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Propositions / Stellingen 

1. It is not conclusively shown that aminotransferase activity is the bottle neck in the formation 
of flavour compounds in cheese. 

• Yvon, M., Berthelot, S., & Gripon, J.C. (1998) Adding a-ketoglutarate to semi-hard cheese curd 
highly enhances the conversion of amino acids to aroma compounds. International Dairy 
Journal 8, 889-898. 

• This thesis. 

2. In contrast to what is generally described, not all lactococci are auxotrophic for at least six 
amino acids. 

• Reiter, B., & Oram, J.D. (1962) Nutritional studies on cheese starters. Journal of Dairy 
Research 29, 63-77. 

• Chopin, A. (1993) Organization and regulation of genes for amino acid biosynthesis in lactic 
acid bacteria. FEMS Microbiology Reviews 12, 21-38. 

• This thesis. 

3. The existing classification of lactococci on subspecies level cremoris and lactis is seriously 
affected by studying lactococci isolated from natural niches. 

• Bergey's Manual of Systematic Bacteriology (1984) Baltimore: Williams and Wilkins. 
• Klijn, N., Weerkamp, A., & De Vos, W.M. (1995) Detection and characterization of lactose-

utilizing Lactococcus spp. in natural ecosystem. Applied and Environmental Microbiology 61, 
788-792. 

• This thesis. 

4. Testing in model systems is a useful tool in selecting strains with potentially interesting 
properties as starter cultures. 

. This thesis. 

5. Bacterial strains isolated from nature are not only valuable for practical applications today, 
but in the future they may also provide an expanded gene pool for designing genetic modified 
strains with improved traits. 

6. Every flavour is an off-flavour. 

7. Biological agriculture is only a partial solution towards the ongoing crisis in today 
agriculture. 

8. There is a cheese for every taste preference and a taste preference for every cheese. 

9. Cheese producers in the ancient Egypt indirectly initiated the work described in this thesis. 



10. Windmills, tulips and cheese in The Netherlands are at least as impressive for Egyptians as 
are the pyramids for the Dutch in Egypt. 

11. A tree is known by its fruit. A cheese is known by its flavour. 

Propositions belonging to the thesis entitled 
'Characterisation of lactococci isolated from natural niches 

and their role in flavour formation of cheese' 
Eman H.E. Ayad 

Wageningen, 1 June 2001 



"Living in direct contact with nature helped man to understand common occurrences 

inherent to his life. He learned how to preserve his food and discovered various 

ways that provide him a desired meal with specific organoleptic properties. 

He should search more, nature is still full of secrets " 

to my mother 

in memory of my father 

to Ahmed, Sarah & Salma 



The research described in this thesis was performed at NIZO food research in Ede, The 

Netherlands and was financially supported by the Egyptian Ministry of Higher Education, 

Mission Department. 
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General introduction 



Chapter 1 

General introduction 

Fermented milk products are among the most prominent types of food in the world, 

because they are not only highly nutritious but, concomitantly, they are attractive for the 

consumer in the respect to flavour and texture. These products have one feature in common: 

fermentation by lactic acid bacteria (LAB) is an integral part of their manufacture. In one 

group of fermented products, the cheeses, a variety of LAB as well as other microorganisms 

such as micrococci, propionibacteria, brevibacteria, molds and yeasts are used in the 

production of a wide variety of types. This group of fermented dairy products is the most 

important from an economical point of view. The world production of cheese is 

approximately 14 million tons per year according to the International Dairy Federation (1995) 

and is even growing. Assuming that the milk for cheese making is inoculated with 0.5-1% 

(v/v) of starter, it can be calculated that more than 109 liters of starter bacteria are produced 

annually. Strains belonging to the species of Lactococcus lactis are the most important starters 

in the manufacture of cheese. The primary role of starter cultures in the manufacture of dairy 

products is to provide microbiologically safe products with defined organoleptic and 

structural properties in an efficient and reproducible way. In the last century, industrial starter 

cultures were first isolated from dairy manufactures. The selection has mainly been based on 

the desired specific product properties of a limited number of large-scale produced products 

and on the performance of the starter during the manufacturing process such as acidification 

rate, proteolysis, antimicrobial activity, phage insensitivity and flavour production (Marshall, 

1991). These cultures were maintained by subculturing in milk, a procedure that decreases the 

number of different strains in the cultures, during the years, leading to a loss in variety of 

(flavour) characteristics in cheese made with these starters (Gilliland, 1971; Limsowtin et al., 

1978) (see below). 

Flavour is one of the most important attributes of cheese for the consumer. Cheese flavour 

is derived from milk components (protein, fat, lactose and citrate) by enzymatic activities of 

milk, rennet and microorganisms (Urbach, 1993). Research has been focused on the role of 

starters in cheese ripening (Visser, 1993; Fox et al., 1996a) and has revealed that the 

formation of many flavour compounds is believed to result from the action of proteases, 

peptidases and various amino acids convertases from the starter cultures (Broome & 

Limsowtin, 1998; Yvon et al., 1998; Smit et al, 2000). 

Nowadays, consumers demand a large variation in flavour of cheese besides consistency in 

overall quality. The need for new products requires the use of new microbial strains with 

novel properties. This has led to a request for novel strains for the innovation and 

diversification of dairy products. These novel strains can be achieved either by genetic 

modification of known production strains (Fitzgerald et al., 1993) or by exploring the 

biodiversity within natural strains from various ecological niches. 
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The literature survey below gives an introduction to history of the genus Lactococcus (its 

taxonomy) and of the cheese making process. A fair amount of background information on 

dairy starters, their typology, their nutritional requirements and their properties essential for 

dairy fermentation is subsequently given. Finally, the flavour formation in cheese during 

ripening is elaborately addressed. All these topics relate to the content of this thesis, i.e., the 

potential use of novel lactococci as starter in the manufacture of semi-hard Dutch cheese 

types. 

1. The genus Lactococcus - its history and taxonomy 

The characterisation of lactic lactococci started when the microbiologist Joseph Lister 

isolated a pure culture in 1878, which he called Bacterium lactis (lactis is the latin for "of 

milk"). Later, in 1919, Orla Jensen isolated and described Streptococcus cremoris (cremoris is 

the latin for 'of cream'). Comprehensive taxonomic studies performed have led to the transfer 

of this Streptococcus and related streptococci to a new genus Lactococcus (Schleifer et al., 

1985; Pot et al, 1994; Cogan, 1996). Lactococcus species have frequently been isolated from 

the milk environments. An early investigation (Esten, 1909) identified the cow and the 

milking equipment as the source of Lactococcus lactis in raw milk. This could not always be 

confirmed by others (Jones, 1921; Stark & Sherman, 1935), since at that time the 

investigations were rather controversial due to unreliable identification methods. However, 

the isolation of Lactococcus species from sources other than raw milk has been reported as 

well (Sandine et al, 1972; Schultz & Breznak, 1978; Collins et al, 1983; Schleifer et al, 

1985; Williams et al, 1990; Elliott et al., 1991), indicating that these organisms are 

widespread in the environment and not strictly dairy related. 

In the past decade, significant progress has been made in the identification of strains. 

Especially, the developments of molecular microbiological tools had a significant effect on 

this progress. The identification of strains is nowadays based on modern methods such as cell 

wall component determination, DNA-DNA hybridisation and 16S rRNA analysis (Salama et 

al, 1991;Klijn^a/., 1991; Godon etal, 1992; Cogan, 1996). 

The genus Lactococcus belongs to the group of lactic acid bacteria (LAB), which 

includes several genera: Aerococcus, Carnobacterium, Enterococcus, Lactobacillus, 

Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, 

Vagococcus and Weissella (Axelsson, 1998). These genera are commonly defined as Gram-

positive, non-sporulating, catalase-negative, anaerobic but aerotolerant, acid tolerant, 

nutritionally fastidious, strictly fermentative organisms that lack cytochromes and produce 

lactic acid as the major end-product of carbohydrate metabolism (Axelsson, 1998). A 

phylogenetic tree of the LAB (as a group) is shown in Fig. 1. 
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According to the later development in bacterial taxonomy, all technologically useful dairy 

starter LAB are found only in the genera: Lactococcus, Leuconostoc, Streptococcus, 

Lactobacillus and Pediococcus, although Enterococcus might also have a good potential. 

They provide an effective form of 'natural' preservation and moreover, they determine the 

flavour, texture and frequently the nutritional attributes of the products as well as enhance the 

variety of food available to use (Daly et al., 1996; Teuber, 2000). The genus Lactococcus 

currently comprises five species: L. lactis, L. graviae, L. plantarum, L. piscium, and L. 

raffinolactis (Schleifer et al., 1992, Cogan, 1996). The only important species in starter 

cultures is L. lactis that can be divided into two subspecies L. lactis subsp. lactis and L. lactis 

subsp cremoris. Lactococcus spp. are cocci that occur singly, in pairs or in chains, they 

ferment sugars homofermentatively, producing L- lactate, and grow at 10°C but not at 45°C. 

Some lactococci, e.g., L. lactis subsp. lactis biovar diacetylactis, are found to be able to 

metabolize citrate. These organisms are phenotypically and genotypically indistinguishable 

from L. lactis subsp. lactis and do not produce as much acid in milk as other L. lactis spp. 

They are regarded as taxonomically the same as L. lactis and hence are not given separate 

species or subspecies identity. 

Lb.delbruckii group 

Weissella. 
Lb.casei-

Leuconostoc/X " ' V ^ l \ / \ Pediococcus 
group 

Oenococcus 

Lacto
coccus 

Strepto-
Carno- \ ' # # X V coccus 
bacterium' 

Bacillus 
Staphylococcus 

Aero-~" ' Listeria 
coccus 

Fig. 1: The phylogenetic relationship between the genera of LAB (Axelsson, 1998). 
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2. Cheese making process 

The production of cheese from milk is an ancient process. Hieroglyphics depicting cheese 

making have been found in the tombs of the pharaohs. It is believed that cheese originated in 

the Middle East, where milk stored in the prevailing warm climates would have acidified due 

to the growth of naturally occurring LAB. Such acid-coagulated milk, when disturbed, would 

have separated into curds and whey, the former being used as a food, the latter as drink. 

Cheese manufacture accompanied the spread of civilisation throughout the Middle East, 

Egypt and Greece, and was well established in the Roman Empire (Cogan, 1996; Fox et al., 

1996a). Cheese making remained localised in specific regions due to limited communications. 

Hence, several varieties of cheese evolved, most of which are still produced locally although 

the principal varieties as Dutch (Gouda and Edam), Cheddar, Camembert and Fromage Frais 

types are now produced internationally. More information on the history of cheese can be 

found in Scott (1986) and Fox (1993). 

Within the world today there is an extensive list of cheese varieties. It has been claimed 

that as many as 900 types exist. However, many of these are based on very similar 

technologies, differing only in name, production area, size or packaging. Different 

classification systems have been proposed for the world's cheese varieties based on milk 

species, technology, moisture content, appearance, type of milk and microflora (Burkhalter, 

1981; Scott, 1981). Considering all of this, cheese is the most diverse, scientifically 

interesting and challenging group of dairy products. 

Cheese manufacture is essential a dehydration process in which the casein and fat of milk 

are concentrated 6 to 12 folds, depending on the variety. It is initiated by a combination of 

microbial fermentation and an enzymatic hydrolysis of the milk protein (K-casein) by rennet 

(chymosin). This process comprises those operations performed during the first 24 hours. 

Although the protocols for various varieties differ in detail, the basic steps are common for 

most varieties, i.e., acidification, coagulation, dehydration (cutting the coagulum, cooking, 

stirring, pressing, and other operations that promote gel syneresis), shaping (kneading, 

moulding, pressing) and salting (Fox et al., 1996a). 

The differences between cheese varieties are partially determined by variations in 

procedures utilised for curd syneresis, cooking and salting (Hill, 1995). In Gouda cheese 

production, the curd is cut and stirred to promote syneresis and further treated with hot water 

(the whey is partially, for 25-40% replaced, with hot water to give a scald temperature of 35-

37°C). Curds are lightly pressed under the whey for a short period, moulded, pressed and 

salted by keeping it in a brine solution. For a detailed description of Gouda-type cheese 

manufacturing see references Walstra et al. (1987; 1993). The pH of this cheese is around 5.7-

5.9 after 4 hours from the start of manufacture then lowered to the desired value of 
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approximately 5.3-5.5 after 6 hours during brining due to lactose conversion, and finally 

reaches a value of 5.2 in the mature cheese. 

The next stage in the production of most cheese types is ripening. Many cheeses are 

ripened for periods ranging from a few weeks to 2 years or longer at predetermined 

temperature and humidity, e.g., Gouda cheese is ripened up to 18 months at 12-15°C at 85-

90% relative humidity. During this period and under these conditions, many biochemical 

changes take place, which are essential for flavour development. The role of starter cultures in 

these changes during the cheese ripening process and in the flavour formation will be 

discussed in the next section of this chapter. Fig. 2 gives an example of the main steps of the 

cheese making process. 

Milk 

Rennet (chymosin) 

Starter culture 

Whey 

Pressing 
Salting 
Ripening 

* 

Mature Cheese 

Fig. 2. Summary of the cheese making process. 

3. Dairy starter culture 

The use of starter cultures in the manufacture of fermented dairy products had been 

practised already for a long time before knowning that bacteria were actually involved at all. 
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Backslopping with some of previous day's product was the major source of the inoculum. It is 

only over the past 100 years that the microbiological basis of these fermentations has been 

elucidated. The discovery of bacteria naturally present in raw milk paved the way for their 

isolation, characterization and exploitation. The dairy starter culture industry was born and 

developed since then into the technically sophisticated industry of today. The historical 

development of dairy starter cultures is summarised in Table 1 (Cogan, 1996; Stanley, 1998). 

Table 1. Historical review of development of dairy starters. 

Pre- 1900 

1782 

1857 

1878 

1890s 

1906 

1910 

1919 

Natural souring of milk stor 

Scheele (Sweden): 

Pasteur (France): 

Lister (England): 

Weigmann (Germany): 
Hansen (Denmark): 

Marschall (USA): 

Metchinkoff (Russia): 

Orla-Jensen (Denmark): 
Storch (Denmark), Hammer 
& Bailey (USA), Boekhout 
& Ott de Vries (Holland): 

1930s - 1940s Whitehead & Cox (New 
Zealand): 

1950s Lewis (England): 

1960s-1970s 

1980s-1990s 

- Lactic acid as chemical compound responsible for souring 
milk 

- Lactic fermentation due to bacteria 

- Concept of pasteurisation 

- Discovery of Bacterium lactis (now Lactococcus lactis) 

- Deliberate inoculation to produce sour cream 
- First starters 
-First commercial undefined mixed strain starters obtained 
from raw milk 

- Yoghurt bacteria and health, Longevity 

- Nature of starter cultures 

• Identification of strains for flavour production 

• Identification of bacteriophages 

• Defined strain starter system 

• Protected system for industrial starter propagation 

- Concentrated deep-frozen bulk set starter cultures 
- Phage-free cultivation 
- Direct vat inoculation commercialised 
- Genetics of LAB 

3.1. Types of starter cultures 

In the dairy industry, starters can be divided into two broad groups: undefined (artisanal 

and mixed-strain starters) and defined starters. Artisanal or 'natural' starter cultures are 

derived from the practice of backslopping, i.e, using a previous batch of product to inculate a 
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new batch. These traditional undefined mixtures of strains, derived from raw milk, are still 

used in small-scale factories in southern Europe, especially Spain, Portugal, Greece and Italy. 

Their use is easy, cheap and closely intertwined with the traditional production of cheeses. 

This artisanal use of starters is still practised in the manufacture of hard cheese (Swiss types 

such as Sbrinz and Gruyere; Italian types such as Grana, Pecorino Romano, Provolone, and 

Montasio) and soft and semisoft cheese (Italian Mozzarella and Italico). The common features 

of the cultures involved are (1) they are produced each day at the cheese plant and (2) they 

generally rely on the selective pressure, competition and antagonism among the components 

of the original microflora present in the raw milk, which is often used for the production of 

these cheeses, to select the desired microorganisms. Their composition is complex, relatively 

variable and often poorly defined (complex undefined starter). However, they are a potential 

source of strains carrying 'novel' or interesting characters (production of inhibitors, phage 

resistance, etc.). They are reproduced in the presence of phages and are apparently less 

sensitive for attacks by phages (Limsowtin et al., 1996; Cogan, 1996; Mayra-Makinen & 

Bigret, 1998). 

Mixed-strain starters (MSS) are undefined mixtures of starters, evolved from artisanal 

cultures that produced good-quality cheese, they were propagated in the laboratory under 

controlled conditions for use as inocula for commercial MSS. The starter cultures used in the 

manufacture of fermented dairy products are commonly divided on the basis of their optimum 

growth temperature. Mesophilic LAB starter cultures grow at temperatures of 10-40°C with 

an optimum around 30°C. Mesophilic MSS are commonly used in dairy plants in northern 

Europe, especially in Scandinavia, Germany and The Netherlands. Thermophilic artisanal-

derived starters from Italy, Switzerland and France are also recognised as mixed strain starters 

(Accolas & Auclair, 1983). The Dutch system of MSS, coming from dairies or/ and butter 

plants, are applied based on the noticed difference in phage sensitivity between the starters 

propagated in the laboratory and in practice. The cultures used in practice are propagated, 

without isolation, in order to keep a composition as close as possible to that of the original 

culture. When they are propagated under asceptic conditions, the very few bacteriophages 

attacks are generally unnoticed. The Netherlands Dairy Research Institute (currently NIZO 

food research) undertook a major research project to clarify the basic ecology of mesophilic 

MSS cultures. The aim of this research was to achieve consistent starter performance in 

Gouda cheese manufacture (Stadhouders & Leenders, 1984; Limsowtin et al., 1996; Mayra-

Makinen & Bigret, 1998). 

The MSS for the manufacture of Gouda cheese are composed of acid-forming lactococci 

(L. lactis subsp. lactis and subsp. cremoris) and flavour producers (citrate utilizing strains). 

Depending on the nature of the citrate utilizing strains, mesophilic starter cultures are 

separated into: (1) D-types with L. lactis subsp. lactis biovar diacetylactis (2) L-types with 

Leuconostoc spp. (3) DL-types with both citrate utilizing L. lactis and Leuconostoc spp. (4) 
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O-type that contain no citrate utilizing strains. Mesophilic starters are used in production of 

many other cheese varieties, fermented milk products and ripened butter cream (Petersson, 

1988). Thermophilic starter cultures have their optimum growth temperature between 40-

50°C, they are used for yoghurt as well as for cheese varieties with high cooking 

temperatures. The most commonly used thermophilic starters contain strains of Streptococcus 

thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus helveticus. 

MSS are thus composed of complex mixtures of strains from several species of LAB, 

forming a bacterial population that would change in composition depending on the incubation 

temperature, growth medium, and frequency of subculturing (Hugenholtz, 1986). In modern 

practice, subculturing is minimized and cultures are preserved by freezing or lyophilization. 

They are propagated in the dairy only once before inoculation in the cheese milk. Nowadays, 

most commercial suppliers market MSS for direct inoculation as well. This eliminates 

unnecessary subculturing within the factory and reduces many difficulties associated with it 

(Sandine, 1996). 

Defmed-strain starters (DSS) are blends of two or more strains and can be mesophilic, 

thermophilic, or mixtures of the two types (single-strain DSS are now rarely used because of 

the risk of phages). DSS cultures are obtainable from commercial suppliers and dairy research 

institutes worldwide. In New Zealand multiple-strain cultures are used for the production of 

Cheddar cheese; these DSS are composed of a small number of defined strains of L. lactis. 

Either the same culture, containing two to six strains, is used alone for a long time or several 

cultures are used in rotation in order to prevent bacteriophage attacks. In the latter case, the 

cultures have to have different bacteriophage sensitivity profiles. The starter system most 

commonly used in New Zealand cheese plants is a single triplet starter containing three 

defined selected strains (Pearce, 1969; Heap & Lawrence, 1976; Limsowtin et ai, 1977; Heap 

& Lawrence, 1988; Limsowtin et ai, 1996; Heap, 1998). The Australian DSS system consists 

of a limited numbers of strains, which are replaced as soon as possible in case of a 

bacteriophage attack. From the sensitive strain screened in the factory, a secondary resistant 

strain is derived to replace the original strain. A combination of these two latter systems has 

been successfully used in the United States and Ireland by selecting secondary resistant strains 

and including them afterwards in multiple-strain cultures (Hull, 1983; Thunell et ah, 1981; 

Daniell & Sandine, 1981; Timmons et ai, 1988; Limsowtin et ai, 1996; Mayra-Makinen & 

Bigret, 1998). In many countries where Cheddar and similar types of cheese are 

manufactured, similar forms of DSS systems have been installed. 

3.2. Nutritional requirements and biosynthetic capabilities of lactococci strains 

Lactococcus strains have complex nutritional requirements for growth. In addition to 

nucleotides and several vitamins, they require a number of amino acids and other substrates 
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(Mitchell et al., 1941; Reiter & Oram, 1962; Otto, 1981). Lactococci appear to have a limited 

biosynthetic capacity for synthesising amino acids, the number of essential amino acids is 

strain-dependent and is found to vary between 6 and 14. Lactococcus lactis subsp. cremoris 

strains have more requirements than those belonging to Lactococcus lactis subsp. lactis 

(Rieter & Oram 1962; Otto, 1981; Chopin, 1993). The requirement for amino acids can result 

from either the absence of functional specific biosynthetic genes or from specific regulatory 

mechanisms (Chopin, 1993). Interestingly, genome sequencing results indicate that in 

principle gene homologes of the various amino acid biosynthesis pathways are annotated 

(Bolotin et al., 1999). Obviously, the inability of Lactococcus lactis to synthesize many 

amino acids make them dependent on an exogenous supply of amino acids and small 

peptides. As a consequence, the optimal growth of the strains depends on the amino acid 

availability in the environment. The enzymic constitution of a cell is influenced by its 

environment and therefore metabolic differences undoubtedly exist between cells grown in 

milk and those grown in other media (Rieter & Oram 1962). 

Lactococcus lactis starters used in dairy fermentations are believed to be derived from 

plant strains, which are introduced in a relatively rich ecological niche, milk (Sandine et al., 

1972). These dairy strains seem to have acquired features which adapted them to milk, such as 

capacity to utilize lactose via a phosphotransferase system (De Vos & Gasson, 1989) and to 

degrade casein by a cell wall protease (Kok, 1990). In parallel, they have lost other functions, 

including the ability to synthetise a number of amino acids, since amino acids are readily 

available (Anderson & Elliker, 1953; Rieter & Oram 1962; Farrow, 1980; Deguchi & 

Morishita, 1992). This indicates that these strains are auxotrophic for some of the amino acids 

(Godon et al., 1993; Cocaign-Bousquet et al., 1995). This lead to limitation in the biological 

diversity of their amino acids converting enzymes which are known to play a role in the 

flavour formation. 

3.3. Functional properties of industrial starter cultures 

For dairy industries, it is important to produce the desired product with the same high 

quality and stability every time it is made, which are mainly dependent on starter cultures 

used. Therefore, the characterisation and maintenance of starter strains is essential to ensure a 

good performance of a culture. It is interesting to note that the industrial mesophilic LAB 

starters for the majority of the world's cheeses and other dairy fermented products are based 

on one single species, namely Lactococcus lactis. There are countless numbers of strains of 

this species exhibiting different characteristics in their growth rate, metabolic rate, phage 

interactions, proteolytic activities, flavour promotion, etc. The management of these 

differences, together with the different cheese technologies employed, makes it possible to 

have a multitude of industrial applications (Stanley, 1998). Research has been focused on the 

10 
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role of the starter and its required properties for the dairy manufacture (Crow et al., 1993; 

Desmazeaud & Cogan, 1996; Heap, 1998; Mayra-Makinen & Bigret, 1998). Several groups 

of microorganisms participate in the manufacture and ripening of fermented milk products. 

Starters with other biochemical attributes than producing lactic acid are also needed to 

achieve the characteristic properties of each type (Table 2; Limsowtin et al., 1996; Johnson & 

Steele, 1997). Basically, the most important attributes of starters are related to their acid 

producing activity in milk, their effect on flavour development, their phage insensitivity and 

their ability to produce inhibitory compounds. The flavour forming abilities of lactococci will 

be discussed in the next section of this chapter. 

Table 2. Starters used in the manufacture of cheeses. 

Cheeses Principal acid producers (Intentionally introduced) 
secondary microflora 

Feta, Quarg, Cottage, 
Cream cheese 

Mozzarella, 
Provolone, 
Romano 

Camembert 

Blue cheeses, 
Roquefort, Stilton 

Brick, Limburger, 
Tilsiter, Kernhem 

Gouda, Edam 

Proosdij 
Maasdam 
Cheddar 
Parmesan 

Emmental 

L. lactis subsp. cremoris, L. lactis 
subsp. lactis 

Streptococcus thermophilus, Lb. 
delbrueckii subsp. bulgaricus, Lb. 
helveticus 

L. 1. subsp. cremoris, L. I. subsp. lactis 

L. 1. subsp. cremoris, L. I. subsp. lactis 

L. 1. subsp. cremoris, L. I. subsp. lactis 

L. 1. subsp. cremoris, L. I. subsp. lactis 

L. 1. subsp. cremoris, L. I. subsp. lactis 
L. 1. subsp. cremoris, L. I. subsp. lactis 
L. 1. subsp. cremoris, L .1. subsp. lactis 
S. thermophilus, Lb. delbrueckii subsp. 

bulgaricus, Lb. Helveticus 
S. thermophilus, Lb. helveticus, Lb. 

delbrueckii subsp. bulgaricus 

L. lactis subsp. lactis biovar 
diacetylactis, Leuconostoc sp. 

Lactobacillus species 

Penicillium camemberti, 
Brevibacterium linens 

Penicillium roqueforti 

Geotrichum candidum, B. linens, 
Micrococcus sp., 
Staphylococcus sp. 

Leuconostoc sp., L. I. subsp. lactis 
biovar diacetylactis 

Lb. helveticus, S. thermophilus 
Propionibacterium freudenreichii 
Lactobacillus sp. 
Lactobacillus sp. 

Propionibacterium freudenreichii 

3.3.1. Acidification activity 

Acid production is the major character regularly associated with a LAB starter culture, 

which results from the metabolism of milk lactose to lactic acid. The resultant lowering in pH 

is important in determining the preservative, flavour and textural qualities of the end product. 

A low-pH environment significantly inhibits the growth of pathogens and food-spoilage 
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microorganisms. Acidification is important for the clotting phenomenon and also enhances 

the expulsion of whey from the curd during the cheese making process, reducing moisture 

levels and further promoting the preservative effect. Generally, dairy starter bacteria (LAB) 

have evolved two main fermentation pathways, the homolactic pathway in which lactic acid is 

the major end-product and the heterolactic pathway in which other compounds such as acetic 

acid, ethanol and CO2 are produced in addition to lactic acid (Monnet et al, 1996). 

3.3.2. Citrate fermentation 

Metabolism of citrate is an important property of some mesophilic cultures and 

technologically significant in fermentation of milk. In some fermented dairy products, 

additional bacteria, referred to as secondary microflora, are needed to influence flavour and 

alter texture of the final product. Two LAB starters, D-type and L-type, are capable to 

metabolize citric acid. The products of citrate metabolism are acetate, diacetyl, acetoin, 2,3-

butanediol, and C02. Diacetyl is an important flavour component of cultured buttermilk, 

ripened cream butter, sour cream, fromage frais and quarg. Acetate also plays a role in flavour 

and CO2 is responsible for eye formation in cheeses. CO2 may also cause undesirable split or 

crack formation in cheese (Akkerman et al, 1989; Johnson et al, 1998). Many reviews have 

covered most of the aspects of citrate metabolism (Cogan, 1985; Hugenholtz et al., 1993; 

Monnet et al, 1996). 

3.3.3. Phage insensitivity 

In the dairy industry, phages of LAB are of considerable economic importance, because 

they represent one of the main causes of fermentation failure. They may lead to a decrease or 

complete inhibition of starter culture activity. This has a major impact on the manufacture of 

fermented products, because the main biochemical and technological functions of the starter 

are affected. On the other hand, slow acidification may lead to a good proliferation condition 

for undesirable contaminant bacteria. All together, manufacturing schedules may be disrupted 

and the resulting products may be of lower quality and lower economic value. 

The phages of the lactococci have been investigated in detail and classified into 12 

species, based on their morphology, protein composition and DNA structure (Jarvis et al, 

1991). They are differentiated into virulent (lytic) and temperate phages, which reflect 

different growth responses in the bacterial host. The lytic cycle is the propagation of a virulent 

phage (phage multiplication), the lysogenic cycle is an alternative pathway of phage 

replication. The latter concerns an integration of the DNA of a temperate phage in the host 

chromosome and its subsequent liberation can occur either spontaneously or be induced by 

UV light or by treatment with mutagenic agents such as mitomycin (Neve, 1996). 
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Selective environmental pressure placed on lactococci by bacteriophages over the years 

has resulted in strains that contain bacteriophage defense mechanisms. Extensive reviews of 

bacteriophage and bacteriophage resistance in LAB are written (Hill, 1993; Klaenhammer & 

Fitzgerald, 1994; Dinsmore & Klaenhammer, 1995; Garvey et al, 1995; Daly et al, 1996; 

Allison & Klaenhammer, 1998; Forde & Fitzgerald, 1999). Lactococci harbour numerous 

plasmids, and plasmid DNA has been linked to a number of phage resistance mechanisms. 

Four distinct groups of naturally occurring host-directed phage resistance mechanisms have 

been currently identified: (1) adsorption inhibition; (2) phage DNA injection blocking; (3) 

restriction/modification (R/M) and (4) abortive infection (Abi), each targeting different 

aspects of the phage life cycle (Djordjevic & Klaenhammer, 1997; Josephsen & Neve, 1998; 

Moineau, 1999). The discovery of those natural phage resistance mechanisms has provided 

additional new approaches to countering phages and these mechanisms have been exploited in 

strain improvement programmes or/ strategy (Coakley et al, 1997; O'Sullivan et al., 1998). 

The proper handling (sanitation) for phage control and the use of starter bacteria with total or 

at least high phage insensitivity is desirable for suitable dairy fermentations. 

3.3.4. Antimicrobial production 

The ability of LAB to produce antimicrobial substances has long been used to preserve 

food, and is mainly connected with the formation of lactic acid and the concurrent reduction 

of the pH during their metabolic activities. These bacteria are known to produce also 

inhibitory substances other than organic acids (acetate and lactate) like hydrogen peroxide, 

diacetyl and bacteriocins which are antagonistic towards spoilage and pathogenic organisms 

(Klaenhammer, 1988; Daeschel, 1989; Bolm & Morvedt, 1991; Ray & Daeschel, 1992; Piard 

& Desmazeaud, 1992). Because of the increasing public interest in food safety including 

demands for less artificial additives, research attention is focused on the use of naturally 

occuring metabolites produced by food-grade bacteria. Bacteriocins produced by LAB may be 

very promising for use as biological food preservatives. This relates to the fact that they are 

'natural' compounds, produced by GRAS (generally recognized as safe) bacteria, which have 

been associated with the production of food for millenia. These compounds were defined by 

Tagg et al. (1976) as proteinaceous compounds that are bactericidal to strains closely related 

to the producer strain, and also more recently to different strains of the same species as the 

producer. Biochemical and genetic studies allow to divide these compounds into distinct 

classes including (I) lantibiotics, small peptides (<5 Kda); (II) small hydrophobic heat-stable 

peptides, non lanthionine-containing, (<10 kDa); (III) large heat-labile proteins (>30 kDa), 

and (IV) complex proteins whose activity requires the association of carbohydrate or lipid 

moieties (Klaenhammer, 1993; Nes et al., 1996; Ouwehand, 1998). Although a wide variety 

of bacteriocins is produced by Lactococcus strains (see reviews, Ray & Daeschel, 1994; De 

13 



Chapter 1 

Vuyst, 1994), the only bacteriocin that is licensed for use as a food additive and granted a 

GRAS state by the FDA is nisin (Anonymous, 1988; Delves-Broughton, 1990). Nisin is a 34-

residue antibacterial peptide that is produced by several strains of L. lactis subsp. lactis and 

belongs to class I bacteriocins. Two natural occurring variants of nisin have been identified, 

nisin A and nisin Z (De Vuyst & Vandamme, 1994; Delves-Broughton & Gasson, 1994; 

Delves-Broughton et al, 1996). 

In dairy technology the production of bacteriocins by starter bacteria will have a strong 

influence on the composition of these cultures. The first technological consequence is the 

possible dominance of the producing strain in a mixed-strain culture (see chapter 3). The 

second technological consequence is the possibility of designing new starters that inhibit 

undesirable bacteria (Desmazeaud, 1996; chapter 5). Such an approach has been successful in 

controlling butyric swelling in Edam and Gouda-type cheeses (Lipinska, 1973; Delves-

Broughton et al., 1996). Ideal bacteriocins should have the following characteristics for use in 

cheese: (1) a broad spectrum of activity against both gram-negative and gram-positive 

bacteria; (2) a bactericidal rather than a bacteriostatic action; (3) no inhibition of other starter 

microorganisms used; (4) good activity and stability at the pH values and temperatures during 

manufacture and ripening and (5) a high consumer safety margin, especially the absence of 

allergic reactions to the products themselves or their hydrolysis products (Desmazeaud, 1996). 

3.3.5. Proteolytic activity 

The proteolytic system of lactococci is essential for the bacterial growth in milk (nitrogen 

metabolism) and it is involved in the development of organoleptic properties of different 

fermented milk products. It is generally believed that lactococci are fastidious organisms. The 

concentration of free amino acids and peptides in milk is only sufficient to allow for up to 

25% of the total cell mass of a normal fully grown culture (Thomas & Mills, 1981). 

Consequently, the ability of lactococcal cells to grow to high cell density in milk is dependent 

on their protein degrading capabilities that can liberate essential amino acids from casein 

derived peptides. Casein degradation and utilisation of the degradation products requires a 

complex proteolytic system (Thomas & Pritchard, 1987). According to Bockelman (1995) 

and Mulholland (1997), the proteolytic system of dairy lactococci (as shown in Fig. 3) is 

composed of, three main components, (a) Cell wall bound proteinase (PrtP) which is 

hydrolysing casein to oligopeptides. This proteinase is anchored to the cell membrane and 

protrudes through the cell wall, and therefore is also named cell-envelope proteinase (CEP) 

(Pelissier, 1984). Two main types of proteinase in lactococci (PI and PHI) have been 

recognised which differ in their specificity towards caseins (Law & Haandrikman, 1997). (b) 

Intracellular peptidases which hydrolyse the large peptides into small peptides and amino 

acids (Monnet et al., 1993; Kok & De Vos, 1994; Visser, 1998). Several peptidases with 
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different specificities have been identified in lactococci, to date all peptidases have been 

found to be intracellular (Juillard et al., 1995; Axelsson, 1998). (c) Uptake mechanisms 

(transport systems) which are involved in the transport of these small peptides and amino 

acids into the bacterial cell (Kunji et al., 1995; Konings et al., 1997). Amino acid transport 

systems (Konings et al., 1989), two di- and tri-peptide transport systems (DtpT and DtpP) 

(Smid et al., 1989; Foucaud et al., 1995) and an oligopeptide transport system (Opp) 

accepting four to eight residue peptides (Tynkkynen et al., 1993) are present in lactococci. 

