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Stellingen: 

1) The alternative mechanism of symbiotic activation (ASA) was postulated for Rhizobium 

leguminosarum despite earlier results, which gave no evidence of any symbiosis-specific regulation 

of the dctA gene 

(Ronson, C.W. and Astwood, P.M. 1985. Nitrogen fixation research progress. Bottomley, P.J. and Newton, 

W.E. eds. Martinus Nijhoff, Dordrecht. 201-207. 

Ronson, C.W., Astwood, P.M., Nixon, T.B. and Ausubel, F.M. 1987. Nucl. Acids Res. 15, 7921-7934) 

2) It is unlikely that the alternative mechanism of symbiotic activation (ASA) in Slnorhizobium meliloti 

has a significant influence on the crop yield of Medicago sativa. 

(Rastogi era/., 1992. Can. J. Microbiol. 38,555-562.) 

3) The use of Medicago truncatula as a model plant in studying the Rhizobium-iegume interactions 

may leave the functioning of the bacteria in the symbiosis underexposed. 

4) The conclusion that NifA is not involved in the expression of the dctA gene during the symbiosis of 

Slnorhizobium meliloti and Medicago sativa, is not contradictory to the finding that NifA is essential for 

the alternative mechanism of symbiotic activation (ASA). 

(Jordingefa/.,1992,J. Plant Physiol. Vol. 141:18-27) 

5) The hypothesis that the endodermis of indeterminate nodules functions as an oxygen barrier should 

not be accepted as an established fact without support of solid experimental data 

(Hunt and Layzell, 1993, Ann. Rev. Plant Physiol. Plant Mol. Biol., 44:483-511). 

6) Research on the potential risks associated with the release of genetically engineered 

microorganisms (GMO's) should be more concerned with the conditions that provide a positive 

selective advantage to potential harmful microorganisms, than with lateral transfer of genes in the 

environment. 

7) Conclusions in a scientific paper should always be treated with reservation. Additional information 

may shed a different light on earlier results. 

8) Applying age limits in grant applications is a form of discrimination and therefore illegal. 

9) The creative thinking of a scientist may be inhibited by reading scientific publications. 

Bert Boesten: 

Expression of the Slnorhizobium meliloti C<-dicarboxylate transport gene 
during symbiosis with the Medicago host plant. 

Wednesday September 8 1999, 
Agricultural university Wageningen. 
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Rhizobium spp. are gram' soil bacteria that are able to induce the formation of specialised organs on 

their leguminous host plants which they can invade and where they can fix atmospheric nitrogen to 

ammonia. This fixed nitrogen is made available to the host plant, rendering it independent from the 

availability of nitrogen in the soil. The plant in turn provides an unique ecological niche to the 

microsymbiont. Symbiotic N2-fixation is a high energy requiring process and this energy is derived 

from the host plant photosynthate. The bacteria remain at all times separated from the plant cell 

cytoplasm by a plant derived peribacteroid membrane. This membrane is the interface between the 

host plant and the endosymbiont. Not every available carbon source can pass the peribacteroid 

membrane. Early work on this subject has demonstrated that C4-dicarboxylic acids (dCA) rather than 

succrose which is present in abundance in the nodule cytosol, are partitioned into the peribacteroid 

space. Consequently the ability of the microsymbiont to take up these dCA compounds is essential for 

the establishment of an effective symbiosis. 

The uptake of dCA by Sinorhizobiom meliloti and some other Rhizobium spp. under free-living 

conditions is controlled by three genes: dctA coding for a high affinity dCA uptake permease, and a 

two-component regulatory system encoded by dcB and dctD. A mutation in the structural gene dctA, 

renders the mutants unable to transport dCA and therefore such mutants cannot use dCA as a carbon 

source. Such dctA mutants can invade their host-plants and induce the formation of nodules, but are 

unable to fix nitrogen. 

A mutation in either of the regulatory dc/BD genes also renders the mutants unable to take up dCA 

under free-living conditions, but generally such mutants establish an effective symbiosis when 

inoculated on their host plant. This latter phenotype suggests that the dctA gene is expressed 

efficiently during symbiosis even in the absence of the cognate regulatory dcfBD genes. This 

observation led to the postulation of an alternative system of symbiotic activation of the dctA gene. 

This ASA, which stands for Alternative Symbiotic Activator has been the subject of much research by 

several groups including our own at the Microbiology Dept. University College Cork. Despite this 

considerable effort, which I will summarise in Chapter 2, the ASA has not been identified to date. 

The problem in pinpointing the ASA probably lies in the strict symbiotic nature of the phenomenon. 

The mechanism can not be induced under free-living conditions. Therefore it has to be studied in situ 

during symbiosis with the host plant. Using gene fusions of the dctA expression signals to the lacZ. and 

uidA reporter genes, in combination with histochemical staining of plant tissue, I have studied the 

regulation of the dctA gene in situ during the symbiosis with the Medicago host plants. 

The construction of various gene fusions is described in Chapter 3 and their behaviour under free-

living conditions is analysed in Chapter 4. In Chapter 5 I describe the use of some of the gene fusions 

to study the in situ patterns of dctA expression during symbiosis. First of all it is established that in a 

wild-type background, the dctA gene is expressed during the early and late stages of symbiosis. In 

contrast in nodules induced by a regulatory dcB or dcID mutant, a distinct late symbiotic pattern of 

dctA expression was observed. This meant that the ASA is an exclusive late symbiotic mechanism. In 

addition we also found that certain gene fusions lacking the extreme N-terminal domain of the dctA 

coding region did not respond to the ASA. The use of these gene fusions allowed us to monitor the 
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activity of the DctBD system without the interference of the ASA and conclude that the DctBD system 

alone is sufficient to express the dctk promoter during all stages of symbiosis. 

Having identified a gene-fusion construct that responded to the DctBD mechanism, but not the ASA, 

we wished to obtain a complementary gene fusion that would respond to the ASA, but not the DctBD 

mechanism. In Chapter 6 we describe such gene fusion construct which was obtained by deleting the 

Upstream Activator Sequences (UAS) from the dctk promoter. These sequences are essential for the 

activation of the dctA promoter by DctBD, under free-living conditions and during symbiosis. This gene 

fusion was found to be activated equally well during symbiosis in nodules induced by wild-type as well 

as a dctD mutant strain. This dctD independent activity however was totally abolished in nodules 

induced by a strain mutated in the nifk gene. This is probably the best indication to date that a 

functional nifk gene is required for the ASA activity. 

Besides alfalfa (Medicago sativa) Medicago truncatula is also a host plant for S.meliloti. Because of its 

better amenability for genetic manipulation, the latter has been proposed as a model-plant to study 

symbiotic N2-fixation. In Chapter 7 we evaluated the in situ dctk activity on M.truncatula. To our 

surprise we observed that dctD mutant strains induced ineffective nodules on this host plant. No dctk 

activity could be observed suggesting that the ASA does not operate. The in situ activity of nifkv.lacZ 

and n//H::/acZ gene fusions demonstrated that the pattern of nif gene expression is similar as in the 

alfalfa background, but the level of gene expression is about a tenfold lower. These findings are in 

agreement with the previous results suggesting that NifA is required for ASA activity in the S.meliloti 

alfalfa symbiosis. 

Finally in Chapter 8 we discuss the major findings of this work and assess their implication in 

developing our understanding of gene regulation in S.meliloti during symbiosis. 
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Chapter 1) 

Introduction 



1.1) The Rhizobium - legume symbiosis. 

Rhizobia are gram-negative soil bacteria, capable of fixing atmospheric nitrogen in symbiosis with their 

leguminous host plants. This symbiosis leads to the development of nodules on the roots of the host 

plant. These nodules are specialised organs where the host-plant provides an ecological niche for 

bacteria, which can invade these nodules. Here they can differentiate to endosymbiotic bacteroids, 

which can fix atmospheric nitrogen in a microaerobic environment. The fixed nitrogen is made 

available to the host plant, which provides a competitive advantage in growth conditions where 

nitrogen is limited. 

1.2) Exchange of nutrients during symbiosis. 

During symbiosis between Sinorhizobium melilotiand the Med/cago host plant, the energy required for 

the bacteria to colonise the roots, to invade and multiply inside the host plant and to fix atmospheric 

nitrogen, is all ultimately derived from the plant photosynthate. At all times during infection and 

Root 

Nodule 

bacteroids 

vascular bundles 

Fig. 1a: Exchange of nutrients during symbiosis. 

During the S.me//7ofralfalfa symbiosis the bacteroids fix atmospheric nitrogen (N2) 

and make it available to the plant cells in the form of ammonia (NH3). There it is 

converted to asparagine and transported via the vascular system to the other parts 

of the host plant. The energy required for these processes is ultimately derived from 

the photosynthesis, which takes place in the leaves. 

symbiotic N2-fixation, the bacteria, or bacteroids, remain separated from the plant cell cytoplasm by 

plant derived membranes. During invasion and infection, the bacteria are enclosed collectively inside 

infection threads. When released from these infection threads into the plant cell cytoplasm, the 

bacteria are enveloped individually in a peribacteroid membrane. In general biological membranes are 
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impermeable to large hydrophilic molecules such as those that may serve as carbon and nitrogen 

sources for the growth of the microsymbionts. Specific transporters will be required to allow the 

selective passage of molecules from the host cell cytoplasm to reach the Internalised bacteria. As 

such the host plant determines the direct environment of its microbial partner and may influence its 

behaviour. The bacteria are able to produce a wide range of more or less specific transport proteins in 

order to be able to take up and utilise molecules that it encounters in its environment. The production 

of these permeases is highly regulated. Synthesising these proteins only makes sense when the 

compounds that are to be transported are actually present in the environment, in sufficiently high 

amounts to merit the effort involved in synthesising the permease and adjusting the metabolism. 

plant cell 

• sucrose c$? 
.Q. | | bacteroid. 

malate 

NH, 

peribacteroid membrane , 

Fig. 1b: The peribacteroid membrane. 

The nitrogen fixing bacteroids are enveloped in a plant derived 

peribacteroid membrane, which prevents the free exchange of large 

molecules. Selective passage of carbohydrates is obtained by means of 

specific transporter proteins, or permeases. Although sucrose is the most 

abundant form of photosynthate in the plant cells, it is not directly 

available to the bacteroids. Malate is probably the only carbon source 

provided to the bacteroids in sufficiently high amounts to support 

symbiotic N2-fixation. Consequently ability of the bacteroids to take up this 

Grdicarboxylate is essential for an effective symbiosis. 

1.3) The capacity of the microsymbionts to take up C4-dicarboxylates is essential for 

symbiotic N2-fixation. 

Current evidence indicates that C4-dicarboxylates (dCA = fumarate, succinate, malate) are the major 

and probably only source of carbon provided to the bacteroids in sufficiently high amounts to support 
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symbiotic N2-fixation. They are translocated through the peribacteroid membrane and were found to 

support nitrogenase activity of isolated S.melilotibacteroids (McRea era/., 1989). Consequently, 

efficient expression of the S.me//for/C4-dicarboxylate transport gene (dctk), coding for a high affinity 

uptake system for dCA, is essential for an effective symbiosis (Ronson et al, 1981; Glenn and 

Dilworth, 1981; Finan era/., 1983; Glenn era/., 1984; Arwas era/., 1985; Driscoll and Finan, 1993). 

1.4) The regulation of the dctA. gene. 

The genes of S.meliloti involved in the uptake of C4-dicarboxylic acids have been studied extensively. 

The dc/gene cluster consists of the structural gene dctA and the divergently transcribed regulatory 

genes dcBD. The dctA gene codes for a high affinity permease (DctA), which is required for the 

dCA 

dciD K. dciB 
pBD pA 

dctA 

Fig. 1c: The dcfABD gene cluster. 

The structural gene (dctA) codes for a high affinity permease (DctA), which is 

required for the efficient uptake of dicarboxylic acids (dCA = fumarate, succinate, 

malate). The regulatory dcBD genes are transcribed from a low level constitutive 

promoter (pBD) and code for a two component regulatory system (DctB and DctD). 

DctB is a sensor protein that is located in the cytoplasmic membrane and detects 

the presence of dCA in the periplasmic space. DctB interacts with the 

transcriptional activator DctD. In the presence of dicarboxylic acids, or aspartate in 

the environment DctD is activated by DctB and in turn activates transcription from 

the dctA promoter (pA). 

efficient uptake of dicarboxylic acids. The dcBD genes are transcribed constitutively at a low level and 

were found to code for a two-component regulatory system (DctB and DctD). DctB is a sensor protein 

that is located in the cytoplasmic membrane and detects the presence of dCA in the periplasmic 

space. DctB interacts with the transcriptional activator DctD. In the presence of dicarboxylic acids, or 
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aspartate in the environment DctD is activated by DctB. DctD in turn activates transcription from the 

dctA promoter (Fig. 1c). Under free-living conditions, the regulatory dcBD genes are essential for 

activation of the dctA promoter (Ronson etal, 1984,1987; Ronson and Astwood, 1985; Engelke etal., 

1989; Jiang etal., 1989; Wang etal., 1989 

1.5) The symbiotic phenotype of the dct mutants. 

S.meliloti strains mutated in the structural dcfA gene without exception display a fix' phenotype during 

symbiosis. This is in line with the notion that the ability to take up dCA is essential during symbiotic N2-

fixation. 

Table 1a: Phenotypic behaviour of the 

dct mutant strains. 

S.meliloti strains mutated in any of the dct 

genes are unable to grow on media containing 

a dicarboxylic acid (dCA) as a sole carbon 

source. Mutations in the structural dctA gene 

affect the permease directly, whereas the 

regulatory dcBD mutants are unable to 

activate the dctA promoter under free-living 

conditions. Regulatory mutants however do 

often allow an efficient symbiosis. This 

indicates that during symbiosis the dctA gene 

is still expressed in these strains. 

Strain 

wild-type 

dctA' 

dctB' 

dctD-

Growth 
ondCA 

+ 
-

-

-

Symbiotic 
phenotype 

+ 
-

+ 

+ 

Although certain regulatory dct mutants are unable to fix nitrogen during symbiosis, most were hardly 

affected in their symbiotic efficiency. Bacteroids isolated from nodules induced by such mutants were 

found to efficiently transport dCA (Engelke et al., 1987). It became clear that the dctA gene is 

expressed during symbiosis, even in the absence of the regulatory dcfBD genes. Accordingly, nodules 

induced by these S.meliloti mutants, still fix nitrogen although sometimes at an reduced rate (Yarosh 

etal., 1989). This demonstrated that in the specific environment of the nodule, regulatory molecules 

other than DctBD, are involved in the expression of the dctA promoter. Despite the extensive study of 

the dicarboxylate transport (Dct), this alternative system of symbiotic activation (ASA) has not been 

identified to date. 
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dCA 

dCA 

<&xx dctA o 
ASA 

Fig. 1d: The alternative mechanism of symbiotic dctA 

activation. 

The presence of an alternative mechanism of activation of the dctA 

promoter (ASA) is only revealed during symbiosis. When the regulatory 

dcBD genes are mutated, the dctA gene is still expressed at significant 

levels in a DctBD-independent manner. Despite extensive studies the 

ASA has not been characterised to date. 

Abbreviations are as in Fig. 1c. 

1.6) The alternative symbiotic activator (ASA). 

The presence of a second mechanism of symbiotic activation of dctA during symbiosis, poses a 

question with respect to the symbiotic regulation of this gene. It is not clear what role the ASA may 

play in the context of overall gene regulation in a mature efficient nodule. It is conceivable that the 

cognate DctBD system is primarily responsible for symbiotic dctA expression and that the ASA is a 

regulatory artefact that only comes to light when the DctBD system is mutated. On the other hand the 

ASA may represent a specific regulatory mechanism, characteristic of the nitrogen fixation process, 

which takes over from DctBD when the bacteroids have fully differentiated and symbiotic N2-fixation 

begins. Simple cross-talk between regulatory mechanisms, or a novel regulatory mechanism specific 

to symbiotic N2-fixation? The relatively high efficiency at which N2-fixation takes place in nodules 

induced by some dcfD mutant strains, suggests that the dctA gene is expressed at nearly wild-type 

levels. Such efficient expression argues for the latter possibility. 
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1.7) Aim of this work. 

The work presented in this thesis is aimed at the study of the regulation of the S.meliloti dctA gene in 

situ during symbiosis with the Medicago host plants. There is a big discrepancy between the 

knowledge that has been obtained in recent years of DctBD dependent regulation of the dctA gene in 

free-living conditions and the unknown nature of the alternative mechanism of symbiotic activation, or 

ASA. Consequently, it is still not known if either the ASA, or the regular DctBD system is primarily 

responsible for the expression of dctA during symbiosis. 

dCA 

ASA 

periplasm 

cytoplasm 

dctA 
> 

Fig 1e: Two possible mechanisms of dctA activation during symbiosis. 

Since there are two possible ways of activating the dctA gene, it is not clear which 

mechanism (DctBD or ASA) is primarily responsible for the expression of the gene 

during symbiosis. Abbreviations are as in Figs. 1d 

This lack of knowledge concerning the ASA originates probably from its strict symbiotic nature. 

Attempts to obtain DctBD independent expression of the dctA promoter under free-living conditions, 

for example by microearobiosis (Wang era/., 1989), have failed so far. Others have been looking for 

secondary mutations that allow a dctD mutant to grow on minimal medium with dCA as sole carbon 

source. One such mutation has been characterised (Labes etal., 1993). This worked out to be an 

altered ntrC allele, which resulted in a NtrC molecule that activates NtrA dependent promoters 

constitutively. Such a mechanism is unlikely to be responsible for the activation of dctA during 

symbiosis. Although such approaches are relevant and the results obtained instructive, they have to 

date not lead to the characterisation of the ASA. In order to elucidate the role of the ASA during 

symbiosis, we considered it imperative to study the ASA in situ during symbiosis with the Medicago 

host plants. In this work we have undertaken such a study of the regulation of expression of the 

S.meliloti dctA gene in planta. 
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Chapter 2) 

The state of the art 



2.1) Organisation of the dct gene cluster. 

The dct genes of S.meliloti and a number of related Rhlzobium species have been extensively studied. 

The first complementation studies, which were done with dct genes from a R.leguminosarum gene 

bank, identified three loci (Ronson era/., 1984). These loci were designated dctA, dctB and dctC. 

Furthermore, the results suggested that dctA encoded a structural component necessary for dCA 

transport. The dcfB and dctC genes, which are transcribed opposite to the direction of the dctA gene, 

were thought to encode positive regulatory elements. Further transposon insertions indicated the 

presence of a fourth locus between dctB and dctC. This fourth locus was designated dctD. Eventually 

it turned out that dctC was in reality a truncated version of dcfD, which led to a constitutive activation 

of the dctA promoter (Ronson era/., 1988). This left only two regulatory dct genes: dcB and dclD. 

Sequence analysis of the dcfBD genes revealed a striking homology to the nitrogen regulatory gene 

products NtrBC (Ronson et. al., 1987a & c; For a review see: Parkinson and Kofoid, 1992). Conserved 

sequences in the C- terminal part of the dcB gene and the amino terminus of the dctD gene were also 

found in an ever growing family of regulatory proteins. Many of these regulatory proteins act in pairs to 

relay environmental signals to an appropriate response at the molecular level (Fig. 2a). Genetic 

analysis and nucleotide sequencing of the S.meliloti dct genes revealed a high degree of homology 

with the dcfgene cluster of R.leguminosarum (Engelke era/., 1989; Jiang et al., 1989; Wang era/., 

1989). In summary, the S.meliloti dct region consists of three genes, required for the uptake of dCA in 

free-living conditions. The structural gene dctA, which codes for a high affinity uptake permease and 

the regulatory genes dcfBD, that code for a two-component sensor-regulator system (Fig. 1c). 

2.2) Role and function of the dctA gene. 

2.2.1) DctA is a high affinity permease located in the periplasmic membrane. 

C4-dicarboxylic acids: fumarate, succinate and malate (dCA) do not freely pass through the 

periplasmic membrane. Therefore, to be able to use dCA as a carbon source, bacteria require a 

specialised uptake system. The S.meliloti dctA gene codes for a high affinity permease for the uptake 

of dCA. This permease also transports the amino acid aspartate. Aspartate is an efficient inducer of 

the dctA gene, but the affinity of DctA for the uptake of this amino acid is lower than that for dCA 

(McRea et al., 1989). In practice this means that if dCA are present as well as aspartate, the latter is 

probably not taken up by DctA. 

Because DctA is a permease, it was expected to be located in the periplasmic membrane. This was 

confirmed by gene fusions to the E.coli alkaline phosphatase (phoA). This alkaline phosphatase is 

normally located in the periplasm. To study protein secretion, Hoffman and Wright (1985) constructed 

a modified form of the gene from which the promoter and signal sequence encoding region of the 

gene have been removed. Fusion proteins with this alkaline phosphatase are therefore only active 
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when the phoA part of the chimeric protein is located in the periplasmic spaca Manoil and Beckwith 

(1985) exploited this feature to construct a Tn5 derivative (Tn5 \S50L::phoA) which can be used to 

identify protein transport signals. This transposon has been exploited by sevoral groups to obtain 

random gene fusions of the phoA gene to genes coding for proteins which are located in the 

periplasmic membrane (Long et al., 1988). The dctA gene proved to be a suitable target to obtain 

active dctA-.phoA gene fusions (Long era/., 1988; Yarosh et al., 1989; Jording era/., 1993). Although 

DctB also is thought to contain an extracellular domain, no active dctB::phoA gene fusions were 

obtained (Yarosh etal., 1989). 

The topology of the DctA protein has been determined using the complementary features of alkaline 

phosphatase (phoA) and p-galactosidase (/acZ) gene fusions. Contrary to the phoA gene fusions, 

which are only active when the PhoA part of the fusion protein is exposed into the periplasmic space, 

gene fusions to lacZ are only effective when the lacZ portion remains in the cytoplasm (Manoil, 1990). 

From the deduced protein sequence of the DctA protein, 12 membrane spanning regions were 

predicted. The topology of the DctA comprised twelve transmembrane a-helices with the amino- and 

carboxyl- terminus located in the cytoplasm. This topology is confirmed by the activity of a range of 

dctA::phoA and dctA-.lacZ gene fusions (Jording etal., 1993). All translations] gene fusions to the lacZ 

genes, that have been constructed to date (Wang et. al., 1993; This work) also confirm this proposed 

topology of the DctA protein. 

2.2.2) DctA is involved in the regulation of its own expression. 

The absence of a functional DctA protein generally results in a constitutive high level of expression of 

the dctA gene. Gene fusions of the dctA promoter sequences to various reporter genes are highly 

expressed in a dctA' background (Yarosh etal., 1989; Jording etal., 1992; This thesis). This is true 

under free-living conditions as well as during the symbiosis (Jording et al., 1992). This suggests that 

DctA is somehow involved in the regulation of its own expression. To date, it is not known which part 

of the DctA protein is involved in this autoregulation. Yarosh and coworkers (1989) demonstrated that 

the regulatory cfclBD genes are required for the elevated expression of the dctA gene under these 

conditions. Being membrane located, it seems unlikely that DctA interacts directly with its own 

promoter region. The DctA protein may interact with the regulatory DctBD system. This may involve a 

direct protein-protein interaction with for example the DctB protein, which is also located in the 

periplasmic membrane (See Chapter 2.3). The existence of an additional regulator possibly sensing 

the internal levels of dCA and acting on the dctA promoter cannot be excluded. In this context it is 

interesting to observe that in the heterologous E.coli background, the resident cAMP receptor protein 

CRP has been demonstrated to negatively regulate the activity of the dctA promoter (Wang et al., 

1993; Chapter 2.7). 
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2.3) Role and function of the regulatory dctBD genes. 

Under free-living conditions, the expression of the dctA gene is regulated by the dctB and dcID genes. 

These regulatory genes are transcribed in the opposite direction from the dctA gene (Ronson etal, 

1984, 1987; Ronson and Astwood, 1985; Engelke era/., 1989; Jiang etal., 1989; Wang etal., 1989). 

The dcBD genes code for a two-component regulatory system belonging to a family of NtrBC sensor-

regulator molecules (Ronson etal., 1987; Parkinson and Kofoid, 1992). Members of this family of 

regulators are characterised by conserved domains in the C-terminus of the sensor proteins and the 

N-terminus of the regulators. 

Sensor 
DctB 
NtrB 
FixL 

Input signal 
transmitter module 

Response regulator 
DctD 
NtrC 
FixJ 

P I Conserved domains 2CS 

receiver module 

Parkinson & Kofoid, 1992 

Output signal 

Fig. 2a The two-component regulatory system: 

Signal transduction within a NtrBC type regulatory system takes place by means of 

auto-phosphorylation of a conserved domain in the sensor and subsequent specific 

phosphor transfer to a conserved domain in the response regulator. The input- and 

output signals are specific for each system. 

Based on these homologies, Ronson etal. (1987a), proposed a model for the regulation of dctA 

expression in response to the presence of dCA in the environment of the bacteria. In this model, DctB 

was proposed to be located in the cytoplasmic membrane and capable of sensing the presence of 

dCA in the periplasmic space. In the presence of dCA, DctB would activate DctD by means of a 

protein-protein interaction. By homology to the NtrBC system, this was proposed to involve a phospho-

transfer reaction (Fig. 2a). The phosphorylated DctD, which is free to move in the cytoplasm would 

activate the dctA promoter in turn. The ntrA gene product (NtrA, or a54), was also shown to be required 

for dctA expression (Ronson et al., 1987b). To date, this model largely still holds true. Signal 

transduction between the DctB and DctD has been studied in vitro with purified proteins (Giblin etal. 

