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Stellingen / Theses 

1. Many processes may be deterministic. But when the end is more sensitive to the beginning and to the 
progression than we are able to establish these, then it is best to assume the processes stochastic. Within 
water quality this is more often so than not. 

2. Focusing on the differences in the underlying assumptions concerning the deviation between "what we see " 
and "what we model" will contribute to bridging the gap between deterministic and stochastic modelling 
approaches. The strengths of each approach may be drawn to provide modelling solutions appropriate to the 
available resources, the available data, the nature of the system and problem at hand. 

3. On evaluating the uncertainty in a return period analysis a distinction should be made between uncertainty 
expressing a lack of knowledge concerning the value of a given quantity and its inherent variation in time. 
This may be done using embedded error propagation methods such as Embedded Monte Carlo simulations. 

4. Automated calibration will have limited success in water quality modelling if it does not quantitatively 
include the engineers experience and intuition, for example, in the form of a priori parameter distributions. 

5. Urban water quality management has not the role of "protecting our natural waters against pollution". 
Within the perspectives of the resources prioritised by society, urban water management should, whilst 

fulfilling functional, hygienic and aesthetic demands, create the conditions which will permit our chosen 
aquatic ecosystem to flourish. 

6. Water quality of combined sewer overflow is influenced by so many unknown factors and poorly understood 
processes that investigations aimed at improved prediction require the incorporation of stochastic processes. 

7. With the ever-increasing scientific specialisation, there is too an increasing need and potential for research 
focused at knowledge transfer between disciplines. 

8. Proof is needed to convince a scientist that one methodology is better than another. Convincing a water 
quality manager requires much more. 

9. Given to us are merely the data of our consciousness.... There is only one way from them to "reality," to wit, 
the way of conscious or unconscious intellectual construction, which proceeds completely free and 
arbitrarily. ... We are free to choose which elements we wish to apply in the construction of physical reality. 
The justification of our choice lies exclusively in our success. 

A. Einstein. 
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PREFACE 

The research presented in this thesis was done at the Aquatic Ecology and Water Quality Management Group, 
Department of Environmental Sciences, Wageningen University under the supervision of Professor Lambertus 
Lijklema and co-supervision oflr. R. Hans Aalderink. The research work formed part of the EU sponsored MATECH 
research network (European Centre for Mathematics and Technology of Urban Water Pollution). This thesis is 
presented as one of the requirements in obtaining the degree of PhD. in Environmental Science. The thesis concerns 
urban runoff pollution in the context of integrated urban water management with special focus on deterministic and 
stochastic modelling and uncertainty in return period analysis. 
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CHAPTER 1 

GENERAL INTRODUCTION 

ABSTRACT 

With its offset in the turbulent history of urban surface waters, this chapter gives the background for the presented 
research. An introduction to the principal problems motivating the present research leads on to a brief presentation 
of the main conclusions. Two main results pertain to deterministic and stochastic modelling approaches, and to 
handling of uncertainty in return period analysis. Finally, the build-up of this thesis and the interrelationship between 
parts and chapters is outlined. 

Parts of this chapter are based on Grum, M. and Aalderink, R. H. (1997). Trends and Traditions at the 7. International Conference 
on Urban Storm Drainage, Hannover 1996. European Water Pollution Control,\o\. 7,No. l,pp 69-71,1997. 
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URBAN WATERS 

Surface waters in and around urban settlements have lived turbulent lives. Streams and river have often been 
straightened to drain-out low-lying areas or diverted to bring water to city fortifications or to improve 
waterway-access into the cities. Increased urbanisation has meant that many urban streams have been 
covered or even piped under roads and buildings. The fast draining roofs and paved surfaces have resulted in 
increased peak hydraulic loading during rainfall adding further stress to river and stream environments. 
Indeed many urban waters have ended up as drains or as part of the sewer system. 

During the second half of the 19,tl century drastic steps were taken in most of Europe to challenge the hazards 
of water born decease. This was done subsequent to the pests that swept across Europe killing large portions 
of the population. Clean water was to be distributed under pressure in pipes and foul water was to be 
removed through gravity sewers and discharged into nearby surface waters. Water born toilets were gradually 
introduced to replace the then common night-soil system. This uncompromising separation of clean and foul 
water constituted a cornerstone in raising the living standard and establishing robustness against water borne 
epidemics (Harremoes, 1999). This separation still constitutes a cornerstone in today's public health. In some 
of the world's largest urban concentrations economic and managerial factors have meant that the hard-line 
separation of clean and foul waters has not been implemented or maintained and here water borne decease 
and epidemics persist (Butler and Parkinson, 1997, Briscoe and Garn, 1995). 

The sewage was for many years discharged to the nearest surface waters, which posed yet a stress on the 
urban waters. This discharge took place during both dry and wet weather. Clean water was often supplied 
from ground water reservoirs and the lowering of the groundwater table sometimes led to reduced flow and 
low dilution rates in the already hard hit urban waters. Figure 1.1 illustrates typical changes in water-
pathways that have come about as a result of urbanisation. The combined effects of reduced flows, low 
dilution rates and pollutant loading resulted in oxygen depletion, ammonia poisoning, eutrophication and the 
accumulation of heavy metals and organic micro pollutants in sediments. In some parts of Europe rural 
activity had already changed the water landscape completely. Starting with the reclamation of subsiding peat 
moors in the years 800 to 1250, the Netherlands has a long history of active surface water management and 
structural intervention aimed initially at draining low lying areas (Van de Ven, 1993). 

With increased welfare and shifts in the priorities of society, interceptor pipelines were constructed and 
sewerage was led by gravity or pumped to treatment plants discharging treated sewerage primarily into the 
sea, ocean, larger lakes or rivers. Although this constituted a major improvement to the state of urban surface 
waters it did not lead to any significant improvements in the urban aquatic ecosystems. One of the reasons 
for this was that during large rainfall events the limited flow capacity of the pipes leading to the sewerage 
treatments plants meant that sewerage mixed with rainfall water was discharged into the surface waters. 
Since the seventies storage basins have been constructed at overflow structures to reduce combined sewer 
overflow and other alternatives are constantly sought, tested and implemented. These include the reduction 
of the runoff surfaces through porous surfaces and other forms of local infiltration, domestic storage and 
usage of roof runoff and overflow treatment. Many of the alternative approaches have been part of an overall 
wish to close the urban water cycle and thereby obtain long term sustainable water systems. The recognition 
of the negative effects that storage basins can inflict on treatment plant performance fruited further interest in 
examining possible alternatives. 
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Before Urbanisation Precipitation Evaporation 

Slow surface runoff 

Surface waters 
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Figure 1.1. Illustration of typical effects of urbanisation resulting in low dry weather flow rates 
in urban streams and significantly reduced dilution rates in urban lakes, dams and ponds. 

Pollution from combined sewer overflow was initially evaluated in terms of the total annual discharged loads 
and number of overflow events. However, as emphasised in Lijklema (1993), pollutant loads should be 
evaluated at time scales comparable to their rate of degradation in the surface waters. In the context of 
combined sewer overflow this led to the main distinction between acute and accumulative pollutants for 
which the effects are best evaluated using extreme statistic and annual averages respectively. This means that 
acute surface water effects such as oxygen depletion and ammonia poisoning should be evaluated using 
return period curves. Return period here being defined as the mean time between occurrence, for example, 
the mean time between the occurrence of a given low concentration of dissolved oxygen. Nutrient loading to 
lakes and bays however should be evaluated through annual averages due to longer characteristic time 
constants of the nutrient cycles which if overloaded ultimately lead to eutrophication. 
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Due to their different primary functions, surface waters, sewers and wastewater treatment plants developed to 
become legislatively and administratively independent. Combined sewer management decisions were most 
often taken irrespective of possible consequences to the treatment plant and possible lack of improvements to 
the receiving surface waters. The classical example being the increased discharge of nutrients from the 
treatment plant due to longer periods with maximum hydraulic loading resulting from basins installed with 
the aim of reducing combined sewer overflow. In the eighties it became increasingly clear that urban water 
quality management requires an integrated approach involving all three components, namely the surface 
waters, the treatment plant and the sewer system (INTERURBA, Lijklema et al., 1993). In spite of this 
recognition some years ago traditions and administrative and institutional barriers prevent a rapid transfer of 
the integrated approach to management practice. 

Our perception of the essence of an integrated approach to urban water quality management has also changed 
from implying the need for an integrated evaluation to the need for an integrated optimisation of investments. 
Harremoes et al. (1996) found that water quality standards of a stream, which received discharge from 
combined sewer overflows during rain, were violated even during dry weather conditions. The funds, already 
allocated to the reduction of combined sewer overflow, would perhaps have been better spent creating a 
more robust stream by improving its dry weather state. Frequent or even permanent violation of the water 
quality standards is also common for many Dutch surface waters. Upholding an isolated policy of pollutant 
load reduction may often have the negative consequences of reducing dilution to almost nothing. Through 
groundwater exploitation and an increase in impervious areas, urbanisation has often led to a reduced base 
flow in urban streams and reduced dilution rates in urban dams and lakes. The consequences are comparable 
to direct water pollution and they ought therefore politically to be considered as such. 

Considering the role of urban water quality management as having to protect our natural waters against 
urban runoff pollution is but a perception of the past. We must recognise the fact that most urban surface 
waters have been so tampered by the works of man that our task is to create the urban aquarium of our 
choice. Within the perspectives of resources prioritised by society, urban water quality management should, 
whilst fulfilling functional drainage, hygienic and aesthetic demands, create the conditions which will permit 
our chosen ecosystem to flourish. 

MODELLING 

There may be many reasons for modelling sewer systems, wastewater treatment plants, surface waters, 
ground water or the integrated system as a whole. In the following "reasons for modelling" are discussed in 
three categories: understanding, design and operation. Each of the different uses of models sets different, 
though overlapping demands to the models used. 

Modelling for a Better Understanding 

Models can be used to find cause-effect relationships explaining for instance unexpected flooding or fish 
kills. This would generally imply detailed modelling incorporating much physical, chemical and biological 
theory. The precise value of the simulated output would often be of subordinate importance compared to the 
ability to simulate the phenomena in question and thereby pinpoint bottlenecks or likely causes for an 
undesired behaviour. 

Models can also be used to evaluate dominating ecological relationships and dependencies in a given 
recipient as presented in Scheffer (1998). In practice one may for a given recipient wish to evaluate the 
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expected consequences of changes in dilution rate, introduction of tree shading, encouragement of filter 
feeders or selective fishing. At a scientific level, models are often used to study complex postulated 
biological and physical mechanisms. 

Models in Planning and Design 

Models can be used for planning and design of the engineered elements of the integrated water system. The 
required precision will depend much on what stage the project is at. In the very early proposal stages of a 
project one may only require very rough estimates of the expected costs and water quality improvements. In 
such initial investigations it is often more important that the models are able to distinguish between proposed 
scenarios than the precise output values predicted. In the planning stages it is valuable if the models are 
computationally fast as the event lumped models presented in Chapter 4. At a later design stage more 
precision may be desired in order to be able to evaluate and compare a small selection of optional scenarios. 
High precision is generally required during the final stages of structural design where at most a handful of 
scenarios are modelled. The chosen precision will often also depend on the consequences of being wrong and 
on the resources available for the work. In the later detailed design stages of a project's life cycle it is 
common and often reasonable to model only isolated elements of the integrated system. 

The characteristics of the models used for design will also depend on the type of design criteria used. In 
integrated water quality management design criteria may relate to average values (e.g. of nutrient discharges 
or nutrient flows) or return periods of given conditions (e.g. flooding or low oxygen concentrations in 
streams). These both require an evaluation of the integrated system's long-term behaviour and would often 
be done using historic rainfall series. In some cases it may be necessary and possible to boil down the long-
term series approximating it by selecting a few events as representative of certain return periods. As 
discussed in Chapter 10 the appropriateness of this approximate method depends much on whether or not 
there is a linear relationship between the inputs (e.g. rainfall, sunlight, temperature and wind) and the 
evaluated effects (oxygen or ammonia concentration). Later in this introduction we will look more closely at 
modelling for return period analysis, which forms a major part of this thesis. 

There are two main reasons why models should be used when calculating the return periods of given 
detrimental events. These can be summarised as follows: 

1. Measuring in the field in order to find the return period of given detrimental effects would require 
monitoring periods several times longer than the return period of interest, which is not practical. 

2. Analysis of proposed structural or operational modifications requires models in order to evaluate 
improvements. Downscaling of the real world system to a physical model in the laboratory is neither 
practical nor cost effective nor realistic. 

As a consequence of the first point, long historic series of the primary driving force, rainfall, are used and the 
integrated systems behaviour is modelled and simulated. Amelioration projects are often followed by a 
period of a few years of intense monitoring of water quality conditions, such as surface water dissolved 
oxygen concentration, in order to evaluate improvements. Without models this evaluation cannot be made to 
any reasonable degree of certainty. Attempting to estimate the minimal oxygen concentration with a return 
period of one year on the basis of a two-year monitoring period is similar to estimating a population average 
on the basis of two observations. The result is highly uncertain. What the monitoring data can be used for, is 
the identification and calibration of hydraulic and water quality models which can then subsequently be used 
in combination with historic rainfall series several times longer than the return periods of interest. With 
models containing a sufficient degree of physical, chemical or biological theory it is then possible to evaluate 
the expected return periods for proposed improvement. In contrast, empirical models would not contain the 
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parameters and structure associated with the proposed improvements and would be of no used to such an 
extrapolation. 

Models in Operation 

Subsequent to developments in electronics, robust sensors and changing attitudes of operations personnel, 
models are becoming an integrated part of the operation of integrated urban water systems. This may be in 
the form of early warning systems or as automated real time control systems. The requirements of models 
used in operation differ considerably from those used in design. Models used in operation need to predict the 
water system's behaviour in the short-term and need not necessarily include much physical, chemical or 
biological theory. Models may also be used as software sensors for indirect monitoring of a variables value 
as a function of other monitored values. 

Though this thesis does not deal with operation specifically, the studied approaches and methodologies have 
a high potential in both early warning systems and real time control. 

APPROACHES TO MODELLING 

Traditional deterministic approach to modelling has been deductive with models built up of physical, 
chemical and biological theory. Starting often with continuity or mass balance equations and proceeding to 
definitions of process rates. There has been a tendency to incorporate all thinkable processes into the models. 
This has often led to models with many very uncertain parameters. Calibration of such deterministic models 
is often done by fixing certain parameters based on intuition and engineering experience, and then adjusting 
other parameters to best fit the observed series. Often there are many more parameters in the model than can 
actually be identified from the data. The result is that the estimated set of parameters is non-unique and the 
parameters, which are being calibrated, cannot be identified from the available data. The continuous 
inclusion of more and more processes into the models is likely to lead to a situation where some of the 
included processes that are less important than phenomena that the model does even not describe. 

Arising first in the sixties, the stochastic approach to modelling was based purely on statistical relationships 
between data and was initially deprived of any physical, chemical and biological theory. Associated to the 
highly data dependent empirical models of classical time-series analysis were methodologies such as 
automated parameter estimation, parameter statistics, identifiability, experimental design and residual 
analysis. These methodologies were all aimed at being able to simulate and forecast the observed data. 
Though stochastic modelling had a strong breakthrough in other fields such as economics, only very little 
interest was shown in water and water quality engineering. 

It is not only on these peripheral aspects that deterministic and stochastic approaches differ. At the very core 
of modelling methodology, there is a clear cut difference in the underlying assumptions made during 
deterministic and stochastic modelling. 

In the context of urban runoff pollution this thesis presents a new portrayal of the 
essential differences between deterministic and stochastic modelling which focuses on 
the different assumptions made concerning the source of the deviation between observed 
and modelled values. 
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In deterministic modelling all deviation between modelled and observed variables is implicitly assumed to 
result from observation error alone. The model is assumed to contain a perfect description of the system 
behaviour. In stochastic modelling the deviation is implicitly assumed also to result from random behaviour 
within the system itself. Stochastic modelling thus recognises that the model is unable to describe all 
variations in the system. 

This study and presentation of the essential differences is done in an attempt to bridge the gap between the 
deterministic and stochastic schools. By pointing to what is the only clear-cut distinction between 
deterministic and stochastic modelling the author hopes to ease the transfer of knowledge and methods 
between the two schools and thereby to strengthen water quality modelling as a whole. 

UNCERTAINTY OF RETURN PERIOD ANALYSIS 

Return periods of detrimental effects such as flooding and oxygen depletion form a major criterion in design 
of integrated urban water systems. The return period analysis can be made in a number of different ways with 
different forms of data and different types of models. This has been organised in a general framework in the 
methodology review of Chapter 10. 

With return period analysis playing such an important role in integrated water engineering it is also relevant 
to look at the certainty with which the return periods are actually estimated. Substantial uncertainty is found 
in the return periods of the hourly minimal dissolved oxygen concentration in the pond of an integrated urban 
water system. Figure 1.2 illustrates what is understood by uncertainty in a return period analysis. In this 
thesis it is argued that water mangers and others involved in the decision making process would be better off 
with both the estimated return period and with the funnel shape in Figure 1.2 representing the 95% 
confidence region within which this curves may in fact be situated. Though not examined explicitly, it is in 
Chapter 10 also outlined how the uncertainty is often significantly lower once one is comparing proposed 
scenarios. 
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Figure 1.2. The return period curve (left) and its uncertainty (right). The curve give (fictitious) return periods for 
minimum values of an unspecified environmental variable of interest. 
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In this thesis a new methodology for evaluating uncertainty in return period analysis is presented: 

On evaluating the uncertainty in a return period analysis a distinction should be made 
between uncertainty expressing a lack of knowledge and inherent variation in time: 

The evaluation is implemented as an embedded error propagation involving two layers of probability 
distributions: an inner layer consisting of quantities varying from event to event and an outer layer consisting 
of uncertain but constant quantities. Error propagation was in this work evaluated by Monte Carlo 
simulations. For each set of random realisations of values in the outer uncertainty layer a full Monte Carlo 
simulations of the inner inherent variations layer was performed. The general methodology is here described 
as Embedded Error Propagation and its implementation in this work using Monte Carlo simulations is 
described as Embedded Monte Carlo Simulations. 

Often when uncertainty is included in return periods analysis the distributions of the uncertain parameters are 
treated in the same way as with the inherent variations from event to event. That inherent variations such as 
rainfall depth vary from event to event is in this context not uncertainty though how and how much it varies 
may well be. 

In fact the whole purpose of the return period analysis is to find out how often the variations in the driving 
forces result in given rare effects. In this work it is shown how such pooling of uncertainty with inherent 
variation distorts the picture as it systematically increases the frequency of extreme events. 

THIS THESIS 

The chapters of this thesis have been arranged in three parts: an opening, a part on modelling and a part on 
uncertainty in return period analysis. This section briefly outlines the contents and relationship between the 
parts and the chapters that they contain. Figure 1.3 shows the interrelationship between parts and chapters of 
this thesis. 

Part I opens the thesis with this introduction to the problem and brings attention to main findings of this 
thesis. With its focus on methodologies, the present research did not encompass any field monitoring or data 
collection. The research has been based on the analysis of existing water quantity and quality data. Chapter 2 
introduces these main data sets that have been used and that are common to most of the studies presented in 
this thesis. The opening is rounded off with a multivariate analysis of event mean overflow concentrations 
from Dutch and Danish urban drainage catchments. The multivariate analysis is aimed at gaining preliminary 
insight into the underlying structure of variations in the event mean concentration data. 

In Part II focus is on modelling of the combined sewer system. As primary driving force, rainfall is input to 
all the studied models. Water quantity and/or water quality variables of combines sewer overflow are the 
main model outputs. In Chapter 4 an evaporation dependent wetness index is identified from event lumped 
data of rainfall depth and duration, and overflow quantity. For the studied data sets event lumped rainfall 
variables are found to have little relation with the event mean overflow concentrations. Chapter 5 contains a 
detailed discussion on deterministic and stochastic modelling. Here a new portrayal of the essential 
differences between deterministic and stochastic modelling is presented and illustrated with a case study 
involving a combined sewer rainfall-runoff model. In Chapter 6 attempts have been made to use stochastic 
differential equations for both water quality and water quantity modelling of a combined sewer system. 

10 
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Figure 1.3. Relationship between parts and chapters of this thesis on Urban Runoff Pollution: Modelling and 
Uncertainty in Return Period Analysis. 
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One of the conclusions of the studies on stochastic modelling is that the data used has to fulfil certain 
minimum conditions with respect to the required sampling frequency needed for adequate system 
identification. Chapter 7 therefore looks at random coefficient modelling as an interesting alternative to 
stochastic modelling. 

Part in encompasses application of models in its presentation of one of the key points of this thesis: a 
distinction should be made between uncertainty and inherent variation on evaluating the uncertainty of a 
return period analysis. In Chapter 9 this is presented within an integrated setting with a small pond as surface 
water receiving combined sewer overflow from an urban drainage system. The uncertainty in the return 
periods of minimum oxygen levels in the pond is here of primary interest. A methodological review on 
return period analysis and its uncertainty is presented in Chapter 10. A general framework of approaches to 
return period analysis in urban runoff pollution is presented and used to place the approach of Chapter 9 in a 
broader perspective. 
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CHAPTER 2 

THE DATA SETS 

| ABSTRACT 
i 
j The assimilation of measured data into models is a central theme throughout this thesis. Observations of our 
| physical, chemical and biological environment are used to strengthen our theoretical descriptions. Monitoring and 
' data collection has however not been part of this research project. Selections from existing combined sewer data sets 

have been studied. 

This chapter gives an overview of the catchment characteristics and the monitoring programs and the resulting data. 
! References are made to the monitoring program's original documentation and to earlier studies in which the data 
j has been used. Only information relevant to the present research work is presented. Readers are referred to the 

original documents for more details on the measuring campaigns, sampling techniques and analytical methodology. 

I 13 
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Bodegraven Loenen 

Oosterhout 

Cedervaenget Vester Paradisvei 

AMSTERDAM ] 

Figure 2.1. Map of The Netherlands showing the 
locations of the three studied combined sewer 

catchments. 

Figure 2.2. Map of Denmark showing the 
locations of the two studied combined sewer 

catchments. 

INTRODUCTION 

Observed data is a vital ingredient to most of the studies presented in the following chapters. Some of the 
studies have been performed using the same data sets. The descriptions of the urban catchments and the 
monitoring programs have therefore been concentrated in this chapter. 

This chapter contains no description of methods or models. The chapter contains no discussion on the 
characteristics of the available data in relation to what would be required or desired in various modelling 
situations. Such a discussion at this point would be pre-emptive as these questions relate strongly to both the 
problem addressed and the methods applied. For discussions on data adequacy readers are referred to the 
chapters of the individual studies and to the more general discussion on identifiability in Chapter 8. 

This chapter is divided in to two sections. The first section outlines the event lumped data sets and the 
respective catchments. The second section describes the time varying data set that has been used. 

EVENT LUMPED DATA SETS 

Event lumped data is in the present work used to describe data sets in which the considered variables take a 
single value for each event. This may be a totality, such as the total volume of rain or the duration of 
overflow, or it may be average variables such as pollutant event mean concentrations (EMC). Some variables 
had been measured directly as event lumped variables while others were converted into event lumped values 
from time varying data. Event lumped data has been used in the three chapters that follow. The multivariate 
analysis in Chapter 3 is conducted using data from the three Dutch and the two Danish urban catchments 
described below. The study on event lumped models in Chapter 4 and their application in Chapter 9 have 
been conducted using event lumped data from the Loenen catchment only. 

Table 2.1. The five catchment areas and their impervious fractions 

Catchment 

Area 

Impervious fraction 

Units 

[ha] 

[%] 

Loenen 

NL 

56.5 

28% 

Bodegraven 

NL 

48.0 

46% 

Oosterhout 

NL 

22.5 

49% 

Cederva;nget 

DK 

5.29 

45% 

Vester Paradisvej 

DK 

17.2 

23% 
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The three Dutch urban catchments were Loenen, located in the heaths (heather hills) of the eastern 
Netherlands, Bodegraven, located in the western lower lands of the old Rhine delta, and Oosterhout in the 
south west. Their geographical locations are shown on the map in Figure 2.1. 

The data sets were collected from 1981 to 1986 as part of a study carried out by the National Working Group 
on Sewerage and Water Quality (NWRW/STORA 1990). Analyses of the Dutch data have earlier been made 
and presented in studies by Van der Heijden et al. (1986), Benoist and Lijklema (1989), van Sluis et al. 
(1991), van Walraven et al. (1985), Bakker et al. (1988) and by Bakker et al. (1989). 

The study on event lumped models in Chapter 4 and their application in Chapter 9 have been conducted 
using event lumped data from the Loenen catchment only. An extract of the Loenen data set was used. Table 
2.2 gives a summary of the variables used in Chapter 4. The particulate and dissolved pollutant components 
are more precisely described as fast settling and slow/non-settling parts. For the purpose of the study in 
Chapter 4 a new variable is introduced on this basis. This is the "slow settling fraction", / , which is defined 
as the sum of the slow and non-settling parts divided by the total concentration. Suppose a concentration of 
280 mg COD/1 was observed before settling and a concentration of 252 mg COD/1 after settling. Then the 
slow settling fraction would be calculated as (280 - 252)/280 = 0.1 (with no dimensions). The "slow settling 
fraction", / , thus includes the entire dissolved component and the part of the particulate component which 
had not settled after one hour. Due to uncertainty in the measurement analysis a slow settling fraction greater 
than one is seen for a few observations where the absolute concentrations where very low. 

The two Danish catchments are both located north-west of Copenhagen in the river basin of Mcllea (see 
Figure 2.2). The data was collected from 1979 to 1980 as part of an urban runoff study (the Mollea study) 
carried out as a cooperation between the city council of greater Copenhagen (Hovedstadsradet) and the Inst, 
of Env. Sci. & Eng., Tech. Univ. of Denmark (Johansen et al. 1981). The data have since been studied by 
Johansen et al. (1981), Johansen (1985), Hall et al. (1990), Jensen (1990), Arnbjerg-Nielsen et al. (1994) and 
others. 

The areas of the five catchments can be seen in Table 2.1. The Danish data is based on volume proportional 
sampling from the combined sewer main stream during the rainfall-runoff event whereas the Dutch data set 
is exclusively based on multiple sampled combined sewer overflows with EMCs calculated by volume 
proportional weighting. 

Table 2.2. Summary of the data variables studied. 

Rainfall 

Overflow 

EMCs 

Variable 
Depth 

Duration 

Intensity 

Volume 

Kjeldahl Nitrogen (N-Kj) 

Slow settling N-Kj fraction 

Chem. oxygen demand (COD) 

Slow settling COD fraction 

Suspended solids (SS) 

Slow settling SS fraction 

Symbol 

" R A I N 

• ^ R A I N 

••RAIN 

V 
' OVERFLOW 

r 
'-'N-KJ 
J N-KJ 

^COD 

./COD 

^ s s 

7ss 

Unit 
mm 

min. 

mm/min. 

m 

mg/1 

-
mg/1 

-
mg/1 

-

N 
284 

284 

284 

63 

48 

44 

48 

46 

47 

45 

Mean 
8.1 

412 

6.1 

1163 

10 

0.83 

262 

0.39 

288 

0.14 

Minimum 
1.3 

10 

0.4 

3 

3 

0.03 

62 

0.07 

28 

0.00 

Maximum 
57.0 

1986 

169.6 

8591 

26 

2.94 

873 

0.98 

1196 

0.97 
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The exploratory multivariate analysis presented in Chapter 3 requires a data set without any missing values 
for any of the variables. Biological oxygen demand (BOD) had not been measured at the Danish catchments 
and, to obtain a complete data set for the multivariate analysis, total and dissolved BOD values of the Danish 
sets had to be estimated using regression models. These regression models expressed the deviation of the 
BOD concentration from the monthly averages (which were available for the Danish data sets) as a function 
of the deviations of the other EMC variables from their monthly average. The models were initially 
calibrated on the Dutch data sets and thereafter used to estimate the missing BOD values in the Danish sets. 
It is not thought that this has had much influence on the overall results of the multivariate analysis but it does 
pose limitations on conclusions that can be drawn in relation to the physical catchment characteristics. 

TIME VARYING DATA SET 

Time varying data set is here used in contrast to event lumped data and refers to data sets containing several 
observations of each variable during a single rainfall-runoff event. This could be water level every minute at 
a given point in the sewer system or the concentration of a pollutant in the overflow every five minutes or for 
every cubic meter of overflow. A Dutch time varying data set, Loenen, has been used in the present research 
work. Loenen is located as shown in Figure 2.1. 
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roa1 

1 6.0 
a. 

£" 4.0 

| 2.0 

0.0 

S 18.0 
o > 
O 
15 17.0 

J 16.0 

Rainfall 

Level of overflow weir 

• Water level at overflow structure (m + NAP) 

2 3 4 
Time since start [hours] 
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Time since start [hours] 

Figure 2.3. Extract of the time varying data from the Loenen catchment (Event 25). 
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Table 2.3. Summary of catchment characteristics (Loeneri, The Netherlands). 
Characteristic 
Total catchment area 
Impervious area 
Impervious area 
Mean pipe gradient 
Volume below weir 
Depth below weir 

Value 
56.5 

28 
15.8 
3.3 
895 
5.7 

Unit 
ha 
% 

. ha 
°/oo 
m3 

mm 

Loenen 

The Loenen sewer is a looped system with a single overflow structure at which water level and water quality 
variables have been monitored continuously over a period of four years from 1982 to 1986. Water is pumped 
to the treatment plant from the lowest point in the sewer. During actual overflow, samples for chemical 
analysis were taken roughly at volume proportional intervals. Thus no water quality samples were taken 
before and after the actual overflow. Only rainfall events that resulted in combined sewer overflow were 
used in the studies with time varying data. Table 2.3 gives a summary of the main catchment characteristics. 

The rain gauge was situated a few hundred meters east of the 15.8 ha catchment. The tipping bucket 
raingauge had a cup corresponding to 0.1 mm and was connected to paper-roll-writer. The paper role 
recordings were later typed manually into a digital form. 
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Figure 2.4. Extract of the time varying data from the Loenen catchment (Event 29). 
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Chemical analysis for biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids, 
Kjeldahl nitrogen and total phosphorous had been made on samples before and after one hour settling. Thus 
the variables available corresponded roughly to total concentrations and dissolved concentrations. A rough 
value for the corresponding particulate concentration was calculated by subtracting the value obtained after 
one hour's settling from that obtained before settling. In a number of cases one or the other value was 
missing and the difference could not be calculated. In other cases the concentration after settling was higher 
than the concentration before settling. Thus the number and frequency of the water quality observations 
varied greatly and a number of rainfall-runoff events were screened out as their data information content 
compared to modelling time was too low. The plots in Figure 2.3 and 2.4 give a visual impression of the kind 
of time varying data available in the Loenen data set. 

CONCLUSION 

The data selection criteria depended on the problem being addressed and the methodology being studied. For 
the multivariate analysis it was important to have or to be able to drive the event mean concentrations of a 
large number of pollutants common to all or most of the included data sets. Potential explanatory event 
lumped variables such as rainfall depth, discharged volume of water and preceding dry weather period 
should also be available along with a general catchment characteristics. Data from three Dutch and two 
Danish catchments was used for the multivariate analysis presented in Chapter 3. 

An event lumped modelling study such as presented in Chapter 4 requires event lumped overflow data 
including volume of water discharged, duration of overflow and event mean concentrations of the pollutants 
of interest. It was also necessary to have event lumped rainfall data such as rainfall depth, duration and 
maximum intensity from a rain gauge in or near the studied catchment. 

For the remainder of the studies in this thesis the data from the Loenen catchment in the Netherlands was 
preferred due to the time varying data of both water level and a number of pollutants, and because Loenen is 
a catchment with only one overflow structure. Ideally, pollutant sampling for the purpose of dynamic 
modelling should include more frequent and regular sampling of pollutants and sampling should take place 
from the onset of the rainfall event until the combined sewer overflow has stopped. Aspects of the 
information content of time series data sets are discussed further Chapter 5 and 8. 
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CHAPTER 3 

MULTIVARIATE ANALYSIS OF 

EVENT MEAN CONCENTRATIONS 

ABSTRACT 

Urban runoff pollution loads can essentially be characterised by fluid quantities and pollutant concentrations. 
Although several pollutant storage and transport mechanisms have been postulated there remains substantial 
unexplained variation in event mean concentrations of combined sewer overflow pollutants. Through a series of well-
established multivariate pattern recognition techniques the present study has aimed at disclosing the underlying 
structure of systematic variations in the event mean concentrations (EMC) of pollutants in combined sewers during 
rainfall. The statistical methods that have been applied to the pollutant concentration variables are factor analysis, 
cluster analysis, distribution analysis and correlation analysis. The event mean runoff data considered includes 
eleven pollutant variables originating from five combined sewer catchments in Denmark and in the Netherlands. The 
combined results of the analyses support earlier findings that EMCs are best described by bimodal or mixture 
distributions, and further suggest that event based pollutant modelling could be improved through a recognition of 
these characteristics. 

This chapter is based on Grum, M., Aalderink, R. K, Lijklema, L. and Spliid, H. (1997). The Underlying Structure of Systematic 
Variations in the Event Mean Concentrations of Pollutants in Urban Runoff. Wat. Sci. Tech. 36(8-9), 135-140. Publication after 
oral presentation at 7* International Conference on Urban Storm Drainage, Hanover, September 1996. 
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INTRODUCTION 

Adequate water quality management requires mathematical models that can be used to estimate and predict 
overflow impacts under different engineering scenarios (House et al., 1993). It has been possible to construct 
models accounting for variations in runoff quantities with some success. However, although several pollutant 
storage and transport mechanisms have been postulated there still remains substantial unexplained variation 
in pollutant concentrations (Harremoes, 1994; Driver and Troutman, 1989). In an attempt to increase 
understanding and insight into the relevant pollutant runoff processes, the present study examines the 
underlying structure of EMC variations. 

THE DATA 

The data used in the present study originate from the five combined sewer catchments described in Chapter 2 
of this thesis. These are the three Dutch catchments, Loenen, Bodegraven and Oosterhout, and the two 
Danish catchments, Cedervaenget and Vester Paradisvej. See Chapter 2 for more detail on the catchments 
and data. 

