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Stellingen 

1. Kennis van de volledige genensamenstelling van SeMNPV geeft nog geen inzicht in de 
specifieke biologische eigenschappen van dit virus. 
Dit proefschrift. 

2. Baculovirussen van het genus Nucleopolyhedrovirus, subtype groep II, gebruiken geen 
GP64 homoloog maar een nieuw type fusie-eiwit om insectencellen te infecteren. 
Dit proefschrift. 

3. De voortdurende wijzigingen in de schrijfwijze van virusnamen zijn eerder een reflectie 
van de wisselende samenstelling van de ICTV dan een gevolg van voortschrijdend 
wetenschappelijk inzicht. 

Murphy et al. (Eds.) (1995). In "Virus Taxonomy. Sixth Report of the International 
Committee on Taxonomy of Viruses", pp. 1-586. Springer-Verlag, Wien New York. 

Fauquet andPringle (1999) Archives of Virology 144, 2265-2271. 
van Regenmortel et al. (Eds.) (2000). In "Virus Taxonomy. Seventh Report of the 
International Committee on Taxonomy of Viruses", pp. 1-1162. Academic press, 
New York. 

4. Alhoewel de term 'fylogenetische analyse' anders doet vermoeden, geeft deze geen 
uitsluitsel over de genetische oorsprong van genen. 

Ronneberg et al. (2000). PNAS USA 97, 13690-13695. 

5. Mensen die 'lobbyen' tegen genetische modificatie ontkennen nun eigen identiteit. 
International human genome sequencing consortium (2001). Nature 409, 860-921. 
Venter et al. (2001). Science 291, 1304-1351. 

6. De grootte van een ramp bepaalt de mate van verandering in beleid. 

7. De aanduiding "rondje om de kerk" voor het slepende conflict tussen NS-directie en 
rijdend personeel wijst aan hoe dit conflict opgelost gaat worden: men moet erin of 
eraan geloven. 

Stellingen behorende bij het proefschrift 
'The genome of Spodoptera exigua 
multicapsid nucleopolyhedrovirus: 

a study on unique features' 
W.F.J. Ukel, Wageningen, 1 juni 2001 
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Het voorwoord van dit proefschrift wil ik gebruiken om een aantal mensen te 
bedanken, die ieder op nun eigen wijze hebben geholpen bij het voltooien van mijn 
promotie onderzoek. Allereerst wil ik mijn co-promoter Douwe Zuidema en beide 
promotoren Just Vlak en Rob Goldbach bedanken voor hun zeer positieve inzet en 
stimulerende begeleiding. De altijd kritische blik waarmee de manuscripten werden 
bekeken, maar ook de snelheid waarmee ze geretourneerd werden, hebben zeker 
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assistentie. Wout Rozeboom verdient een pluim voor bewezen diensten binnen maar 
zeker ook buiten kantooruren. 

Natuurlijk wil ik ook Antoine Beerens, Jeroen Witteveldt, Joke van Vugt, 
Marjolein Op den Brouw en Robert-Jan Lebbink niet onvermeld laten, die alien als 
student, vele proeven hebben uitgevoerd in het kader van dit proefschrift en waarvan 
sommigen een plaatsje hebben veroverd in dit proefschrift. Bedankt voor alle inzet en 
gezelligheid. 
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General Introduction 

Chapter 1 

General Introduction 

Introduction to the baculoviruses 
There are over a million different species of insects, of which many are infected by a 
diverse spectrum of viruses. Although most of these insect viruses have little direct 
effect on human health, they nevertheless represent important viruses from an 
environmental point of view. Viral diseases in beneficial insects can lead to ecological 
imbalance, while diseases of insect pests are often welcomed as a means of reducing 
agricultural and medical problems. Baculoviruses are beneficial viruses by their 
potential to control insect pests of mainly moth and butterfly larvae. These larvae 
often cause severe feeding damage to agriculturally important crops, ornamental 
plants or to forest trees. Along with the research to improve their efficacy and safety 
as bio-pesticides came the use of these viruses and their genes in both basic and 
applied biomedical as well as veterinary research because of their ability to produce 
large quantities of proteins from foreign genes. This thesis focuses on several 
fundamental aspects of the baculovirus Spodoptera exigua multicapsid 
nucleopolyhedrovirus (SeMNPV), such as genome organization, the viral infection 
route and characterization of genes unique to this virus. In this chapter the baculovirus 
family will be introduced and the outline of the thesis be given. 

Host range and persistence in nature 
Baculoviruses exclusively infect arthropods, predominantly holometabolous insects. 
Nowadays baculovirus diseases have been described in over 800 different species of 
insects, reflecting the enormous diversity in baculoviruses. Most baculoviruses have 
been isolated from insect species of the lepidopteran order (butterflies and moths). In 
addition, some baculoviruses are also pathogenic for members of the order 
Hymenoptera (sawflies), Diptera (flies, mosquitoes), Coleoptera (beetles) and the 
crustacean order Decapoda (shrimp) (Adams and McClintock, 1991; Federici and 
Maddox, 1996; Federici, 1997; Summers, 1977). The majority of baculoviruses has a 
very limited host range and infects only closely related insects within a single order 
(Table 1.1). Although baculoviruses are commonly isolated from insects, they are also 
designed to survive outside their host. They can reside in soil, water or in the crevices 
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of plants for years before infecting arthropods that inhabit terrestrial or marine 
ecosystems (Adams and McClintock, 1991). 

Table 1.1 Host range of selected baculovirus in insects. 

Virus species 

Autographa californica MNPV 

Anagrapha falcifera MNPV 

Bombyx mori NPV 

Mamestra brassicae MNPV 

Spodoptera litoralis MNPV 

Orgyia pseudotsugata MNPV 

Xestia c-nigrum GV 

Cydia pomonella GV 

Spodoptera exigua MNPV 

Buzura suppressaria SNPV 

Spodoptera litura MNPV 

Lymantria dispar MNPV 

Plutella xylostella GV 

Insect family 

13 

11 

7 

5 

2 

2 

Insect species 

73 

31 

9 

44 

4 

3 

6 

4 

1 

1 

1 

1 

1 

Reference 

Adams & McClintock, 1991 

EDWIP 

EDWIP 

EDWIP 

EDWIP 

EDWIP 

Goto et al., 1992 

EDWIP 

EDWIP 

EDWIP 

EDWIP 

EDWIP 

EDWIP 

Virus host ranges are derived from the Ecological Database of the World's Insect Pathogens (EDWIP) 

on http://insectweb.inhs.uiuc.edu/Pathogens/EDWIP/index.html. 

Taxonomy and structure 
The baculoviruses are a family (Baculoviridae) of large, enveloped double-stranded 
DNA viruses that are characterized by their ability to form proteinaceous occlusion 
bodies (OBs) within infected cells. The family is taxonomically subdivided into two 
genera, Nucleopolyhedrovirus (NPV) and Granulovirus (GV), based upon distinct OB 
morphology (Blissard et al, 2000). The NPVs produce large (ranging in size from 
0.15-15 um) polyhedron-shaped OBs called polyhedra that contain many virions, 
whereas the GVs have smaller (about 0.3 x 0.5 um) ovicylindrical-shaped OBs called 
granules that normally contain a single virion. A baculovirus virion consists of one or 
more rod-shaped nucleocapsids (30-60 nm in diameter and 250-300 nm in length) that 
have a distinct structural polarity and are enclosed within an envelope. The name 
baculovirus (from baculum meaning stick) is derived from these rod-shaped 
nucleocapsids. The latter are composed of a single molecule of circular viral DNA of 
approximately 80-180 kbp in size packaged in a rod-shaped protein structure. The 

http://insectweb.inhs.uiuc.edu/Pathogens/EDWIP/index.html
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NPVs are designated as single (S) or multiple (M) depending on the potential number 

of nucleocapsids (NC) packaged in an occluded virion. Although this differentiation is 

commonly used in describing NPVs, the biological significance of these morphotypes 

is unclear. Besides the virions present in OBs, baculoviruses usually produce a second 

type of virion known as the budded virus (BV) (Fig. 1.1). 

Budded Virus 

BV specific 
Components 

gp64 Envelope' 
Fusion Protein 

(gp64 EFP) 

(BV) 

Virion Envelope 
Lipid Composition (%) 

Common Virion 
Components 

Basic DNA Binding 
Protein (p6.9) 

Occ lus ion Der ived Virus 
(ODV) 

Major Capsicl Proteins 
(vp39; p80; p24) 

- Capsid End Structure — 
(ORF1629[pp78/83)) 

ODV specific 
Components 

- Envelope proteins 
(ODV E18/35; E25; 

EC27-; E35; E56; E66) 

13.2 
10.7 
i?.:t 

Virion Envelope 
Lipid Composition {% ) 

" alsa present in ODV vspsid 

Fig. 1.1 Structural composition of the budded virus and the occlusion derived virus. 
Figure adapted from Funk et al. (1997). Proteins common to both phenotypes are indicated in the 

middle of the figure. Proteins specific to BV or ODV are indicated on the left and right, respectively. 

Lipid compositions of the BV and ODV envelopes are derived from AcMNPV infected Sf-9 cells 

(Braunagel and Summers, 1994) and indicated (LPC, LysoPhosphaditylCholine; SPH, sphingomyelin; 

PI, P-inositol; PS, P-serine; PE, P-ethanolamine). 

To date, twelve different baculovirus species have been definitely assigned to the 

NPV genus and five to the GV genus (Blissard et ah, 2000). Among these are the 

NPVs Autographa californica (Ac), Bombyx mori (Bm), Orgyia pseudotsugata (Op), 

Lymantria dispar (Ld) and Spodoptera exigua (Se) as well as the GVs Xestia c-

nigrum (Xc) and Trichoplusia ni (Tn). All baculoviruses are named after the host from 

which they were first isolated. From a taxonomic viewpoint this is rather confusing 

because the same virus may infect several insect species and be called by a variety of 

names. Therefore, it is necessary to establish the identity of baculovirus species for 

example by genome sequencing to allow a definite taxonomic status. In recent years, 

the increasing amount of sequence data available enabled preliminary studies of the 

phylogeny of this virus family. Such studies have now been carried out using the 
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sequences of several different genes. These studies confirmed that NPVs and GVs 
represent two well-separated clades. In addition, based upon the sequences of the 
polyhedrin/granulin (Zanotto et al., 1993), ecdysteroid UDP-glucosyltransferase 
(Chen et al., 1997), late essential factor-2 (Chen et al., 1999) and DNA polymerase 
(Bulach et al., 1999) genes, a further subdivision has been proposed distinguishing 
lepidopteran NPVs into two distinct groups, named group I and II. The baculoviruses 
AcMNPV (Ayres et al., 1994), BmNPV (Gomi et al, 1999) and OpMNPV (Ahrens et 
al., 1997) are members of group I, whereas SeMNPV (IJkel et al., 1999) and 
LdMNPV (Kuzio et al., 1999) belong to group II. For the further purposes of this 
thesis, we focus mainly on the NPVs, which have the widest ranges of hosts and have 
been studied most intensively. 

Infection cycle 
In the environment, NPVs are commonly found on plant surfaces and in the soil as 
stable polyhedra. A NPV infection starts with the uptake of polyhedra by the insect 
larvae. Upon ingestion the OBs dissolve in the alkaline environment of the larval 
midgut liberating numerous enveloped virions, which are termed 'occlusion derived 
virus' (ODV). After direct membrane fusion of the ODV virion envelope with the 
microvilli of midgut columnar epithelial cells (Granados, 1978; Granados and Lawler, 
1981; Horton and Burand, 1993), the virions are uncoated and transported to the 
nucleus, where gene expression, DNA replication and assembly of progeny NCs occur 
(Fig. 1.2). Progeny NCs can be observed as early as 8 h post infection (p.i.) 
assembling within and around a dense virogenic stroma that develops in the enlarged 
nucleus upon infection. The newly assembled NCs then migrate from the virogenic 
stroma towards the plasma membrane on the basal side of the epithelial cell. 

During infection of group I NPVs, a viral encoded major envelope glycoprotein, 
GP64, is synthesized and transported to the plasma membrane (Volkman and 
Goldsmith, 1984; Volkman et al, 1984; Blissard and Rohrmann, 1989; Oomens et al., 
1995). When a single NC buds from the basal side of the epithelial cells into the 
hemocoel or tracheoblast, it acquires a loosely adhering plasma membrane envelope 
containing the GP64 protein. This protein is required for efficient budding (Monsma 
et al., 1996; Oomens and Blissard, 1999). This second virion phenotype is termed 
'budded virus' (BV) and believed to be essential for systemic infection, mediating 
movement of the virus from midgut to other tissues (fat body, muscle, trachea, 
hemocytes, epithelial cells) and propagating the infection from cell to cell within the 
infected animal (Flipsen, 1995; Keddie et al., 1989; Granados and Lawler, 1981). 
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Fig. 1.2 The replication cycle of a baculovirus, specifically a MNPV. 
Figure adapted from Miller (1996). (A): The process of budded virus (BV) infection of a cultured cell. 

A BV attaches to the cell surface (1) and enters by endocytosis (2). As the endosome acidifies, virus 

and endosomal envelopes fuse (3), releasing nucleocapsids (NCs) into the cytoplasm. NCs move to 

the nucleus (4) where they interact with a nuclear pore (5). Upon entering the nucleus, the core is 

released (6) and the viral DNA transcribed (7), replicated and packaged into NCs (8) in association 

with the virogenic stroma (VS). During the late stage of infection, NCs leave the nucleus (9) and 

travel to the plasmamembrane where they bud (10) to produce BV (11). During the very late phase, 

NCs are enveloped within the nucleus (12) and then embedded in a polyhedrin matrix to form 

occlusion bodies (13). (B): The process of infection of a midgut epithelial cell. The polyhedrin matrix 

of an ingested occluded virus (OV) is dissolved in the midgut lumen, releasing (1) occlusion derived 

virions (ODV) which cross the peritrophic membrane (2). The membranes of the ODVs fuse with the 

membranes of the microvilli of the cell, releasing NCs into the cytoplasm. The remaining events 

appear to be similar to those in cultured cells, except that little polyhedra formation occurs in 

columnar cells of the midgut epithelium. 

BVs of group I NPVs infect other tissues through the endocytotic pathway 
(Volkman and Goldsmith, 1985). After BV binding to the cell membrane and uptake 
into an endosome (Hefferon et al., 1999) the acidification of the endosome triggers 
GP64-mediated fusion of the viral and endosomal membrane (Blissard and Wenz, 
1992; Kingsley et ah, 1999; Plonsky et al, 1999). Then the nucleocapsids are released 
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into the cytoplasm and are transported to the nucleus, where viral transcription and a 
second round of DNA replication occur. This results in the assembly of progeny NCs 
that may have two fates. They may move out of the nucleus into the cytoplasm and 
bud through the plasma membrane (BV phenotype) or they may be enveloped de novo 
in the nucleus and later be occluded into polyhedra (ODV phenotype). So, the two 
NPV virion phenotypes differ in virion morphology, protein composition (Fig. 1.1), 
tissue specificity and the mode of viral entry into host cells. Typically, OBs are 
released on the death of the infected cell. 

A NPV infection in the insect initially results in few symptoms and infected 
larvae continue feeding. As the viral infection progresses, molting of the larval instars 
is blocked by the production of a virus encoded enzym, UDP-glucosyltransferase, 
which inactivates insect ecdysteroids. The late stages of infection are characterized by 
an enormous production of polyhedra within the infected cells. At the end of the 
infection the insect becomes sluggish and ceases feeding. Two virally encoded 
enzymes, a cathepsin-like protease and a chitinase enhance the disintegration of the 
larvae, by degrading connective and epidermal tissue of the larva. Finally, the larvae 
die within four days to three weeks p.i. depending on the virulence of the virus for the 
insect and abiotic factors, such as temperature. 

Gene expression and DNA replication 
Baculovirus gene expression is temporally regulated in a cascaded manner. Two main 
classes of genes are recognized: early and late (Blissard and Rohrmann, 1990). Early 
genes may be further subdivided as immediate and delayed early, while late genes are 
distinghuished as late and very late. The gene classes occur dispersed on the 
baculovirus genome, and both strands of the genome are involved in coding functions. 
Baculovirus genes are frequently clustered into transcription units that produce 
overlapping RNAs both in the same and in the opposite orientation. The differential 
expression of baculovirus genes may be influenced by these overlapping transcripts. 

Early gene transcription starts before the initiation of replication of the genome 
and utilizes the host RNA polymerase II complex (Friesen, 1997). The transcription of 
many early genes starts with the binding of the polymerase to a 5'-TATAA-3'-
recognition motif and the transcript is initiated within a conserved 5'-
ATCA(G/T)T(C/T)-3' promoter sequence. The transcription of the early genes can be 
enhanced by so-called upstream or downstream activating region (UAR or DAR) 
elements. One of the first genes transcribed is the major immediate early gene, ie-1, 
which is essential for the stimulation of expression of other early genes necessary for 
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DNA replication. The mRNA of this gene appears to be spliced in some baculoviruses 
resulting in several differentially expressed forms of the IE1 protein. Although the IE1 
protein plays an essential role in DNA replication and gene transactivation, splicing 
does not appear to be a general phenomenon in baculovirus transcription regulation. 

Once DNA replication starts there is a switch in transcription patterns although 
many of the early gene products are involved in the stimulation of late gene 
transcription. The replication of the viral genome starts at putative replication origins 
consisting of repeated sequences found at multiple locations within the genome. These 
sequences, termed homologous repeat (hr) sequences do not appear to be highly 
conserved between different baculovirus species. Hr regions are also enhancers of 
transcription (Kool et al, 1995). Single copy, non-hr putative replication origins have 
also been detected. Following initiation of viral DNA replication, late gene expression 
is initiated and the transcription of host genes is repressed. So far, nineteen virus-
encoded proteins known as Late Expression Factors (LEFs) are identified, which are 
necessary for very late gene expression. The transcription of late genes initiates within 
or near a highly conserved 5'-(A/T/G)TAAG-3' motif, which functions as a 
transcriptional start site. In contrast to early genes, late genes are transcribed by a viral 
RNA polymerase. This polymerase is a-amanitin resistent and composed of at least 
four virus encoded proteins, namely LEF4, LEF8, LEF9 and P47 (Guarino et al., 
1998). The majority of the late genes encode viral structural proteins or proteins 
involved in virion morphogenesis. Some of the very late genes encoding occlusion-
specific proteins, such as polyhedrin, are transcribed at very high levels at the end of 
the infection process. 

Genomics of baculoviruses 
Baculoviruses have circular, double stranded, supercoiled DNA genomes that vary in 
size from 80 kbp to 180 kbp. The nucleotide sequences of two MNPVs, AcMNPV 
(Ayres et al., 1994) and OpMNPV (Ahrens et al., 1997) were determined at the onset 
of this thesis. The genome of AcMNPV is composed of 133,894 bp, potentially 
encoding 154 proteins (Ayres et al, 1994). Twenty-eight ORFs are unique to 
AcMNPV, whereas the other ORFs have homologues in OpMNPV. Eight hr regions, 
implicated as transcriptional activators and as putative origins of replication, are 
present in the AcMNPV genome. The OpMNPV genome contains of 131,990 bp and 
potentially encodes 152 proteins (Ahrens et al, 1997). Twenty-six genes are unique to 
OpMNPV. Only five hr sequences are present, dispersed throughout the OpMNPV 
genome. The genomes of these group I NPVs (Zanotto et al, 1993) are basically 
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similar in size, gene content and arrangement, except for some small gene inversions 
and insertions (or deletions). 

History on Spodoptera exigua and SeMNPV 
The beet armyworm (Fig. 1.3), Spodoptera exigua (Hiibner), originates in Southeast 
Asia but has unintentionally been introduced in other regions. It was first discovered 
in North America in Oregon (approx. 1876), reached Florida in 1924 and since then 
has invaded the southern half of the United States. In 1976 the insect was accidently 
introduced in the Netherlands from Florida with chrysanthemum cuttings and became 
rapidly a serious pest of vegetable and flower crops in greenhouses. The beet army 
worms causes damage to e.g. sweet pepper, tomato and cabbage lettuce but also to 
chrysanthemum, rose and gerbera plants. The larvae destroyes not only the seedlings 
and flowers but also consumes large portions of the leaves and induced stunting by 
feeding on buds. 

Fig. 1.3 The beet army worm {Spodoptera exigua). 
Beet armyworms vary in color but are usually a shade of olive 

green with many fine, wavy, light colored stripes down the 

back and sides. The body surface is smooth and almost 

hairless. Mature may be up to 4 cm. Moths lay their eggs in 

scale-covered on leaf surfaces. When eggs first hatch, the feed 

in groups near the egg mass, skeletonizing or completely 

consuming leaves. As they grow older, larvae disperse and 

move toward the center of the plant. Beet armyworms build up 

as weather warms and are most common on late summer and 

fall crops. 

Since this insect shows broad insecticide resistance (Smits, 1987) alternative 
strategies, such as biological control using baculoviruses, have been explored. From 
Californian populations of beet armyworm the baculovirus SeMNPV had been 
isolated (Hunter and Hall, 1968; Smith and Summers, 1978; Gelernter and Federici, 
1986b), which was later called SeMNPV-USl (Mufloz et al, 1998). Comparison of 
SeMNPV to other NPVs showed that it was five times more virulent than other 
SeMNPV isolates and also kills the larvae faster (Smits and Vlak, 1988b). For these 
reasons and the fact that SeMNPV is monospecific (only infectious for S. exigua) it 
was considered a most suitable candidate as biological control agent of the beet 
armyworm. Nowadays, preparations of SeMNPV, called Spod-X, are registered for 
use in greenhouses on ornamental plants. In 1999 Spod-X is also allowed as biological 
pesticide on vegetable crops. 
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Scope of the thesis 
Along with the development of SeMNPV as biological insecticide, research was 
initiated on fundamental molecular aspects of this virus, such as function and 
regulation of genes, genome organization, mode of entry, DNA replication and virus 
factors that determine host range and virulence. This thesis aims at the further 
molecular characterization of the baculovirus SeMNPV to gain insight in its genetic 
make-up in comparison to those of other baculoviruses. This enables evalution of the 
preliminary taxonomic status of SeMNPV as a group II NPV and may reveal the 
assumed molecular basis of its specific biological properties. 

At the onset of this thesis research, the complete nucleotide sequence of two 
group I NPVs, namely AcMNPV and OpMNPV, was known. However, sequence 
information on group II NPVs was sketchy and limited to some individually 
characterized genes. For SeMNPV the sequences of a number of genes, such as 
polyhedrin (van Strien et al., 1992), plO (Zuidema et al., 1993), ubiquitin (van Strien 
et al, 1996), ribonucleotide reductase large subunit (van Strien et al., 1997) andp!43 
(Heldens et al., 1997b), had been elucidated and characterized. The location of these 
characterized genes on the SeMNPV genome, based on a physical map constructed for 
the American-isolate (US1), differed considerably from that of AcMNPV and 
OpMNPV, suggesting that the genetic organization of SeMNPV is markedly different. 
It was noted, however, that among baculoviruses the genomic region located in the 
'centre' of the linearized genome was highly conserved (Heldens et al., 1997b). To be 
able to investigate the genetic difference of SeMNPV with group I NPVs and the 
molecular background of its biological properties, the complete sequence of the 
SeMNPV genome is elucidated (Chapter 2). The coding potential of SeMNPV is 
determined and the individual genes are compared to other baculovirus genes. Also 
the relative gene order is analysed as a second independent means of measuring the 
relatedness between baculoviruses. 