1994; Chapter 2.8). Conform to the consensus, it has been shown to involve a mechanism of 
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phospho-transfer between the two proteins. The protein sequence of DctB reveals two potential 

transmembrane domains in the N-terminal part of the protein and suggests that a sizeable portion of 

DctB protrudes into the periplasmic space. This portion of the molecule presumably is involved in the 

sensing of the appropriate signal leading to the activation of the Dct system. The C-terminal portion of 

DctB contains a highly conserved Histidine residue (H410). This is the site of autophosphorylation of the 

sensor molecules. In the presence of an inducer compound (dCA, or the amino acid aspartate) in the 

environment, the phosphor group is transferred to the conserved aspartate residue in the amino 

terminus of DctD (D55). The C-terminus of the DctD molecule contains a helix-turn-helix motif, which is 

presumably involved in binding of DctD to the dctA promoter region. The phosphorylated DctD has an 

increased affinity for the dctA promoter DNA (Giblin etal. 1994; Chapter 2.8). The dctA promoter 

depends on the NtrA sigma factor (a54) for expression. The S.meliloti ntrA gene product (a54) is 

required for diverse metabolic functions. Apart from Dct, the ntrA gene is required for nitrate 

assimilation and symbiotic nitrogen fixation (Ronson et al., 1987b). 

DctD belongs to a family of transcriptional regulators which interact with o54, to activate their target 

ATP ADP + P, 

DctD 

NtrC 

NifA h-t-h 

Unkl & -2 

others ? 

Fig. 2b: Modular structure of DctD and related enhancer binding proteins: 

These transcriptional activators all have a highly conserved core domain which interacts with 

the EoM polymerase complex. They also feature a typical helix-turn-helix (h-t-h) domain for 

DNA binding. DctD and NtrC both belong to a two component system and have a similar N-

terminal domain which can be phosphorylated by their respective sensor molecule. 

promoters (Kustu et al., 1989). This family of regulators are characterised by a highly conserved 

central domain in the proteins (Fig. 2b, Morett and Segovia, 1993). Hybridisation of the S.meliloti 

genome with DNA probes representing this conserved central portion of dctD potentially identified 

more than 20 homologous regulatory genes (Jiang et al., 1989). The best known examples of these 
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regulators are NifA (nifgene regulation) and NtrC (nitrate assimilation). Two more genes have been 

cloned from S.meliloti, using a PCR approach to amplify the central portion of homologous regulatory 

genes. The function of these genes is not yet known, although it has been suggested that they may be 

involved in the expression of the dctA gene during symbiosis (Kaufman and Nixon, 1996). 

2.4) Primary structure of the dctA promoter region. 

When the closely related S.meliloti (Wang etal., 1989; Chapter 2.6) and R.leguminosarum (Jiang et 

al., 1989) dctA promoter regions were compared, an overall homology of 58% at the nucleotide level 

was observed. Moreover a number of domains were found to be conserved at a much higher degree 

(Wang et. al., 1989; Chapter 2.6). It seems likely that these conserved domains are essential for dctA 

(and dcBD) expression. The region between the dctA and dcB genes, where the promoters are 

located, measures 240 bp or 209 bp (depending on which of the two possible ATG start codons is 

taken as the translational start point of dctA). Each of these two ATG's is preceded by a good 

consensus ribosome binding site. Only the second ATG however is conserved between the S.meliloti 

and R.leguminosarum dctA coding regions (Fig. 2e) and therefore represents the more likely start site. 

In either case, the promoter and the start site for transcription are positioned upstream of the Sma\ site 

as transcriptional gene fusions at this point (pCU22 and pCU32, Wang et al., 1989) are fully functional. 

A consensus NtrA binding site (GG-N10-GC) has been identified 47 bp upstream of this Sma\ site. 

Transcription has been demonstrated to start around 10-11 bp downstream from this promoter site 

(Ledebur et. al-, 1990). NtrA dependent transcriptional activators, such as NtrC and NifA bind to 

sequences located 80 bp or more upstream from the promoter site to activate transcription. These 

upstream activator sequences, or UAS, are essential for efficient transcription from the target 

promoters. Based on their similarity with consensus NifA binding sites (TGT-N,0-AGA, Buck etal., 

1986), two UAS sites have been identified in the dctA promoter region (Ronson etal., 1987). These 

sites were later confirmed by in vitro methylation footprints and gel shift assays as being target sites 

for binding of the DctD transcriptional activator (Ledebur etal., 1990 and 1992). Both UAS are 

required for efficient transcriptional activation of the dctA promoter, despite the fact that the affinity of 

DctD for the downstream site is much higher than for the upstream sequence (Ledebur et. al., 1992). It 

seems likely that DctD binds co-operatively to both sites, to activate the dctA promoter. 

An additional conserved region is apparent about 30 bp upstream of the NtrA binding site. The 

function of this region has not been identified to date. Apart from the dctA promoter, there must also 

be a start site for transcription of the dcBD genes. The dcBD promoter has not been identified. The 

dclBD genes are expressed constitutive!y at a low level (Wang etal., 1989; Jording etal., 1992). This 

seems plausible in view of the fact that in order to detect the presence of the inducer and quickly 

activate the dctA promoter, the regulatory DctBD system must be already in place. The housekeeping 

o factor component of the S.meliloti RNA polymerase, encoded by the sigA gene, is homologous to 

the E.coli RpoD a70 subunit (Rushing and Long, 1995). Not much is known about the consensus DNA 
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sequence recognised by this polymerase holoenzyme. It seems likely that both the E.coliE-a70 and the 

S.me///ot/holoenzyme bind to similar -35 sequences (Boesten etal., 1987; Bae and Stauffer, 1991). 

However, despite the fact that the start site of the dcfc transcript has never been identified, it is clear 

that it must be located in the same region as the UAS sites of the dctA promoter. There are a number 

of TTG sequences, representing possible -35 recognition sites of the dctBD promoter. One of these 

corresponds with the conserved sequence about 50 bp upstream of the dctA promoter. This may well 

represent the dctBD promoter site. Binding of DctD to its UAS sequences is very likely to interfere 

with the initiation of transcription of the dcBD genes. This suggests a possibility of autoregulation of 

the cfcfBD operon. However, no significant difference has been observed in the level of transcription 

of dctB and dctD in the presence, or absence of inducer (Jording etal., 1992). These authors have 

also demonstrated that dcID probably has its own promoter and gene fusions to dctD are expressed at 

a higher level than those to dctB. This holds true for free-living cultures as well as bacteroids. Why this 

should be so, is not clear. Possibly more DctD molecules are required for an effective Dct system than 

DctB molecules. A DctB molecule located in the cytoplasmic membrane may phosphorylate and 

dephosphorylate many DctD molecules. 

2.S) Additional regulatory features of dctA. 

2.5.1) Expression of dc(A during symbiosis. 

Under free-living conditions, the regulatory dctBD genes are essential for activation of the dctA 

promoter. However at an early stage it became clear that certain regulatory dct mutants unable to use 

dCA for growth under free-living conditions, were fully effective for symbiotic N2-fixation (Ronson and 

Astwood, 1985). Similarly nodules induced by many S.melilotistrains bearing mutations in the dctBD 

genes efficiently fix nitrogen during symbiosis (Watson ef a/., 1988; Engelke ef a/., 1989; Jiang et al., 

1989; Wang etal., 1989, Yarosh etal., 1989). This demonstrates that in this specific environment 

regulatory molecules, other than DctBD, are involved in the expression of the dctA promoter. 

Symbiotic expression of a dctAv.lacZ gene fusion demonstrated that the dctA gene is indeed 

expressed during symbiosis in a dctD mutant background (Wang etal, 1989; Birkenhead etal., 1990). 

Despite extensive study of Dct, this alternative system of symbiotic activation (ASA) has not been 

identified to date. 

The existence of a specific symbiotic mechanism of dctA regulation led to the search of alternative 

mechanisms of dctA regulation explanta. This search has concentrated on the one hand on attempts 

to induce secondary mutations that affect dctA expression in a dctD mutant background and on the 

other hand on attempts to induce related regulatory systems that may have a cross-talk effect on dctA 

expression. Both approaches are based on the presumption that there exists a gene that is capable of 

activating the dctA promoter, which is not expressed under free-living conditions. Further it seems a 

foregone conclusion that the activation of the dctA promoter by the ASA is also a54 dependent. This 
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assumption is mainly based on the fact that a strain mutated in ntrk induces fully infected nodules, but 

dctA is not expressed in such nodules (This work and personal communication with other workers). 

However the transcription start point in a DctBD mutant background, during symbiosis has not been 

determined. Therefore the possibility remains that a second promoter, exclusively active under 

symbiotic conditions is responsible for the expression of dctA in the absence of the regulatory dctBD 

genes. 

By forcing a regulatory dct mutant to grow on a minimal medium with a dicarboxylate as sole carbon 

source one may select mutations that lead to the expression of the alternative activator. A second 

approach represents a systematic search for environmental conditions that will lead to the induction of 

the alternative activator under free-living conditions. These may be conditions that closely resemble 

the conditions that prevail inside a mature nodule during symbiotic N2-fixation. To date, none of these 

experimental approaches has been successful in identifying unequivocally the alternative symbiotic 

activator. 

2.5.2) The a54 dependent transcriptional activators. 

The transcriptional activator DctD has a modular structure. The N-terminal domain has homology with 

response regulators belonging to a family of two-component regulatory systems. The remainder of the 

closed complex 

UAS UAS .24 „12 

open complex UAS UAS 

DNA loo 

-24 -12 transcription 

_54. Fig. 2c: Positive activation of a o dependent promoter. 

The polymerase-sigma54 complex (Eo54) binds to the promoter site (-12,-24), but is unable 

to denature the DNA and form an open complex. A positive activator protein (P) is required 

that binds to an enhancer site (UAS), located upstream of the promoter. Simultaneous 

interaction with the polymerase-sigma54 complex results in looping of the DNA. This results 

in the formation of an open complex and efficient initiation of transcription. 
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molecule belongs to a family of proteins that work with the Ea54 holoenzyme to initiate transcription of 

their target genes (Kustu etal., 1989). The o54 subunit is peculiar among prokaryotic sigma factors in 

that the polymerase-sigma factor complex (Eo54) can bind to the promoter boxes, which are centred 

around -12 and -24 bp from the transcriptional start site. It forms a stable closed promoter complex, 

but is unable to isomerise into an active open complex (Fig. 2c). This step is mediated by the 

transcriptional activator, which binds to recognition sites typically about 80-100 bp upstream of the 

promoter site and interacts with the promoter complex. Initiation of transcription requires energy 

generated by ATP hydrolysis, catalysed by the transcriptional activator. For a review see Morett and 

Segovia (1993) and references therein. This mechanism of initiation of transcription is reminiscent of 

the activation of transcription by eukaryotic RNA polymerase II (Wang et al., 1992). The upstream 

activator sequences (UAS) are also referred to as enhancer like elements (ELE) and the 

transcriptional activator proteins as enhancer binding proteins (EBP). This family of transcriptional 

activators is characterised by a highly conserved domain of about 240 amino acids which contains the 

site for ATP hydrolysis and is shown to interact with a54 and the p-subunit of the polymerase (Lee et 

al., 1995). This core domain has been shown to be sufficient to initiate transcription by the Ea54 

complex (Huala and Ausubel, 1989; Huala etal., 1992). All these activators contain a domain, which 

features a classical helix-turn-helix motif and interacts with the UAS elements. This domain is usually 

located at the C-terminal end of the molecule. An exception forms the LevR regulator, involved in the 

regulation of the levanase operon from Bacillus subtillis, in which this domain is located upstream of 

the core domain in the N-terminal part of the molecule (Martin-Verstraete etal., 1991). 

Binding of the activators to the UAS sites confers specificity to the promoters (Ledebur et al., 1990). 

This may be because specific binding of the cognate activator to the UAS is a prerequisite for 

transcription. It has been shown that binding to the DNA stimulates the ATP hydrolysis by the activator 

and thereby the ability to activate transcription from the promoter (Lee etal., 1994). The simultaneous 

interaction with the UAS and the Ea54 complex involves the bending or looping of the intervening DNA 

(Su et. al., 1990). However, the interaction with the UAS is not an absolute requirement for 

transcription activation (Huala and Ausubel, 1989; Huala et. al., 1992). In such cases, it can often be 

argued that the experiments do not reflect the natural circumstances because they are either 

performed in vitro, or in a heterologous background. One notable exception is the symbiotic 

expression of the NifA regulated promoters P1 (ro/HDK) and P2 (fixABC). Under free-living 

microaerobic conditions the UAS are absolutely required for transcription from these promoters 

activated by NifA. On the other hand, these promoters are highly expressed during symbiosis, even 

when their UAS sequences are removed (Better et al., 1985; Wang et al., 1991). It is not known if 

other sequences do compensate for the absence of the UAS in that case. An additional deletion of 

DNA sequences downstream from the transcriptional start site further reduced the levels of symbiotic 

expression of P1 (Wang et. al., 1991). In the context of symbiotic expression of the dctA promoter, 

these observations are interesting. NifA is highly active during symbiosis and its target promoters are 

activated to very high levels of transcription. The interaction with the UAS of the target promoters is 
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not strictly required for transcriptional activation. However, the UAS are thought to be major 

determinants in conveying specificity of the transcriptional activators for their target promoters. 

Considering that NifA can efficiently activate transcription from its target promoters under symbiotic 

conditions, even when these are lacking their UAS sequences, one can also envisage NifA activating 

other o^-dependent promoters such as the promoter of the dct/K gene. 

2.5.3) Activation by NifA. 

The most obvious candidate for symbiotic activation of dctA seems to be the transcriptional activator 

of the nlf genes: NifA. Like DctD, NifA is a transcriptional activator of NtrA (a54) dependent promoters. 

They have a similar central "core" domain which has been shown to be able to activate heterologous 

NtrA (a54) dependent promoters (Huala & Ausubel, 1989, Huala et al., 1992). Unlike DctD, or NtrC, 

NifA itself is not a member of a two component regulatory system, but rather its transcription is 

regulated by the FixU system (David et al., 1988). FixU constitutes a two component regulatory 

system (Fig. 2a) which under microaerobic conditions turns on the transcription of the transcriptional 

activators NifA and FixK (Fig. 2d). These molecules in turn activate a substantial number of nif and fix 

UAS NTRA i ' N \ 

Fig. 2d: Regulatory cascade leading to the expression of the nifti gene. 

Under microaerobic conditions the two component regulatory system FixLJ activates 

among others the transcription of the nifA gene. The NifA gene product in turn activates 

a number of genes required for symbiotic nitrogen fixation. 
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genes. FixK is an Fnr/Crp type protein and therefore an unlikely candidate for the alternative symbiotic 

activator of dctA. Nif A on the other hand belongs to the family of a54 dependent transcriptional 

activators and is highly active during symbiosis. The primary target of Nif A ar 3 the P1 and P2 

promoters which direct the transcription of the n//HDK- and the fixABC operons respectively (Better ef 

a/., 1985). During symbiosis, these genes are highly expressed to levels about 20 to 30 times higher 

than the dctA gene (Birkenhead etal., 1990). The overall structure of the P1 and P2 promoters and 

the dctA promoter are very similar. For instance, the UAS sites upstream of the dctA promoter were 

first identified because of their similarity to the NifA target sites and were then proposed to be involved 

in the symbiotic activation of dctA (Ronson, 1988). 

When the symbiotic expression of a dctAv.lacZ gene fusion was measured in nodules induced by a 

S.meliloti strain defective in nifA, only background levels were obtained (Wang et al, 1989; Chapter 

2.6). This suggests that nlfA does indeed play a role in the symbiotic expression of dctA. It also 

suggests that the cognate DctBD regulatory system is unable to activate dctA in such nodules. This 

may be explained by the assumption that the fix' phenotype may lead to an inability of the host plant to 

provide dCA to the bacteroids. This result is in contrast with the results presented in another report 

(Jording etal., 1992). These authors showed symbiotic levels of dctA expression from nodules 

induced by a nifA and also fixL and fixJ mutant strains, which did not differ from those obtained in a 

wild-type background. Therefore, these authors concluded that NifA does nol play a role in the 

symbiotic expression of the dctA gene 

The nif and fix genes are controlled by a regulatory cascade which lead to this activation of these 

genes under microaerobic conditions (David era/., 1988). It has been reported that the expression of 

nifA is regulated by oxygen (Ditta etal., 1987). Under conditions of low oxygen pressure ( 1 % 02 , or 

less) the nifA gene is induced. This induction of nifA is followed by high levels of expression of its 

target gene nitt\. When such microaerobic conditions were imposed on a S.meliloti wild-type strain in 

the absence of dCA, no increase in the levels of dctA expression were observed. In the wild-type 

background it is possible that DctD, in an inactive state is bound to the dctA promoter DNA and as 

such prevents NifA from interacting with the dctA UAS. However, a dclD mutant strain also did not 

allow expression of a dctAr.lacZ fusion under these conditions, which led to high levels of expression 

from both the P1 and P2 promoters (Wang etal., 1989).. These results also seem to exclude NifA as 

a possible candidate for the ASA. 
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2.6) Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-

dicarboxylic acid transport. 

Authors: Wang, Y-P., Birkenhead, K., Boesten, B., Manian, S. and O'Gara, F. 

Published in: Gene 85 (1989) 135-144. 

Summary. 

In this work we cloned and analysed the dcfABD genes from S.meliloti CM2. The DNA region 

between the dctA and dcB genes was sequenced and compared with the sequence of the 

R.leguminosarum dct genes. A high degree of overall homology was found. A number of highly 

conserved regions were identified (Fig 2e). These were proposed to be involved in regulatory 

features such as a NtrA binding site, two upstream binding sites for NifA, a region we proposed to 

be a possible DctD binding site and the most likely start of translation of the dctA gene. As 

discussed previously (Chapter 2.4) the proposed NifA binding sites were later demonstrated to be 

the UAS recognised by DctD and required for DctD dependent activation of the dctA promoter 

under free-living conditions (Ledebur et al., 1990 and 1992). As discussed in Chapter 2.4, the 

proposed DctD binding site is in hindsight more likely the promoter region of the dcBD genes. 

Transcriptional gene fusions of the dctA and dctBD promoters to the enteric lacZ gene were 

constructed and the regulation studied under free-living and symbiotic conditions. During symbiosis 

the dctA promoter was shown to be active in nodules induced by the wild-type strain and the dctD 

mutant, but not the dcB mutant strain. Although C.W. Ronson (1988) already made mention of 

wild-type levels of activity from a dctAv.lacZ gene fusion during symbiosis in nodules induced by 

dcB and dcD mutant strains, this work was the first to actually show such data. 

We also investigated the possible role of NifA in the regulation of the dctA promoter. The finding 

that the dctAv.lacZ gene fusions were not expressed in nodules induced by a nlfA mutant strain, 

suggested that there may be indeed an involvement. On the other hand we were unable to activate 

the dctAv.lacZ gene fusions under free-living microaerobic conditions, although a nilHv.lacZ gene 

fusion was highly expressed under the same conditions, demonstrating that NifA was active. 
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Pstl <dctH 

CTGCAGGAAGTTTGACCATGCGiACATTGTGCATGTTTTC0CCCAGGACGCCAGCACT3'C 
::: : : : : : : : : : : : : ;; : :::: : ! 

TTTeTGCGACACGGACATQQCQQA CTTQTQCATOTTTCTaCACQAAACGCAAATGQAiy 

A 

61 •PaTaCGGAAATCCOCACATATCCACGAACGGCAAGCGAGCACCGCTCCCAAAAATGTCAT 

TGTGCGGATTTCCSCATTGCTTAGTTAGTTGTTAGC AGTCTCGTAAATTTTTCATTAAT 

B 

121 GGATTCAATCGCATAGGCCTTCCGCGGCAAACTC'GCACGCATGTTCCTGACAAGCTCCAC 

AAATTCAATCG GTTGGTTGGCGACTTAAAACTGCCACGGCGATTGCGAAGGAGGT GCC 

c n 

Smal Jc /A>(Sm) 

1 81 JUiGGCAGCCACTGCTGTCGATCTT CGGAAAGCGGCCCGGGAGGCCCGGCATGTTGCCGG 

&ACAACGGCTGAGCTGTTGGACTTGAAGCGAACGGCTCGGGAGG CCGG A GTT CGT 

dcth> 

241 ACTGGGCCTGCCACGTGGAGGATATCATG S.meliloti 

TCCGGACGAGCCACTAGGAGGACATCATG R.legUminOSarum 

Fig.2e: Sequence alignment of the S.meliloti (upper strand) and 

R.leguminosarum (lower strand) dct promoter regions. 

Conserved sequences in the dctk promoter region are shaded. According to Wang era/., 

1989 these correspond to: A & B, Nif A binding sites; C, possible DctD binding site; 0, NtrA 

binding site. The two possible translation start sites for dctA and the one for dcB are 

overlined. Also marked are the Pstl and Smal restriction sites. 
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2.7) The Escherichia cotfcAMP receptor protein (CRP) represses the Rhlzobium 

melilotl dctA promoter in a cAMP dependent fashion. 

Authors: Wang, Y-P., Giblin, L, Boesten, B. and O'Gara, F. 

Published in: Mol. Microbiol. 8 (1993) 253-259. 

Summary. 

In this work we studied the regulation of the S.mellloti dclA promoter in E.coli. In this heterologous 

background the dctA promoter was found to require the presence of the dctBD genes for activity. 

High levels of activity of the dctA::lacZ gene fusion was observed in the presence of dCA in the 

growth medium. When other carbon sources were used in the growth medium, different levels of 

activity were observed. These differences were related to the activity of the CRP molecule, which is 

modulated by the level of cAMP in the cell. On glucose the level of cAMP is low and the CRP 

molecule is inactive. Under these conditions, high level of activity was observed from the dctk 

promoter even in the absence of inducer. On non-PTS sugars such as maltose, the level of cAMP 

is high and the CRP-cAMP complex is active. Under these conditions, in the absence of inducer, 

the activity of the dclA promoter was low. We could demonstrate that the CRP-cAMP complex 

binds to the dctA promoter. We also found that the most likely binding sites for the CRP-cAMP 

complex are overlapping with the DctD binding sequences. We proposed that the CRP-cAMP 

complex competes with DctD for binding to the dctA promoter and prevents activation by the 

unphosphorylated DctD. In the presence of inducer, DctD will be phosphorylated and have an 

increased affinity for binding. In that case the CRP-cAMP complex cannot compete and high levels 

of dctkv.lacZ activity were observed. This mechanism assured a low background level of promoter 

activity in the absence of inducer. As such, it appeared to be essential for proper regulation of the 

dctk promoter in the E.coli background. We reasoned that a similar mechanism may also operate 

in S.meliloti. 
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2.8) Signal transduction in the Rhizobium meliloti dicarboxyttc acid transport 
system. 

Authors: Giblin, L, Boesten, B., Turk, S., Hooykaas, P. and O'Gara, F. 

Published in: FEMS Microboil. Lett. 126 (1995) 25-30. 

Summary. 

In this work we investigated the signal transduction between DctB and DctD in vitro. The regulatory 

proteins were overproduced in E.coli and purified. DctB was shown to have autophosphorylation 

activity in the presence of TP 3 2 -ATP and was able to transfer the radioactive phosphate to DctD. 

This supports the hypothesis that signal transduction between these regulatory molecules occurs 

by means of phospho-transfer. The phospho-transfer was specific in as far as no cross-talk could 

be observed with the purified components of the Agrobactehum tumefaciens VirA/VirG system. 

We could also demonstrate that the phosphorylated DctD had an increased affinity for binding to a 

DNA fragment containing the dctA promoter sequences. This supported our theory that 

phosphorylation of DctD is an important factor in its ability to compete with other regulatory 

molecules for binding to the DNA of its target promoter (as we discussed in 2.7). 

2.9) NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in 

Escherichia coli. 

Authors: Allaway, D., Boesten, B. and O'Gara, F. 

Published in: FEMS Microboil. Lett. 128 (1995) 241-245. 

Summary. 

In this work we investigated the possibility of 'cross-talk' between the DctBD system and the NtrBC 

regulatory system. In other words: the effect of the NtrBC system on the expression of a S.meliloti 

dctA::phoA gene fusion was studied in E.coli, either in the presence, or absence of the S.meliloti 

dcfBD genes. Under nitrogen limiting conditions, a significant induction of the dctA promoter was 

observed in E.coli. A mutation of the nt/C gene abolished this induction. This demonstrated that the 

activated NtrC could efficiently activate the S.meliloti promoter. We also could demonstrate that NtrB 

had a significant effect on the activity of DctD, suggesting that 'cross-talk' also existed on the level of 

sensor-regulator interaction. No significant effect of nitrogen limitation on dctA activity could be 

observed in S.meliloti. This suggested that unlike its E.coli counterpart, the S.meliloti NtrC could not 
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efficiently activate the dctA promoter. A comparison of the amino acid sequences revealed that DctD 

is more similar to NtrC from E.coli, than NtrC from S.meliloti. This was especially true for a region 

including the aspartate residue, which is the specific acceptor for phosphor transfer by the sensor 

protein. We reasoned that NtrC and DctD in S.meliloti may have diverged evolutionary from a 

consensus activator sequence in order to minimise interference between the Dct and Ntr two 

component systems. 

2.10) The state of the a r t 

From the data presented in the previous chapters, it can be seen that a lot of knowledge has been 

gathered on the regulation of expression of the S.meliloti dctA gene. We have discussed very little 

about the Dct system in other Rhizobia. In particular the dctA gene of R.leguminosarum also has 

been studied extensively and to date it appears that the two systems are very similar. In fact, 

information gathered from both systems has contributed to the current knowledge of the Dct 

system. Signal transduction by phospho-transfer within the DctBD two component regulatory 

system and the activation of the dctA promoter by DctD and the E-a54 holoenzyme are now well 

understood. The study of other 2-component systems, especially the NtrBC system and other a54 

dependent transcriptional regulators such as Nif A also have contributed enormously to the current 

level of understanding. On the other hand, several aspects of the Dct system are less well 

understood. For example the signal perception by DctB, or the role of DctA on its own expression. 

