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Stellingen / Theses

1. Many processes may be deterministic. But when the end is more sensitive to the beginning and to the
progression than we are able to establish these, then it is best to assume the processes stochastic. Within
water quality this is more ofien so than not,

2. Focusing on the differences in the underlying assumptions concerning the deviation between “what we see”
and “what we model” will contribute to bridging the gap between deterministic and stochastic modelling
approaches. The strengths of each approach may be drawn to provide modelling solutions appropriate to the
available resources, the available data, the nature of the system and problem at hand.

3. On evaluating the uncertainty in a return period analysis a distinction should be made between uncertainty
expressing a lack of knowledge concerning the value of a given quantity and its inherent variation in time.
This may be done using embedded errar propagation methods such as Embedded Monte Carlo simulations.

4. Awomated calibration will have limited success in water quality modelling if it does not quantitatively
include the engineers experience and intuition, for example, in the form of a priori parameter distributions.

3. Urban water quality management has not the role of “protecting owr natural waters against pollution”.
Within the perspectives of the resources prioritised by society. urban water management should, whilst
Julfilling fiunctional, hygienic and aesthetic demands, create the conditions which will permit our chosen
aquatic ecosystem to flourish.

6. Water quality of combined sewer overflow is influenced by so many unknown factors and poorly understood
processes that investigations aimed at improved prediction require the incorporation of stochastic processes.

7. With the ever-increasing scientific specialisation, there is 100 an increasing need and potential for research
Jocused at knowledge transfer between disciplines.

8. Proof is needed to convince a scientist that one methodology is better than another. Convincing a water
quality manager requires much more.

9. Given to us are merely the data of our consciousness. ... There is only one way from them to “reality,” to wit,
the way of conscious or unconscious intellectual construction, which proceeds completely free and
arbitrarily. ... We are free to choose which elements we wish to apply in the construction of physical reality.
The justification af our choice lies exclusively in our success.

A. Einstein.
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PREFACE

The research presented in this thesis was done at the Aquatic Ecology and Water Quality Management Group,
Department of Environmental Sciences, Wageningen University under the supervision of Prafessor Lambertus
Lijldema and co-supervision of Ir. R. Hans Aalderink. The research work formed part of the EU sponsored MATECH
research network (European Centre for Mathematics and Technology of Urban Water Pollution). This thesis is
presented as one of the requirements in obtaining the degree of Ph.D. in Environmental Science. The thesis concerns
urban runoff pollition in the context of integrated urban water management with special focus on deterministic and
stochastic modelling and uncertainty in return period analysis.
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CHAPTER 1

(GENERAL INTRODUCTION

ABSTRACT

With its offset in the turbulent history of urban surface waters, this chapter gives the background for the presented
research. An introduction to the principal problems motivating the present research leads on 1o a brief presentation
of the main conclusions. Two main results pertain to deterministic and stochastic modelling approaches, and to
handling of uncertainty in return period analysis. Finally, the build-up of this thesis and the interrelationship between

parts and chapters is outlined.

Parts of this chapter are based on Grum, M. and Aalderink, R. H. (1997). Trends and Traditions at the 7. International Conference
on Urban Storm Drainage, Hanmover 1996. Eurapean Water Pollution Control, Vol. 7, Na. 1, pp 69-71, 1967,
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URBAN WATERS

Surface waters in and around urban settlements have lived turbulent lives. Streams and river have often been
straightened to drain-out low-lying areas or diverted to bring water to city fortifications or to irnprove
waterway-access into the cities, Increased urbanisation has meant that many urban streams have been
covered or even piped under roads and buildings. The fast draining roofs and paved surfaces have resulted in
increased peak hydraulic loading during rainfall adding further stress to river and stream environments.
Indeed many urban waters have ended up as drains or as part of the sewer system.

During the second half of the 19" century drastic steps were taken in most of Europe to challenge the hazards
of water born decease. This was done subsequent to the pests that swept across Europe killing large portions
of the population. Clean water was to be distributed under pressure in pipes and foul water was to be
removed through gravity sewers and discharged into nearby surface waters. Water born toilets were gradually .
introduced to replace the then commeon night-soil system. This uncompromising separation of clean and foul
water constitiuted a cornerstone in raising the living standard and establishing robustness against water bome
epidemics (Harremoés, 1999). This separation still constitutes a comerstone in today’s public health. In some
of the world’s largest urban concentrations economic and managerial factors have meant that the hard-line
separation of clean and foul waters has not been implemented or maintained and here water borne decease
and epidemics persist (Butler and Parkinsen, 1997, Briscoe and Gam, 1995).

The sewage was for many years discharged to the nearest surface waters, which posed yet a stress on the
urban waters. This discharge took place during both dry and wet weather. Clean water was often supplied
from ground water reservoirs and the lowering of the groundwater table sometimes led to reduced flow and
low dilution rates in the already hard hit urban waters. Figure 1.1 illustrates typical changes in water-
pathways that have come about as a result of urbanisation. The combined effects of reduced flows, low
dilution rates and pollutant loading resulted in oxygen depletion, ammonia poisoning, eutrophication and the
accumulation of heavy metals and organic micro poltutants in sediments. In some parts of Europe rural
activity had already changed the water landscape completely. Starting with the reclamation of subsiding peat
moors in the vears 800 to 1250, the Netherlands has a long history of active surface water management and
structural intervention aimed initially at draining low lying areas (Van de Ven, 1993).

With increased welfare and shifts in the priorities of society, interceptor pipelines were constructed and
sewerage was led by gravity or pumped to treatment plants discharging treated sewerage primarily into the
sea, ocean, larger lakes or rivers. Although this constituted a major improvement to the state of urban surface
waters it did not lead to any significant improvements in the urban aquatic ecosystems. One of the reasons
for this was that during large rainfzll events the limited flow capacity of the pipes leading to the sewerage
treatments plants meant that sewerage mixed with rainfall water was discharged into the surface waters.
Since the seventies storage basins have been constructed at overflow structures to reduce combined sewer
overflow and other alternatives are constantly sought, tested and implemented. These include the reduction
of the runoff surfaces through porous surfaces and other forms of local infiltration, domestic storage and
usage of roof runoff and overflow treatment. Many of the alternative approaches have been part of an overall
wish to close the urban water cycle and thereby obtain long term sustainable water systems. The recognition
of the negative effects that storage basins can inflict on treatment plant performance fruited further interest in
examining possible alternatives.
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Before Urbanisation

Precipitation Evaporation

Slow surface runoff

Surface waters

Infiltration to surface waters Groundwater table

Precipitation

Evaporation

After Urbanisation

Fast surface runoff
Slow surface runoff
Sewer overflow

Surface waters

Groundwater table

Figure 1.1. Iliustration of typical effects of urbanisation resulting in low dry weather flow rates
in urban streams and significantly reduced dilution rates in urban lakes, dams and ponds.

Pollution from combined sewer overflow was initially evaluated in terms of the total annual discharged loads
and number of overflow events. However, as emphasised in Lijklema (1993}, pollutant loads should be
evaluated at time scales comparable to their rate of degradation in the surface waters. In the context of
combined sewer overflow this led to the main distinction between acute and accumulative pollutants for
which the effects are best evaluated using extreme statistic and annual averages respectively. This means that
acute surface water effects such as oxygen depletion and ammonia poisoning should be evaluated using
return period curves. Return period here being defined as the mean time between occurrence, for example,
the mean time between the occurrence of a given low concentration of dissolved oxygen. Nutrient loading to
lakes and bays however should be evaluated through annual averages due to longer characteristic time
constants of the nutrient cycles which if overloaded ultimately lead to eutrophication.
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Due to their different primary functions, surface waters, sewers and wastewater treatment plants developed to
become legislatively and administratively independent. Combined sewer management decisions were most
often taken irrespective of possibic consequences to the treatment plant and possible lack of improvements to
the receiving surface waters. The classical example being the increased discharge of nutrients from the
treatment plant due to longer periods with maximum hydraulic loading resuiting from basins installed with
the aim of reducing combined sewer overflow. In the eighties it became increasingly clear that urban water
quality management requires an integrated approach involving all three components, namely the surface
waters, the treatment plant and the sewer system (INTERURBA, Lijkiema et al., 1993). In spite of this
recognition sotne years ago traditions and administrative and institutional barriers prevent a rapid transfer of
the integrated approach to management practice.

Our perception of the essence of an integrated approach to urban water quality management has also changed
from implying the need for an integrated evaluation to the need for an integrated optimisation of investments.
Harremoés et al. (1996) found that water quality standards of a stream, which received discharge from
combined sewer overflows during rain, were violated even during dry weather conditions. The funds, already
allocated to the reduction of combined sewer overflow, would perhaps have been betier spent creating a
more robust streamn by improving its dry weather state. Frequent or even permanent violation of the water
quality standards is also common for many Dutch surface waters. Upholding an isolated policy of pollutant
load reduction may often have the negative consequences of reducing dilution to almost nothing. Through
groundwater exploitation and an increase in impervious areas, urbanisation has often led to a reduced base
flow in urban streams and reduced dilution rates in urban dams and lakes. The consequences are comparable
to direct water pollution and they ought therefore politically to be considered as such.

Considering the role of urban water quality management as having to protect our natural waters against
urban runoff pollution is but a perception of the past. We must recognise the fact that most urban surface
waters have been so tampered by the works of man that our task is o create the urban aquarium of our
choice. Within the perspectives of resources prioritised by society, urban water quality management should,
whilst fulfilling functional drainage, hygienic and aesthetic demands, create the conditions which will permit
our chosen ecosystem to flourish.

MODELLING

There may be many reasons for modeliing sewer systems, wastewater treatment plants, surface waters,
ground water or the integrated system as a whole. In the following “reasons for modelling” are discussed in -
three categories: understanding, design and operation. Each of the different uses of models sets different,
though overlapping demands to the models used.

Maodelling for a Better Understanding

Models can be used to find cause-effect relationships explaining for instance unexpected flooding or fish
kilis. This would generally imply detailed modelling incorporating much physical, chemical and biological
theory. The precise value of the simulated output would often be of subordinate imporiance compared to the
ability to simulate the phenomena in question and thereby pinpoint bottlenecks or likely causes for an
undesired behaviour.

Models can also be used to evaluate dominating ecological relationships and dependencies in a given
recipient as presented in Scheffer (1998). In practice one may for a given recipient wish to evaluate the
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expected consequences of changes in dilution rate, introduction of tree shading, encouragement of filter
feeders or selective fishing, At a scientific level, models are often used to study complex postulated
biological and physical mechanisms.

Meodels in Planning and Design

Models can be used for planning and design of the engineered elements of the integrated water system. The
required precision will depend much on what stage the project is at. In the very early proposal stages of a
project one may only require very rough estirnates of the expected costs and water quality improvements. In
such initial investigations it is often more important that the models are able to distinguish between proposed
scenarios than the precise output values predicted. In the planning stages it is valuable if the models are
computationally fast as the event lumped models presented in Chapter 4. At a later design stage more
precision may be desired in order to be able to evaluate and compare a small selection of optional scenarios.
High precision is generally required during the (inal stages of structural design where at most a handful of
scenarios are modelled. The chosen precision will often also depend on the consequences of being wrong and
on the resources available for the work. In the later detailed design stages of a project’s life cycle it is
common and often reasonable to model only isolated eiements of the integrated system.

The characteristics of the models used for design will also depend on the type of design criteria used. In
integrated water quality management design criteria may relate to average values (e.g. of nutrient discharges
or nutrient flows) or return periods of given conditions (e.g. flooding or low oxygen concentrations in
streams). These both require an evaluation of the integrated system’s long-term behaviour and would often
be done vsing historic rainfall series. In some cases it may be necessary and possible to boil down the long-
term series approximating it by selecting a few events as representative of certain return periods. As
discussed in Chapter 10 the appropriateness of this approximate method depends much on whether or not
there is a linear relationship between the inputs {(e.g. rainfall, sunlight, temperature and wind) and the
evaluated effects (oxygen or ammonia concentration). Later in this introduction we will look more closely at
modelling for return period analysis, which forms a major part of this thesis.

There are two main reasons why models should be used when calculating the return periods of given
detrimental events. These can be summarised as follows:

1. Measuring in the field in order to find the return period of given detrimental effects would require
monitoring periods several times longer than the retum period of interest, which is not practical.

2. Analysis of proposed structural or operational modifications requires models in order to evaluate
improvements. Downscaling of the real world system to a physical model in the laboratory is neither
practical nor cost effective nor realistic.

As a consequence of the first point, long historic series of the primary driving force, rainfall, are used and the
integrated systems behaviour is modelled and simulated. Amelioration projects are often followed by a
period of a few years of intense monitoring of water quality conditions, such as surface water dissolved
oxygen concentration, in order to evaluate improvements. Without models this evaluation cannot be made to
any reasonable degree of certainty. Attempting to estimate the minimal oxygen concentration with a return
period of one vear on the basis of a two-year monitoring period is similar to estimating a population average
on the basis of two observations. The result is highly uncertain. What the monitoring data can be used for, is
the identification and calibration of hydraulic and water quality models which can then subsequently be used
in combination with historic rainfall series several times longer than the return periods of interest. With
models containing a sufficient degree of physical, chemical or biological theory it is then possibie to evaluate
the expected return periods for proposed improvement. In contrast, empiricai models would not contain the
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parameters and structure associated with the proposed improvements and would be of no used to such an
extrapolation.

Models in Operation

Subsequent to developments in electronics, robust sensors and changing attitudes of operations personnel,
models are becoming an integrated part of the operation of integrated urban water systems. This may be in
the form of early warning systems or as automated real time control systems. The requirements of models
used in operation differ considerably from those used in design. Models used in operation need to predict the
water system’s behaviour in the short-term and need not necessarily include much physical, chemical or
biological theory. Models may also be used as software sensors for indirect monitoring of a variables value
as a function of other monitored values.

Though this thesis does not deal with operation specifically, the studied approaches and methodologies have
a high potential in both early warning systems and real time control.

APPROACHES TO MODELLING

Traditional deterministic approach to modelling has been deductive with models built up of physical,
chemical and biological theory. Starting often with continuity or mass balance equations and proceeding to
definitions of process rates. There has been a tendency to incorporate all thinkable processes into the models.
This has often led to models with many very uncertain parameters. Calibration of such deterministic models
is often done by fixing certain parameters based on intuition and engineering experience, and then adjusting
other parameters to best fit the observed series. Often there are many more parameters in the model than can
actually be identified from the data. The result is that the estimated set of parameters is non-unigue and the
parameters, which are being calibrated, cannot be identified from the available data. The continuous
inclusion of more and more processes into the models is likely to lead to a sitation where some of the
included processes that are less important than phenomena that the model does even not describe.

Arising first in the sixties, the stochastic approach to modelling was based purely on statistical relationships
between data and was initially deprived of any physical, chemical and biological theory. Associated to the
highly data dependent empirical models of classical time-series analysis were methodologies such as
automated parameter estimation, parameter statistics, identifiability, experimental design and residual
analysis. These methodologies were all aimed at being able to simulate and forecast the observed data.
Though stochastic modelling had a strong breakthrough in other fields such as economics, only very little
interest was shown in water and water quality engineering.

It is not only on these peripheral aspects that deterministic and stochastic approaches differ. At the very core
of modelling methodology, there is a clear cut difference in the underlying assumptions made during
deterministic and stochastic modelling.

In the context of urban runoff pollution this thesis presents a new portrayal of the
essential differences between deterministic and stochastic modelling which focuses on
the different assumptions made concerning the source of the deviation between observed
and modelled values.

e




——

Chapter I (General Introduction

In deterministic modelling all deviation between modelled and observed variables is implicitly assumed to
result from observation error alone. The model is assumed to contain a perfect description of the system
behaviour, In stochastic modelling the deviation is implicitly assumed also to result from random behaviour
within the system itself. Stochastic modelling thus recognises that the model is unable to describe all
variations in the system.

This study and presentation of the essential differences is done in an attempt to bridge the gap between the
deterministic and stochastic schools. By pointing to what is the only clear-cut distinction between
deterministic and stochastic modelling the author hopes to ease the transfer of knowledge and methods
between the two schools and thereby to strengthen water quality modelling as a whole.

UNCERTAINTY OF RETURN PERIOD ANALYSIS

Return periods of detrimental effects such as flooding and oxygen depletion form a major criterion in design
of integrated urban water systems. The return period analysis can be made in a number of different ways with
different forms of data and different types of models. This has been organised in a general framework in the
methodology review of Chapter 10.

With return period analysis playing such an important role in integrated water engineering it is also relevant
to look at the certainty with which the return periods are actualiy estimated, Substantial uncertainty is found
in the return periods of the hourly minimal dissolved oxygen concentration in the pond of an integrated urban
water system. Figure 1.2 illustrates what is understood by uncertainty in a return period analysis. In this
thesis it is argued that water mangers and others involved in the decision making process would be better off’
with both the estimated return period and with the funnel shape in Figure 1.2 representing the 95%
confidence region within which this curves may in fact be situated. Though not examined explicitly, it is in
Chapter 10 also outlined how the uncertainty is often significantly lower once one is comparing proposed
scenarios.

Environmental Environmental
Variable . ' Variable

] Risk : 1 Uncertainty

7 4
‘] /
5

44

1

7

1

U T T T — T 7T T L— 1
0 1 2 3 4 5 6 7 [ 1 2 3 4 5 6 7

Return Period (vears). Return Period (years).

Figure 1.2. The return period curve (left) and its uncertainty (right). The curve give (fictitious) return periods for
minimum values of an unspecified environmental variable of interest.
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In this thesis a new methodology for evaluating uncertainty in return period analysis is presented:

On evaluating the uncertainty in a return period analysis a distinction should be made
between uncertainty expressing a lack of knowledge and inherent variation in time.

The evaluation is implemented as an embedded error propagation involving two layers of probability
distributions: an inner layer consisting of quantities varying from event to event and an outer layer consisting
of uncertain but constant quantities. Error propagation was in this work evalnated by Monte Carlo
simulations. For each set of random realisations of values in the outer uncertainty layer a full Monte Carlo
simulations of the inner inherent variations layer was performed. The general methodology is here described
as Embedded Error Propagation and its implementation in this work using Monte Carlo simulations is
described as Embedded Monte Carlo Simulations.

Oflen when uncertainty is inciuded in return periods analysis the distributions of the uncertain parameters are
treated in the same way as with the inherent variations from event to event. That inherent variations such as
rainfall depth vary from event to event is in this context not uncertainty though how and how much it varies
may well be,

In fact the whole purpose of the return period analysis is to find out how often the variations in the driving
forces result in given rare effects. In this work it is shown how such pooling of uncertainty with inherent
variation distorts the picture as it systematically increases the frequency of extreme events.

THIS THESIS

The chapters of this thesis have been arranged in three parts: an opening, a part on modelling and a part on
uncertainty in retarn period analysis. This section briefly outlines the contents and relationship between the
parts and the chapters that they contain. Figure 1.3 shows the interrelationship between parts and chapters of
this thesis.

Part I opens the thesis with this introduction to the problem and brings attention to main findings of this
thesis. With its focus on methodologies, the present research did not encompass any field monitoring or data
collection. The research has been based on the analysis of existing water quantity and quality data. Chapter 2
introduces these main data sets that have been used and that are common to most of the studies presented in
this thesis, The opening is rounded off with a multivariate analysis of event mean overflow concentrations
from Dutch and Danish urban drainage catchments. The multivariate analysis is aimed at gaining preliminary
insight into the underlying structure of variations in the event mean concentration data.

In Part II focus is on modelling of the combined sewer system. As primary driving force, rainfall is input to
all the studied models. Water quantity and/or water quality variables of combines sewer overflow are the
main model outputs. It Chapter 4 an evaporation dependent wetness index is identified from event lumped
data of rainfail depth and duration, and overflow quantity. For the studied data sets event lumped rainfall
variables are found to have little relation with the event mean overflow concentrations. Chapter 5 contains a
detailed discussion on deterministic and stochastic modelling. Here a new portrayal of the essential
differences between deterministic and stochastic modelling is presented and illustrated with a case study
mvolving a combined sewer rainfall-runoff model. In Chapter 6 attempts have been made to use stochastic

differential equations for both water quality and water quantity modelling of a combined sewer system. '
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Uncertainty in Return Period Analysis.

11



Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Grum -

One of the conclusions of the studies on stochastic modelling is that the data used has to fulfil certain
minimum conditions with respect to the required sampling frequency needed for adequate system
identification. Chapter 7 therefore looks at random coefficient modelling as an interesting alternative to
stochastic modelling.

Part Il encompasses application of models in its presentation of one of the key points of this thesis: a
distinction should be made between uncertainty and inherent variation on evaluating the uncertainty of a
return period analysis. In Chapter 9 this is presented within an integrated setting with a small pond as surface
water receiving combined sewer overflow from an urban drainage system. The uncertainty in the return
periods of minimum oxygen levels in the pond is here of primary interest. A methodological review on
return period analysis and its uncertainty is presented in Chapter 10. A general framework of approaches to
return period analysis in urban runoff poltution is presented and used to place the approach of Chapter 9 in a
broader perspective.
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CHAPTER 2

THE DATA SETS

ABSTRACT

The assimilation of measured data into models is a central theme throughout this thesis. Observations of our
physical, chemical and biological environment are used 1o strengthen our theoretical descriptions. Monitoring and
data collection has however not been part of this research project. Selections from existing combined sewer data sets
have been studied,

This chapter gives an overview of the caichment characieristics and the monitoring programs and the resulfing data.
References are made to the monitoring program's oviginal documentation and to earlier studies in which the data
has been used. Only information relevant to the present research work is presented. Readers are referred to the
original documents for more details on the measuring campaigns, sampling techniques and analytical methodology.

13
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Qosterhout

Figure 2.1. Map of The Netherlands showing the Figure 2.2. Map of Denmark showing the
locations of the three studied combined sewer locations of the two studied combined sewer
catchments. caichments.
INTRODUCTION

Observed data is a vital ingredient to most of the studies presented in the following chapters. Some of the
studies have been performed using the same data sets. The descriptions of the urban catchments and the
monitoring programs have therefore been concentrated in this chapter.

This chapter contains no description of methods or models. The chapter contains no discussion on the
characteristics of the available data in relation to what would be required or desired in various modelling
situations. Such a discussion at this point would be pre-emptive as these questions relate strongly to both the
problem addressed and the methods applied. For discussions on data adequacy readers are referred to the
chapters of the individual studies and to the more general discussion on identifiability in Chapter 8.

This chapter is divided in to two sections. The first section outlines the event lumped data sets and the
respective catchments. The second section describes the time varying data set that has been used.

EVENT LUMPED DATA SETS

Event lunped data is in the present work used to describe data sets in which the considered variables take a
single value for each event. This may be a totality, such as the total volume of rain or the duration of
overflow, or it may be average variables such as pollutant event mean concentrations (EMC). Some variables
had been measured directly as event lumped variables while others were converted into event lumped values
from time varying data. Event lumped data has been used in the three chapters that follow. The multivariate
analysis in Chapter 3 is conducted using data from the three Dutch and the two Danish urban catchments
described below. The study on event lumped models in Chapter 4 and their application in Chapter 9 have
been conducted using event lumped data from the Loenen catchment only.

Table 2.1. The five catchment areas and their impervious fractions,

Catchment Units Loenen  Bodegraven  Oosterhout Cedervaenget  Vester Paradisvej
NL NL NL DK DK

Area [ha] 56.5 43.0 225 5.29 17.2

Impervious fraction  [%] 28% 46% - 49% 45% 23%
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- The three Dutch urban catchments were Loenen, located in the heaths (heather hills) of the eastern
Netherlands, Bodegraven, located in the western lower lands of the old Rhine delta, and Oosterhout in the
south west. Their geographical locations are shown on the map in Figure 2.1.

The data sets were collected from 1981 to 1986 as part of a study catried out by the National Working Group
on Sewerage and Water Quality (NWRW/STORA 1990). Analyses of the Dutch data have earlier been made
and presented in studies by Van der Heijden et al. (1986), Benoist and Lijklema (1989), van Sluis et al.
(1991), van Wairaven et al. (1985), Bakker et al. (1988) and by Bakker et al. (1989).

The study on event lumped models in Chapter 4 and their application in Chapter 9 have been conducted
using event lumped data from the Loenen catchment only. An extract of the Loenen data set was used. Table
2.2 gives a summary of the variables used in Chapter 4. The particulate and dissolved pollutant components
are more precisety described as fast settling and slow/non-settling parts. For the purpose of the study in
Chapter 4 a new variable is introduced on this basis. This is the “slow settling fraction™, f', which is defined
as the sum of the slow and non-settling parts divided by the total concentration. Suppose a concentration of
280 mg COD/l was observed before settling and a concentration of 252 mg COD/| after settling, Then the
slow settling fraction would be calculated as (280 — 252)/280 = (.1 (with no dimensions}. The “slow settling
fraction”, f, thus includes the entire dissolved component and the part of the particulate component which
had not settled after one hour. Due to uncertainty in the measurement analysis a slow settling fraction greater
than one is seen for a few observations where the absolute concentrations where very low.

The two Danish catchments are both located north-west of Copenhagen in the river basin of Malled (see
Figure 2.2). The data was collected from 1979 to 1980 as part of an urban runoff study (the Melied study)
carried out as a cooperation between the city council of greater Copenhagen (Hovedstadsridet) and the Inst.
of Env. Sci. & Eng., Tech. Univ. of Denmark (Johansen et al. 1981). The data have since been studied by
Johansen et al. (1981}, Johansen (1985), Hall et al. (1990), Jensen (1990), Arnbjerg-Nielsen et al. (1994) and
others.

The areas of the five catchments can be seen in Table 2.1. The Danish data is based on volume proportional
sampling from the combined sewer main stream during the rainfall-runoff event whereas the Dutch data set
is exclusively based on multiple sampled combined sewer overflows with EMCs calculated by volume
proportional weighting.

Table 2.2. Summary of the data variables studied.

Variable Symbol Unit N Mean Minimum  Maximum

Rainfall Depth Heam mm 284 8.1 1.3 570
Duration Dm min. 284 412 10 1986

Intensity Ieam mm/min. 284 6.1 04 169.6

Overflow  Volume VoverrLow m’ 63 1163 3 8591
EMCs Kjeidahl Nitrogen (N-Kj) Cuxs mg/l 48 10 3 26
Slow settling N-Kj fraction Frxs - 44 0.83 0.03 2.94

Chem. oxygen demand (COD) Ceop mg/l 48 262 62 873

Slow settling COD fraction Jeon - 46 0.39 0.07 0.98

Suspended solids (S8) Xs < mg/l 47 288 28 1196

Slow settling S8 fraction Sss - 45 - 014 0.00 0.97
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The exploratory multivariate analysis presented in Chapter 3 requires a data set without any missing values
for any of the variables. Biological oxygen demand (BOD} had not been measured at the Danish catchments
and, to obtain a complete data set for the multivariate analysis, total and dissolved BOD values of the Danish
scts had to be estimated wsing regression models. These regression models expressed the deviation of the
BOD concentration from the monthly averages (which were available for the Danish data sets) as a function
of the deviations of the other EMC variables from their monthly average. The models were initially
calibrated on the Dutch data sets and thereafter used to estimate the missing BOD values in the Danish sets,
It is not thought that this has had much influence on the overall results of the multivariate analysis but it does
pose limitations on conclusions that can be drawn in relation to the physical catchment characteristics.

" TIME VARYING DATA SET

Time varying data set is here used in contrast to event lumped data and refers to data sets containing several
observations of each variable during a single rainfall-runoff event. This could be water level every minute at
a given point in the sewer system or the concentration of a poliutant in the overflow every five minutes or for
every cubic meter of overflow. A Dutch time varying data set, Loenen, has been used in the present research
work. Loenen is located as shown in Figure 2.1.
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Figure 2.3. Extract of the time varying data from the Loenen catchment (Event 25).




Chapier 2 The Data Sets
Table 2.3. Summary of catchment characteristics (Loenen, The Netherlands).
Characteristic Value Unit
Total catchment area 56.5 ha
Impervicus arca 28 Y
lmpervious area 15.8 . ha
Mean pipe gradient 3.3 %
Volume below weir 895 m’
Depth below weir 5.7 mm
Loenen

The Loenen sewer is a looped system with a single overflow structure at which water level and water quality
variables have been monitored continuously over a period of four years from 1982 to 1986. Water is pumped
to the treatment plant from the lowest point in the sewer. During actual overflow, samples for chemical
analysis were taken roughly at volume proportional intervals. Thus no water quality samples were taken
before and after the actual overflow. Only rainfall events that resulted in combined sewer overflow were
used in the studies with time varying data. Table 2.3 gives a sumnmary of the main catchment characteristics.

The rain gauge was sitvated a few hundred meters east of the 15.8 ha catchment. The tipping bucket
raingauge had a cup corresponding to 0.1 mm and was connected to paper-roll-writer. The paper role
recordings were later typed manually into a digital form.
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{evel at Overflow

COD [meA]

gi Ramfall

17.0 4 .- .
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Figure 2.4, Extract of the time varying data from the Loenen catchment (Event 29).
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Chemical analysis for biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids,
Kjeldahl nitrogen and total phosphorous had been made on samples before and after one hour settling. Thus
the variables available corresponded roughly to total concentrations and dissolved concentrations. A rough
value for the corresponding particulate concentration was calculated by subtracting the value obtained after
one hour’s settling from that obtained before settling. In a number of cases one or the other value was
missing and the difference could not be calculated. In other cases the concentration after settling was higher
than the concentration before settling. Thus the number and frequency of the water quality observations
varied greatly and a number of rainfall-runoff events were screened out as their data information content
compared to modelling time was too low. The plots in Figure 2.3 and 2.4 give a visual impression of the kind
of time varying data availabie in the Loenen data set.

CONCLUSION

The data selection criteria depended on the problem being addressed and the methodology being studied. For
the multivariate analysis it was important to have or to be able to drive the event mean concentrations of a
large number of pollutants common to all or most of the included data sets. Potential explanatory event
lumped variables such as rainfall depth, discharged volume of water and preceding dry weather period
should aiso be available along with a general catchment characteristics. Data from three Dutch and two
Danish catchments was used for the multivariate analysis presented in Chapter 3.

An event lumped modelling study such as presented in Chapter 4 requires event lumped overflow data
including volume of water discharged, duration of overflow and event mean concentrations of the pollutants
of interest. It was also necessary to have event lumped rainfall data such as rainfall depth, duration and
maximum intensity from a rain gauge in or near the studied catchment.

For the remainder of the studies in this thesis the data from the Loenen catchment in the Netherlands was
preferred due to the time varying data of both water level and a number of pollutants, and bécause Loenen is
a catchment with only one overflow structure. Ideally, pollutant sampling for the purpose of dynamic
modelling should include more frequent and regular sampling of pollutants and sampling should take place
from the onset of the rainfall event until the combined sewer overflow has stopped. Aspects of the
information content of time series data sets are discussed further Chapter 5 and 8.
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CHAPTER 3

MULTIVARIATE ANALYSIS OF
EVENT MEAN CONCENTRATIONS

ABSTRACT

Urban runoff’ pollution loads can essentially be characterised by fluid quantities and pollutant concentrations.
Although several polluwtant storage and transport mechanisms have been postulated there vemains substantiol
unexplained variation in event mean concentrations of combined sewer overflow polhutants. Through a series of well-
established multivariate pattern recognition technigues the present study has aimed at disclosing the underlying
structure of systematic variations in the event mean concentrations (EMC) of pollutants in combined sewers during
rainfall. The statistical methods that have been applied to the pollutant concentration variables are factor analysis,
cluster analysis, diswibution analysis and correlation analysis. The event mean runoff data considered includes
eleven pollutant variables originating from five combined sewer catchments in Denmark and in the Netherlands. The
combined results of the analyses support earlier findings that EMCs are best described by bimodal or mixture
distributions, and firther suggest that event based pollutant modelling could be improved through a recognition of
these characteristics.

This chapter is based on Grum, M., Aalderink, R. H., Lijklema, L. and Spliid, H. (1997). The Underlying Structure of Systematic
Variations in the Event Mean Concentrations of Pollutants in Urban Runoff. War. Sci. Tech. 36(8-9), 135-140. Publication after
oral presentation at 7 International Conference on Urban Storm Drainage, Hanover, September 1996.
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INTRODUCTION

Adequate water quality management requires mathematical models that can be used to estimate and predict
overflow impacts under different engineering scenarios (House et al., 1993). It has been possible to construct
models accounting for variations ir runoff quantities with some success. However, although several pollutant
storage and transport mechanisms have been postulated there still remains substantial unexplained variation
in pollutant concentrations (Harremogs, 1994; Driver and Troutman, 1989). In an attempt to increase
understanding and insight into the relevant pollutant runoff processes, the present study examines the
underlying structure of EMC variations.

THE DATA

The data used in the present study originate from the five combined sewer catchments described in Chapter 2
of this thesis. These are the three Duich catchments, Loenen, Bodegraven and Qosterhout, and the two
Danish catchments, Cedervnget and Vester Paradisvej. See Chapter 2 for more detail on the catchments
and data.

Of particular interest to the stady in this chapter i1s the definition of a new variable used in the multivariate
analysis. Under the assumption that all Biological Oxygen Demand (BOD) is included in the Chemical
Oxygen Demand (COD), a "Non-Biological Oxygen Demand" variable has been defined as the COD value
minus BOD value of the same sample.

It is assumed that BOD; is here roughly equal to BODjpgniry. In sewer overflows the BOD-decay rate constant
is generally much higher than in pure sewage and wastewater treatment plant effluents and subsequently the
BODs/BOD;uguiey ratio is close to 1. This suggests that this assumption is reasonable.

