirkham (1954) 

Kirkham (1958) 
Hinesly and Kirkham (1966) 

Toksoz and Kirkham (1971) 
Ernst (1973) 

Kirkham and Horton (1992) 

Kirkham etal. (1997) 

Youngs and Leeds-Harrison 
(2000) 

In this study, the expressions for seepage to a pipe drain in a two-layered soil developed by 
Toksoz and Kirkham (1971) are used. The geometry of the pipe-soil system used by these authors 
provides the most accurate representation of field conditions for the study areas (Chapter 4). The 
geometry of the system is shown in Fig. 3.2. Because of symmetry, only the left part of the flow 
domain is actually used in the calculations. The following assumptions are made: (1) Both soil 
layers below drain level are homogeneous and isotropic; (2) The groundwater table is at, or 
above, drain level; (3) The pipe drain is running half full; (4) The loss in hydraulic head between 
the groundwater table and drain level is negligible compared with the head loss in the remainder 
of the region; (5) Vertical fictitious frictionless membranes in this zone (dotted lines in Fig. 3.2) 
force the water to flow vertically downwards at a uniform rate. 

In the analysis of Toksoz and Kirkham (1971), assumptions (4) and (5) imply that streamlines 
will be equally spaced along the horizontal line connecting the drain centres. This is a 
simplification of reality. In most cases, flow between the groundwater table and drain level will 
be two-dimensional. The pipe drain itself, is represented by a slit drain of supposed thickness 
zero and width £"(Fig. 3.2, left part). During the derivation of the stream-function for the first 
layer it is assumed that ^-O, so that the drain becomes a line sink perpendicular to the (x,z) plane. 
It should be noted that the definition of the z-coordinate in Fig 3.2 (positive downward, origin 
at drain level) differs from the previous definition in Eq. (2.7) (z positive upward). 
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Figure 3.2 Geometry of pipe drains in a two-layered 
soil (after Toksoz and Kirkham, 1971). 

The stream function for the first layer, \frx [L
2 T"1] is: 

2(a-z) 
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1 . | 2nmx\ 
—sin 

sinh 77771-

sinh 
2mna | 

+5 sin 
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sinh 

2mnz | 

2/n7i;a | 
(3.19) 

where ijf0 - RxViL [L2 T"'], with R being the recharge rate [L T1] and L the drain spacing [L]. 

The stream function for the second layer, i/r2 [L
2 T"1] is: 

, , ^ o v ^ ^ • I 2rrmx 
^=0ir—£Cms in - 7— 

sinh 

cosh 

2(b-z) 
mn— -

L 2{b-a) 
L 

(3.20) 

The constants Bm [-] and Cm [-] are evaluated with help of the potential function, 0 [L2 T"1] (<P 
= K<p) (see Toksoz and Kirkham, 1971). The Bm term is given by: 

B 1 1 1 
m

 smh\ l*"™) ( K,) 

, K2, 
L ) coth 77171 

2(fc-a) 
i-coth 

2mna | (3.21) 

and Cm by: 
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m . A 2mna) ( K 
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L ) K, 
+tanh mn 

2(b-a) 
coth 

2mna | 

T~) 
(3.22) 

Equations (3.19)-(3.22) are exact analytical solutions of Laplace's equation for the stream 
function, V2^r= 0 and the potential function, V2<?= 0 in the first and second layer (Toksoz and 
Kirkham, 1971). Because of this, the effect of soil anisotropy on the stream functions of the first 
and second layer can be accounted for by coordinate transformation (Maasland, 1957). By 
transformation of coordinates, the anisotropic soil is converted to a fictitious isotropic soil for 
which Eqs. (3.19)-(3.22) apply. Both the jc-coordinates and the z-coordinates can be used for 
conversion. Transformation of the z-coordinates is generally more practical (Boumans, 1979). 
With the coordinate axes located along the principal directions of hydraulic conductivity, the 
dimensions of the fictitious isotropic soil become: 

1 
a ---a 

\ 

K , 
xxl 

**. 
(3.23a) 

(b-a)'=(b-a) 
Kxx2 

HK*2 
(3.23b) 

where a' is the converted thickness [L] of the first layer and (b-a)' the converted thickness [L] 
of the second layer. 

The hydraulic conductivities of the first and second layer for the fictitious isotropic soil are 
calculated as: 

^=^K, (3.24a) 

K, -fc xx2Kzz2 (3.24b) 

As an example, the analytical expressions discussed in this section are used to draw streamlines 
in a two-layered anisotropic soil with pipe drains (Fig. 3.3). In Fig. 3.3, each stream-tube 
represents 10% of the total discharge. Because of the neglect of the hydraulic head loss between 
the groundwater table and drain level (assumption 4) and the assumption of vertical frictionless 
membranes in this zone (assumption 5), the shape of the streamlines is independent of the 
recharge, R. 
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height relative to 
drain level (m) 

soil surface 
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Figure 3.3 Streamlines towards a pipe drain in a two-layered soil. 
Analytical solution of Toksoz and Kirkham (1971). Drain spacing 50 m, 
drain depth 2.0 m below soil surface and impermeable layer at 3.0 m 
below drain level. The soil below drain level consists of two layers; 
thickness of layer 1 is 1 m (Kal = 1 m d"1, Kal = 0.2 m d"1), thickness of 
layer 2 is 2 m (K^ = 5 m d"1, Ku2 - 1 m d"1). 