Long oligopeptides, not transported into the cells, can be a source for the liberation of 

bioactive peptides in fermented milk products when further degraded, for example by 

intracellular peptidases within the bacterial cell after cell lysis (Law & Haandrikman, 1997). 

The production of high-quality fermented dairy products is dependent on proteolytic systems 

of starter bacteria, since peptides and amino acids formed impact flavour directly or serve as 

flavour precursors in these products (see below). 

Proteinase 
Milk proteins ^ • • ^ Peptides in milk Free amino acids in milk 

Extracellular 

Cell membrane 
Peptide 

.transporters 

Intracellular T 
i-i 
Amino acid 
transporters 

rr Intracellular 
Peptides • M ^ H ^ ^ - Amino acids 

Peptidases I 
Protein biosynthesis 

Fig. 3. Proteolytic system of lactococci for growth in milk. 

The proteolytic system of dairy LAB, in particular that of lactococcus, is extensively studied; 

there are several reviews covering this topic in depth (Pritchard & Coolbear, 1993; Poolman 

et al., 1995; Juillard et al., 1996; Christensen et al., 1999). 
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3.3.6. Lysis (autolysis) of starter bacteria 

The ability of lactococcal strains to lyse and the subsequent release of intracellular 

(proteolytic) enzymes can be a very desirable trait in some matrices of dairy products such as 

cheese. Various studies demonstrate the association of starter cell lysis with increased 

proteolysis and/or flavour development in cheese (Crow et al., 1995; Wilkinson et al., 1994; 

Morgan et al., 1995). A number of surveys compare autolysis of lactococcal strains and the 

autolysis systems of several strains have been characterized (Ostlie et al., 1995; Riepe et al., 

1997). Different factors, such as pH, temperature, carbon source, and salt concentration, 

appear to be important for the autolytic process (Ostlie et al., 1995). The degree of autolysis is 

strain dependent and the structure and components of the cell wall are important contributory 

factors (Mou et al., 1976). Generally Lactococcus lactis subsp. cremoris cultures lyse faster 

than Lactococcus lactis subsp. lactis (Chapot-Chartier et al., 1994; Wilkinson et al., 1994). 

3.3.7. Exopolysaccharide formation 

Many strains of LAB produce exopolysaccharides (EPS), that can be as a capsule, closely 

attached to the bacterial cell, or loosely attached or excreted as slime (Sutherland, 1977; 

Cerning, 1990). Utilization of slime forming LAB has been used more widely in the dairy 

industry as a natural biothickner. Strains of lactococci producing EPS are used in 

Scandinavian fermented milks, e.g., Viili, Taetemilk, Latte, etc. (Macura & Townsley, 1984). 

These help to thicken the fermented product and give it additional important textural 

characteristics over those imparted by acid production (Cerning, 1990). 

4. Flavour formation in cheese 

The acceptability of cheese depends on its appearance and sensory properties (colour, 

texture, flavour, etc.). Among these, flavour is the most important attribute for the consumer. 

The characteristics of flavour and texture of the individual cheese varieties is developed 

during ripening process. 

4.1. Cheese ripening process 

During ripening, cheeses undergo numerous biochemical changes leading to the 

development of the appropriate flavour. The ripening agents catalysing these changes 

generally originate from five sources; the coagulant, the milk, starter bacteria, secondary or 

adjunct starter bacteria and non-starter bacteria (Fox et al., 1996a). The biochemical changes 

during cheese ripening are very complex, involving three primary processes, glycolysis, 
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lipolysis and proteolysis (Fig. 4). The glycolytic event, the conversion of lactose to lactate and 

subsequently to propionic acid and also the fermentation of citrate to diacetyl, acetaldehyde 

and ethanol, is mediated by the starter culture. Lipolysis is the first step in the hydrolysis of 

fat to free fatty acids, which may act as precursors for other flavour compounds (Welsh et al., 

1989). The degree of lipolysis varies widely between cheese varieties. It is extensive in 

mould-ripened and Italian cheese varieties. Proteolysis is the most important of these 

biochemical processes for texture and flavour formation in hard and semi-hard type cheeses 

(Adda, 1986; Visser, 1993). The extent of proteolysis ranges from limited (e.g,. Mozzarella) 

to extensive (e.g. blue mould-ripened cheeses) (McSweeney & Fox, 1997). LAB possess a 

proteinase and a wide range of peptidases which are principally responsible for the formation 

of small peptides and amino acids in cheese (see Fig. 3). During cheese manufacture the 

primary proteolysis of casein is due to the action of the added rennet to the cheese milk, which 

leads to several peptides (soluble-nitrogen formation in cheese, SN). The secondary 

proteolysis of these casein-derived peptides into small peptides and amino acids is due to the 

proteolytic enzymes of the starter (leading to the amino-nitrogen, AN). The general pathway 

for the breakdown of casein and enzymes involved during cheese manufacture and ripening 

are shown in Fig. 4. 

The physiological state of the starter population in cheese is important for proteolysis and 

consequently for flavour formation. In Gouda cheese, for instance, the starter bacteria grow 

rapidly in cheese milk and they are mechanically included in the curd to around 10 colony 

forming units CFU g~' cheese. They grow to 109 CFU g"' cheese before salting, which means 

that they divide only a few times during manufacturing (Walstra et al., 1987). Subsequently, 

the viable number begins to decrease over a period of several weeks, reaching approximately 

1 % of their maximum after one month. As they die and lyse the natural barrier of the cell 

membrane is disrupted. The rate of lysis is reported to be strain-dependent (Wilkinson, 1992). 

This behaviour and thus the fate of the actual proteinase/peptidase complement of starter cells 

can partly explain the differentiation in cheese maturing patterns observed between different 

starter strains. Depending on the enzymes released from the starter cultures used, various 

flavours can be produced. 

Cheese ripening is a slow, and hence an expensive, process especially in hard, low 

moisture varieties which ripen for at least 18 months. Therefore, there is an economic 

incentive for the acceleration of cheese ripening. Several methods are used to enhance 

ripening and flavour formation in cheese by either increasing the levels of putative key 

enzymes or providing more favourable conditions for the activity of endogenous enzymes in 

cheese. Such conditions may include increasing the ripening temperature, addition of 

exogenous enzymes, use of modified starters and cheese slurries. However, in some cases, the 

use of such approaches causes off-flavours. This topic has been reviewed extensively in the 

literature (e.g. Law, 1984; 1987; Fox, 1988-1989; El-Soda, 1993; Fox etal., 1996b). 
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Fig. 4. The major conversion processes leading to flavour formation in ripened cheese. The 
enzymes considered to play important roles in proteolysis are presented in italics. 

4.2. Cheese flavour 

Cheese flavour is believed to be caused by a balance of a number of components resulting 

from enzymatic reactions rather than from chemical interactions (Delahunty & Piggott, 1995). 

The major flavour forming pathways in cheese (Fig. 4) give rise to a series of volatile and 

non-volatile compounds, which contribute to cheese flavour. During the last decade, the 

extensive literature on cheese flavour has been reviewed (Olson, 1990; Urbach, 1993; Fox, 

1994; Urbach, 1997). The study on the mechanism of flavour formation has been focussed on 

the degradation of caseins. The proteolysis products, peptides and amino acids, are flavour 

compounds by themselves or act as precursors of flavour compounds during the actual cheese 

flavour formation. 

For the development of an acceptable cheese flavour, a well-balanced breakdown of the 

curd protein into peptides and amino acids, is necessary (Law, 1982). Without the right 

balance in proteolysis, taste defects may occur due to the accumulation of bitter-tasting 
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peptides (Fox et al., 1995). Attention has been paid to study this defect, the most common off-

flavour in cheese (Visser et al., 1983; Lemieux et al., 1989; Darwish et al., 1994). Recently, it 

has been shown that bitterness in cheese can be controlled by the use of highly debittering 

cultures (Smit et al, 1998; 2000). 

Amino acids are actually the key precursors in the development of basic cheese flavour, 

their catabolism during ripening is a source of many flavour compounds (Hemme et al., 1982; 

Law, 1987; Crow et al., 1993; Urbach, 1993; Urbach, 1995). The amino acids are converted 

through the action of amino acid converting enzymes; the first stage involves decarboxylation, 

deamination, transamination, desulfuration, or perhaps hydrolysis of the amino acid side 

chains. The second stage involves conversion of the resulting compounds (amines and cc-

ketoacids), as well as amino acids themselves, to aldehydes, primarily by the action of 

deaminases on amines. The final level of amino acid catabolism is the reduction of the 

aldehydes to alcohols or their oxidation to acids (Hemme et al., 1982). Sulfur-containing 

amino acids can undergo an extensive conversion, leading to the formation of a number of 

sulfur compounds (Engels, 1997, Yvon et al., 1998; Smit et al., 2000). According to the 

recent modification developments for the conversion of amino acids (Christensen et al., 

1999), general pathways of amino acids catabolism are shown in Fig. 5 (G. Smit, personal 

comunication). 

The conversion of each individual amino acid leads to the liberation of a specific volatile 

compound in cheese. For instance, the conversion of leucine and isoleucine results in the 

formation of 3- and 2-methylbutanal, respectively. These aldehydes were found to be key-

flavour components in some cheese types (Neeter et al., 1996; Engels, 1997, Christensen et 

al., 1999). The breakdown of methionine, results in the formation of methanethiol which itself 

is a very potent flavour compound (onion, cheese) and a precursor for subsequent conversion 

to other sulphur components, e.g., dimethylsulphide and dimethyldisulphide (Lindsay & 

Rippe, 1986). Dimethylsulphide has been recognized as a very important flavour compound 

with a relative low odour threshold in cheeses such as Limburger, Chedder and Gouda 

(Urbach, 1993; Engels et al., 1997). The enzyme activities in such conversions should be well 

balanced to avoid excessive production of flavour compounds and thus off-flavour formation. 

Specific enzymes of mesophilic starter lactococci, used in the manufacture of Gouda 

cheese, are involved in the conversion of amino acids to aroma compounds (Engels & Visser, 

1996). In recent years, a number of these enzymes have been identified and characterised 

(Alting et al., 1995; Yvon et al., 1997; Roudot-Algaron & Yvon, 1998; Yvon et al, 1998; 

Engels et al., 2000). Non-starter organisms present in cheese and the indigenous flora of raw 

milk may also contribute considerably to the formation of flavour compounds. 

Based on sensory evaluation and chemical analysis of cheeses, various groups of volatile 

compounds have been identified as being responsible for the final taste and aroma of cheese. 

These compounds comprise fatty acids, esters, aldehydes, alcohols, ketones, sulphur 
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compounds and various other components. All these components occur in most or all cheeses, 

although a great diversity occurs in their relative concentrations among the cheese varieties 

(Maarse & Vischer, 1989; Badings, 1991; Bosset & Gauch, 1993; Urbach, 1995; Engels et al, 

1997). The differences in flavour between the types of cheese indeed correspond greatly with 

the distinctive starter used. Therefore, the flavour production is highly strain specific (Smit et 

al, 2000). 
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Fig. 5. Pathways of amino acid conversions by LAB leading to flavour compounds. 

4.3. Flavour formation by using 'wild' lactococci 

As is shown in Table 2, the mixed-strain starter cultures of LAB most commonly used for 

the production of Gouda, Edam, Proosdij and Maasdam-type cheeses are primarily composed 

of Lactococcus lactis. subsp. cremoris and L. lactis subsp. lactis as acid producing organisms. 

Other important starters in these cultures are the citric acid fermenting organisms L. lactis 

subsp. lactis biovar diacetylactis and/or Leuconostoc sp., which are important for the 
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formation of eyes in cheese. In Proosdij-type cheeses, an extra mixed culture containing 

several strains of the thermophilic species Streptococcus thermophilus and Lactobacillus 

helveticus are added for specific flavour development. In Maasdam-type cheeses (Swiss-like 

cheeses) propionic acid bacteria are added for additional CO2 production and formation of 

larger eyes. 

Without exception, the mesophilic lactococci in the starters for these cheeses are essential 

not only for the acidification but also for the flavour formation (see above). The use of 

standardised starters, strictly hygienic processing conditions and well controlled ripening 

circumstances, has had an enormously positive effect on the cheese quality. However, as a 

consequence of the constant quality, the diversity of flavour varieties in one cheese type has 

been diminished. The consumer of today demands a larger diversification of cheeses and for 

their innovation novel strains of lactococci are required. For this, the biodiversity within 

natural ecological niches should be exploited. 

Recently it has been demonstrated that strains of LAB can be isolated from different milk 

environments (Mayo et al, 1990; Centeno et al., 1996; Weerkamp et al., 1996; Cogan et al., 

1997) and non-dairy sources such as plants, animals and soil (Collins et al 1983; Williams & 

Collins, 1990; Klijn et al, 1995). These strains referred to as 'wild' strains, have in common 

that they have so far not been used as starter organisms. In an international project funded by 

the European Community (EC-ECLAIR contract AGRE-0064) many strains of LAB were 

isolated from 24 different sources of artisanal products e.g., cheese and fermented milk from a 

number of European countries. The isolates were identified and partially characterised. 

The first studies on the wild Lactococcus lactis strains, showed that these isolates differ in 

a number of phenotypical properties from strains commonly present in industrial starter 

cultures. The classical differentiation between the most frequently used subspecies lactis and 

cremoris, is based on phenotypical differences. For instance, L. lactis subsp. lactis strains are 

characterized by their ability to hydrolyse arginine, to metabolize a number of sugars, and to 

grow at 40°C and in the presence of 4% NaCl, whereas L. lactis subsp. cremoris strains are 

not able to grow at 40°C and in the presence of 4% NaCl, and to hydrolyse arginine (Bergey's 

manual, 1984; Salama et al., 1991; Cogan, 1996). Although in most cases, complete 

agreement was obtained between phenotype and genotype, some phenotypically 

distinguishing characteristics were becoming a little blurred, since some strains that were 

phenotypically L. lactis subsp. lactis appeared genotypically L. lactis subsp. cremoris and vice 

versa (Salama et al, 1991; Godon et al., 1992; Salama et al, 1993; Klijn et al, 1995). The 

use of probes in the identification of strains at the subspecies level has been very effective in 

distinguishing different subspecies from each other, since they are different in specific DNA 

sequences including those encoding 16S rRNA (Godon et al., 1992). It has been found also 

that these wild lactococcal isolates are able to survive outside the dairy environment in 

contrast to industrially produced lactococci tested. This indicated that they clearly differ from 
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industrial starter strains (Klijn et al., 1995; Weerkamp et al., 1996). These findings implicate 

that a natural biodiversity exists in lactococci strains, which might harbour an important 

potential for new starters to be used for making fermented dairy products. 

Although numerous studies have been focused on the characterisation of mesophilic LAB 

from starters, still relatively little is known about these wild lactococci, with regard to their 

potential application, their flavour formation and their stability in dairy products. This is 

especially true for lactococci isolated from non-dairy origins. 

5. Outline of the thesis 

The aim of the research presented in this thesis is to exploit the biodiversity of lactococci 

isolated from various natural niches for flavour formation in cheese as a basis for product 

innovation. In order to achieve this goal, various characteristics of the strains as well as the 

mutual interactions between the strains had to be studied. 

Chapter 2 gives a description on the functional properties of a large number of wild 

Lactococcus strains isolated from various natural environments as compared to those of 

industrial strains with the focus on flavour forming abilities. In addition, the amino acid 

requirements for growth of the strains were investigated, since amino acid biosynthesising 

and converting enzymes are believed to play a role in the formation of flavour compounds. 

In Chapter 3 the first results of the potential application of wild strains as starters in pilot 

plant cheese making, either individually or together with industrial strains, are presented. 

Attention was paid to their technological characteristics and to their aroma forming abilities 

during cheese ripening. The ability of the strains to survive in simple defined strain starter 

cultures during the cheese making process was another point of interest. Wild strains showed 

various interactions with industrial strains, some appeared even to inhibit the growth of 

industrial strains due to the production of bacteriocins. 

Chapter 4 deals with a further characterisation of antimicrobial producing wild 

Lactococcus strains among the selection of strains described in chapter 2. In order to apply 

them successfully as a part of tailor-made starter cultures for the manufacture of cheese, 

specific requirements were examined and determined. 

In Chapter 5 the stability of wild strains and their behaviour in a complex defined mixture 

of starter cultures is described for conditions prevailing in the manufacture of Gouda-type 

cheese. The emphasis was focussed on the development of flavour and other properties 

typical for this cheese. The results of this study opened new possibilities for designing tailor-

made starter cultures for cheese diversification. However, the results also reflected unwanted 

interactions that can occur between strains in defined strain starters, such as the negative 

effect on the growth of L. lactis subsp. lactis biovar diacetylactis strains. To obtain insight in 
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such interactions in some defined starter cultures, Chapter 6 presents an investigation on 

their possible mechanisms. 

The interactions found within mixtures of cultures not only affected the population 

dynamics in the cultures but might also have an impact on flavour formation. Chapter 7 

describes the mechanism of the complementary interaction between different strains with 

respect to flavour production. These findings open new avenues to enhance flavour formation 

by tailor-made cultures. 

In Chapter 8 the combination of knowledge of flavour formation and other functional 

characteristics of the selected Lactococcus strains is applied to improve the flavour of 

Proosdij-type cheese in a directive manner. 

A summary together with concluding remarks is given in Chapter 9. 
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ABSTRACT 

Wild lactococci from raw and fermented milk and from non-dairy origin were individually 

used in milk and in a cheese model to screen for their flavour forming abilities. Organoleptic 

evaluation revealed that wild strains generally produce specific flavours distinct from those 

produced by industrial strains. Analysis of volatiles by gas chromatography mass 

spectrometry (GC-MS) showed that several wild strains produced relatively high levels of 

primary alcohols and branched aldehydes in these model systems, most likely originating 

from amino acid degradation. A good correlation between GC-MS data and organoleptic 

descriptions was perceived. Using the single omission technique, it was shown that wild 

strains required between 1 and 4 amino acids for growth, whereas the industrial strains 

generally needed 9-10 amino acids for growth. This indicates that wild strains are more 

dependent on their own synthesis of amino acids. Concomitantly, these strains probably 

possess more active amino acid convertases, which could explain their ability to produce 

unusual flavours. 

INTRODUCTION 

Strains belonging to the species of Lactococcus lactis are the most important starters in 

the manufacture of semi-hard cheeses such as Gouda, Edam and Cheddar. The main function 

of the starter bacteria during cheese manufacture is the production of lactic acid at an 

appropriate rate. In addition, these bacteria make important contributions to proteolysis during 

ripening and to the development of cheese flavour (Smid et al., 1991; Limsowtin et ai, 1995; 

Lynched/., 1997). 

Almost all cheeses in industrialised European countries, Australia, Asia and America are 

produced using industrial starter cultures. The dairy industry has selected these cultures 

primarily on the basis of their performance during milk fermentation with most attention 

being paid to characteristics as acidification rate and phage insensitivity (Marshall, 1991). 

Cheese flavour is the result of the breakdown of milk protein, fat, lactose and citrate due to 

enzymes from milk, rennet and micro-organisms. However, the formation of many 

compounds essential for cheese flavour is believed to result from the action of enzymes from 

the starter cultures (Urbach, 1993; Broome & Limsowtin, 1998). During the years, the 

diversity in (flavour) characteristics of starter cultures has been strongly reduced as a 

consequence of the desire to deliver consistency in product quality for certain markets 

requiring certain flavours. Those strains seem to have acquired features linked to the 

adaptation to milk, such as the capacity to utilize lactose via a phosphotransferase system (De 

Vos & Gasson, 1989) and to degrade casein by a cell wall protease (Kok, 1990). In parallel, 
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certain enzymes involved in amino acid biosynthesis seem to be disrupted in these strains 

(Reiter & Oram, 1962; Farrow, 1980; Deguchi & Morishita, 1992). Nowadays, consumers 

demand, in addition to consistency and quality, for large variations in flavour of cheeses. This 

has initiated a need for the availability of strains (from different species of lactic acid bacteria) 

with novel properties for use in the dairy industry. Recently, it has been demonstrated that 

new strains of lactic acid bacteria, so-called 'wild strains', can be isolated from different milk 

environments (Weerkamp et ah, 1996; Cogan et ah, 1997) and other non-dairy sources such 

as plants, animals and soil (Sandine et ah, 1972; Williams & Collins, 1990; Collins et ah, 

1993; Klijn e? a/., 1995). 

Based on the assumption that wild lactococci are likely to be more dependent on their own 

synthesis of amino acids than industrial strains, and the knowledge that amino acid conversion 

enzymes of lactococci play an important role in flavour formation, the focus of this work was 

to characterise functional properties of selected wild lactococci in relation to industrial 

cultures with special emphasis on flavour forming abilities. 

MATERIALS AND METHODS 

Origin of strains and growth conditions 

Three types of strains were used in this study, (i) industrial strains derived from 

commercial starter cultures, (ii) dairy wild strains (DWS) originating from fermented raw 

milk of goats, sheep and cows from farms with artisanal production of dairy products, and (iii) 

non-dairy wild strains (NDWS), which come from various sources other than milk such as 

soil, grass, silage, milk machine, saliva of cow and udder. All industrial strains, all DWS and 

9 NDWS were obtained from the culture collection of NIZO food research, Ede, The 

Netherlands. All these strains were identified previously and either belong to the species 

Lactococcus lactis. subsp. lactis or L. lactis subsp. cremoris. In addition, 55 NDWS with 

unknown identity were employed, which were previously isolated by Dr. Nicolette Klijn from 

NIZO food research. 

Industrial starter strains and DWS were stored at -40°C in litmus milk with CaC03 and 0.5 

% yeast extract (Difco Laboratories, Detroit, MI). NDWS that were previously isolated by 

Nicolette Klijn were acquired by culturing overnight at 30°C on Ml7 medium (Oxoid, 

Hampshire, UK) containing 5 g L"1 lactose (LM17) and subsequently individual colonies were 

streaked on LM17 agar plates. Cultures were stored as frozen stocks at -80°C in M17 broth 

with 15 % (v/v) glycerol during the time of this study. For permanent storage, cultures were 

stored at -135°C. 
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Identification of NDWS isolates 

NDWS isolates (55 in total) were initially identified on the basis of cell morphology. 

Subsequently, cocci were genetically identified using genus-specific DNA probes for L. 

lactis. Lactococcus strains which were able to produce unusual flavours were further 

characterised at the (sub) species level with specific probes by using polymerase chain 

reaction amplified variable regions of 16S rRNA and specific DNA probes as described (Klijn 

etal, 1991; Te Giffel etal., 1997). 

Flavour production in milk cultures and cheese model 

Individual strains were pre-grown for 16 h at 30°C in sterilised milk containing 0.5 % 

yeast extract. Subsequently, 1% of each culture was added to 100 mL skimmed UHT milk. 

Sensory evaluation of the milk cultures was carried out after incubation at 30°C for 48 h. 

Strains which gave clearly different flavour in milk in comparison with industrial strains were 

selected and tested in a cheese paste model (Smit et al, 1995) to characterise flavour 

production in a cheese-like environment. For this purpose, the cheese paste was heated to 

55°C for 2 h to regain a liquid consistency and after cooling to 30°C a bacterial culture was 

added to a final concentration of lxlO8 - 5xl08 bacteria per g. To this end, bacteria were 

grown for 16 h at 30°C in 100 mL whey-permeate containing 0.5% (w/v) yeast extract and 

15% (v/v) skimmed milk, centrifuged (10 min, 12,100 x g) and resuspended in 10 mL 

distilled water. The inoculated cheese paste samples were incubated in the dark at 17°C for 

three weeks before sensory evaluation. Milk cultures and cheese pastes were graded by an 

experienced panel consisting of at least 6 judges. The sensory data were subjected to principle 

component analysis (PCA) using the Statistica (Statsoft) package (O'Mahony, 1985). 

General characterisation of strains 

The ability of the strains to grow at 20, 30, and 40°C was examined in LM17. Growth was 

followed by measuring the optical density at 600 nm (OD6oo) using a spectrophotometer 

(Ultrospec 3000, Pharmacia Biotech., UK). The sensitivity to salt of the strains was 

determined by following growth of strains in LM17 medium at 30°C in the presence of 1, 2 

and 4% NaCl. The ability to hydrolyse casein was determined by using plates containing 10% 

skimmed milk, 1.9% P-glycerophosphate (pH 6.9), 0.001% bromocresolpurple and 1.3% agar 

(GMA-agar plates) (Limsowtin & Terzaghi, 1976; Hugenholtz et al., 1987) and the ability to 

hydrolyse arginine was assessed as described previously (Weerkamp et al, 1996). 
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Amino acids requirements 

The amino acid requirements of the strains were determined with the single omission 

technique (Cocaign-Bousquet et al., 1995) in a chemically defined medium (CDM) as 

described by Otto et al. (1983) and modified by Poolman and Konings (1988). To avoid 

carry-over of essential nutrients, pre-cultures were grown overnight on LM17 agar, individual 

colonies were picked up and resuspended in sterile physiological salt solution. Subsequently, 

cells were washed twice and inoculated at 1% in CDM. Bacterial growth was followed during 

72 h at 30°C by spectrophotometric measurements at 600 nm in the presence or absence of 

each amino acid and in the presence of all amino acids as a reference medium. For every 

strain the maximum growth rate (//max) in the complete medium was determined (control). All 

conditions were examined in a minimum of three identical cultures. The percentage of /zmax 

obtained on CDM after omission of an amino acid was calculated for each amino acid. Amino 

acids were recorded as (a) essential if in their absence the growth rate was less than 3% of 

Mnax (b) stimulating if in their absence the growth rate was between 3 and 10% of //max (c) 

non-essential if in their absence the percentage of//max was more than 10%. 

Analysis of volatile compounds 

Volatile compounds formed by the cultures in milk and in cheese paste were identified 

using purge-and-trap thermal desorption cold-trap (TDCT) gas chromatography mass 

spectrometry (GC-MS) (Neeter & De Jong, 1992). For the analyses of milk cultures, 10 mL of 

the cultures was used directly. For the analyses of cheese paste, 20 mL of a cheese paste 

obtained by homogenization of a mixture of the cheese and double-distilled water (1:3 w/v) 

was prepared and used immediately after the preparation. The samples were purged with 150 

mL min1 helium gas for 30 min at room temperature in case of milk and at 42°C in case of 

cheese paste and volatile components were trapped on an absorbent trap containing carbotrap 

(80 mg, 20-40 mesh, Supelco) and carbosieve SIII (10 mg, 60-80 mesh, Supelco). The trapped 

compounds were transferred on to a capillary column of a gas chromatograph using the 

Chrompack PII injector (Chrompack, The Netherlands) in the TDCT model, by heating the 

trap for 10 min at 250°C. A narrow injection band was achieved by cryofocusing at -100°C. 

The conditions for the chromatographic separation and mass spectrometry have been 

described previously (Engels et al., 1997). Structures were assigned by spectrum 

interpretation, comparison of the spectra with bibliographic data and comparison of retention 

times of reference compounds. 

Free fatty acids (FFA) formed in cheese paste were determined by GC as described 

previously (De Jong & Badings, 1990). The amount of a particular FFA was calculated in 
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relation to its amount in the blank as follows: (FFA in mg kg"1 inoculated cheese paste / FFA 

in mg kg"1 blank cheese paste) x 100%. 

RESULTS AND DISCUSSION 

Identification of non-dairy wild strains isolates 

Microscopic examination of the 55 NDWS isolates with unknown identity revealed that 

45 of these NDWS were cocci. Subsequently, these 45 strains were genetically identified 

using genus-specific DNA probes for L. lactis and 23 strains were identified as lactococci 

(data not shown). Based on the flavour production in milk (see below), 7 strains were further 

identified on the (sub) species level; 6 strains were genotypically identified as Lactococcus 

lactis subsp. lactis and one strain was identified as Lactococcus lactis subsp. cremoris (data 

not shown). Following identification, these strains were registered in the culture collection of 

NIZO food research, Ede, The Netherlands. These results indicate that lactococci can be 

isolated from various environmental sources. 

Flavour production 

Wild lactococci, 47 DWS (all from the collection of NIZO food research) and 32 NDWS 

(9 from the collection of NIZO food research and 23 identified as such in the present study) 

were individually grown in milk to determine their flavour forming abilities as compared to 

22 industrial reference strains. About one-third of the wild strains (16 DWS and 6 NDWS) 

appeared to produce flavours similar to those produced by the reference strains; e.g., yoghurt, 

sour, creamy and slightly sweet. However, the majority of the wild strains (31 DWS and 26 

NDWS) produced specific flavours compared with industrial strains (Table 1). Descriptors 

such as chocolate, malty, grass, herbs, coarse, sharp, yeasty, sulphur, fruity, fatty acid, farm 

cheese like, sweety etc. were mentioned by the sensory panel (data not shown). Subsequently, 

21 wild strains (13 DWS and 8 NDWS), representative for the broad range of different 

flavours that were produced in the milk cultures, were selected for further study together with 

10 industrial strains. The origin of these selected strains are listed in Table 2. Each of these 

strains was used in the Ch-easy model (Smit et al, 1995) to analyse the flavour generation 

properties of the strains under cheese-like conditions. The sensory data were subjected to 

principal component analysis. Factor analysis was applied to a set of 6 variables (the sensory 

attributes: creamy, yoghurt, sweet, fatty acids, fruity and chocolate taste). The PCA analysis 

in milk and cheese paste of a limited number of strains from each group (three DWS: Bl 152, 

B1157 and B1158, two NDWS: B1153 and B1156 and two industrial strains: SKI 10 and 
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B14) are presented in Fig. 1. This figure clearly shows that the flavour perception of the wild 

strains is distinct from that produced by the industrial strains (SKI 10 and B14), and on the 

other hand, the figure demonstrates a good correlation between the flavours produced in milk 

and in cheese paste prepared with the same strain. 

Table 1. Numbers of strains used in milk culture. 

Total number of strains 

Standard flavour 

Unusual flavour 

Selected strains 

Industrial strains 

22 

22 

-

10 

Wild strains 

Dairy Non-dairy 

47 

16 

31 

13 

32 

6 

26 

8 

Previous studies indicated that cheeses made with lactis strains as starter develop an 

abnormal flavour (fruity, dirty, etc.) as compared with cheeses made with cremoris strains 

(Perry, 1961; Vedamuthu et al., 1964; Bills et al., 1965). Abnormal flavours were indeed 

encountered with some of the artisanal and non-dairy lactis strains in our study. However, 

also the wild cremoris strains Bl 153 and Bl 157 included in our work gave rise to abnormal 

flavour and, moreover, none of the industrial lactis strains tested in our study gave rise to a 

flavour defect in milk or in cheese paste. The previous observations that lactis strain cause an 

abnormal flavour as compared with cremoris strains therefore seems not to be a general 

phenomenon. 

Strikingly, no abnormal flavour was perceived with the industrial lactis strain B20 (which 

is the same strain as ML8), which is in contrast with the observations of Perry (1961). This 

could be due to several subculturing of this strain and supports the idea that industrial strains 

have lost some characteristics over the years. 

Using purge-and-trap TDCT GC-MS, the production of volatile compounds during growth 

in milk and cheese paste was investigated. The volatile compounds produced by B1152, 

B1157, B1158 (DWS), B1153, B1156 (NDWS) and SKI 10 (industrial strain) are listed in 

Table 3. 
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Table 2. Phenotypical characteristics of selected Lactococcus lactis strains. 

Strains 

Industrial strains 
NIZOB697(SK110) 
NIZO B64 (E8) 
NIZO B442 (Hp) 
NIZO B48 (AMI) 
NIZO B33 (AM2) 
NIZO B78 
NIZO B14 
NIZO B20 (ML8) 
NIZOB21 
NIZO B22 

Dairy wild strains 
NIZO Bl 158 
NIZO Bl 162 
NIZO B1163 
NIZO Bl 152 
NIZO Bl 164 
NIZO Bl 157 
NIZO Bl 165 
NIZO Bl 155 
NIZO Bl 166 
NIZO Bl 167 
NIZO Bl 168 
NIZO Bl 169 
NIZO Bl 170 

Non-dairy wild strains 
NIZO Bl 156 
NIZO Bl 171 
NIZO Bl 172 
NIZO Bl 153 
NIZO Bl 159 
NIZO Bl 154 
NIZO Bl 173 
NIZO Bl 174 

Subspecies 

cremoris 
cremoris 
cremoris 
cremoris 
cremoris 
cremoris 
lactis 
lactis 
lactis 
lactis 

lactis 
lactis 
lactis 
lactis 
lactis 
cremoris 
lactis 
lactis 
lactis 
lactis 
lactis 
lactis 
lactis 

lactis 
lactis 
lactis 
cremoris 
lactis 
lactis 
lactis 
lactis 

Source 

commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 

raw goat milk (Fr) 
raw goat milk (Fr) 
raw sheep milk (Sp] 
raw cow milk (Nl) 
raw goat milk (Sp) 
raw sheep milk (SpJ 
raw cow milk (Nl) 
fermented raw milk 
fermented raw milk 
fermented raw milk 
fermented raw milk 
fermented raw milk 
fermented raw milk 

grass (Be) 
silage (Nl) 
silage (Nl) 
milk machine (Nl) 
milk machine (Nl) 
soil (Nl) 
silage (Nl) 
silage (Nl) 

(It) 
(It) 
(It) 
(Fr) 

(It) 
(Po) 

Proteolytic 
activity 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
+ 
+ 
+ 
+ 

-
-
-
+ 
+ 
+ 
+ 
+ 

-
-
-
-
-
-
-
-

Arginine 
hydrolysis 

-
-
-
-
-
-
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Growth 
at 

40°C 

-
-
-
-
-
-
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Growth 
With 
4% 

NaCl 

-
-
-
-
-
-
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

"(Sp), Spain; (Fr), France; (Nl), The Netherlands; (Be), Belgium; (It), Italy; (Po), Portugal. 

+, proteolytic; -, not proteolytic; ±, weakly proteolytic. 