Prior to the analysis all the event mean concentrations were standardised with respect to the catchment's
mean and standard deviation, Events with many missing EMC values were omitted from the data set and
events with few missing values had these reconstructed using linear regression models on the non-missing
values in order not to loose the valuable information present in the non-missing variables.

In the Danish data sets the total and dissolved biological oxygen demand (BOD) values have been estimated
using regression models that had been calibrated on the Dutch data sets (see Chapter 2).

METHODOLOGY

This section contains a brief outline of the essential concepts of each of the statistical methods: cluster
analysis, factor analysis, distribution analysis and correlation analysis.

Cluster analysis is designed to make an objective grouping of multivariate observations on the basis of the
values of the observed variables. Considering ¢ach observation in an n-dimensional vector space (where n is
the no. of variables), groups or clusters are formed by finding the events with the shortest distance between
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Table 3.2. The distribution of the three rainfall-runoff pollution event types (the three clusters) for each
of the combined sewer catchments, for their country of origin and for the entire sct of events. The values in
parenthesis are the percentages that have fallen within each of the three clusters.

Combined Sewer Catchment Country of Origin Total

Cluster  Loenen Bodegraven Oostethout Cedervanget V.Parad The All

NL NL NL DK DK Netherlands Denmark events
Chys. 1 220600 16 (4 17 (61) 4 67 14 (70) 61 (61} 28 (68) 89  (63)
Chs2 11 (23) 4 (16 6 2D 4 (19 4 (0 21 @) 8 (19 29 2D
Clus. 3 g (17) 5 20 5 (18) 3 (14 2 (0 18 (18) 5 (12) 23 (16
Total 47(100)  25(100) 28(100) 21 (100) 20 {100) 100 (100) 41 (100) 141 (100)

them. In the present study, cluster analysis was applied to determine whether events could objectively be
divided into groups and if so, to characterise the groups. The clustering method used here was Ward's
method which is described in SAS (1990).

Factor analysis is in contrast to the cluster analysis designed to make an cbjective grouping of the variables
rather than the observations. The interrelationship between a large number of variables is used to find a
smaller number of new uncorrelated variables called factors that explain as much as possible of the variation
found in the original data set. The role of factor analysis in the present study is to summarise the variations of
the eleven interrelated water quality components thus portraying only the essence of the problem at hand.
The essential mathematics behind factor analysis is summarised in Cattell (1965) and an extensive
introduction to the techniques is given by Harman (1968). In the present study the factors have been
extracted as principal factors and thereafier rotated using varimax rotation.

Distribution analysis has here encompassed a visual study of the factors' histograms with particular
emphasis on the nature of the distributions right-hand tail and on the presence of mixture distributions as
suggested in Hall et al. (1990). The advantage of looking at the factor's distributions, rather than those of the
original observed variables, is that the dominant variations are contained in fewer variables and thus
particular features of the distributions will be more distinct.

Correlation analysis, which is a measure of the linear relationship between two variables, has in the present
study been used to evaluate the relationships between the pollutant factor variables and the rainfall, hydraulic
and seasonal variables from the same runoff events.

From an engineering point of view the rainfall, hydraulic and seasonal variables would be considered as
potential explanatory variables and methods such as canonical correlation could have been used to study this
relationship. However, in the present study a factor and cluster analysis has been preferred because the aim
of the present exploratory study is more that of proposing hypotheses rather than the formulation of an
empirical model for the system. It is furthermore the authors' impression that the employed approach will
facilitate interpretation and communication of results. Similar multivariate methods have earlier been applied
in the context of urban water quality by Mulliss et al. (1994).
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RESULTS AND DISCUSSION

The results of the factor analysis on the eleven pollutant variables show that their variation could be well
described by three factors, The correlations between the three factors and the original EMC variables (the
factor loadings) are given in Table 3.1. The three factors, which are independent linear combinations of the
original variables, can be characterised verbally as in the bottom row of Table 3.1. Considering the processes
of pollutant storage and transport in a2 combined sewer system, an objective separation of the variables into
particulate and non-particulate is to be expected. The further separation of dissolved non-biological oxygen
demand from the other dissolved potlutants could be related to a different source and/or to the processes
taking place in the sewer system.

The far right column of Table 3.1 contains a measure of the proportion of the variables' variation that can be
described by the three factors. Note that only 60% of the variations in dissolved BOD and only 38% in
conductivity can be described by the three factors.

This indicates that variations of these two variables are dissimilar both to the other EMC variables and to
each other. The entire set of rainfall-runoff pollution events was by the cluster analysis separated into three
major types of events containing respectively 63%, 21% and 16% of the events. From the distributions over
clusters {given in Table 3.2) it is evident that the three event types are equally common to all five catchments
and to both the countries of origin.

Table 3.1. The resultant rotated factor patiern, the variance explained by each factor and a summary characterisation
of each of the three factors (coefficient of absolute value less thar 0.4 have been marked "-").

Factors Communal-
ities, b (%)
Variable I i I
Dissolved  Non-biological oxygen demand (COD-BOD) - 0.590 0.466 72
(Notsettled  Biological oxygen demand (BOD) - 0.670 - 60
inlbow)  Kjeldahl Nitrogen - 0.850 - 74
Total Phosphorus - 0.775 - 73
Particulate  Non-biological oxygen demand (COD-BOD) 0.939 - - 89
(Settled Biological oxygen demand (BOD) 0.849 - - 74
within 1 Kjeldahl Nitrogen 0.906 - - 85
hour} Total Phosphorus 0.719 - - 58
Total Solids 0819 - - 69
Dry Weight 0.823 - - 81
Conductivity - 0.580 - 38
Explained Variance (Curnulative %) 43% 66% 70%
Suremary Characteristics of the Particulate Dissolved/ Non biologically
Three Factors pollutants level fine particulate  degradable
pollutants level  dissolved
polhatants
level
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The results of the factor and cluster analyses have been combined in the plot of Factor Il against Factor | with
the symbol indicating the event type (Figure 3.1). Similar plots with Factor III showed that the event types
(clusters) had no relationship to this third factor. Summary characterizations of the event types can be
formulated as follows using Figure 3.1a:

Cluster 1 : events with low particulate and dissolved pollutants concentrations,
Cluster 2 : events with high levels of dissolved poliutants but low particulate concentrations,
Cluster 3 : events with high particulate concentrations and medium ranged dissolved concentrations.

! Though less pronounced, the plot of non-settleable BOD against settleable BOD (Figure 3.1b) exhibits the
same spread of the three event types. The fact that the pattern of spreading is less pronounced relates to BOD
having a variation pattern somewhat different to the other included EMC variables.

Figures 3.2 and 3.3 contain histograms of the particulate pollutants (Factor I and settieable BOD) and
dissolved pollutants {Factor I and non-settleable BOD) respectively. Being essentially a different
representation of the same information contained in Figures 3.1, 3.2 and 3.3 nevertheless illustrate how the
~ | different event types or clusters result in probability distributions that do not readily fall within the classes of
: | frequently encountered two parameter normal, lognormal and extreme value distributions.

|
Considering the histogram of Factor I in Figure 3.2¢, it is seen that the distribution of events in Cluster 1 and
2, and that of the events in Cluster 3 barely overiap. Due to the relatively large variance of Factor I for events
in Cluster 3 and the small number of events, it is difficult to say whether or not this in fact could be well
described by two parameters distributions. In the case of settleable BOD the separation of the events in
Cluster 1 and 2 from the events in Cluster 3 is less pronounced. Using purely theoretical considerations,
Song (1994) has shown how bimodality can be associated with turbulent flow. This would suggest that the
events in Cluster 3 are events dominated by resuspension of sediments in the sewage system. This agrees
well with the fact that the average maximum rainfall intensity of the events in Cluster 3 was found to be 6.3
mm/hr. as opposed to the average values found for the Clusters 1 and 2 which were 1.9 mm/hr. and 2.0
mm/hr. respectively.

4 « Cluster 1 xCluster 2 a Cluster 3 1 « Cluster 1 x Cluster 2 a Cluster 3

N :‘? _ﬁ'"‘ L

Factor Il
. v
(8 4
»
"
Non-settleable BOD (std.)
p o
%
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»
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»
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»
»
»
>

2

2 4 o6 1 2 3 4 2 a4 0 1 2 3 4 5
a). Factorl b). Settieable BOD (standardised)

Figure 3.1. Plots illustrating the distribution of the three clusters in the Factor I - Factor II plane
i and in the settleable BOD - non-settleable BOD plane.
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Figure 3.2. Histograms showing the distribution of Figure 3.3. Histograms showing the distribution of
events in clusters 1 and 2, and cluster 3 with respect events in cluster 1 and cluster 2 with respect to
to Factor I and settleable BOD. Factor 1 and non-settleable BOD.

Factor 11 has earlier in the chapter been characterised as describing the dissolved pollutants. The histograms
in Figure 3.3 show the empirical distributions of Factoer IT and non-settleable BOD for events in Clusters 1
and 2. Though less pronounced, the same phenomena are apparent as in the case of the distributions of the
particulate pollutants (i.e. Figure 3.2).

CONCLUSIONS

Through a factor analysis it has been possible to sammarize the event mean pollutant concentration variables
into three independent linear combinations of the eleven studied pollutant variables. Through the cluster
analysis, CSO events could objectively be grouped into three different types of events. A summary
characterization of the event types was made by relating these three groups to the three independent factors.

Though the observation data originated from three combined sewer catchments in the Netherlands and two in
Denmark, it was found that events from all five catchments were similarly distributed in the three event type
groups. The distribution analysis that followed the combined cluster and factor analysis has confirmed earlier
findings that event mean pollutant concentrations are often best described as originating from mixture
distributions. The results suggest that event based combined sewer overflow modelling could be improved
either by modelling the different event types separately or by including a class variable indicating the event
type and using a discriminant analysis to decide on the event type in question.
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CHAPTER 4

EVENT LUMPED MODELLING OF
COMBINED SEWER OVERFLOW

ABSTRACT

The complexity of models chosen for integrated urban water guality management may depend on the engineering
alternatives to be examined, the current project phase and the available resources. In this chapter focus is on
combined sewer overflow (CSO} models lumped both in space and in time as each rainfall-runoff occurrence is
considered 1o be a separate single event. The resulting short calculation times make them suitable for retumn period
and uncertainty analysis of CSQ effects. Two event lumped non-linear regression models have been developed; a
sewer overflow volume model and an event mean concentrations (EMC) model, Selection of model structure was
based primarily on the nature of the resulting residuals and the identifiability of the estimated parameters. The
rainfall, water guantity, chemical oxygen demand, Kjeldalh nitrogen and suspended solids data originate from a
Dutch urban catchment. In the overflow volume model the runaff coefficient is expressed as a function of a welness
index which in burn is identified as a function of an estimated cut-off sinusoidal drying rate. The thus estimated drying
rate was Jound to coincide well with mean monthly open water evaporation which is consequently used as input in the
final model Boih total and slow seitling fractions were included in the EMC model. Focus was here on achieving a
description of the joint distribution.

This chapier is based on Gram, M. and Aalderink, R. H. (1999). Event lumped modelling of combined sewer overflow pollution. In
preparation.
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INTRODUCTION

Extreme statistics of CSO loads and effects are often used as design criteria in urban storm water
management. The extreme statistics ofien take the form of return periods calculated using models having
rainfall as major input. This is done both because rainfall has often been observed over a longer period and
as rainfall is also the primary driving force this permits the analysis of proposed engineering scenarios.

Models may be dynamic describing the evolution of runoff, pollutant transport and storage over time or they
may be event lumped describing only variables such as the total overflow volume and ecvent mean
concentration of pollutants as a function of the total depth, duration or mean rainfall intensity. This study is
concerned with event lumped models for predicting CSO volumes and pollutant concentrations,

CATCHMENT AND DATA

In this study an extract of the Loenen data set described in Chapter 2 is used. See also Chapter 2 for a
definition of a pollutants “slow settling fraction”.

APPROACH

The following three components are characteristic of the applied model building approach:
* a priori conception of the processes taking place,
¢ principals of parsimony,
« graphical examination of the difference between observed and modelled values.

Our a priori conception of the processes taking place may range from the knowledge that water is pumped to
the treatment plant to the idea that the amount of swirled up pollutant material depends on rainfall intensity.
Inclusion of this knowledge and understanding both increases the engineering value of the model and may
sometimes lead to more parsimonious model designs.

Through care in allotting of parameters the principals of parsimony aim at reducing the non-uniqueness of
the estimated parameter set. This can help identify the most relevant terms and reduce the chance that the
structure becomes specific to the given data set. However, parsimony alone does not necessarily iead to
improved estimates on extrapolation beyond the ranges of the given data set (Reichert and Omlin, 1997).

Graphical examination of the residuals helps to reveal breaches in the underlying assumptions and may
suggest modifications leading to an improved model structure. The most important plots include those of
residuals against independent variables, candidate independent variables and against candidate independent
class variables such as weekday-weekend.

In the approach, the three components are put to use simultaneously. A pattern in a residual plot could, in
combination with our conception of the processes taking place and a high correlation found between two
parameters, suggest certain alterations in the model structure. A comprehensive treatment of model building
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in non-linear regression analysis can be found in Draper and Smith (1989). No outliers have been removed
during the regression analysis. With rainfall as driving force, it is likely that model modifications would
demonstrate that presumed outliers are neither observations of a distinctly different event type nor the result
of typing errors, but simply that they are extreme cases of the occurrences being modelled. In the context of
return period analysis it is important that the model is also able to model the extremes.

MODELS

Overflow Volume Modelling

The core of the final overflow model is based on the following balance: runoff will either be pumped to the
treatment plant, be stored behind the weir or overflow into the surface water. This results in the following
expression for the overflow volume, Veso, :

lr}c‘scn for Vc.so >0 (4.1}
Veso: = ' ' he .
€30, ][0 otherwise where
V‘so.s = Ag Hypn, — A-Q “Dran = Vsrome — &

el plow” plemm kR

where 4 is the impervious catchment area, Hy,,. , and Dy, , are rainfall depth and duration respectively,
a, is the estimated runoff coefficient, Qp,,,, is an estimated pump capacity (relative 1o irmpervious surface
arca) and Vo is the sewer systems static storage capacity behind the weir. This static storage was
calculated on the basis of the systems pipe geometry and was assumed to be a known fixed parameter during
the pararneter estirnation. The errors &, ; are assumed to be independent and normally distributed with mean
zero and variance o . The runoff coefficient was assumed to be a linear fimction of the weiness index W,
value at the given event. The dimenstons shown with L for length and T for time.

_ Y PR (4.2)
a, =a+b-W, where w =@ el "‘)+HM,N',.

i -1

where a and b are estimated parameters representing the minimum runoff coefficient and the wetness
. dependency respectively, As shown in (4.2) the wetness index W,, is itself a function of it’s value at the
previous rainfall event ¥, ,, the preceding number of dry days ¢, — ¢,_,, a first order drying rate rypyne ; and
the depth of the current rainfall event. The annual variation in the drying rate was described by a cut-off
sinusoidal expression (4.3) where ¢, is the day of the year and where the constant parameters r,, 1y and 1,
were estimated from the rainfall-overflow data along with other model parameters.

zm,.} @3)

r forr' >0 ) (274,
PoRYING. | = where r =71, +1; sin 365 ) Tl o8 Sz

0 forr <0
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In the final model the expressions in {4.3) are replaced by the dependency to Dutch mean open water
evaporation shown in (4.4).

Torymig, s = To E(ti) (4.4)

where E(t) is the Dutch long term mean open water evaporation rate for the t" day of the vear in [mmv/day]
and where the estimated constant coefficient r, has units [mm''). The input evaporation data series used had
been linearly interpolated from a series of mean monthly values. Estimation of parameters in the non-linear

overflow volume modelling was done using the downihill simplex optimisation on a least square estimation
criteria.

Event Mean Concentrations Model

The final form of the event mean concentrations model is shown in (4.5) where i = 1, 2, 3 for Kjeldahl
Nitrogen, COD and S8 respectively.

]-n(C.] =a,+b Iy t+ 5 . (4.5)

where 1., is the mean rainfall intensity, a; and b, are estimated constant coefficients and & is a random
error with zero mean. The inverse of the slow-settling fraction of the pollutants was found to be best

described by a straight line using the log of the total concentration as independent variable. This can be
written as in (4.6} with i = 4, 5, 6 for that of Kjeldahl Nitrogen, COD and S8 respectively.

. 4.6
ln[fij =a, +b, -ln(C,)+£,. *9

Parameter estimation in these log-linear models was done using a least square criteria on each component.
Simultaneous estimation using the simplex optimisation routine on a maximum likelihood criteria was used
when examining more complex non-linear model formulations. The two methods yielded very similar results
for the presented log-lincar model.
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RESULTS AND DISCUSSION

Overflow Volume Model

The results of selected overflow volume models are presented in Table 4.2 with the final model presented as
Model 4. The results of the three other versions have been included in order to give an impression of the
model building process and to illusirate the importance of the included terms. Results presented in Table 4.2
are for the following models. '

Model 1. Constant runoff coefficient.
The runoff coefficient, &, in (4.1), is assumed to be constant over time and does therefore
not vary over the year.

Model 2. Wetness dependent nimoff coefficient with constant drying rate.
Here the runoff coefficient is assumed 1o be a function of a wetmess index as defined by
(4.2). The intercept a and gradient b are estimated along with the other parameters. Also
estimated from the data is the constant drying rate rppyyG -

Model 3. Wetness dependent runoff coefficient with a cut-off sinuseidal drying rate.
This 1s the model described by (4.1) to (4.3). The wetness index is here a function of a
drying rate, which in turn is a function of the cut-off sinusoidal expression in (4.3). In
Table 4.2, row D of model 3, the resulting drying rate, #', has been plotted. This has been
calculated using the expression in {4.3) with the estimated values of the three parameters.

Model 4. Wetness dependent runoff coefficient with an evaporation dependent drving rate.
This is the model described by (4.1), (4.2) and (4.4). The wetness index is expressed as a
function of the drying rate, which in tum is expressed as a function of the mean open water
evaporation rate as shown in (4.4). In Table 4.2, row D of Model 4, the evaporation input
series, £(¢)has been piotted.

The resulis of Model 4 (far right column in Table 4.2) would suggest that the effective impervious surface
area is 9.2 ha (16%) rather than the documented/reported 15.8 ha (28%) and that the sewer receives excess
water from an additional pervious area of up to 17.8 ha (31%). The suggested effective impervious area of
9.2 ha can be seen in the far right column of Table 4.2 where the estimated value for the runoff coefficient
intercepior, a, is 0.58 rather than 1.0 which would correspond to the documented impervious 15.8 ha. The
suggested additional pervious area, which contributes after very wet periods, is seen from the maximum
value of the effective time varying runoff coefficient shown in row C of the far right column in Table 4.2.
This maximum is 1.7 where 1.0 again corresponds to an area of 15.8 ha. After subtracting the impervious

§ area (9.2 ha) above this gives a value of 17.8 ha. After long wet periods this results in an effective runoff

surface of about 27 ha equivalent to 47% of the total catchment area. Characteristic of the gardens in the
Loenen catchment are their convex shape and their slight elevation with respect to the impervious roads and
pavements. It is likely that excess water from these so called pervious areas enters the sewer system.

The apparent seasonality in the runoff coefficient has been subject to much debate. In the initial studies
(Bakker et al., 1989) a runofT coefficient was estimated for each event using a dynamic model and time series
of rainfall and water level at the combined sewer overflow situated in the sewers lowest point. Seasonality in
these runoff coefficients was evident and contributions from the impervious area was also then given as a
possible explanation. No attempts were then made to relate this seasonal variation, through modelling or
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otherwise, to surface weiness or moisture. Later studies, also based on dynamic modelling of individual
events, revealed that the apparent seasonality could result from the combined effect of more intense thunder
showers in the summer months with long drizzly rainfall events in the winter and questionable assumptions
concerning the actual pump operation procedure.

The current results also suggest seasonal variation in the runoff coefficient but relates it through the wetness
index, to surface moisture. In spite of this highly plausible physical explanation and the good {it between the
thus empirically estimated drying rate and mean monthly open-water evaporation rates (see Table 4.2, row
D}, it is important to realise that because the long less intense rainfall events occur generally during the wet
winters and the short intense storms during the summers, it is not possible to completely exclude the theory
that the apparent seasonality results from a faulty description of the pump operation procedures. The pump
description in this event lumped model assumes that the pump operates at its estimated capacity all through
the rainfall-runoff event. In Loenen there are in fact two screw pumps, which are turned on and off
depending on the local water tevel, In the event lumped description an average is assumed and estimated.

The location and the cut-off level of the estimated drying rate curve of Model 3 is seen to coincide well with
the Dutch mean monthly open-water evaporation (Table 4.2, row D). In Model 4 the expression (4.4) was
therefore used as in the model in place of the cut-off sinusoidal expression in {(4.3}). The number of model
parameters was thus reduced from 6 to 4 without loss of fit, This further removes the somewhat rigid
sinusoidal structure from the model. Though wetness indices are widely used in rural rainfall-runoff
modelling, references to expressions with first order drying rates were not found.

Parameter correlation coefficients between the Model 3 parameters were below (.4 (absolute). An exception
to this was the estimated cosine coefficient with a correlation of -0.7 with each of the two other parameters in
the drying rate expression. The estimated pump capacity of 0.47 mm/hr is low compared to the reported 0.7
to 1.1 mm/hr. The pump capacity was found to correlate somewhat (0.4) with the constants relating the
runoff coefficient to the wetness index. This is an example of a case in which our rough a priori knowledge
of the pump capacity could beneficially have been incorporated quantitativety into the parameter estimation
criteria (Reichert, 1997 and Chapter 5).

Within the framework of identifiable event lumped rainfall-runoff models future efforts should aim at
incorporating mean open water evaporation as a model input, examining the generality and possible
weaknesses of using a wetness index with a first order drying rate and comparison with overflow predictions
made using dynamic models.

Event Mean Concentrations Model

Results of the EMC and slow-settling fraction modelling are presented in Table 4.3 and Table 4.4. Each
column in Table 4.3 represents one of the three pollutant components N-KJ, COD and SS with the total
event mean concentration models in the top half and the siow-settling fraction in the bottom half.

For the total EMCs the coefficients of determination, R?, of 0.24 to 0.35, are much lower than those achieved
for the overflow model. A great variety of independent vartables and mode! structures were investigated in
an attempt to obtain better predictability. Candidate independent variables included rainfall depth, duration,
maximum intensity, functions of time of year, functions of time of day, weekday-weckend, preceding dry
weather period, wetness index from the overflow volume model above and various combinations of these. It
was possible to obtain better prediction using observed overflow volume and observed maximum discharge
intensities as explanatory variables. However, once the predicted values of these variables were introduced
the coefficients of determination dropped to about (.2-0.3.
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Apparent in all three plots of predicted and observed total EMCs (Table 4.3, graph row A) is that the error
variance does not appear to be independent of the mean rainfall intensity. Attempts to estimate this
dependency using a maximum likelihood criterion were unsuccessful when equal weight was given to
observations from events with low and high rainfall intensity. Future efforts should aim at solving this
breach of assumptions.

For the slow-settiing fractions the coefficients of determination are with total EMCs as independent variables
(i.e. their observed values have been used during estimation). On application these are only available as
predictions and the actual coefficients of determination with respect to the mean rainfall intensity will be
much lower.

Table 4.3. Results of the EMC (toﬁ half) and slow-settling fraction modelling (bottom hatf).

Results of Kjeldahl Nitrogen Chemical Oxygen Demand Suspended Solids
EMC Modelling {N-K.J) (COD) (88)
Event Mean Concentrations
No. of parameters 2 2 2
R 0.35 0.28 0.24
Adijusted R? § 0.33 0.27 0.23
Units* Symb. Eguat.
Intercept a  (4.5) 2.10 {0.06) 5.15 (0.11) 4.91 (0.16)
Gradient b (4.5) 335 (0.72) 499 (1.24) 6.94 (1.91)
Eorvar. o} (4.5) 0,33 0.58° 0.89°
A 3z 1600 1200 {7 " N
EMC against event 5 + R o
mean rainfall T %00 sl
intensity, Jpam ?.EE‘ 1A 250 -
§ g % 100 1§
W a1t 125 A
E * ’
2 825 P
Q c2 04 1] a.2 04 [v] 0.2 0.4
Mean rainfall intensity (mm/min.} Mean rainfall ittensity (tun/omin.) Mean rainfall intensity (mm/min.)
Slow Settling Fractions
Ng. of parameters 2 2 2
R*+ 0.0 0.69 0.65
Adjusted R? % § 0.0 0.69 0.64
Units** Symb. Equat.
Intercept a (4.6) 0.54 (0.15) -3.24 {0.46) =348 (0.74)
Gradient b (4.6) 0.0 0.82 (0.09) 1.20 (0.14)
ErTor var. s’  (4.6) 0.95° 037° 0.90°
B -
Inverse of slow- . = ‘
settling fraction 25 o,
against Event Mean Z&3 N
Congentration §§’ 2 . —Oﬁ—y’—
(EMC) £% oo e
0.2 i *
2 4 ] 16 a2 80 120 240 480 960 12 40 120 400 1200

Kjedahl nitrogen EMC (mgl) Chemical oxygen demand EMC (mg/l) Suspended solids EMC (mg/l)
1 Note that these coefficients of determination are with the total event mean concentrations as independent variables. On
application these would in turn be a function of the mean rainfall intensity.
§ Adjusted R? is the coefficient of determination compensated for the number of estimated parameter in the model.
* Units of a, b and o, are {ln{mg/D), [In{me/1)ymin/mm] and [{In(mg/1)}] respectively.
** Units of a, b and o,” are [ - ], [1/In(mg/)] and [ - ] respectively.
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Table 4.4. Correlation matrix defining the joint probability distribution of the
error terms in the EMC and slow-settling fraction model (see (4.5) and (4.6)).

1 2 3 4 5 6
_ Cuxg Ceon Css Jhxg froo Jss
1 Kjeldahl Nitrogen (N-KJ) Crks 1.00 0.69 0.54 0.06 -0.51 0.04
2 Chemical Oxygen Demand (COD)  Ceop 0.69 1.00 0.94 -0.38 0.06 0.11
3 Suspended Solids {SS) Css 0.54 0.94 1.00 -0.47 0.20 0.12
4 Slow-settling fraction N-KJ ks 0.06 -0.38 -0.47 1.00 -0.25 -0.04
5 Slow-settling fraction COD Jeop -0.51 0.06 0.20 025 . 1.00 023
6 Slow-settling fraction 8§ fss . 0.04 0.11 0.12 -0.04 0.23 - 1.00

No explanatory variable was found for the slow-settling fraction of Kjeldalh Nitrogen and the resulting R” is
therefore zero. As suggested by the cloud of points in the plot of inverse slow-settling fraction of Kjeldahl
Nitrogen against its EMC (Table 4.3, N-KJ column graph row B}, the value of b in (4.6) was not
significantly different from zero and the term was consequently removed from the model. The consequence
is that the inverse slow-settling fraction of Kjeldahl Nitrogen is in fact described as a log normally
distributed random variable. For many practical applications such as return period analysis of detrimental
CSO0 effects a distribution is much better than no model at all and it is important to realise that a coefficient
of determination is zero does not render the model useless.

A linear relationship was found between the logarithms of the inverse of the slow settling fraction and the
total event mean concentration for both COD and S8. As shown in the two figures to the right in Figure 4.3
row B, high event mean concentrations were associated with high values of the inverse slow settling fraction.
This means that high concentrations are thus predominately associated with increases in material that settles
within one hour.

Both in event lumped and dynamic modelling a much higher predictability is found for water quantity than
water quality variables. In practice this means that the value of using the relatively well characterised rainfall
in evaluating return periods of detrimental CSQ effects under various structural or control scenarios is low.
The uncertainty in the return periods would be expected to depend to a large extent on the size of the CSO
water quality data set itself. The parameter correlation matrix for the water quality model is not presented in
full but some main aspects of this 11 by 11 matrix will be shortly discussed. Although the correlation
between the a’s and b’s in (4.5} were generally low the correlation amongst the a’s and amongst the b’s was
generally high (0.5 to 0.9). This would suggest that the number of estimated parameters could be reduced
without significant loss of fit by restructuring the model to have a common dependency on the mean rainfall
intensity with a scaling factor for each of the three components,

The presented models have been used to evaluate uncertainty in return period analysis of combined sewer
overflow effects (Grum et al., 1998 and Chapter 9). In such applications event lumped models have an
advantage over dynamic models as they have short simulation times and have reasonably satisfied
assumptions concerning errors and uncertainty. The water quality model defined by (4.5) and (4.6) is a single
model whose parameters where estimated simultaneously and for which correlation matrix corresponding to
the joint distribution of the error terms is given in Table 4.4. Note that particularly the errors of the event
mean concentrations of COD and S8 are highly interdependent. Chapter ¢ introduces a methodology for the
analysis of uncertainty in return periods where a distinction is made between inherent variation and
uncertainty. The joint distribution of the error terms in the event mean concentrations model describes
inherent variation and is in Chapter @ treated as such.
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CONCLUSION

It has been possible to identify and estimate parameters in event lumped models of combined sewer overflow
{CSO) volume, event mean concentration and slow-settling fractions of three pollutants; Kjeldahl Nitrogen,
Chemical Oxygen Demand (COD} and Suspended Solids (S8). With rainfall as input, high coefficients of
determination were found for water quantity but not for the concentration variables.

Using onty event lumped rainfall and overflow volume data, the catchment drying rate was identified and
found to coincide surprisingly well with mean open water evaporation data. Evaporation was subsequently
introduced into the model as an explanatory variable. Future efforts should be made to examine the
generality and value of the presented wetness index particularly in urban drainage systems receiving runoff
from pervious and semi-pervious surfaces.
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CHAPTER 5

DETERMINISTIC AND STOCHASTIC MODELLING

ABSTRACT

In this chapter the underlying assumptions of deterministic and stochastic modelling are examined in the context of
water quality modelling. Particular attention is given to assumptions concerning the source of the deviation between

madelled and observed values and how this results in two very different approaches to parameter estimation.

Potentials and Imitations of including physical, chemical and biological theory into stochastic models are

evaluated. Methods and approaches generally associated with stochastic modelling are discussed and applied in the

context of both approaches. These inciude the virtues of the linear and non-linear state space formulations, common

estimation critevia, exploring parameter space and aspects of identifiability including the quantitative incorporation

of a priori imowledge into the parameter estimation process.

A case study is presented in support of the theoretical outline. A rainfali-runoff model for a combined sewer system is
estimated both as a deterministic and stochastic model. The physical description used in the two models is identical;
they differ only in thelr ervor assumptions. The modelling tool used way developed specifically to estimate
paramelters of a model as both deterministic and stochastic. The case study also highlights some of the practical
problems that need to be addressed when incorporating water and water quality theory into stochastic modelling.
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INTRODUCTION

Models are often used to support decisions in urban water quality management. There exist many different
approaches to water modelling. Two main lines are the traditional deterministic and the stochastic modelling -
approaches. In both practice and research the choice of approach appears to depend more on the background
of the modeller than on the problem being addressed and the available economic resources.

With the aim of contributing to bridging this gap between traditional deterministic and stochastic modelling
approaches, this chapter firstly addresses the central differences between the two approaches. As argued, via
the parameter estimation problem, it is important not only to realise but also to keep in mind that the
difference between stochastic and deterministic modelling lies in the implicit error assumptions.

Secondly, the chapter outlines and discusses some principles and methods relevant to both approaches but
which, for historic reasons, are generally only associated with stochastic modelling. These include the state
space formulation, various estimation criteria, empirical and mechanistic model structure, identifiability and
parsimony. A case study is presented in which both methodologies and a number of the associated methods
arc applied to a water quantity model of the Loenen sewer system.

Out of this chapter spring some key questions: When should which modelling approach be used? How much
detail should be included in the model? These and other questions are discussed in Chapter 8, which
concludes the modelling part of this thesis.

DETERMINISTIC AND STOCHASTIC MODELLING

Parameter Estimation in Deterministic Modelling: No UP-DATE

Traditionally deterministic water quality models are calibrated against observed data. The simulation results
are made to fit the observed data as best possible by adjusting the model parameters to values that the
modeller’s engineering experience tells him are reasonable values. In other cases deterministic models have
their parameters estimated by using search algorithms that minimise the swn of squared errors, What ever
the case the following points are in principal equally valid and *‘parameter estimation™ will here be used to
describe cither of the two methods.

The parameters of a deterministic model are estimated by sequentially running a full simulation, comparing
the results with the observations and evaluating the fit. This is repeated several times usually as part of some
structured optimisation procedure. When no further improvement is obtained the process stops. Figure 5.1
illustrates a single such full simulation (the solid line} and the observations (the crosses). Modelled is the
response of a fictitious flow to the fictitious rainfall input plotted above.

What in fact is done during one such simulation can be described in other words. The simulation starts at
time = and an observation is first encountered at time #=7. At this point the deviation between the
modelled value is noted but no adjustment is made to the estimated value of the flow. It is not up-dated.
Total confidence is placed in the modelled value, which is taken as our best estimate of reality in spite of the
fact that this didn’t coincide with the observation. The implicit assumption is that the deviation between the
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Figure 5.1. During parameter estimation and/or calibration in traditional deterministic modelling deviation
between model and observation is implicitly assumed to result from observation error only. Therefore no
adjustment is made to the flow on the presence of an observation. (Example shows fictitious data).

modelled and observed values results from observation error alone, no up-dates are made to the state of the
system and we continue our simulation of reality from the modelled value.

o In deterministic modelling the implicit assumption is that our description of reality
is perfect and that all deviation between modelled and observed values is the result
of observation error.