The availability of the full DNA sequence of the SeMNPV genome allowed us to 
identify genes for which no homologs are found as yet among the Baculoviridae. As 
these genes may play key roles in biological properties specific to SeMNPV, such as 
host range and virulence, a selected set of genes has been studied into further detail 
(Chapter 3). These genes (Sell6 and Sell7) are expressed and their possible 
functions during the viral infection process are discussed. The temporal expression 
patterns of these unique genes are analysed and their possible appearance in SeMNPV 
budded or occlusion-derived virus is investigated. The research on unique genes is 
extended by the characterization of Sel7/18, so far unique among NPVs, but 
strikingly, with a homolog in a distantly related granulovirus (Chapter 4). The 
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Sel7/18 transcript is characterized, the subcellular location of its product determined 
and its importance discussed. 

The comparison of AcMNPV to SeMNPV in Chapter 2 reveals also that the 
latter lacks a homolog of the gp64 BV envelope fusion protein (EFP) gene. In 
AcMNPV and OpMNPV, this protein plays a pivotal role in BV entry, spread of the 
infection in the insect and is required for efficient virus budding. In Chapter 5 the 
mechanism of entry into target cells is therefore examined and the identification of the 
SeMNPV EFP described. This investigation indicates that SeMNPV uses a similar 
entry mechanism as group I NPVs but other proteins. 

Due to the inability of S. exigua cell lines to properly replicate and maintain the 
SeMNPV genome stably, conventional techniques do not result in viable 
recombinants with biological activity (Heldens et al., 1996). This technical difficulty 
hampers the research on the function of specific SeMNPV genes. The potential of a 
novel strategy to generate SeMNPV recombinants is explained in Chapter 6. With the 
molecular genetic information of SeMNPV available, the possibility whether 
recombinants with improved insecticidal properties can be generated is investigated. 
Furthermore, experiments to obtain the first SeMNPV recombinant are described. 

In Chapter 7 the experimental data obtained during this PhD research are 
discussed in the context of recent literature data and current insights on baculovirus 
taxonomy and diversity. Also, a comparison is drawn between the genomes of 
baculoviruses and those of herpesviruses to extract common features in the genetic 
make-up of large DNA viruses. 
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Chapter 2 

Sequence and organization of the Spodoptera exigua 
multicapsid inieleopolyhedrovirus genome 

The nucleotide sequence of the DNA genome of Spodoptera exigua multicapsid 
nucleopolyhedrovirus (SeMNPV), a group IINPV, was determined and analysed. The 
genome contains 135611 bp and has a G+C content of 44 mol%. Computer-assisted 
analysis revealed 139 ORFs of 150 nucleotides or larger; 103 have homologues in 
Autographa californica MNPV (AcMNPV) and a further 16 have homologues in other 
baculoviruses. Twenty ORFs are unique to SeMNPV. Major differences in SeMNPV 
gene content and arrangement were found compared with the group I NPVs 
AcMNPV, Bombyx mori (Bm) NPV and Orgyia pseudotsugata (Op) MNPV and the 
group II NPV Lymantria dispar (Ld) MNPV. Eighty-five ORFs were conserved 
among all five baculoviruses and are considered as candidate core baculovirus genes. 
Two putative p26 and odv-e66 homologues were identified in SeMNPV, each of 
which appeared to have been acquired independently and not by gene duplication. The 
SeMNPV genome lacks homologues of the major budded virus glycoprotein gene 
gp64, the immediate-early transactivator ie-2 and bro (baculovirus repeat ORF) genes 
that are found in AcMNPV, BmNPV, OpMNPV and LdMNPV. Gene parity analysis 
of baculovirus genomes suggests that SeMNPV and LdMNPV have a recent common 
ancestor and that they are more distantly related to the group I baculoviruses 
AcMNPV, BmNPV and OpMNPV. The orientation of the SeMNPV genome is 
reversed compared with the genomes of AcMNPV, BmNPV, OpMNPV and 
LdMNPV. However, the gene order in the 'central' part of baculovirus genomes is 
highly conserved and appears to be a key feature in the alignment of baculovirus 
genomes. 

This chapter has been published as: 
IJkel, W. F. J., van Strien, E. A., Heldens J. G. M., Broer, R., Zuidema, D., Goldbach, 
R. W., and Vlak, J. M. 
Journal of General Virology (1999) 80, 3289 - 3304. 
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Introduction 
The Baculoviridae are a family of rod-shaped viruses with large circular, covalently 

closed, double-stranded DNA genomes. The family is subdivided into two genera, 

Nucleopolyhedrovirus (NPV) and Granulovirus (GV), distinguished by occlusion 

body morphology (Volkman et al, 1995). The NPVs produce large, polyhedron-

shaped occlusion bodies called polyhedra that contain many virions, whereas the GVs 

have smaller occlusion bodies called granules that normally contain a single virion. 

The NPVs are designated as single (S) or multiple (M) depending on the potential 

number of nucleocapsids packaged in a virion. 

Baculoviruses almost exclusively infect insects, belonging mainly to the orders 

Lepidoptera, Hymenoptera and Diptera (Adams and McClintock, 1991). SeMNPV 

infects only a single insect species, the beet army worm Spodoptera exigua 

(Lepidoptera: Noctuidae), a worldwide insect pest of agricultural importance. 

SeMNPV differs from many other baculoviruses in that it is monospecific and highly 

virulent for S. exigua larvae (Smits, 1987). However, the molecular mechanism 

associated with these properties is unknown. Therefore, it is important at this point to 

study the genetic information available for the virus and the expression of its genes. 

The best-characterized baculoviruses are Autographa californica (Ac) MNPV 

(Ayres et al, 1994), Bombyx mori (Bm) NPV (Gomi et al, 1999), Orgyia 

pseudotsugata (Op) MNPV (Ahrens et al, 1997) and Lymantria dispar (Ld) MNPV 

(Kuzio et al, 1999). The genome of AcMNPV is composed of 133894 bp, potentially 

encoding 154 proteins (Ayres et al, 1994). Fourteen ORFs are unique to AcMNPV, 

whereas most of the other ORFs have baculovirus homologues. Eight homologous 

regions (hr), implicated as transcriptional activators and as putative origins of 

replication, are present in the AcMNPV genome. BmNPV is 128413 bp in size and 

contains 136 putative genes (Gomi et al, 1999). Only four ORFs are unique to 

BmNPV, all other ORFs possessing a baculovirus homologue. Five copies of an 

AcMNPV ORF2 homologue, named bro, and seven hr sequences are present, 

dispersed along the BmNPV genome. The OpMNPV genome contains 131990 bp and 

potentially encodes 152 proteins (Ahrens et al, 1997). Twenty-six genes are unique to 

OpMNPV. OpMNPV contains one complete bro gene and two truncated ORFs that 

show homology to the bro genes. Only five hr sequences are present, dispersed 

throughout the OpMNPV genome. AcMNPV, BmNPV and OpMNPV belong to the 

group I NPVs (Zanotto et al, 1993). The genome of LdMNPV (group II) is composed 

of 161046 bp and contains 163 ORFs (Kuzio et al, 1999). Forty-seven genes are 

unique to LdMNPV. The large size of the LdMNPV genome is largely due to the 

presence of 13 hr sequences and 16 bro gene homologues. 

14 
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A detailed physical map was recently constructed for an American isolate of 
SeMNPV (US1) in order to map a mutant SeMNPV. This mutant was obtained within 
the first passage in insect cell culture. It has a single deletion of approximately 25 kb 
and is unable to infect S. exigua larvae (Heldens et al, 1996). The sequences of a 
number of SeMNPV genes, including polyhedrin (van Strien et al, 1992), plO 
(Zuidema et al, 1993), ubiquitin (van Strien et al, 1996), ribonucleotide reductase 
large subunit (van Strien et al, 1997) and pi43 (Heldens et al, 1997b), have been 
elucidated and characterized. The locations of these genes on the SeMNPV genome 
differ considerably from those of other baculoviruses, such as AcMNPV, BmNPV, 
OpMNPV and LdMNPV, suggesting that the genetic organization is markedly 
different. It was noted, however, that among baculoviruses the genomic region located 
in the 'centre' of the linearized genome was highly conserved (Heldens et al, 1997b). 
Six hr sequences have been identified on the SeMNPV genome, which are similar in 
structure to those of other baculoviruses (Broer et al, 1998). Here, we present the 
complete sequence and gene organization of the SeMNPV genome and compare them 
to other baculoviruses by genomic and phylogeny analysis. 

Results and discussion 

Nucleotide sequence analysis of the SeMNPV genome 
The SeMNPV genome was assembled into a contiguous sequence of 135611 bp, in 
good agreement with a previous estimate of 134.1 kb based on restriction enzyme 
analysis and physical mapping (Heldens et al, 1996). The adenine residue at the 
translational initiation codon of the polyhedrin gene was designated previously as the 
zero point of the physical map of SeMNPV (Heldens et al, 1996). The orientation of 
the physical map was, by convention, set by the location of the/?70 gene (Vlak and 
Smith, 1982). 

One hundred and thirty-nine ORFs, defined as methionine-initiated ORFs 
encoding more than 50 amino acids and with minimal overlap with other ORFs, were 
present on the SeMNPV genome (Fig. 2.1). The SeMNPV ORFs were, in general, 
tightly packed with minimal intergenic distances and their orientation was distributed 
almost evenly along the genome (55% clockwise, 45% anticlockwise; Fig. 2.1). The 
locations, orientations and sizes of the predicted ORFs are shown in detail in Table 
2.1. The distribution of the ATG, TAG and TGA codons in the SeMNPV sequence 
was not random, while the TAA frequency (1.58%) was not significantly different 
from the expected random distribution (1.56%). The ATG codon (1.77%) and TGA 
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Fig. 2.1 Circular map of the SeMNPV DNA genome showing genomic organization. 
Sites for restriction enzyme Xba\ are shown; fragments are indicated A to R according to size from 

the largest to the smallest (Heldens et ai, 1996). The positions of the 139 ORFs identified are 

indicated by arrows that also represent the direction of transcription. Shaded arrows indicate ORFs 

with homologues in other baculoviruses in the protein sequence databases. Open arrows represent 

ORFs unique to SeMNPV. The numbers alongside the ORFs represent the SeMNPV ORF number 

(see Table 2.1). The positions of the hr sequences are indicated by black boxes. The scale on the inner 

circle is in map units. 

stop codon (1.78%) occurred more frequently in the SeMNPV sequence, while there 
was paucity of TAG stop codons (0.83%), as is the case for AcMNPV (Ranjan and 
Hasnain, 1995). Predicted ORFs represented 90% coding density, with a mean ORF 
length of 875 nucleotides. Twenty ORFs had small (<25 aa) overlaps with adjacent 
ORFs. One hundred and nineteen (86%) of the 139 SeMNPV ORFs had an assigned 
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function or had homologues among other baculovirus genes (Table 2.1). Twenty ORFs 
are so far unique to SeMNPV. These ORFs accounted for 7% (9.3 kb) of the genome. 
Six hr sequences similar in structure to those of other baculovirus hr sequences have 
been identified previously (Broer et al, 1998) and no further hr sequences were 
detected in the complete sequence. Furthermore, one non-hr, putative origin of 
replication, is present on the Xbal-F fragment (Heldens et al., 1997a). The positions of 
the hr sequences are presented in Fig. 2.1. 

Table 2.1 Potentially expressed ORFs in SeMNPV strain US1. 
The positions and orientations of 139 potentially expressed ORFs in the SeMNPV genome are shown. 

The presence of baculovirus early (E, E2) and late (L) promoter elements, located within 120 nt of the 

ATG, is indicated. E and E2 indicate a TATA sequence with CAKT (E) or CGTGC (E2) start site 

sequence 20-40 nt downstream. L indicates the presence of a DTAAG motif. Transcription elements 

were identified by the FINDPATTERNS program of GCG. Homologues ORFs in the genomes of 

AcMNPV (Ayres et al, 1994), BmNPV (Gomi et al, 1999), OpMNPV (Ahrens et al., 1997) and 

LdMNPV (Kuzio et al., 1999) are shown with the percentage amino acid sequence identity to the 

homologous ORF. The different clusters identified by GeneParityPlot analysis (Fig. 2.2) are shown. 
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42 

55 

49 

24 

60 

34 

Cluster 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

9 

9 

9 

9 

9 

9 

10 

10 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 

11 
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ORF1 Name 

110 iap-3 

111 

112 lef-8 

113 

114 odv-e66 

115 p47 

116 

117 

118 

119 lef-Il 

120 39K/pp3i 

121 

122 

123 ubiquitin 

124 

hr6 

125 

126 dbp 

127 /e/-6 

128 

129 p26 

130 p70 

131 p74 

132 ie-1 

133 

134 

135 odv-ec27 

136 ot/v-e7S 

137 

138 ie-0 

' 139' rr-1 

Position 

105825>106766 

106826 <108073 

108094> 110814 

110859<111032 

111066< 113123 

113169> 114371 

114465>115142 

115249>115824 

115874>116659 

116650 > 116964 

116927>117880 

117908>118198 

118299<118508 

118496<118738 

118828>119391 

119442 120222 

120249<120656 

120802>121788 

121816> 122307 

122347<122757 

122862>123698 

123740 > 124006 

124099<126060 

126197<128341 

128374>128976 

129067 <T29345 

129360<130205 

130260<130502 

130540<131922 

131937<132671 

132794<135106 

Length 

(aa) 

313 

415 

906 

57 

685 

400 

223 

191 

261 

103 

317 

96 

69 

80 

187 

135 

328 

163 

136 

278 

88 

653 

714 

200 

92 

281 

80 

460 

244 

869 

Pred. 

Mr 

36082 

47226 

105197 

7228 

78650 

46935 

26020 

22537 

31360 

12212 

35754 

11525 

7693 

9364 

21960 

14996 

37991 

19098 

16347 

31121 

9607 

74214 

82059 

22358 

10576 

32610 

8546 

54122 

28719 

99542 

Prom. 

L 

L 

E2, L 

E 

E 

E, L 

L 

L 

L 

L 

L 

L 

E, L 

E, L 

E 

E2, L 

L 

L 

L 

L 

E, L 

Homologous O R F s 

Ac 

51 

50 

43 

46 

40 

38 

37 

36 

35 

34 

26 

25 

28 

29 

136 

137 

138 

147 

146 

145 

144 

143 

142 

141 

|Bm|Op| 

35 

40 55 

39 54 

34 48 

37 50 

31 45 

29 22 

28 23 

27 24 

26 25 

25 26 

17 42 

16 43 

19 40 

20 39 

113132 

114133 

115134 

123145 

122144 

121142 

120141 

119140 

118139 

117138 

32 

Ld 

139 

51 

131 

48 

46 

45 

44 

43 

42 

36 

47 

38 

40 

41 

27 

15 

16 

17 

18 

19 

20 

21 

148 

Identity 

Ac 

24 

64 

34 

29 

56 

58 

36 

34 

73 

35 

34 

31 

28 

32 

32 

33 

56 

29 

34 

46 

58 

56 

52 

31 

M 
23 

64 

33 

29 

55 

57 

35 

38 

73 

36 

34 

31 

28 

36 

30 

32 

56 

28 

34 

45 

58 

50 

52 

30 

to homologues (%) 

Op 

48 

23 

59 

33 

30 

53 

54 

34 

35 

77 

41 

31 

32 

25 

35 

33 

32 

57 

29 

35 

46 

51 

46 

50 

31 

26 

Ld 1 Other 

26 

65 

32 

66 

59 

42 

40 

74 

46 

33 

44 

33 

39 

53 

59 

33 

38 

53 

58 

58 

52 

36 

28 

Cluster 

11 

11 

12 

12 

12 

12 

12 

13 

13 

14 

14 

14 

14 

14 

14 

14 

* HzSNPV ORF name taken from Le et al. (1997). Percentage amino acid identity to HzSNPV hoar 

ORF is shown. 

% LsNPV ORF name taken from Wang et al. (1995). Percentage amino acid identity is shown to 

LsNPV pl3 and the translated sequence form the pl3 to the xe ORF (Wang et al, 1995; GenBank 

U30303 and AB000383). 

t In the sequenced LdMNPV strain, there is a frame-shift in the^? gene. The two resulting ORFs were 

indicated by the same number (ORF63) by Kuzio et al. (1999). However, the amino acid identity of 

the SeMNPVj£> gene to the resulting LdMNPV homologues is not the same. The values refer to the 

smaller and larger LdMNPV homologues, respectively. 
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Comparison of the SeMNPV gene content with that of other baculoviruses 
The SeMNPV genome was compared with those of AcMNPV, BmNPV, OpMNPV 
and LdMNPV. These five genomes have a cumulative total of 245 different ORFs, of 
which 86 are unique to individual baculovirus genomes and 85 are conserved among 
the above baculoviruses. Putative functions have been assigned to approximately half 
of the common baculovirus genes, suggesting that these genes are required for basic 
baculovirus features, such as virus structure, transcription, DNA replication and 
auxiliary functions on the cellular or organism level (Table 2.1). 

The overall characteristics of the different baculovirus genomes are shown in 
Table 2.2. The G+C content of the SeMNPV genome was 43.8 mol%, which is similar 
to that of AcMNPV (Ayres et al, 1994) and BmNPV (Gomi et al, 1999) but much 
lower than that of OpMNPV (Ahrens et al, 1997) and LdMNPV (Kuzio et al, 1999) 
(Table 2.2). The smaller number of SeMNPV ORFs compared with AcMNPV and 
OpMNPV, the genomes of which are similar in size, is caused by the absence of a 
number of small putative ORFs. In AcMNPV and OpMNPV, these small putative 
ORFs are located between larger ORFs. The larger ORFs have homologues in many 
other baculoviruses. SeMNPV does not possess these smaller ORFs, but does possess 
the larger ORFs. This suggests that the numbers of ORFs in AcMNPV and OpMNPV 
may be overestimates and that these smaller putative ORFs may not be functional. The 
frequency of different temporal consensus promoter elements showed considerable 
variation between baculoviruses, except for the late promoter motif (Table 2.2). 

Table 2.2 Characteristics of different baculovirus genomes. 
Data for baculoviruses other than SeMNPV taken from Ayres et al. (1994) (AcMNPV), Gomi et al. 

(1999) (BmNPV), Ahrens et al. (1997) (OpMNPV) and Kuzio et al. (1999) (LdMNPV). 

Characteristic 

Size (kbp) 

G+C content (mol%) 

ORFs (total) 

Unique ORFs 

Number of hr sequences 

Promoters: 

Early 

Late 

Early + Late 

Not identified 

AcMNPV 

133.9 

41 

154 

14 

8 

65 

72 

29 

47 

BmNPV 

128.4 

40 

136 

4 

7 

12 

78 

7 

35 

OpMNPV 

132.0 

55 

152 

26 

5 

61 

64 

26 

58 

LdMNPV 

161.0 

58 

163 

47 

13 

12 

79 

6 

78 

SeMNPV 

135.6 

44 

139 

20 

6 

34 

72 

14 

53 
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Of the 139 SeMNPV ORFs identified, 103 have homologues in AcMNPV (Table 
2.3) and a further 16 have homologues in other baculoviruses (Table 2.1). SeMNPV 
shares the largest number of homologues with AcMNPV and LdMNPV. The mean 
amino acid identity between SeMNPV and AcMNPV, BmNPV, OpMNPV and 
LdMNPV homologues is 41, 41, 40 and 45%, respectively (Table 2.1). The most 
conserved ORF in all five baculoviruses is that of polyhedrin (SeMNPV compared 
with AcMNPV, BmNPV, OpMNPV and LdMNPV: 85, 82, 84 and 82% amino acid 
identity, respectively), closely followed by ubiquitin (73,73, 77 and 74% identity). 

Table 2.3 Number of ORFs with homologues in other baculoviruses. 

SeMNPV 

LdMNPV 

OpMNPV 

BmNPV 

AcMNPV 

103 

94 

126 

115 

BmNPV 

99 

91 

121 

OpMNPV 

102 

95 

LdMNPV 

104 

The SeMNPV ORF 99 (Se99) homologue in AcMNPV (p94) is not essential for 
virus replication in cell culture but may be involved in the prevention of apoptosis 
(Clem et al., 1994; Friesen and Miller, 1987). Se99 was probably acquired by an 
independent insertion from a different source, because Se99 is located in a different 
region in the SeMNPV genome compared with AcMNPVp94 (see Fig. 2.2A; Se99 is 
inserted in cluster 11), or could be the result of a single gene rearrangement. 

Fifty-three AcMNPV genes had no homologues in SeMNPV (Table 2.4). Most 
of these genes are also absent in at least one of the other three baculoviruses 
compared. However, SeMNPV also lacks AcMNPV ORFs 4, 11, 38, 111 and 115, 
which are present in the four other baculoviruses. To date, no functions have been 
assigned to these ORFs. In addition to the AcMNPV ORFs that have no SeMNPV 
homologues, a number of BmNPV (1), OpMNPV (17) and LdMNPV (33) ORFs 
without AcMNPV homologues are also absent in SeMNPV (Table 2.4). The total 
number of AcMNPV, BmNPV, OpMNPV and LdMNPV ORFs without homologues 
in SeMNPV is 53, 7, 40 and 78, respectively. Although most of the baculovirus ORFs 
not found in SeMNPV have not yet been characterized, information is available for 
some (Ayres et al., 1994; Ahrens et al., 1997; Kuzio et al, 1999). The presence or 
absence of baculovirus ORF homologues in SeMNPV and their implications for 
SeMNPV characteristics are discussed below. 
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Table 2.4 Baculovirus ORFs without homologues in SeMNPV. 
The AcMNPV ORFs that have no homologue in SeMNPV are shown. ORFs from BmNPV, 

OpMNPV and LdMNPV that have no homologue in either AcMNPV or SeMNPV are also shown. 