As an example, the GC-MS aroma profiles of cheese paste prepared with Bl 152 and SKI 10 

are presented in Fig. 2. Milk cultures prepared with strains B1152, B1157 and Bl 158 

contained high levels of 2-methylpropan-l-ol, 3-methylbutan-l-ol and 2-methylbutan-l-ol in 

comparison with SKI 10 and Bl 156. In addition, these three samples contained relative high 

concentrations of the corresponding aldehydes, 2-methylpropanal, 2-methylbutanal, 3-
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methylbutanal and 2-methyl-2-propenal. Methylalcohols and methylaldehydes are most likely 

derived from the branched-chain amino acids leucine, isoleucine and valine (Morgan, 1976; 

Molimard & Spinnler, 1996). 
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Fig. 1. Sensory profiling of industrial strain SKI 10, B14 and some selected wild lactococci in milk 

cultures and cheese model system by principal components analysis. Symbols: o , strain in milk; • , 

strain in cheese paste; • , flavour attributes. 

Branched-chain primary alcohols could give rise to a slightly sweet, fresh flavour, however, 
the contribution of these compounds to the final flavour is thought to be rather low. 
Methylaldehydes developed in raw milk by the metabolic activity of L. lactis subsp. lactis 
biovar. maltigenes have been recognized as off-flavours in Cheddar cheese (Morgan, 1976). 
On the other hand, 3-methylbutanal has been found as major volatile compounds during 
ripening of Proosdij and Parmesan cheese, which are responsible for a spicy, cocoa flavour 
(Barbieri et al., 1994). Indeed, a chocolate flavour was encountered during the organoleptic 
evaluation of milk incubated with Bl 152, B l 157 and Bl 158, and not with SKI 10 and Bl 156 
(Fig. 1). Cheese paste samples made with B1152, Bl 153 and Bl 157 also contained, in 
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correspondence with the organoleptic evaluation, relatively high concentration of both 
methylalcohols and methylaldehydes. 

Table 3. GC-MS analysis of volatile compounds in milk culture and cheese paste prepared 
with commercial starter, dairy and non-dairy wild strains. 

Compounds 

Alcohols 
Ethanol 
Propan-2-ol 

Propan-1-ol 
1-Pentanol 
2-Methyl propan-1-ol 

3-Methyl butan-l-ol 
2-Methyl butan-l-ol 

Aldehydes 
2-Methyl propanal 
2-Methyl-2- propenal 
2-Methyl butanal 
3-Methyl butanal 
Pentanal 
Hexanal 
Benzaldehyde 
Nonanal 
Decanal 

Ketones 
Acetone 
Diacetyl 
Butanone 
2-Pentanone 
2,3-Pentanedione 
2-Heptanone 
2-Nonanone 

Esters 
Ethyl acetate 
Ethyl butanoate 
Ethyl-3-methylbutanoate 
3-Methylbutyl acetate 

Sulphur compounds 
Dimethyldisulphide 

SKI 10 

20,470 

887 

1165 
ND 
494 
123 
98 

ND 
ND 
ND 
56 

114 
91 

242 
539 
ND 

17516 
1532 
4258 
569 
37 

1097 
844 

1296 
ND 

ND 
ND 

43 

Milk culture 

BU57 

53,061 

289 

912 
ND 

9059c 

13472 
26,204 

209 
142 
345 
503 
143 
387 
453 

1675 
ND 

23960 

7306 
3715 
225 

Trace 
739 
267 

2986 
Trace 
Trace 
Trace 

Trace 

B1158 

34,981 

965 

1376 
ND 

1175 
15,813 

273 

204 
282 
ND 

16,441 
129 
98 

226 
534 
ND 

21402 
1728 
4148 
591 
773 

1343 
693 

1403 
ND 

52 
63 

Trace 

B1152 

46,664 

Trace 
633 
ND 

6093 
62,612 

6698 

499 
6251 
404 

47^55 
ND 
101 
449 
938 
ND 

19012 
2448 
3613 
316 

656 
794 
246 

4124 
ND 

1214 
319 

ND 

Relative peak area" 

B1156 

48,740 

1469 

2325 
ND 
618 
216 
197 

168 
ND 
ND 
36 

155 
191 
309 

2145 
ND 

26833 
3722 
5643 
784 

1524 
1484 
614 

1794 
ND 

ND 
ND 

Trace 

SKI 10 

44^81 

59 

759 
499 
ND 
532 
78 

ND 
Trace 

ND 
487 
429 
257 
753 

1334 
1417 

2032 
1667 
448 
819 
ND 

2798 
680 

251 
130 
ND 
51 

37 

B1157 

26,358 

140 

884 
1399 
ND 

5954 
2587 

ND 
168 
ND 

12498 
861 
320 
767 
383 
116 

2139 
1096 
101 

1127 
ND 

2571 
594 

1181 
147 
ND 
154 

45 

Cheese paste 

Bl 158 

20483 

394 

1394 
1761 
ND 

1480 
303 

ND 
132 
ND 

2891 
1070 
429 

1384 
940 
724 

3114 
1291 
1500 
1747 
ND 

3421 
904 

1091 
217 
ND 
91 

127 

BI152 

28,506 

334 

1341 
2407 
ND 

12,300 
3172 

ND 
783 
ND 

16470 
1571 
358 

1362 
424 
134 

3096 
1408 

2811 
1405 
ND 

2907 
740 

2934 
160 
ND 
394 

63 

BII56 

29,918 

285 

1134 
1246 
ND 

1069 
126 

ND 
Trace 

ND 
441 
582 
235 

1193 
1410 
1534 

4067 
1145 
1092 
962 
ND 

2510 
617 

400 
127 
ND 
70 

45 

BU53 

63,870 

755 

1186 
554 

1233 
5760 
1447 

ND' 
259 
ND 

10,513 
639 
255 
556 
548 
86 

8427 
1172 
2612 
1200 
ND 

3834 
1134 

631 
510 
ND 
82 

76 

1 Relative peak areas of the identified peaks divided by the area obtained for the internal standard 
methylbutanoate expressed in arbitrary units. 

' Trace: area < 25. ND: not detected. 
: Relatively high concentration are indicated in bold. 

42 



Flavour formation by wild lactococci 

B1152 

2SOO 2**0 M » t 32*0 
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1««* 1*00 1*00 2 0*0 

Retention time (scan sec') 
2«00 2 (00 200O 3000 

Fig. 2. GC-MS aroma profiles of volatile compounds purged from Ch-easy model prepared with 
wild dairy wild strain L. lactis BH52 and industrial strain L. lactis SKllO. Relative peak areas are 
expressed in arbitrary units, normalised to largest peak. 

Remarkably, strain Bl 158 produced less cocoa flavour in cheese paste than in milk (Fig. I 

and Table 3). The farm cheese like flavour noticed during organoleptic evaluation of this 

paste (data not shown) could be attributable to dime thy ldi sulphide (Table 3). 

Dimethyldisulphide, which is thought to originate from methionine breakdown, has been 

recognized as a very important flavour compound (with a relatively low odour threshold) in 

cheeses such as Limburger, Cheddar and Gouda (Parliament et al., 1982; Urbach, 1993). 
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Less prominent differences were noticed in the other classes of volatiles. For example, 

some variations in the straight-chain aldehydes, particularly nonanal and decanal, were found. 

These aldehydes are formed during P-oxidation of unsaturated fatty acids and are 

characterised by green, herbaceous flavours (Moio et al., 1993). The concentration of the 

different ketones also varied slightly between the different samples. Methylketones, which are 

well known for their contribution to the flavour of blue mould-ripened cheeses, are formed by 

enzymic oxidative decarboxylation of fatty acids. Diacetyl comes from citrate conversion and 

is responsible for a creamy flavour (Welsh et al., 1989). Some differences in levels of 

ethylesters were also encountered. These compounds, which are formed by an enzymic or 

chemical reaction of fatty acids with primary alcohols, give a fruity and sweet character to 

cheese (Barbieri et al., 1994). 

Considering the fatty acid flavour that was perceived with quite a number of strains, the 

FFA content of cheese paste samples prepared with B1152, B1157, B1158 and B1156 and 

SKI 10 were analysed by GC (Fig. 3). The results indicate that B1156 produced the highest 

level of FFA in cheese paste, which corresponds with its organoleptic characterisation (Fig. 

1). The cheese paste of Bl 158, which also received a fatty acid description in the organoleptic 

evaluation, contained fatty acid levels that were higher than those of the sample with 

reference strain SKI 10. The amount of FFA in the cheese paste incubated with B1152 was 

comparable with the amount in the one incubated with SKI 10, which fits with the sensory 

analysis (Fig. 1). The FFA levels in cheese paste incubated with strain Bl 157, were slightly 

higher than those in the cheese paste incubated with SKI 10, although this sample was not 

organoleptically judged as such (Fig. 1). 

Phenotypical characteristics of selected strains 

Selected strains were tested for various phenotypical properties (Table 2). Nine of the 13 

selected DWS were able to hydrolyse milk proteins upon culturing on GMA-agar; three out of 

these nine strains showed a relatively low hydrolytic activity towards casein (indicated as ± in 

Table 2). None of the NDWS showed proteolytic activity. This will have important 

implications for application of these cultures in cheese making, i.e., they have to be combined 

with industrial strains to guarantee sufficient acidification of the milk during cheese making. 

Strikingly, all wild strains were able to hydrolyse arginine, including those identified on 

the basis of 16S rRNA as subsp. cremoris. The capacity to hydrolyse arginine is a generally 

known characteristic for strains phenotypically identified as L. lactis subsp. lactis (Salama et 

al., 1991; Godon et al., 1992). As anticipated, all industrial strains of the cremoris phenotype 

were unable to hydrolyse arginine (Table 2). 
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Fig. 3. Free fatty acids (FFA) extracted from Ch-easy model prepared with commercial starter 
SKI 10, dairy strains (B1157, Bl 158, B1152) and non-dairy wild strain (Bl 156). 

All wild strains (subsp. cremoris and lactis) were able to grow at 40°C and in the presence of 

4% NaCl in contrast to the industrial starters. So, the arginine-hydrolysing subsp. cremoris 

strains also possess other phenotypic characteristics of the subspecies lactis. This agrees with 

previous findings and seems to indicate that the phenotypical characteristics of L. lactis 

subsp. cremoris strains is confined to industrial starter cultures (Klijn et ai, 1995; Weerkamp 

et ai, 1996). The ability of the wild strains to grow at 40°C and in the presence of 4% NaCl, 

could be functional for application in certain cheeses which are cooked to high temperatures 

and contain relatively high salt concentrations (e.g., Cheddar), respectively. 
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Amino acid requirements 

Since several wild strains produced relatively high levels of primary alcohols and 

branched aldehydes in the model systems, which most likely originate from amino acid 

degradation, we focussed on the possibility that wild strains have different amino acid 

requirements. It can be argued that such strains are more dependent on their own synthesis 

than the industrial strains. 

Lactococci have a limited biosynthetic capacity which explains their complex nutritional 

requirements. Lactococci require a number of amino acids for growth, the number of essential 

amino acids is strain dependent and varies from six for L. lactis subsp. lactis up to 14 for 

certain L. lactis subsp. cremoris strains (Mittchell etal., 1941; Reiter& Oram, 1962). 

The amino acid requirements of eight selected wild strains (arbitrarily choosen) were 

compared with the amino acid requirements of two industrial strains. In addition, four wild 

strains producing a standard flavour in milk culture, i.e. similar as the industrial strains, (B26, 

B72, B1175 and B1176) were studied (Table 4). Maximum growth rates of the strains on 

CDM in the presence of all amino acids were between 0.1 and 0.23 h"1. The two industrial L. 

lactis subsp. cremoris strains tested, SKI 10 and Wg2, required 9-10 amino acids for growth. 

These results are in agreement with previous studies (Mittchell et al, 1941; Reiter & Oram, 

1962) in which it was concluded that glutamate, valine, methionine, histidine, serine, leucine 

and isoleucine are essential for most dairy Lactococcus strains. Both dairy and non-dairy wild 

strains appeared to require less amino acids than the industrial strains. The wild L. lactis 

subsp. cremoris strains generally required 2-3 amino acids while most of/., lactis subsp. lactis 

strains only required 1 or 2 amino acid. In some cases, it was found that omission of a 

particular amino acid still allowed growth at a very low rate (i.e., 3-10 % of fimali, indicated by 

± in Table 4), which suggests that the genes for the biosynthesis of these amino acids are 

present, but are not very active. The absence of some amino acid biosynthethic pathways in 

dairy lactococci might be a consequence of their adaptation to dairy products. In milk, amino 

acids are readily available by the proteolysis of caseins and therefore, the need for such 

enzymes in starter cultures is limited. Wild strains are not naturally associated with a rich 

environment such as milk which makes them more dependent on their own synthesis of amino 

acids compared to industrial strains. 

The requirement of a given amino acid can result from either the absence of functional 

specific biosynthetic genes or from specific regulatory mechanisms (Chopin, 1993). For 

example, the existence of defects in biosynthesis of histidine and branched-chain amino acids 

has been established in L. lactis strains resulting from accumulated mutations and deletions 

within the genes coding for the biosynthetic enzymes (Delorme et al., 1993; Godon et al., 

1993). The involvement of regulatory mechanisms in amino acid requirements has also been 

demonstrated in L. lactis. 

46 



Flavour formation by wild lactococci 

c 
'53 

8 

3 
•a 

o 

<1> 
CO 
CO 

u 
— 
« 

I 

£• 
o 

o 

ft" 
JS 
3 

u-> 
r-
t - ^ 

y—t 

m 

*—i 

5= 

3 

& 

•§ 

PQ 

pa 

u 

ns 
O 

.3 

I -f- I I I I I I • I I I I I 

- t - i + i i - H 1 • • • • • • • • • • • • • 

i i + t i i i i i i i -|- i i i i i i i 

+ i + i i i i i i i > i i i i i i i i i 

+ i + i i i i i i i i i i i i i i i i 

- H i ~ H i i i i i i i i i i i i i i i i i 

+ i + i i i i i i i i i i i i i i 

• • H— * —H ~l~ • • • • • • • • • • » • • • 

-f- i -f- i i - H i i i i i i i + 1 i i i i i i 

+ + + I I + I I I I I I I I I I I I I I 

i • + • i i i i i i i i i i i i i i i i i 

i i + i i i i i i i i i i i i i i i i i 

+ + + + + + + + + + I • • • • 

+ + + + + + + + + • • • 

+ + + 4- + + , , , , , , , , , , , , , , 

+ - ( - - ( - + i i i i i i i i i i i i i i 

a o .s g s 1 -s j? g .s a .a a & -l •§ 1 8 g s 

I 

o ra 
o 
.3 
E 

0s-

O 

I 

« 
o 
s 
E 
cs 

i 

=! 

o 
feh 
a> 

Ti-

CS 

o 
• 3 

ra 
CD 

1 
8 
+" 

0\ 

^ • ^ 

S fa 

df B 
O T J 

sS 9 
<=> <-
-* 0 ra '3 
•s* 
p> E 
S 2 
E * 

47 



Chapter 2 

For instance, the biosynthesis of the amino acids of the glutamate family (GLU, GLN, ARG 

and PRO) is dependent on the synthesis of glutamate itself which, in turn, can be affected by 

the ammonium ion concentration in the medium. The finding that all tested strains have a 

requirement for valine (Table 4) cannot result from a defect in a structural gene since all genes 

required for the valine synthesis are also required for the synthesis of leucine and isoleucine, 

suggesting a coordinated expression of these genes. Conceivably, an intermediate of the 

branched-chain amino acid pathway or another anabolic or catabolic pathway interferes with 

valine biosynthesis (Godon et at, 1993). 

The L. lactis subsp. lactis biovar. maltigenes strain described by Morgan (1976), that is 

thought to be responsible for production of the 'malty aldehyde' 3-methylbutanal in raw milk, 

requires leucine, isoleucine and valine for multiplication in a completely synthetic medium. 

However, the three strains that produced high amounts of 3-methylbutanal in cheese paste in 

our study, i.e. L. lactis subsp. lactis B1152, L. lactis subsp. cremoris B1153 and L. lactis 

subsp. cremoris B1157 (Table 3), do not require leucine for growth. It is therefore 

conceivable that these strains are able to produce leucine or the intermediate a-ketoisocaproic 

acid from other metabolites. 

The four wild strains producing a standard flavour in milk culture that were tested for 

amino acid needs (B26, B72, B1175 and B1176) also required only 2-3 amino acids for 

growth (Table 4). Three of these strains required methionine, whereas the wild strains 

producing an unusual flavour, i.e., those presented in Fig. 1, were all able to grow without this 

amino acid. This finding might form the basis for the differences between two groups of wild 

strains, however, variations in substrate specificities of certain amino acid converting 

enzymes or regulation pathways may in addition play a role. 

Taken together, the results show that the wild strains generally are less demanding 

regarding the amino acid supply than industrial strains. For this reason, wild strains probably 

harbour more (active) amino acid convertases which could explain their ability to produce 

interesting flavours in milk and cheese paste distinct from those produced by industrial 

strains. Further studies on the complex regulation of cell metabolism of these wild strains will 

gain insight into the routes of flavour formation in lactococci. 

CONCLUSIONS 

In milk culture, and under cheese-like conditions, wild strains of Lactococcus lactis are 

able to produce flavours different from those produced by industrial strains. GC-MS analysis 

revealed that wild strains produced several volatiles in milk and in a cheese model system. 

The major volatile compounds were methylalcohols and methylaldehydes, which are most 
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likely derived from branched-chain amino acids. The GC-MS data generally showed a good 

correlation with the organoleptic descriptions. 

Wild strains were found to be prototrophic for most amino acids whereas industrial strains 

were found auxotrophic for 9-10 amino acids. Since wild strains are more dependent on their 

own synthesis of amino acids, these strains most likely harbour more amino acid convertases. 

Therefore, these strains have more active amino acid convertases which matches with their 

ability to produce unusual flavours. In conclusion, the use of wild strains as starters for the 

development of new cheeses and/or flavours looks very promising. Further studies with these 

strains with regard to aspects important in cheese making and elucidation of flavour forming 

pathways in these strains are underway. 
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ABSTRACT 

A number of wild lactococci from dairy and non-dairy origin which have the ability to 

produce unusual new flavours in model systems were studied with regard to various 

characteristics important for cheese making. All strains were found to be non-lysogenic and 

resistant to phages affecting strains present in commercial starters. Since the overall 

acidifying activity of many potentially interesting strains is rather low, they were used in 

combination with commercial starters. Defined strain starter cultures (DSS) were prepared, 

composed of a combination of wild strains together with industrial strains, and tested in real 

cheese making (Gouda-type) experiments. The population dynamics of DSS were studied to 

understand the behaviour of the selected wild strains in the cheese environment. Wild strains 

showed various interactions with industrial strains in a defined strain starter culture. Some 

wild strains, which were able to grow well together with industrial strains could be used 

relatively easily for practical applications. Other strains appeared to inhibit the growth of the 

industrial strains, due to the production of bacteriocins. In many cases the bacteriocin 

appeared to be nisin. Sensory evaluation revealed that the selected wild strains also produced 

typical flavours in a real cheese environment which corroborated the results obtained in model 

systems. GC/MS data confirmed the results of sensory evaluations. 

INTRODUCTION 

Starter cultures used in manufacturing cheeses such as Gouda, Edam and Cheddar usually 

consist of mesophilic lactic acid bacteria (LAB), mainly Lactococcus lactis spp. Important 

characteristics of starter cultures related to cheese making are phage insensitivity, 

acidification activity, proteolytic activity and flavour production. In Gouda cheese also eye-

formation is an important characteristic. Flavour is one of the most important attributes of 

cheese, therefore it has received much attention (e.g., Urbach, 1997). Cheese flavour 

development is a very complex process, originating from a combination of microbiological, 

biochemical and technological aspects. Starter cultures play a key role in the flavour 

development during ripening of cheese (Urbach, 1993; Broome & Limsowtin, 1998). 

New strains of lactic acid bacteria, so-called 'wild strains', can be isolated from different 

milk environments (Weerkamp et ai, 1996; Cogan et ai, 1997) and other non-dairy sources 

such as plants, animals and soil (Sandine et ai, 1972; Williams & Collins, 1990; Collins et 

ai, 1993; Klijn et ai, 1995). In a previous study (Chapter 2; Ayad et al., 1999), it was shown 

that such strains have the ability to produce flavours distinctly different from those produced 

by industrial starter cultures in model systems. Moreover, these wild strains, in contrast to 

industrial strains, have the capacity to grow at 40°C and in the presence of 4% NaCl, which 
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could be functional for application in cheeses which are cooked to high temperatures (e.g., 

Cheddar) and in cheeses containing relatively high salt concentrations. Therefore, these 

strains may have a good potential for developing new types of cheese. 

The present work focusses on using wild lactococci strains individually and in combination 

with industrial strains in order to test their behaviour in real cheese making. Attention was 

paid to the technologically important characteristics of the wild strains, the aroma formation 

and the population dynamics of the mixtures of strains to understand the behaviour of the wild 

strains during the cheese making process. 

MATERIALS AND METHODS 

Origin of strains 

Strains were obtained from the culture collection of NIZO food research. Industrial strains 

were derived from commercial starters; dairy wild strains (DWS) originated from fermented 

raw milk of goats, sheep and cows from farms with artisanal production of dairy products; 

non-dairy wild strains (NDWS) came from various sources other than milk such as soil, grass 

and silage (Table 1). All strains tested belonged to the species Lactococcus lactis subsp. lactis 

and subsp. cremoris (Ayad et al., 1999). 

Technological characterisation of strains 

Acidification activity was measured by the change in pH after 6 h of incubation in NILAC 

milk powder (NIZO food research, Ede, The Netherlands) at 30°C (Stadhouders & Hassing, 

1981). The ability of the strains to hydrolyse casein was determined by using plates 

containing 10% skimmed milk, 1.9% P-glycerophosphate (pH 6.9), 0.001% 

bromocresolpurple and 1.3% agar (GMA-agar plates) (Limsowtin & Terzaghi, 1976; 

Hugenholtz et al, 1987a). Lysogeny of strains was measured by induction of prophages upon 

treatment with mytomycin C as described by Neve and Teuber (1991). Briefly, cultures in 

absence (control) and presence of mytomycin C were incubated at 30°C and growth was 

followed for 24 h by measuring the optical density at 600 nm (OD600) using a 

spectrophotometer (Ultrospec 3000, Pharmacia Biotech., UK) and by a shift in the incubation 

temperature from 30°C to 40°C for 2.0-2.5 h (Feirtag & McKay, 1987). The sensitivity of 

strains to bacteriophages was tested using a phage enrichment technique as described before 

(Weerkampe?a/., 1996). 
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Population dynamics 

Individual strains were pre-grown for 16 h at 30°C in sterilised milk with 0.5% yeast 

extract for protease-negative (prt-) strains and without yeast extract for protease positive 

(prt+) strains. Subsequently, 1% of individual cultures and 1% of defined strain starter 

cultures, i.e. the wild strain together with the industrial strain (SKI 10), were combined in 

different ratios (2:1 and 1:4). Individual and defined strain starter cultures were grown in 100 

tnL skimmed UHT milk for 48h at 30°C. The population dynamics of cultures were followed 

by plate counts. Samples were taken after 0, 2, 4, 6, and 24 h, diluted and spread on GM-agar 

plates and incubated at 30°C under anaerobic conditions for 2-3 days. On GMA plates, wild 

strains (prt-) form small white colonies during 2-3 days in contrast to the large yellowish 

colonies of the industrial strain SKI 10 (prt+). Sensory evaluation of milk cultures was carried 

out after 48h. 

The population dynamics of defined starter cultures were also followed as mentioned above 

during three subcultivations. To this effect, the cultures were taken after 16 h and inoculated 

(1%) for the next subculturing in 100 mL skimmed UHT milk. 

Cheese trials and analyses 

Gouda-type cheese was made from 200 L portions of pasteurised (10 s, 74°C) milk in a 

manner characteristics for Gouda cheese (Walstra et al., 1987). Two series were made; in 

each series five starters sets were used for cheese making from one batch of milk. The strains 

were pre-grown as a single culture for 16 h at 30°C in low-fat milk. The acidifying activity of 

each strain was determined prior to the experiments and the amounts of culture added to the 

cheese vats were adjusted accordingly to obtain the activity commonly used for Gouda cheese 

making. The culture was inoculated directly into processed milk via direct vat inoculation 

(DVI) (Osborne, 1992; Stanley, 1996). Seven non-proteolytic wild strains (B1157, B1158, 

B1156, B1159, B1153, B1155 and B1154) which produced different flavours in model 

systems, were each combined with the industrial strain SKI 10 in the ratio 2:1 (wild-type : 

SKI 10) into defined strain starter cultures (DSS). One cheese was prepared from milk 

inoculated with 1% of wild strain B1152 without addition of SKI 10, since this strain has 

sufficient proteolytic activity for acidification of the cheese milk. Cheeses prepared with 

strain SKI 10 (1%) were used as a control in each series. The cheeses were ripened for 6 

months at 13°C and analysed at various intervals. 

For measuring the population dynamics during cheese making and during ripening of the 

cheeses, the total number of bacteria in each sample were determined. Cheese samples were 

diluted 10-times in 2% trisodium citrate solution (w/v), and subsequently, homogenized for 5 
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min in a stomacher (Lab-Blender 400, Seward, London). Viable counts were enumerated on 

GM-agar plates. 

Compositional analyses for fat, salt, pH and moisture on the cheese two weeks after 

manufacture were performed according to IDF Standards (1997, 1979, 1989, 1982, 

respectively). Proteolysis, total nitrogen (TN) soluble nitrogen (SN) and amino acid nitrogen 

(AN) were determined according to Noomen (1977). 

The sensory evaluation was carried out by a panel consisting of five to eight trained cheese 

graders after 6 weeks, 3 and 6 months of ripening. Each panel member assessed the cheeses 

separately, taking into account the following features: flavour (odour and taste), consistency 

and firmness. For assessment of flavour and consistency, the following scale customery for 

similar work at NIZO were used: 8 = very good; 7 = good; 6 = sufficient; 5 = insufficient; 4 = 

bad; 3 = very bad. The scale for firmness was: 1 = very soft; 2 = soft; 3 = slightly soft; 4 = 

normal; 5 = slightly firm; 6 = firm; 7 = very firm. Intensity of flavour attributes was scored 

on a scale from 0 (absent) to 4 (very strong). The averages of sensory evaluations data with 

standard deviations were determined. 

Analysis of volatile compounds 

Volatile compounds in 3-months-old cheeses were identified using purge-and-trap thermal 

desorption cold-trap (TDCT) gas chromatography mass spectrometry (GC-MS) (Neeter & De 

Jong, 1992). Briefly, 20 mL of a cheese slurry, obtained by homogenization of a mixture of 

cheese and double-distilled water (1:2 w/v) was prepared and used immediately after the 

preparation. The samples were purged with 150 mL min"1 helium gas for 30 min at 42°C and 

volatile components were trapped on an absorbent trap containing carbotrap (80 mg, 20-40 

mesh, Supelco) and carbosieve SIII (10 mg, 60-80 mesh, Supelco). The trapped compounds 

were transferred on to a capillary column of a gas chromatograph using the Chrompack PTI 

injector (Chrompack, The Netherlands) in the TDCT model, by heating the trap for 10 min at 

250°C. A narrow injection band was achieved by cryofocusing at -100°C. The conditions for 

the chromatographic separation and mass spectrometry have been described previously 

(Engels et al, 1997). Structures of the volatile compounds were assigned by spectrum 

interpretation, comparison of the spectra with bibliographic data and comparison of retention 

times with those of reference compounds. 

Volatile sulphur compounds formed in some cheeses were determined by a sensitive and 

fast method without sample treatment, using a direct static headspace in combination with gas 

chromatography and flame photometric detection (HS-FPD) as described by De Jong et al. 

(2000). 
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Bacteriocin production 

Antimicrobial activity was determined in a agar well-diffusion assay against two target 

organisms. Plates were prepared by adding 2 mL from an overnight culture of either 

Micrococcus flavus NIZO B423 or L. lactis subsp. cremoris SKI 10 as indicators to 200 mL of 

M17 agar medium (Oxoid, Hampshire, UK) containing 5 g L"1 lactose (LM17) held at 45°C. 

Approximately 105 colony-forming units (cfu) per mL were added. The agar was then 

immediately dispensed into round sterile 8.5 cm diameter petri dishes and after solidification, 

wells (diameter 3 mm) were made by removing the agar by a sterile metal borer. 

Subsequently, 20 //L of the neutralized and filter-sterilized supernatants of culture obtained 

from overnight cultures of various L. lactis strains, grown in LM17 broth at 30°C, were 

dispensed in individual wells. The plates were incubated for 2 h at 4°C and subsequently 

overnight at 30°C after which the diameter of the inhibition zones was measured. 

Characterization of the antimicrobial activity was obtained by evaluation of the sensitivity 

to various heat treatments and the susceptibility to different proteolytic enzymes. Active 

supernatants were heated at 100°C for 5, 10, 20 and up to 30 min or treated with proteolytic 

enzymes (a-chymotrypsin, trypsin, proteinase K or pepsin) all at a final concentration of 10 

mg mL"1 in 20 mM phosphate buffer at pH 8.0. The incubations were performed at 30°C for 2 

h. To inactivate enzymes, supernatants were heated in a boiling water bath for up to 10 min. 

The remaining activities of supernatants were analysed by the agar-diffusion test as described 

above with L. lactis subsp. cremoris SKI 10 as the indicator strain. 

RESULTS AND DISCUSSION 

Technological characteristics of strains 

Several wild strains were tested for various technological properties which are important 

for cheese-making (Table 1). All non-dairy wild strains (NDWS) and about 50% of the dairy 

wild strains (DWS) showed low acidification activity. Two of the DWS (B1152 and B1170) 

showed high acidification activity when grown in milk, comparable to the activity of 

industrial strains of L. lactis indicating the presence of a highly active protease in these 

strains. Nine of the 13 selected DWS were able to hydrolyse milk proteins upon culturing on 

GM-agar; three of these strains showed a relatively low hydrolytic activity towards casein 

(Table 1). All NDWS tested showed no proteolytic activity. In general, acid production and 

proteolytic activity were higher in DWS than in NDWS, which might be due to the fact that 

NDWS are isolated from environments where casein is not the normal substrate. 
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Table 1. Technological characteristics of Lactococcus lactis strains important for cheese 

making. 

Strains 

Industrial strains 
NIZOB697(SK110) 
NIZO B64 (E8) 
NIZOB14 
NIZO B20 
NIZOB21 
NIZO B22 
NIZO Bl 183 
NIZO Bl 181 
NIZO Bl 182 
NIZO Bl 184 

Dairy wild strains 
NIZO Bl 158 
NIZO Bl 162 
NIZO Bl 163 
NIZO Bl 152 
NIZO Bl 164 
NIZO Bl 157 
NIZO Bl 165 
NIZO Bl 155 
NIZO Bl 166 
NIZO Bl 167 
NIZO Bl 168 
NIZO Bl 169 
NIZO Bl 170 

Non-dairy wild strains 
NIZO Bl 156 
NIZO Bl 171 
NIZO Bl 172 
NIZO Bl 153 
NIZO Bl 159 
NIZO Bl 154 
NIZO Bl 173 
NIZO Bl 174 

Subspecies 

cremoris 
cremoris 
lactis 
lactis 
lactis 
lactis 
cremoris 
cremoris 
cremoris 
cremoris 

lactis 
lactis 
lactis 
lactis 
lactis 
cremoris 
lactis 
lactis 
lactis 
lactis 
lactis 
lactis 
lactis 

lactis 
lactis 
lactis 
cremoris 
lactis 
lactis 
lactis 
lactis 

Sources Acidification 

activity 

(unit°N)b 

commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 
commercial starter 

raw goat milk (Fr) 
raw goat milk (Fr) 
raw sheep milk (Sp) 
raw cow milk (Nl) 
raw goat milk (Sp) 
raw sheep milk (Sp) 
raw cow milk (Nl) 
fermented raw milk (It) 
fermented raw milk (It) 
fermented raw milk (It) 
fermented raw milk (Fr) 
fermented raw milk (It) 
fermented raw milk (Po) 

grass (Be) 
silage (Nl) 
silage (Nl) 
milk machine (Nl) 
milk machine (Nl) 
soil (Nl) 
silage (Nl) 
silage (Nl) 

45 
40 
50 
52 
51 
49 
44 
43 
45 
41 

24 
33 
33 
50 
38 
21 
26 
22 
33 
24 
35 
24 
46 

22 
23 
22 
22 
24 
22 
23 
23 

Proteolytic 

activity 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
+ 
+ 
+ 
+ 

-
-
-
+ 
± 
+ 
+ 
+ 

-
-
-
-
-
-
-
-

Lysogenic 

+ 

-
-
-
-
-
+ 
+ 
+ 
+ 

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-

Phage 

sensitive 

-
-

ND 
ND 
ND 
ND 
+ 
+ 
+ 
+ 

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-

a(Sp), Spain; (Fr), France; (Nl), The Netherlands; (Be), Belgium; (It), Italy; (Po), Portugal. 
bThe acidity is expresed as degree N (the number of mL 0.1 N NaOH to neutralize 100 mL of milk). 
c+, proteolytic; -, not proteolytic; ±, weakly proteolytic. 

ND, not determined. 

All wild strains tested were found to be non-lysogenic upon treatment with mytomycin C and 

by a shift in the incubation temperature, in contrast to many of the tested industrial strains. 
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This might indicate that phages are commonly introduced in starter cultures during their 

presence in the dairy environment. Under these conditions lysogenic strains are naturally 

selected since they become resistant to the phages they acquired (Jarvis, 1989; Davidson et 

al., 1990). Lysogenic immunity, conferred by prophages to lysogenic strains, could play a role 

in the protection of these strains against phage attack (Reyrolle et al., 1982; Sechaud et al., 

1990). Strikingly, all tested wild strains were resistant to phages which do affect strains 

present in a commonly used commercial starter culture. Four industrial strains (B1181, 

B1182, B1183 and B1184) tested were sensitive to phages present in the phage cocktail 

(Table 1). The ability of wild strains to withstand a cocktail of phages, which affect strains 

present in commercial starter cultures, will have practical value for cheese making. 

Since acid production and a good proteolysis are required for cheese making (Limsowtin et 

al., 1995), it is necessary to combine these wild strains with industrial strains to prepare 

appropriate defined strain starter for practical application in cheese making. This will 

guarantee sufficient acidification of the milk during cheese making in combination with 

typical flavour profiles during cheese ripening. 