Of particular interest to the study in this chapter is the definition of a new variable used in the multivariate 
analysis. Under the assumption that all Biological Oxygen Demand (BOD) is included in the Chemical 
Oxygen Demand (COD), a "Non-Biological Oxygen Demand" variable has been defined as the COD value 
minus BOD value of the same sample. 

It is assumed that BOD5 is here roughly equal to BOD;n(inity. In sewer overflows the BOD-decay rate constant 
is generally much higher than in pure sewage and wastewater treatment plant effluents and subsequently the 
BODs/BODindnity ratio is close to 1. This suggests that this assumption is reasonable. 

Prior to the analysis all the event mean concentrations were standardised with respect to the catchment's 
mean and standard deviation. Events with many missing EMC values were omitted from the data set and 
events with few missing values had these reconstructed using linear regression models on the non-missing 
values in order not to loose the valuable information present in the non-missing variables. 

In the Danish data sets the total and dissolved biological oxygen demand (BOD) values have been estimated 
using regression models that had been calibrated on the Dutch data sets (see Chapter 2). 

METHODOLOGY 

This section contains a brief outline of the essential concepts of each of the statistical methods: cluster 
analysis, factor analysis, distribution analysis and correlation analysis. 

Cluster analysis is designed to make an objective grouping of multivariate observations on the basis of the 
values of the observed variables. Considering each observation in an n-dimensional vector space (where n is 
the no. of variables), groups or clusters are formed by finding the events with the shortest distance between 
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Table 3.2. The distribution of the three rainfall-runoff pollution event types (the three clusters) for each 
of the combined sewer catchments, for their country of origin and for the entire set of events. The values in 

parenthesis are the percentages that have fallen within each of the three clusters. 
CombinedSewer Catchment Country of Origin Total 

Cluster Loenen 
NL 

28 (60) 
11 (23) 
8 (17) 

Bodegraven 
NL 

16 (64) 
4 (16) 
5 (20) 

Oosterhout 
NL 

17 (61) 
6 (21) 
5 (18) 

Cedervaenget 
DK 

14 (67) 
4 (19) 
3 (14) 

V.Parad. 
DK 

14 (70) 
4 (20) 
2 (10) 

The 
Netherlands 

61 
21 
18 

(61) 
(21) 
(18) 

Denmark 

28 
8 
5 

(68) 
(19) 
(12) 

All 
events 

89 
29 
23 

(63) 
(21) 
(16) 

Clus. 1 
Clus.2 
Clus. 3 
Total 47(100) 25(100) 28(100) 21(100) 20(100) 100(100) 41 (100) 141 (100) 

them. In the present study, cluster analysis was applied to determine whether events could objectively be 
divided into groups and if so, to characterise the groups. The clustering method used here was Ward's 
method which is described in SAS (1990). 

Factor analysis is in contrast to the cluster analysis designed to make an objective grouping of the variables 
rather than the observations. The interrelationship between a large number of variables is used to find a 
smaller number of new uncorrelated variables called factors that explain as much as possible of the variation 
found in the original data set. The role of factor analysis in the present study is to summarise the variations of 
the eleven interrelated water quality components thus portraying only the essence of the problem at hand. 
The essential mathematics behind factor analysis is summarised in Cattell (1965) and an extensive 
introduction to the techniques is given by Harman (1968). In the present study the factors have been 
extracted as principal factors and thereafter rotated using varimax rotation. 

Distribution analysis has here encompassed a visual study of the factors' histograms with particular 
emphasis on the nature of the distributions right-hand tail and on the presence of mixture distributions as 
suggested in Hall et al. (1990). The advantage of looking at the factor's distributions, rather than those of the 
original observed variables, is that the dominant variations are contained in fewer variables and thus 
particular features of the distributions will be more distinct. 

Correlation analysis, which is a measure of the linear relationship between two variables, has in the present 
study been used to evaluate the relationships between the pollutant factor variables and the rainfall, hydraulic 
and seasonal variables from the same runoff events. 

From an engineering point of view the rainfall, hydraulic and seasonal variables would be considered as 
potential explanatory variables and methods such as canonical correlation could have been used to study this 
relationship. However, in the present study a factor and cluster analysis has been preferred because the aim 
of the present exploratory study is more that of proposing hypotheses rather than the formulation of an 
empirical model for the system. It is furthermore the authors' impression that the employed approach will 
facilitate interpretation and communication of results. Similar multivariate methods have earlier been applied 
in the context of urban water quality by Mulliss et al. (1994). 
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RESULTS AND DISCUSSION 

The results of the factor analysis on the eleven pollutant variables show that their variation could be well 
described by three factors. The correlations between the three factors and the original EMC variables (the 
factor loadings) are given in Table 3.1. The three factors, which are independent linear combinations of the 
original variables, can be characterised verbally as in the bottom row of Table 3.1. Considering the processes 
of pollutant storage and transport in a combined sewer system, an objective separation of the variables into 
particulate and non-particulate is to be expected. The further separation of dissolved non-biological oxygen 
demand from the other dissolved pollutants could be related to a different source and/or to the processes 
taking place in the sewer system. 

The far right column of Table 3.1 contains a measure of the proportion of the variables' variation that can be 
described by the three factors. Note that only 60% of the variations in dissolved BOD and only 38% in 
conductivity can be described by the three factors. 

This indicates that variations of these two variables are dissimilar both to the other EMC variables and to 
each other. The entire set of rainfall-runoff pollution events was by the cluster analysis separated into three 
major types of events containing respectively 63%, 21% and 16% of the events. From the distributions over 
clusters (given in Table 3.2) it is evident that the three event types are equally common to all five catchments 
and to both the countries of origin. 

Table 3.1. The resultant rotated factor pattern, the variance explained by each factor and a summary characterisation 
of each of the three factors (coefficient of absolute value less than 0.4 have been marked "-"). 

Factors Communal-
ities,hf(%) 

Variable m 
Dissolved 

(Not settled 

in 1 hour) 

Particulate 

(Settled 

within 1 

hour) 

Total Solids 

Dry Weight 

Conductivity 

Non-biological oxygen demand (COD-BOD) 

Biological oxygen demand (BOD) 

Kjeldahl Nitrogen 

Total Phosphorus 

Non-biological oxygen demand (COD-BOD) 

Biological oxygen demand (BOD) 

Kjeldahl Nitrogen 

Total Phosphorus 

Explained Variance (Cumulative %) 

Summary Characteristics of the 
Three Factors 

-
-
-
-

0.939 

0.849 

0.906 

0.719 

0.819 

0.823 

-
43% 

Particulate 
pollutants level 

0.590 

0.670 

0.850 

0.775 

-
-
-
-
-
-

0.580 

66% 
Dissolved/ 
fine particulate 
pollutants level 

0.466 

-
-
-
-
-
-
-
-
-
-

70% 

Non biologically 
degradable 
dissolved 
pollutants 
level 

72 
60 
74 
73 
89 
74 
85 
58 
69 
81 
38 
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The results of the factor and cluster analyses have been combined in the plot of Factor II against Factor I with 
the symbol indicating the event type (Figure 3.1). Similar plots with Factor IE showed that the event types 
(clusters) had no relationship to this third factor. Summary characterizations of the event types can be 
formulated as follows using Figure 3.1a: 

Cluster 1 : events with low particulate and dissolved pollutants concentrations, 
Cluster 2 : events with high levels of dissolved pollutants but low particulate concentrations, 
Cluster 3 : events with high particulate concentrations and medium ranged dissolved concentrations. 

I Though less pronounced, the plot of non-settleable BOD against settleable BOD (Figure 3.1b) exhibits the 
same spread of the three event types. The fact that the pattern of spreading is less pronounced relates to BOD 
having a variation pattern somewhat different to the other included EMC variables. 

Figures 3.2 and 3.3 contain histograms of the particulate pollutants (Factor I and settleable BOD) and 
dissolved pollutants (Factor II and non-settleable BOD) respectively. Being essentially a different 
representation of the same information contained in Figures 3.1, 3.2 and 3.3 nevertheless illustrate how the 
different event types or clusters result in probability distributions that do not readily fall within the classes of 
frequently encountered two parameter normal, lognormal and extreme value distributions. 

Considering the histogram of Factor I in Figure 3.2c, it is seen that the distribution of events in Cluster 1 and 
2, and that of the events in Cluster 3 barely overlap. Due to the relatively large variance of Factor I for events 
in Cluster 3 and the small number of events, it is difficult to say whether or not this in fact could be well 
described by two parameters distributions. In the case of settleable BOD the separation of the events in 
Cluster 1 and 2 from the events in Cluster 3 is less pronounced. Using purely theoretical considerations, 
Song (1994) has shown how bimodality can be associated with turbulent flow. This would suggest that the 
events in Cluster 3 are events dominated by resuspension of sediments in the sewage system. This agrees 
well with the fact that the average maximum rainfall intensity of the events in Cluster 3 was found to be 6.3 
mm/hr. as opposed to the average values found for the Clusters 1 and 2 which were 1.9 mm/hr. and 2.0 
mm/hr. respectively. 
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Figure 3.1. Plots illustrating the distribution of the three clusters in the Factor I - Factor II plane 
and in the settleable BOD - non-settleable BOD plane. 
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Figure 3.2. Histograms showing the distribution of 
events in clusters 1 and 2, and cluster 3 with respect 

to Factor I and settleable BOD. 

Figure 3.3. Histograms showing the distribution of 
events in cluster 1 and cluster 2 with respect to 

Factor U and non-settleable BOD. 

Factor n has earlier in the chapter been characterised as describing the dissolved pollutants. The histograms 
in Figure 3.3 show the empirical distributions of Factor II and non-settleable BOD for events in Clusters 1 
and 2. Though less pronounced, the same phenomena are apparent as in the case of the distributions of the 
particulate pollutants (i.e. Figure 3.2). 

CONCLUSIONS 

Through a factor analysis it has been possible to summarize the event mean pollutant concentration variables 
into three independent linear combinations of the eleven studied pollutant variables. Through the cluster 
analysis, CSO events could objectively be grouped into three different types of events. A summary 
characterization of the event types was made by relating these three groups to the three independent factors. 

Though the observation data originated from three combined sewer catchments in the Netherlands and two in 
Denmark, it was found that events from all five catchments were similarly distributed in the three event type 
groups. The distribution analysis that followed the combined cluster and factor analysis has confirmed earlier 
findings that event mean pollutant concentrations are often best described as originating from mixture 
distributions. The results suggest that event based combined sewer overflow modelling could be improved 
either by modelling the different event types separately or by including a class variable indicating the event 
type and using a discriminant analysis to decide on the event type in question. 
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CHAPTER 4 

EVENT LUMPED MODELLING OF 

COMBINED SEWER OVERFLOW 

ABSTRACT 

The complexity of models chosen for integrated urban water quality management may depend on the engineering 
alternatives to be examined, the current project phase and the available resources. In this chapter focus is on 
combined sewer overflow (CSO) models lumped both in space and in time as each rainfall-runoff occurrence is 
considered to be a separate single event. The resulting short calculation times make them suitable for return period 
and uncertainty analysis of CSO effects. Two event lumped non-linear regression models have been developed; a 
sewer overflow volume model and an event mean concentrations (EMC) model. Selection of model structure was 
based primarily on the nature of the resulting residuals and the identifiability of the estimated parameters. The 
rainfall, water quantity, chemical oxygen demand, Kjeldalh nitrogen and suspended solids data originate from a 
Dutch urban catchment. In the overflow volume model the runoff coefficient is expressed as a function of a wetness 
index which in turn is identified as a function of an estimated cut-off'sinusoidal drying rate. The thus estimated drying 
rate was found to coincide well with mean monthly open water evaporation which is consequently used as input in the 
final model. Both total and slow settling fractions were included in the EMC model. Focus was here on achieving a 
description of the joint distribution. 

This chapter is based on Grum, M. and Aalderink, R. H. (1999). Event lumped modelling of combined sewer overflow pollution. In 
preparation. 
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INTRODUCTION 

Extreme statistics of CSO loads and effects are often used as design criteria in urban storm water 
management. The extreme statistics often take the form of return periods calculated using models having 
rainfall as major input. This is done both because rainfall has often been observed over a longer period and 
as rainfall is also the primary driving force this permits the analysis of proposed engineering scenarios. 

Models may be dynamic describing the evolution of runoff, pollutant transport and storage over time or they 
may be event lumped describing only variables such as the total overflow volume and event mean 
concentration of pollutants as a function of the total depth, duration or mean rainfall intensity. This study is 
concerned with event lumped models for predicting CSO volumes and pollutant concentrations. 

CATCHMENT AND DATA 

In this study an extract of the Loenen data set described in Chapter 2 is used. See also Chapter 2 for a 
definition of a pollutants "slow settling fraction". 

APPROACH 

The following three components are characteristic of the applied model building approach: 
• a priori conception of the processes taking place, 
• principals of parsimony, 
• graphical examination of the difference between observed and modelled values. 

Our a priori conception of the processes taking place may range from the knowledge that water is pumped to 
the treatment plant to the idea that the amount of swirled up pollutant material depends on rainfall intensity. 
Inclusion of this knowledge and understanding both increases the engineering value of the model and may 
sometimes lead to more parsimonious model designs. 

Through care in allotting of parameters the principals of parsimony aim at reducing the non-uniqueness of 
the estimated parameter set. This can help identify the most relevant terms and reduce the chance that the 
structure becomes specific to the given data set. However, parsimony alone does not necessarily lead to 
improved estimates on extrapolation beyond the ranges of the given data set (Reichert and Omlin, 1997). 

Graphical examination of the residuals helps to reveal breaches in the underlying assumptions and may 
suggest modifications leading to an improved model structure. The most important plots include those of 
residuals against independent variables, candidate independent variables and against candidate independent 
class variables such as weekday-weekend. 

In the approach, the three components are put to use simultaneously. A pattern in a residual plot could, in 
combination with our conception of the processes taking place and a high correlation found between two 
parameters, suggest certain alterations in the model structure. A comprehensive treatment of model building 
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in non-linear regression analysis can be found in Draper and Smith (1989). No outliers have been removed 
during the regression analysis. With rainfall as driving force, it is likely that model modifications would 
demonstrate that presumed outliers are neither observations of a distinctly different event type nor the result 
of typing errors, but simply that they are extreme cases of the occurrences being modelled. In the context of 
return period analysis it is important that the model is also able to model the extremes. 

MODELS 

Overflow Volume Modelling 

The core of the final overflow model is based on the following balance: runoff will either be pumped to the 
treatment plant, be stored behind the weir or overflow into the surface water. This results in the following 
expression for the overflow volume, Kcso,<: 

K™ , « / " * ' feK«">0 where ^ ' CSO. I 
otherwise 

'CSO. I — "• ' ai ' " RAIN. I "• ' VpuMP ' ̂ RAIN, i 'STORE EK i 

[L3] [L2][-][L] [L2][L/T][T] [il] [u] 

where A is the impervious catchment area, H^^ , and Z)RA]N , are rainfall depth and duration respectively, 
a, is the estimated runoff coefficient, QPUMP is an estimated pump capacity (relative to impervious surface 
area) and VST0RE is the sewer systems static storage capacity behind the weir. This static storage was 
calculated on the basis of the systems pipe geometry and was assumed to be a known fixed parameter during 
the parameter estimation. The errors £•,,,. are assumed to be independent and normally distributed with mean 

zero and variance a]. The runoff coefficient was assumed to be a linear function of the wetness index Wt 

value at the given event. The dimensions shown with L for length and T for time. 

«. =a + b-JF. where W, = W,e 
•r At -t ) (4-2) 

1 

where a and b are estimated parameters representing the minimum runoff coefficient and the wetness 
dependency respectively. As shown in (4.2) the wetness index Wt, is itself a function of it's value at the 
previous rainfall event Wt_x, the preceding number of dry days t, - /,_,, a first order drying rate rDRYrNC , and 
the depth of the current rainfall event. The annual variation in the drying rate was described by a cut-off 
sinusoidal expression (4.3) where ?, is the day of the year and where the constant parameters r0, rs and rc 

were estimated from the rainfall-overflow data along with other model parameters. 

r' f o r r />0 . . (2^-t^ (ln-t^ (4-3) 
where K = rn + r<. • sin „ „ + rr • cos ~zrrr 

0 for r. < 0 ' ° s V 365 J c ^ 365 

33 



Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Grum 

In the final model the expressions in (4.3) are replaced by the dependency to Dutch mean open water 
evaporation shown in (4.4). 

r = r -E(A (4-4> 
'DRYING. I ro ^Vi) 

where E(t) is the Dutch long term mean open water evaporation rate for the /,h day of the year in [mm/day] 
and where the estimated constant coefficient r0 has units [mm'1]. The input evaporation data series used had 
been linearly interpolated from a series of mean monthly values. Estimation of parameters in the non-linear 
overflow volume modelling was done using the downhill simplex optimisation on a least square estimation 
criteria. 

Event Mean Concentrations Model 

The final form of the event mean- concentrations model is shown in (4.5) where i = 1,2,3 for Kjeldahl 
Nitrogen, COD and SS respectively. 

ln(C,) = « ,+V/R A 1 N+^ (4-5> 

where 1^^ is the mean rainfall intensity, a, and b, are estimated constant coefficients and £r is a random 
error with zero mean. The inverse of the slow-settling fraction of the pollutants was found to be best 
described by a straight line using the log of the total concentration as independent variable. This can be 
written as in (4.6) with i = 4, 5, 6 for that of Kjeldahl Nitrogen, COD and SS respectively. 

TO , \ • (4-6) 

In — =ai+brln(Ct) + £i 

Parameter estimation in these log-linear models was done using a least square criteria on each component. 
Simultaneous estimation using the simplex optimisation routine on a maximum likelihood criteria was used 
when examining more complex non-linear model formulations. The two methods yielded very similar results 
for the presented log-linear model. 
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RESULTS AND DISCUSSION 

Overflow Volume Model 

The results of selected overflow volume models are presented in Table 4.2 with the final model presented as 
Model 4. The results of the three other versions have been included in order to give an impression of the 
model building process and to illustrate the importance of the included terms. Results presented in Table 4.2 
are for the following models. 

Model 1. Constant runoff coefficient. 
The runoff coefficient, a, in (4.1), is assumed to be constant over time and does therefore 
not vary over the year. 

Model 2. Wetness dependent runoff coefficient with constant drying rate. 
Here the runoff coefficient is assumed to be a function of a wetness index as defined by 
(4.2). The intercept a and gradient b are estimated along with the other parameters. Also 
estimated from the data is the constant drying rate rDRYiNG • 

Model 3. Wetness dependent runoff coefficient with a cut-off sinusoidal drying rate. 
This is the model described by (4.1) to (4.3). The wetness index is here a function of a 
drying rate, which in turn is a function of the cut-off sinusoidal expression in (4.3). In 
Table 4.2, row D of model 3, the resulting drying rate, r , has been plotted. This has been 
calculated using the expression in (4.3) with the estimated values of the three parameters. 

Model 4. Wetness dependent runoff coefficient with an evaporation dependent drying rate. 
This is the model described by (4.1), (4.2) and (4.4). The wetness index is expressed as a 
function of the drying rate, which in turn is expressed as a function of the mean open water 
evaporation rate as shown in (4.4). In Table 4.2, row D of Model 4, the evaporation input 
series, E(t) has been plotted. 

The results of Model 4 (far right column in Table 4.2) would suggest that the effective impervious surface 
area is 9.2 ha (16%) rather than the documented/reported 15.8 ha (28%) and that the sewer receives excess 
water from an additional pervious area of up to 17.8 ha (31%). The suggested effective impervious area of 
9.2 ha can be seen in the far right column of Table 4.2 where the estimated value for the runoff coefficient 
interceptor, a, is 0.58 rather than 1.0 which would correspond to the documented impervious 15.8 ha. The 
suggested additional pervious area, which contributes after very wet periods, is seen from the maximum 
value of the effective time varying runoff coefficient shown in row C of the far right column in Table 4.2. 
This maximum is 1.7 where 1.0 again corresponds to an area of 15.8 ha. After subtracting the impervious 
area (9.2 ha) above this gives a value of 17.8 ha. After long wet periods this results in an effective runoff 
surface of about 27 ha equivalent to 47% of the total catchment area. Characteristic of the gardens in the 
Loenen catchment are their convex shape and their slight elevation with respect to the impervious roads and 
pavements. It is likely that excess water from these so called pervious areas enters the sewer system. 

The apparent seasonality in the runoff coefficient has been subject to much debate. In the initial studies 
(Bakker et al., 1989) a runoff coefficient was estimated for each event using a dynamic model and time series 
of rainfall and water level at the combined sewer overflow situated in the sewers lowest point. Seasonality in 
these runoff coefficients was evident and contributions from the impervious area was also then given as a 
possible explanation. No attempts were then made to relate this seasonal variation, through modelling or 
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otherwise, to surface wetness or moisture. Later studies, also based on dynamic modelling of individual 
events, revealed that the apparent seasonality could result from the combined effect of more intense thunder 
showers in the summer months with long drizzly rainfall events in the winter and questionable assumptions 
concerning the actual pump operation procedure. 

The current results also suggest seasonal variation in the runoff coefficient but relates it through the wetness 
index, to surface moisture. In spite of this highly plausible physical explanation and the good fit between the 
thus empirically estimated drying rate and mean monthly open-water evaporation rates (see Table 4.2, row 
D), it is important to realise that because the long less intense rainfall events occur generally during the wet 
winters and the short intense storms during the summers, it is not possible to completely exclude the theory 
that the apparent seasonality results from a faulty description of the pump operation procedures. The pump 
description in this event lumped model assumes that the pump operates at its estimated capacity all through 
the rainfall-runoff event. In Loenen there are in fact two screw pumps, which are turned on and off 
depending on the local water level. In the event lumped description an average is assumed and estimated. 

The location and the cut-off level of the estimated drying rate curve of Model 3 is seen to coincide well with 
the Dutch mean monthly open-water evaporation (Table 4.2, row D). In Model 4 the expression (4.4) was 
therefore used as in the model in place of the cut-off sinusoidal expression in (4.3). The number of model 
parameters was thus reduced from 6 to 4 without loss of fit. This further removes the somewhat rigid 
sinusoidal structure from the model. Though wetness indices are widely used in rural rainfall-runoff 
modelling, references to expressions with first order drying rates were not found. 

Parameter correlation coefficients between the Model 3 parameters were below 0.4 (absolute). An exception 
to this was the estimated cosine coefficient with a correlation of-0.7 with each of the two other parameters in 
the drying rate expression. The estimated pump capacity of 0.47 mm/hr is low compared to the reported 0.7 
to 1.1 mm/hr. The pump capacity was found to correlate somewhat (0.4) with the constants relating the 
runoff coefficient to the wetness index. This is an example of a case in which our rough a priori knowledge 
of the pump capacity could beneficially have been incorporated quantitatively into the parameter estimation 
criteria (Reichert, 1997 and Chapter 5). 

Within the framework of identifiable event lumped rainfall-runoff models future efforts should aim at 
incorporating mean open water evaporation as a model input, examining the generality and possible 
weaknesses of using a wetness index with a first order drying rate and comparison with overflow predictions 
made using dynamic models. 

Event Mean Concentrations Model 

Results of the EMC and slow-settling fraction modelling are presented in Table 4.3 and Table 4.4. Each 
column in Table 4.3 represents one of the three pollutant components N-KJ, COD and SS with the total 
event mean concentration models in the top half and the slow-settling fraction in the bottom half. 

For the total EMCs the coefficients of determination, R2, of 0.24 to 0.35, are much lower than those achieved 
for the overflow model. A great variety of independent variables and model structures were investigated in 
an attempt to obtain better predictability. Candidate independent variables included rainfall depth, duration, 
maximum intensity, functions of time of year, functions of time of day, weekday-weekend, preceding dry 
weather period, wetness index from the overflow volume model above and various combinations of these. It 
was possible to obtain better prediction using observed overflow volume and observed maximum discharge 
intensities as explanatory variables. However, once the predicted values of these variables were introduced 
the coefficients of determination dropped to about 0.2-0.3. 
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Apparent in all three plots of predicted and observed total EMCs (Table 4.3, graph row A) is that the error 
variance does not appear to be independent of the mean rainfall intensity. Attempts to estimate this 
dependency using a maximum likelihood criterion were unsuccessful when equal weight was given to 
observations from events with low and high rainfall intensity. Future efforts should aim at solving this 
breach of assumptions. 

For the slow-settling fractions the coefficients of determination are with total EMCs as independent variables 
(i.e. their observed values have been used during estimation). On application these are only available as 
predictions and the actual coefficients of determination with respect to the mean rainfall intensity will be 
much lower. 

Table 4.3. Results of the EMC (top half) and slow-settling fraction modelling (bottom half). 

Results of 
EMC Modelling 

No. of parameters 
R2 

Adjusted R2 § 
Units* 

Intercept 
Gradient 

Error var. 

A 
EMC against 
mean rainfall 
intensity, IJU^ 

Symb. Equat. 

a (4.5) 
b (4.5) 
°* (4.5) 

event -

s J g 
N | | o 

— » c 

No. of parameters 
R 2 t 
Adjusted R2 t § 

Units** Symb. Equat. 
Intercept a (4.6) 

Gradient b (4.6) 

Error var. p-,,2 (4.6) 

B 
Inverse of slow-
settling fraction g | -
against Event Mean » £ 8 
Concentration pifj? 
(EMC) - l w 

Kjeldahl Nitrogen 
(N-KJ) 

Chemical Oxygen Demand 
(COD) 

Suspended Solids 
(SS) 

Event Mean Concentrations 
2 

0.35 
0.33 

2 
0.28 
0.27 

2 
0.24 
0.23 

2.10 (0.06) 

3.35 (0.72) 

0.332 

5.15 (0.11) 

4.99 (1.24) 

0.582 

4.91 (0.16) 

6.94 (1.91) 

0.892 

1200 

400 

*• * 

< • • 
100 •$. 

20 , ,— 

T" 

0 0.2 0.4 

Mean rainfall intensity (mm/min.) 

0 0.2 0.4 

Mean rainfall intensity (mm/min.) 

o 0.2 0.4 

Mean rainfall intensity (mm/min.) 

Slow Settling Fractions 
2 

0.0 
0.0 

2 
0.69 
0.69 

2 
0.65 
0.64 

0.54 (0.15) 

0.0 

0.952 

-3.24 (0.46) 

0.82 (0.09) 

0.372 

-3.48 (0.74) 

1.20 (0.14) 

0.902 

2 4 8 16 32 

Kjedahl nitrogen EMC (mg/1) 

Mill 

100 

20 

4 

1 

+ * 
* 

+ + fc/* 
/ + 

y<* * 

, 

60 120 240 480 

Chemical oxygen demand EMC (mg/1) 

12 40 120 400 1200 

Suspended solids EMC (mg/1) 

f Note that these coefficients of determination are with the total event mean concentrations as independent variables. On 
application these would in turn be a function of the mean rainfall intensity. 

§ Adjusted R2 is the coefficient of determination compensated for the number of estimated parameter in the model. 
* Units of a, b and a,2 are (ln(mg/l)], [ln(mg/l)-min/mm] and [(ln(mg/l))2] respectively. 
** Units of a, b and oc" are [ - ], [l/ln(mg/l)j and [ - ] respectively. 
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Table 4.4. Correlation matrix defining the joint probability distribution of the 
error terms in the EMC and slow-settling fraction model (see (4.5) and (4.6)). 

1 

2 
3 
4 
5 
6 

Kjeldahl Nitrogen (N-KJ) 
Chemical Oxygen Demand (COD) 
Suspended Solids (SS) 
Slow-settling fraction N-KJ 
Slow-settling fraction COD 
Slow-settling fraction SS 

CN-KJ 

CcOD 
Css 

/N-KJ 

fcOD 
/ss 

1 

CN-KJ 

1.00 
0.69 
0.54 
0.06 

-0.51 
. 0.04 

2 

CcOD 
0.69 
1.00 
0.94 

-0.38 
0.06 
0.11 

3 

Css 
0.54 
0.94 
1.00 

-0.47 
0.20 
0.12 

4 

/N-KJ 

0.06 
-0.38 
-0.47 
1.00 

-0.25 
-0.04 

5 

./COD 

-0.51 
0.06 
0.20 

-0.25 
, 1.00 

0.23 

6 

/ss 
0.04 
0.11 
0.12 

-0.04 
0.23 
1.00 

No explanatory variable was found for the slow-settling fraction of Kjeldalh Nitrogen and the resulting R2 is 
therefore zero. As suggested by the cloud of points in the plot of inverse slow-settling fraction of Kjeldahl 
Nitrogen against its EMC (Table 4.3, N-KJ column graph row B), the value of b in (4.6) was not 
significantly different from zero and the term was consequently removed from the model. The consequence 
is that the inverse slow-settling fraction of Kjeldahl Nitrogen is in fact described as a log normally 
distributed random variable. For many practical applications such as return period analysis of detrimental 
CSO effects a distribution is much better than no model at all and it is important to realise that a coefficient 
of determination is zero does not render the model useless. 

A linear relationship was found between the logarithms of the inverse of the slow settling fraction and the 
total event mean concentration for both COD and SS. As shown in the two figures to the right in Figure 4.3 
row B, high event mean concentrations were associated with high values of the inverse slow settling fraction. 
This means that high concentrations are thus predominately associated with increases in material that settles 
within one hour. 

Both in event lumped and dynamic modelling a much higher predictability is found for water quantity than 
water quality variables. In practice this means that the value of using the relatively well characterised rainfall 
in evaluating return periods of detrimental CSO effects under various structural or control scenarios is low. 
The uncertainty in the return periods would be expected to depend to a large extent on the size of the CSO 
water quality data set itself. The parameter correlation matrix for the water quality model is not presented in 
full but some main aspects of this 11 by 11 matrix will be shortly discussed. Although the correlation 
between the a's and b's in (4.5) were generally low the correlation amongst the a's and amongst the b's was 
generally high (0.5 to 0.9). This would suggest that the number of estimated parameters could be reduced 
without significant loss of fit by restructuring the model to have a common dependency on the mean rainfall 
intensity with a scaling factor for each of the three components. 

The presented models have been used to evaluate uncertainty in return period analysis of combined sewer 
overflow effects (Gram et al., 1998 and Chapter 9). In such applications event lumped models have an 
advantage over dynamic models as they have short simulation times and have reasonably satisfied 
assumptions concerning errors and uncertainty. The water quality model defined by (4.5) and (4.6) is a single 
model whose parameters where estimated simultaneously and for which correlation matrix corresponding to 
the joint distribution of the error terms is given in Table 4.4. Note that particularly the errors of the event 
mean concentrations of COD and SS are highly interdependent. Chapter 9 introduces a methodology for the 
analysis of uncertainty in return periods where a distinction is made between inherent variation and 
uncertainty. The joint distribution of the error terms in the event mean concentrations model describes 
inherent variation and is in Chapter 9 treated as such. 
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CONCLUSION 

It has been possible to identify and estimate parameters in event lumped models of combined sewer overflow 
(CSO) volume, event mean concentration and slow-settling fractions of three pollutants; Kjeldahl Nitrogen, 
Chemical Oxygen Demand (COD) and Suspended Solids (SS). With rainfall as input, high coefficients of 
determination were found for water quantity but not for the concentration variables. 

Using only event lumped rainfall and overflow volume data, the catchment drying rate was identified and 
found to coincide surprisingly well with mean open water evaporation data. Evaporation was subsequently 
introduced into the model as an explanatory variable. Future efforts should be made to examine the 
generality and value of the presented wetness index particularly in urban drainage systems receiving runoff 
from pervious and semi-pervious surfaces. 
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CHAPTER 5 

DETERMINISTIC AND STOCHASTIC MODELLING 

ABSTRACT 

In this chapter the underlying assumptions of deterministic and stochastic modelling are examined in the context of 
water quality modelling. Particular attention is given to assumptions concerning the source of the deviation between 
modelled and observed values and how this results in two very different approaches to parameter estimation. 
Potentials and limitations of including physical, chemical and biological theory into stochastic models are 
evaluated. Methods and approaches generally associated with stochastic modelling are discussed and applied in the 
context of both approaches. These include the virtues of the linear and non-linear state space formulations, common 
estimation criteria, exploring parameter space and aspects ofidentifiability including the quantitative incorporation 
of a priori knowledge into the parameter estimation process. 

A case study is presented in support of the theoretical outline. A rainfall-runoff model for a combined sewer system is 
estimated both as a deterministic and stochastic model. The physical description used in the two models is identical; 
they differ only in their error assumptions. The modelling tool used was developed specifically to estimate 
parameters of a model as both deterministic and stochastic. The case study also highlights some of the practical 
problems that need to be addressed when incorporating water and water quality theory into stochastic modelling. 
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INTRODUCTION 

Models are often used to support decisions in urban water quality management. There exist many different 
approaches to water modelling. Two main lines are the traditional deterministic and the stochastic modelling 
approaches. In both practice and research the choice of approach appears to depend more on the background 
of the modeller than on the problem being addressed and the available economic resources. 

With the aim of contributing to bridging this gap between traditional deterministic and stochastic modelling 
approaches, this chapter firstly addresses the central differences between the two approaches. As argued, via 
the parameter estimation problem, it is important not only to realise but also to keep in mind that the 
difference between stochastic and deterministic modelling lies in the implicit error assumptions. 

Secondly, the chapter outlines and discusses some principles and methods relevant to both approaches but 
which, for historic reasons, are generally only associated with stochastic modelling. These include the state 
space formulation, various estimation criteria, empirical and mechanistic model structure, identifiability and 
parsimony. A case study is presented in which both methodologies and a number of the associated methods 
are applied to a water quantity model of the Loenen sewer system. 

Out of this chapter spring some key questions: When should which modelling approach be used? How much 
detail should be included in the model? These and other questions are discussed in Chapter 8, which 
concludes the modelling part of this thesis. 