AcMNPV* 

BmNPV 

OpMNPV 

LdMNPV 

i ptp-r 

2 bro 

3 conotoxirf 

4 

5C 

7 or/60Jabc 

11 

12b 

16c 

111 

4 

5 

28 

4 mucin-like 

5 

6 

lg22 

8 

9 

20bc 

27 iap-T 

30° 

38 

39^Jbc 

41c 

42 gtct 

45bc 

47c 

33 

36 

37 

10 

11 

12 

13 

48 etm°c 

49 pcna*c 

58b 

63bc 

70 hcf-labc 

IT 

73c 

74c 

84bc 

68 

98 

106/ap4Ldl40 

25 

26 

28 

31 

22 dna-ligase 34 

24 49 

85c 

Mpnk/pnP* 

87c 

91c 

9 7 b c 

105 he65bc 

111 

112b 

113b 

110Ld30t 

113 

118 

50 helicase-2 

52 

59 

65 vef-1 

69 

77 

115 

116bc 

118bc 

121bc 

122c 

123 pk-2^ 

124c 

125 lef-T 

128gp« c 

143 hrf-1 Ld67 

147 opep32 

148 opep25 

121 

126 

132 

133 

134 

135 

132° 

\35 p35hc 

140bc 

149bc 

151 ie-2c 

152bc 

lSSpeJ^ 

154bc 

^35 

\49p8.9 

152 

160 ve/-2 

163 

: ORFs also absent from BmNPV (a), OpMNPV (b) or LdMNPV (c). 
f LdMNPV homologues are indicated. 

Structural genes: two copies of odv-e66, absence of gp64 
An interesting characteristic of SeMNPV is the presence of two odv-e66 homologues. 
One copy, Sel 14, is flanked by homologues of Ac40 and Ac43. The other copy, Se57, 
is located between Se58 and Se56, which are homologues of Ac 108 and the Leucania 
separata (Ls) NPV pl3 gene, respectively. The latter odv-e66 homologue is located 
close to SeMNPV hrl. The identity between the two SeMNPV odv-e66 genes, Se57 
and Sel 14, is only 32%, which is not significantly higher than that to their AcMNPV, 
BmNPV or OpMNPV homologues. The identity between Se57 and its LdMNPV 
homologue (Ldl31) is higher (44%) and the most conserved homologue present in 
GenBank is the LsNPV homologue of Se57 (56%). The Se57 region has probably 
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undergone extensive rearrangement, because homologues of different baculoviruses 
are present at this location, whereas Sell4 is surrounded only by AcMNPV 
homologues (see Fig. 2.2 for positions of Se57 and Sel 14 in the gene parity analysis). 
Therefore, it is likely that Se57 was acquired independently from a second source that 
was more closely related to LdMNPV and LsNPV than to the Sel 14 copy of the odv-
e66 gene. The presence of two copies of odv-e66 with both late and early baculovirus 
consensus promoters may be related to the two forms of odv-e66 found in mature 
AcMNPV (Hong et al, 1994). 

Surprisingly, SeMNPV lacks a homologue of the budded virus (BV) surface 
glycoprotein gp64 (Ac 128). A similar situation exists for LdMNPV (Kuzio et al, 
1999). GP64 is a major envelope glycoprotein that is acquired by virions during 
budding through the plasma membrane. GP64 is required for efficient virion budding 
in AcMNPV; deletion of the cytoplasmic tail domain resulted in a reduction in 
progeny BV and in a virus that was incapable of efficient propagation in cell culture 
(Oomens and Blissard, 1999). It has been suggested that Ldl30, which shares 22% 
identity with Ac23, could substitute for the lack of GP64 (Kuzio et al, 1999). This 
supposition was based on the presence of N-terminal signal and transmembrane 
domains, which are indicative of transmembrane receptor-like proteins. SeMNPV has 
a homologue of Ldl30, Se8, which has twice the identity to LdMNPV (41%) than to 
Ac23, Bml4 and Op21 (-22%). 

DNA replication genes 
The genes essential for DNA replication were only moderately conserved: DNA pol, 
helicase, lef-2 and lef-1 were 44% identical, whereas lef-3 showed approximately 30% 
identity. Sel26, a homologue of Ac25 and Bml6, which encodes a putative DNA-
binding protein (DBP) (Okano et al, 1999; Mikhailov et al, 1998), showed 
approximately 30% identity to its homologues. The relatively low identity of these 
SeMNPV proteins to their homologues may explain the specificity of the virus DNA 
replication process (Heldens et al, 1997b). 

None of the ie-2,pe38, lef-7 or p35 genes, found to be stimulatory in AcMNPV 
and BmNPV DNA replication assays, had a homologue in the SeMNPV genome or 
the LdMNPV genome (Kuzio et al, 1999). The ie-2, lef-7 and/?55 genes are also non
essential for BmNPV virus replication, since functional deletion by insertion 
experiments resulted in viable virus mutants (Gomi et al, 1997). A reduction of viral 
DNA synthesis, however, was demonstrated in only two of the three cell lines infected 
with AcAlef-7 (Chen and Thiem, 1997). 
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Genes regulating gene expression 
The genes required for transactivation of early gene transcription, such as ie-1, ie-0 
and me53, were poorly conserved in their amino acid sequence (~35%) among 
baculoviruses, whereas the late transcription activators including the RNA 
polymerase, lef-4 (identity to AcMNPV homologue 51%), lef-8 (64%), lef-9 (63%), 
p47 (56%) and vlf-1 (65%) were, in contrast, very well conserved. This is compatible 
with the supposition that specificity is already displayed early in infection because 
baculoviruses have to adapt to the host transcription system. This could also be 
explained as the result of a higher constraint in the late and virus-encoded transcription 
system. 

SeMNPV had a CG30 (Ac88) homologue, Se76, that is absent from the 
LdMNPV genome. This ORF contains features characteristic of a transcription-
regulatory protein: (i) two nucleic acid-binding sites, (ii) a zinc finger and (iii) a 
leucine zipper. It is considered to be a prime candidate in the regulation of genes at 
late times in infection. The SeMNPV homologue was extended compared with the 
AcMNPV, BmNPV and OpMNPV genes, as the sequence ACC(G/A)TCGACATCG-
GC(C/T)GG was repeated seven times. The zinc finger and the leucine zipper were 
present in Se76, although one of the four leucines was changed to a methionine, as 
was also found for the OpMNPV homologue. 

Inhibitors of apoptosis 
Baculoviruses have genes involved in the inhibition of apoptosis: p35-like genes and 
zap-like genes. SeMNPV lacked homologues of iap-1, iap-4 and p35. The AcMNPV 
annihilator mutant (Acp35A) causes cell line-specific apoptosis after infection. This is 
in contrast to AcMNPV wild-type and iap-1 or iap-2 deletion recombinants. This 
suggests that iap-1 and iap-2 are not required for prevention of apoptosis in these cell 
lines (Griffiths et ah, 1999). OpMNPV and Cydiapomonella GV iap-3 have proven to 
be inhibitors of apoptosis in different cell lines upon infection with Acp35A 
recombinant virus (Vucic et ah, 1998; Seshagiri and Miller, 1997; Ahrens and 
Rohrmann, 1995; Lu and Miller, 1995; Clem et al, 1994; Clem and Miller, 1994; 
Birnbaum et al, 1994; Crook et al, 1993). SeMNPV possessed iap-2 and iap-3 
homologues. The iap-3 gene product shared 48% similarity with its OpMNPV 
homologue (Table 2.1) and may be involved in the prevention of apoptosis in S. 
exigua larvae and different S. exigua cell lines. 

Nucleotide metabolism 
SeMNPV possesses a number of previously described baculovirus genes involved in 
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nucleotide metabolism. Genes encoding the large and small subunits of ribonucleotide 
reductase (rrl and rrl) and a dUTPase were present in SeMNPV, as well as in 
OpMNPV and LdMNPV. By means of these proteins, SeMNPV may promote 
deoxyribonucleotide synthesis in non-dividing cells and conversion of dUTP to 
dUMP, which serves as a precursor for dTTP (Elledge et al, 1992). 

The rrl gene of SeMNPV, Sel39, has been described previously (van Strien et 
al, 1997). The SeMNPV rr2 gene, Se45, which was found distal from rrl, was more 
closely related to Ldl20 (rr2b) than to the Op34 (rrl) or Ldl47 (rr2a) homologues in 
terms of protein identity and location on the genome (Fig. 2.2C, D). This is in contrast 
to the rrl gene, which is equally related to its OpMNPV and LdMNPV homologues. 
In contrast to OpMNPV (ORF32 and 34) and LdMNPV (ORF 147 and 148), the 
SeMNPV rrl and rrl as well as the LdMNPV rrlb genes appear to have been 
acquired from a source more closely related to eukaryote than prokaryote homologues 
(van Strien et al, 1997; Kuzio et al, 1999). 

The dutpase gene of SeMNPV, Se55, differed more from the dutpase of 
OpMNPV (Op31) than from the LdMNPV (Ldll6) homologue. The locations of the 
dutpase gene on the genomes of LdMNPV and SeMNPV are quite similar, whereas 
the OpMNPV homologue is located in a different region on the genome (Fig. 2.2C, 
D). This suggests that the SeMNPV and LdMNPV dutpase genes were acquired from 
the same source, whereas the OpMNPV dutpase may have been acquired 
independently from a different source. The different location of OpMNPV dutpase 
could also have resulted from gene duplication and rearrangement. 

Genes with auxiliary functions 
The auxiliary genes (O'Reilly, 1997) superoxide dismutase (sod) (identity to 
AcMNPV homologue 67%), chitinase (65%), cathepsin (55%) and ecdysteroid UDP-
glucosyltransferase (50%) were quite well conserved, whereas the fibroblast growth 
factor (fgf) gene (identity to AcMNPV homologue 24%) was quite different from the 
other baculovirus^g/genes. 

Acl encodes a protein tyrosine/serine phosphatase with dual specificity (dsPTP) 
(Tilakaratne et al., 1991; Kim and Weaver, 1993). This protein removes phosphates 
specifically from both tyrosine and serine/threonine residues and regulates the 
phosphorylation status of a variety of proteins, including growth factors, which in turn 
regulate developmental processes in living cells (Wisharte? al, 1995). The absence of 
a ptp-1 homologue in SeMNPV may not necessarily result in loss of PTPase function, 
however, because aptp-2 (Op9) homologue was present in the SeMNPV genome. The 
SeMNPV PTP-2 homologue, Se26, contained the conserved domain 

26 



The SeMNPV genome 

[HCXXGXXR(S/T)] encoding the dsPTP catalytic loop. It is therefore likely that the 
PTP-2 homologue encodes an active tyrosine/serine phosphatase. 

A protein kinase enzyme activity also appeared to have been retained in the 
SeMNPV genome, since a.pk-1 homologue of AcMNPV was present (Se3). However, 
a pk-2 homologue was absent, pk-2 was shown to be non-essential for AcMNPV, since 
a pk-2 deletion mutant had no detectable effect on AcMNPV replication in cell 
cultures (Chen and Thiem, 1997). Although AcMNPV pk-2 is non-essential, its 
presence favours virus gene expression by inhibiting a host stress response in infected 
cells(Devere*a/., 1998). 

A homologue of the actin rearrangement-inducing factor-1 (arif-1) was present 
in the SeMNPV genome. This arif-1 gene induces rearrangements of the actin 
cytoskeleton after infection, but the functional significance of these conformational 
changes remains to be elucidated (Roncarati and Knebel-Morsdorf, 1997). 

No homologues of the LdMNPV viral enhancing factors (vef)-\ and -2 have 
been identified in SeMNPV (Bischoff and Slavicek, 1997; Hashimoto et al., 1991). In 
GVs, the vef gene products increase virus potency by disrupting the peritrophic 
membrane, thereby allowing virions access to the surface of midgut epithelial cells 
(Wang and Granados, 1998; Derksen and Granados, 1988). The vef genes encode 
metalloproteases that specifically degrade the mucin protein component of the 
peritrophic membrane (Wang and Granados, 1997; Lepore et al, 1996). vef 
homologues are absent in group I baculoviruses and may, therefore, be unique to 
LdMNPV among the NPVs. 

SeMNPV homologue ORFs of unknown function: two p26 homologues 
ORFs without assigned functions, but well conserved among the four baculoviruses, 
include Acl06/107 (identity to AcMNPV homologue 58%), Ac38 (58%), Ac22 
(57%), Ac92 (55%) and Ac 103 (54%). The high percentage identities between the 
baculovirus homologues suggest that these ORFs have essential functions in virus 
multiplication and pathology, for which a certain degree of conservation is required. 

Notable is the 'pairwise' conservation of Ac76 between AcMNPV and 
OpMNPV (81%) and between LdMNPV and SeMNPV (71%), which may suggest 
that Ac76 homologues have been acquired twice during evolution from two different 
sources. Other pairwise alignments yielded identities no higher than 45%. To this end, 
it can be speculated that SeMNPV and LdMNPV have a more recent baculovirus 
ancestor in common than SeMNPV and AcMNPV or OpMNPV. 

Some ORFs that were previously unique to LdMNPV have homologues in the 
SeMNPV genome (SeMNPV ORFs 15, 28, 30, 33, 49, 51, 52 and 107) (Table 2.1). 
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The SeMNPV genome also contained a homologue of the previously described 
LdMNPV ORF4 (Bjornson and Rohrmann, 1992), although this ORF was not 
included in the LdMNPV genome analysis (Kuzio et al, 1999) due to overlap with 
Ldl37. A similar situation occurs for the LdMNPV homologue of Se37 that overlaps 
withLdl55. 

gp37 (Se25), named spindle-like protein or fusolin because of its obvious 
homology to the entomopoxvirus spindle-shaped proteins, is a conserved NPV gene 
(identity to AcMNPV homologue 56%; Liu and Carstens, 1996). The gp37I fusolin 
gene family may be essential for virus replication, based on the failure to construct an 
insertion mutant for this gene in AcMNPV (Wu and Miller, 1989). Furthermore, 
studies have suggested that gp37I fusolin is involved in enhancement of virus infection 
in vivo (Phanise? al, 1999). 

Unlike any baculovirus genome so far analysed, SeMNPV possessed two copies 
of p26 (Se87 and 129). Se87 was located in the proximity of the non-hr (Fig. 2.1). 
This region is organized differently compared with AcMNPV, in contrast to the Sel29 
region (Fig. 2.2; see position of p26 in all GeneParityPlots). It is possible that Se87 
was acquired independently from a different source than Sel29. This view is further 
supported by the 8% less identity of Se87 to its AcMNPV homologue than Sel29. It is 
equally possible that Sel29 has diverged from Se87 and has been rearranged 
following duplication. Transcripts have been identified for the AcMNPV homologue, 
which are synthesized by the host polymerase II both early and late in infection (Huh 
and Weaver, 1990). The P26 protein was localized primarily to the cytoplasm and is 
present in the membrane fraction of BV (Goenka and Weaver, 1996). A function is not 
yet been assigned to the P26 protein, but its conservation in all MNPV genomes 
analysed so far suggests a function basic to baculoviruses. 

Baculovirus repeated ORFs (bro genes) 
bro genes, present in a number of other baculoviruses and to date of no known 
function, were not identified in SeMNPV. Five copies of a homologue of Ac2 were 
identified in BmNPV (Gomi et al, 1999) and there were 16 copies in LdMNPV 
(Kuzio et al, 1999). In OpMNPV, a truncated version and two smaller iro-related 
ORFs are present (Ahrens et al, 1997). Similarity searches revealed that Sel3 showed 
weak homology (-25%) to some bro genes, particularly to BmNPV bro-d (Gomi et 
al, 1999) and LdMNPV bro-j (Kuzio et al, 1999) (Table 2.5). However, Sel3 had 
higher homology (-33%) to Ac 13 and its homologues Bm5, Op 12 and Ldl22 (Table 
2.1). Furthermore, Sel3 is located adjacent to a homologue of Acl4 (Sel4) and these 
two genes are clustered in all baculoviruses compared. Therefore, we consider that 
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Sel3 is not a bro gene sensu stricto. 

Table 2.5 Comparison of Sel3 with homologues of Ac 13 and with bro genes. 
The predicted amino acid sequence of SeMNPV ORF13 is compared with those of homologous of 

AcMNPV ORF13 and other baculovirus bro genes, bro group nomenclature is according to Kuzio et 

al. (1999). 

ORF 

Acl3 

Bm5 

Opl2 

Ldl22 

Ac2 

Bm bro-d 

Ld bro-n 

Ld bro-j 

Bm bro-a 

Bm bro-c 

Ld bro-b 

Ld bro-p 

Amino acid sequence 

Identity (%) 

33.6 

33.0 

27.5 

33.3 

24.7 

28.4 

25.6 

29.0 

24.7 

25.3 

25.3 

22.1 

Similarity (%) 

44.5 

45.3 

38.6 

43.6 

36.7 

38.4 

36.6 

40.4 

38.5 

39.7 

36.5 

33.8 

Length (aa) 

327 

331 

320 

200 

328 

349 

338 

403 

317 

318 

323 

337 

bro group 

l a 

l a 

l a 

l a 

I c 

Ic 

Ic 

I c 

SeMNPV ORFs with homologues in other baculoviruses: LsNPV pi3 and 
Helicoverpa zea (Hz) SNPV hoar 
SeMNPV possessed 22 ORFs that have no homologues in AcMNPV, BmNPV, 
OpMNPV or LdMNPV. Of these, two showed homology to other baculovirus ORFs. 
A homologue of the LsNPV pl3 gene (Se56) was found in SeMNPV, but the 
SeMNPV homologue is C-terminally extended (Wang et al, 1995). The two leucine 
zipper-like structures present in LsNPV PI3 (Wang et al, 1995) were also conserved 
in Se56. The function of this ORF in LsNPV is unknown. 

The SeMNPV genome contained an ORF (Se4) with homology to the hoar ORF 
of HzSNPV and Helicoverpa armigera NPV (Le et al, 1997). In SeMNPV and 
HzSNPV, thep&-7 gene is downstream of the hoar gene (Table 2.1; Le et al, 1997). 
However, the upstream flanking ORFs of the HzSNPV hoar gene had no homologues 
in SeMNPV (HzSNPV ORF480 and ORF321) or were present in different locations in 
SeMNPV (HzSNPV ORF1-6 corresponding to Sel38-132) (Le et al, 1997; Table 
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2.1). The SeMNPV hoar ORF, like the Heliothis sp. homologues, contained a 
complex, A+T-rich, triplet repeat region (RAT-repeats) distributed over 330 bp and a 
C3HC4 (RING finger) zinc-binding motif. 

Unique SeMNPV ORFs 
Twenty ORFs in the SeMNPV genome were completely unique to this virus and did 
not exhibit significant homology to any sequence in the GenBank. Hence no putative 
functions could be assigned to these ORFs. The functions of these ORFs are being 
investigated. This number is roughly proportional to the size of the genome (Table 

2.2). 

Organization of the SeMNPV genome 
The genomic organization, i.e. the order of genes, is similar in AcMNPV, BmNPV 
and OpMNPV, except for a small number of rearrangements (Ahrens et al, 1997; Hu 
et al, 1998; Gomi et al, 1999). To investigate whether the organization in SeMNPV 
was collinear with these viruses and to the recently sequenced LdMNPV (Kuzio et al, 
1999), a comparison was made between the SeMNPV genome organization and those 
of AcMNPV, BmNPV, OpMNPV and LdMNPV by using GeneParityPlot analysis 
(Fig. 2.2; Hu et al, 1998). The gene organization was most conserved in the 'central' 
region (ORFs 30-70) of the linearized baculovirus genomes, confirming the 
assumption of Heldens et al. (1997b). The 'left' part of the SeMNPV genome (ORFs 
1-30) displayed a considerable number of gene inversions and translocations in the 
GeneParityPlot analyses. The 'right' part (ORFs 70-100) showed a high degree of 
gene scrambling (Fig. 2.2). From these analyses, it is concluded that the organization 
of SeMNPV is highly characteristic and distinct from those of AcMNPV, BmNPV, 
OpMNPV and LdMNPV. 

By convention, the orientation of a circular baculovirus genome is determined by 
the relative position of two genes, polyhedrin at map unit 0 and pi 0 approximately at 
map unit 90 (Vlak and Smith, 1982). In the initial GeneParityPlot analysis, the 
orientation of the SeMNPV genome appeared to be inverted for more than 50% of the 
ORFs compared with AcMNPV, BmNPV, OpMNPV and LdMNPV. This led to 
perpendicularity in the graph where collinearity was known to occur, i.e. in the 
conserved, central part of the genome. To facilitate convenient comparison and 
interpretation of the different genomes, the SeMNPV gene order was reversed before it 
was subjected to GeneParityPlot analysis. The previously satisfactory choices of 
polyhedrin and plO for the zero point and directional orientation, respectively, were 
not convenient for GeneParityPlot analysis in this case because both genes are located 
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Fig. 2.2 GeneParityPlots of SeMNPV versus AcMNPV (A), BmNPV (B), OpMNPV 
(C) and LdMNPV (D). The plots are graphic representations of the collinearity of baculovirus 

genomes obtained by GeneParityPlot analysis (see Methods). Fourteen putative gene clusters of the 

SeMNPV genome that are similar to those of other baculoviruses are numbered (1-14) and indicated 

by lines. Four additional putative gene clusters were identified between SeMNPV and LdMNPV (D), 

numbered 15-18. The positions of the p94, odv-e66, p26, ptp2, rrl, rr2b and dutpase genes are 

indicated. 

in regions that show extensive rearrangements (Fig. 2.2). 
Comparison of the relative gene order between SeMNPV and AcMNPV, 

BmNPV, OpMNPV and LdMNPV revealed the presence of certain gene clusters that 
are conserved in all baculovirus genomes compared. These clusters were numbered 
according to their sequential appearance in the GeneParityPlots. Fourteen clusters 
conserved in all five baculoviruses were identified (Fig. 2.2, Table 2.1). Cluster 3 was 
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interrupted in SeMNPV by the insertion of Sel7 and Sel8, which are unique to 
SeMNPV. Cluster 12 is discontinuous in LdMNPV because five copies of the bro 
gene and two other ORFs are inserted in this cluster. Four additional clusters were 
identified in the GeneParityPlot of SeMNPV versus LdMNPV (Fig. 2.2D; Table 2.1; 
clusters 15-18). Furthermore, clusters 2 and 5 were extended to include genes Sel5 
and Se38+Se41, respectively. Clusters 7 and 8 and clusters 9 and 10 were present as 
two contiguous clusters in LdMNPV and SeMNPV. This is in contrast to the other 
three baculoviruses, where the positions of genes of these clusters in the gene parity 
plot were perpendicular to each other due to inversion of one of the clusters (Ayres et 
al, 1994; Gomi et al, 1999; Ahrens et al, 1997, Kuzio et al, 1999). The additional 
and the enlarged clusters of SeMNPV and LdMNPV suggest that the genomic 
organization of SeMNPV is more closely related to that of LdMNPV than to that of 
AcMNPV, BmNPV and OpMNPV. This agrees with the phylogenetic analysis of 
single genes such as egt, left and rrl, which shows that SeMNPV is more closely 
related to LdMNPV than to AcMNPV, BmNPV or OpMNPV (Chen et al, 1997, 
1999; Hu et al, 1997; van Strien et al, 1997). Thus, juxtaposition of ORFs can be 
used as a phylogenetic marker to study the ancestral relationship of baculoviruses, 
independent of the evolution of individual genes. 