Cheese trials and analysis 

Cheeses were made with (DVI) preparations of combinations of wild strains and SKI 10 

(DSS), the latter being responsible for a good acidification of the milk. The control cheeses, 

made with SKI 10 alone, achieved pH 5.5 after approximately 6 h, which is normal for Gouda 

cheese making. The rates of acid production during manufacturing in the cheeses made with 

DSS Bl 157+SK110 and Bl 153+SK110 were similar to the control cheeses. In cheeses made 

with DSS B1158+SK110 and B1155+SK110 and strain B1152, the rate of acid production 

was slightly faster than in the control, while in the cheeses prepared with DSS Bl 156+SK110, 

B1159+SK110 and B1154+SK110 acid production was significantly slower than in the 

control situation; e.g., it took up to 12 h to reduce the pH to 5.5 in these cheeses (data not 

shown). 

Since lysis of the starters is thought to be an important parameter for proper cheese flavour 

development, the stability of the wild starter cultures either individually or in combination 

with industrial strains was assessed during cheese ripening. The total numbers of viable cell 

counts for a number of cheeses were determined during 6 months of ripening (Fig. 1). The 

results show that after 12 weeks of cheese ripening, the numbers of cells of starter culture 

SKI 10 in the control cheese was significantly reduced to 1.3xl02 cfu g"1 cheese (panel A) 

whereas, the numbers of wild starter in a cheese made with DWS Bl 152 was still 5.9xl07 cfu 

g"1 (panel B). In cheeses made with DSS Bl 156+SK110, the colony forming units of SKI 10 

decreased even faster than in the control cheese (panel C). The same was found in cheeses 

prepared with B1159+SK110 and B1154+SK110 (data not shown). In fact, the growth of 
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SKI 10 was even reduced during cheese-making (panel C). These results together with those 

of the acid production during the first 6 h of cheese manufacturing, could suggest that these 

non-dairy wild strains have an antagonistic effect against SKI 10. 

o 
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a _o 
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0.00 0.50 1.00 2 13 2 

Time (days) Time (weeks) 
0.00 0.50 1.00 2 13 24 

Time (days) Time (weeks) 

Fig. 1. Population dynamics of starter cultures in cheese prepared with combination of wild strains 
and SKI 10 (DSS) (mean of duplicates). Wild starter culture (o), commercial starter SKI 10 (•). (a): 
cell counts in cheese made with 1% SKI 10; (b): cheese made with 1% Bl 152; (c): cheese made with 
2% Bl 156+1% SKI 10; (d): cell counts in cheese made with 2% Bl 158+1% SKI 10. 
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In cheeses made with DSS B1158+SK110 (panel D) as well as DSS B1157+SK110 and 

B1155+SK110 (data not shown), the colony-forming units of SKI 10 decreased similarly to 

that in the control situation (panel A), while the wild strains were found to be more stable 

during ripening. 

Table 2. Composition of experimental cheeses two weeks after production and determination 
of proteolysis during ripening3. 

Cheese sample 

Trial 1: 
1% SKI 10 (control) 
2% Bl 157+1% SKI 10 
2% Bl 158+1% SKI 10 
2% Bl 156+1% SKI 10 
1%B1152 

Trial 2: 
1% SKI 10 (control) 
2% Bl 159+1% SKI 10 
2%B1153 + 1%SK110 
2%B1155 + 1%SK110 
2%B1154+1%SK110 

Fat 
% 

30.0 
31.0 
31.5 
29.5 
30.5 

29.0 
28.2 
29.0 
28.5 
28.7 

Moisture 
% 

40.9 
40.8 
40.4 
42.5 
41.1 

42.1 
43.0 
41.7 
42.2 
42.0 

Salt 
% 

2.0 
2.0 
1.9 
2.1 
2.1 

2.0 
2.0 
1.9 
2.0 
2.0 

pH 

5.18 
5.18 
5.15 
5.18 
5.15 

5.19 
5.19 
5.24 
5.16 
5.22 

Proteoly 

6 weeks 

SN 

c 

-
-
-
-

12.4 
10.6 
11.4 
11.2 
10.0 

AN 

-
-
-
-
-

2.8 
1.4 
2.6 
2.7 
1.1 

• b sis 

3 months 

SN 

-
-
-
-
-

22.1 
19.5 
21.8 
21.7 
18.1 

AN 

-
-
-
-
-

5.4 
3.1 
4.7 
5.4 
2.7 

a Results are mean of two analyses with standared error < 0.3. 
SN, soluble N; AN, amino N. Results expressed as % of TN (Total Nitrogen). 

c -, not determined. 

The values for fat, moisture, salt and pH, after two weeks of ripening are summarized in 

Table 2. There was no apparent difference in cheese composition between control cheeses and 

cheeses made with wild strains, as the levels are within margins for normal composition of 

Gouda-type cheese. Proteolysis after 6 weeks and 3 months of cheese ripening was assessed 

by chemical analysis of the nitrogen content of the soluble nitrogen fraction (SN) and the 

amino acids nitrogen fraction (AN) (Table 2). The average results obtained for the two 

fractions during ripening of cheese made with two DSS (B1153+SK110 and B1155+SK110) 

were not different from the control cheese, and normal for Gouda-type cheeses. Thus, there 

were no significant differences in proteolytic breakdown by these DSS as compared to a 

commercial starter culture during cheese ripening. However, the values of SN and AN were 

slightly lower in cheeses manufactured with DSS Bl 159+SK110 and Bl 154+SK110 than in 
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the control cheeses. This finding is probably due to the quick decline in numbers for the 

proteolytic industrial strain SKI 10 in both cheeses. Some selected wild strains, e.g., B1155 

and Bl 153, which have low proteolytic activity gave almost the same level of AN as the 

control when used in combination with SKI 10. This result is in agreement with work of 

Stadhouders et al. (1988), who reported that the flavour development in cheese made with 

80% prt- and 20% prt+ was about equal to that made with 100% prt+. Apparently, the 

presence of a relatively low amount of prt+ starter is sufficient to give a good proteolysis and 

flavour development. 

Population dynamics of defined wild strain starter cultures 

DVI systems are used by several cheese industries since this method is easier and more 

convenient for the cheese producers although more expensive. These systems generally 

consist of mixtures of strains (DSS) that are designed to give a fast acidification of the cheese 

milk, a high phage resistance and good taste and texture of the final product. Some DSS used 

as DVI cultures in cheese making during the present study were not satisfactory, because the 

acidification rate in a number of cheeses was far too low which might have been caused by an 

inhibition of SKI 10 in the mixtures. Therefore, more knowledge is required for understanding 

of the mutual interaction between the strains in the mixtures. 

The behaviour of wild strains in simple defined-strain starter cultures with the industrial 

strain SKI 10 was investigated in milk cultures to determine the interactions between the 

strains. The population dynamics of seven wild strains (B1153, B1154, B1155, B1156, 

B1157, B1158 and B1159) each one mixed with SKI 10 was followed in different 

combinations (2:1 and 1:4). Studies of population dynamics in mixed cultures can only be 

carried out if a general method is available to distinguish clearly the different strains 

(Hugenholtz, et al, 1987b). The changes in the population dynamics in our study were 

followed in milk during 48h on GMA-plates to recognize the individual strains in such 

mixtures due to the difference in proteolytic activity between wild strains and industrial 

strains. Fig. 2 shows some examples of the population dynamics of defined strain starter 

cultures B1158+SK110 and B1156+SK110. The results of the population dynamics of all 

defined strain starter cultures showed that wild strains Bl 158, Bl 157, Bl 155 and Bl 153 can 

grow well with the industrial strain SKI 10 in a defined-strain starter culture, while other wild 

strains, e.g., Bl 156, Bl 159 and Bl 154, inhibited the growth of SKI 10. These results, together 

with the results of cheese trials prepared with the same defined strain starters, indicated that 

these wild strains directly affect the growth of SKI 10 in the defined strain starter cultures. 

Many different interactions can occur which effect the composition of these cultures such as 

competition, antibiotics production and bacteriophages (Meers, 1973). 
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Defined strains B1158 and SK110 (2:1) Defined strains B1158 and SK110 (1:4) 

1.E+00 1 - 1 • — • • — i 
0 2 4 6 16 48 0 

(a) Time (h) (b) 
2 4 6 16 48 

Time (h) 

Defined strains B1156 and SK110 (2:1) Defined strains B1156 and K110 (1:4) 
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1.E+08 
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2 4 6 16 48 
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Fig. 2. Population dynamics of defiend strain starter cultures (open bars) with SKI 10 (filled bars), 
B1158+SK110 (a and b) and B1156+SK110 (c and d) in different combinations (2:1 and 1:4) during 
48h in milk cultures. Results are presented by means of two analyses. 

The population dynamics of defined strain starter cultures were followed during three 

inoculation/growth cycles (Fig. 3). The same results showing no inhibition in B1158+SK110 

or inhibition in B1156+SK110 were found during three subcultivations. These results 

indicated that these phenomena of mutual interaction do not change upon subculturing. 
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Bacteriocin production 

Antimicrobial activity of the eight wild strains tested was investigated using an agar well-

diffusion assay against Lactococcus lactis subsp. cremoris SKI 10 and Micrococcus flavus. 

One DWS (B1152) and 4 NDWS (B1153, B1154, B1156 and B1159) appeared to have 

antimicrobial activity against the indicator organisms. Since many lactic acid bacteria are able 

to produce bacteriocins or bacteriocin-like substances (Jack et al., 1995), these antimicrobial 

activities are likely to be a consequence of bacteriocin production. 
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The antibacterial compounds produced by tested wild strains were further characterised on 

the basis of their susceptibility to proteolytic enzymes (trypsin, proteinase K, a-chemotrypsin 

and pepsin) and to boiling for 30 min. Bacteriocins produced by the strain Bl 154, Bl 156 and 

B1159 were identified as nisin on the basis of their resistance to heat treatment, inactivation 

by a-chemotrypsin treatment and on their activity towards both indicator strains; features 

typical for nisin (Hurst, 1981; Gupta & Prasad, 1989). Moreover, analysis of culture 

supernatants of these strains showed a clear peak at a retention time identical with that of pure 

nisin as measured by HPLC analysis (data not shown). Similarly, wild strain B1153 

(Lactococcus lactis subsp. cremoris) most likely produces diplococcin, as the inhibitory 

substance was inactivated by trypsin and a-chemotrypsin as proposed by Davey and 

Richardson (1981). Bl 152 produced an unknown bacteriocin which was characterized by heat 

sensitivity and its inactiviation by a-chemotrypsin only. Our findings agree with those of 

several others (Kozak et al., 1978; Scherwitz et al., 1983; Gupta, 1993), who also recorded 

the production of diverse types of bacteriocins by different lactococci. It is noteworthy that 5 

out of 9 wild strains tested showed bacteriocin production, indicating that this seems to be a 

rather common feature for lactococci in their natural environments. Whether such strains were 

not selected in the past, or they loose this feature upon subculturing, remaines to be 

established. 

The production of these bacteriocins compounds will obviously have a strong influence on 

the composition of mixed starter cultures, which will tend to become dominant in these 

mixtures. These changes in the bacterial population will only occur if the other strains present 

are sensitive to the bacteriocin. Therefore, these particular strains should be combined with 

highly acidifying strains which are also resistant to the bacteriocin in order to prepare defined 

strain starter cultures. 

Flavour production in cheese trials 

Despite the fact that the acidification rate in some of the cheeses was rather slow, all 

cheeses were assessed for flavour development during ripening. Cheeses prepared with single, 

defined strain starter cultures and industrial strain SKI 10 were assessed sensorically after 3 

and 6 months for flavour, consistency and firmness. All cheese samples had good texture 

characteristics, not noticeably different from the control cheese (results not shown). Table 3 

presents the mean grade scores and standard deviations for flavour of cheeses after 3 and 6 

months of ripening. The sensory results show that the wild strains produced typical flavours in 

cheeses which are distinct from that produced by the industrial strain SKI 10. The typical 

flavours mentioned by the sensory panel (Table 3) are in agreement with those encountered in 

a previous study using model systems (Ayad et al., 1999). 
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Cheeses made with DSS B1156+SK110, B1153+SK110 and B1155+SK110 received the 

highest flavour scores while cheese made with single wild strain B1152 received the lowest 

score. These results indicate that selected wild strains are able to produce typical/new flavour 

characteristics in real cheese. The grading of the cheeses was carried out as Gouda-type 

cheeses with a new flavour, therefore these gradings (Table 3) should not be treated in an 

absolute manner. It is more important to focus on the flavour attributes and their intensity. 

The volatile compounds produced in 3-months old cheeses prepared with individual and 

mixed-starter cultures were identified using purge-and-trap TDCT GC-MS. Many different 

compounds were detected and characterized in the cheeses. Each starter culture produced a 

typical pattern of volatile compounds which matched with the sensory flavour descriptions. 

Fig. 4 shows some examples of GC-MS aroma profiles of cheeses made with SKI 10, Bl 152, 

DSS B1159+SK110 and DSS B1153+SK110. Cheeses manufactured with B1152 and DSS 

B1159+SK110 (Fig.4) and DSS B1157+SK110 and B1154+SK110 (data not shown) 

contained high levels of methylalcohols (2-methylpropanol, 3-methylbutanol and 2-

methylbutanol) and corresponding aldehydes (2-methylbutanal, 3-methylbutanal and 2-

methylpropanal). Particularly, the aldehydes can be linked to the chocolate/cacao and malty 

flavours in these cheeses. Methylalcohols and methylaldehydes likely originate from the 

conversion of the branched-chain amino acids leucine, isoleucine and valine. These 

compounds have been recognized as off-flavours in raw milk produced by metabolic activity 

of Lactococcus lactis biovar maltigenes (Morgan, 1976; Molimard & Spinnler, 1996). 

However, such aromas are also recognized as key flavour compounds in some cheese types, 

e.g., some artisanal, Proosdij and Parmesan cheeses (Bosset & Gauch, 1993; Barbieri et al., 

1994; Neeter et al., 1996). These branched-chain alcohols and aldehydes are normally not 

found in Gouda-type cheese in high levels. Cheese prepared with DSS B1158+SK110 was 

judged as slightly malty after 3 months ripening, however, this flavour was reduced after 6 

months. This is most likely due to a further conversion of aldehydes to the corresponding 

alcohols. Cheese prepared with DSS B1157+SK110 contained, in correspondence with the 

sensory evaluation, a relative high concentration of methylaldehydes. However, this strain 

gave only a slightly chocolate aroma in model systems (Ayad et al., 1999), which suggests 

that certain flavours when present in balance with other volatile compounds may be applied in 

a positive way in special cheeses depending on the DSS used. 

Some cheeses, considered to show a fruity, sweet and yeasty flavours (Table 3), contained 

different levels of ethylesters (ethylacetate, ethylbutanoate and 3-methylbutylacetate) likely 

produced by the reaction of fatty acids with ethanol. These compounds are responsible for 

fruity and sweet (low amount) notes as found in cheese made with DSS B1156+SK110 and 

yeasty (high amounts) character as in cheese made with DSS B1154+SK110 (data not 

shown). 

Farm cheese-like flavour, Kernhem-cheese-like flavour and H2S were noticed during 
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sensory evaluation of some cheeses; these flavours could be attributable to sulphur 

compounds. Sulphur components were found in cheeses prepared with DSS B1158+SK110, 

B1155+SK110, B1156+SK110 and B1153+SK110 and with SKI 10 (control cheese) after 3 

months of ripening by using HS-FPD method (Fig. 5). 
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Fig. 4. GC-MS aroma profiles of volatile compounds purged from 3-month-old cheese prepared 

with industrial strain SKI 10 and wild starter cultures mixed with SKI 10. 
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The results indicated that cheese prepared with DSS B1155+SK110 had the highest level of 

H2S and methanethiol followed by cheese prepared with B1156+SK110 for H2S and 

Bl 153+SK110 for methanethiol, while cheese made with DSS Bl 158+SK110 had the highest 

amount of dimethylsulphide and CS2. 
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Fig. 5. Relative amounts of sulphur compounds formed during ripening of cheese after 3 months. 
H2S, hydrogen sulphide; MeSH, methanethiol; DMS, dimethylsulphide; CS2, carbon disulphide; 
DMDS, dimethyldisulphide. 

These results are in accordance with the sensory evaluations. Dimethylsulphide, originating 

from methionine breakdown, has been recognized as a very important flavour compound with 

a relative low odour threshold in cheeses such as Limburger, Cheddar and Gouda (Parliment 

et ah, 1982; Urbach, 1993) and can be formed by enzymatic degradation of methionine by L. 

lactis (Engels et ah, 1997). 
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CONCLUSIONS 

Wild strains generally show a low acidification activity indicating that these strains have to 

be combined with industrial strains to prepare defined strain starter cultures. However, these 

wild strains were not lysogenic and were resistant to phages affecting strains present in 

commercial cultures. Therefore, DSS have to be prepared, composed of wild strains together 

with industrial strains and tested in cheese making. The chemical composition of cheeses 

made with different DSS were similar to those of the control cheese prepared with industrial 

strains. Wild strains, either individual or mixed with an industrial strain, were also able to 

produce typical/new flavours characteristics in a real cheese environment. The results of 

GC/MS analysis showed that various volatile compounds were produced by selected wild 

strains in cheese which was linked to sensory evaluation of these cheeses. This corroborates 

previous results in model systems (Ayad et ai, 1999), indicating that testing in model systems 

is a useful tool in selecting strains with potentially interesting properties as starter cultures. 

The population dynamics of the DSS revealed that a number of wild strains are able to 

grow well in defined strain starters whereas others produced antimicrobial factors. This 

activity should be tested before preparing new DSS. In conclusion, the development of DSS 

including wild strains offers new possibilities. 

Further research needs to focus on the possibility to control the flavour development by 

preparing DSS with the right balance between flavour-producing strains and other 

characteristics required in Gouda cheese (e.g., eye-formation). Furthermore, the stability of 

these properties as well as the routes of flavour formation by these strains will have to be 

determined. 
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Chapter 4 

ABSTRACT 

In order to apply wild lactococcal strains with diverse properties, isolated from dairy and 

non-dairy origins and characterised by their flavour forming abilities, as a new starter culture 

for dairy products, they were tested for antagonistic activities. A high percentage of the strains 

tested (40%), inhibited the growth of indicator strains in an agar well diffusion assay. The 

antibacterial factors/bacteriocins produced by these strains (16 of which produced standard 

flavours as compared by those produced by industrial strains and the other 16 strains produced 

specific flavours) were characterised on the basis of their susceptibility to proteolytic enzymes 

(a-chymotrypsin, trypsin, proteinase K and pepsin) and to boiling for 30 min. The bacteriocins 

produced by these strains were placed into four groups: nisin, diplococcin, lactococcin and 

unknown bacteriocin-like compounds. Seventeen strains appeared to produce nisin, which was 

confirmed by polymerase chain reaction (PCR) and by HPLC. Furthermore, eight of these 

strains were found to be able to produce nisin A and nine strains produced nisin Z. The 

technologically important traits in these wild strains have been examined, which allowed the 

selection of those strains as part of tailor-made starter cultures for the manufacture of dairy 

products. 

INTRODUCTION 

Lactococci are the most important group of lactic acid bacteria (LAB) from the point of 

practical applications, since they are used as starter cultures in the manufacture of several 

fermented foods e.g., cheese. They are responsible for protein hydrolysis to the sensory 

attributes and also assist in preventing the rapid spoilage of protein-rich products, mainly 

through the acidic conditions created during their growth (Lindgren & Dobrogosz, 1990). 

Beside these characteristics, they can have other relevant properties such as bacteriophage 

resistance or have the ability to produce bacteriocins. Bacteriocins or bacteriocin-like 

substances are proteins with bactericidal activity against microorganisms usually related to the 

producer strain as originally defined by Tagg et al. (1976). Production of bacteriocins is 

widespread among LAB (Klaenhammer, 1988; Jack et al., 1995). Consequently, the topic of 

LAB bacteriocins have been reviewed by several authors (Daeschel, 1989; Piard & 

Desmazeaud, 1991; Piard & Desmazeaud, 1992; Klaenhammer, 1993). The production of 

these compounds by starters will obviously have a strong influence on the composition of 

mixed of multiple starter cultures (Meer, 1973). The main negative technological consequence 

of the application of bacteriocin production by a lactococcal starter is the possible dominance 

of the strain in a mixed starter culture on successive subcultivation. This can also occur during 

cheese making, as was shown by Gupta and Prasad (1989), Piard et al. (1990) and Ayad et al. 
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(2000). The positive aspect of using the bacteriocin producing strains is the possibility of 

inhibition of undesirable gram-positive bacteria including the genera Bacillus and Clostridium 

and bacteria pathogenic to humans (Listeria monocytogenes and Staphylococcus aureus) 

(Hurst, 1981; Piard et al., 1990; Ray & Daeschel, 1992; Maisnier-Patin et al., 1992). Over the 

past decennium, there has been a strong interest to produce more 'natural' foods. Lactic acid 

bacteria are generally regarded as safe, and some of the bacteriocins produced by them are 

used to control the growth of spoilage and pathogenic microorganisms in food (Hoover & 

Steenson, 1993; De Vuyst & Vandamme, 1994). Bacteriocin-producing strains have also been 

used successfully in starter cultures for cheese making in order to improve safety and quality 

of the cheese (Lipinska, 1973; Maisnier-Patin et al., 1992; Delves-Broughton et al, 1996; 

Ry<metal., 1996). 

In a previous study, we investigated lactococcal strains isolated from artisanal and non-

dairy origins with specific flavour forming abilities as well as strains producing a standard 

flavour comparable with that produced by industrial strains (Chapter 2; Ayad et al., 1999). 

The behaviour of strains producing specific flavours in the presence of industrial strains in a 

defined starter pair was studied. Some strains inhibited the growth of the industrial strains, due 

to the production of bacteriocins (Chapter 3; Ayad et al., 2000). These wild lactococcal strains 

could nevertheless be of interest, when their property to produce antimicrobial compounds can 

be coupled with flavour forming capability in an appropriate starter. Therefore, we focused on 

the production of antimicrobial compounds by lactococci from artisanal and non-dairy origin 

in order to exploit this natural diversity in the common practice of cheese making. 

MATERIALS AND METHODS 

Origin of strains 

The strains used in this study were obtained from the culture collection of NIZO food 

research. Industrial strains were derived from commercial starters. Dairy wild strains (DWS) 

originated from artisanal production of dairy products and non-dairy wild strains (NDWS) 

originated from various sources other than milk such as saliva of cow, soil, grass and silage. A 

total of 79 wild lactococcal strains, 22 producing standard (not specific) flavours and 57 

producing specific flavours as compared to industrial strains were examined (Ayad et al., 

1999). All strains tested belong to the species Lactococcus lactis subsp. lactis and subsp. 

cremoris. 
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Bacteriocin production 

Antimicrobial activity was determined in agar well-diffusion assay against two target 

organisms either Micrococcus flavus NIZO B423 or L. lactis subsp. cremoris SKI 10 as 

described before (Ayad et al., 2000). Characterization of the antimicrobial activity was 

obtained by evaluation of the sensitivity to various heat treatments and the susceptibility for 

different proteolytic enzymes (see Ayad et al., 2000). 

To assess which strains produced nisin, DNA coding for the bacteriocin was identified by 

the polymerase chain reaction (PCR). Strains L. lactis subsp. lactis NIZO 22186 and NIZO 

R5, producing nisin Z and A, respectively, were used as a control. Chromosomal DNA of all 

wild strains, which produced bacteriocin, was obtained by standard procedures (Kuipers et al., 

1991). Oligonucleotide primers that were used for PCR amplifications were Rl: 5'-

CGCGAGCATAATAAACGGCT-3' and R2: 5'-GATAGTATCCATGTCTGAAC-3'. The 

amplications were performed by using a Thermocycler 480 (Perkin-Elmer, Gouda, The 

Netherlands). The reactions were carried out in 0.5 mL tubes which contained 50 /iL of the 

following buffer: 10 mM Tris-HCl (pH 8.8), 1.5 iriM MgCl2, 50 mM NaCl, 2.5 mM (each) 

deoxynucleosid triphosphate, 1U of Taq-polymerase (GibcoBRL 18038-026) and 250 ng of 

primer Rl or R2. After being heated to 95°C to eliminate all protease activity, 5 fiL of 

template DNA was added. Amplification was done in 55 cycles of 1 min at 94°C 

(denaturation), 1 min at 25 °C (annealing), and 8 min at 72°C (extension-polymerization). 

PCR products were analysed by agarose gel electrophoresis as described by Klijn et al. 

(1991). 

Qualitative detection of nisin was performed by analytical reversed-phase HPLC on a Hi-

Pore PR-318 column (250 by 4.6 mm; Bio-Rad Laboratories, Richmond, Calif), using a linear 

gradient of 23 to 28% buffer B (90% aqueous acetonitrile, 0.08% trifluoroacetic acid) for 50 

min with a flow rate of 1 mL min"1. Absorbance was monitored at 220 nm. Strains 

Lactococcus lactis subsp. lactis, NIZO R5 and NIZO 22186 were used as references for nisin 

A and Z, respectively. 

Quantification of nisin was performed with the agar well diffusion assay as described 

above using standard nisin solutions in a concentration range from 0.1 to 1000 IU nisin per 

mL with Micrococcus flavus as the indicator strain. 

Technological characterisation of strains 

The technological characteristics of the strains producing bacteriocin-like compounds was 

performed as described previously (Ayad et al., 2000). Besides the acidification activity, the 

ability to hydrolyse casein, the lysogeny and the sensitivity of strains to bacteriophages, also 
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the ability of the strains to grow at varous temperatures and salt concentrations was tested. The 

strains were grown at 20, 30, and 40°C in Ml7 medium (Oxoid, Hampshire, UK) containing 5 

g L"' lactose (LM17). Growth was followed by measuring the optical density at 600 nm 

(OD600) using a spectrophotometer (Ultrospec 3000, Pharmacia Biotech., UK). The sensitivity 

of the strains to salt was determined by following growth of strains in LM17 medium at 30°C 

in the presence of 1, 2, and 4% NaCl. 

RESULTS AND DISCUSSION 

Bacteriocin production 

The antimicrobial activity of 79 wild lactococal strains, either producing standard (usual) 

or specific (unusual) flavours as compared with industrial strains (Ayad et al., 1999), was 

investigated using the agar well-diffusion assay against Lactococcus lactis subsp. cremoris 

SKI 10 and Micrococcus flavus NIZO B423. Thirty two strains (i.e., 40%) exhibited 

antagonistic activity against the two indicator strains, 16 of those strains produced standard 

flavours and the other 16 strains produced specific flavours (Table 1). Since various lactic acid 

bacteria are found to produce bacteriocins (Jack et al., 1995), these antimicrobial activities are 

likely to be a consequence of bacteriocin production. The 40% of wild strains in our study that 

showed bacteriocins production is higher than previously reported (Klijn et al., 1995; Cogan 

et al., 1997; Estepar et al., 1999), however, in one other case also such a high percentage was 

found (Martinez et al., 1995). It was observed that lactococci in natural niches, either 

producing specific or standard flavour, more frequently possess the ability to produce 

antimicrobial compounds. That can possibly be explained by the fact that such abilities enable 

them to withstand competition against other bacteria. Apparently, this property is found more 

frequently in strains of a non-dairy origin than in dairy strains (Table 1). 

The antibacterial compounds produced by the 32 strains were characterised on the basis of 

their susceptibility to proteolytic enzymes (trypsin, proteinase K, a-chymotrypsin and pepsin) 

and to boiling for 30 min. The bacteriocins produced by the strains could be classified on the 

basis of their characteristics into four groups: nisin, diplococcin, lactococcin and bacteriocin-

like compounds (unknown). The bacteriocins produced by 17 wild strains {Lactococcus lactis 

subsp. lactis) were distinctly identified as nisin on the basis of their resistance to heat 

treatment, inactivation by a-chymotrypsin treatment and on their activity towards both 

indicator strains, features which are typical for nisin as has been reported by Hurst (1981) and 

Gupta and Prasad (1989). This was confirmed by HPLC analysis of the culture supernatant of 

these strains, which showed a clear peak with a retention time identical to that of pure nisin. 
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Table 1. Numbers of wild strains producing bacteriocins. 

Total number of tested strains 

Number of strains with 
antimicrobial activity 

Nisin 

Diplococcin 

Lactococcin 

Bacteriocin-like compound 

Total 

79 

32 

17 

2 

3 

10 

Strains 
specific 

Dairy 

31 

6 

2 

0 

1 

3 

producing 
flavours 

Non-dairy 

26 

10 

5 

2 

0 

3 

Strains producing 
standard flavours" 

Dairy 

16 

11 

5 

-

2 

4 

Non-dairy 

6 

5 

5 

-

0 

0 

1 Specific and standard flavours were defined previously as described by Ayad et al. (1999). 

The preliminary results of three strains have already been described before (Ayad et al., 

2000). Moreover, the bacteriocin produced by these strains was also identified as nisin by 

DNA isolation and polymerase chain reaction (PCR) (data not shown). Seventeen strains 

tested out of 32, produced nisin indicating that nisin is the most common antimicrobial peptide 

found to be produced by L. lactis subsp. lactis (De Vos et al., 1993 & Klijn et al., 1995). The 

inhibition zone of nisin produced by some of these wild strains were found to be larger than 

the inhibition zone of two control strains NIZO 22186 (nisin Z-producer) and NIZO R5 (nisin 

A-producer). This might be due to a stronger expression of nisin biosynthesis or to the 

prevalence of the nisin Z production trait. Nisin Z exhibits a greater inhibitory effect than nisin 

A due to its increased solubility (De Vos et al., 1993; Desmazeaud, 1996). The nisin 

production by the strains studied was qualitatively determined by analytical reversed-phase 

HPLC. The results indicated that eight strains produced nisin A and nine produced nisin Z. 

Furthermore, nisin Z was quantitatively determined for these nine strains. Three strains, DWS 

B12 and NDWS B26 producing standard flavours (Table 1) and NDWS B1174 producing 

specific flavour (Ayad et al,. 2000), were found to produce significantly higher concentrations 

of nisin Z than the control strain NIZO 22186. 

Two of the NDWS, both Lactococcus lactis subsp. cremoris strains that produce specific 

flavours Bl 153 described before (Ayad et al., 2000), most likely produced diplococcin, as the 

inhibitory substance was inactivated by the trypsin and a-chymotrypsin a specific feature as 
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proposed by Davey and Richardson (1981). Three Lactococcus lactis subsp. lactis (DWS) 

appeared to produce lactococcin based on their resistance to heat treatment, their inactivation 

by the proteolytic enzymes and on their activity towards both indicator strains as referred by 

Geis et al. (1983) and Gupta (1993). Ten strains (seven Lactococcus lactis subsp. lactis strains 

[strain B1152 has been described before: Ayad et al., 2000] and three Lactococcus lactis 

subsp. cremoris strains) were shown to produce unknown bacteriocins which were 

characterized by heat sensitivity and their inactivation by a-chymotrypsin only (Table 1). 

Lactococci can produce a wide variety of bacteriocins e.g nisin, diplococcin, lactococcin, 

lactacin 481, lactostrepcins, etc. and many more still remain undiscovered (Davey & 

Richardson, 1981; Hurst, 1981; Zajdel & Dobrzanski, 1983; Geis et al, 1983; Delves-

Broughton, 1990; Gupta & Batish, 1992; Piard et al, 1992). 

The production of these bacteriocin compounds by several wild strains will obviously have 

a strong influence on their usefulness in mixed starter cultures, because they will tend to 

outgrow the other strains and to become dominant in these mixtures (Ayad et al., 2000). These 

changes in the bacterial population will only occur if the other strains present are sensitive to 

the bacteriocin. Therefore, to use such strains in a starter culture, they should be combined 

with other strains producing or resistant towards the same bacteriocins. 

Among the bacteriocins of lactococci, only nisin has been granted the GRAS (generally 

recognised as safe) status by FAO/WHO and FDA (WHO, 1969 & Anonymous, 1988). It is 

used as a natural food preservative, because it efficiently inhibits the growth of several Gram-

positive bacteria, e.g., Clostridium, Listeria, Bacillus, and Staphylococcus spp. Nisin-

producing starter cultures of L. lactis subsp. lactis have been used as natural preservatives in 

cheese against these undesirable micro-organisms. They have to be combined with nisin-

resistant strains to ensure adequate performance of the cheese starter (Lipinska, 1977; Roberts, 

et al., 1992; Delves-Broughton et al., 1996). The combination of existing nisin-producing 

starters with strains having the flavour-generating properties described in this paper will offer 

new avenues for the development of tailor-made nisin-producing starters. 

Technological characteristics of strains 

Sixteen of the 32 bacteriocin-producing strains (6 DWS and 10 NDWS) responsible for 

specific flavours after growth in milk have already been characterised previously (Ayad et al., 

2000). The technological characteristics of the other 16 bacteriocin-producing strains (11 

DWS and 5 NDWS) giving rise to standard flavours comparable with those of industrial 

strains (Ayad et al., 1999), were determined to complete our knowledge about their potential 

application in tailor-made multiple strain starter cultures (Table 2). 
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Table 2. Characteristics of wild Lactococcus lactis strains producing standard flavours. 

Strains Subspecies Sources 

Dairy strains 
NIZO B7 
NIZO B8 
NIZOB11 
NIZOB12 
NIZOB19 
NIZO Bl 176 
NIZO B1231 
NIZO B1232 
NIZO B1233 
NIZO B1234 
NIZO B1235 

Non-dairy strains 
NIZO B26 
NIZO B1236 
NIZO B123 8 
NIZO B1239 
NIZO B1240 

lactis 
lactis 
lactis 
lactis 
lactis 
cremoris 
lactis 
lactis 
lactis 
lactis 
lactis 

lactis 
lactis 
lactis 
lactis 
lactis 

raw milk 
raw milk 
raw milk 
raw goat milk 
raw milk 
raw sheep milk 

activity 
(units°N)a 

fermented raw milk 
raw sheep milk 
raw sheep milk 
raw goat milk 
raw goat milk 

Chinese radish seed 
soil 
saliva of cow 
silage 
soil 

24 
26 
26 
25 
38 
32 
34 
39 
36 
26 
27 

25 
24 
23 
37 
26 

activi 

-
-
± 
± 
+ 
+ 
+ 
+ 
+ 
-
-

-
-
-
+ 
± 

Acidification Proteolytic Phage Bacteriocin 
activityb Sensitivity0 -like 

compounds 

nisin A 
nisin A 
nisin Z 
nisin Z 
nisin A 
unknown 
unknown 
lactococcin 
lactococcin 
unknown 
unknown 

nisin Z 
nisin Z 
nisin A 
nisin A 
nisin Z 

a The acidity is expresed as degree TV (the number of mL 0.1 N NaOH to neutralise 100 mL of milk). 
' +, proteolytic; -, not proteolytic; ±, weakly proteolytic. 