Note that the term observation error is used rather than measurement error. This is because observation
error encompasses measurement error, sampling error and error due to inhomogeneity.

0 10 20 30 lag +i 40

Figure 5.2. A fictitious unit hydrograph (impulse response function) defining the values of g; in (5.1).
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Parameter Estimation in Stochastic Transfer Function Modelling: COMPLETE UP-DATE

Consider the following model in which the flow, O, is expressed as a function of earlier observations of
rainfall, R, with an added error, e. The model is defined in discrete time where for example the subscript 1-2-
fag refers to the variables value (2+{ag) time steps earlier than the time ¢ in which the variable is defined.

Q: =4 ‘R.'—Iag +a R

1 tg T R +a,-R +..+a, R +e (5.1)

t—2~lag r-3-lag t—h—lag [

This could for example be a simple unit hydrograph consisting of a rise followed by an exponentially decay with the values of ag,
ar, az - @, as shown in Figure 3.2,

Ljung (1987) uses a similar model as an initial attempt in an example problem where river flow is modelled
as a function of rainfall. Ljung then proceeds to test a model of the following form (5.2} and ascertains that
the error variance is significantly reduced by including the flow’s value in the previous time siep as an
explanatory variable.

0 =06-0,+a, R

i-lag

+ay - R +e (5.2)

1=l-lag i

True enough, the flow is now expressed as a function of its value in the previous time step but in the
paragraphs below it will be shown that this is a mere technicality when comparing it to the model defined by
equation (5.1). The error variance found for (5.1) is undoubtedly much smaller then that found for (5.2). But

40

30 +

20 f Mx;mx*
"

Flow Q [m3/s]
Flow Q [m3/s]

Figure 5.3. Left: Parameter estimation with no up~date implying no model error and thus a
deterministic model (5.6). Right: Parameter estimation with complete up-date, Up-date implies model
error is present thus a stochastic model (5.2). Observation = cross and prediction = plus.
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do these two errors describe the same thing? Are they at all comparable?
The prediction of the flow, Q, as defined by the model in the expression (5.1) can be written as

0,=a, R_,, +a,-R (5.3)

1=l-fag

+a, R

1=-2=lug

+a, R

1=3~lag +..+ au ! R!

—n~ing
where the hat symbol, *, is used to indicate that this is a prediction of the variable. A response of the form
shown in Figure 5.2 with an initial rise followed by an exponential decay can be expressed using fewer
parameters (5.4).

Qr =d 'QAH +w, R (5.4

rotg T W -R

1-1-lag

where the model parameters d, w, and w; could be found from the following relation to the response function
defined by the a’s in (5.3) as follows

i, = W,
a = d- W, + W (5.5)
a, = dw, + d-w

Thus, the complete model in (5.1) may be rewritten with fewer parameters as follows (5.6).

o, =d‘Qr-l +wy R,

1—iag + w 'Rr-i-,'ag +er (56)

At first sight the two models defined be the equations (5.6) and (5.2) now look very much alike. There is,
however, a world of difference.

At each time step during parameter estimation in the first model (5.6) (2 reformulation of (5.1)),
o prediction departs from the predicted value in the previous time step,
» observed values are used ounly to calculate the error, e, and subsequently to find the fit,
« 1o adjustment is made to the current flow estimate, that is, No Up-DATE Is
PERFORMED,

« deviation between modelled and observed values is assumed to result from
observation error alone,

« the model’s system description is assumed to give a perfect description of the system
behaviour,

» the model is a DETERMINISTIC model.

At each time step during parameter estimation in the second model (5.2),

» prediction departs from the observed value in the previous time step,

« the cument flow estimate is adjusted to be equal to the observed flow, that is, a
COMPLETE UP-DATE IS PERFORMED,

thus

« deviation between modelled and observed values is assumed to resuit from model
error alone,

» the model’s system description is assumed only partly to describe system behaviour
and the remaining behaviour is assumed to be random compared to given explanatory
variable (in this case rainfall R,),

« the model is a STOCHASTIC model.
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Mgure 5.4. Lomparison of sumulations of the two models (5.6} {solid line) and ¢5.2) (dashed Ling). 1he
simulations have been performed with the same model parameters (d=6=09, wo=an = 0.5, w;= @, =0.2
and lzg = 2) and the same error variance o,” of 1.5°.

The error term in (5.6) is an observation error whereas the error term in (5.2) is model error describing
random behaviour of the system. The two error terms represent very different things and a direct comparison
is therefore uninteresting. What generally would be interesting after parameter estimation with each of the
models would be to evaluate whether the resulting error series, the residual series, in fact was made up of
independent realisations of a random variable. This is discussed in more detail later in the chapter.

In the above discussion the difference between the two simple models is highlighted in view of the
parameter estimation or calibration. This may be supported further visually by model simulations.
Simulations of the two models (5.6) and (5.2) have been plotted in the same graph in Figure 5.4. The
simulations have been performed with the same model parameters (d =& =09, wo=epy =05 wi=an= Q.2
and lag = 2) and the same error variance o” of 1.5%. The visual difference between the two models is clear
and unmistakable. The deterministic version of the model is a smooth curve with an overlaid fuzz whereas
the stechastic version has more the look of a shiver. This is because in the first deterministic version of the
model (5.6) the flow at time t is a function of an error term only of time t (the observation etror). In the
stochastic version of the model (5.2) the flow is not a function of its predicted value in the previous time step -
but of its simulated value and therefore a function of the error terms of all previous time steps (the model
error).

In the deterministic version (5.6) @, =/ (Ri_ugs Rriogs Rrorotugs > ) (5.7

In the stochastic version (5.2) @, = f (R,f,ag B g R g g n €58 138, 20€, 55 ) 5.8
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Generally the following can be said about the stochastic models traditionally applied in statistical time series
analysis such as the transfer function modets in Box and Jenkins (1976) and Chatfield (1996).

o In stochastic modelling with complete up-date the implicit assumption is that the
observations of reality are perfect and that all deviation between modelled and
observed values is the result of model error describing random behaviour of the
system.

A complete up-date of the state variable(s) is performed as the modelled variable is adjusted to be equal to
the observed value whenever an observation is available.

Parameter Estimation with Separation of Variance: KALMAN UP-DATE

Models are always a simplification of reality and assuming that all deviation results from observation error
alone would generally be incorrect. On the other hand observations are also often uncertain due to
inhomogeneity, vanations within sampling and analysis procedure. A third possibility is to accept the
presence of both observation and model error.

When an observation is encountered, whilst modelling in time, an improved estimate of the variables true
value may be obtained as a weighted average between the model’s predicted value and the observed value.
This weighted average is called the up-dated value. Modelling would then proceed from this new up-dated
value.

In the deterministic version of the simple unit hydrograph model (5.6) there was no up-dating during
parameter cstimation. In the stochastic version presented in (5.2) there was complete up-date during
parameter estimation. A model that up-dates to a weighted average between the predicted and observed
values could be formulated by simply merging the two models (5.6) and (5.2) to the form (5.9).

Q.' = 6'(k'Qf—1 +(1_k)'Q|-l ) +aw, 'Rr—lag + o, ‘Ra—l-.'ag +e (59)

The weighting factor £ is called the Kalman gain and the whole methodology for separating the variation
mnto observation and model errors is called the Kalman filter after the author who first presented it in the
1960s. Note that @ with the hat is the predicted flow whereas Q without the hat is the observed flow.

In stochastic modelling with Kalman up-date,
« In stochastic modelling with Kalman up-date the implicit assumption is that
deviation between modelled and observed values are the result of both observation

errors and model noise.

Figure 5.5 illustrates the how prediction in the Kalman filter proceeds from a weighted average of the
model’s predicted value and the observed value.

47



Urban Runoff Pollution: Modelling and Uncertainty in Retum Period Analysis Morten Grum

The value of the Kalman gain, &, depends on the uncertainty associated with the model prediction relative to
the observation’s uncertainty. For a one dimensional model such as (5.9) the Kalman gain can be expressed
as follows.

k a;JODELLED. i

? .1
O roperien. : T Fapserven (5.10)

where G} gpsurp, , 15 the variance of the model’s predicted value (at time £} and 0 z54,5p is the observation
variance.

Figure 5.6 graphically illustrates how the Kalman up-date works. In Figure 5.6A the uncertainty of the
model’s prediction is illustrated by its broad and flat probability density function. In such a case the up-dated
value will be close to the relatively more certain observation. In Figure 5.6B it is the model prediction that is
the most certain and consequently the up-dated vatue will lie closer to the predicted value.

Modelling the Variances

Above it is outlined how the Kalman gain is an expression of the uncertainty in the model prediction relative
to the combined uncertainty. But where do these variances come from.

The observation error variance is most often assumed to be the same for all observations of a given variable.
Thus not changing in time, If 2 maximum likelihood estimation criterion is used (see section on estimation
criteria below) for an off-line parameter estimation then the observation error variance can be estimated from
the data along with the other model parameters.

However, the variance of the mode! prediction will generally vary in time. The prediction variance will
increase with time as the duration since the last observation increases. The variance will also increase or
decrease depending on the rigidness of the system itself in its current state. For example, in the case study
that follows the variance of the predicted water level abruptly decreases once overflow over the weir begins.

In using the Kalman filter also the variances of the system states have to be modelled in time. The rate at
which the variance increases in time may be assumed constant and this variance may be estimated along
with other model parameters. On the presence of an observation the variance of the prediction is up-dated in
the same way as the prediction itself, If the modeiled value is relatively uncertain then the presence of a new

A

Observed

—_—
Variable OBSERVED VALUE >< (G\’\

Up-DATED VALUE — ™
KALMAN UP-DATE —= ( ><

PREDICTED VALUE —""

PREDICTION

l T T >

Time

Figure 5.5. Sketch of the principal elements of the Kalman filtering. Both model and observation errors are
assumed to be present and prediction therefore proceeds from a weighted average between the observed
and the modelled values: the Kalman up-date.
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observation will result in a major reduction of the variance. Conversely, if the modelted value is relatively
certain then the new observation only results in a minor reduction of the variance,

In Appendix A and Appendix B are the equations for the linear and non-linear Kalman filter respectively.
Included are the equations for up-dating the state variances and for calculating their propagation in time.

The Kalman filter as Convergence Routine and with Off-Line Estimation

The Kalman filter has often been used as a convergence routine in parameter estimation. This is done by
placing the essentially “constant” parameters whose values are to be estimated as state variables in the state
vector and assigning a simple empirical model such as a first order autoregressive model and letting the
parameter converge to its “true” value in time. For this to work successfully the system variances and

observation variances have to be fairly well known.

In the case study that follows and in Chapter 6, the Kalman filter has not been used in its capacity of
parameter estimator. The Kalman filter has been used uniquely for obtaining an improved estimate of the
observed and unobserved system state variables on the presence of an observation. This is then combined

| with the optimisation of a likelihood criterion that is calculated once for each complete run-through of the

time series used for parameter estimation. The model parameters, including the error variances, are estimated
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Figure 5.6. Tlustration of the Kalman up-date in the cases where the model’s prediction is relatively
uncertain and relatively certain (A and B respectively). Each graph deplcts the probability densaty functions

of observed variabic at an instance in time.
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by maximising the logarithm for the likelihood criterion. Although essentially the same thing, these two uses.
of the Kalman filter are in practical terms very different and should not be confused. In certain practical
applications such as model based real time control it may be advantageous to combine the two difterent uses
of the Kalman filter.

Error Assnmptions

The main distinction between deterministic and stochastic modelling lies in the implicit error assumptions.
In deterministic modelling our parametric description of reality is assumed to be perfect and all deviation
between modelled and observed values is assumed to be the result of observation error. In stochastic
modelling our parametric description is assumed only to be a partial replication of reality and at least part of
the deviation between modelled and observed values is assumed to be the result of model error. Figure 5.7
summarises the error assumptions into the two extremes of no up-date and complete up-date, and with the
Kalman up-date in-between.

Characterisation of dynamic models should in first place relate to their underlying assumptions. The
underlying assumptions distinguishing deterministic models from stochastic models are the error
assurnptions that on the presence of observations lead to no up-date or to an up-date respectively.

ESTIMATION SKETCH ASSUMPTION UP-DATE MopEL TYPE
The deviation between
- model modetled and observed
x  observation results from ...
Aje
j'g observation NO UP-DATE
> error only k=0 DETERMINISTIC
MODEL
B
'S system COMPLETE UP-DATE
§ error/random behaviour k=l
T STOCHASTIC
tme MODEL
C
,'g both KALMAN UP-DATE
; observation e¢rror and o
system random O
behaviour O rodetied T O ghservation

Figure 5.7. Summary for the comparison of assumptions made during deterministic and stochastic modelling. The up-date is -
here illustrated for a one state variable model.
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STATE SPACE FORMULATION

. Linear

The model in (5.9) would generally not be written in that form. A more general and more convenient form is
the state-space representation with a state equation and an observation equation. In (5.11)-(5.12) below the
unit hydrograph model of equation (5.9) has been rewritten into a state-space form.

The system or state equation:

Q=60+ R, +o-R , +e, G

The observation equation:
QOBS,.' =Q| +e,, (512)

Where Qggs, ; is now the observed flow. The state variable, (,, defines the current state of the system just as
the state equation defines the system dynamics. The observation equation describes how the system is
observed. In (5.12) the flow variable is observed directly and only an observation error term is added.

At first glance it may appear as if one would never be able to distinguish between the model error, e, , and
the observation error, ez . Looking carefully, however, it is evident that the observed flow, Qogs, » 1s a
function of all past values of the model error whereas it is only a function of the observation error at that
particular moment in time.

On simulation the flow, (,, would be calculated using (5.11) and its observed value, (ops, ;, would be
obtained by adding the observation error to (3. During parameter estimation the Kalman filter would be
used. Flow prediction would be done using (5.11) without its error term and the equivalent second moment
expression would be used to predict the prediction variance at time ¢ as a function of the prediction variance
at time ¢-/. The Kalman gain would be calcuiated using (5.10) and this in turn used to calculated up-dates of
the flow and flow variances.

)| Notice that if ¢,, in (5.11) had a variance equal to zero then the equations (5.11)-(5.12) would be identical
to the deterministic model (5.6). If instead e, , in (5.12) had a variance equal to zero then (5.11)-(5.12)
would be the same as the stochastic mode] with complete up-date in (5.2).

In the above the deterministic modelling with no up-date and stochastic modelling with both complete and
Kalman up-dates have been presented using a simple flow model with one state variable and one observed
variable. Often, however, it is not sufficient to use only one state variable in defining the state of a system.
When working with more than one state variable it is helpful to place them in a state vector that i5 generally
written with the symbol X;. The generalised linear state-space mocdel can then be written as,
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System Equations:
X, =AX_,+Bu_ +e, (5.13)
Observation Equations;

Y, =CX +e, (3.14)

Where X, is the state vector, 4 is the system matrix containing coefficients to the state vector of the

previous time step, u

—_

; is the vector of inputs, B is inputs matrix containing coefficients to the input
variables, g, ,is the model error, ¥, is the vector of observations, Cis the observation matrix with
coefficients defining which state variables or linear combination of state variables is observed, and e, ,is the

observation error. Refer to see Harvey (1993) and Madsen (1993) for more details on the linear state space
formulation and Kalman filtering.

The equations of the linear Kalman filter, which may be used for estimation in linear state-space models in
the form of (5.13)-(5.14), are listed in Appendix A.

Non-linear

For much practical water quality engineering simplification to linear models would be unreasonable or even
impossible. In such cases the extended Kalman filter may be used with the non-linear state-space
formulation. The non-linear state-space formulation in discrete time may be expressed as follows,

System Equations:

X, =X, 4 n8)te, (5.15)
Observation Equations:

Y, =hX.8)+e, (5.16)

where X, is the state vector, /() is the non-linear system function, u,_, is the vector of inputs, & are the
constant parameters, ¢; is the model error, ¥, is the vector of the observed variables, #()is the non-linear

observation function defining how the state variables are observed, and ¢, , is the observation ervor.

Some times none of the state variables may in fact be observed. Water volumes or flows may, for example,
be the modelled state variables but in the observation equation these would often be converied to water
levels which have been or are being monitored. Modelling suspended solids and dissolved organic matter as
~ state variables the observed variables may be turbidity and UV-absorption,

Measurements such as turbidity and UV-absorption are often supplemented by less frequently sampled and
analysed quantities such as suspended solids, COD, BOD or others. These would generally be included in
the observation vector ¥, and may be a function of the same state variables in the slate vector X, as the
more frequently observed variables. In periods where only the frequently observed variables are available
the less frequently observed variables would be treated as missing. Single variables in the observation vector
can be treated as missing by momentarily giving them any arbitrary value and letting their observation
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variance be equal to an extremely high value. Extremely uncertain observations have no effect on the up-
date of the states. Stochastic time series modelling with complete up-date in discrete time requires
equidistant sampling and missing values is generally problematic. Stochastic modelling with Kalman up-
date has the distinct advantage of accepting irregular sampling, not requiring the same sampling schedule for
all variables and handling missing values without violating the underlying assumptions.

Much traditional deterministic water quality modelling is in fact implemented in a form that differs only in
format and interpretation from the non-linear state-space formulation in (5.13) and (5.16). The main
difference is that in traditional deterministic modelling the model error ¢, , is assumed always to be equal to

zero. The observation function k{)would then generally pick out the state variables that have been
measured. During calibration or parameter estimation the sum of squares of the observation errors, e, ,,

which in this deterministic case is the deviation between the observed and the modelled, would be minimised
either by visual evaluation of the fit or by using an optimisation algarithm.,

When rewriting or reinterpreting traditional deterministic forms into the non-linear state-space form it is
important to realise that all quantities which define the state of a system at any given moment must be state
variables. If one is modelling an object falling through space then a definition of it’s state requires
information on both its position and its velocity. Similarly, a state-space representation of a one dimensional
hydrodynamic dynamic pipe flow model involving solving the Saint Venant equations would require that
both the water levels and water velocities at every calculation point in the systern were state variables.

=== R ainfall input.

Rainfall Tnput R {[mu m/s]

— Simulation of the
deterministic version

- Simulation of the
stochastic version with
additive error

—es— Simulation of the
stochastic version with

the multiplicative error
Simulation of either

with no error.

Flow Q [m3/s]

Time

Figure 5.8, Comparison of simulation of the three models: deterministic model (5.6), stochastic model with additive
error (5.2) /(5.11) and the stochastic model with multiplicative error (5.17). The simulations have been performed with
the same model parameters as in Figure 4 and with a dimensionless error for multiplicative model of 0.15.
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Up-Dating Unobserved State

In most of the above discussion the up-dated state variable was also an observed variable. A characteristic of
the Kalman filter is that although all state variables are up-dated, only a few of these actually need to be
observed. Through the interrelationship between state variables represented by partial derivatives of the
system function with respect to the state variables at the previous time step and through the covariance of the
state predictions, observations of one of the state variables will contain information about other state’
variables. Thus direct or indirect measurement of only one of the state variables will generally result in an
up-date of all state variables. In this sense the Kaiman filter is well suited in the design of software sensors
(e.g. Carstensen et al., 1996).

State Dependent Errors

One of the assumptions of the state space formulation in (5.13)-(5.14) and (5.15)-(5.16) is that the errors are
normally distributed. With, for example, a component concentration as state variable the situation often.
arises where the added error is negative but in absolute value greater than the predicted concentration. A
simulation of the system would result in negative concentrations. For water quantity the same problem arises
as flow or water volumes drop to zero. In such situations it is simply not reasonable to assume that the errors
are normally distributed with the same distribution irrespective of the state variable’s current value.

One way of handling state dependent model errors is by introducing an error state for each of the state
variables whose randomness should depend on the value of the state variable. This method is outtined below. |

Written with the applied multiplicative state dependent error the system equation for the little unit
hydrograph example (5.6) becomes

- - . 1
Qr =(§'Qm + Wy 'RHag +ay '-&44@)'60‘ Ero }5 g (5‘17)
250 -
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Figure 5.9. Histogram showing the distribution of the random factor by which the state variable is multiplied. The error
£ in the exponential expression is a normally distributed random variable with mean 0 and variance 1. Histograms are
shown for standard deviations, =0.2 and 0.5.
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:}{ where £ is a normally distributed random variable with mean 0 and variance 1, and where o is the
|} dimensionless standard deviation of the multiplicative factor (i.e. the exponential term in (5.17)). The
‘t random variable ¢ is in fact placed in the state vector with a constant expectancy of zero. In this way the

Extended Kalman filter (non-linear) can be used without violating the condition that the errors must be
independent of the state variables. A stochastic simulation of the system defined by (5.17) has been plotted

it in Figure 5.8. In the same figure also.a simulation of (5.2) is depicted in which the flow variable becomes

negative, which is in this case considered physically impossible. Note that the model with the multiplicative
error term remains positive by definition because the multiplicative exponential error term is always greater

| than zero.

: It is important that the exponential factor in (5.17) has to have a mean of 1 which it in this case does so long

as the error & is a normally distributed random variable with mean 0 and variance 1 and the dimensionless

standard deviation & is positive. Figure 5.9 shows the distribution of the factor for standard deviations o of
0.2 and 0.5.

ESTIMATION CRITERIA

Least Squares

't The criterion for calibration of traditional deterministic models is often a visual evaluation of the simulated

and observed values plotted in the same graph. Once an automatic search routine is coupled the most
frequently used criterion is the least square (LS). Using the LS criterion one minimises the sum of the
squared errors.

One of the assumptions associated with least square estimation is that the errors are normally distributed
with the same variance irrespective of the value of the observed variabie. There are many cases in water
quality modelling where this assumption is not reasonable. For both water quantity and water quality
modelling the error is often highly dependent on the variable value. At small concentrations the modelling
errors may be much lower than at high concentrations.

"Using LS estimation on the errors divided by the predicted value often leads to an exaggerated importance

given to the prediction with low values. In some cases a weighting scheme is devised to ernphasise fit of
peak values or low values but it often turns out that the parameter estimates are very sensitive to the selected
weights. ‘

Maximum Likelihood

't A criterion very rarely seen applied in the context of deterministic models is the maximum likelihood (ML)

criterion. During ML estimation one seeks the parameter set that results in the most probable set of errors
assuming a given distribution. Generally the logarithm to the likelihood is maximised. Where the assumed

‘} distribution is a normal distribution with mean zero then its variance would generally be unknown and have

to be estimated along with the other model parameters.

Using linear deterministic models with the LS and the ML criteria applied directly to the deviation between
the predicted and observed lead to the same set of estimated parameters. With non-linear models the
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estimates will generally not be the same. The advantage of the ML criterion is that it provides more
flexibility in terms of assumptions relating to the distribution of the errors.

An additional advantage of ML estimation is that multiple criteria estimation problems can readily be
combined into a single criterion by minimising the product of the individual likelihoods. If, for example,
obsérvations of both dissolved oxygen and biological oxygen demand (BOD) were to be used in calibrating
a surface water model, it would often not be possible to estimate the parameters for each model sequentially.
This is because oxygen removal depends on the degradation of organic matter and the degradation of organic
matter also depends on dissolved oxygen in the water. Using a maximum likelihood criterion parameter
estimation in the whole model would be done by minimising the sum of the logarithms to the individual
likelihoods. In LS estimation weights would have to be selected for each component and the result turns out
to be very sensitive to the selected weights.

Using the maximum likelihood criterion it is possible to construct a parametric model for the error variance
and have these estimated along with other model parameters. This is done for example in the non-linear
regression models used in relating measurements of turbidity in a combined sewer to variables such as
suspended solids and COD in Moens et. al. (1999).

Robust estimation can readily be applied when using the maximum likelihood criterion. This works as a sort
of on-line suppression of outliers. There exist several different Robust estimators with the shared feature that
extremely unlikely observations end up having little or no influence on the likelihood value. It is generally
not a good idea to start ones parameter estimation using a robustness criterion because the parameter values
may be so far off that a very large proportion of the observations become categorised as outliers.

In stochastic modelling with the Kalman filter as state estimator LS estimation only works in cases where the
error variances are known. This is however rarely the case and therefore the ML criterion usually has to be
used.

A further advantage of the maximum likelihood criterion is the relatively simple manner in which a priori
knowledge on likely parameter values can be incorporated into the estimation procedure. This is discussed in
more detail in the section on identifiability below.

A disadvantage of ML estimation is that at least one extra parameter, namely the error variance, has to be
estimated for each error series. In some cases it may therefore be a good idea to first obtain rough parameter
estimates from a LS estimation and to use these as starting values for a ML estimation.

IDENTIFIABILITY

Identifiability deals with the uniqueness of an estimated parameter set in shedding light on questions such as:
Do some of the parameters have little or no influence on the goodness of fit? Could an increase in one
parameter be compensated by a decrease in another parameter to give an equally good fit? Are certain
combinations of parameters interchangeable with other combinations of parameter? How much uncertainty
is associated with the estimated parameters and what is the uncertainty once parameter interchangeability is
considered? Within the world of time series analysis and stochastic modelling analytical methods exist to
examine the identifiability of the parameters in a given model structure on the basis of a given data set and
considering a priori knowledge of the parameter values. This section outlines some essential aspects of these
methods and how they can be applied in the field of water quality modelling. In the case study later in the
chapter the methods have been applied to combined sewer modelling problems.
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4 Identifiability as it is used here deals with examining the uniqueness of an estimated parameter set. However
1 it should be realised that the field of model identification is much broader covering also the revealing or
1 disclosure of model structure in empirical time series modelling or in mechanistic models such as the
disclosure of the evaporation dependency in Chapter 4.

1 Identifiability is a combination of two elements: the model whose structure has to be identifiable and the
given data that has to be informative (Madsen and Holst, 1998). An outline of these two distinctly different
4 aspects of identifiability is followed by an introduction to how an exploration of the parameter space can be

| used to examine their combined effects,

Structural Identifiability

Sometimes the structure of a model is such that no distinction can be made between two or more model
'i parameters. Consider for example the model in (5.18) where the flow, Q, is the flow in a sewer receiving
rainfall-runoff from two different sub-catchments, A and B.

Q,=6-Q +ay R, +a, R +e, (5.18)

1=1-lag

+b,-R

1=-lag

+b| ! Rr—l

—lag
where O, is the modelled flow, R, is the rainfall input, e, is the error term and &, 4,, a,, byand &, are model
parameters to be estimated from observations of rainfall and flow. Although the parameters g, and q,, and
b, and b, are physically associated with the sub-catchments A and B, it is not possible to distinguish these
parameter pairs from one and other. An increase in a, could be directly compensated by a decrease in b, .

In most cases problems of structural identifiability will be less obvious than in the example above. Often the
problems will only be present for certain ranges of the input and output data, and they will be difficult to
“distinguish from problems of poor excitation in the data set. Consider for example the Monod expression
(5.19) for the growth rate, 4 , as a function of substrate concentration, 5, with the two parameters, the
maximum growth rate, ., and the half saturation constant, X ; , which have to be estimated from a given

data set,

H= Hn (5.19)

K. +8
There is no immediate sign of structural identifiability problems. However as the substrate concentration, §,
decreases and becomes smaller than the value of the half saturation constant, XK., one sees that the
maximum growth rate and the half saturation constant, X, become interchangeable.

Re-parameterisation of the model should be considered in such cases with structural identifiability problems
within a limited range. This will avoid unnecessary complications during parameter statistics. The gradient
of the curve in the first part of the Monod expression can be expressed as,

Hinax

ad =
gri 2K, (5.20)
The half saturation constant, X, can then be substituted out of the Monod expression (5.19) to give,
2.grad-S
e el el (5.21)

#"ym +2-grad-S
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and the maximum growth rate, g__, and gradient, grad, would now be the new parameter set to be

estimated from the data. This algebraically cosmetic re-parameterisation is likely to have a positive effect on
the performance of the non-linear search algorithm and undoubtedly on examining the model identifiability

after parameter estimation. The structurally induced correlation between the two parameters is avoided by
the simple re-parameterisation. Within the field of water quahity modelling, the identifiability of the

parameters in the Monod model and other growth-degradation models has been treated in Reichert and

Omlin (1997), Vaarolleghem and Keesman {1996), Vanrolleghem et. al. (1995) and Dochain et. al. (1995).

Excitation

In order to calibrate a rainfall-runoff model during rainfall it is necessary to have data from rainfall periods.
That is obvious. It 1s however also important that the data set does not consist of simply a single constant
drizzle over a long period. A rainfall-runoff model describes the relationship between input rainfall and the
subsequent runoff. For a good calibration or parameter estimation it is important to have a dynamic input in
order to be able to distinguish between parameters.

A dynamic input is however not always enough. It is important that the frequencies of the variations in the
inputs coincide fairly well with the characteristic time constants of the system whose parameters are being
estimated (Sadegh et al,, 1995). If the variations in the input are much faster or much slower than the time
constants of system then the input will have an effect on the system similar to that of a constant input signal.
This is iltustraied for a unit hydrograph model in Figure 5.10.

For a simple linear rainfall-runoff model essentially characterised by a unit hydrograph an impuise input
produces a response from which the transfer function of the system can be obtained. For more complex
systems with several simulations process such as rainfall-runoff, sediment resuspension, biological
degradation of organic matter and oxygen depletion a single impulse or step input will often result in limited
information about the systern parameters. Sadegh (1996) presents the theoretical and practical considerations
conceming the experimental design of linear and non-linear complex systems built on physical and chemical
theory.

Although both deterministic models and stochastic models with Kalman up-date do not require that
observations be equally spaced in time it is important that observation be made when “things are
happening”. A sewer suspended solids model, such as that estimated in Chapter 7, may, for example, involve
a threshold point for which higher flow rates or velocities result in an initialisation of sediment resuspension,
In order to identify this point and to distinguish its value well from other parameters it is necessary that
measurements of the suspended solids have been made both before and after the threshold has been crossed.
See Chapter 7 on Random Coefficient Modelling for more discussion of the particular case of resuspension
modelling.
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| Exploring Parameter Space

Once the estimation criterion has been optimised one is interested in knowing how unique the parameter set
| is. This is done by examining the sensmwty of the criterion value to changes in the parameters. This is in the
present thesis broadly described as “parameter statistics™.

Parameter statistics involves the evaluation of
« parameter variances and confidence limits,
covariance and correlation matrix,
confidence contour plots.
eigen values and eigen vectors of the Fischer’s information matrix,
eigen values and eigen vectors of the parameter correlation matrix,
experimental design criteria,
projections of eigen vectors,
parameter confidence limits under consideration of covariation.

The parameter statistics are carried out under the assumption that the model is locally linear. In a large
number of cases this will in fact be a reasonable assumption however in some cases parameter
transformations will be required in order to be able to make this assumption of local linearity. Parameter
transformation is discussed below and applied in the case stdy that follows,

Parameter Variance. With maximum likelihood (ML) estimation in linear models the estimated parameters
it are normally distributed. The likelihood, L, that the parameter € is equal to & rather than its estimated

| value @ is defined by the probability density function of the normal distribution. In such a case where only
one parameter has been estimated the likelihood takes the form of (5.22).

_(p-9)? (5.22)

1 .e 207

270

L=

where

is the likelihood (i.e. the probability density),

is the estimated parameter value, i.e. its value at the point of maximum likelihood,
is the parameter value for which the likelihood is expressed,

is the parameter standard deviation.

9 DD

;| Taking the log of both sides (5.22) can be rewritten as,

(6-6)" log—_!
2.0-2 '\/EO'
Notice that this results in a quadratic equation with respect to the negative logarithm to the likelihood.

During maximum likelihood estimation it is generally the —logZ , that is a quadratic function, which is
.| minimised.

(5.23)

—loglL =

| The gradient of the negative log likelihood function is then the derivative of (5.23) with respect to the
parameter value.
d{-logl)  6-6

5.24
~ = (5.24)
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Notice here that as we would expect in the optimum the gradient of the likelihood function is equal to zero

~

when @ = @, The gradient or slope of the negative log likelihood in (5.24) can further be differentiated
giving the curvature of the likelihood function (5.25).

d?(-log) _ 1 (5.25)

do 2 ol

Thus in the one-dimensional case, where only one parameter has been estimated, the parameter variance
turns out to be the reciprocal of the curvature of the negative log likelihoed function (5.25).

-1
L2 _|d3(-logL) (5.26)
de?

The above outline of how parameter variances are defined is based on the estimation using the ML criterion.
Refer to Harvey (1993) or Madsen (1995) for further details on ML estimation criteria. It turns out that with
LS estimation the covariance matrix can be expressed as the product of twice the mean squared error and the
inverse of the curvature of the sum of squared errors. More on parameter statistics with LS estimnation can be
found in several standard statistical textbooks such as Draper and Smith (1981).

Farameter Covariation. A parameter’s standard deviation represents its uncertainty under the condition that
all the other parameters in the model actually have the value that they have been estimated to have. Most
often the other estimated parameters are also uncertain and interchangability between parameters may mean
that the uncertainty of a given parameter is much larger once the uncertainty of all the other parameters is
taken into account.

Like the variance of a single parameter (5.26) the covariance between paramecters is the inverse of the
curvature in their combined direction. For several parameter covariances are generally arranged in a
covariance matrix with the variances in the diagonal Using the ML criterion the parameter covariance
matrix can be found by examining the curvature of the negative log likelihood function. The covariance
matrix ¢an be expressed as follows,

-1
v o= 5%(-logL) {(5.27)
L 86;-50;
where
v is the parameter covariance matrix,

iand;j indicate the i’th and the /'th parameters respectively.