These items are more particular to the Dct system. It has probably been more attractive to study 

the general aspects of the Dct system because this research contributes to and benefits from the 

larger body of understanding of similar systems. 

However, this argument does not apply to the study of the ASA. The question of the alternative 

mechanism of symbiotic activation of the dctA gene was raised very early on by Ronson and 

Astwood (1985). It was subsequently addressed by several more research groups (Watson era/., 

1988; Engelke etal., 1989; Jiang etal., 1989; Wang etal., 1989, Yarosh era/., 1989). Significant 

efforts were made to try and identify the genes involved. It is therefore the more surprising that no 

real progress has been made on this subject. The reason for this may be the strict symbiotic nature 

of the ASA. The majority of efforts to study the ASA have concentrated on trying to induce the dctA 

promoter under free-living conditions in absence of a functional DctBD system. So far, no one has 

succeeded in finding the right conditions to induce the ASA under free-living conditions. Obviously, 

our understanding of the process of bacteroid development and what constitutes symbiotic 

conditions, is still very limited. A different approach would be to study the ASA in situ during 

symbiosis. The use of gene fusions in combination with histochemical staining techniques is a 

powerful tool to study the temporal and spatial patterns of gene expression in situ. In this thesis we 

will use these techniques to study S.meliloti dctA expression in situ during symbiosis with the 

Medteago host plants. 
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Chapter 3 

Methodology 



3.1 Introduction. 

In order to study the in situ expression of the S.meliloti dctA gene, we will use various reporter genes 

fused to the dctk expression signals (transcriptional and translational initiation signals). We will 

describe the construction of the various gene fusions that have been used in these studies. Many 

factors may influence the levels and the patterns of expression obtained from different gene fusions. 

The level of expression depends for example on the promoter strength and level of induction. Other 

factors such as the copy number of the carrier plasmid; the stability of the RNA, the efficiency of 

initiation of translation and the stability of the fusion protein all may have an effect. No doubt there are 

many more factors. Therefore a careful examination of how the gene-fusions are constructed and 

comparative examination of expression patterns under controlled conditions are necessary for each 

gene fusion plasmid that is to be used for further studies. 

Gene fusions may be located on free replicating plasmids, or may be integrated into the chromosome 

by a single or double cross-over event. Free replicating plasmids may be lost in the absence of a 

selective pressure. An antibiotic resistance gene on the plasmid and the corresponding antibiotic in 

the medium is normally used for this purpose. Gene fusions located on free replicating plasmids were 

mostly used in this study because of the relative ease at which they can be manipulated and 

introduced into a range of wild-type and mutant strains. Because no selective pressure by means of 

antibiotics can be applied during symbiosis, there may be some loss of plasmids during the in situ 

experiments. However in the two to three week time span of the experiments this was not found to be 

a problem. More sophisticated solutions such as the use of plasmids containing a stabilising locus to 

ensure correct partitioning of the plasmids during division of the bacteria (Weinstein et al., 1992) were 

considered, but found to be unnecessary. 

3.2) The reporter genes. 

To study the regulation of genes of interest, genes coding for readily assayable products such as the 

classical p-galactosidase (coded for by the enteric lacZ gene), may be exploited as reporter genes. 

Chimearic gene-fusions are constructed whereby the expression signals of the gene of interest are 

fused at the DNA level, to a gene fragment coding for the reporter protein. In this way, expression of 

the gene of interest can be monitored, assaying for the activity of the reporter gene product. In case of 

the p-galactosidase, the production of the enzyme in culture can be assayed by the hydrolysis of the 

ONPG substrate (o-nitrophenyl-p-D-galactopyranoside). This substrate is hydrolysed by the enzyme 

and the release of o-nitrophenol results in a vivid yellow colour which can be measured 

spectrophotometrically. The presence of the enzyme can be demonstrated in situ non-destructively by 

a chromogenic substrate: X-gal (5-bromo-4-chloro-3-indolyl-p-D-galactopyranoside, or X-p-D-gal). This 

substrate is taken up by the living bacteria and hydrolysed by the p-galactosidase resulting in a dark 

blue precipitate. For example colonies formed by lac* bacteria can be readily distinguished from lac 

bacteria (unable to produce the p-galactosidase) by virtue of their blue colour when grown in presence 

of X-gal. Over the years many variations of this theme have been developed. Many substrates have 
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been developed for different reporter genes. There are now substrates for various enzymes such as 

the alkaline phosphatase (phoA) or fj-glucuronidase (uidA), resulting in precipitates of different 

colours. This allows the simultaneous study of several gene-fusions to different reporter genes in a 

single bacterial strain. 

Gene fusions have been proven to be invaluable in the study of gene regulation in general and no less 

so for the study of dcrA regulation. To study free-living expression of the dcrA gene many LacZ (Jiang 

eta/., 1989; Wang era/., 1989; Jording and Punier, 1993;) and phcA (Long era/., 1988; Yarosh era/., 

1989; Ledebur etal., 1990; Jording and Punier, 1993) fusions have been constructed. 

When reporter genes are to be used to study gene regulation, a number of things must be considered. 

First of all, which reporter gene is to be used? In these studies we have considered three of the most 

commonly used reporter genes: lacZ encoding p-galactosidase; phoA encoding alkaline phosphatase 

and u/dA encoding ^-glucuronidase (GUS). Each of these genes originates from Escherichia coli. 

Second, what is the background activity in the Rhizobium host strain? If the constructs are to be used 

for in situ studies, the background activity in the plant tissue must also be considered. Third, which 

vector should be used? Free replicating plasmids are easy to handle and quickly introduced in a wide 

range of host strains. However in absence of a selective pressure, the free-replicating plasmids may 

be lost. Also the copy number of the carrier plasmid may influence the levels of expression obtained. 

Narrow hostrange plasmids integrated in the genome of the host are more stable than free replicating 

plasmids and the gene fusion is present in a single copy. Furthermore the upstream DNA is 

continuous with the chromosome, which ensures that promoter activity is always registered, even if the 

promoter is located further upstream than the DNA fragment cloned on the plasmid. On the negative 

side, integration may disrupt certain genes and influence the regulation of the gene of interest. The 

way the gene-fusions are constructed can have an important effect on the results obtained. This 

means that the more the studies become sophisticated, the more important it becomes to carefully 

design the gene fusions. 

3.2.1) The lacZ gene. 

The lacZ gene is by far the best known and most widely used reporter gene to date. Casadaban et al. 

(1980) constructed a range of plasmid vectors for the detection and cloning of translational initiation 

signals. Several of these constructs are at the basis of dcrA::/acZ gene fusions used in this work. In 

particular, they introduced a SamHI restriction site preceding the eight amino acid of the lacZ gene, 

which can be used for the construction of translational gene fusions. Ditta et a I. (1985) adapted these 

reporter genes to the use in a wider range of gram" bacteria by cloning them onto a broad host range 

replicon. S.melilotihas several genes coding for a p-galactosidase (Niel era/., 1977, Fanning etal., 

1988; Jelesko and Leigh, 1994). However the presence of these endogenous S.meliloti lacZ genes 

generally does not interfere with the gene fusions. This is probably because these lacZ genes either 

have to be induced, or are only expressed constitutively at a low level (Niel ef al., 1977). S.meliloti 

lacZ. mutant strains are available, but the use of such strains means that any additional mutation that 

may be of interest must be introduced into the lacZ parent strain. This limits the range of possible host 
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strains that may be used. Also it must be verified that the lacZ parent strain has no mutant phenotype 

that may interfere with the studies. For example in case of the GMI 5600 lacZ mutant strain, we have 

observed a significant effect on nodule morphology and symbiotic efficiency on alfalfa (See also 

Chapter 5.3.). 

3.2.2) The phoA gene. 

The enteric alkaline phosphatase (orthophosphoric-monoester phosphohydrolase EC 3.1.3.1; phoA) is 

an easily assayable enzyme, which is located in the periplasm of E.CO//K12. It is synthesised with an 

N-terminal signal sequence, which is required for its secretion. The enzyme is not active in the 

cytoplasm but only after it has been transported to the periplasm. In order to develop a tool for the 

study of protein secretion, Hoffman and Wright (1985) removed the promoter and N-terminal region 

coding for the signal sequence from the p/ioA gene. Gene fusions between the N-terminal part of a 

gene of interest, with this modified form of the phoA reporter gene, only show phosphatase activity 

when the phoA part of the protein is located in the periplasmic space. Manoil and Beckwith (1985) 

exploited this feature to construct a Tn5 derivative (Tn5 IS50L::p/7oA), that carried this truncated phoA 

reporter gene and which can be used to identify protein transport signals. This transposon has been 

exploited by several groups to randomly obtain gene fusions to the phoA gene (Long era/., 1988). The 

dctA gene, coding for a permease protein that is located in the periplasmic membrane, proved to be a 

suitable target to obtain dctA::phoA gene fusions that show phosphatase activity (Long et al., 1988; 

Yarosh er al., 1989; Jording ef al., 1993). Although DctB also is thought to contain an extracellular 

domain, no active dctBv.phoA gene fusions were obtained (Yarosh era/., 1989). 

The use of the phoA gene as a reporter gene in S.meliloti requires a mutant strain, which has a low 

background activity of alkaline phosphatase (Rm8002, Long et al., 1988). This significantly limits the 

range of S.meliloti wild-type and mutant strains that can be readily used for expression studies. Also 

its use is limited to proteins which are located in the cytoplasmic membrane, or are exported to the 

periplasm. DctA is located in the periplasmic membrane, but only certain regions of the protein are 

exposed to the periplasm. Therefore only a fraction of the possible dctAv.phoA gene fusions resulted in 

chimearic proteins that also have phosphatase activity (Jording et al., 1993). 

3.2.3) The u/dA gene. 

The Escherichia coll (J-D-glucuronidase gene (uidA, GUS), coding for a p-D-glucuronoside 

glucuronosohydrolase (EC 3.2.1.31). This enzyme is an acid hydrolase that catalyses the hydrolysis of 

a wide range of p-D-glucuronides. Many substrates for spectrophotometric, fluorometric and 

histochemical analysis are available. The gene is widely used as a sensitive and versatile gene fusion 

marker, both in prokaryotes as well as eukaryotic organisms (Jefferson et al., 1986; 1987; Gallagher, 

1992). There is no GUS activity detectable in S.meliloti under free-living or symbiotic conditions. 
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3.3) Background enzymatic activities in plant tissue. 

In-situ studies with reporter gene fusions are hampered by the endogenous enzymatic activity of the 

plant tissues. Effective ways of avoiding background (5-galactosidase activity in plant tissues has been 

reported by Teeri et al. (1989) and phosphatase activity by Reuber ef al. (1991). The latter actually 

used a dctk::phoA gene fusion as a positive control to study S.meliloti exo gene expression in alfalfa 

nodules. This study is to our knowledge the only report on In-situ dctA expression to date. The 

Escherichia coli p-D-glucuronidase gene (GUS) is widely used as a sensitive and versatile gene 

fusion marker in higher plants (Jefferson et. al., 1987). There is virtually no background GUS activity in 

the roots of alfalfa and other Medicagospecies, which makes it a very reliable marker in this symbiotic 

system. It has been successfully used to study the temporal and spatial regulation of symbiotic genes 

of S.meliloti in planta (Sharma and Signer, 1990). The major drawback of the GUS marker is its 

sensitivity to fixation agents such as glutaraldehyde. 

For maximum reliability of the in situ expression patterns it is advisable to use more than one fusion 

construct, if possible with different reporter genes. 

3.4) Construction details of the gene fusion plasmids. 

3.4.1) Basic strategies. 

The lacZ gene used in this work, is lacking both transcriptional and translation al start signals and has 

been constructed by M.Casadaban ef a/(1980). It was originally located on a plasmid called pMC874. 

A close relative of this plasmid, which only differed in the available useful restriction sites downstream 

of the lacZ gene, is pMC931. The lacZ. gene was transferred from pMC931 to a derivative of the broad 

host-range, low copy-number plasmid pRK290, which resulted in pGD926 (Ditta et. al., 1985). The 

transfer of the lacZ. gene from pMC874 to the narrow host-range, high copy number pBR322 resulted 

in pMC1403 (Casadaban et. al., 1980). 

In this work we have used three basic strategies to obtain dctk:.iacZ. gene fusions located on broad 

host-range mobilisable derivatives of pRK290. The 700bp dctA gene fragment from pCU700 was 

recovered and cloned into pBluescript SK". This is a small, high copy-number plasmid, ultimately 

derived from pBR322. After manipulation the dctA fragment may be cloned into pGD926 to obtain the 

desired construct. It is also possible to liniarise both the pSK derivative and pGD926 and combine the 

two plasmids. Obviously, these cointegrates are constructed in such a way that the desired dctk:.lacZ 

gene fusion is created through fusion of the two plasmids. An advantage of this procedure is that the 

cointegrated plasmid can be selected for, after transformation, by combining the antibiotics selective 

for each plasmid. The third strategy is to construct the dctk.'.lacZ. gene fusion in a pMC1403 derivative 

and then form cointegrates of these plasmids with the broad host range plasmid pRK290. All three 

strategies have been used to construct the various plasmids used in this work, 
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3.4.2) The parent plasmid pCU700. 

Plasmid pCU700 used in these studies was constructed by Wang et al. (1993; Chapter 2.7). This gene 

fusion was obtained by cloning a 700 bp Pst fragment, with suitable linkers into pGD926 (Fig. 3a B). 
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Fig. 3a: The S.melilott dot genes and gene fusions to the lacZ reporter gene. 

A) The S.meliloti def genes are located on the pexo megaplasmid. B) Plasmid pCU700 contains a 

700 bp Pst def fragment cloned, with a suitable linker into pGD926. C) Plasmid pBBA2, is a 

derivative from pRKP9 in which a 260 bp Pst\-Bcl\ dctA fragment replaced the nifH promoter. D) 

The nilHJacZ fusion plasmid pRKP9. B, BamHI; Be, Bc/I; Bg, Bgl\\; E, Ecofll; V, EcoRV; H, H/ndlll; 

Sp, Sph\\ P, Pst\; NtrA, NtrA binding site (promoter); UAS (upstream activator sites), binding sites 

for transcriptional activator (DctD; NifA). 

Plasmid pGD926 is a low copy number, broad host range, translational lacZ fusion plasmid. The 

upstream Psfi restriction site is located just inside the coding region of the divergently transcribed dcB 

gene. The downstream fusion site is located about 500 bp inside the dclA gene. The 700 bp Psfl 

fragment contains the complete intergenic region between the dctA and dcB genes and therefore 

presumably all necessary elements for expression of the dctk gene. The S.meliloti dctk gene contains 

two possible ATG start codons, only 33 bp apart from each other. Each ATG is preceded by a good 

consensus ribosome binding site (Engelke era/., 1989; Wang era/., 1989; Chapter 2.6; Fig. 2e). Only 

the second ATG is conserved between the S.meliloti and R.leguminosarum dctA genes (Jiang et. al., 

1989). Assuming this second ATG is the start codon of the dctA gene, the Psfl site is located at amino 

acids 161-162 (Fig. 4a). This N-terminal region of the DctA protein contains 4 of the 12 
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transmembrane domains (Jording era/., 1993). The resulting DctA::LacZ fusion protein therefore is 

likely to be inserted into the periplasmic membrane. 

3.4.3) The "Short" dc£A::/acZ gene fusions. 

The location of the pCU700 encoded dctA.UacZ gene fusion product in the membrane led to some 

concern about the "fitness" of the bacteria expressing this gene fusion. Although under free-living 

conditions strains bearing this plasmid generally behave normal, we noticed that inducing the gene-

fusion led to smaller colony size, suggesting that expression of the fusion protein slows down the 
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Fig.3b: Construction of a 

dctAr.lacZ gene fusion 

lacking the dctA coding 

region. 

1) The 700 bp Pst\ dctA fragment 

from pCU700 was cloned into a 

high copy number plasmid 

(pBluescript SK") to facilitate 

genetic manipulation. 2) The 260 

bp Psfl-Bc/I fragment from pSKA9 

was cloned into pSKBBB. This 

removed most of the dctA coding 

region. The SamHI Sg/ll and Belt 

restriction sites allowed to 

manipulate the reading frame. 3) 

The 267bp Psfl-Bflf/ll dctA 

fragment from pSKM was used 

to replace the n/IH fragment from 

pSVP9. 

B = SamHI; Be = Sc/I; Bg = BgM; 

E = Econ; H = H/rtdlll; K = Kpn\; 

P = Psti; B/Bg = SamHI- Bg/!l 

hybrid site. A colour code for the 

various is given in panel 1 
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growth of the bacteria. Also we noticed that a dctA mutant strain (F642) with pCU700 died during 

storage; even when stored at -80°C. Therefore, novel "short" dc(A::/acZ gene fusions were 

constructed. Unlike the gene fusion on plasmid pCU700 that was taken as a starting point of these 

studies, the reporter genes were now directly fused to the putative ATG translational start codon of the 

DctA protein. A Bch restriction site conveniently overlapping this ATG was used to construct these 

gene fusions. 

The first step was to clone the ca. 700 bp. Pst dctA promoter fragment from pCU700 into pBluescript 

SK. This resulted in a plasmid designated pSKA9 (Fig. 3b 1). Next, the 260 bp Pst-BcH from pSKA9 

was cloned into a custom made pBluescript SIC derivative (pSKBBB) containing the compatible Bet; 

Bgh\ and BamHI restriction sites in three different reading frames. This resulted in plasmid pSKA4 

(Fig. 3b 2) Plasmid pSVP9 was obtained by restriction of the nHH:.lacZ fusion plasmid pRKP9 (Fig. 3a 

D) with EcoRI and resolving the pSVP9 and the pRK290 moieties. The promoter fragment from 

pSKA4 was then excised as a EcoRI-Bg/ll fragment and used to replace the n/'/H promoter in pSVP9 

(Fig. 3b 3). This resulted in an in-frame gene fusion of the second amino acid of dctA to the lacZ 

gene. Finally this plasmid, designated pSVPA, was linearised using the unique EcoRI restriction site 

and cloned into the EcoRI site of the broad host-range plasmid pRK290. Three plasmids conferring 

resistance to ampicillin as well as tetracycline were obtained and conjugated into a wild-type S.meliloti 

strain. All three plasmids (pBBA2, -4, & -6) gave similar patterns of expression during symbiosis with 

alfalfa. One such plasmid (pBBA2, Fig.3a C) was used for more detailed studies. The orientation of 

pSVPA in pBBA2 with respect to pRK290 has not been determined. The "short" promoter fragment of 

pSKA4 has also been cloned as a Hind\\\-Bgt\ fragment into pGD926, the parent plasmid of pCU700. 

This resulted in plasmids pBBBgl & -2 (Fig.3d panel C). The gene fusions on these plasmids are 

identical to that on to pBBA2. 

3.4.4) The GUS fusions. 

The same Bet restriction site overlapping the ATG start codon was used to construct a dctAvuidA 

gene fusion (Fig.3c). Plasmid pSKA9 was used to construct the GUS fusion. The 975 bp Sca\-Bcl\ 

fragment was fused with a 3,75 Kb Seal-BamHI fragment from pCOOGUS, bearing the uidA reporter 

gene. The resultant fusion of the two plasmid halves was designated pBBGA. The gene dctA::u/dA 

gene fusion on pBBGA can be excised as a Pst or Hind\\\ cartridge. The dctA-.uidA gene fusion was 

cloned into the Pst restriction site in the ^-lactamase (amp) gene of pRKP9. This resulted in a plasmid 

pRKP4, containing the dctA::uidA gene fusion as well as a n//H::/acZ fusion. Similarly the fusion 

cartridge was also cloned into the amp gene of the narrow host range plasmid pSUP202. This plasmid 

pSUPGAI, may be mobilised into S.meliloti and is expected to integrate into the genome by a single 

crossover event in the dctk promoter region. Both plasmids have the gene fusion cloned in an 

orientation opposite to the direction of transcription of the ^-lactamase gene. 

Despite the fact that the ATG of dcflA is not in frame with the ATG of o/dA, this gene fusion is 

expressed efficiently. Translation may initiate at the ATG of the dctA gene, resulting in a peptide of 12 

amino acids before running into an TGA stop codon. The uidA start codon is located only 7 bp. 
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downstream of the dctA ATG. It seems likely that this ATG Is utilised to express the ^-glucuronidase. 

The fact that translation of the dctA::uidA gene fusion is efficiently initiated at the uidA-ATG may 
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Flg.3c: Construction broad 

host range plasmid bearing 

a dctA::uldA gene fusion. 

The moieties of pSKA9, 

containjng the dctA promoter and 

pCOO, containig a promoterless 

uidA gene, were fused together to 

produce a plasmid pBBGA 

bearing a dctAr.uidA gene fusion. 

The dctA.uidA cartridge was 

excised from pBBGA as a Pst 

fragment and cloned into the 

ampicillin resistance gene (amp) 

of pRKp9. This resulted in pRKP4 

bearing both, a n/7H::/acZ and a 

dctA.uidA gene fusion. 

B = BamHI; Be = Bc/1; Bg = BglH; 
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indicate that translation of the dctA gene is indeed initiated from the second ribosome binding site, 

rather than the one 33 bp further upstream. As the dctAv.uidA gene fusion gave satisfying results, no 

further attempts were made to correct the reading frame. The possibility remains that such corrections 

will result in more efficient expression of the fusion protein. 

Even though the GUS activities in terms of nmoles o-nitrophenol released per minute, are low (when 

compared with the rates obtained from of the lacZ gene fusions), background levels in S.meliloti and 

Medicago are undetectable. This means that this particular GUS fusion can be used reliably as a 

reporter gene of dctA activity. 

A second dctAv.uidA gene fusion cartridge has also been constructed. The design of this plasmid was 

based on the fact that a Sad restriction site, located at amino acids 43-44 and just downstream of the 

first transmembrane domain of the dctA gene, is in-frame with the Sad cloning site upstream of the 

uidA gene in pCOOGUS. A method of construction, similar as for pBBGA, was used to yield a plasmid 

designated pBBGA23. In theory this cartridge contains an in-frame dctAv.uidA gene fusion. However, 
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when cloned into pRKP9 (resulting in a plasmid designated pRKP23) and transferred into S.meliloti, 

no expression was ever obtained from this GUS fusion. Probably, the periplasmic location of the GUS 

moiety prevents this fusion protein from being active. If that is the case, than it would confirm the 

presence and functionality of the first transmembrane domain of the DctA protein. 

3.4.5) Construction of dctA::lacZ gene fusions using PCR. 

During these studies, it became clear that sequences downstream of the translational start site of the 

dctA gene are involved in the regulation of expression of the gene. Also, just like the n/'/H gene, which 

pSKA9ASc 

DNA - - 3 -
-20 ^ 

5'-

-20 x rev (384bp) 

E2 x rev (309bp) 

-20xBl(286bp) 

E2 x Bl (21 lbp) 

Bl rcv 

H.SpJP Be Sc 

UAS UAS NTRA 

-3 ' 
5' 

dctA 

E Be Sc 

NTRA 

dctA 

H,Sp,P BcB 

HASUAS NTRA NTRA [*—\ 

BcB 

NTRA p—1 

Fig. 3d: The PCR products. 

A pSKA9 derivative from which the Sacl fragment has been deleted (pSKA9ASc) was 

used to PCR amplify DNA fragments. Various combinations of primers were used to 

obtain the required fragments. The -20 and rev primers are standard M13 primers. The 

B1 and E2 primers were purpose designed to introduce suitable restriction sites for 

cloning purposes. The sizes given in brackets are those of the dct sequences contained 

within the amplified fragments. B = SamHI; Be = Sc/I; E = EcoRI; H = H/ndlll; P = Pst; 

Sc = SaC\; Sp = Sp/il; UAS = upstream activator sites; NTRA = ofctA promoter. 

is efficiently expressed during symbiosis even without the UAS (Better et al., 1985), the possibility 

existed that the upstream activator sequences (UAS) might be dispensable for symbiotic expression of 

the dctA gene. To investigate to what extent promoter sequences are required for expression we 

decided to construct a number of gene fusions with predefined limits on the dctA fragments. To 
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achieve this, a number of oligonucleotide primers were designed for PCR am 

fragments with suitable restriction sites in their extremities for fusion with the 

B1 primer (CTCGGATCCGCGGAATGTTCGAT) introduced a SamHI restriction 

plification of dctA DNA 

lacZ reporter genes. The 

site at the eight codon 

H,Sp,P 

A) pCU700 

B) pBBB5 

C) pBBBgl 

D) pBBEB4 

Be 

dctA 

H,Sp,P BcB 

H,V,E,P Bc,Bg/B 

H.V.E 

• dct \lac 

Fig.3e: The pGD926 dctA::lacZ fusion plasmlds. 

