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Stellingen (Propositions) 

1. With DNA markers and QTL mapping, complex forms of disease resistance and their 

underlying genes are now far more accessible. Someday soon, the distinction between 

manipulating qualitative and quantitative disease resistance may finally disappear (Young, 

1996, Annu Rev Phytopathol 34:479-501). 

2. The successful cloning of Brix9-2-5 and fw2.2, QTLs controlling respectively sugar content 

and fruit weight of tomato, indicates that a QTL may indeed correspond to a gene (Fray et 

al, 2000, Science 289:85-88; Fridman et al, 2000, PNAS 97:4718-4723). 

3. The movement of the nucleus of cowpea cells to the penetration site of an invading rust 

fungus (JJromyces vignae) is diagnostic for the resistance reaction (Heath et al, 1997, New 

Phytol 135:689-700). 

4. A plant species can be considered as a host of Oidium lycopersici if this fungus can 

successfully and repeatedly reproduce on this plant species (this thesis). 

5. It is still unclear whether Oidium lycopersici (formerly Oidium lycopersicum), a fungus 

responsible for the recent outbreaks of powdery mildew on tomato, is identical to the one 

described in 1888 in Australia, or originated from another powdery mildew fungus which 

has extended its host range to include tomato (this thesis). 

6. Cultures can be different, but no culture is superior to any other. 

7. The "chicken and egg" problem is an issue not only for nature scientists but also for 

sociologists. 

8. The Dutch are the Chinese of Europe. For example, the Dutch hope to hit two running hares 

by throwing one stone while the Chinese want to target two flying eagles by shooting one 

arrow. 

Stellingen behorende bij het proefschrift: How do plant species defend themselves against 

Oidium lycopersici? - Mapping monogenic and polygenic resistance in Lycopersicon species, 

door Caicheng Huang, in het openbaar te verdedigen op 25 april 2001, te Wageningen. 
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Chapter 1 1 

Chapter 1 

General introduction 

Tomato 

The cultivated tomato belongs to the species Lycopersicon esculentum Miller. Lycopersicon 

is a relatively small genus within the very large and diverse family Solanaceae, which 

consists of about 1500 species in circa 90 genera. The centre of origin of the family is Central 

America. All species in the genus Lycopersicon show remarkable cytogenetic uniformity 

having a chromosome base number of x = 12 (Taylor, 1986). They are divided into the 

esculentum-complex and the peruvianum-complex based on crossabilities (Rick, 1976). Other 

members of the esculentum-complex are: L. pimpinellifolium, L. cheesmanii, L. parviflorum, 

L. chmielewskii, L. hirsutum and L. pennellii. Members of the peruvianum-complex are L. 

peruvianum and L. chilense. The two complexes are isolated from each other by strong 

hybridization barriers. Though some accessions in the esculentum-complex (viz. L. hirsutum 

and L. pennellii) are strictly self-incompatible, most members are completely self-compatible, 

and have a strong tendency to inbreeding. In contrast; both species in the peruvianum-

complex, viz. L. peruvianum and L. chilense, are self-incompatible and, consequently, are 

outbreeders (Taylor, 1986). 

The tomato was introduced into the Old World in the 16th century, and since about 1800 

it has been cultivated in most parts of the world (Boswell, 1949). The name tomato probably 

derived from 'tomatl' in the Nahua tongue of Mexico (Kalloo, 1991). The cultivated tomato 

genetically is very uniform. There is less than 3% of DNA polymorphisms within the group 

of old tomato cultivars compared to 24.5% within L. esculentum var cerasiforme (Williams 

and Clair, 1992). The low overall genetic diversity of cultivated tomato may be due to 

continuous breeding (single-seed descent or pedigree selection). Also, presumably, the entire 

population of tomato cultivars in Europe and US derives from a very limited amount of 

tomato seeds/plants (and accessions) introduced in Europe in the 16th century. Worldwide, the 

tomato crop covers 3500 million ha, producing 9.51016 kg fruits per year (FAO, 2000). 

Tomato is one of the best-studied crop plants, due to its easy crossability, clear genetics 

and economic importance (e.g. Rick, 1975). More recently, the small genome content 

(Arumuganathan and Earle, 1991), the high density molecular marker maps (Tanksley et al., 

1992; Haanstra et al., 1999), the successful isolation of genes and the well-developed 
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transformation protocols have rendered tomato very suitable as a model organism for genetic 

and genomic studies. 

Biotic stress of tomato 

Pests: More than a hundred different pest species have been recorded on tomato crops (see 

review by Berlinger, 1986). The most important ones are nematodes, thrips, aphids, moths, 

whiteflies and beetles. They cause damage to all parts of tomato plants by sucking (often 

transmitting virus), chewing and rasping. Since the late 1960's, a lot of efforts have been 

made to breed tomato varieties resistant to these pests (Berlinger, 1986). For example, the 

resistance to nematodes has been widely characterized and one of the corresponding 

resistance genes Mi (also conferring resistance to aphid) has been mapped by using molecular 

markers and eventually has been cloned (Kaloshian et al., 1998; Rossi et al., 1998; 

Williamson et al., 1994; Yaghoobi et al., 1995) (Table 1), which has facilitated breeding 

tomato cultivars resistant to nematodes (and aphid). 

Diseases: Over 200 diseases have been reported to affect tomato plants (Watterson, 1986). 

Before the introduction of resistant cultivars, Fusarium wilt was perhaps the most destructive 

disease to tomato. In some areas of the western US the processing tomato industry was 

virtually destroyed by beet curly top virus. In other temperate regions, diseases such as late 

blight, Septoria leaf spot, bacterial canker and bacterial speck have built up to epidemic 

proportion, completely ruining crops. While bacterial wilt and bacterial spot have devastated 

plantings in the warm humid tropics, protected crops have also been plagued by damaging 

diseases. Fusarium crown rot, corky root, Didymella stem rot, black dot, leaf mould and 

tomato mosaic have all caused serious problems for glasshouse tomato growers (Watterson, 

1986). Thanks to disease resistance breeding, the damage resulting from tomato diseases has 

been substantially reduced and in some cases eliminated. For example, Fusarium wilt is 

readily controlled by using resistant cultivars containing the /-genes (Table 1). In tomato, in 

total, more than 15 resistance genes (R-genes) have been introduced into modern cultivars. 

Most known R-genes have been mapped by using molecular markers (Table 1). As a result, 

some of the introgressions of R-genes have been facilitated marker-assisted selection (MAS). 

Meanwhile, quantitative trait loci (QTLs) for resistance to a number of diseases (and pests) 

have been identified (Table 1). 

Among the diseases that have been recorded, there are three types of powdery mildews in 

tomato, caused by Leveilula taurica, Erysiphe orontii and Oidium lycopersici. As in this 

thesis we focus on one of the powdery mildew diseases, O. lycopersici, a more detailed 

introduction to the powdery mildew diseases is given below. 
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Table 1. List of mapped resistance genes/QTLs in tomato 

R-gene 
Asc 

Cf-1 

Cf-2 

Cf-4 

Cf-4A 
Cf-5 

Cf-9 

Frl 

Hero 

1-1 

1-2 

1-3 

Lv 
Mi 

Mi-3 

Ol-I 

OI-3 

OPG12H 

Ph-1 

Ph-2 
Ph-3 
Prf 

Pto 

py-1 

QTLs (3) 

QTLs 
(3-6) 

Pathogen 
Alternaria 
alternata f.sp. 
lycopersici 
Cladosporium 
fulvum 
C. fulvum 

C. fulvum 

C. fulvum 
C. fulvum 

C. fulvum 

F. oxysporum f.sp. 
radicis-lycopersici 

Globodera 
rostochiensis 
Fusarium 
oxysporum race 1 
F. oxysporum race 
2 
F. oxysporum race 
3 

Leveillula taurica 
Meloidogyne spp., 
Macrosiphum 
euphorbiae 
M. incognita, M. 
javanica 
Oidium 
lycopersici 
O. lycopersici 

Liriomyza trifolii 

Phytophthora 
infestans 
P. infestans 
P. infestans 
Pseudomonase 
syringae 
Pseudomonase 
syringae 
Pyrenochaeta 
lycopersici 
Clavibacter 
michiganensis ssp. 
michiganensis) 
Pseudomonase 
syringae 

Origin of the R-gene 
L. pennellii 

Lycopersicon 

L. pimpinellifolium 

L. hirsutum 

L. hirsutum 
L. esculentum var. 
cerasiforme 
L. pimpinellifolium 

(not reported) 

L. pimpinellifolium 

L. pimpinellifolium 

L. pimpinellifolium 

L. pennellii 

(not reported) 
L. peruvianum 

L. peruvianum 

L. hirsutum G 1.15 60 

L. hirsutum Gl. 1290 

L. hirsutum f. glabralum 

L. pimpinellifolium 

L. pimpinellifolium 
L. pimpinellifolium 
(not reported) 

(not reported) 

L. peruvianum 

L. peruvianum LA2157 

(not reported) 

Chromosome 
3 (cloned) 

1 

6 (cloned) 

1 (cloned) 

1 (cloned) 
6 (cloned) 

1 (cloned) 

9 

4 

7 

11 (cloned) 

7 

12 
6 (cloned) 

12 

6 

6 

2 

7 

10 
9 
5 (cloned) 

5 (cloned) 

3 

5, 7 & 9 

Reference 
Van der Biezen et al. 
(1995);Brandweracht 
(pers. comm.) 
Dickinson etal. (1993) 

Dickinson etal. (1993); 
Dixon etal. (1996) 
Jones ef a/. (1993); Balint-
Kurti etal. (1994); 
Thomas et al, (1997) 
Takkenefa/. (1998) 
Balint-Kurti et al. (1994); 
Dixon et al. (1998) 
Balint-Kurti et al. (1994); 
Jones et al. (1994) 
Vakalounakis et al. (1997) 

Ganal era/. (1995) 

Sarfatti etal. (1989, 1991) 

Sarfatti etal. (1989); 
Simons etal, (1998) 
Bournival et al. (1990); 
McGrathetal. (1987); 
Tanksley and Costello 
(1991) 
Chunwongse et al. (1997) 
Williamson etal. (1994); 
Rossi etal. (1998) 

Yaghoobi etal. (1995) 

Van der Beek et al. (1994); 
Huang et al. (2000a) 
Huang et al. (2000b) 

Moreiraetal. (1999) 

Pierce (1971) 

Moreau etal. (1998) 
Chunwongse et al. (1998) 
Salmeron e« a/. (1*996) 

Martin etal. (1991); 
Martin etal, 1993 
Doganlar etal. (1998) 

Van Heusden et al, 1999 

Danesh and Young 1994; 
Thoquet et al, 1996 
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QTLs (3) 

Ra (RAPD) 

Rb (RAPD) 

Re (RAPD) 

Rd (RAPD) 

rx-1, rx-2, rx-3 

Sm 
Sw-5 

Tm-l 

Tm-2a 

Ty-1 

Ty-2 

Ve 

Oidium 
lycopersici 
TYLCV 

TYLCV 

TYLCV 

TYLCV 

Xanthomonas 
campestris pv. 
vesicatoria 
Stemphilium 
TSWV 

tobacco mosaic 
virus 
tobacco mosaic 
virus 
TYLCV 

TYLCV 

Verticilium race 1 

L. parviflorum G1.1601 

L. pimpinellifolium 

L. pimpinellifolium 

L. pimpinellifolium 

L. pimpinellifolium 

L. esculentum 

L. pimpinellifolium 
L. peruvianum 

L. hirsutum 

L. peruvianum 

L. chilense, L. hirsutum, 
L. pimpinellifolium, L. 
cheesmanii 
L. hirsutum 

L. esculentum 

one on 12, two 
unassigned 
6 

7 

8 

9 

1 

11 
9 (cloned) 

2 

9 

6 

11 

7 

(present study) 

Chaguee/a/. (1997) 

Chaguee/a/. (1997) 

Chaguee/a/. (1997) 

Chague etal. (1997) 

Yu etal. (1995) 

Behave etal. (1991) 
Stevens et al. (1995, 
1996); Brommenschenkel 
and Tanksley (1997) 
Levesque e? a/. (1990) 

Youngs al. (1988) 

Zamaetal. (1994); 
Chagueefa/. (1997) 

Hanson et al. (2000) 

Juvick « al. (1991); Zamir 
e/ a/. (1995); Diwan et al. 
(1999) 

Powdery mildews 

Powdery mildews are plant fungi with white hyphae growing mostly on the surface of the 

aerial parts of living plants and with haustoria growing in the epidermal cells of their hosts. 

They produce large one-celled conidia on isolated aerial unbranched conidiophores 

(Yarwood, 1978). They are typical biotrophic fungi, that need living tissue to grow and 

sporulate. The possible origins and the meanings of the term "powdery mildew" have been 

extensively discussed (Yarwood, 1978). Braun (1987, 1995) has reviewed the development of 

the genus name of powdery mildew, Erysiphe, and pointed out that, though many extensive 

observations on Erysiphaceae were conducted, only de Bary (cited by Braun, 1987, 1995) 

realized the true relationship between the spherical dark ascocarps, the white mycelial patches 

and the conidiophores, and between the fungus and the host (Braun, 1995). In the 20th 

century, important monographs on powdery mildews have been written by Salmon (cited by 

Blumer, 1967), Blumer (1967), Amano (1986, with Hirata's [1966] great contribution) and 

Braun (1987, 1995). 
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Of many powdery mildews only the asexual stage is known (Anamorph). Oidium is the 

generic name of the anamorphic (imperfect) states of the Erysiphaceae (Anonymous, 1975), 

which includes Euoidium and Pseudoidium, i.e. Oidium with catenate and solitary conidia 

respectively. Due to the lack of a sexual stage and the variability of their morphology, 

classification of powdery mildews is sometimes ambiguous. Actually, most species names of 

Erysiphaceae refer to a host genus on which they are first found (Yarwood, 1978). Of the 90 

or more named species of Oidium (Hirata, 1966), 84 were named with reference to the host 

genus (Yarwood, 1978). This designation of Erysiphaceae reflects that each isolate 

(pathogenically distinct culture) is usually restricted to a single host genus or closely related 

genera; some are even restricted to only one plant species. Therefore, the most obvious 

character to recognize a powdery mildew is the host on which it is found. Yet, each 

morphologic species of Erysiphaceae usually has several host genera and species (Yarwood, 

1978). 

The host range of powdery mildews (Erysiphaceae) covers nearly 10,000 plant species in 

over 1,600 genera, 169 families and 44 orders. Most hosts belong to the dicotyledons (161 

families, over 9,000 species). Only eight families and 662 host species belong to the 

monocotyledons, and most of them are Gramineae (Amano, 1986). The host species include 

both cultivated and wild species. Some genera of the Erysiphaceae can be classified as typical 

herb parasites, e. g. Erysiphe, Leveillula, Sphaerotheca, and some as tree parasites, e. g. 

Podosphaera, Microsphaera, Uncinula, Phyllactinia, Pleochaeta, though there are exceptions 

in both groups (Hirata, 1957,1976). There are numerous hosts that are simultaneously affected 

by more than one powdery mildew genus, e. g. Erysiphe and Sphaerotheca on cucumber, 

Erysiphe, Sphaerotheca and Leveillula on tomato (Hirata, 1976). Some powdery mildew 

species can grow on more than 1000 host plant species. For example, Erysiphe cichoracearum 

has a host range of at least 1753 plant species (Amano, 1986). Such a host range does not 

necessarily imply that the host range of individual isolates is equally wide. A forma specialis or 

an isolate of a powdery mildew fungus may be confined to one plant species, such as the 

isolates of E. cichoracearum on tomato (Abiko, 1983) and tobacco (Reddy et al., 1979), and 

Sphaerotheca fuliginea on eggplant (Abiko, 1978,1982). Other formae speciales or isolates 

may have a wider host range. For instance, an isolate of an Erysiphe sp. on eggplant may also 

infect tomato, tobacco and, to some extent, cucumber (Whipps and Helyer, 1994). In addition, 

cucumber, melon and courgette are as susceptible to an isolate of S. fuliginea f. sp. lycopersicum 

as tomato (Angelov et al., 1993). Host range studies are laborious and contaminations may 

easily occur. In addition, too low number of genotypes per plant species tested and climate 

conditions in greenhouse, etc. may also obstruct the determination of host range (Niks, 1987). 

Hence, accurate information on host range is often lacking. 
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In tomato (Lycopersicon esculentum), powdery mildews have frequently been reported to 

occur in all climatological regions of the world (Hirata, 1966). They belong to three species. 

Firstly, the polyphagous species Erysiphe orontii Cast, (also known as E. cichoracearum DC. 

pro parte and as E. polyphaga Hammarl., see Braun, 1987), is widely distributed over 

tropical and temperate regions (Wicks and Clare, 1981; Price, 1981). It is ectophytic and 

grows on both sides of leaves and on stems. It is characterized by the formation of catenary 

conidia. Its anamorph state "Oidium" produces conidia in chains. Secondly, Leveillula 

taurica (Lev.) G. Arn. is more prevalent in the tropics and subtropics (Price, 1981). It is 

characterized by the development of endophytic mycelia, growing in and between the 

mesophyll cells of tomato leaves. Its conidiophores, producing solitary pear-shaped conidial 

spores, arise from the internal mycelia (through stomata) and appear as a white mould at the 

underside of the leaves (Correll et al., 1987). Very likely, a third powdery mildew species has 

been frequently reported in the Northern hemisphere. It belongs to the order of Erysiphales 

but, as no perfect stage has been described yet, it is preferably designated as Oidium 

lycopersicum Cook & Mass., a powdery mildew that was described in 1888 {e.g. Noordeloos 

and Loerakker, 1989; Whipps et al., 1998). The fungus is entirely ectophytic and grows only 

on the upper side of the leaves and, on severely infected plants, also on the stems. Its 

conidiophores arise from the external mycelia, and produce solitary conidia,. This fungus 

differs from E. orontii mainly because 1) it produces solitary conidia while E. orontii produces 

catenary conidia and, 2) the length/width ratio of O. lycopersicum conidia is larger than two, 

while that of E. orontii is less than two. Still, several authors have designated the causal agent as 

E. polyphaga or E. cichoracearum (Corbaz, 1993; Belanger amd Javis, 1994; Boiteux, 1994), 

or E. orontii Castagne (Cook et al., 1997). However, in none of these studies the perfect stage 

has been described and consequently, these designations are erroneous. This has certainly led 

to conflicting data and misinterpretations. As long as no convincing evidence about a perfect 

stage is presented we used the species name O. lycopersicum in our earlier publications but 

later we refer to this pathogen as O. lycopersici as has been recommended by The 

International Code of Botanical Nomenclature (Mieslerova and Lebeda, 1999). As in this 

thesis we focus on O. lycopersici, this species is described in more detail below. 

O. lycopersici 

• Occurrence 

O. lycopersicum Cook & Mass. (= O. lycopersici) on tomato has already been described in 

Australia in 1888, but later reports on its occurrence are scarce (Blumer, 1967). Surprisingly, 

only since late in the 1980's, outbreaks of tomato powdery mildew in greenhouses and fields 
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have been frequently reported around the world (e.g. Mieslerova and Lebeda 1999). The first 

occurrence was reported in the Netherlands (Simonse, 1987; Paternotte, 1988), then in France 

(Blancard, 1988), UK (Fletcher et al, 1988) and Germany (Gabler et al, 1990). In a short 

period this powdery mildew spread to most of the European countries: Sweden (Forsberg, 

1989), Czech Republic (Lebeda and Rod, 1990), Italy (Aloi and Garibaldi, 1990; Stravato, 

1993), Switzerland (Corbaz, 1993), Greece (Vakalounakis and Papadakis, 1992), Bulgaria 

(Neshev, 1993), Poland (Kozik, 1993; Sobolewski and Robak, 1994), Romania (Puscasu and 

Cristu, 1994), Slovak Republic (Paulech, 1995, cited by Mieslerova and Lebeda, 1999), 

Hungary (Kiss, 1996; Milotay and Dormanns-Simon, 1997) and Russia (Ignatova et al, 1997). 

At the same time it appeared in Canada in 1993 (Belanger and Jarvis, 1994), which is 

considered as the first report in North America, and in different areas of the USA (Arredondo et 

al., 1996; Karasevicz and Zitter, 1996; Smith et al, 1997; White et al, 1997; Pernezny, 1998). 

Meanwhile, its appearances were also reported in Asia (LL Black, pers. comm.; XQ Zheng, 

pers. comm.; Kumar et al, 1995) and in South America (Mendoza-Zamora and Meza, 1990; 

Boiteux, 1994). Globally, it has become a common disease not only in the protected cultivation 

in greenhouses, but also in the open production in the field. The cultivated tomato is very 

susceptible to the disease. When conditions are favourable large areas can become infected in 

only several weeks. Though the fungus can routinely be controlled by fungicides, this is not 

desirable for a safe and healthy production. Therefore, development of resistant cultivars is 

required. 

• Origin 

After its first description in Australia in 1888, O. lycopersici had hardly been documented in 

Europe (Blumer, 1967) before the new outbreak in 1986. It is an intriguing question how the 

fungus could remain nearly unnoticed over a century and suddenly spread over the world. Was 

the fungus always present at a low density, but did a more aggressive mutant arise? Did the 

spread and increase of the tomato production on a global scale generate more favourable 

environments for the fungus? Alternatively, the pathogen may originate from the centre of 

origin of tomato in South America, and be imported inadvertently to the areas of tomato 

cultivation. But this seems not likely because it has not been reported in Mexico and the Andes 

region. Another possibility is that a powdery mildew "jumped" from its host species to tomato 

by the acquisition of pathogenicity to the latter species, as has been documented for other 

pathogens like Monilinia (Sclerotiniaceae) (Hoist-Jensen et al, 1997), pitch canker (Fusarium 

subglutinans f. sp.pini) (Storer et al, 1994) and rust (Uredinales) (Savile, 1971; Baum and 

Savile, 1985). In order to find out whether there is/are such "jump(s)", host range study is 

required to search for the relationship between O. lycopersici and other powdery mildew species 

and thus to provide clues to the possible "jump(s)". 
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• Host range 

In their host range study, Whipps et al. (1998) considered any accession or species that supports 

sporulation to any extent as evidence for an alternative host of tomato powdery mildew. As a 

consequence, many plant species are listed as hosts of O. lycopersici (Whipps et al., 1998). In 

general, the reported host ranges of tomato powdery mildew are still inconsistent. For instance, 

it includes, in some reports, Solanaceae species (Fletcher et al, 1988) but in other reports 

cucumber and melon (Ignatova et al, 1997; Corbaz, 1993) (see also Chapter 3). These 

differences are likely due to inconsistencies in the bioassays like differences in genotypes of 

tested species, or in environmental conditions or even contamination by other powdery mildew 

species, or in the definition of "susceptibility". Because powdery mildews are air-borne, any 

disease test experiment on host range study should be carried out in an isolated way, preferably 

under spore-proof conditions (see also Chapter 3). Some authors consider any plant species, on 

which the fungus can grow to some extent, as host of that fungus. We only consider a plant 
species as a host of O. lycopersici Si the fungus can repeatedly successfully reproduce on 
this plant species. 

• Maintenance of O. lycopersici 

Several methods have been described in literature about storing spores of biotrophic fungi under 

extreme cold conditions (e.g. Dahmen et al., 1983). But there is no protocol available for storing 

powdery mildew fungi like O. lycopersici. It has to be maintained and propagated on tomato 

plants. As this is time and space consuming, and always implies the risk of contamination and 

shift in pathogen population identity, a protocol for storage of O. lycopersici still needs to be 

developed. 

Resistance of tomato to O. lycopersici 

The cultivated tomato is susceptible to O. lycopersici (Kozik, 1993; Neshev, 1993; Teubner and 

Neuhaus, 1993). In wild Lycopersicon species many resistant accessions have been identified 

(Kozik, 1993; Laterrot and Moretti, 1993; Neshev, 1993; Lindhout et al., 1994). The resistance 

to O. lycopersici in L. hirsutum G1.1560 is monogenic and incompletely dominant. The 

resistance gene from G1.1560 has been named Ol-l, and mapped on chromosome 6 (Van der 

Beek et al., 1994). Resistance in L. esculentum var. cerasiforme accession LAI 230 (plant LC-

95) is controlled by a recessive gene, ol-2 (Ciccarresse et al., 1998). The inheritance of 

resistance in most other accessions is still unknown. 



Chapter 1 9 

Resistance mechanisms to powdery mildews (Erysiphaceae) can be roughly classified as 

pre- and post-haustorial. Pre-haustorial resistance is based on prevention or reduction of 

haustorium formation and is not associated with plant cell necrosis. This type of resistance has 

been reported in quantitative race-non-specific types of resistance (Heath, 1981 & 1982; Carver 

and Carr, 1977). Post-haustorial resistance is based on defence mechanisms that are elicited 

after a haustorium (initial) is formed, and is usually associated with plant cell necrosis 

(hypersensitive response, HR). This type of resistance usually inherits qualitatively and 

typically is race-specific (Heath, 1981 & 1982). In general, quantitative race-non-specific 

resistance is supposed to be more durable than the qualitative race-specific one. In order to 

facilitate breeding programmes, it is necessary to analyze the inheritance of resistance and to 

map the corresponding resistance genes in some of the resistant accessions, and to investigate 

the resistance mechanism to predict the durability of resistance. 

Scopes of this thesis 

The aims of this study were i) to investigate the resistance mechanism in (wild) tomato and 

other horticultural crop species, and to determine the host range of O. lycopersici; ii) to assess 

the genetic variation of the field isolates of the causal agent(s) collected world-wide; iii) to 

unravel the inheritance of resistance in two or three resistant accessions and to map the 

resistance genes by using molecular markers. All experiments are presented in this thesis, 

Chapters 2-8, and are summarized as follows. 

Chapter 2 describes the development of O. lycopersici on susceptible cv Moneymaker and 

characterizes the defence response to O. lycopersici in three wild tomato species (L. hirsutum, L. 

parvijlorum and L. peruvianum), and in several resistant advanced breeding lines (ABLs) 

carrying CV-genes. 

In Chapter 3, the susceptibility of 56 accessions from 25 plant species to a Dutch O. lyco­

persici isolate is evaluated to see whether there is/are alternative host(s) of this pathogen. 

Moreover, in order to understand better the interaction between O. lycopersici and plant species 

outside the genus Lycopersicon, the infection process of the fungus on, and the responses of, 

these plant species is investigated histologically. 

In Chapter 4, genetic variation of tomato powdery mildew isolates from Canada, Czech 

Republic, France, Hungary, the Netherlands and USA is assessed by using AFLP analysis. 

Also, the AFLP fingerprints and morphological data (size of spores, spore arrangement) of 

tomato powdery mildew were compared with those of 12 other powdery mildew species, in 

order to find out the possible origin of tomato powdery mildew. 
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In Chapter 5, fine-mapping of 01-1 is done by using a newly generated F2 population 

(N=150) of Moneymaker x L. hirsutum G1.1560 and 15 additional RFLP markers which co-

segregate with the resistance gene Ol-l. Bulked segregant analysis (Michelmore et al., 1991) 

with RAPDs was applied as a bridge to develop SCARs (Paran and Michelmore, 1993) that 

would serve as convenient and diagnostic PCR markers in commercial breeding programmes. 

The obtained SCARs will provide a key tool in rapidly detecting the resistance locus in practical 

breeding and future research. 

In Chapter 6, Ol-l and Ol-3 are compared. This chapter describes i) inheritance of 

resistance to O. lycopersicum in L. hirsutum Gl .1290, one of the resistant L. hirsutum 

accessions, and mapping of the resistance gene, designated 01-3, ii) fine mapping of Ol-l which 

originated from/,, hirsutum G1.1560, another resistant accession of L. hirsutum, and iii) tests of 

allelism for resistance in G 1.1290 and G 1.1560. 

In Chapter 7, the inheritance of resistance to O. lycopersici inZ. parviflorum G1.1601 is 

investigated by using an F2 population. Then a genetic linkage map based on AFLP markers 

was constructed. Furthermore, QTL analysis for the resistance is performed by using the disease 

evaluation data and the obtained AFLP map. Finally, the level of resistance of plants containing 

different doses of resistant alleles/QTLs was compared. 

Chapter 8 describes the inheritance of resistance of L. peruvianum LA2172 to O. 

lycopersici based on the segregation ratio of an LA2172 derived "F2", determined by a disease 

test. 

The last chapter discusses the origin(s) of O. lycopersici, the possible gene-for-gene 

interaction of tomato-0. lycopersici system, and the organization of the 0/-genes. 
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Abstract 

The cultivated tomato (Lycopersicon esculentum) is susceptible to powdery mildew (Oidium 

lycopersicum). Six accessions of three related Lycopersicon species show high levels of 

resistance (Lindhout et al, 1994b). The present research aimed at describing the development of 

O. lycopersicum on susceptible cv Moneymaker and characterizing the defence response to O. 

lycopersicum in Lycopersicon accessions by histological analysis. Spore germination and 

(primary) haustorium formation in resistant accessions were as frequent as in the susceptible L. 

esculentum cv Moneymaker. A high frequency of necrosis of epidermal cells in which a 

haustorium was formed appeared to be the major defence response, indicating that resistance to 

O. lycopersicum in the Lycopersicon genus was predominantly based on the hypersensitive 

reaction. However, the resistance in L. parviflorum was less associated with hypersensitivity 

than in other resistant accessions, suggesting the existence of a different but still unknown 

resistance mechanism. In addition, evidence is provided that the level of resistance could 

depend on the genetic background and the plant age. 