Between- and within-baculovirus genome rearrangement 
Comparison of SeMNPV with AcMNPV, BmNPV, OpMNPV and LdMNPV showed 
that baculovirus genomes may vary due to deletions, (gene) insertions, inversions and 
duplications (Ayres et al, 1994; Gomi et al, 1999; Ahrens et al, 1997; Kuzio et al, 
1999). The mechanisms underlying these rearrangements are still unclear. 
Transposable elements that may play a role in rearrangements of baculovirus genomes 
have been identified in several baculoviruses (Friesen, 1993; Jehle, 1996; Jehle et al, 
1997). Furthermore, there is evidence to suggest that hr sequences are related to the 
generation of variant baculovirus genotypes (Mufioz et al, 1999). 

Genome rearrangements also occur within one baculovirus species, as is the case 
for SeMNPV. A mutant SeMNPV, containing a single deletion of approximately 25 
kb, was obtained within the first passage in cell culture (Heldens et al, 1996). This 
deletion is located approximately between 17.5 and 42.0 kb (±1.0 kb) and 
encompasses Se 15 to 41 (Table 2.1). So far, none of these ORFs has been shown to be 
essential for virus replication. However, deletion mutant SeMNPV polyhedra 
produced in vitro do not cause any pathological effect in vivo nor does the injection of 
BV into the haemolymph. In contrast, mutant SeMNPV BV was highly infectious for 
Se-UCRl cells and resulted in polyhedron production (Heldens et al, 1996). 
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Therefore, at least one gene located in the deleted sequences contains information that 
is important for virulence in vivo. 

In conclusion, sequencing revealed that the genome of SeMNPV is distinct from 
those of other baculoviruses both in gene content and arrangement. Two, probably 
independently acquired, p26 and odv-e66 genes are present. Notably, SeMNPV lacks 
homologues of the gp64, ie-2 and multiple bro genes. Furthermore, SeMNPV and 
LdMNPV may have a recent common ancestor, whereas they are more distantly 
related to AcMNPV, BmNPV and OpMNPV on the basis of gene homology and 
genomic organization. The gene order in the 'central' part of baculovirus genomes is 
highly conserved, whereas the gene order in the other segments has been subjected to 
multiple rearrangements. The GeneParityPlot analyses demonstrate that this method 
can be used as an independent means of phylogenetic study and can provide an initial 
view of the conservation of gene clusters and how viruses may have obtained 
additional genes. The genomic sequences absent in the deletion mutant of SeMNPV 
contain information that is important for virulence in vivo. Further studies will 
concentrate on the functional analysis of the ORFs that are unique to SeMNPV. These 
studies will provide insight in the roles these ORFs may play in the high virulence and 
narrow host-range of SeMNPV. 

Methods 

SeMNPV DNA isolation, cloning, PCR and sequence determination 
The SeMNPV isolate (Gelernter and Federici, 1986b) was originally obtained from B. 
A. Federici (Department of Entomology, University of California, Riverside, CA, 
USA) in the form of polyhedra and was called SeMNPV-USl (Mufioz et al, 1998). 
Thepolyhedra were propagated in fourth-instar S. exigua larvae (Smits et al, 1988). 

The SeMNPV Xbal plasmid and Sau3Al cosmid libraries were described 
previously (Heldens et al, 1996). The Xbal-A and Xbal-B fragments were too large to 
be cloned into pUC19. The Xbal-A fragment was subcloned from SeMNPV cosmids 
24 and 17 into plasmids SeBgltt-U, SePstl-M (cosmid 24) and SeBSpel-5.4, SeSpel-U 
and ScBP-5.6 (cosmid 17). In addition, the Xbal-B fragment was subcloned from 
SeMNPV cosmid 22 into plasmids SeSpelH-3.2, SeBSpel-63, SeSpelH-2.S, 
SeHBglll-6.2 and Se£coRI-2.2. Some of these clones were described previously 
(Broer et al., 1998; van Strien et al, 1996). 

Four regions of the SeMNPV genome were difficult to clone, as restriction 
fragments or sequencing attempts resulted in premature termination. The four regions 
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were located at positions 16530-19106, 32831-36808, 44839-46417 and 54758-
54937 on the SeMNPV genome. These regions were amplified by PCR and cloned 
into pGEM-T vectors (Promega). Template DNA for sequencing was purified from 
plasmids by using Jetstar columns according to manufacturer's protocol (ITK 
Diagnostics). 

Sequencing was done by using plasmid, cosmid and PCR products from both 
strands of the viral genomic DNA as templates. Sequence reactions were performed at 
the Sequencing Core Facilities of Wageningen Agricultural University and Queen's 
University (Kingston, Ontario, Canada) by primer walking. 

DNA sequence analysis 
Genomic DNA composition, structure, repeats and restriction enzyme pattern were 
analysed with the Wisconsin Genetics Computer Group programs (Devereux et al, 
1984) and DNASTAR. ORFs consisting of more than 50 amino acids were considered 
to encode proteins. Relevant ORFs (119 of 139) were checked for maximum 
alignment with known baculovirus gene homologues from GenBank; ORFs with 
significant overlap of hr sequences were excluded. The overlap between any two 
ORFs with known baculovirus homologues was set to a maximum of 25 amino acids; 
otherwise the largest ORF was selected. DNA and protein comparisons with entries in 
the genetic databases were performed with FASTA and BLAST programs (Pearson, 
1990; Altschul et al, 1990). Multiple sequence alignments were performed with the 
GCG PileUp and Gap computer programs with gap creation and extension penalties 
set to 9 and 2, respectively (Devereux et al, 1984). Percentage identity indicates the 
percentage of identical residues between two complete sequences. Motif searches were 
done against the Prosite release 14 database (Fabian et al, 1997; Bairoch et al, 1997). 
Prediction of transmembrane domains was accomplished with SignalP and PHD 
software (Nielsen et al, 1997; Rost and Sander, 1993). GeneParityPlot analysis was 
performed on the SeMNPV genome versus the genomes of AcMNPV, BmNPV, 
OpMNPV and LdMNPV as described previously (Hu et al, 1998). 

Genbank accession 
The GenBank accession number of the SeMNPV genomic sequence reported in this 
paper is AF169823. 
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Chapter 3 

Identification of a novel occlusion derived virus-
specific protein in Spodoptera exigua multicapsid 

nucleopolyhedrovirus 

Understanding the molecular basis of the distinct biological properties of Spodoptera 
exigua multicapsid nucleopolyhedrovirus (SeMNPV), such as its narrow host range 
and high virulence, requires detailed information on the temporal expression and 
subcellular localization of SeMNPV gene products. The expression of two unique 
SeMNPV ORFs, 116 (Sell6) and 117 (Sell7), which show 45% amino acid 
similarity, was analyzed. Sell6 and Sell7 were expressed both in cultured cells and 
in larvae of S. exigua, as polyadenylated transcripts of 0.80 and 0.75 kb, respectively. 
These transcripts initiated from ATCA(G/T)T promoter motifs, commonly found for 
baculovirus early genes. Sell6 transcripts were detected with increasing abundance 
from 8 h to 48 h post infection (p.i.), whereas Sel 17 transcripts were present from 4 h 
p.i. and most abundantly at 24 h p.i. Western blot analysis of infected Se301 cells 
revealed 27 and 23 kDa proteins for Sel 16 and Sel 17, respectively. C-terminal GFP-
fusion proteins of Sel 16 and Sel 17 were primarily localized in the nucleus of Se301 
cells. When Se301 cells were infected with SeMNPV both GFP-fusion proteins were 
localized in the virogenic stroma of the nucleus. While the function of the Sel 16 
protein is still enigmatic, the Sel 17 protein appeared to be a structural protein 
associated with nucleocapsids of occlusion-derived SeMNPV virions, but not of 
budded virus. 

This chapter will be published as: 

IJkel, W. F. J., Lebbink, R.-J., Op den Brouw, M. L., Goldbach, R. W., Vlak, J. M., 
and Zuidema, D. 
Virology (2001) 283, in press. 
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Introduction 
The baculovirus Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) is 
highly pathogenic for the beet army worm. This insect causes significant crop damage 
and economic losses (Federici and Maddox, 1996). SeMNPV differs from many other 
NPVs infectious for this insect in having an extremely narrow host-range, limited to S. 
exigua, and a relatively high virulence (Smits, 1987). These biological characteristics 
make SeMNPV a succesful alternative for chemical insecticides. To optimize its 
application, it is important to understand the molecular basis of host specificity and 
virulence, and hence the relation of specific SeMNPV genes with these characteristics. 

The complete sequence and genetic organization of the SeMNPV genome have 
recently been elucidated (IJkel et al, 1999). Comparison of the coding potential of 
SeMNPV with other completely sequenced baculoviruses (Ayres et al, 1994; Gomi et 
al, 1999; Ahrens et al, 1997; Kuzio et al, 1999; Chen et al., 2001; Hayakawa et al, 
1999; Hashimoto et al, 2000) revealed a total of sixteen ORFs unique to SeMNPV. 
None of the unique SeMNPV genes has yet been studied in detail. Two of these, 
SeMNPV ORF116 (Sel 16) and ORF117 (Sel 17), are likely active genes since they (i) 
contain baculovirus early promoter motifs (IJkel et al., 1999), indicative for possible 
transcription by host and / or viral RNA polymerases and (ii) are not located in the 
genome region that possesses non-essential genes since it is rapidly and frequently 
deleted during passage of SeMNPV in cell culture (Heldens et al., 1996). 

Sel 16 is located between nt 114,465 and 115,142 and encodes a putative protein 
of 225 amino acids (aa) with a predicted molecular weight of 26.3 kDa (IJkel et al., 
1999). Sel 17 is located next to Sel 16, between nt 115,249 and 115,824, and encodes 
a putative protein of 191 aa with a molecular weight of 22.5 kDa. Both genes have the 
same polarity as the polyhedrin gene. The genes are located in between SeMNPV 
homologs of Autographa californica (Ac) MNPV ORF38 (p47) and ORF40. An 
AcMNPV ORF39 homolog is absent in SeMNPV (Ayres et al., 1994; IJkel et al., 
1999) as well as in many other baculoviruses. To date, the function and significance of 
AcMNPV ORF39 or its homolog in BmNPV are unknown (Gomi et al, 1999). 

To elucidate the molecular basis of the distinct biological properties of SeMNPV 
with respect to other baculoviruses detailed information on the temporal expression, 
subcellular localization and function of the SeMNPV-specific genes is essential. Here, 
we report on the transcriptional and translational analysis of the unique SeMNPV 
ORFs 116 and 117. We have raised antibodies against the Sel 16 and Sel 17 proteins 
and this allowed the analysis of their expression and subcellular localization. The 
Sel 17 protein appeared to be a novel occlusion-derived virion protein, whereas a 
function could not (yet) be assigned to Sel 16. 
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Results 

SeMNPV ORF116 and ORF117 
Appropriate searches of protein databases showed that the putative Sell6 and Sell7 
proteins are unique to SeMNPV and have no homologs in other biological systems. 
Surprisingly, Psi-blast searches (Altschul et al., 1997) and Gap alignment revealed 
that the predicted amino acid sequence of Sell6 shares 45% similarity and 29% 
identity with Sell7 (Fig. 3.1). Except for the N-termini the conserved residues are 
equally distributed throughout the Sell6 and Sell7 sequences. Furthermore, the 
Sell6 protein has, in contrast to the Sell7 protein, an additional hydrophilic C-
terminal domain, which is proline- and glutamine-rich. Analysis of both predicted 
amino acid sequences did not identify any recognizable motifs, transmembrane 
regions, GPI-anchors or signal peptides. According to the NNCN score analysis 
(Reinhardt and Hubbard, 1998) both proteins are probably localized in the nucleus of 
the cell. Blast searches revealed that the identified homology is present only in the 
amino acid sequence and not in the nucleotide sequence, suggesting that a recent gene 
duplication is not the likely cause of existence of these two homologous genes next to 
one another. More likely is a tandem insertion at this position. Both ORFs are present 
in the forward orientation in the genome (IJkel et al., 1999). 

S e l l 6 : MKBKT&l^^gT^g.-.LfflVBKIH-ffiSVMRARSCMraEINL^fflsra-HfflNfflKVAQYDlffly : 58 
S e l l 7 : --E:>: :B.vV^Hl^B;.^HFVNKlTLLLP-HYAfflDEKI^ffl-fflFsBTHDSVKKSlMH : 56 

S e l l 6 : •iBYA-NMVDKMDBTVKNMHpTITN^BlMKTOAEQINGlOB B S H H A B Q H I F : 113 
S e l l 7 : BElVMLRHTTN-KfcLDDLH^-HTRS^BFBlliVDSDRNWrlpDFDHVYBllVYMV : 115 

S e l l 6 : QTNDAFDINNFYLYmEQNgFfcfflLTHTOITHSSvTO-S^MFSY^DgLLFLgRTONKHY : 172 
S e l l 7 : RHLKQMKMKHYGQQfflKCFBNfflHfflKAHlHVVD-INfflRDHscWNHHLQBlNRTBEBHKRHD : 174 

S e l l 6 : IHIHgVDAVAALIYKKQQQLPNPPIVFEPPPILYRPHQRQANNPHRQQGIFN : 225 
S e l l 7 : ARLAgFRDLQGR--PlTSV : 191 

Fig. 3.1 Alignment of the predicted amino acid sequences of the Sell6 and Sell7 
pro te ins . Gaps, introduced to optimize the alignment, are indicated with dashes. Shading is used to 

indicate the occurrence of identical (black) or substitutional (grey) amino acids. 
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The regions upstream of Sell6 and Sell7 were analyzed for the presence of 
possible transcription start sites [TATAA], baculovirus consensus early promoter 
motifs [ATCA(G/T)T and CGTGC] (Blissard and Rohrmann, 1990; Pullen and 
Friesen, 1995; Carstens et ah, 1993), baculovirus late transcription start site [DTAAG] 
(Blissard and Rohrmann, 1989), downstream activating elements [(A/T)CACNG] 
(Friesen, 1997) and host factor binding sites [GATA and CACGTG] (Kogan and 
Blissard, 1994). An early gene transcription motif (TATAA-N23-ATCAGT) was 
found 64 nt upstream of the putative translational start of Sell6 (Fig. 3.2). A 
polyadenylation signal sequence (AATAAA) was identified only 2 nt downstream of 
the TAA stop codon of Sell6 (Fig. 3.2). The Sell7 5' upstream sequence includes 
two early gene transcription motifs (TATAA-N13-TGCATT) starting at -87 and 
(TATAA-N24-ATCATT) at -69 nt relative to the translational start codon (Fig. 3.2). A 
polyadenylation signal sequence was identified 32 nt downstream of the TGA stop 
codon of Sell 7 (Fig. 3.2). This computational analysis suggests that both ORFs may 
be active genes. 

1143 61 ttaaagattaacagcaatgcttatcgtaatgtaccaagtaTATAAacggcgtagaaaact 
L K D 

114421 gcatcaatATCAGTgaaagcgtagctattgccacaatcgagtcaatgaaaatgaacacgg 
ORF116 M K M N T 

114481 gaacattgtgcctggccatcgacagcgtcgccctcgacgtgcgaaagattcatcagtccg 
G T L C L A I D S V A L D V R K I H Q S 

Sell6SPl 
114 541 tgatgagggcgcgctcttgcatggactttgaaataaatctgcccgatctaagcgacattc 

V M R A R S C M D F E I N L P D L S D I 

1146 01 attgcaacctcaaggtggcccagtacgatattgattatttgatcaattacgcgaataaag 
H C N L K V A Q Y D I D Y L I N Y A N K 

Sell6SP4 
114661 atgtcgacaagatggacatgaccgtcaacaacatgataagcgagacaataaccaacgagc 

D V D K M D M T V N N M I S E T I T N E 

114721 tagagattatgctgaaaaactttgcggagcaaattaacggtgatcaacagtatagtcaca 
L E I M L K N F A E Q I N G D Q Q Y S H 

114 781 ttaaggcgtgtcagcacatttttcaaactaacgacgcctttgacattaacaacttttatt 
I K A C Q H I F Q T N D A F D I N N F Y 

114 841 tgtatttggaacaaaacaaattcgactacgtgctgacttttgtgaacattacaaactcta 
L Y L E Q N K F D Y V L T F V N I T N S 

Sell6SP3 
114 901 gcgtcttgccgtcgagccatatgttttcctatttgacggataaactgttgttcttgcgac 

S V L P S S H M F S Y L T D K L L F L R 

114 961 gtctctgcaataagatttacatacatattcacgaagtggacgccgtcgccgctctcattt 
R L C N K I Y I H I H E V D A V A A L I 
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115 021 acatgcagaaacagcagcaattgcctaatcctcctattgtttttgaacctccaccaattc 
Y M Q K Q Q Q L P N P P I V F E P P P I 

Sell6SP2 
115081 tgtatcgtcctcatcaacgtcaagcgaacaatccacatcgacaacaaggaatttttaatt 

L Y R P H Q R Q A N N P H R Q Q G I F N 

115141 aatAATAAAattttgtattttTATAA£ttgaatttttatTGCATTttacgtcaccaataa 

115201 tttagtaTATAAatcgtcgaggaatacgacatcgacATGATTcacataatggacggcgga 
ORF117 M D G G 

115261 tcggtgtgtcttgctctcgacagcgttctcaaagacttgcgatttgtcaacaagcaaacg 
S V C L A L D S V L K D L R F V N K Q T 

115321 ctcttgcttccgcactatgcggactttgacgaaaagatgcccgatttggatattttttcc 
L L L P H Y A D F D E K M P D L D I F S 

1153 81 tgcactttggatagtqtaaaaaaatcgctagaccatctcgaaaatgtcatgttgcgcaag 
C T L D S V K K S L D H L E N V M L R K 

Sell7SPl 
115441 gacaccaccaacaagatgagtctcgacgatttgatatctcggcacacgcgcagcgagcta 

D T T N K M S L D D L I S R H T R S E L 

Sell7SP4 
115501 gagtttatgctcatgaattatgttgatagcgacaggaacgacacgcaacccgactttgac 

E F M L M N Y V D S D R N D T Q P D F D 

115561 tatgtatatataaagacgtgcgtgtacatggtcagacatctcaagcaaatgaagatgaaa 
Y V Y I K T C V Y M V R H L K Q M K M K 

115621 cactatggtcagcaattaaagtgttttaaaaatgatcatgtcaaggcgtttatacacgtc 
H Y G Q Q L K C F K N D H V K A F I H V 

Sell7SP3 
115681 gtcgacataaatctgcccagggactcgtcgtgctggaaccacttgctacaaaagataaat 

V D I N L P R D S S C W N H L L Q K I N 

Sell7SP2 
115741 cgtacgcgcgaattgtgtaaaaggatcgacgctagactggcagagtttagagatttgcaa 

R T R E L C K R I D A R L A E F R D L Q 

115801 ggccgtatggaaacgtctgtttgattATAAGttattgtacaatgattctatataaAATAA 
G R M E T S V 

115861 Atgatacatttatatggacaacagtttattttcttttatcatgcgttgcgccggtttgtt 
M ~ H N S L F S F I M R C A G L F 

Fig. 3.2 The SeMNPV ORF116 and ORF117 genomic region, from nucleotides 
114,361 to 115,920 (IJkel et al, 1999). Location of TATA-boxes, baculovirus consensus early 

initiation motif ATC A(G/T)T, polyadenylation signal, start and stop codons are denoted in bold. The 

sequences of the primers used for RT-PCR and 3' mapping (Sell6SPl, Sell7SPl) and 5' mapping 

(Sell6SP2, 3, 4 and Sell7SP2, 3, 4) are underlined. The determined transcriptional start site for the 

Sel 16 and Sel 17 transcripts are indicated with an arrow and their poly(A) chain attachment sites are 

double underlined. 
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Northern blot and RT-PCR analysis of Sell6 and Sell7 transcripts 
Temporal regulation of the Sell6 and Sell7 transcripts was examined by Northern 
blot analysis and RT-PCR using total RNA isolated from SeMNPV infected Se301 
cells as template. This analysis would also provide information about the number and 
sizes of the Sel 16 and Sel 17 transcripts. For Sel 16 a single transcript of 0.8 kb was 
detected at 8 h p.i. and remained detectable until 48 h p.i. (Fig. 3.3A). Northern 
analysis of Sel 17 revealed one major transcript at 0.75 kb (Fig. 3.3B). This transcript 
was detectable at 4 h p.i., reached maximal transcription levels at 24 h p.i. and steady 
state levels remained high until 48 h p.i. The transcript sizes of 0.8 kb and 0.75 kb are 
compatible with predicted ORF sizes of 678 nt for Sel 16 and 576 nt for Sel 17, 
respectively (IJkel et ah, 1999). The size of the Sel 16 and Sel 17 transcripts suggests 
that both transcripts were most likely polyadenylated, assuming that the putative early 
promoter sequences were used as transcription start sites. Twenty-four h p.i., a second 
1.4 kb transcript appeared and remained visible until 48 h p.i. using a Sel 17-specific 
riboprobe. The latter transcript is interpreted as a read-through from the Sel 17 gene, 
since no 1.4 kb transcript was detected at similar time points p.i. using the Sel 16-
riboprobe. The observed bands at 1.9 kb (Fig. 3.3A, B) and 0.2 kb (Fig. 3.3A) are 
non-viral, since they also appear in the mock infected lane and are probably derived 
from rRNA(18S and 5S). 

RT-PCR was performed to confirm independently the results of the Northern 
analysis and to obtain further information about the temporal regulation of the 
transcripts at earlier times. One primer internal to Sel 16 (Sell6SPl; Fig. 3.2) or 
Sell7 (Sell7SPl; Fig. 3.2) and the PCR anchor primer were used to amplify 
fragments of 650 and 475 bp, respectively (Fig. 3.3C, D). The obtained RT-PCR 
fragments appeared to be specific for Sel 16 and Sel 17 upon hybridization with a 
Sel 16 and Sel 17-specific riboprobe, respectively (Fig. 3.3C, D). Consistently, Sel 16 
gene sequences were amplified at 4 h p.i., which was increased at 8 h p.i. and 
remained at steady state level up to 72 h p.i. (Fig. 3.3C). Sel 17 gene sequences were 
also amplified at 4 h p.i., peaked at 24 h p.i. and remained detectable until 72 h p.i. 
(Fig. 3.3D). Thus, both Sel 16 and Sel 17 are most likely early genes according to the 
current view on early vs. late transcription (Friesen, 1997). 

To investigate if Sel 16 and Sel 17 were also transcribed during SeMNPV 
infection in S. exigua larvae (in vivo infection), RT-PCR was performed on RNA 
isolated from fat body tissue. The RT-PCR products obtained were cloned into 
pGEM-T and two clones of each were sequenced. The obtained sequences matched, as 
expected, the Sel 16 or Sel 17 sequences. Both Sel 16 and Sel 17 gene sequences were 
amplified at 48 and 72 h p.i. (Fig. 3.3E, F), indicative of the presence of Sel 16 and 
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Fig. 3.3 Temporal expression of the Sel 16 and Sel 17 transcripts. 
(A and B) Northern analysis of Sel 16 and Sel 17, respectively. The size of specific hybridization 

bands is indicated on the right. (C and D) The left panels show RT-PCR analysis of Sel 16 and Sel 17, 

respectively, performed on total RNA extracted from SeMNPV-infected Se301 cells obtained under 

the same conditions as those in A and B. The right panels of C and D show hybridization patterns of 

the obtained RT-PCR bands using Sel 16 and Sel 17 riboprobes, respectively. (E and F) RT-PCR 

analysis performed on total RNA extracted from SeMNPV-infected S. exigua fat body tissue. Times 

p.i. are indicated above the lanes (Mi, mock infected). Size standards (M, marker) are indicated in kb. 
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Sel 17 transcripts at those times p.i. Thus, both ORFs were transcribed not only upon 
infection of cultured insect cells but also upon in vivo infection. Furthermore, the 
obtained RT-PCR fragments indicate that both transcripts contain a poly(A) tail, since 
the oligo-dT anchor primer was successfully used to synthesize first-strand cDNA of 
these ORFs. 