A) Plasmid pCU700 contains a 700 bp Pst defragment cloned into pGD926. B) The cloning 

of a 286 bp PCR amplified fragment, directly into pGD926 resulted in pBBB5. This DNA 

fragment codes for only the first 8 amino acids of the DctA protein. C) For the construction of 

pBBBgl, a 266 bp Pst\-Bcl\ fragment was cloned, with a suitable linker, into pGD926. This 

DNA fragment does not contain any part of the dctA coding region. D). The cloning of a 211 

bp PCR amplified fragment with suitable linkers into pGD926 resulted into BBEB4. This 

plasmid carries a dctA::/acZ gene fusion , identical to pBBB5, but the fragment is lacking the 

UAS sequences.. B = SamHI; Be = Bcl\; E = EcoRI; H = H/ndlll; P = Psfl; Sc = Sacl; Sp = 

Sph\; UAS = upstream activator sites; NTRA = dctA promoter. 

of the dctA coding region. This site can be used for cloning in-frame with the tacZ genes, into the 

SamHI restriction sites in pGD926, or pMC1403. The E2 primer 

(ACGAATTCCACGAACGGCAAGCGAG) was designed to introduce an EcoFll restriction site just 

downstream of the UAS. A version of pSKA9, restricted with Sacl and religated (pSKA9ASc) was used 

as a DNA source to PCR amplify the various dctA gene fragments using different combinations of the 

B1, E2 and the standard M13 forward (-20) and reverse primers. Four different size fragments were 

obtained whose identity could be confirmed by restriction digests (Fig. 3d).Thu DNA fragments 

amplified with the B1 and -20 primers were restricted with SamHI and H/ndlll and cloned directly into 

pGD926. This resulted in a trio of gene fusion plasmids pBBB5, -6 & -7 (Fig. Ole panel B) which 
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displayed the correct restriction pattern. All three plasmids were conjugated into S.melilotiand found 

to be efficient dctAv.lacZ gene fusions. 

To obtain a dctkv.lacZ gene fusion comparable to the pBBB plasmids, but lacking the UAS, the 211 bp 

PCR fragment obtained from the B1 and E2 primers was used. The EcoRI restriction site incorporated 

in the upstream primer did not allow the direct cloning of this PCR DNA into pGD926. Therefore this 

DNA was restricted with BamHI and EcoRI and first cloned into the pBluescript SK plasmid. A number 

of plasmids featuring the correct restriction pattern were obtained. The DNA from ten such pSKEB 

plasmids was pooled and liniarised with the BamHI restriction enzyme to cointegrate these plasmids 

with pGD926, also liniarised with BamHI. Nine cointegrates were obtained on medium containing 

antibiotics selective for both plasmids. Interestingly all nine contained the pSKEB plasmids in the 

correct orientation resulting in a dctA::lacZ gene fusion. In order to obtain the pGD926 plasmids 

containing the dctA::/acZ gene fusions, the cointegrates were restricted with Hindu and religated. This 

resulted in the loss of the pBluescript replicon. Transformation of DH5 and selection on tetracycline 

produced the required pBBEB fusion plasmids. Similarly, corresponding plasmids containing the dctA 

promoter fragment in the high copy number pBluescript vector (pSKEB), were obtained by restriction 

of the cointegrates with BamHI and selection on ampicillin. In this manner the nucleotide sequence of 

the dclA fragment of each pBBEB plasmid could be verified by sequencing the corresponding 

fragments in the pBluescript replicons. Three pBBEB plasmids (pBBEBI, -2 & -4; Fig. 4e D) were used 

for further studies. Sequence analysis of the pSKEBI, -2 & -4 was carried out and each one contained 

the correct dctA fragment without any mutations, or alterations. 

3.5) Microbiological techniques and plant growth conditions. 

3.5.1) Microbiological techniques. 

Complex medium for E. coli and S. me///otf was Luria broth (Gibco). Minimal medium for Rhizobium 

was as described by Vincent (1970), supplemented with 6 mM nitrate as a source of nitrogen and 1 

nM biotin. Carbon sources were added at 0.2 % w/v. 

Plasmids were transferred from the E. coli donors into S. meliloti by tri-parental matings using 

pRK2013 as helper plasmid as described by Ditta etal. (1980). Exconjugants were selected on 

minimal medium supplemented with suitable antibiotics and purified on complex medium. 

Transduction experiments with the N3 transducing phage were carried out as described by Martin and 

Long (1984). 

3.5.2) Plant growth conditions. 

Medicago sativa cv. Europe and Medicago truncatula cv. Jemalong plants were used in this work. 

Seeds were sterilised and germinated and plants were grown on agar slants in glass tubes, under 

controlled conditions as described by Ardourel et al. (1994). Two plants were grown in each tube. 

Three days old seedlings were infected with appropriate S.meliloti strains. The strains were pregrown 

on solid complex medium in the presence of the appropriate antibiotics to ensure the presence of the 
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plasmids. A loopfull of bacteria was resuspended in 3 mi. sterile water. Inoculation 

was avoided because of possible transfer of nitrogen containing compounds 

suspension was used to infect the 2 seedlings/tube. In our experimental setup, 

nodules were obtained from the wild-type strains within two weeks after infection 

3.6) Enzymatic assays and histochemical staining. 

from a liquid culture 

0.3 ml of the bacterium 

, mature N2-fixing 

3.6.1) The enzymatic assays of fusion activity. 

p-D-galactosidase and p-D-glucuronidase assays were modified in order to have a standard assay for 

both types of enzyme, suitable for free-living cultures as well as bacteroid suspensions. In a typical 

assay, 250 pi of a cell suspension (In growth medium, or diluted in 0.1 M phosphate buffer pH 7) was 

mixed with 250ul assay buffer ( 0.1 M NaHP04 pH 7; 50 mM p-mercaptoetha|nol; 0.2 % Sodium lauryl 

sarkosine; 0.2 % Triton X-100; 10 mM KCI and 1 mM MgS04). These were intubated at 37°C for 5 

min, before adding 50 pi substrate (4 mg/ml o-nitrophenyl-p-D-galactopyranoside or p-nitrophenyl-p-D-

glucuropyranoside). Incubation proceeded at 37°C until a yellow colour deve oped (Usually 15 mins. 

for LacZ and 60 mins. for the GUS fusions). The reaction was stopped by the addition of 200pl 1M 

NaC03. The release of o-, or p-nitrophenol was measured at 420 nm, the enzyme activities calculated 

and expressed in terms of nmoles nitrophenol released / min. x OD600. Because the p-D-

galactosidase assay according to Miller (1972) is done at 28°C, the effect of the increased 

temperature on the assay was evaluated. The levels measured at 37°C were on average about 50% 

higher than those measured at 28°C. This is more than would be expected from the increased 

temperature alone and may be due to a better lysis of the cells at the elevated temperature. 

3.6.2) Preparation of bacteroid suspensions. 

Bacteroid suspensions for the measurement of the activity of the gene fusions during symbiosis were 

prepared as follows. For the measurement of the p-D-galactosidase activity the nodules were first 

fixed in glutaraldehyde as described below. The fixation step specifically reduces the background p-

galactosidase activity of plant origin. For the p-D-glucuronidase assays freshly picked nodules were 

taken. The nodules were sampled in 1 ml of 0.1 M sodium-phosphate buffer bH = 7,0; 0.1% Triton. 

The nodules were crushed with a appropriately shaped glass rod. The use oi glass powder was 

avoided as it influences the O D ^ readings. After vortexing for 30 seconds tre samples were left 

standing for 15 mins. to allow the plant debris to settle. A 0,5 ml sample of the supernatant was 

carefully taken off without disturbing the pellet, and used for immediate assays as described in 3.6.1. 
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3.6.3) Histochemical techniques. 

Plant root material infected with S.meliloti strains carrying lacZ gene fusions was sampled in petri 

dishes containing 20 ml 0.1 M Sodium-phosphate buffer pH = 7; 0.1% Triton. The free air was 

expelled under vacuum for 30 min. After the vacuum step, the samples were fixed in 1.25 % 

glutaraldehyde in 0.1 M phosphate buffer pH = 7, for 30 mins. This fixation step specifically inactivates 

the p-galactosidase activity of plant origin (Teeri era/., 1989). Root systems and young nodules (less 

than 7 dpi), were stained directly in staining buffer (0.1 M Sodium-phosphate buffer pH = 7; 0.1% 

Triton, 5 mM K3[Fe(CN)6] and 5 mM KJFefCNfo]), containing 0.02% 5-bromo-4-chloro-3-indolyl-p-D-

galactopyranoside (X-gal). Undisected samples were stained overnight for 20 hrs. The penetration of 

mature nodules by the dyes is hampered, especially into the late symbiotic zone III. Therefore the 

mature nodules were fixed in glutaraldehyde and mounted in a H1250 Microcut vibrating blade 

microtome (Energy Beam Sciences) under 0.1 M Sodium-phosphate buffer pH = 7 and sliced into 80 

urn sections. The sections were incubated in staining buffer with X-gal for various amounts of time, 

depending on the strength of the fusions and the intensity of staining required. Typical staining times 

for nodule sections are less then 1 hr for the highly expressed n//H:.7acZ gene fusions and about 2,5 

hrs. for most dctA:.lacZ gene fusions. The staining reaction was stopped by washing the sections in 

acetone. The sections could be stored under clean water for several weeks at 4°C. 

In case of the GUS fusions the fixation step is omitted. Entire root systems and young nodules were 

stained in petri dishes containing 20 ml staining buffer containing 0.02% 5-bromo-4-chloro-3-indolyl-p-

D-glucuronic acid (X-glc). The free air was expelled under vacuum for 30 min. and the samples 

incubated overnight at 37°C. Mature nodules were sliced in the vibratome and the sections stained for 

several hours. The staining reaction was terminated by fixation in 2% glutaraldehyde. 

Double staining involved an initial staining of the unfixed sample for GUS activity, followed by a 

fixation step and staining for p-galactosidase activity with the Magenta™-f>-D-gal substrate. The 

chromogenic substrates were obtained from Biosynth AG, Staad, Switzerland. 

The specimens were observed by brightfield microscopy at low magnification with a Wild Leitz M3Z 

binocular equipped with a MPS 48 photoautomat and at higher magnifications with a Zeiss Axiophot 

photomicroscope. 

3.7) Bacterial Strains, Plasmids and Bacteriophage. 

Table 3a: Bacterial Strains, Plasmids and Bacteriophage used In this study. 

Designation Relevant Characteristics Reference / Source 

S.meliloti: 

RCR2011 SU47, wild-type, nod+, fix+ on Medkagospp Rosenberg era/., 1981 

1021 SU47, StrR Meade ef a/., 1982 

102F34 commercial inoculant strain, Nitragin Co., Milwaukee, Better etal., 1983 

Wisconsin. 

Chapter 3: Methodology 52 



1531 

GMI 211 

GMI 5600 

F121 

F332 

F642 

1354 

20D1 

D2R 

E.coli: 

DH5 

GM48 

Plasmlds: 

pBluescript SIC 

pSKBBB 

pSKA9 

pSKA9ASc 

pSK4 

pRKP9 

pMB1156 

pML330 

pCHK57 

pSVP9 

pRK290 

pSVPA 

pBBA2, -4 & -6 

1021 pSym20::Tn5, NmR, StrR 

2011 L"; a lac negative derivative of 2011 Str3, StrR 

GMI211 pSym20::Tn5, NmR, StrR (Transduced from 

1531) 

Rm 1021, cfclD16::Tn5, NmR, StrR 

Rm 1021, cWB18::Tn5, NmR, StrR 

Rm 1021, cfcfA14::Tn5, NmR, StrR 

Rm 1021, n;/A::Tn5, NmR, StrR 

dcID', Nm , Tn5 insertion of F121 transduced into 2011 

F121/pBBA2 transduced back to wild-type phenotype, 

dc(D+, Nms. 

Ruvkun etal., 1982 

Niel etal., 1977 

David etal., 1988 

Yarosh, 1989 

Yarosh, 1989 

Yarosh, 1989 

Zimmerman etal., 

1983 

This work 

This work 

recA1, enoA1, /jsdR17, supE44, V, tfiM, gyrA96, reiM, Hanahan, 1983 
deoR 
F, thr, leu, thi, lacY, gaK, gaft, ara, fnuA., tsx, dam, dcm, Marinus etal., 1973 

supE44 

Phagemid, fl(-) origin of replication, ColE1 replicon, ApR Stratagene 

pSK" derivative with BamHI; BgA\ and Bck restriction sites This study 

in three different reading frames, ApR. 

700bp eamHI-H/nDIII dctk promoter fragment of pCU700 This study 

cloned into pSK", ApR 

Derived from pSKA9 by deleting the Sad fragments from This study 

the dctk sequence. 

260bp H/nDIII-Bc/l ctefA promoter fragment cloned into 

pSKBBB, ApR 

pSVP9 & PRK290 joined at their EcoRI sites, ApR, TcR 

200 bp nHHDK promoter fragment lacking UAS cloned 

into pGD926, TcR, mob 

cointegrate of pMB210 (n//H::/acZ; Better etal., 1985) 

and pDK330 (truncated flxJ; Kahn & Ditta, 1991), ApR, 

TcR, mob. 

295 bp nifA promoter fragment cloned into pGD926, TcR, 

mob 

pMC1403 derivative bearing the nilH expression signals 

fused to the lacZ reporter gene, ApR 

Broad host range replicon, TcR, mobilisable (mob) 

n//H promoter of pSVP9 replaced by the 267 H/nDIII-Bg/ll 

dctA promoter fragment of pSK4, ApR 

pSVPA & PRK290 joined at their EcoRI sites, ApR, TcR 

This study 

Szeto etal., 1987 

Better etal, 1985 

Soupene, 1996 

Ditta era/., 1987 

Sundaresan etal., 

1983 

Ditta etal., 1985 

This study 

This study 
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pGD926 

pCU700 

pBBBgl & -2 

pBBB5,-6 & -7 

pBBEB1,-2 

&-4 

pSUP202 

pCCOGUS 

pBBGA 

PBBGA23 

pSUPGAI 

pRKP4 

PRKP23 

pRK2013 

Bacteriophage: 

N3 

Dittaefa/., 1985 

Wang et at., 1993 

This study 

This study 

This study 

Simon etal., 1983 

Axelos etal., 1989 

Probe plasmid for translational gene fusions to the enteric 

lacZ gene, TcR, mob 

translational dctAv.lacZ gene fusion. 700bp Pst dctA 

promoter fragment cloned into DGD926, TcR, mob 

translational dcthv.lacZ. gene fusion. 260bp Pst-BcA dctA 

promoter fragment cloned into pGD926, TcR, mob 

translational dcthv.lacZ gene fusion. 279bp Psfl-BamHI 

PCR -dctA promoter fragment cloned into pGD926, TcR, 

mob 

translational dcthv.lacZ gene fusion. 200bp EcoRI-SamHI 

PCR dctA promoter fragment (AUAS) cloned into 

pGD926, TcR, mob 

narrow host range, ApR, TcR,CmR, mob. 

p(JC19 derivative with a promoterless GUS cartridge, 

ApR. 

PSK - pUC19 derivative with dctA expression signals 

fused at the Bch site to the uidA (GUS) gene, ApR 

dctA expression signals fused at the Sad site to the uidA 

(GUS) gene, ApR 

dctA::uidA gene fusion cartridge from pBBGA cloned as a 

Pst fragment into ^-lactamase gene of pSUP202, Aps, 

TcR,CmR 

dctAv.uidA gene fusion cartridge from pBBGA cloned as a 

Pst fragment into p-lactamase gene of pRKP9, Aps, TcR 

dctAv.uidk gene fusion cartridge from pBBGA23 cloned 

as a Pst fragment into p-lactamase gene of pRKP9, Aps, 

TcR 

tra+ helper plasmid for conjugations, narrow host range, Ditta etal., 1980 

NmR 

This study 

This study 

This study 

This study 

This study 

Transducing phage of S.meliloti Martin & Long, 1984 

Ap, ampicillin; Cm, chloramphenicol; Nm, neomycin; Tc, tetracycline;R, resistant;s, sensitive. 
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Chapter 4) 

Regulation of the S.meliloti dctA gene under free-

living conditions 



4.1) Introduction. 

In Chapter 3.4 we have described the construction of a number of dctA::lacZ gene fusions. The main 

difference between the various constructs lies in the location of the fusion point with respect to the 

nucleotide sequence of the dctA coding region. The parent plasmid pCU700 contains a 700 bp dctA 

fragment, that contains the coding sequence for the N-terminal 161 amino acids of the DctA protein. 

This gene fusion will be referred to as the "long" gene fusion. We have constructed a number of "short" 

fusion plasmids (pBBA2; pBBBgl & -2) that carry a 260 bp dctA fragment. In these plasmids, the lacZ 

gene is fused to the ATG start codon of the dctA gene. The third group contains a number of plasmids 

(pBBB5 to -7) where the lacZ gene is fused to the 8th amino acid of the dctA gene. The upstream 

boundary of the dctA fragments is the same for all these plasmids. The pBBEBI, -2 & -4 plasmids also 

belong to this third group, but carry a shorter dctA fragment which is lacking some regulatory 

sequences upstream from the dctA promoter. The fusion points for the three groups of plasmids, 

Bell Pstl 

Sequence 

A1GATCATCCAACATTCCGCGC; AGGTCCX;CGGCAAGACACCC - - -CTGCAC 

I 
TCC 

Linker 

Plasmids 

Class 

CAGATCC 

BcR-Bgai linker 

pBBA2 
pBBBgl 
pBBBg2 

"snort" 

Bl primer 

pBBBS pBBEBI 
pBBB6 pBBEB2 
pBBB7 pBBEB4 

"third group" 

GAGGATCC 

DUC18-1 linker 

pCU700 

•long" 

Fig. 4a: The fusion points between the dctA and the lacZ. genes. 

The top line represents the dctA coding sequence commencing with the ATG start codon. The Bet 

restriction site (underlined) partially overlaps this start codon. The second line represents the linker 

sequence fusing the two genes together. The GAT codon within the BamHI restriction site at the N-

terminal end of the lacZ gene and in frame with lacZ is underlined. The Pst\ restriction site (underlined) is 

located about 500 bp downstream from the ATG. This site was used to construct the "long" gene fusion 

on pCU700. The "short" gene fusions have the lacZ gene fused to the ATG start codon of the dctA gene. 

This group includes pBBA2 and the pBBBg plasmids. The third group plasmids have the lacZ gene fused 

to the 7th amino acid of the dctA gene. The third group includes the pBBB and pBBEB plasmids. 

between the dctA sequence and lacZ, including the transition sequences are given in Fig. 4a. 

In this chapter we evaluate the regulation of the different gene fusions of the S.meliloti dctA gene to 

the lacZ reporter gene. The aim of our work is to study the regulation of the dctA gene in situ on the 

Medicago host plant. However, before the gene-fusions can be used for the in situ work, the 

expression under free-living conditions must be evaluated. Several factors can influence the levels 

and the patterns of expression obtained from different gene fusions. The level of expression depends 
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for example on the promoter strength and level of Induction, but also the copy number of the carrier 

plasmid, the stability of the mRNA, the efficiency of initiation of translation and the stability of the 

fusion protein, can have an important effect. Therefore a careful examination of the construction 

details of the gene-fusions and a comparison of the expression patterns under controlled conditions 

are necessary for each gene fusion plasmid that is to be used for further studies. Several groups have 

studied the regulation of the dctA promoter under free-living conditions (Yarosh et. al., 1989; Wang ef 

al., 1989; Jording era/., 1992). Some fusions were also used to study the regulation in the well 

characterised E.coli background (Ledebur and Nixon, 1992; Wang ef al., 1993; Chapter 2.7; Allaway 

et al., 1995; Chapter 2.9). Plasmid pCU700 which was used as the parent for the construction of the 

different fusions in this work, has also been used to study the regulation of the dctA gene in the 

heterologous E.coli background (Wang etal., 1993). The methods used in the various laboratories to 

induce the dctA gene differ somewhat in detail, especially in the timing of the assay after induction. 

Induction of the gene fusions can be obtained in several different ways. The cultures can be grown on 

complex medium, or minimal medium including an inducer and ever increasing levels of fi-

galactosidase can be obtained until well into the stationary growth phase. Another method is to grow 

the cultures on minimal medium without inducer into the mid-log phase and then add the inducer. In 

this case a rapid induction of the gene fusions can be observed within a few hours. In any case the 

levels obtained are highly dependent on the growth phase of the cultures and the time point that the 

data is taken. Often data are published where cultures are harvested and the fusion activity measured 

at a fixed period after addition of the inducer. Such data however do not consistently give a good 

indication of the activity of the gene fusions. It is advisable to use growth curves and multiple 

measurements to evaluate the activity of a gene fusion. 

Conform to the model of DctBD dependent regulation of the dctA promoter, a typical dctA gene fusion 

displays the following pattern of expression under free-living conditions. A low level of expression is 

observed in a wild-type strain in the absence of specific inducers in the growth medium. In a strain 

mutated in either, the dcfB or the dctD gene, no expression is observed. The dctA promoter is induced 

by the presence of C4-dicarboxylic acids (dCA: malate, succinate and fumarate) in the growth medium. 

It is also strongly induced by the amino-acid aspartate (Engelke etal., 1989; Watson etal., 1990). The 

latter is generally thought responsible for induction of the dctA promoter on complex media such as TY 

and LB. In the absence of a functional dctA gene the dctA promoter is expressed "constitutive!y" at a 

high level (Ronson et. al., 1985, 1987a; Yarosh etal., 1989; Jording etal., 1992). It has been 

demonstrated that the dctBD genes are required for dctA expression under these conditions (Yarosh 

etal., 1989). 

4.2) Expression of the "short" gene fusion under free-living conditions. 

Plasmid pBBA2 (Fig. 3a C) was the first plasmid constructed for these studies and belongs to the 

group of "short" gene fusions, in which the ATG start codon of the dctA gene is directly fused to the 

lacZ gene. It was simultaneously conjugated from the E.coli donor into the S.meliloti 2011 wild-type 

strain and the dct mutant strains: F642 (dctA), F332 (dcfB") and F121 (dcfD). 
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4.2.1) pBBA2 activity on complex medium. 

The pBBA2 containing S.meliloti strains were grown in liquid TY medium for 23 hrs. The p-

gaiactosidase activity of these overnight cultures was measured (Fig. 4b, time = 0). In the wild-type 

background the fusion was highly expressed. This high level of activity was attributed to the assumed 

presence of aspartate in this medium which is known to be an effective inducer of the cfctA gene. As 

expected the dcB and ctalD mutant strains (F332/pBBA2 and F121/pBBA2) did not show any 

expression of the gene fusion under these conditions. A strain derived from F121/pBBA2, transduced 

20 40 60 

time (hrs) 

Fig. 4b: Expression of the pBBA2 gene fusion in wild-type and Oct mutant strains. 

The various S.meliloti strains containing the pBBA2 plasmid were pre-grown overnight in rich 

medium (time = 0 hrs). These cultures were used to inoculate minimal medium containing 

mannitol as sole carbon source (open symbols), or the same medium with malate added (m; 

closed symbols). One unit of (3-D-galactosidase represents 1 nmole nitrophenol released at 37°C 

/min. xODeoo. 2011 = wild-type; F642 = dctk mutant; F121 = ctefD mutant; D2R = F121 /pBBA2 

transduced back to wild-type phenotype. The curves for the dcB mutant (F332) and F121 

without malate are not given as they coincide with the curve for F121 + malate. 

back to a wild-type phenotype (D2R dcfD*, Nmb) was included in this experiment. This strain behaved 

like the wild-type and demonstrated that the lack of expression from the gene fusion in the dcD 
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mutant background is not due to a possible mutation in the plasmid itself. The dctk mutant strain 

F642/pBBA2 showed levels of expression, about 50% higher than the wild-type. 

4.2.2) Induction of the pBBA2 gene fusion on minimal medium. 

For induction of the dc/A gene, a small volume of the overnight cultures grown on TY was used to 

inoculate (5% v/v) mannitol minimal medium with and without malate (Fig.4b). All cultures grew equally 

well on either medium and reached the stationary phase in less than 40 hours (Data not shown). The 

final OD600 obtained on minimal medium was only about half of that usually obtained on complex 

medium. The final OD^*, obtained on minimal mannitol medium, supplemented with malate, was 

similar for dct+ and dot' strains. This indicates that the availability of a carbon source was not the 

growth limiting factor in the minimal medium used. The levels of (3-galactosidase from the dcO and 

dctB mutant strains remained very low either with, or without malate in the growth medium. The p-

galactosidase activity from the wild-type strain, which had been induced on the complex medium, 

dropped back in the absence of malate within the first 24 hrs of incubation. The activity from then on 

remained at a level about tenfold higher than that of the dcID and dctB mutants for the rest of the 

experiment. The wild-type strain in the presence of malate initially also dropped back substantially 

over the first 24 hrs, but then recovered and reached high levels of expression towards the end of the 

logarithmic growth phase. A similar pattern was observed for the dctk mutant strain, no matter if 

malate was present in the medium or not. It is not clear why the activity of the fusions drops, but it may 

be related to the lag period after the transition from complex to minimal medium. The D2R strain, 

essentially behaved like the wild-type. Apart from malate, the gene fusion in 2011/pBBA2 was found to 

be equally induceable by fumarate, succinate and aspartate (Data not shown). 

In summary, three distinct levels of expression can be observed: No expression of the gene fusion in 

the dcB and dclD mutant strains (less than 10 U.). A basal level of uninduced expression in the wild-

type strains in absence of dCA (less than 100 U.). And finally a high level of expression in the induced 

wild-type and the dctA mutant strains (more than 1000 U.). The dctA mutant also shows high level of 

expression even in the absence of inducer. Plasmids pBBBgl and -2 which contain the same 

dctA.JacZ gene fusion, cloned directly into pGD926 (Fig. 3e C), gave the same results as pBBA2. 

These experiments demonstrate that pBBA2 and the pBBBg plasmids carry a correctly regulated 

dc(A::/acZ gene fusion suitable for in situ studies during symbiosis with the Medicago host plants. 

4.3) Activity of pBBA2 relative to pCU700. 