Key words: Lycopersicon, powdery mildew, Oidium lycopersicum, resistance, hypersensitive 

response 
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Introduction 

Since 1986 the occurrence of powdery mildew caused by Oidium lycopersicum Cooke & 

Massee (Noordeloos & Loerakker, 1989) has been frequently reported in greenhouse tomato 

crops in Western Europe (Lindhout et al, 1994b). The disease has also spread rapidly to Eastern 

Europe: in 1989 in Bulgaria (Neshev, 1993) and soon afterwards in Poland (Kozik, 1993). 

Screening of a large collection of cultivated and wild Lycopersicon accessions has shown that 

the cultivated tomato was susceptible to O. lycopersicum (Lindhout et al, 1994b; Kozik, 1993; 

Teubner et al, 1993; Neshev, 1993 and Burgerjon et al., pers. comm.[1990]). High levels of 

resistance were found inZ,. hirsutum (PI247087) (Laterrot and Moretti, 1993), (G1.1257, 

G1.1290, G1.1560 and G1.1606=CPRO742208), inZ,. parviflorum (G1.1601=CPRO731089) 

and in L. peruvianum (LA2172) (Lindhout et al, 1994b). L. hirsutum LAI775 and L. pennellii 

LA716 were completely and moderately resistant, respectively (Kozik, 1993). Moreover, after 

natural infection, immunity was observed in three accessions of L. hirsutum (var. glabratum, f. 

typicum and one unknown accession), and in one accession each of L. peruvianum (var. 

glandulosum), L. chmielewskii andZ. minutum (Neshev, 1993). 

The resistance of L. hirsutum G1.1560 to O. lycopersicum is controlled by an 

incompletely dominant gene, Ol-l, on chromosome 6 near the RFLP markers TG25 and GP79 

(Van der Beek et al., 1994). The resistance in L. parviflorum G1.1601 may be controlled by a 

recessive gene, provisionally designated ol-2 (Lindhout et al, 1994a), but more recent research 

suggested a polygenic inheritance of the resistance (unpublished). The inheritance of resistance 

in other accessions such as in L. hirsutum G1.1290 and L. peruvianum LA2172 is under 

investigation. 

Oligogenic and incomplete resistance to O. lycopersicum derived from an interspecific 

hybrid of tomato x L. hirsutum PI247087 has been integrated into different varieties (Laterrot 

and Moretti, 1995). In addition, a commercial hybrid (DRW 4061) with resistance to O. 

lycopersicum has recently been released (Nunnink, 1996). 

Various resistance mechanisms to powdery mildews (Erysiphaceae) and rusts have been 

reported, and can be roughly classified as pre- and post-haustorial. Post-haustorial resistance is 

usually associated with plant cell necrosis (hypersensitive reaction, HR). This is the mechanism 

typical of the major genie race-specific resistance, e.g. in cereals to powdery mildews (Koga et 

al, 1990; Tosa and Shishiyama, 1984a) and to rust fungi (Heath, 1981 & 1982; Niks and 

Dekens, 1991). With prehaustorial resistance formation of haustoria is prevented or reduced by 

papillae and is not associated with plant cell necrosis. This type of mechanism has been reported 

in quantitative race-non-specific types of resistance (Heath, 1981 & 1982; Carver and Carr, 

1977), and also in plants inoculated with non-pathogenic ("inappropriate") powdery mildew 
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fungi (e.g. Carver and Carr, 1977; Tosa and Shishiyama, 1984b). Though most studies focus on 

one type of resistance, in nature several resistance mechanisms may exist in the same plant-

pathosystem (e.g. Tosa and Shishiyama, 1984b; Koga et al., 1990). Research on the histology of 

the interactions of powdery mildews with their dicotyledonous host plants is scarce. Neger 

showed in 1923 that resistance to Erysiphe cichoracearum was brought about by enclosure of 

the haustoria of the fungus in a gummy substance which prevented further fungal development 

(cited by Lupton, 1956). Hypersensitivity seemed to be the prevailing mechanism of resistance 

in clover varieties resistant to E. polygoni (Smith, 1938). However, resistance in pea to E. pisi 

(Pisum sativum) is of the prehaustorial type, similar to that in some non-host and partial 

resistance interactions (Stumpf and Gay, 1989), while resistance in apple to Podosphaera 

leucotricha, another member of Erysiphaceae, appeared to be based on inhibition of spore 

germination, probably by leaf cuticles (Korban and Riemer, 1990). 

Macroscopically, resistance to O. lycopersicum in wild tomato species is characterized 

by a very low infection frequency and a strongly restricted mycelium growth and lack of 

sporulation (Lindhout et al, 1994b). However, the infection process of the fungus and the 

nature of the defence reaction in the host plants are still unknown. The present paper describes 

the development of O. lycopersicum on susceptible cv Moneymaker and characterizes the 

histological reactions of three wild tomato species and several resistant advanced breeding lines 

(ABLs) with O. lycopersicum. We report that the resistance in tomato to O. lycopersicum is 

predominantly associated with the hypersensitive response. 

Materials and methods 

Plant and fungal materials 

Five highly resistant accessions L. peruvianum LA2172, L. hirsutum G1.1257, G1.1290, 

G 1.15 60 and G 1.1606 as well as one completely resistant accession L. parviflorum G 1.1601 

(Lindhout et al., 1994b) were obtained from the Centre of Genetic Resources, Wageningen, The 

Netherlands. Seven indeterminate advanced breeding lines (ABLs), originating from L. 

hirsutum G1.1560 (ABL1560.1, ABL1560.2, ABL1560.3), or/., hirsutum G1.1290 

(ABL1290.1, ABL1290.2, ABL1290.3, ABL1290.4), were obtained from breeding programmes 

for resistance to O. lycopersicum. Moneymaker, as susceptible control, was maintained at the 

authors' Department. 

The stock of O. lycopersicum originated from infected commercial tomato plants 

(Lindhout et al., 1994a), and was maintained on cv Moneymaker plants in a growth chamber at 

20±2 °C with 70±5% RH and a 16 hour photoperiod. 
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Disease tests 

Disease tests consisted of three experiments. In Experiment 1, six resistant accessions of wild 

species were investigated in October 1995. In Experiment 2, the seven ABLs were investigated 

in November 1995. In Experiment 3, six wild accessions and some ABLs were tested again in 

July 1996. The experiments were set up according to complete randomized block designs with 

four (in Experiment 2) or six blocks (in Experiments 1 & 3). Each block contained one plant of 

every genotype as an experimental unit. Each experiment was divided into two sets, each 

consisting of two blocks in Experiment 2 and three in Experiments 1 and 3 respectively. 

Two inoculation methods were applied. Tomato seedlings at the four true leaf stage or 

cutting-derived plants with 4 to 5 leaves (designated "older plants") in one set, were inoculated 

by print-inoculation of three leaflets each of two fully expanded leaves per plant. For this 

printing method a direct contact of the sporulating leaves with the healthy ones was established 

by gently pressing these leaves together. Plants in another set were inoculated by using a second 

inoculation method, i.e. spraying with a spore suspension (3xl04 or 12xl04 conidia.ml"1). The 

inoculum was prepared by washing conidial spores from freshly sporulating leaves of heavily 

infected Moneymaker plants in tap water and used immediately. The inoculated plants were 

grown at 20±3 °C with 70±10% RH under natural light supplemented with artificial light to 

provide a photoperiod of 16 hours per day. 

Sampling and staining 

For description of the infection process on susceptible tomato plants, leaf segments of each 

Moneymaker plant were harvested from the print-inoculated leaves at 17,24,41,65, 89,137 

and 185 hours post inoculation (HPI). For investigation of the mechanisms of resistance, leaf 

segments of each plant were sampled at 41,65, 96 and 137 HPI. The sampled leaf segments, 

1 x3 cm in size, were fixed in acetic acid-ethanol (1:3, v:v), and stained with 0.03% trypan blue 

in lactophenol-ethanol (1:2, v:v) as described by Hering and Nicholson (1964). 

Micro- and macroscopic evaluations 

Conidia were considered to have germinated when they had formed a germ tube with a primary 

appressorium or a germ tube of at least half the length of the spore. The percentage of 

germination was microscopically assessed on a sample of 100 conidia per leaf segment. A 

germinated spore which produced a primary appressorium or a primary haustorium, was 

considered as an infection-unit (IU). Thirty infection-units per leaf segment were observed. The 

presence of a primary haustorium (which was formed by the primary appressorium), the number 

of hyphae (which were at least as long as the spore), secondary appressoria (formed on hyphae) 

and secondary haustoria (developed from secondary appressoria) per IU were recorded as well 
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as the number of secondary appressoria per hypha. The number of hyphae per IU, and of 

secondary appressoria per IU and per hypha were considered as growth components of O. 

lycopersicum. Also, the presence of cell necrosis and papilla formation was recorded as 

components of the resistance mechanism. Sporulation on the print-inoculated plants (leaf 

segments) was also recorded microscopically, according to scales"-" to"++++". Here "-" meant 

no sporulation, and "±" to "++++" indicated the severity of sporulation from very faint to 

abundant. 

Sporulation on the spray-inoculated plants was evaluated macroscopically at 1,2 and 3 

weeks post inoculation (WPI), according to the same scales as for microscopic evaluations. 

Data analysis 

The numeric data were statistically analyzed by using the computer software SPSS5.0. Duncan's 

multiple range test (DMRT) was used to compare the means for all possible pairs of genotypes. 

Results 

Inoculation method 

The spray-inoculation with spore suspensions containing either 3xl04 or 12xl04 conidia.mr1, 

resulted in an even distribution of only a few spores per square centimetre of leaf segment. 

However, the density of spores was far too low for a reliable microscopic evaluation of the 

infection process. The print-inoculation resulted in a sufficiently high spore density but a very 

heterogeneous spore distribution. Even though many spores were clustered and could not be 

scored, this inoculation method allowed thousands of spores to be scored on each leaf segment. 

Mock-inoculation by printing with healthy leaves did not cause visible damage. Hence, the 

printing method was applied in further experiments. 

Infection process ofO. lycopersicum on susceptible cv. Moneymaker 

Typically, a spore produced a short germ tube, ending in a primary appressorium, from which a 

primary haustorium was formed. From the primary appressorium or from another pole of the 

spore, a first hyphae (primary hyphae) arose, that formed small opposite or spread, lobed-

shaped (secondary) appressoria from which secondary haustoria arose. Later, the primary 

hyphae branched to secondary hyphae. We refer to all haustoria and hypha of higher order than 

primary as secondary. The progress of the infection process of O. lycopersicum on the 

susceptible cv. Moneymaker is presented in Fig. 1. Spore germination and primary 

appressorium formation started before 17 HPI, but the percentage of germinated spores 
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Fig. 1 Infection process of Oidium lycopersicum on susceptible L. esculentum cv Moneymaker 

• percentage germinated spores (17-65 HPI) 

A. percentage germinated spores with primary haustoria (17-65 HPI) 

r percentage germinated spores with primary hyphae (24-65 HPI) 

* percentage infection-units with secondary hyphae (24-65 HPI) 

o percentage infection-units with secondary appressoria (41-65 HPI) 

. percentage infection-units with secondary haustoria (41-137 HPI) 

+ percentage infection-units with conidiophores (89-137 HPI) 
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continued to increase to about 80% at 65 HPI. Per time point there was (great) variation in the 

percentage of germinated spores between blocks. For example, it varied between blocks from 

20% to 75% at 41 HPI in Experiment 1 and from 26% to 81% at 65 HPI in Experiment 3. 

Within 41 HPI, nearly all primary appressoria had formed a primary haustorium. Primary and 

secondary hyphae were observed from 24 HPI. On these hyphae appressoria and haustoria were 

formed first between 24 and 41 HPI. At 65 HPI, branching of secondary hyphae were observed. 

At 89 HPI, each infection-unit on average had produced 9.8 hyphae which frequently interlaced 

each other. At that time also the first conidiophores were observed. At 137 HPI, mycelia 

interlaced extensively, and fully developed conidiophores were observed as erect mycelial 

structures. At 185 HPI, conidiophores matured and the top cell (the new generation of spores) 

became swollen like a normal spore and thus might be ready to be released. One vegetative 

generation cycle of the pathogen was then completed. No further sampling of leaves was carried 

out. 

The compatible infection process elicited plant cell reactions to only a limited extent. At 

41 and 65 HPI, 2% to 12% of the (primary or secondary) haustorium-invaded cells became 

necrotic. Up to 137 HPI, one percent of the appressoria (including primary appressoria) had 

induced papilla formation. However, even if papillae had been induced, haustorium formation 

succeeded in 50% of the cells with a papilla. 

Infection process ofO. lycopersicum in resistant accessions 

Based on the development of O. lycopersicum on Moneymaker, further microscopic 

observations were focused on the samples harvested at 41 or 65 HPI. 

Germination The percentage of spore germination in some accessions varied considerably 

between blocks. For example, it varied from 10% to 80% at 41 HPI in L. peruvianum LA2172, 

and from 16% to 81% at 65 HPI in L. hirsutum Gl .1560. However, the percentage of 

germination was not significantly different between resistant accessions and Moneymaker, and 

among resistant accessions (Tables 1 & 2). Thus, spore germination was not affected on 

resistant accessions, indicating that resistance became effective only after spore germination. 

Primary haustorium formation At 41 and 65 HPI, at least 70% of the infection-units had 

formed a primary haustorium. There was no significant difference in the frequency of primary 

haustorium formation between resistant accessions and Moneymaker (Tables 1 & 2), indicating 

that resistance to fungal infection did not take place before primary haustorium formation. 
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Hypha and appressorium formation Compared to susceptible cv Moneymaker, significant 

reductions in the fungal growth components (i.e. number of hyphae per IU, and of secondary 

appressoria per IU and per hypha) were observed in L. peruvianum LA2172. The reductions in 

L. hirsutum G1.1560 were also great but not always significant (Table 1 & 2). This indicated a 

strong reduction in the growth and development of the fungus after primary haustorium 

formation in these two resistant accessions. No significant difference in appressorium formation 

between the other four accessions and Moneymaker was observed. This illustrated that 

resistance in these accessions did not significantly influence the early development of the 

fungus. Furthermore, similar hypha production on the resistant accessions and Moneymaker 

revealed that the resistance acted at a later stage of fungal development. 

Cell necrosis In all resistant accessions, many epidermal cells in which a primary haustorium 

was formed became necrotic, indicating a hypersensitive response (HR). Compared to 

Moneymaker, the percentage of haustoria which induced (single cell) necrosis was significantly 

higher in L. peruvianum LA2172 and in L. hirsutum G1.1560at41 HPI, and in most resistant 

accessions except forL.parviflorum G1.1601 and/., hirsutum G1.1606 at 65 HPI (Table 1). In 

another experiment (Table 2), HR was observed much more frequently in all resistant 

accessions than in Moneymaker, though the level of hypersensitivity differed among resistant 

accessions. In both experiments, the frequency of HR was much lower in L. parviflorum 

G 1.1601 and i n i . hirsutum G 1.1606 than in the other four resistant accessions at any stage after 

haustorium formation. In G1.125 7 and G1.1290, necrosis was also observed in the cells 

adjacent to the haustorium-invaded cells (spreading necrosis). However, this variation of 

spreading necrosis between resistant accessions was not repeatable (Table 1 & 2). 

Secondary haustorium formation The frequency of secondary haustorium formation varied 

among resistant accessions. For example, the number of secondary haustoria formed in L. 

peruvianum LA2172 and inZ.. hirsutum G1.1560 at 65 HPI in one experiment, was significantly 

lower than that in other resistant accessions and in Moneymaker (Table 1). But no significant 

difference in secondary haustorium formation between Moneymaker and any resistant accession 

was observed in another experiment (Table 2), indicating that the fungal growth and 

development was significantly retarded by resistance mainly after secondary haustorium 

formation. 

Necrosis was also induced by secondary haustoria. As with primary haustoria, the 

frequency of cells which became necrotic was much higher in resistant accessions than in 

Moneymaker. The percentage of secondary haustoria which induced necrosis was, again, much 

lower in G1.1601 and G1.1606 than in the other four accessions (Tables 1 & 2). 
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Papilla formation Papillae beneath some appressoria were observed at very low frequencies in 

all accessions including the susceptible Moneymaker. On average, only 0-9% of the appressoria 

induced papillae. Haustoria were present in at least 50% of the cells where a papilla was 

induced. Therefore, papilla formation seemed not to be an effective nor a common mechanism 

of resistance to O. lycopersicum. 

Sporulation The development of infection-units was not always stopped when epidermal cells, 

in which primary haustoria were formed, had become necrotic. One or more new hyphae were 

usually formed on the other side of the germinating spore, when the growth of the primary 

hypha was blocked in association with necrosis. The secondary hyphae produced new 

appressoria and subsequently new haustoria. Eventually, all haustoria could be associated with 

cell necrosis, and the infection-units may have been arrested completely. Therefore, sporulation 

on print-inoculated plants was considerably poorer in the resistant accessions than in susceptible 

cv Moneymaker. Only slight sporulation was sometimes observed, micro- and macroscopically, 

in/,, parviflorum G 1.1601 and inZ. hirsutum G 1.1606. Sporulation on spray-inoculated plants 

was almost absent in all resistant accessions (Tables 1 & 2). 

Infection process ofO. lycopersicum in ABLs 

During disease tests, the inoculated leaves of the resistant accessions died 1-2 weeks after 

inoculation, probably due to lack of adaptation of these wild species to greenhouse conditions. 

In order to minimize the effect of leaf senescence on the accuracy of disease evaluation, and to 

study the resistance response in an L. esculentum genetic background, ABLs derived from L. 

hirsutum G1.1560 and 1290 were evaluated in two experiments. The results of Experiments 2 & 

3 were similar and only those of Experiment 3 are presented (Table 2). In this experiment the 

levels of resistance were also evaluated in seedlings and in older plants of some ABLs to study 

the effect of plant age. 

Compared to Moneymaker, no significant reduction was observed in spore germination 

on the ABL seedlings and on older plants. As in the wild accessions, appressorium formation in 

ABLs was almost as good as in Moneymaker, irrespective of plant age except for the older plant 

of ABL1560.3. Primary and secondary haustorium formation during the first 65 hours post 

inoculation was not reduced in ABLs, regardless of plant age. Less hypha formation was only 

observed in most of the older plants (Table 2). These observations indicated that the resistance 

in ABLs also did not significantly affect the early fungal development. 

Necrosis of epidermal cells in which primary or secondary haustoria had been formed, 

was also commonly observed in ABLs. So was spreading necrosis except in ABL1560.1 
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seedlings (Table 2). Papilla formation was as low as in wild accessions, and again not an 

important component of resistance. Undoubtedly, the resistance to O. lycopersicum, 

introgressed into cultivated tomato, was also mainly associated with HR. Eventually, almost no 

sporulation was visible on the ABLs. 

The levels of resistance in older plants and seedlings were also compared (Table 2). The 

percentage of germination tended to be lower in the older plants than in the seedlings. The 

frequency of primary (and secondary) haustoria inducing necrosis was much higher in the older 

plants than in seedlings. Also, the print-inoculated leaves of all older plants (and ABL1560.2 

seedlings) became seriously necrotic and died even one week after inoculation, demonstrating a 

possible effect of plant age on the level of resistance. Moreover, the frequency of cell necrosis 

was significantly higher in L. hirsutum Gl. 1560 than in its deriving ABL at the seedling stage. 

This demonstrated that the levels of resistance might also depend on genetic background. 

Discussion 

The resistance to O. lycopersicum in tomato is clearly not based on the inhibition of spore 

germination. This is in accordance with reports that the rate of spore germination of Erysiphe 

polygoni (Cirulli, 1976) and E. pisi (Singh and Singh, 1983) on resistant pea cultivars was the 

same as on susceptible ones, but in contrast to the observation that the germination of E. pisi 

conidia was inhibited on resistant pea plants (Reeser et al., 1983). As in pea to E. pisi (Singh 

and Singh, 1983) and in barley to E. graminis f.sp. hordei (Andersen and Torp 1986), the 

resistance to O. lycopersicum also does not rely on the inhibition of appressorium formation. 

Also, papilla formation was rare and ineffective and hence not an important defence mechanism 

to O. lycopersicum infection in tomato. This is in contrast to the occurrence and effectiveness of 

papilla formation in barley to E. graminis f.sp. hordei (Koga et ai, 1990; Clark et al., 1995) and 

to an inappropriateybrwa specialis E. graminis f.sp. tritici (Tosa and Shishiyama, 1984b), in oat 

(Avena sp.) to E. graminis f.sp. avenae (Carver and Carr, 1977) and in pea to E. pisi (Stumpf 

and Gay, 1989). Apparently, the importance of papilla formation to the resistance mechanism is 

pathosystem dependant. 

As in many other pathosystem (e.g. Greenberg, 1997; Moerschbacher and Reisener, 

1997), the resistance to O. lycopersicum in the wild resistant accessions and in the advanced 

breeding lines is posthaustorial. This resistance is clearly associated with a hypersensitive 

response. This HR is often not confined to the cells in which the haustorium is formed, but may 

also spread to the adjacent cells. This spreading necrosis was also observed in the resistance of 

clover to E. polygoni (Smith, 1938), barley to powdery mildews (e.g. Toyoda et al., 1978; Koga 

et al., 1990; Aist and Bushnell, 1991) and several crop species to rust (Heath, 1981). 
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Posthaustorial resistance associated with hypersensitivity usually indicates a race 

specific major genie resistance (Heath 1981 & 1982). The posthaustorial resistance to O. 

lycopersicum in tomato might be race-specific, like in many other pathosystems. The resistance 

originating from L. hirsutum Gl. 1560 has been proven to be monogenic (Van der Beek et al., 

1994), and may also be race specific and based on a gene-for-gene interaction. However, this 

remains to be demonstrated. Till now, there is no evidence that O. lycopersicum consists of 

races that differ in their ability to infect tomato lines with the various 01 genes. 

There is evidence that the level of resistance to O. lycopersicum is affected by the 

genetic background and by plant development stage. For instance, the frequency of necrosis of 

epidermal cells, in which the haustorium was formed, tended to be lower in L. esculentum 

background (ABLs) than in their wild species, and in seedlings than in older plants. This is in 

agreement with the observation that the level of resistance to E. graminis f.sp. avenae, 

originating from resistant wild species, was reduced in an oat cultivar (Carver and Carr, 1977). 

The observation that cell necrosis was less frequent in ABL seedlings compared to older plants 

may indicate an influence of plant development stage on the level of resistance to O. 

lycopersicum. This is in agreement with the observation that resistance to E. graminis f.sp. 

avenae in oat was expressed more strongly in the fifth than in the first formed leaves (Carver 

and Carr, 1977). In addition, increase in resistance with age has also been reported in soybean 

against Phytophthora megasperma var. sojae (Paxton and Chamberlain, 1969; Ward et al., 

1981), Ph. megasperma f. sp. glycinea (Bhattacharyya and Ward, 1986) and soybean rust 

Phakopsora pachyrhizi (Melching et al, 1988), and in North American cultivars of cowpea 

(Vigna unguiculatd) to the cowpea rust fungus Uromyces vignae (Heath, 1994). Genes for 

complete resistance in cowpea to cowpea rust (Heath, 1994) and QTLs for partial resistance in 

barley to leaf rust Puccinia hordei (Qi et al., 1998) at different plant development stages have 

been identified. Whether the different levels of resistance observed between young and older 

tomato plants in the present study is due to activation of different genes still needs to be 

verified. 

Quantitative differences in the level of resistance observed between the wild 

Lycopersicon accessions may be due to the functioning of different genes. For example, the 

resistance in L. parviflorum G1.1601 on which the rate of HR was low, seems to be different 

from that in other wild accessions, because microscopically, the growth of the fungus during the 

first 65 h.p.i. was similar to that on Moneymaker, but macroscopically, the resistance was 

almost complete (also Lindhout et al, 1994b). This resistance which may be polygenic or 

quantitatively inherited, is supposed to be more durable. In case the resistance of the various 

origins are governed by different genes, pyramiding these genes in one tomato cultivar may 

increase the durability of the resistance in this pathosystem. 
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Abstract 

Nine accessions of three cucurbit species, 10 of eight legume species, three of lettuce (Lactuca 

sativa) and 34 of 14 Solanaceae species were inoculated with a Dutch isolate of the tomato 

powdery mildew fungus (Oidium lycopersici) to determine its host range. Macroscopically, no 

fungal growth was visible on sweet pepper (Capsicum annuum), lettuce, petunia (Petunia spp.) 

and most legume species (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Vicia 

faba, Vigna radiata, V. unguiculata). Trace infection was occasionally observed on melon 

(Cucumis meld), cucumber (Cucumis sativus), courgette (Cucurbita pepo), pea (Pisum sativum) 

and Solarium dulcamara. Eggplant (Solarium melongena), the cultivated potato (Solarium 

tuberosum) and three wild potato species (Solarium albicans, S. acaule and S. mochiquense) 

were more heavily infected in comparison with melon, cucumber, courgette, pea and S. 

dulcamara, but the fungus could not be maintained on these hosts. All seven tobacco (Nicotiana 

tabacum) accessions were as susceptible to O. lycopersici as tomato (Lycopersicon esculentum 

cv Moneymaker), suggesting that tobacco is an alternative host. This host range of the tomato 

powdery mildew differs from that reported in some other countries, which also varied among 

each other, suggesting that the causal agent of tomato powdery mildew in The Netherlands differ 

from that in those countries. Histological observations on thirty-six accessions showed that the 

defense to O. lycopersici was associated with posthaustorial hypersensitive response. 

Key words: Tomato, powdery mildew, Oidium lycopersici, host range, host resistance 
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Introduction 

Many species of powdery mildew can grow on more than 100 host plant species. For example, 

Erysiphe cichoracearum has a host range of at least 1753 plant species (Amano, 1986). Such a 

host range of a powdery mildew species does not necessarily imply that the host range of 

individual isolates is equally wide. A forma specialis or an isolate of a powdery mildew fungus 

may be confined to one plant species, such as the isolates of E. cichoracearum on tomato 

(Abiko, 1983) and tobacco (Reddy et al, 1979), and Sphaerothecafuliginea on eggplant (Abiko, 

1978; Abiko, 1982). However, there are examples of wide host ranges of other formae speciales 

or isolates. For instance, an isolate of an Erysiphe sp. on eggplant could also infect tomato, 

tobacco and, to some extent, cucumber (Whipps and Helyer, 1994). In addition, cucumber, 

melon and courgette were as susceptible as tomato to an isolate of S. fuliginea f. sp. 

lycopersicum (Angelov et al., 1993). 

On tomato several species of powdery mildew have been reported to occur. One of these 

species, Leveillula taurica, is characterized by the development of endophytic mycelium (Palti, 

1988). Another species, Erysiphe orontii (also known as E. cichoracearum and E. polyphaga, 

see Braun, 1987), is exclusively ectophytic, and characterized by the formation of conidia in 

long chains. Since 1986, outbreaks have been reported of another, morphologically distinct, 

species of tomato powdery mildew, both in greenhouses and fields around the world 

(Mieslerova and Lebeda, 1999). This powdery mildew fungus is ectophytic and differs 

morphologically from Erysiphe orontii and Leveillula taurica on tomato (Noordeloos and 

Loerakker, 1989). The causal agent has been identified as O. lycopersicum in some countries 

(e.g. Noordeloos and Loerakker, 1989; Whipps et al., 1998), but was provisionally designated 

Erysiphe sp. in many other countries. In the present paper we will refer to this species as O. 

lycopersici as has been recommended by The International Code of Botanical Nomenclature 

(Mieslerova and Lebeda, 1999). The formation of conidia singly is a key character in 

distinguishing O. lycopersici from E. cichoracearum and Sphaerotheca species, although 

pseudo-chains of 3 to 8 conidia were sometimes observed in humid conditions (Noordeloos and 

Loerakker, 1989). Since in all reports, due to the lack of cleistothecia, no complete description of 

the morphology of the tomato powdery mildew is presented, it remains an open question 

whether the powdery mildews referred to as "Erysiphe sp" (Table 1) may belong to O. 

lycopersici. For example, the tomato powdery mildew in UK, that was reported as E. orontii 

Castagne (Cook et al., 1997), was designated as O. lycopersicum by Whipps et al. (1998). In our 

studies (e.g. Lindhout et al., 1994; Huang et al., 1998), the Dutch isolates of the recently 

occurring tomato powdery mildew, which produce conidiospores singly, were very similar to the 

O. lycopersici as described by Noordeloos and Loerakker (1989). We therefore consider this 

species as the causal agent of the relatively novel powdery mildew on tomato. 
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The origin of the organism(s) causing the recent outbreaks of tomato powdery mildew in 

the world is unknown. The pathogen may originate from the center of origin of tomato in South 

America, and be imported inadvertently to the areas of tomato cultivation. Another possibility is 

that a pathogen "jumped" from its host species to tomato by the acquisition of pathogenicity to 

the latter species, as has been documented for other pathogens like Monilinia (Sclerotiniaceae) 

(Hoist-Jensen et al., 1997), pitch canker (Fusarium subglutinans f. sp.pini) (Storer et al., 1994) 

and rust (Uredinales) (Savile, 1971; Baum and Savile, 1985). Such ajump to tomato may have 

occurred in one or different powdery mildew species or forms, so that this novel "tomato 

powdery mildew" may be of one or various origins. 

All authors agree that all tomato cultivars are susceptible to this newly occurring powdery 

mildew. Reports differ on the host range of the pathogen (Table 1). In some locations the host 

range includes Solanaceae species (Fletcher et al., 1988), and in other locations cucumber 

(Ignatova et al., 1997) (Table 1) and melon (Corbaz, 1993). These differences might be due to 

plant genotypes, environmental conditions or the definition of susceptibility. But these results 

might also indicate existence of genetic variation of the pathogen(s) responsible for the recent 

outbreaks. Therefore, host range studies may also provide clues to the possible origin(s) of the 

pathogen(s). 