Transcriptional mapping of the 5' end of the Sel 16 and Sel 17 transcripts 
The 5' end of the Sel 16 and Sel 17 transcripts was determined by 5' RACE analysis 
with total RNA isolated at an early and late time point p.i. from Se301 cells. A single 
cDNA was detected at all early and late times tested for both Sel 16 and Sel 17 
transcripts. The start site of Sel 16 transcription maps 36 nt upstream of the ATG 
translation initiation codon at first A in the sequence ATCAGT (Fig. 3.2). The start 
site of Sel 17 transcription was located 12 nt upstream of the ATG start codon, at first 
A in the sequence ATCATT (Fig. 3.2). Thus, the Sel 16 and Sel 17 transcripts initiated 
within a baculovirus consensus early promoter motif. 

The Sel 16 and Sel 17 early promoters were further investigated using 
cycloheximide to inhibit protein synthesis. In the presence of this inhibitor in the 
medium of infected cells only immediate early promoters are transcribed i.e. by host 
RNA polymerases. Both Sel 16 and Sel 17 transcripts were absent in RT-PCR analysis 
at 4, 8 and 16 h p.i. in the presence of 100 |ig/ml cycloheximide (results not shown), a 
concentration at which protein synthesis is largely inhibited (Ross and Guarino, 1997). 
This was in contrast to cells infected in parallel, but not treated with cycloheximide. 
So, Sel 16 and Sel 17 are not immediate early genes, since immediate early protein 
synthesis was required for their transcription, but most likely delayed-early. 

Transcriptional mapping of the 3' end of the Sell6 and Sell7 transcripts 
The 3' end of the Sel 16 and Sel 17 transcripts was determined by sequencing the 3' 
specific RACE-PCR fragments obtained after RT amplification of total RNA purified 
from Se301 cells or S. exigua fat body tissue at various times p.i. The obtained 
sequences indicated that the 3' ends of the transcripts isolated from cultured insect 
cells are identical to those isolated from fat body tissue and showed little or no 
variation in their poly(A) attachment sites. The 3' end of the Sel 16 transcript was 
located 25 nt downstream of the stop codon at the second T in the sequence TAAT 
(Fig. 3.2). A conventional mammalian polyadenylation signal, consisting of an 
AATAAA motif and 20-30 nt downstream a diffuse (G)U-rich sequence, is located 2 
nt downstream of the stop codon. The 3' end of the Sel 17 transcript was mapped 53 
nt downstream of the stop codon at the C in the sequence ATGC (Fig. 3.2). A single 
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conventional mammalian polyadenylation motif is present 32 nt downstream of the 
stop codon. Hence, the Sell6 and Sell7 transcripts ended, respectively, 18 and 16 nt 
downstream of the AATAAA motif. These results suggest that the conventional 
mammalian polyadenylation signal was used for the termination of SeMNPV 
transcripts in both Se301 and S. exigua fat body cells. Taken together, the data of the 
5' and 3' end mapping predict transcript sizes of 739 and 641 nt for Sel 16 and Sel 17 
(excluding the poly(A) tail), respectively. The expected sizes are in agreement with 
the 0.8 and 0.75 kb sizes determined by Northern analysis for the major transcripts of 
Sel 16 and Sel 17, respectively, assuming a poly(A) tail of 100-150 nucleotides. 

Immunodetection of the Sel 16 and Sel 17 proteins in infected cells 
The Sel 16 and Sel 17 proteins have predicted molecular weights of 26.3 and 22.5 
kDa, respectively. Antibodies were prepared by immunization of rabbits with PREP-
cell purified Sel 16 or Sel 17 protein produced in E. coli. Western analysis of extracts 
of SeMNPV infected Se301 insects cells showed a specific protein of 27 kDa at 48 
and 72 h p.i. for the Sel 16 antiserum (Fig. 3.4A). The size of the 27 kDa protein is in 
agreement with the predicted 26.3 kDa size of the putative Sel 16 translation product, 
suggesting that no major posttranslational modification occurred. Overexposure did 
not reveal this specific 27 kDa protein earlier than 48 h p.i. A -46 kDa protein was 
detected from 4 until 48 h p.i. (Fig. 3.4A) using the same Sel 16 antiserum. This 
protein should be considered to be of non-viral origin, since it also appeared in mock-
infected cells. 

Western analysis of extracts from SeMNPV infected Se301 cells revealed a 
specific polypeptide with an apparent size of 23 kDa, when using the Sel 17 antiserum 
(Fig. 3.4B). This size is in agreement with the predicted 22.5 kDa size of the putative 
Sel 17 translation product, suggesting that no major posttranslational modification 
occurred. The protein was detected from 8 until 72 h p.i., with a maximum at 48 h p.i. 
This is in agreement with transcription data for Sel 17 (Fig. 3.3B). The Sel 17 
antiserum showed some cross-reactivity to a -30 kDa protein that should be 
considered to be non-viral, since it also appeared in mock-infected cells (Fig. 3.4B). 

Localization of the Sell6 and Sel 17 proteins in insect cells 
The subcellular localization of the Sel 16 and Sel 17 proteins was investigated using 
C-terminal GFP-fusion constructs. These GFP-fusion constructs were made in 
plasmid pl66BRNX-AcV5 (IJkel et ah, 2000). As a negative control, GFP alone was 
cloned in the same vector. Se301 cells were transfected with 5 |ag plasmid DNA, 
incubated for 48 h and examined for fluorescence by confocal laser scanning 
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Fig 3.4 Western blot analysis of the Sell6 (A) and Sell7 (B) proteins in SeMNPV 
infected Se301 cells (70,000 cells/lane). The corresponding times p.i. are indicated above the 

lanes (Mi, mock infected). The Sel 16 and Sel 17 proteins were identified using the Sel 16 and Sel 17 

polyclonal antiserum, respectively, and detected with a chemiluminescent substrate. Size standards 

are indicated in kDa and immunoreactive proteins are indicated by arrows. 

microscopy. The non-fused GFP protein showed homogeneous fluorescence in the 
cytoplasm and nucleus (Fig. 3.5A). However, the Sel 16 and the Sel 17 GFP-fusion 
proteins were primarily localized in the nucleus (Fig. 3.5B, C). Thus, the discrete 
patterns of fluorescence are due to the linked Sel 16 and Sel 17 sequences and are 
consistent with their computer-predicted nuclear localization (Reinhardt and Hubbard, 
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1998). A few discrete foci of fluorescence were also observed in the cytoplasm for the 
Sel 16 GFP-fusion protein (Fig. 3.5B). 
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Fig. 3.5 Localization of the Sel 16 and Sel 17 GFP-fusion proteins in Se301 cells 
without or with SeMNPV infection. Se301 cells were transfected with the control plasmid 

pl66AcV5-GFP (A), the plasmid pl66AcV5-Sel 16GFP (B) or with P166AcV5-Sel 17GFP (C). At 48 

h after transfection the cells were examined by confocal laser scanning microscopy for fluorescence. 

Se301 cells were transfected as in A (D), B (E) or C (F) and infected 24 h post transfection. At 48 h 

p.i. the cells were examined by confocal laser scanning microscopy for fluorescence. Phase contrast 

micrographs are shown to the right of the fluorescence graph. Overlay micrographs of the 

fluorescence and phase contrast micrographs are shown below the fluorescence micrographs. 
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The localization of the Sell6 and Sell7 proteins during infection was also 
investigated to obtain further insight into their function. Se301 cells were transfected 
with pl66Sel 16-GFP or -Sel 17-GFP and 24 h later infected by SeMNPV with a MOI 
of 10. Cells were incubated for 48 h p.i. and examined for fluorescence by confocal 
laser scanning microscopy. When GFP was not linked to either the Sel 16 or the 
Sel 17 protein, fluorescence was uniformly present throughout the cytoplasm and 
nucleus (Fig. 3.5D). The Sel 16 GFP-fusion protein, however, was primarily localized 
in the center of the nucleus of infected cells in a network of granular material, known 
as the virogenic stroma (Fig. 3.5E). Furthermore, fluorescence was also observed in 
the periphery of the nucleus along the nuclear membrane. This often ring-shaped 
fluorescence colocalizes with that of heterochromatin, which is displaced and 
marginalized by the emerging stroma (Williams and Faulkner, 1997). No fluorescence 
was observed in polyhedra. A few discrete foci of intense fluorescence were observed 
in the cytoplasm (Fig. 3.5E), as was also observed in the absence of SeMNPV 
infection (Fig. 3.5B). For Sell7-transfected and infected Se301 cells, intense 
fluorescence was observed in the center of the nucleus cells in the virogenic stroma 
(Fig. 3.5F). Although more difficult to observe, due to absorption and / or distortion of 
the fluorescence by the electron-dense polyhedra components, the Sel 17 GFP-fusion 
protein was also detected in polyhedra (Fig. 3.5F). 

Immunodetection of the Sel 16 and Sel 17 proteins in BV and ODV 
To investigate further if the Sel 16 and Sel 17 proteins are structural components of 
SeMNPV, Western analysis of budded virus (BV) and occlusion derived virus (ODV) 
was conducted. Equivalent amounts of BV or ODV-derived protein were loaded on 
SDS-PAGE (data not shown). The Sel 16 protein was not detected in preparations of 
BV or ODV (Fig. 3.6A). The Sel 17 protein (23 kDa), however, was detected in ODV 
but not in BV (Fig. 3.6B). Thus, the 23 kDa Sel 17 translation product appeared to be 
an ODV-specific protein. 

The location of the Sel 17 protein in ODV was determined by Western analysis 
of nucleocapsid (NC) and envelope (E) fractions, prepared in the presence of protease 
inhibitors. The purity of the ODV NC and E fractions was tested by SDS-PAGE 
analysis only (Fig. 3.6C), since no antibodies for SeMNPV ODV NC- or E-specific 
proteins are available. The banding pattern of the NC and the E fraction was distinct 
(Fig. 3.6C). Furthermore, the two major SeMNPV ODV NC proteins (31 and 37 kDa) 
were absent in the E fraction, whereas the two major E proteins (41 and 46 kDa) were 
absent in the NC fraction (Fig. 3.6C). Therefore, both fractions were considered to be 
sufficiently pure. 
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Fig. 3.6 Western blot analysis of the Sell6 (A) and Sell7 (B) proteins in BV and 
ODV. BV and ODV (10 ug/lane) represent isolated SeMNPV budded virus and alkali-disrupted 

occlusion derived virus, respectively. (C) SDS-PAGE and Western blot analysis of the Sell7 protein 

in SeMNPV ODV, ODV nucleocapsid (NC) and envelope (E) fractions (10 ug/lane). The sizes of two 

NC- (30 and 37 kD) and two E- (43 and 48 kDa) specific proteins are indicated on the left. The Sel 16 

and Sel 17 proteins were identified using the Sel 16 and Sel 17 polyclonal antiserum, respectively, and 

detected with a chemiluminescent substrate. Size standards (in the centre) are indicated in kDa and 

immunoreactive proteins are indicated by arrows. 

When ODV fractions were prepared in the absence of protease inhibitors, the 
Sel 17 protein could be detected neither in the NC nor in the E fraction, but was 
present in unfractionated ODV (results not shown). This suggests that upon NP-40 
fractionation of SeMNPV ODV the Sel 17 protein was degraded probably by a 
proteolytic activity. When ODV was fractionated in the presence of a cocktail of 
protease inhibitors, a major 23 kDa band was detected in the NC fraction, while only a 
very small amount was present in the E fraction (Fig. 3.6C). Thus, the 23 kDa Sel 17 
protein was predominantly present in the NC fraction. 
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Discussion 
In this study we report the temporal transcription and translation of Sel 16 and Sel 17 
and the subcellular localization of their products. Both genes are unique to SeMNPV 
and may encode proteins which explain the unique characteristics of this virus. 
Northern analysis indicated that Sel 16 and Sel 17 transcript levels increased 
significantly from 4 till 48 h p.i, and remained at steady state levels throughout 
infection (Fig. 3.3). This suggests that the early nature of the ATCA(T/G)T promoter 
does not exclude transcription by the viral RNA polymerase at time points late in 
infection. Similar transcription patterns were observed for other baculovirus early 
genes, such as the AcMNPV pnk/pnl and lef4 genes, the BmNPV bro genes, and the 
iel genes of AcMNPV, OpMNPV and LdMNPV (Durantel et al, 1998a and b; Kang 
et al., 1999; Pearson and Rohrmann, 1997; Pullen and Friesen, 1995; Theilmann and 
Stewart, 1993). 

Transcriptional mapping of Sel 16 and Sel 17 (Fig. 3.2) showed that both genes 
have transcription start and stop sites similar to those of other baculovirus early genes, 
such as the LdMNPV genes iel, g22 and vPK (Pearson and Rohrmann, 1997; Bishoff 
and Slavicek, 1994 and 1995), the AcMNPV iel, pnk/pnl and lef4 genes (Pullen and 
Friesen, 1995; Durantel et al., 1998a and b) and the OpMNPV iel and opep-2 genes 
(Theilmann and Stewart, 1993; Shippam et al., 1997). Although a second putative 
TGCATT early promoter motif was present at -87 nt from the Sel 17 start codon (Fig. 
3.2), transcripts using this promoter were not detected. This could be caused by the 
somewhat unusual spacing, only 13 nt, between the TATA-box and the TGCATT 
sequence (Roeder, 1991; Lu and Miller, 1995). Furthermore, this putative early 
promoter is not completely consistent with the arthropod initiator cap site consensus 
[A(A/C/T)CA(G/T)T]) (Cherbas and Cherbas, 1993). 

Western analysis detected a 26 kDa protein specific for Sel 16 from 48 h p.i. 
(Fig. 3.4A). This is somewhat unexpected because Sel 16-specific transcripts could be 
detected as early as 8 h p.i. (Fig. 3.3). The inability to detect the Sel 16 protein earlier 
than 48 h p.i. may be due to the low level of Sel 16 protein present at earlier time 
points and or the low affinity of the Sel 16 antiserum. The cross-reactivity of the 
Sel 16 antiserum with a cellular protein of ~46 kDa could be either due to the presence 
of a non-related protein or to a putative cellular cognate of Sel 16, which may be 
downregulated upon infection. 

The Sel 17 translation product appeared to be a structural ODV-specific protein 
expressed already from 8 h p.i. onwards as detected by Western analysis (Figs. 3.4B 
and 3.6B). Such an early expression start is not often found for structural baculovirus 
proteins as they usually contain baculovirus consensus late promoters (Funk et al., 
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1997). However, Sel 17 is probably not the only baculovirus gene, which is expressed 
early in infection and encodes a structural virion protein, since also the SeMNPV odv-
e66, vp80capsid, vp39capsid andp74 genes (IJkel et al., 1999) possess early promoter 
motifs as do other baculovirus structural genes. It remains to be investigated, however, 
whether the latter genes use their early promoter motifs as transcription start sites. An 
alternative possibility is that the Sel 17 protein possesses different functions early and 
late in infection. 

NP-40 fractionation of SeMNPV ODV revealed that the Sel 17 protein is 
predominantly associated with the nucleocapsid fraction. This technique has 
previously been used to recover intact nucleocapsids (Thiem and Miller, 1989). Since, 
the Sel 17 protein was only detected in the presence of protease inhibitors upon 
fractionation, it resides most likely at the outside of the ODV nucleocapsids, where it 
is easy accessible for proteases. The localization in ODV nucleocapsids is in 
agreement with (i) the computer predicted absence of a potential signal peptide, GPI-
anchor or hydrophobic transmembrane domain in the Sel 17 sequence, indicative for 
envelope localization (Hong et al., 1997), (ii) the sensitivity of the AcMNPV major 
nucleocapsid protein for proteolytic degradation only upon NP-40 treatment in 
contrast to the ODV P74 envelope protein (Faulkner et al., 1997) and (iii) the absence 
of the AcMNPV tegument protein, GP41, in the nucleocapsid fraction of ODVs upon 
NP-40 fractionation (Whitford and Faulkner, 1992). The small amount of Sel 17 
protein detected in the envelope/tegument fraction supports the supposition that it 
resides at the outside of the nucleocapsid. 

All baculovirus nucleocapsid proteins studied to date are present in both BV and 
ODV (Funk et al., 1997). Based on the results of SDS-PAGE analyses of AcMNPV 
BV and ODV nucleocapsids, it was hypothesized that their protein compositions 
would be different (Braunagel and Summers, 1994). The 23 kDa Sel 17 protein is a 
good candidate of an ODV-specific nucleocapsid protein. The absence of the Sel 17 
protein in BV (Fig. 3.6B) supports this conclusion. It is possible that the Sel 17 protein 
is present in BV in a non-detectable form when using the Sel 17 antiserum. The latter 
explanation, however, is unlikely since no fluorescence was observed at the plasma 
membrane for the Sel 17 GFP-fusion protein in SeMNPV infected Se301 cells (Fig. 
3.5F). 

The region between the gene homologs of Ac38 and Ac40 differs in many 
baculoviruses (Lapointe et al., 2000). Like in SeMNPV, an Ac39 homolog is also 
absent in OpMNPV, LdMNPV and the granuloviruses PxGV and XcGV, where 
respectively, an extensive inversion (Ahrens et al., 1997), replacement with a second 
AcMNPV ORF25 (dbp) homolog (Kuzio et al, 1999) and two deletions were 
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observed (Hayakawa et al, 1999; Hashimoto et al, 2000) compared to the AcMNPV 
genome. Therefore, this baculovirus region can be considered as a 'hot spot' for 
genome rearrangement. SeMNPV inserted two unique genes, Sel 16 and Sel 17, in this 
hypervariable region, that share a significant degree of amino acid homology but not 
nucleotide sequence homology. It is intriguing that both Sel 16 and Sel 17 antisera 
showed cross-reactivity to a cellular protein (Fig. 3.4), which supports a hypothesis 
that both genes could be derived from cellular origin. If so, Sel 17 has evolved to a 
structural SeMNPV ODV nucleocapsid protein, while the function of Sel 16 still 
remains enigmatic. Also the function of the highly homologous N-terminus of both 
proteins may be important for their putative functions. 

Upon SeMNPV infection the Sel 16 and Sel 17 GFP-fusion proteins were 
primarily localized in a network of granular material, known as the virogenic stroma. 
The virogenic stroma is considered a de novo product of baculovirus infection in 
which progeny virions are assembled (Williams and Faulkner, 1997). Since both the 
Sel 16 and Sel 17 proteins are only present (as of yet) in SeMNPV they may play a 
specific role in virion assembly process or virogenic stroma arrangement. As a minor 
component of the ODV nucleocapsid, the Sel 17 protein may function as a scaffold 
protein in ODV nucleocapsids or could be involved in early infection events, like 
nucleocapsid entry or transport once fusion occurred. Future studies using SeMNPV 
site-specific and null mutants will determine the significance of these genes in the 
SeMNPV infection cycle and shed light on their potential role in the host specificity 
and virulence. 

Material and methods 

Computer-assisted analysis 
Sel 16 and Sel 17 (IJkel et al, 1999) were analyzed using software of the Predict 
Protein server (Rost, 1996) and the ExPASy server (Appel et al, 1994) for the 
prediction of domains, motifs, transmembrane regions and subcellular localization 
(Reinhardt and Hubbard, 1998). DNA and protein comparisons with entries in the 
updated GenBank/EMBL, SWISS-PROT and PIR databases were performed with 
BLASTn, FASTA and Psi-BLAST programs (Pearson, 1990; Altschul et al, 1997). 
Multiple sequence alignments were performed with the GCG PileUp computer 
programs with gap creation and extension penalty set to 8 and 2, respectively 
(Devereux et al, 1984). Alignment editing was performed with Genedoc Software. 
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Plasmid constructions 
The complete coding regions of Sell6 and Sell7 were amplified by high fidelity 
"Expand" long template PCR (Boehringer Mannheim) from plasmid pHBg6.2 (IJkel 
et al., 1999) using primers containing 5' BarrMl and 3' Hindlll restriction sites and 
cloned into pGEM-T. The plasmids were named pGEMSell6 and pGEMSell7 and 
used for production of gene-specific riboprobes. The plasmids pTriExSell6 and 
pTriExSell7 were obtained by cloning the BamHI/Hindlll fragments from 
pGEMSell6 and pGEMSell7 into the BamRl and Hindlll sites of the expression 
vector pTriEx-1 (Novagen) in frame with the HSV and His-tag sequences. These 
plasmids were used for overexpression of the Sell6 and Sell7 proteins in E. coli. To 
determine the localization of Sell6 and Sell7 in insect cells, GFP-fusion constructs 
were made. The complete coding regions of Sel 16 and Sel 17 were amplified by high 
fidelity "Expand" long template PCR (Boehringer Mannheim) from plasmid pHBg6.2 
(IJkel et al., 1999) using primers containing 5' BamUl and 3' EcoKL restriction sites 
and cloned into the BamRl and EcoRl sites of the previously described pl66AcV5-
GFP vector (IJkel et al, 2000) and named pl66Sell6-GFP and pl66Sell7-GFP, 
respectively. Plasmid DNA was purified using Jetstar columns according to 
manufacturer's protocol (ITK Diagnostics). For each construct, the nucleotide 
sequence was checked using an automated DNA sequencer (Wageningen University, 
The Netherlands). 

Cells, Insects and Viruses 
The Spodoptera exigua cell-line Se301 (Hara et al, 1995b) and the SeMNPV-USl 
isolate (Gelernter and Federici, 1986b; Munoz et al., 1998) were maintained and 
propagated as described previously (IJkel et al., 2000). A culture of S. exigua insects 
was maintained according to Smits and Vlak (1988a). SeMNPV protein synthesis was 
inhibited by adding cycloheximide (100 (Xg/ml, Sigma) to the Se301 cells 30 min 
before infection. 

Total RNA isolation, Northern blot, RT-PCR, 3' and 5' RACE analysis 
Total RNA was isolated from 2 x 106 mock-infected and SeMNPV-US 1-infected 
Se301 cells (MOI of 5 TCID50 units/cell) at 0, 4, 8, 16, 24, 48 and 72 h p.i. Total RNA 
was also isolated from fat body tissue obtained after dissection of six mock-infected 
and SeMNPV-USl infected S. exigua larvae (1.7 x 104 polyhedra/larva) at 0, 48 and 
72 h p.i. Cells and tissue were resuspended in 500 ul Trizol (GibcoBRL) and 100 jLtl 
chloroform, incubated for 8 min and centrifuged at 14,000 g for 15 min at 4°C. The 
RNA in the water fraction was precipitated using isopropanol, centrifuged at 14,000 g 
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for 10 min at 4°C, washed with 70% ethanol and resuspended in 50 ul water. The 
RNA solutions were incubated at 55°C for 10 min and quantified by absorbance at 260 
nm. 