DETERMINISTIC AND STOCHASTIC MODELLING 

Parameter Estimation in Deterministic Modelling: No UP-DATE 

Traditionally deterministic water quality models are calibrated against observed data. The simulation results 
are made to fit the observed data as best possible by adjusting the model parameters to values that the 
modeller's engineering experience tells him are reasonable values. In other cases deterministic models have 
their parameters estimated by using search algorithms that minimise the sum of squared errors. What ever 
the case the following points are in principal equally valid and "parameter estimation" will here be used to 
describe either of the two methods. 

The parameters of a deterministic model are estimated by sequentially running a full simulation, comparing 
the results with the observations and evaluating the fit. This is repeated several times usually as part of some 
structured optimisation procedure. When no further improvement is obtained the process stops. Figure 5.1 
illustrates a single such full simulation (the solid line) and the observations (the crosses). Modelled is the 
response of a fictitious flow to the fictitious rainfall input plotted above. 

What in fact is done during one such simulation can be described in other words. The simulation starts at 
time t-0 and an observation is first encountered at time t=l. At this point the deviation between the 
modelled value is noted but no adjustment is made to the estimated value of the flow. It is not up-dated. 
Total confidence is placed in the modelled value, which is taken as our best estimate of reality in spite of the 
fact that this didn't coincide with the observation. The implicit assumption is that the deviation between the 

42 



Chapter 5 Deterministic and Stochastic Modelling 

15 

10 

•Rainfall 

o> 

40 -

30 -

20 -

10 -

0 -
X X 

x/ 

x/ 

/ x \ 

Deterministic 
Simulation 

X Observations 

^~^~~-><^X x v 
*~~-—.ixx X 

x X 

10 
Time 

15 20 25 

Figure 5.1. During parameter estimation and/or calibration in traditional deterministic modelling deviation 
between model and observation is implicitly assumed to result from observation error only. Therefore no 

adjustment is made to the flow on the presence of an observation. (Example shows fictitious data). 

modelled and observed values results from observation error alone, no up-dates are made to the state of the 
system and we continue our simulation of reality from the modelled value. 

• In deterministic modelling the implicit assumption is that our description of reality 
is perfect and that all deviation between modelled and observed values is the result 
of observation error. 

Note that the term observation error is used rather than measurement error. This is because observation 
error encompasses measurement error, sampling error and error due to inhomogeneity. 

0 10 20 30 lag + i 40 

Figure 5.2. A fictitious unit hydrograph (impulse response function) defining the values of a, in (5.1). 
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Parameter Estimation in Stochastic Transfer Function Modelling: COMPLETE UP-DATE 

Consider the following model in which the flow, Q, is expressed as a function of earlier observations of 
rainfall, R, with an added error, e. The model is defined in discrete time where for example the subscript t-2-
lag refers to the variables value (2+lag) time steps earlier than the time t in which the variable is defined. 

Q, =a0-R,-lag +« l -*,-l-ter +°2 -R.-l-la, +«3 ' Ki-lag + - + «„ ' R,-n-!ag + «, (5.1) 

This could for example be a simple unit hydrograph consisting of a rise followed by an exponentially decay with the values of a0, 
ah a2,..., a„ as shown in Figure 5.2. 

Ljung (1987) uses a similar model as an initial attempt in an example problem where river flow is modelled 
as a function of rainfall. Ljung then proceeds to test a model of the following form (5.2) and ascertains that 
the error variance is significantly reduced by including the flow's value in the previous time step as an 
explanatory variable. 

Q,=S-ft., + co0 • Rt. + » , • /?,_,_, + e, (5.2) 

True enough, the flow is now expressed as a function of its value in the previous time step but in the 
paragraphs below it will be shown that this is a mere technicality when comparing it to the model defined by 
equation (5.1). The error variance found for (5.1) is undoubtedly much smaller then that found for (5.2). But 
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Figure 5.3. Left: Parameter estimation with no up-date implying no model error and thus a 
deterministic model (5.6). Right: Parameter estimation with complete up-date. Up-date implies model 

error is present thus a stochastic model (5.2). Observation = cross and prediction = plus. 
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do these two errors describe the same thing? Are they at all comparable? 

The prediction of the flow, Q, as defined by the model in the expression (5.1) can be written as 

where the hat symbol, A , is used to indicate that this is a prediction of the variable. A response of the form 
shown in Figure 5.2 with an initial rise followed by an exponential decay can be expressed using fewer 
parameters (5.4). 

Q,=d-g_, + w0 • R,_lag + w, • *,_,-,„* (5-4) 

where the model parameters d, w\ and W2 could be found from the following relation to the response function 
defined by the a's in (5.3) as follows 

Co = wo 

a, = d-w0 + w, ( 5 5 ) 

a, = d2-w0 + d-wl 

Thus, the complete model in (5.1) may be rewritten with fewer parameters as follows (5.6). 

e, =«/• a.,+w„ • ̂ . + w . •*,-..*«+«, (5-6> 

At first sight the two models defined be the equations (5.6) and (5.2) now look very much alike. There is, 
however, a world of difference. 

At each time step during parameter estimation in the first model (5.6) (a reformulation of (5.1)), 
• prediction departs from the predicted value in the previous time step, 
• observed values are used only to calculate the error, e,, and subsequently to find the fit, 
• no adjustment is made to the current flow estimate, that is, No UP-DATE IS 

PERFORMED, 

thus 
• deviation between modelled and observed values is assumed to result from 

observation error alone, 
• the model's system description is assumed to give a perfect description of the system 

behaviour, 
• the model is a DETERMINISTIC model. 

At each time step during parameter estimation in the second model (5.2), 
• prediction departs from the observed value in the previous time step, 
• the current flow estimate is adjusted to be equal to the observed flow, that is, a 

COMPLETE UP-DATE IS PERFORMED, 

thus 
• deviation between modelled and observed values is assumed to result from model 

error alone, 
• the model's system description is assumed only partly to describe system behaviour 

and the remaining behaviour is assumed to be random compared to given explanatory 
variable (in this case rainfall R,), 

• the model is a STOCHASTIC model. 
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•Rainfall Input. 
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figure 3.4. Comparison ot simulations ot the two models p . 6 ) (solid line) and (5.2) (dashed line). t he 
simulations have been performed with the same model parameters (d= S= 0.9, w0 = coo = 0.5, wt = a>\ = 0.2 

and lag = 2) and the same error variance CT„2 of 1.52. 

The error term in (5.6) is an observation error whereas the error term in (5.2) is model error describing 
random behaviour of the system. The two error terms represent very different things and a direct comparison 
is therefore uninteresting. What generally would be interesting after parameter estimation with each of the 
models would be to evaluate whether the resulting error series, the residual series, in fact was made up of 
independent realisations of a random variable. This is discussed in more detail later in the chapter. 

In the above discussion the difference between the two simple models is highlighted in view of the 
parameter estimation or calibration. This may be supported further visually by model simulations. 
Simulations of the two models (5.6) and (5.2) have been plotted in the same graph in Figure 5.4. The 
simulations have been performed with the same model parameters (d= 8 = 0.9, wo = coo = 0.5, w\ = co\ = 0.2 
and lag = 2) and the same error variance o2 of 1.52. The visual difference between the two models is clear 
and unmistakable. The deterministic version of the model is a smooth curve with an overlaid fuzz whereas 
the stochastic version has more the look of a shiver. This is because in the first deterministic version of the 
model (5.6) the flow at time t is a function of an error term only of time t (the observation error). In the 
stochastic version of the model (5.2) the flow is not a function of its predicted value in the previous time step 
but of its simulated value and therefore a function of the error terms of all previous time steps (the model 
error). 

In the deterministic version (5.6) Q, = f (#,_,„,,, #,_i_tog, R,-2-,ag>•••»«,) (5.7) 

In the stochastic version (5.2) Qt = / (R,_,ag, R,^, R,_2_lag,..., e„ e,_,, e,_2, e(_3,...) (5.8) 
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Generally the following can be said about the stochastic models traditionally applied in statistical time series 
analysis such as the transfer function models in Box and Jenkins (1976) and Chatfield (1996). 

• In stochastic modelling with complete up-date the implicit assumption is that the 
observations of reality are perfect and that all deviation between modelled and 
observed values is the result of model error describing random behaviour of the 
system. 

A complete up-date of the state variable(s) is performed as the modelled variable is adjusted to be equal to 
the observed value whenever an observation is available. 

Parameter Estimation with Separation of Variance: KALMAN UP-DATE 

Models are always a simplification of reality and assuming that all deviation results from observation error 
alone would generally be incorrect. On the other hand observations are also often uncertain due to 
inhomogeneity, variations within sampling and analysis procedure. A third possibility is to accept the 
presence of both observation and model error. 

When an observation is encountered, whilst modelling in time, an improved estimate of the variables true 
value may be obtained as a weighted average between the model's predicted value and the observed value. 
This weighted average is called the up-dated value. Modelling would then proceed from this new up-dated 
value. 

In the deterministic version of the simple unit hydrograph model (5.6) there was no up-dating during 
parameter estimation. In the stochastic version presented in (5.2) there was complete up-date during 
parameter estimation. A model that up-dates to a weighted average between the predicted and observed 
values could be formulated by simply merging the two models (5.6) and (5.2) to the form (5.9). 

Q, = <?•(*•£_, +-(l-*)-e(_, ) +co0.R,^g +o>, .*,_,_,, +e, (5.9) 

The weighting factor k is called the Kalman gain and the whole methodology for separating the variation 
into observation and model errors is called the Kalman filter after the author who first presented it in the 
1960s. Note that Q with the hat is the predicted flow whereas Q without the hat is the observed flow. 

In stochastic modelling with Kalman up-date, 

• In stochastic modelling with Kalman up-date the implicit assumption is that 
deviation between modelled and observed values are the result of both observation 
errors and model noise. 

Figure 5.5 illustrates the how prediction in the Kalman filter proceeds from a weighted average of the 
model's predicted value and the observed value. 
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The value of the Kalman gain, k, depends on the uncertainty associated with the model prediction relative to 
the observation's uncertainty. For a one dimensional model such as (5.9) the Kalman gain can be expressed 
as follows. 

'MODELLED, l 

'MODELLED, I + <J~n 
(5.10) 

where O'MODELLED, I *S m e variance of the model's predicted value (at time t) and crOBSERVED is the observation 
variance. 

Figure 5.6 graphically illustrates how the Kalman up-date works. In Figure 5.6A the uncertainty of the 
model's prediction is illustrated by its broad and flat probability density function. In such a case the up-dated 
value will be close to the relatively more certain observation. In Figure 5.6B it is the model prediction that is 
the most certain and consequently the up-dated value will lie closer to the predicted value. 

Modelling the Variances 

Above it is outlined how the Kalman gain is an expression of the uncertainty in the model prediction relative 
to the combined uncertainty. But where do these variances come from. 

The observation error variance is most often assumed to be the same for all observations of a given variable. 
Thus not changing in time. If a maximum likelihood estimation criterion is used (see section on estimation 
criteria below) for an off-line parameter estimation then the observation error variance can be estimated from 
the data along with the other model parameters. 

However, the variance of the model prediction will generally vary in time. The prediction variance will. 
increase with time as the duration since the last observation increases. The variance will also increase or 
decrease depending on the rigidness of the system itself in its current state. For example, in the case study 
that follows the variance of the predicted water level abruptly decreases once overflow over the weir begins. 

In using the Kalman filter also the variances of the system states have to be modelled in time. The rate at 
which the variance increases in time may be assumed constant and this variance may be estimated along 
with other model parameters. On the presence of an observation the variance of the prediction is up-dated in 
the same way as the prediction itself. If the modelled value is relatively uncertain then the presence of a new 

Observed 
Variable OBSERVED VALUE 

UP-DATED VALUE 

KALMAN UP-DATE 

PREDICTED VALUE 

PREDICTION 

Time 

Figure 5.5. Sketch of the principal elements of the Kalman filtering. Both model and observation errors are 
assumed to be present and prediction therefore proceeds from a weighted average between the observed 

and the modelled values: the Kalman up-date. 
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observation will result in a major reduction of the variance. Conversely, if the modelled value is relatively 
certain then the new observation only results in a minor reduction of the variance. 

In Appendix A and Appendix B are the equations for the linear and non-linear Kalman filter respectively. 
Included are the equations for up-dating the state variances and for calculating their propagation in time. 

The Kalman filter as Convergence Routine and with Off-Line Estimation 

The Kalman filter has often been used as a convergence routine in parameter estimation. This is done by 
placing the essentially "constant" parameters whose values are to be estimated as state variables in the state 
vector and assigning a simple empirical model such as a first order autoregressive model and letting the 
parameter converge to its "true" value in time. For this to work successfully the system variances and 
observation variances have to be fairly well known. 

In the case study that follows and in Chapter 6, the Kalman filter has not been used in its capacity of 
parameter estimator. The Kalman filter has been used uniquely for obtaining an improved estimate of the 
observed and unobserved system state variables on the presence of an observation. This is then combined 
with the optimisation of a likelihood criterion that is calculated once for each complete run-through of the 
time series used for parameter estimation. The model parameters, including the error variances, are estimated 
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Figure 5.6. Illustration of the Kalman up-date in the cases where the model's prediction is relatively 
uncertain and relatively certain (A and B respectively). Each graph depicts the probability density functions 

of observed variable at an instance in time. 
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by maximising the logarithm for the likelihood criterion. Although essentially the same thing, these two uses 
of the Kalman filter are in practical terms very different and should not be confused. In certain practical 
applications such as model based real time control it may be advantageous to combine the two different uses 
of the Kalman filter. 

Error Assumptions 

The main distinction between deterministic and stochastic modelling lies in the implicit error assumptions. 
In deterministic modelling our parametric description of reality is assumed to be perfect and all deviation 
between modelled and observed values is assumed to be the result of observation error. In stochastic 
modelling our parametric description is assumed only to be a partial replication of reality and at least part of 
the deviation between modelled and observed values is assumed to be the result of model error. Figure 5.7 
summarises the error assumptions into the two extremes of no up-date and complete up-date, and with the 
Kalman up-date in-between. 

Characterisation of dynamic models should in first place relate to their underlying assumptions. The 
underlying assumptions distinguishing deterministic models from stochastic models are the error 
assumptions that on the presence of observations lead to no up-date or to an up-date respectively. 

ESTIMATION SKETCH 

->—• model 
x observation 

Time 

Time 

Time 

ASSUMPTION 

The deviation between 
modelled and observed 
results from ... 

observation 
error only 

system 
error/random behaviour 

both 
observation error and 

system random 
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UP-DATE MODEL TYPE 

No UP-DATE 
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+ o"„ 
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Figure 5.7. Summary for the comparison of assumptions made during deterministic and stochastic modelling. The up-date is 
here illustrated for a one state variable model. 
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STATE SPACE FORMULATION 

Linear 

The model in (5.9) would generally not be written in that form. A more general and more convenient form is 
the state-space representation with a state equation and an observation equation. In (5.11)-(5.12) below the 
unit hydrograph model of equation (5.9) has been rewritten into a state-space form. 

The system or state equation: 

Q =6-0^ +co0-R,_,ug +cox -R,_x_las +e„ C5-1 ] > 

The observation equation: 

i»BS.< =Ui +e2,t 
(5.12) 

Where QOBS, I is now the observed flow. The state variable, Q,, defines the current state of the system just as 
the state equation defines the system dynamics. The observation equation describes how the system is 
observed. In (5.12) the flow variable is observed directly and only an observation error term is added. 

At first glance it may appear as if one would never be able to distinguish between the model error, e\ , and 
the observation error, ej, t. Looking carefully, however, it is evident that the observed flow, £?OBS, ,, is a 
function of all past values of the model error whereas it is only a function of the observation error at that 
particular moment in time. 

On simulation the flow, Q,, would be calculated using (5.11) and its observed value, £?OBS, <, would be 
obtained by adding the observation error to Q,. During parameter estimation the Kalman filter would be 
used. Flow prediction would be done using (5.11) without its error term and the equivalent second moment 
expression would be used to predict the prediction variance at time t as a function of the prediction variance 
at time t-l. The Kalman gain would be calculated using (5.10) and this in turn used to calculated up-dates of 
the flow and flow variances. 

Notice that if eUl in (5.11) had a variance equal to zero then the equations (5.11)-(5.12) would be identical 

to the deterministic model (5.6). If instead e2, in (5.12) had a variance equal to zero then (5.11)-(5.12) 

would be the same as the stochastic model with complete up-date in (5.2). 

In the above the deterministic modelling with no up-date and stochastic modelling with both complete and 
Kalman up-dates have been presented using a simple flow model with one state variable and one observed 
variable. Often, however, it is not sufficient to use only one state variable in defining the state of a system. 
When working with more than one state variable it is helpful to place them in a state vector that is generally 
written with the symbol^. The generalised linear state-space model can then be written as, 

51 



Urban RunoffPollution: Modelling and Uncertainty in Return Period Analysis Morten Grum 

System Equations: 

Observation Equations: 

K,=dX,.1+Bu,_,+e,J (5.13) 

L=QX,+e2j (5.14) 

Where X_, is the state vector, A is the system matrix containing coefficients to the state vector of the 

previous time step, «,_; is the vector of inputs, B is inputs matrix containing coefficients to the input 

variables, e,, is the model error, Y_, is the vector of observations, C is the observation matrix with 

coefficients defining which state variables or linear combination of state variables is observed, and e2, is the 

observation error. Refer to see Harvey (1993) and Madsen (1995) for more details on the linear state space 

formulation and Kalman filtering. 

The equations of the linear Kalman filter, which may be used for estimation in linear state-space models in 
the form of (5.13)-(5.14), are listed in Appendix A. 

Non-linear 

For much practical water quality engineering simplification to linear models would be unreasonable or even 
impossible. In such cases the extended Kalman filter may be used with the non-linear state-space 
formulation. The non-linear state-space formulation in discrete time may be expressed as follows, 

System Equations: 

Observation Equations: 

X,=f{X,_„ u,_„6)+£,,, (5.15) 

L,=h(X„9)+e2j (5.16) 

where X_, is the state vector, / ( ) is the non-linear system function, u,_; is the vector of inputs, 0 are the 

constant parameters, e, ,is the model error, Y_, is the vector of the observed variables, h{) is the non-linear 

observation function defining how the state variables are observed, and e2, is the observation error. 

Some times none of the state variables may in fact be observed. Water volumes or flows may, for example, 
be the modelled state variables but in the observation equation these would often be converted to water 
levels which have been or are being monitored. Modelling suspended solids and dissolved organic matter as 
state variables the observed variables may be turbidity and UV-absorption. 

Measurements such as turbidity and UV-absorption are often supplemented by less frequently sampled and 
analysed quantities such as suspended solids, COD, BOD or others. These would generally be included in 
the observation vector Y, and may be a function of the same state variables in the state vector X_, as the 
more frequently observed variables. In periods where only the frequently observed variables are available 
the less frequently observed variables would be treated as missing. Single variables in the observation vector 
can be treated as missing by momentarily giving them any arbitrary value and letting their observation 
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variance be equal to an extremely high value. Extremely uncertain observations have no effect on the up­
date of the states. Stochastic time series modelling with complete up-date in discrete time requires 
equidistant sampling and missing values is generally problematic. Stochastic modelling with Kalman up­
date has the distinct advantage of accepting irregular sampling, not requiring the same sampling schedule for 
all variables and handling missing values without violating the underlying assumptions. 

Much traditional deterministic water quality modelling is in fact implemented in a form that differs only in 
format and interpretation from the non-linear state-space formulation in (5.15) and (5.16). The main 
difference is that in traditional deterministic modelling the model error e,, is assumed always to be equal to 
zero. The observation function h{)would then generally pick out the state variables that have been 
measured. During calibration or parameter estimation the sum of squares of the observation errors, e2,, 

which in this deterministic case is the deviation between the observed and the modelled, would be minimised 
either by visual evaluation of the fit or by using an optimisation algorithm. 

When rewriting or reinterpreting traditional deterministic forms into the non-linear state-space form it is 
important to realise that all quantities which define the state of a system at any given moment must be state 
variables. If one is modelling an object falling through space then a definition of it's state requires 
information on both its position and its velocity. Similarly, a state-space representation of a one dimensional 
hydrodynamic dynamic pipe flow model involving solving the Saint Venant equations would require that 
both the water levels and water velocities at every calculation point in the system were state variables. 

Rainfall Input. 

Simulation of the 
deterministic version 

Simulation of the 
stochastic version with 
additive error 
Simulation of the 
stochastic version with 
the multiplicative error 
Simulation of either 
with no error. 

Figure 5.8. Comparison of simulation of the three models: deterministic model (5.6), stochastic model with additive 
error (5.2) /(5.11) and the stochastic model with multiplicative error (5.17). The simulations have been performed with 

the same model parameters as in Figure 4 and with a dimensionless error for multiplicative model of 0.15. 
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Up-Dating Unobserved State 

In most of the above discussion the up-dated state variable was also an observed variable. A characteristic of 
the Kalman filter is that although all state variables are up-dated, only a few of these actually need to be 
observed. Through the interrelationship between state variables represented by partial derivatives of the 
system function with respect to the state variables at the previous time step and through the covariance of the 
state predictions, observations of one of the state variables will contain information about other state 
variables. Thus direct or indirect measurement of only one of the state variables will generally result in an 
up-date of all state variables. In this sense the Kalman filter is well suited in the design of software sensors 
(e.g. Carstensen et al., 1996). 

State Dependent Errors 

One of the assumptions of the state space formulation in (5.13)-(5.14) and (5.15)-(5.16) is that the errors are 
normally distributed. With, for example, a component concentration as state variable the situation often 
arises where the added error is negative but in absolute value greater than the predicted concentration. A 
simulation of the system would result in negative concentrations. For water quantity the same problem arises 
as flow or water volumes drop to zero. In such situations it is simply not reasonable to assume that the errors 
are normally distributed with the same distribution irrespective of the state variable's current value. 

One way of handling state dependent model errors is by introducing an error state for each of the state 
variables whose randomness should depend on the value of the state variable. This method is outlined below. 

Written with the applied multiplicative state dependent error the system equation for the little unit 
hydrograph example (5.6) becomes 

a =(*•&- + <y„ •R,-,ag+<°l R, l-\~lag w -y2-a
2 (5.17) 
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Figure 5.9. Histogram showing the distribution of the random factor by which the state variable is multiplied. The error 
£ in the exponential expression is a normally distributed random variable with mean 0 and variance 1. Histograms are 

shown for standard deviations, a = 0.2 and 0.5. 
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where £ is a normally distributed random variable with mean 0 and variance 1, and where a is the 
dimensionless standard deviation of the multiplicative factor (i.e. the exponential term in (5.17)). The 
random variable s is in fact placed in the state vector with a constant expectancy of zero. In this way the 
Extended Kalman filter (non-linear) can be used without violating the condition that the errors must be 
independent of the state variables. A stochastic simulation of the system defined by (5.17) has been plotted 
in Figure 5.8. In the same figure also a simulation of (5.2) is depicted in which the flow variable becomes 
negative, which is in this case considered physically impossible. Note that the model with the multiplicative 
error term remains positive by definition because the multiplicative exponential error term is always greater 
than zero. 

It is important that the exponential factor in (5.17) has to have a mean of 1 which it in this case does so long 
as the error s is a normally distributed random variable with mean 0 and variance 1 and the dimensionless 
standard deviation a is positive. Figure 5.9 shows the distribution of the factor for standard deviations a of 
0.2 and 0.5. 

ESTIMATION CRITERIA 

Least Squares 

The criterion for calibration of traditional deterministic models is often a visual evaluation of the simulated 
and observed values plotted in the same graph. Once an automatic search routine is coupled the most 
frequently used criterion is the least square (LS). Using the LS criterion one minimises the sum of the 
squared errors. 

One of the assumptions associated with least square estimation is that the errors are normally distributed 
with the same variance irrespective of the value of the observed variable. There are many cases in water 
quality modelling where this assumption is not reasonable. For both water quantity and water quality 
modelling the error is often highly dependent on the variable value. At small concentrations the modelling 
errors may be much lower than at high concentrations. 

Using LS estimation on the errors divided by the predicted value often leads to an exaggerated importance 
given to the prediction with low values. In some cases a weighting scheme is devised to emphasise fit of 
peak values or low values but it often turns out that the parameter estimates are very sensitive to the selected 
weights. 

Maximum Likelihood 

A criterion very rarely seen applied in the context of deterministic models is the maximum likelihood (ML) 
criterion. During ML estimation one seeks the parameter set that results in the most probable set of errors 
assuming a given distribution. Generally the logarithm to the likelihood is maximised. Where the assumed 
distribution is a normal distribution with mean zero then its variance would generally be unknown and have 
to be estimated along with the other model parameters. 

Using linear deterministic models with the LS and the ML criteria applied directly to the deviation between 
the predicted and observed lead to the same set of estimated parameters. With non-linear models the 
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estimates will generally not be the same. The advantage of the ML criterion is that it provides more 
flexibility in terms of assumptions relating to the distribution of the errors. 

An additional advantage of ML estimation is that multiple criteria estimation problems can readily be 
combined into a single criterion by minimising the product of the individual likelihoods. If, for example, 
observations of both dissolved oxygen and biological oxygen demand (BOD) were to be used in calibrating 
a surface water model, it would often not be possible to estimate the parameters for each model sequentially. 
This is because oxygen removal depends on the degradation of organic matter and the degradation of organic 
matter also depends on dissolved oxygen in the water. Using a maximum likelihood criterion parameter 
estimation in the whole model would be done by minimising the sum of the logarithms to the individual 
likelihoods. In LS estimation weights would have to be selected for each component and the result turns out 
to be very sensitive to the selected weights. 

Using the maximum likelihood criterion it is possible to construct a parametric model for the error variance 
and have these estimated along with other model parameters. This is done for example in the non-linear 
regression models used in relating measurements of turbidity in a combined sewer to variables such as 
suspended solids and COD in Moens et. al. (1999). 

Robust estimation can readily be applied when using the maximum likelihood criterion. This works as a sort 
of on-line suppression of outliers. There exist several different Robust estimators with the shared feature that 
extremely unlikely observations end up having little or no influence on the likelihood value. It is generally 
not a good idea to start ones parameter estimation using a robustness criterion because the parameter values 
may be so far off that a very large proportion of the observations become categorised as outliers. 

In stochastic modelling with the Kalman filter as state estimator LS estimation only works in cases where the 
error variances are known. This is however rarely the case and therefore the ML criterion usually has to be 
used. 

A further advantage of the maximum likelihood criterion is the relatively simple manner in which a priori 
knowledge on likely parameter values can be incorporated into the estimation procedure. This is discussed in 
more detail in the section on identifiability below. 

A disadvantage of ML estimation is that at least one extra parameter, namely the error variance, has to be 
estimated for each error series. In some cases it may therefore be a good idea to first obtain rough parameter 
estimates from a LS estimation and to use these as starting values for a ML estimation. 

IDENTIFIABILITY 

Identifiability deals with the uniqueness of an estimated parameter set in shedding light on questions such as: 
Do some of the parameters have little or no influence on the goodness of fit? Could an increase in one 
parameter be compensated by a decrease in another parameter to give an equally good fit? Are certain 
combinations of parameters interchangeable with other combinations of parameter? How much uncertainty 
is associated with the estimated parameters and what is the uncertainty once parameter interchangeability is 
considered? Within the world of time series analysis and stochastic modelling analytical methods exist to 
examine the identifiability of the parameters in a given model structure on the basis of a given data set and 
considering a priori knowledge of the parameter values. This section outlines some essential aspects of these 
methods and how they can be applied in the field of water quality modelling. In the case study later in the 
chapter the methods have been applied to combined sewer modelling problems. 
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Identifiability as it is used here deals with examining the uniqueness of an estimated parameter set. However 
it should be realised that the field of model identification is much broader covering also the revealing or 
disclosure of model structure in empirical time series modelling or in mechanistic models such as the 
disclosure of the evaporation dependency in Chapter 4. 

Identifiability is a combination of two elements: the model whose structure has to be identifiable and the 
given data that has to be informative (Madsen and Hoist, 1998). An outline of these two distinctly different 
aspects of identifiability is followed by an introduction to how an exploration of the parameter space can be 
used to examine their combined effects. 

Structural Identifiability 

Sometimes the structure of a model is such that no distinction can be made between two or more model 
parameters. Consider for example the model in (5.18) where the flow, Q, is the flow in a sewer receiving 
rainfall-runoff from two different sub-catchments, A and B. 

where Qt is the modelled flow, Rr is the rainfall input, e, is the error term and S, a0, a,, 60and 6, are model 

parameters to be estimated from observations of rainfall and flow. Although the parameters a0 and a,, and 

ba and bt are physically associated with the sub-catchments A and B, it is not possible to distinguish these 

parameter pairs from one and other. An increase in a0 could be directly compensated by a decrease in Z>0. 

In most cases problems of structural identifiability will be less obvious than in the example above. Often the 
problems will only be present for certain ranges of the input and output data, and they will be difficult to 
distinguish from problems of poor excitation in the data set. Consider for example the Monod expression 
(5.19) for the growth rate, // , as a function of substrate concentration, S, with the two parameters, the 
maximum growth rate, //max, and the half saturation constant, Ks, which have to be estimated from a given 
data set. 

S 
M=M™*'T7s ( 5 1 9 ) 

There is no immediate sign of structural identifiability problems. However as the substrate concentration, S, 
decreases and becomes smaller than the value of the half saturation constant, Ks, one sees that the 
maximum growth rate and the half saturation constant, Ks, become interchangeable. 

Re-parameterisation of the model should be considered in such cases with structural identifiability problems 
within a limited range. This will avoid unnecessary complications during parameter statistics. The gradient 
of the curve in the first part of the Monod expression can be expressed as, 

I 

grad = -p!f- (5.20) 

Z-Ks 

The half saturation constant, Ks, can then be substituted out of the Monod expression (5.19) to give, 

H^-2-grad-S 
"= ^ , c (5.21) 

M^+2-gradS 
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and the maximum growth rate, //„,„, and gradient, grad, would now be the new parameter set to be 
estimated from the data. This algebraically cosmetic re-parameterisation is likely to have a positive effect on 
the performance of the non-linear search algorithm and undoubtedly on examining the model identifiability 
after parameter estimation. The structurally induced correlation between the two parameters is avoided by 
the simple re-parameterisation. Within the field of water quality modelling, the identifiability of the 
parameters in the Monod model and other growth-degradation models has been treated in Reichert and 
Omlin (1997), Vanrolleghem and Keesman (1996), Vanrolleghem et. al. (1995) and Dochain et. al. (1995). 

Excitation 

In order to calibrate a rainfall-runoff model during rainfall it is necessary to have data from rainfall periods. 
That is obvious. It is however also important that the data set does not consist of simply a single constant 
drizzle over a long period. A rainfall-runoff model describes the relationship between input rainfall and the 
subsequent runoff. For a good calibration or parameter estimation it is important to have a dynamic input in 
order to be able to distinguish between parameters. 

A dynamic input is however not always enough. It is important that the frequencies of the variations in the 
inputs coincide fairly well with the characteristic time constants of the system whose parameters are being 
estimated (Sadegh et al., 1995). If the variations in the input are much faster or much slower than the time 
constants of system then the input will have an effect on the system similar to that of a constant input signal. 
This is illustrated for a unit hydrograph model in Figure 5.10. 

For a simple linear rainfall-runoff model essentially characterised by a unit hydrograph an impulse input 
produces a response from which the transfer function of the system can be obtained. For more complex 
systems with several simulations process such as rainfall-runoff, sediment resuspension, biological 
degradation of organic matter and oxygen depletion a single impulse or step input will often result in limited 
information about the system parameters. Sadegh (1996) presents the theoretical and practical considerations 
concerning the experimental design of linear and non-linear complex systems built on physical and chemical 
theory. 

Although both deterministic models and stochastic models with Kalman up-date do not require that 
observations be equally spaced in time it is important that observation be made when "things are 
happening". A sewer suspended solids model, such as that estimated in Chapter 7, may, for example, involve 
a threshold point for which higher flow rates or velocities result in an initialisation of sediment resuspension. 
In order to identify this point and to distinguish its value well from other parameters it is necessary that 
measurements of the suspended solids have been made both before and after the threshold has been crossed. 
See Chapter 7 on Random Coefficient Modelling for more discussion of the particular case of resuspension 
modelling. 
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Exploring Parameter Space 

Once the estimation criterion has been optimised one is interested in knowing how unique the parameter set 
is. This is done by examining the sensitivity of the criterion value to changes in the parameters. This is in the 
present thesis broadly described as "parameter statistics". 

Parameter statistics involves the evaluation of 
parameter variances and confidence limits, 
covariance and correlation matrix, 
confidence contour plots. 
eigen values and eigen vectors of the Fischer's information matrix, 
eigen values and eigen vectors of the parameter correlation matrix, 
experimental design criteria, 
projections of eigen vectors, 
parameter confidence limits under consideration of covariation. 

The parameter statistics are carried out under the assumption that the model is locally linear. In a large 
number of cases this will in fact be a reasonable assumption however in some cases parameter 
transformations will be required in order to be able to make this assumption of local linearity. Parameter 
transformation is discussed below and applied in the case study that follows. 

Parameter Variance. With maximum likelihood (ML) estimation in linear models the estimated parameters 
are normally distributed. The likelihood, L, that the parameter 6 is equal to 0 rather than its estimated 
value 0 is defined by the probability density function of the normal distribution. In such a case where only 
one parameter has been estimated the likelihood takes the form of (5.22). 

(5.22) _M 
L=-±-.e 2.«> 

V2/r-cr 

where 
L is the likelihood (i.e. the probability density), 
0 is the estimated parameter value, i.e. its value at the point of maximum likelihood, 
0 is the parameter value for which the likelihood is expressed, 
a is the parameter standard deviation. 

Taking the log of both sides (5.22) can be rewritten as, 

- l o g l (e-e)2 _ to, A (5-23) 
2-cr2 JlJi-tT 

Notice that this results in a quadratic equation with respect to the negative logarithm to the likelihood. 
During maximum likelihood estimation it is generally the - l o g I , that is a quadratic function, which is 
minimised. 