The most extensive studies on host range (and morphology) of the recently occurring tomato 

powdery mildew were conducted by Whipps et al. (1998). In their study, based on morphology, 

the causal agent of tomato powdery mildew was designated Oidium lycopersicum (Table 1, 

hereafter we refer to it as British O. lycopersici isolate). They mainly focused on the early stages 

of sporulation (two weeks after inoculation) and the morphology of the causal agent on tomato 

and some alternative hosts. They considered any accession or species that supported sporulation 

to any extent as an alternative host of tomato powdery mildew. In the present study, we 

evaluated the susceptibility of 25 plant species to a Dutch O. lycopersici isolate to see whether 

there is/are alternative host(s) of this pathogen. We consider those plant species as alternative 

hosts of O. lycopersici only if they allow the fungus to successfully reproduce for more than one 

generation. In order to better understand the interaction between O. lycopersici and plant 

species outside the genus Lycopersicon, we investigated histologically the infection process of 

the fungus on, and the responses of, these plant species. 

Materials and methods 

Plant and fungal material 
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Fifty-six accessions of 25 plant species were used in this study (Table 2). Eggplant (Solarium 

melongena), sweet pepper (Capsicum annuum), cucumber (Cucumis sativus), melon (Cucumis 

meld) and courgette (Cucurbita pepo) plants were raised in greenhouses at 24±2 °C, lettuce 

(Lactuca sativa) at 18±2 °C, tomato and other Solanaceae accessions at 20±2 °C, and legumes 

at 20±1 °C in a growth chamber with a 16-h day length. The light intensity was 10-40 Wattm"2 

in the greenhouses depending on the weather, and at least 20 Watt.m"2 in the growth chamber. 

Three field isolates of O. lycopersici were collected from infected commercial tomato plants 

at three locations of The Netherlands (Lindhout et al., 1994). The stocks of these isolates were 

maintained on tomato cv Moneymaker in separate growth chambers at 20±1 °C with 70±3% RH 

and 16-h day length with the same light intensity as described above. 

Inoculation tests 

Two inoculation tests (IT) were conducted, according to a complete randomized block design 

with four blocks for IT1 and six blocks for IT2, to evaluate the susceptibility of these accessions. 

Each block contained one plant per genotype as an experimental unit. L. esculentum cv 

Moneymaker served as susceptible control. In each test, one to three additional plant(s) of each 

accession were mock-inoculated with tap water, and added randomly to the blocks of inoculated 

plants. In these experiments, all plants were inoculated at the four true leaf stage. Plants in two 

blocks of IT1 and in three blocks of IT2 were inoculated by spraying with a conidiospore 

suspension (3-4xl04 conidia.ml"1). The inoculum was prepared by washing heavily infected 

tomato leaves in tap water and used immediately. Because of their smooth and waxy leaf surface 

on which inoculum drops easily fell off, all the legume plants were inoculated by shaking the 

sporulating tomato leaves above them. To ensure a high density of conidiospores on leaf 

segments for histological studies, at least three leaves per plant (except for legumes) in other 

blocks of each test were print-inoculated by gently pressing Oidium-iniccX&i tomato leaves onto 

the healthy leaves (Huang et al., 1998). The inoculated plants were grown in a well-isolated 

greenhouse at 20±2 °C with 70±10% RH under natural light supplemented with artificial light to 

16 hours per day. The light density was 10-40 Watt.m"2 depending on the weather. 

Sampling and staining 

For microscopical study on the infection process of O. lycopersici, leaf samples of 1x3 cm2 were 

cut at 41 and 65 hours after inoculation (hai) from the print-inoculated leaves of all accessions or 

some representatives of each species, excluding legumes. They were fixed in acetic acid/ethanol 

(1:3, v/v), stained in 0.03% trypan blue in lactophenol/ethanol (1:2, v/v), and cleared in a nearly 

saturated aqueous solution of chloral hydrate (Huang et al., 1998). 
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Macro- and microscopic observations 

To determine the susceptibility of each accession (Table 2), sporulation and plant tissue necrosis 

were evaluated macroscopically at 7, 10,14,21 and 28 days after inoculation (dai). Leaf 

samples were analyzed using a phase-contrast light microscope. Fungal growth parameters were 

recorded, including percentage of conidiospore germination, percentage of infection units (IUs) 

which formed secondary hyphae, number of hyphae per IU, percentage of IUs which produced 

secondary haustoria and number of secondary haustoria per IU (Table 3) as described previously 

(Huang et at., 1998). Thirty IUs per leaf sample were observed. An infection unit refers to a 

germinated conidiospore that produced at least one primary appressorium. 

Reproduction ofO. lycopersici 

To check conidium production of O. lycopersici on different plant species, three infected plants 

of eggplant and tobacco were separately transferred from the greenhouse to two growth 

chambers. Infected leaves of eggplant and tobacco plants were used as inoculum sources to 

inoculate tomato cv Moneymaker plants. Transfers of tomato-tobacco-tomato were cycled over 

a five-month period. Conidiospore production on tomato, eggplant and tobacco was measured 

by applying a drop of 15 ul of 0.5% Tween solution to a sporulating leaf area of about 0.2 cm2. 

This drop of solution was re-collected, and the conidiospore concentration in this drop was 

measured by using a haemocytometer. Conidiospore shape and size as well as conidiospore 

arrangement (i.e. singly or in chains) were also observed microscopically. 

Statistical analysis 

All data were statistically processed by ONEWAY model using a computer software SSPS5.0. 

Duncan's Multiple Range Test (DMRT) was applied to compare means. 

Results 

Macroscopical evaluations of susceptibility 

In total, 25 plant species were evaluated in two inoculation tests for their susceptibility to a 

Dutch O. lycopersici isolate. The choice of plant species was mainly based on the earlier studies 

listed in Table 1. During ITs, special care such as using over-pressure growth chambers or 

greenhouse compartments with spore proof ventilation system, was taken to avoid inadvertent 

cross contamination. Since the mock-inoculated plants never showed any sign of infection, the 
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observed infections were due to the inoculum applied. In general, there was no variation in 

susceptibility within species, except for melon {Cucumis meld). However, a large variation 

occurred between species. Based on the susceptibility, compared with Moneymaker, the 25 plant 

species could be grouped into four classes (Table 2). 1) Immune: no infection observed. 2) 

Slightly susceptible: infection only occasionally observed. 3) Moderately susceptible: early 

sporulation similar to that on Moneymaker but nearly disappearing within two to three weeks. 

Within this class, sporulation on eggplant was most abundant compared to that on other species. 

4) Susceptible: sporulation consistently similar to that on Moneymaker, even several weeks after 

inoculation. 

Infection process ofO. lycopersici 

The infection process of O. lycopersici on different accessions was mainly investigated from the 

print-inoculated leaf samples collected at 65 hai, unless indicated otherwise. Because the trend 

of variation for the fungal growth parameters between the two ITs was similar and there were 

only two replicates in IT1, we only present data obtained in IT2. 

Germination of conidia Significant variation in the percentage of conidiospore germination 

within plant species was only observed in lettuce and S. dulcamara (Table 3). Except for one 

accession each of melon, sweet pepper, lettuce, two of S. dulcamara and all the three of 

courgette, conidiospores germinated equally well on the remaining plant species or 

accessions as on the susceptible control Moneymaker. Thus, conidiospore germination was 

not affected on most of the nonhost plants. 

Fungal growth Typically, each conidiospore produced a short germ tube, ending in a 

primary appressorium. This structure is referred to as an infection unit (IU), from which a 

primary haustorium was formed. From the primary appressorium or from the other pole of 

the conidiospore, a first hypha (primary hypha) arose, that formed small opposite, lobe-

shaped secondary appressoria from which secondary haustoria arose. Later, the primary 

hyphae branched to secondary hyphae. We refer to all haustoria and hypha of higher order 

than primary as secondary (Huang et al., 1998). At 41 hai, 62-100% of IUs had formed a 

primary haustorium. No significant difference was found in haustorium formation within or 

between plant species at that time. This indicates that there was no effective prehaustorial 

resistance. At 65 hai, in general, the highest values of other growth parameters were obtained 

from tomato (cv Moneymaker), tobacco, eggplant, four wild potato species (Solanum 

albicans, S. acaule, S. mochiquense and S. mammosum), melon and cucumber. The 

development of the fungus on lettuce, sweet pepper and petunia was very poor (Table 3). 

These observations corresponded well with the macroscopic evaluations (Table 2). 
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Table 3. Development of O. lycopersici on different plant species and accessions, expressed as 
percentage of germination, induction of necrosis by primary haustorium, percentage of 
infection-units (IU) forming secondary hyphae, number of hyphae per IU, formation of 
secondary haustorium and number of haustoria per IU at 65 hai (means over 30 IUs) 

Susceptibility 
class1 

1 

1 
1 

1 
1 

2 

2 

2 

2 

2 

3 

3 
3 
3 
4 

4 

Plant species and accessions 

Capsicum PI 123469 

anmmm P n 8 3 9 2 2 

PI187331 

Cucumismelo PI179895 
Lactuca saliva CGN14653 

CGN05237 

CGN04884 

Petunia hybrida 914750153 
P. nyctaginiflora 954750063 

954750067 

C. melo PI125956 

PI136223 

Cucumis sativus PI222782 

PI206953 

PI204692 

Cucurbita pepo Sardanz 
Albina 

Marba 
Solanum 914750008 
dulcamara 914750046 

924750023 
S. villosum ssp. 814750090 
puniceum 
S. melongena PI286107 

PI175917 

PI358232 

S. albicans PI365376 
S. mochiquense BGRC32672 
5. mammosum 924750111 
Nicoliana 904750309 

tabaum 904750310 

904750318 

Lycopersicon Moneymaker 
esculentum 

Germination 
(%) 
636c* 

47a6 

6Abc 

(Abe 
706c 

57a6c 

33a 

87c 
87c 

88c 

726c 

56a6 

686c 

646c 

756c 

55o6 

56e6 

53a6 
716c 

33a 
29a 
636c 

88c 

89c 

89c 

88c 
846c 
816c 
816c 

726c 

826c 

85c 

Sec. hyphae 

(%) 
52efghi 

3abc 

29defg 

IXhijklm 
lab 

lab 

0a 

tabed 
licdef 

32defg 

14hijklm 

IViijklm , 

SOefgh 

Slhijklmn 

59ghijkl 

52fghij 

3Sdefg 

SOefgh 
S4fghijk 
34defg 
3\defg 
\Sbcde 

%3ijklmn 

SAiklmn 

SSlmn 

93mn 
llhijklmn 
%2hijklmn 
96mn 

91n 

98n 

98« 

#Hyphae 

\.60defghi 

OAOabc 

l.Ude 

2A0ghijk 
0.13a 

0.10a 

0.20ai 

0.37a6c 
O.lObcd 

l.Oldef 

2.31ghij 

2.63hijkl 

\A3defg 
2A0ghijk 

l.ZOefghi 

Mlefghi 

X.Olcde 
\.60fgh 
2.23/ghi 
\.\3def 
0.90cde 
l.OScdef 

3.60jklmn 

3.60jklmn 

lllklmn 

3.93/mn 
2.95ijklm 
lllhijkl 
3.90/mn 

4.27mn 

5.20m« 

4.57« 

Sec. haustoria 

(%) 
esfghijk 

lOabc 

36cdef 

S2ijkl 
6ab 

0a 

4ab 

Wbcd 
llcde 

31defg 

SSjklm 

12ijk 

66hijk 

9\klm 

86//*/ 

Slefghi 

3%defg 

6\fghij 
Slijk 
licdefgh 
yiedei 
yiedefgh 

«9jklm 

86//*/ 

9\klm 

93klm 
S2ijkl 
81//*/ 
92klm 

94/m 

97/m 

100m 

#haustoria 

l.Zefghi 

O.labc 

0.6bcde 

3.0ijk 
O.labc 

0.0a 

0.1 a6 

0.2a6c 
OAbcd 

0.6cdef 

2.7/u/ 

3Aijkl 

2.0ghi 

3.2ijkl 

2.5hij 

\.9ghi 

O.lcdef 
\Mefgh 

2.\ghi 
\-3defg 
O.fxdef 
O.Sbcde 

5.4/m 

4.8*/m 

5.4/m 

4.5/Wm 
2.9hijk 
2.3ghi 
3.5ijkl 

4.3jklm 

5.9m 

5.9m 

Necrosis 
(%)2 

smjki 

3\efghij 

30efghij 

30efghij 
74*/ 

5&ijkl 

64jkl 

2%defghij 
23cdefgh 

21cdefg 

lOabcde 

l&cdefg 

40fghijk 

2%defghij 

labed 

23cdefg 

4abcd 
32efghij 
A6ghijkl 
22cdefgh 
ISbcdef 
78/ 

24cdefgh 

11 cdefg 

\3bcdef 

\4bcdef 
23cdefghi 
24cdefgh 
0a 

4a6c 

0a 

l a 

1) Class 1: Immune; class 2: Slightly susceptible; class 3: Moderately susceptible; class 4: 

Susceptible, (see Table 2). 

2) Except for tobacco and tomato, almost all infected leaf areas of other plant species became 

necrotic after 14 dai. 

Means followed by a different letter in each column are significantly different at 5% level, 

determined by Duncan's multiple range test after arcsine (for percentages) and square root 

(for whole numbers) transformation. 

file:///Sbcde
file:///A3defg
file:///./3def
file:///Mefgh
file:///-3defg
file:///3bcdef
file:///4bcdef


Chapter 3 47 

Defense mechanism Papilla formation induced by primary appressoria was only observed on 

Petunia hybrida 804750083 in IT1, which was not tested in IT2 because of lack of seeds. 

This indicated that papilla formation might be important in the resistance in this petunia 

accession. In the other resistant accessions, cell necrosis was the predominant response of the 

epidermal cells to the fungal infection. The percentage of primary haustoria which induced 

cell necrosis (hypersensitive reaction, HR), varied considerably between accessions (Table 

3). Except for tobacco, and one accession each of cucumber and courgette, the percentage of 

cell necrosis was significantly higher than in tomato. The highest percentage of cell necrosis 

were recorded in S. villosum ssp. puniceum, lettuce, sweet pepper, and one accession each of 

cucumber and S. dulcamara. This indicated that the resistance in these accessions was 

associated with HR. However, since the percentage of cell necrosis in courgette cv Albina, 

cucumber PI204692 and other petunia accessions was relatively low, non-host resistance of 

these accessions to O. lycopersici may be based on a non-hypersensitive type of resistance. 

Asexual reproduction ofO. lycopersici 

Considering the early abundant sporulation on eggplant and tobacco, cross-inoculation was 

carried out to confirm the possible adaptation of O. lycopersici from tomato to these species. 

Conidiospores from eggplant and tobacco were used to inoculate tomato plants by print-

inoculation. Sporulation on tomato, inoculated with conidiospores from tobacco, occurred as 

rapidly as from tomato to tomato, enabling a continuous host switch between tomato and 

tobacco over a five-month period of experiments. In cross-inoculation from eggplant to tomato, 

sporulation was retarded seven days as compared with that from tomato to tomato. 

Conidiospores were still produced singly on eggplant and tobacco; the shape and size of 

conidiospores produced on eggplant and tobacco were similar to that on tomato. 

The number of conidiospores produced on tomato, tobacco and eggplant at two to three 

weeks after inoculation, was 6.0xl04,4.5xl04 and l.lxlO4 conidiospores.cm"2 respectively, 

when these plant species were inoculated with conidiospores produced on tomato. The number 

of conidiospores produced on eggplant was significantly lower than on tomato and tobacco, but 

the difference between tomato and tobacco was not significant. This suggests that tobacco is as 

good as tomato in supporting O. lycopersici reproduction. 

Discussion 
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In the present study, tobacco may be the only species besides tomato that can be considered as 

host of O. lycopersici because the fungus could successfully maintain a polycyclic infection. 

Though eggplant and some other Solanaceae species also supported early infection to some 

degree, they could not be considered hosts because the fungus could not be maintained on these 

species. The Dutch isolate was not pathogenic to sweet pepper nor to cucurbits. This was in 

accordance with the host range reported for a British (Fletcher et al, 1988) and a Californian 

isolate (Arredondo et al., 1996; Table 1). Like the Californian isolate (Arredondo et al., 1996), 

the Dutch isolate was not pathogenic to cowpea (Vigna unguiculata). The other studies on host 

ranges either included fewer plant species or gave different results, such as pathogenicity to 

cucurbits and/or eggplant (Table 1). The differences in host range may be due to different 

genotypes, environmental conditions and particularly due to the definition of susceptibility (e.g. 

Whipps et al., 1998 and references herein). In the present study, initially, pea appeared to be 

susceptible to O. lycopersici. Even though most of the inoculation tests were conducted in 

isolated growth chambers or greenhouse compartments with spore-proof filters, detailed cross-

infection experiments showed that this result was due to contamination with pea powdery 

mildew. This stresses the need for demonstrating host status of a plant species by repeated cross-

infection cycles of the fungus between its original host and the other plant species. In our study 

only tobacco met these criteria and is considered as an alternative host for O. lycopersici. 

The size and shape of conidiospores of the Dutch O. lycopersici isolate formed on tobacco 

and eggplant were identical to that on tomato. This is in agreement with the constant size of a 

British O. lycopersici isolate on alternative hosts (Whipps et al., 1998). In addition, 

conidiospores of the Dutch isolate were still produced singly on tobacco and eggplant. This is in 

contrast to other studies in which conidiospore arrangement varied on different hosts (Fletcher et 

al., 1988; Whipps and Helyer 1994). Such a morphological change and the lack of the sexual 

stage make the present taxonomic identification of this powdery mildew fungus ambiguous. 

Indirect approaches such as host range tests may be helpful to determine the relationship of the 

tomato powdery mildew with other powdery mildew species (also Cook et ah, 1997). 

The defense response to O. lycopersici in most plant species and accessions tested in this 

study seems not to be based on the inhibition of conidiospore germination. This is in agreement 

with the resistance in pea cultivars to pea powdery mildew (Cirulli, 1976; Singh and Singh, 

1983) and in barley to its nonpathogenic powdery mildew E. dehoracearum, but differs from 

the resistance mechanism in cucumber to E. graminis (Staub et al., 1974). Apparently, leaf 

properties of the plants are unlikely to be critical to the germination process of O. lycopersici 

and, therefore, are probably not an important factor in determining the host range. The resistance 

to O. lycopersici in the nonhosts is also not based on the inhibition of the formation of a primary 

haustorium. This resembles the resistance in cucumber to E. graminis, but differs from that in 
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barley to E. cichoracearum (Staub et al., 1974). The defense response is associated with a 

posthaustorial hypersensitive response, and maybe other, non-hypersensitive, defense 

mechanism(s). This is in agreement with the resistance in cucumber to E. graminis (Staub et al., 

1974), but in contrast to the common observation that the growth and development of rust and 

powdery mildew fungi ceases in nonhost plant species before or during formation of the first 

haustorium (Johnson etal., 1982; Elmhirst and Heath, 1989). 

O. lycopersici has been only occasionally mentioned in the literature since its first 

description in Australia one century ago (Blumer 1967). Apparently, it did not cause heavy 

damage in tomato until 1986. It is an intriguing question whether the O. lycopersici causing the 

recent outbreaks Europe belongs to the same species as the one found in Australia, or whether it 

originates from powdery mildews of other plant species. Currently, we are investigating the 

genetic differences in DNA composition among powdery mildew isolates including tobacco 

powdery mildew by applying molecular markers. Such DNA fingerprints may provide further 

indication about the origin of the causal agent(s) of the recently occurring tomato powdery 

mildew. 
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Abstract 

Tomato powdery mildew has become an important disease in tomato production around the 

world. Though in some countries such as the Netherlands and the UK the causal agent has been 

morphologically identified as Oidium lycopersici, its identity still remains unclear in many other 

countries. The origin of the pathogen is unknown. The aim of the present study was to assess the 

genetic variation of 11 field isolates of tomato powdery mildew from Canada, Czech Republic, 

France, Hungary, the Netherlands and USA, and to look for a possible origin of tomato powdery 

mildew by comparing the AFLP fingerprints of tomato powdery mildew with that of 12 other 

powdery mildew species. We also recorded morphological features of the powdery mildew 

isolates i.e. the size and the arrangement of conidial spores and compared these data with DNA 

polymorphisms for taxonomic purposes. We did not find any correlation between AFLP 

fingerprints and size or arrangement (i.e. solitary or in chains) of conidial spores. Our results 

demonstrated that 1) O. lycopersici isolates have many AFLP bands in common, and thus are 

considered to be genetically very similar; 2) O. lycopersici has hardly AFLP markers in 

common with other powdery mildew species. We conclude that there was only one anamorph 

of powdery mildew responsible for the recent outbreaks on tomato. 

Keywords: Tomato, powdery mildew, Oidium lycopersici, genetic variation, AFLP 

fingerprinting, similarity analysis 
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Introduction 

Since 1986, tomato powdery mildew (O. lycopersici) has become an important disease in 

tomato production around the world (Whipps et al, 1998; Huang et al., 2000). Most modern 

tomato cultivars are susceptible. Both Pseudoidium (Oidium with solitary conidia) and 

Euoidium (Oidium with catenary conidia) anamorphs were repeatedly reported as causal 

agents of these recently emerging epidemics. However, published data on the morphology of 

tomato powdery mildew were often contradictory which hampers their exact identification 

(Kiss et al., 1999). Based on the morphology of the asexual stage, the causal agent in the 

Netherlands and the UK has been identified as Oidium lycopersicum (Noordeloos and 

Loerakker, 1989; Whipps et al., 1998; recently renamed Oidium lycopersici by Mieslerova and 

Lebeda, 1999[Mieslerova and Lebeda, 1999]), which was described in Australia for the first 

time in 1888 and has been only occasionally mentioned in the literature till 1986 (e.g. Blumer, 

1967). The origin(s) of the organism(s) causing the recent outbreaks of tomato powdery mildew 

in the world is unknown. It is an intriguing question whether the O. lycopersici causing the 

recent outbreaks at least in the Netherlands belongs to the same species as the one found in 

Australia, or whether it originates from powdery mildews of other plant species which extended 

their host range to include tomato. Conflicting reports on morphology and host range (e.g. 

Whipps et al., 1998; Huang et al., 2000) suggest that more than one powdery mildew species, 

form or race are responsible for the recent outbreaks. However, since the morphology of the 

fungus is highly variable and its host ranges reported so far vary, it is still doubtful whether 

such differences reflect genetic diversity of the pathogen(s) reported worldwide. Therefore, 

DNA analysis is a prerequisite to determine the genetic variation among tomato powdery 

mildew isolates collected from different geographical regions of the world, and to trace the 

possible relationship of O. lycopersici with other powdery mildew species. This knowledge may 

enable us to speculate which related species is the progenitor of O. lycopersici. Because the 

number of anamorph(s) of the causal agent will strongly influence breeding strategies, 

knowledge of genetic differences of tomato powdery mildew(s) will be of great importance in 

tomato breeding programmes for powdery mildew resistance. 

AFLP™ is a powerful PCR-based technique for detecting differences between 

organisms (Vos et al., 1995). It is advantageous over other molecular techniques like RFLP, 

RAPD and rDNA sequence analyses in terms of time consumption, amount of polymorphism 

detected, ability to detect small variation within species and reproducibility. It has been 

widely used in bacteria, fungi, nematodes, plants and vertebrates. For example, AFLP has 

been applied in fungi to detect intraspecific variation between isolates (Arenal et al., 1999; 

Kaplan et al., 1999), within a single lesion (Schnieder et al., 1998) and even between spores of 

the same isolate (Rosendahl and Taylor, 1997). In addition, AFLP has been used to classify 

isolates (Wang et al., 1998), to monitor populations (Justesen and Hovmoller, 1999; Kaplan 
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et al., 1999) and to construct linkage maps (Van der Lee et al., 1997; Bonants et al, 1998). It 

can be concluded from these reports that APLP technique is very powerful in detecting 

genetic variation within a species and among closely related species. 

In the present study, we applied AFLP analyses to determine the genetic variation 

among tomato powdery mildew isolates from Canada, The Czech Republic, France, Hungary, 

The Netherlands and the USA, and between tomato powdery mildew and other powdery mildew 

species. We also determined the size and the arrangement of conidial spores of these powdery 

mildew isolates, and compared the genetic variation with the morphological variation. 

Materials and methods 

Fungal isolates 

All O. lycopersici isolates used are presented in Table 1 and Fig. 1 & 2. Five Dutch O. 

lycopersici {01) isolates (0/-EZ, 0/-DR, 0/-gr, 0/-PV and Ol-RZ) were collected in 1996 from 

infected tomato plants in greenhouses in three regions at a distance of about 100 km from each 

other. 0/-DR and Ol-RZ were from a region in the west of The Netherlands at a distance of 20 

km. OZ-gr and 0/-PV were from Wageningen at 3 km from each other and Ol-EL was from 

Enkhuizen. To obtain sufficient amount of spores for DNA extraction, they were propagated 

separately on Lycopersicon esculentum cv Moneymaker in spore proof over-pressure growth 

chambers with a photoperiod of 16 hr, at 20±2 °C and 70±5% relative humidity (RH). Other 

isolates of tomato powdery mildew were obtained from Canada (0/-Can, 1997), The Czech 

Republic (OZ-Cze, 1997), France (named locally as Et-1,1998), Hungary (0/-Hun, 1998) and 

Florida, USA (OZ-Flo, 1997), respectively. In addition, a Dutch isolate (0/-tob) originating 

from OZ-DR but propagated on tobacco instead of tomato was included. 

All other powdery mildew species used are also presented in Table 1 and Fig. 1 & 2. 

Erysiphe pisi originated from UK had been maintained on pea cv Finale since 1997 under 

isolated conditions as for the Dutch O. lycopersici isolates. Powdery mildews of Brassica 

(Brassica rapa = B. campestris), lettuce {Lactuca sativa) and potato {Solarium tuberosum) 

were collected from the respective naturally infected host plants in greenhouses, and lupine 

{Lupinus mutabilis) in the field of Wageningen University, The Netherlands. Begonia 

powdery mildew {Begonia sp.) was collected from an indoor window-sill begonia plant. 

Powdery mildews of knot-grass {Polygonum aviculare), bear's paw {Heracleum 

mantegazzianum), hemp nettle {Galeopsis sp.), plantain {Plantago major) and burdock 

{Arctium lappa) were collected from naturally grown plants in the surroundings of 

Wageningen, the Netherlands. Conidial spores of cucumber {Cucumis sativus) powdery 

mildew {Sphaerotheca fuliginea) were obtained in 1996 from the Lab of Phytopathology, 

Wageningen University, The Netherlands. Conidial spores of tobacco {Nicotina tobaccum) 

powdery mildew {Erysiphe cichoracearum) were obtained in 1998 from Plant Protection 
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Institute of the Hungarian Academy of Sciences, Budapest, Hungary. The conidial spores of 

the other powdery mildew species were collected during the summer of 1997. All spore 

samples were stored at -20 °C till DNA extraction. 

Morphological measurement 

The size of conidial spores, suspended in water, was measured by using a Nikon microscope 

(400x). Spore arrangement on infected leaves was checked inplanta under microscope 

(lOOx) without any treatment. 

DNA extraction 

DNA was extracted directly from 20 mg of conidial spores of each isolate by using the 

cetyltrimethylammonium bromide (CTAB) procedure described by Chen et a/.(1993) with a 

small modification: after RNA digestion, only one precipitation step was carried out. 

AFLP analysis 

The AFLP™ analysis was conducted as described by Vos et a/.(1995). After digesting the 

fungal genomic DNA with the rare cutter EcoRl (G/AATTC) and the frequent cutter Msel 

(T/TAA), the DNA fragments were ligated with the corresponding adapters to produce 

primary templates (Table 1). After ligation, pre-amplification was carried using primers E01 

and M01 with one selective base (+1), to generate secondary templates. Secondary 

amplification (active PCR) was executed using nine primer combinations of primers with two 

(+2) or three (+3) selective bases: four +2/+2 (E22/M21, E22/M22, E22/M23 and E22/M24), 

two +2/+3 (E22/M50 and E22/M51) and three +3/+3 (E35/M48, E35/M50 and E35/M59) 

combinations (Table 1). 

Data scoring and similarity analysis 

AFLP markers were scored as presence or absence of an amplification products (bands). 

Similarity was analyzed with the UPGMA by using computer software Treecon (Van der 

Peer and De Wachter, 1997). Data of the measurement of the spore size were statistically 

processed by ONEWAY model and Duncan's Multiple Range Test (DMRT) to compare means 

using a computer software SSPS5.0. 

Results 

Size and arrangement of conidial spores 

In order to determine to what extent the morphology of powdery mildews was diagnostic for 

classification, the size and arrangement of conidial spores were recorded (Table 2). Based on 

conidium arrangement (catenary or solitary), these powdery mildews were classified into two 
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groups: one with solitary conidial spores (Group \,Pseudoidium) and another with catenary 

conidial spores (Group 2, Euoidium). For the purpose of this paper, we refer to the tomato 

powdery mildew isolates as Group la, powdery mildews with solitary conidial spores but not 

from tomato as Grouplb and those with catenary conidial spores as Group 2. Therefore, the 

powdery mildews were classified into three groups: la) tomato powdery mildew isolates -

Pseudoidium; lb) other powdery mildew with solitary conidial spores - Pseudoidium; 2) 

powdery mildew with catenary conidial spores - Euoidium (Table 2). Though there was a 

tendency that conidial spores of Group lb were longer than that of Groups la and 2, a great 

variation in the size of conidial spores was observed within each group. The ratio of length 

over width of Group 2 tended to be the smallest if compared with the other two groups, which 

were very similar to each other. But there was almost no difference of this ratio between 

lettuce powdery mildew in Group 2 and other species in Group 1 (Table 2). Therefore, the 

size of conidial spores was not sufficiently diagnostic for distinguishing these powdery 

mildew species. 