For Northern analysis 8 (ig of total RNA was electrophoresed in 1.5% agarose in 
the presence of glyoxal (Ausubel et al, 1994) and blotted onto a Hybond N nylon 
membrane (Amersham). The northern blot was hybridized with a Sell6 or Sell7 
messenger-specific riboprobe generated by T7 and SP6 polymerase, respectively, with 
[oc-32P]CTP and BarniW digested pGEMSell6 and pGEMSell7. Fragment sizes 
were determined by staining the molecular weight marker (Promega RNA marker) 
with methylene blue after transfer onto the membrane. 

RT-PCR was performed using the 573' RACE kit (Roche) employing 2 |xg 
purified total RNA as template per time point. First-strand cDNA synthesis was 
performed using AMV reverse transcriptase and the oligo-dT anchor primer according 
to manufacturer's instructions. The cDNA-mixtures were amplified by PCR using the 
PCR anchor primer and the gene specific primers Sell6SPl or Sell7SPl (Fig. 3.2). 
The obtained PCR-products were analyzed in 1.2% agarose gels. 

The amplified RT-PCR products of 8 and 16 h p.i. were used to determine the 3' 
end of the Sell6 in vitro messenger, while the RT-PCR products of 4 and 24 h p.i. 
were used for the Sell7 in vitro messenger. The 3' ends of the Sell6 and Sell7 
transcripts isolated from fat body tissue were determined using the amplified RT-PCR 
products of 48 and 72 h p.i., respectively. All PCR-products were gel purified, cloned 
into pGEM-T and sequenced with T7 or SP6 primers. 

The 5' ends of the Sel 16 and Sel 17 transcripts were determined using the 573' 
RACE kit (Roche) employing 2 ug purified total RNA as template per time point. 
(Sel 16: 8 and 48 h p.i.; Sel 17: 4 and 48 h p.i.) Briefly, first strand cDNA synthesis 
was performed with the gene specific primers Sell6SP2 and Sell7SP2 (Fig. 3.2). 
The cDNAs were purified with the High Pure PCR purification kit (Roche) and a 
poly(A) tail was added to the 3' ends using the terminal transferase with dATP. The 
tailed cDNAs were amplified by PCR using the oligo dT-anchor primer and the nested 
gene specific primer Sel 16SP3 or Sel 17SP3 (Fig. 3.2). A second PCR was performed 
using the PCR anchor primer and the nested primer Sel 16SP4 or Sel 17SP4 (Fig. 3.2). 
The obtained PCR products were gel purified, cloned into pGEM-T and sequenced 
with T7 or SP6 primers. 

Production of polyclonal antibodies 
Cultures of E. coli B121 containing pTriExSell6 and pTriExSell7 were grown to an 

optical density at 600 nm of 0.5 and induced with 1 mM isopropyl-(3-D-
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thiogalactopyranoside (IPTG). After 4 h at 37°C, cells were collected by centrifuging 
at 6,500 g for 15 min at 4°C, resuspended in 20 mM Tris-HCl pH7.5, lysed with 
lysozyme, sonicated and centrifuged at 14,000 g for 10 min at 4°C. The insoluble 
fractions were washed with 20 mM Tris-HCl pH7.5 and resuspended in 1% SDS. 
Aliquots of the soluble and insoluble fractions were electrophoresed in 12.5% SDS 
polyacrylamide gels according to Laemmli (1970) and stained with Coomassie 
brilliant blue. 

The insoluble fractions containing the Sel 16 or Sel 17 proteins were purified by 
continuous-elution electrophoresis using the Model 491 Prep Cell (Bio-Rad) 
according to manufacturer's protocol. Elution fractions were collected, 
electrophoresed in 12.5% SDS polyacrylamide gels and the protein bands visualized 
by silver staining (Morrisey, 1981). Fractions containing Sel 16 or Sel 17 were pooled 
and dialyzed for 36 h against running buffer without SDS. The samples were 
concentrated by freeze-drying and dissolved in H20. Protein concentrations were 
determined with the Bio-Rad protein assay (Bio-Rad). Two rabbits were injected 
intramuscularly with 100 |ag purified Sel 16 or Sel 17 protein in Specol (ID-Lelystad, 
The Netherlands). The rabbits were boosted after seven days with 300 |Xg purified 
protein. Serum was collected 2, 4, 6 and 8 weeks after the boost injection. Western 
analysis using E. coli BL21 extracts expressing pTriExSell6 or pTriExSell7 and 
PREP-cell purified Sel 16 or Sel 17, which were verified by Western analysis with a 
His-tag antibody (Clontech), were used to test the production of specific antisera. 

Western analysis 
Monolayers of Se301 cells were mock- or SeMNPV-USl-infected at a multiplicity of 
infection (MOI) of 5 TCID50 units/cell. Cells were harvested at 0, 4, 8, 16, 24, 48 and 
72 h p.i., pelleted, resuspended in PBS and lysed in SDS-PAGE loading buffer by 
boiling for 5 min. Protein samples were then separated by SDS-PAGE and transferred 
on Immobilon-P nitrocellulose membrane (Millipore) by semi-dry electrophoresis 
transfer (Ausabel et al., 1994). The membranes were incubated overnight in 10% 
block solution (Boehringer Mannheim) in TBS-T buffer (50 mM Tris-HCl, 200 mM 
NaCl, 0.1% Tween-20, pH7.6) at 4°C. The membranes were allowed to react in TBS-
T with Sel 16 or Sel 17 antiserum diluted 1:5000 for 1 h at room temperature. After 
washing in TBS-T (three times 15 min), the membranes were incubated for 1 h at 
room temperature with horse radish peroxidase-conjugated donkey anti-rabbit 
immunoglobulin (Amersham) diluted 1:5000 in TBS-T. After washing in TBS-T 
(three times 15 min) the signal was detected by ECL technology as described by the 
manufacturer (Amersham). 
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Purification of SeMNPV BV and ODV 
Eight-hundred S. exigua fourth-instar larvae were infected by contamination of 
artificial diet with SeMNPV-USl polyhedra (lOx LD99) (Smits and Vlak, 1988a). To 
purify BVs, 15 ml of hemolymph was collected 3 days p.i. in 0.5 ml 0.1 x TE (TE is 
10 mM Tris, pH 7.5, 1.0 mM EDTA) containing 5 mM phenylthiocarbamide to inhibit 
prophenoloxidase activity. Hemolymph was clarified twice at 3,000 g for 10 min at 
room temperature. The supernatant was filtered (0.45 (tm filter) and the filtrate 
overlaid onto a 35 ml 25-50% continuous sucrose gradient in 0.1 x TE. Gradients were 
centrifuged at 100,000 g for 120 min at 4°C (Beckman SW28, 24,000 rpm). The BV 
band was collected, diluted twice and centrifuged at 100,000 g for 90 min at 4°C 
(Beckman SW28, 24,000 rpm). The virus pellet was resuspended in 200 (il 0.1 x TE. 

Polyhedra were purified from larvae as described previously (IJkel et al., 2000). 
Briefly, ODVs were liberated from polyhedra (40 mg/ml) by incubating at room 
temperature for 15 min in 0.1 M Na2C03, 166 mM NaCl, 10 mM EDTA, pH 10.5. 
Undissolved polyhedra were removed by low-speed centrifugation for 5 min (500 g). 
The supernatant (5 ml) was layered onto a 35 ml, 25-56% (w/w) continuous sucrose 
gradient in 10 mM Tris-HCl, pH 7.5 and centrifuged at 100,000 g for 90 min at 4°C 
(Beckman SW28, 24,000 rpm). The multiple virus bands were collected, washed by 
dilution in 0.1 x TE, concentrated by centrifugation at 55,000 g for 60 min at 4°C 
(Beckman SW41, 18,000 rpm) and resuspended in 0.1 x TE. The purity and integrity 
of BVs and ODVs were checked by electron microscopy. 

Fractionation of virions into envelope and nucleocapsid 
Virus was fractionated into envelope and nucleocapsid using a modification of the 
protocol of Braunagel and Summers (1994). In a 250-ftl reaction, 250 |Xg of ODV was 
incubated in 1.0% NP-40, 10 mM Tris, pH 8.5, at room temperature for 30 min with 
gentle agitation. The solution was then layered onto a 5-ml 30% (v/v) glycerol/10 mM 
Tris, pH 8.5 cushion and centrifuged at 150,000 g for 60 min at 4°C (Beckman SW55, 
35,000 rpm). The envelope proteins were recovered from the top of the gradient, 
acetone-precipitated and concentrated by centrifugation (4000 g, 30 min), and the 
pellet was dissolved in 10 mM Tris, pH 7.4. The pelleted nucleocapsids were 
resuspended in 10 mM Tris, pH 7.4. This fractionation procedure was also carried out 
in the presence of the protease inhibitor cocktail Complete according to 
manufacturer's protocol (Boehringer Mannheim). 
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Fluorescence microscopy 
Se301 cells (3 x 105) were grown on glass cover slips and transfected with 5 |Xg of 
plasmid DNA using Cellfectin (GibcoBRL). Cells were superinfected with SeMNPV 
with a MOI of 5 TCID50 units/cell 24 h post transfection. At 48 h post transfection or 
48 h p.i., the cells were examined with a Zeiss LSM510 (confocal) laser scanning 
microscope for fluorescence using an excitation wave length of 488 nm and an 
emission band pass filter of 505 - 530 nm. 
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Chapter 4 

Characterization of Spodoptera exigua multicapsid 
nucleopolyhedrovirus ORF17/18, a homolog of 

Xestia c-nigrum granulovirus ORF129 

Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) contains a number 
of genes with a homolog found so far only in a distantly related baculovirus. One of 
these, SeMNPV ORF17/18 (Sel7/18) shares 55% amino acid similarity to ORF129 of 
Xestia c-nigum granulovirus (XcGV). To gain insight in the significance of this gene, 
its expression was analyzed. Sel7/18 was transcribed in cultured S. exigua 301 cells, 
as a polyadenylated transcript of 1.1 kb. 5' RACE analysis demonstrated that the 
Sel7/18 transcription start sites mapped at 134, 131 and 126 nt upstream of the 
putative translational start codon. These sites overlapped with a baculovirus consensus 
early promoter motif. Sel7/18 transcripts were detected by Northern and RT-PCR 
with increasing abundance from 8 h to 24 h post infection (p.i.) and reseded until 72 h 
p.i. A chicken polyclonal antiserum was raised that reacted specifically to Sel7/18 
protein produced in E. coll. However, no immunoreactive protein was detected in 
SeMNPV-infected Se301 cells. A C-terminal GFP-fusion protein of Sel7/18 was 
primarily localized in the cytoplasm of Se301 and Sf21 cells. Based on low homology 
of Sel7/18 to (methyl) transferases its possible role in transcription regulation is 
discussed. 

Manuscript in preparation: 

IJkel, W. F. J., Lebbink, R.-J., Goldbach, R. W., Vlak, J. M., and Zuidema, D. 
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Introduction 
The beet army worm {Spodoptera exigua; Lepidoptera, Noctuidae) is an agricultural 
important pest insect in (sub)tropical regions of the world and in greenhouses 
(Federici and Maddox, 1996). S. exigua multicapsid nucleopolyhedrovirus (SeMNPV) 
is a highly pathogenic baculovirus for the beet army worm and differs from many 
other NPVs in that it is infectious for S. exigua larvae only and has a relatively high 
virulence (Smits, 1987). These biological characteristics make SeMNPV an attractive 
biological alternative for chemical insecticides. Detailed information on the 
expression and function of specific SeMNPV genes is important to gain insight in 
baculovirus biology. 

In previous studies, a mutant SeMNPV was obtained within the first passage in 
cell culture that lacked virulence in vivo (Heldens et al., 1996). This mutant contained 
a contiguous 25 kb deletion encompassing SeMNPV ORF15 to ORF41 (IJkel et al., 
1999). So far, none of these ORFs has been experimentally shown to be essential for 
biological activity or virulence in vivo. Of these, SeMNPV ORF17 (Sel7) and ORF18 
(Sel8) were previously characterized as unique to SeMNPV (IJkel et al, 1999). Upon 
resequencing they appeared to be linked into a single ORF (Sel7/18). Surprisingly, 
Sel7/18 has a homolog in Xestia c-nigrum granulovirus (XcGV; Hayakawa et al, 
1999), which is only very distantly related to SeMNPV. The function and significance 
of Sel7/18 and its XcGV homolog are unknown. Therefore, the functionality of 
Sel7/18 is investigated by determining its transcriptional and translational activity as 
well as subcellular localization. 

Results 

SeMNPV ORF17/18 and its XcGV homolog 
Upon resequencing ORF 17 and ORF 18 (IJkel et al, 1999), these ORFs appeared to be 
linked, forming one contiguous ORF within the SeMNPV genome. The occurrence of 
an additional G, present after nt 20,512, resulted in this correction, leading to one 
continuous ORF further denoted as Sel7/18. Sel7/18 is located between nt 20,121 
and 20,989 and encodes a putative protein of 289 amino acids (aa) with a predicted 
molecular weight of 33.7 kDa. Appropriate searches of protein databases showed that 
the putative Sel7/18 protein is highly homologous to XcGV ORF129 (Xcl29). Psi-
blast searches (Altschul et al., 1997) and Gap alignment revealed that the predicted 
Sel7/18 aa sequence shares 55% similarity and 38% identity with Xcl29 (Fig. 4.1). 
The N-terminal part of the Sel7/18 protein is 25 aa smaller than that of the Xcl29 
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Sel718 : M^BlpHLF IiFGLmS^^KpiKHTgHfflTHpOTEBR : 39 
XC129 : MKRJ^BFHiAASSIKRCYLKDEDTDLLPPTNLTQEITNKffivralfflYBEHLisBvfcLfflGBE : 65 

SL^^^KflLKHTgHgTHFA^EgR 
SIK^VgL^YgiEgLgSgVgYL^GgE 

Sel718 : VG^TO. 'OT.BK. •I'lK^^gRFK^INVfflXRfflTEYBBR BjnYV^ElfflvBr,THOTOVKHHT,N : 100 

XC129 : GR^B1 S : " E R : 1 Y K Q ^ ^ E S E E f f l L E I ^ ! ^ R F f f i N C T ; ^ ^ L ' 1 ^ E ^ A S R Q H ^ f f l ] : , I ^ S l 2 P K : 1 2 9 

Sel718 : ^ r a »AIMV^^^S N K Wl^W^ I D K§ C K ^KAMHnKGNGT^PA»A^mQ- l ^^GKED : 164 
XC129 : I^IHNl8TWB8^^KTlmqRmTl>jlAYBH5NFflKKSOpB EHRnSIfll-BHMftaBnJIiKA : 139 

Sel718 : NI -\^cSDRJWAjjljj-MLHLVgDVEYHl^^AfflRRIKHKB- Y^FSRHRlElBfflLMBMNfflAH : 226 
Xcl29 : TRGILg-g- -^^^^IE^Kg-TNI^Gg^F^SUSlQL^NE^r-KLKVgV^gYQp lYgRg : 249 

Xcl29 : IgANQESIDGEHQKVQ^^QG§I^SAS7AMP§^FLq|FI(^R^g^gAS^QRIgM : 312 

Fig. 4.1 Alignment of the predicted amino acid sequences of the Sel7/18 and Xcl29 
pro te ins . Gaps, introduced to optimize the alignment, are indicated with dashes. Shading is used to 

indicate the occurrence of identical (black) or substitutional (grey) amino acids. 

protein. The conserved aa residues are equally distributed throughout the Sel7/18 and 
Xcl29 sequences. Most of their cysteine residues are conserved and located at the C-
terminal part of the proteins. Analysis of both predicted aa sequences did not reveal 
motifs for transmembrane regions, GPI-anchors nor signal peptide sequences. 
According to the NNCN score analysis (Reinhardt and Hubbard, 1998) both proteins 
are probably localized in the cytoplasm of the cell. Blast searches revelaed that the 
identified homology is also present on nucleotide level and resembles the similarity 
found on amino acid level. Sel7/18 is present in the reverse orientation in the genome 
relative to thepolyhedrin gene (IJkel et ah, 1999). 

The regions upstream of Se 17/18 and Xcl29 were analyzed for the presence of 
possible transcription start sites, baculovirus consensus early CA(G/T)T and late 
DTAAG promoter motifs (Blissard and Rohrmann, 1990; Pullen and Friesen, 1995; 
Blissard and Rohrmann, 1989), downstream activating elements (Friesen, 1997) and 
host factor binding sites, such as GATA and CACGTG (Kogan and Blissard, 1994). 
Two early gene transcription initiation motifs (TATA-NrGGCATT) and (TATAA-
N14-GACAGT) were found, respectively, 142 and 50 nt upstream of the putative 
Sel7/18 translational start codon (Fig. 4.2 and 4.3). An additional TATA-box was 
located 117 nt upstream of the start codon, which could be linked to an AACATT 
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sequence mapped 56 nt further downstream. A GATA host factor binding site mapped 
88 nt upstream of the putative ATG of Sel7/18 (Fig. 4.2 and 4.3). A polyadenylation 
signal sequence (AATAAA) was identified starting at the last A of the TAA stop 
codonofSel7/18(Fig. 4.2). 

2116 0 caccacgcaagccaagaacagcgtaataaTATAgGGCATTatctaattaaacctTATAAa 
V V C A L F L T I I Y P M 

21100 ctatcaatgttaatattcttctaGATAgtttatcaacgctaatcagaccgAACATTttgt 

21040 aTATAAactttgacaaacttGAGAGTgctagtaatttgcttaaccgatgaaatgtcgagc 
ORF17/18 M S S 

2 0980 gtcatcgaaaatcaattgtttctgttcggtctgttgccgatggaaatgaaattgaaaata 
V I E N Q L F L F G L L P M E M K L K I 

2 0 920 ctaaaatacacgggtcacgacacatatttcgccgtgacggaggatcgcgtcggcgcagat 
L K Y T G H D T Y F A V T E D R V G A D 

Sel7/18SPl 
2 0860 accattttgttgactgaaaaacaatttataaaatatttcgatacgcgccgtttcaactat 

T I L L T E K Q F I K Y F D T R R F N Y 

Sel7/l8SP4 
2 08 00 tgcataaacgtcgactatagattgactgaatattttaaaagacaagactacgtacgactg 

C I N V D Y R L T E Y F K R Q D Y V R L 

Sel7/18SP3 
2 0740 ccgttgctcgtcgacggcctgtttcaaacgtacgtcaagactcatctcaatggttatgtg 

P L L V D G L F Q T Y V K T H L N G Y V 

2 0680 atggcagacgatgtgttgctaaaaacgttttttggcaataaaqacattacgaatttgtct 
M A D D V L L K T F F G N K D I T N L S 

2 0620 ctgttaatcgatggacaattttgcaaataccaaagagctatgcacgaaaaaggaaacgga 
L L I D G Q F C K Y Q R A M H E K G N G 

20560 acatacgaccccgccaatgatgcgctgttgttgcaatatctgggatcgggagcaaatgag 
T Y D P A N D A L L L Q Y L G S G A N E 

2 05 00 gacaatattgtggaatgttttgatcgtttaattgatttcgacaaaatgctgagattagtc 
D N I V E C F D R L I D F D K M L R L V 

2 0440 gccgatgttgaatacactatcggcaaattatttgctctgcgcagaataaaaacaaagtct 
A D V E Y T I G K L F A L R R I K T K S 

2 0380 ttatacaaattctttagccgacaccgaatcacattgccagaatgtttgatgcccatgaat 
L Y K F F S R H R I T L P E C L M P M N 

Sel7/l8SP2 
2 0320 ttggccaaagttttgattacatacacgcgttgctttgaaagtgcgtacttgatgctaagt 

L A K V L I T Y T R C F E S A Y L M L S 

20260 ggagaatgtgtcaattgtcaggaaccctcaattggcgaggaaagtattttaaagctgctg 
G E C V N C Q E P S I G E E S I L K L L 

2 0200 gataatgattgggaagatttgtatgtaattttgttttgttcgaaatgtacatattgtttg 
D N D W E D L Y V I L F C S K C T Y C L 
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2014 0 ttgaacttaccgtattcgtaAATAAAtttgtataataataataattttgttttattttat 
L N L P Y S 

2 008 0 cgttgttttcgacgaaaaagtgtcgttaagagcgcaaacattagtgtatttaagtatcta 

20 020 ttgtttattgaatttataatgaacaaattactcatactttttctgctattaaacgcggcg 
M N K L L I L F L L L N A A 

Fig. 4.2 The SeMNPV ORF17/18 genomic region, from nucleotides 19,961 to 21,160 

(IJkel et al., 1999). Location of TATA-boxes, baculovirus consensus early initiation motif 

ATCA(G/T)T, host factor binding site GATA, polyadenylation signal, start and stop codons are 

denoted in bold. The sequences of the primers used for RT-PCR and 3 ' mapping (Sel7/18SPl and 5' 

mapping (Sel7/18SP2, 3, 4) are underlined. The determined transcriptional start sites for the Sel7/18 

transcripts are indicated with arrows and its poly(A) chain attachment site is double underlined. 

The promoter region of Sel7/18 was compared to the Xc l 29 promoter region 

(Fig. 4.3). Several putative Sel7/18 promoter elements were also present in the Xc l 29 

promoter region. Two additional GATA-sequences were present in the promoter 

region of Xc l29 . The early promoter element most closely to the start codon of Xc l 29 

contained two CATT sequences, which were more distally located from the TATA-

box as compared to the T A T A A - N H - G A C A G T promoter motif of Se l7/18. The 

presence of putative promoter elements and polyadenylation signals suggests that both 

ORFs may be active genes. 