The gradient of the negative log likelihood function is then the derivative of (5.23) with respect to the 
parameter value. 

d(-\ogL) 0-0 (5 24) 

dO ~ a2 
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Notice here that as we would expect in the optimum the gradient of the likelihood function is equal to zero 
when 6 = 0. The gradient or slope of the negative log likelihood in (5.24) can further be differentiated 
giving the curvature of the likelihood function (5.25). 

d2(-\ogL) = J _ ( 5 . 2 5 ) 

d62 ~ a2 

Thus in the one-dimensional case, where only one parameter has been estimated, the parameter variance 
turns out to be the reciprocal of the curvature of the negative log likelihood function (5.25). 

a2 = (5.26) d2{-\ogL) 

v d62 

The above outline of how parameter variances are defined is based on the estimation using the ML criterion. 
Refer to Harvey (1993) or Madsen (1995) for further details on ML estimation criteria. It turns out that with 
LS estimation the covariance matrix can be expressed as the product of twice the mean squared error and the 
inverse of the curvature of the sum of squared errors. More on parameter statistics with LS estimation can be 
found in several standard statistical textbooks such as Draper and Smith (1981). 

Parameter Covariation. A parameter's standard deviation represents its uncertainty under the condition that 
all the other parameters in the model actually have the value that they have been estimated to have. Most 
often the other estimated parameters are also uncertain and interchangability between parameters may mean 
that the uncertainty of a given parameter is much larger once the uncertainty of all the other parameters is 
taken into account. 

Like the variance of a single parameter (5.26) the covariance between parameters is the inverse of the 
curvature in their combined direction. For several parameter covariances are generally arranged in a 
covariance matrix with the variances in the diagonal. Using the ML criterion the parameter covariance 
matrix can be found by examining the curvature of the negative log likelihood function. The covariance 
matrix can be expressed as follows, 

<?2(-logl) 
S0rS0j 

_1 (5-27) 

where 
V is the parameter covariance matrix, 

/" andy indicate the i'th and the/th parameters respectively. 

The parameter covariance matrix is a symetrical matrix with the parameter variances in the diagonal and 
their covariances on the off-diagonals. 

In practical engineering problems the covariance matrix will often be difficult to intepret directly because the 
different parameters have different units and the covariances will each have units of two parameters. The 
covariace is however an important stepping-stone to calculating other quantities which may be more usefull 
to the modeller. These are the parameter correltation matrix, eigen values and the eigen vectors. 
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Figure 5.11. Illustration of the effect of covariance between the parameters pi and p2 for three cases with 
high positive, low and high negative correlation respectively. In all three cases the parameter 

estimates are (5,5) and their variances (4.00, 2.25). 

Parameter correlation is the covariation considered relative to the standard deviation of the respective 
parameters. The correlation between two parameters can be calculated from covariances by, 

Pi J 
V',J 

Jvi,rvj,j 
(5.28) 

where 
yO/; ,• is the correlation between the z'th and they'th parameter, 

v^ •• is the covariance between the fth and the/th parameter. 

Consider a model with two estimated parameters. Given that the parameter covariance matrix was found to 
be as in the left of (5.29) then the corresponding correlation matrix is as on the right. 

V = 
4.00 2.68 

2.68 2.25 
P = 

1.00 0.89 

0.89 1.00 
(5.29) 

The parameter correlation is dimensionless with a value between -1 and +1. A correlation close to -1 is 
described as a high negative correlation and indicates that an increase in the one parameter may be 
compensated by a decrease in the other parameter to give the same fit (i.e. the same value for the estimation 
criterion). Similarly a correlation close to +1 indicates that an increase in the on parameter may be 
compensated by an increase in the other. 

When is parameter correlation too high? This is a question that will soon arise once models are applied to 
practical problems. Ideally one would prefer to have no parameter correlation. This would make things easy 
in that the parameter uncertainty under consideration of the uncertainty of the other parameter would be the 
same as the parameters uncertainty under the assumption that all other parameters were fixed. Unfortunately 
this is most often not the case. Parameters are often highly correlated and the consequences have to be 
considered. 
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here for the two parameters. 

Generally speaking a parameter correlation of 0.89 as seen in (5.29) would be considered high. However, as 
we shall see in the following, this depends very much upon the parameters that have been estimated and on 
their variances. 

An adequate evaluation of the parameter uncertainty after parameter estimation involves calculating the 
eigen vectors of the covariance matrix, scaling them and projecting these onto the parameter axes. The eigen 
vectors of covariance matrix form a set of orthogonal vectors. An eigen vector therefore defines a 
combination of parameters which are independent of the combinations defined by the other eigen vectors. A 
covariance matrix has as many eigen vectors as there are parameters. The eigen vectors are often scale to 
have a length of one and are then called normalised eigen vectors. Returning to the two dimensional example 
of (5.29) the normalised eigen vectors are, 

£l = 
0.81 

0.59 

-0 .59 

0.81 

(5.30) 
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These normalised eigen vectors can be scaled so that they define the axes of an ellipse whose intercepts with 
the x-axes and y-axes are equal to the standard deviations of the first and the second parameter respectively. 
The scaled eigen vectors and the thereby defined ellipse are shown in Figure 5.11 (left) for a two parameter 
problem. Notice that the intercepts with the x-axis and the y-axis are 2 and 1.5 corresponding to the square 
roots of the diagonal elements in the covariance matrix in (5.29) left. If the ellipse is drawn proportional to 
the standard deviations it will enclose the 68% confidence region. Had it been drawn proportional to roughly 
twice the standard deviation it would enclose the 95% confidence region. Once again these consideration 
assume that the model is linear in the region of the criterion optimum. In Figure 5.11 are also plots of the 
ellipses corresponding to parameters with almost no correlation and parameters with negative correlation 
respectively. 

It is evident from the above that the covariance matrix eigen vectors plotted in Figure 5.11 give information 
on how parameter interchangeability affects the parameter standard deviations. In many modelling problems 
it is of greater interest to have the "effective standard deviation" or "unconditional standard deviation", a*, 
based on the longest projection of the tip of the scaled eigen vectors than the actual standard deviation. For 
the two- parameter problem in (5.29) this has been illustrated in Figure 5.12. Given this "unconditional 
standard deviation" the engineer is in a better position to evaluate the actual range in which the parameter 
value may lie. 

Note that projecting the tip of the eigen vector is in fact a compromise. The projected point ought to be the 
furthest left point at which the tangent (or hyperplane) to the ellipse is perpendicular to the axis onto which it 
is being projected. When the correlation is large the tip of the eigen vector is a fair approximation. 

Parameter Line Plots and Confidence Contours. The above parameter statistics rest on the assumption that 
the model is locally linear in the region of the parameter estimates. This assumption has to be reasonably 
fulfilled for the parameter statistics to be reliable and meaningful. 

An initial way to verify that this condition of local linearity is reasonably satisfied is to evaluate and plot the 
value of the estimation criterion for parameter values just above and below the estimated value. During this 
exercise all other parameters should be kept fixed to their estimated values. In a region around the optimum 
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Figure 5.13. Parameter may have to be transformed in order to satisfy the condition of local linearity. The dashed 
line represents the estimated curvature based on the maximum likelihood evaluations (crosses). 
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Figure 5.14. The rise in the negative log likelihood function corresponding to the standard deviation 
and twice the standard deviation away from the estimated parameter value. 

the plotted curve should have the shape of a quadratic function. In particular it should be symmetrical about 
the estimated parameter values. 

Local non-linearity can often be tackled by transforming model parameters. A parameter transformation 
does not change the estimated value of the parameter but only the type of distribution implicitly assumed for 
its uncertainty. Parameter transformation is in-fact a re-parameterisation much like that presented earlier in 
going from (5.19) to (5.21). If the right transformation is selected then the parameter uncertainty of the new 
transformed parameter is normally distributed just as is the uncertainty of parameters in linear models. 

Figure 5.13 contains such a plot of the maximum likelihood criteria against the parameter values before and 
after transformation (left and right respectively). In this illustrative example a log transformation was found 
suitable. Notice that the if the transformation had been neglected then the lower 95% confidence limit 
(corresponding to a negative log likelihood of -68.0) would have been negative. However, the physical 
interpretation given to this parameter impels it to be positive and the likelihood is not even defined for 
negative values of the parameter. By performing statistics on the transformed parameter the more realistic 
95% confidence limit is found at about 0. Converted back to the untransformed parameter this gives a value 
of 1. Once the required transformations have been found and applied, the covariance matrix may be 
estimated and parameter statistics evaluated. 

Another way of verifying that the condition of local linearity is reasonably satisfied is to create confidence 
contour plots based on evaluations of the estimation criterion at grid points of the parameter planes. Local 
linearity will exhibit itself by having elliptically shaped confidence contours with clear, though possibly 
tilted, axes of symmetry. Non-linearity show itself by having skewed or even banana shaped contour lines. 
Theoretically, however, even "nice" elliptical confidence contours for each parameter pair gives no 
guarantee of local linearity. The "covariation" in the third or higher dimension may still be skewed. In many 
practical cases it is sufficient to evaluate the confidence contours in two parameter planes but a stronger 
test/check would be to evaluate the confidence contours in the planes of all pairs of eigen vectors of the 
parameter correlation matrix. As the eigen vectors are orthogonal by definition the confidence contours 
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Figure 5.15. Forward and centred designs for estimating the parameter covariance matrix in non-linear models. 

Illustrated here for a two parameter model. 

should be perfect circles and inconsistencies with the assumptions of local linearity would be readily 
disclosed. 

What is then the region within which the model should be linear? This would depend on the required 
confidence level with which one wishes to evaluate the parameter value. As a rule of thumb the 95% 
confidence region can be used. The rise in the negative log likelihood function corresponding to the 95% 
confidence contour can be found from the relationship in equation (5.23) which may be rewritten to, 

- logl(0) = (5.31) 
2-er 

where the optimum for an instant has been translated to the origin (i.e. - logi(o) = 0). For the standard 

deviation we find -logZ,(cr) = y~ and for twice the standard deviation corresponding roughly to the 95% 

confidence limit that - logi(2<r)=2. The contours with negative log-likelihood values of lA and 2 higher 
than the negative log-likelihood value in the optimum correspond to the 68% and the 95% confidence 
contours respectively. This is illustrated in Figure 5.14. 

With many model parameters one ought to draw confidence contours in the planes of the eigen vector pairs 
in order to inspect whether assumptions of linearity were satisfied. If these turn out to be circles up until 
around the 95% confidence contour then the assumption of local linearity is satisfied. Banana shaped 
contours would suggest that some non-linear parameter transformation may be needed in order to perform 
the parameter statistics. Though drawing confidence contours in the planes of the eigen vector pairs is an 
ultimate check for local linearity it may often be difficult to decide on the required parameter 
transformations due to the required multi-dimensional hyperspace abstraction. 

Estimating the Parameter Covariance Matrix. For linear models the parameter covariance matrix can be 
calculated directly from the parameter estimates and the observed values. For non-linear models however the 
curvature of the criterion surface has to be found by evaluating the criterion at different points in parameter 
space. This can be done in many different ways. One way is to evaluate the estimation criterion at a number 
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of points and then to fit these points to a quadratic function. In the present research work this approach has 
been used in combination with a variety of different sampling designs. 

In general the more sampling points taken the better the estimate of covariance matrix. Two standard designs 
are forward and centred sampling, which have been shown for a two-parameter model in Figure 5.15. The 
covariance matrix obtained should theoretically be independent of the size of the small step, Apt, away from 
the estimated value. In practice however the criterion surface of non-linear models is often uneven and it is 
therefore a good idea to verify that the same covariance matrix is obtained for different delta steps. 

Using a centred sampling design is more costly in terms of criterion evaluation (and therefore model 
simulations) but gives a better robustness against unevenness in the criterion surface. Fitting the quadratic 
function to the sampled points can be done using the explicit least square solution to the general linear 
model. The standard deviations and the coefficients of variation of the estimated quadratic coefficients can 
be computed at the same time and used to give an indication of whether there is agreement with the local 
linearity assumption. At the same time the coefficients of variation disclose where problems may lie and 
which parameters or parameter pairs ought to be looked at in more detail. Lack of symmetry and poor 
agreement with the local linearity assumption in general cannot be detected using forward sampling. 

With non-linear least square estimation it is possible to estimate the covariance matrix from changes in 
residual series with respect to changes in the each of the model parameters. This matrix with as many 
columns as parameters in the model and as many rows as observations in the data is sometimes called the 
Jacobian matrix. Its cross-product gives an estimate of the Fischer matrix which is proportional to the 
inverse Covariance matrix. 

A basic aspect of experimental design is that the more we know what we are looking for, the better we are 
able to design an experiment to find it. In the same way, if the covariance matrix is known, then it is easier to 
create a good sampling design for its estimation. During the course of this work a two step procedure for the 
estimation of the covariance matrix was developed. In the first step a rough estimate is obtained using a 
central design. This first estimate is then used to design a sampling strategy for the second step in which the 
central design is rotated and stretched so that it coincides with the tips of the covariance matrix eigen 
vectors. Especially when computing the covariance matrix of a model with many parameters, this improves 
the estimate of the covariance matrix considerably. 

Sometimes problems arise where the inverse to the covariance matrix is non-positive definite and can not be 
inverted. This may be due to the fact that the optimum has not yet been reached but it may also result from 
the combined effect of the limited numerical precision, a rough criterion surface and large differences 
between the longest and the shortest eigen vectors. The two step procedure provides an excellent solution to 
this problem. During the first step the value of the curvature of the criterion surface is slightly exaggerated 
by subtracting a small value from the criterion in the optimum before fitting to the quadratic equation. This 
first under-estimated covariance matrix then forms the basis for the improved design in the second step. As 
sampling in the second step takes place at the tip of the eigen vectors all points would be expected to have a 
negative log likelihood value of at least !4 higher than that of the optimum and the inteference of surface 
roughness and numerical precision is less probable. 

A Priori Information on Parameter Values 

On calibration of traditional deterministic sewer or other water models the engineers has a feeling for the 
realistic ranges for the various model parameters and a rough idea of what value to expect. The engineer's 
prior knowledge about the parameter value is combined with the available data to find the best set of 
parameters for the specific case. 
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Attempts to automate the process of deterministic model calibration have often failed because only the 
available data was used. The engineer's prior knowledge was ignored and the information content of the 
observed data was not enough to identify all model parameters. Stochastic modellers wishing to include only 
parameters and structure that could be identified from the available data ended up reducing the models to 
such simple structure that the models were unsuitable in terms of the engineer's needs for extrapolation. 

Maximum likelihood estimation makes it possible to take a Bayesian approach to the parameter estimation 
problem (Madsen and Hoist, 1998). Model parameters are considered as random variables with a mean and 
standard deviation both before and after including the information contained in the available data. Before 
parameter estimation we have the a priori parameter distributions, which represent the "engineer's prior 
knowledge about the parameter value". This information is combined with the observed data to give the new 
a posteriori distributions. 

In its original form the likelihood estimation criterion is the conditional probability density of the 
observations for a given set of model parameters. This likelihood can further be multiplied by the probability 
density of these parameters given their a priori distributions to form the maximum a posteriori estimation 
criterion. The maximum a posterioiri estimation criterion is popular in grey-box modelling, that is in 
stochastic modelling with some physical, chemical or biological theory in its structure. Therefore the a 
posteriori estimation criterion is also called the grey-box estimator (Tulleken, 1993). 

As discussed earlier in the section on persistence of excitation, data sets may be more or less informative. 
Using the maximum a posteriori estimation criterion one obtains information on how informative the data is 
on specific parameters. If there is a large difference between the a priori distribution and the a posteriori 
distribution then the data has been rich on information about this particular parameter. If the two 
distributions are practically the same then the data set has had little to contribute in terms of determining the 
value of this parameter. If the means of the two distributions are the same but the variance of the a posteriori 
estimate much smaller than the a priori estimate, then the data has been rich on information concerning that 
parameter and the a priori parameter estimate was already a good estimate. As the parameter becomes more 
and more certain then even data sets that are information rich will not change the mean and variances of a 
good a priori estimate. The main advantage of using an a priori distribution is that though the data has little 
information concerning a given parameter, the parameter value does not wander off and possibly corrupt the 
estimation of other parameters. 

68 



Chapter 5 Deterministic and Stochastic Modelling 

CASE STUDY: MODELLING IN THE LOENEN SEWER SYSTEM 

AIM 

The aim of this case study has been to illustrate and compare concepts and approaches presented and 
discussed earlier in this chapter. A rainfall-runoff model of a sewer system has been estimated both as a 
deterministic and a stochastic model. The non-linear state space formulations are described including the 
construction of the state dependent error for the stochastic model. The quantitative incorporation of a priori 
knowledge into the estimation criteria is illustrated for both formulations. Parameter space is explored in 
view of identifiably and appropriateness of the assumptions made. 

The rainfall-runoff models have been estimated using data from the Loenen catchment, which is described in 
Chapter 2. In this case study only water quantity has been considered. Attempts to estimate stochastic model 
for water quality variables such as suspended solids and chemical oxygen demand were unsuccessful 
because there were too few data points and because all sampling had taken place during actual combined 
sewer overflow only. In such cases, random coefficient modelling studied in Chapter 7 are a possible 
alternative. 

During this study a modelling tool was developed with the primary objective of being able to estimate the 
same physical model description as a deterministic model and as a stochastic model. The tool was thus 
specially designed to estimate parameters in non-linear state space models. 

MODEL 

Structural Equations 

The structural description of the rainfall-runoff system consisted of three linear reservoirs in series followed 
by a single non-linear reservoir (5.32) simulating the combined sewers static storage below the edge of the 
overflow weir. This is illustrated in Figure 5.16. 

The continuity equation for the linear reservoirs is given as 

^ = Qin,i-Qout,i (532) 

where Vj is the volume of water in the /'th reservoir. The proportionality between the flow out, Qout , , and 

the volume stored in the linear reservoir, Vj, is defined by the reservoir emptying rate or inverse time 

constant, k, with the dimensions [T1]. 

Qomj=k-Vj (5.33) 

Tests in which the volume in (5.33) was raised to an estimated power showed no significant improvement 
compared to the linear expression and the estimated power was not significantly different from 1. 
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Flow into the reservoir is equal to the flow out of the preceding reservoir so that Qn i = Qout i-l f ° r ' > 1 

and for i = 1, that is the flow into the very first reservoir, 

Qm,,=(a + b-Wi)-Aim-R, 
*--in,L/ \ / / imp i 

(5.34) 

where a and b are constant parameters estimated from the given data, 
Wj is a wetness index value of the j ' t h rainfall-runoff event as defined and calculated in Chapter 4 

using event lumped models, 
(a + b-Wj) together form a wetness dependent runoff coefficient, 

Ajmp is the impervious area, 

Rr is the rainfall a time /. 
In the text that follows "a" is referred to simply as the runoff coefficient and "b" is called the wetness 
dependency. 

The continuity equation governing the final reservoir was defined as follows. 

dVn 

dt • = Qi in, Final *>pump ^overflow &, (5.35) 

where 0in.Final is the flow out of the linear reservoir which empties into final reservoir, Q is t n e pump 

flow and 20vertiow ' s m e fl°w discharged over the overflow weir into a surface water pond. 

The expression describing the behaviour of the pumps has two estimated parameters: the level at which the 

pumps were switched on and the total pump capacity. The total pump flow at any given time, 2pUmp > ' s 

defined by the following expression, 

Linear reservoirs in series. 

Rainfall input 1-—J r - " l I—-""l 
> i—m—m—r^ 

Non-linear reservoir. 

Monitored level, h 

Overflow, eoverfiow 

Pumped, £>pump, to treatment plant 

Volume (static storage) to 
water level relationship 
based on sewer system 
pipe dimensions. 

Figure 5.16. Schematic diagram of the rainfall-runoff model consisting of three linear reservoirs in series 
with a final non-linear reservoir incorporating the geometric level to volume relationship. 
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where QpUmp-cap. is the pump capacity and hpumpK)n 

parameters are estimated from the available data. 

Combined sewer 

can be expressed 
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-cap fo^^hpump-on 

is the level at which the pump turns 

overflow takes place only when the water level, h, is above the overflow 

as follows. 

^overflow = | f f . ( f t 

0 fOTh<hwm 

(5.36) 

on. Both these 

weir,hwrir, and 

(5.37) 

where a and /? are constant parameters estimated from the available data. The weir level, hweir, is reported 
to be at 18 meters (+ NAP). This is assumed to be so correct that the position of this concrete edge is not 
estimated from the data. 

1200 

1000 

£. 800 -

8 

600 

400 

200 

18 

Level [m + NAP] 

20 

Figure 5.17. Curve of the geometrically determined static storage volume behind 
the overflow weir as a function of the water level at the weir. 

The models final reservoir is a non-linear reservoir representing the sewers static storage behind the 
overflow weir. Dimensions of the sewer pipes and manholes have been used to calculate a fixed relationship 
between the water level and the static storage in this final reservoir. This relationship is shown in Figure 
5.17. 

Solving the Differential Equations 

The rainfall-runoff model thus consists of linear and non-linear differential equations. The volume of water 
in each of the reservoirs is considered as a state variable. One way to solve the stochastic system is to 
consider it to be a set of stochastic differential equations. This is done in Chapter 6. Another option is to 
solve the differential equations using a standard ordinary differential equation (ODE) solver, in this case the 
Runge-Kutta method, and then to interpret this solution as being the predicted state corresponding to the 
function f( ) in (5.15). This is the approach adopted in the present study. For the linear reservoirs there is of 
course no need for an ODE solver as the analytical solution exists. 
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The Observation Equation 

In the present case study the observed variable was the water level at the combined sewer systems only 
overflow weir. This level is an indirect observation of the volume of water in the final reservoir. The 
observation equation consisted of the volume-to-level relationship defined by the systems pipe and manhole 
structure. This relationship is shown in Figure 5.17. This relationship essentially defines the function h() of 
the observation equation (5.16). 

The Partial Derivatives 

The partial derivatives of the state predictions with respect to the states' values at the previous time step are 
then computed by recalculating the predicted states for small changes in each of the state variables 
respectively. These are the partial derivatives that have been used in the Kalman filter in this case study. 

State Dependent Errors 

It would be unreasonable to assume that the size of the system error should be the same irrespective of the 
volume of water in the reservoirs. Indeed if this were the case a simulation of the system would during 
periods with low flow be likely to yield negative volumes. One solution to this problem is to model the 
system of volumes with state dependent error terms. The state dependency can be introduced by inserting an 
error state into the state equation for each of the volume states. The dependency was then defined as in 
equation (5.38) where the state index ;' only counts even numbers corresponding to the reservoir states (the 
odd states are now error states). 

r , . ,=<,-( l + *M,,-i)+*u (5-38) 

where Vu is the volume in reservoir (i/2) at time /, V', is the volume in reservoir (i/2) at time t as calculated 

based on the solution of the defining differential equations. The first error term, £,_,,_,, is in fact the value of 

the associated error state variable at time t-1 and the second error term, eu, is the usual additive error 

defined in the generalised state space model. Inserting an error states in this way does have the disadvantage 
of doubling the size of the state space system being modelled. 

The error term of interest in (5.15) is thus not the states own additive error, eu, but that of the preceding 
state. The expected value of the error states, corresponding tof(...) in (5.15), is, by definition, always equal 
to zero and the variance of their added errors was estimated as a parameter in the model. The variances of 
the added errors of the volume states themselves were fixed to zero. Tests carried out to evaluate added error 
terms different from zero showed that this did not improve the model at all. 

A priori Parameter Estimates 

Our engineering knowledge and understanding of the system suggests certain expected ranges for some of 
the parameters whose values will be estimated from the data. This knowledge was expressed as probability 
distributions for four of the model parameters: the runoff coefficient, the wetness dependency, weir overflow 
power and the pump capacity. These a priori distributions have been included in the results Table 5.1. 
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RESULTS 

Parameter Estimates 

Table 5.1 shows the results of estimating parameters as 
• a deterministic model without any up-date of on the presence of observations, 
• a stochastic model up-dating using the extended Kalman filter to up-date on the presence of an 

observations. 

The standard errors and the corresponding confidence limits listed in Table 5.1 are the standard errors of the 
parameters when considering covariation between the estimated parameters as outlined earlier in the chapter. 
In the column on the far right parameter plots show the estimated parameters and their 95% confidence 
range. The a priori distributions have been included in the table and plots for the four parameters for which 
a priori distributions were used. 

The parameters marked with two asterisks were transformed using the natural logarithm and the given 
standard error in Table 5.1 corresponds to the transformed variable. The transformation of these parameters 
was found necessary in order to reasonably be able to make the assumption of local linearity. This 
assumption is required to be able to estimate parameter variances and covariances. 

The two sets of parameter estimates are generally very similar. An exception is the reservoir emptying rate 
for the linear reservoirs which is higher for the deterministic model, 0.33 per minute, compared to 0.24 for 
the stochastic model. Converted to reservoir time constants this corresponds to 3.0 and 4.2 minutes for the 
deterministic and stochastic models respectively. Three linear reservoirs were used and this rate thus 
corresponds to a mean runoff time of 9.0 and 12.6 minutes respectively. Another exception is the estimated 
value for the pump starting level, which was estimated to be 16.35 and 16.06 meters above the Dutch 
national reference NAP. This parameter is a threshold value that is only crossed at the beginning of each 
event. Both its value and its associated statistics should be considered with some caution. 

Finally the observation error estimated for each of the models differs two orders of magnitude. This is not 
surprising as the underlying assumption in the case of the deterministic model is that all deviation between 
modelled and observed is observation error as opposed to the stochastic model were both system error and 
observation error are assumed to be present. It is here not possible to compare the variances of the system 
errors and the observation error because the variances are in different units. The system errors are 
multiplicative to water volumes whereas the observation errors are additive to a water level. Parameter 
uncertainty in the stochastic model appears to be smaller than that in the deterministic model. This could be 
due to more appropriate assumptions. However this is difficult to judge from the given case alone. 

The a priori probability distributions do not appear to have had much influence on the final set of estimated 
parameters. If the observed dataset had been low on information about the value of one of the parameters for 
which an a priori distribution had been given then the a posteriori distribution would have been similar to 
the given a priori distribution. This is not the case for any of the four parameters. The variances of the a 
posteriori parameter distributions are much smaller than the given a priori distributions. Interesting is of 
course the fact that the estimated wetness dependency appears to be lower than what had been estimated in 
Chapter 4 (which had formed the basis for the rough a priori estimate of the runoff coefficient and wetness 
indices). 
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Parameter Correlation Matrix 

The parameter correlation matrix for both the deterministic and stochastic models are given in Table 5.2. 
Several different sampling methods and step sizes were used to estimate the correlation matrix to ensure that 
the values found gave a fair representation of the curvature of the objective function surface. The parameter 
correlations are generally low for both models. All values larger than 0.4 have been highlighted in bold type. 

Closer examination of the correlation matrix reveals that it is not always the same parameters that are 
correlated in each of the two models. The largest discrepancy turned out to be the correlation between the 
"Reservoir time constant" and the "Weir overflow coefficient" which was found to be 0.26 and -0.31 for the 
two models respectively. The models also had very different correlation between the "Weir overflow 
coefficient" and the "Weir power" (0.8 for the deterministic model and 0.34 for the stochastic model). In the 
latter case some correlation would be expected but no immediate reason has been found for the large 
differences between the models. The confidence contours in the plane spanned by this parameter pair is 
plotted and discussed later. 

Trajectories 

Figure 5.18 shows the predicted and observed values for one event selected from the 19 rainfall-runoff 
events used for the parameter estimation. The central plot shows the deterministic estimation and the bottom 
plot shows the stochastic estimation. The rainfall for the given runoff event is shown in the top plot. Figure 
5.19 is an extract of Figure 5.18 zoomed in on the time steps 180 to 480 minutes after the start of the rainfall 
event. 

In the deterministic plot (Figure 5.18 centre and Figure 5.19 centre) the up-dated value is equal to the 
predicted value. This it does by definition as no up-date is performed during deterministic parameter 
estimation. In the plot of the stochastic estimation (Figure 5.18 bottom and Figure 5.19 bottom) shows that 
the observation error is very small compared to the system error and the up-dated values are practically equal 
to the observed values. One can also see how the uncertainty generally increases when the time-since-last-
observation increases. As expected the uncertainty tends towards a maximum value which depends on how 
rigid the system is. In this case the system is more rigid once overflow starts. This is because once overflow 
starts a given change or uncertainty in the upstream parts of the system will have a smaller effect on the 
water level at the weir. 

In both models, but particularly for the deterministic estimation, it is apparent that the modelled values lie 
generally below the observed values during this particular event. This is because the parameters have been 
estimated from a large number of events. This leads to questions as to whether or not the runoff coefficients 
dependency on the wetness index is an appropriate model and questions concerning the assumption that the 
parameter values are constant from event to event. The latter question leads directly on to random coefficient 
modelling which is studied in Chapter 7 for a deterministic pollutant resuspension model. 

A topic, which has not been treated in much depth in this thesis, is the analysis of residuals. Residuals are the 
deviations between modelled and observed values. For time series with equidistant observations the 
autocorrelation function of the residual series (i.e. linear correlation between the series' value and its own 
values at other time steps) is an important tool in finding out whether a model describes the observed process 
well and whether the implicit assumptions are reasonably satisfied. A low autocorrelation means that the 
residuals contain little or no further systematic variation that could be modelled. In the present study the data 
are very irregularly spaced in time and it was not possible to calculate the residual autocorrelation function 
directly. Some effort was given to developing a non-parametric autocorrelation function that would be 
generally applicable irrespectively of the spacing of the observations. 
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Figure 5.18. The observed and modelled values of water level at the overflow weir for both the deterministic 
(centre) and the stochastic estimation (bottom). Plotted is one event selected from the 19 rainfall-runoff used 
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Figure 5.19. The observed and modelled values of water level at the overflow weir for both the deterministic 
(centre) and the stochastic estimation (bottom). Data show is the same as in the previous figure but zoomed in on 

time steos 180 to 480 minutes. Limits are 95% confidence limits. 
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The developed non-parametric auto- and cross-correlation function proved for the present data to be 
extremely sensitive to the selection of bandwidth, which was required. Although non-parametric 
autocorrelation functions for irregularly spaced data would be of immense value to practical water quality 
engineering, further developments in this direction lie beyond the scope of this study. Viewing the plot of the 
deterministic estimation in Figure 5.18 (centre) and Figure 5.19 (centre) it is evident that the deviation 
between the observed and modelled is not random. This suggests that the assumptions are not completely 
satisfied. This is seen to be better for the stochastic model. 

Confidence Contours 

Figure 5.20 shows the confidence contours for the plane defined by the parameters "Weir overflow 
coeffiecient" and "Weir power". The plots have been drawn both for the deterministic estimate (left) and for 
the stochastic estimate (right). In each case the found optimum is shown by a the black dot and the distance 
between the confidence contours is equivalent to a change of 2.0 in the log-likelihood value. Only the first 
15 lines have been shown. The inner most line corresponds roughly to twice the standard deviation and 
therefore represents the 95% confidence region for the parameter pair. 

This pair of parameters is shown here because a large discrepancy between the pairs parameter correlation in 
the two models (see Table 5.2). A correlation of 0.80 was found for the deterministic model whereas that for 
the stochastic model was only 0.34. It is apparent from the contour plots that the deterministic estimate of 
these parameters is more uncertain than that of the stochastic estimate. However, it also would appear that 
the ellipses are equally elongated and therefore we would expect the correlation coefficients to be roughly 
the same for the two models. From the confidence plots it would appear that the pair's correlation in the 
stochastic model (i.e. 0.34 in Table 5.2) has been somewhat under estimated and is in fact probably closer to 
the value found for the deterministic model (i.e. 0.80 in Table 5.2). The reason for this is likely to be 
unevenness of the objective function surface in the region of the optimum. 

Estimation of the covariance matrix (used for the correlation matrix Table 5.2) is based on the assumption of 
local linearity which in the confidence contour plots should exhibit itself as "nice" ellipses with the optimum 
at their centre. Indeed the confidence contours do appear to be fairly elliptical but the optimum for the 
deterministic model does not appear to lie in the centre of the elliptical shapes. This is because the objective 
function surface is very flat along the bottom of the elliptical valley and possibly a bit rough so that the 
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7300 coefficient, a, 
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Figure 5.20. Confidence contour plots for the plane defined by the parameters "Weir overflow coeffiecient" and 
the "Weir power". Plot shown for the deterministic estimation (left) and for the stochastic estimation (right). 

Each contour represents a change of 2.0 in the log-likelihood value. 
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optimisation routine has been unable to find the very optimum. The point found is probably not a distinct 
"local minimum" because such a point would manifest itself in the parameter contour plot. It is more 
probably a result of the fact that the roughness of the objective function surface is large compared to the 
curvature. This would generally introduce some error on the estimated confidence limits purely due to the 
fact that the surface is not symmetrical around the optimum. Although the position of the optimum in the 
two models is not the same, it is worth noting that the optima lie in line with the tips of the each others 
confidence contours and are therefore in fact not that different. 

Error Modelling 

Introducing a multiplicative error on the reservoir water volumes by adding one error state for each of the 
physically interpretable states does indeed result in a more complex and demanding set of equations. An 
alternative to this is to transform the state variables. This approach was originally discarded because initial 
attempts using the natural logarithm to transform the volume gave poor results and much instability in the 
Kalman filter. Experience from similar modelling work carried out after this thesis work does however 
suggest that state transformation is indeed a viable and interesting option if only a suitable transformation 
can be found. The transformed variable(s) should be such that the assumptions of normally distributed 
additive error are reasonably satisfied. Promising results have been obtained using the transformation below 
for non-negative water quality variables such as volumes, flows, masses and concentrations. 

/ W = ̂ Z £ 1 (5.39) 

where x is the untransformed variable, ffx) is the transformed variable and where c is the intercept on the 
untransformed variable axis at which point transformed variable is equal to zero. The constant c can be 
estimated as a parameter in the model or otherwise appropriately chosen. The values of the models estimated 
parameters are not likely to be sensitive to the value of this transformation parameter. The advantage of 
using this transformation for quantities such as water volumes and component concentrations is that there is 
practically no transformation of the variable when it is much larger than the intercept value c. Stochastic 
water quality modelling would be strengthened by more research directed to finding suitable transformations 
for types of state variables typical within the field. 