Table 1. Sequences of AFLP primers and adapters 

Primers/adapters 
Msel adapter 

MOO (universal primer) 
Msel + 1 primer M01 
Msel + 2 primers 

Msel + 3 primers 

M21 
M22 
M23 
M24 
M48 
M50 

M51 

M59 
M62 

Ecol adapter 

E00 (universal primer) 
£coRI + 1 primer E01 

£coRI + 2 primer E22 

EcoSl + 3 primer E35 

Sequences' 
5'-GACGATGAGTCCTGAG-3' 

3'-TACTCAGGACTC AT-5' 
GATGAGTCCTGAG TAA 

MOO + A 
MOO + CA 
MOO + CC 
MOO + CG 
MOO + CT 
MOO + CAC 
MOO + CAT 

MOO + CCA 

MOO + CTA 
MOO + CTT 
5'-CTCGTAGACTGCGTACC-3' 

3'-CTGACGCATGG TTAA-5' 
GACTGCGTACC AATTC 

EOO + A 

E00 + AC 

E00 + ACA 

DNA sequences are always from 5' to 3' orientation unless indicated otherwise. 
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Table 2. Size and arrangement of conidial spores of powdery mildews (mean of 100 conidia) 

Powdery mildew 
isolates'1 

CW-PV(la) 
0/-DRg(la) 
0/-DR(la) 
0/-EZ(la) 
OZ-RZ(la) 
0/-gr(la) 
0/-Can(la) 

OZ-Cze(la) 

0/-E24(la) 

0/-Flo(la) 
E.pisi ( lb) 
Lupine (Lupinus 
mutabilis) ( lb) 
Begonia (Begonia sp.) 
(lb) 
Brassica (Brassica 
compestris) ( lb) 
Knot-grass (Polygonum 
aviculare) ( lb) 
Bear's paw (Heracleum 
mantegazzianum) ( lb) 
Burdock (Arctium 
lappa) (2) 
Hemp nettle 
(Galeopsis sp.) (2) 
Lettuce (Lactuca 
saliva) (2) 
P\antain(Plantago 
major) (2) 

Origin2' 

The Netherlands 
The Netherlands 
The Netherlands 
The Netherlands 
The Netherlands 
The Netherlands 
Canada(R. 
Cerkauskas) 
Czech Republic 
(A. Lebeda) 
France (M. 
Bardin/P. Nicot) 
USA (J. Scott) 
UK (T . Carver) 
The Netherlands 

The Netherlands 
(C. Anker) 
The Netherlands 

The Netherlands 

The Netherlands 

The Netherlands 

The Netherlands 

The Netherlands 

The Netherlands 

Spore 
arrangement 
Solitary 
Solitary 
Solitary 
Solitary 
Solitary 
Solitary 
Solitary4' 

Solitary 

Solitary 

Solitary 
Solitary 
Solitary 

Solitary 

Solitary 

Solitary 

Solitary 

Catenary 

Catenary 

Catenary 

Catenary 

Length (|im)3> 

39.7 (4.49) ghi 
38.0(6.72) fg 
36.4(5.72) cdef 
38.1 (4.49) fg 
38.7(3.30) fgh 
35.3 (4.71) bcde 
36.9(4.22) cef 

35.2(4.31) d 

33.9(5.53) ab 

35.8 (4.55) cde 
43.8 (4.45) j 
37.8 (3.83) efg 

40.7(6.18) hi 

41.7(3.08) ij 

46.4 (7.36) k 

38.0(3.06) fg 

32.8 (4.48) ab 

34.8 (2.91) bed 

32.1 (2.82) a 

31.9(3.54) a 

Width (\sm) 

20.1(1.20) ghi 
19.7(1.35) efg 
19.5(1.14) efg 
20.1 (0.40) ghi 
20.7(1.04) ij 
20.3 (0.54) ghi 
19.3(1.63) ef 

19.3(1.91) ef 

18.7(1.56) d 

19.7(1.65) fn 
17.2(2.11) b 
19.8 (0.48) efgh 

21.8(1.70) k 

14.7 (2.55) a 

18.5(1.20) cd 

19.9(0.55) fghi 

21.3(1.68) jk 

20.5(2.14) gi j 

17.9(1.79) be 

18.9(1.60) de 

Length/width 

2.04(0.42) e 
1.92(0.28) cde 
1.84(0.27) bed 
1.90(0.23) cde 
1.87(0.18) bcde 
1.71 (0.23) b 
1.92(0.25) de 

1.83(0.24) bed 

1.83(0.33) bed 

1.81(0.25) be 
2.61 (0.58) f 
1.90(0.23) cde 

1.89(0.35) cde 

2.88(0.47) g 

2.04(0.42) f 

1.91(0.15) cde 

1.53(0.24) a 

1.70(0.19) b 

1.82(0.29) bed 

1.70(0.22) b 

1) In case the causal agent is not clear to the authors, only the host plant on which it was 

collected, is mentioned. Abbreviations: 0/-PV, (9/-DR, 0/-EZ, Ol-RZ are four Dutch 

isolates of Oidium lycopersici (Ol) on tomato maintained in growth chambers; 0/-DRg is 

the same as 0/-DR but propagated in a greenhouse (18-25 °C, 60-90% RH); OZ-Can, Ol-

Cze, (9/-E24, 0/-Flo are isolates collected in Canada, Czech Republic, France and Florida 

respectively; 0/-gr: naturally occurring powdery mildew on tomato in a greenhouse (15-35 

°C, 40-70% RH) in Wageningen. Figures in bracket indicate the grouping number. 

2) Unless being indicated in the bracket, they were collected by the authors. 

3) Figure in bracket is standard deviation. In each column different letters indicate a significant 

difference at 5% level according to Duncan's multiple range test. 

4) Short chains of 3-5 spores were more often observed on tomato leaves infected with OZ-Can 

than with other Ol isolates. 



60 Genetic variation of Oidium lycopersici 

AFLPfingerprints 

Most molecular studies with fungi have utilized DNA extracted from mycelium. Because 

powdery mildews are obligate parasites and are difficult to grow on artificial media, DNA was 

extracted directly from conidial spores using the modified CTAB procedure (4). By using this 

protocol, an average of 100 ng (10-400 ng) of DNA was obtained from 20 mg of conidial 

spores. The obtained DNA was used for generating AFLP fingerprints to study the genetic 

differences among powdery mildew species. 

In order to determine the reproducibility of the AFLP technique in generating 

fingerprints for powdery mildews, identical AFLP analyses were applied to DNA samples 

extracted on different days but from the same Ol isolates (0/-PV and <9/-DR) and to DNA 

templates at different concentrations of the same DNA samples. No difference was observed 

among the fingerprints when using the DNA samples extracted on different days and the 

templates at different concentrations of the same DNA (not shown). This indicated that the 

AFLP technique was reproducible and thus suitable to measure genetic difference between 

powdery mildews. In addition, AFLP primers with different number of selective bases were 

compared on same set of DNA templates. In general, the more selective bases used, the fewer 

amplification products (bands) were observed, but the more polymorphism was detected. For 

example, fingerprints generated by using a +2/+2 primer combination consisted of more bands 

than using +3/+3 primer combination, and these fingerprints were identical for most Ol isolates 

except for Ol-CZ, Ol-tob and 0/-can (Fig. 1). When using a +3/+3 primer combination, fewer 

amplification products but more polymorphisms were obtained (Fig. IB). In order to select the 

most informative AFLP markers, particularly among tomato powdery mildew isolates, we 

choose +3/+3 primer combinations to study the genetic variation among and between powdery 

mildew species. 

The AFLP fingerprints of all powdery mildew species analyzed were very different 

(hardly any band in common) from each other (Fig. IB). Thus, there was not any powdery 

mildew species which had similar AFLP fingerprints as the tomato powdery mildew isolates. 

This indicates the lack of relatedness between tomato powdery mildew and any other 

powdery mildew species. Moreover, these fingerprints also could not be classified according 

to the morphology groups of the fungi. This indicates that AFLP is too sensitive and hence is 

not useful for genetic similarity studies between powdery mildew species. However, as 

AFLPs were informative within O. lycopersici, further similarity analyses were focused on Ol 

isolates including pea powdery mildew as an out group. 

For each of the three primer combinations E35/M48, E35/M50 and E35/M59, the 

number of AFLP amplification products (bands) scored for the Ol isolates was 46 (38-59), 64 

(52-75) and 54 (48-64) respectively with a size between 80 and 500 bp. For E. pisi with the 

same primer combinations, the number of AFLP bands was 29, 46 and 39 respectively. 
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Fig. 1. AFLP fingerprints of powdery mildews generated with E22/M23 (+2/+2) (A) and 

E35/M48 (+3/+3) (B). M is a marker lane with 10 bp DNA size markers. Abbreviations: Ol-

PV, 0/-DR, Ol-EZ, Ol-RZ are four Dutch isolates of Oidium lycopersici (OI) on tomato 

maintained in growth chambers; 0/-DRg is the same as 0/-DR but propagated in a greenhouse 

(18-25 °C, 60-90% RH); 0/-Can, 0/-Cze, 0/-E24, OZ-Flo are isolates collected in Canada, 

Czech Republic, France and Florida respectively; 0/-gr: naturally occurring powdery mildew 

on tomato in a greenhouse (15-35 °C, 40-70% RH) in Wageningen (also see the legend of 

Table 2). 
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Fig. 2. Similarity analysis of pea powdery mildew (E. pisi), in comparison with lupine 

and pea powdery mildews. 0/-PV, Ol-DR, Ol-EZ, Ol-RZ are four Dutch isolates of 

Oidium lycopersicum (Ol) on tomato maintained in pollen-proof growth chambers 

(18-22 °C, 65-75% RH). OZ-Can, Ol-Cze, Et.l, 0/-Flo are isolates collected in 

Canada, Czech Republic, France and Florida respectively. 0/-gr is a spontaneously 

occurring powdery mildew on tomato in a greenhouse (15-35 °C, 40-70% RH) in 

Wageningen, the Netherlands. <9/-tob is 0/-DR but propagated on tobacco instead of 

tomato plants. 

Similarity matrices generated with each of the three primer combinations were highly 

correlated. Consequently, these data were combined to determine the similarity among the Ol 

isolates. As a result, in total, 396 data points for both the Ol isolates and pea powdery mildew 

were processed to generate a dendrogram (Fig. 2). 

In general, all Ol isolates were very similar to each other (Fig. 1 & 2). The Dutch Ol 

isolates, which did not show any polymorphism by using the +3/+3 primer combination 

E35/M48 (Fig. IB), were more similar to each other than to those isolates from other parts of 

the world (Fig. 2). In addition, the fingerprints of OZ-tob, originated from Ol-DR but propagated 

on tobacco, was not identical to that of O/-DR propagated on tomato (Fig. 1 & 2), while OZ-

tob retained its pathogenicity to tomato (Huang, et al. 2000), suggesting that an isolate can 

consist of a population of different genotypes and the composition of this population change 
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upon propagation on a different host. In summary, the AFLP fingerprinting did not provide 

evidence for different sources of the origins of Ol isolates analyzed so far. 

Discussion 

The arrangement of conidial spores (i.e. either solitary or catenary) has been a key character in 

powdery mildew taxonomy. Because of this, powdery mildews have been classified as 

Pseudoidium type (with solitary conidial spores) or Euoidium type (with catenary conidial 

spores). However, as other morphological characters, spore arrangement is also highly variable. 

For instance, long chains of conidia of tomato powdery mildew were produced on eggplant and 

tobacco while almost no chain was produced on tomato (Fletcher and Smewin, 1988). This 

indicates an variable conidiophore morphology within tomato powdery mildew, and raises the 

question of its taxonomic position (Whipps and Helyer, 1994). Pseudo-chains of tomato 

powdery mildew were sometimes observed on tomato (e.g. Noordeloos and Loerakker, 1989). 

The powdery mildew species were extremely dissimilar in AFLP pattern. No similarity was 

detected within either Pseudoidium or Euoidium species groups. Apparently, AFLP is too 

sensitive in detecting genetic variation between powdery mildew species. Such poor overall 

correlation between AFLP fingerprints and conidiophores (solidary - Pseudoidium or 

catenary - Euoidium) can have two explanations: 1) conidiophores are highly variable 

(Fletcher and Smewin, 1988; Noordeloos and Loerakker, 1989; Wang et al, 1998), and 2) the 

AFLP technique is too sensitive for genetic studies between species. 

The present molecular analyses of Ol isolates are based on the fingerprints obtained 

using +3/+3 primer combinations, because +2/+2 primer combinations were not informative 

enough to distinguish the tomato powdery mildew isolates. However, this result was unexpected 

as +2/+2 primer combination should be preferred for small genome of organisms like O. 

lycopersici (Vos et al., 1995). For example, +2/+2 primer combinations were applied to assess 

the genetic variability of isolates of E. nigrum (Arenal et al., 1999), and to construct a linkage 

map of P. infestans (Van der Lee et al., 1997). Reports on using +3/+3 primer combinations in 

AFLP fingerprinting outside plant and animal kingdoms are scarce. Semblat et al. (1998), for 

instance, employed +3/+3 primer combinations to characterize root-knot nematode 

(Meloidogyne sp.) populations. 

Though Ol is very similar to Pseudoidium type of powdery mildews in terms of conidial 

dimension and arrangement (Table 2), the AFLP fingerprints did not show any similarity 

between Ol and other powdery mildews analyzed (Fig. 1), including tobacco powdery mildew 

which was speculated as a candidate progenitor of Ol based on host range studies (Huang et al., 

2000). Therefore, still no conclusion can be drawn about the possible ancestor or origin of Ol. 

The recent report of tomato powdery mildew of Euoidium type in Australia (Kiss et 

al., 1999), a bio-assay of four field isolates (each from Czech Republic, Germany, England 
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and The Netherlands) (Lebeda and Mieslerova, 2000) and observations on the interaction of 

different resistance genes with tomato powdery mildew from the Mediterranean regions 

suggest the existence of races of the causal agents. However, because of the high variability 

in fungal morphology and environment, this speculation urgently requires verification by 

using molecular techniques like AFLP to compare the Australian Euoidium type of tomato 

powdery mildew with the Australian and the Mediterranean Pseudoidium type of tomato 

powdery mildew. Based on AFLP fingerprints and the resulting dendrogram (Fig 1 & 2), all 

01 isolates analyzed in the present study are very similar to each other, particularly all the 

Dutch Ol isolates, suggesting that a single Pseudoidium species is present on tomatoes in 

Europe and North America. This is in agreement with the results of ITS (internal transcribed 

spacers) analyses obtained on tomato powdery mildew (Kiss et al., 1999). The small 

difference among all Ol isolates may be due to minor changes in the genetic composition of 

these isolates resulting from a kind of adaptation to the host and/or environments as has been 

reported for Heterodera schachtii (Kaplan et al., 1999). Such genetic variation has been 

detected by AFLP between spores of the same isolate of arbuscular mycorrhizal fungi 

(Rosendahl and Taylor, 1997) and even within a single lesion ofSeptoria tritici (teleomorph 

Mycosphaerella graminicola) in wheat (Schnieder et al., 1998). Therefore, tomato powdery 

mildew on the Northern Hemisphere might originate from one ancestor and has readily 

spread over the world, because tomato powdery mildew is air-borne and, thus, has a great 

potential for widespread, long-distance dispersal, resulting in great genetic uniformity across 

local populations. 

Acknowledgement 

For providing powdery mildew isolates, the authors thank Corine Anker, Lab of Plant 

Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands; Marc Bardin and 

Philip Nicot, INRA, Station de Pathologie Vegetale, Domaine St-Maurice, B.P. 94, 84143 

Montfavet cedex, France; Tim Carver, Institute of Grassland and Environmental Research, 

Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; Raymond Cerkaushas, 

Agriculture Canada, Research Station Harrow, ON NOR 1G0, Canada; Levente Kiss, Plant 

Protection Institute of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 102, 

Hungary; Alex Lebeda, Department of Botany, Palacky University in Olomouc, Olomouc-

Holice, Czech Republic; Jones Scott, Gulf Coast Research and Education Center, University 

of Florida, Bradenton FL34203, USA; M. A. Verhaar, Lab of Phytopathology, Wageningen 

University, the Netherlands. The authors also thanks Petra van der Berg, Lab of Plant 

Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands for technical 

assistance in AFLP; Connie Mol, Lab of Plant Breeding, Wageningen University, 6700 AJ 



Chapter 4 65 

Wageningen, The Netherlands for technical advice in DNA extraction. This project is co-

sponsored by Dutch breeding companies. 

References 

Arenal F, Platas G, Martin J, Salazar O and Pelaez F (1999) Evaluation of different PCR-

based DNA fingerprinting techniques for assessing the genetic variability of isolates of the 

fungus Epicoccum nigrum. J Appl Micrbiol. 87:898-906. 

Blumer S (1967) Echte Mehltaupilze (Erysiphaceae), p.206-207. Veb Gustav Fischer Verlag 

Jena, Jena, Germany, and references herein. 

Bonants PJM, Hagenaar-De Weert M, Kema G, Van den Boogert P and Waalwijk C (1998) 

AFLP DNA fingerprinting of plant pathogenic fungi. Offered Papers Abstract, Volume 2 

(2.2.74), 7* International Congress of Plant Pathology, 9-16 August 1998, Edinburg, UK. 

Chen XM, Line RF and Leung H (1993) Relationship between virulence variation and DNA 

polymorphism in Puccinia striiformis. Phytopathology 83:1489-1497. 

Fletcher JT and Smewin BJ (1988) Tomato powdery mildew. Plant Pathol 37:594-598. 

Huang CC, Biesheuvel J, Lindhout P and Niks RE (2000) Host range oiOidium lycopersici 

occurring in The Netherlands. European J Plant Pathol 106:465-473 and references herein. 

Justesen AF and Hovmoller MS (1999) Virulence and'DNA variation in wheat yellow rust. 16th 

Danish Plant Protection Conference. Crop protection in organic farming. Pests and diseases. 

Danmarks JordbrugsForskning Rapport, Markbrug, Tjele, Denmark. 1999, No. 10,129-135. 

Kaplan M, Caswell-Chen EP and Williamson VM (1999) Assessment of host-induced 

selection on three geographic isolates of Heterodera schachtii using RAPD and AFLP 

markers. Phytopathology. 89:68-73. 

Kiss L, Cook RTA, Saenz GS, Pascoe I, Bardin M, Nicot PC, Hughes K and Rossman AY 

(1999) How many Erysiphe-like anamorphs are responsible for the recent outbreaks of 

tomato powdery mildew? (Abstract) First International Powdery Mildew Conference, 29 

August-3 September 1999, Avignon, France. 

Lebeda A and Mieslerova B (2000) Source, mechanisms and effectivity of resistance in wild 

Lycopersicon spp. To tomato powdery mildew [Oidium lycopersici). (Abstract) Durable 

Rsistance Symposium, 28 November-1 December 2000, Ede-Wageningen, The 

Netherlands. 

Majer D, Mithen R, Lewis BG, Vos P and Oliver RP (1996) The use of AFLP fingerprinting 

for the detection of genetic variation in fungi. Mycological Research. 100: 1107-1 111. 

Mieslerova B and Lebeda A (1999) Taxonomy, distribution and biology of the tomato powdery 

mildew (Oidium lycopersici). J Plant Dis Protection 106:140-157. 

Noordeloos ME and Loerakker WM (1989) Studies in plant pathogenic fungi-II: On some 

powdery mildews (Erysiphales) recently recorded from the Netherlands. Personia. 14:51-60. 



66 Genetic variation of Oidium lycopersici 

Rosendahl S and Taylor JW (1997) Development of multiple genetic markers for studies of 

genetic variation in arbuscular mycorrhizal fungi using AFLP™. Mol Ecology. 6:821-829. 

Semblat JP, Wajnberg E, Dalmasso A, Abad P and Castagnone-Sereno P (1998) High-

resolution DNA fingerprinting of parthenogenetic root-knot nematodes using AFLP 

analysis. Mol Ecology. 7:119-125. 

Schnieder F, Kogh G, Jung C and Verreet JA (1998) Genetic structure of Septoria tritici in 

Germany assessed by AFLP Analysis. Offered Papers Abstract, Volume 2 (2.2.67), 7th 

International Congress of Plant Pathology, 9-16 August 1998, Edinburg, UK. 

Van der Lee T, De Witte I, Drenth A, Alfonso C and Govers F (1997) AFLP linkage map of 

the oomycete Phytophthora infestans. Fungal Genetics and Biology. 21:278-291. 

Van der Peer Y and De Wachter R (1997) TREECON for Windows: a software package for 

the construction and drawing of evolutionary trees for the Microsolf Windows 

environment. Computer and Applied Bioscience. 13:227-230. 

Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Homes M, Frijters A, Pot J, Peleman 

J, KuiperM andZabeauM (1995) AFLP: a new technique for DNA fingerprinting. 

Nucleic Acids Research 23:4407-4414. 

Wang J, Levy M and Dunkle LD (1998) Sibling species Cercospora zeae-maydis associated 

with gray spot of maize. Phytopathology. 88:1269-1275. 

Whipps JM, Budge SP and Fenlon JS (1998) Characteristics and host range of tomato 

powdery mildew. Plant Pathol 47:36-48. 

Whipps JM and Helyer NL (1994) Occurrence of powdery mildew on aubergine in West 

Sussex. Plant Pathol 43:230-233. 



Chapter 5 67 

Chapter 5 

Development of diagnostic PCR markers closely linked to the tomato 
powdery mildew resistance gene Ol-l on chromosome 6 of tomato 

Huang CC, Cui YY, Weng CR, Zabel P and Lindhout P 

1 Published in Theor Appl Genet 2000. 101:918-924. 



5 8 Diagnostic PCR markers for the resistance gene Ol-l 

Chapter 5 

Development of diagnostic PCR markers closely linked to the tomato powdery mildew 

resistance gene Ol-l on chromosome 6 of tomato 

Huang CCl, Cui YY2,3, Weng CR2, Zabel P2 and Lindhout P1 

Laboratory of Plant Breeding & Laboratory of Molecular Biology, The Graduate School of 

Experimental Plant Sciences, Wageningen Agricultural University, P.O. Box 386, 6700 AJ 

Wageningen, The Netherlands; Department of Plant Pathology, College of Agriculture, Food & 

Natural resources, 108 Waters Hall, Plant Science Unit, University of Missouri-Columbia, 

Columbia, Missouri 65211, USA 

Fax:+31-317-483457. 

* To whom correspondence should be addressed. 

Abstract 

L. hirsutum Gl. 1560 is one of the wild accessions which is resistant to Oidium lycopersicum, a 

frequently occurring tomato powdery mildew (Lindhout et al., 1994). The resistance is largely 

controlled by an incompletely-dominant gene Ol-l near theAps-1 locus in the vicinity of the 

resistance genes Mi and C/-2/C/-5 (Van der Beek et al., 1994). Using a new F2 population 

(N=l 50) segregating for resistance, the Ol-l gene was more accurately mapped between the RFLP 

markers TGI 53 and TGI 64. Furthermore, in saturating the Ol-l region with more molecular 

markers using bulked segregant analysis, five RAPDs were identified that were associated with the 

resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and 

SCAF10 were L. hirsutum specific; SCAE16, SCAG11 and SCAK16 were L. esculentum specific. 

By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-l was 

obtained. This will facilitate a map-based cloning approach for Ol-l and marker-assisted selection 

for powdery mildew resistance in tomato breeding. 

Key words. Resistance, Tomato powdery mildew, Tomato, Mapping, Oidium lycopersicum, 

RFLP, Sequence-characterised amplified region (SCAR) 
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Introduction 

Tomato powdery mildew caused by the fungus Oidium lycopersicum has become a serious disease 

in the Northern Hemisphere, especially in protected tomato cultivation. At present, almost all 

tomato cultivars appear susceptible, except for some newly developed commercial hybrids 

including DRW 4061 (Nunnink, 1996), Belliro and Delito (De Ruiter Seeds catalogue 1998). 

Applying chemicals can control the disease but, nowadays, such an approach is undesirable in view 

of the growing need of an environmentally safe production. Moreover, as resistance genes to other 

pathogens have already been introgressed into tomato, O. lycopersicum remains as yet the only 

fungus to be controlled by fungicides in greenhouse in Northwest Europe. 

Resistance sources to O. lycopersicum have been identified in some wild species, including L. 

hirsutum (G1.1257, G1.1290, G1.1560, G1.1606=CPRO742208, Lindhout etal., 1994); LA1775, 

Kozik, 1993; PI247087, Laterrot and Moretti, 1993), L. parviflorum (Gl. 1601=CPRO731089) 

and L. peruvianum (LA2172) (Lindhout et al., 1994). L. hirsutum Gl. 1560, among others, has 

been studied most extensively regarding inheritance of resistance (Van der Beek et al, 1994), 

showing the resistance to be controlled by an incompletely-dominant gene, designated Ol-l, that 

maps on chromosome 6 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-

5 to Meloidogyne spp. and Cladosporium fulvum, respectively (Van der Beek et al, 1994). 

Because of its monogenic and (incompletely-) dominant nature, Ol-l can easily be incorporated 

into modern cultivars by classical breeding in five to nine backcrosses. However, with the help of 

molecular markers, the same goal would be reached in two to three backcrosses. Therefore, 

marker-assisted selection (MAS) of O. lycopersicum (01) resistance would be of great help in 

developing new tomato cultivars carrying 01 resistance. As only a few linked markers have been 

identified so far, additional markers flanking the Ol-l region need to be developed to increase the 

efficiency of MAS. Such a saturated map should also facilitate map-based (positional) cloning of 

Ol-l in the near future. 

In order to rapidly obtain markers linked to resistance genes for genetic analysis and for 

physically characterising the respective regions, Paran and Michelmore (1993) have developed the 

sequence-characterised amplified region (SCAR) marker that is most suitable for standard PCR 

analysis. They successfully derived eight SCARs from RAPDs linked to downy mildew resistance 

gene in lettuce, with three of them being codominant. Since then, SCAR analysis has been widely 

applied, for instance, to localise genes controlling disease resistance (e.g. Geffroy et al, 1998 and 

Deng et al., 1997), fruit quality (Fang et al, 1997) and plant development (Jiang and Sink, 1997). 

It has also been employed in taxonomic studies of plants (Parent and Page, 1998; Bodenes et al, 

1996;Roosee/a/., 1993) and fungi (Francis et al, 1994;McDermotte*a/., 1994). SCAR analysis 

has also become a useful technique in practical breeding of various crop species, for example, 
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banana (Damasco et al., 1998), grapevine (Lahogue et al., 1998), hemp (Mandolino et al., 

1999), kiwifruit (Harvey et al., 1998) and orchid (Handa etal., 1998). 

In the present study, we analysed a new F2 population (N=150) of Moneymaker x L. hirsutum 

Gl. 1560 to identify 15 additional RFLP markers which co-segregate with the resistance gene Ol-l. 

We also applied bulked segregant analysis (Michelmore et al., 1991) with RAPDs as a bridge to 

develop SCARs (Paran and Michelmore, 1993) that will serve as convenient PCR markers in 

commercial breeding programmes. Two L. hirsutum specific and three L. esculentum specific 

SCAR markers were designed based on the sequences of the RAPDs which co-segregated with 01-

1. These SCARs will provide a major tool in rapidly detecting the resistance locus in practical 

breeding and future research. 

Materials and methods 

Plant and fungus materials 

An F2 population of 150 plants derived from an interspecific cross between individual plants of the 

susceptible L. esculentum cv Moneymaker and the resistant accession/,, hirsutum Gl.1560 

(Lindhout et al, 1994) was used for mapping the Ol-l gene. The F2 plants as well as the Fi and 

their parents were obtained from CPRO-DLO, Wageningen, The Netherlands. F2 plants were selfed 

to generate F3 lines. 

The pathogenic fungus O. lycopersicum, which originated from infected commercial tomato 

plants (Lindhout et al, 1994), was maintained on Moneymaker plants in a greenhouse 

compartment at 20±3 °C with 70±15% relative humidity. 

Disease test 

A disease test was performed by spraying 27-day-old tomato plants with a spore suspension of 

2x10 conidia.ml". The inoculum was prepared by washing conidial spores from the freshly 

sporulating leaves of heavily infected Moneymaker plants in tap water and used immediately. The 

experimental set-up of the disease test was according to a completely randomised block design with 

15 blocks, each containing two plants of each parent, two Fi plants and ten F2 plants. The 

inoculated plants were grown in a greenhouse at 20±3°C with 30-70% relative humidity. 

The disease symptoms were evaluated at 10, 14, 17, 21, 24 and 28 days post inoculation (dpi). 

The evaluation was executed according to two categories of disease index (DI). DI0-3 indicate the 

size of infected areas per inoculated leaf: 0 - no infection, 1 - less than 10% infected leaf area, 2 -
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10-30% infected leaf area, 3 - more than 30% infected leaf area. DI a, b and c refer to the severity 

of infected leaf areas: a - faint mycelium visible often with only some yellow spots; b - obvious 

presence of mycelium but only with slight sporulation; c - abundant sporulation. 