Sel7/1E 
Xcl29 I

TTT| 
CC, 

GATA 
JCAATCG0TSGTGGgA0CGCCGGGT0caTCTGcHTTCGTGGgcBA : 6 0 

|CCBGCCGTCgAgCGATgGgTCTTTAAAgTgCACTG@GCTAGCCgTgG : 6 0 

Sel7/1E 
Xcl29 

CACCACGCl 
TTAGTTT, 

AACAgCG 
TTTTHAT 

TATA CATT 

TAATAHAGGGCSTTS 

GCTTCCBTTTATIC-

TATA 

120 
119 

Sel7/18 
Xcl29 GGTl 

GATA 

GATA 
|CTTG0TAGT| 

ACAgAC. t
jCAACGHTg 

T B T T T A T B - I 

CATT 
JTCg 
SCTB 

accG 

GAT A 
AT 

GAT 

177 
176 

Sel7/18 
Xcl29 

TATAA 
CBT-T 

CAGT 
|CSTG0CAGB 

STTADTI 

ATG 
TjBiGCl 

ICEjCA^C. 
CATTCATT 

CCGATG. 234 
226 

Fig. 4.3 Alignment of the nucleotide sequences upstream of the putative translational 

Start codons of Se 17/18 and Xc l29 . Gaps, introduced to optimize the alignment, are indicated 

with dashes. Shading is used to indicate the occurrence of identical nucleotides. 
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Northern blot and RT-PCR analysis of Sel7/18 transcripts 
The temporal regulation of Sel7/18 transcripts was examined by Northern blot 
analysis and RT-PCR, using total RNA isolated from SeMNPV-infected Se301 cells. 
Northern analysis of Se 17/18 revealed a band of 1.1 kb that could represent Sel7/18 
transcripts (Fig. 4.4A). These transcripts were detected at 4 h p.i., reached maximal 
transcription levels at 24 h p.i. and reseded until 72 h p.i. The transcript size of 1.1 kb 
is in good agreement with the predicted ORF size of 870 nt for Sel7/18. The size of 
the Sel7/18 transcript suggests that it was most likely polyadenylated, assuming that 
one of the two putative early promoter sequences were used as transcription start sites. 
A second transcript of 3 kb was detected from 16 h p.i. onwards. This transcript could 
be a read through of Sel7/18 in the cathepsin gene (Sel6) and was more abundantly 
present than the 1.1 kb. Several transcripts larger than 6.6 kb were detected from 24 h 
p.i. onwards. 

Using the more sensitive RT-PCR technique, further information was obtained 
about the temporal regulation of the 1.1 kb Sel7/18 transcripts. A fragment of 790 bp 
was amplified (Fig. 4.4B) using a primer internal to Sel7/18 (Sel7/18SPl; Fig. 4.2) 
and the PCR anchor primer. The obtained RT-PCR fragment of 0.8 kb appeared to be 
specific for Sel7/18 upon hybridization with a Sel7/18-specific riboprobe (Fig. 4.4B). 
However, hybridization showed an additional Sel7/18-specific band of 0.65 kb that 
was not detected on agarose gel. Although several attempts were performed to clone 
this smaller fragment in pGEM-T this remained unsuccessful. The 0.8 kb Sel7/18 
fragment was amplified from 8 h till 72 h p.i., with maximum abundancy at 24 h and 
48 h p.i. (Fig. 4.4B). Therefore, Sel7/18 can be considered as gene that is transcribed 
from early till late in infection. 

To investigate if Se 17/18 was also transcribed during SeMNPV infection in S. 
exigua larvae (in vivo infection), RT-PCR was performed on RNA isolated from fat 
body tissue. A RT-PCR product was obtained at 72 h, but not at 24 h and 48 h p.i (Fig. 
4.4C). Sequencing of two clones obtained after cloning this RT-PCR product into 
pGEM-T confirmed that the 0.8 kb RT-PCR product was derived from the Sel7/18 
sequence. Thus, Sel7/18 was transcribed upon infection of cultured insect cells as 
well as during infection of insect larvae. Furthermore, the obtained RT-PCR 
fragments indicate that the Sel7/18 transcripts contain a poly(A) tail, since the oligo-
dT anchor primer was successfully used to synthesize first-strand cDNA. 

Transcriptional mapping of the 5' and 3' ends of the Sel7/18 transcript 
The 5' end of the Sel7/18 transcript was determined by 5' RACE analysis using total 
RNA isolated at 16 h and 48 h p.i. from Se301 cells. A single cDNA was detected at 
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Mi 4 8 16 24 48 72 

6 .5-
4 .9-
3.6-
2.6-
1.9-
1.4-

0.96-
0.62-
0.28-

3.0 kb 

1.1 kb 

B C M Mi 4 8 16 24 48 72 C M Mi 4 8 16 24 48 72 

^ ^ ^ ^ 1 
^ ^ W ^ 

0.8 kb 
0.6 kb 

Mi 24 48 72 M 

0.8 kb 

Fig. 4.4 Temporal expression of the Sel7/18 transcript in SeMNPV-infected Se301 
cells. (A) Northern analysis of Sel7/18. The size of specific hybridization bands is indicated on the 

right. (B) The left panel shows RT-PCR analysis of Sel7/18 performed on total RNA extracted form 

SeMNPV-infected Se301 cells obtained under the same conditions as in A. The right panel of B 

shows the hybridization pattern of the obtained RT-PCR bands using a Sel7/18 riboprobe. (C) RT-

PCR analysis performed on total RNA extracted from SeMNPV-infected S. exigua fat body tissue. 

Times p.i. are indicated above the lanes (Mi, mock infected; C, negative control: PCR without RT on 

48 h p.i. sample). Size standards (M, marker) are indicated in kb. 

both times tested. Three clones each time point were sequenced. The obtained 
transcription start sites varied for each timepoint within a small but identical region. 
The most distal start site of Sel7/18 transcription mapped at nt 134, while the most 
proximal start site is located 126 nt upstream of the ATG translation initiation codon, 
respectively, at the A in the sequence GGCATT and the second A in the sequence 
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TCTAAT (Fig. 4.2). An intermediate start site mapped at nt 131 upstream of the 
putative translation start codon (Fig. 4.2). Thus, the Sel7/18 transcripts initiated 
within or directly after an eight nt region that contains a baculovirus consensus early 
promoter motif. The most distal start site of Se 17/18 overlaps with the ATG start 
codon of the chitinase gene encoded by the complementary DNA strand. 

The 3' end of the Sel7/18 transcript was determined by sequencing the specific 
0.8 kb RACE-PCR fragments obtained after RT amplification of total RNA purified 
from Se301 cells or S. exigua fat body tissue at various times p.i. The obtained 
sequences indicated that the 3' ends of the transcripts isolated from cultured insect 
cells are identical to those isolated from fat body tissue and showed no variation in 
their poly(A) attachment sites. The 3' end of the Sel7/18 transcript was located 17 nt 
downstream of the stop codon at the last A in the sequence TAAT (Fig. 4.2). A 
convential mammalian polyadenylation signal, consisting of an AATAAA motif and 
20-30 nt downstream a diffuse (G)U-rich sequence, is located directly downstream of 
the stop codon. Hence, the Sel7/18 transcript ended 12 nt downstream of the 
AATAAA motif. These results suggest that the convential mammalian 
polyadenylation signal was used for the termination of Se 17/18 transcripts in both 
Se301 and S. exigua fat body cells. Taken together, the data of the 5' and 3' end 
mapping predict a minimal transcript size of 1,011 nt for Sel7/18 (excluding the 
poly(A) tail). The expected size is in good agreement with the 1.1 kb size determined 
by Northern analysis for the putative transcript of Se 17/18, assuming a poly(A) tail of 
approximately 100 nucleotides. 

Localization of the Sel 7/18 protein in insect cells 
The subcellular localization of the Sel7/18 gene product was investigated with a C-
terminal GFP-fusion construct. The GFP-fusion construct was made in plasmid 
pl66BRNX-AcV5 (IJkel et al, 2000). As a negative control, GFP alone was cloned in 
the same vector. Sf21 and Se301 cells were transfected with 5 |a,g plasmid DNA, 
incubated for 48 h at 27°C and examined for fluorescence by confocal laser scanning 
microscopy. The non-fused GFP protein showed homogeneous fluorescence in the 
cytoplasm and nucleus (Fig. 4.5A, B). The Sel7/18 GFP-fusion protein, however, was 
mainly localized in the cytoplasm (Fig. 4.5C, D). This distinct pattern of fluorescence 
is consistent with the computer-predicted cytoplasmatic localization of the Sel7/18 
protein (Reinhardt and Hubbard, 1998). Notably, the number of fluorescent cells upon 
transfection with the Sel7/18 GFP-fusion construct was considerably lower in Sf21 as 
well as Se301 cells (-10%) than for the free GFP-control in these cell lines (-30%). 
Furthermore, the majority of cells transfected with Sel7/18 GFP-fusion construct that 
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Fig. 4.5 Localization of the Sel7/18 GFP-fusion protein in Sf21 and Se301 cells. 
Sf21 and Se301 cells were transfected with the control plasmid pl66AcV5-GFP (A and B) or with 

plasmid pl66AcV5-Sel7/18GFP (C, D, E and F). At 48 h after transfection the cells were examined 

by confocal laser scanning microscopy for fluorescence. Phase contrast micrographs are shown to the 

right of the fluorescence graph. Overlay micrographs of the fluorescence and phase contrast 

micrographs are shown below the fluorescence micrographs. 
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showed fluorescence were in bad condition, as observed by their shape (Fig. 4.5E). 

Some of these fluorescent cells even appeared to be apoptotic (Fig. 4.5F) in contrast to 

fluorescent cells of the negative control (data not shown). 

Immunodetection of the Sel7/18 protein in infected cells 

The Sel7/18 protein has a predicted molecular weight of 33.7 kDa. Antibodies were 

prepared by immunization of chicken with PREP-cell purified Sel7/18 protein 

produced in E. coli. The obtained chicken antiserum reacted strongly against this 

purified Sel7/18 protein (Fig. 4.6). Extracts of SeMNPV-infected Se301 insect cells, 

however, showed no immunoreactive protein when using this antiserum (Fig. 4.6). 

The absence of an immunoreactive Sel7/18 protein was unexpected since Northern 

and RT-PCR demonstrated that transcripts were present at various times p.i. (Fig. 4.4). 

hp.i. 

Mi 4 8 16 24 48 72 17/18 

97 — 
67 — 

45 — 

30— €HP : ^ — 33 kDa 

20 — 

14 — 

Fig. 4.6 Western blot analysis of SeMNPV infected Se301 cells (70,000 cells/lane) 
using a polyclonal antiserum against the Sel7/18 protein. The corresponding times p.i. are 
indicated above the lanes (Mi, mock infected; Sel7/18, 10 ng of purified Sel7/18 protein). The 
Sel7/18 protein was identified using a chicken Sel7/18 polyclonal antiserum and detected with a 
chemiluminescent substrate. Size standards are indicated in kDa and immunoreactive protein is 
indicated by an arrow. 
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Similarity of Sel7/18 to other (viral) proteins 
Since Sel7/18 was not detected in SeMNPV-infected Se301 cells and appeared to 
have a negative effect on insect cell viability when highly expressed, it may be present 
in spurious amounts and possess a regulatory function. A computer-assisted analysis 
was performed to elucidate if patterns of residues conserved between Sel7/18 and 
Xcl29 were also present in other (viral) proteins. The N-terminal 100 aa of Sel7/18 
appeared to have low (-25-35%) similarity to various proteins, such as the RNA-
directed RNA polymerase (L protein) of Ebola virus [NP066251], the histone 
acetyltransferase (Gcn5p) of Saccaromyces cerevisiae [NPO11768], the methylated-
DNA protein cysteine methyltransferase (cmt) of Pseudomonas aeruginosa 
[AAG04384], the histidine decarboxylase (hdc) of Morganella morhanii 
[AAA25321], the positive transcriptional regulator (Xys2) of Pseudomonas putida 
[Q05092] and the DNA polymerase III a-subunit of Helicobacter pylori [P56157] 
(Fig. 4.7A). 

The C-terminal part (aa 200-289) of the Sel7/18 protein showed similarity (-25-
40%) to the small subunit of the E. coli hydrogenase-2 [A55516], the Human 
papillomavirus type 82 E6 protein [NP038151] and the Zyxl02 protein of 
Drosophila melanogaster [AAF33231] (Fig. 7B). Notably, special conservation was 
observed for some cysteines in the compared protein sequences (Fig. 4.7B). The C-
terminal part of Sel7/18 showed also similarity to the LdMNPV ORF53 (Ld53) 
protein (Kuzio et al, 1999). Ld53 is a homolog of BmNPV ORF41 (Bm41), HaSNPV 
ORF42 (Ha42), AcMNPV ORF52 and SeMNPV ORF109 (Ayres et al, 1994; IJkel et 
al, 1999; Kuzio et al, 1999; Gomi et al, 1999; Chen et al, 2001). Strikingly, two of 
these four homologs, Ac52 and Sel09, have smaller C-termini and as a consequence 
lack the cysteine residues conserved between Ld53 and Sel7/18. 

Most of the proteins that show (low) homology to the N-terminal as well as to 
the C-terminal parts of the Sel7/18 and Xcl29 proteins have two features in common 
(i) they possess a transferase/reductase activity and (ii) they are involved in the 
transcription. The middle part (aa 100-200) of the Sel7/18 protein also showed low 
(-20% aa similarity) homology to several proteins with different transferase activities 
(data not shown). 
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Fig. 4.7 Amino acid homology of (A) the N-terminal 100 amino acids of Se 17/18 
with Xcl29, the RNA-directed RNA polymerase (L protein) of Ebola virus 
[NP066251], the histone acetyltransferase Gcn5p of Saccaromyces cerevisiae 
[NP011768], the methylated-DNA protein cysteine methyltransferase (cmt) of 
Pseudomonas aeruginosa [AAG04384], the histidine decarboxylase (hdc) of 
Morganella morhanii [AAA25321], the positive transcriptional regulator (Xys2) of 
Pseudomonas putida [Q05092] and the DNA polymerase III a-subunit of 
Helicobacter pylori [P56157]. (B) Amino acid relationship of the C-terminal 89 
amino acids of Se 17/18 with Xcl29, the small subunit of the E. coli hydrogenase-2 
[A55516], the Human papillomavirus type 82 E6 protein [NP038151], the Zyxl02 
protein of Drosophila melanogaster [AAF33231] and the LdMNPV ORF53 protein. 
Gaps, introduced to optimize the alignment, are indicated with dashes. Shading is used to indicate the 

occurrence of identical (black) or substitutional (grey) amino acids. 
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Discussion 
In this study we report the temporal transcription, translation and subcellular 
localization patterns of Se 17/18. Northern analysis showed that the amount of the 1.1 
kb Sel7/18 transcripts increased from 4 h until 24 h p.i. and declined till 72 h p.i. (Fig. 
4.4). A similar transcription pattern was previously observed for other baculovirus 
genes, such as the AcMNPV pnk/pnl and lef4 genes, and the BmNPV bro genes 
(Durantel et al, 1998a and b; Kang et al, 1999). 

Hybridization of the RT-PCR products revealed a second smaller band that 
reacted specific to the Sel7/18 riboprobe (Fig. 4.4B). This smaller product, and most 
likely favourable in PCR amplification, was present in much lower amounts than the 
anticipated 0.8 kb RT-PCR product. Though, it is likely that the smaller RT-PCR 
product is a PCR artefact, it can not be excluded that it represents a 3' truncated 
Sel7/18 transcript. Cloning and subsequent sequencing of the smaller RT-PCR 
product would reveal the nature of its origin. 

Mapping of Sel7/18 (Fig. 4.2) transcripts by 5' RACE showed that its 
transcription initited in a region rather than at one specific nucleotide. This could 
either resemble the natural variation in Sel7/18 transcription start sites or be caused 
by RNA degradation at the 5' end of the transcripts. Another explanation for the 
variation in the Sel7/18 transcription start site could lie in reduced or 'slippery' 
recognition of the the GGCATT motif since it is not completely consistent with the 
arthropod initiator cap site consensus [A(A/C/T)CA(G/T)T]) (Cherbas and Cherbas, 
1993). 

The spacing of only 1 nt between the upstream TATA-box and the GGCATT 
sequence (Fig. 4.2), is very unusual (Roeder, 1991; Lu and Miller, 1995). Therefore, it 
is unlikely that this TATA-box is functional. Since another TATA-box is not present 
in the 100 nt upstream of the Sel7/18 transcription start site, its transcription could be 
TATA-independent. Previously, TATA-independent transcription was reported for the 
OpMNPV gp64 gene (Kogan et al, 1995). Four elements, the host factor binding sites 
GATA and CACGTG, the transcription start site CA(G/T)T and a CA-rich sequence 
in the 5' untranslated region (UTR) were found to be required for TATA-independent 
transcription of gp64. Three of these, the transcription start site, the GATA sequence 
and CA-rich sequence are also present in the 5' UTR of Sel7/18, supporting the 
assumption that Sel7/18 transcription is TATA-independent and may involve host 
factors. 

Comparison of the promoter regions of Se 17/18 and Xcl29 revealed no apparent 
nucleotide conservation at the determined Sel7/18 transcriptional start sites (Fig. 4.3). 
Furthermore, the spacing of 20-25 nt between the TATA-box and the two CATT 
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motifs in the Xcl29 promoter region (Fig. 4.3) is in good agreement with the spacings 

detected in other baculovirus early promoters that are active (Cherbas and Cherbas, 

1993). Therefore, Xcl29 transcription initiation would be possible from this putative 

proximal motif, while the unusual spacing in Sel7/18 apparantly leads to the use of 

more distal transcription start sites. 

By Western analysis no Sel7/18 translation product could be detected in 

SeMNPV-infected Se301 cells (Fig. 4.6). This is somewhat unexpected since 

Sel7/18-specific transcripts could be detected as early as 4 h p.i. in Se301 cells (Fig. 

4.4). The inability to detect the Sel7/18 protein may be due to the low affinity of the 

Sel7/18 antiserum and/or the low steady state levels of Sel7/18 protein during 

infection. The latter is more or less supported by the lower percentage of insect cells 

that, upon transfection with a construct resulting in high Sel7/18-GFP protein 

expression, showed fluorescence. Combined with the high mortality of cells 

transfected with Sel7/18-GFP this may suggest that the Sel7/18(-GFP) protein has a 

toxic effect on insect cells. The observation that a mutant SeMNPV, obtained within 

the first passage in insect cell culture (Heldens et al, 1996), lacks Sel7/18 among 

others suggests that it is non-essential in cell culture and may require a co-factor to 

become non-toxic. 

The genomic region of SeMNPV, where Sel7/18 is located - between the gene 

homologs of cathepsin and chitinase- differs in many baculoviruses. Besides Sel7/18, 

SeMNPV contains another gene, Se21, with a homolog only in XcGV (ORF128; 

Hayakawa et al, 1999). So, either SeMNPV inserted, between Sel7/18 and Se21, 

Sel9 {chitinase) and Se20 or these sequences were deleted in the XcGV genome 

assumming an identical sequence source (Fig. 4.8). 

Sel6 cath Sel7/18 Sel9 chit Se20 Se21 Se22 

< < , X • - - • 

< < ' — • <« 
Xcl30 6ro-e Xcl29 Xcl28 XcUl ctl 

Fig. 4.8 Comparison of the Sel7/18 - Se21 gene region of SeMNPV to the Xcl28 -
Xcl29 gene region of XcGV. Arrows indicate the orientation and location of the ORFs. The 

name of the ORF is given above the arrow. Sel7/18 and Se21 have corresponding homologs in Xcl29 

and Xcl28, respectively. Dashed arrows indicate that no corresponding homologs are present in this 

genome region between SeMNPV and XcGV. 
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The sequence similarity (Fig. 4.7) of Se 17/18 to proteins that all have transferase 
/reductase activity and of which some are known to be transcription regulators 
suggests that Sel7/18 may have a function in transcription activation. A possible 
function of Sel7/18 may be that it is involved in regulation of transcription by 
catalyzing the removal of methyl groups from methylated DNA sequences. If Sel7/18 
plays a role in transcription regulation it might also explain the toxic effect on insect 
cells since its high expression level could distort the balance in host transcription. 
However, the cytoplasmic localization of the Sel7/18 protein does not support a direct 
role in transcription regulation, which is likely to take place in the nucleus of infected 
insect cells. 

It is hypothesized, based on homology to the E. coli hydrogenase and ferredoxin 
genes, that the conserved cysteines in the C-terminal part of the Sel7/18 protein (Fig. 
4.7B) may form an iron-sulphur (Fe-S) cluster (Menon et al., 1994; Sargent et al., 
1998). Fe-S clusters are cofactors found in many proteins that have important redox, 
catalytic or regulatory functions (Beinert and Holm, 1997). Although most Fe-S 
proteins are found in the mitochondria, some are present in the cytosol (Tong and 
Rouault, 2000). 

The observation that the conserved cysteine residues are present in Ld53, Bm41 
and Ha42 but not in their Ac52 and Sel09 homologs together with the absence of 
Sel7/18 as well as Sel09 homologs in OpMNPV (Ahrens et al, 1997) and PxGV 
(Hashimoto et al, 2000) suggests that the function of Se 17/18 is either non-essential 
in OpMNPV and PxGV or can be substituted by other baculovirus genes. As the 
Sel7/18 protein is highly homologous only (so far) to the Xcl29 protein, they may 
play a role in specific virus host interactions. Future studies in SeMNPV infected 
larvae as well as site-specific and null mutants will determine the significance of this 
gene in the SeMNPV infection cycle and may shed light on its function. 

Materials and Methods 

Computer-assisted analysis 
Sel7/18 (Ukel et al, 1999) and Xcl29 (Hayakawa et al, 1999) were analyzed using 
software of the Predict Protein server (Rost, 1996) and the ExPASy server (Appel et 
al., 1994) for the prediction of domains, motifs, transmembrane regions and 
subcellular localization (Reinhardt and Hubbard, 1998). DNA and protein 
comparisons with entries in the updated GenBank/EMBL, SWISS-PROT and PIR 
databases were performed with BLASTn, FASTA and Psi-BLAST programs 
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(Pearson, 1990; Altschul et al., 1997). Multiple sequence alignments were performed 

with the GCG PileUp computer programs with gap creation and extension penalty set 

to 8 and 2, respectively (Devereux et al., 1984). Alignment editing was performed 

with Genedoc Software. 

Plasmid constructions 

The complete coding region of Sel7/18 including the stop codon was amplified by 

high fidelity "Expand" long template PCR (Boehringer Mannheim) from cosmid 17 

(Heldens et al, 1996) using primers containing 5' BamHl and 3 ' Hindlll restriction 

sites and cloned into pGEM-T. The plasmid was named pGEMSel7/18 and used for 

production of a gene-specific riboprobe. The plasmid pTriExSel7/18 was obtained by 

cloning the BamHl/Hindlll fragment from pGEMSel7/18 into the BamHl and Hindlll 

sites of the expression vector pTriEx-1 (Novagen). This plasmid was used for 

overexpression of the Sel7/18 protein in E. coli. 

To determine the localization of Sel7/18 protein in insect cells, a GFP-fusion 

construct was made. The complete coding region of Se 17/18 was amplified by high 

fidelity "Expand" long template PCR (Boehringer Mannheim) from cosmid 17 

(Heldens et al., 1996) using primers containing 5' BamHl and 3 ' £coRI restriction 

sites and cloned into the BamHl and EcoRl sites of the previously described 

pl66AcV5-GFP vector (IJkel et al., 2000) and named pl66Sel7/18-GFP. Plasmid 

DNA was purified using Jetstar columns according to manufacturer's protocol (ITK 

Diagnostics). For each construct, the nucleotide sequence was checked using an 

automated DNA sequencer (Wageningen University, The Netherlands). 