CONCLUSION 

In this chapter deterministic and stochastic modelling approaches have been contrasted and compared. The 
underlying assumptions about the source of the deviation between modelled and observed values have been 
highlighted as the core difference between the two approaches. The discussion has been supported by the 
case study of a rainfall-runoff model for a combined sewer system. In Chapter 8 a broader discussion on 
deterministic and stochastic modelling in water quality management will be presented. 

Whether the assumptions made are reasonable or not, will not only depend on how good a description one 
has of the mechanisms and processes involved, but also on the precision required and the available 
resources. In practical terms stochastic modelling with physical, chemical or biological descriptions means 
that also the uncertainty of a systems state has to be modelled in time. This is an increased effort which 
inevitably leads the practitioner to two questions: Does the improvement in modelling and subsequently 
design and decision making stand in proportion to the increased effort compared to traditional deterministic 
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Figure 5.21. The state transformation (5.39) proposed (bold) as a suitable alternative to the log 
transformation (fine) for transforming environmental water quality state variables in stochastic modelling. 

Here c is chosen as 1 to make least difference to the natural logarithm transformation. 

modelling? And if so, can the customer be convinced that this is the case? These questions lead beyond the 
scope of this thesis work but point to potential problems in bridging the gap between science and practice 
within the field of water quality management. 

There are still a number of open questions when it comes to applying stochastic modelling to integrated 
urban water management and water quality modelling in general. Efforts should be made to find suitable 
transformations for typical water quality parameters to improve parameter statistics through a better 
adherence to the condition of local linearity. Studies should be carried out to identify state transformations 
that could be used to transform typical water quality state variables in such a way that random behaviour can 
be described with the normally distributed additive errors. Other aspects of applying stochastic modelling to 
water quality that would merit further study and experience are numerical methods for computing the partial 
derivatives needed in the Extended Kalman filter and for which analytical expressions are not available, 
estimation and parameter statistics of threshold values and the use and sensitivity of a priori parameter 
distributions. Generally speaking there is a need for stochastic tools aimed specifically at working with the 
sub-class of stochastic water quality and water engineering models. 

Once the essential differences between stochastic and deterministic modelling have been pinned down it is 
possible to spot methods and approaches which may be beneficially transferred from the one to the other. As 
illustrated stochastic models, which have traditionally been empirical, would benefit from the inclusion of 
mechanistic descriptions. This would improve the possibilities of extrapolation to proposed scenarios and 
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may lead to a more parsimonious description. Deterministic modelling can, without taking the leap all the 
way to stochastic modelling, beneficially adopt several methods used in stochastic modelling. These include 
automated calibration/parameter estimation, parameter statistics, experimental design and systematic 
inclusion of a priori parameter knowledge. 
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CHAPTER 6 

MODELLING USING 

STOCHASTIC DIFFERENTIAL EQUATIONS 

ABSTRACT 

The model studied in this chapter incorporates notions of physical theory in a stochastic model of water level and 
particulate chemical oxygen demand (COD) at the overflow point of a Dutch combined sewer system. A stochastic 
model based on physical mechanisms has been formulated in continuous time. A tool dedicated to modelling using 
stochastic differential equations with the extended Kalman filter has been used. Estimation is based on a maximum 
likelihood criterion in conjunction with a non-linear state space formulation decomposing the error term into system 
noise terms and observation errors. The bias generally obtained in deterministic modelling by invariably and often 
inappropriately assuming all error to observation error, is thus avoided. Continuous time stochastic modelling 
incorporating physical, chemical and biological theory presents a possible modelling alternative. These preliminary 
results suggest that further work is needed in order to fully appreciate the method's potential and limitations in the 
field of urban runoff pollution modelling. 

This chapter is based on Grum, M. (1998). Incorporating Concepts From Physical Theory into Stochastic Modelling of Urban 
Runoff Pollution. Wat Sci. Tech., 37(1), 179-185. Published after presentation at 2* International Conference on The Sewer as a 
Physical, Chemical and Biological Reactor, Aalborg, May 1997. 
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INTRODUCTION 

In the preceding chapter the differences between traditional deterministic and stochastic modelling have been 
outlined in terms of their implicit assumptions with respect to the origin of the deviation between the 
modelled values and the observations. The methods have been compared and studied using a non-linear 
version of the Kalman filter implemented in discrete time. 

This chapter looks at the possibilities and limitations of using stochastic differential equations for sewer 
system modelling. Stochastic differential equations distinguish themselves from the discrete time stochastic 
models presented in the two preceding chapters by being defined in continuous time. This has a number of 
advantages such as reduced sensitivity to the discrete time step that inevitably has to be chosen, as 
observations are generally always discrete. Stochastic differential equations have the further advantage that 
physical, chemical and biological process theory is often expressed in the form of ordinary differential 
equations and can in some cases be applied with only minor adjustments. 

Like all stochastic modelling methods, modelling using stochastic differential equations is associated with 
techniques to assure model identifiability. Initially this involves studying parameter standard errors and 
correlation matrix. A co-linearity analysis would give a more complete picture of the parameters space and 
model identifiability. All these parameter statistics are based on the assumption the model is linear with 
respect to the model parameters. In the case of non-linear models the local validity of this assumption may be 
examined. This may be done using contour plots. Parameter transformations may be introduced before re-
estimating the parameter statistics in order to live up to the assumption of local linearity. 

DATA 

This study has been carried out using the Loenen data set as described in Chapter 2. The observed variables 
that have been modelled are the water level at the overflow structure and the suspended or fast settling COD 
concentration. Table 6.1 gives a summary of the data used for this particular study. 

METHODS 

Modelling using Stochastic Differential Equations 

Modelling using stochastic differential equations is a good tool for combining information from physical, 
chemical and biological theory with information from data and is therefore often also called grey box 
modelling (Madsen and Hoist, 1996). In this section is a brief outline of a few essential elements of 
modelling using stochastic differential equations. Refer to Madsen and Hoist (1998) and Madsen and 
Melgaard (1991) for further details on the mathematics behind modelling with stochastic differential 
equations. In the field of water resources research these methods have been applied to practical problems by 
several authors including Carstensen and Harremoes (1997), Jacobsen et al. (1996) and Carstensen et. al. 
(1996). 
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Table 6,1. Summary of the data studied. 

Mean 
Minimum 
Maximum 
No. events 
No. observations 

Level at Overflow 
17.5 m 
16.3 m 
18.5 m 

22 
623 

Suspended COD cone. 
150.0mg/l 

Omg/1 
997 mg/1 

19 
253 

Consider, as an example, the usual (deterministic) continuity equation for a reservoir which could be written 
as: 

d—=Q-Q, i6A) 

V = the volume stored in the reservoir, 
Qi„ and Qout = the flow into and out of the reservoir respectively. 

The flows would often through some linear or non-linear storage function be connected to the reservoir 
volume and input flows. In accepting that the above differential equation does not cover "the whole truth", a 
stochastic term is added to (6.1) to give: 

a = a stochastic process assumed to have independent increments (a Weiner process). 

Consider the case in which the water level in the reservoir has been monitored. Assuming the reservoir to be 
such that the level can be calculated as a function of the volume, j{), the following observation equation can 
be formulated: 

h, = f(V(t)) + e, (6.3) 

h, = the monitored water level and V(t) = the modelled volume in the reservoir, 
e, = observation error (independent of the stochastic process a>). 

The system and observation errors can not be found directly. However, given their variances the Extended 
Kalman filter can on the presence of a new observation be used to calculate the best estimates of the system's 
current state. Thus, at every available observation, the Kalman filter makes a weighting between "what we 
calculate" and "what we see" (see Chapter 5 and Chapter 8). This up-date affects all state variables and not 
only those which have been observed or which relate directly to the observed variables. Simulation or 
prediction then proceeds from these new estimates of the system state variables. The variances of the system 
and observation errors, and the other constant model parameters are estimated by an off-line optimisation of 
a maximum likelihood criteria. In the present study a modified version of the program CTLSM (Continuous 
Time Linear Stochastic Modelling), due to Melgaard and Madsen (1993), was used. This program, which is 
specifically designed for parameter estimation in non-linear stochastic differential equations, uses a modified 
quasi-Newton off-line optimisation of the parameter estimation. 

85 



^ 

)-
5 
en 
es 
o 
o 

1/3 

„— 
cd 

C 

£ 
o 
o 
';*•; cfl 
CO 

u 

^ F-
J 

< 

B£ 
w 
<: 

O 

W 

>• 
H 

z 
< D 
o 

< 
£ 
a 
o 
IB 
3 
CT 

'e 
o 
t d 

C 

u 
c o u 
o o 
U 
•o 
T 3 
C 
u 
a. 
3 C/5 

—̂* E 
3 

3 

5 
o % 
> o 
dS 

> 

o 
E 
E 
<L> 

CO >> 
(*> 
cs 
^ D 

U 

X I 
IS 

H 

- C 

o 
•4—> <L> 

^ en 

E 
<u 
t/3 

>. c/3 

I 

O) 

+ 
U" 

I 

s * 

0 0 
CO 
i~ 

oi
r S

to
 

ns
hi

p 

w —« 
0) c_) 

( * Of* 

O 

£ 

s 

II 

5 

OS 

tc 
II 

oi 

^ 3 « 

I 

+ 

" S o ' 

+ 

c3 

I 

C5 

I 

+ 

""ST 
+ 

I 

* I 

o> 

^ 
^ 
O) 

II 
-s: 

O) 

+ 

1" • ^ 

CD ^ -
1 

^ 
CD 

-S 

to" 

+ 
.•**, 
^ 

"••»> 

3 

o 

S'E _ 

c o *. 
IS C3 

S£ 
s 

X 

i - S 1 " 73 

2 A ^ l - .*^ fli 

^-.« o 

~£o 

S i i 3 ? -c 
a> . i i is u-

O 5 -B i t , 

"- ^ O i o 
53 3 

*^* cd 

O 

s 
3 
-£ 'I 
T3 

s 

o 
53 

.2 » >s 

E = S £ H « g-S 

.s o » s * 
^ • o e 2 o 
o s o r u 
« K , ° D -g 

53 "S'ts'g S 
* O i 3 « O tn 
u c'~ a h J= «-©.§ > 
U V ) ^ °> .S 
h M "O *i o s p l ) 3 « 
*- R X O — 

C3 

C 

> 
'5b 

1 
o 

1 1 
.t; u 
5 E 
D 
O 
U •a o 
1 

00 

a 

«5. 

'B. 
.a 
c o 

T3 

c« 

a 

^ "S3 

VI A 

c 

a 
a 
c3 

C 



Chapter 6 Modelling using Stochastic Differential Equations 

Table 6.3. Results of the parameter estimation in the final water quantity model. 

No. Parameter name Units Parameter Estimated 95% confidence limits Reported 
symbol value lower upper value 

1 

2 

3 
4 

5 

No. 

1 

2 

3 
4 

5 

Runoff coefficient [-] 
Proportionality constant [1/min] 

Overflow weir coefficient [m"/s] 

System noise variance [(m3/s)2 ] 

Observation error variance [(m)2 ] 

• 
k 

wcocf 

O'oi 

0" t 

Table 6.4. Parameter correlation matrix (foi 

Parameter name Unit 

Runoff coefficient [-] 

Proportionality constant [1/min] 

Overflow weir coefficient [nr/s] 

System noise variance [(m3/s)" ] 

Observation error variance [(m)2 ] 

1 

1.00 
-0.65 

-0.51 
0.87 

-0.96 

0.71 

0.18 

3.6 

0.222 

0.0972 

the final 

2 

-0.65 
1.00 

-0.03 

-0.65 

0.70 

0.62 

0.16 

1.9 

0.152 

-0.0038 

0.80 
0.20 

5.3 

0.272 

0.152 

water quantity model). 

3 

-0.51 

-0.03 

1.00 

-0.08 

0.26 

4 

0.87 

-0.65 

-0.08 

1.00 
-0.92 

0.7-1.7 

-
2.79 

-
-

5 

-0.96 
0.70 

0.26 

-0.92 

1.00 

Water Quantity Modelling (Level) 

Water quantity has been modelled as three linear reservoirs in series followed by a final reservoir 
representing the static storage volume in the pipe system immediately before the overflow weir. Table 6.2 
presents a combined representation of the reservoirs as sketches with the corresponding storage equations 
and stochastic differential equations. The flow out of the first three reservoirs is assumed to be proportional 
to the volume of water stored in each reservoir. The flow out of the final reservoir includes the flow pumped 
to the treatment plant (here assumed equal to the pump capacity) and the flow out of the system through the 
CSO structure which is calculated as a function of the water level at the overflow structure. The level is in 
turn calculated as a function of the volume stored in this final reservoir based on the pipe dimensions of the 
sewer system itself. If the water level is above the assumed known "pump on level" then the flow to the 
treatment plant is set equal to the pump capacity and otherwise to zero. In order to maintain a low number of 
parameters during these preliminary studies the rainfall is multiplied by a runoff coefficient and there are 
therefore assumed to be no initial losses. Five model parameters: runoff coefficient, reservoir storage 
constant, overflow weir coefficient, variance of reservoir noise and the variance of the observation error are 
estimated. 

Water Quality Modelling (Suspended COD) 

The suspended COD model is based on the premise that the main source of particulate pollution in the 
overflow is as a result of resuspended sewer sediments. The input to the first reservoir is thus assumed to 
contain no suspended material. It is further assumed that each reservoir has an infinite amount of available 
deposited sediment (see Results and Discussion for comments on this assumption). The water quantity model 
provides no flow velocities to which resuspension rate could be related. The resuspension rate is therefore 
calculated as a function, g(), of the flow rates in and out of the reservoirs. Above an estimated threshold 
value, resuspension is assumed to be proportional to the flow rate. The stochastic differential equations for 
suspended mass of COD are shown in the far right column of Table 6.2. In this suspended COD model, three 
parameters are estimated: settling rate, threshold flow rate and a proportionality constant. 
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RESULTS AND DISCUSSION 

Water Quantity (Level) 

The water quantity model presented here contains 5 estimated parameters. These are listed in Table 6.3 
where their estimated values and confidence limits for the final model are also given. All parameters except 
the observation error variance were found to be significantly different from zero. The estimated standard 
error for the observation error variance is so large that the 95% confidence interval spans down to below 
zero. This suggests that, in practical terms, there is no real observation error compared to system error, which 
describes the incompleteness of the models description of system inputs and behaviour. 

The values listed in the far right column are those reported in some of the literature mentioned earlier in the 
data section. It is apparent from the values in Table 6.4 that the parameter correlations were generally rather 
high. This is particularly the case for correlation between the observation error variances and both the runoff 
coefficient and the system noise variance. 

A number of parameters including pump on level, pump capacity and overflow weir coefficient were fixed to 
their "known" values (see Chapter 5). Future efforts should aim at having also these parameters estimated 
from the data as has been done in the equivalent deterministic model in Grum and Aalderink (1997) and 
Chapter 5. 

Attempts were also made to identify a separate noise term for each of the four reservoirs and also to identify 
a common variance for the first three linear reservoirs with a fourth variance on the final reservoir. In both 
cases it was not possible to obtain convergence to a single or reproducible likelihood optimum. This could 
relate both to structural aspects of the model but also to the quality of data, in terms of both excitation and 
sampling frequency. The identifiability of stochastic terms in reservoir modelling (linear and non-linear) is 
clearly an area in need of much more experience. 

Water Quality (Suspended COD) 

Reproducible results proved hard to obtain in the case of the water quality model. This was probably for a 
large part due to the small number of observed data available, namely only an average of only 13 
observations per event for 19 rainfall-runoff events. Table 6.5 and Table 6.6 contain the results of the 
parameter estimation. The threshold flow rate of the resuspension equation is not significantly different from 
zero and could therefore be excluded in order to obtain an improved model. 

The variance of the system noise term is seen to be significantly different from zero as is the variance of the 
observation error. These results would suggest that both system noise and observation error should be 
modelled. The absolute value of 1.58105 mg/1 for the observation error standard deviation however appears 
to be suspiciously small. Suspiciously small were also the correlation coefficients between the observation 
error variance and the other model parameters. It should be noted that though the results were reproducible 
from different parameter starting values not all starting values converged to the optimum point. 

Other resuspension models were examined. These included the estimation of a maximum amount of 
available deposited sediment and other functions relating the resuspension rate to the flow rate. None of 
these gave better results than the presented model. 
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Table 6.5. Results of the parameter estimation in the final water quality model (suspended COD). 

No. 

1 

2 

3 

4 

5 

No. 

1 

2 

3 
4 

5 

Parameter name 

Flow rate threshold 

Settling rate 

Proportionality constant 

System noise variance 

Observation error variance 

Units 

[m3/s] 

[1/s] 

[g/m3] 

[(g/s)2] 
[(mg/1)2] 

Parameter 

symbol 

^threshold 

Pi 
P2 

1 

<*"«, 
a2

E 

Estimated 

value 

8.7-10-10 

0.00294 

1749 

13782 

(1.58-10"5)2 

Table 6.6. Parameter correlation matrix (for the final water quality 

Parameter name 

Flow rate threshold 

Settling rate 
Proportionality constant 

System noise variance 

Observation error variance 

Units 

[m3/s] 

[1/s] 

[g/m3] 

[(g/s)2] 
f(mg/l)2l 

1 

1.00 

0.35 
0.62 

-0.85 

-

2 

0.35 
1.00 

0.11 

-0.07 

-

95% confidence limits 
lower 

-2.0-10-'° 
0.00293 

1705 

13642 

(1.5710s)2 

upper 

2.0-10"9 

0.00295 

1791 

14002 

(1.6810s)2 

model, suspended COD). 

3 4 

0.62 -0.85 
0.11 -0.07 

1.00 -0.87 

-0.87 1.00 

-

5 

-
-
-
-

1.00 

CONCLUSIONS 

It has been possible to identify and estimate the parameters of a sewer system water quantity model. The 
results of the water quantity model suggest that the generally accepted assumption that all error results from 
observation error, which is the basis of deterministic model calibration, is not a valid assumption. On the 
contrary these results suggest that most of the deviation between model prediction and observation are a 
result of sewer system behaviour that the model does not explain. It is difficult to conclude anything from the 
results of the water quality model. They suggest that more research efforts should be put into applying 
existing experimental design and sampling frequency theory to water quality modelling. It also indicates that 
a new approach to data collection is required when subsequent modelling is amongst the primary purposes 
for the data collection. 

The results from both models and from the study as a whole suggest that more efforts should be put into 
exploring and gaining experience in stochastic modelling with physically interpretable parameters. This is 
particularly important with respect to the identifiability of both the mechanistically interpretable model 
parameters and of the system noise components. 
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CHAPTER 7 

RANDOM COEFFICIENT MODELLING 

ABSTRACT 

Combined sewer water quality models are sometimes able to capture the general dynamics of the changes in 
pollutant concentrations but will for some events over-predict and for other events under-predict. For some events the 
characteristic dynamic pattern will appear too early and for other again too late. This is because during calibration 
model parameters have either been considered as universal constants valid for all events or as depending in some 
deterministic way on explanatory variables such as the time of year or the sewer system s recent history. However, 
for the majority of water quality variables and parameters describing the state of a combined sewer system at the 
onset of each rainfall event are only very poorly known. These include quantities such as amount of deposited 
sediment, the strength of the sediment crust, concentrations of sediment pore water, the size distribution and settling 
rates of the particulate matter and even to some extent the quantity and quality of the dry weather flow. 

The objective of this study has been to evaluate the potential of applying random coefficient modelling in order more 
accurately describe pollutant concentrations in combined sewers during rain. In random coefficient models certain 
selected parameters are assumed to be realisations of a random variable at each event. Emphasis is on models that 
are applicable to return period analysis of extreme pollution events in an integrated approach. A random coefficient 
model is estimated for suspended chemical oxygen demand (COD) in a combined sewer and its performance is 
compared to the equivalent constant coefficient model. As well as highlighting the advantages and the potential of the 
approach, drawbacks and limitations of both the approach and the present study are also discussed. 
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INTRODUCTION 

The parameters of a combined sewer model are generally considered to be constant over time or to follow a 
yearly pattern. Their values are calibrated or estimated by comparing simulated model responses to measured 
responses. A frequently encountered problem is that, although the general shapes of the modelled responses 
are often very similar to the observed responses, the modelled response will for one event be too high, for 
another too low, for a third too early and a fourth too late. This is illustrated in Figure 7.1 where the variable 
on the y-axis could for example be suspended solids in a combined sewer system. If one attempts to calibrate 
the model on each of the single events individually this discrepancy between modelled and observed values 
generally disappears. 

The approach applied in this study is called random coefficient modelling because it assumes that whilst 
some parameter values may be constant in time, other parameters vary from event to event as realisations of 
a random variable. The random coefficients are thus quantities that vary from event to event but for which no 
deterministic relationship can be found to explain these changes quantitatively. In combined sewer water 
quality modelling one would expect values such as, for example, the amount of deposited material, its 
content of degradable matter and the strength of the sediment crust, to vary from event to event. Numerous 
examples of modelling and studies of sewer system have however shown that the number and complexity of 
phenomena taking place in a combined sewer would require an endless number of parameters to be 
calibrated. One may well end up including phenomena that are less significant than phenomena that have yet 
to be revealed. 

This problem of model assumptions not considering variations in system characteristics from event to event 
is visually more evident during deterministic modelling than during stochastic modelling. On stochastic 
modelling the constant up-date of the system states would often mean that only a detailed analysis of the 
residuals would reveal the need for random coefficient modelling. It is important to realise that, although this 
study deals with random coefficient modelling in the context of deterministic modelling, also stochastic 
models can be formulated and estimated with some random coefficients whose randomness is not described 
as randomness in time but as random realisations at each occurrence. 

The objectives of the study are to evaluate the potential of random coefficient modelling of combined sewer 
water quality modelling. The advantages and disadvantages are examined through the application of the 
methodology to a simple deterministic model of suspended chemical oxygen demand (COD) in combined 
sewer overflow. The application of random coefficient models to integrated return period analysis is part of 
Chapter 9 of this thesis. There are very few studies in which random coefficient modelling has been applied 
within the field of water modelling. An example is Gwo-Fong and Yu-Ming (1996) who have studied the use 
of random coefficient modelling for hydrological runoff models with the storage coefficient treated as a 
random variable in a dynamically stochastic model applied to a rural watershed. 

Observed and 
Modelled Variable 

Time Time Time Time 
Figure 7.1. With constant coefficient models the principle dynamics may be well explained but for 

different rainfall-runoff events the simulation may lie too high, too low, too early or too late. 
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DATA 

The data used for this study are part of the Loenen data set outlined in chapter 2. Water quality variables 
including COD were measured before and after settling for one hour. The difference between the two values 
represents a fast settling fraction or particulate fraction and is in this chapter called suspended COD. Only 
events with at least eight observation of suspended COD were selected for the study. This resulted in 
nineteen rainfall-runoff events with a total of 253 observations of suspended COD from samples taken 
during overflow. 

METHOD 

Parameter estimation in non-linear random coefficient modelling involves an outer optimisation routine for 
estimating the parameters considered to be constant. Each evaluation of the estimation criterion's value for a 
given set of the constant parameters involves event-level optimisations in which the random coefficient's 
values are estimated for each event. Thus, as illustrated in Figure 7.2, each evaluation of the objective 
function, i.e. the estimation criterion, in the outer optimisation involves complete optimisations to find the 
values of the random coefficients. A least square estimation criterion was used in the present study. Refer to 
statistical texts such as Bondeson (1989), Johansen (1984) or Nicholls and Quinn (1982) for a 
comprehensive introduction to random coefficient modelling. 

Parameter statistics including covariance matrix was here estimated using a jack-knife technique in which 
the complete parameter estimation is carried out using all events and then repeated whilst systematically 
excluding one of the rainfall-runoff events. The jack-knife technique is discussed in more detail in Chapter 9 
and a general introduction can be found in statistical text books such as Stuart and Ord (1994). 

Optimisation for 
Estimation of 
Constant 
Parameters Event 1 / " " ^ 

Optimisation ( Simulation & Estimation Criterion 

Event 2 / " ^ 
Optimisation ( Simulation & Estimation Criterion 

Event 3 S~>i 
Optimisation ( Simulation & Estimation Criterion 

Event 4 / " " ^ 
Optimisation ( Simulation & Estimation Criterion 

Sum of Estimation Criterion Values 

Figure 7.2. The constant parameters and the random parameters/coefficients are estimated 
simultaneously. Each function evaluation in the outer optimisation involves complete optimisations of 

the parameters varying from event to event. 

93 



Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Gram 

Resuspension 

Flow, Q Flow, Q 

Figure 7.3. Four different relationships between flow and resuspension were initially tested. The 
encircled relationship was selected for this study and is expressed in equation (7.1). 

Suspended Pollutants Models 

Suspended COD was modelled as a first order settling rate with a flow dependent resuspension of both 
surface and in-sewer deposits. Four different expressions for resuspension were initially tested and one was 
selected for this study. The four expressions relating resuspension to flow are shown in Figure 7.3 where the 
encircled relationship gave the best fit and was subsequently selected this study. The mathematical 
expression for this resuspension relationship is expressed in (7.1). 

Settling Resuspension (Figure 7.3) 

"̂  r~ 

^ £ Q D = _a.McoD + tR{] + ^[c.Qcrir(Q-Qcril)]} 
at 2 

(7.1) 

where M^QD is m e suspensed mass of COD in the reservoir, 
Q is the flow rate (see section on underlying water quantity model below), 
a is a first order settling rate, 
b is the gradient in the flow to resuspension relationship (see Fig. 7.3), 
c defines (with Qcrit) the smoothness of the rise to linear resuspension (see Fig. 7.3), 

Qcrit is the critical flow defining the position of the rise to linear resuspension (see Fig. 7.3). 

In the final version of the random coefficient model the parameters a, b and c were all considered as constant 
parameters and Qcrit as the random parameter who's mean and variance were of interest. The critical flow 

rate, Qcrit, thus takes a different value for each rainfall-runoff event corresponding to variations which 
would be expected in the critical shear stress at which resuspension would begin. For purposes of 
comparison the model was also estimated with the critical flow rate, Qcrjt, as a constant for all 19 rainfall-
runoff events. 

The sewer system is relatively flat and it was assumed that an infinite amount of sediment was available. 
Tests were carried out to confirm that setting or estimating a maximum available amount of sediment did not 
change the fit of suspended COD in the sewer overflow. 

The Underlying Water Quantity Model 

The suspended COD model was built upon a water quantity model consisting of three linear reservoirs in 
series discharging into a non-linear reservoir representing the sewer system's static storage volume. This is 
the deterministic version of the model presented in Chapter 5. The parameters of the water quantity model 
had been estimated beforehand and were not estimated as random coefficients. 
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360 720 
Time [minutes after event start] 

240 360 
Time [minutes after event start] 

720 1080 1440 1800 
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Time [minutes after event start] 

360 720 

Time [minutes after event start] 

Figure 7.4. Results of the suspended COD modelling showing the observed values (crosses) with the 
constant coefficient model simulation (thick line) and the random coefficient model (thin line). In the 
top two event the constant coefficient model simulated too high, in the bottom two event too low and 

fair for the middle two events. Notice that simulations of the random coefficient model lie neither 
particularly high nor low for any of the events. 

At the beginning of each event the suspended COD concentration in all four reservoirs was considered to be 
zero. Thereafter the concentration rose and fell according to the expression in (7.1), which was applied to 
each of the model reservoirs with resuspension depending on the average of inflow and outflow. Suspended 
COD was then carried downstream by advection. No dispersion was applied to the suspended pollutant. 
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Figure 7.5. Estimated relationship between flow rate and resuspension in the random coefficient model. 

Each line is the resuspension curve corresponding to one of the 19 rainfall events used. 

RESULTS AND DISCUSSION 

The results of the random coefficient model and the corresponding constant coefficient model are presented 
in Table 7.1. Notice that for the random coefficient model the standard deviation of the critical flow rate, 
Qcrit, expresses variation from event to event. This should not be confused with the parameter standard 

errors, which are the results of the Jack-knife estimation and which represent uncertainty in the value of the 
estimated constant parameters. 

Table 7.1. Results of constant and random coefficient modelling. The parameter 0OT, Std.dev. is the standard deviation 
of the event to event variation in the critical flow Qcril. (**See text on interpretation of R"). 

Settling rate 

Resuspension 

Coef. of Det. 

Parameter 

a 

b 
c 

Qcri, 

Qcri, Std.dev.* 
R2** 

Unit 

fl/sl 
[g/m3] 
[s/m3] 

[m3/s] 
[m3/s] 
[-] 

Constant Coefficient Model 

Value 

4.39e-4 

5.79e2 

0.498 
0.833 

— 
0.47 

Low 
95% 

3.61e-4 

3.67e2 

0.359 
0.459 

— 
— 

Upp.95% 
5.35e-4 

7.92e2 

0.660 
1.207 

— 
— 

Random Coefficient Model 

Value 

2.44e-4 

1.06e4 

0.317 

2.85 
0.306 
0.67 

Low 95% 

2.15e-4 

0.82e4 

0.256 
2.71 
0.030 

Upp.95% 

2.78e-4 

1.30e4 

0.377 

2.99 
0.582 

— 

The coefficient of determination, R , is seen to rise from 0.47 to 0.67 when the critical flow rate is assumed 
to be a random variable and therefore estimated for each event. For six of the 19 rainfall-runoff events the 
simulated and observed suspended COD concentrations have been plotted in Figure 7.4. Notice that for the 
top two events the constant coefficient model was generally too high, for the two events in the centre both 
models perform equally well and for the bottom two events the constant coefficient model was too low. This 
is exactly the sort of improvement one wants and expects when applying random coefficient modelling. 
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In Figure 7.5 are the flow-resuspension relationships found for each of the 19 events. The curves are defined 
by the last term in (7.1) and all have the same value for b and c but different values for the critical flow rate, 

Qcrit • 

There is a significant improvement in the coefficient of determination, R2, from 0.47 to 0.67. However, it is 
important to keep in mind that the coefficient of determination for the random coefficient model is in a sense 
conditional to our knowing the values of the critical flow rate, Qcrit, for every event. In the random 
coefficient model these are in fact not known but estimated. 

Table 7.1 reveals a poor agreement between particularly the settling rates in the two models. This should be 
viewed in consideration of the high correlation found between settling rate and resuspension (in all models 
about 0.9 between a and b). Settling and resuspension are two phenomena working practically directly 
against each other and almost the same result can therefore be obtained by increasing the two parameters a 
and b. The result is a high correlation between the parameters and this sets extremely high demands on the 
quality of the required data. Had the data sets included values for the period before actual overflow started 
this correlation would probably have been much lower. Both of the presented models have been estimated 
using the least square criterion and without any quantitative a priori information about the parameter values. 
The inclusion of quantitative a priori knowledge about sewer sediment settling rates using a priori 
distributions with a maximum likelihood criterion as outlined in Chapter 5 is likely to have overcome this 
problem. The a priori distributions could originate from various laboratory or field experiments such as 
reported in Hvitved-Jacobsen et al. (1998) and Gent et al. (1996). It is important that this a priori knowledge 
is incorporated in the form of a priori distributions in a maximum likelihood estimate and not just as fixed 
values in order to permit the assimilation of data information on any of the parameters. 

Attempts were made to correlate the critical flow rates found for each event with variables such as time of 
year, preceding dry weather period and the wetness index presented in Chapter 4. No relationship with these 
variables could be found. Until such a relationship to an explanatory variable is found, the variation in Qcrit 

has to be considered as random variation. On application of the model in an integrated return period analysis, 
such as presented in Chapter 9, this variation from event to event is included as inherent variation. 

Attempts were made to investigate whether further improvements to the fit could be obtained by having 
other parameters estimated as random coefficients varying from event to event. Improvements were very 
small and it was soon apparent that the pairs of parameters estimated for each individual event were highly 
interchangeable and could have very different values for the same goodness of fit. It is evident that care 
should be take not to classify more parameters as random coefficients than can be identified by the individual 
events. 

An obvious disadvantage of random coefficient modelling is the long time needed for parameter estimation 
due to the sub-optimisations which have to be done in order to estimate the values of the random coefficients 
of each event. In models where there is a linear relationship between the response and the random 
coefficients, the sub-optimisations are replaced by the equivalent explicit expressions for each set of constant 
coefficients. 
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CONCLUSION 

A random coefficient model has been formulated for the suspended COD concentration in a combined sewer 
system. The model comprises a settling term and a resuspension term whose parameters were estimated 
using data from nineteen rainfall-runoff events. Only the critical flow rate, comparable to a critical shear 
stress, was assumed to be the realisation of a random variable whilst all other parameters were estimated as 
constant coefficients. Results show a clear improvement in fit compared to the equivalent constant 
coefficient model. Rather than an increased degree of determination, this improved fit reflects the more 
appropriate modelling assumptions and consequently a reduced bias on the estimates of the model 
parameters in general. 

The high correlation found between settling and resuspension parameters confirms not only the need for 
improved data but also the need for the inclusion of quantitative a priori knowledge concerning parameter 
values of even very simple models with only few parameters. Once established with the inclusion of 
quantitative a priori knowledge in a maximum likelihood estimate, random coefficient modelling is likely to 
become extremely useful methodology. Given the high degree of randomness within water quality processes 
and phenomena random coefficient modelling undoubtedly has a high future potential in the context of both 
deterministic models (as here) and in the context of stochastic models. 
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CHAPTER 8 

DISCUSSION ON MODELLING 

ABSTRACT 

The objective of this chapter is to discuss, in a broader perspective, the approaches, methodologies and results 
presented in this part of the thesis. While focusing on deterministic and stochastic modelling and on aspects of 
identifiability, the discussion goes beyond the combined sewer modelling to water quality modelling in general. 
Finally, the chapter closes this part of the thesis with recommendations for both practice and research. 