RFLP analysis 

Total DNA was extracted from newly grown leaves without fungal infection and RFLP analysis 

was executed as described by Van der Beek et al. (1992). Fifteen RFLP markers were used: eight 

TG markers TG25, TG153, TG162, TG164, TG215, TG240, TG253 and TG298 (Pstl or EcoRl 

size-selected tomato genomic fragments; Miller and Tanksley, 1990; Tanksley et al., 1992), two 

GP markers GP79 and GP164 (Pstl size-selected potato genomic fragments; Gebhardt et al., 

1989), three H markers H2C1, H8C4 and H9A11 (tomato genomic clones from a Hindlll - library 

in plasmid/?£/C18; Klein-Lankhorst etal., 1991a) and two cDNA clones, Adh-2 (Wisman et al., 

1991) and Aps-1 (Aarts et al., 1991). The TG and GP markers were provided by S. D. Tanksley, 

Cornell University, New York, USA, and C. Gebhardt, Max Planck Institut fur 

Zuchtungsforschung, Koln, Germany, respectively. The cDNA clones were developed at the 

Laboratory of Molecular Biology, WAU, Wageningen, The Netherlands (Aarts et al., 1991; 

Wisman et al, 1991). 

Identification of RAPD markers 

Bulked segregant analysis (BSA; Michelmore et al, 1991) was applied to identify RAPD markers 

associated with resistance to O. lycopersicum. Based on the disease test and RFLP analysis, seven 

resistant F2 plants homozygous for/,, hirsutum in the TGI 53 - TG164 interval (10.9 cM) spanning 

Ol-1 and seven susceptible F2 plants homozygous for L. esculentum in this interval were selected to 

constitute the resistant and susceptible pool, respectively. Three hundred arbitrary decamer primers 

(Operon) were used for RAPD analysis as described by Klein-Lankhorst (1991b). RAPDs 

associated with the resistance were used to identify the rest of the F2 individuals. 

Cloning and sequencing RAPD products 

Diagnostic RAPD bands were excised from agarose gels, and the DNA was purified using a 'Gene 

Clean' kit (Bio 101 Inc). The purified DNA was reamplified using the same primer that generated 

the RAPD polymorphism. The reamplified products were resolved on a 1.5% agarose gel, excised 

from the gel, purified by 'Gene Clean' kit and blunt-end ligated into the Smal site of pBluescript 

KS+ vector. Before ligation, the linearized vector was tailed with ~T' at 72 °C for two hours in 100 

ul of a reaction mixture containing 10 mM Tris-HCl, 1.5 mM MgCh, 50 mM KC1, 0.01% gelatin, 

0.1% Triton X-100, 0.2 mM dTTP, 2 ug vector DNA (digested with Smal and purified with 'Gene 
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Clean' kit) and 1 unit Super Taq. The identity of the cloned RAPD products was verified by 

comparing the size of the digested plasmids using the corresponding enzymes, and by hybridizing 

the cloned fragments to Southern blots of resistant and susceptible pools. The plasmid DNA was 

isolated by alkali mini-preparation (Maniatis et al. 1989) and purified using QIAGEN-tip20 column 

(QIAGEN Inc). Sequencing was executed by Pharmacia Biotech Company. 

Design of primers and analysis of SCAR markers 

For each cloned RAPD amplification product, a pair of 21 to 25-mer oligonucleotide primers were 

designed to be used as SCAR primers, and synthesized by Pharmacia. Two SCAR primers, 

SCAE16 and SCAF10, were designed by extending the original 10-mer RAPD primer plus the next 

14 nucleotides at the 3' end (Paran and Michelmore, 1993). The other three SCAR primers 

(SCAB01, SCAG11 and SCAK16) were designed by using the computer program Primer' based 

on their corresponding RAPD sequences. Amplification of genomic DNA of F2 plants was 

executed in 50 1̂ of the same reaction mixture as applied in the RAPD reaction but with 100 ng of 

SCAR forward and reverse primers each. Each PCR consisted of 30 cycles of 1 min at 94 °C, 2 

min at 60 °C (for SCAE16) and 2 min at 72 °C. The annealing temperature for SCAF10, SCAB01, 

SCAG11 and SCAK16 was 65 °C, 62 °C, 60 °C and 58 °C respectively. The amplified products 

were separated by electrophoresis in a 1.5% agarose gel. 

Linkage analysis 

Joinmap (Stam, 1993) was used to perform linkage analysis and to generate a genetic map, which 

was drawn by using Drawmap 2.0 (Van Ooijen, 1994). 

Results 

Disease test 

A disease test on an F2 of L. esculentum cv Moneymaker x L. hirsutum Gl. 1560 was performed to 

confirm the inheritance of resistance in L. hirsutum G i l 560. The resistance classification was 

carried out by using two categories of disease index (DI). DI0-3 refers to the size of the infection 

areas on inoculated leaves, and index a-c to the severity of infection, respectively. As expected, all 

Moneymaker plants were scored as DI-3 (Fig. 1). Most individuals of the resistant parent were 

scored as DI-1, and a few as DI-2. Therefore, plants with a DI-3 were considered as susceptible, 

and plants with a DI of 0-2 as resistant. By using this index, most F2 plants could be unambiguously 

identified as resistant or susceptible (Fig. 1). Segregation of resistance was in accordance with a 
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monogenic, dominant trait (Van der Beek et al, 1994). Some Fi plants were evaluated as 

susceptible, probably as a result from a cross between Moneymaker and a susceptible individual of 

L. hirsutum Gl. 1560, as has been reported previously (Lindhout et al, 1994). In order to minimise 

misinterpretation of F2 plants, the appearance of mycelia and sporulation was also taken into 

account. Thus, nearly all F2 plants could be clearly classified as either resistant or susceptible. 

Mapping of Ol-l withRFLP markers 

Though Ol-l has been mapped on chromosome 6 of tomato (Van der Beek et al, 1994) using 

three RFLP markers (GP79, TGI 53 and TGI 78), the linkage map of the Ol-l region was still far 

from saturated. In order to add more marker to the map, the F2 was therefore analysed by using 12 

additional RFLP markers, which were well distributed on chromosome 6 (Tanksley et al, 1992). 

All 15 markers showed a polymorphism between the two parents applying the restriction enzymes 

EcoRl, Haelll and Taql. Based on the segregation of the F2, an RFLP map around the Ol-l region 

was constructed showing Ol-l to be located between TGI 53 and TGI 64 with an accuracy of 

about 3 cM (Fig. 2). 

Identification of diagnostic RAPD markers 

To saturate the TGI53-TG164 interval encompassing Ol-l, BSA with RAPDs was performed on 

DNA from the resistant and susceptible pools as templates. With 300 decamer random primers, five 

diagnostic RAPDs were identified: two L. hirsutum specific, OPAB01866 and OPAFlOw with a 

length of 866 bp and 464 bp respectively and three/-, esculentum specific, OPAEI6778, 

OPAG111400 and OPAKI61200 of 778 bp, 1400 bp and 1200 bp in length, respectively. By analysing 

27 recombinants in the TG153-TG164 interval, OPAB01, OPAE16, OPAF10, OPAK16 and 

OPAG11 were mapped near Ol-l (data not shown), confirming a tight linkage between these 

RAPDs and Ol-l. 

Cloning and sequencing of the diagnostic RAPD markers 
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Figure 1. Frequency distribution of resistance to O. lycopersicum infection in/,, hirsutum G 1.15 60, 

L. esculentum cv Moneymaker and their Fi and F2 progenies as shown above the panels. The 

population size is indicated between brackets. The disease index (DI) was defined as: 0, no 

infection; 1: less than 10% foliar area affected; 2, 10-30% foliar area affected; 3, more than 

30% foliar area affected. Evaluations were done at 10, 14, 17, 20, 24 and 28 days post 

inoculation (DPI). 
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Since SCAR markers are more reliable, reproducible and locus-specific than RAPD markers (Paran 

and Michelmore, 1993), the newly identified RAPDs were converted into SCARs. The amplified 

products OPAF10464, OPAB01866, OPAEI6778, OPAG111400 and OPAKI61200 were extracted from 

the gel and cloned into the Smal site of a pBluescript vector. Cloned fragments were shown to be 

derived from and identical to their corresponding RAPDs by Southern analysis. To determine 

whether each cloned fragment corresponded to multi-copy sequence family or to a single locus, 

Southern analysis was conducted with DNA of both parents following digestion with BarriHI, 

BgUl, BsiNl, Dral, EcoKL, EcoKV, Haelll, HindUl and Taql. OPAF10464 and OPAG111400 

appeared to represent members of a repeat family (not shown), the others were derived from a 

single locus. OPAFICW, OPAB01866 and OPAEI6778 were completely sequenced, while only two 

ends (500-600 bases) of OPAG111400 and OPAKI61200 were analysed. At both ends, the terminal 

10 bases corresponding to the original RAPD primers were recovered. 

SCAR analysis 

For SCAR analysis, a pair of primers for each cloned RAPD product was designed and synthesized 

as mentioned in Materials and Methods (Table 1). PCR reactions were performed, using genomic 

DNA of resistant and susceptible pools as templates. As expected, a unique band was detected in 

the susceptible pool when using L. esculentum specific SCAR primers, and vice versa (e.g. Fig. 3). 

The sizes of the SCAR amplification products were identical to those of the corresponding RAPD 

amplification products (data not shown). SCAR analysis for individual plants of resistant and 

susceptible pools was carried out to confirm the alleles of these marker loci. As expected, a 

susceptible allele was detected in the seven susceptible plants when using L. esculentum specific 

SCAR primers, and vice versa (Fig. 3). However, mL. hirsutum specific allele for SCAB01 was 

detected in one plant of the susceptible bulk (Fig. 3 a), indicating the occurrence of recombination 

between Ol-l and SCAB01, or the heterozygousity between Ol-l and SCAB01. The absence of 

this L. hirsutum specific allele in the susceptible pool is probably due to the low relative 

concentration of the corresponding DNA (template) in that pool. 

In order to map these SCARs, the whole F2 population was screened for the presence or 

absence of corresponding polymorphic DNA bands by using each pair of the SCAR primers. All 

five SCARs identified only rare recombinants with Ol-l, indicating that they were tightly linked to 

this gene. The segregation data were used to construct an integrated genetic map including both 

RFLP and SCAR markers (Fig. 2). 
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Table 1. SCAR markers converted from RAPD markers closely linked to the Ol-l gene 

SCAR 

SCAE16 

SCAF10 

SCAB01 

SCAG11 

SCAK16 

Primer 

OPAEI6778 forward 

Reverse 

OPAF10464 forward 

reverse 

OPABO1866 forward 

reverse 

OPAGH1400 forward 

reverse 

OPAKI61200 forward 

reverse 

Sequence (5'--» 3')* 

TCCGTGCTGAATGAAGATTCAAAC 

TCCGTGCTGATAAAACTGTTAGAC 

GGTTGGAGACGAATGGAAAGATGC 

GGTTGGAGACAATAGACTCGAGAT 

GCTTCTAGATGCAGAAAGTTGGCG 

CGCCCATTCCCGCATATACAG 

TGGGATCACAGATTAACAAATGCG 

ATGTGTGCGATGAGAAACGTGG 

CAAACAAAGCAGTGGATTTTTTTCG 

TAAAAGCCTTAGTGGGACAGGGC 

Annealing 
temperature (°C)" 

60.0 

65.0 

62.0 

60.0 

58.0 

* Primers for SCAE16 and SCAF10 were designed by extending the original 10-mer RAPD 

primer (underlined) with 14 bases at the 3' end. Primers for SCAB01, SCAG11 and SCAK16 

were designed by using computer program 'Primer'. The sequences of the original 10-mer 

RAPD primers OPAB01, OPAG11 and OPAK16 were CCGTCGGTAG, 

TTACGGTGGG and CTGCGTGCTC resp.. 

** The annealing temperature for RAPD was ±35 °C. 

Discussion 

In the present study we identified 15 RFLP markers and five SCAR markers closely linked to the 

powdery mildew resistance gene Ol-l, that was previously mapped on chromosome 6 of tomato 

(Van der Beek et al, 1994). A genetic linkage map comprising these twenty markers was 

constructed showing Ol-l to be flanked by markers SCAF10 and H9A11. Since the centromere of 

chromosome 6 is located between GP79 and APS1 (Zhong etal., 1999), Ol-l is apparently located 

on the long arm of chromosome 6 (Fig. 2), 10-13 cM distant from the recently cloned resistance 

genes Mi and Cf2ICf5 from the short arm of chromosome 6 (e.g. Van Wordragen et al, 1996; 

Zhong et al., 1999; Dixon et al., 1996& 1998; Milliganef a/., 1998). Resistance genes are often 
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organised in clusters of homologous genes that may span from 36 kb upto several megabases in 

plant genomes (Meyers et al, 1998; Tomas et al, 1997). For instance, Cf-4 and Cf-9 are part of 

the so-called "Milky way" cluster that contains five very homologous genes and spans 36 kb in the 

tomato genome (Thomas et al, 1997), while at least 24 Dm gene homologues span about 4 Mb in 

the lettuce genome (Meyers et al, 1998). The distance between Ol-l and Cf2/Cf5/Mi suggests 

that these genes are part of a Dm-gene like cluster of more than 1 Mb. If so, Ol-l may be 

homologous to C/2/C/5 or Mi. However, this is not very likely as C/2/C/5 are not homologous to 

Mi and these genes are separated from Ol-l by the centromere. 

The present map is based on an F2 of L. esculentum x L. hirsutum and is similar to the genetic 

linkage map of L. esculentum x L. pennellii (Tanksley et al, 1992). The distance between GP79 

and TG215 in the present map is 72 cM (Fig. 2), and 89 cM in the Tanksley map (Tanksley et al, 

1992). However, some hitherto unresolvable markers (for example TG240 and TG298) became 

resolved in our map, probably as a result from the larger F2 population applied. 

By using bulked segregant analysis (BSA) with 300 RAPD primers, five RAPDs were identified, 

which were closely linked to Ol-l. This confirms the success of BSA for identifying RAPDs which 

are closely linked to a gene of interest (Michelmore et al, 1991; Giovannoni et al, 1991). 

Giovannoni et al. (1991) has suggested an optimal pool size of more than five but less than 10 

individual plants for a target interval of 10 cM, because the probability for a plant to have 

maximally one double crossover in such a pool would then be less than 10%. In our study, an 

interval of 11 cM spanning the Ol-l gene between TGI 53 and TGI 64 was targeted, and seven 

plants were chosen for both pools. Among the five RAPDs identified, OPAF104«4 was a RAPD 

most closely linked to Ol-l (3 cM, shown as SCAF10 in Fig. 2). 

Some disadvantages of the RAPD markers, including sensitivity to reaction conditions and 

amplification of multiple loci (Paran and Michelmore, 1993), can be overcome by converting 

RAPDs into SCAR markers. In the present study, all primer pairs deduced from the sequences of 

the RAPD amplification products indeed generated locus specific SCAR markers. SCAB01 and 

SCAF10 wereZ. hirsutum specific and SCAE16, SCAG11 and SCAK16 were/,, esculentum 

specific. The five SCARs, especially SCAF10 and SCAG11, should be highly suited for commercial 

breeding programs as they are diagnostic for the introgression fragment containing the Ol-l gene 

and easy to handle as PCR markers. This would speed up the breeding programs for resistance to 

O. lycopersicum without disease tests or laborious RFLP analyses. However, since H9A11 is more 

closely linked to Ol-l than SCAG11, a corresponding SCAR marker of this RFLP marker would 

be desirable. 

The genetic linkage map reported in this paper contains 20 markers in a region of about 80 cM, 
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i.e. one marker per 4 cM. This dense map thus provides an essential framework for any future map-

based cloning of 01-1, the more so considering the availability of YAC and BAC libraries and the 

AFLP technology to identify even more closely linked markers. 
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Abstract 

The cultivated tomato is susceptible to powdery mildew {Oidium lycopersicurri). Several 

accessions of wild species are resistant. In the present study we described 1) the genetics and 

mapping of resistance to O. lycopersicunt in G1.1290, one of the resistant accessions in 

Lycopersicon hirsutum,!) fine mapping of Ol-l originated from L. hirsutum Gl. 1560, another 

resistant accession of L. hirsutum, and 3) tests of allelism for resistance in Gl. 1290 and 

G1.1560. First, the resistance in G1.1290 to O. lycopersicum was demonstrated to be controlled 

by an incompletely dominant gene, designated Ol-3. By using an advanced breeding line (ABL) 

containing introgression fragment(s) from Gl .1290, Ol-3 was found to be associated with some 

RFLP and SCAR markers on chromosome 6. By using these markers, 01-3 was mapped 

between markers TG25/SCAF10 and H9A11 on chromosome 6. Second, after testing some F3 

lines and their progenies from the cross between L. esculentum cv Moneymaker and L. hirsutum 

G1.1560, we provided more evidence for the map position of Ol-l to be between SCAF10 and 

H9A11, indicating that Ol-l and Ol-3 were in the same chromosome region. Third, though 

allelism tests could not discriminate between Ol-l and 01-3, some (indirect) evidence suggested 

that these two genes are not identical. They might represent functional genes of a cluster of Ol-

homologues. 

Key words: Tomato, Lycopersicon hirsutum, powdery mildew, resistance gene, allelism test 
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Introduction 

Powdery mildew on tomato, caused by Oidium lycopersicum Cooke & Massee (Noordeloos & 

Loerakker, 1989), is the only fungal disease which has to be controlled by fungicides in 

protected tomato cultivation in Northwest Europe. Complete or high levels of resistance have 

been found in at least four Lycopersicon species, i.e. L. esculentum var. cerasiforme, L. 

hirsutum, L. parviflorum and L. peruvianum (Kozik, 1993; Laterrot & Moretti, 1993; Neshev, 

1993; Lindhout et al, 1994; Ciccarese et al., 1998). The resistance in G1.1560 to O. 

lycopersicum is controlled by an incompletely dominant gene, Ol-l which was mapped on 

chromosome 6 between RFLP markers GP79 and TG153, in the vicinity of the resistance genes 

Mi to Meloidogyne spp. and Cf-2ICf-5 to Cladosporium fulvum (Van der Beek et al., 1994). 

More recent data confirmed the monogenic resistance in G1.1560, and showed a more accurate 

map position of Ol-l to be between SCAF10 and H9A11 (Huang et al, 2000). 

Resistance to O. lycopersicum seems to be widely distributed over the Lycopersicon 

species (see above). It is an intriguing question how the corresponding resistance genes have 

originated during evolution and how related these genes are. Clustering of disease resistance 

genes is quite common in plants (Michelmore & Meyers, 1998); examples are the (^-cluster and 

the Pto cluster in tomato (Hammond-Kosack & Jones,' 1997). Each of such clusters usually 

consists of homologues that have different specificities to different races of the corresponding 

pathogens. So far, only resistance of L. hirsutum Gl. 1560 has been characterized and the 

corresponding gene Ol-l has been mapped on chromosome 6 (Van der Beek et al, 1994; Huang 

et al., 2000). In order to find out whether the O. lycopersicum resistance genes (OZ-genes) are 

also organized in one or more clusters, we investigated the inheritance of resistance in L. 

hirsutum G1.1290 and mapped the resistance gene, designated Ol-3. In addition, we provided 

more evidence for the map position of Ol-l. Finally we performed allelism tests for Ol-l and 

Ol-3 in order to assess their relationship. 

Materials and methods 

Plant and fungal materials 

The resistant wild accessions L. hirsutum G1.1290 and G1.1560 (Lindhout et al., 1994) were 

obtained from the Centre of Genetic Resources, Wageningen, The Netherlands. L. esculentum 

cv Moneymaker, as susceptible control, was maintained at the Laboratory of Plant Breeding, 

WAU, Wageningen, the Netherlands. Advanced breeding lines (ABLs), ABL 1290.4 and 

ABL1560.2, derived from either G1.1290 or G1.1560, were obtained from commercial breeding 

programmes for resistance to O. lycopersicum. All the populations evaluated are briefly 
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described in Table 1. In addition, two other populations, HO/J and HO/7, heterozygous for Ol-3 

and Ol-l were generated by crossing Moneymaker with ABLs ABL1290.4 and ABL1560.2, 

respectively and used as heterozygous controls. 

The stock of O. lycopersicum originated from infected commercial tomato plants (Lindhout 

et al, 1994), and was maintained on cv Moneymaker plants in a growth chamber at 20±1 °C 

with 70±3% RH and 16-h day length. 

Disease tests 

Disease tests were carried out in eight experiments during 1994-1998. The experimental set-up 

was according to a completely randomized block design with two to 18 blocks (Table 1). Each 

block always contained susceptible and resistant control genotypes. All plants at the four true 

leaf stage were inoculated by spraying with a spore suspension at a concentration of 3-4xl04 

conidia.mr1. The inoculum was prepared by washing conidial spores from the freshly 

sporulating leaves of heavily infected Moneymaker plants in tap water and was used 

immediately. The inoculated plants were grown in a greenhouse at 20±3°C with 70±10% RH 

under natural light supplemented with artificial light to provide a photoperiod of 16 h. 

Disease evaluation 

The susceptibility or resistance was determined macroscopically by the degree of fungal 

sporulation. Depending on the development of the fungus, evaluations were performed per plant 

twice to five times from 7 to 29 days post inoculation (dpi), by using a disease index (DI) from 

0 to 3, based on the degree of sporulation. The DI was defined as: 0: no sporulation; 1: slight 

sporulation, but less than 5% foliar area affected; 2: moderate sporulation, between 5 and 30% 

foliar area affected; 3: abundant sporulation, more than 30% foliar area affected. In addition, in 

order to evaluate each plant more precisely, DI from 0 to 4 was used in the allelism test (also 

Fig. 5 &6): 0 - no symptom; 1 - some mycelia without sporulation; 2 - moderate mycelia with 

poor sporulation; 3 - between 2 and 4; 4 - abundant mycelia with heavy sporulation. 

Marker analysis 

Total DNA was extracted from the frozen young leaves of most plant materials as described by 

Van der Beek et al. (1992), except for the ABLs in Experiment 2 from which DNA was isolated 

from a leaf-disc as described by Hong Wang et al. (1993). DNA (5 ug) was digested with the 

restriction enzymes EcoRl and Haelll (Life Technology), based on a pilot test of enzyme-probe 

combinations. RFLP analysis was performed as described by Van der Beek et al. (1992), and 
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Table 1. Summary of each experiment of disease tests 

Experiment 

] 

2 

3 

4 

5 

6 

7 

8 

Number 

of blocks 

18 

10 

6 

2 

6 

6 

6 

6 

Aim of testing 

inheritance of 

resistance in G 1.1290 

resistance of F3 lines 

derived from 

G1.1560 

putative additional 

resistance gene (arg) 

or suppressor gene 

(sg) 

fine mapping OI-I by 

RFLP & SCAR 

allelism between Ol-

1 and Ol-3 using wild 

accessions (wa) 

allelism between 01-

1 and OI-3 using 

ABLs (abl) 

resistance of the 

selfing progenies 

from Exp.5 

resistance of the 

selfing progenies 

from Exp.6 

Number of plants per block 

12-15: two or three plants of each 

parent, one or two of F, and nine 

or 10 of BC, 

19-36: one plant of each parent, 

one or two plant(s) each of 17 F3 

lines 

23-27: 9-13 "F2" plants, five each 

of Moneymaker and Gl . 1560, 

four of ABL1560.2 

66: one cutting of each ABL, two 

seedlings of Gl.1560, four 

cuttings and four seedlings of 

Moneymaker 

26-29: 22-23 plants of "BClw,", 

three of Moneymaker and two to 

three each of G 1.1290 and 

G1.1560 

50-51: 32-33 plants of "BClabl", 

three each of Moneymaker, 

G1.1290, G1.1560, ABL1290.4, 

ABL1560.2 and "F„bl" 

56-69: three to five plants each of 

13 "BClwaS," lines, Moneymaker, 

Gl.1290, Gl.1560, HOB and 

HOll2 

48-49: three to five plants each of 

six "BCmiS," lines, 

Moneymaker, ABL1290.4, 

ABL1560.2, "F„bl", HOB and 

HOll 

Testing population(s) 

BC,: Moneymaker 

(MM)xF,(MMxG1.1290) 

F3 lines: selfings of the F2 

from F, (MMxGl. 1560) 

(Huang et ai, 2000) 

"F2" for arg: MMxF, (ol-

Mzl), "F2"forsg:F3(OL 

Whl)x¥,(OllOl-iy 

ABLs derived from Gl . 1560 

"BClw,": 
MMx"FlwI"(G1.1290xG1.15 

60) 

"BCliW": 

MMx"FIAI"(ABLl 290.4xAB 

LI 560.2) 

"BC|W,S," lines: selfing the 

most susceptible "BC|W," 

plants 

"BClab|S," lines: selfing the 

most susceptible "BC,^," 

plants 

1) F2(pl-lol-l): (supposedly) resistant F3 plant, an offspring of F2 no.270, without introgression 
fragment (IF) from G1.1560; FJOl-lOl-1): (supposedly) susceptible F3 plant, an offspring 
of F2 no.101, with IF from G1.1560; Y^Ol-lOl-1) resistant F3 plant with IF from G1.1560 
(also see text). 

2) H013 and HOll, which were heterozygous for Ol-l and 01-3 were generated by crossing 
Moneymaker with ABL1290.4 and ABL1560.2, respectively. 
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SCAR analysis as by Paran & Michelmore (1993) and Huang et al. (2000). The four TG 

markers, TGI 53, TG25, TGI 64 and TG240, were provided by S. D. Tanksley, Cornell 

University, New York, USA and H9A11 was supplied by C. Gebhardt, Max Planck Institut fur 

Ziichtungsforschung, Cologne, Germany. The SCAR markers were from by P. Zabel, 

Laboratory of Molecular Biology, WAU, Wageningen, The Netherlands. 

Linkage analysis 

The mapping program JoinMap™ 2.0 (Stam & Van Ooijen, 1995) was used to estimate the 

map distances. Drawmap 2.0 (Van Ooijen, 1994) was employed to produce graphics of the 

maps. 

Results 

Inheritance and mapping of the resistance to O. lycopersicum in L. hirsutum Gl. 1290 

The inheritance of resistance to O. lycopersicum was studied by applying a disease test on a BC, 

population of L. esculentum cv Moneymaker x L. hirsutum G1.1290. All plants were evaluated 

for the degree of sporulation expressed as disease index (DI) at scales from 0 to 3. The plants of 

resistant control G 1.1290 either remained uninfected or were scored at most 1, while almost all 

plants of susceptible control Moneymaker were scored 3 (Fig. 1). All F, plants were scored 0-1, 

and hence were considered as resistant (Fig. 1), indicating that the resistance was dominant. The 

BC, segregated into 69 resistant and 80 susceptible plants, according to an 1:1 ratio (X2, df = 

0.81, P = 0.50-0.25), in accordance with one dominant resistance gene, which we designated as 

Ol-3. In addition, twenty-nine BC, plants could not be clearly classified because of their 

intermediate disease score (2). This might indicate the incomplete dominance ofOl-3 or 

existence of minor gene effects. It might also be due to the influence of genetic background of 

L. esculentum on the expression levels of resistance as sometimes noticed in the ABL (also see 

Fig. 3, g). 

As a first step towards mapping the Ol-3 gene, a resistant advanced breeding line 

(ABL1290.4) derived from L. hirsutum G1.1290 was analyzed for the markers TG153, TG25, 

SCAF10 and TG164 on chromosome 6, which are closely linked to Ol-l (Huang et al, 2000). 

The resistance in this ABL was found to be associated with L. hirsutum alleles at these markers. 

Obviously, this ABL contained a fairly large introgression fragment (approximately 10 cM) 

between markers TGI 53 and TGI 64 (Fig. 2). This result at least indicated that Ol-3 was located 

on chromosome 6, near Ol-l. 
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Fig. 1 Frequency distribution of resistance to O. lycopersicum infection inZ,. hirsutum G1.1290, 

L. esculentum cv Moneymaker and their F, and BC, progenies. The population size is indicated 

between brackets. The disease index (DI) was defined as: 0: no sporulation; 1: slight 

sporulation, but less than 5% foliar area affected; 2: moderate sporulation, between 5 and 30% 

foliar area affected; 3: abundant sporulation, more than 30% foliar area affected. Evaluations 

were done at 13,16 and 20 days post inoculation (DPI). 
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Fig. 2 Genetic linkage map of part of chromosome 6 of tomato, showing the position of the 

resistance genes Ol-1 (left) and Ol-3 (right) for tomato powdery mildew. Their relative position 

is shown in an integrated genetic map (central). Ol-l and 01-3 were mapped by using an F2 of 

L. esculentum cv Moneymaker x L. hirsutum G1.1560 and a BC, of Moneymaker x L. hirsutum 

Gl .1290, respectively. Markers in normal face are RFLPs, in bold are SCARs. 
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To map the gene Ol-3, RFLP analyses with chromosome 6 markers, were performed on 51 

resistant (scored at most 1) and 58 susceptible (always scored 3) BC, plants. After testing 15 

probe-enzyme combinations, 11 combinations generated sufficient polymorphisms between the 

parents Moneymaker and G1.1290 (data not shown). One combination, TG240 with HaeJR, 

even showed a difference between the two L. hirsutum accessions G1.1290 and G1.1560, 

indicating a genetic difference between these two accessions. In the interval where Ol-3 was 

mapped by using ABL1290.4, five probe-enzyme combinations (TG153, TG164 and TG240 

with HaeUl, and TG25 and H9A11 with EcoRl) and an L. hirsutum specific SCAR marker, 

SCAF10, were chosen for more precise mapping (Fig. 2). Based on the marker data and the 

disease resistance evaluation of the BC, plants, map distances between 01-3 and RFLPs as well 

as SCAR were estimated. This map was very reliable (X2=0.139) and the order of the markers 

was the same as reported by Tanksley et al. (1992). The most likely map position of the resis­

tance gene 01-3 was between TG25/SCAF10 and H9A11 (Fig. 2). 