3.5 Numerical solution of the stream function for a partially penetrating well in an 
unconfined aquifer 

Exact analytical solutions of the stream function for fully penetrating wells in a vertical cross-
section have been given by Khan and Kirkham (1971) and Khan et al. (1971). For partially 
penetrating wells, which will be considered in this study, no analytical solutions are available. 
The stream function to a partially penetrating well will therefore be calculated numerically using 
Eq. (3.18). The discretisation of (3.18) through a finite-difference scheme can be found in 
Olsthoorn (1998). Actual computations are conducted with a spreadsheet. 
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Figure 3.4 Geometry of a partially penetrating well 
in a multi-layered aquifer. 

The geometry of the well-aquifer system is shown in Fig. 3.4, where ifr0 - Rnrt
2 [L3 T"1] with rt 
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being the radial distance [L] to the water divide. The partially penetrating well constitutes a 
constant head boundary, allowing relatively large inflow into the well at the edges of the well 
screen (Muskat, 1937). In a spreadsheet, a constant head boundary can be included by adding an 
extra row or column to the sides of the model and giving them very high hydraulic conductivity 
(Olsthoom, 1998). The outer radial boundary is treated as a water divide, which is the appropriate 
boundary condition for a well that is part of a complete well-field. It is assumed that the 
drawdown regions of neighboring wells do not overlap. 

Single wells in large continuous aquifers might draw their water from much greater distances 
than rc. These last type of wells will not be considered in this study. Similar to the pipe drainage 
case, it is assumed that the loss in hydraulic head in the arch shaped region below the 
groundwater table is negligible compared with the head loss in the remainder of the flow region. 
Again fictitious, frictionless membranes are assumed in this zone that force the water to flow 
vertically downwards at a uniform rate (see Section 3.4). 

As an example, streamlines are calculated for a partially penetrating well in a homogeneous 
anisotropic aquifer (Fig. 3.5). Each stream-tube represents 10 % of the total discharge. In contrast 
to the case for pipe drainage, the starting points of the streamlines are no longer spaced equally 
along the horizontal plane. This is due to the use of radial coordinates to describe the well. 

height above 
impermeable layer (m) 

soil surface 
100 % 

500 

radial distance from tube-well, r (m) 

Figure 3.5 Streamlines towards a partially penetrating well in a 
homogeneous unconfined anisotropic aquifer. Numerical solution 
according to Olsthoorn (1998). Radial distance to the water divide is 500 
m. Depth of the impermeable layer is 100 m below soil surface (K„. - 20 m 
d ' ' , ^ a = l m d"1). The horizontal boundary plane (see Chapter 5) is located 
at 10 m depth. 

3.6 Calculation of solute travel time 

For flow in two dimensions, the travel time v [T] of a fluid particle moving from s0 to s through 
a stream tube is given by: 

A^. 
[w(s)ds 
J (3.25) 

26 



Theory of Solute Travel Time to Pipe Drains and Tube-Wells in Steady-State Flow Fields 

where w is the width [L] of the stream tube and ne the effective porosity [-]. 

To solve Eq. (3.25) in (x,z) coordinates, the cross-sectional area of each stream tube must be 
determined. This cross-sectional area can be calculated by numerical integration along the two 
bounding streamlines of each stream tube, using the composite Simpson's rule (Faires and 
Burden, 1993). In the present case, numerical integration requires that for a given i/rand x, z is 
calculated. Unfortunately, Eqs. (3.19) and (3.20), which describe the relationship between (x,z) 
and i/rfor pipe drains, cannot be rewritten to calculate z directly. Therefore, each z-coordinate has 
to be found from (3.19) and (3.20) by trial and error. To speed up calculations, a computer 
program, written in FORTRAN by the present author, is used to carry out the necessary 
computations. 

For axi-symmetric flow in a vertical cross-section, Eq. (3.25) changes into: 

2nnc
 s 

r = ^ i n V ( s ) d S <3-26> 

Equation (3.26) cannot be solved easily because both r and w change as the solute progresses 
through the stream tube. Furthermore, no analytical expressions are available to relate (r,z) to i/f, 
for cases other than fully penetrating wells. For axi-symmetric flow, it is therefore more 
convenient to calculate the solute travel time by particle tracing in the flow field. The required 
velocity of the solute particles is calculated as: 

n 2nrnr dz 

1z 1 dilr 
vz=—=- - ~ (3.27b) 

n. 27im„ dr 

With known velocities of the solute particles, the particles can be followed through the flow field 
with integration methods. Four methods are commonly used: semi-analytical, Euler, Runge-
Kutta, and Taylor series expansion (Anderson and Woessner, 1992). In this study, the Euler 
integration formulas are used: 

r
P=ro+(vXAt (3.28a) 

S=zo+(v;)oAf (3.28b) 

where (r0, ZQ) is the initial position of the particle, (vr)0 and (vz)0 are the velocities at the initial 
position in radial and vertical direction, respectively, and (rp, zp) is the position of the particle 
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