The parameter covariance matrix is a symetrical matrix with the parameter variances in the diagonal and
their covariances on the off-diagonals.

In practical engineering problems the covariance matrix will often be difficult to intepret directly because the
different parameters have different units and the covariances will each have units of two parameters. The
covariace is however an important stepping-stone o calculating other quantities which may be more usefull
to the modeller. These are the parameter correltation matrix, eigen values and the eigen vectors.
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Figure 5.10. Characteristics of data suitable for parameter estimation in a runoff mode] with the given unit
hydrograph or impulse response (top). The three fictitious rainfall input series having frequencies of variation that are

(from up to down) too high, “just right” and too low (see discussion in text).
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Covariance Matrix 400 2.68 400 1.00 400 -2.68
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Figure 5.11. Illustration of the effect of covariance between the parameters p, and p, for three cases with

high positive, low and high negative correlation respectively. In all three cases the parameter
estimates are (5,5) and their variances (4.00, 2.25).

confidence contour

Parameter correlation is the covariation considered relative to the standard deviation of the respective
parameters. The correlation between two parameters can be calculated from covariances by,

Vi J
pi =l (5:28)
T vy

pi, j s the correlation between the ’th and the j’th parameter,

where

v, j 18 the covariance between the i’th and the j’th parameter.

Consider a model with two estimated parameters. Given that the parameter covariance matrix was found to
be as in the left of (5.29) then the corresponding correlation matrix is as on the right.

V- 4.00 2.68 p= 1.00 0.89 (5.29)
= [2.68 225 = |0.89 1.00

The parameter correlation is dimensionless with a value between -1 and +1. A correlation close to —1 is
described as a high negative correlation and indicates that an increase in the one parameter may be
compensated by a decrease in the other parameter t0 give the same fit (i.e. the same value for the estimation
criterion). Similarly a correlation close to +1 indicates that an increase in the on parameter may be
compensated by an increase in the other.

When is parameter correlation too high? This is a question that will soon arise once models are applied to
practical problems. Ideally one would prefer to have no parameter correlation. This would make things casy
in that the parameter uncertainty under consideration of the uncertainty of the other parameter would be the
same as the parameters uncertainty under the assumption that all other parameters were fixed. Unfortunately
this is most ofien not the case. Parameters are often highly correlated and the consequences have 1o be
considered.
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Figure 5.12, The projections of the covariance matrix eigen vectors, o*, can give an indication of the
parameter uncertainty when parameter covariation or interchangeability is considered. This is illustrated
here for the two parameters.

Generally speaking a parameter correlation of 0.89 as seen in (5.29) would be considered high. However, as
we ghall see in the following, this depends very much upon the parameters that have been estimated and on
their variances.

An adequate evaluation of the parameter uncertainty after parameter estimation involves calculating the
eigen vectors of the covariance matrix, scaling them and projecting these onto the parameter axes. The eigen
vectors of covariance matrix form a set of orthogonal vectors. An eigen vector therefore defines a
combination of parameters which are independent of the combinations defined by the other eigen vectors. A
covariance matrix has as many eigen vectors as there are parameters. The eigen vectors are often scale to
have a length of one and are then called normalised eigen vectors, Returning to the two dimensional example
of (5.29) the normalised eigen vectors are,

. _[os . [0 (5.30)
217 0,59 2271 081
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These normalised eigen vectors can be scaled so that they define the axes of an ellipse whose intercepts with
the x-axes and y-axes are equal to the standard deviations of the first and the second parameter respectively.
The scaled eigen vectors and the thereby defined ellipse are shown in Figure 5.11 (left) for a two parameter
problem. Notice that the intercepts with the x-axis and the y-axis are 2 and 1.5 corresponding to the square
roots of the diagonal elements in the covariance matrix in (5.29) left. If the ellipse is drawn proportional to
the standard deviations it will enclose the 68% confidence region. Had it been drawn proportional to roughly
twice the standard deviation it would enclose the 95% confidence region. Once again these consideration
assume that the model is linear in the region of the criterion optimum. In Figure 5.11 are also plots of the
ellipses corresponding to parameters with almost no correlation and parameters with negative correlation
respectively.

It is evident from the above that the covariance matrix eigen vectors plotted in Figure 5.11 give information
on how parameter interchangeability affects the parameter standard deviations. In many modelling problems
it is of greater interest to have the “effective standard deviation” or “unconditional standard deviation”, o *,
based on the longest projection of the tip of the scaled eigen vectors than the actual standard deviation. For
the two- parameter problem in (5.29) this has been illustrated in Figure 5.12. Given this “unconditional
standard deviation” the engineer is in a better position to evaluate the actual range in which the parameter
value may lie.

Note that projecting the tip of the eigen vector is in fact a compromise. The projected point ought to be the
furthest left point at which the tangent (or hyperplane) to the ellipse is perpendicular to the axis onto which it -
is being projected. When the correlation is large the tip of the eigen vector is a fair approximation.

Parameter Line Plots and Confidence Contours. The above parameter statistics rest on the assumption that
the model is locally linear in the region of the parameter estimates. This assumption has to be reasonably
fulfilled for the parameter statistics to be reliable and meaningful.

An initial way to verify that this condition of local linearity is reasonably satisfied is to evaluate and plot the
value of the estimation criterion for parameter values just above and below the estimated vatue. During this
exercise all other parameters should be kept fixed to their estimated values. In a region around the optimum

—l'DgL -67 -‘. ; -67 ~ \‘
684 X x e84 X X
2 X
-69 X -69 - ‘X
X ) Pt
x X X %

70 4 ‘xx_x,' .70 | "x,x‘x
-7 : T T ——  -T1 T T T T T T !

-4 0 4 8 12 058 0 0.5 1 1.5 2 2.5 3

Untransformed parameter Transformed parameter

Figure 5.13. Parameter may have to be transformed in order to satisfy the condition of local linearity. The dashed
line represents the estimated curvature based on the maximum likelihood evaluations (crosscs).
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Figure 5.14. The rise in the negative log likelihood function corresponding to the standard deviation
and twice the standard deviation away from the estimated parameter value.

the plotted curve should have the shape of a quadratic function. In particular it should be symmetrical about
the estimated parameter values.

Local non-linearity can often be tackied by transforming model parameters. A parameter transformation
does not change the estimated value of the parameter but only the type of distribution implicitly assumed for
its uncertainty. Parameter transformation is in-fact a re-parameterisation much like that presented earlier in
going from (5.19) to (5.21). If the right transformation is selected then the parameter uncertainty of the new

| transformed parameter is normatly distributed just as is the uncertainty of parameters in linear models.

Figure 5.13 contains such a plot of the maximum likelihood criteria against the parameter values betfore and
after transformation (left and right respectively). In this illustrative example a log transformation was found
suitable. Notice that the if the transformation had been neglected then the lower 93% confidence limit
{corresponding to a negative log likelihood of —68.0) would have been negative. However, the physical
interpretation given to this parameter impels it to be positive and the likelihood is not even defined for

T negative values of the parameter. By performing statistics on the transformed parameter the more realistic

95% confidence limit is found at about 0. Converted back to the untransformed parameter this gives a value
of 1. Once the required transformations have been found and applied, the covariance matrix may be
estimated and parameter statistics evaluated.

Another way of verifving that the condition of local linearity is reasonably satisfied is to create confidence
contour plots based on evaluations of the estimation criterion at grid points of the parameter planes. Local

| linearity will exhibit itself by having elliptically shaped confidence contours with clear, though possibly
[ tilted, axes of symmetry. Non-linearity show itself by having skewed or even banana shaped contour lines,
| Theoretically, however, even “nice” elliptical confidence contours for each parameter pair gives no

guarantee of local linearity. The “covariation” in the third or higher dimension may still be skewed. In many

| practical cases it is sufficient to evaluate the confidence contours in two parameter planes but a stronger

test/check would be to evaluate the confidence contours in the planes of all pairs of eigen vectors of the
parameter correlation matrix. As the eigen vectors are orthogonal by definition the confidence contours
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Figure 5.15. Forward and centred designs for estimating the parameter covariance matrix in non-linear models.
llustrated here for a two parameter model.

should be perfect circles and inconsistencies with the assumptions of local linearity would be readily
disclosed.

What is then the region within which the model should be linear? This would depend on the required
confidence level with which one wishes to evaluate the parameter value. As a mile of thumb the 95%
confidence region can be used. The rise in the negative log likelihood function corresponding to the 95%
confidence contour can be found from the relationship in equation (5.23) which may be rewritten to,

1

2T

~logL(9) = 0% (5.31)

2

where the optimum for an instant has been translated to the origin (i.c. —logL(0)=0). For the standard
deviation we find —logL{c)= }é and for twice the standard deviation corresponding roughly to the 95%

confidence limit that —log Z(2 o)=2. The contours with negative log-likelihood values of % and 2 higher

than the negative log-likelihood value in the optimum correspond to the 68% and the 95% confidence
contours respectively. This is illustrated in Figure 5.14.

With many model parameters one ought to draw confidence contours in the planes of the eigen vector pairs
in order to inspect whether assumptions of linearity were satisfied. If these tumn out to be circles up until
around the 35% confidence contour then the assumption of local linearity is satisfied. Banana shaped
contours would suggest that some non-linear parameter transformation may be needed in order to perform
the parameter statistics. Though drawing confidence contours in the planes of the eigen vector pairs is an
ultimate check for local linearity it may often be difficult w0 decide on the required parameter
transformations due to the required multi-dimensional hyperspace abstraction.

Estimating the Parameter Covariance Matrix. For linear models the parameter covariance matrix can be
calculated directly from the parameter estimates and the observed values. For non-linear models however the
curvature of the criterion surface has to be found by evatuating the criterion at different points in parameter
space. This can be done in many different ways. One way is to evaluate the estimation criterion at a number
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of points and then to fit these points to a quadratic function. In the present research work this approach has
been used in combination with a variety of different sampling designs.

In general the more sampling points taken the better the estimate of covariance matrix. Two standard designs
are forward and centred sampling, which have been shown for a two-parameter model in Figure 5.15. The

.| covariance matrix obtained should theoretically be independent of the size of the small step, Ap;, away from
|| the estimated value. In practice however the criterion surface of non-linear models is often uneven and it is

therefore a good idea to verify that the same covariance matrix is obtained for different delta steps.

Using a centred sampling design is more costly in terms of criterion evaluation (and therefore model

|| simuiations) but gives a better robustness against unevenness in the criterion surface. Fitting the quadratic

function to the sampled points can be done using the explicit least square solution to the general linear
model. The standard deviations and the coefficients of variation of the estimated quadratic coefficients can
be computed at the same time and used to give an indication of whether there is agreement with the local
linearity assumption. At the same time the coefficients of variation disclose where problems may lie and

-} which parameters or parameter pairs ought to be looked at in more detail. Lack of symmetry and poor

agreement with the local linearity assumption in general cannot be detected using forward sampling.

1 With non-linear least square estimation it is possible to estimate the covariance matrix from changes in
{1 residual series with respect to changes in the each of the model parameters. This matrix with as many

columns as parameters in the model and as many rows as observations in the data is sometimes called the
Jacobian matrix. Its cross-product gives an estimate of the Fischer matrix which is proportional to the
inverse Covariance matrix.

| A basic aspect of experimental design is that the more we know what we are looking for, the better we are

able to design an experiment to find it. In the same way, if the covariance matrix is known, then it is easier to
create a good sampling design for its estimation. During the course of this work a two step procedure for the
estimation of the covariance matrix was developed. In the first step a rough estimate is obtained using a
central design. This first estimate is then used to design a sampling strategy for the second step in which the
central design is rotated and stretched so that it coincides with the tips of the covariance matrix eigen
vectors. Especially when computing the covariance matrix of a model with many parameters, this improves
the estimate of the covariance matrix considerably.

Sometimes problems arise where the inverse to the covariance matrix is non-positive definite and can not be
inverted. This may be due to the fact that the optimum has not yet been reached but it may also result from
the combined effect of the limited numerical precision, a rough criterion surface and large differences
between the longest and the shortest eigen vectors. The two step procedure provides an excellent solution to

| this problem. During the first step the value of the curvature of the criterion surface is slightly exaggerated

by subtracting a small value from the critetion in the optimum before fitting to the quadratic equation. This
first under-estimated covariance matrix then forms the basis for the improved design in the second step, As
sampling in the second step takes place at the tip of the eigen vectors all points would be expected to have a
negative log likelihood value of at least % higher than that of the optimum and the inteference of surface
roughness and numerical precision is less probable.

| A Priori Information on Parameter Values

1 On calibration of traditional deterministic sewer or other water models the engineers has a feeling for the

realistic ranges for the various model parameters and a rough idea of what value to expect. The engineer’s
prior knowledge about the parameter value is combined with the available data to find the best set of
parameters for the specific case.

a7




Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Grum

Attempts to automate the process of deterministic model calibration have often failed because only the
available data was used. The engineer’s prior knowledge was ignored and the information content of the
observed data was not enough to identify all model parameters. Stochastic modellers wishing to include only’
parameters and structure that could be identified from the available data ended up reducing the medels to
such simple structure that the models were unsuitable in terms of the engineer’s needs for extrapolation.

Maximum likelihood estimation makes it possible to take a Bayesian approach to the parameter estimation
problem (Madsen and Holst, 1998). Model parameters are considered as random variables with a mean and
standard deviation both before and after including the information contained in the available data. Before
parameter estimation we have the a priori parameter distributions, which represent the “engincer’s prior
knowledge about the parameter value”. This information is combined with the observed data to give the new
a posteriori distributions.

In its original form the likelihood estimation criterion is the conditional probability density of the
observations for a given set of model parameters. This likelihood can further be multiplied by the probability
density of these parameters given their a priori distributions to form the maximum a posteriori estimation
criterion. The maximum a posterioiri estimation criterion is popular in grey-box modelling, that is in
stochastic modelling with some physical, chemical or biological theory in its structure., Therefore the a
posteriori estimation criterion is also called the grey-box estimator (Tulleken, 1993).

As discussed earlier in the section on persistence of excitation, data sets may be more or less informative.
Using the maximum a posteriori estimation criterion one obtains information on how informative the data is
on specific parameters. If there is a large difference between the @ priori distribution and the a posteriori
distribution then the data has been nich on information about this particular parameter. If the two
distributions are practically the same then the data set has had little to contribute in terms of determining the
value of this parameter. If the means of the twe distributions are the same but the variance of the a posteriori
estimate much smaller than the @ priori estimate, then the data has been rich on information concemning that
parameter and the a priori parameter estimate was already a good estimate. As the parameter becomes more
and more certain then even data sets that are information rich will not change the mean and variances of a
good a priori estimate. The main advantage of using an a prior? distribution is that though the data has little
information concerning a given parametet, the parameter value does not wander off and possibly corrupt the
estimation of other parameters.
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CASE STUDY: MODELLING IN THE LOENEN SEWER SYSTEM

AIM

The aim of this case study has been to illustrate and compare concepts and approaches presented and

11 discussed earlier in this chapter. A ramnfall-runoff model of a sewer system has been estimated both as a

deterministic and a stochastic model. The non-linear state space formulations are described including the
construction of the state dependent error for the stochastic model. The quantitative incorporation of a priori
knowledge into the estimation criteria is illustrated for both formulations. Parameter space is explored in
view of identifiably and appropriateness of the assumptions made.

| The rainfall-runoff models have been estimated using data from the Loenen catchment, which is described in

Chapter 2. In this case study only water quantity has been considered. Attempts to estimate stochastic model
for water quality variables such as suspended solids and chemical oxygen demand were unsuccessful
because there were too few data points and because all sampling had taken place during actual combined
sewer overflow only. In such cases, random coefficient modelling studied in Chapter 7 are a possibie
alternative.

During this study a modelling tool was developed with the primary objective of being able to estimate the

same physical model description as a deterministic model and as a stochastic model. The tool was thus
specially designed to estimate parameters in non-linear state space models.

MODEL
Structural Equations
The structural description of the rainfall-runoff system consisted of three linear reservoirs in series followed
by a single non-linear reservoir (5.32) simulating the combined sewers static storage below the edge of the
overflow weir. This is illustrated in Figure 5.16. .
The continuity equation for the linear reservoirs is given as
av;
T; =Qin. i —Cout, i (5:32)

where V; is the volume of water in the i’th reservoir. The proportionality between the flow out, O, ;, and

the volume stored in the linear reservoir, V;, is defined by the reservoir emptying rate or inverse time
constant, &, with the dimensions [T'].

Oout,; =k ¥; (5.33)

Tests in which the volume in (5.33) was raised to an estimated power showed no significant improvement
compared to the linear expression and the estimated power was not significantly different from 1.
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Flow into the reservoir is equal to the flow out of the preceding reservoir so that Oy, ; = Qo ;1 for i>1

and for i =1, that is the flow into the very first reservoir,
Ou =(a+b'W;)‘Am ‘R, (5.34)

where a and b are constant parameters estimated from the given data,
W, 1s a wemess index value of the j’th rainfall-runoff event as defined and calculated in Chapter 4

using event lumped models,
(a +b- W;) together form a wetness dependent runoff coefficient,

A, is the impervious area,
R, is the rainfall a time ¢,

In the text that follows “a” is referred to simply as the runoff coetticient and “b™ is called the wetness
dependency.

The continuity equation governing the final reservoir was defined as follows.

Vi
# = Q’m,Fiml - qump - Qovcrﬂow (5.35)
where (, r,,, is the flow out of the linear reservoir which empties into final reservoir, (., is the pump

flow and Q... 18 the flow discharged over the overflow weir into a surface water pond.

The expression describing the behaviour of the pumps has two estimated parameters: the level at which the
pumps were switched on and the total pump capacity. The total pump flow at any given time, @, .. is

defined by the following expression,

Linear reservoirs in series. Non-linear reservoir,
Rainfall input
— M Y

Monitored level, A

— Overflow, Coveriow
—_

Pumped, Gpump, to treatment plant

Volume (static storage) to
water level relationship
based on sewer system
pipe dimensions.

Figure 5.16. Schematic diagram of the rainfall-runoff model consisting of three linear reservoirs in series
with a final non-linear reservoir incorporating the geometric level to volume relationship.
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0 fork<h
| Qm={Q OF < Dyorp-on (5.36)

pumpocrp. LOTAZ D o0

where Qpumpcap. 15 the pump capacity and hpump.en is the level at which the pump tums on. Both these
parameters are estimated from the available data.

Combined sewer overflow takes place only when the water level, 4, is above the overflow weir,h _ , and
can be expressed as follows.

0 forh<h,,

- 5.37
Dot {a-(h—h Y forhzh ©37

weir weir

where ¢and £ are constant parameters estimated from the available data. The weir level, h,;, , is reported

to be at 18 meters (+ NAP). This is assumed to be so correct that the position of this concrete edge is not
i| estimated from the data.

1200 -
1000
800 |
600 |

400

Static storage [m3]

200

0 - r , r - ]
16 17 18 18 20

Level fm + NAP]

Figure 5.17. Curve of the geometrically determined static storage volume behind
the overflow weir as a function of the water level at the weir.

The models final reservoir is a non-linear reservoir representing the sewers static storage behind the
overflow weir. Dimensions of the sewer pipes and manholes have been used to calculate a fixed relationship
between the water level and the static storage in this final reservoir. This relationship is shown in Figure
J5.17.

Solving the Differential Equations

The rainfall-runoff model thus consists of linear and non-linear differential equations. The volume of water
in each of the reservoirs is considered as a state variable. One way to solve the stochastic system is to
consider it to be a set of stochastic differential equations. This is done in Chapter 6. Another option is to
solve the differential equations using a standard ordinary differential equation (ODE) solver, in this case the
| Runge-Kutta method, and then to interpret this solution as being the predicted state corresponding to the
function f{ ) in (5.15). This is the approach adopted in the present study. For the linear reservoirs there is of
| course no need for an ODE solver as the analytical solution exists.
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The Observation Equation

In the present case study the observed variable was the water level at the combined scwer systems only
overflow weir. This level is an indirect observation of the volume of water in the final reservoir. The
observation equation consisted of the volume-to-level relationship defined by the systems pipe and manhole
structure. This relationship is shown in Figure 5.17. This relationship essentially defines the function k() of
the observation equation (5.16).

The Partial Derivatives

The partial derivatives of the state predictions with respect to the states’ values at the previous time step are:
then computed by recalculating the predicted states for small changes in each of the state variables
respectively. These are the partial derivatives that have been used in the Kalman filter in this case study.

State Dependent Errors

It would be unreasonable to assume that the size of the system error should be the same irrespective of the
volume of water in the reservoirs. Indeed if this were the case a simulation of the system would during
periods with low flow be likely to yield negative volumes. One solution to this problem is to model the
systern of volumes with state dependent error terms. The state dependency can be introduced by inserting an.
error state into the state equation for each of the volume states. The dependency was then defined as in
equation (5.38) where the state index i only counts even numbers corresponding to the reservoir states {the
odd states are now error states).

V., =V, (46 . )+e, (5.38)

where V, | is the volume in reservoir (/2) at time ¢, V,", is the volume in reservoir (i/2) at time ¢ as calculated
based on the solution of the defining differential equations. The first etror term, &, ., , is in fact the value of
the associated error state variable at time /~/ and the second error term, ¢, ,, is the usual additive error

defined in the generalised state space model. Inserting an error states in this way does have the disadvantage
of doubling the size of the state space system being modelled.

The error term of interest in (5.15) is thus not the states own additive error, &.

.. » but that of the preceding
state. The expected value of the error states, corresponding to f7...) in (5.15), is, by definition, always equal
to Zero and the variance of their added errors was estimated as a parameter in the model. The variances of
the added errors of the volume states themselves were fixed to zero. Tests carried out to evaluate added error

terms different from zero showed that this did not improve the modei at all.

A priori Parameter Estimates

Our engineering knowledge and understanding of the system suggests certain expected ranges for some of
the parameters whose values will be estimated from the data. This knowledge was expressed as probability
distributions for four of the model parameters: the runoff coefficient, the wetness dependency, weir overflow
power and the pump capacity. These a prior? distributions have been included in the results Table 5.1.

72




Chapter 5 Deterministic and Stochastic Modelling

RESULTS

Parameter Estimates

Table 5.1 shows the results of estimating parameters as
¢ a deterministic model without any up-date of on the presence of observations,
e a stochastic model up-dating using the extended Kalman filter to up-date on the presence of an
observations.

The standard errors and the corresponding confidence limits listed in Table 5.1 are the standard errors of the
parameters when considering covariation between the estimated parameters as outlined earlier in the chapter.
In the column on the far right parameter plots show the estimated parameters and their 95% confidence
range. The a priori distributions have been included in the table and plots for the four parameters for which
a priori distributions were used.

The parameters marked with two asterisks were transformed using the natural logarithm and the given
standard error in Table 5.1 corresponds to the transformed variable. The transformation of these parameters
was found necessary in order to reasonably be able to make the assumption of local linearity. This
assumption is required to be able to estimate parameter variances and covariances.

The two sets of parameter estimates are generally very similar. An exception is the reservoir emptying rate
for the linear reservoirs which is higher for the deterministic model, 0.33 per minute, compared to 0.24 for
the stochastic model. Converted to reservoir time constants this corresponds to 3.0 and 4.2 minutes for the
deterministic and stochastic models respectively. Three linear reservoirs were used and this rate thus
corresponds to a mean runoff time of 9.0 and [2.6 minutes respectively. Another exception is the estimated
value for the pump starting level, which was estimated to be 16.35 and 16.06 meters above the Dutch
national reference NAP. This parameter is a threshold value that is only crossed at the beginning of each
event. Both its value and its associated statistics should be considered with some caution,

Finally the observation error estimated for each of the models differs two orders of magnitude. This is not
surprising as the underlying assumption in the case of the deterministic model is that all deviation between
modelled and observed is observation error as opposed to the stochastic model were both system error and
observation error are assumed to be present. It is here not possible to compare the variances of the system
errors and the observation error because the variances are in different units. The system erors are
muitiplicative to water volumes whereas the observation errors are additive to a water level. Parameter
uncertainty in the stochastic model appears to be smaller than that in the deterministic model. This could be
due to more appropriate assumptions. However this is difficult to judge from the given case alone.

The a priori probability distributions do not appear to have had much influence on the final set of estimated
parameters. If the observed dataset had been low on information about the value of one of the parameters for
which an a priori distribution had been given then the a posteriori distribution would have been similar to
the given a priori distribution. This is not the case for any of the four parameters. The variances of the o
| posteriori parameter distributions are much smaller than the given a priori distributions. Interesting is of
| course the fact that the estimated wetness dependency appears to be lower than what had been estimated in
| Chapter 4 (which had formed the basis for the rough a priori estimate of the runoff coefficient and wetness
indices).
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Parameter Correlation Matrix

The parameter correlation matrix for both the deterministic and stochastic models are given in Table 5.2,
Several different sampling methods and step sizes were used to estimate the correlation matrix to ensure that
the values found gave a fair representation of the curvature of the objective function surface. The parameter
correlations are generally low for both models. All values larger than 0.4 have been highlighted in bold type.

Closer examination of the correlation matrix reveals that it is not always the same parameters that are
correlated in each of the two models. The largest discrepancy tumed out to be the correlation between the
“Reservoir time constant” and the “Weir overflow coefficient” which was found to be 0.26 and —0.31 for the
two models respectively. The models also had very different correlation between the “Weir overflow
coefficient” and the “Weir power” (0.8 for the deterministic model and 0.34 for the stochastic model). In the
latter case some correlation would be expected but no immediate reason has been found for the large
differences between the models. The confidence contours in the plane spanned by this parameter pair is
plotted and discussed later.

Trajectories

Figure 5.18 shows the predicted and observed values for one event selected from the 19 rainfall-runoff
events used for the parameter estimation. The central plot shows the deterministic estimation and the bottom
plot shows the stochastic estitation. The rainfall for the given runoff event is shown in the top plot. Figure
5.19 is an extract of Figure 5.18 zoomed in on the time steps 180 to 480 minutes afier the start of the rainfall
event.

In the deterministic plot (Figure 5.18 centre and Figure 5.19 centre) the up-dated value is equal to the
predicted value. This it does by definition as no up-date is performed during deterministic parameter
estimation, In the plot of the stochastic estimation (Figure 5.18 bottom and Figure 5.19 bottom) shows that
the observation error is very small compared to the system error and the up-dated values are practically equal
to the observed values. One can also see how the uncertainty generally increases when the time-since-last-
observation increases. As expected the uncertainty tends towards a maximum value which depends on how
rigid the system is. In this case the system is more rigid once overflow starts. This is because once overflow
starts a given change or uncertainty in the upstream parts of the system will have a smaller effect on the
water level at the weir.

In both models, but particularly for the deterministic estimation, it is apparent that the modelled values lie
generally below the observed values during this particular event. This is because the parameters have been
estimated from a large number of events. This leads to questions as to whether or not the runoff coefficients
dependency on the wetness index is an appropriate model and questions concerning the assumption that the
parameter values are constant from event to event. The latter question leads directly on to random coefficient
modelling which is studied in Chapter 7 for a deterministic pollutant resuspension model.

A topic, which has not been treated in much depth in this thesis, is the analysis of residuals. Residuals are the
deviations between modelled and observed values. For time series with equidistant observations the
autocorzelation function of the residual series (i.e. linear correlation between the series’ value and its own
values at other time steps) is an important tool in finding cut whether a model] describes the observed process
well and whether the implicit assumptions are reasonably satisfied. A low autocorrelation means that the
residuals contain little or no further systematic variation that could be modelled. In the present study the data
are very irregularly spaced in time and it was not possible to calculate the residual autocorrelation function
directly. Some effort was given to developing a non-parametric autocorrelation function that would be
generally applicable irrespectively of the spacing of the observations.
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Figurc 5.18. The observed and modelled values of water level at the overflow weir for both the deterministic

i (centre) and the stochastic cstimation (bottom). Plotted is one cvent selected from the 19 rainfall-runeff used

during parameter estimation. The ton olot shows the associated rainfall series. Limits are 95% confidence limits.
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Figure 5.19. The observed and modelled values of water level at the overflow weir for both the deterministic
{centre) and the stochastic estimation (bottom). Data show is the same as in the previous figure but zoomed in on
time stens 18( to 480 minutes. Limits are 5% confidence limits.
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| The developed non-parametric auto- and cross-correlation function proved for the present data to be
| extremely sensitive to the selection of bandwidth, which was reguired. Although non-parametric

autocorrelation functions for irregularly spaced data would be of immense value to practical water quality
engineering, further developments in this direction liec beyond the scope of this study. Viewing the plot of the

| deterministic estimation in Figure 5.18 (centre) and Figure 5.19 (centre) it is evident that the deviation

between the observed and modelled is not random. This suggests that the assumptions are not completely
satisfied. This is seen to be better for the stochastic model.

Confidence Contours
Figure 5.20 shows the confidence contours for the plane defined by the parameters “Weir overflow

coeffiecient” and “Weir power”. The plots have been drawn both for the deterministic estimate {left) and for
the stochastic estimate (right). In each case the found optimum is shown by a the black dot and the distance

| between the confidence contours is equivalent to a change of 2.0 in the log-likelihood value. Only the first
| 15 lines have been shown. The inner most line corresponds roughly to twice the standard deviation and
| therefore represents the 95% confidence region for the parameter pair.

‘| This pair of parameters is shown here because a large discrepancy between the pairs parameter correlation in
the two models (see Table 5.2). A correlation of 0.80 was found for the deterministic model whereas that for

the stachastic model was only 0.34. It is apparent from the contour plots that the deterministic estimate of
these parameters is more uncertain than that of the stochastic estimate. However, it also would appear that
the ellipses are equally elongated and therefore we would expect the correlation coefficients to be roughly
the same for the two models. From the confidence plots it would appear that the pair’s correlation in the
stochastic model (i.e. 0.34 in Table 5.2) has been somewhat under estimated and is in fact probably closer to
the value found for the deterministic model (i.e. 0.80 in Table 5.2). The reason for this is likely to be
unevenness of the objective function surface in the region of the optimum.

Estimation of the covariance matrix (used for the correlation matrix Table 5.2) is based on the assumption of
local linearity which in the confidence contour plots should e¢xhibit itself as “nice” ellipses with the optimum

| at their centre. Indeed the confidence contours do appear to be fairly eltiptical but the optimum for the
1 deterministic medel does not appear to lie in the centre of the elliptical shapes. This is because the objective
4| function surface is very flat along the bottom of the elliptical valley and possibly a bit rough so that the
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Figure 5.20. Confidence contour plots for the plane defined by the parameters “Weir overflow coeffiecient™ and
the “Weir power”. Plot shown for the deterministic estimation (left) and for the stochastic estimation (right).
Each contour represents a change of 2.0 in the log-likelihood value.

79



Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Grum

optimisation routine has been unable to find the very optimum. The point found is probably not a distinct
“focal minimum™ because such a point would manifest itself in the parameter contour plot. it is more
probably a result of the fact that the roughness of the objective function surface is large compared to the
curvature. This would generally introduce some error on the estimated confidence limits purely due to the
fact that the surface is not symmetrical around the optimum. Although the position of the optimum in the
two models is not the same, it is worth noting that the optima lie in line with the tips of the each others
confidence contours and are therefore in fact not that different.

Error Modelling

Introducing a multiplicative error on the reservoir water volumes by adding one error state for each of the:
physically interpretable states does indeed resull in a more complex and demanding set of equations. An.
alternative to this is to transform the state variables. This approach was originally discarded because initial
attempts using the natural logarithm to transform the volume gave poor results and much instability in the
Kalman filter. Experience from similar modelling work carried out after this thesis work does however
suggest that state transformation is indeed a viable and interesting option if only a suitable transformation
can be found. The transformed variable(s) should be such that the assumptions of normally distributed
additive error are reasonably satisfied. Promising results have been obtained using the transformation below
for non-negative water quality variables such as volumes, flows, masses and concentrations.

el
=

f0= (5.39)

X

where x is the untransformed variable, fix} is the transformed variable and where c is the intercept on the
untransformed variable axis at which point transformed variable is equal to zero. The constant ¢ can be
estimated as a parameter in the model or otherwise appropriately chosen. The values of the models estimated
parameters are not likely to be sensitive to the value of this transformation parameter. The advantage of
using this transformation for quantities such as water volumes and component concentrations is that there is
practically no transformation of the variable when it is much larger than the intercept value ¢. Stochastic
water quality modelling would be strengthened by more research directed to finding suitable transformations
for types of state variables typical within the fieid.

CONCLUSION

In this chapter deterministic and stochastic modelling approaches have been contrasted and compared. The
underlying assumptions about the source of the deviation between modelled and observed values have been
highlighted as the core difference between the two approaches. The discussion has been supported by the
case study of a rainfall-runoff model for a combined sewer system. In Chapter 8 a broader discussion on
deterministic and stochastic modelling in water quality management will be presented.

Whether the assumptions made are reasonable or not, will not only depend on how good a description one
has of the mechanisms and processes involved, but also on the precision required and the available
resources. In practical terms stochastic modelling with physical, chemical or biological descriptions means
that also the uncertainty of a systems state has to be modelled in time. This is an increased effort which
inevitably leads the practitioner to two questions: Does the improvement in modelling and subsequently
design and decision making stand in proportion to the increased effort compared to traditional deterministic
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Transformed variable

Untransformed variabk

Figure 5.21. The state transformation (5.39) proposed (bold) as a suitabie alternative to the log
transformation (fine) for transforming environmental water quality state variables in stochastic modelling.
Here ¢ is chosen as 1 to make least difference to the natural logarithm transformation.

modelling? And if so, can the customer be convinced that this is the case? These questions lead beyond the

scope of this thesis work but point to potential problems in bridging the gap between science and practice
within the field of water quality management.