Fine mapping ofOl-1 

Because 01-3 had previously been mapped in the same chromosome region as Ol-l, we wanted 

to investigate further the relationship of these two 01 genes. Though Ol-l had been mapped 

between SCAF10 and H9A11 in an F2 (Huang et ah, 2000), the accuracy of mapping also 

allows a slightly different position. To improve the accuracy of the mapping of Ol-l, the F3 

progenies of 17 F2 plants (Table 1) with ambiguous disease resistance evaluation, were 

genotyped for the SCAR markers and evaluated by a disease test to more accurately evaluate the 

resistance or susceptibility of these F2 plants. By doing so, most of the F2 plants that had been 

scored ambiguously could now be classified as either resistant or susceptible, which was 

confirmed by the SCAR-genotype. For two of the F3 progenies from F2 plants no. 101 and 

no.270, however, the SCAR-genotype and the disease rating were contradictory. 

The F3 progeny of no.101 did carry the Ol-l resistance allele as judged by SCAR analysis, 

but was susceptible to O. lycopersicum. These plants might contain suppressor gene(s). In order 

to find a better explanation of such conflicting observations, they were crossed with resistant F3 

plants that did carry the Ol-l resistance allele. Then the "F2" progeny of these crosses were 

subjected to a disease test. These were as resistant as the resistant parent G 1.1560 (Fig. 3: a & 

b), indicating the absence of such putative suppressor gene(s) and the presence of the Ol-l 

resistance allele. Therefore, the corresponding F2 plant no.101 was re-interpreted as resistant. In 

contrast, the F3 progeny of no.270 did not contain the Ol-l allele as judged by SCAR analysis 

but was evaluated as resistant. These plants might contain additional gene(s) which also confer 

resistance to O. lycopersicum. Two of them were crossed with Moneymaker and the two 

derived "F2" progenies were evaluated in a disease test. Both "F2" populations tested were as 
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susceptible as Moneymaker (Fig. 3: c & d), indicating the absence of such putative additional 

gene(s) as well as the absence of the Ol-l allele. Therefore, the corresponding F2 plant no.270 

was re-interpreted as susceptible. After re-interpreting the two F2 plants no. 101 and no.270, Ol-l 

was still mapped between SCAF10 and H9A11, in the same region as 01-3 (Fig. 2). 

In addition, 56 ABLs derived from L. hirsutum G1.1560 were used to determine the 

introgression fragment(s) around the Ol-l gene. They were subjected to RFLP and SCAR 

analyses with five RFLPs and four SCARs, which are tightly linked to Ol-l. The ABLs could 

be classified into eight classes according to the size of the introgression fragments. Six of them 

contained a large introgression fragment almost covering the whole region between SCAE16 

and TG240 (not shown). The genotypes ABL1 and ABL2 showed smaller introgression 

fragments which indicated that Ol-l was indeed between SCAF10 and H9A11 (Fig. 4). This 

was in accordance with our earlier mapping study of Ol-l (Fig. 2). 

Allelism test of 01-3 and Ol-l 

As stated above, Ol-l and 01-3 were mapped at similar positions on chromosome 6. Their 

relative distance was about 2 cM in an integrated map (Fig. 2), constructed by using both the 

Ol-l map and Ol-3 map, suggesting that Ol-l and 01-3 are two different genes. However, 

because the integrated map was constructed by using linkage data from two different 

populations, F2 and BC, respectively, the distance between Ol-l and Ol-3 might be due to 

experimental error, as could the 4 cM shift of map position of SCAG11. In order to confirm the 

relative map position of Ol-l and Ol-3, allelism tests were conducted by using three-way test-

cross progenies derived from wild accessions and ABLs respectively (Table 1). 

Most of plants of the three-way-cross progeny "BClwa" (Moneymaker x 

"Flwa"[G1.1290xG1.1560], also see Table 1) were resistant, but some plants might be 

considered as susceptible (Fig. 5). However, most plants of the selfed progenies ("BClwaS,") 

from the most susceptible "BClwa" plants were resistant (Fig. 6a), indicating the absence of 

susceptible recombinants in the test-cross progenies ("BClwa"). Because no recombinant was 

found in the "BC]wa" consisting of 135 plants, the distance between Ol-l and 01-3 was estimated 

to be smaller than 2.2 cM (P=0.05). 

In order to test the allelism of Ol-l and Ol-3 in a more L. esculentum background, 

ABL1290.4 and ABL1560.2 containing Ol-3 and Ol-l, respectively, were used to make similar 

three-way-crosses as for the wild accessions. Similarly, most plants of the three-way-cross 

progeny "BClabl" (Moneymaker x "Flabl"[G1.1290xG1.1560], also see Table 1) were resistant, 

but some plants might be considered as susceptible (Fig. 7). However, most plants of the selfed 
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Fig. 3 Analysis of putative additional genes (a & b) or suppressor genes (c & d ). L. hirsutum 

G1.1560 (e) and the ABL (g) served as resistant control, while L. esculentum cv Moneymaker 

(f) as susceptible control (see text). The experiment consisted of six blocks, each contained nine 

to thirteen "F2" plants, five each of Moneymaker and G1.1560, and four of ABL1560.2. The 

disease index was defined as: 0, no symptom; 1, some mycelia without sporulation; 2, moderate 

mycelia with poor sporulation; 3, abundant mycelia with heavy sporulation. Evaluations were 

done at 10 and 14 days post inoculation (DPI) 
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Fig. 4 Graphical map of part of chromosome 6, showing the map position of Ol-l between 

SCAF10 and H9A11. This map was constructed by using ABLs carrying the Ol-l resistance. 

Chromosome fragments in black represent L. hirsutum {Lh) loci, in white L. esculentum (MM) loci, 

in grey heterozygous loci. The relative map distance of each marker was based on the Ol-l map 

(Fig. 2). 
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Fig. 5 Frequency distribution of resistance to O. lycopersicum infection in L. hirsutum 

G1.1290, L. hirsutum G1.1560, L. esculentum cv Moneymaker and their "BClwa" 

(MMx"Flwa"[G1.1560xG1.1290]) progenies of the allelism test. The disease was scored as: 0, 

no symptom; 1, some mycelia without sporulation; 2, moderate mycelia with poor 

sporulation; 3, between 2 and 4; 4, abundant mycelia with heavy sporulation. Evaluations 

were done at 10,14 and 21 days post inoculation (DPI). 
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Allelism test of 01-1 and OI-3 using wild accessions 
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Fig. 6 Susceptibility of the "BQS," lines. 

a) Frequency distribution of resistance to O. lycopersicum infection in the "BClwaS|" lines 

(indicated by Arabic numbers, Lines 2' & 15' were repeats of Lines 2 & 15 respectively) at 

28 days post inoculation (DPI). These lines were generated by self-pollinating the most 

susceptible "BClwa" plants. Here, "BClwa" was obtained by crossing cv Moneymaker (MM) 

with the progeny ("F | wa") of the cross between!, hirsutum G1.1290 andZ,. hirsutum G1.1560. 

HO/5 and HOll are heterozygous for 01-3 and Ol-l respectively. For each genotype 17-23 

plants were tested. Evaluations were done at 10,14 and 28 dpi. 



Chapter 6 99 

Allelism test of OI-1 and OI-3 using Advanced Breeding lines 
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Fig. 6 Susceptibility of the "BC,S," lines. 

b) Frequency distribution of resistance to O. lycopersicum infection in the "BClab,S," lines 

(indicated by a-f) at 21 days post inoculation (DPI). These lines were generated by self-

pollinating the most susceptible "BClabl" plants. Here, "BClabl" was obtained by crossing cv 

Moneymaker with the progeny ("Flabl") of the cross between two ABLs ABL1290.4 and 

ABL1560.2. For each genotype 17-23 plants were tested. Evaluations were done at 10,14 and 

21 dpi. The disease index (DI) was: 0: no sporulation; 1: slight sporulation, but less than 5% 

foliar area affected; 2: moderate sporulation, between 5 and 30% foliar area affected; 3: 

abundant sporulation, more than 30% foliar area affected. 
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Fig. 7 Frequency distribution of resistance to O. lycopersicum infection in L. hirsutum 

G1.1290, L. hirsutum G1.1560, advanced breeding lines ABL1290.4 containing 01-3 and 

ABL1560.2 containing Ol-l, "Flabl" of ABL1290.4 x ABL1560.2, L. esculentum cv 

Moneymaker (MM) and the "BClab," (MMx"Flabl"[ABL1290.4 x ABL1560.2]) populations. The 

DI scores were as defined in Fig. 5. Evaluations were done at 7 and 14 DPI. 
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progenies ("BClablS,") from the most susceptible "BCIabl" plants were resistant (Fig. 6b), 

indicating the absence of susceptible recombinants in the test-cross progenies ("BClabl"). 

Compared with the resistant parental lines and the progeny of the putative susceptible plants 

from the experiment where the wild accessions were (Fig. 6a), the higher levels of susceptibility 

of the selfed plants from the putative susceptible BClabi plants, might be due to a higher 

perccentage of L. esculentum genome in the genetic background (e.g. Fig. 3g). Because no 

recombinant was found in the "BClabl" consisting of 193 plants, the distance between Ol-l and 

01-3 was estimated to be smaller than 1.5 cM (P=0.05). This result was fully in agreement with 

that by using wild accessions. 

Discussion 

In the present study, we concluded that the resistance in L. hirsutum Gl .1290 was controlled by 

one major gene 01-3, designated 01-3, that mapped between markers TG25/SCAF10 and 

H9A11 on chromosome 6 of tomato. The existence of some BC, plants which were ambiguous 

during disease evaluation, suggested that 01-3 was incompletely dominant. To map 01-3, a BC, 

population was preferred over an F2 as the larger L. esculentum background in BC, prevents 

negative effects of wild accession genes on the disease test, thus increasing the accuracy of 

disease evaluation. In the BC„ there are only two genotypes, Ol-3/ol-3 and ol-3/ol-3. The 

dominant L. hirsutum specific SCAR marker SCAF10 is informative to discriminate ol-3 

heterozygotes and homozygotes. However, the resistance allele(s) cannot be detected with the 

dominant L. esculentum specific SCAR markers such as SCAE16, SCAK16 and SCAG11, as 

they cannot discriminate the heterozygote resistant individuals and the homozygote susceptible 

individuals. 

Though there might be ambiguity in disease evaluations, especially for segregating 

population, the disease test of the F3 progenies and SCAR-genotyping showed that only two out 

of 17 F2 plants, which were ambiguously evaluated (Huang et al., 2000), had to be re­

interpreted in the present study. Therefore, all the results of disease tests in the present or 

previous (e.g. Huang et al., 2000) studies were reliable enough for interpreting inheritance of 

disease resistance. In addition, our investigation on the putative additional gene or suppressor 

gene strongly demonstrated the necessity of testing more than one generation, and the power of 

marker-genotyping in genetic studies. 

The map positions of Ol-l and 01-3 were in the same region between SCAF10 and H9A11. 

By allelism test, Ol-l and 01-3 were demonstrated to be allelic or tightly linked. SCAF10 is the 

most closely linked marker and can be used, as a simple PCR marker, for indirect selection for 

either Ol-l or 01-3 resistances. However, pyramiding Ol-l and Ol-3 in one tomato cultivar is 
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still not feasible. 

The two tomato powdery mildew resistance genes identified so far, Ol-l and Ol-3 may be 

in a cluster on chromosome 6. Disease resistance genes are commonly organized in complex 

loci or clusters (e.g. Hammond-Kosack & Jones, 1997; Michelmore & Meyers, 1998). The 

members of each cluster may originate from, genetically, similar accessions within a species, 

such as Cf-2 and Cf-5 from L. pimpinellifolium PI270254 and PI187002 respectively (Stevens 

& Rick, 1988). In contrast, they may also originate from very diverse species, like Cf-1, Cf-4 

and Cf-9 (Kerr & Bailey, 1964; Jones et ai, 1993) from L. esculentum, L. hirsutum and L. 

pimpinellifolium respectively (Stevens & Rick, 1988). 

Genetically, no difference between Ol-l and Ol-3 has been found yet. Though Ol-l and Ol-

3 may be identical, they may also be homologues of a gene cluster. Morphologically, L. 

hirsutum G 1.1290 differs from L. hirsutum G1.1560 by its broader leaves and by its higher level 

of necrosis under greenhouse conditions, especially at high humidity. Molecular analysis also 

demonstrated variation between the two accessions. For example, a polymorphism between L. 

hirsutum G1.1290 and G1.1560 was found for TG240. Large genetic variation between and 

within L. hirsutum accessions has also been reported by Miller & Tanksley (1990). 

Microscopically, G1.1290 plants showed a spreading hypersensitivity response (HR) (necrosis 

spread to the neighbouring cells of the haustorium-invaded cell) after inoculation with O. 

lycopersicum, while G1.1560 only showed single cell HR (necrosis confined to the haustorium-

invaded cell), though this phenomenon of spreading HR in Gl .1290 was not always manifest 

(Huang et al., 1998). In addition, a lower level of resistance in ABLs carrying Ol-3 than in 

ABLs containing Ol-l, was often observed (personal observations) especially at the seedling 

stage. However, it is still unknown whether such difference between G1.1560 and G1.1290 

reflects the difference between the two powdery mildew resistance genes Ol-l and Ol-3. 

Therefore, the precise comparison of Ol-l and 01-3 awaits the sequence information after 

cloning the two genes. 
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Abstract 

Lycopersicon parviflorum G 1.1601 is resistant to tomato powdery mildew (Oidium 

lycopersici). A disease test of an F2 population from the interspecific cross between this 

resistant accession and the susceptible L. esculentum cv Moneymaker demonstrated that 

resistance in G 1.1601 inherited quantitatively. To map the quantitative trait loci (QTLs) for 

the resistance to O. lycopersici, 104 F2 plants were evaluated for the segregation of AFLP 

markers. A genetic map of 792 centimorgan (cM) was generated consisting of 259 AFLP 

markers. QTL mapping for resistance to O. lycopersici was first performed using the interval 

mapping method (IM), and QTLs were confirmed by multiple QTL mapping (MQM) with 

markers linked to the putative QTL as cofactors. Three QTLs for resistance were identified, 

one on Chromosome 12, two on still unassigned linkage groups. The identified QTLs showed 

clearly additive effects and explained in total 68% of the phenotypic variance. These results 

are discussed with repect to resistance mechanism and durability. 

Keywords: polygenic resistance, tomato powdery mildew, Oidium lycopersici, mapping, QTL 

analysis. 
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Introduction 

Tomato powdery mildew (Qidium lycopersici = O. lycopersicum) has become a globally 

important disease since 1986, when it was first reported in the Netherlands (Paternotte, 1988). 

Most modern tomato cultivars are susceptible. Resistance has been found in many 

Lycopersicon species (Kozik, 1993; Laterrot and Moretti, 1993; Neshev, 1993; Lindhout et al, 

1994a; Ciccarese etal., 1998). Resistance inZ,. hirsutum G1.1290 and G1.1560 is controlled 

by incompletely dominant genes, 01-3 and Ol-l, respectively, which map in the same region 

between SCAF10 and H9A11 on Chromosome 6 and are not distinguishable yet (Van der 

Beek et al, 1994; Huang et al., 2000a; Huang et al., 2000b). In most of the wild accessions 

evaluated, resistance is mainly associated with a hypersensitive response (HR), except for L. 

parviflorum G 1.1601 in which the association of resistance with HR is not as strong as in 

other accessions (Huang et al., 1998). This suggests that resistance in G1.1601 is at least 

partly due to a different mechanism than HR. In addition, earlier studies indicated that the 

inheritance of resistance in G1.1601 is polygenic or recessive (Pim Lindhout, unpublished). 

Many agriculturally important traits that show continuous variation, are genetically 

complex and polygenic. By QTL (quantitative trait locus) mapping, these traits can be 

resolved into discrete Mendelian factors (e.g. Patersoh et al., 1988; Yamamoto et al., 1998). 

In tomato, the first application of QTL mapping was to localize genes controlling fruit size, 

pH and soluble solids (Paterson et al., 1988). Since then, QTLs have been identified for many 

morphological and horticultural traits (e.g. Lindhout et al., 1994b; Monforte and Tanksley, 

2000) and fruit quality (Bucheli et al, 1999; Saliba-Colombani et al, 1999). The successful 

cloning of/w 2.2 and Brix9-2-5, two QTLs controlling respectively fruit weight and sugar 

content of tomato, indicates that a QTL may indeed correspond to a gene (minor allele) and 

differs from the major gene (major allele) by its smaller effect on a trait (Frary et al., 2000; 

Fridman et al., 2000). QTL mapping has also been applied to identify genes controlling 

tolerance to abiotic factors like salt and chilling (e.g. Foolad and Chen, 1998) and resistance 

to biotic factors such as pathogenic bacteria (e.g. Danesh et al., 1994; Van Heusden et al., 

1999) and insect pests (Maliepaard et al., 1995; Mutschler et al., 1996). However, application 

of QTL mapping to unravel the quantitative resistance to a fungal disease in tomato, has not 

been reported yet. 

All research on QTL mapping in tomato mentioned above, is based on genetic linkage 

maps consisting of either RAPD or RFLP markers. A limitation of RAPD markers is the poor 

reproducibility and non-locus specificity, and that of RFLP markers is the time and labour-

consuming assay. In addition, these techniques are poorly informative for organisms with a 

low level of genetic variation. The development of AFLP™ marker (Vos et al., 1995) 
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allowed the construction of high density or saturated genetic maps also for species with 

limited variation. The distribution of AFLP markers in genetic linkage maps may depend on 

the combinations of restriction enzymes used. In barley and tomato, it has been found that the 

majority of the EcoBJ/Msel markers are clustered in the heterochromatic regions around the 

centromere (e.g. Qi et al, 1998; Haanstra et al, 1999), likely due to the suppression of 

recombination in those regions (Haanstra et al, 1999). In most genetic studies, especially 

QTL mapping, it is desirable to have markers evenly distributed over the genetic map. 

Therefore, AFLP markers based on the methylation sensitive restriction enzyme Pstl are 

preferred because this enzyme recognizes restriction sites in non-methylated euchromatin 

(Gruenbaum et al, 1981) in the distal parts of tomato chromosomes, where most functional 

genes and hence unique DNA is supposed to be present, while methylated DNA, likely 

present in the heterochromatin, is not recognized by Pstl. 

In the present study we investigated the inheritance of resistance in L. parviflorum 

G1.1601, by using an F2 population which was evaluated for quantitative resistance to O. 

lycopersici. Subsequently, we constructed a genetic linkage map based on AFLP markers of 

which some were in common with an L. esculentum x L. pennelli AFLP map (Haanstra et al, 

1999) and were used as anchor markers to assign linkage groups to chromosomes. 

Furthermore, QTLs were identified and the quantitative effect of each QTL was assessed. 

Materials and methods 

Plant and fungus materials 

An F2 population of 209 plants derived from an interspecific cross between individual plants 

of the susceptible L. esculentum cv Moneymaker and the resistant accession L. parviflorum 

G 1.1601 (Lindhout et al, 1994b) was used to study the inheritance of resistance. All F2 

plants were selfed to produce F3 lines for progeny testings, if needed. 

The pathogenic fungus O. lycopersici, which originated from infected commercial 

tomato plants (Lindhout et al, 1994b), was maintained on Moneymaker plants in a 

greenhouse compartment at 20±3 °C with 70±15% relative humidity (RH). 

Disease test 

A disease test was performed by inoculating one-month-old tomato plants with a suspension 

of 2xl04 conidia.mr1. The inoculum was prepared by washing conidial spores from the 

freshly sporulating leaves of heavily infected Moneymaker plants in tap water and was used 
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immediately. The experiment was carried out according to a randomized block design with 

six blocks, each containing two plants of each parent and of the Fi, and 34-35 F2 plants. The 

inoculated plants were grown in a greenhouse at 20±3°C with 30-70% RH. 

The fungal growth was evaluated at 11,14 and 19 days post inoculation (dpi), and was 

expressed as a disease index where 0 = no sporulation, 1 = slight sporulation, but less than 

5% foliar area affected, 2 = moderate sporulation, 5-30% foliar area affected, 3 = abundant 

sporulation, more than 30% foliar area affected. 

AFLP analysis 

Total DNA was extracted from frozen young leaves as described by Van der Beek et al. 

(1992). Based on disease index (about equal numbers of plants per disease index class, if 

possible), the amount of DNA extracted per plant and the number of F3 seeds obtained, 104 

F2 plants were selected and subjected to AFLP analysis. The AFLP procedure was performed 

as described by Vos et al. (1995). The genomic DNA was digested with restriction enzymes 

EcoRl (G/AATTC) or Pstl (TGCA/G) and Msel (T/TAA), ligated to adapters, and a subset of 

DNA fragments was amplified using primers containing 16 adapter defined sequences with 

one additional arbitrary nucleotide to produce primary templates. Twenty-four primer 

combinations of primers with three (+3) selective bases (Table 1) were used in the second 

amplification (active PCR). They included 12 EcoRVMsel primer combinations: E32/M47, 

E32/M48, E32/M49, E32/M50, E32/M61, E35/M47, E35/M48, E35/M50, E35/M58, 

E35/M59, E35/M62 and E39/M50; and 12 Pstl/Msel primer combinations: P11/M47. 

P11/M48. PI 1/M50, PI 1/M54, PU/M61. P11/M62. P14/M47. P14/M49, P14/M50, 

P14/M60, P14/M61 and P14/M62. All these primer combinations, except the underlined 

ones, were also used by Haanstra et al. (1999). The segregating AFLP markers were 

designated according to the primer combination used, the parent species from which they 

derive and the estimated fragment size (see Fig. 2). 

CAPS analysis 

CAPS primers CP60 and CT99 (Bendahmane et al, 1997) were obtained from Dr. Rouppe 

van der Voort, Laboratory of Nematology, Wageningen University, Wageningen, the 

Netherlands. CAPS analysis was performed as described by Bendahmane et al. (1997) with 

minor modifications. The PCR conditions were: 94°C, 5 min, followed by 40 cycles of 30 s at 

94°C, 30 s at 57 °C for CP60 (or 15 s at 94°C, 15 s at 62 °C for CT99) and 1 min at 72 °C, 

and then (after the last cycle) 7 min at 72 °C. 
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Table 1. Sequences of AFLP primers and adapters 

Primers/adapters 
Msel adapter 

MOO (universal primer) 
Msel + 1 primer M02 
Msel + 3 primers M47 

M48 
M49 
M50 
M54 
M58 
M59 
M61 
M62 

Ecol adapter 

E00 (universal primer) 
EcoRI + 1 primer E01 
EcoRI + 3 primer E32 

E35 
E39 

Pstl adapter 

POO (universal primer) 
Pstl + 1 primer P01 
Pstl + 2 primer P l l 

P14 

Sequences1 

5'-GACGATGAGTCCTGAG-3' 
3'-TACTCAGGACTC AT-5' 

GATGAGTCCTGAG TAA 
MOO + C 
MOO + CAA 
MOO + CAC 
MOO + CAG 
MOO + CAT 
MOO + CCT 
MOO + CGT 
MOO + CTA 
MOO + CTG 
MOO + CTT 
5'-CTCGTAGACTGCGTACC-3' 

3'-CTGACGCATGG TTAA-5' 
GACTGCGTACC AATTC 
EOO + A 
EOO + AAC 
EOO + ACA 
EOO + AGA 
5'-CTCGTAGACTGCGTACATGCA-3' 

3'-CATCTAGACGCATGT-5' 
GACTGCGTACATGCAG 
POO + A 
POO + AA 
POO + AT 

1 DNA sequences are always from 5' to 3' orientation unless indicated otherwise. 
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Map construction and QTL mapping 

JOINMAP (Stam and Van Ooijen, 1995) was used to facilitate linkage analysis and to generate 

a genetic map, which was drawn by using DRAWMAP 2.0 (Van Ooijen, 1994). Kosambi's 

mapping function (Kosambi, 1944) was applied to calculate map distances. Criteria were set 

for unreliable markers according to Haanstra et al. (1999). 

QTL mapping was performed by using MapQTL (Maliepaard and Van Ooijen, 1996). 

The LOD threshold value for declaring a QTL was 3.0 in Interval Mapping. In the regions of 

the putative QTLs (LOD>3.0) the closely linked markers with the highest LOD value were 

taken as co-factors for running the multiple QTL mapping programme (MQM) to confirm the 

Interval Mapping. 

Results 

Inheritance of resistance to O. lycopersicum in L. parviflorum G1.1601 

A disease test was performed on an F2 population of L. esculentum cv Moneymaker x L. 

parviflorum G1.1601 to assess the inheritance pattern of resistance to O. lycopersici. All 

plants were evaluated for the degree of sporulation expressed as disease index (DI) at scales 

from 0 to 3. Plants of the resistant parent G1.1601 were either immune (DI=0) or showed 

weak mycelium growth (scored as 1), while all plants of the susceptible parent Moneymaker 

showed abundant sporulation (scored as 3, Fig. 1). The Fi showed predominantly an 

intermediate DI of 1 or 2 and the F2 plants were distributed over the DI classes 0 to 3 (Fig. 1). 

Thus no monogenic model for the inheritance of resistance could be deduced. This result 

indicates that the resistance to O. lycopersici. in G1.1601 is quantitatively inherited, and is 

likely to be controlled by more than one gene (QTL). 

Development ofAFLP markers 

In order to identify QTLs for resistance to O. lycopersicum in G1.1601, a genetic linkage map 

was constructed. For map construction, molecular markers were efficiently generated by 

using the AFLP technique with 24 primer combinations, 17 of which have previously also 

been used by Haanstra et al. (1999) in constructing an L. esculentum x L. pennellii AFLP 

map. Because EcoRI/Msel markers occurred more often in clusters than PstVMsel markers 

(e.g. Qi et al., 1998; Haanstra et al, 1999), the latter were also included. All markers were 

scored dominantly. In total, 371 markers were obtained: 216 were L. parviflorum specific, 
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Fig. 1 Frequency distribution of L. parviflorum G1.1601, L. esculentum cv Moneymaker (MM) 

and their Fi and F2 progenies for resistance to O. lycopersici infection. The population size is 

indicated between brackets. The average disease index was the mean of disease indices 

evaluated at 11,14 and 19 days post inoculation (dpi). The disease index (DI) was defined as: 0: 

no sporulation; 1: slight sporulation, but less than 5% foliar area affected; 2: moderate 

sporulation, between 5 and 30% foliar area affected; 3: abundant sporulation, more than 30% 

foliar area affected. 
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and 155 were L. esculentum specific among which 87 were in common with Haanstra's map. 

The average numbers of informative markers per EcdRI/Msel primer combination were 22, 

compared to nine markers identified per PstVMsel primer combination. The EcoRUMsel 

primer combinations had an average polymorphism rate of 43% compared to 22% of the 

PstVMsel primer combinations. 

Map construction 

After generating the AFLP markers, a genetic linkage map was constructed by using 

JoinMap. Sixteen linkage groups were established at a LOD treshold for linkage of 4.5 to 6.5. 

After removing markers which caused a poor overall fit of the resulting map, 258 AFLP 

markers were used for the map, 41 of which were in common to Haanstra's map. These 

common markers were used as anchor markers to assign linkage groups to chromosomes, as 

comigrating AFLP bands within a species are generally allele specific (Rouppe van der Voort 

et al., 1997; Qi et al., 1998). Consequently, seven linkage groups could be assigned to 

chromosomes. All markers that were in one linkage group in Haanstra's map, were also in 

one linkage group in the present L. esculentum x L. parviflorum map. The remaining nine 

linkage groups, mainly consisting of L. parviflorum specific markers, remained unassigned 

because of lack of common markers. The resulting genetic map covered 790 cM of the 

tomato genome (not shown). In this map, clustering of markers occurred quite often, and 

many unassigned linkage groups consisted of only either L. esculentum or L. parviflorum 

specific markers. This is not unexpected since all markers specific to either one parent are in 

coupling phase, whereas marker pairs across parents are in repulsion phase. For the latter, 

significant linkage is much harder to assess in an F2 (e.g. Maliepaard et al., 1998). Therefore, 

the total map length of 790 cM probably is an over-estimate since some linkage groups in 

repulsion phase may actually belong to the same chromosome. 

QTL mapping 

By applying Interval Mapping (IM), three QTLs for resistance to O. lycopersici in G1.1601 

were identified (Table 2). One QTL mapped on Chromosome 12, the other two remained 

unassigned (Fig. 2, Table 2). This result was confirmed by using MQM using "peak markers" 

for the putative QTLs from IM as cofactors. 

In order to increase the accuracy of mapping and QTL analysis, two co-dominant 

chromosome specific CAPS markers, CP60 and CT99, were used to confirm the map of 

Chromosome 12 and consequently the map position of the QTL on this chromosome (Fig. 2). 
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Fig. 2. Genetic linkage map of part of the tomato genome, showing the possible map positions of 

the putative QTLs. This map was constructed by using AFLP markers on 104 F2 plants from the 

cross of L. esculentum cv Moneymaker x L. parviflorum G1.1601. Markers with a slash (/) are 

L. parviflorum specific, those with a plus (+) are L. esculentum specific and common to the L. 

esculentum x L. pennellii map (Haanstra et al, 1999). The figures following the pluses (+) 

indicate the chromosomes on which these markers map in Haanstra's map. The markers in 

boxes were at the same position as the corresponding representative markers. 
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Table 2. The three QTLs associated with resistance to O. lycopersici, detected by interval 

mapping and confirmed by MQM mapping in an F2 population of L. esculentum cv 

Moneymaker x L. parvijlorum Gl. 1601. 