The regulation of the "short" gene fusion on pBBA2 was as expected for a properly regulated 

dc*A::/acZ gene fusion. The expression pattern was similar to that obtained with the pCU700 gene 

fusion. However, the levels of expression of the pBBA2 gene fusion appeared to be consistently 

several times higher than those usually obtained with pCU700. On complex medium, maximum levels 

of p-galactosidase activity from 2011/pBBA2 reached close to 2000 U. at the late logarithmic growth 

phase. For example, maximum expression from 2011/pCU700 under identical conditions only reached 
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to about 600 U. The pBBA2 and pCU700 gene fusions differ in the extent of DNA from the N-terminal 

coding region of the dctA gene (Figs. 3a & 4a). The fact that pCU700 is derived from pGD926 and 

pBBA2 is a cointegrate of pMC1403 and pRK290, seems unimportant as the pBBBg plasmids behave 

exactly as pBBA2. We wanted to evaluate if the difference in expression was due to differences in 
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Fig. 4c: Direct 

comparison of dcfA::/acZ 

gene fusions pCU700 and 

pBBA2 In the 2011 wild-

type background. 

A: Induction of the gene 

fusions. The difference in 

activity obtained from the two 

plasmids measured a factor of 

2.9 at 9 hrs(uninduced); 3.3 

at 12.5 hrs; 3.9 at 23 hrs and 

5.5 after 36.5 hrs of 

incubation. B: Growth. Both 

cultures grew equally well. 

Malate was added at time = 9 

hrs. One unit of (5-D-

galactosidase represents 1 

nmole nitrophenol released at 

37°C / min. x ODeoo- Each 

point is the average of three 

independent cultures. 

efficiency of the two gene fusions (in terms of for example RNA stability or copy number effects), or 

could be contributed to some regulatory effect linked to the N-terminal sequence of the deJA coding 

region. Therefore the two gene fusions were compared directly in an induction experiment. Overnight, 

early logarithmic pre-cultures on complex medium were used to inoculate minimal mannitol medium. 

The cultures were incubated for 9 hrs. to allow the fusion activities to drop back to uninduced levels. At 

this point malate was added to induce the fusions (Fig. 4c). The fusion activity, as judged by the rate 

of accumulation of p-galactosidase activity from 2011/pBBA2 was found to be about three times higher 

than that from 2011/pCU700. No difference was observed in the growth rate of the two strains. When 

the stationary growth phase was reached after about 24 hrs. No further increase in p-galactosidase 

levels was observed with pCU700. However the p-galactosidase levels with pBBA2 continued to 

increase for the duration of the experiment. The difference in p-galactosidase levels between the two 

fusions approached a factor 6 in the late stationary phase. 
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The initial difference in activity suggested that the "short" gene fusion is more efficient than the "long" 

one. However, the difference in behaviour in the stationary phase suggests that the long fusion may 

be more tightly regulated and suggests the presence of a cis-acting regulatory element in the N-

terminal part of the coding region of the dctA gene. 

4.4) Gene fusion expression in a dctA mutant background. 

In a dctA mutant background, gene fusions of dctA to various reporter genes generally results in high 

levels of expression, no matter if dCA are added to the medium or not (Ronson et a/., 1985,1987a; 

Yarosh et ai, 1989; Jording et a/., 1992). From this constitutive expression in the absence of a 

functional DctA protein, various researchers have concluded that there must exist some kind of feed-
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Fig. 4d: Constitutive expression in of pBBA2 a dctA background. 

Some of the data presented in Fig. 4b is plotted against a logarithmic scale. This clearly 

demonstrates the three different levels of dctA activity. 1) Low level of activity in the absence of 

the transcriptional regulator DctD. 2) Basal level of uninduced dctA expression. 3) High level of 

activity either in the induced wild-type or dctA mutant backgrounds. The cultures were grown in 

minimal medium containing mannitol as sole carbon source (open symbols), or with malate added 

(m; closed symbols). One unit of (3-D-galactosidase represents 1 nmole nitrophenol released at 

37°C / min. x ODeoo. 2011 = wild-type; F642 = dctA mutant; F121 = dclD mutant 

back regulation of the dctA promoter by the DctA gene product. Often the actual levels of expression 

obtained in the dctA" strain were found to be several times higher than the maximum levels obtained in 
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a wild-type strain (Yarosh et al., 1989; Jording et al., 1992). Yarosh and co-workers also demonstrated 

that the dcBD system is required for the elevated dctk expression in the dctA mutant background. 

This led to the hypothesis that the DctA gene product may interact with the DctB product, also located 

in the cytoplasmic membrane, to exert this regulatory effect. 

Although in general this high level of dctA expression in the in the absence of inducer is referred to as 

"constitutive", such levels may still be increased even further by the addition of dCA to the growth 

medium (Y-P Wang, personal communication). On the other hand, it has been shown that prolonged 

culturing in minimal medium, in the absence of dCA reduces the levels of expression in a dctA mutant 

background (Batista era/., 1992). Under those conditions, several stimuli not related to Dct, such as 

osmotic stress, can trigger high levels of expression of the dctA gene. 

With the pBBA2 gene fusion high levels of expression were obtained in the F642 strain. However, 

these levels of expression were not significantly higher than the induced levels of expression obtained 

in the wild-type. This was in contrast with earlier observations made with the pCU700 gene fusion and 

the above mentioned reports from other researchers (Jording et al., 1992; Yarosh et al., 1989). In 

most cases fusion activity in a dctA" background is much higher than can be obtained in a wild-type. In 

the F642 dctA' background, the pCU700 and pBBA2 gene fusions are expressed to about 1500 U with 

or without the addition of dCA to the growth medium. In a wild-type background levels of expression of 

pCU700 rarely exceed 500 U. The fact that equal levels of expression are obtained from both fusions 

in a dctA mutant background, suggests that the difference in levels of expression observed in the wild-

type background, is probably not due to a difference in efficiency between the two fusions. Rather this 

would indicate that the pCU700 gene fusion is repressed in the wild-type background, whereas the 

pBBA2 gene fusion is not. This in turn would indicate that some c<s-acting elements, located in the 

amino terminus of the dctA coding region are involved in this repression. If some kind of feed-back 

regulation is involved, than one may predict that overexpression of the dctA gene should result in low 

expression of dctA gene fusions when introduced in trans. Although strains with constitutive 

expression of the dctA gene have been constructed (Rastogi etal., 1992; D. Jording, personal 

communication), to my knowledge such a predicted negative regulatory effect on gene fusions has not 

been reported. 

From these results we may conclude that the "short" dctA::/acZ gene fusions are efficiently induced by 

the DctBD system and are suitable for in situ studies during symbiosis with the Medksago host plant. 

The higher level of expression may be a positive advantage over pCU700, in order to detect low levels 

of dctA activity. However, a certain amount of caution should be taken, as some differences between 

the "long" and the "short" gene fusions have been observed that imply differences in regulation 

between the two fusions. 

4.5) The PCR generated gene fusions. 

The pBBB and pBBEB plasmids all carry gene fusions in which the 8th amino acid of the dctA gene is 

fused to the lacZ reporter gene (Fig. 3e). They belong to the third group of fusions used in this work 

(Fig. 4a). The pBBB plasmids are highly active gene fusions. On complex medium 3000 Units of p-
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galactosidase were readily obtained. This is nearly twice as much as for the "short" gene fusions and 

5-6 times more than pCU700. In induction experiments on minimal medium these gene fusions 

behaved like correctly regulated dctA::lacZ gene fusions except that both uninduced levels and 

induced levels of expression were higher than that observed for any of the other constructs. 

The three types of gene fusions were compared in an induction experiment (Fig. 4e). The experiment 

differs from those presented before (Fig. 4b & d) in that the inducer was added at a late point in the 

growth phase, when the cells were already starved for carbon. Induction of the fusions followed 

immediately. It can be clearly seen that the pBBB gene fusions are the most highly expressed. 
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Fig. 4e: Induction of the dctAr.lacZ gene fusions at the late logarithmic growth phase. 

The 2011 wild-type strains containing representatives of the three types of gene fusions were grown on 

minimal medium until the mannitoi carbon source became limited. At this point (t = 0) malate was added 

to the cultures. Samples were taken 1 hr and 3 hrs after malate addition. Induction of the fusions was 

immediate. 

However the induction rate (i.e. induced levels of expression divided by the uninduced levels) is not all 

that different for the three types of gene fusions and in fact is highest for pCU700. This indicates that 

all three types of fusions are equally good indicators of dcth promoter activity. Generally, the more 

active gene fusions would be preferred for the in situ work, but this may also result in higher 

background noise. 

For the construction of the PBBEB gene fusions the same downstream fusion site was chosen as in 

the pBBB gene fusions, because these were the most active gene fusions. The upstream DNA was 

truncated to remove the UAS sites required for binding of the DctD transcriptional regulator. The 

prediction was that DctD would be no longer able to interact with this promoter and indeed no 

expression at all could be obtained from these gene fusions under free-living conditions (Fig. 6b). The 

effect of removing the UAS was essentially the same as deleting the dctD gene from the strain, in that 

the basal level of expression seen in the uninduced wild-type disappeared. Sequence analysis of the 
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dctA region demonstrated that no mutations had taken place. However we cannot exclude the 

possibility that some mutations elsewhere in the reporter gene may be responsible for the lack of 

activity from these gene fusions. 

4.6) Summary. 

Under free-living conditions, the different dcfA::/ac2 gene fusions generally behaved as one might 

expect. In the wild-type background, a low basal level of expression was observed in the absence of 

an inducer compound. When dCA, or aspartate were added to the growth medium an up to tenfold 

increase of activity could be obtained. In the absence of either, or both the dcB and the dcfD genes, 

no induction was obtained and the uninduced basal levels of dctA expression dropped even further. A 

distinctly reduced basal level was also observed in a wild-type background for the pBBEB gene 

fusions where the UAS sites have been deleted from the dctA promoter fragment. Either way, this 

demonstrates that the DctBD system maintains a certain basal level of dctA expression under 

uninduced conditions. This basal level of DctBD dependent expression varied depending on the type 

of gene fusions used. In general the gene fusions that displayed the highest basal level of expression 

were also expressed highest after induction. 

In the absence of a functional dctA gene the gene fusions are expressed "constitutive!/ at a high 

level. This has been verified for the pCU700 and pBBA and the pBBBg gene fusions, but not the pBBB 

and pBBEB gene fusions. In the wild-type background we observed a much higher activity of the 

"short" gene fusions, when compared to pCU700. In the dctA mutant background however, the levels 

of gene fusion activity were found to be similar. As it seems unlikely that differences in RNA or protein 

stability would manifest themselves in various dct backgrounds, this may indicate that the reduced 

activity of pCU700 in the wild-type background is more likely a regulatory effect (as discussed in 

Chapter 4.4). 

The strongest expression was obtained with the pBBB gene fusions. The induced levels of activity are 

about twice as high as for the pBBA and pBBBg gene fusions. Even though the dctA fragments used 

to construct the two type of fusions only differ by merely 16 bp of the dctA coding region. Although for 

the in situ studies one tends to use the strongest gene fusions for easy detection of gene activity, the 

undoubted variations in regulatory effects on different gene fusions dictates to exploit a number of 

different fusions simultaneously. As we will see in the following chapters this is certainly not a case of 

being over-cautious. Moreover, the fact that a gene fusion behaves as expected under free-living 

conditions, is still no guarantee that it will also register all possible regulatory effects during symbiosis. 
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Chapter 5) 

In situ expression of the Sinorhizobium meliloti dctA 

gene in mature nodules induced on the alfalfa 

(Medicago sativa) host plant 



5.1) Introduction. 

In the previous chapter we have analysed a number of dctA.JacZ gene fusions under free-living 

conditions. The activity of each of these fusions was found to be fully dependent on the presence of a 

functional DctBD system. Unlike S.meliloti strains mutated in the structural dctA gene, many strains 

mutated in either, or both the regulatory dcB and dcfD genes are still capable of establishing an 

effective symbiosis. This indicates that the dctA gene is efficiently expressed during symbiosis, even in 

absence of a functional DctBD system. This observation led several researchers to postulate an 

alternative mechanism of dctA activation, which apparently is only active during symbiosis (ASA, see 

Chapter 2.5.1.). The existence of ASA poses a number of questions. Apart from the obvious question 

of the identity of ASA, which has not been solved to date, one must ask what role it plays in the 

establishment of an effective symbiosis. Is it an essential mechanism and is ASA also operating in a 

wild-type background? And if so, than which mechanism, ASA or the regular DctBD system, is 

primarily responsible for the activity of the dctA gene during symbiosis? 

During symbiosis the microsymbionts differentiate from free-living bacteria, through various stages, 

into N2-fixing bacteroids. The different stages of bacteroid development correspond with distinct zones 

in a mature nodule (See 5.1.1). Using histochemical staining techniques for [3-galactosidase activity, 

we have tried to establish where, and by inference when, ASA becomes active. By making a link 

between ASA and certain stages of bacteroid development, we have tried to establish what regulatory 

pathways are involved in its activity. 

5.1.1) The spatial organisation of a mature N2-fixing nodule. 

A mature indeterminate nodule is organised into different zones (Vasse era/, 1990), which correspond 

to a temporal and spatial pattern of bacterial and plant gene expression (Fig. 5a). The most distal and 

youngest part of a mature nodule contains the apical meristematic zone, which is free from bacteria. 

Zone II designates a region immediately behind the meristem containing the proliferating infection 

threads filled with dividing bacteria, followed by a region where the bacteria are released into the plant 

cells. These are the type 1 bacteroids. Type 1 bacteroids are rod shaped and still dividing and are 

contained in a plant derived peribacteroid membrane. This peribacteroid membrane separates the 

microsymbionts from the plant cell cytoplasm and forms a selective barrier against the free exchange 

of nutrients between the symbiotic partners (Myiona et al., 1995; Verma, 1992). Type 2 bacteroids are 

elongated, not longer dividing and are found in the most proximal part of zone II. Type 3 bacteroids 

are found exclusively in the interzone ll/lll, which is characterised by a high level of starch deposition 

in the plastids of the invaded cells. Type 3 bacteroids have stopped elongating and unlike type 2 

bacteroids, fill most of the host cells. The plant cell organelles are lined against the cell wall. The 

interzone is of special interest as expression of plant and bacterial genes needed for symbiotic 

nitrogen fixation are sharply induced at this zone (De Billy era/., 1991; Soupene er a/., 1995). Other 

genes such as the ropA gene coding for an outer membrane protein of R.leguminosarum are abruptly 

down regulated at this zone (de Maagd et al., 1994). The interzone ll/lll marks the transition from early 
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to late symbiosis. Symbiotic N2-fixation takes place only in the fully differentiated type 4 bacteroids in 

the distal part of the late symbiotic zone III. Type 4 bacteroids are the same size as the non-fixing type 

3 bacteroids, but show a more distinct heterogeneity at the ultrastructural level, with marked electron 

dense zones enriched with ribosomes. Type 5 bacteroids in the proximal part of zone III are not fixing 

nitrogen anymore. They are gradually losing the ribosome enriched areas and decrease in numbers. 

Finally after about 5 weeks a zone of senescence develops in the most proximal region of the nodule 

(Zone IV). 
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Fig. 5a: The spatial 

organisation of a two weeks 

old effective nodule on alfalfa. 

The various zones of bacterial and 

plant cell differentiation can be 

readily distinguished. The meristem 

at the apex of the nodule is the most 

distal from the root. This is followed 

by the infection zone II; the 

interzone II/III and the late symbiotic 

zone III, where the nitrogen fixation 

takes place. This nodule does not 

yet contain a senescence zone IV, 

which in a healthy N2-fixing nodule 

develops after about 5 weeks in the 

oldest part of the nodule, most 

proximal to the root. 

Cytological studies can provide valuable information about regulatory pathways operating in such 

intricate biological processes as nitrogen fixing symbiosis. The microsymbiont inside a mature 

indeterminate nodule exists in different physiological forms (Vasse et al. 1990; McRae et al. 1989a), 

which match the extent of differentiation starting with free-living bacteria up to N2-fixing bacteroids. 

Having verified the correct regulation of the gene fusion under free-living conditions, we have 

evaluated in-situ dctA expression during symbiosis with alfalfa (Medbago sativa cv Europe). 

5.2) In situ expression of the dc(A::/acZ gene fusions during symbiosis. 

To evaluate the in-situ dctA expression during symbiosis of S.meliloti with the alfalfa (Medicago 

sativa cv Europe) hostplant, nodules were collected between 2 and 3 weeks after inoculation. At this 

time wild-type nodules are well established and pink in colour. Plants inoculated with efficient strains 

are vigorous and green, whereas plants inoculated with non-fixing strains begin to show the first signs 

of stress at this age. Having established the efficiency under free-living conditions of both, the "short" 

gene fusion on pBBA2 and the "long" gene fusion on pCU700, these plasmids were used to study the 

spatial pattern of dctA activity in mature N2-fixing nodules induced by the 2011 wild-type strain. 
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The spatial distribution of dctA activity was similar for both gene fusions. Expression of the dctA::lacZ 

gene fusions could be observed at all stages of bacteroid development. No induction of dctA activity 

was obvious in the infection threads immediately behind the apical meristem. Activity was induced as 

Fig 5b: In situ dctA::lacZ fusion 

activity in mature N2-fixing 

nodules. 

A) In situ expression of a "short" gene 

fusion in a wild-type background. 

Strain: 2011(pBBA2); 16dpi; coloration: 

X-gal for 2.5 hrs. The white star 

indicates an area of plasmid loss. 

. B) In situ expression of the "long" gene 

fusion in a wild-type background. 

Strain: 2011 (pCU700); 16dpi; 

coloration: X-gal for 2.5 hrs. The arrows 

indicate the position of the interzone 

ll/lll. The spatial distribution of lacZ 

activity is similar for both types of gene 

fusions. 

soon as the bacteria were released into the host cell cytoplasm. The genes remained strongly induced 

throughout the infection zone II, the interzone ll/lll and into the late symbiotic zone (Fig. 5b). No 

senescence zone could yet be distinguished. The intensity of staining did not vary significantly 

throughout the nodules. An apparent increase in intensity at the interzone being due to a higher 

density of bacteroids and the presence of amyloplasts in this zone. Although under free-living 

conditions, the "short" gene fusion was consistently more active than the "long" gene fusion, this 

difference was not observed in situ. On the contrary, when processed simultaneously with 

2011/pBBA2 induced nodules and stained for an equal period of time, the coloration obtained with the 

pCU700 fusion was consistently more intense. 

The activity of the dctA gene fusions in nodules induced by other wild-type strains such as 1021 and 

102F34 was also monitored. In all cases similar patterns of in situ dctA. activity were observed. Strain 

Rm 1021 and its derivatives, such as for example Rm 1531, or the dct mutant strains F332 and F121 

transduced back to wild-type phenotype (Fig. 5f, panel B), seemed somewhat delayed in nodule 

development when compared to 2011. They also gave rise to somewhat smaller "shorter" nodules. 

Otherwise, nodule morphology and spatial organisation is similar to those induced by 2011. Strain 

102-F34 is probably the nicest one to work with, in that nodule development is fast and efficient like 

2011, but plasmid stability during symbiosis appeared to be superior. This allowed prolongation of the 

in situ experiments for up to four weeks without plasmid loss becoming a concern. In these older 

nodules, dctA activity in the infection zone II all but disappeared and fusion activity was confined to the 

symbiotic zone III (Fig. 5c). 

Chapter 5: In situ dctA expression 68 



Fig. 5c: DctA::lacZ 

activity In a 3 weeks old 

nodule. 

Increased plasmid stability in 

nodules induced by 102F34 

allowed experiments to 

continue beyond two weeks 

after infection. In this nodule, 

which is more than three 

weeks old, there is no sign of 

plasmid loss (Compare to Fig. 

5b A). Strain: 

102F34(pCU700); 23dpi; 

coloration: X-gal for 2.5 hrs. 

5.3) The lacZ mutant strains are affected in their symbiotic efficiency. 

In absence of an active lacZ gene fusion, no in situ staining could be observed. This indicates that the 

resident S.meliloti lacZ gene(s) are not induced during symbiosis. Even so, the use of a lac' strain 

designated GMI 5600, was considered in order to avoid the possibility of the lacZ gene interfering with 

m*™^ 
Fig. 5d: Nodule Induced by a tecZ 

mutant strain. 

An extensive zone of senescence is obvious in 

the proximal part of this two weeks old nodule 

induced on M.truncatula by a lacZ mutant 

strain (arrow). The strain carries a n//A::/acZ 

gene fusion which is induced by the 

microaerobic conditions that prevail in the 

interzone ll/lll and the late symbiotic zone III. 

Strain: 211/pCHK57; 15 dpi. 

the results. No differences with the 2011 strain were observed during the early stages of infection up 

to the development of a mature nodule. The temporal and spatial patterns of cteiA expression were 

also similar, but the senescence zone V developed at an early stage and was already distinct in two 
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weeks old nodules. In contrast, a senescence zone only appears after about 5 weeks In a normal 

healthy nodule. In time the nodules became elongated, developing only in the longitudinal direction 

without the lateral increase in volume that produces the usual pear shaped nodules. The symbiotic 

zone remained small and a long zone of "empty" cells developed which eventually turned green when 

exposed to the light. This phenotype was observed both on Medicago sativa and - truncatula host 

plants. The dry weight of Medicago sativa plants infected with GMI 5600 amounted to only about 60 % 

of that of plants inoculated with 1021, or 2011. 

GMI 5600 is a Tn5 derivative of GMI 211 (David et. al., 1988). As this defective phenotype was also 

observed for the GMI 211 strain (Fig. 5d), it is not due to the Tn5 insertion. Also Rm 1531, a derivative 

of 1021 and the donor strain of the Tn5 insertion in GMI 5600 (pSym20Tn5, Ruvkun et. al., 1982), 

gave rise to healthy nodules. GMI 211 is another name for 2011 L~, which is a lac" mutant selected 

after chemical N-methyl-N-nitro-N-nitrosoguanidine (NTG) mutagenisis from 2011 str11 (Niel et al., 

1977). It is not know if this symbiotic deficiency is directly related to the lac" phenotype. However the 

presence of the active dctAy.lacZ gene fusions did not suppress this phenotype. Therefore the 

defective phenotype is likely due to some other mutation possibly caused by the NTG treatment. 

Even though the in situ patterns of dctA activity were found to be similar to that observed for the other 

strains, the use of the lac" strain and its derivatives was avoided as much as possible in this work. 

5.4) DctBD-independent dctA expression is strictly late symbiotic. 

Nodules induced by F332 (dcB) and F121 (dcID) developed at the same rate and were externally 

indistinguishable from those induced by the wild-type strains. After sectioning, a higher density of 

amyloplasts throughout the symbiotic zone III was evident in the nodules induced by the dctB and 

Fig 5e: In situ activity of 

dcfA and nHH in a ctetD 

mutant background. 

A) DctBD-independent 

expression of the 'long' 

dctA::lacZ gene fusion. Strain: 

F121/pCU700;26dpi; 

coloration: X-p-D-gal for 1 hrs. 

B) Typical late symbiotic 

expression of the nilHv.lacZ 

gene. Strain: F121/pRKP4; 15 

dpi; coloration: X-fl-D-gal for 1 

hr. 

dcID mutant strains. Strong expression of the "long" fusion could be observed in the late symbiotic 

zone III of mature nodules induced by F332/pCU700 or F121/pCU700 (Fig. 5e, A). Unlike dctA activity 
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in a wild-type nodule, which could be observed in all infected zones, this DctBD-independent 

expression was strictly confined to the nitrogen fixing zone III of the mature nodules. It was induced 

sharply at, or one cell layer behind, the first important starch depositions of the interzone ll/lll and 

remained strong all the way to the most proximal part of the nodules. This pattern of dctA activity is 

very similar to that observed for nilH (Fig. 5e, B). The temporal and spatial pattern of nitr\::lacZ 

expression in nodules induced by the dciD mutant strains was similar to that observed in a wild-type 

background (Fig. 6a, A). 

5.5) The ASA does not act on the "short" gene fusion. 

No DctBD-independent activity of the dcfA gene could be observed with the "short" fusion on pBBA2. 

Neither in F121/pBBA2 (Fig. 5f, A) induced nodules, nor in nodules induced by F332/pBBA2. This 

result was rather unexpected as symbiotic activity of this "short" fusion was readily observed in 

nodules induced by the wild-type (2011) exconjugants, which were obtained from a simultaneous 

conjugation experiment using the same donor strain. We considered the possibility that the failure to 

Fig 5f: ASA does not act on the 

"short" dcfA::/acZ gene 

fusions. 

A) No in situ activty was observed 

from the "short" dctK:lacZ. gene 

fusion in a dctD" background. Strain: 

F121/pBBA2; 26 dpi; coloration: X-p-

D-gal for 1 hr. 

B) When the strain was reverted 

back to wild-type phenotype by phage 

transduction, fusion activity in situ 

was also restored. Strain D2R; 19 

dpi; coloration: X-p-D-gal for 1 hr. The 

arrows indicate the position of the 

interzone ll/lll 

express the "short" gene fusion might be due to secondary mutations in the dc/B'and dctD' mutant 

strains, or alterations of the plasmids, during or after the conjugation. A transduction experiment with 

the phage N3 was carried out to introduce the wild-type dct genes from S.meliloti 2011 into the dclB 

and dctD mutant strains. These transductions were carried out with the pBBA2 dctAr.lacZ gene 

fusions in place. Transductants from F332/pBBA2 and F121/pBBA2 were selected on minimal medium 

with malate as the sole carbon source and tetracycline to maintain the fusion plasmids. In each case 

several transductants were obtained and the loss of the Tn5 insertion was checked by replica-plating 

on complex medium containing 25 ug/ml neomycin. These strains all behaved like wild-type. The 

dctAv.lacZ fusions could now be induced under free-living conditions and were expressed normally 

during symbiosis with alfalfa (D2R, Fig. 5f, B). The pBBBgl & -2 plasmids, which behaved exactly like 
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pBBA2 under free-living conditions, also behaved similarly during symbiosis. This confirmed the in situ 

results obtained with pBBA2. Furthermore, sequence analysis of the "short" dctA fragment from pSK4 

did not reveal any alterations in the dctA promoter region. Therefore the lack of DctBD-independent 

expression from the "short" gene fusions is not caused by some mutation, neither in the host strains, 

nor in the gene fusion plasmids. 