A part of the discussion in this chapter is based on Grum, M. (1997). WATERMATEX '97: A Symposium Review. Water Quality 
International, SeptVOct. 1997, pp 37-39. 
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INTRODUCTION 

Mathematical models aiming at simulating the system behaviour play an important role in integrated urban 
water management. Models are used to assess the impacts of combined sewer overflow and to identify 
optimal amelioration strategies. Optimal water quality management requires an integrated approach. 
Integrated urban water management may imply integration at many different levels. Integration may refer to 
the combined consideration of water quantity and water quality. In this chapter and in the thesis as a whole 
the term integration is primarily used to refer to the combined consideration of various parts of the water 
system such as the sewer system, the wastewater treatment plant, the recipient surface waters, the 
groundwater aquifers and the drinking water supply system extracting water from these aquifers. In recent 
years "an integrated approach to water management" has often been be used to refer to the integration of 
social aspects into water management and policy formulation. 

Discharge from combined sewer systems is often a limiting factor to achieving ecologically healthy urban 
waters. Mathematical models of relevant parts of the integrated water system can be used to calculate return 
periods of detrimental effects and to analyse the consequences of proposed amelioration projects. 

With an emphasis on combined sewer overflow, the research presented in this part of the thesis has focused 
on various approaches to modelling water quantity and quality. Common to all approaches is that the 
engineers a priori perception of the system is combined with information present in monitored data. Model 
structure and parameters are thus in part estimated from the available data. A primary aim has been to 
compare and contrast how information in data is used in deterministic and stochastic modelling approaches. 
This chapter discusses the previously presented conclusions in a broader perspective. The chapter concludes 
with recommendations directed towards both research and practice. 

DETERMINISTIC AND STOCHASTIC MODELLING 

When encountering an observation during model calibration, we can basically do three things. First, we 
could say that "our system description is perfect", note the deviation between modelled and observed and 
thereafter continue our modelling in time from this same modelled value. Alternatively, we could say "we'd 
better trust in what we see" (our observed value), note the deviation between modelled and observed, adjust 
the state of our system to fit the observed value and thereafter continue our modelling in time from this 
observed value. In the first case, we implicitly assume all deviation between the modelled and observed 
values to be a result of observation error alone; in the second, we assume that this deviation results only from 
random behaviour of the system (i.e. an incomplete system description). 

A third option would be to say that "the truth" lies in a bit of both. In which case we would use the Kalman 
filter which makes a weighting between "what we see" and "what we model", and our modelling in time then 
proceeds from this new up-dated point. If we, on the presence of an observation, use the Kalman filter to 
estimate the state of our system, we are acknowledging the presence of both observation error and random 
behaviour of the system (i.e. modelling error). It is precisely this acknowledgement that gives the Kalman 
filter (and related forms of up-dating) such immense potential value to environmental and water quality 
modelling where all influential details never can be modelled and where inhomogeneity and measurement 
imprecision inevitably give rise to observation errors. 
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Chapter 8 Discussion on Modelling 

The main entry of the Kalman filter into both hydrology and water quality took place some twenty years ago 
with a conference titled "Application of Kalman Filter to Hydrology, Hydraulics and Water Resources" 
(Chiu, 1978). During the following ten years there was a rapid increase in the number of published 
applications of Kalman filtering in water quality modelling. The majority of these applications came from 
stochastic modellers and as a consequence (at that time), somewhat unfortunately, were empirical with little 
or no mechanistic interpretation. However, the state-space form, over which the Kalman filter is defined, is 
ideal for mechanistic system descriptions. Kalman had already emphasised this, but in the field of hydrology 
and water quality this seems to have been recognised only by a few (e.g. Beck and Young, 1976). Filtering 
was often done with model parameters varying with the state of the system and using the convergence 
properties of the filter to estimate their values. Stories of the practical problems of choosing suitable starting 
values, of difficulties in establishing system noise and observation error variances, of convergence to wrong 
parameter values and stories of instability abounded. From the middle of the eighties up until recent years the 
application of the Kalman filter within water quality seems to have been just quietly simmering. 

In the proceedings of the above mentioned conference in 1978, Prof. R. E. Kalman, referring to the Kalman 
filter, wrote "Fortunate is the user, for the less he knows about probability the more successful he is going to 
be ... ". Ironically, these words straight from the horse's mouth stand quite in contrast to what we are actually 
seeing today. Filtering in water quality modelling is today almost always linked to a maximum likelihood 
criterion and often also to a coupled or off-line optimisation routine. At the same time practical problems of 
starting values, unknown variances and instability seem to have become less problematic. 

The following summarises some recent examples of the use of Kalman filtering within water quality 
modelling. Jacobsen et al. (1997) present a stream model built up of linear reservoirs in series in a 
continuous state-space form with the Kalman filter for up-dating. Model parameters, including the variance 
of both system and measurement error terms, are estimated on the basis of a maximum likelihood criterion 
which is optimised off-line. In three river models with mechanistic descriptions of BOD variations and algal 
growth, Qian (1997) also uses a modified version of the Kalman filter for up-dating the system state. He 
avoids the linear approximations of the extended Kalman filter by an interesting evaluation at each time step 
of the likelihood ratio between a number of parallel simulations, each made with different parameter values. 
Essentially, the advantage of the method is that it provides more sensitive parameter trajectories for system 
identification, but the author points further to the examination of trajectories of the likelihood ratios 
themselves and those of the system variance, which is also assumed to vary. Carstensen et al. (1996) 
demonstrate how Kalman filtering with simple mechanistic model structure can be used as software sensors 
to estimate the values of unobserved system states. 

In an effort to bridge the gap between the traditional deterministic and the empirical stochastic approach, 
Chapter 5 draws attention to the most essential distinction between dynamic deterministic and stochastic 
dynamic modelling: the difference in assumptions made concerning the origin of the deviation between 
modelled and observed values. Isolating and characterising the core difference between deterministic and 
stochastic modelling has disclosed related methods traditionally applied only within one of the approaches 
but which in principal would be of relevance and interest to both. From the field of stochastic modelling 
these include parameter statistics, experimental design theory, inclusion of a priori knowledge in parameter 
estimation and the concepts of identifiability as a whole. From deterministic model the most important 
aspect is the inclusion of a priori knowledge of the physical, biological and chemical processes into the 
model structure. 

In the case study of Chapters 5 parameters of a combined sewer model are estimated under both 
deterministic and stochastic modelling assumptions. To this end a tool was developed with the main aim of 
rapidly being able to switch from one way of estimation to the other. The tool was built upon a discrete time 
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non-linear state space formulation. Modelling of the state's second moments and the application of the 
Kalman filter was active only dining stochastic estimation. It was also possible to apply both the maximum 
likelihood and the least square estimation criteria to either of the two approaches. 

That water quality modellers of the traditionally deterministic approach and those of the traditionally 
stochastic approach have moved closer to one another is certain. The traditional deterministic modellers have 
dropped ideas of incorporating all conceivable processes into their models. Modellers from the traditionally 
stochastic approach have recognised that if an engineer should have any use for a model, then the purely 
empirical formulation often must be replaced by some degree of mechanistic description relating variables 
via the physical, biological or chemical processes in question. 

However, on one particular aspect a clear difference persists. On model calibration there are those who 
assume that all deviation between observed and simulated results only from observation error and then there 
are those who assume that this deviation also results from an incomplete system description. Unfortunately, 
this difference in assumptions relates not as one might logically expect to the nature of the systems, the 
nature of the available data, the available knowledge and understanding of the system or the available 
resources, but simply to the background of the modeller. 

Perhaps the time has come where the use of stochastic state filtering, such as Kalman filtering, in water 
quality modelling will no longer be merely simmering but will take the central role which it ought to have. 
Deviation between "what we model" and "what we see" is a result of both modelling and observation error. 

IDENTIFIABILITY IN WATER QUALITY MODELLING 

There has been a tendency to persistently add new processes to water quality models in an attempt to 
improve their ability to simulate system behaviour. This often has two unfortunate consequences. Firstly, 
calibration or parameter estimation leads to non-unique sets of parameters. Secondly, one may often include 
processes that are less important than processes which have not been included because they are not even 
known. 

Parsimony is a concept well developed within the field of statistics and can briefly be summarised as "care in 
the allotting of model parameters". Working with empirical models one would simply exclude all model 
structure that does not significantly improve a models fit with the available observations. In models where 
physical, chemical or biological interpretations are attached to the parameters exclusion of model structure 
may render a model unsuitable for its intended purpose. 

Reichert and Omlin (1997) point out that we should be careful not to take identifiability a bit too far. There 
are many cases where the inclusion of unidentifiable model structure from an engineering point of view is 
indispensable. Consider a sewer system designed to run with full pipes every five years. Even a very long 
monitoring period is most likely to fail in obtaining data which will permit the identification of model 
structure related to processes which occur only during full pipe flow. One's engineering knowledge may 
however strongly suggest that the sewer behaves quite differently in its full state; one would perhaps be 
better off extrapolating with unidentified model structure than charging on with something identified under 
quite different conditions. The example in Reichert and Omlin (1997) relates to the indentification of Monod 
growth kinetics, but many other water quality examples could be given. 
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When accused of using over-parameterised models which could be calibrated to fit almost any signal, the 
water quality engineer would often answer something in the lines of "yes, but my engineering intuition and 
experience tells me what the realistic parameter values are and the calibration is only a matter of making the 
case-specific adjustments". This does of course not quite correspond to our formal concepts of identifiability, 
yet there is some truth about it. Reichert (1997) outlines how such diffuse a priori knowledge on our 
parameter values can and should be handled in a structured manner. He emphasises the fact that defining 
probability distributions for our knowledge is not enough. Our prior knowledge is diffuse and must therefore 
be formulated as imprecise probabilities. Five methods of characterising imprecision in probability 
distributions are outlined and discussed, and with a didactic example the author points to the advantages of a 
Bayesian approach in incorporating our prior knowledge into the parameter estimation phases of modelling. 
The Bayesian approach relies on conditional probabilities expressions in characterising the uncertainties of 
variables that are causally dependent on the value other uncertain variables or parameters. The near future 
will undoubtedly present some interesting applied examples from various fields of water quality. This point 
is not without bearing on discussion above on the usefulness of including unidentifiable model structure and 
will undoubtedly change the practical implications of systems identification. 

In Chapter 5 of the present thesis a priori parameter knowledge was quantitatively included by using a 
Bayesian approximation to reformulate the maximum likelihood criterion into a maximum a posteriori 
likelihood as outlined in Madsen and Hoist (1996). The possibility of quantitatively including a priori 
parameter information gives rise to a new situation with respect to the identifiability of model structure with 
physical, chemical or biological interpretation attached to the model parameters. The maximum a posteriori 
criterion can be used with both deterministic and stochastic parameter estimation. More structure will be 
acceptable once we include our knowledge and experience concerning likely parameter values in the form of 
a priori distribution. Though a comprehensive investigation of the advantages, interpretation and possible 
pitfalls of such inclusion of a priori knowledge lies beyond the scope of this thesis, the results of Chapter 5 
did confirm the expectations. 

The combined sewer water quality modelling of the preceding chapters has shown that aspects of 
experimental design theory have to be considered in the planning phase of a monitoring campaign aimed at 
system identification and parameter estimation or calibration. The principal input to a combined sewer is 
rainfall, which cannot be designed as such. However, experimental design theory can assist in identifying the 
best sampling points within the sewer network and indicate how long before and after an overflow it is 
necessary to extract samples from the water. The suspended COD models of Chapter 6 and Chapter 7 would 
have been better identified and the resulting parameter sets less ambiguous had water quality samples been 
taken before the critical flow at which resuspension started had been passed and if further samples had been 
taken after high flows had subsided. For water quality models used for studying the response of surface 
waters to combined sewer overflows controlled overflows may be designed with a given dynamic 
characteristics in order best to identify the model parameters. 

Other aspects of experimental design with bearing upon subsequent model identification are sampling 
frequency and regularity. They become particularly relevant in relation to the identification of modelling 
error terms in dynamic systems during stochastic modelling. This relates to complexities such as Shannon's 
sampling theory, which, in simple terms, states that you will have difficulties observing Brownian motion of 
a pollen grain on a water surface if you only open your eyes every second minute. In contrast, the 
identifiability of deterministic structure (empirical or mechanistic) relates more directly to the amount of 
available data and the persistence of excitation. 
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CONCLUSIONS 

The overall objective of this part of the thesis was to examine modelling approaches and methodologies in an 
attempt to improve combined sewer water quality modelling. The following have been identified as methods 
whose implementation would contribute to such improvement. 

• quantitative inclusion of a priori knowledge in automated parameter estimation, 
• application of parameter statistics and experimental design theory, 
• random coefficient modelling, 
• stochastic modelling with physical, chemical and biological model structure. 

Incorporation of the first two points into traditional deterministic combined sewer modelling is a fairly 
straightforward task. The maximum likelihood criterion should be applied to the existing deterministic 
modelling approach and a rapid but robust optimisation routine should be adopted. The main hindrance to 
immediate application of parameter statistics and experimental design criteria is probably the parameter 
transformations which would be required in order to be able to make assumptions of local linearity in the 
often non-linear combined sewer water quality models. 

Modellers should recognise the fact that explanatory variables are not always available for characterising the 
state of a sewer system at the start of a rainfall event. No explanatory variables may be known or no 
observations may have been made of their values. In recognising this, random coefficient modelling should 
be applied so that parameters, such as the strength of sediment crusts and pore water concentrations, may be 
considered as random variables varying from event to event. Random coefficient modelling requires more 
computational resources and would today perhaps only be realistically applied to simpler models with short 
simulation times and few estimated parameters. 

Finally, stochastic modelling would bring a major improvement to combined sewer water quality modelling 
as it would avoid the bias on parameter estimates which is introduced due the poor agreement present in 
deterministic modelling between the implicit assumptions on the errors and the actual situation. In certain 
situations a change from a deterministic to a stochastic formulation requires little effort but in other 
situations simplifications have to be made to the model in order to make it appropriate for stochastic 
modelling. A stochastic state space formulation of a hydrodynamic sewer model would involve state 
variables for both flow velocity and water depth at each calculation point in the system and is therefore not 
likely to be just around the corner. Where exactly the limit lies with respect to the number and remoteness of 
unobserved system states is one of the questions concerning the applicability of stochastic modelling that 
have yet to be answered. Generally speaking, the widespread use of stochastic modelling in water quality 
engineering would require professionally developed tools specifically directed towards stochastic modelling 
for water quality management. 
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Chapter 8 Discussion on Modelling 

The modelling work in this part of the thesis has revealed that water quality models have a number of 
common characteristics for which generalisations in terms of statistical and stochastic approaches ought be 
sought. Questions that should be addressed are: 

• Which parameter transformation would be appropriate for which types of parameters (e.g. runoff 
coefficient, growth rates, settling rates, resuspension parameters, storage constants, yields and 
available deposits)? 
Which system variables would be suited as state variables under various circumstances? 
What would be appropriate state transformations for application with Kalman filtering? 
How should the system error be structured for various processes? 
What is a realistic number and remoteness of unobserved system states in stochastic models? 
Where do the critical parameter interchangeability problems occur and which measures can be 
taken to overcome them (re-parameterisation and improved monitoring)? 

The results of such generalisation studies would be an asset not only to combined sewer water quality 
modelling but to water quality modelling and engineering as a whole. 
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CHAPTER 9 

UNCERTAINTY ANALYSIS USING 

EMBEDDED MONTE CARLO SIMULATIONS 

ABSTRACT 

The return periods of detrimental effects are often used as design criteria in urban storm water management. 
Considerable uncertainty is associated with the models used. This is either ignored or pooled with the inherent event 
to event variation such as rainfall depth. It is here argued that uncertainty and inherent event to event variation 
should be treated separately, in providing engineers and managers with the distributions of return periods. It is then 
possible to base management decisions on knowledge of both the expected return periods and their corresponding 
confidence limits. It is further argued that the traditional pooling of inherent variation and uncertainty leads to 
meaningless return period curves with no engineering value. 

The presented methodology is described as Embedded Error Propagation and its current implementation as 
Embedded Monte Carlo Simulations. This new approach is demonstrated in an integrated setting involving models 
for rainfall characteristics, combined sewer overflow loads and impacts on the surface water dissolved oxygen (DO). 
CSO loads are modelled using event lumped non-linear regression models with rainfall as input and with overflow 
volume, duration and relevant event mean concentrations as output. Oxygen depletion in the surface water is 
described using a dynamic model including oxidation of dissolved chemical oxygen demand (COD) and nitrification. 
Conversion models had to be developed to integrate the output variables of the CSO model with the input variables of 
the surface water model. The parameters of all the models were estimated from observed data on rainfall, CSO load 
and surface water impacts. The data are obtained from a combined sewer system discharging to a pond in Loenen, 
the Netherlands. In this chapter focus is on chemical effects of CSO on surface water. The argued distinction between 
event to event variation and uncertainty and the associated methodology are equally valid to the return period 
analysis of flooding. 

This chapter is based on Grum, M. and Aalderink, R. H. (1999). Uncertainty in Return Period Analysis of Combined Sewer 
Overflow Effects Using Embedded Monte Carlo Simulations. Wat. Sci. Tech. 39 (4), pp. 233-240. Published after oral presentation 
at the AQUATECH conference in Amsterdam, September 1998. 
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INTRODUCTION 

The return periods of combined sewer overflow (CSO) effects are often used as design criteria in urban 
storm water management. There are two main reasons why models are used to calculate return periods of 
CSO effects. Firstly, because calculation of for example events with a mean time between occurrence of one 
year by direct measurement would require observation periods of several time longer than just one year. 
Attempts are then made to use models to predict the return periods of CSO impacts as a function of a 
relatively well observed explanatory variables namely one or more point measurements of rainfall. The 
poorer the explanatory value of the rainfall the larger will be the uncertainty introduced as a result of short 
monitoring periods of the combined sewer itself, its overflows and the surface water effects. The second 
main reason for using models is that their mechanistic structure permits the analysis of proposed engineering 
scenarios. The use of models in return period analysis is treated in more detail in the following chapter. 

Taking a reductionist approach to uncertainty in return period analysis it could be split up into a multitude of 
sources. However, essentially uncertainty can be considered to result from two main aspects; a limited 
number of observations and, on extrapolation, uncertainty in model structure. The present study takes a 
parametric approach to evaluate uncertainty caused by a limited number of observations of a process. Models 
used in the return period analysis have their parameters estimated from observed data. Parameter uncertainty, 
including that of parameters describing inputs and the variances of random errors, are estimated and 
considered in the analysis. 

Uncertainties in input characterisation and system description provide information on the certainty of a given 
expected return period value. They do not change it. It is therefore argued that variability and uncertainty 
should be handled separately using an embedded error propagation method as the one outlined in the 
following section. Similar proposals and methodologies distinguishing between uncertainty and variability 
have been made in risk and frequency analysis in other fields (e.g. Brattin et al. 1996, Hession et al. 1996). 

METHODOLOGY 

Error Propagation and Return Period 

In a many-to-one input-output system, the cumulative probability distribution function of the output variable 
can be obtained by the integration of the joint probability density function over the region of the input space 
for which the output is greater than or equal to the evaluated value of the output. This integration can 
sometimes be done analytically but is in most practical applications solved numerically. In this study the 
integration has been solved using Monte Carlo simulations which involves the creation of a large number of 
input data sets by pseudo-random sampling from the input variables' parametric probability distributions. 
For a set of input variables an output variable is calculated using the model(s). 
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Return period, T(y), of the exceedance of a variable y, is found from the exceedance probability using 
(9.1). 

TV A ' ' ( 9 1 ) 

»•/>,• H - ( I - ( > - V - I ) / N ) 

where pv is its probability of exceedance, n is the mean number of events per year, rv is the rank of y after 

sorting the output variable from the N samplings and following Monte Carlo simulations. In this study the 
number of runs used to generate a single return period curve was 34200 which corresponds to a coefficient of 
variation (due solely to imprecision in the numerical integration) of 0.1 for events with a return period of 5 
years. Portielje et al. (2000) give a detailed treatment in the context of water quality management of how to 
reduce the numerical error or the required number of model simulations to attain a desired level of accuracy. 
In the two evaluated methods a higher sampling density in the region of interest is attained by combining the 
First Order Reliability Method with Latin Hypercube Sampling and Directional simulation respectively. At 
the cost of more model simulations, the Monte Carlo procedure was chosen for the current study due alone to 
its simplicity in description and implementation. 

Uncertainty and Inherent Variation 

All quantities, which are described by a probability distribution, are placed in either of the two layers: 
• an inner layer consisting of quantities varying from event to event, 
• an outer layer consisting of uncertain, but constant quantities. 

For each set of random realisations of the quantities in the outer uncertainty layer a full set of Monte Carlo 
simulations for the inner inherent variations layer is performed. Each set of realisations in the outer 
uncertainty layer thus results in a single return period curve. This could for example be a curve of minimum 
oxygen concentrations against return period (i.e. mean time between occurrence). Multiple samplings in the 
outer layer thus results in a band of return period curves representing the uncertainty distribution of the 
return periods. Having generated a sufficiently large number of return period curves, their spread may be 
summarised into curves giving the confidence limits of the return periods. A schematic illustration of the 
sampling procedure is given in Figure 9.2 case C. 

On making the distinction between uncertainty and inherent variation in practice the following descriptions 
maybe used. If the variation of a given quantity... 

• results from changes that actually take place then we speak of inherent variation and this belongs 
in the inner sampling layer, 

• results from our lack of knowledge then we speak of uncertainty and this belongs in the outer 
sampling layer. 

Intensifying a measurement campaign improves our knowledge (and thereby reduces uncertainty) but it does 
not alter the variations that actually take place (the inherent variations). In a given practical situation it may 
be difficult to make this hard-cut distinction and in such cases it may even be necessary to evaluate the 
sensitivity of the final results to the decision in question. 
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Figure 9.1 Schematic overview of the integrated model components. 

In this study 34200 realisations and model simulations were performed in the inner inherent variations layer 
for each set of realisations in the outer layer. With 72 realisation of the quantities in the outer layer, a total of 
over 2.5 million model simulations were performed. 

Estimating the Uncertainty 

The uncertainties in model and distribution parameters are often not readily estimated. Here uncertainty in 
the form of covariance matrices were estimated using the non-parametric Jack-knife method. The essence of 
this method, which is well described in several statistical text books such as Stuart and Ord (1994), is that by 
repeated exclusion of each observation and re-estimating the parameters of the distribution an estimate of 
their variance and covariance can be found. How this is implemented for a given model depends very much 
on the underlying assumptions and is therefore presented with the individual models in the following section. 

THE INTEGRATED SYSTEM 

The studied integrated system comprises a combined sewer and a pond. The components of the integrated 
model include rainfall distributions, a combined sewer overflow model, a conversion model for water quality 
parameters and a surface water model. This section briefly outlines each of the components/sub-models 
which are schematically presented in Figure 9.1. 

Rainfall, sewer system and conversion models are all event lumped models (i.e. as total rainfall depth, even* 
mean concentration, etc.) whereas the surface water model is a dynamic model. The time scales of interest in 
the first 3 models are typically in the order of hours, whereas receiving water impacts extend over periods of 
days to weeks and errors in linking event lumped with dynamic are therefore likely to be small. 

Rainfall Distributions 

Duration and mean intensity of a rainfall event have been described by a joint lognormal distribution. The 
two means and the three elements of the covariance matrix were estimated from a point rainfall series of 12 
years excluding rainfall events of less than 3 mm. The time between rainfall events was described by an 
exponential distribution. These rainfall distributions describe variations from event to event and belong 
therefore in the inner variability layer of the embedded Monte Carlo. 

A six by six covariance matrix describing the uncertainty in the parameters of the rainfall distribution was 
estimated using the Jack-knife technique. The parameters of the above distributions were assumed to be 
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normally distributed. The joint distribution of these six parameters describes parameter uncertainty and not 
variation and therefore belongs in the outer uncertainty layer of the Embedded Monte Carlo procedure. 

Sewer Models 

Quantity and quality of the Combined Sewer Overflow CSO have been described using event lumped models 
with rainfall characteristics as input. These models are briefly outlined below but a fuller description of the 
data and models can be found in Chapter 4 and Grum and Aalderink (1998). 

Overflow volume, OVERFLOW > w a s modelled using (9.2) where A is the catchment area, H^^ and Dj^^ are 

KEFF for VEfT > 0 ( 9 2 ) 

EFF — "• " "• ' "RAIN î PUMP ' X-'RAIN ' STORE T ° l ' " " " 'OVERFLOW ] f. n t h p r w i s e " EFF — A-d- « R A I N t?PUMP ' ^RAIK 'STORE + £V a n " 'O 

rainfall depth and duration respectively, SPUMP
 ls pump capacity, KST0RE is static storage volume and sv is a 

random error term with zero mean. The runoff coefficient, a, was found to vary from event to event based 
on a wetness index which in turn was dependent on a varying drying rate. Parameters in the model including 
those of the wetness index and those of the drying rate were estimated on the basis of rainfall events of over 
3mm during a period of just over four years including 56 events leading to overflow. 

The combined sewer event mean concentrations were modelled as shown in (9.3) as a function of rainfall 
intensity with i = 1,2,3 for COD, Kjeldahl Nitrogen and suspended solids respectively. 

C, =exp(a,+i,-/RAIN+£-,) (9-3) 

where I^^ is the mean rainfall intensity, a, and b, are constant coefficients and et are random error terms 
with zero mean. Event mean slow-settling fractions had been calculated on the basis of concentrations before 
and after 1 hours settling of all sample. These event mean slow-settling fractions,/;, were modelled as shown 
in (9.4) and (9.5) with ; = 4,5,6 for COD, Kjeldahl Nitrogen and suspended solids respectively. 

In— = fl,+Vln(C,_3)+ff, (9.4) 
J i 

/=l /exp(a ,+Vln(c ,_ 3 ) + £ i) <9'5> 

The parameters of all six equations, / = 1,..., 6, were estimated simultaneously using a maximum likelihood 
criterion in which the joint probability distribution of the six error terms was also estimated. The non-settling 
fraction of Kjeldahl nitrogen was found not to be related to its total event mean concentration and the 
corresponding coefficient Z>5was set to zero. 

In the above models the error terms vary from event to event and consequently describe inherent variation. 
The model parameters were assumed to have a constant value during all events and do therefore not 
contribute to inherent variation. They and the variances of the error terms are however uncertain quantities 
whose joint covariance matrix was estimated using the earlier outlined Jack-knife technique. This covariance 
matrix describes uncertainty and belongs in the outer layer of the Embedded Monte Carlo procedure. 
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Conversion Models 

The CSO models predict Kjeldahl nitrogen, COD concentrations and suspended solids before and after one 
hours settling. Conversion of these to ammonium and dissolved COD, required for the surface water model, 
has been based on three presumed relationships. 

Firstly, it has been assumed that Kjeldahl nitrogen, Qj_N , comprised only particulate organic nitrogen, 
^ORG-N > a n (^ t n e completely soluble ammonia, SKH _N. 

Secondly, the suspended solids concentration was assumed to be proportional to that of organic nitrogen. 
Thus the ratio of the concentration after settling, slow, to that before settling, total, is the same for the 
unobserved organic nitrogen as for the observed suspended solids. Note that subscript total is here used to 
symbolise the sum offast and slow settling particulate concentrations. 

• ^ O R G - N . J / O T I ' / •* ORG-N. total = "* SS, slow/ *• SS, total ("•') 

Thirdly, the following linear relationship was assumed to exist between the slow settling fraction of Kjeldahl 
nitrogen and that of suspended solids. 

^•KJ-N.slow/^Kl-N,total =Cl'^SS,slow/^SS,total + D + £ (9.8) 

Combining the three relationships, (9.6), (9.7) and (9.8), results in the following expression for the 
conversion of the available CSO concentrations to ammonia. An equivalent expression was used for 
dissolved COD. 

c _ ^ORG-N,r io<v + ^KJ-N.roM/ ~ ^KJ-N,slow j ' \ a ' -^SS,slow +\p + £)• ^sS,lotal)~ -*ORO-N,sfo» ' -^SS.tolal ,Q Q-. 

where the slow settling organic nitrogen is given by 

^ K J -N, total ^KJ -N, slim ) ' -1* Si \ W KJ -N , total wKJ-N,.*/mv J ^ S S , slow /Q 1 Q \ 

X-ORG-N.slow = y _ y 

The values of the two constants, a and b, and the error variance, a], were estimated by standard linear 
regression on (9.8) using the sample data (i.e. not on event mean concentrations). During an event flow 
proportional sampling took place at the overflow structure. Their respective variances were estimated using 
the earlier outlined Jack-knife technique and the results are presented in Table 9.1. To avoid the 
amplification of measurement errors which occurs when taking ratios of very small values, samples with 
suspended solids concentrations below 130 mg/1 were excluded from the regression. This was found to be 
the cut-off value after which the regression coefficients and coefficient of determination (ca. 0.6) stopped 
changing. 
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Table 9.2. Ordinary differential equations defining the processes included in the surface water model. 
Dissolved Oxygen: 

Reaeration CSO-COD Background-COD Nitrification Sediment oxygen 
degradation degradation ammonia demand 

°^DO _ *. .(<: _Q \ _ r . c _ .. . c _ „ . c rsop f? ( 9 1 1 ) 
, — KL WDO.SAT ° D O / 'OX °COD 'OX,B °COD.B 'NIT J \ H 4 - N H V ^ D O \J•'•'•) 

Dissolved COD of combined sewer origin: 

^ C O D _ _ „ . o (9 12) 
. , - r o x ^COD Kyl^) 

at 

Dissolved COD from background load: 

^ O D B = _ r .S +B (9-13) 
, 'OX,B °COD,B T i V . C O D . B v ' 

at 

Ammonia from background load: 

d5fw"4-w
 r -s +B ( 9 - 1 4 ) 

• — 'NIT I JNH 4 -N ' , ^ " | ' ,NH 4 -N,B 

Table 9.1. Estimates of the constants and error variance in the straight line regressions defined by (9.8). 
Conversion to Ammonium Conversion to Dissolved COD 

Parameters Mean Variance Mean Variance 
Constanta 0.772 7.97e-3 0.752 2.26e-3 
Constant b 0.279 1.67e-3 0.235 5.42e-4 

Variance a] 1.15e-2 9.13e-6 1.88e-2 4.39e-6 

Most of the uncertainty introduce through these conversions presumably lies in the constants and error term 
of the relationship (9.8) which have therefore been included in the uncertainty layer of the Embedded Monte 
Carlo simulations. It should however be noted that the uncertainty introduced by the assumptions behind 
relationships (9.6) and (9.7) have had to be ignored because no reasonable estimates of their magnitude could 
be found given the available data. It is however expected that these uncertainties are much smaller than those 
of (9.8) and than the rest of the uncertainty in this return period analysis. 

Surface Water Model 

The surface water oxygen dynamics was defined by the four differential equations (9.11), (9.12), (9.13) and 
(9.14). Dissolved oxygen is lost on COD oxidation, ammonia nitrification and to a sediment oxygen demand 
and is added to the pond by re-aeration. Note that CSO-COD and background COD are treated separately 
with oxidation rates r0x and r0x, B respectively. The background COD represents the organic matter brought 
to the pond by the infiltration flow into the pond. 

S indicates dissolved concentrations, B, , volumetric loading rates, r reaction rates and kL is the reaeration 
coefficient. The additional subscript B indicates a background component. 
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Figure 9.2. Results of the analysis. § For each set of random realisations of variables in the outer layer a complete 

Monte Carlo integration (of 34200 simulations) was done for the variables in the inner layer. 
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Though dynamically deterministic, the model was calibrated as a random coefficient model whose 
parameters are characterised by joint probability distributions describing inherent variation from event to 
event. The parameters were estimated using observed data of six overflow events, an expanded model and 
the downhill simplex optimisation procedure on a maximum likelihood criteria. Aalderink et. al. (1998) 
present a more complete outline of the data and the surface water model. 

The parameter set for a given overflow event was assumed to be the realisation of a random variable 
characterised by a selected joint probability distribution. Of the tested distributions, normal, lognormal, 
exponential, weibull and gamma, the weibull distribution had the highest likelihood and was consequently 
used. The parameters of the distributions (including covariance) were calculated on the basis of the six sets 
of model parameters obtained from each of the six overflow events. The uncertainty in these inherent 
variability distributions was in turn characterised by a joint probability distribution whose parameters were 
estimated using the earlier outlined Jack-knife technique. 

The observed surface water data originated from a pond with unusually high background loading of COD 
and ammonia, due to an atypically large infiltration of oxygen-free ground water. As a result the CSOs had 
no visible impact on the extreme statistics of DO in the surface water. A hypothetical surface water was 
defined differing from the existing pond by scaling the background loading and by excluding the oxygen-free 
infiltration into the pond. Mixing of the CSO in the surface water pond was assumed to lie at random 
between the two extreme cases of plug-flow and completely mixed reactor. Test runs using each of the two 
extreme mixing cases suggest that the thus non-described uncertainty has little effect on the results. 

RESULTS AND DISCUSSION 

Results for rainfall depth, overflow depth and minimum dissolved oxygen are presented in Figure 9.2. Each 
of the three graphs on the left contains curves corresponding to the following three cases: 

I A. Ignoring Uncertainty (solid line). All uncertain quantities were fixed to their expected value and 
| random sampling was done only from the distributions of varying quantities. 

B. Pooling Uncertainty with Variability (dashed line). Distributions of uncertain quantities were 
sampled along with those of varying quantities resulting also in a single return period curve. 

C. 50% Confidence Limits (two dotted lines). For each of the 72 sets of randomly sampled parameters in 
the outer uncertainty layer a complete return period curve was generated by 34200 Monte Carlo 
simulations. The spread of these 72 lines has been summaries to the presented 50% confidence limits. 
Reasonable plots of the usual 90% or 95% confidence limits would have required either roughly 
another 5 million model simulations or further assumptions concerning the parametric distribution 
types. 

On the right in the figure are histograms showing the spread due to uncertainty for a return period of 0.1 
years. The spread is here represented through the 72 return period curves resulting from case C. 

From the 50% confidence limits plotted in Figure 9.2 it is clear that the return period analysis of combined 
sewer overflow effects are associated with a substantial amount of uncertainty. From the figure it can be seen 
that with only 50% confidence (equal chance of being right and wrong) we are able to predict that the DO 
concentration will fall below 1.0 mg/1 between 2.5 and 10 times a year. Viewed in terms of a given return 
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period the dissolved oxygen concentration is in the histogram (lower right Figure 9.2) seen 10 times a year to 
fall below a concentration of anything between 1 and 3.5 mg/1 (50% confidence limits). 