There are still a number of open questions when it comes to applying stochastic modelling to integrated
urban water management and water quality modelling in general. Efforts should be made to find suitable
transformations for typical water quality parameters to improve parameter statistics through a better
adherence to the condition of local linearity. Studies should be carried out to identify state transformations
that counld be used to transform typical water quality state variables in such a way that random behaviour can
be described with the normally distributed additive errors. Other aspects of applying stochastic modelling to
waler quality that would merit further study and experience are numerical methods for computing the partial
derivatives needed in the Extended Kalman filter and for which analytical expressions are not available,
estimation and parameter statistics of threshold values and the use and sensitivity of a priori parameter

distributions. Generally speaking there is a need for stochastic tools aimed specifically at working with the
sub-class of stochastic water quality and water engineering models.

Once the essential differences between stochastic and deterministic modelling have been pinned down it is
possible to spot methods and approaches which may be beneficially transferred from the one to the other. As
illustrated stochastic models, which have traditionally been empirical, would benefit from the inclusion of
mechanistic descriptions. This would improve the possibilities of extrapolation to proposed scenarios and
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may lead to a more parsimonious description. Deterministic modelling can, without taking the leap all the
way to stochastic modelling, beneficially adopt several methods used in stochastic modelling. These include
automated calibration/parameter estimation, parameter statistics, experimental design and systematic
inclusion of @ priori parameter knowledge.

REFERENCES

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting & Control. Holden-Day Series
in Time Series Analysis and Digital Processing. Holden-Day, Oakland, California, USA.

Carstensen, J., Harremoégs, P. and Strube, R. (1996). Software sensors based on the grey-box modelling
approach. Wat. Sci. Tech., 33(1), pp. 117-126.

Chatfield, C. (1996). The analysis of time series. An introduction. 5. ed. Champman Hall. London.

Dochain, D., Vanrolieghem, P. A. and Van Daele, M. (1995). Structural identifiability of biokinetic models
of activated sludge respiration. Water Research, 29(11), pp. 2571-2578.

Draper, N. R. and Smith, H. (1981). Applied regression analysis. Wiley series in probability and
mathematical statistics. ISBN: 0-471-(02995-5.

Harvey, A. C. (1993). Time Series Models. 310 pp.

Madsen, H and Hoist, J (1998). Modelling Non-Linear and Non-Stationary Time Series. Lecture notes for
the PhD. cource DTU-0417 Advanced Time Series Analysis. IMM-Institute of Mathematical
Modelling, building 321, Technical University of Denmark, DK 2800 Lyngby. www.imm.dtu.dk.

Madsen, H (1995). Tidsreekkeanalyse (Time Series Analysis). IMM, DTU. Lecture notes used at IMM/DTU,
University of Copenhagen (KUIMS), Copenhagen Business School, and the University of Ieeland.
284 pp., www.imm.dtu.dk

Moens, M., Grum, M. and Aalderink, R. H. (1999). Inzet van troebelheidsmeters ter bepaling van CZV en
drogestof in gemengde rioolstelsel. H 2 O, 32(8), pp. 22-25.

Ljung, 1.. (1987). System identification. Theory for the user, Prentice-Hall. New York.

Reichert, P. and Omlin, M. (1997). On the usefulness of overparameterized ecological models. Ecological
Modelling, 95(2-3), pp. 289-299.

Sadegh, P., Holst, J., Madsen, H. and Melgaard, H. (1995). Experiment Design for Gray-box Identification.
Int. Journal of Adaptive Control and Signal Processing, Vol.9, pp. 491-507.

Sadegh, P. (1996). Experiment Design and Optimization in Complex Systems. PhD. Thesis (IMM-PHD-
1996-23). Institute of Mathematical Modeliing, Technical University of Denmark, DK-2800 Kngs.
Lyngby, Denmark, www.imm.dtu.dk.

Tulleken, H. (1993). Grey-box modelling and identification using physical knowledge and bayesian
techniques. Awtomatica 29(2), 285-308.

Vanrolleghem, P. A. and Keesman, Karel J. (1996). Identification of Biodegradation models under medel
and data uncertainty. Wat. Sci. Tech., 33(2), pp. 91-105.

Vanrolleghem, P. A, Van Daele, M. and Dochain, D. (1995). Practical identifiability of a biokinetic model
of activated sludge respiration. Water Research, 29(11), pp. 2561-2570.

82



http://www.imm.dtu.dk
http://www.imm.dtu.dk
http://www.imm.dtu.dk

S

- CHAPTER 6

MODELLING USING
STOCHASTIC DIFFERENTIAL EQUATIONS

ABSTRACT

The model studied in this chapter incorporates notions of physical theory in a stochastic model of water level and
particulate chemical oxygen demand (COD) at the overflow point of a Dutch combined sewer system. A stochastic
model based on physical mechanisms has been formulated in continuous time. A tool dedicated to modelling using
stochastic differential equations with the extended Kalman filter has been used. Estimation is based on @ maximum
likelihood criterion in conjunction with a non-linear stase space jormulation decomposing the error term info system
noise terms and observation errors. The bias generally obtained in deterministic modelling, by invariably and ofien
inappropriately assuming all error to. observation ervor, is thus avoided. Continuous fime stochastic modelling
incorporating physical, chemical and biological theory presents a possible modelling alternative. These preliminary
results suggest that further work is needed in order to fully appreciate the method’s potential and limitations in the
field of urban runoff pollution modelling.

This chapter is based on Grum, M. (1998). Incorporating Concepts From Physical Theory into Stochastic Modelling of Urban
Runoff Pollution. Wat. Sci. Tech., 37(1), 179-185. Published after presentation at 2" International Conference on The Sewer as a
Physical, Chemical and Biological Reactor, Aalborg, May 1997.
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INTRODUCTION

In the preceding chapter the differences between traditional deterministic and stochastic modelling have been
outlined in terms of their implicit assumptions with respect to the origin of the deviation between the
modelied values and the observations. The methods have been compared and studied using a non-linear
version of the Kalman filter implemented in discrete time.

This chapter looks at the possibilities and limitations of using stochastic differential equations for sewer
system modelling. Stochastic differential equations distinguish themselves from the discrete time stochastic
modeis presented in the two preceding chapters by being defined in continuous time. This has a number of
advantages such as reduced sensitivity to the discrete time step that inevitably has to be chosen, as
observations are generally always discrete. Stochastic differential equations have the further advantage that
physical, chemical and biological process theory is often expressed in the form of ordinary differential
equations and can in some cases be applied with only minor adjustments.

Like all stochastic modelling methods, modelling using stochastic difterential equations is associated with
techniques to assure model identifiability. Initially this involves studying parameter standard errors and
correlation matrix. A co-linearity analysis would give a more complete picture of the parameters space and
model identifiability. All these parameter statistics are based on the assumption the model is linear with
respect to the model parameters. In the case of non-linear models the local validity of this assumption may be
examined. This may be done using contour plots. Parameter transformations may be introduced before re-
estimating the parameter statistics in order to live up to the assumption of local linearity.

DATA

This study has been carried out using the Loenen data set as described in Chapter 2. The observed variables
that have been modelled are the water level at the overflow structure and the suspended or fast settling COD
concentration. Table 6.1 gives a surnmary of the data used for this particular study.

METHODS

Modelling using Stochastic Differential Equations

Modelling using stochastic differential equations is a good tool for combining information from physical,
chemical and biological theory with information from data and is therefore often also called grey box
modeiling (Madsen and Holst, 1996). In this section is a brief outline of a few essential elements of
modelling using stochastic differential equations. Refer to Madsen and Holst (1998) and Madsen and
Melgaard (1991) for further details on the mathematics behind modelling with stochastic differential
equations. In the field of water resources research these methods have been applied to practical problems by
several authors including Carstensen and Harremoés (1997), Jacobsen et al. (1996) and Carstensen et. al.
(1996).
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Table 6.1. Summary of the data studied.

Level at Overflow Suspended COD conc.
Mean 17.5m ~150.0mg/
Minimum 163 m 0 mg/l
Maximum 18.5m 997 mg/1
No. events 22 ‘ 19
No. observations 623 253

Consider, as an example, the usual (deterministic) continuity equation for a reservoir which could be written
A as:

av -0 — (6.1)
dt Qin Qoul

V = the volume stored in the reservoir,
1 Om and @, = the flow into and out of the reservoir respectively.

The flows would often through some linear or non-linear storage function be connected to the reservoir
4 volume and input flows, In accepting that the above differential equation does not cover “the whole truth”, a
stochastic term is added to (6.1) to give:

do

7 (6.2)

dav
—_—={{) - +
0 Qi — Qo

@ = a stochastic process assumed to have independent increments (a Weiner process).

Consider the case in which the water level in the reservoir has been monitored. Assuming the reservoir to be
such that the level can be calculated as a function of the volume, f{ ), the following observation equation can
be formulated:

b= f(F (1) + 5, (6.3)

| # = the monitored water level and ¥{#) = the modelled volume in the reservoir,
£, = observation error (independent of the stochastic process @ ).

The system and observation errors can not be found directly. However, given their variances the Extended
‘| Kaiman filter can on the presence of a new observation be used to calculate the best estimates of the system’s
‘| current state. Thus, at every available observation, the Kalman filter makes a weighting between “what we
calculate” and “what we see” {see Chapter 5 and Chapter 8). This up-date affects all state variables and not
only those which have been observed or which relate directly to the observed variables. Simulation or
prediction then proceeds from these new estimates of the system state variables. The variances of the system
and observation errors, and the other constant model parameters are estimated by an off-line optimisation of
a maximum likelihood criteria. In the present study a modified version of the program CTLSM (Continuous
| Time Linear Stochastic Modelling), due to Melgaard and Madsen (1993), was used. This program, which is
‘| specifically designed for parameter estimation in non-linear stochastic differential equations, uses a modified
quasi-Newton off-line optimisation of the parameter estimation.
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| Chapter 6 Modelling using Stochastic Differential Equations

Table 6.3. Results of the parameter estimation in the final water quantity model.

Neo. Parameter name Units Parameter  Estimated 95% confidence limits Reported
symbol value lower upper vaiue
1 Runoff coefficient [-] ¢ 0.71 0.62 0.80 0.7-1.7
2 Proportionality constant [1/min] k 0.18 0.16 0.20 -
3 Overflow weir coefficient  [m?s] Wooer 3.6 1.9 5.3 2.9
4 System noise variance [(m*/5)* ] o, 0.22° 0.15 027" -
5 Observation error variance  [(m)’] o’ 0.097° -0.0038 0.15* -

Table 6.4. Parameter correlation matrix (for the final water quantity model).

No. Parameter name Unit 1 2 3 4 5
1 Runoff coefficient [-] 1.00.: -0.65 -0.51 0.87 -0.96
2 Proporticnality constant [1/min] -0.65 L 180 -0.03 -0.65 0.70
3 Overflow weir coefficient  [m%s] -0.51 -0.03 2700 -0.08 0.26
4 System noisc variance [(m/s) ] 0.87 -0.65 -0.08 1.00 -0.92
5 Observation error variance  [(m)'] -0.96 0.70 0.26 -0.92 1,00

Water Quantity Modelling (Level)

Water quantity has been modelled as three linear reservoirs in series followed by a final reservoir
representing the static storage volume in the pipe system immediately before the overflow weir. Table 6.2

4+ presents a combined representation of the reservoirs as sketches with the corresponding storage equations
| and stochastic differential equations. The flow out of the first three reservoirs is assumed to be proportional

to the volume of water stored in each reservoir. The flow out of the final reservoir includes the flow pumped
to the treatrnent plant (here assumed equal to the pump capacity) and the flow out of the system through the
CS0.structure which is calculated as a function of the water level at the overflow structure. The level is in
turn calculated as a function of the volume stored in this final reservoir based on the pipe dimensions of the
sewer system itself. If the water level is above the assumed known “pump on level” then the flow to the

;] treatment plant is set equal to the pump capacity and otherwise to zero. In order to maintain a low number of

parameters during these preliminary studies the rainfall is multiplied by a runoff coefficient and there are
therefore assumed to be no initial losses. Five modet parameters: runoff coefficient, reservoir storage
constant, overflow weir coefficient, variance of reservoir noise and the variance of the observation error are
estimated.

;3 Water Quality Modelling (Suspended COD)

| The suspended COD model is based on the premise that the main source of particulate pollution in the

overflow is as a result of resuspended sewer sediments. The input to the first reservoir is thus assumed to
contain no suspended material. It is further assumed that each reservoir has an infinite amount of available
deposited sediment (see Results and Discussion for comments on this assumption). The water quantity model
provides no flow velocities to which resuspension rate could be related. The resuspension rate is therefore

| calculated as a function, g( ), of the flow rates in and out of the reservoirs. Above an estimated threshold

value, resuspension is assumed to be proportional to the flow rate. The stochastic differential equations for
suspended mass of COD are shown in the far right column of Table 6.2. In this suspended COD model, three
paramecters are estimated: settling rate, threshold flow rate and a proportionality constant.
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RESULTS AND DISCUSSION
Water Quantity (Level)

The water quantity model presented here contains 5 estimated parameters. These are listed in Table 6.3
where their estimated values and confidence limits for the final model are also given. All parameters except
the observation error variance were found to be significantly different from zero. The estimated standard
error for the observation error variance is so large that the 95% confidence interval spans down to below
zero. This suggests that, in practical terms, there is no real observation error compared to system error, which
describes the incompleteness of the models description of system inputs and behaviour.

The values listed in the far right column are those reported in some of the literature mentioned carlier in the
data section. It is apparent from the values in Table 6.4 that the parameter correlations were generally rather
high. This is particularly the case for correlation between the observation error variances and both the runoff
coefficient and the system noise variance.

A number of parameters including pump on level, pump capacity and overflow weir coefficient were fixed to
their “known” values (see Chapter 5). Future efforts should aim at having also these parameters estimated
from the data as has been done in the equivalent deterministic model in Grum and Aalderink (1997) and
Chapter 5.

Attempts were also made to identify a separate noise term for each of the four reservoirs and also to identify
a common variance for the first three linear reservoirs with a fourth variance on the final reservoir. In both
cases it was not possible to obtain convergence to a single or reproducible likelihood optimum. This could
relate both to structural aspects of the model but also to the quality of data, in terms of both excitation and
sampling frequency. The identiftability of stochastic terms in reservoir modelling (linear and non-linear) is
clearly an area in need of much more experience.

Water Quality (Suspended COD)

Reproducible results proved hard to obtain in the case of the water quality model. This was probably for a
large part due to the small number of observed data available, namely only an average of only 13
observations per event for 19 rainfall-runoff cvents. Table 6.5 and Table 6.6 contain the results of the
parameter estimation. The threshold flow rate of the resuspension equation is not significantly different from
zero and could therefore be excluded in order to obtain an improved model.

The variance of the system noise term is seen to be significantly different from zero as is the variance of the
observation error. These results would suggest that both system noise and observation error should be
modelled. The absolute value of 1.58-10° mg/] for the observation error standard deviation however appears:
to be suspiciously small. Suspiciously small were also the correlation coefficients between the observation
error variance and the other model parameters. It should be noted that though the results were reproducible
from different parameter starting values not o/f starting values converged {o the optimum point.

Other resuspension models were examined. These included the estimation of a maximum amount of
available deposited sediment and other functions relating the resuspension rate to the flow rate. None of
these gave better results than the presented model.
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Table 6.5. Results of the parameter estimation in the final water guality model (suspended COD),

No. Parameter name Units Parameter Estimated 95% confidence limits
symbol value lower upper
1 Flow rate threshold [m’/s] Qetweshold 8.7-10710 2010 20107
2 Settling rate [175] ' B, 0.00294 0.00293 0.00295
3 Proporticnality constant [gm’] B2 1749 1705 1791
4 System noise variance [(g's)} o2, 1378° 1364° 1400
5 Observation error variance  [(mg/1)’] o’ {1.58-10%)* (L37-10%  {1.68-10°%)°

Table 6.6. Parameter cotrclation matrix (for the final water quality model, suspended COD).

No. Parameter name Units 1 2 3 4 5
1 Flow rate threshold [m’s] Cr08 - 035 0.62 -0.85 -
2 Settling rate fl/s] 0.35 TR N R 0.11 -0.07 -
3 Proportionality constant [g/m"] 0.62 0.11 5100 -0.87 -
4 System noise variance [(e/s¥] -0.85 -0.07 -0.87 . 1 -
5 Observation error variance [(rng/'l)2 ] - - - - 100
CONCLUSIONS

It has been possible to identify and estimate the parameters of a sewer system water quantity model. The
results of the water quantity model suggest that the generally accepted assumption that all error results from
observation error, which is the basis of deterministic model calibration, is not a valid assumption. On the

! contrary these results suggest that most of the deviation between model prediction and observation are a
/| result of sewer system behaviour that the model does not explain. It is difficult to conclude anything from the

results of the water quality model. They suggest that more research efforts should be put into applying

1 existing experimental design and sampling frequency theory to water quality modelling. It also indicates that
.| a new approach to data collection is required when subsequent modelling is amongst the primary purposes

for the data collection.

The results from both medels and from the study as a whole suggest that more efforts should be put into

| exploring and gaining experience in stochastic modelling with physically interpretable parameters. This is

particularly important with respect to the identifiability of both the mechanistically interpretable model
parameters and of the system noise components.
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CHAPTER 7

RANDOM COEFFICIENT MODELLING

ABSTRACT

Combined sewer water quality models are sometimes able to capture the general dynamics of the changes in
pollutant concentrations but will for some events over-predict and for other events under-predict. For some events the
characteristic dynamic pattern will appear too early and for other again too late. This is because during calibration
model parameters have either been considered as universal constants valid for all events or as depending in some
deterministic way on explanatory variables such as the time of year or the sewer system’s recent history. However,
for the majority of water quality variables and parameters describing the state of a combined sewer system at the
onset of each rainfall event are only very poorly kmown. These inchide quantities such as amount of deposited
sediment, the strength of the sediment crust, concentrations of sediment pore water, the size distribution and settling
rates of the particulate matter and even to some extent the quantity and quality of the dry weather flow.

The objective of this study has been to evaluate the potential of applying random coefficient modelling in order more
aceurately describe pollutant concentrations in combined sewers during rain. In random coefficient models certain
selected parameters are assumed to be realisations of a random variable at each event. Emphasis is on models that
are applicable to return period analysis of extreme pollution events in an integrated approach. A random coefficient
maodel is estimated for suspended chemical oxygen demand (COD) in a combined sewer and its performance is
compared to the equivalent consiant coefficient model. As well as highlighting the advantages and the potential of the
approach, drawbacks and limitations af both the approach and the present study are also discussed.
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INTRODUCTION

The parameters of a combined sewer model are generally considered to be constant over time or to follow a
yearly pattern. Their values are calibrated or estimated by comparing simulated model responses to measured
responses. A frequently encountered problem is that, although the general shapes of the modelled responses
are often very similar to the observed responses, the modelled response will for one event be too high, for
another too low, for a third too early and a fourth too late. This is illustrated in Figure 7.1 where the variable
on the y-axis could for example be suspended solids in a combined sewer system. If one attempts to calibrate
the model on each of the single events individually this discrepancy between modelled and observed values
generally disappears.

The approach applied in this study is called random coefficient modelling because it assumes that whilst
some parameter values may be constant in time, other parameters vary from event to event as realisations of
a random variable. The random coefficients are thus quantities that vary from event to event but for which no
deterministic relationship can be found to explain these changes quantitatively. In combined sewer water
quality modelling one would expect values such as, for example, the amount of deposited material, its
content of degradable matter and the strength of the sediment crust, to vary from event to event. Numerous
examples of modelling and smdies of sewer system have however shown that the number and complexity of
phenomena taking place in a combined sewer would require an endless number of parameters to be
calibrated. One may well end up including phenomena that are less significant than phenomena that have yet
1o be revealed.

This problem of model assumptions not considering variations in system characteristics from event to event
is visually more evident during deterministic modelling than during stochastic modelling. On stochastic
modelling the constant up-date of the system states would often mean that only a detailed analysis of the
residuals would reveal the need for random coefficient modelling. It is important to realise that, although this
study deals with random coefficient modelling in the context of deterministic modelling, also stochastic
models can be formulated and estimated with some random coefficients whose randomness is not described
as randomness in time but as random realisations at each occurrence.

The objectives of the study are to evaluate the potential of random coefficient modelling of combined sewer
water quality modelling. The advantages and disadvantages are examined through the application of the
methodology to a simple deterministic model of suspended chemical oxygen demand (COD) in combined
sewer overflow. The application of random coefficient models to integrated retumn period anatysis is part of
Chapter 9 of this thesis. There are very few studies in which random coefficient modelling has been applied
within the field of water modelling. An example is Gwo-Fong and Yu-Ming (1996) who have studied the use
of random coefficient modelling for hydrological runoff models with the storage coefficient treated as a
random variable in a dynamically stochastic model applied to a rural watershed.

Observed and
Modelled Variable *x

* x X
X x X x

X X%
Time Time Time Time
Figure 7.1. With constant cocfficient models the principle dynamics may be well explained but for
different rainfall-mmoff events the simulation may lic too high, too low, too carly or toe late.
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DATA

The data used for this study are part of the Loenen data set outlined in chapter 2. Water quality variables
including COD were measured before and after settling for one hour. The difference between the two values
represents a fast settling fraction or particulate fraction and is in this chapter called suspended COD. Only
events with at least eight observation of suspended COD were selected for the study. This resulted in
nineteen rainfall-runoff events with a total of 253 observations of suspended COD from samples taken
during overflow.

METHOD

4 Parameter estimation in non-linear random coefficient modelling involves an outer optimisation routine for

estimating the parameters considered to be constant. Each evaluation of the estimation criterion’s value for a
given set of the constant parametets involves event-level optimisations in which the random coefficient’s

|| values are estimated for each event. Thus, as illustrated in Figure 7.2, each evaluation of the objective
| function, i.c. the estimation criterion, in the outer optimisation involves complete optimisations to find the

values of the random coefficients. A least square estimation criterion was used in the present study. Refer to
statistical texts such as Bondeson (1989), Johansen (1984) or Nicholls and Quinn (1982) for a
comprehensive introduction to random coefficient modelling.

Parameter statistics inclnding covariance matrix was here estimated using a jack-knife technique in which
the complete parameter estimation is carried out using all events and then repeated whilst systematically
excluding one of the rainfall-runoff events. The jack-knife technique is discussed in more detail in Chapter 9
and a general introduction can be found in statistical text books such as Stuart and Ord (1994).

Optimisation for
Estimation of
Constant

Parameters

Event |
Optimisation Simulation & Estimation Criterion

Event 2
Optimisation Simulation & Estimation Criterion
Event 3
Optimisation Simulation & Estimation Criterion

Event 4
Optimisation Simulation & Estimation Criterion

Sum of Estimation Criterion Values

Figure 7.2. The constant parameters and the random parameters/coefficients are estimated
simultaneously. Each function evaluation in the outer optimisation involves complete optimisations of
the parameters varying from event to event.
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Figure 7.3. Four different relationships between ﬂow and rcsuspens:ou were initially tested. The
encircled relationship was selected for this study and is expressed in equation (7.1).

Suspended Pollutants Models

Suspended COD was modelled as a first order settling rate with a flow dependent resuspension of hoth
surface and in-sewer deposits. Four different expressions for resuspension were initially tested and one was
selected for this study. The four expressions relating resuspension to flow are shown in Figure 7.3 where the
encircled relationship gave the best fit and was subsequently selected this study. The mathematical
expression for this resuspension relationship is expressed in (7.1).

Settling Resuspension (Figure 7.3)
—A A -
dM b
"%“Q = _a‘MCOD“‘—29'{l+ta“h[c‘Qcm’(Q*chiz)]} a.n

where M (gpis the suspensed mass of COD in the reservoir,

Q is the flow rate (see section on underlying water quantity model below),

a is a first order settling rate,

b is the gradient in the flow to resuspension relationship (see Fig. 7.3),

¢ defines (with O,,;, ) the smoothness of the rise to linear resuspension (see Fig. 7.3),

Q.. 1s the critical flow defining the position of the rise to linear resuspension (see Fig. 7.3).

In the final version of the random coefficient model the parameters a, b and ¢ were all considered as constamt
parameters and @, as the random parameter who’s mean and variance were of interest. The critical flow
rate, Q... thus takes a different value for each rainfall-runoff event corresponding to variations which
would be expected in the critical shear stress at which resuspension would begin. For purposes of
comparison the model was also estimated with the critical flow rate, O, , as a constant for all 19 rainfall-
runoff events.

The sewer system is relatively flat and it was assumed that an infinite amount of sediment was available.
Tests were carried out to confirm that setting or estimating a maximum available amount of sediment did not
change the fit of suspended COD in the sewer overflow.

The Underlying Water Quantity Model

The suspended COD model was built upon a water quantity model consisting of three linear reservoirs in
series discharging into a non-linear reservoir representing the sewer system’s static storage volume. This is
the deterministic version of the model presented in Chapter 5. The parameters of the water quantity model
had been estimated beforehand and were not estimated as random coefficients.
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Figure 7.4. Results of the suspended COD modelling showing the observed values (crosses) with the
constant coefficient model simulation (thick line) and the random coefficient model (thin line). In the
top two event the constant coefficient model simulated too high, in the bottom two event too low and
fair for the middle two events. Notice that simulations of the random coefficient model lic neither
particularly high nor low for any of the events,

| At the beginning of each event the suspended COD concentration in atl four reservoirs was considered to be
zero. Thereafter the concentration rose and fell according to the expression in (7.1), which was applied to
each of the model reservoirs with resuspension depending on the average of inflow and outflow. Suspended
COD was then catried downstream by advection. No dispersion was applied to the suspended pollutant.

95




Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Grum

60

40

T SR TR TR T N W SO SI |

20

Resuspension Rate [g/s]

0 R~ . ‘
0 1 2 3 4 5
Flow rate [m3/s]

Figure 7.5. Estimated relationship between flow rate and resuspension in the random coefficient model.
Each line is the resuspension curve corresponding to one of the 19 rainfall events used.

*

RESULTS AND DISCUSSION

The results of the random coefficient mode! and the corresponding constant coefficient model are presented
in Table 7.1. Notice that for the random coefficient model the standard deviation of the critical flow rate,
O . expresses variation from event to event. This should not be confused with the parameter standard

errors, which are the results of the Jack-knife estimation and which represent uncertainty in the value of the
estimated constant parameters.

Table 7.1. Results of constant and random cocfficient modelling, The parameter Q... Std.dev. is the standard deviation
of the event to event variation in the critical flow @, (**See text on interpretation of RZ).

Constant Coefficient Model Random Coefficient Modei
Low

Parameter Unit Value 95% Upp.95% Value Low 95%  Upp.95%
Settling rate a f1/s] 4,39¢-4  3.6le-4 5.35e-4 2.44¢e-4 2.15¢-4 2.78¢-4
Resuspension & [g/m*] 5.79¢2 3.67e2 7.92¢2 1.06e4 0.82¢4 1.30¢4

e [s/m’] 0.498 0.359 0.660 0.317 0.256 0.377

Oera {m’s) 0.833 0.459 1.207 2.85 2m 2.9

Q.. Std.dev.*  {m¥s] - — — 0.306 0.030 0.582
Coef.of Det. R- ** {-] 047 — — 0.67 — —

The coefficient of determination, R?, is seen to rise from 0.47 to 0.67 when the critical flow rate is assumed
to be a random variable and therefore estimated for each event. For six of the 19 rainfall-runoff events the
simulated and observed suspended COD concentrations have been plotted in Figure 7.4. Notice that for the
top two events the constant coefficient model was generally too high, for the two events in the centre both
models perform equally well and for the botiom two events the constant coefficient model was too low. This
is exactly the sort of improvement one wants and expects when applying random coefficient modelling.
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In Figure 7.5 are the flow-resuspension relationships found for each of the 19 events. The curves are defined

| by the last term in (7.1) and all have the same value for b and ¢ but different values for the critical flow rate,

an‘r -

There is a significant improvement in the coefficient of determination, R2, from 0.47 to 0.67. However, it is
important to keep in mind that the coefficient of determination for the random coefficient model is in a sense
conditional to our knowing the values of the critical flow rate, Q. , for every event. In the random

‘1 coefficient model these are in fact not known but estimated.

4 Table 7.1 reveals a poor agreement between particularly the settling rates in the two models. This should be
' viewed in consideration of the high correlation found between settling rate and resuspension (in all models
| about 0.9 between a and b). Settling and resuspension are two phenomena working practically directly
‘| against each other and almost the same result can therefore be obtained by increasing the two parameters a
;| and &. The result is a high correlation between the parameters and this sets extremely high demands on the
‘I quality of the required data. Had the data sets included values for the period before actual overflow started

this correlation would probably have been much lower. Both of the presented models have been estimated

| using the least square criterion and without any quantitative @ priori information about the parameter values.

The inclusion of quantitative @ priori knowledge about sewer sediment settling rates using a priori
distributions with a maximum likelihood criterion as outlined in Chapter 5 is likely to have overcome this
problem. The a priori distributions could originate from various laboratory or field experiments such as
reported in Hvitved-Jacobsen et al. (1998) and Gent et al. (1996). It is important that this a priori knowledge
1s incorporated in the form of a priori distributions in a maximum likelihood estimate and not just as fixed
values in order to permit the assimilation of data information on any of the parameters.

Attempts were made to correlate the critical flow rates found for each event with variables such as time of
year, preceding dry weather period and the wetness index presented in Chapter 4. No relationship with these

| variables could be found. Until such a relationship to an explanatory variable is found, the variation in O,

*| has to be considered as random variation. On application of the model in an integrated return period analysis,
| such as presented in Chapter 9, this variation from event to event is included as inherent variation.

Attempts were made to investigate whether further improvements to the fit could be obtained by having
other parameters estimated as random coefficients varying from event to event. Improvements were very

1 small and it was soon apparent that the pairs of parameters estimated for each individual event were highly
{ interchangeable and could have very different values for the same goodness of fit. Tt is evident that care
should be take not to classify more parameters as random coefficients than can be identified by the individual

events.

.| An obvious disadvantage of random coefficient modelling is the long time needed for parameter estimation
' due to the sub-optimisations which have to be done in order to estimate the values of the random coefficients

of each event. In models where there is a linear relationship between the response and the random
coefficients, the sub-optimisations are replaced by the equivalent explicit expressions for each set of constant
coefficients. .
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CONCLUSION

A random coefficient model has been formulated for the suspended COD concentration in a combined sewer
system. The model comprises a settling term and a resuspension term whose parameters were estimated
using data from nineteen rainfall-runoff events. Only the critical flow rate, comparable to a critical shear
stress, was assumed to be the realisation of a random variable whilst al! other parameters were estimated as
constant cocfficients. Results show a clear improvement in fit compared to the equivalent constant
coefficient model. Rather than an increased degree of determination, this improved fit reflects the more '
appropriate modelling assumptions and consequently a reduced bias on the estimates of the model
parameters in general.

The high correlation found between settling and resuspension parameters confirms not only the nced for
improved data but also the need for the inclusion of quantitative a priori knowledge concerning parameter
values of even very simple models with only few parameters. Once established with the inclusion of
quantitative @ priori knowledge in a maximum likelihood estimate, random coefficient modelting is likely to
become extremely useful methodology. Given the high degree of randomness within water quality processes
and phenomena random coefficient modelling undoubtedly has a high future potential in the context of both
deterministic models (as here)} and in the context of stochastic models.
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CHAPTER 8

DISCUSSION ON MODELLING

ABSTRACT

The objective of this chapter is to discuss, in a broader perspective, the approaches, methodologies and results
presented in this part of the thesis. While focusing on deterministic and stochastic modelling and on aspects of
identifiability, the discussion goes beyvond the combined sewer modelling to water quality modelling in general.
Finclly, the chapter closes this part of the thesis with recommendations for both practice and research.

A part of the discussion in this chapter is based on Grum, M. (1997). WATERMATEX "97: A Symposium Review. Water Quality
International, Sept/Oct. 1997, pp 37-39.
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INTRODUCTION

Mathematical models aiming at simulating the system behaviour play an important role in integrated urbas

water management. Models arc used to assess the impacts of combined sewer overflow and to identify
optimal amelioration strategies. Optimal water quality management requires an integrated approach.

Integrated urban water management may imply integration at many different levels. Integration may refer to

the combined consideration of water quantity and water quality. In this chapter and in the thesis as a whole

the term integration is primarily used to refer to the combined consideration of various parts of the water

systetn such as the sewer system, the wastewater treatment plant, the recipient surface waters, the

groundwater aquifers and the drinking water supply system extracting water from these aquifers. In recent

years “an integrated approach to water management™ has often been be used to refer to the integration of

social aspects into water management and policy formulation,

Discharge from combined sewer systems is often a limiting factor to achieving ecologically healthy nrban
waters. Mathematical models of relevant parts of the integrated water system can be used to calculate return
periods of detrimental effects and to analyse the consequences of proposed amelioration projects.

With an emphasis on combined sewer overflow, the research presented in this part of the thesis has focused
on various approaches to modelling water quantity and quality. Common to all approaches is that the
engineers a priori perception of the system is combined with information present in monitored data. Model
structure and parameters are thus in part estimated from the available data. A primary aim has been to
compare and contrast how information in data is used in deterministic and stochastic modelling approaches.
This chapter discusses the previously presented conclusions in a broader perspective. The chapter conciudes
with recommendations directed towards both research and practice.