5.6) The 20D1 dctD mutant derivative of 2011. 

5.6.1) In situ expression in 20D1 induced nodules. 

F121 is a dctD' derivative from S.meliloti 1021 rather than 2011. Although in theory these wild-type 

strains are very close (Meade et a/., 1982), an isogenic dctD' derivative of 2011 was constructed. Such 

a strain was obtained by transduction of the Tn5 insertion from F121 into 2011. Transductants were 

selected on complex medium with 25 ug/ml neomycin. A small number of colonies were taken after 5 

days from the selective plates and purified. None of the transductants were able to grow on minimal 

medium with malate as sole carbon source. Nodules induced by these transductants were efficient in 

Fig 5g: In situ dctAr.lacZ 

activity in the 20D1 dctD 

mutant background. 

A) DctBD-independent 

expression of the "long" gene 

fusion. Strain: 20D1/pCU700; 

15 dpi; coloration: X-p-D-gal 

for 2.5 hrs. 

B) No DctBD-independent 

expression can be observed 

from the "short" gene fusion. 

Strain: 20D1/pBBBg1; 15dpi; 

coloration: X-gal for 1 fir. 

dinitrogen fixation and only distinguishable from their parent strain, by a higher level of starch 

depositions in the late symbiotic zone. One such strain (20D1) was taken for further studies. Plasmid 

pBBBgl was used in these experiments because this construct is more similar to pCU700 than 

pBBA2. The plasmids pBBBgl, pCU700 and the nilH::lacZ gene fusion plasmid pRKP4 were 

introduced into 20D1 by conjugation. As expected for a dctD mutant strain, no expression of the dctA 

gene fusions could be obtained in 20D1 under free-living conditions. 

The spatial pattern of expression from the pBBBgl gene fusion in the wild-type background was 

similar to that of 2011/pBBA2 and has been described above. The pattern of temporal and spatial 

expression of the nHH gene fusion in nodules induced by 20D1 was similar to that observed before in 

the wild-type and also to that observed in F121 induced nodules (Fig. 5e, B). In 20D1 induced 
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nodules, no expression of the n//H fusion could ever be observed at the early stages of the symbiosis, 

such as during infection and in zone II of the mature nodules. The n/'/H fusion was induced sharply at 

the interzone ll/lll and remained highly expressed throughout the late symbiotic zone III. The temporal 

and spatial pattern of expression from pCU700 in the 20D1 background (Fig. 5g, panel A) closely 

resembled that observed for the nHH gene fusion. Strong expression of the "long" dctkv.lacZ. gene 

fusion was observed in mature nodules. This DctD-independent expression was strictly confined to the 

nitrogen fixing zone III of the nodules. No expression was ever observed at the early stages of 

colonisation and infection, or in zone II of the mature nodules. It was induced sharply at the interzone 

ll/lll and remained strong all the way to the most proximal part of the nodules. In contrast to the "long" 

dctkv.lacZ. gene fusion, no DctD-independent expression could be observed in the 20D1-alfalfa 

symbiosis at any stage with the "short" fusion on pBBBgl (Fig. 5g, B). 

These results confirm once more that unlike the "long" gene fusion in pCU700 which is strongly 

expressed in a DctBD independent manner during symbiosis, the ASA does not act on the "short" 

dctA::lacZ gene fusions. Since all other parameters have been excluded, the inability of the ASA to act 

on the short gene fusions must be related to some cis acting elements located in the 5' coding region 

of the dctA gene, present on pCU700, but missing from the "short" gene fusions. 

5.6.2) Measuring gene fusion activity during symbiosis. 

The in situ staining for p-galactosidase activity is a qualitative technology, which shows the spatial 

distribution of gene fusion activity. An approximation of the level of activity can be made from the time 

required to obtain a certain intensity of colour. In order to obtain more quantitative data we decided to 

measure the level of p-galactosidase activity from bacteroid suspensions. The S.me///of/2011 wild-

type and the isogenic 20D1 dcID mutant strain containing either pCU700 (The "long" dc(A::/acZ gene 

fusion), one of the "short" dctkv.lacZ. fusion plasmids (Either pBBBgl, or pBBA2), or the n//H::/acZ 

gene fusion (pRKP4), were inoculated onto alfalfa plants. At 15 days after infection all sizeable, 

healthy looking, nodules were harvested (between 50 and 100 nodules/ batch of 10 plants). After 

fixation in glutaraldehyde, the nodules were examined visually and 5-8 average size nodules of each 

batch were put aside for histochemical staining. The remainder of the nodules were crushed and the 

levels of p-galactosidase activity from the bacteroid suspensions was measured as described in 

Chapter 3. The compiled data of a number of identical experiments is presented in Table 5a. The nHH 

promoter was highly expressed in both the wild-type and the dcID mutant strain. The nHH activity 

varied a lot between the batches. Possibly the activity of the nHH gene is very much dependent on the 

condition of the plants. Nevertheless it appears that the nilH gene is equally well expressed in both the 

wild-type and the 20D1 induced nodules. The p-galactosidase levels obtained from the dctAr.lacZ 

fusions were much more consistent. In contrast with the activity under free-living conditions where the 

"short" gene fusions were found to be about twice as active than the "long" fusion, p-galactosidase 

activity from 2011/pCU700 induced nodules was consistently higher than those from 2011 containing 

the "short" gene fusions. A very low level of activity was obtained from nodules induced with 20D1 

bearing either one of the "short" gene fusions (pBBA2 or pBBBgl). Although lower than in the wild-
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type background, a significant level of activity was obtained from the "long" gene fusion in nodules 

induced by the 20D1 dcfD mutant strain. 

The intensity of the in situ staining of the nodules, put aside for this purpose, were always in good 

agreement with the p-galactosidase measurements. The homogeneous staining also indicated that 

there was no significant loss of plasmids evident in the nodules harvested at this age. 

S.meliloti strain 

2011(pBBBgl) 

2011(pCU700) 

2011(pRKP4) 

20Dl(pBBBgl) 

20Dl(pCU700) 

20Dl(pRKP4) 

P-galactosidase activity 

153 ±27 

305 ± 53 

2570 ±1178 

14±4 

187 ±29 

2287 ±1219 

repeats 

5* 

3 

15 

2* 

2 

4 

Table 5a: Symbiotic expression of the dcfA- and n/rH::fecZ gene fusions. 

Nodules were crushed in a phosphate buffer and the p-galactosidase activity of the bacteroid suspension 

was measured as described in Chapter 3.6. Values are expressed in terms of nmoles nitrophenol released 

/ min. xODsoo. pBBBgl = a "short" dctPc.lacZ. gene fusion plasmid; * = pBBA2 is also included in these 

repeats; pCU700 = "long" dct/Kv.ladZ. gene fusion plasmid; pRKP4 = niMv.lacZ. gene fusion plasmid. 

The p-galactosidase measurements confirmed that the ASA does not act on the "short" dc(A::/acZ 

gene fusions. They also demonstrated that the "long" gene fusion is more active in both, nodules 

induced by the 20D1 dcfD mutant strain as well as in the wild-type background. 

5.7) Discussion. 

In planta regulatory determinants of dctA expression were studied using two types of dctAMacZ gene 

fusions. Plasmid pCU700 contains the first 162 amino acids of the dctA coding region and is referred 

to as the "long" gene fusion. The gene fusions on pBBA2 and pBBBgl & -2 only conserved the ATG 

translational start codon and the second amino acid of the DctA protein. These fusions are referred to 

as "short" dctAv.lacZ gene fusions. Under free-living conditions, both types of gene fusion behaved 

exactly as would be expected from correctly regulated dctA::lacZ gene fusion. The only difference was 

that the "short" fusions were expressed at a level about twice as high as found for the "long" fusion 

(See Chapter 4). The aim of these studies was to confirm the existence and of the alternative 

mechanism of symbiotic dctA activation (ASA) and to approach its nature by using the dctAv.lacZ gene 
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fusions and histochemical staining techniques for in situ (3-galactosidase activity. We intended to 

establish where and when, the dctA gene is activated in nodules induced by dcB or dctD mutant 

strains. By making a link between dctA activity and the different stages of bacteroid development, we 

may be able to establish what regulatory pathways are involved in its activity. We further posed the 

question what the role of the ASA could be in the establishment of an effective symbiosis. Whether it 

is an essential mechanism and whether the ASA is operating in a wild-type background. And if so, 

which mechanism, the ASA or the regular DctBD system, is primarily responsible for the activity of the 

dctA gene during symbiosis? 

The results presented in this chapter do not enable us to answer all these questions. However an 

amount of new information has been obtained and several significant conclusions can be made with 

respect to dctA activity in wild-type as well as in nodules induced by the dc&D mutant strains. 

5.7.1) The efficient uptake of dCA is not required for bacteroid development. 

Both types of dcfA::/acZ gene fusions were used to monitor dctA expression during symbiosis. The 

fusions were efficiently expressed in mature nodules induced by the wild-type S.melilotistrains. Fusion 

activity could be detected as soon as the bacteria were released from the infection threads into the 

host cell cytoplasm. The fact that the fusions were not strongly induced inside the proliferating 

infection threads immediately behind the meristem suggests that carbon sources other than dCA or 

aspartate are used by the dividing bacteria at the early stages of the symbiosis. This agrees with the 

observation that dcIA mutant strains lead to the formation of nodules, which are fully infected but fail to 

fix nitrogen. We have also observed that a n//H::/acZ gene fusion is expressed in nodules induced by a 

dctA mutant strain (Data not shown). Since nHH is usually only expressed in the fully differentiated 

bacteroids in the nitrogen fixation zone III (Soupene et al., 1995), this indicates that bacteroid 

differentiation in the absence of DctA reaches a stage normally associated with the late symbiosis. 

In contrast with strains mutated in the structural dctA gene, deletion mutants in the dctD, or dctB 

genes generally are effective for symbiotic N2-fixation and have been shown to transport dCA. This 

implies that the dctA gene is expressed in such strains during symbiosis. We were able to confirm this 

DctBD-independent dctA expression using the "long" dctkv.lacZ gene fusion on pCU700. We also 

observed that this dc/BD-independent expression is confined to zone III of mature nodules. Therefore 

the alternative mechanism of symbiotic expression of the dctA gene (ASA) has a typical late symbiotic 

phenotype. As a consequence dc/BD mutant strains are effectively dctA negative at the early stages 

of the symbiosis. The difference between the regulatory dctBD mutants and the structural dctA mutant 

strains is that once the bacteroids are fully differentiated, the activity of ASA suppresses the dctA 

negative phenotype of the dcfBD mutants. As this allows efficient symbiotic N2-fixation it indicates that, 

although dCA are present at the early stages of bacteroid development, their efficient uptake is not 

essential for bacteroid differentiation. 
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5.7.2) The ASA requires cis-acting elements downstream of the promoter for activity. 

No DctBD-independent symbiotic induction of the dctA gene at the late symbiotic stage was observed 

with the "short" gene fusions on pBBA2 (or its equivalent pBBBgl). It thus appears that the "short" 

fusion does not respond to the ASA, even though under free-living conditions it behaved as would be 

expected from correctly regulated dctAv.lacZgene fusion. Probably, efficient activation of the dctA 

gene by ASA requires some cis-acting regulatory elements located in the 5' one third of the coding 

region of the dctA gene. Such sequences may have been deleted partially, or entirely in the 

construction of the "short" gene fusion. A gene fusion containing this truncated dctA regulatory region 

appears to monitor correctly the activity of the DctBD system but displays a mutant phenotype when 

tested for its response to ASA. It is worth noting that the exclusive use of the "short" fusion would have 

led to conclusions about symbiotic expression of dctA in the dcBD mutants in contradiction with the 

data, which led to the ASA hypothesis. 

5.7.3) The DctBD system is sufficient for symbiotic expression of dctA. 

The "long" fusion on pCU700 can be activated by either the cognate DctBD system, or the ASA. 

Therefore, with this dctA::/acZ gene fusion, we could not distinguish which mechanism was primarily 

responsible for the late symbiotic expression of dctA. By contrast, the "short" gene fusion allowed the 

monitoring of the DctBD-driven expression of the dctA gene during symbiosis, without interference of 

the ASA. Therefore the use of this "short" fusion made it possible to show that DctBD activation of 

dctA expression was operating in the whole nodule and notably in the nitrogen fixation zone. This 

indicates that the highly differentiated bacteroids retain the ability to respond to the presence of C4-

dicarboxylic acids in the peribacteroid space, in agreement with the fact that C4-dicarboxylic acids are 

the preferred energy source for the nitrogen-fixing bacteroids. Although ASA-driven expression of dctA 

could be demonstrated only in the absence of a functional DctBD system, we speculate that it may 

also play a role in a wild-type background. Possibly augmenting the level of dctA activity in nitrogen 

fixing bacteroids, in which there is a high demand for energy. 
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Chapter 6) 

Nif A is required for DctBD-independent expression 

of the S.meliloti C4-dicarboxylate transport gene 

(dctA) during symbiosis 



6.1) Introduction. 

The symbiosis between Sinorhizobium meliloti and the Medicago host plants leads to the formation of 

nodules on the roots which are invaded by the microsymbiont and in which symbiotic N2-fixation takes 

place in a microaerobic environment. The regulation of gene expression in mature N2-fixing S.meliloti 

bacteroids differs substantially from that in free-living bacteria. It is still not well understood which 

factors determine the differentiation of the bacteria into N2-fixing bacteroids and to date it is not 

possible to induce N2-fixation by S.meliloti under free-living conditions. 

The S.meliloti ntrA gene is required for diverse metabolic functions and is essential for symbiotic No

tation (Ronson et. al., 1987b). The gene codes for an alternative sigma factor (a54), which is among 

others required for the transcription of the S.meliloti nUHDK and fixABC operons and is also required 

for transcription of the dctA gene. The a54 dependent promoters also require the activity of a 

transcriptional activator to initiate transcription. In case of the P1 (nilHDK) & P2 (ftxABC) promoters 

this activator is NifA. The transcription of the nifA gene is induced under free-living microaerobic 

conditions (Ditta et. al., 1987; David era/., 1988). Furthermore the NifA protein itself is sensitive to 

oxygen. To initiate transcription, the NifA protein interacts with enhancer like sequences upstream of 

the P1 and P2 promoters. These upstream activator sequences (UAS) are absolutely essential for 

transcription of these genes under free-living microaerobic conditions. In contrast, it was found that 

gene fusions of the P1 and P2 promoter regions to the lacZ gene were expressed efficiently during 

late symbiosis, even when the UAS sequences were deleted from the promoter fragments. 

Apparently, the UAS are not essential for expression of the genes in bacteroids under symbiotic 

conditions (Better et. al., 1985; Wang et. al., 1991). It is not known if other sequences do compensate 

for the absence of the UAS in this case. We have however observed that besides deleting the UAS, a 

deletion of DNA sequences downstream from the transcriptional start site, further reduced the levels of 

symbiotic expression of the P1 promoter (Wang et al., 1991). 

In the context of our work, the symbiotic regulation of the nHH gene is of particular interest because of 

the similarity of the P1 promoter region with the dctA promoter. The upstream activator sequences 

(UAS) of the nlM promoter are also similar to those of the dcfA promoter. In Chapter 5 we have 

demonstrated that the DctBD-independent expression of dctAv.lacZ gene fusions displays a typical 

late symbiotic phenotype. We also showed that sequences located downstream of the promoter in the 

coding region of the dctA gene are required for DctBD-independent expression. In this chapter we will 

demonstrate that the first 23 bases of the dctA coding region are sufficient for DctBD independent 

activity of the gene fusions during symbiosis. Furthermore we will show that the UAS sequences of 

the dctA promoter are not essential for the late symbiotic expression of the gene and we provide data 

indicating that a functional nifA gene is required for the DctBD independent activity of dctA during 

symbiosis. 
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6.2) In-situ expression of the nilH promoter without UAS. 

As mentioned in the introduction, the n/7H promoter is of special interest because of its 

homology with the dctA promoter. Particularly interesting is the fact that this promoter is 

efficiently expressed during symbiosis, even when the UAS are missing from the promoter 

sequence. We wanted to verify this symbiotic expression of a nilH promoter lacking the UAS 

and in particular to examine if the spatial distribution of the in situ expression had changed. As 

an example of a nHH::lacZ gene fusion, we used the plasmid pRKP4. Plasmid pRKP4 is 

essentially the same as pRKP9 (Fig. 3a, D), but additionally contains a dctA::uidA gene fusion 

cloned into the ^-lactamase gene. The presence of the dctk-.uidA gene fusion has no influence 

on the regulation of the n//H promoter. For a n/'/H promoter lacking the UAS, we used the 

Fig. 6a: In situ expression of the nifH gene. 

A) The pRKP4 n/7H::/acZ fusion is expressed in a typical late symbiotic pattern. No activity is 

seen in the infection zone and the gene is induced sharply at the interzone ll/lll. Strain: 

2011/pRKP4,17 dpi, staining X-fJ-D-gal for 1 hr. 

B) The in situ pattern of activity of the pMB1156 gene fusion, lacking the UAS, is 

indistinguishable from that of pRKP4. Strain: 2011/pMB1156,17 dpi, staining X-p-D-gal for 1 hr. 

C) No expression of the pMB1156 gene fusion could be observed in the nifk mutant 

background. A senesce zone IV has already developed at this early stage. This is typical for fix' 

nodules. Strain: 1354/pMB1156,16 dpi, staining X-p-D-gal for 1 hr. The arrows indicate the 

position of the interzone ll/lll. The star indicates the senescence zone. 

pMB1156 gene fusion constructed by Better et al. (1985). This plasmid carries a ni1H::lacZ gene 

fusion similar to that on pRKP4, but the UAS sequences are deleted from the n/7H promoter 

fragment. Alfalfa seedlings were inoculated with the 2011 wild-type strain containing either 

pMB1156, or pRKP4. The nodules were harvested at 18 dpi and the (3-galactosidase activity of 

the bacteroid suspensions measured. The nHH promoter lacking the UAS was expressed at a 
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level about half that of the complete nilH promoter (Data not shown). This Is In agreement with 

previously reported values (Better etal., 1985; Wang etal., 1991). 

A number of nodules were cut and stained to observe the spatial distribution of the activity of 

the nHHv.lacZ gene fusions. The fusions were found to be expressed in a typical late symbiotic 

pattern in that expression was observed exclusively in zone III of the nodules containing the 

fully differentiated bacteroids (Fig. 6a, A & B). The pattern of expression of the pMB1156 

nHHv.lacZ gene fusion was indistinguishable from that observed with the pRKP4 gene fusion. 

The expression of the P1 promoter during symbiosis is fully dependent on a functional nifA gene 

(Wang etal., 1991). Therefore it might be expected that the symbiotic expression of the 

pMB1156 gene fusion also required the presence of a functional nifA gene. Indeed, when 

introduced into the Rm1354 nifA mutant strain, no symbiotic expression of the pMB1156 gene 

fusion could be observed (Fig. 6a, C). 

6.3) The first 23 bases of the dctA coding region are sufficient for ASA activity. 

In the previous chapters (Chapter 4 & 5) we have evaluated the activity of a number of dctAv.lacZ 

gene fusions under free-living conditions and also in situ during symbiosis with the alfalfa host plant. 

We evaluated the activity of a "long" dctAv.lacZ gene fusion located on pCU700 and several "short" 

gene fusions located on plasmids pBBA2 and pBBBgl & -2. Unlike pCU700, which contains a 

substantial part of the dctA coding region, the "short" gene fusions have the lacZ gene fused directly to 

the ATG start codon of the dctA gene. Under free-living conditions both types of gene fusions were 

fully dependent on a functional DctBD system and were regulated as expected for a dctA gene fusion. 

The "short" gene fusions were expressed at a higher level than the "long" gene fusion on pCU700. 

During symbiosis both types of fusions were active at the early, as well as the late stages of bacteroid 

development in nodules induced by a wild-type strain (Fig. 5b). In nodules induced by a dcD mutant 

strain however, only the "long" gene fusion was expressed in a typical late symbiotic pattern (Fig. 5g). 

No DctBD independent activity could be observed from the "short" gene fusions. These results 

indicated that sequences in the N-terminal part of the dctA coding region which are not required for 

DctBD dependent expression of the gene fusions under free-living and symbiotic conditions, are 

essential for DctBD independent activity during symbiosis. 

In order to investigate how much of the 5-prime region of the dctA coding region is required for ASA 

activity on the gene fusions, a number of oligonucleotide primers were designed to introduce 

restriction sites at various distances from the ATG start codon. Starting off with the first primer 

introducing a BamHI restriction site at the 8th amino acid of the dctA gene, we have constructed a 

highly effective dctAv.lacZ gene fusion (See Chapter 4.5). Under free-living conditions these pBBB 

gene fusions were found to be correctly regulated as expected from a dctAv.lacZ gene fusion. 

However, both uninduced and induced levels of gene fusion activity were found to be higher than both 

the "long", and the "short" gene fusions. During symbiosis the pBBB gene fusions were found to be 

expressed efficiently in wild-type induced nodules (Fig. 6c, A). The in situ pattern of dctA activity was 

found to be similar to that observed with the other dctAv.lacZ gene fusions. Especially the higher level 
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of fusion activity resulted in a strong staining in zone II of the nodules. The fusion remained active 

throughout all subsequent stages of bacteroid differentiation. No senescence zone was yet visible in 

these 2 weeks old nodules. In a dctd mutant strain (20D1), no fusion activity could be obtained under 

free-living conditions. This was as expected and demonstrated that although a higher level of 

uninduced activity was observed in comparison with the "long" and "short" gene fusions, this activity is 

still fully DctBD dependent. During symbiosis, the pBBB gene fusions were found to be expressed 

efficiently in nodules induced by the 20D1 dctD mutant strain. The in situ pattern of expression was 

confined to the late symbiotic zone III only (Fig. 6c, B). This pattern of DctBD independent fusion 

activity was similar to that obtained with the "long" gene fusion located on pCU700 and was in strong 

contrast with the "short" gene fusions, which are not expressed in a DctBD independent manner. The 

only difference between the pBBB gene fusions and the "short" gene fusions on the pBBBg plasmids 

is that the pBBB gene fusions contain an extra 16 bases of the dctA coding region. These results 

demonstrate that all determinants required for ASA activity are present on the pBBB gene fusions, 

which contain the first 23 nucleotides of the dctA coding region. 

6.4) The UAS are essential for free-living expression of the dctA promoter. 

Having determined the extent of downstream DNA required for DctBD independent expression of the 

dctA promoter, we turned our attention to the upstream sequences. In particular we wanted to 

investigate if the UAS sequences would be required for ASA activity. An oligonucleotide primer was 

designed to introduce an EcoRI restriction site, just downstream of the second biding site for the DctD 

protein. The construction of the pBBEB gene fusions has been described in Chapter 3.4.5. The gene 

fusion on the pBBEB plasmids is identical to that on the pBBB plasmids, but in the pBBEB constructs 

the upstream activator sites (UAS) are deleted from the dctA promoter (See Fig. 3e). 

Since we were particularly interested in the role of NifA in the symbiotic expression the dctA gene, the 

various dctAMacZ fusion plasmids were introduced into the RM1354 nifA mutant strain. A mutation in 

the nifA gene was not expected to have an influence on the free-living expression of the different gene 

fusions. An induction experiment was carried out similar to those described in Chapter 4.5. The gene 

fusions were expressed to levels similar to those seen previously in the wild-type strain (Fig.6b). This 

confirmed that NifA does not play a role in the free-living expression of the dctA gene. As expected, no 

activity at all could be obtained from the pBBEB4 gene fusion which is lacking the UAS. This indicated 

that the UAS are essential for DctBD dependent expression of the dctA gene promoter under free-

living conditions. However it must be bom in mind that at this stage we can not exclude the possibility 

that the lack of activity of the pBBEB gene fusions under free-living conditions is not due to another 

unforeseen artefact of the construction of the plasmids. 
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Fig. 6b: Free-living dctA activity in the RM1354 nifA mutant strain. 

The gene fusions showed levels of activity similar to those observed in a wild-type background. 

Plasmid pCU700 carries the "long" dctA::lacZ gene fusion. pBBBgl carries a "short" gene 

fusion. pBBB5 contains the first 8 amino acids of the dctA coding region and therefore belongs 

to the "third group" of gene fusions (See Fig. 4a) The pBBB5 gene fusion shows the highest 

levels of activity. The pBBEB gene fusion is similar to the pBBB5 gene fusion except that the 

UAS are lacking from the promoter region. The pBBEB4 gene fusion is not expressed under 

free-living conditions. The X-axis has been lowered slightly to reveal this curve. Cultures were 

pre-grown overnight in rich medium and inoculated into minimal medium containing mannitol as 

sole carbon source (time = 0 hrs). Malate was added after 18 hrs. An unit of (J-D-galactosidase 

represents 1 nmole nitrophenol released at 37°C / min. x ODeoo. 

6.5) The UAS are not essential for dctA activity during symbiosis. 

We have shown that the pBBB5 dc#V:/acZ gene fusion is efficiently expressed under free-living 

conditions and during symbiosis. The temporal and spatial pattern of in planta activity in wild-type 

nodules is similar to that observed for both, the "long" as well as the "short" gene fusions (Fig. 6c, 

Panel A). Unlike the "short" gene fusions, which are not activated in a DctBD independent manner, the 

slightly longer pBBB5 gene fusion is also efficiently expressed in a dcD mutant background (Fig. 6c, 

Chapter 6: NifA is required for ASA 82 



2011 wt 20DldctD- 1354 m/A" 

Fig 6c: In situ dcfA::/acZ gene fusion expression in 16 day old nodules. 