Chromosome 

12 

Unassigned LG1 

Unassigned LG2 

Nearest marker 

P14M62-236 

E35/M50-310 

E35/M50-198 

LOD value 
(IM) 

4.2 

4.5 

3.2 

Variation 
explained (%) 

19.0 

28.7 

20.2 

Additive effect 
on the DI 

-0.44 

-0.53 

-0.46 

Table 3. Effects of QTLs on the level of resistance to O. lycopersici 

Population 

Moneymaker 
G1.1601 

F, 
F2 3 QTLs (3-

6 alleles) 
2 QTLs (2-
4 alleles) 

1 QTLs (1-
2 alleles) 
0QTL 

Genotype' 

qqqqqq 
QQQQQQ 
QqQqQq 
Q.Q.Q. 

Q-Q-qq 

Q.qqqq 

qqqqqq 

Number of 
resistance alleles2 

0(12/12) 
6(12/12) 
3 (12/12) 

6 (1/64), 5 (6/64), 
4 (12/64), 3 (8/64) 
4 (3/64), 3 (12/64), 

2(12/64) 
2 (3/64), 1 (6/64) 

0(1/64) 

Average disease index'1 

Observed 

3.0 
0.3 
1.7 
1.6 

1.8 

2.6 

2.2 

Expected 

3.0 
0.1 
1.6 
1.3 

1.8 

2.5 

3.0 

Number 

Observed 

12 
12 
12 
65 

20 

9 

2 

rf plants* 

Expected 

12 
12 
12 
40 

40 

14 

2 

'* QQQQQQ: All three QTLs present and in homozygous form, qqqqqq: no QTL. 
2) Figures in brackets are theoretical frequencies of F2 plants with a certain number of resistance 

alleles. 
3) The observed disease indexes are means of three evaluations at 11,14 and 19 dpi. The 

evaluation was executed by using a disease index (DI) from 0 to 3. The DI was defined as: 0 = 

no sporulation; 1: slight sporulation, but less than 5% foliar area affected; 2 = moderate 

sporulation, between 5 and 30% foliar area affected; 3 = abundant sporulation, more than 30% 

foliar area affected. The expected DI was estimated assuming that each QTL allele had an 

average effect of-0.48 on the DI (Table 2). 
4) The expected number of plants for F2 was calculated based on the theoretical frequencies in 

column 3. 



116 Quantitative resistance and QTL mapping 

The results of these markers confirmed the mapping of Chromosome 12 and the map position 
of this QTL. 

Effects of the identified QTLs on the level of resistance 

In order to study the QTL effects on the level of resistance, the 104 F2 plants were grouped 

according to the numbers of resistance alleles (QTLs) they putatively contained. This was 

done by taking markers nearest to a QTL as indicators for the presence of QTL allele(s). An 

expected segregation ratio was calculated based on the theoretical frequencies of each 

possible genotype according to three independently segregating genes (Table 3). The 

resulting (observed) segregation ratio of the F2 plants deviated significantly from the 

expected one (X =23.34>X (p=o.oi)= 11-35), indicating a skewed segregation of markers 

nearest to the QTLs. Such skewness may also be due to the selection of 104 F2 plants out of 

the 209 plants of the complete population. 

All three QTLs have almost equal effect on the disease index (about -0.5). Together 

these QTLs explained 68% of the total phenotypic variation. The additive effects of each 

QTL were -0.44, -0.53 and -0.46 respectively (Table 2). Assuming the absence of epistasis, 

the difference between F2 plants with zero and six resistance alleles could be -2.86. This 

approximately covers the difference between the parents, suggesting that most of the genetic 

variation is explained by these QTLs. As dominant AFLP markers were used, it was often 

impossible to determine whether one or two resistance allele(s) (heterozygote or 

homozygote) of each QTL were present. To estimate the expected DI for each F2 class with 

the same minimum number of resistance alleles (Table 3), the expected frequency of 

heterozygous or homozygous loci within each class was calculated and the weighed mean DI 

determined. There was a remarkably good agreement between the expected and the observed 

DI per F2 class. Only two F2 plants did not contain any QTL. They were still slightly less 

susceptible than Moneymaker, suggesting the presence of additional minor QTL(s). 

Similarly, the chance to find an F2 plant with six resistance alleles is also very low (1/64). 

Indeed, hardly any F2 plant was as resistant as the resistant parent (Fig. 1). In conlusion, 

these QTLs had clear effects on the level of resistance (Fig. 4) 

Discussion 

The disease test on the F2 population demonstrated that resistance to O. lycopersici in L. 

parviflorum G1.1601 inherits quantitatively. This suggests that the resistance of L. 

parviflorum G1.1601 is a different type of resistance to O. lycopersici than found in other 

wild Lycopersicon accessions, viz. the monogenic and dominant resistance in L. hirsutum 
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Fig. 3. Frequency distribution of the F2 plants containing different numbers of QTLs (either 

homozygous or heterozygous) from L. parviflorum G1.1601, and their effect on the level of 

resistance to O. lycopersici. The average of disease index in the F2 population was 1.7. The 

disease index is the average over three evaluations (see Table 3) 
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Gl .1290 (Huang et al, in press) and L. hirsutum G1.1560 (Van der Beek et al, 1994; Huang 

et al., 2000). Also the microscopic observation that the resistance in G1.1601 is less clearly 

associated with HR than that in G1.1290 and G1.1560 (Huang et al., 1998), supports the 

hypothesis that the resistance in G 1.1601 is of a different type than in the L. hirsutum 

accessions. This is the first report on identification of QTLs for quantitative resistance to a 

fungal pathogen in tomato. 

In the present study, 371 AFLP markers were generated by using 24 primer 

combinations in the F2 of/,, esculentum x L. parviflorum, which was much fewer than 627 

markers obtained by using 17 primer combinations in an F2 of L. esculentum x L. pennellii 

(Haanstra et al., 1999). Very likely, this is due to the lower degree of genetic variation 

between the two parents, because L. esculentum is more closely related to L. parviflorum than 

to L. pennellii (Rick, 1976; Taylor, 1986; Miller and Tanksley, 1990). The fact that out of the 

279 L. esculentum specific markers in the L. esculentum x L. pennellii map of Haanstra et al. 

(1999), only 87 were polymorphic in our cross, may also be due to the difference in genetic 

distance between the parents used in these crosses. The relatively small number of common 

markers, of which only 41 were mapped in the present map, as well as the clustering of these 

markers resulted in the failure to assign nine linkage groups to chromosomes. 

Similarly to the AFLP map of tomato (Haanstra et al., 1999) and of other crop plants like 

barley (Qi et al., 1998), clustering of AFLP markers was frequently observed in the present 

map, very likely due to the suppression of recombination in the heterochromatic regions 

(Haanstra et al., 1999). However, in disagreement with Haanstra et al. (1999), many 

Pstl/Msel markers on Chromosomes 2 and 11 in our map were also in clusters. Based on the 

recombination frequency between AFLP markers, our AFLP map was only 53% in length 

compared with Haanstra's map. This length difference between maps may have several 

causes. Firstly, because Haanstra et al. used more markers, one may expect a more complete 

genome coverage. Secondly, since these maps are based on two distinct interspecific crosses, 

the overall rate of recombination may be different. Thirdly, the difference could be an artifact 

resulting from scoring errors. Even small error rates in scoring of markers lead to significant 

overestimation of recombination frequencies. This overestimation increases as the true 

recombination between markers decreases (Lincoln and Lander, 1992). Thus, at equal error 

rates, a high density marker map will be more inflated than a sparse one. For example, there 

are 64 markers between E32M48-234 and E39M50-525 on Chromosome 4 in Haanstra's map 

but only 10 markers in our map; the distance between the two markers is 14 cM in Haanstra's 

map but only 5 cM in our map. Remarkably, P14M50-210 and P14M50-241 are 21-23 cM 

from E35M58-413 on Chromosome 2 in Haanstra's map, while they are all at the same 
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position in our map. It is clear that the present map is not complete yet. However, as the 

QTLs are clearly mapped on these linkage groups, future efforts will mainly be focused on 

fine mapping these QTLs using the F3 lines rather than completing the map. 

The fact that only a few F2 plant were as resistant as the resistant parent G1.1601 (Fig. 

1), was probably more due to the low chance of finding an F2 plant with six resistance alleles 

(1/64) rather than due to additional QTLs that escaped our attention. Also, the total explained 

variance of almost 70% and the sum of the QTL effects that almost equals to the difference 

between the parents suggest that the principal QTLs are identified in this study. By using 

marker-assisted selection (MAS), the knowledge on the map positions of these QTLs will 

facilitate selection of the favourable QTL alleles for O. lycopersici resistance, even without 

knowing their chromosome locations. Since the resistance in G1.1601 appears to be of a 

different nature than that in the L. hirsutum accessions, and quantitative resistance is 

generally believed to be more durable than qualitative resistance, it would be of great interest 

to combine and incorporate these favourable QTL alleles into modern tomato cultivars so as 

to obtain a more durable resistance. 
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Abstract 

A disease test on an F2 population suggests that the resistance of L. peruvianum LA2172 to O. 

lycopersici is monogenic and dominant. The perspectives of using this resistance source in 

commercial breeding programs is discussed. 
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Introduction 

Lycopersicon peruvianum is one of the wild species of tomato. With I . chilense, it forms the 

peruvianum-complex, which is isolated from the esculentum-complex (consisting of L. 

cheesmanii, L. chmielewskii, L. esculentum, L. hirsutum, L. parviflorum and L. pennellii) by 

severe crossing barriers (Taylor, 1986). L. peruvianum provides a vast reservoir of valuable 

genetic traits for tomato improvement. These traits include disease, pest and virus resistance, 

cold and salt tolerance, good attributes of fruit quality and keeping quality (Table 1). Among 

others, L. peruvianum LA2\72 has been found to be almost immune to Oidium lycopersici 

(formerly named O. lycopersicum), the causal agent of the recent powdery mildew outbreaks 

in tomato (Lindhout et al., 1994). 

The crossing barriers have limited the genetic characterization of L. peruvianum and its 

exploitation in tomato breeding for bio-stress resistance and quality improvement. These 

barriers have been partially overcome by using in vitro techniques such as embryo rescue and 

ovule culture. In practical breeding, resistances to bacterial canker (Crino et al., 1995), root-

knot nematodes (Cap et al., 1991 & 1993; Veremis and Roberts, 1996), tobacco mosaic virus 

(Bonito, 1985), tomato spotted wilt virus and leaf miner (Segeren et al., 1993) have been 

incorporated from L. peruvianum into L. esculentum by embryo rescue (also see Table 1). L. 

peruvianum LAI708 and LA2172 are 'Northern races' that are crossable to L. esculentum 

(Lindhout and Purimahua, 1988; Gradziel et al., 1993; Veremis and Roberts, 1996b). These 

two accessions have been often used as a bridge for crossing other L. peruvianum accessions 

to L. esculentum (e.g. Gradziel et al., 1993; Veremis and Roberts, 1996b). 

A genetic map consisting of 73 RFLP markers has been constructed by using three 

backcross populations derived from an intraspecific cross between two accessions, LA2157 

and LA2172, of L. peruvianum (Van Ooijen et al., 1994). This map is very similar to the L. 

esculentum IL. pennelli map (Tanksley et al., 1992) in both the order of markers and the 

lengths of the chromosomes. This L. peruvianum map facilitate future genetic studies in L. 

peruvianum. Later, a higher recombination frequency in the region of the short arm of 

Chromosome 1 proximal to the Cf-4ICf-9 gene cluster has been found in an L. esculentum x 

L. peruvianum map, compared with the L. esculentum x L. pennellii map (Bonnema et al., 

1997), indicating a higher mapping efficiency with L. peruvianum. 

As most of the wild accessions evaluated, like L. hirsutum G1.1290 and G1.1560, 

resistance of LA2172 to O. lycopersici is associated with the hypersensitive response (HR) 

(Huang et al., 1998). Resistance in the two L. hirsutum accessions G1.1290 and G1.1560 is 

controlled by incompletely dominant genes, Ol-3 and Ol-l, respectively, which map in the 
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Table 1. Valuable traits of L. peruvianum 
Accession 

not reported 

PI306811 etc. 

PI 128650 

not reported 

EC104395 

PI 126946, 
PI128643, 
PI128650, 
PI 128652 
LA2157 

LA2172 

PI 126944 

not reported 

not reported 

PI128657 

PI270435 

PI 126443 

LA 1708 

not reported 

LP1650 

not reported 

not reported 

not reported 
not reported 

Resistance or other traits 

tomato sported wilt virus 

tomato spotted wilt virus 

tobacco mosaic virus 

tobacco mosaic virus 

tomato yellow leaf curl 
virus 

Bacterial speck 
(Pseudomonas syringae pv 
tomato) 

Bacterial canker 
(Clavibacter michiganensis 
ssp. michiganensis) 

powdery mildew (O. 
lycopersici) 
Fusarium crown and root 
rot (Fusarium oxysporum f. 
sp. radicis-lycopersici) 

black leaf mold 
(Pseudocercospora 
fuligena) 
Phytophthora infestans 

Erwinia chrysanthemi 

Corky root rot 
(Pyrenochaeta lycopersici) 

Root-knot nematodes (M. 
incognita, M. arenaria and 
M. javanica) 
Root-knot nematodes (M. 
incognita, M. arenaria, M. 
javanica and M. hapla) 
Root-knot nematodes (M. 
javanica and M. incognita) 
Root-knot nematodes 
(Meloidogyne incognita, M. 
arenaria) (heat stable) 

Leaf miner 
(Scrobipalpuloides absoluta 
[Scrobipalpula absoluta]) 

cold tolerance 

fruit dry matter content 
(over 5.5%) 
high content of dry matter, 
sugar, acids and ascorbic 
acid 
keeping quality 
Salt tolerance 

accessions 
Corresponding 
gene 
Sw-5 

Tm-T 

(three genes) 

3QTLs 

(monogenic) 

FH9 

py-1 

Mi 

Mi-2 

Mi-3 

Mi-4 

Chromosome 

9 

6 

5, 7 & 9 resp. 

9 

3 

6 

6 

12 

Population 
development 
not reported 

in vitro 
germination 
Conventional 
cross 

Embryo 
rescue 
not reported 

Conventional 
cross 

Conventional 
cross 

Conventional 
cross 
not reported 

none 

none 

none 

not reported 

not reported 

Conventional 
cross 

Conventional 
cross 
Conventional 
cross 

Embryo 
rescue 

Embryo 
rescue 

none 

none 

none 
none 

Reference 

Stevens et ai, 
1996 
Duval etal, 1993 

Young et ai, 
1988; Ganal and 
Tanksley, 1996 
Segeren et ai, 
1993 
Vidavsky et ai, 
1998 

Stockinger and 
Walling, 1994 

Van Heusden et 
ai,1999 

(present study) 

Rowe and Farley, 
1981; 
Vakalounakis et 
ai 1997 
(Hartman and 
Wang, 1993) 

Kiku etal., 1979 

Victoria et ai, 
1982 
Doganlar et ai 
1998 

Gilbert and 
McGuire, 1953 

Cap etal., 1993 

Yaghoobi et ai, 
1995 
Veremis and 
Roberts, 1996b 

Segeren et ai, 
1993 

BrUggemann et 
ai, 1996 
Petrescu and Wu, 
1981 
Kiku et ai, 1979 

Kiku etal, 1979 
Uetai, 1988 
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same region between SCAF10 and H9A11 on Chromosome 6 (Van der Beek et al., 1994; 

Huang et al., 2000a; Huang et al., 2000b). Resistance in another wild accession L. 

parviflorum G 1.1601 is only weakly associated with HR. It has been found to be controlled 

by three QTLs (Huang et al., submitted). 

In order to facilitate the introduction of the resistance of LA2172 into modern tomato 

cultivars, we investigated in the present study the inheritance of resistance of LA2172 to O. 

lycopersici. 

Materials and Methods 

Plant and fungus materials 

More than 100 artificial pollinations were made between individual plants of L. esculentum 

cv Moneymaker (female) and L. peruvianum LA2172 (male). Pollinations by two random 

plants of LA2172 yielded 17 and 20 fruits respectively. Six out of the 17 fruits contained in 

total 22 seeds from which nine F] plants were raised, and nine out of the 20 fruits contained a 

total of 29 seeds from which two Fi plants were obtained. Because these Fi plants were self-

incompatible, "F2" populations were obtained by cross-pollinations between individual Fi 

plants. Finally, several "F2" populations of reasonable size were established that were suitable 

for genetic studies. Based on the number of seeds, an "F2" population (PV963035) of 194 

plants, derived from the cross between two Fi plants (PV94473 plant no.719 and PV94489 

plant no.717) from different L. peruvianum plants was selected for the present study. The 

"F2" plants were selfed to generate F3 lines for further characterization of the resistance. 

The pathogenic fungus O. lycopersici, which originated from infected commercial 

tomato plants (Lindhout et al., 1994b), was maintained on Moneymaker plants in a 

greenhouse compartment at 20±3 °C with 70±15% relative humidity. 

Disease test 

A disease test was performed by inoculating one-month-old plants with conidial spores in a 

spore suspension of 2xl04 conidia.ml"1. The inoculum was prepared by washing conidial 

spores from the freshly sporulating leaves of heavily infected Moneymaker plants in tap 

water and was used immediately. The experiment was carried out according to a randomized 

complete block design with six blocks, each containing 32-33 F2 plants, three LA2172 plants, 

five plants each of L. esculentum cv Moneymaker and an Advanced Breeding Line (ABL) 

containing the Ol-1 gene. LA2172 and the ABL served as resistant control and Moneymaker 
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as susceptible control. The inoculated plants were grown in a greenhouse at 20±3°C with 30-

70% RH. 

The fungal growth was evaluated at 14,17 and 21 days post inoculation (dpi), and was 

expressed as a disease index where 0 = no sporulation, 1 = slight sporulation, but less than 

5% foliar area affected, 2 = moderate sporulation, 5-30% foliar area affected, 3 = abundant 

sporulation, more than 30% foliar area affected. 

Results 

The inheritance of resistance in L. peruvianum LA2172 was determined by a disease test of the 

"F2" population derived from two different LA2172 grandparents crossed with the tomato 

cultivar Moneymaker. The level of resistance of the "F2" plants was classified by using the 

disease index (DI) on a scale from 0 to 3. As expected, especially at the later stage of disease 

development, all Moneymaker plants were heavily infected and thus were scored as 3 (Fig. 1). 

All individuals of the resistant parent and the ABL were either immune or slightly infected and 

were scored as 0 or 1 respectively. Therefore, plants with a 3 were considered as susceptible, 

and plants with a DI of 0-1 as resistant. By using this index, most "F2" plants (152) could be 

unambiguously identified as resistant or susceptible (Fig. 1). Some "F2" plants (42) were scored 

as 2 so that their score does not allow them to be classified unambiguously as resistant or 

susceptible. The existence of the ambiguous "F2" plants suggested that the resistance is 

incomplete in heterozygous plants. These "F2" plants were considered as resistant, before 

further analysis of their progenies. Segregation of resistance (151 R: 43 S at 21 dpi) was in 

accordance with a monogenic, dominant trait. We designate the corresponding resistance gene 

as Ol-4. 

Discussion 

Interspecific crosses, especially between remote species, usually yield neither normal seed 

nor fertile Fi due to incompatibility and early embryo abortion. In these cases, the interspecific 

hybrid plants can only be recovered by in vitro techniques such as embryo rescue and in vitro 

germination of immature seeds (e.g. Duval et al., 1993; Poysa, 1990; Segeren et ah, 1993). 

However, in vitro culture is labour intensive and requires special equipment and chemicals. In 

addition, often plants raised from in vitro rescued embryos are sterile. In the present study, we 

aimed at obtaining normal seeds by doing a large number of artificial pollinations, as we 

expected that normal seeds may give rise to normal plants with a higher chance for fertility. 

Indeed, in our study most Fi plants were fertile, but self-incompatible.normal seeds were 

eventually obtained, though a big number of artificial pollinations were required. Exceptionally, 



Chapter 8 129 

35 
w 

I * 
£-21 
o 

14 

7 

0 

.Q 
£ 

Moneymaker (N=30) 

0 1 2 
Disease index 

L peruvianum LA2172 (N=18) 

"F2" (Moneymaker x LA2172) (N=194) ABL containing 0-1 (N=30) 

1 2 3 
Disease index 

Fig. 1. Frequency distribution of resistance to O. lycopersicum infection onZ,. esculentum cv 

Moneymaker, L. peruvianum LA2172 and their "F2" progenies, as well as on an Ol-l resistant 

ABL. The disease indexes were scored as: 0, no symptom; 1, some mycelia without sporulation; 

2, moderate mycelia with poor sporulation; 3, abundant mycelia with heavy sporulation. 

Evaluations were done at 14,17 and 21 days post inoculation (dpi). 
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an Fi plant has been obtained via embryo rescue from the cross between L. esculentum and L. 

peruvianum LA2157 that was very fertile and self compatible (e.g. Van Heusden et al., 1999; 

Van Ooijen et al, 1994). In general, no matter how the Fi progenies are generated from the 

cross between L. esculentum and L. peruvianum, the Fi plants are mostly self-incompatible and 

the F2 is often obtained by (half-) sib crosses (also see Duval et al., 1993 and Segeren et al., 

1993). In the present study we also used this strategy to generate segregating "F2" 

populations. These (partially) fertile "F2" plants can then be used as a bridge to overcome the 

incompatibility barriers between L. esculentum and L. peruvianum in developing further 

advanced materials in breeding programs. 

Evaluation of the L. peruvianum LA2172 derived F2 progeny in a disease test suggests that 

resistance of LA2172 to O. lycopersici is monogenic and dominant. The resistance of LA2172 is 

characterized by highly restricted mycelium growth with trace sporulation. LA2172 can be 

another promising source of resistance to O. lycopersici, because the resistance is very likely 

controlled by a single gene which confers a high level of resistance. 

The F2 plants with ambiguous scoring (DI=2), need to be more accurately evaluated for 

their resistance/susceptibility. This can be done by testing their F3 progenies. If F3 progenies are 

uniformly resistant or susceptible, the corresponding F2 plants must be homozygous for 

resistance or susceptibility, respectively. If F3 progenies are segregating for 

resistance/susceptibility, the corresponding F2 plants must be heterozygous for resistance. After 

doing so, the genetic basis of the O. lycopersici resistance can be more precisely deduced. 

Moreover, like L. hirsutum G 1.1290 and G 1.15 60, the resistance in LA2172 is associated with 

HR, which may also support its hypothesized monogenic nature. 

Mapping of this new resistance and comparing Ol-4 with Ol-l and Ol-3 will confirm the 

genetic basis of the resistance, and will facilitate pyrimading Ol-4 with other OZ-genes or other 

resistances (Table 1) in a modern tomato cultivar for a more durable resistance to O. lycopersici 

or more environmentally friendly production. 
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Chapter 9 

General discussion 

Since long, tomato (Lycopersicon esculentum Mill.) is one of the best studied crop plants, due 

to its easy crossability, clear genetics and economic importance (e.g. Rick, 1975). More 

recently, the small genome content (Arumuganathan and Earle, 1991), the high density 

molecular marker maps (Tanksley et al., 1992; Haanstra et al., 1999), the successful isolation 

of genes and the well developed transformation protocols have rendered tomato very suitable 

as a model organism for genetic and genomic studies. 

Tomato powdery mildew caused by Oidium lycopersici Cooke & Mass. is a relatively new 

but nowadays worldwide disease of tomato. It is also the only disease which has to be 

controlled by using fungicides in protected tomato production in Northwestern Europe. All 

other important fungal diseases can readily be controlled by the use of resistant cultivars or 

sanitary measures. Therefore, with the increase of public concerns about the ecologically safe 

foods, it is urgent to develop new tomato cultivars containing resistance also to O. lycopersici. 

In the beginning of the present research, there was lack of knowledge of the pathogenecity of 

the fungus on tomato and other closely related species, of the genetic variation of the causal 

agent(s) worldwide, and of the inheritance of resistance in the resistant wild accessions. The 

development of resistant cultivars may benefit from insights on the interaction between tomato 

and O. lycopersici. The finding of resistant wild Lycopersicon accessions (e.g. Lindhout et al., 

1994), the development of some segregating populations derived from these accessions and the 

great interest of the industry provided good bases for the research presented in this thesis. The 

high density RFLP map (Tanksley et al, 1992), the preliminary mapping of the 01-1 gene, and 

more recently, the AFLP map (Haanstra et al., 1999) were also ingredients for support of this 

research. The results described in this thesis will not only facilitate the breeding of powdery 

mildew resistant tomato cultivars, but also stimulate scientific research on the function and 

structure of the 0/-genes. 

Origin of O. lycopersici 

The origin of O. lycopersici is still unknown. We hypothesized that O. lycopersici is a new 

form of another powdery mildew species which "jumped" from its host species to tomato by the 

acquisition of pathogenicity to the latter species, as has been documented in a number of plant-

pathosystems (Savile, 1971; Baum and Savile, 1985; Storer et al., 1994; Hoist-Jensen et al., 

1997; Kaplan et al., 1999). So, host range studies might provide clues to the possible origin(s) 

of the pathogen(s). Despite earlier reports on a wide host range, in the present study only 
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tobacco was identified as host species for O. lycopersici (Chapter 3). Consequently, tobacco 

powdery mildew was considered as a candidate for the origin of O. lycopersici, because tobacco 

was as susceptible as to the fungus tomato (Chapter 3). This hypothesis, however, was not 

supported by marker analysis (Chapter 4). Still, tobacco powdery mildew may be an old 

ancestor of tomato powdery mildew. Alternatively, another powdery mildew is the ancestor, but 

it still escaped our attention. 

Gene-for-gene interaction 

The resistance to O. lycopersici in most wild resistant accessions and in the advanced breeding 

lines is posthaustorial, and is clearly associated with a hypersensitive response (HR), though 

much less HR was observed in one resistant accession L. parviflorum Gl .1601. Such 

combination of posthaustorial nature and HR usually indicates a race specific major gene 

resistance (Heath 1981 & 1982). However, there are exceptions that resistance genes are not 

related to HR but are race-specific, like the Hm-1 gene in maize that detoxifies the HC-toxin of 

Cochliobolus carbonum (Johal and Briggs, 1992) and the mlo gene in barley that is involved in 

papillae formation, inhibiting the invagination of fungal hyphae of Erysiphe graminis f. sp. 

hordei into barley cells (Buschges et al., 1997). The resistance in L. hirsutum G1.1290 and 

G 1.15 60, and in L. peruvianum LA2172 has been proven to be monogenic (Van der Beek et al., 

1994; Chapters 5,6 & 8), and associated with HR. Most likely these resistance are race specific 

and based on a gene-for-gene interaction. However, this hypothesis remains to be demonstrated. 

Till now, there is no evidence that different races of O. lycopersici occur that have differential 

interaction with tomato genotypes containing specific Ol genes (Chapter 4). 

While many complete resistance genes are race-specific, it is conceivable that partial or 

quantitative resistance genes (loci) might generally be race-nonspecific (also Young, 1996). 

However, with QTL mapping by using molecular markers, more and more partial or 

quantitative resistance genes (QTLs) are reported to be race-specific. For example, six out of 11 

QTLs for resistance to Phytophthora infestans in potato showed specificity against just one race 

(Leonards-Schippers et al., 1994). Such race-specificity of QTLs have also been reported, for 

instance, in the resistance to leaf rust (Puccinia hordei) in barley (Qi et al., 1998) though now 

withdrawn, to bacterial wilt (Pseudomonas solanacearum) in tomato (Danesh et al., 1994) and 

to cyst nematode (Heterodera glycines) in soybean (Concibido et al., 1994). QTL analysis is 

eventually a (multiple) linear analysis of markers and the interested traits. Its accuracy depends 

on the genetic linkage maps used and the measurement of the traits. In most cases, QTL analysis 

is a reliable approach to identify loci for quantitative traits. For example, the same major QTLs 

for resistance to leaf rust have been identified in diferent populations (Qi et al., 1998). 

Remarkably, the QTL/W 2.2 or Brix9-2-5, controlling respectively fruit weight and sugar 
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content of tomato, just corresponds to a gene (minor allele) and differs from the major gene 

(major allele) by its smaller effect on a trait (Frary et al., 2000; Fridman et al., 2000). The 

three QTLs for resistance to O. lycopersici identified in the present research show clear effect 

on the level of resistance (Chapter 7). In order to exploit these QTLs in commercial breeding 

programs, it is necessary to develop more closely linked molecular markers to finemap these 

QTLs so as to facilitate marker assisted selection of these QTLs. Also the specificity of QTLs 

for resistance to O. lycopersici (Chapter 7) can only be tested when distinct isolates/races, that 

differ in their pathogenecities, are discovered. 

Organization of 0/-genes 

Over the last five years a number of plant disease resistance genes (R-genes) has been cloned. 

Remarkably, R-genes for diverse classes of pathogens like viruses, fungi and bacteria, cloned 

from a wide range of plants species (both mono- and dicots) share particular common motifs 

and domains (reviewed by Hammond-Kosack and Jones, 1997). A number of R-genes contain 

an N-terminal nucleotide binding site (NBS) domain and a number of leucine rich repeats 

(LRRs) at their C-terminus. These R-genes are either cytoplasmic or membrane anchored. One 

class of R-genes, e.g. the tomato CJ^genes, are membrane anchored glycoproteins with an 

extracytoplasmic domain mainly consisting of LRRs. Another class of R-genes consists of the 

tomato Pto gene, encodes a cytoplasmic serine threonine kinase and no LRR. The rice Xa-21 

gene, however, consists of both kinase and an LRR domain. Many homologs of both NBS and 

LRR domains were mapped in plant genomes. These homologs were often mapped on the same 

loci as race-specific R-genes (Kanazin et al, 1996; Leister et al., 1996 & 1998). 