" Phage sensitivity as tested against a cocktail of phages isolated from commercial production sets of 
Gouda cheese in The Netherlands (Ayad et al., 2000) 

Five of 11 DWS and one of 6 NDWS showed acid production in a level from 32 to 38 N° 

when grown in milk, the others produced rather low amounts of acid in a range of 23-27 N°. 

Some of both DWS and NDWS were able to hydrolyse milk protein upon culturing on GMA. 

Although the NDWS were isolated from environments where casein is not the normal 

substrate, these strains were able to hydrolyse casein. However, the proteolytic activity and 

also the capacity for acid production were generally found to be higher in DWS than in 

NDWS. 

All tested strains were found to be non-lysogenic upon treatment with mytomycin C and by 

a shift in the incubation temperature. Moreover, all strains were resistant to phages, which do 

affect strains in commonly used commercial starter cultures. This may give them a practical 

value for cheese making, because one of the first requirements in careful selection of starter 

strains is trying to avoid problems with phages (Heap, 1998). 
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All wild strains tested, either subsp. cremoris or lactis, were able to grow at 40°C and in 

the presence of 4% NaCl (data not shown). This ability might be functional for application in 

certain cheeses, which are cooked, to high temperatures, e.g. Cheddar, and in others, which 

contain relatively high salt concentrations. 

Acid production and good proteolysis as well as phage resistance are required in starter 

cultures (Timmons et al., 1988; Limsowtin et al., 1995). These strains could be combined with 

other wild strains in order to prepare successfully defined strain starters with the required 

properties for practical application in cheese making and concomitantly, with the desired 

flavour formation capability. 

CONCLUSIONS 

The pool of wild lactococci isolated from dairy and non-dairy niches contains several 

strains, which are interesting for use in cheese making. We have shown before that they are 

able to produce specific flavours as well as standard flavours comparable with those of 

industrial strains. In this study, several of this wild lactococci were shown to produce a 

bacteriocin-like compound, in fact 32 of 79 strains examined had this property. These strains 

can be useful in defined strain starter cultures for cheese manufacture, but only if applied in 

combination with other strains-resistant producing the same bacteriocin. For that purpose, the 

stability of their technological properties and their behaviour in a defined starter culture 

should be evaluated. 
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ABSTRACT 

Lactococcal strains from various artisanal and natural niches were studied for the 

development of defined strain starter (DSS) mesophilic cultures with specific flavour forming 

characteristics as well as with other properties required for Gouda-type cheese. These 'wild' 

lactococcal strains were found to be stable up to 50 subcultivations with regard to their 

morphology, genetic profile, bacteriocin production, proteolytic and acidification activity, 

bacteriophage resistance, citrate utilizing ability as well as their ability to grow at 40°C and in 

the presence of 4% NaCl. In addition, the flavour forming abilities of the strains were found 

to be stable during subcultivation, making them suitable as starter cultures. Different DSS 

were prepared, each one composed of a limited number of strains for Gouda-type cheese 

making. These starters included proteolytic, non-proteolytic and citrate utilising strains, as 

well as a specific flavour-generating wild strain. One of the DSS consisted of nisin-producing 

together with nisin-resistant strains. The characteristics of the strains in DSS were studied in 

milk cultures as well as in cheese making experiments. The population dynamics revealed that 

a number of strains were able to grow well together and thus were suitable to be applied in 

tailor-made starter cultures, whereas other strains could not be maintained during growth in a 

mixed DSS. The results of population dynamics in the cheese corroborated the results 

obtained in a milk culture. These results may open new avenues for the construction of tailor-

made starters for new types of cheese. 

INTRODUCTION 

Mesophilic starter cultures of lactic acid bacteria which are essential in the manufacture of 

various cheese types are mainly composed of Lactococcus lactis subsp. lactis and 

Lactococcus lactis subsp. cremoris (Thomas & Mills, 1981; Law & Kolstad, 1983; Grow et 

al, 1993; Limsowtin et ai, 1995; Broome & Limsowtin, 1998). Other types of bacteria are 

used as starter adjuncts depending on the type of cheese. In Gouda-type cheese, Lactococcus 

lactis subsp. lactis biovar diacetylactis and Leuconostoc spp. are responsible for diacetyl 

formation and CO2, the latter being essential for the eye formation (Daly, 1983; Akkerman et 

al., 1989; Johnson et ai, 1998). Generally, for cheese makers it is important to produce 

cheeses with a constant high quality. The use of the right starter cultures is essential, and 

therefore, it must be emphasised that a rigorous characterisation of starter strains is vital to 

ensure a good practical performance of a culture. Research has been focused on the role of 

starters in cheese ripening and on the potential exploitation of their antimicrobial properties 

(Olson, 1990; Visser, 1993; Fox et ai, 1996). The most important attributes of starter lactic 

acid bacteria required for cheese manufacture include phage insensitivity, acid-producing 
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activity in milk and their effect on flavour development (Marshall, 1991; Heap, 1998). In 

contrast to the depth of knowledge about the properties of individual starter strains, there is a 

lack of detailed information on their behaviour within the population of strains, which are 

present in a starter culture (Grow et al, 1993). 

Basically, two types of starter cultures are used in cheese industries: mixed cultures of 

unknown strains and defined cultures of known strains. Mixed cultures are used especially in 

Europe (mesophilic mixed starters, originated in northern Europe, particular in the 

Netherlands, Scandinavia and Germany, as well as thermophilic mixed starters from Italy, 

Switzerland and France). Limited information is available about the origin and the number of 

strains present in these complex starter cultures (Timmons et al., 1988). The composition of a 

bacterial population in a mixed culture can change depending on the incubation temperature, 

growth medium and frequency of subculturing (Hugenholtz, 1986) and the final culture 

composition will also vary depending on phages present during the processing in the dairy 

plants. Defined strain starters (DSS) have been used mostly in countries where Cheddar and 

similar types of cheese are manufactured (e.g., New Zealand, Australia, UK and Ireland). DSS 

are usually blends of two or more defined strains, which can be mesophilic and/or 

thermophilic lactic acid bacteria (Lawrence & Pearce, 1972). However, DSS are vulnerable to 

phage infection which can cause loss of starter activity. Multiple strain DSS that include a 

selection of phage-resistant strains are successfully used to avoid this risk (Limsowtin et al, 

1977; Limsowtin et al, 1978; Timmons et al, 1988; Heap, 1998). 

In a previous study, lactococcal strains isolated from artisanal and non-dairy 

environments were investigated with regard to their flavour forming abilities (Chapter 2; 

Ay ad et al, 1999). In addition, the behaviour of strains producing specific flavours was 

investigated in mixing such a culture with an industrial strain (Chapter 3; Ayad et al, 2000). 

This was initiated in order to test the possibility of using such strains for cheese flavour 

diversification. These so called 'wild' lactococcal strains could be of interest, whether they 

produce a standard flavour like industrial strains or a specific flavour, to be combined with 

other strains for the preparation of tailor-made starter cultures with new properties. 

The present work focusses on using wild lactococcal strains for cheese flavour 

diversification in a defined mixture of strains essential for Gouda-type cheese. Up till now, 

not many attempts were reported in the literature using defined strain starter cultures for the 

manufacture of such cheese. 

Studies on population dynamics of mixed or defined strain starter cultures can only be 

performed if appropriate methods are available to distinguish between different strains. A 

number of techniques has been used including, microbiological techniques such as immuno

fluorescence (Jablon et al, 1976; Otto, 1981; Hugenholtz & Veldkamp, 1985; Hugenholtz, et 

al, 1987b), or molecular biological techniques as random amplified polymorphic DNA 

(RAPD) and 16S rRNA sequencing based on random amplified polymorphic DNA finger 
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printing (Cocconcelli et al., 1997). 

In order to develop and test such DSS, it is essential to obtain detailed information on the 

population dynamics within these mixtures of strains. Beforehand, attention must be given to 

the stability of the wild strains during subculturing, since that is a prerequiste for prolonged 

use. 

MATERIALS AND METHODS 

Origin of strains 

The strains used in this study were obtained from the culture collection of NIZO food 

research. Industrial strains were derived from commercial starters. Dairy wild strains (DWS) 

originated from artisan production of dairy products and non-dairy wild strains (NDWS) 

originated from various sources other than milk such as soil, grass and silage (Ayad et al., 

1999). All strains tested belonged to the species Lactococcus lactis subsp. lactis, subsp. 

cremoris and subsp. lactis biovar diacetylactis. 

Characteristics of strains used in DSS 

Acidification activity of the strains was measured by the change in pH after 6 h of 

incubation at 30°C in NILAC milk powder (NIZO food research, Ede, The Netherlands), the 

acidity being expressed as degree N° (the number of mL 0.1 NaOH to neutralize 100 mL of 

milk; Stadhouders & Hassing, 1981). The ability of the strains to hydrolyse casein was 

determined on GMA plates as described before (Ayad et al., 2000). The sensitivity of strains 

to bacteriophages was tested using a phage enrichment technique as described before 

(Weerkamp et al., 1996). The ability of the strains to grow at 20, 30, and 40°C was examined 

in M17 medium (Oxoid, Hampshire, UK) containing 5 g L"1 lactose (LM17). Growth was 

followed by measuring the optical density at 600 nm (OD600) using a spectrophotometer 

(Ultrospec 3000, Pharmacia Biotech., UK). Antimicrobial activity was determined in agar 

well-diffusion assay against two target organisms Micrococcus flavus NIZO B423 or L. lactis 

subsp. cremoris SKI 10. 

Stability of lactococcal wild strains 

The study of the stability of individual strains during up to 50 subcultivations included 

eight wild lactococcal strains, B851, B1152, B1154, B1155, B1156, B1157, B1162 and 

B1173, which are able to produce specific flavours; three wild strains B87, B88 and B926, 

which produced standard flavours like industrial strains do (Ayad et al, 1999); as well as two 
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industrial strains, SKI 10 and B86, were used to. These strains originating from various DWS 

and NDWS sources, were selected with different characteristics (Ayad et al., 2000; Table 1). 

Individual strains were grown overnight at 30°C in litmus milk with CaCCh (Difco 

Laboratories, Detroit, MI) containing 0.5% yeast extract. Aliquots (1.2 mL) of these cultures 

was frozen at - 40°C as the zero sample. Subsequently, these cultures served as the primary 

inoculum (1% v/v) for the series of 50 overnight subcultivations (50 inoculations and growth 

cycles). Inoculations were carried out in a laminar air-flow unit. Samples (1.2 mL) from each 

subculture after 5, 10, 15, 20, 25, 30, 40, and 50 cycles were stored in stock at - 40°C until 

further use. 

Subcultures of each strain were examined morphologically and four of them, randomly 

chosen, were studied genetically using Random amplified polymorphic DNA polymerase 

chain reaction (RAPD-PCR) fingerprinting after 0, 15, 30 and 50 subcultures (Williams et al., 

1990;TeGiffelefa/., 1997). 

Subcultures of individual strains were also pre-grown for 16 h at 30°C in sterilised milk 

containing 0.5% yeast extract. Subsequently, 1% of such culture was added to 100 mL 

skimmed UHT milk. Sensory evaluation of the milk cultures was carried out after incubation 

at 30°C for 48 h by 5 to 8 experienced graders. The attributes were recorded and statistically 

analysed. The flavour intensity was scored on a scale ranging from 0 (non or/ absent) to 4 

(very strong). 

Phenotypical and technological characteristics of the strains were investigated. The ability 

of strains to hyrolyse casein, their acidification activity, and the ability to grow at 40°C and in 

the presence of 4% NaCl were measured as described before (Ayad et al., 2000). The 

sensitivity of strains to bacteriophages was tested using a phage enrichment technique and the 

ability to hydrolyse arginine were assessed as described previously (Weerkamp et al., 1996). 

The ability of strains B86, B87 and B88 to ferment citrate was determined on whey with 

calcium citrate, calcium lactate and casaminoacids agar (WACCA) plates (Galesloot et al, 

1961). 

Antimicrobial activities of subcultures of strains Bl 152, Bl 154, Bl 156 and Bl 162, which 

are known to be able to produce bacteriocin-like compounds, were determined in agar well-

diffusion assay as described previously (Ayad et ah, 2000). 

Population dynamics of defined strain starter cultures in milk 

Four different DSS cultures were prepared, each one consisting of four strains including 

proteolytic, non-proteolytic and citrate utilising strains. The strains were combined together in 

equal ratios at a final inoculum level of 1%. The following DSS were chosen: DSS1: 

B851+B1155+B88+SK110, DSS2: B851+B1155+B86+SK110, DSS3: B1156+B1162+B895 

+ B1271 (a nisin producing system) and DSS4: Bl 173+B926+B87+SK110. Individual strains 
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were pre-grown for 16 h at 30°C in sterilised milk with 0.5% yeast extract (Difco 

Laboratories, Detroit, MI) for protease-negative (pit") and without yeast extract for protease 

positive (prt+) strains. Subsequently, 1% as a final inoculum level of each DSS 

(0.25+0.25+0.25+0.25 % of the four pre-grown cultures) was grown in 100 mL skimmed 

UHT milk for 48 h at 30°C. The population dynamics of strains in the DSS were followed by 

measuring colony-forming units. Samples (duplicates) were taken after 0, 2, 4, 6, 24 and 48 h, 

diluted and spread on GMA plates (Limsowtin & Terzaghi, 1976; Hugenholtz et al, 1987a) 

and incubated at 30°C and at 40°C under anaerobic conditions for 2-3 days. The cultures were 

also plated on whey media with calcium lactate and casaminoacids agar WACCA (Galesloot 

et al., 1961), which is made turbid by means of calcium citrate. Only citric acid fermenting 

strains produce clear zones around their colonies on this medium. The WACCA plates were 

incubated at 35°C for 3-5 days. Based on the differences in the ability to hydrolyse casein, to 

grow at 40°C and to ferment citrate, the strains could be followed individually in each DSS. 

The population dynamics of each DSS (each including four strains) were also followed as 

mentioned above during three subsequent subcultivations. The cultures were taken after 16 h 

and inoculated (1%) for the next subculture in 100 mL skimmed UHT milk. 

The sensory evaluations of the milk cultures incubated with DSS in the first culture as well 

as in the three subcultures were carried out after 48 h at 30°C (see above). 

Cheese making and analysis 

Cheese was made using the standard technology for manufacture of Gouda cheese as 

described by Walstra et al. (1987). Gouda-type cheese was made from 200 L of pasteurised 

(74°C, 10 s) milk, standardized for fat (Gouda 48+). Two cheese series were made, each from 

a different batch of milk. In each series two DSS cultures were used. The strains were pre-

grown as a pure culture for 16 h at 30°C in low-fat milk with 0.5% yeast extract for protease-

negative (prt) and without yeast extract for protease positive strains (prt+) and the cultures 

were subsequently mixed. The acidifying activity of each DSS was determined prior to the 

cheese making experiments. The DSS used appeared to have a sufficient activity for 

acidification of the cheese milk, which is usual for Gouda cheese. The mixed culture was 

added into processed milk via direct vat inoculation (Stanley, 1996; Osborne, 1992). In the 

first series, the cheeses were manufactured using the sets DSS 1 and DSS2, respectively. The 

strains were used in equal ratios (each 0.25% inoculum) in the DSS at final total inoculum 

level of 1%. 

In the second series, the cheeses were made with the defined starter sets DSS5 and DSS6, 

respectively. DSS5 was a combination of a proteolytic L. lactis subsp. cremoris strain NIZO 

B894 (nisin-resistant strain) and a citrate-utilising L. lactis subsp. lactis biovar diacetylactis 

NIZO B895 (nisin-producing strain), mixed together in equal amounts and inoculated at a 
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final level of 1.6%; this combination was used at NIZO successfully for cheese manufacture. 

The other cheese was prepared from milk inoculated with DSS6: B894+ B895+B1156 in the 

ratio 0.8% : 0.8% : 0.5% at final inoculum level of 2.1%. All cheeses were ripened for 6 

months at 13°C and analysed at various intervals. 

For measuring the population dynamics of strains in DSS during cheese making and 

ripening of the cheeses, the total numbers of bacteria in each sample were determined in 

duplicate. Cheese samples were diluted 10 times in 2% trisodium citrate solution (w/v), and 

subsequently, homogenized for 5 min in a stomacher (Lab-Blender 400, Seward London). 

Viable counts were enumerated on GMA plates and on WACCA. The cell number of the 

individual strains could be monitored in the DSS as described above. 

The compositions (fat, salt, pH, and moisture) of cheeses were analysed as described by 

IDF standards (IDF, 1997; 1979; 1989 and 1982, respectively). 

The sensory evaluation was carried out by an experienced taste panel after 6 weeks and 3 

months of cheese ripening. The cheese flavour intensity was scored on a scale ranging from 0 

(none or/absent) to 4 (very strong). The scale for consistency ranged from 3 (very bad) to 8 

(very good) and the scale for firmness from 1 (very soft) to 7 (very firm), see for more details 

Ayad et al. (2000). 

The concentrations of nisin produced in cheeses prepared with DSS5 and DSS6 were 

estimated after 6 weeks of cheese ripening by an agar well diffusion bioassay with 

Micrococcus flavus NIZO B423 as the indicator strain. Five gram of cheese were diluted 10 

times in 0.02 N HC1 at 45°C, and subsequently, homogenized for 5 min in a stomacher (Lab-

Blender 400, Seward, London). The pH of the mixture was adjusted to 2.0 using 0.5 N HC1. 

The mixture was centrifuged (10 min, 16000 g) and the supernatant was adjusted to pH 6.5 

using 50% NaOH. Twenty juL of the neutralized and filter-sterilized supernatant were 

dispensed in wells (3mm in diameter) and the plates were incubated overnight at 30°C. After 

this time the zones of growth inhibition were measured and the content of nisin was estimated 

from the calibration curve in a concentration range from 10 to 1000 IU nisin per mL. 

RESULTS AND DISCUSSION 

Characteristics of strains used in DSS 

Characteristics which play an important role for cheese making were investigated in the 

tested strains in order to be able to use them in a defined strain starter for preparation of tailor-

made cheese starter cultures (Table 1). Some of these strains (SKI 10, B1155, B1156, B1162 

and B1173) were characterised previously (Ayad et al., 2000). Three of eight wild strains, 

B1162, B851 and B926, showed medium or high level of acid production (33, 35 and 45 N°, 
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respectively) when grown in milk; the other strains produced a low amount of acid in a range 

of 22-24 N°. The same strains were able to hydrolyse milk protein upon culturing on GMA. 

All strains were resistant to phages which do affect strains in commonly used commercial 

starter cultures. This rendered the strains useful for cheese making, since problems with 

phages should be avoided beforehand (Heap, 1998). The wild strains were able to grow at 

40°C except the L. lactis subsp. lactis biovar diacetylactis strains B87 and B88. 

Table 1. Distinguishing characteristics of lactococcal strains used in defined strain starter 
cultures 

Strains Subspecies Sources Proteolytic Nisin Growth Growth 
activity production a t a* 

30°C 40°C 

Industrial 
SKI 10 
NIZO B86 
(RU4) 
NIZO B894 
NIZO B895 
NIZO B1271 

Wild strains 
NIZO B87 
NIZO B88 
NIZOB851 
NIZO B926 
NIZO Bl 155 
NIZO Bl 156 
NIZO B1162 
NIZO Bl 173 

cremoris 
lactis biovar diacetylactis 

cremoris 
lactis biovar diacetylactis 
cremoris 

lactis biovar diacetylactis 
lactis biovar diacetylactis 
lactis 
lactis 
lactis 
lactis 
lactis 
lactis 

Commercial starter 
Commercial starter 

Commercial starter 
Commercial starter 
Commercial starter 

Swedish cheese 
Raw milk 
Raw sheep milk 
Fermented milk 
Fermented raw milk 
Grass 
Raw goat milk 
Silage 

+ 
-

+ 
-
+ 

-
-
+ 
+ 
-
-
+ 

-

-
-

Nisr 

Nisr 

Nisr 

-
-
-
-
-

Nis+ 

Nis+ 

-

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
-

-
-
-

-
-
+ 
+ 
+ 
+ 
+ 
+ 

a+, proteolytic; -, not proteolytic. 
Nisr: nisin-resistant strain, Nis+: nisin-producing strain. 

Nisin-producing starter cultures of L. lactis subsp. lactis have been used as natural 

preservatives in cheese against several undesirable Gram-positive bacteria (Roberts, et al., 

1992) but none of the existing nisin-producing starters have the flavour-generating properties 

and the bacteriophage resistance which are required for the manufacture of most cheese types 

(Lipinska, 1977; Delves-Broughton et ah, 1996). Two wild strains B1156 and B1162 which 

are able to generate specific flavours (Ayad et al., 2000), were nisin-producing and were 

selected to be used in a DSS. These strains need to be combined with highly acidifying, nisin-

resistant strains in order to apply them in a nisin-producing DSS. Therefore, two industrial 

94 



Population dynamics of defined strain starter cultures 

nisin-resistant strains (B1271 and B895) were used to complete the DSS3. 

Stability of specific properties of lactococci 

In order to be able to use wild lactococci with specific desired properties (Ayad et al., 

1999), these strains should maintain such specific properties when grown individually for 

many generations in a rich environment such as milk. Therefore, the stability of various 

lactococcal strains from natural niches (DWS and NDWS), producing a specific flavour or a 

standard flavour like industrial strains, was investigated using up to 50 subcultures in milk. 

The industrial strains SKI 10 and B86 were used as a control in these experiments. In total, 13 

strains were tested with respect to different properties desired for use as starter cultures. 

Microscopic examination of the cultures showed no change in morphology during 

subcultivation, except for strain B1162 which showed a slightly different morphology (some 

clumping of cells in this subculture). 

After subculturing 15, 30 and 50 times, the strains SKI 10, B1154, B1155, B1156 and 

Bl 157, randomly chosen, were studied genetically using RAPD-PCR fingerprint (Fig. 1) and 

the profiles were compared with those of the original strains. The profiles did not change 

during subcultivation, which indicates that the overall genetic stability of strains up to 50 

subcultivations was high. 

Subcultures of the tested strains were sensorically evaluated in milk, in order to determine 

the changes in their aroma characters during 50 subcultivations. All cultures appeared to 

produce flavours similar to those produced by the original cultures (data not shown). Only a 

slight decrease in the flavour intensity was found in case of strain B1162 in the late 

subcultures; most notably, the viscosity of this culture increased. This may be related to the 

clumping of cells as mentioned before. 

The other phenotypical and technological characteristics of the tested strains did not 

change during subculturing cycles. The proteolytic activity, acidification activity, the ability 

to grow at 40°C and in the presence of 4% NaCl, the,bacteriophage resistance and the ability 

to hydrolyse arginine were not altered after 50 subculturing (data not shown). The ability of 

B1152, B1154, B1156 and B1162 to produce bacteriocins was not altered over the 50 

subcultivations. Also the citrate fermenting ability of strains B86, B87 and B88 was stable 

over the 50 subcultivations. Taken together, no significant changes in flavour production and 

other characterestics by these wild strains were observed upon subcultivations, thus making 

these strains suitable for use as starter cultures. 
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Fig. 1. Random amplified polymorphic DNA-Polymerase chain reaction RAPD-PCR fingerprinting 
of five strains (A-E) during 50 subculturings. Lanes (1-4) show the RAPD-fingerprint patterns after: 
(1) zero, (2) 15, (3) 30, and (4) 50 subculturings. Letters are the strains (A) SKI 10, (B) B1157, (C) 
Bl 155, (D) Bl 156 and (E) Bl 154. M= marker (Biozym, medium molecular mass standard). 

Population dynamics of DSS cultures in milk 

In order to prepare tailor-made DSS cultures with typical characteristics required for 

Gouda-type cheese, it is necessary to understand their population dynamics. For this purpose 

the behaviour of wild lactococcal strains was studied in milk cultures together with industrial 

starter strains. Four mixtures of DSS strains were investigated. Each mixture was a blend of 

strains suitable for Gouda-type cheese. The population dynamics of strains were followed by 

measuring colony-forming units during 48 h. The strains used could be distinguished 

individually based on differences in proteolytic activity, maximal growth temperature and the 

ability to ferment citrate (Table 1). DSS1 was different from DSS2 in the diacetylactis strains, 

DSS3 contained nisin-producing strains (Nis+) B1156 and B1162 and nisin-resistant strains 

(Nisr) B1271 and B895. Fig. 2 shows the population dynamics of the four DSS studied. In 

DSS1 and DSS3, all strains grew well together and no dominant strain was detected. The 

initial balance between the strains remained stable during co-cultivation, reflecting that these 

strains can be used as DSS. In DSS2 and DSS4, the total cell density in the population of 

strains reached a normal value, however, the diacetylactis strains B86 and B87 dramatically 

decreased in number within 6 h. 
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IB851 DB1155 • B88 nSK110 IB851 DB1155 IB86 DSK110 

Time (h) 

B1156 DB1162 • B895 • B1271 

DSS2 

• B1173 DB926 

20 
Time (h) 

IB87 DSK110 

DSS3 
6 20 

Time (h) DSS4 Time (h) 

Fig. 2. Population dynamics of defined strain starters (mean of duplicates), DSS1: 
B851+B1155+B88+SK110; DSS2: B851+B1155+B86+SK110; DSS3: B1156+B1162+B895+B1271 
(nisin system) and DSS4: Bl 173+B926+B87+SK110 in milk cultures during 48 h. 

Similar results were found when B87 was used instead of B86 in DSS2 and vice versa (data 

not shown). On the other hand, when other diacetylactis strains, e.g., B88 or B630 (L. lactis 

subsp. lactis biovar diacetylactis strains) from the NIZO food research collection were used as 

alternatives in these DSS, they both grew well (data not shown). These results indicate that 

strains B86 and B87 were inhibited specifically in these DSS. The strains present in DSS2 and 

DSS4 do not produce nisin (Table 1), indicating that an unknown strain-specific inhibitory 

effect is present in these DSS. Many interactions can affect the population-dynamics of a 

mixture of starter cultures such as competition, antibiotic production and the presence of 

bacteriophages (Meers, 1973). Future work needs to focus on studying the interaction 

between these particular diacetylactis strains and other strains in such DSS. 
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The population dynamics of the defined strain starter cultures were followed during three 

inoculation and growth cycles (Fig. 3). The same behaviour of each strain was found during 

three subcultivations. The strains in DSS1 and DSS3 grew well together whereas in DSS2 and 

DSS4, the diacetylactis strains did not grow. These results indicate that the phenomena of 

mutual interaction did not change upon subcultivation. Thus stable DSS can be composed 

after careful selection of strains. 

Defined strain starter cultures are not a common practice for Gouda-type cheese 

manufacture. Usually a mixed starter is used which contains a complex mixture of many 

different strains that may vary in the activities relevant for cheese manufacture (Gilliland, 

1971; Law & Kolstad, 1983; Hugenholtz & Veldkamp, 1985). Changes in composition in 

these mixed starter cultures during cultivation should be avoided, because they may have 

strong effects on the acidification rate, flavour development and susceptibility to 

bacteriophages during the process of cheese making. The results indicate that some wild 

lactococci strains can be used successfully to develop tailor-made defined starter cultures with 

specific properties, because they are apparently able to maintain themselves in these starters. 

Flavour production by DSS in milk cultures 

DSS were grown in milk to determine their flavour forming abilities. Milk incubated with 

DSS1 was described as creamy, chocolate-like, coarse; acid and yoghurt-like were also 

mentioned. B851 is responsible for chocolate-like flavour; acid production resulted primarily 

from SKI 10 and B851 due to their proteolytic activity; and creamy and yoghurt-like flavours 

were most likely produced by B1155 and SKI 10 (Ayad et al, 1999; 2000). DSS2 produced 

flavours similar to those produced by DSS1. These results indicate that B851, B1155 and 

SKI 10 together are responsible for the flavours mentioned, whereas both Lactococcus lactis 

subsp. lactis biovar diacetylactis strains B88 and B86 do not seem to contribute strongly to 

the flavour. DSS3 produced a specific flavour described variably as yeasty, fruity, sweety, 

flowery or 'esters'. Most of these typical flavours were found previously (Ayad et al., 2000) 

and were produced by strain Bl 156. DSS4 produced a flavour described as creamy and dry 

grass-like. In general, the flavour forming abilities of the individual DSS were similar to those 

produced by the same DSS during three subcultivations (data not shown). These results 

indicate that wild lactococcal strains are able to produce specific flavours in DSS and that the 

flavour forming abilities are stable during subcultivations. 
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Fig. 3. Population dynamics of defined strain starter cultures (mean of duplicates), DSS1: 

B851+B1155+B88+SK110; DSS2: B851+B1155+B86+K110; DSS3: B1156+B1162+B895+B1271 

(nisin system) and DSS4: B1173+B926+B87+SK110 in milk cultures after 16 h during three 

subcultivation. 

Population dynamics of defined strain starter cultures in cheese 

Gouda-type cheeses were manufactured with various DSS in order to investigate the 

potential application of wild lactococcal strains in the cheese environment and to confirm the 

behaviour of these DSS in milk cultures. The rates of acid production during cheese making 

were sufficient in all cheeses; pH 5.5 was achieved after approximately 6 h, which is normal 

for Gouda cheese making. The values for fat, moisture, salt and pH after 2 weeks of cheese 

ripening are summarized in Table 2. The levels in all cheeses were within the range for 
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normal composition of Gouda-type cheese. All cheese samples had good texture 

characteristics as shown in Table 2. 

Table 2. Composition of experimental cheeses 2 weeks after production and texture after 3 
months of ripening8. 

Cheese sample 

Series 1 
DSS1:B851+B1155+B88+SK110 
DSS2: B851+B1155+B86+SK110 

Series 2 
DSS5: B894+ B895 
DSS6: B894+ B895+B1156 

Fat % 

31.0 
30.5 

29.9 
29.5 

Moisture % 

41.5 
41.3 

41.7 
41.4 

Salt % 

2.1 
2.0 

1.8 
1.9 

pH 

5.18 
5.14 

5.28 
5.26 

Texture (MeaniSD) 

Consistency 

6.7±0.4 
6.5±0.3 

5.0±0.5 
5.2±0.4 

Firmness0 

3.8±0.4 
4.0±0.4 

3.6±0.3 
3.1±0.5 

Results of the chemical composition are the mean of two analyses with standard error < 0.3. 
Consistency was scored on scale from 3 (very bad) to 8 (very good). 

c Firmness was scored on scale from 1 (very soft) to 7 (very firm). 

The total viable cell counts in the cheeses were determined during 6 months of ripening 

(Figs 4 & 5). In cheeses made with DSS1, the viability of wild-type lactococci B851, B1155 

and B88 was relatively stable until 6 weeks of ripening and then decreased in the following 

months of ripening. SKI 10 already started to decrease after the first week of ripening similar 

to cheese made with SKI 10 only (Ayad et ah, 2000). As a result, after 3 months of ripening 

the cell numbers of wild strains B851, B1155 and B88 were significantly higher than the 

numbers of the industrial strain SKI 10. Taken together, the results clearly show that these 

wild strains can grow together with SKI 10 in the DSS during cheese making, which is in 

accordance with the results obtained in milk cultures prepared with the same DSS. In cheese 

made with DSS2, the number of wild type lactococcal B851 and Bl 155 cells was found also 

to be stable until 6 weeks of ripening and started to decrease thereafter. However, the total 

counts of the diacetylactis strain B86 was significantly reduced already 24 h after cheese 

making. These results corroborated the results obtained in milk cultures. In the second cheese 

making series trials were performed with a nisin-producing starter culture and a nisin-immune 

strain in a DSS suitable for the manufacture of Gouda-type cheese. Again, strains from natural 

niches were generally more stable than strains from industrial starter cultures. In the cheese 

made with DSS5, the number of colony forming units of B895 was stable until 3 months 

while those of B894 decreased. In cheese made with DSS6, the counts of B894 and B895 
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after 3 months of ripening were apparantly similar to those in the DSS5 situation, while the 

wild starter Bl 156, was found to be more stable during ripening than the other strains (Fig. 5). 

The levels of nisin produced after 6 weeks of ripening were approximately 200-360 IU g"1, an 

amount which is expected to be functional as a natural biopreservative in cheese manufacture 

for prevention of butyric acid fermentations (Lipinska, 1973). 

(0 
O 
<D 

O 

LL 
O 

1e+10 

1e+09 

18+08 

1e+07 

1000000 

100000 

10000 

1000 

100 

10 
0.00 0.50 1.00 2 6 10 14 

Time (days) Time (weeks) 

0.00 0.50 1.00 2 6 10 14 

Time (days) Time (weeks) 

Fig. 4. Population dynamics of defined strain starter cultures (mean of duplicates) in Gouda cheese 
prepared with DSS1: B851+B1155+B88+SK110 and DSS2: B851+B1155+B86+SK110. The strains 
presented are B851 (A), Bl 155 (A), SKI 10 (•) and B88 and B86 (o). 

The results for populations in cheese are in accordance with the results obtained with the 

growth of the DSS in milk and the present findings open new possibilities for preparing tailor-

made starter cultures especially with the focus on generating specific flavour notes. 

Flavour production by DSS in cheese 

Cheeses prepared with DSS were assessed sensorically after 6 weeks and 3 months of 

ripening (Table 3). The data for cheese made with DSS1 and DSS2 show that the wild strains 

in either DSS1 or DSS2 were able to produce typical flavours. These flavours closely 

resembled the results found in milk cultures prepared with the same DSS. After 6 weeks of 

ripening, cheeses were rather acid and received a high of bitter and malty flavour score. After 

3 months of ripening the bitterness of the cheeses was reduced, wherease the malty flavour 

seemed to have completely disappeared. Instead, descriptions like sweet, thermophilic and 

sharp were mentioned during the sensory evaluation. After 3 months of ripening the flavour 
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became more balanced. This balance was correlated with the observed decline in cell numbers 

(Fig. 4), which might be an indication of cell lysis. This phenomenon is reported to be 

essential for the development of flavour components in cheese due to the release of flavour-

generating enzymes (Visser, 1993). In a previous study (Weerkamp et al., 1996) it was 

reported that strain B851 (Sari8) produced a highly malty and bitter flavour in cheese when 

used as a single starter culture Such a flavour intensity was reduced when mixed cultures were 

used(Ayadefa/.,2001). 
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Fig. 5. Population dynamics of defined strain starter cultures (mean of duplicates) in Gouda cheese 
prepared with DSS5: B894+B895 and DSS6: B894+B895+B1156. The strains presented are B894 
(A),B895(A)andB1156(«). 

These results suggest that choosing the appropriate composition of the starter culture is 

essential in order to obtain a well-balanced flavour. Gouda cheese made with the nisin-

producing strains showed a good flavour intensity during ripening for 6 weeks and 3 months. 