DETERMINISTIC AND STOCHASTIC MODELLING

When encountering an observation during model calibration, we can basically do three things. First, we
could say that “our system description is perfect”, note the deviation between modelled and observed and
thereafter continue our modelling in time from this same modelled value. Alternatively, we could say “we’d
better trust in what we see” (our observed value), note the deviation between modelled and observed, adjust
the state of our system to fit the observed value and thereafter continue our modelling in time from this
observed value. In the first case, we implicitly assume all deviation between the modelled and observed
values to be a result of observation error alone; in the second, we assume that this deviation results only from
random behaviour of the system (i.e. an incomplete system description).

A third option would be to say that “the truth” lies in a bit of both. In which case we would use the Kalman
filter which makes a weighting between “what we see” and “what we model”, and our modelling in time then
proceeds from this new up-dated point. If we, on the presence of an observation, use the Kalman filter to
estimate the state of our system, we are acknowledging the presence of both observation error and random
behaviour of the system {i.c. modelling error). It is precisely this acknowledgement that gives the Kalman
filter (and related forms of up-dating) such immense potential value to environmental and water quality
modelling where all influential details never can be modelled and where inhomogeneity and measurement
imprecision inevitably give rise to observation errors.
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The main entry of the Kalman filter into both hydrology and water quality took place some twenty years ago
with a conference titled “Application of Kalman Filter to Hydrology, Hydraulics and Water Resources”
(Chiu, 1978). During the foliowing ten years there was a rapid increase in the number of published
applications of Kalman filtering in water quality modelling. The majority of these applications came from
stochastic modellers and as a consequence (at that time), somewhat unfortunately, were empirical with little
or no mechanistic interpretation. However, the state-space form, over which the Kalman filter is defined, is
ideal for mechanistic system descriptions. Kalman had already emphasised this, but in the ficld of hydrology
and water quality this seems to have been recognised only by a few (e.g. Beck and Young, 1976). Filtering
was often done with model parameters varying with the state of the system and using the convergence
properties of the filter to estimate their values. Stories of the practical problems of choosing suitable starting
values, of difficulties in establishing system noise and observation error variances, of convergence to wrong

i{ parameter values and stories of instability abounded. From the middle of the eighties up until recent years the

application of the Kalman filter within water quality seems to have been just quietly simmering.

In the proceedings of the above mentioned conference in 1978, Prof. R. E. Kalman, referring to the Kalman
filter, wrote “Fortunate is the user, for the less he knows about probability the more successful he is going to
be ... . Ironically, these words straight from the horse’s mouth stand quite in contrast to what we are actually
seeing today. Filtering in water quality modelling is today almost always linked to a maximum likelihood
criterion and often also to a coupled or off-line optimisation routine. At the same time practicai problems of
starting values, unknown variances and instability seem to have become less problematic.

The following summarises some recent examples of the use of Kalman filtering within water quality
modelling. Jacobsen et al. (1997) present a stream model built up of linear reservoirs in series in a
continuous state-space form with the Kalman filter for up-dating. Model parameters, including the variance
of both system and measurement error terms, are estimated on the basis of a maximum likelihood criterion
which is optimised off-line. In three river models with mechanistic descriptions of BOD variations and algal
growth, Qian (1997) also uses a modified version of the Kalman filter for up-dating the system state. He
avoids the linear approximations of the extended Kalman filter by an interesting evaluation at each time step
of the likelihood ratio between a number of parallel simulations, each made with different parameter values,
Essentially, the advantage of the method is that it provides maore sensitive parameter trajectories for system
identification, but the author points further to the examination of trajectories of the likelihood ratios
themselves and those of the system variance, which is also assumed to vary. Carstensen et al. (1996)
demonstrate how Kalman filtering with simple mechanistic model structure can be used as software sensors
to estimate the values of unobserved system states.

In an effort to bridge the gap between the traditional deterministic and the empirical stochastic approach,
Chapter 5 draws attention to the most essential distinction between dynamic deterministic and stochastic
dynamic modelling: the difference in assumptions made conceming the origin of the deviation between

| modelled and observed values. Isolating and characterising the core difference between deterministic and
stochastic modelling has disclosed related methods traditionally applied only within one of the approaches

but which in principal would be of relevance and interest to both. From the field of stochastic modelling
these include parameter statistics, experimental design theory, inclusion of a priori knowledge in parameter
estimation and the concepts of identifiability as a whole. From deterministic model the most important
aspect is the inclusion of a priori knowledge of the physical, biological and chemical processes into the
model structure.

In the case study of Chapters 5 parameters of a combined sewer model are estimated under both
deterministic and stochastic modelling assumptions. To this end a tool was developed with the main aim of
rapidly being able to switch from one way of estimation to the other. The tool was built upon a discrete time
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non-linear state space formulation. Modelling of the state’s second moments and the application of the
Kalman filter was active only during stochastic estimation. It was also possible to apply both the maximum
likelihood and the least square estimation criteria to either of the two approaches.

That water quality modellers of the traditionally deterministic approach and thosc of the traditionally
stochastic approach have moved closer to one another is certain. The traditional deterministic modellers have
dropped ideas of incorporating all conceivable processes into their models. Modellers from the traditionally
stochastic approach have recognised that if an engineer should have any use for a model, then the purely
empirical formulation often must be replaced by some degree of mechanistic description relating varnables
via the physical, biological or chemical processes in question.

However, on one particular aspect a clear difference persists. On model calibration there are those who
agsume that all deviation between observed and simulated results only from observation error and then there
are those who assume that this deviation also resuits from an incomplete system description. Unfortunately,
this differcnce in assumptions relates not as one might logically expect to the nature of the systems, the
nature of the available data, the available knowledge and understanding of the system or the available
resources, but simply to the background of the modeller,

Perhaps the time has come where the use of stochastic state filtering, such as Kalman filtering, in water
quality modelling will no longer be merely simmering but will take the central role which it ought to have.
Deviation between “what we model” and “what we see” is a result of both modelling and observation error.

IDENTIFIABILITY IN WATER QUALITY MODELLING

There has been a tendency to persistently add new processes to water quality models in an attempt to
improve their ability to simulate system behaviour. This often has two unfortunate consequences. Firstly,
calibration or parameter estimation leads to non-unique sets of parameters. Secondly, one may often include
processes that are less important than processes which have not been included because they are not even
known.

Parsimony is a concept well developed within the field of statistics and can briefly be summarised as “care in
the allotting of model parameters”. Working with empirical models one would simply exclude all model
structure that does not significantly improve a models fit with the available observations, In models where
physical, chemical or biological interpretations are attached to the parameters exclusion of model structure
may render a model unsuitable for its intended purpose.

Reichert and Omlin (1997) point out that we should be careful not to take identifiability a bit too far, There
are many cases where the inclusion of unidentifiable model structure from an engineering point of view i
indispensable. Consider a sewer system designed to run with full pipes every five years. Even a very long
monitoring period is most likely to fail in obtaining data which will permit the identification of model
structure related to processes which occur only during full pipe flow. One’s engineering knowledge may
however strongly suggest that the sewer behaves quite differently in its full state; one would perhaps be
better off extrapolating with unidentified model structure than charging on with something identified under
quite different conditions. The example in Reichert and Omlin (1997) relates to the indentification of Monod
growth kinetics, but many other water quality examples could be given.
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{iWhen accused of using over-parameterised models which could be calibrated to fit aimost any signal, the

water quality engineer would often answer something in the lines of “yes, but my engineering intuition and
experience tells me what the realistic parameter values are and the calibration is only a matter of making the
case-specific adiustments”™. This does of course not quite correspond to our formal concepts of identifiability,
yet there is some truth about it. Reichert (1997) outlines how such diffuse a priori knowledge on our
parameter values can and should be handled in a structured manner. He emphasises the fact that defining

‘| probability distributions for our knowledge is not enough. Our prior knowledge is diffuse and must therefore

be formulated as imprecise probabilities. Five methods of characterising imprecision in probability
distributions are outlined and discussed, and with a didactic example the author points to the advantages of a
Bayesian approach in incorporating our prior knowledge into the parameter estimation phases of modelling.

| The Bayesian approach relies on conditional probabilities expressions in characterising the uncertainties of

variables that are causally dependent on the value other uncertain variables or parameters. The near future

{will undoubtedly present some interesting applied examples from various ficlds of water quality. This point

is not without bearing on discussion above on the usefulness of including unidentifiable model structure and
will undoubtedly change the practical implications of systems identification.

In Chapter 5 of the present thesis a priori parameter knowledge was quantitatively included by using a
Bayesian approximation to reformulate the maximum likelihood criterion into a maximum e posteriori
likelihood as outlined in Madsen and Holst (1996). The possibility of quantitatively including a prioni

{parameter information gives rise to a new situation with respect to the identifiability of moedel structure with
{physical, chemical or biological interpretation attached to the model parameters. The maximum a posteriori
‘Icriterion can be used with both deterministic and stochastic parameter estimation. More structure will be
acceptable once we include our knowledge and experience concerning likely parameter values in the form of
1a priori distribution. Though a comprehensive investigation of the advantages, interpretation and possible

pitfalls of such inclusion of a priori knowledge lies beyond the scope of this thesis, the results of Chapter 5
did confirm the expectations.

The combined sewer water quality modelling of the preceding chapters has shown that aspects of
experimental design theory have to be considered in the planning phase of a monitoring campaign aimed at
system identification and parameter estimation or calibration. The principal input to a combined sewer is

‘Irainfall, which cannot be designed as such. However, experimental design theory can assist in identifying the

best sampling points within the sewer network and indicate how long before and after an overflow it is
necessary to extract samples from the water. The suspended COD models of Chapter 6 and Chapter 7 would

Thave been better identified and the resulting parameter sets less ambiguous had water quality samples been
! taken before the critical flow at which resuspension started had been passed and if further samples had been
Jtaken after high flows had subsided. For water quality models used for studying the response of surface
|waters to combined sewer overflows controlled overflows may be designed with a given dynamic
il characteristics in order best to identify the model parameters.

{Other aspects of experimental design with bearing upon subsequent model identification are sampling
| frequency and regularity. They become particularly relevant in relation to the identification of modelling

error terms in dynamic systems during stochastic modelling. This relates to complexities such as Shannon’s
sampling theory, which, in simple terms, states that you will have difficulties observing Brownian motion of
a pollen grain on a water surface if you only open your eyes every second minute. In contrast, the
identifiability of deterministic structure (empirical or mechanistic) relates more directly to the amount of
available data and the persistence of excitation.
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CONCLUSIONS

The overall objective of this part of the thesis was to examine modelling approaches and methodologies in an
attempt to improve cornbined sewer water quality modelling. The following have been identified as methods
whose implementation would contribute to such improvement.

« quantitative inclusion of a priori knowledge in automated parameter estimation,
s application of parameter statistics and experimental design theory,

« random coefficient modelling,

« stochastic modelling with physical, chemical and biological model structure.

Incorporation of the first two points into traditional deterministic combined sewer modelling is a fairly
straightforward task. The maximum likelihood criterion should be applied to the existing deterministic
modelling approach and a rapid but robust optimisation routine should be adopted. The main hindrance te
immediate application of parameter statistics and experimental design criteria is probably the parameter
transformations which would be required in order to be able to make assumptions of local linearity in the
often non-linear combined sewer water quality models.

Modellers should recognise the fact that explanatory variables are not always available for characterising the
stale of a sewer system at the start of a rainfall event. No explanatory variables may be known or no
observations may have been made of their values. In recognising this, random coefficient modelling should
be applied so that parameters, such as the strength of sediment crusts and pore water concentrations, may be
considered as random variables varying from event to event. Random coefficient modelling requires more
computational resources and would today perhaps only be realistically applied to simpier modeis with short
simulation times and few estimated parameters.

Finally, stochastic modelling would bring a major improvement to combined sewer water quality modelling
as it would avoid the bias on parameter estimates which is introduced due the poor agreement present in
deterministic modelling between the implicit assumptions on the errors and the actual situation. In certain
situations a2 change from a deterministic to a stochastic formulation requires little effort but in other
situations simplifications have to be made to the model in order to make it appropriate for stochastic
modelling. A stochastic state space formulation of a hydrodynamic sewer model would involve state
variables for both flow velocity and water depth at each calculation point in the system and is therefore not
likely to be just around the corner. Where exactly the limit lies with respect to the number and remoteness of
unobserved system states is one of the questions concerning the applicability of stochastic modelling that
have yet to be answered. Generally speaking, the widespread use of stochastic modelling in water quality
engincering would require professionally developed tools specifically directed towards stochastic modelling
for water quality management,
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.

The modelling work in this part of the thesis has revealed that water quality models have a number of
comrnon characteristics for which generalisations in terms of statistical and stochastic approaches ought be

. sought. Questions that should be addressed are:

+  Which parameter transformation would be appropriate for which types of parameters {e.g. runoff
coefficient, growth rates, setiling rates, resuspension parameters, storage constants, yields and
available deposits)?

«  Which syster variables would be suited as state variables under various circumstances?

« What would be appropriate state transformations for application with Kalman filtering?

« How should the system error be structured for various processes?

« What is a realistic number and remoteness of unobserved system states in stochastic models?

o Where do the critical parameter interchangeability problems occur and which measures can be
taken to overcome them (re-parameterisation and improved monitoring)?

| The results of such generalisation studies would be an asset not only to combined sewer water quality
41 modelling but to water quality modelling and engineering as a whole.
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CHAPTER 9

UNCERTAINTY ANALYSIS USING
EMBEDDED MONTE CARLO SIMULATIONS

ABSTRACT

The return periods of detrimental effects are ofien used as design criteria in urban storm water management.
Considerable uncertainty is associated with the models used. This is either ignored or pooled with the inherent event
to event variation such as rainfall depth. It is here argued that wncertainty and inherent event to event variation
should be treated separately, in providing engineers and managers with the distributions of return periods. It is then
possible to base management decisions on lmowledge of both the expected return periods and their corvesponding
confidence limits. It is further arguwed that the traditional pooling of inherent variation and uncertainty leads to
meaningless return period curves with no engineering value.

The presented methodology is described as Embedded Ervor Propagation and its curvent implementation as
Embedded Monte Carlo Simulations. This new approach is demonstrated in an integrated setting involving models
for rainfall characteristics, combined sewer overflow loads and impacts on the surface water dissolved axygen (DO).
CSO loads are modelled using event lumped non-linear regression models with rainfall as input and with overflow
volume, duration and relevant event mean concentrations as output. Oxygen depletion in the surface water is
described using a dynamic mode! including oxidation of dissolved chemical axygen demand (COD} and nitrification.
Conversion models had to be developed to integrate the output variables of the CSO model with the input variables of
the surface water model. The parameters of all the models were estimated from observed data on vainfall, CSO load
and surface water impacts. The data are obtained from a combined sewer system discharging to a pond in Loenen,
the Netherlands. In this chapter focus is on chemical effects of CSO on surface water. The argued distinction between
event to event variation and uncertainty and the associated methodology are equally valid to the return period

analysis of flooding,

This chapter is based on Grum M. and Aslderink, R. H. {(1999). Unceriainty in Reton Period Analysis of Combined Sewer
Overflow Effects Using Fmbedded Monte Carlo Sinmilations. Wart, Sci. Tech. 39 (4), pp. 233-240. Pubhshedaﬁerora.l presentation
at the AQUATECH conference in Amsterdam, September 1998.
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INTRODUCTION

The return periods of combined sewer overflow (CSO) effects are often used as design criteria in urban
storm water management. There are two main reasons why models are used to calcnlate return periods of
CSO0 effects. Firstly, because calculation of for example events with a mean time between occurrence of one
year by direct measurement would require observation periods of several time longer than just one year.
Attemnpts are then made to use models to predict the return periods of CSO impacts as a function of a
relatively well observed explanatory variables namely one or more point measurements of rainfall. The
poorer the explanatory value of the rainfall the larger will be the uncertainty introduced as a result of short
monitoring periods of the combined sewer itself, its overflows and the surface water effects. The second:
main reason for using models is that their mechanistic structure permits the analysis of proposed engineering:
scenarios. The use of models in return period analysis is treated in more detail in the following chapter.

Taking a reductionist approach to uncertainty in return period analysis it could be split up into a multitude of
sources. However, essentially uncertainty can be considered to result from two main aspects; a limited
number of observations and, on extrapolation, uncertainty in model structure. The present study takes a
parametric approach to evaluate uncertainty caused by a limited number of observations of a process. Models
used in the return period analysis have their parameters estimated from observed data. Parameter uncertainty,
including that of parameters describing inputs and the variances of random errors, are estimated and
considered in the analysis.

Uncertainties in input characterisation and system description provide information on the certainty of a given
expected return period value. They do not change it. It is therefore argued that variability and uncertainty
should be handled separately using an embedded error propagation method as the one outlined in the
following section. Similar proposals and methodologies distinguishing between uncertainty and variability
have been made in risk and frequency analysis in other fields (e.g. Brattin et al. 1996, Hession ¢t al. 1996).

METHODOLOGY

Error Propagation and Return Period

In a many-to-one input-output system, the cumulative probability distribution function of the output variable
can be obtained by the integration of the joint probability density function over the region of the input space
for which the output is greater than or equal to the evaluated value of the output. This integration can
sometimes be done analytically but is in most practical applications solved numerically. In this study the
integration has been solved using Monte Carlo simulations which involves the creation of a large number of
input data sets by pseudo-random sampling from the input variables’ parametric probability distributions.
For a set of input variables an output variable is calculated using the model(s).
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+ Return period, T(p), of the exceedance of a variable y, is found from the exceedance probability using

19.1).

0) = 1 1 (©.1)
mo o wli=(r-N)

| where p, is its probability of exceedance, » is the mean number of events per year, r, is the rank of y after

| sorting the output variable from the N samplings and following Monte Carlo simulations. In this study the
)| number of runs used to generate a single return period curve was 34200 which corresponds to a coefficient of
4 variation (due solely to imprecision in the numerical integration} of 0.1 for events with a return period of 5
| years. Portielje et al. (2000) give a detailed treatment in the context of water quality management of how to

reduce the numerical error or the required number of model simulations to attain a desired level of accuracy.
In the two evaluated methods 2 higher sampling density in the region of interest is attained by combining the
First Order Reliability Method with Latin Hypercube Sampling and Directional simulation respectively. At
the cost of more model simulations, the Monte Carlo procedure was chosen for the current study due alone to

| its simplicity in description and implementation.

1 Uncertainty and Inherent Variation

All quantities, which are described by a probability distribution, are placed in either of the two layers:

« an inner layer consisting of quantities varying from event to event,
« an outer layer consisting of uncertain, but constant quantities.

For each set of random realisations of the quantities in the outer uncertainty layer a full set of Monte Carlo

{ simulations for the inner inherent variations layer is performed. Each set of realisations in the outer

uncertainty layer thus results in a single return period curve. This could for example be a curve of minimum
oxygen concentrations against return period (i.e. mean time between occurrence). Multiple samplings in the
outer layer thus results in a band of return period curves representing the uncertainty distribution of the

‘{ return periods. Having generated a sufficiently large number of return period curves, their spread may be
 summarised into curves giving the confidence limits of the return periods. A schematic illustration of the

sampling procedure is given in Figure 9.2 case C.

On making the distinction between uncertainty and inherent variation in practice the following descriptions
may be used. If the variation of a given quantity ...

« results from changes that actually take place then we speak of inherent variation and this belongs
in the inner sampling layer,

« results from our lack of knowledge then we speak of uncertainty and this belongs in the outer
sampling layer.

Intensifying a measurement campaign improves our knowledge (and thereby reduces uncertainty) but it does

‘ mot alter the variations that actually take place (the inherent variations). In a given practical situation it may

be difficult to make this hard-cut distinction and in such cases it may even be necessary to evaluate the

'} sensitivity of the final results to the decision in question.
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Figure 9.1 Schematic overview of the integrated model components.

In this study 34200 realisations and model simulations were performed in the inner inherent variations layer
for each set of realisations in the outer layer. With 72 realisation of the quantities in the outer layer, a total of
over 2.5 million model simulations were performed.

Estimating the Uncertainty

The uncertainties in model and distribution parameters are often not readily estimated. Here uncertainty in
the form of covariance matrices were estimated using the non-parametric Jack-knife method. The essence of
this method, which is well described in several statistical text books such as Stuart and Ord (1994), is that by
repeated exclusion of gach observation and re-estimating the parameters of the distribution an estimate of
their variance and covariance can he found. How this is implemented for a given model depends very much
on the underlying assumptions and is therefore presented with the individual models in the following section.

THE INTEGRATED SYSTEM

The studied integrated system comprises a combined sewer and a pond. The components of the integrated
model include rainfall distributions, a combined sewer overflow model, a conversion model for water quality
parameters and a surface water model. This section briefly outlines each of the components/sub-models
which are schematically presented in Figure 9.1.

Rainfall, sewer system and conversion models are all event lumped models (i.e. as total rainfall depth, event
mean concentration, etc.) whereas the surface water model is a dynamic model. The time scales of interest in
the first 3 models are typically in the order of hours, whereas receiving water impacts extend over periods of
days to weeks and errors in linking event lumped with dynamic are therefore likely to be small.

Rainfall Distributions

Duration and mean intensity of a rainfall event have been described by a joint lognormal distribution. The
two means and the three elements of the covariance matrix were estimated from a point rainfall series of 12
years excluding rainfall events of less than 3 mm. The time between rainfall events was described by an
exponential distribution. These rainfall distributions describe variations from event to event and belong
therefore in the inner variability layer of the embedded Monte Carlo.

A six by six covariance matrix describing the uncertainty in the parameters of the rainfall distribution was
estimated using the Jack-knife technique. The parameters of the above distributions were assumed to be
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'| normally distributed. The joint distribution of these six parameters describes parameter uncertainty and not
it variation and therefore belongs in the outer uncertainty layer of the Embedded Monte Carlo procedure.
't Sewer Models

.t Quantity and quality of the Combined Sewer Overflow CSO have been described using event lumped models
with rainfall characteristics as input. These models are briefly outlined below but a fuller description of the

data and meodels can be found in Chapter 4 and Grum and Aalderink (1998).

Overflow volume, ¥, ok ow » Was modelied using (9.2) where A is the catchment area, H,,, and D, are

Viep for Ve >0 9.2)

VEFF =A4A-a-H RAIN — QPUMF ) Dmm\' - VSTORE +é& and VOVERFLOW = { 0 otherwise

| rainfall depth and duration respectively, Qpy,p15 pump capacity, Virore 1S static storage volume and &, is a

random etror term with zero mean. The runoff cocfficient, &, was found to vary from event to event based
on a weiness index which in turn was dependent on a varying drying rate. Parameters in the model including

it those of the wetness index and those of the drying rate were estimated on the basis of rainfall events of over
13mm during a period of just over four years including 56 events leading to overflow,

The combined sewer event mean concentrations were modelled as shown in (9.3) as a function of rainfall
intensity with = 1,2,3 for COD, Kjeldahl Nitrogen and suspended solids respectively.

C = exp(a,. +b T + e,} - (9.3)

where I, is the mean rainfall intensity, a; and b; are constant coefficients and & are random error terms

1 with zero mean. Event mean slow-settling fractions had been calculated on the basis of concentrations before

and after 1 hours settling of all sample. These event mean slow-settling fractions, f;, were modelled as shown
in (9.4) and (9.5) with i = 4,5,6 for COD, Kjeldahl Nitrogen and suspended solids respectively.

In=a,+b,n(C,,)+ ©4)

f, =Yexpla, +5,1n(C,_,)+ ) .

il The parameters of all six equations, i = 1, ..., 6, were estimated simultaneously using a maximum likelihood

criterion in which the joint probability distribution of the six error terms was also estimated. The non-settling

| fraction of Kjeldahl nitrogen was found not to be related to its total event mean concentration and the

comresponding coefficient &, was set to zero.

1In the above models the error terms vary from event to event and consequently describe inherent variation.
:{ The model parameters were assumed to have a constant value during all events and do therefore not
.| contribute to inherent vanation. They and the variances of the error terms are however uncertain quantities

whose joint covariance matrix was estimated using the earlier outlined Jack-knife technique. This covariance

| matrix describes uncertainty and belongs in the outer layer of the Embedded Monte Carlo procedure.
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Conversion Models

The CSO models predict Kje.ldahl nitrogen, COD concentrations and suspended solids before and after one
hours settling. Conversion of these to ammonium and dissolved COD, required for the surface water model,
has been based on three presumed relationships.

Firstly, it has been assumed that Kjeldahl nitrogen, Cy;_, comprised only particulate organic nitrogen,
Xoge_x » and the completely soluble ammonia, Sy, _y.

Cox = Xorgn +SNH,-N {9.6)

Secondly, the suspended solids concentration was assumed to be proportional to that of organic nitrogen.
Thus the ratic of the concentration after settling, slow, to that before settling, total, is the same for the
unobserved organic nitrogen as for the observed suspended solids. Note that subscript fotaf is here used to
symbolise the sum of fast and slow settling particulate concentrations.

X org -, siow / Xorg-Nowai = Kss siow / X8 torat 5.7

Thirdly, the following linear relationship was assumed to exist between the slow settling fraction of Kjeldahl
nitrogen and that of suspended solids.

CKJ—N. .f.!ow/CKj-N,.'oJaf =a- XSS,SIOW/XSS‘ toral +h+eg (9'8)

Combining the three relationships, (9.6), (9.7) and (9.8), results in the following expression for the
conversion of the available CSO concentrations to ammonia. An equivalent expression was used for
dissolved COD.

: (Xonc..u.,m- + Cynrorat — CKJ-N‘skm] -(a i CT +{b+2)- Xss,mf)" Korg-x.stow * Xs5. rarad

Sue = 99)
NN (1 - (b + 8)) ' XSS.zo:a! —da- XSS,slow
where the slow settling organic nitrogen is given by
(CKJ-N,mm.! - CKJ-N,ylnu-) ! Xss, sow
XORG-N,:.'w= = (9.10)

X, S8, fatal X, 58, sfow

The values of the two constants, aand b, and the error variance, o-f, were estitated by standard linear

regression on (9.8) using the sample data (i.e. not on event mean concentrations). During an event flow
proportional sampling took place at the overflow structure. Their respective variances were estimated using
the earlier outlined Jack-knife technique and the results are presented in Table 9.1. To avoid the
amplification of measurement errors which occurs when taking ratios of very small values, samples with
suspended solids concentrations below 130 mg/l were excluded from the regression. This was found to be
the cut-off vaiue after which the regression coefficients and coefficient of determination (ca. (.6) stopped
changing. . ‘
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Table 9.2. Ordinary differential equations defining the processes included in the surface water model.
Dissolved Oxygen:

Reaeration CSO-COD Background-COD  Nitrification Sediment oxygen
degradation degradation ammonia demand

i‘% = K (Sposat —Spo)} —Tox "Scop  ~foxr Scos ~Mur Swn r—s;;g m G110
Dissolved COD of combined sewer origin:
R = 1S e
Dissolved COD from background load:
dSElOIDB = —Toxe Scope + Br cons (-13)
Ammonia from background load:
dST = ~FarSwix + B, G149

Table 9.1. Estimates of the constants and ervor variance in the straight line regressions defined by (9.8).

Conversion to Ammonium Conversion to Dissolved COD
Parameters Mean Variance Mean Variance
Constant & 0.772 7.97¢-3 0.752 2.26e-3
Constant b 0.279 1.67e-3 0.235 5.42e-4
Variance a': 1.15¢-2 9.13e-6 1.88¢-2 4.3%-6

't Most of the uncertainty introduce through these conversidns presumably lies in the constants and error term
'} of the relationship (9.8) which have therefore been included in the uncertainty layer of the Embedded Monte

Carlo simulations. It should however be noted that the uncertainty introduced by the assumptions behind
relationships (9.6) and (9.7) have had to be ignored because no reasonable estimates of their magnitude could

't be found given the available data. It is however expected tl}ﬂt these uncertainties are much smaller than those
'1of (9.8) and than the rest of the uncertainty in this return period analysis.

:t Surface Water Model

1 The surface water oxygen dynamics was defined by the four differential equations (9.11), (9.12), (9.13) and

(9.14): Dissolved oxygen is lost on COD oxidation, ammonia nitrification and to a sediment oxygen demand

4 and is added to the pond by re-aeration. Note that CSO-COD and background COD are treated separately

with oxidation rates rgx and rgx g respectively. The background COD represents the organic matter brought

| to the pond by the infiltration flow into the pond.

S indicates dissolved concentrations, B, , volumetric loading rates, r reaction rates and k. is the reaeration

1 coefficient. The additional subscript B indicates a background component.
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Monte Carlo integration (of 34200 simulations) was done for the variables in the inner layer.
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i} Though dynamically deterministic, the model was calibrated as a random coefficient model whose

parameters are characterised by joint probability distributions describing inherent variation from event to

{event. The parameters were estimated using observed data of six overflow events, an expanded model and
tthe downhill simplex optimisation procedure on a maximum likelihood criteria. Aalderink et. al. (1998)

present a more complete outline of the data and the surface water model.

The parameter set for a given overflow event was assumed to be the realisation of a random variable
characterised by a selected joint probability distribution. Of the tested distributions, normal, lognormal,

;| exponential, weibull and garmnma, the weibull distribution had the highest likelihood and was consequently
-{used. The parameters of the distributions (including covariance) were calculated on the basis of the six sets

of model parameters obtained from each of the six overflow events. The uncertainty in these inherent

| variability distributions was in turn characterised by a joint probability distribution whose parameters were
‘{estimated using the earlier outlined Jack-knife technique.

{The observed surface water data originated from a pond with unusually high background loading of COD
‘tand ammonia, due to an atypically large infiltration of oxygen-free ground water. As a result the CSOs had

no visible impact on the extreme statistics of DO in the surface water. A hypothetical surface water was

Jdefined differing from the existing pond by scaling the background loading and by excluding the oxygen-free
linfiltration into the pond. Mixing of the CSO in the surface water pond was assumed to lic at random

between the two extreme cases of plug-flow and completely mixed reactor. Test runs uvsing each of the two
extreme mixing cases suggest that the thus non-described uncertainty has little effect on the results.

RESULTS AND DISCUSSION

Results for rainfall depth, overflow depth and minimum dissolved oxygen are presented in Figure 9.2. Each
of the three graphs on the left contains curves corresponding to the following three cases:

A Ignoring Uncertainty (solid line). All uncertain quantities were fixed to their expected value and
random sampling was done only from the distributions of varying quantities.

B. Pooling Uncertainty with Variability (dashed line). Distributions of uncertain quantities were
sampled along with those of varying quantities resulting also in a single return period curve,

C. 50% Confidence Limits (two dotted lines). For each of the 72 sets of randomly sampled parameters in
the outer uncertainty layer a complete return period curve was generated by 34200 Monte Carlo
stmulations. The spread of these 72 lines has been summaries to the presented 50% confidence limits.
Reasonable plots of the usual 90% or 95% confidence limits would have required either roughly
another 5 million model simulations or further assumptions concerning the parametric distribution

types.

On the right in the figure are histograms showing the spread due to uncertainty for a return period of 0.1
years. The spread is here represented through the 72 return period curves resulting from case C.

From the 50% confidence limits plotted in Figure 9.2 it is clear that the return period analysis of combined
sewer overflow effects are associated with a substantial amount of uncertainty. From the figure it can be seen
that with only 50% confidence (equal chance of being right and wrong) we are able to predict that the DO
concentration will fall below 1.0 mg/l between 2.5 and 10 times a year. Viewed in terms of a given retum
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pertod the dissolved oxygen concentration is in the histogram (lower right Figure 9.2) seen 10 times a year to
fall below a concentration of anything between 1 and 3.5 mg/1 (50% confidence limits).

In agreement with the skewness of the retum period curve distributions, which is apparent from the
histograms in Figure 9.2, the curves resulting from case A lies just above the lower 50% confidence limit for
rainfall and overflow depths, and just below the upper 50% confidence limit for dissolved oxygen.
According to case A a DO concentration of 1 mg/l is expected to occur just over 3 times a year whereas
pooling uncertainty with variability (case B) suggests that this would happen about 9 times a year. For DO
the results of case B are seen to lie close to the lower 50% confidence interval. For rainfall pooling (case B}
is seen to result in the 50 mm rainfall event occurring twice a year.

Pooling uncertainty with inherent variation (case B) leads to the awkward situation that reduced uncertainty
through for example increased monitoring systematically leads to all extremes becoming less frequent.
Increased uncertainty through for example data “loss”™ would similarly systematically increase the frequency
of extreme events.

Ranking of sources contributing to uncertainty has not been treated. However, also here it is important that
uncertainty and variability are kept apart. Thus, the ranking of sources could be based on estimates of the
linear regression coefficients of the return period of a given dependent variabies level (e.g. of 2 mg/l1 DO)
with appropriately scaled values of the uncertain quantities as independent variables. Rainfall depth would
thus not be an independent variable but its two distribution parameters would.

Distributions of variables describing the initial state of the surface water were estimated on the basis of only
é events resulting in very uncertain distribution parameters. Uncertainty in these distribution parameters
could be reduced through monitoring of the surface water’s response to a greater number of overflow events,
Reduced uncertainty could also be achieved by shifting the influence of various uncertainty sources. For
example, creating a better CSO event mean concentration model would shift influence away from the poorly
characterised random error of the sewer system model to the relatively more certain rainfall characterisation,

As mentioned, parameters of distributions describing surface water variability were estimated on the basis of
six observations. The resulting return period curve (irrespective of the incorporated parameter uncertainty)
proved to be very sensitive to the chosen distribution type. This would suggest that the results of both return
period analysis and uncertainty analysis rest rather heavily on these presumed parametric probability
distribution types. In other parts of the system much more data was available for choosing the type of
probability distribution and, though not tested, is there expected to be less of a problem.