A) Activity of the pBBB5 gene fusion in a wild-type nodule. The gene fusion is expressed in zone II 

as soon as the bacteroids are released from the infection threads and remain expressed throughout 

the late symbiotic zone III. Strain: 2011/pBBB5; 16 dpi; coloration: X-p-D-gal for 1 hr.. B) DctD-

independent activation of the pBBB5 gene fusion in a mature nodule induced by a dcID' strain. The 

fusion is sharply induced at the interzone ll/lll and remains strongly expressed throughout the late 

symbiotic zone III. Strain: 20D1/pBBB5; 16 dpi; coloration: Xgal for 2.5 hr. C) Activity of the pBBB5 

gene fusion in a n//A" nodule. The in situ pattern is similar to a wild-type nodule. The early 

development of a senescence zone and the large amount of starch deposition are a typical feature of 

nodules inefficient for N2-fixation. Strain: 1354/pBBB5; 16 dpi; coloration: X-p-D-gal for 1 hr. D) The 

in situ expression of the pBBEB gene fusion lacking the UAS displays a typical late symbiotic pattern 

in a wild-type nodule. Strain: 2011/pBBEB; 16 dpi; coloration: Xgal for 1 hr. E) DctBD-independent 

expression of the pBBEB gene fusion does not differ from that observed in the wild-type nodules. 

Strain: 20D1/pBBEB; 16 dpi; coloration: Xgal for 1 hr. F) A mutation in the nifA gene completely 

abolishes the symbiotic activation of the pBBEB gene fusion. Strain: 1354/pBBEB; 16 dpi; coloration: 

Xgal for 1 hr. The arrows point at position of the interzone ll/lll. 

Panel B). As previously observed with the "long" gene fusion, this DctBD independent activation of the 

pBBB5 gene fusion displays a typical late symbiotic pattern of in situ expression. As such, the pBBB 
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gene fusions behave similar to the pCU700 "long" gene fusion and bear all the elements required for 

activation by the DctBD system, as well as ASA. 

A mutation in the nifA gene had no influence on the free-living activity of the gene fusions (Fig. 6b). 

During symbiosis the pBBB5 gene fusion displays an early to late pattern of gene expression in a nifA 

mutant background, similar to that observed in wild-type induced nodules (Fig. 6c, Panel C). 

Incidentally the pBBBgl "short" gene fusion, which is not expressed in nodules induced by a dctD 

mutant strain, is expressed efficiently in nodules induced by the nifA mutant strain (Data not shown). 

The pBBEB gene fusions lacking the UAS, could not be induced under free-living conditions, 

indicating that the UAS are essential for DctBD dependent activation of the dctA gene. However, 

during symbiosis in nodules induced by the wild-type strain, a significant level of activity could be 

observed from the pBBEB4 gene fusion. In contrast with the other gene fusions, which all displayed an 

early to late pattern of symbiotic expression in a wild-type background, the temporal and spatial 

pattern of in situ expression of the pBBEB gene fusion in wild-type 2011 induced nodules was a typical 

late symbiotic one (Fig. 6c, D). Therefore the pattern of in situ expression of the pBBEB gene fusion in 

wild-type induced nodules, is similar to the pattern observed with the "long" gene fusions in a dctD 

mutant background. Moreover, the intensity and the pattern of the in situ expression of the pBBEB 

gene fusion did not change in the 20D1 dctD mutant background (Fig. 6c, E). The observed in situ 

activity of the pBBEB4 gene fusion in wild-type induced nodules appears to be DctD independent. This 

DctD independent activation of the pBBEB gene fusion, was found to be completely abolished in 

nodules induced by the Rm1354 nifA mutant strain (Fig. 6c, F). 

6.6) Discussion. 

During symbiosis the dctA gene can be activated by either the DctBD mechanism, or independently of 

DctBD by an alternative mechanism of symbiotic activation (ASA). In planta regulatory determinants of 

dctA expression were studied using a range of pGD926 derived dctAv.lacZ gene fusions. The "long" 

gene fusion on pCU700 and the gene fusion located on pBBB5 were found to be efficiently expressed 

during symbiosis in nodules induced by wild-type and dc(D mutant strains. This indicates that these 

fusions contain all necessary determinants to be efficiently activated by DctBD and the ASA. The 

"short" gene fusion on pBBBgl is efficiently expressed by the DctBD system, but not during symbiosis 

in a dcBD mutant background. This is in contrast with the pBBEB gene fusion, which can not be 

activated by DctBD, but is still expressed during symbiosis independently of DctBD. With the latter 

two plasmids we were able to monitor the two mechanisms of dctA activation (DctBD or ASA) 

independently of each other in nodules induced by a wild-type S.meliloti strain. 

6.6.1) Elements downstream of the dctA promoter are required for ASA activity. 

In contrast with the "long" gene fusion on pCU700, the "short" gene fusion on pBBBgl is not activated 

by the ASA (chapter 5.4). Like the "long" gene fusion, the pBBB5 gene fusion was also found to be 

expressed efficiently by DctBD mechanism, as well as the ASA. Therefore the dctA fragment of the 
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pBBB5 gene fusion, which conserved only the first 8 amino acids of the dctA coding region, contains 

all elements required for activation by both mechanisms. The difference between the pBBB gene 

fusions and the "short" pBBBg gene fusions is limited to 16 bp in the extreme N-terminal part of the 

dctA coding region. Therefore a cis-acting element essential for ASA activation during symbiosis, is 

entirely or in part located in this region downstream of the dctA promoter. No further attempts have 

been made to characterise this element. A systematic approach involving a range of point mutations in 

this region of the DNA would probably be a logical way to pursue the analysis of this transcriptional 

element. 

6.6.2) The UAS are not essential for ASA activity. 

The pBBEB gene fusion could not be induced by dCA under free-living conditions, confirming that the 

UAS sequences are essential for DctBD dependent activation of dctA. Under free-living conditions, 

deletion of the UAS from the dctA promoter has the same effect as deleting the dcID gene. In both 

cases activity of the dctA promoter is diminished. During symbiosis, although much reduced in 

comparison with the highly efficient pBBB5 gene fusion, a significant level of gene fusion activity was 

retained. In nodules induced by a wild-type S.meliloti strain the in situ pattern of expression of 

pBBEB4 was found to have changed with respect to the other dctA::lacZ gene fusions retaining the 

UAS region. No activity could be observed at the early stages of symbiosis and the in situ pattern had 

changed to an exclusively late symbiotic one. The level of expression was similar to that of the 

pCU700 gene fusion in 20D1 induced nodules, or the pBBBgl gene fusion in the wild-type 

background (Data not shown). Therefore the change in pattern was not a simple reflection of the lower 

level of activity of this gene fusion in comparison to pBBB5. The level of expression and the in situ 

pattern did not change when a dc© mutant strain (20D1) was used. This demonstrated that the 

symbiotic activation of the pBBEB gene fusion is truly DctD independent. The pBBEB4 gene fusion 

behaves in a nodule induced by a wild-type strain, just like the pBBB gene fusions in a dc/D mutant 

background and allows us to study the effect of mutations in other regulatory genes without having to 

construct double mutants. 

6.6.3) A functional n/fA gene is required for ASA activity. 

The pBBB5 and the pBBBgl gene fusions were efficiently expressed in nodules induced by a n/fA 

mutant strain. Both displayed an early to late pattern of in situ expression similar to those observed in 

the wild-type background. No activity was obtained in a nifA mutant background from the pBBEB4 

gene fusion lacking the UAS sequences. This latter observation strongly suggests that NifA is involved 

in the DctBD independent activation of the dctA gene during symbiosis. It is not clear from these 

results if NifA itself interacts with the dctA promoter, or if another gene is activated by NifA, whose 

product acts on the dctA promoter. This latter scenario has been suggested by Kaufman & Nixon 

(1996). These authors identified a possible DctD homologue designated gene 19, which according to 

the authors, might be involved in the symbiotic activation of dctA. 
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When it became clear that during symbiosis a mechanism, other than the DctBD system, was capable 

of efficiently activating the dctA promoter, NifA was immediately suggested as a likely candidate for 

the ASA (Ronson era/., 1985, 1987a, 1988). This was based on the fact that the UAS sequences for 

DctD resembled a consensus sequence for NifA binding. To date no concrete evidence has been 

provided to support this hypothesis. Certain experimental data even contradicts that NifA plays a role 

in the regulation of the dctk promoter (Wang ef a/., 1989; Jording ef a/., 1992). Here we have shown 

that NifA does indeed play a role in the symbiotic activation of the dcfA promoter. It is also clear that, 

although the UAS sequences contribute to the expression of the dcth promoter, they are not 

absolutely essential in this process. The ASA appears to require certain cis-acting sequences 

downstream of the -12 -24 promoter site for its activity. Therefore the mechanism by which the ASA 

activates the dctA promoter during symbiosis must differ in several aspects from the classical DNA 

looping model involving an enhancer site located upstream from the promoter. It will be interesting to 

determine the actual mechanism of activation and, in particular, the nature of the cis-acting elements 

located in the extreme N-terminal part of the dctA coding region. Furthermore it will be interesting to 

examine if a similar mechanism is also involved in the symbiotic activation of the P1 and P2 

promoters. 
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Chapter 7) 

In situ dctA expression during symbiosis of 

Sinorhizobium meliloti with Medicago truncatula 



7.1) Introduction. 

The S.meliloti- alfalfa symbiosis is one of the most extensively studied system of symbiotic N2-

fixation, especially the bacterial side of the symbiosis. Progress in molecular studies on the plant side 

of this system is hampered by the complexity of the Medicago sativa (Alfalfa) genome. Medicago 

sativa is a tetraploid and cross-fertilising plant. The so-called barrel medic, M. truncatula is a diploid 

and autogamous plant with a relatively small genome. Therefore M. truncatula is more amenable to 

genetic analysis and has been proposed as a model plant to study the molecular genetics of the 

Rhizobium-\egume symbiosis (Barker et. al., 1990). 

In order to test its suitability for the study of the symbiotic regulation of the dctA gene we checked the 

in situ expression of the S.meliloti dctA gene in nodules induced on M. truncatula. 

7.2) A S.meliloti dctD mutant strain induces inefficient nodules on M. truncatula. 

Nodules induced by S.meliloti strains mutated in the regulatory dcBD genes, on the alfalfa {Medicago 

sativa) host plant, are still effectively fixing nitrogen. As described in chapter 5, the dctA negative 

phenotype of these strains is overcome at the late symbiotic stage by an alternative mechanism of 

symbiotic activation (ASA). The dctD mutant strain 20D1 is a typical example and this strain, together 

with the 2011 wild-type strain, was used to inoculate M.truncatula {cv Jema\ong 15-16) seedlings. 

Nodules induced by 20D1 developed at the same rate as those induced by the 2011 wild-type strain 

and for the first two weeks looked perfectly normal. Between two and three weeks the plants 

inoculated with 20D1 started to lag behind in growth, in comparison to those inoculated with the wild-

type strain. At 16 days after infection, the N2-fixation activity was measured using the acetylene 

reduction assay (ARA). The activity of M.truncatula plants infected with the wild-type strain was found 

to be 48 ± 9 nanomoles of ethylene produced per plant, per minute. This is comparable to the activity 

of this wild-type strain with M.sativa (alfalfa). For example in another experiment, the 2011 wild-type 

strain (with the pRKP4 gene fusion) gave rise to 37 + 13 nm/plant*min when inoculated on alfalfa and 

40 ± 3 nm/plant*min when inoculated on M.truncatula. The N2-fixation activity of plants inoculated with 

20D1 dc© mutant strain was found to be 11 + 6 nm/plant*min. This amounted to only 23% of the 

activity obtained with plants inoculated with the wild-type strain. This is also much less than the activity 

obtained with alfalfa when inoculated with the 20D1 strain. Therefore, it appeared that in contrast to 

the situation on alfalfa where the 20D1 strain is efficient for symbiotic N2-fixation, the N2-fixation 

activity is very much reduced when this strain is inoculated onto M. truncatula. 
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7.3) In situ dctA and niM gene expression in nodules induced on M.truncatula. 

The low N2-fixing activity of the 20D1 dcO mutant strain on M.truncatula raised the question if the dctA 

gene was efficiently expressed in these nodules. This might indicate that unlike the S.meliloti -alfalfa 

symbiosis, the ASA does not operate in nodules induced on M.truncatula. In order to investigate this 

possibility, M.truncatula seedlings were infected with the isogenic 2011 wild-type and 20D1 dc/D 

mutant strains each bearing the pBBB5 dctAy.lacZ gene fusions. As shown in chapter 6, this gene 

fusion is efficiently activated by the ASA in nodules induced by the 20D1 strain on alfalfa. To check the 

possibility that the lack of nitrogen fixation activity in the 20D1 induced nodules could be attributed to a 

reduced level of the nif gene expression, the activity of the pRKP4 (nUH::lacZ) gene fusion was also 

monitored. 

The in situ pattern of early and late expression of the pBBB5 dctAy.lacZ gene fusion in nodules 

induced by the 2011 wild-type strain on M.truncatula was similar to the pattern observed in nodules 

induced on alfalfa (Fig7a A). The typical late symbiotic pattern of in situ expression of the nilH gene 

was also similar to that observed in wild-type nodules induced on the alfalfa host plants (Fig7a C). The 

nodules induced by the 20D1 dc(D mutant strain were completely infected and the various zones of 

temporal and spatial development could be clearly distinguished. Only a higher level of starch 

deposition and a premature development of a central zone of senescence, typical for fix" nodules, 

distinguished these nodules from those induced by the wild-type strain. The nilH gene was expressed 

in a typical late symbiotic pattern similar to the wild-type nodules (Fig7a D). In contrast the typical late 

symbiotic pattern of in situ dctA activity which can be observed in nodules induced by 20D1/pBBB5 on 

alfalfa, was absent from nodules induced by this strain on M. truncatula (Fig7a B). 

In order to evaluate the efficiency of dctA and nilH gene expression, bacteroid suspensions were 

prepared and the symbiotic activity of the gene fusions measured. The level of nilH activity obtained 

from 20D1 mutant bacteroids amounted to about 70 % of that obtained from the wild-type (252 units of 

p-galactosidase activity versus 371 U. respectively). This ratio is similar to what was previously 

observed in nodules induced on alfalfa (See Table 5a). Therefore it seems unlikely that a reduction in 

nilH activity is responsible for the much reduced N2-fixing activity of M.truncatula plants nodulated 

with the 20D1 strain. The pBBB5 dctA.'.ladZ gene fusion was found to be expressed efficiently in 

nodules induced by the 2011 wild-type strain. The ^-galactosidase activity of 489 U. was comparable 

to that obtained from the same strain-plasmid combinations on alfalfa. In contrast to 20D1/pBBB5 

bacteroids from nodules induced on alfalfa, bacteroids purified from nodules induced by this strain on 

M.truncatula did not show p-galactosidase activity of any significance (25 U.). These results indicate 

that the reduced symbiotic N2-fixing activity of the 20D1 dctD mutant strain on M.truncatula is due to 

the absence of efficient expression of the dctA gene. 
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Fig. 7a: In situ expression of the tfctA::/acZ and the nlfH::lacZ gene fusions on 

M.truncatula. 

The first column shows nodules induced by the 2011 wild-type strain. The second column shows nodules 

induced by the 20D1 dcD mutant strain. The top row shows the in situ expression of the pBBB5 dctA::lacZ 

gene fusion. The bottom row shows the activity of the pRKP4 nilH:.lacZ gene fusions. The arrows indicate 

the position of the interzone ll/lll. A) Strain 2011/pBBB5; 15 dpi; coloration Xgal for 2.5 hrs. Strong fusion 

activity is observed in the infection zone II and continues throughout the interzone ll/lll and the late 

symbiotic zone III. B) Strain 20D1/pBBB5; 15 dpi; coloration Xgal for 2.5 hrs. Virtually no DctBD 

independent expression of the gene fusion can be observed. C) Strain 2011/pRKP4; 16 dpi; coloration 

Xgal for 2.5 hrs. Typical late symbiotic activity of the ni/H gene is observed. D) Strain 20D1/pRKP4; 16 

dpi; coloration Xgal for 2.5 hrs. The n/fH gene is efficiently expressed in these nodules. Some early 

senescence of the cells in the central zone of the inefficient 20D1 nodules can be seen. 
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Considering the levels of (5-galactosidase activity, a striking difference between alfalfa and 

M.truncatula was that bacteroid suspensions from M.truncatula nodules induced by the 2011 wild-type 

strain, had comparable levels of p-galactosidase activity for the pBBB5 and pRKP4 gene fusions. 

Previously with alfalfa, the n//H gene fusion was always found to be expressed at a level several times 

higher than the dctA fusions. Since the dc(A::/acZ gene fusions gave comparable levels of f>-

galactosidase activity on alfalfa and M.truncatula, this indicated a real difference in n/'/H gene activity. 

This was the more surprising since wild-type nodules from M.truncatula were as efficient in N2-fixation 

as those from M.sativa 

7.4) NifA activity on M.truncatula. 

The expression of the nitH gene is regulated by the NifA protein (Better et al, 1985). Therefore the low 

level of activity of the nilH gene fusions on M.truncatula (in comparison with nilH activity in nodules 

induced on M.sativa) suggested a difference in NifA activity. This could be either a reduced level of 

expression of the nifA gene, or a lower activity of the NifA protein. To investigate these possibilities, 

we set out to compare the symbiotic activity of a nifA::lacZ gene fusion (pCHK57, Ditta et al., 1987) in 

nodules induced by the 2011 wild-type S.meliloti strain on M.truncatula and M.sativa respectively. 

pBBBgl 

pCHK57 

pPRKP4 

M.truncatula 

193 +/- 9 

59 +/- 8 

138 +/- 53 

M.sativa 

280 +/- 43 

530 +/- 52 

2504 +/- 959 

Table 7a: Symbiotic activity of the nif genes. 

The p-galactosidase activity from bacteroid suspensions is presented. The values are the 

average of at least three samples of at least 5 plants each. It can be clearly seen that the 

expression of the "short" dctk gene fusion (pBBBgl) is comparable between the two hosts. 

However the nifA (pCHK57) and nilH (pRKP4) gene fusions are much less active on the 

M.truncatula host plant than on alfalfa. 
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Seedlings were also Inoculated with the 2011 strain containing the pBBBgl dctA.UacZ gene fusion and 

the pRKP4 nHH::lacZ gene fusions. The ASA apparently operates on alfalfa, but not on M.tmncatula. 

Therefore the "short" dctAv.lacZ fusion was used because its activity is not influenced by the ASA. We 

expected to observe similar levels of p-galactosidase activity with this gene fusion in nodules induced 

on either of the two host plants. The nilH gene fusion pRKP4 was used to consolidate the previous 

results. 

The results of this experiment are summarised in Table 7a. As expected, comparable levels of p-

galactosidase activity were obtained from the dctA gene fusion from nodules induced on either host. In 

contrast a very large difference in nif gene expression was observed. The expression of the n/7H gene 

from nodules induced on M.tmncatula was only a fraction of the activity obtained from alfalfa nodules. 

This corresponded with a similar difference in nifA gene expression between the two hosts. These 

results clearly suggest that a low level of nifA gene expression, rather than a reduction in NifA activity, 

is responsible for the low level of nHH gene expression in nodules induced by S.meliloti on 

M.tmncatula. 

7.5) Discussion. 

In this chapter, we studied the expression of the dctA gene fusions during symbiosis with Medicago 

truncatula in order to assess the suitability of this model legume for further genetic studies on the 

symbiotic regulation of the dctA gene. The M.truncatula cv. Jemalong seedlings are efficiently 

nodulated by the 2011 strain and this results in an effective symbiosis. This incidentally is apparently 

not the case for all S.meliloti strains, as several wild-type strains that are effective on alfalfa lead to fix' 

nodules on certain cultivars of M.truncatula (L.Trichine Laboratoire de Biologie Moleculaire des 

Relations Plantes - Microorganismes, INRA-CNRS Toulouse, France, personal communication). No 

significant differences were observed in the temporal and spatial pattern of in situ dctA expression in 

nodules induced by the 2011 wild-type strain on either one of the two host plants. In contrast with 

alfalfa however, nodules induced by the 20D1 dctD mutant strain on M.tmncatula, were found to be 

ineffective for symbiotic N2-fixation. This fix' phenotype was correlated with an inability to express the 

dctA gene during symbiosis. Therefore, unlike the situation on alfalfa, the dctA' phenotype of the 20D1 

dctD mutant strain is not overcome during symbiosis by an alternative mechanism of symbiotic 

activation (ASA). 

At the same time, in nodules induced on M.tmncatula by either the wild-type strain or the dctD mutant, 

we observed a much lower activity of the nilH gene, than with alfalfa. This corresponded with a 

significantly reduced level of expression of the nifA gene. Surprisingly, this reduced level of nif gene 

expression was not reflected in a lower symbiotic N2-fixation activity of the S.meliloti-M.truncatula 

symbiosis. Apparently the level of nif expression in nodules induced on M.tmncatula, although much 

reduced in comparison to alfalfa, is still sufficient to establish high levels of nitrogenase activity. In any 

case the temporal and spatial patterns of expression of the nif gene fusions, also suggest a correct 

regulation. On the other hand, one may wonder if the very high level of nilH activity in nodules induced 

on alfalfa might suggest some deregulation of n/f gene expression. 
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However, these findings may help to understand the observed differences in ASA activity in nodules 

induced on alfalfa and M.truncatula. If the nifA gene is over-expressed in the alfalfa nodules, than one 

can understand how this would allow NifA to cross activate the dctA promoter. Similarly the much 

reduced level of NifA activity on M.truncatula, not only explains the reduced level of n/'/H activity, but 

also the absence of ASA activity on the dctA gene. On the other hand, since the 2011 wild-type strain 

is efficient for symbiotic N2-fixation with M.truncatula, this indicates that the ASA is dispensable in the 

Sinorhizobium-Medicago symbiosis. Consequently we conclude that the expression of the dctA gene 

by the DctBD mechanism alone is sufficient to provide the bacteroids with C4-dicarboxylic acids and 

meet their energy requirement for symbiotic N2-fixation. 
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Chapter 8) 

Conclusions and General Discussion 



8.1) Conclusions. 

The S.meliloti dctA gene codes for a permease that is required for the uptake of C4-dicarb0xylat.es, 

which are the major carbon source to fuel symbiotic N2-fixation. The aim of this work was to study the 

regulation of the dctA gene during symbiosis of S.meliloti vnVh the Medicago host plants. In particular 

we wanted to characterise the alternative mechanism of symbiotic activation (ASA). In the absence of 

the regular mechanism of dctA activation (DctBD), the ASA leads to an efficient activation of the dctA 

gene during symbiosis. We set out to determine the role of the ASA in the overall regulation of dctA 

gene expression in nodules induced by S.meliloti and to examine whether the ASA, or the regular 

DctBD mechanism, is primarily responsible for the activation of the dctA gene during symbiosis. The 

work presented in this thesis has resulted in a number of observations that contributed significantly to 

our understanding of the regulation of the dctA gene during symbiosis. The major findings are 

summarised here. 

8.1.1) The ASA mechanism is only active at the late stages of the symbiosis. 

The first significant observation was that the ASA only manifests itself at the late stages of the 

symbiosis, after the bacteria have differentiated into N2-fixing bacteroids. The temporal and spatial 

pattern of DctBD-independent dctA expression in nodules induced on the alfalfa host plant was always 

very similar to that of the n//H gene fusion. This late symbiotic manifestation of the ASA means that 

the early expression of dctA observed in wild-type nodules is necessarily DctBD dependent. This also 

means that dcfBD mutant strains remain unable to express the dctA gene at the early stages of the 

symbiosis. The only significant difference between dcfBD and dctA mutant strains, is that once the 

bacteroids are fully differentiated, the ASA suppresses the dctA negative phenotype of the dcfBD 

mutants, whereas the dctA mutants remain Dct negative. It has been suggested that the metabolism 

of C4-dicarboxylates may be required for the differentiation of the bacteria into N2-fixing bacteroids 

(Gardiol etal., 1987). As indicated by the DctBD dependent activation of the dctAv.lacZ gene fusions, 

dCA indeed appear to be present at the early stages of symbiosis. However, dcfBD mutant strains, 

which are unable to utilise this dCA at the early stages of the symbiosis, still differentiate into N2-fixing 

bacteroids. This indicates that efficient uptake of dCA at the early stages of the symbiosis is not 

essential for bacteroid differentiation. 

8.1.2) The ASA requires sequences downstream of the dctA promoter for activity. 

The second interesting observation was that the ASA did not act on the "short" dctAv.lacZ gene 

fusions. This was remarkable since these "short" gene fusions appeared to be correctly regulated by 

the DctBD system under free-living conditions. In these gene fusions, the lacZ gene was fused directly 

to the ATG start-codon of the dctA gene. In contrast, gene fusions containing the first 8 amino-acids of 

the dctA coding region were efficiently activated by the ASA. The only difference between these 

fusions and the ones that were not activated by the ASA is a short stretch of 16 bp of DNA. We 
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therefore concluded that some cis-acting nucleotide sequences required for ASA activity, are located 

immediately downstream of the dctk promoter in the beginning of the coding region. Close 

examination of this region of the dctk gene and comparison with other dctk promoter sequences did 

not reveal the presence of any obvious regulatory sequences. 

Some of our earlier work has indicated that the nllH promoter also contains sequences downstream of 

the transcriptional start site, which are involved in the regulation of this promoter (Wang et. al., 1991). 