The cheese manufactured with DSS5, showed some bitterness after 3 months of ripening. The 

addition of strain Bl 156 to this combination (DSS6) led to a decrease in bitterness, which is a 

positive contribution of this strain. The relatively high intensity of bitterness of cheese made 

with DSS5 could be due to the high stability of strains and thus the delay of lysis during 

cheese ripening (Fig. 4). A reduction in lysis sensitivity of a starter culture results in bitterness 

during cheese ripening (Meijer et al., 1998). Despite the stability of strain B1156 in DSS6 
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during the ripening process, the intensity of bitterness was still reduced. Perhaps this wild 

strain possesses a debittering activity, which does not require lysis of the cells. Further work 

needs to focus on the possibility to control the flavour intensity in order to obtain well-

balanced but desired flavours by DSS. 

Table 3. Sensory evaluation of cheeses prepared with DSS containing wild Lactococci strains 
(summary of comments). 

6 weeks 3 months 

Cheese sample Description of flavour 
( intensity) a 

Description of flavour 
(intensity) 

Series 1 
DSS1: 
B851+B1155+B88+SK110 
(0.25%+0.25%+0.25%+0.25%) 
DSS2: 
B851+B1155+B86+SK110 
(0.25%+0.25%+0.25%+0.25%) 

Series 2 (nisin system) 
DSS5: 
B894+B895 
(0.8%+0.8%) 

DSS6: 
B894+B895+B1156 
(0.8%+0.8%+0.5%) 

Sour (1.1), bitter (2.3), malty 
(2.7), slightly coarse (0.3) 

Sour (0.7), bitter (2.0), coarse 
(0.5), scorched malty (2.6) 

Sour (0.9), flat (0.2), Gouda-
like (1.4), bitter (1.4) 

Sour (0.9), flat (0.5), Gouda-
like (1.6), bitter (1.1), fruity 
(0.3) 

Sour (2.7), bitter (1.1), flat (0.4), sweet 
(0.2), feta-like, sharp (0.4), thermophilic 

Sour (1.9), bitter (1.2), thermophilic, 
malty, yeasty, coarse (1.0) 

Acid (1.1), bitter (1.2) 

Sour (0.6), flat (0.3), sweet (0.2), bitter 
(0.6), farm cheese-like, sharp (0.4), fruity 

1 Intensity was scored on scale from 0 (absent) to 4 (very strong). 

CONCLUSIONS 

The morphology and genetic profiles of different wild lactococcal strains were found to 

be stable up to 50 subcultivations. Moreover, the flavour production and the phenotypical and 

technological properties including proteolytic activity, acidification activity, the 

bacteriophage resistance, the ability to ferment citrate as well as the ability to grow at 40°C 

and in the presence of 4% NaCl, were found to be stable. The frequency of subcultivation of 

these strains during practical application would not lead to loss of the relevant activity, which 

ensures a constant quality and a reproducibility in the cheese manufacture. Therefore, the use 

of these strains as starters for cheese looks promising. 

The study on population dynamics of strains in the DSS in milk cultures and in pilot-scale 

production of Gouda-type cheese revealed that several strains were able to grow well together 
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and can be applied as tailor-made starter cultures, while others were inhibited. Further work 

needs to focus on the mechanism of specific inhibition of some strains (e.g., diacetylactis) by 

other strains. The tailor-made DSS cultures may be able to produce specific flavours in milk 

as well as in cheese as they were found to be stable in their performance. 
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ABSTRACT 

Specific inhibition of two Lactococcus lactis subsp. lactis biovar diacetylactis strains 

(B86 and B87) in a defined starter culture (DSS), developed for Gouda cheese, by wild 

Lactococcus lactis strains Bl 155 and B926 was studied. The results of interaction studies 

revealed that the inhibition was not caused by competition between the strains for nutrients, 

nor by aeration, decrease of pH value during growth, production of known bacteriocins or 

bacteriophage release by the wild strains. The inhibition of the diacetylactis strains was also 

observed during growth in the presence of supernatant derived from exponential phase 

cultures of certain lactococcal strains. However, the inhibition was stronger if living cells 

were present. These results suggest that a specific inhibitory factor is produced by certain 

strains against diacetylactis strains. Since not all diacetylactis strains were affected by this 

factor, it appears to be a very strain-specific inhibition. This inhibitory factor was found to be 

a small molecular weight compound (less than 1 kDa), but heat stable up to 100°C for 30 min 

and unstable during prolonged incubation times at different temperatures. In addition, it was 

found to be inactivated by proteinase K, indicating that it might be a proteinaceous 

compound. These studies offer a first identification and characterisation for a new mechanism 

of specific inhibition between strains in a starter culture, and show its importance for 

understanding the underlying population dynamics. 

INTRODUCTION 

Lactic acid bacteria in mixed starter cultures play an important role in dairy manufacturing 

(Stadhouders, 1961; Schmidt et al., 1976; Thomas & Mills, 1981; Law & Kolstad, 1983; 

Broome & Limsowtin, 1998). Different species contribute to flavour and texture and are 

needed to achieve the characteristics of a typical dairy product (Crow et al., 1993; Limsowtin 

et al., 1996). In cheese manufacture, the quality of the finished product depends on the starter 

cultures used including their functional properties, the levels of starters used and the 

distribution of their enzyme activities for ripening (Olson, 1990; Visser, 1993; Fox et al., 

1996). In starter cultures which consist of a complex mixture of strains, the composition of the 

bacterial population can change, depending on the incubation temperature, growth medium 

and frequency of subculturing (Hugenholtz, 1986). Consequently, the presence of different 

species can vary and thereby the activities relevant for cheese manufacture (Collins, 1961; 

Gilliland, 1971; Exterkate, 1976; Limsowtin et al., 1978). In these starters many different 

interactions might occur between strains such as competition for nutrients, production of 

antimicrobials and the presence of bacteriophages from lysogenic strains (Meers, 1973; 

108 



Inhibition ofL. lactis diacetylactis strains in defined starter culture 

Hugenholtz & Veldkamp, 1985; Ayad et al., 2000). These interactions or changes can have 

drastic effects on the main functions of starters during the cheese making. In order to obtain 

stable starter cultures, whose use results in fermented products with a consistently high 

quality, factors affecting the population dynamics in such a starter culture must be known. 

Based on this understanding a careful selection of starter cultures should be emphasised to 

avoid problems during cheese making. Cheese starter cultures especially for Gouda cheese 

often consist of various strains, responsible for rapid acidification, proper flavour 

development, proteolytic activity and eye-formation. Lactococcus lactis subsp. lactis biovar 

diacetylactis strains in these starters are able to ferment citrate into, among others, the 

functional products diacetyl (butter flavour) and carbon dioxide (eye formation in cheese) 

(Starrenburg & Hugenholtz, 1991; Limsowtin et al., 1996). These citrate-utilizing strains are 

thus very important for the flavour and appearance of the cheese. 

In a previous study, defined strain starter cultures (DSS) with specific flavour 

characteristics and properties required for Gouda-type cheese were studied (Chapter 5; Ayad 

et al., 2001). Several strains in those DSS were shown to be promising for designing tailor-

made starter cultures for cheese manufacture. On the other hand, it was observed that some 

diacetylactis strains were found to be specifically inhibited in these DSS, a phenomenon 

which might also occur in more complex starter cultures. The present work is a first attempt to 

elucidate the specific inhibition of these strains by other L. lactis strains in order to understand 

the mechanism behind it. Knowledge in this field will facilitate the selection of strains for 

tailor-made starter cultures. 

MATERIALS AND METHODS 

Origin of strains 

The strains used in this study, including industrial strains and wild lactococci strains 

originated from artisanal production of dairy products, all belong to the species Lactococcus 

lactis subsp. lactis, subsp. cremoris and subsp. lactis biovar diacetylactis (Ayad et al., 2001). 

All strains were obtained from the culture collection of NIZO food research. 

Growth experiments 

Individual strains were pre-grown for 16 h at 30°C in sterilised milk with 0.5% yeast 

extract for protease-negative (prf) and without yeast extract for protease positive (prt+) 

strains. The behaviour of two wild lactococcal strains (Bl 155 and B926) was individually 
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tested in a culture paired together with the diacetylactis strains B86, B87, B88, and B630. 

Each pair was mixed in ratios, lactis : diacetylactis being 1:1 and 1:2 in the final inoculum 

level of 1% in 100 mL skimmed UHT milk and subsequently incubated for 24 h at 30°C. The 

same study was carried out in Ml7 medium (Oxoid, Hampshire, UK) containing 5 g L"1 

lactose (LM17) at different incubation temperatures (16, 20, 30, 35°C) under aerobic or 

anaerobic conditions. The population dynamics of strains were followed by measuring 

colony-forming units (CFU mL"1) as described previously (Ayad et al., 2001). 

The pH value was measured after 6 h of the incubation of the bacteria in milk cultures at 

30°C. 

Interaction studies between strains 

To evaluate the antagonistic interaction between wild strains and diacetylactis strains, the 

antimicrobial activity in culture filtrates of the former was determined in an agar well-

diffusion assay against diacetylactis strains B86 and B87. Plates were prepared as described 

previously (Chapter 3; Ayad et al., 2000) and subsequently, 50 juL of the neutralised and 

filter-sterilised (0.45 juM) supernatants obtained from overnight cultures of either Bl 155 or 

B926, grown in LM17 at 30°C, were dispensed in wells. In addition, the supernatants 

prepared from the wild strains tested were concentrated 10 times by ultrafiltration (UF, 500 

Da). Ultrafiltration was performed at 4°C in a stirred-cell type ultrafiltration module (Amicon 

Corporation, MA, USA), operating under a nitrogen pressure of 300 kPa using Pall Filtron 

DISC membrane OMEGA type (100 Da molecular mass cut-off). The concentrated filter-

sterilised supernatant was dispensed in wells. Then, the plates were incubated for 2 h at 4°C, 

and subsequently overnight at 30 °C as described before. 

A plaques-assay for counting bacteriophages of Lactococcus strains B1155 and B926 

against two diacetylactis strains (B86 and B87) was performed. Filter-sterilized supernatant 

(phage filtrate) was prepared from the following cultures grown in LM17 media at 30°C: (a) 

overnight cultures of strains B1155 and B926, (b) mixed cultures of B1155 and B926 each 

one paired with B86 and B87, and (c) 10 times concentrated supernatant (by ultrafiltration). 

Each supernatant was tested against the host cells prepared from an overnight culture of 

diacetylactis B86 or/and B87 in LM17 at 30°C. 0.1 mL of the host cultures was mixed with 

50 fiL of 1 M calcium-borogluconate and 0.1 mL of each phage filtrate and incubated for 10 

min at room temperature. Subsequently, 3 mL of LM17 semi-hard agar medium was added to 

that mixture; this mixture was poured onto fresh plates prepared from LM17 hard-agar 

medium containing 1% calcium-borogluconate (1 M). The plates were incubated for 16-20 h 

at 30°C. 
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The cells of Bl 155 and B926 strains taken from overnight cultures, grown at 30°C in 

LM17 broth medium, were either inactivated by UV light, high temperature (100°C for 15 

min), 1% chloroform or by chloramphenicol (2 fig mL"1). The cell free extract (CFE) was 

prepared from these overnight cultures. The cells were harvested by centrifugation (30 min, 

14000 rpm, 4°C) and washed twice with 50 mM potassium phosphate buffer (pH 7.5). The 

washed cells were resuspended in 5 mL of the same buffer and the cells were disrupted using 

a French pressure cell (Spectronic Instruments, Inc., Rochester, New York, USA) for two 

times and kept in ice. The suspension was centrifuged (5 min, 14000 rpm, 4°C) to remove 

intact bacteria and cell debris, and the supernatant (CFE) was collected and filtered through a 

0.45 yuM-pore-size filter (Millipore corp., Bedford, Mass.). Fifty//L of either overnight culture 

(cells), inactivated cells or CFE were dispensed in individual wells in agar plates, against two 

diacetylactis strains, the plates were incubated overnight at 30°C. 

The growth of diacetylactis strains was followed by measuring CFU mL"1 in neutralised 

and filter-sterilised supernatants from cultures of the wild Lactococcus strains B1155 and 

B926. The supernatant was prepared by centrifugation (30 min, 14000 rpm, 4°) of the cultures 

obtained either from exponential growth phase, growth of 1% lactococcal strain in LM17 

medium at 30°C for 4-5 h (OD6oo 0.55, pH 6.8), or from overnight cultures (stationary phase). 

Dialysis 

Dialysis experiments were performed in a 100 mL cylinder divided in two equal volumes 

of 50 mL, each contaning LM17 medium. The inside of the dialysis tube (cut-off value 

10,000-15,000 D) was inoculated with 1% lactococcal strain (Bl 155 or B926) and the outside 

part with the diacetylactis strain B86 or B87. The growth of each strain was followed by 

measuring CFU mL"1. 

Effect of temperature 

The effect of temperature on the inhibitory factor present in the supernatant prepared from 

the exponential phase culture of wild strains was investigated. The supernatant was heat-

treated at 60 and 100°C for 15, 20 and 30 min, then the growth of diacetylactis strains in the 

supernatant was followed by measuring the optical density at 600 nm (OD600) using a 

spectrophotometer (Manual spectronic instruments 100-240, Vitatron, Holland). 

Stability testing 

The stability of the inhibitory factor was checked under different conditions. The 

supernatant was stored overnight at different temperatures: -20, 4 and 20°C. In addition, it 
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was stored at 4°C under anaerobic conditions. The presence of the inhibitory factor was tested 

by following the growth of B86 in the stored supernatant and in the fresh supernatant as the 

control. 

Protease treatments 

The effect of protease on the activity of the inhibitory factor was investigated by treating a 

sample with proteinase K and trypsin, 10 mg mL1, for 2 h at 30°C. To inactivate the enzymes, 

the samples were heated for 10 min at 100°C. 

Ultrafiltration 

Ultrafiltration was performed at 4°C in a stirred-cell type ultrafiltration module (Amicon 

Corporation, MA, USA), using different filter membranes sizes (cut-off values 1-10, 20, 30, 

and 50 kDa). The retentate was diluted with LM17 to its origin volume and subsequently, the 

filtrate and retentate were filter sterilised before used in the assay. 

Silica cartridge separation 

Silica cartridges (Isolute solid Phase Extraction column CI8, International sorbent 

technology, Ltd., Mid-Glamorgan, UK), were used to test binding and elution conditions. 

Ten-mL samples were loaded on a silica cartridge column and eluted using different 

concentrations of ethanol (10, 30, 50 and 90%). Eluted material was collected and ethanol was 

evaporated under N2 and subsequently the concentrated material was diluted to its original 

volume. The solution obtained was filter sterilised before used in the assay. 

RESULTS AND DISCUSSION 

Growth behaviour of diacetylactis strains in presence of wild lactococci 

Previously, it was observed that some diacetylactis strains (B86 and B87) were found to be 

inhibited in defined strain starter cultures (Ayad et ai, 2001). This effect was very significant 

and the use of such DSS resulted in cheeses without eye formation and with poor diacetyl 

production. That raised the question about the underlying mechanism for this inhibition. The 

DSS used consisted of the strains B851+B1155+B86+SK110 (DSS1) and 

B1173+B926+B87+SK110 (DSS2), respectively. To obtain insight in the interactions 
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between strains in these DSS, the effect of the individual strains present in each DSS on the 

growth of the diacetylactis strains B86 and B87 was studied. The population dynamics in the 

cultures were followed by measuring the growth of individual strains during 24 h (Fig. 1 & 2). 

When strain B86 was tested against each strain of DSS 1 individually (Fig.l), it appeared that 

this strain could grow well with strains B851 and SKI 10, but not in the presence of strain 

B1155. 
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Fig. 1. Population dynamics (mean of 
duplicates) in paired cultures of B851+B86; 
B1155+B86 and SK110+B86 in milk 
during 24 h at 30°C. 

The same results were found when the other diacetylactis strain (B87) was tested with the 

individual strains SKI 10, B851 and Bl 155 indicating that strain B87 also did not grow in the 

presence of strain B1155 (data not shown). Strain B87 was also tested with the individual 

strains of DSS2 (Fig. 2) and could grow well with strain B1173 and SKI 10, but not with 

strain B926. Similar results were found with strain B86 (data not shown). The results of these 

population dynamic studies in milk clearly revealed that both diacetylactis strains B86 and 
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B87 are not able to grow in the presence of the wild strains Bl 155 or B926. Many different 

interaction mechanisms can occur in mixed cultures as mentioned earlier by Meers (1973). In 

order to elucidate the mechanism behind these cases of growth inhibition, a number of growth 

studies were performed. 
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Fig. 2. Population dynamics (mean of 
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B1173+B87; B926+B87 and SK110+B87 
in milk during 24 h at 30CC. 
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The interaction of the wild strains with the individual diacetylactis strains B86, B87, B88 

and B630 was followed in paired cultures in LM17 medium. The pairs were inoculated in two 

ratios (1:1 and 1:2, lactis and diacetylactis, respectively). Strains B88 and B630 appeared to 

grow well in the presence of strain B926 (Fig. 3) and strain B1155 (not shown). On the 

contrary, the strains B86 and B87 were also in LM17 medium not able to grow in the 

presence of the wild strains, under different conditions of growth temperatures (16, 20, 30 and 

35°C) as well as under aerobic or anaerobic conditions (Fig. 3 and other data not shown). 

These results indicated that the interaction between the strains appeared to be specific, not all 

diacetylactis strains were found to be sensitive for this inhibition by strains B926 and Bl 155. 
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Moreover, the interaction was not specific for the milk medium, but also occurred in another 

rich medium like LM17. 
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Fig. 3. Enumeration of viable counts during cultivation of strain B926 (open bars) together with 
the diacetylactis strains B86, B87, B88 and B630 (filled bars) in LM17 medium for 24 h at 30°C 
(mean of duplicates). 

The pH values after 6 h of growth of the DSS1 and DSS2 cultures were almost the same, 

ranging from 5.5 to 5.7 (Ayad et al., 2001). This is in the range of the pH required for the 

growth of diacetylactis strains; their citrate utilization has been shown to be pH dependent, 

with a maximum rate observed also between pH 5.5 and 6.0 (Starrenburg & Hugenholtz, 

1991). The diacetylactis strains B86 and B87 grew well in cultures paired with the proteolytic 

strain B851 (Fig. 1 and other data not shown), but not well with the proteolytic strain B926 

(data not shown and Fig. 2). In all these cases, the pH value after 6 h was 5.5. In cultures with 

the non-proteolytic strain Bl 155, which also caused growth inhibition of the diacetylactis 
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strains, the pH value was 6.0 after 6 h. These results indicated that there is no relationship 

between the pH value of the cultures and the observed inhibition of growth. 

Possible mechanisms of inhibition 

Lactic acid bacteria (LAB) can inhibit or eliminate the growth of microorganisms, 

including bacteria, by the production of a variety of antimicrobial compounds, such as organic 

acid, diacetyl, hydrogen peroxid, enzymes, phages, lytic agents and bacteriocin compounds 

(Lindgren & Dobrogosz, 1990; Blom & Morvedt, 1991; Ray & Daeschel, 1992). Several 

inhibiting factors produced by these bacteria have been characterised and identified (Piard & 

Desmazeaud, 1992; Desmazeaud, 1996). In order to understand the interaction mechanism 

described above, different possibilities were examined. 

Although, we reported previously that strains B1155 and B926 did not produce 

bacteriocin-like compounds against two target microorganisms, Lactococcus lactis subsp. 

cremoris SKI 10 and Micrococcus flavus (Ayad et ah, 2001), these strains may produce 

compounds with a very narrow host range and specific for the diacetylactis strains B86 and 

B87. Such narrow spectrum bacteriocins should then be active against strains closely related 

to the producer strain (Ray & Daeschel, 1992; Klaenhammer, 1993; Stiles, 1996). In order to 

test this, the antimicrobial activity in the supernatant of an overnight culture of the strains 

Bl 155 and B926 was tested against the two diacetylactis strains B86 and B87 using an agar 

well-diffusion assay. No inhibition zones were observed, indicating that both strains B1155 

and B926 did not produce a bacteriocin-like antimicrobial activity against B86 and B87 under 

these conditions. After concentration of the neutralised and filter-sterilised supernatants, the 

results were not different and again no inhibition was found. Thus, these results do not 

support the production of specific narrow spectrum bacteriocins, since such compounds are 

commonly identified in this manner. Also the fact that Micrococcus flavus is not inhibited 

corroborated this. However, the mode of action of the inhibition between the wild strains and 

the diacetylactis strains seemed to be as rapid as the mode of action of bacteriocin-like 

compounds, since the viable population of the sensitive strains decreased during the first few 

hours, when grown together. Thus it could be still possible that the inhibition was due to an 

unknown bacteriocin-like compound that is not stable and yet undefined. 

Initially, it was observed that the inhibition could only be demonstrated in a co-culture of 

an inhibitory and a sensitive strain. Therefore, the question was raised whether living cells (of 

the inhibitory strain) are a prerequisite for the inhibition activity. 

The cells (overnight cultures) of B1155 and B926 and their CFE were tested against 

diacetylactis strains in an agar well-diffusion assay. Inhibition zones were found only with the 

living cells. When these cells of the inhibitory strains were inactivated by different treatments, 

i.e., UV radiation, high temperature, 1% chloroform or chloroamphenicol (2 fig mL"1), and 
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tested against diacetylactis strains, no inhibition zones were found. These results clearly 

support that living cells are needed for a strong and specific inhibition. 

It can be envisaged that the inhibition could be caused by bacteriophages produced or 

carried by wild strains, since these may attack closely related strains (Neve, 1996). In order to 

test this, the phage titres in the cultures of strains B1155 and B926 against diacetylactis 

strains B86 and B87 were determined in a plaque assay. However, no plaques were found, 

even when concentrated supernatants (phage filtrates) prepared from single cultures of each 

strain or from paired cultures were tested. Thus the presence of phages as an explanation 

seems to be unlikely. 

It can also be speculated that the inhibitory strains synthesise a compound, which is partly 

secreted into the culture medium and exerts its action only when the producing strain is 

actively growing. To evaluate this, the growth of diacetylactis strain B86 was followed in 

LM17 medium containing either 10% CFE or 10% concentrated supernatant from an actively 

growing culture of Bl 155. The results of this experiment showed that the CFE prepared from 

these Bl 155 cells had no effect on strain B86, but in the presence of a concentrated 

supernatant an effect was observed (Fig. 4). This led to the conclusion that actively growing 

cells of B1155 were found to synthesise an inhibitory factor which is secreted into the 

medium. 

1.E+10 

1.E+08 

1.E+00 

Fig. 4. Growth of the diacetylactis strain B86 (mean of duplicates) in, (A): LM17 medium 
(control), (B): LM17 medium containing 10% cell free extract prepared from strain B1155 and (C): 
LM17 medium containing 10% concentrated supernatant prepared from Bl 155 strain. 
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The fact that this factor could not be found in the supernatant of an overnight culture (see 

above), could be explained by assuming that this factor is rather unstable. 

To confirm this further, the growth of B86 was followed in supernatants prepared from 

exponential and from stationary phase cultures in LM17 medium of B1155 (Fig. 5). The 

results showed that B86 experienced no inhibition when cultivated in the growth supernatant 

of B1155 cells harvested in the stationary phase of growth and similar results were found for 

strain B926. This means that on the one hand the medium was still rich enough for the growth 

of the diacetylactis strain and that competition for nutrients was not the explanation for the 

observed inhibitory effects. On the other hand, the B1155 supernatant obtained from 

stationary phase culture was not able to inhibit the growth of diacetylactis B86. However, a 

significant inhibition of the growth of B86 was observed during growth in a supernatant 

obtained from an exponential phase culture of B1155. This indicates that the inhibitory factor 

is produced during the exponential phase of growth. 

E 
c 

10 15 20 25 30 
Time (h) 

10 15 20 25 30 

Time (h) 

Fig. 5. Growth of diacetylactis strains B86 (left) and B88 (right) in (A): LM17 medium (control); 
(B): supernatant prepared from exponential phase culture of strain Bl 155; (C): supernatant prepared 
from stationary phase culture of strain Bl 155 for 24 h at 30°C (mean of duplicates). 

The inhibitory factor is presumably unstable, which might explain why no inhibition was 

found with supernatants of overnight cultures tested in agar well assays (see above). For 

comparison reasons, the same experiments were carried out with the other diacetylactis strain 

B88, which is able to grow in the presence of strain Bl 155. No inhibition activity against this 

strain was found in all culture supernatants tested (Fig. 5). 
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For further evaluation of the characteristics of the inhibitory factor, an experiment was set 

up in which cultures were co-cultivated with a dialysis membrane as sole separation between 

the cultures. The wild strain was inoculated at the inner side of the dialysis tube, whereas the 

diacetylactis strain was present at the outside of the dialysis tube. The growth of the strains in 

this system is shown in Fig. 6. The results showed that the diacetylactis strain B86 is inhibited 

in its growth under these conditions, but the cells were not killed, and confirmed that living 

cells are needed for the inhibitory effect (Fig. 6). This result indicated that the inhibitory 

factor should be a relatively small compound, since the cut-off value of the dialysis tube used 

was 10,000-15,000 Da. On the other hand, the inhibition was not as severe as in co-cultures 

without culture separation. 

10 15 20 25 

Time(h) 
10 20 

Time (h) 

30 

Fig. 6. Growth of the diacetylactis strain 
B86 either alone or with wild strain Bl 155 or 
B926 via dialysis tube in LM17 medium at 
30°C during 24 h (mean of duplicates). 

10 15 20 25 30 
Time (h) 

Preliminary characterisation of inhibitory factor 

The characteristics of the inhibitory factor present in the supernatant prepared from the 

exponential phase culture of wild strains were studied in further detail. For this, the effect of 

the inhibitory factor on the growth of B86 (positive control) was compared with that on B88 
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strain (negative control). The inhibitory factor was found to be heat stable up to 100°C for 30 

min. Remarkably, the inhibitory factor was shown to be unstable upon overnight storage, 

irrespective of the temperature (- 20, 4 and 20°C). The presence or absence of oxygen did not 

influence this storage effect. This observation implied that all testing should be performed as 

quickly as possible after isolation of the inhibitory factor from a given culture. Therefore, 

further studies were carried out using fresh supernatants. 

The results of these studies showed that the inhibitory factor was inactivated/inhibited by 

proteinase K, since growth of the diacetylactis strain B86 was not inhibited after treatment of 

the supernatant with this enzyme (data not shown). Although the inactivation by trypsin was 

found to be less pronounced, these results indicated that the inhibitory factor could be 

proteinaceous. 

The estimated molecular mass of the inhibitory factor present in the supernatant of wild 

strain cultures was found to be less than 1 kDa (data not shown), as determined by ultra 

filtration using an lkDa molecular weight cut-off filter. This result was in line with the results 

from the experiment with the dialysis culture proving that the inhibitory factor is a small size 

molecule. 

Moreover, the inhibitory factor was able to bind to a silica cartridge CI8 and could be 

eluted from this material by ethanol, indicating that the nature of the inhibitory factor appears 

to be hydrophobic. Since it can be eluted without loss of its activity, this means that further 

purification would be possible. 

Further work should concentrate on the isolation of this compound by HPLC and on its 

characterisation. A better understanding of this factor and its mode of action will be very 

valuable in the selection of stable starter cultures. 

CONCLUSIONS 

Wild lactococci strains B1155 and B926 inhibited the growth of diacetylactis strains B86 

and B87 in DSS indicating that a specific interaction exists between these strains. The studies 

on the possible mechanism of this interaction indicated that the inhibitory behaviour is not 

due to competition between the strains for nutrients. In addition, the inhibitory action was not 

affected by aeration, pH value during the growth of strains, or release of bacteriophages by 

the wild lactococcal strains. However, it was found that the presence of living cells of the 

inhibitory strains is a prerequisite for a strong and lasting inhibition of the growth of 

diacetylactis strains. This phenomenon was believed to be due to the accumulation of an 

inhibitory factor in the supernatant of cultures of wild lactococcal strains, only in the 

exponential phase of growth. The preliminary apparent characteristics of the inhibitory factor 

were: (a) a small compound less than 1 kDa, (b) heat stable up to 100°C for 30 min, (c) 
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unstable when stored for 24 h at different temperatures (from - 20° to 20°C), (d) sensitive for 

proteinase K (proteinaceous compound), and (e) binding to silica cartridge CI8 material. The 

characteristics did not match common characteristics of already known antimicrobial 

compounds, for instance, there was no activity against M. flavus. 

Further research work needs to focus on the exact mechanisms of this interaction and the 

identification and characterisation of the inhibitory factor. 
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ABSTRACT 

Combinations of lactococcal strains from various origins with diverse properties were 

developed as new starters for new dairy products. Flavour formation by such tailor-made 

cultures was studied. In some cases, a strongly enhanced flavour was observed. For instance, 

the combination of B1157 and SKI 10 strains in milk resulted in a very strong chocolate-like 

flavour. B1157 produces only a moderate chocolate-like flavour, whereas SKI 10 alone fails 

to produce this flavour. Headspace gas chromatography results corroborate the organoleptic 

evaluations. High levels of branched-chain aldehydes were found when B1157 and SKI 10 

were grown together. The enzyme activities involved in this pathway were studied, both 

strains contain transaminase activity. Although Bl 157 had a very high amino acid 

decarboxylating activity, its release of amino acids from milk protein was limited. SKI 10 was 

strongly limited in decarboxylating activity, although this strain is very active in proteolysis. 

By combining these strains, the substrates released by SKI 10 can directly be used by the 

other strain, resulting in completion of the whole flavour-formation pathway. This opens new 

avenues for the preparation of tailor-made cultures. 

INTRODUCTION 

Flavour development in dairy products is essentially an enzymatic process mainly 

performed by the starter microorganisms. During cheese ripening, proteolytic enzymes of the 

starter culture play a significant role in protein breakdown (Law et al., 1974; Bie & Sjostrom, 

1975). This breakdown of proteins is important for the formation of a desirable flavour and 

texture, and therefore, proteolysis has been investigated extensively (Pritchard & Coolbear, 

1993; Visser 1993; Exterkate & Alting, 1995; Law & Mulholland, 1995). It has been 

demonstrated that proteinases and peptidases of starter bacteria release peptides and free 

amino acids from casein (Olson, 1990; Visser, 1993; Engels & Visser, 1994). 

The relationship between release of amino acids and flavour formation in cheese has been 

assumed for a long time (Mulder, 1952; Solms, 1969). Amino acids may contribute to flavour 

either directly or indirectly by serving as precursors of volatile aroma compounds such as 

aldehydes, acids, alcohols, esters and sulphur compounds (Engels & Visser, 1996). In recent 

years, it has become clear that the conversion of amino acids into volatile (flavour) 

compounds plays an important role in flavour formation during the ripening process. A 

number of enzymes involved in amino acid conversion have been identified in starter cultures 

(Schmidt & Lenoir, 1974; Nakazawa et al, 1977; Lee et al, 1985; Alting et al., 1995; Yvon 

et al., 1997; Yvon et al., 1998). Generally, these enzymes are involved in various reactions, 
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including deamination, transamination, decarboxylation and cleavage of the amino acid side 

chains. 

Lactic acid bacteria (LAB), which are present in all types of cheeses, play a major role in 

generating flavour compounds from amino acids. In lactococci, transamination is a first step 

in the conversion of aromatic and branched-chain amino acid (Thirouin et al., 1995; Engels, 

1997; Gao et al, 1997; Yvon et al., 1997; Engels et al., 2000). Recently, a number of 

transaminases have been identified and characterized in LAB (Engels, 1997; Yvon et al., 

1997; Gao & Steele, 1998; Roudot-Algaron & Yvon, 1998). The keto acids produced by 

transamination of the amino acids can either undergo spontaneous degradation (Gao et al., 

1997), or are degraded enzymatically into the corresponding aldehydes or carboxylic acids 

(Thirouin et al., 1995; Smit et al., 2000). The transamination reaction is catalysed by 

aminotransferases, which transfer the a-amino group of amino acids to a keto acid acceptor. 

In the manufacture of cheeses such as of Gouda and Cheddar, mixed or defined cultures of 

LAB are used as starter cultures. In these mixtures, many different interactions between the 

strains may occur, which not only affect the composition of such mixtures, but may also have 

an impact on flavour formation. Until now, very little was known about this process. 

Depending on the enzymes present in the cultures, different flavours can develop due to the 

contribution of many enzymes, which lead to various flavour compounds. It is important to 

study the role of starter cultures in flavour formation, the enzymes involved in the conversion 

of amino acids and the regulation of enzymatic conversions, in order to control flavour 

formation during cheese ripening. In the present work, flavour formation by the 

complementary action of defined starter cultures was studied in detail, and the results show 

that interactions exist which can be applied to develop tailor-made cultures. 

MATERIALS AND METHODS 

Chemicals 

Amino acids (leucine, isoleucine and valine), a-keto acids (a-ketoisocaproic acid (KICA), a-

keto-p-methyl-n-valeric acid and a-ketoisovaleric acid) and thiamine pyrophosphate chloride 

(TPP) were obtained from Sigma Chemicals, a-ketoglutaric acid was purchased from Janssen 

Chimica, ethylenediaminetetra-acetic acid (EDTA) from BDH Limited, and pyridoxal-5'-

phosphate (PLP) from Boehringer Mannheim GmbH. All other chemicals used were of 

analytical grade. 
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Micro-organisms and growth conditions 

The strains used in this study were: (i) strain Lactococcus lactis subsp. cremoris SKI 10 

(NIZO B697), which is derived from a commercial starter culture, (ii) the strains L. lactis 

subsp. cremoris NIZO B1157, L. lactis subsp. lactis NIZO B851, L. lactis subsp. lactis NIZO 

B850 and L. lactis subsp. lactis NIZO Bl 173, which originate from natural niches (Chapter 2; 

Ayad et ah, 1999). Strains were routinely stored in litmus milk with CaC03 and 0.5% yeast 

extract and kept at - 40°C. Strains B1157 and B1173 are non-proteolytic strains which were 

grown in milk with 0.5% yeast extract, whereas SKI 10, B850 and B851 are proteolytic strains 

which were cultured in milk without yeast extract. 

Flavour production and population dynamics 

Individual strains, SKI 10, B1157, B851 were pre-cultured for 16 h at 30°C in sterilised 

milk with 0.5% yeast extract for non-proteolytic strains, and without yeast extract for 

proteolytic strains. Cultures consisting of a strain isolated from natural niches were combined 

with cultures of the industrial strain (SKI 10) in different ratios (2:1 and 1:2) at a final total 

inoculum level of 1% (v/v), and grown together in 500 mL skimmed UHT milk for 48 h at 

30°C. The strains were also inoculated individually at 1% and grown under the same 

conditions. 