In order to limit the complexity of the integrated system description the seasonality has not been taken into
account. By thus not including correlation between rainfall and certain surface water variables it is likely that
the frequencies of extremes has been slightly overestimated. This comes from the fact that neglecting co-
variation between variables or parameters is equivalent to including the some variation more than once.
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CONCLUSION

'/In this chapter it has been argued that a distinction ought to be made between uncertainty and inherent
‘fvariability in return period analysis. It has been shown how this distinction can be made using Embedded
Monte Carlo simulations. This was done in an integrated approach to evaluating the effects of combine
jsewer overflow on a surface water pond. The substantial uncertainty is illustrated by results of the dissolved
‘foxygen concentration: the mean 10 times per year lowest concentration was determined to lie between 1 and
3.5 mg/l with only 50% confidence. Expressed as an uncertainty on the return period for a given dissolved
-foxygen concentration: the return period of a concentration of 2.0 mg/l lies between 0.08 years (i.e. [2.5 times
a year) and 0.2 years (i.e. 5 times a year). Note again that these are only the 50% confidence limits.

Whilst distinguishing between uncertainty and variability the contributions of individual sources should be
istudied in order to optimise efforts to reduce uncertainty of the end result. Both a shift in the influence of the
‘jvarious uncertainty sources and a reduction in the sources themselves could result from, for example,
‘ddynamic descriptions of both rainfall and the sewer system.
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CHAPTER 10

DISCUSSION ON RETURN PERIOD ANALYSIS
AND ITS UNCERTAINTY

ABSTRACT

Combined sewers overflow during extreme rainfall causes pollution and flooding in the surrounding surface waters.

Over the past decades the measure of severity for the discharge of oxygen depleting organic matter has shified from

average ammual loads and mumber of discharges, through return periods for discharged loads, to return petiods of
surface warer effects.

The objective of this chapter is to put together a framework encompassing the many methods, approaches and types
of models that can be used 1o calculate refurn periods and to discuss examples from literature in the context of the
presented framework, The subsequent discussion on uncertainty in return period analysis has the additional objective
of placing the methodology and results of the previous chapter in a broader perspective.
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INTRODUCTION

Discharge from combined sewer overflows during rainfall constitutes a limiting factor to the amelioration of
surrounding surface waters. The high concentrations of organic matter can cause oxygen depletion in the
surface water with consequences on the aquatic ecology such as fish death. Depending on local conditions
sewer overflows may also constitute a major source of nutrients leading to eutrification problems in the
receiving waters and/or to the surface waters further downstream of the overflow structure.

Runoff pollutants should be considered in relation to the tite scale of the surface water's response to the
poltutant effects (Aalderink and Lijklema, 1985, Harremoégs, 1989). The division most often made is between
acute and accumulative pollutants. A more thorough classification of runoff pollutants is presented in
Lijklema et al. (1993a). Accumulative pollutants such as the principle nutrients phosphorous and nitrogen
should be evaluated in terms of their average annuat loads whereas acute pollutants such as degradable
organic matter should be evaluated on the basis of the retum periods of their effects. This chapter deals
primarily with methods and approaches to return period analysis of the effects of acute pollutants such as
those resulting in oxygen depletion or acute ammonia poisoning.

Extreme statistics may be performed directly on the depth or intensity of events of a rainfall series and then
gvents representing selected return periods can be used to calculate comresponding effects in the surface
waters. This approach is illustrated in Figure 10.1 (left). The extremeness of a rainfall event is generally
based on characteristics such as total volume, mean or maximum intensity. A first draw back of this
approach is that the extremeness of a rainfall event, based on total volume, mean or maximum intensity, does

[. Historic rainfall series ] [ Historic rainfall series ]
Extreme statistics/
Ranking

- ™

Rainfall events

representing selected

return periods
\.. v,

v v
N 4
COMBINED SEWER, COMBINED SEWER,
TREATMENT PLANT AND TREATMENT PLANT AND
SURFACE WATER SURFACE WATER
MODEL(S MODEL(S
. Sy L_ sy
Simulated series of surface
water effects ]
Extreme statistics/
Ranking
Surface water cffects for Surface water effects for
the selected return periods the selected return periods

Figure 10,1, Extreme statistic may be perfornied either before or after simulation of the
integrated urban water system.
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if generally not correspond to the extremeness of the resulting effects. In other words the return period of the
s minimum oxygen concentration resulting from a given rainfall event does generally not correspond to the
return period of the rainfall event. A second draw back of the approach is that the definition of an event has
to be related to the effect and not to the rainfall. That is, the decision “now the event has ended” ought o be
‘i based on the studied effect supplemented by other information such as the degree of filling of the sewer
storage capacities. In the integrated system the time constants of the treatment plant secondary clarifier and
/| the surface water are often such that a definition of an event based on a maximum amount of rainfall in a
| given period would be inadequate and may often result in an underestimation of effects. The effects would
often be underestimated because the coupling effect of adjacent events would be ignored in such an
approach.

4 The alternative approach is to perform the extreme statistics on series of the surface water effects. This
approach is illustrated in Figure 10.1 (right). These series could have been generated from simulations with
| historic rainfall series, rainfall models or in theory even by direct measurement. This chapter deals
i{ exclusively with methods and approaches where the extreme statistics are performed on the series of surface
[ water effects.

{ The first section of the chapter presents a framework of methods and approaches to calculation of the return
periods of given surface water effects. The approach applied in Chapter 9 and selected approaches from
| literature are discussed within the presented framework. The chapter’s second section deals with uncertainty
Jin return period analysis. This includes a more general discussion of the distinction between inherent
7 variation and uncertainty (as applied carlier in Chapter 9), a discussion on the major sources of uncertainty
and how uncertainty should be handled on scenario comparison.

| Terminology

1 A distinction will be made here between the terms “method” and “approach”. The term “method” will here
-] refer to aspects of the return period analysis detached from the environmental engineering problems to which
it may be applied. In contrast the term “approach” will refer to the way in which the different methods may
| be applied to problems relating to the effects of combined sewer overflow.

The term “model” will here be used to describe a collection of mathematical expressions aimed at imitating
physical, biological or chemical systerns. Most often reference will be to models that transform one or more
inputs to one or more outputs as illustrated in Figure 10.2. The system could for example be an urban

drainage system or a surface water system. Examples of models would thus be input-output black box

; ;

SYSTEM MODEL
Transformation TRANSFORMATION TRANSFOIRMATION(S)
(REALITY) {SIMULATION)

Figure 10.2 Distinction between transformation by reality and transformation by model simulation(s).
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models, regression models, a model defined by the mixing equation or 2 complex hydraulic pipe fiow model
based on the Saint Venant equation. An input variable is not a prerequisite for a model. The probability
distributions of rainfall characteristics and stochastic dynamic rainfall models are examples of models that
have no tangible input.

Models can be dynamic, accounting for a system's changes with respect to time, in which case they will be
described as time based models. Alternatively, models may consider a complete rainfall or pollution event as.
a whole, in which case the term event lumped models will be used. An example of an event lumped model is
one that simulates the total overflow volume as a function of variables such as depth and duration of the
rainfall event. Chapter 4 of this thesis looked in detail at event lumped modeiling of a combined sewer
system.

RETURN PERIOD ANALYSIS

The retum period of a given extreme event can be found as the reciprocal of the product of the probability of
exceeding the given extreme value and the mean number of occutrences per year. This has been outlined in
Chapter 9. However, there are many different methods and approaches that can be used to obtain the required
prabability.

Methods

Three different methods of obtaining the probability distribution of sysiem or model outputs can be
identified. These have been depicted in Figure 10.3. The last two methods make use of an explanatory
variable, X, and a mathematical description of the system, namely a model. The model that is used in any one
of these two methods conld be an input-output black box model, a regression model or 2 deterministic
surface and pipe flow model. The need for this sharp distinction between the retumn period analysis method
and the model that accounts for the physical system has been emphasised eatlier by Medina (1986).

Return period and uncertainty analysis in the context of rainfall-runoff pollution modelling both deal with the
transformation of distribution functions or error propagation.

The sections that follow is an outiine of different approaches to the practical application of the methods in
the context of urban runoff pollution and a discussion on the use of the methods and approaches as they have
been encountered in the literature.

Method I; Direct fitting.

Given a number of observations of the output variable, ¥, a histogram can be plotted in order to view the
empirical distribution of the data. The data can be fitted to statistical distributions and the precision of the
parameter estimates thus found will depend on the amount of data available and on the number of parameters
defining the theoretical distribution.
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:: Method 1I: Moments transformation.

{Many parametric distributions can be characterised by their moments. The number of moments needed to
characterise a probability distribution corresponds to the number of parameters in the parametric expressions
of the cumulative distribution function or the probability density function. When dealing with linear systems
for which the outputs can be described by linear transformations of the input series, the moments of the
output series can be calculated as functions of the moments of the input variables.

-{As a simple illustrative example consider the interdependent stochastic variables X, and .X; with means and
‘| variances given by { g, ’0'«2\’. )and (g, , a,z(: ) respectively and with crosscorrelation given by o . -

Let Y be the sum of the X; and X; then ¥’s mean and variance can be calculated as

Hy =Hx T Hy, (10.1)
and
2 2 '
oy =0'§(1 +oy, +2P0%),X,0X%,9X (10.2)

{respectively. The moments method is applicable only to linear probiems. There are however many cases in
| which preliminary studies can be based on calculations using approximate linear formulations of non-linear
relationships.

The moments method (IT) does not require that assumptions are made as to the type of distribution of the
input and output series. The assumption made is that the distributions can be characterised by the same
number of parameters as the number of moments transformed. In the above example the first two moments
(i.e. mean and variance) are transformed. The underlying assumption is thus that the inputs and outputs can
be appropriately described by two parameter distributions. If the input random variables are defined by 3, 4
| or 5 parameter distributions, similar expressions can be found for the third, fourth and fifih moments, It may
also, in some cases, be necessary to include more than simply the crosscorrelation to describe the
.| interdependency between input variables to a model.

Method 111 : Analytical or numerical integration,
{Consider again the realisation xy of the random variable X and the realisation m¢xy} of the random variable
{ m(X). Suppose that the function is one-to-one mapping of range of X to the range of m(xx). It the probability

‘| density function of the variable X is given by fy, then the cumulative probability distribution function of the
variable m(X) can be expressed as

Fm(X)(m(xX ))=Prob[m(X)<_i m(xX )] = I::-l (mlxx })fX (u}iu (10.3)
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In the more general case where the function m is a many-to-one mapping the cumulative probablllty
distribution function of the variable m(X), X, X5, ... } can be expressed as

| L LIRS SRS |
= Prob[m(X,, Xy Xyno) < m(xxl, Xy, Xy ,)] (10.4)

fXLJ(:.XJ....(un Uy, Uy, '-')dulduzduz---

(3 g Ky Ky

where Rmx...) is the region of the X, - Xb - X5 - ... vector space for which m(X|, X5, X3, ... ) is less than or
equal to realisation m{xn, Xx. Xx, ... ) and where fy, x,, X3,_“(x X) XXy X X7 -] 18 the joint probability

density function of all the random variables that are inputs to the function m(...).

Depending on the nature of the functions invelved, (10.4) can be evaluated either analytically or numerically.

[ METHOD ]
1. Direct Fitting 1. Moments 1. Amalytical or
[ DATA FORM ] Transformation Numerical Integration

' "
Observations of the input, Y
(e.g. rainfall)

L

4 Ny
Parametric or empirical
distributions of the input, X

\ J
Transformation of Integrating the input
moments of input prob. density funct.
through linear model over the region
defined by the model
4 ™ i
Simulated series of mode)
qutput, m(X}
\., >
~ ™
Observed series of the output, ¥
\ . vy

of the output, ¥ or m(Y}

[ Distribution and return periods W

J

Figure 10.3. Diagram summarising the three methods of obtaining return periods of effect.
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-| If the inputs to the function m(...) are independent of one another or if they can be expressed as functions of

each other then the integration in (10.4) can often be simplified to a multiple of univariate numerical
integrations avoiding the multivariate integration problem. In some cases the joint probability density
function could take a form that would allow an analytical solution to the integration. The better known
numerical integration techniques used in water quality engineering are the univariate quadrature method and
the multivariate Monte Carlo methods.

The use of historic series is a special case of this method. Complete simulations are made using for example

- a historic rainfall series and the distribution of the output is thus found. The historic rainfall series, which

may be ¢ither event lumped or as a time series, is in the context of this method an empirical distribution of

;4 the input variable.

Approaches

/| This section aims to formulate a framework within which the above methods could operate. Over recent

years it has become increasingly clear that there is a need for an integrated systems approach in runoff

| pollution (and flooding) analysis and management (Lijklema, 1993b, Lijklema ¢t al., 1993a, Harremoés et

al., 1993, Tyson et al., 1993, Harremods, 1994),

| Although the framework is valid for the integrated urban waste water system as a whole, only two parts of

the system have actually been included in the present version of the framework. These arc the combined
sewer system and the surface waters. Including the treatment plant would give more possible combinations
but the approach would essentially remain the same.

Inputs to models may be in the form of time series or in the form of event lumped variables. This is
illustrated schematically in Figure 10.4. Dynamic combined sewer models are examples of models that take a
rainfall time series, a pluviograph, as input and produce a flow time series as output and thus could be
symbolised by T—T. Another example would be a dynamic surface water model with time series of

| combined sewer overflow flow rates and concentrations as input and minimum oxygen concentrations as

output. However, due to the difference in time constants between the sewer system (in the order of minutes)

4 and the surface water (in the order of hours), event lumped overflow characteristics such as total overflow
{ volume and event mean concentration may be used. Thus the same mathematical model would be used with

event lumped input and time series output (i.e. E—T). This is often done when the dynamics of the input
series are much faster than those of the system being modelled.

Rainfall is the driving force and will always be the principal input to the kind of systems and occurrences
studied. A historic rainfall sertes can be applied in the following four ways:

1. used direcity as sirmulation input,
2. modelled dynamically in time and thereafter used to simulate synthetic rainfali
used as simulation input,
3. converted to an event lumped series (i.e. depth, duration, maximum intensity and so on),
4. parametric distributions can be fitted to the event lumped series from 3.

The possible uses of these four forms of rainfall data is illustrated in Figure 10.5 (left). Depending on the
model used output from the combined sewer system will again be in the form of time series of in the form of
event lumped data and will in turn consequently be appropriate for a surface water model taking the available
form as input. The output of the surface water model will often be in the form of a time series such as the
concentration of dissolved oxygen, which is then converted into an event lumped variable such as the
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Figure 10.4. The inputs and outputs to models used for return period analysis in integrated urban water
management may be in the form of time series or event lumped values.

minimum dissolved oxygen concentration or a one hour minimum. The event lumped data would then be
used to calculate empirical or parametric probability distributions from which the return periods can be
found. In cases where there is a sufficiently linear relationship between the event lumped rainfall series and
the surface water effects, the moments method could theoretically be used. However, if such a linear
relationship were present one would generally choose to carry out the statistics on the rainfall series and
work with selected design rains. In general this is not the case.

The approach applied in Chapter 9 is highlighted on the right in Figure 10.5. A historic rainfall series wasi
first converted to an event lumped series of rainfall depth and duration, which were fitted to a joing
lognormal distribution. Using sampled event lumped rainfall characteristics as input a model, similar to that
presented in Chapter 4, was used to generate synthetic series of event lumped overflow charactenstlcs‘
volume, total and settled nitrogen, chemical oxygen demand (COD) and suspended solids. These event
lumped variables were used as input to a dynamic surface water model caiculating time series of the
dissolved oxygen concentration. From this series minimum oxygen concentrations were caiculated andlr
converted to empirical dissolved oxygen conceniration,

In spite of the fact that output distributions are generally found using Method 11 it is clear that there exists a
vast number of alternative approaches that can be followed when doing a return period analysis.

Discussion
The method of direct fitting has limited use in the context of return period analysis in urban runoff pollution.
Pollution effects are most often very dependent on the quantity of polluting fluid either in terms of flow rate
or in terms of total volume. The major input variable to runoff systems is rainfall, which is a meteorological
variable. The long term characterisation of meteorological variables would require an observation period o
about 30 years. Depending on the relevant return period and on the accuracy required, direct monitoring
would have to take place for roughly the same length of time. Another clear disadvantage is that the method
is inapplicable to ungauged sites and has no value for the evaluation of proposed system alterations o
gauged sites.
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Considering water quality variables such as event mean concentration the method of direct fitting may well
prove more accurate than any of the other methods outlined. Event mean concentration has sometimes little
i relation to the event lumped rainfall characteristics (Chapter 4, Harremogs, 1994, Driver and Troutman,
1989) and rainfall may barely be considered an explanatory variable. Thus even directly measured data from
a relatively short period may give more accurate estimates than deriving a distribution from the probablllty
characteristics of process inputs via fairly poor model simulation.

| The fitting of overflow event mean data to theoretical distributions has been done by Driscoll (1986), Brizio
jetal (1989), Hall et al. {1990) and Bomboi et al. (1990). The mentioned articles do not present direct fitting
as an alternative method in return period analysis but aim at revealing the shape of the probability
distribution of overflow event mean concentrations. This is done with the intention of finding appropriate
theoretical distributions because assumptions as to the distribution type must be made in order to apply
:f methods T and II. Brizio et al. {1989) and Hall et al. (1990) show particular interest in the fact that
pollutant's event mean concentration often fit better to bimodal or mixture probability distributions (i.e. with
two peaks in the probability density function) and can therefore not be described by two parameter
distributions such as the often used lognormal distribution (see also Results and Discussion in Chapter 3).

Fitting parametric distributions to data is often part of a return period analysis both with methods I and ITT
{and sometimes with method II). The actual curve fitting is most often done by methods of moments,
maximum likelihood estimation or least square estimation. Brizio et al. (1989) found that maximum
likelihood estimates gave the best results when fitting distributions with more than two parameters to event
mean concentration data. The most important step of distribution fitting is the use of adequate statistical
goodness-of-fit tests to compare fits made using different distributions. The most important of these are the
chi-square test and the Kolmogorov-Smirmov tests. The methods of parameter estimation are outlined in
Patel et al. (1976) and the goodness-of-fit tests are described in most textbooks on statistical distributions
such as Hastings and Peacock (1975) and Hodge and Seed (1972).

In the context of water resources analysis, Vogel (1986) presents the probability plot correlation coefficient
test as a suitable goodness-of-fit test when dealing with theoretical distributions having only two parameters
|| such as the normal, lognormal, extreme value and gumbel distributions. In water quality management the
| upper tail of the probability distribution can often have great influence on the decisions made. In this context
| Ochoa et al. (1980) have studied the tail behaviour of distributions of hydrological phenomena such as
flooding. As in the cases of Brizio et al. (1989) and Hall et al. (1990), particular interest is paid to the
4 relatively high probability density of the right (extreme} tail of the probability density functions.

Special attention is needed if the model used (with the moments method) has a discontinuity in the form of
threshold values such as the event based sewer overflow model in Chapter 4 or those used by Van der
Heijden et al. {1986) and again by Benoist and Lijklema (1989). These references do not use a moments
method and are therefore discussed later in this section,

Up until the early 1980s efforts were geared towards finding the ideal design storm. In recognition of the
inherent random characteristics of rainfalls a design storm was found on the basis of a chosen return period
(Arnell et al., 1984). The authors note, that the result thus obtained, was identical to that obtained from long
term simulations when dealing with linear model outputs such as the peak-flow found using the time-area
'| runoff model. The design storm approach became less used in the combined recognition that during full pipe
flow in part of a drainage system the drainage of rainfall was dominated by non-lincar transformations and
that it is the effects of an event that should set design criteria. The increased numerical calculation capacity
also played a role in providing realistic alternatives.
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Interestingly, the ideas of the design storm lies in a sense close to those of the transformation of the statistical
properties of the rainfall, the moments. It is somewhat unfortunate that in water quality engineering the
moments method of obtaining output statistics were presented first in conjunction with a non-linear system
models that needed a number of controversial assumptions in order to be linearised (e.g. Warn and Brew,
1980, Di Toro, 1984). The moments method is simple and well suited for obtaining fast results using event
based linear or log-linear models.

POSSIBLE APPROACH IN
APPROACHES CHAPTER Y

( Historic rainfall series J

(Rain model in time domain )

( Event fumped rain series )

[Rai.nfall distributions J

COMBINED SEWER
MODEL

SURFACE WATER
MODEL

(Timc series of effects J

( Event lumped effects )

Distribution and return
period of effects

Figure 10.5. Return period analysis approaches (only those having the extreme statistics carried out on the
discharge effects). The flow scheme to the right illustrates the approach applied in Chapter 9.
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Thus if using linear or log-linear regression models, such as those presented in Driver and Troutman (1989)
-Jand in Arnbjerg-Nielsen and Harremoés (1994a), the idea of a design storm, which was to some extent
dropped in the early 1980s, would give similar solutions as both the long term simutation method and the
integration method. Not forgetting the purpose of our anxieties, it is the surface water(s) that sets or ought to
set pollution design criteria, When using linear or log-linear event based models, the moments of the output
i|distribution can be calculated directly from those of the inputs without any simulation or integration needed.
Note that for single input-single ocutput models, to assume linearity would also be to assume identical
distribution types for the input and output variables of the model.

Two methodologies for studying the probability properties of stream quality due to runoff are presented in Di
1Toro (1984). The first method is an approximate moments transformation methed and thus falls under
imethod II. The second is a simplification of a multivariate integration problem to obtain multiple univariate
ilintegration and thus falls under method I11. Both methods use a dilution equation to describe the mixing of
the stream flow and the sewer overflow. This mass balance equation is of fundamental importance to the
Jevaluation of water pollution problems.

||For the sake of simplicity in illustration, consider the mixing equation (10.5) as an example of a system
jmodel. Let Cg and (O be the event mean urban runoff concentration and flow rate, respectively. Let Cs and
i{Os be the event mean stream concentrations and flow rate, respectively. The downstream concentration is
‘tthen given by the mixing equation (10.5) given by and illustrated graphically in Figure 10.6.

Os Or
C = C C 10.5
d Os +0r st s +0Or R 19

*CR, Or
Cs, Os | I Cr, Or
g -

Figure 10.6. Diagram showing variables of
the mixing equation {10.5).

The event mean downstream concentration, Cr, is thus given as a function of four random variables. The
ilobjective is to obtain the probability density function of the event mean downstream concentration in order
jto evaluate the return period for exceeding given pollutant concentrations. A complete analytical solution to
this problem does not exist and a thorough solution would thus be to resort to numerical multivariate
Jintegration techniques.

‘tDi Toro's first method is an approximate moments method (i.e. method II). Assumptions have to be made in
iforder to apply the moments method to an non-linear transformation. The first assumption made is that both
event mean concentrations and flow rates are lognormaly distributed. Whether this is a reasonable

sumption or not, relates to the earlier referenced findings of Brizio et al. (1989) and Hall et al. (1990). The
.jsecond, and perhaps more precarious, assumption is that both the concentrations, Cs and Cp, are uncorrelated
o their respective flows, Qs and (g, and, therefore, to the dilution ratio. The only crosscorrelation
{fconsidered is that between the two flow rates. A third assumption is that the runoff flow rate, (g, is small
ljcompared to upstream flow rates, (Js. In practice combined sewer overflows discharge rate is often
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comparable to, or even larger than, the recipient flow rates. The second and third assumptions are needed to
linearise the dilution problem so that a transformation of moments method can be applied.

As mentioned earlier Di Toro's second method is a simplification of a multivariate integration problem to
multiple univariate integrations which are solved numerically using quadrature methods. Confronted with a
multivariate integration problem, it is a good idea to try to simplify the problem first to see if other solutions
can be found or if the problem can be broken down into a series of univariate integrations (Press et al.,
1992). Di Toro's second method is just such a simplification. The assumptions made in this second method
are much fewer than those made in the first approximated moments transformation method. The input
probability distributions and the conditional probability distributions of certain inputs with respect to others
are however still assumed to be lognormal distributions. The simplifications made in this second quadrature
numerical integration solution would however most likely be possible for a number of other parametric
distributions. It could, however, be argued that for fast event based models the computation time gained by
using the quadrature numerical integration rather than crude Monte Carlo integration is insignificant
compared to the loss of generality in assuming variable independence and in fixing the distributions types.

In a generally positive discussion paper Novoitny (1985) emphasises certain limitations concerning the
applicability of Di Toro's approach. The first two points made, relate directly to general limitations of the
dilution equation itself. Local conditions must be such that the substance in guestion can be considered
conservative and, dispersion and mixing must be such that complete mixing is a reasonable approximation.
The third point also relates to the dilution equation but is of greater interest to the return period analyst.
Novotny (1985) illustrates that in slow mixing waters the attenuation of high frequency events is greater. In
practice this would affect the probability distribution of the downstream water and thus the quality of the
approximation would depend on the actual speed of mixing.

Roesner and Dendrou (1985) accuse Di Toro's methodology of totally ignoring cause-effect relationships im
the modeliing approach. In a discussion paper Roesner and Dendrou (1985) assume that the probabilistic
characteristics of the four input variables, flow rate and concentration of the runoff and upstream respectively
have to be obtained by measurement. Roesner and Dendrou (1983) seek parameters relating the runoff flow
rate and poliutant concentrations to the characteristics of urban runoff area such as in the model STORM. Di
Toro presents two simplified solutions to a surface water quality problem. As outlined more clearly later on
in this chapter the probability characteristics of the flow rate and concentration of the input urban runoff
could well have been computed using dynamic models such as STORM, MOUSE and HydroWorks. This
could be done either by simulation using historic rainfall series or by numerical integration using the
statistical properties of the rainfall.

As mentioned carlicr, Di Toro (1984) presents two approximate methods of calculating the probability
characteristics of the dilution equation output based on those of the input. Criticism was unfortunately
directed more to the use and validity of the dilution equation than to the presented methods and
approximations.

Garboury et al. (1987) and Strecker et al. (1990) have adapted Di Toro's approximate moments method to a
general and practical use in highway storm water runoff studies in the USA. The latter authors have
incorporated the method as a first level analysis in a highway water quality software package. Phillips (1989)
uses the method in conjunction with a model that characterises the surface water's flow further downstream,

Since the early 1980s the method of long term simulation using historic rainfall series has become one of the
most used methods in urban runoff return period analysis. The method is most often used in connection with
computationally fast time-based runoff models but is also used with event based models. Amell et al. (1984)
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present long term simulation as an alternative in companson to the then used methods of design storms. The
method had however been presented in the context of urban runoff pollution as early as Geiger (1975).

Johansen et al. (1983) used long term simulation in conjunction with a time based modified version of the
time-area method to compute overflow series from which the probability characteristics of the overflow can
be calculated. The authors then point out that these statistics can be used to generate the input for a surface

| water model. The authors have further developed graphs and tables meant for manual calculation of both

annual and extreme discharges on the basis of interceptor capacity and concentration time of the runoff
system.

In a four-stage calculation-detail approach to acute runoff pollution studies, Harremoés et al. (1983)
suggested long term simulation with a time based unit-hydrograph model determined using the time-area

+ method as the third level of detail. The fourth level of detail uses iterative hydraulic solutions (i.e. the full
't S8aint Venant equations), whose computation time compels the engineer to retreat to the principle of return
ifperiod analysis on the inputs (rainfall) rather than on the outputs (the effects). The fourth stage is a
't compromise between precision and computation time.

t Fischer and Buczek (1988) used long termn simulation as a reference point when studying the output’s
' dependency on the definition of “*a rainfall-runoff event” when using an event based model.

The information contained in event based historic rainfall or overflow series is equivalent to that contained

Jin the series’ empirical probability distributions. If statistical tests suggest that the distributions could be
‘1 adequately described by two or three parameters then the use of the empirical distribution or the equivalent
‘Fevent based historical series could well be considered as a case of over-parameterisation. The use of event

based historical series could thus be considered as using thousands of parameters to describe phenomena that

‘Icould be described using only two or three parameters. Analogous reasoning could lead to similar

suggestions concerning the use of time based histeric rainfall and overflow series. No literature has been
found dealing with the relevance of either of these problems. Long term simulation with both event based

.| and time based historic data series is a well established technique and will probably continue to form the

basis of urban runoff return period analysis for some time into the future.

The simplified numerical integration method presented in Di Toro (1984} has been discussed earlier in this
chapter. A few other studies applying the integration method (H) will be briefly outlined below.

Working with event based urban runoff models Van der Heijden et al. (1986) and Benoist and Lijklema
(1989) have used simplified integration formulations comparable to Di Tore's second method. There is
however one very important difference between Di Toro's second method and the method presented by
Benoist and Lijklema (1989). The latter use the empirical distributions of rainfall duration and intensity as
inputs. A method is then presented in an attempt to compensate for the fact that the duration and intensity are
not independent. As mentioned earlier the information contained in the empirical curnulative distribution

| functions is identical to that which is contained in the historic series on which they are based. The result

obtained, the computation time and data storage needed would be similar to that of a long term simulation.
One of the essential advantages of the analytical or numerical integration method (I is that the probability

1 characteristics of the output can be generated (in a relatively small number of model runs) from a limited

number of parameters that describe the probability characteristics of the inputs.

Akan (1988) developed a non-linear event based accumulation-washoff model for urban runoff surfaces. The
inputs to the model are the time passed since last rainfall and the rainfall depth (volume). Using the model
the author presents an integral expression equivalent to that in (10.4) but with the relevant integration region
specified. The author does not attempt to simplify the integration problem but envisages that this will have to
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Figure 10.7. The information sought during rerurn period analysis {left) and the analysis of its uncertainty {right). The
curves give {fictitious) return periods for minimum values of an environmental variable of interest.

be solved numerically. The joint probability density function of the time passed since last event and the
rainfall depth, which should be estimated from historic rainfall series, is foreseen to "have a rather complex
form". In the example, Akan (1988) has, for illusirative reasons, used a very simple but unrealistic joint
probability density function.

The integration method (III) is used by Cadavid et al. (1991) in a flood-frequency analysis with a kinematic
wave model. The authors assume that the joint probability density function of the rainfall intensity and
duration follow a bivariate exponential distribution. After accounting for infiltration, a fairly complex joint
probability density function for an effective duration and effective intensity results. The integration problem
is solved numerically,

In the earlier mentioned article by Warn and Brew (1980) the results of Monte Carlo integrations are used as
a reference point in evaluating the presented approximated moments method. The method was used to solve
probleins of the dilution type.

The response time of the surface water stream, to inputs of rainfall, is often several days or weeks if the
stream is dominated by the entries from subsurface flow (Duysings et al., 1983). This would mean that even
afier corrections for seasonality of the stream characteristics, using the event definition used for the runoff
model would result in very high autocorrelations in the event series of the stream characteristics. Thé
moments method (IT) or the integration method (HI) used with an event lumped surface water quality model
would require some method of handling this *“overlapping of events”. One way would be to estimate the
parameters of a distribution for the time between consecutive sewer system events and to incorporate this in
the moments transformation or numerical integration. An alternative could be the use of what in this chapter
is called an event-to-time model for the surface water response. This could either be done with historic series
using the long term simulation method or by characterising the probability distribution of the time between
events and then incorporating this into the integration method (i.¢. both method III).

An event-to-time model is in this chapter defined as one that has a dynamic description of the physical
system with at least one of its inputs being arranged as an event series. Examples could be the great variety
of runoff models that used rectangular, triangular, bell-shaped, trapez rainfall profiles to define the shape of &
design storm input (Arnell et al., 1984). Event-to-time runoff models have not been used to any significant
degree since the beginning of the 1980s but are still common in the evaluation of surface water response to
event based pollution runoff input. This is because the time constants of rainfall variations are comparable to
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Figure 10.8. Retumn period uncertainty can be considered in terms of the uncertainty in the return period for a
given valye of the environmental variable (left) or as a uncertainty in the environmental variable for a given
return period (right).

those of most urban drainage systems whereas the characteristic time constants of combined sewer overflow

| is often shorter than those of the processes controliing the relevant receiving water variables (e.g. dissolved

oxygen). An example of an event-to-time madel would be the surface water model used by Porticlje et al.
(1996) where the runoff characteristics of total event overflow volume, event overflow duration and event
mean concentration are used as input to a dynamic river water quality model.

UNCERTAINTY IN RETURN PERIOD ANALYSIS

In the previous chapter it was emphasised how a distinction should be made between inherent variation and
uncertainty and a methodology for doing this was presented. The framework and discussion above dealt only

.| with handling of inherent event to event variation resulting in return period curves as shown in Figure 10.5

(left). This section contains a general discussion on uncertainty in return period analysis airned at placing the
uncertainty analysis presented in the previous chapter in a broader perspective. What is understood by
uncertainty in return period analysis is illustrated graphically in Figure 10.7 (right).

Return period uncertainty can be expressed in terms of an uncertain return period for a given level of the

| environmental variable or the same uncertainty can be expressed in terms of an uncertain level of the
'| environmental variable for a given return period. These two ways of expressing the same information are

illustrated in Figure 10.8. Which representation is most appropriate will depend on the decision to be made.
In some cases it may be a good idea to evaluate both.