In agreement with the skewness of the return period curve distributions, which is apparent from the 
histograms in Figure 9.2, the curves resulting from case A lies just above the lower 50% confidence limit for 
rainfall and overflow depths, and just below the upper 50% confidence limit for dissolved oxygen. 
According to case A a DO concentration of 1 mg/1 is expected to occur just over 3 times a year whereas 
pooling uncertainty with variability (case B) suggests that this would happen about 9 times a year. For DO 
the results of case B are seen to lie close to the lower 50% confidence interval. For rainfall pooling (case B) 
is seen to result in the 50 mm rainfall event occurring twice a year. 

Pooling uncertainty with inherent variation (case B) leads to the awkward situation that reduced uncertainty 
through for example increased monitoring systematically leads to all extremes becoming less frequent. 
Increased uncertainty through for example data "loss" would similarly systematically increase the frequency 
of extreme events. 

Ranking of sources contributing to uncertainty has not been treated. However, also here it is important that 
uncertainty and variability are kept apart. Thus, the ranking of sources could be based on estimates of the 
linear regression coefficients of the return period of a given dependent variables level (e.g. of 2 mg/1 DO) 
with appropriately scaled values of the uncertain quantities as independent variables. Rainfall depth would 
thus not be an independent variable but its two distribution parameters would. 

Distributions of variables describing the initial state of the surface water were estimated on the basis of only 
6 events resulting in very uncertain distribution parameters. Uncertainty in these distribution parameters 
could be reduced through monitoring of the surface water's response to a greater number of overflow events. 
Reduced uncertainty could also be achieved by shifting the influence of various uncertainty sources. For 
example, creating a better CSO event mean concentration model would shift influence away from the poorly 
characterised random error of the sewer system model to the relatively more certain rainfall characterisation. 

As mentioned, parameters of distributions describing surface water variability were estimated on the basis of 
six observations. The resulting return period curve (irrespective of the incorporated parameter uncertainty) 
proved to be very sensitive to the chosen distribution type. This would suggest that the results of both return 
period analysis and uncertainty analysis rest rather heavily on these presumed parametric probability 
distribution types. In other parts of the system much more data was available for choosing the type of 
probability distribution and, though not tested, is there expected to be less of a problem. 

In order to limit the complexity of the integrated system description the seasonality has not been taken into 
account. By thus not including correlation between rainfall and certain surface water variables it is likely that 
the frequencies of extremes has been slightly overestimated. This comes from the fact that neglecting co­
variation between variables or parameters is equivalent to including the some variation more than once. 
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CONCLUSION 

In this chapter it has been argued that a distinction ought to be made between uncertainty and inherent 
variability in return period analysis. It has been shown how this distinction can be made using Embedded 
Monte Carlo simulations. This was done in an integrated approach to evaluating the effects of combine 
sewer overflow on a surface water pond. The substantial uncertainty is illustrated by results of the dissolved 
oxygen concentration: the mean 10 times per year lowest concentration was determined to lie between 1 and 
3.5 mg/1 with only 50% confidence. Expressed as an uncertainty on the return period for a given dissolved 
oxygen concentration: the return period of a concentration of 2.0 mg/1 lies between 0.08 years (i.e. 12.5 times 
a year) and 0.2 years (i.e. 5 times a year). Note again that these are only the 50% confidence limits. 

Whilst distinguishing between uncertainty and variability the contributions of individual sources should be 
studied in order to optimise efforts to reduce uncertainty of the end result. Both a shift in the influence of the 
various uncertainty sources and a reduction in the sources themselves could result from, for example, 
dynamic descriptions of both rainfall and the sewer system. 
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CHAPTER 10 

DISCUSSION ON RETURN PERIOD ANALYSIS 

AND ITS UNCERTAINTY 

ABSTRACT 

Combined sewers overflow during extreme rainfall causes pollution and flooding in the surrounding surface waters-
Over the past decades the measure of severity for the discharge of oxygen depleting organic matter has shifted from 
average annual loads and number of discharges, through return periods for discharged loads, to return periods of 
surface water effects. 

The objective of this chapter is to put together a framework encompassing the many methods, approaches and types 
of models that can be used to calculate return periods and to discuss examples from literature in the context of the 
presented framework The subsequent discussion on uncertainty in return period analysis has the additional objective 
of placing the methodology and results of the previous chapter in a broader perspective. 
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INTRODUCTION 

Discharge from combined sewer overflows during rainfall constitutes a limiting factor to the amelioration of 
surrounding surface waters. The high concentrations of organic matter can cause oxygen depletion in the 
surface water with consequences on the aquatic ecology such as fish death. Depending on local conditions 
sewer overflows may also constitute a major source of nutrients leading to eutrification problems in the 
receiving waters and/or to the surface waters further downstream of the overflow structure. 

Runoff pollutants should be considered in relation to the time scale of the surface water's response to the 
pollutant effects (Aalderink and Lijklema, 1985, Harremoes, 1989). The division most often made is between 
acute and accumulative pollutants. A more thorough classification of runoff pollutants is presented in 
Lijklema et al. (1993a). Accumulative pollutants such as the principle nutrients phosphorous and nitrogen 
should be evaluated in terms of their average annual loads whereas acute pollutants such as degradable 
organic matter should be evaluated on the basis of the return periods of their effects. This chapter deals 
primarily with methods and approaches to return period analysis of the effects of acute pollutants such as 
those resulting in oxygen depletion or acute ammonia poisoning. 

Extreme statistics may be performed directly on the depth or intensity of events of a rainfall series and then 
events representing selected return periods can be used to calculate corresponding effects in the surface 
waters. This approach is illustrated in Figure 10.1 (left). The extremeness of a rainfall event is generally 
based on characteristics such as total volume, mean or maximum intensity. A first draw back of this 
approach is that the extremeness of a rainfall event, based on total volume, mean or maximum intensity, does 

Historic rainfall series 
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representing selected 
return periods 
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Surface water effects for 
the selected return periods 

Figure 10.1. Extreme statistic may be performed either before or after simulation of the 
integrated urban water system. 
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generally not correspond to the extremeness of the resulting effects. In other words the return period of the 
minimum oxygen concentration resulting from a given rainfall event does generally not correspond to the 
return period of the rainfall event. A second draw back of the approach is that the definition of an event has 
to be related to the effect and not to the rainfall. That is, the decision "now the event has ended" ought to be 
based on the studied effect supplemented by other information such as the degree of filling of the sewer 
storage capacities. In the integrated system the time constants of the treatment plant secondary clarifier and 
the surface water are often such that a definition of an event based on a maximum amount of rainfall in a 
given period would be inadequate and may often result in an underestimation of effects. The effects would 
often be underestimated because the coupling effect of adjacent events would be ignored in such an 
approach. 

The alternative approach is to perform the extreme statistics on series of the surface water effects. This 
approach is illustrated in Figure 10.1 (right). These series could have been generated from simulations with 
historic rainfall series, rainfall models or in theory even by direct measurement. This chapter deals 
exclusively with methods and approaches where the extreme statistics are performed on the series of surface 
water effects. 

The first section of the chapter presents a framework of methods and approaches to calculation of the return 
periods of given surface water effects. The approach applied in Chapter 9 and selected approaches from 
literature are discussed within the presented framework. The chapter's second section deals with uncertainty 
in return period analysis. This includes a more general discussion of the distinction between inherent 
variation and uncertainty (as applied earlier in Chapter 9), a discussion on the major sources of uncertainty 
and how uncertainty should be handled on scenario comparison. 

Terminology 

A distinction will be made here between the terms "method" and "approach". The term "method" will here 
refer to aspects of the return period analysis detached from the environmental engineering problems to which 
it may be applied. In contrast the term "approach" will refer to the way in which the different methods may 
be applied to problems relating to the effects of combined sewer overflow. 

The term "model" will here be used to describe a collection of mathematical expressions aimed at imitating 
physical, biological or chemical systems. Most often reference will be to models that transform one or more 
inputs to one or more outputs as illustrated in Figure 10.2. The system could for example be an urban 
drainage system or a surface water system. Examples of models would thus be input-output black box 
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X 

I 
SYSTEM 

TRANSFORMATION 
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1 I 
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Figure 10.2 Distinction between transformation by reality and transformation by model simulation(s). 

123 



Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten GruM 

models, regression models, a model defined by the mixing equation or a complex hydraulic pipe flow model 
based on the Saint Venant equation. An input variable is not a prerequisite for a model. The probability 
distributions of rainfall characteristics and stochastic dynamic rainfall models are examples of models that 
have no tangible input. 

Models can be dynamic, accounting for a system's changes with respect to time, in which case they will be 
described as time based models. Alternatively, models may consider a complete rainfall or pollution event i 
a whole, in which case the term event lumped models will be used. An example of an event lumped model is 
one that simulates the total overflow volume as a function of variables such as depth and duration of the 
rainfall event. Chapter 4 of this thesis looked in detail at event lumped modelling of a combined sewer 
system. 

RETURN PERIOD ANALYSIS 

The return period of a given extreme event can be found as the reciprocal of the product of the probability of 
exceeding the given extreme value and the mean number of occurrences per year. This has been outlined in 
Chapter 9. However, there are many different methods and approaches that can be used to obtain the required 
probability. 

Methods 

Three different methods of obtaining the probability distribution of system or model outputs can be 
identified. These have been depicted in Figure 10.3. The last two methods make use of an explanatory 
variable, X, and a mathematical description of the system, namely a model. The model that is used in any one 
of these two methods could be an input-output black box model, a regression model or a deterministic 
surface and pipe flow model. The need for this sharp distinction between the return period analysis method 
and the model that accounts for the physical system has been emphasised earlier by Medina (1986). 

Return period and uncertainty analysis in the context of rainfall-runoff pollution modelling both deal with the 
transformation of distribution functions or error propagation. 

The sections that follow is an outline of different approaches to the practical application of the methods in 
the context of urban runoff pollution and a discussion on the use of the methods and approaches as they have 
been encountered in the literature. 

Method I: Direct fitting. 

Given a number of observations of the output variable, Y, a histogram can be plotted in order to view the 
empirical distribution of the data. The data can be fitted to statistical distributions and the precision of the 
parameter estimates thus found will depend on the amount of data available and on the number of parameters 
defining the theoretical distribution. 
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Method II: Moments transformation. 

Many parametric distributions can be characterised by their moments. The number of moments needed to 
characterise a probability distribution corresponds to the number of parameters in the parametric expressions 
of the cumulative distribution function or the probability density function. When dealing with linear systems 
for which the outputs can be described by linear transformations of the input series, the moments of the 
output series can be calculated as functions of the moments of the input variables. 

As a simple illustrative example consider the interdependent stochastic variables X\ and X2 with means and 
variances given by (/JX ,crx ) and (/JX̂  ,er̂ . ) respectively and with crosscorrelation given by px x,-

Let Y be the sum of the X\ and X2 then Fs mean and variance can be calculated as 

Mr=t*Xi+Mx2 (10-1) 

and 

a\ = <rJj + a2
X2 + 2pX{ ^ <7X, <JXI (10.2) 

respectively. The moments method is applicable only to linear problems. There are however many cases in 
which preliminary studies can be based on calculations using approximate linear formulations of non-linear 
relationships. 

The moments method (II) does not require that assumptions are made as to the type of distribution of the 
input and output series. The assumption made is that the distributions can be characterised by the same 
number of parameters as the number of moments transformed. In the above example the first two moments 
(i.e. mean and variance) are transformed. The underlying assumption is thus that the inputs and outputs can 
be appropriately described by two parameter distributions. If the input random variables are defined by 3, 4 
or 5 parameter distributions, similar expressions can be found for the third, fourth and fifth moments. It may 
also, in some cases, be necessary to include more than simply the crosscorrelation to describe the 
interdependency between input variables to a model. 

Method I I I: Analytical or numerical integration. 

Consider again the realisation xx of the random variable X and the realisation m(xx) of the random variable 
m(X). Suppose that the function is one-to-one mapping of range of Xto the range of m(xx). If the probability 
density function of the variable X is given by fx(x> then the cumulative probability distribution function of the 
variable m(X) can be expressed as 

Fm{x)(m(xx))=?rob[m(x)<m(xx)} = l ^ ^ x ^ u (10.3) 
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In the more general case where the function m is a many-to-one mapping the cumulative probability 
distribution function of the variable m(Xt, X2, Xi,...) can be expressed as 

^m(Xl. X2, X:i...)V
n\XX, ' XX2 '

 XX, > •••)) 

= Prob^X,, X2, X,,...)< m\xXi, xXi, xXj,...)] (10.4) 

m\*X, -*X2 •*!, •• 

where 9lm(x...) is the region of the X\ - X2 - Xi -... vector space for which m(X\, X2, X3, ... ) is less than o* 
equal to realisation m(xx\, xxi, xxi, ... ) and where fy, Xi,X-x,..\?X\ ixXi >XXT. >•••) is the joint probability 
density function of all the random variables that are inputs to the function m(...). 

Depending on the nature of the functions involved, (10.4) can be evaluated either analytically or numerically. 

DATA FORM 
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Numerical Integration 

Transformation of 
moments of input 
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Figure 10.3. Diagram summarising the three methods of obtaining return periods of effect. 
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If the inputs to the function m(...) are independent of one another or if they can be expressed as functions of 
each other then the integration in (10.4) can often be simplified to a multiple of univariate numerical 
integrations avoiding the multivariate integration problem. In some cases the joint probability density 
function could take a form that would allow an analytical solution to the integration. The better known 
numerical integration techniques used in water quality engineering are the univariate quadrature method and 
the multivariate Monte Carlo methods. 

The use of historic series is a special case of this method. Complete simulations are made using for example 
a historic rainfall series and the distribution of the output is thus found. The historic rainfall series, which 
may be either event lumped or as a time series, is in the context of this method an empirical distribution of 
the input variable. 

Approaches 

This section aims to formulate a framework within which the above methods could operate. Over recent 
years it has become increasingly clear that there is a need for an integrated systems approach in runoff 
pollution (and flooding) analysis and management (Lijklema, 1993b, Lijklema et al., 1993a, Harremoes et 
al., 1993, Tyson et al., 1993, Harremoes, 1994). 

Although the framework is valid for the integrated urban waste water system as a whole, only two parts of 
the system have actually been included in the present version of the framework. These are the combined 
sewer system and the surface waters. Including the treatment plant would give more possible combinations 
but the approach would essentially remain the same. 

Inputs to models may be in the form of time series or in the form of event lumped variables. This is 
illustrated schematically in Figure 10.4. Dynamic combined sewer models are examples of models that take a 
rainfall time series, a pluviograph, as input and produce a flow time series as output and thus could be 
symbolised by T—>J. Another example would be a dynamic surface water model with time series of 
combined sewer overflow flow rates and concentrations as input and minimum oxygen concentrations as 
output. However, due to the difference in time constants between the sewer system (in the order of minutes) 
and the surface water (in the order of hours), event lumped overflow characteristics such as total overflow 
volume and event mean concentration may be used. Thus the same mathematical model would be used with 
event lumped input and time series output (i.e. E—»T). This is often done when the dynamics of the input 
series are much faster than those of the system being modelled. 

Rainfall is the driving force and will always be the principal input to the kind of systems and occurrences 
studied. A historic rainfall series can be applied in the following four ways: 

1. used directly as simulation input, 
2. modelled dynamically in time and thereafter used to simulate synthetic rainfall 

used as simulation input, 
3. converted to an event lumped series (i.e. depth, duration, maximum intensity and so on), 
4. parametric distributions can be fitted to the event lumped series from 3. 

The possible uses of these four forms of rainfall data is illustrated in Figure 10.5 (left). Depending on the 
model used output from the combined sewer system will again be in the form of time series of in the form of 
event lumped data and will in turn consequently be appropriate for a surface water model taking the available 
form as input. The output of the surface water model will often be in the form of a time series such as the 
concentration of dissolved oxygen, which is then converted into an event lumped variable such as the 
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Time series to 
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Figure 10.4. The inputs and outputs to models used for return period analysis in integrated urban water 
management may be in the form of time series or event lumped values. 

minimum dissolved oxygen concentration or a one hour minimum. The event lumped data would then bd 
used to calculate empirical or parametric probability distributions from which the return periods can bo 
found. In cases where there is a sufficiently linear relationship between the event lumped rainfall series and 
the surface water effects, the moments method could theoretically be used. However, if such a linear 
relationship were present one would generally choose to carry out the statistics on the rainfall series and 
work with selected design rains. In general this is not the case. 

The approach applied in Chapter 9 is highlighted on the right in Figure 10.5. A historic rainfall series was 
first converted to an event lumped series of rainfall depth and duration, which were fitted to a joint 
lognormal distribution. Using sampled event lumped rainfall characteristics as input a model, similar to that 
presented in Chapter 4, was used to generate synthetic series of event lumped overflow characteristics:] 
volume, total and settled nitrogen, chemical oxygen demand (COD) and suspended solids. These event 
lumped variables were used as input to a dynamic surface water model calculating time series of thej 
dissolved oxygen concentration. From this series minimum oxygen concentrations were calculated and 
converted to empirical dissolved oxygen concentration. 

In spite of the fact that output distributions are generally found using Method in it is clear that there exists 8 
vast number of alternative approaches that can be followed when doing a return period analysis. 

Discussion 

The method of direct fitting has limited use in the context of return period analysis in urban runoff pollution. 
Pollution effects are most often very dependent on the quantity of polluting fluid either in terms of flow rate 
or in terms of total volume. The major input variable to runoff systems is rainfall, which is a meteorological 
variable. The long term characterisation of meteorological variables would require an observation period of 
about 30 years. Depending on the relevant return period and on the accuracy required, direct monitoring 
would have to take place for roughly the same length of time. Another clear disadvantage is that the method 
is inapplicable to ungauged sites and has no value for the evaluation of proposed system alterations of 
gauged sites. 
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Considering water quality variables such as event mean concentration the method of direct fitting may well 
prove more accurate than any of the other methods outlined. Event mean concentration has sometimes little 
relation to the event lumped rainfall characteristics (Chapter 4, Harremoes, 1994, Driver and Troutman, 
1989) and rainfall may barely be considered an explanatory variable. Thus even directly measured data from 
a relatively short period may give more accurate estimates than deriving a distribution from the probability 
characteristics of process inputs via fairly poor model simulation. 

The fitting of overflow event mean data to theoretical distributions has been done by Driscoll (1986), Brizio 
et al. (1989), Hall et al. (1990) and Bomboi et al. (1990). The mentioned articles do not present direct fitting 
as an alternative method in return period analysis but aim at revealing the shape of the probability 
distribution of overflow event mean concentrations. This is done with the intention of finding appropriate 
theoretical distributions because assumptions as to the distribution type must be made in order to apply 
methods II and III. Brizio et al. (1989) and Hall et al. (1990) show particular interest in the fact that 
pollutant's event mean concentration often fit better to bimodal or mixture probability distributions (i.e. with 
two peaks in the probability density function) and can therefore not be described by two parameter 
distributions such as the often used lognormal distribution (see also Results and Discussion in Chapter 3). 

Fitting parametric distributions to data is often part of a return period analysis both with methods I and III 
(and sometimes with method II). The actual curve fitting is most often done by methods of moments, 
maximum likelihood estimation or least square estimation. Brizio et al. (1989) found that maximum 
likelihood estimates gave the best results when fitting distributions with more than two parameters to event 
mean concentration data. The most important step of distribution fitting is the use of adequate statistical 
goodness-of-fit tests to compare fits made using different distributions. The most important of these are the 
chi-square test and the Kolmogorov-Smirnov tests. The methods of parameter estimation are outlined in 
Patel et al. (1976) and the goodness-of-fit tests are described in most textbooks on statistical distributions 
such as Hastings and Peacock (1975) and Hodge and Seed (1972). 

In the context of water resources analysis, Vogel (1986) presents the probability plot correlation coefficient 
test as a suitable goodness-of-fit test when dealing with theoretical distributions having only two parameters 
such as the normal, lognormal, extreme value and gumbel distributions. In water quality management the 
upper tail of the probability distribution can often have great influence on the decisions made. In this context 
Ochoa et al. (1980) have studied the tail behaviour of distributions of hydrological phenomena such as 
flooding. As in the cases of Brizio et al. (1989) and Hall et al. (1990), particular interest is paid to the 
relatively high probability density of the right (extreme) tail of the probability density functions. 

Special attention is needed if the model used (with the moments method) has a discontinuity in the form of 
threshold values such as the event based sewer overflow model in Chapter 4 or those used by Van der 
Heijden et al. (1986) and again by Benoist and Lijklema (1989). These references do not use a moments 
method and are therefore discussed later in this section. 

Up until the early 1980s efforts were geared towards finding the ideal design storm. In recognition of the 
inherent random characteristics of rainfalls a design storm was found on the basis of a chosen return period 
(Arnell et al., 1984). The authors note, that the result thus obtained, was identical to that obtained from long 
term simulations when dealing with linear model outputs such as the peak-flow found using the time-area 
runoff model. The design storm approach became less used in the combined recognition that during full pipe 
flow in part of a drainage system the drainage of rainfall was dominated by non-linear transformations and 
that it is the effects of an event that should set design criteria. The increased numerical calculation capacity 
also played a role in providing realistic alternatives. 
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Interestingly, the ideas of the design storm lies in a sense close to those of the transformation of the statistical 
properties of the rainfall, the moments. It is somewhat unfortunate that in water quality engineering the 
moments method of obtaining output statistics were presented first in conjunction with a non-linear system 
models that needed a number of controversial assumptions in order to be linearised (e.g. Warn and Brew, 
1980, Di Toro, 1984). The moments method is simple and well suited for obtaining fast results using evenl 
based linear or log-linear models. 
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Figure 10.5. Return period analysis approaches (only those having the extreme statistics carried out on the 
discharge effects). The flow scheme to the right illustrates the approach applied in Chapter 9. 

130 



Chapter 10 Discussion on Return Period Analysis and its Uncertainty 

Thus if using linear or log-linear regression models, such as those presented in Driver and Troutman (1989) 
and in Arnbjerg-Nielsen and Harremoes (1994a), the idea of a design storm, which was to some extent 
dropped in the early 1980s, would give similar solutions as both the long term simulation method and the 
integration method. Not forgetting the purpose of our anxieties, it is the surface water(s) that sets or ought to 
set pollution design criteria. When using linear or log-linear event based models, the moments of the output 
distribution can be calculated directly from those of the inputs without any simulation or integration needed. 
Note that for single input-single output models, to assume linearity would also be to assume identical 
distribution types for the input and output variables of the model. 

Two methodologies for studying the probability properties of stream quality due to runoff are presented in Di 
Toro (1984). The first method is an approximate moments transformation method and thus falls under 
method n. The second is a simplification of a multivariate integration problem to obtain multiple univariate 
integration and thus falls under method HI. Both methods use a dilution equation to describe the mixing of 
the stream flow and the sewer overflow. This mass balance equation is of fundamental importance to the 
evaluation of water pollution problems. 

For the sake of simplicity in illustration, consider the mixing equation (10.5) as an example of a system 
model. Let CR and QR be the event mean urban runoff concentration and flow rate, respectively. Let Cs and 
Qs be the event mean stream concentrations and flow rate, respectively. The downstream concentration is 
then given by the mixing equation (10.5) given by and illustrated graphically in Figure 10.6. 

CT = — ^ — C c + — 2 s — C R (10.5) 
QS+QR QS+QR 

V CR.QR 

Cs , Qs I ' CT , QT 

Figure 10.6. Diagram showing variables of 
the mixing equation (10.5). 

The event mean downstream concentration, Cr, is thus given as a function of four random variables. The 
objective is to obtain the probability density function of the event mean downstream concentration in order 
to evaluate the return period for exceeding given pollutant concentrations. A complete analytical solution to 
this problem does not exist and a thorough solution would thus be to resort to numerical multivariate 
integration techniques. 

Di Toro's first method is an approximate moments method (i.e. method E). Assumptions have to be made in 
order to apply the moments method to an non-linear transformation. The first assumption made is that both 
event mean concentrations and flow rates are lognormaly distributed. Whether this is a reasonable 
assumption or not, relates to the earlier referenced findings of Brizio et al. (1989) and Hall et al. (1990). The 
second, and perhaps more precarious, assumption is that both the concentrations, Cs and CR, are uncorrected 
to their respective flows, Qs and QR, and, therefore, to the dilution ratio. The only crosscorrelation 
considered is that between the two flow rates. A third assumption is that the runoff flow rate, QR, is small 
compared to upstream flow rates, Qs. In practice combined sewer overflows discharge rate is often 
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comparable to, or even larger than, the recipient flow rates. The second and third assumptions are needed to 
linearise the dilution problem so that a transformation of moments method can be applied. 

As mentioned earlier Di Toro's second method is a simplification of a multivariate integration problem to 
multiple univariate integrations which are solved numerically using quadrature methods. Confronted with a 
multivariate integration problem, it is a good idea to try to simplify the problem first to see if other solutions 
can be found or if the problem can be broken down into a series of univariate integrations (Press et al., 
1992). Di Toro's second method is just such a simplification. The assumptions made in this second method 
are much fewer than those made in the first approximated moments transformation method. The input 
probability distributions and the conditional probability distributions of certain inputs with respect to others 
are however still assumed to be lognormal distributions. The simplifications made in this second quadrature 
numerical integration solution would however most likely be possible for a number of other parametric 
distributions. It could, however, be argued that for fast event based models the computation time gained by 
using the quadrature numerical integration rather than crude Monte Carlo integration is insignificant 
compared to the loss of generality in assuming variable independence and in fixing the distributions types. 

In a generally positive discussion paper Novotny (1985) emphasises certain limitations concerning the 
applicability of Di Toro's approach. The first two points made, relate directly to general limitations of the 
dilution equation itself. Local conditions must be such that the substance in question can be considered 
conservative and, dispersion and mixing must be such that complete mixing is a reasonable approximation. 
The third point also relates to the dilution equation but is of greater interest to the return period analyst 
Novotny (1985) illustrates that in slow mixing waters the attenuation of high frequency events is greater. In 
practice this would affect the probability distribution of the downstream water and thus the quality of the 
approximation would depend on the actual speed of mixing. 

Roesner and Dendrou (1985) accuse Di Toro's methodology of totally ignoring cause-effect relationships in 
the modelling approach. In a discussion paper Roesner and Dendrou (1985) assume that the probabilistic 
characteristics of the four input variables, flow rate and concentration of the runoff and upstream respectively 
have to be obtained by measurement. Roesner and Dendrou (1985) seek parameters relating the runoff flow 
rate and pollutant concentrations to the characteristics of urban runoff area such as in the model STORM. Di 
Toro presents two simplified solutions to a surface water quality problem. As outlined more clearly later on 
in this chapter the probability characteristics of the flow rate and concentration of the input urban runoff 
could well have been computed using dynamic models such as STORM, MOUSE and Hydro Works. This 
could be done either by simulation using historic rainfall series or by numerical integration using the 
statistical properties of the rainfall. 

As mentioned earlier, Di Toro (1984) presents two approximate methods of calculating the probability 
characteristics of the dilution equation output based on those of the input. Criticism was unfortunately 
directed more to the use and validity of the dilution equation than to the presented methods and 
approximations. 

Garboury et al. (1987) and Strecker et al. (1990) have adapted Di Toro's approximate moments method to a 
general and practical use in highway storm water runoff studies in the USA. The latter authors have 
incorporated the method as a first level analysis in a highway water quality software package. Phillips (1989) 
uses the method in conjunction with a model that characterises the surface water's flow further downstream. 

Since the early 1980s the method of long term simulation using historic rainfall series has become one of the 
most used methods in urban runoff return period analysis. The method is most often used in connection with 
computationally fast time-based runoff models but is also used with event based models. Arnell et al. (1984) 
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present long term simulation as an alternative in comparison to the then used methods of design storms. The 
method had however been presented in the context of urban runoff pollution as early as Geiger (1975). 

Johansen et al. (1983) used long term simulation in conjunction with a time based modified version of the 
time-area method to compute overflow series from which the probability characteristics of the overflow can 
be calculated. The authors then point out that these statistics can be used to generate the input for a surface 
water model. The authors have further developed graphs and tables meant for manual calculation of both 
annual and extreme discharges on the basis of interceptor capacity and concentration time of the runoff 
system. 

In a four-stage calculation-detail approach to acute runoff pollution studies, Harremoes et al. (1983) 
suggested long term simulation with a time based unit-hydrograph model determined using the time-area 
method as the third level of detail. The fourth level of detail uses iterative hydraulic solutions (i.e. the full 
Saint Venant equations), whose computation time compels the engineer to retreat to the principle of return 
period analysis on the inputs (rainfall) rather than on the outputs (the effects). The fourth stage is a 
compromise between precision and computation time. 

Fischer and Buczek (1988) used long term simulation as a reference point when studying the output's 
dependency on the definition of "a rainfall-runoff event" when using an event based model. 

The information contained in event based historic rainfall or overflow series is equivalent to that contained 
in the series' empirical probability distributions. If statistical tests suggest that the distributions could be 
adequately described by two or three parameters then the use of the empirical distribution or the equivalent 
event based historical series could well be considered as a case of over-parameterisation. The use of event 
based historical series could thus be considered as using thousands of parameters to describe phenomena that 
could be described using only two or three parameters. Analogous reasoning could lead to similar 
suggestions concerning the use of time based historic rainfall and overflow series. No literature has been 
found dealing with the relevance of either of these problems. Long term simulation with both event based 
and time based historic data series is a well established technique and will probably continue to form the 
basis of urban runoff return period analysis for some time into the future. 

The simplified numerical integration method presented in Di Toro (1984) has been discussed earlier in this 
chapter. A few other studies applying the integration method (III) will be briefly outlined below. 

Working with event based urban runoff models Van der Heijden et al. (1986) and Benoist and Lijklema 
(1989) have used simplified integration formulations comparable to Di Toro's second method. There is 
however one very important difference between Di Toro's second method and the method presented by 
Benoist and Lijklema (1989). The latter use the empirical distributions of rainfall duration and intensity as 
inputs. A method is then presented in an attempt to compensate for the fact that the duration and intensity are 
not independent. As mentioned earlier the information contained in the empirical cumulative distribution 
functions is identical to that which is contained in the historic series on which they are based. The result 
obtained, the computation time and data storage needed would be similar to that of a long term simulation. 
One of the essential advantages of the analytical or numerical integration method (HI) is that the probability 
characteristics of the output can be generated (in a relatively small number of model runs) from a limited 
number of parameters that describe the probability characteristics of the inputs. 

Akan (1988) developed a non-linear event based accumulation-washoff model for urban runoff surfaces. The 
inputs to the model are the time passed since last rainfall and the rainfall depth (volume). Using the model 
the author presents an integral expression equivalent to that in (10.4) but with the relevant integration region 
specified. The author does not attempt to simplify the integration problem but envisages that this will have to 
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Figure 10.7. The information sought during return period analysis (left) and the analysis of its uncertainty (right). The 
curves give (fictitious) return periods for minimum values of an environmental variable of interest. 

be solved numerically. The joint probability density function of the time passed since last event and the 
rainfall depth, which should be estimated from historic rainfall series, is foreseen to "have a rather complex 
form". In the example, Akan (1988) has, for illustrative reasons, used a very simple but unrealistic joint 
probability density function. 

The integration method (HI) is used by Cadavid et al. (1991) in a flood-frequency analysis with a kinematic 
wave model. The authors assume that the joint probability density function of the rainfall intensity and 
duration follow a bivariate exponential distribution. After accounting for infiltration, a fairly complex joint 
probability density function for an effective duration and effective intensity results. The integration problem 
is solved numerically. 

In the earlier mentioned article by Warn and Brew (1980) the results of Monte Carlo integrations are used as 
a reference point in evaluating the presented approximated moments method. The method was used to solve 
problems of the dilution type. 

The response time of the surface water stream, to inputs of rainfall, is often several days or weeks if the 
stream is dominated by the entries from subsurface flow (Duysings et al., 1983). This would mean that even 
after corrections for seasonality of the stream characteristics, using the event definition used for the runoff 
model would result in very high autocorrelations in the event series of the stream characteristics. The 
moments method (II) or the integration method (HI) used with an event lumped surface water quality model 
would require some method of handling this "overlapping of events". One way would be to estimate the 
parameters of a distribution for the time between consecutive sewer system events and to incorporate this in 
the moments transformation or numerical integration. An alternative could be the use of what in this chapter 
is called an event-to-time model for the surface water response. This could either be done with historic series 
using the long term simulation method or by characterising the probability distribution of the time between 
events and then incorporating this into the integration method (i.e. both method III). 

An event-to-time model is in this chapter defined as one that has a dynamic description of the physical 
system with at least one of its inputs being arranged as an event series. Examples could be the great variety 
of runoff models that used rectangular, triangular, bell-shaped, trapez rainfall profiles to define the shape of a 
design storm input (Arnell et al., 1984). Event-to-time runoff models have not been used to any significant 
degree since the beginning of the 1980s but are still common in the evaluation of surface water response to 
event based pollution runoff input. This is because the time constants of rainfall variations are comparable to 
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Figure 10.8. Return period uncertainty can be considered in terms of the uncertainty in the return period for a 
given value of the environmental variable (left) or as a uncertainty in the environmental variable for a given 

return period (right). 

those of most urban drainage systems whereas the characteristic time constants of combined sewer overflow 
is often shorter than those of the processes controlling the relevant receiving water variables (e.g. dissolved 
oxygen). An example of an event-to-time model would be the surface water model used by Portielje et al. 
(1996) where the runoff characteristics of total event overflow volume, event overflow duration and event 
mean concentration are used as input to a dynamic river water quality model. 