The total number of cells (colony-forming units, cfu) in each milk culture was determined 

by plating cells on GMA agar containing 10% skimmed milk, 1.9% P-glycerophosphate (pH 

6.9), 0.001% bromocresol purple and 1.3 % agar as described previously (Limsowtin & 

Terzaghi, 1976; Hugenholtz et al., 1987). Based on the differences in the ability to hydrolyse 

casein and the ability to grow at 40°C between wild-type strains and the industrial strain 

(Chapter 3; Ayad et al., 2000), the cell number of the individual strains could be monitored in 

a mixed population. 

The milk cultures were sensorically evaluated by five to eight experienced cheese graders. 

The attributes were recorded and statistically analysed. The flavour intensity scale ranged 

from 0 [none] to 4 [very strong]. 

Analysis of volatile compounds 

Branched aldehydes formed by the cultures used were identifed and quantified using 

headspace gas chromatography (HS-GC). The analytical system used consisted of a 

headspace autosampler HS800 mounted on a Mega series gas chromatograph (CE 

instruments, Thermo Quest, Milan, Italy) fitted with a splitless injector, a flame ionisation 

detector and a fused silica capillary column (25 m x 0.22 mm i.d., df = 1 fiM CP-S05 CB-LB, 
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Chrompack, The Netherlands). After an equilibration time of 20 min at 60°C, headspace 

samples (1.0 mL) were injected directly (splitless) onto a capillary pre-column (25 cm x 0.53 

mm). The column was mounted in a cryotrap model 515 (Thermo Quest, Milan, Italy) inside 

the oven. During injection the volatile compounds are condensed (-150°C) and adsorbed in 

this capillary pre-column and afterwards re-injected onto the chromatographic column by 

flash heating (150°C). Gas chromatographical separation was performed under isothermal 

conditions (70°C) at a carrier gas flow rate of 1.2 mL min"1 hydrogen. Identification of 

aldehydes was achieved using retention times of standard compounds. 

Enzymatic conversion of branched-chain amino acids by strains ofL.lactis 

Cultures were pre-grown in sterilised milk (containing 0.5% yeast extract for non-

proteolytic strains) overnight at 30°C, and subsequently, individual and mixed cultures 

(B1175+SK110 2:1) were grown in 50 mL UHT milk after inoculation at a final inoculum 

level of 1% (v/v). The following additions were made: (i) no additions; (ii) 10 mM leucine; 

(iii) 10 mM isoleucine; (iv) 10 mM valine; (v) 10 mM a-ketoisocaproic acid; (vi) 10 mM a-

keto-|3-methyl-n-valeric acid and (vii) 10 mM a-ketoisovaleric acid. The volatile components 

formed enzymatically by the strains were detected using direct static headspace injection in 

combination with gas chromatography and flame ionisation detection. Column and 

chromatographic conditions were the same as those described above. 

Free amino acid analysis 

Free amino acids were determined on a 4151 Alpha Plus amino acid analyser (Pharmacia 

LKB, Uppsala, Sweden). The soluble nitrogen fractions (Noomen, 1977) were prepared from 

skimmed UHT milk incubated with the individual strains SKI 10 and B1157 and their 

mixtures in different ratios at final inoculum level of 1% for 48 h at 30°C. 

Preparation of cell-free extract (CFE) 

The strains were cultured overnight at 30°C in sterilised milk with 0.5% yeast extract only 

for non-proteolytic strains. After addition of 1% (w/v) sodium tricitrate, the cells were 

harvested by centrifugation (5 min, 10000 g, 4°C) and washed twice in 50 mM potassium 

phosphate buffer (pH 7.5). The washed cells were resuspended to an ODgoonm of 

approximately 20 (Ultrospec 3000, Pharmacia Biotech., UK) in the same buffer, added to a 

plastic tube (Sarstedt 72694, Greiner, Alphen a/d Rijn, NL) with 1 g glass beads (Zirconium 

beads 0 = 0.1mm, Biospec, Bartlesville, USA) and kept on ice (0°C). The cells were 
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disrupted by using a Bead beater (multipurpose Orbital mixer, Merlin, Rotterdam, NL) for 

3x3 min, and cooled on ice for 2 min after every 3 min of shaking. The treated suspension 

was centrifuged (30 min, 24000 g, 4°C) to remove intact bacteria and cell debris, the 

supernatant fluid (CFE) was collected and filtered through O^^m-pore-size filter (Millipore 

Corp., Bedford, Mass.). The CFE was stored at -30°C until further use. 

Determination of aminotransferase and decarboxylase activity 

The aminotransferase activity in CFE of wild strains and the industrial strain SKI 10 was 

measured as follows. A 100 fiL volume of CFE (either active or inactive by heat treatment) 

was incubated in 20 mM potassium phosphate buffer (pH 7.5) containing ImM EDTA and 20 

juM PLP, with leucine (final concentration 20 mM) and co-substrate a-ketoglutaric acid (final 

concentration 10 mM). The final volume of the incubation mixture was 200 /iL. The 

incubations were performed at 30°C for 1 h in the dark. The reaction was stopped by lowering 

the pH of the mixture to 2.5 via addition of 0.2 M HC1. The formation of a-ketoisocaproic 

acid (KICA) during incubation was quantified by measuring its peak area using high-

performance liquid chromatography (HPLC). The HPLC equipment consisted of an ISS-100 

sample injector (Perkin Elmer, Uberlingen, Germany), two M6000A pumps, an AGC 680 

gradient controller (Waters, Milford, MA, USA) and a Kratos 783 UV detector (Kratos 

Analytical, Ramsey, NJ, USA) operating at 220 nm. Samples were chromatographed at 30 °C 

on a Bio-Rad HiPore RP-318 reversed-phase column (4.6 x 250 mm) preceded by a Bio-Rad 

Ci8 cartridge guard column. The elution buffers were 5 % acetonitrile, 0.1 % trifluoroacetic 

acid (TFA) in water (solvent A) and 90 % acetonitrile, 0.08 % TFA in water (solvent B). The 

components in the reaction mixture were separated isocratically at 0 % solvent B for 5 min 

followed by a linear gradient from 0 to 70 % solvent B over 2 min and isocratic elution at 70 

% solvent B for 5 min. The flow rate was 0.8 mL min"1. KICA eluted at 22.5 min. The relative 

amounts of KICA were determined from their peak area. Perkin Elmer Nelson Turbochrom 

4.0 software (Cupertino, CA.) was used for processing raw HPLC data. 

The conversion of KICA to 3-methylbutanal (3MeA4) by CFE was monitored by 

determining 3MeA4 using headspace gas chromatography with flame-ionisation detection 

(see above). CFE (100 /AS) either active or inactive by heat treatment, was incubated in 50 

mM potassium phosphate buffer (pH 6.0) containing ImM EDTA, 50 /uM TPP and KICA 

(final concentration 5 mM) at 35 °C for 4 h. The reaction was stopped by adding 50 juL of 6 

M (HC1) to reduce the pH to 2. 
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RESULTS AND DISCUSSION 

Growth and flavour production by defined strain starter cultures 

Strains B1157 and B851 were grown as described in the Material and Methods section in 

milk, either individually or in combination with the industrial strain SKI 10. The growth of 

strains B1157 and B851, when cultured together with SKI 10 in two combinations (1:2 and 

2:1) was followed by measuring the cell counts of the individual strains. Strains were 

distinguished individually based on proteolytic activity and the differences between growth 

temperature characteristics of lactococcal isolates from artisanal, non-dairy origins and 

industrial strains (Ayad et al., 2000). The growth of individual and mixed cultures are shown 

in Fig. 1. 
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Fig. 1. Changes in starter populations in milk cultures prepared with strains Bl 157 and B851 (open 
bars) and strain SKI 10 (filled bars), (a) strain B1157, (b) strain B1157: strain SKI 10 (2:1), (c) strain 
B851 and (d) strain B851: strain SK110 (2:1). Data represent viable counts (mean of duplicates). 
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Each strain could grow well, both in a mixture as on its own. The initial balance between the 

strains remained stable during co-cultivation. After growth, the cultures were also evaluated 

organoleptically (Table 1). Strain Bl 157 produced a slight chocolate-like flavour in milk, 

when grown as a pure culture. Surprisingly, this flavour formation was significantly increased 

when co-cultured with industrial strain SKI 10. This finding suggests that each culture had a 

direct effect on the metabolism of the other. Such interactions are highly relevant for practical 

application. Mixing at a ratio of 2:1 resulted in a higher intensity of the chocolate-like flavour 

than at 1:2. Strain B851 produced a moderate chocolate-like flavour in milk when cultivated 

alone, whereas this flavour intensity was decreased when B851 was mixed with SKI 10 (Table 

1). This reduction in chocolate-like flavour production is most likely due to the reduced 

number of B851 cells present in the mixed cultures compared with the situation in the 

individual cultures (Fig. 1). 

Table 1. Chocolate-like flavour score of milk cultures incubated with wild strains Bl 157 and 
B851 and industrial strain SKI 10 (mean ± SD). 

Strain Chocolate-like flavoura 

SKI 10 0 ± 0 

B1157 1.3 ±0 .5 

B851 1.9 ±0 .4 

B1157+SK110(2:l)b 2.9 ± 0.4 

B1157+SK110(1:2) 1.8 ±0 .3 

B851+SK110(2:1) 0.9 ± 0.6 

B851+SK110(1:2) 0.7 ± 0.5 

a Scale from 0 (none) to 4 (very strong); results are means with standard deviations. 
Inoculation ratio. 

In view of the chocolate-like flavour that was perceived during the organoleptic evaluation, 

and the knowledge that branched-chain aldehydes derived from branched-chain amino acids 

can be responsible for the development of a 'malty or chocolate' flavour in milk and cheese 

(Morgan, 1976; Dunn & Lindsay, 1985; McDonald, 1992; Urbach, 1993; Barbieri et al, 

1994), the milk culture samples were subjected to headspace gas chromatography (HS-GC). 
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The conversion of leucine, isoleucine and valine proceeds via transamination of the amino 

acid to the corresponding a-keto acids, and subsequently, via a chemical or enzymatic 

decarboxylation step to 3-methylbutanal (3MeA4), 2-methylbutanal (2MeA4) and 2-

methylpropanal (2MeA3), respectively (Engels, 1997; Yvon et al, 1998; Christensen et ah, 

1999). The relative amounts of branched-chain aldehydes, formed during incubation of 

individual and defined strains in milk cultures are presented in Fig. 2. Relatively high levels 

of particularly 3MeA4 in particular, but also 2MeA3 and 2MeA4 were found in the milk 

cultures incubated with B1157 and SK110 in the ratio 2:1. In case of the 1:2 ratio, lower 

levels were found. A much lower amount of these aldehydes were detected in the milk culture 

incubated with B1157 alone, whereas these compounds were hardly present in the milk 

culture prepared with SKI 10 alone. 

60000 

50000 -

% 40000 

to 

a. 30000 
a> 
> 
-£; 20000 

10000 

97376 

c 
jo 
n 

i i 

CO 

H~M , 1 1 , 1 

• 2MeA3 

• 2MeA4 

• 3MeA4 

V) 

CO ( O p OT e7 
it £J. it H 
in u> 

m 
oo 
CO 

+ CM + T-

00 CO 

•n 
CO 
CO 

m 
oo 
CO 

Fig. 2. Relative amounts of branched-chain aldehydes, 2-methylpropanal (2MeA3), 2-
methylbutanal (2MeA4) and, 3-methylbutanal (3MeA4) formed during incubation of individual and 
combined strains in milk culture. 

131 



Chapter 7 

These results corroborate the data from cheese prepared with a defined strain starter culture 

(B1157 and SKI 10) that contained a relative high concentration of both branched-chain 

aldehydes and that their corresponding alcohols (Ayad et ai, 2000). The amounts of 

aldehydes found in milk cultures incubated with mixtures of B851 and SKI 10 were lower 

than those encountered in milk incubated with B851 alone. The differences noticed in the 

amount of aldehydes, correspond with the organoleptic data. The results indicate that in the 

combination of SKI 10 and Bl 157, a complete pathway for the formation of branched-chain 

aldehydes is, most likely, actively present. Since the individual strains do not produce these 

aldehydes in high amounts, it is likely that this flavour formation is limited in each strain 

individually. 

Conversion of branched-chain amino acids by lactococcal enzymes 

In order to gain further insight in the regulation of flavour formation in mixed cultures, the 

conversion routes of branched-chain amino acids into the corresponding aldehydes by SKI 10, 

B1157 and mixtures thereof were studied. The strains were incubated in milk, either alone or 

together in a 2:1 ratio (SKI 10: Bl 157), in the absence or presence of leucine (Leu), isoleucine 

(He), or valine (Val), or their corresponding a-keto acids (a-ketoisocaproic acid (KICA), a-

keto-P-methyl-n-valeric acid or a-ketoisovaleric acid, respectively). The volatile compounds 

(aldehydes) which were formed by enzymatic conversion were quantified using HS-GC (Fig. 3). 

Strain Bl 157 grown in milk contained a higher level of 2MeA3 and 3MeA4 than a culture of 

SKI 10, whereas the level of 2MeA4 was apparently similar to those in the culture of SKI 10. 

However, a milk culture prepared with a mixture of these strains contained significantly higher 

levels of 2MeA3 and 3MeA4. These results indicate that strain Bl 157 is able to convert the 

branched-amino acids to aldehydes, and that this conversion is likely to be due to a 

transamination reaction followed by a decarboxylation step (Engels, 1997; Yvon et ah, 1997; 

Yvon et al., 1998; Christensen et ai, 1999; Engels et ai, 2000). 

Addition of leucine to the milk cultures prepared with Bl 157, and to mixtures of Bl 157 and 

SKI 10 resulted in an increase in the level of 3MeA4, whereas no effect was recorded for the 

culture of SKI 10 alone. Addition of isoleucine to a cultures containing B1157 resulted in an 

increase in the production of 2MeA4, and addition of valine led to an increase of 2MeA3. 

Addition of a-ketoisocaproic acid, a-keto-P-methyl-n-valeric acid and a-ketoisovaleric acid to 

pure and mixed cultures containing Bl 157 led to an increase in the corresponding aldehydes 

from each a-keto acid (Fig. 3). These results indicate that in the presence of the right substrates, 

Bl 157 is able to convert the branched-chain amino acids and corresponding a-keto acids into 

corresponding aldehydes very efficiently. This strongly indicates that the formation of amino 

acids is the rate limiting step in aldehyde flavour production by this strain. 
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Fig. 3. Relative amounts of branched-chain aldehydes, 2-methylpropanal (2MeA3), 2-
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Free amino acid analysis 

Free amino acid profiles of milk cultures incubated with SKI 10 and B1157 and their 

mixtures revealed that the amino acid patterns were different with SKI 10 to those with Bl 157 

cultures due to the action of proteolytic enzymes (data not shown). 

SKI 10 is able to release the branched-chain amino acids (Leu, He and Val), whereas these 

amino acids were not liberated by B1157 cells (Fig. 4). Although SKI 10 is able to produce 

these amino acids, only low amounts of Val, and neither Leu nor lieu, were detected in the 

mixture of Bl 157 and SKI 10 at a ratio 2:1. This could be due to the direct conversion of these 

amino acids to branched-chain aldehydes by B1157. In the case of the mixtures 1:1 and 1:2 

(B1157:SK110), branched-chain amino acids were detected (Fig. 4). These findings can most 

likely be explained by assuming that, when SKI 10 is present in equal or higher dose than 

B1157, amino acids converting enzymes become limiting. This corroborates the difference in 

the organoleptic scores in chocolate intensity between the different mixtures of these cultures 

(Table 1). 
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Aminotransferase and decarboxylase activities 

The aminotransferase activities towards leucine were determined in CFEs of B1157, B851, 

SKI 10 and the other L. lactis strains (B1173 and B850) from natural niches (for comparison). 

All strains showed aminotransferase activity by the formation of KICA although some 

differences were observed (Table 2). CFE fractions inactivated by heat treatment showed no 

KICA formation (data not shown). These results indicate that all tested strains contain 

transaminase activity. 

Decarboxylating activity towards KICA was measured in CFE of the strains. The amount 

of 3MeA4 formed during incubation is indicative of decarboxylating activity present in the 

CFE (Table 2). The amount of 3MeA4 formed from KICA in the presence of CFE from 

Bl 157 was the highest for all strains tested, indicating a strong decarboxylating activity in this 

strain. Heat-inactivated CFE fractions showed no 3MeA4 formation (data not shown), which 

indicates that this conversion is enzymatic. No activity was detected in CFE from SKI 10, 

suggesting the absence of decarboxylase activity in this strain. 

Table 2. Relative amounts of a-ketoisocaprioc acid (KICA) and 3-methylbutanal (3MeA4) 
formed by cell free extract (CFE) of L. lactis strains. 

CFE fraction 

KICAa 

Peak area 

3MeA4" 

Blank 

SKI 10 

B1157 

B1173 

B850 

B851 

0.0 

84.5 

60.0 

36.0 

119.0 

136.0 

0.3 

0.4 

400.0 

93.3 

54.9 

48.0 

Relative amounts of KICA as determined by reversed-phase of HPLC after incubation of CFE with 
leucin. 
b Relative amounts of 3MeA4 determined by HS-GC after incubation of CFE with KICA (area 

expressed in arbitary units). 
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Taken together, the interaction between strains in the tested mixtures is schematically 

illustrated in Fig. 5. In SKI 10, the complete pathway from casein to 3-methyl butanal cannot 

proceed because of the lack of a decarboxylative enzyme in this strain (Fig. 5B). B1157 is a 

non-proteolytic strain and therefore, is unable to produce enough free amino acids to serve as 

substrate for the subsequent transamination and decarboxylation steps (Fig. 5C). However, 

when Bl 157 and SKI 10 are incubated together, the strains complement each other with regard 

to their enzyme activities, resulting in a high production of the chocolate flavour component 3-

methyl butanal (Fig. 5D). On the other hand, strain B851 is able to carry out the whole 

degradation (Fig. 5E), although its decarboxylase activity is lower than that of B1157. As a 

result, only a moderate chocolate-like flavour is found (Fig. 5F and Table 1). When B851 is 

mixed with SKI 10, the chocolate-like flavour intensity experienced is lower (Table 1). This 

might be due to a further 'dilution' of enzyme activity in the mixture compared with the pure 

culture of B851 (Fig. 1). 
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Fig. 5. Proposed pathway of leucine by enzymes from individual and combined lactococcal 
starter cultures B1157, B851 and SKI 10. (A) General pathway for the breakdown of casein; (B) 
SKI 10; (C) B1157; (D) defined culture (B1157+SK110); (E) B851; and (F) defined culture 
(B851+SK110). In the decarboxylation step, the narrow arrow represents low decarboxylase activity 
while the thick arrrow represents high decarboxylase activity. 
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Despite the fact that the formation of high amounts of these aldehydes has been reported as off-

flavours in raw milk (Morgan, 1976; Molimard & Spinnler, 1996), these compounds are also 

recognized as key flavours compounds in a number of cheeses (Bosset & Gauch, 1993; Barbieri 

et ah, 1994; Neeter et al., 1996), suggesting that good control of flavour production by the 

starter culture is essential for a well balanced flavour. 

In conclusion, the amino acid-converting enzymes of LAB can play an essential role in 

flavour development. In defined strain starter cultures, many different interactions can occur 

(Meers, 1973) which not only affect the composition of these mixtures, but, as described in 

this study, might also have an important impact on flavour production. The combination of a 

knowledge of flavour formation pathways and functional characteristics of LAB cultures 

opens new avenues for industrial applications. It can be used to develop tailor-made defined 

starter cultures, as well as to produce flavour blocks. 

Further work will focus on the possibility of applying this knowledge in cheese-making 

experiments, as well as on the purification of the enzymes involved in the pathways 

described. 
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ABSTRACT 

To tailor the flavour development of a Proosdij-type cheese made with a combination of 

an acidifying mesophilic and an adjunct thermophilic culture, the use of the additional 

mesophilic strain B851 with specific flavour forming abilities was tested. This strain was 

selected with regard to its ability to produce the branched chain aldehyde 3-methyl-butanal, 

which is a key flavour compound in Proosdij cheese. In order to control the flavour intensity, 

the selected strain was first tested in different doses in a defined strain starter (DSS) culture as 

well as in combination with a mixed strain starter (MSS) culture. The latter is generally used 

for Gouda and Proosdij-type cheese productions. The results of population dynamics, sensory 

evaluation and analysis of volatile compounds indicated the possibility to control both the cell 

numbers of strain B851 as well as the flavour intensity resulting from this strain in cheese. 

Based on this, B851 was used to enhance the flavour development of a Proosdij-type cheese 

made with a new thermophilic culture SI 138. This culture was previously developed to 

prevent crack formation in Proosdij cheese. In this cheese, the addition of culture B851 led to 

an increase in the overall flavour intensity, indicating that it is possible to tailor the flavour of 

cheese using specifically selected cultures, even in combination with complex starter cultures. 

INTRODUCTION 

Flavour of cheese is one of the most important attributes for the consumer besides the 

consistency in the quality of the final product. Cheese flavour is believed to result from a 

balance between a number of components released by enzymic reactions rather than by 

chemical ones (Delahunty & Piggott, 1995). The characteristics of the flavour profile of 

ripened cheeses are mainly effected by proteolysis of caseins and in some types also by 

lipolysis (Crow et al., 1993). The typical cheese flavour results from further degradation of 

amino acids due to the pathways for conversion of amino acids by starter bacteria (Broome & 

Limsowtin, 1998). Indeed, the flavour of finished cheese depends mainly on the starter 

cultures used (Heap, 1998). Various compounds have been identified and characterized as key 

flavours in different types of cheese (Bosset & Gauch, 1993; Neeter et al., 1996; Engels & 

Visser, 1994; Engels etal., 1997; Urbach, 1997). 

Dutch-type cheese varieties constitute one of the most important types of cheese produced 

in the world. Traditionally, two main types of cheeses are made in the Netherlands: Gouda 

cheese and Edam cheese. Both are made by using mixed-strain mesophilic starter cultures 

containing Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris as acid-forming 

bacteria and the citrate using Lactococcus lactis subsp. lactis biovar diacetylactis and 

Leuconostoc mesenteroides subsp. cremoris (Walstra et al., 1987; Johnson et al., 1998). 
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Another Dutch cheese variety that was developed more recently is Proosdij cheese, which is 

essentially produced similar to Gouda cheese with the addition of an extra mixed-strain 

thermophilic culture (e.g. APS culture) containing several strains of the species Streptococcus 

thermophilus, Lactobacillus helveticus and Lactobacillus acidophilus. The APS starter makes 

Proosdij cheese different in flavour characteristics than Gouda cheese. The difference in the 

flavour profile between Gouda and Proosdij cheeses has been unraveled by Neeter et ah, 

(1996). They showed that in Proosdij cheese, almost the same aroma compounds are present 

as in Gouda cheese of the same age, but the concentrations are different. In particular, the 

content of 3-methylbutanal (3MeA4) was found to be higher in Proosdij cheese than in 

Gouda. This compound as well as some ketones were found to be key flavour components for 

this type of cheese. 

The eyes in Gouda-cheese originate from the accumulation of carbon dioxide gas (CO2) 

produced from the metabolism of citric acid by Leuconostoc mesenteroides subsp. cremoris 

and Lactococcus lactis subsp. lactis biovar diacetylactis (Akkerman et al., 1989). Production 

of gas (CO2) may lead to desirable eye formation, however it may also cause undesirable 

crack formation, depending on the facture properties of the cheese mass at the time of gas 

release. In the case of Proosdij cheese it was found that C02 formation also results from the 

decarboxylation of glutamic acid to y-amino butyric acid (Zoon & Allersma, 1996). This 

process occurs later on during the ripening of the cheese, and due to the consistency of the 

cheese, crack formation may occur. Cracks are an undesired characteristic and therefore a new 

starter, NIZO SI 138, was developed, based on strains isolated from the complex culture APS 

(G. Smit, unpublished results). However, it appeared that the overall flavour intensity of 

cheese made with this new starter was not as high as in cheese made with the original culture. 

Moreover, a decline in the production of key flavour compounds such as 3MeA4 (Neeter et 

al., 1996) was observed (G. Smit, unpublished results). 

3-Methylbutanal was found to be a flavour compound which is produced by a number of 

wild lactococcal strains isolated from dairy and non-dairy sources (Chapter 2; Ayad et al, 

1999). The present work focuses on the possibility to control flavour intensity of the new 

Proosdij-type cheese, by preparing defined strain starter cultures with different dosages of a 

3MeA4-producing strain in order to obtain a well-balanced flavour in the cheese. The 

combination of knowledge of flavour formation and other functional characteristics of these 

wild lactococci is applied to enhance the formation of specific key flavour components in a 

directive manner. 
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MATERIALS AND METHODS 

Origin of strains and growth conditions 

The strains used in this study were obtained from the culture collection of NIZO food 

research, Ede, The Netherlands. Lactococcus lactis subsp. cremoris SKI 10 was derived from 

a commercial starter culture. Dairy wild lactococcal strains originated from artisanal 

production of dairy products and included L. lactis subsp. lactis B851, L. lactis subsp. lactis 

B1155 and L. lactis subsp. lactis biovar diacetylactis B88 (Chapter 5; Ayad et al., 2001b). 

The mixed-strain mesophilic starter Bos, often used for Gouda cheese making, consisting of a 

mixture of L. lactis subsp. lactis, L. lactis subsp. cremoris, Leuconostoc species and L. lactis 

subsp. lactis biovar diacetylactis was also used. In addition the culture NIZOSTAR APS, a 

mixed-strain thermophilic starter culture containing strains of Streptococcus thermophilus, 

Lactobacillus acidophilus and Lactobacillus helveticus, was applied. Culture SI 138 (T149) is 

composed of all strains from NIZOSTAR APS, except the glutamic acid decarboxylase-

positive strains. For cheese making, strains were precultivated for 16 h at 30° C in milk for the 

proteolytic strains SKI 10 and B851 and in milk with 0.5% yeast-extract (Difco Laboratories, 

Detroit, MI) for the non-proteolytic strains B88 and Bl 155. Bos was precultivated for 18 h at 

20° C in milk and APS and SI 138 were precultivated for 40 h at 37° C in milk. 

Cheese making 

Three individual series of cheese making trials were performed using standard Gouda 

cheese making technology. The first series of cheese trials were made from 200 L portions of 

pasteurised (10 s, 74°C) milk, standarized on fat according to the protocol for Gouda 48+ 

cheese. The second and the third series of cheese trials were performed on a larger scale (2000 

L) under the same protocol. The first series of cheese trials consisted of four cheese vats, 

using four defined strain starter (DSS) culture sets, consisting of SKI 10 (L. lactis subsp. 

cremoris), B851 and B1155 (L. lactis subsp. lactis), and B88 (L. lactis subsp. lactis biovar 

diacetylactis). Strain B851 was inoculated from the preculture in different doses (0.00, 0.025, 

0.10 and 0.25% v/v), the other three strains were applied in equal dosages of 0.25% v/v each 

in all cheese vats (Table 1). Cheese prepared without B851 (a) was used as a control. The 

second series was performed using four mixed-strain starter (MSS) cultures sets, containing 

the mesophilic Bos-culture as the acidifying cheese starter culture combined with B851 as the 

adjunct starter. The dosage of the Bos-starter was adjusted in such a way that an acidifying 

activity was obtained which is usual in Gouda cheese manufacture. 
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Strain B851 was used in different doses (0.00, 0.025, 0.10 and 0.25% v/v), as shown in Table 

1. Cheese prepared with only 0.6% Bos (trial a) was used as a control in this series. The third 

series of cheeses, consisting of the Proosdij-types, were manufactured using six MSS sets, 

including mesophilic starter cultures (Bos, 0.6%) and thermophilic starter cultures (2.0%) 

combined with B851 as the adjunct starter in different doses (Table 1). The thermophilic 

starter cultures APS was used in four sets (a, b, c and d) of these series. The cheese made with 

Bos and APS only (0.6%+2.0%, trial a) was used as a control. Cheeses (e) and (f) in these 

series were made using 0.6% of Bos starter cultures combined with 2.0% of the SI 138 culture 

which is isolated from APS and B851 was added to cheese (f) in the ratio of 0.1%. The 

cheeses were ripened at 13 °C for 9 months for the first series and for 6 months for the second 

and third series of cheese trials and analysed at various intervals. 

Cheese analysis 

The population dynamics of the strains in the first series of cheese trials made with DSS 

were followed by estimating plate counts during making and ripening of the cheeses. The 

total cell count of individual strains in each cheese sample was determined in duplicate. 

Cheese samples were diluted 10 times in 2% trisodium citrate solution (w/v) and 

homogenized for 5 min in a stomacher (Lab-Blender 400, Seward London). Viable counts 

were enumerated on GMA plates containing 10% skimmed milk, 1.9% B-glycerophosphate 

(pH 6.9), 0.001% bromocresolpurple and 1.3 % agar (Limsowtin & Terzaghi, 1976; 

Hugenholtz et al, 1987). As well as on a based whey medium with calcium lactate, 

casaminoacids and agar (WACCA, Galesloot et al, 1961), which is made turbid by calcium 

citrate. Only citric acid fermenting strains produce clear zones around their colonies on this 

medium. Based on the differences in the ability of strains to hydrolyse casein, to grow at 40°C 

and to ferment citrate, their growth and survival could be followed individually in each DSS 

as described previously (Ayad et ah, 2001b). 

Compositional analyses for fat, salt, pH and moisture on the cheeses after brining (with an 

age of one day for cheese made on small scale and of 4 days for cheese made on large scale) 

were determined according to IDF standards method (1979, 1982, 1989 and 1997). 

Proteolysis, total nitrogen (TN) soluble nitrogen (SN) and amino acid nitrogen (AN) were 

performed by the method of Noomen (1977). 

Free amino acids were analysed on a 4151 Alpha Plus amino acid analyser (Pharmacia 

LKB, Uppsala, Sweden) directly in the soluble nitrogen fractions of the cheese slurry, 

prepared as described previously (Engels & Visser, 1994). 

Cheeses were sensorially evaluated by experienced cheese graders after 6 weeks, 3 and 6 

months of ripening and after 9 months (only the first cheese series) as described previously 
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(Ayad et al., 2000). In short, assessment of flavour and consistency on scales from 8 (very 

good) to 3 (very bad) was used. The cheese flavour intensity was scored on a scale from 0 

(absent) to 4 (very strong). During the sensorial evaluation of the third cheese series 

(Proosdij-type cheeses) the following features were also taken into account: intensity of 

Proosdij flavour, intensity of chocolate-like flavour and the presence of cracks in the cheeses. 

The average of sensory evaluations was determined. 

Analysis of volatile compounds 

Volatile compounds in 6 weeks, 3 months, 6 months and after 9 months old cheeses 

were identifed and quantified using headspace gas chromatography (HS-GC) essentially as 

described previously (Ayad et al, 2001a). 

RESULTS AND DISCUSSION 

Cheese making and analysis 

In the three series of cheese trials a total of fourteen different starter cultures were applied. 

In order to know whether the strains used are stably maintained in the cheese during ripening, 

the use of a defined strain starter is the only way to test this easily. Such an approach was 

chosen in the first series, where DSS cultures were used. The ability of strain B851 to produce 

its specific flavour when combined with the complex mixed strain starter Bos was tested in 

the cheese trials of second series. The experiences from the first two series of trials were used 

in the ultimate experiences for the preparation of Proosdij cheese in the final series. In the 

third series, B851 was combined with Bos and a complex adjunct thermophilic culture APS. 

Gouda-type cheese was manufactured in the first two series with four different DSS cultures 

in the series 1, and four undefined MSS culture sets in the series 2. Proosdij-type cheese was 

made in the third series using six MSS sets (Table 1). The acid production during cheese 

making was sufficient in all cheeses. After approximately 6 h, all cheeses achieved a pH of 

5.5, which is normal for Gouda and Proosdij cheese making. 

All the cheeses were prepared with different doses of the selected strain B851 in order to 

study the possibility to control its specific flavour intensity in cheese. B851 was selected 

because of its ability to produce the desired aldehyde 3-methylbutanal (3MeA4) (Ayad et al., 

2001a), which is responsible for a chocolate-like flavour (Morgan, 1976; Urbach, 1993). This 

component is also recognized as a key flavour compound in cheeses prepared with the 
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thermophilic starter APS, which is used in Parmesan and Proosdij type of cheeses (Neeter et 

ah, 1996; Engels & Visser, 1994). 

The data on the composition of the cheeses included the values for moisture, fat in dry 

matter, salt in dry matter and pH after brining (Table 2). The composition of the cheeses in the 

trials of each series was within the compositional range prescribed for regular Gouda and 

Proosdij cheeses, respectively. 

Series 1: Population dynamics and flavour development in cheese made with DSS 

Gouda-type cheeses were manufactured with four DSS sets using different doses of the 

selected strain B851. In order to be able to follow the population dynamics of the strains and 

their influence on the flavour development in further detail, the total viable cell counts in 

cheeses were determined during 6 months of ripening (Fig. 1). Cheese made with DSSa 

without addition of B851 was prepared as a control. In all cheeses, the strains grew well 

together and no dominant strain was detected. These results are in agreement with previous 

work (Ayad et al., 2001b), reflecting that these strains can be used as a stable DSS. The 

viability of B851, B1155 and B88 was quite high during ripening until 6 weeks and 

subsequently decreased after 3 months of ripening. The number of SKI 10 started to decrease 

after the first week of ripening similar to cheese made with SKI 10 only (Ayad et al., 2000). 

These results indicated again that the wild strains used were more stable during ripening than 

the industrial strain. There was a direct proportional relationship between the numbers of 

B851 in the cheese and the inoculation dosage (Fig. 1). These results showed that not only a 

stable defined strain starter culture can be designed, but also that its composition can be 

affected by choosing the inoculum dosage of one of the strains. 

Proteolysis was assessed after 6 weeks and 3 months of cheese ripening by chemical 

analysis of the nitrogen content of the soluble nitrogen fraction (SN) and the amino-acid 

nitrogen fraction (AN) (Table 2). The proteolysis increased in the cheeses during the ripening 

process. The values of AN were slightly higher in cheeses made with DSS containing the 

additional strain B851 which is protease positive (prt +). Especially at 6 weeks this effect was 

clearly visible. The presence of an extra prt + starter stimulated proteolysis in cheese as has 

been shown before (Stadhouders et al, 1988). 