Relevance of Uncertainty

The presence of uncertainty in return period analysis is clear. The extent, relevance and consequences of the
uncertainty may be less clear. Management decisions concerning effects of acute pollutants or sewer flooding
are often supported by return period curves to clarify the extent of the problem and the amelioration that can

1be expected after proposed modifications. If the uncertainty associated with such return period curves is high

then the uncertainty should be presented together with the return period curve in the form of a standard

| deviation or confidence band.
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Consider the example depicted in Figure 10.9, The uncertainty of the minimum concentration relating to a
given return period has been found and the upper and lower 95% confidence limits are indicated as dashed
lines. Assuming that a major design criteria is related to the return period of a minimum concentration of 4
mg/l, the graph in Figure 10.9a appropriately indicates that the expected return period this value is 2 years
and that the lower and upper confidence limits are 1.5 and 3.6 years respectively. Figure 10.9b illustrates
how a criterion related to the return period of a minimum concentration of 3 mg/l could have an expected
return period of 5 years, the lower confidence limit 2.6 years and ro upper confidence limit. The investor will
then have to be content with the somewhat awkward situation of not knowing whether the intended
improvement will lead to a detrimental oxygen concentration every 2'4 years or every 230 years, Note that
for larger return periods, the occurrence of an upper confidence limit at infinity may sometimes say mora
about low rate of change of the effect for increasing return periods than about the absolute magnitude of the
uncertainty of the effect for a given return period.

Uncertainty in Rainfall Characterisation

The main dynamic inputs to urban runoff models are the rainfall variables. It is evident that the accuracy of
rainfall description highly depends on the length of the monitoring period. Assuming that trends due to for
example climatic change or urbanisation are small, the certainty with which one can predict a rainfall
variable's value (depth or intensity) associated with a given retum period depends largely on the ratio
between the length of monitoring period and the return period in question. A detailed non-parametric study
of the uncertainties in the characterisation of rainfall has been made by Arnbjerg-Nielsen (1993) and further
reported in Ambjerg-Nielsen et al. (1994b) and Harremoés (1994). The data used originated from 58 rain
gauges in Denmark that had been monitored for durations of 2 to 14 years. Using a resampling method,
Arnbjerg-Nielsen (1993) determines the magnitude of the uncertainties associated with a given return period.

For a rain gauge with an observation period of about 13 years a design depth for a return period of two years

is found to have an expected value of 30 mm with 95% confidence limits from 23mm and 40mm. Owing to

the relatively short abservation period of only 13 years and owing to the small rate of change of the rainfall

depth with respect to return period, it is (at the referenced gauge) only realistic to consider the uppet

confidence limit of the return period for rainfall depths that have expected return periods of less than one

year. For longer periods the uncertainty simply becomes too large.

Min. DO Min. DO
conc. {mg/1} a conc. (mg/l) b.
87 8
7 7
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51 3
4 1 H 47
31 ! 3 ;
2 i 27 i l‘
11 1
1] *.. ..... T [} .‘,-v|-|-\-|v|
0 2 34 5 [ 7 0 1 2 3 4 5 6 7

Return Period (years)

Return Period (years)

Figure 10.9. Fictitious return period curves for a surface water’s minimum dissolved oxygen concentration
(see text for details on a. and b.).
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Similar results were obtained during the uncertainty analysis of the previous chapter for which the rainfall

‘tresults have been reprinted in Figure 10.10. Here the parametric joint lognormal distribution was fitted to

rainfall depth and duration and variances of the parameters estimated from the data using a jack-knife

‘festimation procedure as described in Chapter 9. For the studied rainfall series the return period of an event of

34 mm had an expected value of 2 years and 1o lie between 0.55 years (i.e. almost twice a year) and 3.0 years
(estimated 50% confidence limits). Equivalently the two years event was found to have an expected depth of
about 34 mm with estimated 50% confidence limits at 31 mm and 52 mm.

Model Uncertainty

In urban runoff poliution problems, uncertainties in transformation are most often associated with the model
parameter uncertainties. These could arise in the determination of the initial rainfall loss, the runoff

ijcoeflicient, the conduit roughness, quantity of the pollutants on the surface, dry weather flow volumes and
;jconcentrations and many others.

it Traditional approaches to the evaluation of the effects of uncertainties has been to quantify the uncertainty of
‘ithe models output, mfX), with respect to the uncertainties of the mputs and of the model parameters.
' Structural uncertainties of the model such as those associated with conduit geometry, spatial distribution of

rainfall, rainfall movement, various sediment accamulation expressions and other unknown uncertainties are
ignored. The confidence range thus found is the range within which the ‘true’ value of the model's predicted
output cah be expected and not the confidence range within which the 'true’ value of reality can be expected.

| The uncertainty that ought to be of interest is uncertainty of the model's ability to predicted the actual
. System's output. The distinction here between system and model transformation has been defined earlier in

Figure 10.2.

.| This is one of the most essential reasons why stochastic modelling presents better options for the handling of

uncertainties in risk analysis of urban runoff pollution problems. The stochastic models may well include
conceptual and physical relationships rather than be purely empirical. The potentials of stochastic modelling

|in obtaining improved handling of uncertainties in urban runoff pollution have been emphasised by
:|Harremoés et al. (1993), House et al. (1993) and Harremoés (1994). Further reasons for use stochastic
"1models are given below.

Rainfall Depth (mm)
50 T

40
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20
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Figure 10.10. These results from Chapter 9 showing 50% confidence limits for the return period of rainfall
depth demonstrate the rainfalls substantial contribution to the overall uncertainty.

137



Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis Morten Grum

Handling Uncertainty

An uncertainty analysis can be carried out analogous to the return period analysis method III (and in some
very simple case as method If). This is most often done using Monte Carlo integration techniques such as hag
been done by Pedersen (1993) (extensively discussed by Harremoés, 1994). For a two year return period, the
variability (coefficient of variance) of fluid quantities was found to be in the order of 30% and the variability
of the pollutant concentrations was found to be in the order of a factor two (Harremots, 1994). The studied
uncertainties included those of rainfall characterisation.

Portielje et al. (2000) present two alternatives to using crude Monte Carlo integration in environmental risk
and uncertainty analysis. The first method combines a first order reliability method with directional
simulation using importance sampling and the second method combines it with Latin hypercube simulation.
For extreme events with exceedance probabilities smaller than 0.1, the authors found that both methods were
more efficient in terms of the number of model evaluations and more accurate than the crude Monte Carla
integration. The methods have been applied in the context of oxygen depletion in a sewer overflow surface
water in Portielje et al. (2000).

Return period analysis can be carried out using either deterministic or stochastic models. As discussed in
detail earlier in the thesis the underlying assumption during deterministic estimation is that only observation
error is present. During simuiation as part of the return period and uncertainty analysis this observation error
is generally not simulated. However, during stochastic modelling the system is itself assumed to behave
partly in a random manner. This random variation is simulated during the return period and uncertainty
analysis and is treated as an inherent random variation of the system. In general one would therefore expect
the deterministic models to have a tendency to underestimate the frequency of extreme occurrences. This is
another reason why efforts should be made to use stochastic models for return period analysis.

Uncertainty in Scenario Comparison

Let (g4, a4} and (i, og) be the expected values and the standard deviations of the minimum dissolved
oxygen concentration with a return period of one year for the modelled scenarios A and B respectively. One
may often plot the mean and confidence range as has been done in Figure 10.11. Assuming normality the
95% confidence range (+ 2 0) has been indicated for each scenario.

Minimum dissolved oxygen

concentration (mg/1) 4\
with a return period -4 +
of | year.

| A large overlap does

-l . NOT
2 1 A necessarily imply that
there is no significant
- T difference (see text}
0
A B
Scenario

Figure 10.11. Diagram showing the expected value and range of the minimum dissolved oxygen
concentration with a return period of one year for the modellied
scenarios A and B respectively (fictitious example).
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| decision mazking one would be interested in knowing whether scenario B is significantly better than A and
|if so (assuming B to be more costly) with what probability is B at least a given absolute amount or

percentage better than A.

Looking at the range overlaps in Figure 10.11 one may be tempted conclude that a difference between the
scenarios A and B cannot be confirmed with the available tools and data. However, the expected values and
their respective standard deviations are most often not independent. The two probability distributions of the
minimum concentrations for a given return period have most often been calculated using the same models

{ with a large number of common parameters and inputs. Consequently much of the uncertainty is common to

both estimates.

Consider two random variables Y, and Yz with mean and standard deviation, (14, o) and (us, og)
respectively. The variable of interest is however their difference Yp.4 = Yz - ¥, whose mean and standard
deviation can be expressed as

HB—4=HB —H, (10.6)

Ch-4=OR+ 0i-2P 480405 (10.7)

where p, 5 is the correlation coefficient between ¥4 and Yp. Thus it is clear that there is simply not enough
information available if the interdependence is not available.

| In many cases the output probability distributions for the two scenarios have been generated by doing Monte
| Carlo simulations with the same model having some different inputs or different input distributions. A great

number of the uncertaintics are often the same for both scenarios. The exact same random sampled
realisations from the input uncertainty distributions should thus be used for both scenarios, which would
result in paired outputs from A and B. For each pair the difference should be calculated. The distribution of
these differences shounid then be used to answer question concerning the comparison of A and B, A similar
procedure shounld be used for cases where the interest is in the ratio rather than the difference between the
scenarios.

- Note that the fact that a given source of uncertainty is the same for both scenario A and B does not mean that
4 it can be omitted in the comparative uncertainty analysis. The transformation of the uncertainty by the model
: {and in reality) will most often depend on the specific conditions of the scenario.
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CONCLUSION

Return period analysis of the effects of urban runoff pollution can be performed in several different ways and
it is important to be conscious of this in selecting approaches for a given purpose. A framework that
encompasses most methods and approaches has been presented and discussed. The approach to retum period
analysis implemented in Chapter 9 was discussed in the perspective of the presented framework. Practice and
water quality engineering tools ought to master a selection of these methods and approaches aimed at
different levels of effort corresponding to different stages of an urban water management project.

The uncertainty associated with the return period curve of an environmental variable such as dissolved
oxygen is large and its quantification would improve the grounds for decision making. In quantifying return
period uncertainty a distinction should be made between inherent variation resulting from randomness of the
system described and uncertainty resulting from our lack of knowledge. Though the uncertainty in retum
period analysis is large the uncertainty on scenario comparison is much lower and ought to be evaluated
scparately.

In return period and uncertainty analysis there are two main reasons why stochastic models incorporating
physical, chemical and/or biological features should be preferred compared to deterministic models, These
are:
» to avoid the bias on parameter estimates that results from deterministic calibration
(sec Chapter 5 & 8),
« to avoid underestimation of the frequencies of exireme occurrences due to the
exclusion of random behaviour of the system (see page 137).
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SUMMARY

Since the construction of wastewater treatment plants combined sewer overflows have become an increasingly
important limitation to the quality of the surrounding surface waters, Over the years urban water resources have oftenl
been so modified by anthropogenic activity that water quality management requires an integrated approach both at an
evaluation and an investment level. Effects of acute pollutants, such as oxygen depletion caused by excessive organic
material, should be evaluated on the basis of their return periods. Models of the relevant water systems are then used
both to calculate the present return periods and to predict those of proposed amelioration projects. In traditional
deterministic modelling of combined sewer systems there has been a tendency to continuously add new processes 0
the model structure in an attempt to improve the quality of the predictions made. This has often resulted in many
madel parameters with unknown values and the inclusion of processes much less significant than others that are nol
known or well understood. An altenative approach is to describe only the most essential processes and to include
stochastic terms to describe the remaining variation. The present study has focused on comparing and contrasting
deterministic and stochastic approaches to modelling of urban runoff pollution and water quality in general.
Methodologies surmounding the application of models in retun period analysis and its uncertainty have also been
studied.

A multivariate analysis was made on event mean concentrations data sets from three Dutch and two Danish
combined sewer catchments (Chapter 3). This was done to examine the underlying structure of variations in everd
mean concentrations. Results confirmed expectations that the most pronounced common variations relate to the
groups of particulate pollutants and dissolved poltutants. The distribution of the principal factors clearly reconfirmed
the bimodal or mixed distribution that have earlier been reported for event mean concentrations of particulate
substances.

Non-linear event lumped models were developed to predict combined sewer discharged volume and event mean
concentrations as a fimction of rainfall variables (Chapter 4). The aim was to combine basic understanding of the
physical systern with information held in the data. The discharged vohume was well described with a wetness
dependent ninoff coefficient, Seasonality revealed initially by the data and then described using an empirical “cut-off*
sinusoidal expression exhibited a remarkable agreement with average monthly open water evaporation data. Using
open water evaporalion as an inpui variable to the model improved the prediction whilst at the same time reducing the
number of model parameters. The eveni lumped rainfall variables were only able to explain very little of the
variations in the event mean concentrations of the combined sewer overflow and subsequently some of the watex
quality variabies were characterised by their probability distributions alone.

An analysis of the underlying assumptions made during mathematical modeiling of water systems in time has resulted
in a new portrayal of the essential differences between deterministic and stochastic modelling (Chapter 5). The
implicit assumption made during deterministic modelling is that our model gives a perfect description of reality and
that all deviation between modelled and observed vatues is a resuit of observation error. During stochastic modelling
the implicit assumption is that the model only gives a partial description of reality and that deviation between
modelled and observed values results from unexplained random behaviour of the system being modelled as well,
Having isolated the core differences between deterministic and stochastic modelling allows for more interchange of
methods and approaches, thus enhancing the quality of water and water quality modelling. Knowledge of the
dominating physical, chemical and biclogical processes of our system can be built into the traditionally empirical
stochastic models. Parameter statistics, experimental design, empirical elements and concepts of identifiability can be
applied to deterministic models. Quantitative a priori knowledge of given model parameter values can be
incorporated into the estimation procedure. In the fong term it is the aim that the selected approach will depend more
on the appropriateness of the assumptions made (viewed also in relation to the available resources and the possible




Summary

consequences of a poor model) than on background of the modeller, as is often the case today. Parameters of a
/| combined sewer rainfall-runoff model have been estimated both in a deterministic and in a stochastic model to study
and illustrate the main points of the chapter.

'| Using a stochastic differential equations approach water quantity and quality models for a combined sewer system
were formulated and their parameters estimated (Chapter 6). The aim was to evaluate the potentials and limitations of
this approach where the sewer system is defined by a set of differential equations that is solved stochastically in
continuous time. Parameter estimation was possible for the water quantity model and a very small observation error
confirmed the relevance of a stochastic modelling approach. Resulis from the walter quality modelling suggest that
more work is needed in order to fully appreciate potentials and limitations of the approach.

-| A non-linear random coefficient model to describe suspended chemical oxygen demand in a combined sewer system
was identified and its parameters were estimated {Chapter 7). In random coefficient modelling certain selected
parameters are assumed to vary from event to event and a value for these parameters is estimated for each event. In
| the present study a critical soft threshold flow at which resuspension begins is assumed to be a random coefficient.
i} Although there is a tack of data in the period before overflow begins, the results suggest that there is a high potential
| for random coefficient modelling in urban runoff pollution both as an alternative to and in combination with
;} stochastic modelling. The recipient water quality model used in the uncertainty anaiysis of Chapter 9 was also
| estimated using this approach.

 Methods and approaches studied in the preceding chapters have been discussed in a broader perspective whilst
;1 drawing attention to some interesting developments within the field of water and water quality modelling (Chapter 8).
Structuring our physical, chemical and biological theory in stochastic state space models we acknowledge that the
deviation between “what we model” and “what we see™ is the result of both unexplained random behaviour of the
| system being modelled and observation error. This acknowledgement will reduce bias in paramneter estimates and
therefore improve the models’ abilities to predict and extrapolate in time and to new circumstances. Although
| stochastic state space modelling using the Kalman filter had its main entry into hydrology and water quality modelling
in the late 1970s, this was mostly with empirical formulations based entirely on observed data and therefore of little
use to the engineer wishing to examine and compare alternative scenarios. To avoid over-parameterised models with
| highly interchangeable parameters it is important that model structure is identifiable on the basis of data being used to
| estimate the model parameters. The a posteriori estimation criteria incorporating quantitative @ priori knowledge
present an interesting formalised method of introducing the engineer’s intuition and experience into the parameter
estimation procedure.

'| A new methodology for evaluating the uncertainty of a return period analysis is presented and exemplified in an
1 integrated approach to urban runoff pollution involving models of both the combined sewer and the receiving water
<| (Chapter 9). The underlying hypothesis of the presented methodology is that a distinction has to be made between
i inherent variation and uncettainty resulting from a lack of knowledge. This distinction is attained through embedded
‘| etror propagation, which was here implemented as Embedded Monte Carlo Simulations. It is argued that pooling
uncertainty with inherent variation systematically increases the frequency of extreme events resulting in return period
curves with little or no engineering value. The study also demonstrates that efforts are needed to implement faster
altemnatives to the crude Monte Carlo simulations to reduce computation time, which would be necessary for use in

practice.

A review of methodologies surrounding return period analysis in urban runoff pollution and its uncertainty was
carried out with the aim of viewing the new methodology presented in Chapter 9 in its broader perspective {Chapter
10). Three principally different methods of calculating return perieds of given effects have been described: direct
fitting, moments transformation and analytical or numerical integration. Combining these methods with the different
types of models (in terms of input and output being time series or event lumped variables) results in a framework
encornpassing most approaches o retum period analysis. Uncertainty in engineering work becomes particularly
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relevant when design criteria are based on retum periods of very rare events. Because they are rare the precision with
which they are described is poor and cannot be ignored when large investments and consequences are at stake. A
distinction should be made between inherent variation and uncertainty due to a lack of knowledge. Furthermore, an
effort should be made to use stochastic models in retun period analysis to reduce bias resulting from inappropriate
assumptions during parameter estimation and to avoid underestimation of the frequencies of extreme occurrences due'
to the exclusion of certain inherent random behaviour.
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| Sinds de aanleg van rioolwaterzuiveringsinstallaties zijn overstortingen uit gemengde ricolstelsels in toenemende
mate beperkend geworden voor de kwaliteit van de omliggende oppervlaktewateren. In de loop der jaren zijn de
stedelijke wateren dermate gewijzigd door menselijke ingrepen dat het waterkwaliteitsbeheer nu een integrale
benadering vereist met betrekking tot het fimctioneren van het systeem en de te investeren kosten. De gevolgen van
i op korte termijn werkende verontreinigingen, zoals zuurstofuitputting door overmatige belasting met organische
stoffen, dienen te worden geevalueerd op basis van hun herhalingstijd. Modellen van het betreffende watersysteem
"l worden dan gebruikt om zowel de huidige herhalingstijd te berekenen alswel die na witvoering van voorgenomen
verbeteringsprojecten. Bij de traditionele deterministische modellering van gemengde rioolstelsels is er een neiging
geweest om steeds meer nieuwe processen aan de modelstruktuur toe te voegen in een poging om de gemaalte
| voorspellingen te verbeteren. Dit leidde dikwijls tot veel parameters met onbekende waarde en het opnemen van
| processen die veel minder van belang zijn dan andere, die onbekend zijn of slecht begrepen. Een alternatieve
i} benadering is om alleen de meest wezenlijke processen tc beschrijven en de resterende variatie in stochastische
;f termen op te nemen,

De onderhavige studie concentreert zich op een vergelifking en tegenoverstelling van de deterministische en
i} stochastische benaderingen in het modelleren van de verontreiniging door afvioeiing it het stedelijke gebied en van
de resulterende waterkwaliteit. Ook methodologieén rond modeltoepassingen om herhalingstijden te analyseren en de
i) onzekerheid daarin te bepalen zijn bestudeerd.

L Een multivariate analyse van de over de overstortings gebeurtenissen gemiddelde concentraties werd gemaakt van de
gegevensbestanden van drie nederlandse en twee deense gemengde rioleringsgebieden (Hoofdstuk 3). Dit werd
gedaan om de onderliggende struktuur van variaties in de per gebeurtenis gemiddelde concentraties te achterhalen. De
resultaten bevestigden de verwachting dat de meest uitgesproken voorkomende variaties betrekking hebben op de
“ groepen particulaire en opgeloste verontreinigingen. De distributie van de meest bepalende factoren herbevestigde
“l vroegere bevindingen dat bimodale of gemengde distributies de gemiddelde concentraties van particulaire stoffen
4 kenmerken.

4 Niet-lineaire modellen werden ontwikkeld om per overstort gebeurtenis het totale volume en de gerniddelde
'l concentraties daarin te voorspellen als finctie van variabelen die de neerslag kenmerken (Hoofdsmk 4). Het doel
| hievan was om het basis begrip van het fysiecke systeem te combineren met de informatie die in de meetgegevens
| schuilt. Het overstort volume werd goed beschreven met een vochtigheidsindex. De seizoen variatie die in eerste
i{ instantie vit de gegevens naar voren kwam en vervoigens werd beschreven met een empirische sinusvormige
uitdrukking toonde een opmerkelijke overcenstemming met gegevens van de maandgemiddelde open water
i} verdamping. Gebruik van deze open water verdampings gegevens als een invoer grootheid van het model verbeterde
:{ de voorspelling terwijl tegelijkertijd het aantal model parameters verminderde. De per gebeurtenis samengevoegde
neerslag pegevens konden slechts in zeer beperkte mate de variatie in de per gebeurtenis gemiddelde concentraties
verklaren. Daardoor konden sommige waterkwaliteits variabelen alleen door hun waarschijnlijkheids distributie
worden gekenmerkt.

Een analyse van de achterliggende vooronderstellingen die worden gemaakt bij de wiskundige modellering in de tiyd
! van water systemen leidde tot een nieuw beeld van de essentiéle verschillen tussen deterministisch en stochastisch
il modelleren (Hoofdstuk 5). De impliciete aanname bij deterministisch modelleren is dat het model een perfecte
i beschrijving geeft van de werkelijkheid en dat alle afwijkingen tissen gemodelleerde en waargenomen waarden het
,' gevolg zijn van waarnemingsfouten. Bij stochastisch modelleren is de impliciete aanname dat het model slechts een
gedeeltehjke beschrijving van de werkelijkheid geeft en dat het verschil tussen gemodelleerde en waargenomen

waanlen mede wordt veroorzaakt door onverklaard toevallig pedrag van het systeem. Door de kenmerkende
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kemnverschillen tussen deterministische en stochastische modellen zo te identificeren ontstaat de mogelijkheid tot
meer vitwisseling van methoden en benaderingen hiertussen.

Daarmee verbetert het modelleren van water en van waterkwalitieit. Kennis van de dominante fysische, chemische en
biologische processen in het betreffende water systeem kan worden verwerkt in de gewoonlijk empirische
stochastische modellen. Parameter statistiek, concepten van “experimental design”, empirische elemenien en
begrippen betreffende identificeerbaarheid kunnen worden toegepast in deterministische modellen. Kwantitatieve a
priori kennis omtrent bepaalde model parameters kan worden opgenomen in de schattings procedure. In de verdere
toekomst is het de bedoeling dat de te kiezen benadering meer athangt van het passend zijn van de germnaakte
vooronderstellingen (mede gezien de beschikbare hulpbronnen en de mogelijke gevolgen van het gebmik van een
pover model) dan van de achtergrond van de modelleur, zoals nu vaak het geval is. De parameters van een neerslag-
afvoer model voor een gemengd rioolstelsel werden zowel in een deterministische als een stochastische versie
geschat, teneinde de belangrijkste punten uit dit hoofdstuk te bestuderen en te illustreren.

Gebruik makend van stochastische differentiaalvergelijkingen werden water-kwantiteits en kwaliteits modellen voor
een gemengd ricolstelsel geformuleerd en hun parameters geschat (Hoofdstuk 6). Het doel was de mogelijkheden en
beperkingen vast te stelien van deze benadering waarbij het rioolstelsel wordt gedefinieerd door een set differentiaal
vergelijkingen die stochastisch in het tijdsdomein worden opgelost, Voor het kwantiteitsmodel bleek parameter
schatting mogelijk en een heel kieine waamemingsfout bevestigde de toepasselijkheid van de stochastische
benadering. De resultaten van het modelleren van de water kwaliteit duidden er op dat meer werk nodig is om ten
volle de mogelijkheden en beperkingen van deze benadering te waarderen.

Een niet-lineair “random” coefficient model voor de beschrijving van het gesuspendeerde chemisch zuurstof verbruik
(CZV) in een gemengd rioolstelsel werd geidentificeerd en de parameters daarin werden geschat (Hoofdswk 7). Bij
“random™ coeflicient modellering wordt aangenomen dat bepaaide, geselectcerde parameters van gebeurtenis tod
gebeurtenis verschillende waarden kunnen aannemen. Voor elke gebeurtenis afzonderlijk wordt deze waarde geschat.
In de onderhavige studie werd een critische stroming, waarboven resuspensie geleidelijk toeneemt, verondersteld eeni
“random*” coeflicient te zijn. Hoewel er een tekort is aan gegevens voor de periode voorafgaande aan de overstorting,
suggereren de resultaten toch dat er goede mogelijkheden zijn voor de toepassing van random coefficient modellering
van stedelijke vuilwater systemen; zowel als een alternatief voor alsook in combinatie met stochastische modellering.

De bestudering van de methoden en benaderingen beschreven in de voorgaande hoofdstukken worden in een breder
perspectief besproken waarbij tevens de aandacht wordt gericht op ecn aantal intercssante ontwikkelingen op het
terrein van het modelleren van water kwantiteit en kwaliteit (Hoofdstuk 8). Door onze fysische, chemische en
biologische theorie te structureren in stochastische toestands modelten wordt erkend dat de afwijking tussen model eq
waameming het gevolg is van zowel onverklaard willekeurig gedrag van het gemodelleerde systeem als van
waamermingsfouten. Deze vaststelling zal de systematische afwijking in de geschatte parameters verminderen en
dethalve het vermogen van het model tot voorspelling verbeteren, ook onder nieuwe condities. Hoewel stochastische
toestandsmodellen die Kalman filters gebruikten vooral in de hydrologie en de waterkwaliteits modeliering Inm
intrede deden in de late 70-er jaren, betroffen deze voomamelijk empirische formuleringen die geheel op
meetgegevens waren gebaseerd. Daardoor waren deze van weinig nut voor de ingenieur die alternatieve scenariog
wilde beoordelen en vergelijken. Om te vermijden dat modellen te veel parameters bevatten die in hoge mate
unitwisselbaar zijn, is het van belang dat hun modelstruktiur kan worden geidentificeerd op basis van de gegevens di¢
werden gebruikt om de parameters te schatten. De a posteriori schattings criteria die kwantitatieve a priori kennig
insluiten, vormen een interessante geformaliseerde methode om de intuitie en ervaring van de ingenieur ¢
introduceren in de parameter schattings procedure,

Een nieuwe methodologie om de mate van de onzekerheid in de analyse van herhalingstijden te bepalen wordk
gepresenteerd en toegelicht in een geintegreerde benadering van de verontreiniging van stedelijk water met modellen
van zowel het gemengde rioolstelsel als van het ontvangende oppervlakte water (Hoofdstuk 9). De achterliggende
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vooronderstelling in de gepresenteerde methodologie is dat een onderscheid moet worden gemaakt tussen variaties
die aan het systeem eigen zijn en onzekerheid die voortkomt uit gebrek aan kennis. Dit onderscheid werd verkregen

‘| door een ingebedde voortplanting van fouten, die hier geimplementeerd werd als een “Embedded Monte Carlo

Simulation”. Er wordt beargumenteerd dat het samenvoegen van onzekerheid en inherente variaties systematisch leidt
tot een verhoging van de frequentie van extreme gebeurtenissen met frequentieverdelingen van herhalingstijden die
weinig of geen waarde voor de ingenieur hebben. Het onderzock toont ook dat aandacht nodig is om snellere
alternatieven te implementeren dan de niwe Monte Carlo simulaties om de rekentijd te bekorten. Dit zou voor

praktische toepassing nodig zijn.

Een inspectie van methoden om herhalingstijden te analyseren voor de vervuiling van stedelijke wateren en de

| onzekerheid daarin werd vitgevoerd met de bedoeling om de in Hoofdstuk 9 gepresenteerde methodes in een breder

perspectief te beschouwen (Hoofdstuk 10). Drie principicel onderscheiden methoden om herhalingstijden van
bepaalde effecten te berekenen worden beschreven: direkt fitten; transformatie van momenten en analytische of

I numerieke integratic. De combinatie van deze methoden met verschillende model typen (in termen van input en

output als tijdreeksen of als “lumped” grootheden), leidt tot een raamwerk waarin de meeste benaderingen tot de

;| analyse van herhalingstijden zijn begrepen. In ingenieurs werk wordt onzekerheid bijzonder belangrijk wanneer
;| ontwerp criteria worden gebaseerd op de frequentie van zeldzame, extreme gebeurtenissen, Juist omdat zij zeldzaam
{zijm is de precisic waannee ze worden beschreven gering, hetgeen niet kan worden genegeerd wanneer het gaat om
| grote investeringen en belangrijke consequenties. Een onderscheid dient 1¢ worden gemaakt tussen inherente variatie

en onzekerheid als gevolg van ontbrekende kennis. Daamaast dient te worden geprobeerd om stochastische modellen
te gebruiken in de analyse van herhalingstijden om systematische afwijkingen tengevolge van ongeschikte aannatmes
bij de parameterschatting te beperken. Ook de onderschatting van de frequentie van extreme gebeurtenissen ten
gevolge van het niet meerekenen van bepaald systeem-eigen toevallig gedrag dient te worden vermeden,
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APPENDIX A

EQUATIONS OF THE
LINEAR KALMAN FILTER

This appendix contains the equations of the linear Kalman filter as presented in Madsen, H and Holst, J. (1998).

Modelling Non-linear and Non-stationary Time Series. Lecture notes used at Institute for Mathematical Modelling
Technical University of Denmark, University of Copenhagen, Copenhagen Business School, and the University of
Iceland. 284 pp., www.imm.dtu.dk. Detailed outline of the linear Kalman filter can also be found in Harvey. A. C.

{1993). Forecasting, Structural Time Series Models and the Kalman Filter. 310 pp.
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MODEL

System equation:
X, =AX, ,+Bu, ,+e, G
Observation equation;

Y,=CX +e,, A2

KALMAN FILTER

Up-date or reconstruction

_X_;|z=£,|,4+£f(i, - C_)_(_r;:_;) (A3)
YY T
E—rh _=§=r|r 1 —1—:':—15—1 (Ad)

where the Kalman gain is given by

1
K =3% c'[z" ) (A5)!
= =r|: l—= r|r—1
Prediction
X . =4X, + By, (A6)
Xx xx T
§=r+l|r:A—z=t|r i+z=! (A7)
Yo =CXoy (A8)
7 =cx® T +Z, (A9)
=:+1|t #r+l|:=-
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Appendix A Equations of the Linear Kalman Filter

.. Innovation
i:+]|z=.}_,-z+l_ix+]|t (A.10)
Yy
=a+l===z+l|r (A.l1)
Maximum Likelihood Estimation Criteria
1 & T 1
log L(8;Y, )= 5 Z [log (det R )+ YR 'Y, }constmt (A.12)

i=l|

SYMBOLS

is a vector containing the state variables at time t,

-

is a vector containing the values of the input variables at time t,

is the system matrix,

TN

is the input matrix,

is the system noise terms at t which is assumed to be normally distributed with mean zero and

IS

—
$

-

variance __2_1 (a diagonal matrix),

I~

is the observation at time t,

+C is an observation matrix indicating the observed state variables,

€y  is the observation (measurement) error at time t which is assumed to be normally distributed
with mean zero and variance E ) {a diagonal matrix),

is the Kalman amplification at time t.

157




Urban Runoff Pollution: Modelling and Uncertainty in Return Period Analysis




APPENDIX B

EQUATIONS OF THE
EXTENDED KALMAN FILTER

This appendix contains the equations of the discrete time extended Kalman filter that has formed the basis for the
modelling in Chapter 3. The filter equations are from Madsen, H and Holst, J. (1998). Modelling Non-linear and
Non-stationary Time Series. Lecture notes used at Institute for Mathematical Modelling Technical University of
Denmark, University of Copenhagen, Copenhagen Business School, and the University of Iceland. 284 pp.,
www.imm.diu.dk. Details of the Kalman filtering can also be found in Harvey. A. C. (1993). Forecasting, Structural
Time Series Models and the Kalman Filter. 310 pp.
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MODEL

System equation:
‘ i; = L(ii—f’&!—f)-i- g!,!

Observation equation:

L = &(—‘X—t )+ Qz.z

KALMAN FILTER

Up-date or reconstruction

)_?43 = Xﬂt—l +K, (Z! _‘h(itll‘j))

T
Z ft z"t|r 1 £z =z=:t|t-1 Et
where the Kalman gain is given by
-1
K, = E:|: 144 (thr 1) (Etk 1)
where g (_X_ ,|,_1) is the partial derivatives of h( X ) with respectto X .
Prediction

—X-t+]|t = f( r|rsur)
XX =T ©
zt+1|t (ldhﬂt);ﬂt E (lt|taﬁt)+;1
where F (_ fe - r) is the partial derivatives of f (l R g) with respect to X .

It+1|r = &(Xt+l|:)
Ef‘h H( Xr+1|:) fﬁ]tﬂ (Xt+l|t) +2

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

B.7

(B.8)

(B.9)
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| Appendix B Equations of the Extended Kalman Filter

4 Innovation

(B.10)

I~

e = Yin- Zt+l|t
Y 4 4

Ria=Ziy @.11)

Maximum Likelihood Estimation Criterion

N
log L(9; YN) =— -;- > [log (det 51. ) + le i{:t_lz] + constant (B.12)
i=1

SYMBOLS

X,  isavector containing the state variables at time t,

U, is a vector containing the values of the input variables at time t,

_f ( ) is the system function and fg( ) is the observation function (see model definition at top),
€1+  is the system noise terms, normally distributed with mean zero and variance El R

Y, is the observation at time 1,
€3,  is the observation (measurement) , normally distributed with mean zero and variance 22 R

K is the Kalman amplification at time t.
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