UNCERTAINTY IN RETURN PERIOD ANALYSIS 

In the previous chapter it was emphasised how a distinction should be made between inherent variation and 
uncertainty and a methodology for doing this was presented. The framework and discussion above dealt only 
with handling of inherent event to event variation resulting in return period curves as shown in Figure 10.5 
(left). This section contains a general discussion on uncertainty in return period analysis aimed at placing the 
uncertainty analysis presented in the previous chapter in a broader perspective. What is understood by 
uncertainty in return period analysis is illustrated graphically in Figure 10.7 (right). 

Return period uncertainty can be expressed in terms of an uncertain return period for a given level of the 
environmental variable or the same uncertainty can be expressed in terms of an uncertain level of the 
environmental variable for a given return period. These two ways of expressing the same information are 
illustrated in Figure 10.8. Which representation is most appropriate will depend on the decision to be made. 
In some cases it may be a good idea to evaluate both. 

Relevance of Uncertainty 

The presence of uncertainty in return period analysis is clear. The extent, relevance and consequences of the 
uncertainty may be less clear. Management decisions concerning effects of acute pollutants or sewer flooding 
are often supported by return period curves to clarify the extent of the problem and the amelioration that can 
be expected after proposed modifications. If the uncertainty associated with such return period curves is high 
then the uncertainty should be presented together with the return period curve in the form of a standard 
deviation or confidence band. 
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Consider the example depicted in Figure 10.9. The uncertainty of the minimum concentration relating to a 
given return period has been found and the upper and lower 95% confidence limits are indicated as dashed 
lines. Assuming that a major design criteria is related to the return period of a minimum concentration of 4 
mg/1, the graph in Figure 10.9a appropriately indicates that the expected return period this value is 2 years 
and that the lower and upper confidence limits are 1.5 and 3.6 years respectively. Figure 10.9b illustrates 
how a criterion related to the return period of a minimum concentration of 3 mg/1 could have an expected 
return period of 5 years, the lower confidence limit 2.6 years and no upper confidence limit. The investor will 
then have to be content with the somewhat awkward situation of not knowing whether the intended 
improvement will lead to a detrimental oxygen concentration every 2'/2 years or every 250 years. Note thai 
for larger return periods, the occurrence of an upper confidence limit at infinity may sometimes say more 
about low rate of change of the effect for increasing return periods than about the absolute magnitude of the 
uncertainty of the effect for a given return period. 

Uncertainty in Rainfall Characterisation 

The main dynamic inputs to urban runoff models are the rainfall variables. It is evident that the accuracy of 
rainfall description highly depends on the length of the monitoring period. Assuming that trends due to foe 
example climatic change or urbanisation are small, the certainty with which one can predict a rainfall 
variable's value (depth or intensity) associated with a given return period depends largely on the ratio 
between the length of monitoring period and the return period in question. A detailed non-parametric study 
of the uncertainties in the characterisation of rainfall has been made by Arnbjerg-Nielsen (1993) and further 
reported in Arnbjerg-Nielsen et al. (1994b) and Harremoes (1994). The data used originated from 58 rain 
gauges in Denmark that had been monitored for durations of 2 to 14 years. Using a resampling method, 
Arnbjerg-Nielsen (1993) determines the magnitude of the uncertainties associated with a given return period. 
For a rain gauge with an observation period of about 13 years a design depth for a return period of two years 
is found to have an expected value of 30 mm with 95% confidence limits from 23mm and 40mm. Owing to 
the relatively short observation period of only 13 years and owing to the small rate of change of the rainfall 
depth with respect to return period, it is (at the referenced gauge) only realistic to consider the upper 
confidence limit of the return period for rainfall depths that have expected return periods of less than one 
year. For longer periods the uncertainty simply becomes too large. 
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Figure 10.9. Fictitious return period curves for a surface water's minimum dissolved oxygen concentration 
(see text for details on a. and b.). 
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Similar results were obtained during the uncertainty analysis of the previous chapter for which the rainfall 
results have been reprinted in Figure 10.10. Here the parametric joint lognormal distribution was fitted to 
rainfall depth and duration and variances of the parameters estimated from the data using a jack-knife 
estimation procedure as described in Chapter 9. For the studied rainfall series the return period of an event of 
34 mm had an expected value of 2 years and to lie between 0.55 years (i.e. almost twice a year) and 3.0 years 
(estimated 50% confidence limits). Equivalently the two years event was found to have an expected depth of 
about 34 mm with estimated 50% confidence limits at 31 mm and 52 mm. 

Model Uncertainty 

In urban runoff pollution problems, uncertainties in transformation are most often associated with the model 
parameter uncertainties. These could arise in the determination of the initial rainfall loss, the runoff 
coefficient, the conduit roughness, quantity of the pollutants on the surface, dry weather flow volumes and 
concentrations and many others. 

Traditional approaches to the evaluation of the effects of uncertainties has been to quantify the uncertainty of 
the models output, m(X), with respect to the uncertainties of the inputs and of the model parameters. 
Structural uncertainties of the model such as those associated with conduit geometry, spatial distribution of 
rainfall, rainfall movement, various sediment accumulation expressions and other unknown uncertainties are 
ignored. The confidence range thus found is the range within which the 'true' value of the model's predicted 
output can be expected and not the confidence range within which the 'true' value of reality can be expected. 
The uncertainty that ought to be of interest is uncertainty of the model's ability to predicted the actual 
system's output. The distinction here between system and model transformation has been defined earlier in 
Figure 10.2. 

This is one of the most essential reasons why stochastic modelling presents better options for the handling of 
uncertainties in risk analysis of urban runoff pollution problems. The stochastic models may well include 
conceptual and physical relationships rather than be purely empirical. The potentials of stochastic modelling 
in obtaining improved handling of uncertainties in urban runoff pollution have been emphasised by 
Harremoes et al. (1993), House et al. (1993) and Harremoes (1994). Further reasons for use stochastic 
models are given below. 
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Figure 10.10. These results from Chapter 9 showing 50% confidence limits for the return period of rainfall 
depth demonstrate the rainfalls substantial contribution to the overall uncertainty. 
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Handling Uncertainty 

An uncertainty analysis can be carried out analogous to the return period analysis method III (and in some 
very simple case as method II). This is most often done using Monte Carlo integration techniques such as has 
been done by Pedersen (1993) (extensively discussed by Harremoes, 1994). For a two year return period, the 
variability (coefficient of variance) of fluid quantities was found to be in the order of 30% and the variability 
of the pollutant concentrations was found to be in the order of a factor two (Harremoes, 1994). The studied 
uncertainties included those of rainfall characterisation. 

Portielje et al. (2000) present two alternatives to using crude Monte Carlo integration in environmental risk 
and uncertainty analysis. The first method combines a first order reliability method with directional 
simulation using importance sampling and the second method combines it with Latin hypercube simulation. 
For extreme events with exceedance probabilities smaller than 0.1, the authors found that both methods were 
more efficient in terms of the number of model evaluations and more accurate than the crude Monte Carlo 
integration. The methods have been applied in the context of oxygen depletion in a sewer overflow surface 
water in Portielje et al. (2000). 

Return period analysis can be carried out using either deterministic or stochastic models. As discussed in 
detail earlier in the thesis the underlying assumption during deterministic estimation is that only observation 
error is present. During simulation as part of the return period and uncertainty analysis this observation error 
is generally not simulated. However, during stochastic modelling the system is itself assumed to behave 
partly in a random manner. This random variation is simulated during the return period and uncertainty 
analysis and is treated as an inherent random variation of the system. In general one would therefore expect 
the deterministic models to have a tendency to underestimate the frequency of extreme occurrences. This is 
another reason why efforts should be made to use stochastic models for return period analysis. 

Uncertainty in Scenario Comparison 

Let (JUA, <JA) and (PB, CTB) be the expected values and the standard deviations of the minimum dissolved 
oxygen concentration with a return period of one year for the modelled scenarios A and B respectively. One 
may often plot the mean and confidence range as has been done in Figure 10.11. Assuming normality the 
95% confidence range (± 2d) has been indicated for each scenario. 
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Figure 10.11. Diagram showing the expected value and range of the minimum dissolved oxygen 
concentration with a return period of one year for the modelled 

scenarios A and B respectively (fictitious example). 
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In decision making one would be interested in knowing whether scenario B is significantly better than A and 
if so (assuming B to be more costly) with what probability is B at least a given absolute amount or 
percentage better than A. 

Looking at the range overlaps in Figure 10.11 one may be tempted conclude that a difference between the 
scenarios A and B cannot be confirmed with the available tools and data. However, the expected values and 
their respective standard deviations are most often not independent. The two probability distributions of the 
minimum concentrations for a given return period have most often been calculated using the same models 
with a large number of common parameters and inputs. Consequently much of the uncertainty is common to 
both estimates. 

Consider two random variables YA and YB with mean and standard deviation, (juA, <rA) and (fia, &B) 
respectively. The variable of interest is however their difference YB.A = YB - YA whose mean and standard 
deviation can be expressed as 

MB-A=MB~MA <10-6) 

°2B-A=<rB+°A-2PA,B<rA<TB <10-7) 

where pA,B is the correlation coefficient between YA and YB- Thus it is clear that there is simply not enough 
information available if the interdependence is not available. 

In many cases the output probability distributions for the two scenarios have been generated by doing Monte 
Carlo simulations with the same model having some different inputs or different input distributions. A great 
number of the uncertainties are often the same for both scenarios. The exact same random sampled 
realisations from the input uncertainty distributions should thus be used for both scenarios, which would 
result in paired outputs from A and B. For each pair the difference should be calculated. The distribution of 
these differences should then be used to answer question concerning the comparison of A and B. A similar 
procedure should be used for cases where the interest is in the ratio rather than the difference between the 
scenarios. 

Note that the fact that a given source of uncertainty is the same for both scenario A and B does not mean that 
it can be omitted in the comparative uncertainty analysis. The transformation of the uncertainty by the model 
(and in reality) will most often depend on the specific conditions of the scenario. 
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CONCLUSION 

Return period analysis of the effects of urban runoff pollution can be performed in several different ways and 
it is important to be conscious of this in selecting approaches for a given purpose. A framework that 
encompasses most methods and approaches has been presented and discussed. The approach to return period 
analysis implemented in Chapter 9 was discussed in the perspective of the presented framework. Practice and 
water quality engineering tools ought to master a selection of these methods and approaches aimed at 
different levels of effort corresponding to different stages of an urban water management project. 

The uncertainty associated with the return period curve of an environmental variable such as dissolved 
oxygen is large and its quantification would improve the grounds for decision making. In quantifying return 
period uncertainty a distinction should be made between inherent variation resulting from randomness of the 
system described and uncertainty resulting from our lack of knowledge. Though the uncertainty in return 
period analysis is large the uncertainty on scenario comparison is much lower and ought to be evaluated 
separately. 

In return period and uncertainty analysis there are two main reasons why stochastic models incorporating 
physical, chemical and/or biological features should be preferred compared to deterministic models. These 
are: 

• to avoid the bias on parameter estimates that results from deterministic calibration 
(see Chapter 5 & 8), 

• to avoid underestimation of the frequencies of extreme occurrences due to the 
exclusion of random behaviour of the system (see page 137). 
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SUMMARY 

Since the construction of wastewater treatment plants combined sewer overflows have become an increasingly 
important limitation to the quality of the surrounding surface waters. Over the years urban water resources have often 
been so modified by anthropogenic activity that water quality management requires an integrated approach both at an 
evaluation and an investment level. Effects of acute pollutants, such as oxygen depletion caused by excessive organic 
material, should be evaluated on the basis of their return periods. Models of the relevant water systems are then used 
both to calculate the present return periods and to predict those of proposed amelioration projects. In traditional 
deterministic modelling of combined sewer systems there has been a tendency to continuously add new processes to 
the model structure in an attempt to improve the quality of the predictions made. This has often resulted in many 
model parameters with unknown values and the inclusion of processes much less significant than others that are not 
known or well understood. An alternative approach is to describe only the most essential processes and to include 
stochastic terms to describe the remaining variation. The present study has focused on comparing and contrasting 
deterministic and stochastic approaches to modelling of urban runoff pollution and water quality in general. 
Methodologies surrounding the application of models in return period analysis and its uncertainty have also been 
studied. 

A multivariate analysis was made on event mean concentrations data sets from three Dutch and two Danish 
combined sewer catchments (Chapter 3). This was done to examine the underlying structure of variations in event 
mean concentrations. Results confirmed expectations that the most pronounced common variations relate to the 
groups of particulate pollutants and dissolved pollutants. The distribution of the principal factors clearly reconfirmed 
the bimodal or mixed distribution that have earlier been reported for event mean concentrations of particulate 
substances. 

Non-linear event lumped models were developed to predict combined sewer discharged volume and event mean 
concentrations as a function of rainfall variables (Chapter 4). The aim was to combine basic understanding of the 
physical system with information held in the data. The discharged volume was well described with a wetness 
dependent runoff coefficient. Seasonality revealed initially by the data and then described using an empirical "cut-off' 
sinusoidal expression exhibited a remarkable agreement with average monthly open water evaporation data. Using 
open water evaporation as an input variable to the model improved the prediction whilst at the same time reducing the 
number of model parameters. The event lumped rainfall variables were only able to explain very little of the 
variations in the event mean concentrations of the combined sewer overflow and subsequently some of the watef 
quality variables were characterised by their probability distributions alone. 

An analysis of the underlying assumptions made during mathematical modelling of water systems in time has resulted 
in a new portrayal of the essential differences between deterministic and stochastic modelling (Chapter 5). Thd 
implicit assumption made during deterministic modelling is that our model gives a perfect description of reality and 
that all deviation between modelled and observed values is a result of observation error. During stochastic modelling 
the implicit assumption is that the model only gives a partial description of reality and that deviation between 
modelled and observed values results from unexplained random behaviour of the system being modelled as well. 
Having isolated the core differences between deterministic and stochastic modelling allows for more interchange of 
methods and approaches, thus enhancing the quality of water and water quality modelling. Knowledge of the 
dominating physical, chemical and biological processes of our system can be built into the traditionally empirical 
stochastic models. Parameter statistics, experimental design, empirical elements and concepts of identifiability can be 
applied to deterministic models. Quantitative a priori knowledge of given model parameter values can be 
incorporated into the estimation procedure. In the long term it is the aim that the selected approach will depend more 
on the appropriateness of the assumptions made (viewed also in relation to the available resources and the possible 
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consequences of a poor model) than on background of the modeller, as is often the case today. Parameters of a 
combined sewer rainfall-runoff model have been estimated both in a deterministic and in a stochastic model to study 
and illustrate the main points of the chapter. 

Using a stochastic differential equations approach water quantity and quality models for a combined sewer system 
were formulated and their parameters estimated (Chapter 6). The aim was to evaluate the potentials and limitations of 
this approach where the sewer system is defined by a set of differential equations that is solved stochastically in 
continuous time. Parameter estimation was possible for the water quantity model and a very small observation error 
confirmed the relevance of a stochastic modelling approach. Results from the water quality modelling suggest that 
more work is needed in order to fully appreciate potentials and limitations of the approach. 

A non-linear random coefficient model to describe suspended chemical oxygen demand in a combined sewer system 
was identified and its parameters were estimated (Chapter 7). In random coefficient modelling certain selected 
parameters are assumed to vary from event to event and a value for these parameters is estimated for each event. In 
the present study a critical soft threshold flow at which resuspension begins is assumed to be a random coefficient. 
Although there is a lack of data in the period before overflow begins, the results suggest that there is a high potential 
for random coefficient modelling in urban runoff pollution both as an alternative to and in combination with 
stochastic modelling. The recipient water quality model used in the uncertainty analysis of Chapter 9 was also 
estimated using this approach. 

Methods and approaches studied in the preceding chapters have been discussed in a broader perspective whilst 
drawing attention to some interesting developments within the field of water and water quality modelling (Chapter 8). 
Structuring our physical, chemical and biological theory in stochastic state space models we acknowledge that the 
deviation between "what we model" and "what we see" is the result of both unexplained random behaviour of the 
system being modelled and observation error. This acknowledgement will reduce bias in parameter estimates and 
therefore improve the models' abilities to predict and extrapolate in time and to new circumstances. Although 
stochastic state space modelling using the Kalman filter had its main entry into hydrology and water quality modelling 
in the late 1970s, this was mostly with empirical formulations based entirely on observed data and therefore of little 
use to the engineer wishing to examine and compare alternative scenarios. To avoid over-parameterised models with 
highly interchangeable parameters it is important that model structure is identifiable on the basis of data being used to 
estimate the model parameters. The a posteriori estimation criteria incorporating quantitative a priori knowledge 
present an interesting formalised method of introducing the engineer's intuition and experience into the parameter 
estimation procedure. 

A new methodology for evaluating the uncertainty of a return period analysis is presented and exemplified in an 
integrated approach to urban runoff pollution involving models of both the combined sewer and the receiving water 
(Chapter 9). The underlying hypothesis of the presented methodology is that a distinction has to be made between 
inherent variation and uncertainty resulting from a lack of knowledge. This distinction is attained through embedded 
error propagation, which was here implemented as Embedded Monte Carlo Simulations. It is argued that pooling 
uncertainty with inherent variation systematically increases the frequency of extreme events resulting in return period 
curves with little or no engineering value. The study also demonstrates that efforts are needed to implement faster 
alternatives to the crude Monte Carlo simulations to reduce computation time, which would be necessary for use in 
practice. 

A review of methodologies surrounding return period analysis in urban runoff pollution and its uncertainty was 
carried out with the aim of viewing the new methodology presented in Chapter 9 in its broader perspective (Chapter 
10). Three principally different methods of calculating return periods of given effects have been described: direct 
fitting, moments transformation and analytical or numerical integration. Combining these methods with the different 
types of models (in terms of input and output being time series or event lumped variables) results in a framework 
encompassing most approaches to return period analysis. Uncertainty in engineering work becomes particularly 
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relevant when design criteria are based on return periods of very rare events. Because they are rare the precision with 
which they are described is poor and cannot be ignored when large investments and consequences are at stake. A1 

distinction should be made between inherent variation and uncertainty due to a lack of knowledge. Furthermore, an 
effort should be made to use stochastic models in return period analysis to reduce bias resulting from inappropriate 
assumptions during parameter estimation and to avoid underestimation of the frequencies of extreme occurrences due1 

to the exclusion of certain inherent random behaviour. 
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SAMENVATTING 

Sinds de aanleg van rioolwateizuiveringsinstallaties zijn overstortingen uit gemengde rioolstelsels in toenemende 
mate beperkend geworden voor de kwaliteit van de omliggende oppervlaktewateren. In de loop der jaren zijn de 
stedelijke wateren dermate gewijzigd door menselijke ingrepen dat het waterkwaliteitsbeheer nu een integrale 
benadering vereist met betrekking tot het functioneren van het systeem en de te investeren kosten. De gevolgen van 
op korte termijn werkende verontreinigingen, zoals zuurstofuitputting door overmatige belasting met organische 
stoffen, dienen te worden geevalueerd op basis van hun hemalingstijd. Modellen van het betreffende watersysteem 
worden dan gebruikt om zowel de huidige hemalingstijd te berekenen alswel die na uitvoering van voorgenomen 
verbeteringsprojecten. Bij de traditionele deterministische modellering van gemengde rioolstelsels is er een neiging 
geweest om steeds meer nieuwe processen aan de modelstruktuur toe te voegen in een poging om de gemaakte 
voorspellingen te verbeteren. Dit leidde dikwijls tot veel parameters met onbekende waarde en het opnemen van 
processen die veel minder van belang zijn dan andere, die onbekend zijn of slecht begrepen. Een alternatieve 
benadering is om alleen de meest wezenlijke processen te beschrijven en de resterende variatie in stochastische 
termen op te nemen. 
De onderhavige studie concentreert zich op een vergelijking en tegenoverstelling van de deterministische en 
stochastische benaderingen in het modelleren van de verontreiniging door afvloeiing uit het stedelijke gebied en van 
de resulterende waterkwaliteit. Ook methodologieen rond modeltoepassingen om herhalingstijden te analyseren en de 
onzekerheid daarin te bepalen zijn bestudeerd. 

Een multivariate analyse van de over de overstortings gebeurtenissen gemiddelde concentraties werd gemaakt van de 
gegevensbestanden van drie nederlandse en twee deense gemengde rioleringsgebieden (Hoofdstuk 3). Dit werd 
gedaan om de onderliggende struktuur van variaties in de per gebeurtenis gemiddelde concentraties te achterhalen. De 
resultaten bevestigden de verwachting dat de meest uitgesproken voorkomende variaties betrekking hebben op de 
groepen particulaire en opgeloste verontreinigingen. De distributie van de meest bepalende fectoren herbevestigde 
vroegere bevindingen dat bimodale of gemengde distributies de gemiddelde concentraties van particulaire stoffen 
kenmerken. 

Niet-lineaire modellen werden ontwikkeld om per overstort gebeurtenis het totale volume en de gemiddelde 
concentraties daarin te voorspellen als functie van variabelen die de neerslag kenmerken (Hoofdstuk 4). Het doel 
hievan was om het basis begrip van het fysieke systeem te combineren met de informatie die in de meetgegevens 
schuilt. Het overstort volume werd goed beschreven met een vochtigheidsindex. De seizoen variatie die in eerste 
instantie uit de gegevens naar voren kwam en vervolgens werd beschreven met een empirische sinusvormige 
uitdrukking toonde een opmerkehjke overeenstemming met gegevens van de maandgemiddelde open water 
verdamping. Gebruik van deze open water verdampings gegevens als een invoer grootheid van het model verbeterde 
de voorspelling terwijl tegelijkertijd het aantal model parameters verminderde. De per gebeurtenis samengevoegde 
neerslag gegevens konden slechts in zeer beperkte mate de variatie in de per gebeurtenis gemiddelde concentraties 
verklaren. Daardoor konden sommige waterkwaliteits variabelen alleen door hun waarschijnlijkheids distributie 
worden gekenmerkt. 

Een analyse van de achterliggende vooronderstellingen die worden gemaakt bij de wiskundige modellering in de tijd 
van water systemen leidde tot een nieuw beeld van de essentiele verschillen tussen deterministisch en stochastisch 
modelleren (Hoofdstuk 5). De impliciete aanname bij deterministisch modelleren is dat het model een perfecte 
beschrijving geeft van de werkelijkheid en dat alle afwijkingen tussen gemodelleerde en waargenomen waarden het 
gevolg zijn van waarnemingsfouten. Bij stochastisch modelleren is de impliciete aanname dat het model slechts een 
gedeeltelijke beschrijving van de werkelijkheid geeft en dat het verschil tussen gemodelleerde en waargenomen 
waarden mede wordt veroorzaakt door onverklaard toevallig gedrag van het systeem. Door de kenmerkende 
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kernverschillen tussen deterministische en stochastische modellen zo te identificeren ontstaat de mogelijkheid tot 
meer uitwisseling van methoden en benaderingen hiertussen. 
Daarmee verbetert het modelleren van water en van waterkwalitieit. Kermis van de dominante fysische, chemische en 
biologische processen in het betreffende water systeem kan worden verwerkt in de gewoonlijk empirische 
stochastische modellen. Parameter statistiek, concepten van "experimental design", empirische elementen en 
begrippen betreffende identificeerbaarheid kunnen worden toegepast in deterministische modellen. Kwantitatieve a 
priori kermis omtrent bepaalde model parameters kan worden opgenomen in de schattings procedure. In de verdere 
toekomst is het de bedoeling dat de te kiezen benadering meer afhangt van het passend zijn van de gemaakte 
vooronderstellingen (mede gezien de beschikbare hulpbronnen en de mogelijke gevolgen van het gebruik van een 
pover model) dan van de achtergrond van de modelleur, zoals nu vaak het geval is. De parameters van een neerslag-
afvoer model voor een gemengd rioolstelsel werden zowel in een deterministische als een stochastische versie 
geschat, teneinde de belangrijkste punten uit dit hoofdstuk te bestuderen en te illustreren. 

Gebruik makend van stochastische differentiaalvergelijkingen werden water-kwantiteits en kwaliteits modellen voor 
een gemengd rioolstelsel geformuleerd en hun parameters geschat (Hoofdstuk 6). Het doel was de mogelijkheden en 
beperkingen vast te stellen van deze benadering waarbij het rioolstelsel wordt gedefinieerd door een set differentiaal 
vergelijkingen die stochastisch in het tijdsdomein worden opgelost. Voor het kwantiteitsmodel bleek parameter 
schatting mogelijk en een heel kleine waarnemingsfout bevestigde de toepasselijkheid van de stochastische 
benadering. De resultaten van het modelleren van de water kwaliteit duidden er op dat meer werk nodig is om ten 
voile de mogelijkheden en beperkingen van deze benadering te waarderen. 

Een niet-lineair "random" coefficient model voor de beschrijving van het gesuspendeerde chemisch zuurstof verbruik 
(CZV) in een gemengd rioolstelsel werd geidentificeerd en de parameters daarin werden geschat (Hoofdstuk 7). Bij 
"random" coefficient modellering wordt aangenomen dat bepaalde, geselecteerde parameters van gebeurtenis tot 
gebeurtenis verschillende waarden kunnen aannemen. Voor elke gebeurtenis afzonderlijk wordt deze waarde geschat 
In de onderhavige studie werd een critische stroming, waarboven resuspensie geleidelijk toeneemt, verondersteld een 
"random" coefficient te zijn. Hoewel er een tekort is aan gegevens voor de periode voorafgaande aan de overstorting, 
suggereren de resultaten toch dat er goede mogelijkheden zijn voor de toepassing van random coefficient modellering 
van stedelijke vuilwater systemen; zowel als een alternatief voor alsook in combinatie met stochastische modellering, 

De bestudering van de methoden en benaderingen beschreven in de voorgaande hoofdstukken worden in een breder 
perspectief besproken waarbij tevens de aandacht wordt gericht op een aantal interessante ontwikkelingen op het 
terrein van het modelleren van water kwantiteit en kwaliteit (Hoofdstuk 8). Door onze fysische, chemische en 
biologische theorie te structureren in stochastische toestands modellen wordt erkend dat de afwijking tussen model en 
waameming het gevolg is van zowel onverklaard willekeurig gedrag van het gemodelleerde systeem als van 
waamemingsfouten. Deze vaststelling zal de systematische afwijking in de geschatte parameters verminderen en 
derhalve het vermogen van het model tot voorspelling verbeteren, ook onder nieuwe condities. Hoewel stochastische 
toestandsmodellen die Kalman filters gebruikten vooral in de hydrologie en de waterkwaliteits modellering hun 
intrede deden in de late 70-er jaren, betroffen deze voornamelijk empirische formuleringen die geheel op 
meetgegevens waren gebaseerd. Daardoor waren deze van weinig nut voor de ingenieur die altematieve scenarios 
wilde beoordelen en vergehjken. Om te vermijden dat modellen te veel parameters bevatten die in hoge mate 
uitwisselbaar zijn, is het van belang dat hun modelstruktuur kan worden geidentificeerd op basis van de gegevens die 
werden gebruikt om de parameters te schatten. De a posteriori schattings criteria die kwantitatieve a priori kennit 
insluiten, vormen een interessante geformaliseerde methode om de intuitie en ervaring van de ingenieur te 
introduceren in de parameter schattings procedure. 

Een nieuwe methodologie om de mate van de onzekerheid in de analyse van herhalingstijden te bepalen wordt 
gepresenteerd en toegelicht in een geintegreerde benadering van de verontreiniging van stedelijk water met modellen 
van zowel het gemengde rioolstelsel als van het ontvangende oppervlakte water (Hoofdstuk 9). De achterliggenck 
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vooronderstelling in de gepresenteerde methodologie is dat een onderscheid moet worden gemaakt tussen variaties 
die aan het systeem eigen zijn en onzekerheid die voortkomt uit gebrek aan kennis. Dit onderscheid werd verkregen 
door een ingebedde voortplanting van fouten, die hier geimplementeerd werd als een "Embedded Monte Carlo 
Simulation". Er wordt beargumenteerd dat het samenvoegen van onzekerheid en inherente variaties systematisch leidt 
tot een verhoging van de frequentie van extreme gebeurtenissen met frequentieverdelingen van herhalingstijden die 
weinig of geen waarde voor de ingenieur hebben. Het onderzoek toont ook dat aandacht nodig is om snellere 
altematieven te implementeren dan de ruwe Monte Carlo simulaties om de rekentijd te bekorten. Dit zou voor 
praktische toepassing nodig zijn. 

Een inspectie van methoden om herhalingstijden te analyseren voor de vervuiling van stedelijke wateren en de 
onzekerheid daarin werd uitgevoerd met de bedoeling om de in Hoofdstuk 9 gepresenteerde methodes in een breder 
perspectief te beschouwen (Hoofdstuk 10). Drie principieel onderscheiden methoden om herhalingstijden van 
bepaalde effecten te berekenen worden beschreven: direkt fitten; transformatie van momenten en analytische of 
numerieke integratie. De combinatie van deze methoden met verschillende model typen (in termen van input en 
output als tijdreeksen of als "lumped" grootheden), leidt tot een raamwerk waarin de meeste benaderingen tot de 
analyse van herhalingstijden zijn begrepen. In ingenieurs werk wordt onzekerheid bijzonder belangrijk wanneer 
ontwerp criteria worden gebaseerd op de frequentie van zeldzame, extreme gebeurtenissen. Juist omdat zij zeldzaam 
zijn is de precisie waarmee ze worden beschreven gering, hetgeen niet kan worden genegeerd wanneer het gaat om 
grote investeringen en belangrijke consequenties. Een onderscheid dient te worden gemaakt tussen inherente variatie 
en onzekerheid als gevolg van ontbrekende kennis. Daamaast dient te worden geprobeerd om stochastische modellen 
te gebruiken in de analyse van herhalingstijden om systematische afwijkingen tengevolge van ongeschikte aannames 
bij de parameterschatting te beperken. Ook de onderschatting van de frequentie van extreme gebeurtenissen ten 
gevolge van het niet meerekenen van bepaald systeem-eigen toevallig gedrag dient te worden vermeden. 
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APPENDIX A 

EQUATIONS OF THE 

LINEAR KALMAN FILTER 

This appendix contains the equations of the linear Kalman filter as presented in Madsen, H and Hoist, J. (1998). 
Modelling Non-linear and Non-stationary Time Series. Lecture notes used at Institute for Mathematical Modelling 
Technical University of Denmark, University of Copenhagen, Copenhagen Business School, and the University of 
Iceland. 284 pp., www.imm.dtu.dk. Detailed outline of the linear Kalman filter can also be found in Harvey. A. C. 
(1993). Forecasting, Structural Time Series Models and the Kalman Filter. 310pp. 
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MODEL 

System equation: 

2L, = £2L,-i + §_ IL-I + £/,, (A1) 

Observation equation: 

Yt = C_Xt + e2, (A-2> 

KALMAN FILTER 

Up-date or reconstruction 

2Lt\t=2Lt\t-l+£,,[¥-! ~ CX-t\t-l) 

L,T =h^-rL.,^u-i^I, 

where the Kalman gain is given by 

" l 
K = 1 ? CTk™ J"' 
=t =t\t-\= W * - i ) 

Prediction 

Xr+llf = AJLt\t + ̂ H., 

z** =A-z™ £+^ 

2L»+l|< - £^L(+l|r 

s r y = 0 2 ^ c T + s . 
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j Appendix A Equations of the Linear Kalman Filter 

j 

I 

Innovation 

j L + I | ,=L , + I -L + I | , (A-10> 

R = £ y i \ (A.ii) 
= 1 + 1 = < + l ( V ' 

Maximum Likelihood Estimation Criteria 

logL(0;YN)=--Y, [log(det R.).+ ^R'.'£,Jfconstant (A. 12) 

SYMBOLS 

X t is a vector containing the state variables at time t, 

Ut is a vector containing the values of the input variables at time t, 

A is the system matrix, 

B is the input matrix, 

e^t is the system noise terms at t which is assumed to be normally distributed with mean zero and 

variance S . (a diagonal matrix), 

Yt is the observation at time t, 

C is an observation matrix indicating the observed state variables, 

e_2 t is the observation (measurement) error at time t which is assumed to be normally distributed 

with mean zero and variance 2 (a diagonal matrix), 

K is the Kalman amplification at time t. 
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APPENDIX B 

EQUATIONS OF THE 

EXTENDED KALMAN FILTER 

This appendix contains the equations of the discrete time extended Kalman filter that has formed the basis for the 
modelling in Chapter 5. The filter equations are from Madsen, H and Hobt, J. (1998). Modelling Non-linear and 
Non-stationary Time Series. Lecture notes used at Institute for Mathematical Modelling Technical University of 
Denmark, University of Copenhagen, Copenhagen Business School, and the University of Iceland. 284 pp., 
www.imm.dtu.dk. Details of the Kalman filtering can also be found in Harvey. A. C. (1993). Forecasting, Structural 
Time Series Models and the Kalman Filter. 310 pp. 
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MODEL 

System equation: 

2L, = /(£,-/£,-/)+£/,, ( 

Observation equation: 

L,=h(Xt)+e2j ( 

KALMAN FILTER 

Up-date or reconstruction 

lt\t = tt\t-i+Kt(Yt-h(xtlt_j)) 

\* XX \* XX T/T ̂  YY TST 

kt\t ~ tt\t-\ ~ £t h\t-\ kt 

where the Kalman gain is given by 

v-1 

where H\ X_At_i J is m e partial derivatives of hi X_) with respect to X_. 

Prediction 

X-t+\\t - f\2Lt\t,utj 

where F\X_t\t ,Ut I is the partial derivatives of flX,u) with respect to X_. 

r,+,|,=i(l<+ii<) 
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Innovation 

¥-t+i\t -Y-t+\ ~Zt+i\t 
YY R , = 2 „ = /+ l =t+l\t 

(B.10) 

(B.ll) 

Maximum Likelihood Estimation Criterion 

\ogL{0;YN) = -W\^g(d^Ri) + YT
iR:lYi + constant (B.12) 

SYMBOLS 

X t is a vector containing the state variables at time t, 

Ut is a vector containing the values of the input variables at time t, 

f[ ) is the system function and hi J is the observation function (see model definition at top), 

is the system noise terms, normally distributed with mean zero and variance X . , 

is the observation at time t, 

is the observation (measurement), normally distributed with mean zero and variance E , 

is the Kalman amplification at time t. 

It 
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