The cheeses were assessed organoleptically after 6 weeks, 3, 6, and 9 months for flavour, 

consistency and firmness. The grading of the cheeses was carried out as Gouda-type cheeses 

with a specific flavour. 
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All cheeses had good texture characteristics comparable with those of regular Gouda-type 

cheese. The cheeses were also evaluated for overall flavours with the focus on the chocolate

like flavour attribute and its intensity. The control cheese made with DSSa without addition of 

the selected strain B851 as well as the cheese made with 0.025 % of B851 (DSSb) did not 

receive any score of chocolate-like flavour (data not shown). The intensity of chocolate-like 

flavour was found to be dependent on the dosage of B851 in the starter. The cheese prepared 

with DSSc, 0.1% of B851, received a high grading score, while increasing the B851 dosage in 

the cheese (DSSd) lead to an increase of the chocolate-like flavour intensity and consequently 

the cheese received a low grading score (data not shown). The cheeses received the relatively 

highest scores of chocolate-like flavour after 6 weeks of cheese ripening and this score was 

lower after 3 months of cheese ripening. It appeared that the typical flavour decreased in time, 

but whether this correlated with the observation that the cell numbers also declined (Fig. 1) is 

not known. One might speculate that cell lysis played a role in the breakdown of the flavour 

compound 3MeA4. 

The cheeses made with each DSS were analysed for volatile flavour components, with the 

focus on 3MeA4. Each DSS culture produced a typical pattern of volatile compounds, which 

matched with the sensory flavour description. The amount of 3MeA4 found corraborated with 

the organoleptical evaluation. There was also a clear correlation between the amount of 

3MeA4 detected in the cheese and the initial inoculum level of B851 in the DSS (for further 

detail, see series 2 and 3). During cheese ripening the amount of this flavour compound was 

reduced, most likely due to a further conversion of the aldehydes to the corresponding 

alcohols (see above). It is also possible that other flavour compounds masked the typical 

aldehyde flavour. In a previous study, it has been reported that strain B851 produced a certain 

amount of malty or chocolate-like flavour if grown as a single strain and that the intensity of 

this flavour was reduced if it grew in mixed cultures (Chapter 7; Ayad et al, 2001a). The 

findings of these cheese trials series indicate that B851 can have a big impact on the specific 

flavour of cheese and that the flavour intensity is not only dosage dependent but also 

dependent on the composition of the starter used. 

Series 2: Flavour production in cheese made with MSS 

The Gouda-type cheese is often produced by using the regular Bos starter. We focused on 

the possibility of using the selected strain B851 in different dosage together with the Bos 

starter in the normal Gouda cheese recipe, in order to be able to add extra flavour tone to the 

Gouda cheese made with a complex starter culture like Bos. Four cheese trials were made 

with mixed strain starter (MSS) sets, composed of Bos starter mixed with different doses of 

B851 (Table 1). Sensory panellists noted that cheeses made with the highest dose of B851 

(MSSd, 0.25% B851) received a low score, due to the presence of a high intensity of 
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chocolate-like flavour (Fig. 2). This indicated that B851 could indeed survive in the cheese 

with Bos and form its typical flavour. 
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Fig. 1. Population dynamics of defined strain starter cultures (DSS) in Gouda-type cheese 
(series 1, mean of duplicates). Cheeses prepared with B1155 (A), B88 (o), SKI 10 (•) and 
different doses of B851 (A); 025% in DSSb, 0.10 in DSSc, 0.25 % in DSSd and without B851 
in DSSa (control). 
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The volatile flavour compounds in the 4, 8 and 13 weeks old cheeses of these series were 

quantified using HS-GC (Fig. 3). In general, the amount of 3MeA4 detected was dependent 

on the dosage of strain B851. A low level of 3MeA4, which slightly increased during ripening 

was found in the control cheese made with Bos starter (MSSa), indicating that this starter 

produces a small amount of this flavour compound. In the cheese containing the lowest 

dosage (0.025%) of B851, the level of 3MeA4 produced was hardly higher than in the control 

(Fig. 3). As a consequence, the grading score of the cheese made with MSSb was hardly 

found to give a specific flavour (Fig. 2). The highest level of 3MeA4 was produced after the 

first weeks of ripening in the cheese made with MSSd set (0.25% dosage of B851) and then 

decreased by 30% during ripening up to 3 months. The flavour intensity decreased throughout 

ripening and the Bos-flavour seemed to mask the specific flavour produced by B851 or 

3MeA4 could be converted to the corresponding alcohol. Anyway, the results clearly showed 

that the specific flavour of B851 can be introduced into the Gouda cheese purposely. 
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Fig. 2. Average of grading scores for Gouda-type cheese made with MSS (series 2) after 3 months 
of ripening. The grade on scale ranged from 3 (very bad) to 8 (very good) (for definition of the scale 
see Methods section). Cheese made with (a) Bos (control); (b) Bos+0.025%B851; (c) Bos+0.1%B851; 
(d)Bos+0.25%B851. 
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Series 3: Flavour enhancement in Proosdij cheese 

The cheese trials in the series 1 and 2 showed that it is possible to dose the flavour 

generating properties by adjusting the starter culture. The following question was, whether it 

is possible to improve the flavour of Proosdij cheese, made with culture SI 138 as 

thermophilic adjunct culture, with the focus on the key flavour component 3MeA4. Previous 

work (G. Smit, unpublished results) showed that Proosdij cheese made with adjunct culture 

SI 138 scored a lower typical Proosdij flavour than the cheese made with APS. Since, the 

former was preferred due to the absence of crack formation in the cheeses, the typical flavour 

should be enhanced and for this the use of a 3MeA4-producing starter might be the solution. 

Cheeses were manufactured with B851 as an extra culture mixed with the culture Bos as 

acidifying culture and APS or SI 138 as thermophilic adjunct culture (series 3; Table 1). 
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Fig. 3. Relative amount of 3MeA4 formed during ripening of Gouda-type cheese made with MSS 
(series 2). Cheese made with (a) Bos (control); (b) Bos+0.025%B851; (c) Bos+0.1%B851; (d) 
Bos+0.25%B851. 

The average degree of proteolysis during ripening of these third series of cheeses, derived 

from the SN and AN values, was higher as compared to Gouda cheese, which is largely due to 
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the proteolytic activity of the thermophilic APS culture (Smit et al., 2000). The value of AN 

were slightly lower in the cheeses manufactured with SI 138 in MSSe. All the values of AN 

were further increased when B851 was included in the starter (see b, c, d and f; Table 2). This 

phenomenon is comparable with that observed in the series 1. 

Again the cheeses prepared with APS were found to form cracks, whereas those made with 

SI 138 did not. Analysis of free amino acids and in particular GAB A confirmed that GAB A 

was only formed in significant amounts in cheese prepared with APS (Fig. 4). Addition of the 

proteolytic strain B851 led to an overall increase in amino acid levels, which might be 

positive for follow-up reactions for flavour formation. GABA levels did, however, not 

increase in these cheeses. Since, the formation of the key flavour 3MeA4 is also dependent on 

a decarboxylase activity, there was a minor risk that this could also cause extra CO2 

production. However, the level of conversion into 3MeA4 is relatively low, in the fiM level, 

whereas GABA is produced in the mM level in cheeses made with APS (Fig. 4). 
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Fig. 4. Free amino acids in extracts of Proosdij cheeses after 3 months of ripening. Cheese made 
with MSSa: Bos+APS (control), MSSe: Bos+S1138, MSSf: Bos+S1138+0.1%B851. Amino acids are 
presented in mM kg"1 dry mass of cheese. 
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Only CO2 production in the mM level might lead to crack formation (Zoon & Allersma, 

1996). This observation is important, since the potential improvement of the Proosdij flavour 

should obviously not be linked to other pathway leading to crack formation. 

Cheeses made with APS and low dosages of B851 (MSSb and MSSc) were found to give a 

similar overall flavour score as the regular Proosdij cheese made with APS alone (MSSa). The 

grading score for overall flavour of cheeses decreased upon increasing the dosage of B851 up 

to 0.25%, which resulted in enhancing chocolate-like flavour intensity (Fig. 5). 
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Fig. 5. Sensory evaluation of Proosdij cheese made with MSS (series 3) during ripening after six 

weeks (filled bars) and after three months (open bars). (1) Average of grading scores for overall 

flavour ranged from 3 (very bad) to 8 (very good) (for definition of the scale see Methods). (2) 

Proosdij cheese flavour intensity scale from 0 (absent) to 4 (very strong). (3) Chocolate-like flavour 

intensity scale from 0 (absent) to 4 (very strong). Cheese made with (a) Bos+APS (control); (b) 

Bos+APS+0.025%B851; (c) Bos+APS+0.1%B851; (d) Bos+APS+0.25%B851; (e) Bos+S1138; (f) 

Bos+S1138+0.1%B851. 
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Apparently, this caused the flavour to be out of the balance, which is characteristic for 

Proosdij cheese. Cheeses made with SI 138 (MSSe) received a lower score for overall flavour 

as compared with the control cheese made with APS (MSSa). As expected, cheeses made 

with traditional APS starter developed cracks during ripening, whereas cheeses manufactured 

with SI 138 were not found to have any cracks. Addition of 0 .1% of B851 to the latter cheeses 

(MSSf) resulted in a higher organoleptic score. Both the overall perception as well as the 

intensity of Proosdij flavour were higher (Fig. 5), suggesting that strain B851 is able to 

specifically improve this type of cheese. 

The relative amounts of branched chain aldehyde 3MeA4 formed during ripening of 

cheeses are presented in Fig. 6. 3MeA4 were detected in all cheeses as expected for this key 

flavour compound. Relative high levels of 3MeA4 were found to be dependent of the dose of 

B851 (MSSd) (Fig. 6) and this result corroborates the results in Gouda cheese (Fig. 3). 
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Fig. 6. Relative amount of branched-chain aldehyde 3MeA4 formed during Proosdij cheese ripening 
(series 3) after six weeks (filled bars) and 3 months (open bars). Cheese made with (a) Bos+APS 
(control); (b) Bos+APS+0.025%B851; (c) Bos+APS+0.1%B851; (d) Bos+APS+0.25%B851; (e) 
Bos+S1138;(f)Bos+S1138+0.1%B851. 

The key aroma compound (3MeA4) was found in a low amount in cheese prepared with 

SI 138 (MSSe) while this compound was detected in a higher amount in the cheese prepared 

with SI 138 combined with 0.1% B851 (MSSf, Fig. 5). During cheese ripening the amount of 
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3MeA4 decreased in the cheese made with MSSd after 6 weeks, possibily due to its 

conversion into the corresponding alcohol 3Me04 (data not shown). This might also explain 

the reduction in intensity of the chocolate flavour. The results indicate that B851 is able to 

enhance the Proosdij flavour in the cheese with the thermophilic starter SI 138. The flavour 

analysis, especially the amounts of 3MeA4 corroborate the organoleptic data (Figs 5 & 6). 

CONCLUSIONS 

The Lactococcus lactis strain B851 was selected for its ability to produce the flavour 

compound 3MeA4, which is a key flavour compound in Proosdij cheese. The impact of strain 

B851 on cheese flavour development was tested in defined strain starter (DSS) cultures and in 

mixed strain starter (MSS) cultures in Gouda and Proosdij cheese. The results showed that 

DSS can be prepared which are stable on the one hand and result in a selective increase of 

flavour compounds in cheese depending on the dosage of B851on the other hand. This makes 

it possible to tailor a desirable flavour by using a selected flavour forming strain. Proosdij 

cheese made with a new thermophilic strain SI 138, that was previously developed to avoid 

crack formation in this type of cheese, received a low score for overall flavour compared with 

cheese produced with traditional APS starter. The use of selected strain B851 as an adjunct 

starter in Proosdij cheese resulted in a cheese with a higher score of Proosdij flavour. Flavour 

analysis using gas chromatography confirmed that the amount of the key flavour compound 

3MeA4 correlated with the addition of B851 in a dose-dependent manner. These results 

indicate that, strain B851 is able to enhance the flavour development of SI 138 for Proosdij 

cheese flavour without the risk of crack formation. In conclusion, tailoring cheese flavour 

development by selected cultures opens possibilities for cheese innovations in a directive 

manner. 
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Summary and concluding remarks 

Lactic acid bacteria play an important and economically significant role in the 

fermentation and preservation of foods, thereby generating desirable flavour and texture 

attributes. Lactococcus lactis strains have been used for millennia in the manufacture of a 

variety of dairy products such as cheese. Recently, increasing attention has been focused on 

the need of the dairy industry for 'new' strains to be exploited in product differentiation. For 

the development of new starter cultures, wild Lactococcus strains could be useful since these 

strains potentially harbour the ability to produce unusual (new) flavours and also other 

relevant characteristics. To identify Lactococcus spp. from natural ecosystems at the species 

and subspecies level, and to discriminate them from the established strains, several modern 

molecular microbiological methods are available (Klijn, 1996; Weerkamp et al., 1996). 

The work described in this thesis is centred on the study of the characteristics and the 

behaviour of lactococcal strains isolated from various natural niches and their potential 

application in cheese manufacture for the formation of new flavours. 

Chapter 2 describes the flavour formation ability of a large number of wild lactococcal 

strains, originating from dairy and non-dairy environments, in milk and in a cheese paste 

model (Smit et al., 1995). Organoleptic evaluation revealed that several wild strains have the 

ability to produce specific (unusual) flavours distinct from those produced by conventional 

industrial strains. GC/MS analysis showed that the major volatile compounds produced by 

wild strains were most likely originating from amino acid degradation. 

Further characterisation of the wild strains indicated that they generally have a low 

hydrolytic activity towards casein. All wild strains (subsp. cremoris and lactis) were able to 

hydrolyse arginine, able to grow at 40°C and in the presence of 4% NaCl in contrast to the 

industrial strains. These properties might have important implications when these strains are 

applied in cheese making. 

By using the single omission technique, the wild strains were found to requir 1 to 4 amino 

acids for their growth. The industrial strains, on the other hand, were found to be auxotrophic 

for up to 10 amino acids. This indicated that these wild strains are more dependent on their 

own synthesis of amino acids, which could explain their ability to produce unusual flavours. 

Since, it is hypothesised that amino acid converting enzymes which are involved in flavour 

formation in cheese (Engels et al., 1996), are in fact involved in the biosynthesis of amino 

acids. 

In Chapter 3 the potential application of wild Lactococcus strains in cheese was studied. 

The strains were characterised on various aspects which play an important role for cheese 
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making. All strains were found to be resistant to phages which affect strains present in 

commercial cultures. Moreover, all strains tested were non-lysogenic. The wild strains 

generally showed a low acidification activity indicating that these strains should be combined 

with other (fast acidifying) strains in defined strain starter (DSS) cultures. Accordingly, a 

number of strains were tested in pilot-plant Gouda-type cheese manufacture, either 

individually or in a simple DSS together with an industrial strain. The chemical composition 

of cheeses made with different DSS cultures were similar to that of control cheese prepared 

with industrial strains. Sensory evaluation revealed that wild strains produced their typical 

flavours in the cheese environment, which corroborated the results in the model systems used 

in Chapter 2 (Ayad et ah, 1999). GC/MS analysis showed that various volatile compounds 

were produced in cheese by these strains, which confirmed the results of the sensory 

evaluations. 

The behaviour of these strains in mixed cultures was studied by following the population 

dynamics of the DSS during the cheese making process. Various interactions between the 

wild lactococcal strains and industrial strains were observed. Some wild strains were able to 

grow well together with industrial strains, and other strains appeared to inhibit the growth of 

industrial strains due to the production of bacteriocins. In many cases the bacteriocin was 

found to be nisin. 

From the results obtained in chapters 2 and 3, it can be concluded that some wild 

lactococcal strains are able to generate specific flavours in milk as well as in cheese. This 

property makes them interesting for further use in the development of starter cultures. 

In order to be able to apply the wild lactococcal strains, described in Chapter 2, the 

production of antimicrobial compounds by these strains was further evaluated in Chapter 4. 

The bacteriocins produced by several of these strains were classified into four groups; nisin, 

diplococcin, lactococcin and bacteriocin-like compounds (unknown). The ability of 

Lactococcus strains to produce antimicrobial compounds was a trait found more frequently in 

strains of a non-dairy origin than in dairy strains. This ability may enable them to withstand 

competition from other microorganisms which may be more severe in the hostile natural 

environment than in the shielded dairy setting. These bacteriocin-producing strains may be 

used in defined strain starter cultures for cheese manufacture, but only if applied in 

combination with other bacteriocin-resistant strains. 

To assist the development of defined strain starters with specific flavour characteristics and 

typical properties required for the manufacture of Gouda-type cheese, the behaviour of wild 

lactococci strains in a complex defined mixture of strains essential for Gouda cheese making 

was studied in Chapter 5. Before that, it was important to know whether these strains maintain 

their specific properties when grown individually for many generations. Therefore, the 

stability of the technological traits of the wild lactococci strains was investigated. The 
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morphology and genetic profiles of these strains were found to be stable up to 50 

subcultivations. Their flavour forming abilities, proteolytic activity, acidification activity and 

bacteriophage resistance were also found to be stably maintained. The same was true for their 

ability to ferment citrate as well as their ability to grow at 40°C and in the presence of 4% 

NaCl. 

Different DSS cultures were prepared, each one composed of proteolytic, non-proteolytic 

and citrate utilising strains. One of these DSS consisted of nisin-producing together with 

nisin-resistant strains. The population dynamics within the DSS cultures during cultivation in 

milk and in pilot-scale Gouda-type cheese manufacture showed that several strains were able 

to grow well together and the mixture was found to be stable in its performance. This opened 

the possibility to apply these mixtures as tailor-made starter cultures for the production of 

specific flavours. In some cases however, strains were found to be specifically inhibited in a 

DSS, a phenomenon that required attention in order to use such strain in DSS. 

In Chapter 6, studies on the specific inhibition of diacetylactis strains in DSS were carried 

out to understand the mechanism behind it. Some wild strains used appeared to cause this 

inhibition. The results of interaction studies showed that the inhibition was not due to 

competition between the strains for nutrients and not affected by aeration, pH or release of 

bacteriophages by the wild strains. Growing wild cells were found to be much more inhibitory 

active than their culture supernatants. In fact, the inhibition of the diacetylactis strains was 

only observed when the supernatant was derived from exponentially phase cultures of the 

inhibiting strains. The supernatant contained apparently a factor, which acted specifically 

against some and not all, diacetylactis strains. The preliminary characterisation of this 

inhibitory factor revealed that it was a small compound (less than 1 kDa), heat stable up to 

100°C for 30 min, unstable when stored for 24 h at different temperatures. In addition, it was 

shown to be inactivated by proteinase K, indicating that it might be a proteinaceous 

compound. However, the general characteristics did not match those of already known 

antimicrobial compounds. Therefore, further research work needs to focus on the further 

identification and characterisation of the inhibitory factor. 

In Chapter 7, an enhanced flavour production by cocultivation of lactococci from 

industrial (SKI 10) and artisanal origin (B1157) was studied. Interestingly, it was found that 

the strains not only affected their respective growth, but that they also completed each other's 

metabolism which led to flavour compounds. The combination of both strains resulted in a 

strong increased chocolate-like flavour. B1157 produced only a moderate chocolate-like 

flavour whereas SKI 10 alone failed to produce this flavour. To obtain insight in the 

underlying mechanism of this enhanced flavour formation by the mixture of cultures, the 

enzyme activities involved in the pathway leading to these flavour compounds were studied. 

164 



Summary and concluding remarks 

The results showed that by combining the strains, the substrates released by one of the strain 

could directly be used by the other strain, resulting in the completion of the whole flavour-

formation pathway. 

Although many starter cultures for dairy products are used and combined for several 

reasons such as preventing or reducing sensitivity for phage attack and formation of eyes in 

cheese, these cultures have not been selected so far for enhancing the total metabolic activity 

for the formation of volatile flavour components. The outcome of the present study is 

providing a new way to enhance or to tailor flavour formation by the cultivation of selected 

strains. 

The combination of knowledge of flavour formation and other functional characteristics of 

wild Lactococcus strains can be applied to enhance or/ improve the formation of specific 

flavour components of cheese in a directive manner. In Chapter 8, the Lactococcus lactis 

strain B851 was selected for its ability to produce the flavour compound 3-methyl butanal 

(3MeA4), which is a key flavour compound in Proosdij-type cheese (Neeter et al., 1996). In 

order to control the flavour intensity and to test the impact of the selected strain B851 on 

cheese flavour development, this strain was first tested in different doses in a DSS culture as 

well as in combination with a mixed strain starter (MSS) culture. The latter is generally used 

for Gouda and Proosdij-type cheese productions. The results showed that DSS cultures can be 

prepared which are stable on the one hand and result in a selective increase of flavour 

compounds in cheese depending on the dosage of B851 on the other hand. This showed that it 

is possible to tailor a desired flavour by using a selected strain with specific flavour-forming 

abilities. Proosdij cheese made with a new thermophilic strain SI 138, that was previously 

developed to avoid crack formation in this type of cheese (G. Smit, personal communication), 

received a low score for overall flavour compared with cheese produced with traditional APS 

starter. In this cheese, the addition of B851 as an adjunct starter resulted in a high score of 

Proosdij flavour. Analysis of volatile flavour compounds by using gas chromatography 

confirmed that the amount of the key flavour compound 3MeA4 correlated with the addition 

of B851 in a dose-dependent manner. Thus, strain B851 is able to assist SI 138 in the 

development of Proosdij cheese flavour without the risk of crack formation. This way of 

directing cheese flavour development by selected cultures opens possibilities for cheese 

innovations. 

Taken together, the results described in this thesis offer new challenges for the 

development of tailor-made starter cultures, based on the knowledge of both population 

dynamics of the strains and their flavour-forming abilities. 
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Samenvatting en conclusies 

Melkzuurbacterien spelen een belangrijke en economisch significante rol bij de fermentatie 

en conservering van voedingsmiddelen. Bovendien zorgen zij voor de gewenste smaak en 

textuur. Al duizenden jaren worden Lactococcus lactis-stammen gebruikt bij de bereiding van 

diverse zuivelproducten zoals kaas. De laatste tijd is er toenemende aandacht voor de behoefte 

van de zuivelindustrie aan 'nieuwe' stammen om deze in te zetten bij de productdifferentiatie. 

Voor de ontwikkeling van nieuwe startculturen zouden wilde Lactococcus-stammen van nut 

kunnen zijn omdat deze mogelijk het vermogen bezitten nieuwe smaken en andere relevante 

eigenschappen voort te brengen. Om Lactococcus-soorten op soort- en ondersoortniveau uit 

natuurlijke ecosystemen te identificeren en om deze te onderscheiden van de gebruikelijke 

soorten staan verschillende moderne moleculair-microbiologische methoden ter beschikking. 

Dit proefschrift beschrijft het onderzoek naar de eigenschappen en het gedrag van 

lactococcenstammen gei'soleerd uit diverse natuurlijke bronnen, en hun mogelijke toepassing 

bij de kaasbereiding om nieuwe smaken te vormen. 

Hoofdstuk 2 beschrijft het vermogen van een groot aantal wilde lactococcenstammen 

afkomstig uit zuivel- en niet-zuivelmilieus om smaak te vormen in melk en in een 

kaaspastamodel. Uit smaaktesten bleek dat verschillende wilde stammen het vermogen 

hebben om, naast de smaken gevormd door de gebruikelijke industriele stammen, specifieke 

nieuwe smaken te vormen. GC/MS-analyse wees uit dat de belangrijkste vluchtige 

verbindingen gevormd door wilde stammen hoogstwaarschijnlijk afkomstig waren van 

aminozuurafbraak. 

Uit verdere karakterisering van de wilde stammen bleek dat zij in het algemeen een 

geringe hydrolytische activiteit ten opzichte van caseine vertonen. Alle wilde stammen 

(subsp. cremoris en lactis) konden, in tegenstelling tot de industriele stammen, arginine 

hydrolyseren en in aanwezigheid van 4% NaCl groeien bij 40 °C. Deze eigenschappen zouden 

van groot belang kunnen zijn bij toepassing van deze stammen bij de kaasbereiding. 

Toepassing van de 'single omission'-techniek toonde aan dat de wilde stammen slechts 

afhankelijk zijn van een of enkele aminozuren voor hun groei. De industriele stammen bleken 

daarentegen behoefte te hebben aan soms wel 10 aminozuren. Dit wijst erop dat de wilde 

stammen een vollediger set enzymen hebben voor hun eigen aminozuursynthese, wat een 

verklaring zou kunnen zijn voor hun vermogen om nieuwe smaken te vormen; immers de 

hypothese is dat aminozuuromzettende enzymen die bij de smaakvorming in kaas betrokken 

zijn, in feite nodig zijn voor de biosynthese van aminozuren. 
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In hoofdstuk 3 is de mogelijke toepassing van wilde Lactococcus-stammen in kaas 

onderzocht. De stammen zijn gekarakteriseerd naar verschillende aspecten die bij de 

kaasbereiding een belangrijke rol spelen. Alle stammen bleken resistent te zijn tegen fagen die 

stammen in commerciele culturen aantasten. Bovendien bleken alle geteste stammen niet-

lysogeen te zijn. De wilde stammen vertoonden in het algemeen een geringe 

verzuringsactiviteit, wat aangaf dat deze stammen met andere (snel verzurende) stammen 

gecombineerd dienen te worden in samengestelde zuursels, de zogenaamde DSS-culturen 

(defined strain starter). Een aantal stammen werd dan ook op proefschaal getest bij de 

bereiding van Goudse kaas, ofwel afzonderlijk ofwel samen met een industriele stam in een 

eenvoudige DSS-cultuur. De chemische samenstelling van kazen gemaakt met verschillende 

DSS-culturen kwam overeen met die van controlekaas bereid met industriele stammen. Uit 

smaaktesten bleek dat wilde stammen hun typische smaak ook in het kaasmilieu vormen, wat 

de resultaten van de modelsystemen gebruikt in hoofdstuk 2 ondersteunde. GC/MS-analyse 

Het zien dat deze stammen in kaas diverse vluchtige verbindingen vormen, wat de resultaten 

van de smaaktests bevestigde. 

Uit de resultaten verkregen in hoofdstuk 2 en 3 kan worden geconcludeerd dat enkele 

wilde lactococcenstammen zowel in melk als in kaas specifieke smaken kunnen vormen. Deze 

eigenschap maakt hen interessant voor verder gebruik bij de ontwikkeling van starterculturen. 

Om de wilde lactococcenstammen beschreven in hoofdstuk 2 te kunnen toepassen is de 

productie van anti-microbiele verbindingen door deze stammen nader beoordeeld in 

hoofdstuk 4. De bacteriocines die door een aantal van deze stammen worden geproduceerd, 

zijn ingedeeld in vier groepen: nisine-, diplococcine-, lactococcine- en bacteriocineachtige 

verbindingen. Het vermogen van Lactococcus-stammen om anti-microbiele verbindingen te 

vormen was een kenmerk dat bij stammen van niet-zuiveloorsprong vaker werd aangetroffen 

dan bij zuivelstammen. Dit vermogen kan hen in staat stellen de concurrentie van andere 

micro-organismen, die in de vijandige natuurlijke omgeving wellicht heviger is dan in de 

zuivel fermentaties, te weerstaan. Deze bacteriocinevormende stammen kunnen wel in DSS-

culturen voor de kaasbereiding worden gebruikt, maar alleen in combinatie met andere 

bacteriocine-resistente stammen. 

Om de ontwikkeling van DSS-culturen met specifieke smaakkarakteristieken en typische 

eigenschappen vereist voor de bereiding van Goudse kaas te bevorderen, werd het gedrag van 

wilde lactococcenstammen in een complex gedefinieerd mengsel van stammen die essentieel 

zijn voor de bereiding van Goudse kaas, bestudeerd in hoofdstuk 5. Het was van belang van 

tevoren te weten of deze stammen hun specifieke eigenschappen behouden als zij vele 

generaties afzonderlijk worden voortgekweekt. Daartoe werd de stabiliteit van de 

technologische kenmerken van de wilde lactococcenstammen onderzocht. De morfologie en 
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de genetische profielen van deze stammen bleken tot 50 overentingen stabiel te zijn. Hun 

smaakvormend vermogen, proteolytische activiteit, verzuringsactiviteit en 

bacteriofaagresistentie bleken eveneens stabiel gehandhaafd te zijn. Hetzelfde gold voor het 

vermogen om citraat te vergisten evenals het vermogen om te groeien bij 40 °C en in de 

aanwezigheid van 4% NaCl. 

Er werden verschillende DSS-culturen bereid, elk samengesteld uit proteolytische, niet-

proteolytische en citraatverbruikende stammen. Een hiervan bestond uit nisinevormende 

stammen tezamen met nisine-resistente. De populatiedynamiek binnen de DSS-culturen 

tijdens het kweken in melk en de experimentele bereiding van Goudse kaas toonden aan dat 

verschillende stammen goed samen konden groeien en de werking van het mengsel bleek 

stabiel. Dit opende de mogelijkheid deze mengsels toe te passen als op maat gemaakte 

starterculturen voor de vorming van specifieke smaken. Aan de andere kant bleken in 

sommige gevallen stammen in een DSS-cultuur specifiek te worden geremd, een verschijnsel 

dat nadere aandacht behoeft om dergelijke stammen in DSS-culturen te kunnen gebruiken. 

Hoofdstuk 6 beschrijfit het onderzoek naar de specifieke remming van diacetylactis-

stammen in DSS-culturen dat werd uitgevoerd om het mechanisme erachter te begrijpen. 

Deze remming bleek te worden veroorzaakt door enkele van de gebruikte wilde stammen. De 

resultaten van interactiestudies lieten zien dat de remming niet was toe te schrijven aan 

concurrentie om nutrienten tussen de stammen en dat deze niet afhing van beluchting, pH of 

afgifte van bacteriofagen door de wilde stammen. Groeiende wilde cellen vertoonden veel 

meer remmende activiteit dan de supernatanten van de groei media waar in ze gekweekt 

waren. Remming door diacetylactis-stammen werd zelfs alleen waargenomen als een 

dergelijk supernatant afkomstig was van culturen van remmende stammen in hun 

exponentiele groeifase. De supernatanten bevatten kennelijk een factor die specifiek ageerde 

tegen sommige maar niet alle diacetylactis-stammen. De voorlopige karakterisering van deze 

remmende factor liet zien dat het een verbinding was met een laag molecuul gewicht (minder 

dan 1 kDa), hitte-stabiel, maar instabiel bij opslag gedurende 24 h bij verschillende 

temperaturen. Bovendien werd deze factor geinactiveerd door proteinase K, wat erop wijst dat 

het een eiwitachtige verbinding zou kunnen zijn. De algemene kenmerken kwamen echter niet 

overeen met die van reeds bekende anti-microbiele verbindingen. Verder onderzoek dient zich 

daarom te richten op de verdere identificatie en karakterisering van de remmende factor. 

Hoofdstuk 7 gaat over het onderzoek naar de versterkte smaakvorming door het co-

cultiveren van lactococcen. Belangwekkend was de vaststelling dat de stammen niet alleen 

elkaars groei beinvloedden, maar dat zij ook elkaars stofwisseling aanvulden, wat leidde tot 

versterkte vorming van smaakstoffen. B1157 vormde slechts een matige chocoladeachtige 

smaak, terwijl SKI 10 op zichzelf deze smaak niet voortbracht. De combinatie van de twee 
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stammen leverde een sterk toegenomen chocoladeachtige smaak op. Om inzicht te krijgen in 

het onderliggende mechanisme van deze versterkte smaakvorming door het mengsel van de 

culturen werden de enzymactiviteiten onderzocht die betrokken zijn bij de omzettingsroute 

leidend tot deze smaakstoffen. De resultaten lieten zien dat door combinatie van de stammen 

de door de ene stam afgescheiden substraten direct door de andere stam konden worden 

gebruikt, waardoor de hele smaakvormingsroute werd gecompleteerd. 

Weliswaar worden reeds veel starterculturen voor zuivelproducten om verschillende 

redenen in combinatie gebruikt, zoals ter voorkoming van faagbesmetting of vermindering 

van de gevoeligheid ervoor, of voor de ogenvorming in kaas, maar tot nu toe zijn deze 

culturen niet geselecteerd om de totale metabolische activiteit voor de vorming van 

smaakstoffen te versterken. De uitkomst van dit onderzoek verschaft een nieuwe manier om 

smaakvorming te versterken of aan te passen door de kweek van geselecteerde stammen. 

De combinatie van kennis van de smaakvorming en andere functionele eigenschappen van 

wilde Lactococcus-stammen kan worden toegepast om de vorming van specifieke 

smaakstoffen in kaas gericht te versterken of te verbeteren. In hoofdstuk 8 werd de 

Lactococcus lactis-stam B851 geselecteerd om zijn vermogen de smaakstof 3-methylbutanal 

(3MeA4) te vormen, een sleutelsmaakstof in Proosdijkaas. Om de smaakintensiteit te 

beheersen en de invloed van de geselecteerde stam B851 op de ontwikkeling van de 

kaassmaak na te gaan werd deze stam eerst in verschillende doseringen beproefd, zowel in 

een DSS-cultuur als in combinatie met een mengzuursel, een zogenaamde MSS-cultuur 

(mixed strain starter). Dit mengzuursel wordt algemeen toegepast bij de bereiding van Goudse 

en Proosdijkaas. Uit de resultaten bleek dat DSS-culturen kunnen worden bereid die aan de 

ene kant stabiel zijn en aan de andere kant een selectieve toename van smaakstoffen in kaas 

opleveren, afhankelijk van de dosering van B851. Dit toont de mogelijkheid aan om een 

gewenste smaak te realiseren door een geselecteerde stam met specifieke smaakvormende 

vermogens te gebruiken. Proosdijkaas gemaakt met een nieuwe thermofiele culture, SI 138, 

die was ontwikkeld om scheurvorming in deze kaassoort tegen te gaan, kreeg een lagere 

beoordeling voor totale smaak vergeleken met kaas die bereid was met het traditionele APS-

zuursel. Door toevoeging van B851 als hulpzuursel kreeg deze kaas een hoge waardering voor 

Proosdij smaak. Gaschromatografische analyses van de vluchtige smaakstoffen bevestigden 

dat de hoeveelheid van de sleutelcomponent 3MeA4 evenredig toenam met de dosering van 

stam B851. Hieruit volgt dat stam B851 het zuursel SI 138 kan helpen bij de vorming van 

Proosdij smaak zonder het gevaar van scheurvorming. Deze methode om de 

kaassmaakvorming met behulp van geselecteerde culturen te sturen toont nieuwe 

mogelijkheden tot kaasinnovaties op basis van kennis en beheersing van 

smaakvormingsprocessen. 
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Kort samengevat, de resultaten beschreven in dit proefschrift stellen nieuwe uitdagingen 

tot de ontwikkeling van op maat gemaakte starterculturen, gebaseerd op de kennis van zowel 

de populatiedynamiek van de stammen als hun smaakvormend vermogen. 
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