A direct comparison of the 5' amino acid sequences of the n/7H gene with the dctA gene revealed 

some striking similarities, especially in the sequences coding for AA8-12. However these homologies 

are located downstream of the region required for activation of the dctk promoter by the ASA. 

Possibly, the lacZ sequences immediately downstream of the fusion site in the pBBB and pBBEB 

plasmids are sufficiently similar to compensate for the absence of these sequences. A systematic 

study of this region, involving site directed mutagenesis, will be necessary to unambiguously identify 

the regulatory elements. 

The fact that the "short" dctkwIacZ gene fusions are efficiently expressed at the late symbiotic stages, 

in nodules induced by a wild-type S.meliloti strain, demonstrates that the DctBD mechanism also 

operates in the N2-fixing bacteroids. 

8.1.3) The UAS sites of the dctA promoter are not essential for ASA activity. 

The third observation was that the upstream activator sites (UAS) were not essential for activation of 

the dctk promoter during symbiosis. The UAS are absolutely required for activation by the DctBD 

system, which was also demonstrated by the fact that gene fusions lacking these UAS sites could not 

be induced by dCA under free-living conditions. Yet, during symbiosis these fusions were expressed in 

bacteroids, at a level of about 30% of that of an equivalent fusion containing the UAS. Moreover these 

gene fusions, lacking the UAS, were expressed at a similar level in a wild-type nodule as they were in 

the 20D1 dctD mutant background. The pattern of temporal and spatial expression in a wild-type 

nodule was similar to that observed for DctBD independent activation of other gene fusions containing 

the UAS. We therefore concluded that the UAS sites, which are indispensable for the activation by the 

DctBD system, are not essential for the activation of the dctA promoter by the ASA. The fact that these 

fusions were activated in nodules induced by a wild-type strain indicated that (beside the DctBD 

system) the ASA contributes to the level of expression of the dctk gene during symbiosis. 

The dctk-.lacZ gene fusions, lacking the UAS, facilitated the search for the ASA because they 

circumvented the requirement for a strain mutated in the dc/BD genes to monitor ASA activity. The 

effect of a mutation of interest on ASA activity could be evaluated directly, without the need for a 

double mutant strain mutated in cfcfBD as well. 
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8.1.4) The alternative symbiotic activator requires NKA. 

From this work it has become clear that an efficient expression of the nifA gene is required for ASA 

activity. This conclusion was drawn from two separate lines of investigation: 

We observed that the dcID mutant strain 20D1 induces nodules that are virtually fix" when inoculated 

on the Medicago truncatula host plant. This result was correlated with the fact that the dctA gene is not 

expressed efficiently in these nodules. We also observed that the nifA gene is expressed in these 

nodules at a level, which is strongly reduced in comparison to the level of nifA expression in nodules 

induced on M.sativa. These results suggested that a high level of nifA gene expression is required for 

ASA activity. 

The second line of evidence came from the fact that the pBBEB gene fusions, lacking the UAS 

sequences, are not activated in nodules formed by the 1354 n//A::Tn5 mutant strain. These gene 

fusions are efficiently expressed in the wild-type and dcID mutant backgrounds. This also suggests a 

role for NifA in the DctBD independent activation of the dctA promoter. 

8.1.5) The ASA is not essential for symbiotic N2-fixation. 

Monitoring dctA activity with the "short" dctAv.lacZ gene fusions that are not activated by the ASA, 

demonstrated that the DctBD system alone is sufficient to express the dctA promoter during 

symbiosis. Furthermore we observed that the ASA does not operate in nodules induced on the 

Medicago truncatula host plant. Despite the absence of ASA activity, these nodules were as efficient 

for symbiotic N2-fixation as those induced on alfalfa. This indicates that activation of the dctA promoter 

by the ASA is not required for symbiotic N2-fixation. 

8.2) Discussion. 

In this work we have studied the in planta expression of a number dctAv.lacZ gene fusions. The 

constructs differed only in the extent of DNA upstream, or downstream of the dctA promoter, that was 

retained. During symbiosis the dctA promoter can be activated by two independent regulatory 

mechanisms. The upstream activator sequences (UAS) are known to be required for the activation of 

the dctA promoter by the DctBD mechanism. Deleting these sequences resulted in gene fusions that 

no longer could be activated by DctBD, but still responded to the ASA. Conversely, deleting 

sequences immediately downstream of the promoter resulted in gene fusions that no longer could be 

activated by the ASA, but under free-living conditions were still correctly regulated by the DctBD 

system. It is curious to think that a gene fusion, which is apparently properly regulated by its cognate 

two-component regulatory system, does not necessarily reflect the regulation of the gene in question 

under all conditions. For example, the exclusive use of the "short" dctAv.lacZ gene fusions might have 

led us to erroneously believe that there was no ASA activity. This demonstrates that great caution 

should be taken when interpreting results obtained with this technology. Using the various gene 

fusions we were able to distinguish between DctBD, or ASA driven dctA expression in planta. 
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8.2.1) The mechanism of dctA activation by the ASA. 

The major finding of this work is that a functional Nif A is required for ASA activity. Nif A and DctD both 

belong to the same family of NtrC type of transcriptional activators and Nif A is highly active during 

symbiosis. Therefore Nif A was proposed as being the most likely candidate for the ASA, as soon as 

the mechanism was discovered. However, no conclusive evidence could be generated to support this 

hypothesis. Other results, such as the inability to express dctA under microaerobic conditions seemed 

to exclude Nif A from the list of possible candidates (Wang et al., 1989). 

Here then, Nif A is back as the most likely alternative symbiotic activator of the dctA promoter. 

Considering the fact that Nif A and DctD are closely related, it seems likely that Nif A interacts directly 

with the dctA promoter to activate its transcription. However, the possibility can not be excluded that 

NifA is required for the activation of another gene, which in turn is responsible for activation of the dctA 

promoter. A third possibility is that in addition to nif A, another gene product is required to allow NifA to 

act on the dctA promoter. 

The most interesting aspect of the ASA is probably going to be the actual mechanism by which it 

performs its function. Two novel features are revealed in this work: First, the upstream activator sites 

(UAS) contribute significantly to the level of DctBD independent expression of the dctA promoter, but 

are not essential. Second, there seem to be cis-acting sequences downstream of the dctA promoter 

which are indispensable for ASA activity. Possibly another gene product which interacts with these 

downstream sequences is required in addition to NifA. A similar mechanism may also be involved in 

the symbiotic expression of the n/ZHDK- and fixABC promoters. Both these promoters require NifA for 

activation and their UAS's were also found to be dispensable for their activity during symbiosis (Better 

etal., 1985; Wang etal., 1991; This work). 

8.2.2) The role of the ASA in the Rhizobium-legume symbiosis. 

We have concluded that the ASA contributes significantly to, but is not essential for, the symbiotic 

activation of the dcfA promoter in the Sinorhizobium-Medicago symbiosis. On the other hand, NifA is 

required for the activation of various nif and fix genes and as such is a prerequisite for symbiotic N2-

fixation. Because of the high levels of NifA activity the dctA promoter is activated efficiently in plants 

by the ASA and this makes the regulatory dcSD genes redundant for an efficient symbiosis. At least 

this is true for alfalfa, but not for Medicago truncatula. It is interesting to observe that in Rhizobium sp. 

NGR234 a homologue of the dctA gene has been identified. This bacterium nodulates a wide range of 

host plants, among which also certain Medicago species. The NGR234 dctA gene was found to be 

essential for an effective symbiosis, although not for growth on dCA under free-living conditions (van 

Slooten etal., 1992). No equivalent of the regulatory dcBD genes were found in the vicinity of this 

dctA gene. One can imagine that in absence of the DctBD mechanism, this bacterium relies solely on 

the ASA for the expression of this dctA gene during symbiosis. The symbiosis between S.melilotiand 

M.truncatula demonstrates that high levels of NifA activity, as observed on M.sativa, are not required 
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for efficient expression of the nif and fix genes. On the other hand, a high level of NifA activity does 

ensure expression of other aM-dependent genes such as the dctk. gene, even in the absence of their 

own regulatory systems. The NGR234 system may be one step further in this development in that the 

dciA gene in this bacterium has become an exclusively late symbiotic gene, solely activated by the 

ASA. 
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Samenvatting 



Voor een optimale opbrengst van landbouwgewassen moeten de planten over voldoende stikstof in 

gebonden vorm kunnen beschikken. Een tekort aan stikstof in de bodem kan verholpen worden door 

toedienen van kunstmest. Sterker nog, zonder kunstmest zouden de opbrengsten van de hedendaagse 

landbouw niet mogelijk zijn. De lucht die wij inademen bestaat voor 80 % uit stikstof. Deze atmosferische 

stikstof kan echter niet als zodanig gebruikt worden door de planten, maar moet eerst omgezet worden in 

in ammonia om door de planten voor hun groei gebruikt te kunnen worden. Het "binden" van deze stikstof, 

dat wil zeggen het reduceren van N2 tot NH3, kan gebeuren via een chemisch proces. Door deze vorm van 

kunstmest produktie zijn in de jaren 50 sommige chemie-concerns groot geworden. Chemische stikstof 

binding verbruikt veel energie en is dan ook een kostbaar proces wat zich uit in de prijs die voor de 

kunstmest betaald moet worden. Kunstmest is dan ook een van de grootste kostenposten voor de boeren. 

Er zijn daarnaast ook planten die goed gedijen op stikstofarme gronden. Daartoe behoren 

vlinderbloemigen, die een symbiose kunnen aangaan met Rhizobium bacterien. Deze Rhizobia zijn in 

staat om de atmosferische stikstof te reduceren tot ammonia en deze ten goede laten komen aan de plant. 

Deze zogenaamde biologische stikstofbinding vindt plaats in knollen die zich onder invloed van de 

Rhizobia vormen op de wortels van de vlinderbioemige plant en gevuld zijn met bacterien. De 

wisselwerking tussen de vlinderbioemige plant en de Rhizobia, die leidt tot deze stikstofbindende knollen is 

complex en al vele jaren een belangrijk onderwerp van wetenscappelijk onderzoek. Het onderwerp dat 

wordt beschreven in dit proefschrift is slechts een klein stukje van de interactie van Rhizobia met hun 

gastheerplanten. 

De gastheerplant reageert op de aanwezigheid van de Rhizobia met de vorming van knollen op de wortels. 

In een vroeg stadium worden de planten geinfecteerd door Rhizobia die de plant binnendringen via de 

wortelharen. Aanvankelijk bevinden de bacterien zich in infectjedraden waar ze zich nog kunnen 

vermeerderen door deling. Vervolgens worden de bacterien gedeponeerd in de cellen van de zich 

ontwikkelende wortelknol. Vanaf dat moment spreken we niet meer van bacterien, maar van bacteroiden. 

De bacteroiden worden bij hun opname in de plant eel omgeven door een membraan van plantaardige 

afkomst. Dit membraan scheidt de bacteroiden van het cytoplasma van de plantencel. Na de opname in de 

plantencel ondergaan de bacteroiden een ontwikkeling waarbij zij wel nog groeien, maar stoppen met delen 

en zich differentieren tot een vorm die in staat is tot symbiontische stikstof binding. Deze stikstof binding 

vind plaats in de centrale zone van de knollen. De bacteroiden maken het nitrogenase enzym dat 

verantwoordelijk is voor de stikstof binding. Dit enzym is zeer gevoelig voor zuurstof en de zuurstofdruk in 

de centrale zone van de knollen is dan ook zeer laag. Biologische stikstofbinding kost veel energie en de 

voeding voor de bacteroiden nodig voor de enrgieproductie, wordt geleverd door de plant. In de bladeren 

van de plant wordt door de fotosynthese sucrose gemaakt dat via de vaten wordt getransporteerd naar de 

andere delen van de plant. In de centrale zone van de knollen bevinden zich de stikstofbindende 

bacteroiden. Het membraan dat de bacteroiden omgeeft is niet doorlaatbaar voor sucrose. In de plant cell 

wordt de sucrose omgezet in dikarboonzuren zoals bijvoorbeeld malaat dat wel via de membraan tot de 

bacteroiden kan doordringen. Om van deze energiebron gebruik te kunnen maken, moeten de bacteroiden 

beschikken over een systeem om dikarboonzuren op te nemen. Dit opnamesysteem voor dicarboonzuren 
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en in net bijzonder de vraag hoe de expressie van de genen die betrokken zijn in de opname van 

dicarboonzuren wordt gereguleerd tijdens de symbiose, is net onderwerp van deze studie. 

Slnorhizobium metftoft behoord tot de meest onderzochte Rhizobia. Deze stam kan knollen induceren op 

planten van de Medicago familie. Een cultuur van S./ne//foff bacterien kan uitstekend groeien in een 

medium dat dikarboonzuren bevat als enige bron van koolstof. De dikarboonzuren worden dan opgenomen 

via een transporteiwit, een zogenaamd permease, dat aangemaakt wordt door net dctA gen. "Dcf staat 

voor: dicarboxylate transport. Het Dct systeem omvat behalve het DctA permease ook nog twee 

regulerende eiwitten die aangemaakt worden door de dc& en dcD genen. DctB is een "sensor" eiwit dat in 

het membraan geiokaliseerd is en gedeeltelijk naar buiten steekt. DctB is in staat de aanwezigheid van 

dikarboonzuren in het milieu te detekteren. DctD is een "regulator" eiwit welk in staat is het dclA gen te 

activeren. Als het wordt aangemaakt door het dctD gen, is het DctD eiwit inactief. Als de aanwezigheid van 

dikarboonzuren in het milieu wordt gedetecteerd door het DctB eiwit, activeerd DctB het DctD eiwit. DctD 

op zijn beurt activeert vervdgens het aflezen van het dctA gen. Via het DctA transport eiwit worden de 

dikarboonzuren dan opgenomen en verbruikt in het metabolisme van de bacterien. Het mag duidelijk zijn 

dat zonder dctA de opname van dikarboonzuren niet mogelijk is. Het ontbreken van de regulerende dclBD 

genen heeft hetzelfde effect omdat het dctA gen dan niet geactiveerd kan worden. 

Een S.melibti slam waarvan het dctA gen gemuteerd is, kan de gastheerplant wel infecteren en dit leidt 

ook tot de vorming van vdledig geinfecteerde knollen. De bacteroiden in die knol zijn echter niet in staat om 

stikstof te binden omdat geen dikarboonzuren kunnen worden opgenomen. Men zou nu verwachten dat dit 

ook het geval zou zijn voor dctBD mutanten. In vrijlevende vorm zijn deze stammen immers niet in staat om 

het dctA gen te activeren. Het is echter zeer opmerkelijk dat bacterie stammen die gemuteerd zijn in dcB 

en/of dcID, doorgaans wel een effectieve symbiose aangaan met de gastheerplant en actief stikstof 

bindende knollen vormen. Nader onderzoek heeft aangetoond dat in die gevallen het DctA transport eiwit 

wordt aangemaakt tijdens de symbiose, ook al ontbreken de regulerende DctBD eiwitten. Dit heeft geleid 

tot de veronderstelling dat er een alternatief mechanisme moet zijn om de expressie van het dctA gen te 

activeren tijdens de symbiose. Dit mechanisme wordt in het engels 'The alternative symbiotic activator", of 

kortweg de "ASA" genoemd. 

De vraag wat het ASA precies inhoudt is het centrale onderwerp van dit proefschrift. Allereerst de vraag: 

"Wat is precies dit alternatieve mechanisme dat in staat is om dctA te activeren tijdens de symbiose?" 

Daarnaast rijst de vraag wat het belang is van dit mechanisme voor de symbiose en of er in aanwezigheid 

van een functioned DctBD systeem ook een rol is voor de ASA. Men kan zich ook afvragen of ASA, of 

DctBD in eerste instantie verantwoordelijk is voor de expressie van het dctA gen tijdens de symbiose. 

Om expressie van het dctA gen te kunnen detecteren werd het gen gef useerd met het Escherichia coli 

lactose gen (lacZ). Het lacZ gen codeert voor het p-galactosidase. Xgal is een substraat voor het p-

galactosidase dat door dit enzym wordt omgezet in een intens blauwe kleurstof. Met behulp van Xgal kan 

de activiteit van de dctAv.lacZ gen fusies gevisualiseerd worden. De activiteit van de fusie eiwitten kan 

quantitatief worden bepaald met behulp van het ONPG substraat. Dit substraat wordt door de p-

galactosidase activiteit in extracten van de bacterien of bacteroiden omgezet in een gele kleurstof die 

fotometrisch gemeten kan worden. 
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De p-galactosidase activiteit van de dctAv.lacZ gen fusies in vrij levende bacterien is doorgaans laag als er 

geen dikarboonzuren aanwezig zijn in net medium. Door net toevoegen van dikarboonzuren wordt de 

activiteit van de fusies sterk geinduceerd. In de afwezigheid van een functioneel DctBD systeem worden 

de fusie eiwitten niet geinduceerd. Omgekeerd betekend een hoge activiteit van de gen-fusies dat net 

DctBD systeem actief is en dikarboonzuren aanwezig zijn in net milieu. Tijdens de symbiose is dat niet 

altijd waar omdat dan het dctA gen ook geactiveerd kan worden door de ASA. 

De in planta expressie van de dctAlacZ gen fusies werd bestudeerd door Medicago sativa (alfalfa) te 

infecteren met een stam van het wild-type S.melilotiti\e een dctAv.lacZ gen fusie bevatte. Volwassen 

knollen werden in de lengte in plakjes gesneden en deze microscopisch dunne "coupes" werden 

geincubeerd in een oplossing met Xgal. Na ongeveer een uur kan dan onder het microscoop de blauwe 

kleur gedetecteerd worden die aanduid waar het dctA gen tot expressie komt (Fig.10). In wild-type knollen 

Fig.10: In planta expressie van een dctAv.lacZ gen fusie. 

De blauwe kleur wordt veroorzaakt door de omzetting van het Xgal door het [J-

galactosidase eiwit wat aangemaakt wordt door het geactiveerde lacZ gen. De pijlen 

wijzen naar de overgangszone van de vroege stadia van de symbiose in de top van 

de knollen, naar de centrale zone van de knollen waar de stikstofbinding plaatsvind. 

A) Deze foto toont een dubbele knol die geinduceerd werd door een wild-type 

S.melilotistem. De expressie van dctA vind reeds plaats in een vroeg stadium van 

de symbiose. B) Deze foto toont de activiteit van dezelfde dctA::lacZ gen fusie, maar 

nu in een knol die geinduceerd werd door een dctD mutant. De expressie van dctA 

door de ASA vind uitsluitend plaats in de centrale zone van de knollen 

blijkt het dctA gen actief in de zones die het verst van de wortels verwijderd zijn en overeen komen met de 

vroege stadia van de symbiose, en ook in de centrale zone van de knollen, waar zich de volledig 

gedifferentieerde bacteroiden bevinden en stikstofbinding plaatsvind. Vervolgens werd gekeken in welk 

stadium van de symbiose de ASA actief is. Daartoe werden alfalfa planten geinfecteerd met S.meliloti 
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stammen die gemuteerd waren in het dctD gen of in net dcB gen. De In planta expressie van het dctA gen 

was in deze knollen beperkt tot de centrale zone. Dit betekent dat de ASA uitsluitend actief is gedurende 

de latere stadia van de symbiose. Omgekeerd betekent dit dat gedurende de vroege stadia van de 

symbiose alle dctA activiteit van het DctBD systeem afhankeiijk is. 

Niet alle dctA-.lacZ gen fusies werden echter door de ASA goed geactiveerd. Met name constructen 

waarin het lacZ. onmiddelijk met het ATG start codon van het dctA gen gefusioneerd is, werden niet 

geactiveerd door de ASA. Dit was temeer opmerkelijk omdat deze "korte" fusies normaal geactiveerd 

werden door een functioneel DctBD systeem. Constructen die een wat grater deel van het dctA gen 

bevatten, met name de 24 nucleotiden die voor de eerste 8 aminozuren coderen, konden wel weer door de 

ASA geactiveerd worden. Deze resultaten toonden aan dat in het DNA dat vor het aminoterminale uiteinde 

van het DctA eiwit codeert, zich sequencies bevinden die noodzakelijk zijn voor de activiteit van het ASA 

systeem. In knollen geinduceerd door wild-type S.meliloti stammen met "korte" fusies wordt het dctA gen in 

vroege als latere stadia van de symbiose geactiveerd. Dit toont aan dat het DctBD systeem ook in de late 

stadia van de symbiose actief is. Om de activiteit van de ASA te kunnen detecteren in wild-type knollen, 

werd er vervolgens gezocht naar gen fusies die wel door de ASA geactiveerd worden, maar niet door het 

DctBD systeem. Hiervoor werd uitgegaan van de de dctAv.lacZ. gen fusies die de eerste acht aminozuren 

van het dctA gen bevatten en effectief door de ASA geactiveerd kunnen worden. Van deze fusies werden 

vervolgens de DNA sequenties verwijderd die de "upstream activator sites, of UAS" bevatten. Deze UAS 

zijn de sequenties waar het geactiveerde DctD eiwit moet binden om de dctA promoter te activeren. De 

resulterende fusies konden inderdaad niet meer geactiveerd worden in vrijlevende culturen. Tijdens de 

symbiose werden deze fusies echter wel geactiveerd, maar alleen in de centrale zone van de knollen. 

Bovendien was het patroon van de in planta expressie in knollen geinduceerd door de wild-type bacterien 

identiek aan die in knollen geinduceerd door de dctD mutanten. Dit toont aan dat de UAS niet essentieel 

zijn voor ASA activiteit en ASA ook actief is in de late stadia van de symbiose in knollen geinduceerd door 

een wild-type stam. 

Deze fusies openden ook de mogelijkheid om het effect van mutaties op de ASA te bestuderen, zonder dat 

de mogelijke effecten overschaduwd worden door het DctBD systeem. Zo bleek in knollen die geinduceerd 

werden door een nifA mutant, de "korte" fusies (die uitsluitend door DctBD geactiveerd worden) normaal 

tot expressie te komen, maar dat de fusies zonder de UAS (die uitsluitend nog door de ASA geactiveerd 

worden) niet tot expressie komen. Dit is een sterke aanduiding dat een functioneel NifA nodig is voor ASA 

activiteit. 

In zekere zin was dit niet verbazingwekkend want NifA is een activator eiwit voor de transcriptie van nil 

genen en zeer actief gedurende de late fase van de symbiose. Bovendien is NifA functioneel nauw verwant 

aan DctD daar beide behoren tot de familie van activeerders van NtrA afhankelijke promoters. Vreemd is 

echter dat voor het mechanisme waarbij NifA de expressie van de dctA promoter bewerkstelligt, NifA geen 

gebruik maakt van de UAS sequencies, maar sequencies nodig zijn die stroomafwaards van de promoter 

liggen. Anderzijds is bekend dat de UAS sequencies van de nitHDK en ftxABC promoters, die door NifA 

geactiveerd worden, ook niet essentieel zijn voor efficiente expressie van deze genen tijdens de symbiose. 
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Het mechanisme waardoor ook deze promoters tijdens de symbiose geactiveerd worden is echter nog niet 

nader onderzocht. 

Een tweede aanwijzing dat efficiente expressie van nifh nodig is voor ASA activiteit werd verkregen uit 

experimenten met de Medicago truncatula als gastheer. Vanwege het feit dat deze plant meer geschikt is 

voor geneties onderzoek en manipulatie dan alfalfa, is voorgesteld toekomstig onderzoek naar plant-

Rhizobium interacties op M.truncatula te concentreren. Om te zien of deze plant ook geschikt is voor het 

bestuderen van de in plants dctk expressie, werd een aantal planten geinfecteerd met de wild-type 

S.melilotistejm en een aantal anderen met een dctD mutant. Het eerste wat daarbij opviel was dat 

M.truncatula planten met knollen geinduceerd doorde dctD mutant een sterk gereduceerde stikstofbinding 

vertoonden. Vervogens bieek dat de dctA::lacZ fusies niet geactiveerd werden in de knollen die 

geinduceerd waren door de dctD mutant. Dit in tegenstelling tot alfalfa knollen, waarin deze fusies wel tot 

expressie komen in afwezigheid van DctD. Dit wijst erop dat de ASA niet actief is in knollen geinduceerd 

op M.truncatula. De expressie van de dctA::lacZ fusies en de stikstofbinding in knollen geinduceerd door 

de wild-type waren wel vergelijkbaar op beide gastheerplanten. Vervolgens werd gekeken naar de 

expressie van de nflHDK promoter in knollen geinducerd op M.truncatula. Hoewel het patroon van de in 

situ expressie identiek was met dat in knollen geinduceerd op alfalfa, bleek dat het niveau van de expressie 

in knollen op M.truncatula vele malen lager was. Omdat Nif A direct verantwoordelijk wordt geacht voor de 

expressie van nilHDK, werd vervolgens de expressie van een nifAy.lacZ gen f usie bestudeerd. Hieruit bleek 

dat ook de expressie van nifA in knollen geinduceerd op M.truncatula veel lager was dan het niveau wat 

gemeten wordt in knollen op alfalfa. 

Uit twee verschillende lijnen van onderzoek kan dus worden geconcludeerd dat efficiente expressie van het 

nifA gen noodzakelijk is voor ASA activiteit. Het is echter niet duidelijk of NifA zelf de dctb promoter 

activeert, of dat NifA een ander, nog niet geindentificeerd gen tot expressie brengt. NifA is onmisbaar voor 

de expressie van nif en fix genen, maar de bijdrage van NifA aan de expressie van het dctk. gen is blijkbaar 

niet essentieel voor een effective symbiose en goede stikstofbinding. Met een functioneel DctBD 

mechanisme alleen kan voldoende expressie van dcth worden verkregen voor een efficiente 

stikstofbinding. 
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