Many R-genes are organized in clusters. This is true for a number of tomato R-genes (Cf, 

Pto and 1-2). Some R-genes to bacterial, fungal and viral pathogens are genetically linked. Such 

R-gene-rich regions are designated as major resistance complexes (MRCs) (Hammond-Kosack 

and Jones, 1997). The Ol-l and 01-3 genes map in such a MRC, since they are linked to the 

Cladosporiumfulvum resistance genes Cf-2/Cf-5, and the root knot nematode (Meloidogyne 

spp.) resistance gene Mi and the aphid resistance gene Meu-1 (= Mi) (Dixon et ah, 1995 & 

1996; Kaloshian et al., 1998; Rossi et al., 1998). More information on the structure of the Ol-

genes will be available within a few years, and contribute to our understanding of the evolution 

and function of R-genes. 

Prospect in breeding for resistance to O. lycopersici in tomato 

In the present research, monogenic and dominant resistance has been demonstrated in resistant 

accessions L. hirsutum G1.1290 and G1.1560 andl. peruvianum LA2172), and polygenic resistance 
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inZ. parviflorum G1.1601. By using the strategy of marker-assisted selection (MAS), tomato 

breeders can apply molecular markers linked to the CV-genes or QTLs for resistance to indirectly 

select for the resistant genotypes for both mono- and polygenic resistance (even without knowing the 

chromosome locations). Such indirect selection can usually be done at the early stage of plant 

development, and thus will improve the selection efficiency and reduce breeding costs. In addition, 

most, if not all, causal agents responsible for the recent outbreaks reported all over the world belong 

to one anamorph (Chapter 4; Kiss et al., 1999). It is not unlikely that the resistance identified so far, 

or even incorporated into modern cultivars will be overcome by the fungus. The present study has 

shown that CV-genes are available in the Lycopersicon genus that offer a genetic reseroir to the 

breeders who can exploit them when needed. 

Future research 

The present research has provided basic knowledge which can be applied to both practical breeding 

and fundamental research like map-based cloning of CV-genes. However, many questions regarding 

to this plant pathosystem still remain. Is it possible to find the origin(s) of O. lycopersici, or 

searching for such origin is like looking for a needle in the sea (Chinese)/hay (Dutch)? Is the L. 

esculentumlL. parviflorum AFLP map accurate enough? To which chromosomes do the 

unassigned linkage groups belong (Chapter 7)? Do QTLs for resistance to O. lycopersici also 

give resistance to other powdery mildew species, such as Laveillula taurica! How does 

resistance in other resistant accessions inherit? To address to these questions, more CV-genes or 

QTLs for resistance should be identified, mapped and eventually cloned. 
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Summary 

Since 1986, tomato powdery mildew (O. lycopersici) has become an important disease in 

tomato production around the world. All modern tomato cultivars were susceptible by the time 

the present project started. Both the Pseudoidium {Oidium with solitary conidia) and the 

Euoidium {Oidium with catenary conidia) anamorph have been repeatedly reported as causal 

agents of the recent powdery mildew epidemics. However, published data on the morphology 

of tomato powdery mildew were often conflicting which hampers exact identification of the 

causal agent. Based on the morphology of the asexual stage, the causal agent in the Netherlands 

and the UK has been identified as Oidium lycopersicum (recently renamed Oidium 

lycopersici), which was described in Australia for the first time in 1888 and has only been 

mentioned occasionally in the literature till 1986. The origin(s) of the organism(s) causing the 

recent outbreaks of tomato powdery mildew in the world is unknown. Resistance has been found 

in some accessions of several wild Lycopersicon species. Also, the mechanism of defence to O. 

lycopersici in Lycopersicon accessions was unkown. Only one of the resistant accessions had 

been studied for the inheritance of resistance. 

The development of O. lycopersici on susceptible'cv Moneymaker and the defence 

response to O. lycopersici in Lycopersicon accessions is described in Chapter 2. Spore 

germination and (primary) haustorium formation in resistant accessions were as frequent as on 

the susceptible L. esculentum cv Moneymaker. A high frequency of necrosis of epidermal cells 

in which a haustorium was formed appeared to be the major defence response, indicating that 

resistance to O. lycopersici in the Lycopersicon genus was predominantly associated with the 

hypersensitive reaction. However, the resistance inL. parviflorum was only weakly associated 

with hypersensitivity as compared with other resistant accessions, suggesting the existence of a 

different but still unknown resistance mechanism. In addition, evidence was provided that the 

level of resistance could depend on the genetic background and the plant developmental stage. 

In order to determine the host range of O. lycopersici (Chapter 3), nine accessions of 

cucurbits, 10 of eight legume species, three of lettuce (Lactuca sativa) and 34 of 14 Solanaceae 

species were inoculated with a Dutch isolate of the tomato powdery mildew fungus. Thirty-six 

accessions were also subjected to histological observations in order to investigate the defence 

response. Macroscopically, no fungal growth was visible on sweet pepper (Capsicum annuum), 

lettuce, petunia (Petunia spp.) and most legume species (Lupinus albus, L. luteus, L. mutabilis, 

Phaseolus vulgaris, Viciafaba, Vigna radiata, V. unguiculata). Trace infection was 

occasionally observed on melon (Cucumis meld), cucumber (C. sativus), courgette (Cucurbita 

pepo), pea (Pisum sativum) and Solanum dulcamara. Eggplant (S. melongena), the cultivated 
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potato (S. tuberosum) and three wild potato species (S. albicans, S. acaule and S. mochiquense) 

were more heavily infected in comparison with melon, cucumber, courgette, pea and S. 

dulcamara, but the fungus did not reproduced sufficiently to be maintained on these plant 

species. All seven tobacco (Nicotiana tabacum) accessions were as susceptible to O. lycopersici 

as tomato (Lycopersicon esculentum cv Moneymaker), suggesting that tobacco was an 

alternative host. This host range differs from that of tomato powdery mildews reported from 

some other countries where milder criteria have been used to determine the host range (Chapter 

3); these reports also vary among each other, indicating that host range studies can only be 

compared by using strict criteria and well designed experiments. Histologically, the defence 

response to O. lycopersici in all the plant species tested in this study was highly associated with 

a posthaustorial hypersensitive response. 

The genetic variation among 11 field isolates of tomato powdery mildew collected 

worldwide was investigated by AFLP fingerprinting (Chapter 4). The AFLP fingerprints of 

tomato powdery mildew were compared with that of 12 other powdery mildew species to assess 

the possible phylogenetic origin of tomato powdery mildew. We also compared the molecular 

data with morphological data (size of spores and spore arrangement) for taxonomic purposes. 

Our results demonstrated that 1) tomato powdery mildew isolates are very similar to each 

other in morphology and AFLP fingerprint; and 2) tomato powdery mildew was genetically 

very different (hardly any AFLP band in common) from any other powdery mildew species. 

We did not find any correlation between AFLP fingerprints and size of spores or spore 

arrangement (i.e. solitary or catenary). We concluded that only one anamorph of powdery 

mildew has been responsible for the recent outbreaks. 

L. hirsutum G1.1560 is one of the resistant wild accessions. The resistance is known to be 

largely controlled by an incompletely-dominant gene 01-J located near the Aps-1 locus in the 

vicinity of the resistance genes Mi and Cf-2ICf-5 on tomato Chromosome 6. Using a newly 

developed F2 population (N=150) segregating for resistance, the 01-1 gene was more accurately 

mapped between the RFLP markers TG153 and TG164 (Chapter 5). Furthermore, in saturating 

the Ol-l region with more molecular markers using bulked segregant analysis, five RAPDs were 

identified that were associated with the resistance. These RAPDs were sequenced and converted 

into SCAR markers: SCAB01 and SCAF10 were L. hirsutum specific; SCAE16, SCAG11 and 

SCAK16 wereZ,. esculentum specific. By linkage analysis a dense integrated map comprising 

RFLP and SCAR markers near Ol-l was obtained. This will facilitate a map-based cloning 

approach for Ol-l and marker-assisted selection for powdery mildew resistance in tomato 

breeding. 
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L. hirsutum G1.1290 is another resistant accession of the Lycopersicon hirsutum species. 

Chapter 6 describes 1) the genetics and mapping of resistance to O. lycopersici in G1.1290, 2) 

fmemapping of Ol-l originating fromZ. hirsutum G1.1560, and 3) tests for allelism of resistance 

in G1.1290 and G1.1560. The resistance in G1.1290 to O. lycopersici was demonstrated to be 

controlled by an incompletely dominant gene, designated OI-3, which was mapped between 

markers TG25/SCAF10 and H9A11 on Chromosome 6. By testing some F3 lines and their 

progenies from the cross between L. esculentum cv Moneymaker andL. hirsutum G1.1560, we 

provided more evidence for the map position of Ol-l to be between SCAF10 and H9A11. This 

implies that Ol-l and Ol-3 are in the same chromosome region. Allelism tests did not result in 

susceptible recombinants, indicating that Ol-l and 01-3 may be located on the same locus. There 

is, however, some (indirect) evidence from the observed differences in the infection process that 

these two genes are not identical (see Chapter 2). They might represent functional genes of a 

cluster of OMiomologues. 

L. parviflorum Gl. 1601 is another resistant accession that was investigated. A disease test of 

an F2 population of Moneymaker x G1.1601 showed that the resistance of G 1.1601 was 

quantitative (Chapter 7). In order to map the quantitative trait loci (QTLs) for resistance to 

powdery mildew, a genetic map of 792 centimorgan (cM) in length consisting of 259 AFLP 

markers, was generated by using the same F2 population. Three QTLs for resistance were 

identified, one of which mapped to Chromosome 12 whereas two reside on linkage groups that 

remained unassigned to chromosomes. Together they contributed approximately 63% to the 

total phenotypic variance. The identified QTLs clearly showed additive effects on the level of 

resistance without significant epistatic interaction. 

Resistance of L. peruvianum LA2172 to O. lycopersici is likely to be controlled by a single 

dominant gene, Ol-4 (Chapter 8). This resistance gene awaits to be mapped. 

Based on the experiments described in Chapters 2-8, the following conclusions are drawn: 

1) Resistance to O. lycopersici in Lycopersicon species is mainly associated with 

hypersensitive response. 

2) Tobacco may be an alternative host of O. lycopersici. 

3) Tomato powdery mildew isolates from different continents are very similar to each 

other, suggesting a single origin of these (field) isolates. 

4) Resistance in i . hirsutum G1.1560 as well as G1.1290 is monogenic and dominant. The 

two resistance genes Ol-l and 01-3 are both mapped between markers SCAF10 and 

H9A11, and are genetically not distinguishable from each other. 

5) Resistance in Gl. 1601 is polygenic. Three QTLs for the resistance were identified, one 

on chromosome 12, two on linkage groups that remained unassigned. 
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6) Resistance in L.peruvianum LA2172 is also monogenic and dominant. The corresponding 

resistance gene is designated 01-4. 
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Samenvatting 

Sinds 1986 is de echte meeldauw van tomaat (O. lycopersici) een belangrijke ziekte geworden 

in tomatenteelten over de hele wereld. Bij de start van het huidige onderzoeksproject waren alle 

modeme tomatenrassen vatbaar. Zowel de Pseudoidium {Oidium met solitaire conidia) en de 

Euoidium (Oidium met conidia in rijtjes) anamorfen zijn herhaaldelijk gemeld als de 

veroorzakers van de recent opgetreden echte meeldauw epidemieen. Gepubliceerde gegevens 

over de morfologie van de echte meeldauw van tomaat zijn vaak tegenstrijdig, wat de 

eenduidige identificatie van de veroorzaker(s) verhindert. Gebaseerd op de morfologie van 

het asexuele stadium is de veroorzaker in Nederland en het Verenigd Koninkrijk 

gei'dentificeerd als Oidium lycopersicum (recent hernoemd als Oidium lycopersici). Deze is 

voor het eerst in 1888 in Australie beschreven en is slechts af en toe in de literatuur van voor 

1986 vermeld. De oorsprong van het organisme, dat de recente uitbraak heeft veroorzaakt, is 

onbekend. In sommige herkomsten van wilde Lycopersicon soorten is resistentie aangetroffen. 

Het mechanisme van deze resistenties was nog onbekend. Slechts een van de resistente 

herkomsten was onderzocht op de overerving van resistentie. 

De ontwikkeling van O. lycopersici op het vatbare ras 'Moneymaker' en de 

resistentiereactie van O. lycopersici in Lycopersicon herkomsten is beschreven in Hoofdstuk 2. 

De sporenkieming en de (primaire) haustoriavorming in resistente herkomsten was even 

frequent als op de vatbare L. esculentum cv Moneymaker. Een hoog-frequente necrose van de 

epidermis cellen waarin haustoria waren gevormd bleek de belangrijkste reactie te zijn, hetgeen 

aangeeft dat de resistentie tegen O. lycopersici in het Lycopersicon geslacht vooral geassocieerd 

is met de overgevoeligheidsreactie. De resistentie in L. parviflorum was echter minder 

uitgesproken geassocieerd met overgevoeligheid dan in andere resistente herkomsten, wat het 

bestaan van een ander maar nog onbekend resistentie mechanisme suggereert. Bovendien 

werden er aanwijzingen verkregen dat het niveau van resistentie afhankelijk kon zijn van de 

genetische achtergrond en het ontwikkelingsstadium van de plant. 

Om de waardreeks van O. lycopersici te bepalen werden negen herkomsten van 

komkommerachtigen, tien van leguminosen, drie van sla (Lactuca sativd) en 34 van 14 soorten 

nachtschade gei'noculeerd met een Nederlands isolaat van de echte meeldauw schimmel van 

tomaat (Hoofdstuk 3). Zesendertig herkomsten werden ook aan een histologisch onderzoek 

onderworpen om de resistentiereactie te bestuderen. Macroscopisch was er geen schimmelgroei 

zichtbaar op paprika {Capsicum annuum), sla (Lactuca sativa), petunia (Petunia spp.) en de 

meeste groente soorten (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Viciafaba, 

Vigna radiata, V. unguiculata). Een minimale infectie werd soms waargenomen op meloen 
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{Cucumis meld), komkommer (C. sativus), courgette (Cucurbita pepo), erwt (Pisum sativum) en 

bitterzoet (Solarium dulcamara). Aubergine (S. melongena), de cultuur aardappel {S. tuberosum) 

en drie wilde aardappel soorten (S. albicans, S. acaule en S. mochiquense) werden zwaarder 

aangetast in vergelijking met meloen, komkommer, courgette, erwt en bitterzoet, maar de 

schimmel reproduceerde niet voldoende om zich op deze soorten te handhaven. Alle zeven 

herkomsten van tabak (Nicotiana tabacum) waren even vatbaar voor O. lycopersici als tomaat 

cv Moneymaker. Dit suggereert dat tabak een alternatieve waard is. Deze waardreeks verschilt 

van die van echte meeldauw van tomaat welke in enkele andere landen gerapporteerd is, maar 

bij de laatste zijn mildere criteria gebruikt om de waardreeks te bepalen (Hoofdstuk 3). Deze 

meldingen spreken elkaar tegen, wat aangeeft dat waardreeksstudies alleen vergeleken kunnen 

worden wanneer heldere criteria en goed opgezette experimenten worden gebruikt. Uit 

histologisch onderzoek bleek dat de verdedigingsreactie tegen O. Lycopersici in alle getoetste 

planten soorten zeer sterk geassocieerd was met de overgevoeligheidsreactie. Dus zowel de 

waard- als de niet-waard- resistentie waren voornamelijk geassocieerd met overgevoeligheid. 

De genetische variatie tussen elf veldisolaten van de echte meeldauw van tomaat, die 

wereldwijd verzameld waren, werd onderzocht met behulp van AFLP 'fingerprinting' 

(Hoofdstuk 4). De AFLP fingerprints van de echte meeldauw van tomaat werden vergeleken 

met die van twaalf andere soorten echte meeldauw om de mogelijke phylogenetische oorsprong 

van de echte meeldauw van tomaat te bepalen. De moleculaire gegevens werden met de 

morfologische gegevens (grootte en rangschikking van de sporen) vergeleken voor taxonomisch 

onderzoek. Onze resultaten toonden aan dat 1) isolaten van de echte meeldauw van tomaat 

morfologisch en qua AFLP fingerprint erg op elkaar lijken, en 2) de echte meeldauw van tomaat 

is genetisch sterk afwijkt (nauwelijks een gemeenschappelijke AFLP band) van enig andere 

soort echte meeldauw. We vonden geen enkele correlatie tussen de AFLP fingerprints en de 

grootte of rangschikking van de sporen (solitair of in een rijtje), hetgeen er op wijst dat de AFLP 

techniek niet geschikt is om verwantschappen tussen soorten te vinden, die is gebaseerd op de 

morfologie van de sporen. We concludeerden dat slechts een anamorf van de echte meeldauw 

verantwoordelijk is geweest voor de recente uitbraken. 

L. hirsutum G1.1560 is een van de resistente wilde herkomsten. De resistentie wordt vooral 

bepaald door een incompleet dominant gen Ol-l, dat - vlak bij het Aps-1 locus in de nabijheid 

van de resistentie-genen Mi en Cf-2ICf-5 - op chromosoom 6 van tomaat ligt. Door gebruik te 

maken van een nieuw ontwikkelde F2 populatie, die uitsplitst voor resistentie, werd het Ol-l gen 

nauwkeuriger in kaart gebracht tussen de RFLP merkers TGI 53 and TGI 64 (Hoofdstuk 5). 

Bovendien werden vijf met resistentie geassocieerde RAPD merkers gei'dentificeerd door het 

Ol-l gebied te verzadigen met meer moleculaire merkers met behulp van de "Bulked Segregant 

Analysis". Deze RAPDs werden gesequenced en omgezet in SCAR merkers: SCAB01 en 
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SCAF10 waren specifiek voor L. hirsutum en SCAE16, SCAG11 en SCAK16 waren specifiek 

voor L. esculentum. Door middel van een koppelingsanalyse werd een dichte geintegreerde kaart 

verkregen, die uit RFLP en SCAR merkers bestond. Dit zal de op een genetische kaart 

gebaseerde klonering van Ol-l en de merker gestuurde selectie van echte meeldauwresistentie in 

de tomatenveredeling vergemakkelijken. 

L. hirsutum G 1.1290 is een andere resistente herkomst van Lycopersicon hirsutum. 

Hoofdstuk 7 beschrijft 1) de genetica en kartering van de resistentie tegen O. lycopersici in 

G1.1290,2) de fijnkartering van Ol-l, afkomstig uit L. hirsutum G1.1560 en 3) allelie toetsen 

voor resistentie in G1.1290 en in G1.1560. De O. lycopersici resistentie in G1.1290 bleek 

bepaald te worden door een incompleet dominant gen, aangeduid met Ol-3, dat gekarteerd werd 

tussen de merkers TG25/SCAF10 en H9A11 op chromosoom 6. Met behulp van toetsen van 

enkele F3 lijntjes en de nakomelingen van de kruising van L. esculentum cv Moneymaker met L. 

hirsutum G1.1560 verkregen we meer aanwijzingen voor de kaartpositie van Ol-l tussen 

SCAF10 and H9A11. Dit betekent dat Ol-l en 01-3 in hetzelfde gebied op chromosoom 6 

liggen. In allelie toetsen werd geen vatbare recombinant aangetoond, wat inhoudt dat Ol-l en 

01-3 op hetzelfde locus kunnen liggen. Op grond van de waargenomen verschillen in het 

infectieproces van beide ouders van Ol-l en 01-3 lijken deze twee genen niet identiek te zijn (zie 

Hoofdstuk 2). Ze zouden fiinctionele genen in een cluster van 0/-homologen kunnen zijn. 

L. parviflorum Gl. 1601 is een nog andere resistente herkomst die onderzocht werd. Een 

ziektetoets met een F2 populatie van Moneymaker x G1.1601 toonde aan dat de resistentie van 

Gl .1601 kwantitatief was (Hoofdstuk 7). Om de loci, die betrokken zijn bij de resistentie tegen 

echte meeldauw te karteren, werd van dezelfde F2 populatie een genetische kaart gemaakt, die 

792 centimorgan lang was en 259 AFLP merkers bevat. Drie resistentie QTLs werden 

gei'dentificeerd, waarvan er een op chromosoom 12 werd gekarteerd en twee andere op 

koppelingsgroepen, die nog niet aan chromosomen konden worden toegewezen. Samen 

verklaarden ze ongeveer 63% van de totale fenotypische variantie. Deze QTLs vertoonden 

duidelijke additieve effecten op het niveau van resistentie zonder significante epistatische 

interacties. 

De resistentie tegen O. lycopersici in L. peruvianum LA2172 berust waarschijnlijk op een 

enkel dominant gen, 01-4 (Hoofdstuk 8). Dit resistentiegen moet nog gekarteerd worden. 

Op grond van de resultaten van de experimenten, die in de hoofdstukken 2 t/m 8 zijn 

beschreven, worden de volgende conclusies getrokken: 

1) De resistentie tegen O. lycopersici in Lycopersicon soorten is vooral geassocieerd met 

overgevoeligheidsreactie; 
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2) Tabak kan een altematieve waard voor O. lycopersici zijn; 

3) Isolaten van echte meeldauw van tomaat, afkomstig van verschillende continenten, 

lijken genetisch sterk op elkaar, hetgeen een enkele oorsprong van deze (veld)isolaten 

suggereert; 

4) De resistenties in L. hirsutum G1.1560 en G1.1290 zijn monogeen en dominant. Detwee 

resistentie genen 01-1 en 01-3 zijn allebei gekarteerd tussen de merkers SCAF10 and 

H9A11 en zijn genetisch niet van elkaar te onderscheiden. 

5) De resistentie in L. parviflorum Gl. 1601 is polygeen. Drie resistentie QTLs werden 

gei'dentificeerd, een op chromosoom 12 en twee op koppelingsgroepen, die nog niet aan 

chromosomen konden worden toegekend. 

6) De resistentie in L. peruvianum LA2172 is ook monogeen en dominant. Het 

corresponderende resistentiegen wordt aangeduid met 01-4. 



*£«H 149 

m 1986 ̂ jg , Wffi&ffiffi (Oidium lycopersici) B ^ l t t l ^ M ^ 

(Pseudoidium, Wj*Qfr&m^®&MlfiM)fflnifo&(Muoidium, BOPS** 

&M$mi&i&, ^mmM^M^mm^mM% Oidium lycopersicum (JBW 
JElS Oidium lycopersici), j t tSK 1888 ffiB^JMSWiiBffi&IfiS 1986 

VN 

^—mM&J O. lycopersici £ft25S$#9QO# Moneymaker 99^-fe^M 

RmyLR&mnttum, o. iycoPersici2.m,mtm. ^mm^n^mm^n 
Moneymaker ± , G*&^S3@?fflll£«ffl^8fflJM«>fl;*:Srt§E. X 

g&G®.%&fm$®m&.!mzim75tt, o fycapersicizss&ymm, 
ftEUfSBH (Lycopersicon)^ O. lycopersicilzW^^^^W^&M^i-
UMi, L. parviflorum ftEt«1^&*fflgEff^#&EE, ^ # - # ^ 1 ° ) 

nimft O. lycopersici ffl^fclgffl ( ^ 3 © . S T O ^ M3£Hffilt 

s5ei»^s®^-«^#^^7Hi^Pt o f&*m), S P do ft), ̂ m 
(Lactuca sativa, 3 ft) f D25P 14 ̂ f a (34 ft) f E M ^ t t E^ft) 36 ftft 

{Capsicum annuum), £5H» ̂ ^•^•{Petunia sp.)\U.^cX^>WisM^^!li(Lupinus 

albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Viciafaba, Vigna radiata, V. 

unguicuiata)}L^m%^Wimmm^^m^.w^mmmm^^\^m\hm^. 
^M(Cucumis melo), H/U(C sativus), ^£ffi*(Cucurbita pepo), $Hg_(Pisum 

sativum)^] Solarium dulcamara K Mfi^JH^CS'. melongend)^i\^^M(S. 



150 *xmi 

tuberosum)]&M—f'W>Qi$i(S. albicans, S. acaule ̂  S. mochiquense)^^M^. 

Stbfflm, a/U, S S I P , MafO So/am/m dulcamara T f i , i i l l ^ f l g W 

G9tfftffl^(Mcoftana tabacum)]^^ Moneymaker —#|&lpg, S f l a ^ # ® ¥ 

n AFLP jg^gis^K'E 12 w&mmwmm&mm&mm. mn^m^ 

AFLP m^mmmnmu; T, mm^±, wffi&mm^n-z&mmm^mm 
±mn>¥-&m&®-iknm$\ AFLP mm- Jtttfh £ AFLP jg^sif ^ # 
£ »£ )* / ! \&H£^J«)ft (£3@§&S8@) 2fi&?iiSI!IMJ&m. *m® 

m®m: mLBm&fmffi&mmmw&.mmmRm-ft. 

L. hirsutum G1.1560 g$m®m£ttH2.- H ^ t 4 ± g g - y N S B $ 

s t s s B 0/-7 m fij^-^ifKi F 2 ^ ^ ^ ^ , oi-i w.wmmm.'m^ 

RFLP ̂  TG153 ^ TG164 ̂ f§) (fg£S). jHtfh, *]7£gS 0/-7 K«ffi)#3-
ffilBffig, &ff]fllflr *E#ff i f t l f f i£ (BSA, bulked segregant analysis) " M £ 

tu^ Jni^tt^^fflE^ RAPD ̂ TB, #jmm. RAPD ̂ tesfriu?, PD&H 
$§&?3 SCAR^ig, M<P SCAB01 fP SCAF10)JiS L. hirsutum, SCAE16, 

SCAG11 ffl SCAK16)lg L. esculentum. aa&gfcfrtff, M # 7 Ol-l KHS 

RFLP » scAR^ieaissssHsm &®m&m®mmm®mi.%$im 
oi-i \>jLj&"ttufcmmn®"&mmm&mmnwtpm$Lm. 



* j a a g 151 

L. hirsutum G1.1290 S L. hirsutum tpgj-ifitfiM^^ttU- ^ASff i 
$ : 1) G1.1290 ij^14ffi)iftf5##f S M S ^ f f i ; 2) £ g I. hirsutum 

G1.1560flg«a Ol-l MflH8£{&;3)GU290*n G1.1560 Jniflttffl^ffi'&ll 
£ . ffift^E, G1.1290 >ft 0. lycopersici a g j n ^ t t ± ^ S f i B $ - ^ ^ ^ ± M 
ttSB, ^ £ * l 0/-3, ̂ f i lK^A^fe^f f i^^ - feE TG25/SCAF10 ^ 
H9A11 £ f l . j i i i t ^ ^ t S S Moneymaker ̂  L. hirsutum G1.1560 £c£ F3 %R 

U3-1X, Ol-l £ g @ l i f KH iZS^S -^ iA f f i SCAF10 ^ H9A11 2f£). 

SSttlJiilft* o/-/ *n 0/-5 rasaJSffiKI^-lfcfeftKSJ; o/-/ *n 01-3 2M 

m-i$Lti. urn, &fflfi&m<pmm%\to-mm!ffimmm, a m ^ s a ^ 

L. parviflorum G1.1601 gffl5Sffi^—ft#i3P§ffiJl?£ftJft. Moneymaker 

^ G1.1601 mm ?2mwzmmm>zwM, oum ®$mte&mmmt; 
m-tm). ftimmi&mi&MmtommffiK&tiiQTLs), mmm- F2I? 
wmmi-^n 259 -r AFLP ̂ E ^ ^ ^ 792 CM s$gf$gi§. KM^tB 

&m>mmMfe. s = - t QTLS , & « M J 7 Gi.1601 sm^^mm 63%^ 

_ ^ N B I. peruvianum LA2172 )ft 0. lycopersici GSJn^ttifl^t^fiBS-

1) S5SS (Lycopersicon) Ja 0. lycopersici ffi±gin^#l3JliittKl£&3Z. 

3) ̂ ^SJteS25e«a^sfflta)sti^jitfBi^jSs AFLP ̂ M &*I 

4) L. fewi/to G1.1560 R G1.1290 5Tt O. lycopersici fflirflPit£J9§St££ 

SCAF10 ̂  H9A11 ^ f l , fi£Mf$±ffi#3l?EE3lJ. 



152 *xm% 
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Bibliographic Abstract: The thesis describes: l)Resistance mechanism of tomato and some 
other crop plant species against O. lycopersici, a causal agent of the recent outbreaks of 
tomato powdery mildew; 2) Host range and genetic variation of the pathogen; 3) Inheritance 
analysis of resistance in wild tomato accessions including L. hirsutum G1.1560 and G1.1290, 
L. parviflorum G1.1601 and L. peruvianum LA2172; and 4) Mapping of monogenic (in 
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It has been found that: 1) Resistance to O. lycopersici in Lycopersicon species is mainly 
associated with hypersensitive response. 2) Tobacco may be an alternative host of Q. 
lycopersici. 3) Tomato powdery mildew isolates from different continents are very similar to 
each other, suggesting a single origin of these (field) isolates. 4) Resistances in G1.1560 and 
Gl .1290 are monogenic and dominant. The two resistance genes Ol-l and Ol-3 are both mapped 
between markers SCAF10 and H9A11, and are genetically not distinguishable from each other. 
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Resistance in LA2172 is monogenic and dominant. The corresponding resistance gene is 
designated Ol-4. 