Cells, Insects and Viruses 

The Spodoptera exigua cell-line Se301 (Hara et al., 1995b), the S. frugiperda cell-line 

IPLB-Sf-21 (Vaughn et al, 1977) and the SeMNPV-USl isolate (Gelernter and 

Federici, 1986b; Munoz et al., 1998) were maintained and propagated as described 

previously (IJkel et al, 2000). A culture of S. exigua insects was maintained 

according to Smits and Vlak (1988a). 

Total RNA isolation, Northern blot, RT-PCR, 3' and 5' RACE analysis 

Total RNA was isolated from 2 x 106 mock-infected and SeMNPV-USl-infected 

Se301 cells (MOI of 5 TCID50 units/cell) at 4, 8, 16, 24, 48 and 72 h p.i. Total RNA 

was also isolated from fat body tissue obtained after dissection of six mock-infected 

and six SeMNPV-USl infected S. exigua larvae (1.7 x 104 polyhedra/larva) at 24, 48 

and 72 h p.i. Cells and tissue were resuspended in 500 ul Trizol (GibcoBRL) and 100 
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[i\ chloroform, incubated for 8 min and centrifuged at 14,000 g for 15 min at 4°C. The 
RNA in the water fraction was precipitated using isopropanol, centrifuged at 14,000 g 
for 10 min at 4°C, washed with 70% ethanol and resuspended in 50 |J.l water. The 
RNA solutions were incubated at 55°C for 10 min and quantified by absorbance at 260 
nm. 

For Northern analysis 8 |i.g of total RNA was electrophoresed in 1.5% agarose in 
the presence of glyoxal (Ausubel et al, 1994) and blotted onto a Hybond N nylon 
membrane (Amersham). The northern blot was hybridized with a Sel7/18 messenger-
specific riboprobe generated by SP6 polymerase with [a-32P]CTP and BamHl 
digested pGEMSel7/18. Fragment sizes were determined by staining the molecular 
weight marker (Promega RNA marker) with methylene blue after transfer onto the 
membrane. 

RT-PCR was performed using the 573' RACE kit (Roche) employing 2 |Xg 
purified total RNA as template per time point. First-strand cDNA synthesis was 
performed using AMV reverse transcriptase and the oligo-dT anchor primer according 
to manufacturer's instructions. The cDNA-mixtures were amplified by PCR using the 
PCR anchor primer and the gene specific primer Sel7/18SPl (Fig. 4.3). The obtained 
PCR-products were analyzed in 1.2% agarose gels. 

The amplified RT-PCR products of 16 h and 24 h p.i. were used to determine the 
3' end of the Sel7/18 in vitro messenger, while the RT-PCR product of 72 h p.i. was 
used for the 3' ends of the Sel7/18 transcripts isolated from fat body tissue. All PCR-
products were gel purified, cloned into pGEM-T and sequenced with T7 or SP6 
primers. 

The 5' end of the Sel7/18 transcript was determined using the 573' RACE kit 
(Roche) employing 2 ixg purified total RNA as template per time point, isolated at 16 
h and 48 h p.i. Briefly, first strand cDNA synthesis was performed with the gene 
specific primer Sel7/18SP2 (Fig. 4.3). The cDNAs was purified with the High Pure 
PCR purification kit (Roche) and a poly(A) tail was added to the 3' end using the 
terminal transferase with dATP. The tailed cDNAs were amplified by PCR using the 
oligo dT-anchor primer and the nested gene specific primer Sel7/18SP3 (Fig. 4.3). A 
second PCR was performed using the PCR anchor primer and the nested primer 
Sel7/18SP4 (Fig. 4.3). The obtained PCR products were gel purified, cloned into 
pGEM-T and sequenced with T7 or SP6 primers. 

Production of polyclonal antibodies 
A culture of E. coli B121 containing pTriExSel7/18 was grown to an optical density at 

600 nm of 0.5 and induced with 1 mM isopropyl-P-D-thiogalactopyranoside (IPTG). 
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After 4 h at 37°C, cells were collected by centrifuging at 6,500 g for 15 min at 4°C, 
resuspended in 20mM Tris-HCl pH7.5, lysed with lysozyme, sonicated and 
centrifuged at 14,000 g for 10 min at 4°C. Aliquots of the insoluble fractions were 
washed with 20 mM Tris-HCl pH7.5 and resuspended in 1% SDS. Soluble and 
insoluble fractions were electrophoresed in 12.5% SDS polyacrylamide gels according 
to Laemmli (1970) and stained with Coomassie brilliant blue. 

The insoluble fractions containing the Sel7/18 protein was purified by 
continuous-elution electrophoresis using the Model 491 Prep Cell (Bio-Rad) 
according to manufacturer's protocol. Elution fractions were collected, 
electrophoresed in 12.5% SDS polyacrylamide gels and the protein bands visualized 
by silver staining (Morrisey, 1981). Fractions containing Sel7/18 were pooled and 
concentrated using Centriprep-10 kDa filter devices (Amicon). Protein concentrations 
were determined with the Bio-Rad protein assay (Bio-Rad). 

Two chickens were injected intramuscularly each with 12.5 [ig purified Sel7/18 
protein using a water in oil adjuvant. The chickens were boosted after 6 weeks with 25 
(Xg purified protein. Eggs were collected every day for 4 weeks and serum was 
collected 12 weeks after the boost injection. Western analysis using E. coli BL21 
extracts expressing pTriExSel7/18 and PREP-cell purified Sel7/18 were used to test 
the production of specific antisera. 

Western analysis 
Monolayers of Se301 cells were mock- or SeMNPV-USl -infected at a multiplicity of 
infection (MOI) of 5 TCID50 units/cell. Cells were harvested at 4, 8, 16, 24, 48 and 72 
h p.i., pelleted, resuspended in PBS and lysed in SDS-PAGE loading buffer by boiling 
for 5 min. Protein samples were then separated by SDS-PAGE and transferred to an 
Immobilon-P nitrocellulose membrane (Millipore) by semi-dry electrophoresis 
transfer (Ausabel et ah, 1994). The membranes were incubated overnight in 10% 
block solution (Boehringer Mannheim) in PBS buffer at 4°C. The membranes were 
allowed to react in PBS with Sel7/18 antiserum diluted 1:5000 for 1 h at room 
temperature (RT). After washing in PBS (three times 15 min), the membranes were 
incubated for 1 h at RT with horse radish peroxidase-conjugated rabbit anti-chicken 
immunoglobulin (Sigma) diluted 1:50,000 in PBS. After washing in PBS (three times 
15 min) the signal was detected by ECL technology as described by the manufacturer 
(Amersham). 
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Fluorescence microscopy 
Se301 cells (3 x 105) and Sf21 cells (1 x 105) were grown on glass cover slips and 
transfected with 5 (xg of plasmid DNA using Cellfectin (GibcoBRL). At 48 h post 
transfection the cells were examined with a Zeiss LSM510 (confocal) laser scanning 
microscope for fluorescence using an excitation wave length of 488 nm and an 
emission band pass filter of 505 - 530 nm. 
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Chapter 5 

A novel baculovirus envelope fusion protein with a 
proprotein convertase cleavage site 

The entry mechanism of Spodoptera exigua multicapsid nucleopolyhedrovirus 
(SeMNPV), a group II NPV, in cultured cells was examined. SeMNPV budded virus 
(BV) enters by endocytosis as do the BVs of the group I NPVs, Autographa 
californica (Ac) MNPV and Orgyia pseudotsugata (Op) MNPV. In group I NPVs, 
upon infection acidification of the endosome triggers fusion of the viral and 
endosomal membrane, which is mediated by the BV envelope glycoprotein GP64. 
However, the SeMNPV genome lacks a homolog of GP64 envelope fusion protein 
(EFP). A functional homolog of the OpMNPV GP64 EFP was identified in SeMNPV 
ORF8 (Se8; 76 kDa) and appeared to be the major BV envelope protein. Surprisingly, 
a 60-kDa cleavage product of this protein is present in the BV envelope. A furin-like 
proprotein convertase cleavage site (R-X-K/R-R) was identified immediately 
upstream of the N-terminus of the mature Se8 protein and this site was also conserved 
in the Lymantria dispar (Ld) MNPV homolog (Ldl30) of Se8. Syncytium formation 
assays showed that Se8 and Ldl30 alone were sufficient to mediate membrane fusion 
upon acidification of the medium. Furthermore, C-terminal GFP-fusion proteins of 
Se8 and Ldl30 were primarily localized in the plasma membrane of insect cells. This 
is consistent with their fusogenic activity and supports the conclusion that the Se8 
gene product is a functional homolog of the GP64 EFP. 

This chapter has been published as: 

IJkel, W. F. J., Westenberg, M., Goldbach, R. W., Blissard, G. W., Vlak, J. M., and 
Zuidema, D. 
Virology (2000) 275, 30 - 41. 
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Introduction 
The Baculoviridae are a family of large, enveloped double-stranded DNA (80 to 180 
kbp) viruses that almost exclusively infect insects (Adams and McClintock, 1991). 
The family is taxonomically subdivided into two genera, Nucleopolyhedrovirus (NPV) 
and Granulovirus (GV), distinguished by occlusion body (OB) morphology (Volkman 
et al, 1995). The NPVs produce large polyhedron-shaped OBs called polyhedra that 
contain many virions, whereas the GVs have smaller OBs called granules that 
normally contain a single virion. The NPVs are designated as single (S) or multiple 
(M) depending on the potential number of nucleocapsids (NC) packaged in a virion. A 
more recent subdivision, based on the phylogenetics of Polyhedrin / Granulin (Zanotto 
et al, 1993), EGT (Chen et al, 1997), LEF-2 (Chen et al, 1999) and DNA 
polymerase (Bulach et al, 1999) proteins, has been proposed that distinguishes 
lepidopteran NPVs into two distinct groups, named groups I and II. The baculoviruses 
AcMNPV (Ayres et al, 1994), Bombyx mori (Bm) NPV (Gomi et al, 1999) and 
OpMNPV (Ahrens et al, 1997) are members of group I, whereas SeMNPV (IJkel et 
al, 1999) and LdMNPV (Kuzio et al, 1999) belong to group II. 

A NPV infection starts with the uptake of polyhedra by the insect larvae. Upon 
ingestion the OBs dissolve in the alkaline environment of the larval midgut, liberating 
numerous infectious virions, which are termed "occlusion derived virus" (ODV). 
After direct membrane fusion of ODVs with the midgut columnar epithelial cells 
(Granados, 1978; Granados and Lawler, 1981; Horton and Burand, 1993), the virions 
are uncoated and transported to the nucleus, where gene expression, DNA replication 
and assembly of progeny NCs occur. Newly assembled NCs then migrate from the 
nucleus towards the plasma membrane. During infection of group I NPVs, a viral 
encoded major envelope glycoprotein, GP64, is synthesized and transported to the 
plasma membrane (Volkman and Goldsmith, 1984; Volkman et al, 1984; Blissard 
and Rohrmann, 1989; Oomens et al, 1995). When the NCs bud from the basal side of 
the epithelial cells into the hemocoel, they acquire a loosely adhering plasma 
membrane envelope containing the GP64 protein. This protein is required for efficient 
budding (Monsma et al, 1996; Oomens and Blissard, 1999). This second virion 
phenotype is termed "budded virus" (BV) and is believed to be essential for systemic 
infection, mediating movement of the virus from midgut to other tissues and 
propagating the infection from cell to cell within the infected animal (Flipsen, 1995; 
Keddie et al, 1989; Granados and Lawler, 1981). BVs of AcMNPV and OpMNPV 
belonging to group I NPVs, infect insect cells, other than midgut epithelial cells, 
through the endocytotic pathway (Volkman and Goldsmith, 1985). After BV binding 
to the cell membrane and uptake into an endosome (Hefferon et al, 1999) the 
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acidification of the endosome triggers GP64-mediated fusion of the viral and 
endosomal membrane (Blissard and Wenz, 1992; Kingsley et al, 1999; Plonsky et al, 
1999). Then the nucleocapsids are released into the cytoplasm and are transported to 
the nucleus, where viral transcription and DNA replication occur. 

Recently, the complete genome of SeMNPV has been sequenced and its genome 
analyzed (IJkel et al, 1999). Surprisingly, SeMNPV lacks a homolog of the AcMNPV 
gp64 BV envelope fusion protein (EFP) gene. A similar situation exists for LdMNPV 
(Kuzio et al, 1999) and HaSNPV (W. F. J. IJkel and J. M. Vlak, unpublished data). 
Since, the GP64 protein of AcMNPV and OpMNPV plays an essential role in 
spreading the infection in the insect and is required for efficient virus budding, we 
asked whether SeMNPV infects insects by endocytosis and has a functional GP64 
homolog. In the current study, the mechanism of entry of SeMNPV, a group II NPV, 
is examined in its target cells. A functional homolog of the OpMNPV GP64 EFP is 
identified in the SeMNPV ORF8 (Se8) protein, and was shown to be the major BV 
envelope protein. In addition, evidence is provided to demonstrate that the Se8 protein 
is present in the BV envelope as a cleavage product. 

Results 

Budded virions of SeMNPV enter insect cells by endocytosis 
BVs of AcMNPV and OpMNPV, group I NPVs, enter host cells by endocytosis 
(Volkman and Goldsmith, 1985; Wang et al, 1997; Hefferon et al, 1999). To 
examine the mechanism of entry by BVs of SeMNPV, a member of the group II 
NPVs, we used the lysosomotrophic reagent, ammonium chloride, to demonstrate that 
SeMNPV BV enters cells by endocytosis. This lipophilic amine buffers the endosomal 
pH and inhibits acid-triggered membrane fusion in the endosome during viral entry by 
endocytosis (Helenius et al, 1982; Lenard and Miller, 1982). 

Se301 cells were infected with SeMNPV BVs in the presence of a final 
concentration of 50 mM ammonium chloride. As positive control, Sf21 and Se301 
cells were infected with AcMNPV BVs. Polyhedra production was used as an 
indicator of infectivity. The number of cells that produced polyhedra was counted at 
72 h post infection (p.i.) (Table 5.1). When cells were infected in the presence of 
ammonium chloride, a severe reduction (>95 %) in the number of cells containing 
polyhedra was observed. Control experiments performed in parallel showed that 
ammonium chloride did not affect polyhedra formation when ammonium chloride was 
added up to 6 h p.i. These results provide strong evidence that BVs of SeMNPV enter 
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insect cells primarily via endocytosis, like the BVs of group I NPVs. 

Table 5.1 Effect of ammonium chloride as endosome acidification preventive on the 
percentage of infected cells as determined by polyhedra production.a 

Se301 

Sf21 

OmM 

75 

0 

SeMNPV 

50 mM 

1 

0 

OmM 

78 

98 

AcMNPV 

50 mM 

1 

2 

The experiments were performed in triplicate, with 200 cells scored per analysis. 

Membrane fusion of SeMNPV BV is triggered by acidification 
Previous studies of AcMNPV and OpMNPV infection showed that acidification 
triggers fusion of the viral and cellular membranes, and that GP64 is the acid-triggered 
membrane fusion protein (Volkman and Goldsmith, 1985; Blissard and Wenz, 1992). 
To determine whether fusion of the SeMNPV BV envelope is triggered by 
acidification, Sf21 and Se301 cells were infected with SeMNPV and AcMNPV and 
syncytium formation assays were used as a direct measure of the acid-triggered 
fusogenic activity of the BVs. 

Cell-to-cell fusion of both Sf21 and Se301 cells infected with either SeMNPV or 
AcMNPV was observed only after the pH of the tissue culture medium was lowered to 
pH 5 (Fig. 5.1). If the acidic treatment was excluded from the assay, no cell-to-cell 
fusion was observed (results not shown). Cell-to-cell fusion of Se301 or Sf21 cells 
induced upon infection with AcMNPV BVs showed no detectable differences from 
those infected with SeMNPV (Fig. 5.1). SeMNPV BVs were thus capable of inducing 
pH-dependent membrane fusion in susceptible insect cells. 

Identification of the SeMNPV major envelope protein 
The previous experiments demonstrated that representative viruses of group I and 
group II NPVs enter host cells by endocytosis, and that acidification triggers 
membrane fusion. In AcMNPV and OpMNPV, fusion is mediated by the viral 
encoded GP64/67 protein, which is the major envelope protein of these BVs (Blissard 
and Wenz, 1992; Hohmann and Faulkner, 1983; Carstens et al, 1979). However, 
SeMNPV lacks a GP64 homolog (IJkel et al., 1999). To identify the envelope proteins 
of SeMNPV, BVs were isolated from hemolymph derived from SeMNPV-infected 
fourth-instar S. exigua larvae. Sucrose gradient purified BVs were separated on SDS-
PAGE and the proteins were visualized by Coomassie brilliant blue (Fig. 5.2). A 
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B 

D 

Fig. 5.1 Baculovirus-mediated pH-dependent membrane fusion of insect cells. 
Se301 (A, B) and Sf21 cells (C, D) were infected at a m.o.i. of 10 with either SeMNPV (A, C) or 

AcMNPV (B, D). Forty-eight hours after infection, cells were treated for 2 min with Grace's medium, 

pH 5.0. Syncytium formation was scored 4 h after dropping the pH by phase-contrast microscopy. 

number of proteins were detected in BV preparations (Fig. 5.2 lane 2), which were not 
present in a sample from mock-infected insects (Fig. 5.2 lane 1), and are therefore 
related to proteins of the SeMNPV virions. Proteins appearing in the mock-infected 
sample are probably derived from the insect hemolymph and copurify with the BVs. 

The major protein band present in the SeMNPV BV preparation had a size of 
approximately 60 kDa. This is approximately 4-7 kDa smaller in size than the 
AcMNPV and OpMNPV major envelope proteins, respectively (Blissard and 
Rohrmann, 1989; Whitford et ah, 1989; Carstens et ah, 1979). To investigate whether 
this protein is present in the envelope or the NC, purified BVs were treated with a 
non-ionic detergent (NP40), fractionated and analyzed by SDS-PAGE. A 60-kDa 
protein was the major component of the SeMNPV BV envelope fraction (Fig. 5.2 lane 
3). A 60-kDa protein was also present in the NC fraction (Fig. 5.2 lane 4) and this 
probably resulted from incomplete separation of the envelope and the NCs. 

To determine whether the major 60-kDa protein of SeMNPV BV was also 
present in ODV, ODVs were purified from isolated polyhedra and its proteins 
separated by SDS-PAGE. A major protein band of 60 kDa was not detected in ODV 
(Fig. 5.2 lane 5) although conclusive evidence of the possible presence of lower 
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Fig. 5.2 Coomassie brilliant blue-stained SDS-PAGE gel (12%) of purified 
SeMNPV. Lane 1: Mock purification of BVs from hemolymph of uninfected S. exigua larvae. Lane 

2: SeMNPV BVs. Lane 3: SeMNPV BV envelopes. Lane 4: SeMNPV BV nucleocapsids. Lane 5: 

SeMNPV ODVs. Lane 6: Low-molecular-weight marker. The major BV envelope protein (60 kDa) is 

indicated with an arrow. 

quantities of this protein in ODV will require analysis with an antibody directed 
against the 60-kDa protein. However, it was concluded that SeMNPV BV contains a 
major envelope protein with an apparent molecular weight of 60 kDa that does not 
appear to be present in the ODV. 

The BV major envelope protein is a proprotein convertase cleavage product 
To determine the SeMNPV ORF encoding the BV major envelope protein, BVs were 
purified and its proteins were separated by SDS-PAGE. The proteins were blotted 
onto a PVDF membrane and the major 60-kDa envelope protein was N-terminally 
sequenced. The sequence obtained, GLFNFMG, matched that derived from translation 
of the Se8 ORF but was located 150 amino acids downstream of the putative N-
terminus (Fig. 5.3). This strongly suggested that the product of Se8 was present in the 
form of a cleavage product in BVs. The C-terminal cleavage product has a predicted 
molecular weight of 59 kDa, which is in close agreement with the observed size of the 
BV major envelope protein in SDS-PAGE. The uncleaved Se8 protein has a predicted 
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Fig. 5.3 Alignment of the predicted amino acid sequences of the Se8 and Ldl30 
proteins. Gaps introduced to optimize the alignment are indicated with dashes. Shading is used to 

indicate the occurrence of identical (black) or substitutional (gray) amino acids. The box represents 

the obtained N-terminal amino acid sequence of the 60-kDa B V envelope protein; the vertical arrow 

indicates the putative endoprotease cleavage site. Line I indicates the furin-like cleavage consensus 

sequence. Line II, III and IV represent the predicted leucine zipper, the coiled-coil domain and the C-

terminal transmembrane domain, respectively. Computer-predicted consensus N- and O-linked 

glycosylation sites are indicated by the symbols "P and 4>, respectively. 
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molecular weight of 76 kDa (74 kDa minus the signal peptide) (IJkel et ah, 1999) and 
contains a furin-like proprotein convertase cleavage site (Arg-Xaa-(Arg/Lys)-Argvl) 
(Hosaka et al., 1991; Nakayama, 1997) located at the amino acids 146 to 149. This 
cleavage site in the Se8 product is therefore likely to be responsible for the occurrence 
of the 59-kDa protein in BVs. 

Computer analysis of Se8 predicted the occurrence of a C-terminal 
transmembrane domain (amino acids 580-602), a coiled coil structure (amino acids 
222-249), a leucine zipper (amino acids 177-198) and a positively charged 
cytoplasmic tail domain (CTD) (Fig. 5.3). In the AcMNPV and OpMNPV major 
envelope fusion proteins similar domains were identified. A predicted amphipathic 
alpha helix and a small hydrophobic domain have been identified as necessary for 
membrane fusion by GP64 (Monsma and Blissard, 1995; Kingsley et al., 1999). 
Although GP64 proteins have a small charged cytoplasmic tail domain, it was not 
essential for efficient budding of AcMNPV BVs (Oomens and Blissard, 1999). 

Previously, Se8 was identified as a homolog to the Ldl30 protein encoded by 
ORF 130 of LdMNPV, with 41% amino acid identity and 60% similarity (IJkel et al, 
1999). The furin-like proprotein convertase consensus cleavage sequence was also 
present in Ldl30 (amino acids 144-147) at an analogous position compared to Se8 
(Fig. 5.3). In conclusion, Se8 encoded the major envelope protein of SeMNPV BV 
and the Se8 protein appears to be present as a cleavage product in the BV. Se8 
contained several protein domains similar to those identified in the AcMNPV and 
OpMNPV EFPs. 

The Se8 encoded protein mediates pH-dependent membrane fusion 
To determine whether Se8 and its LdMNPV homolog (Ldl30) could mediate pH-
dependent membrane fusion, we constructed plasmids in which these ORFs were 
cloned under the control of an optimized OpMNPV early gp64 promoter, to facilitate 
expression in insect cells (Blissard and Rohrmann, 1991). As a positive control, we 
used an OpMNPV gp64 gene which contained the OpMNPV gp64 ORF behind the 
same gp64 promoter. The empty plasmid vector (pl66BRNX-AcV5) was used as a 
negative control. Sf21 cells were transfected with these constructs and syncytium 
formation assays were performed. Because Se301 cells are difficult to efficiently 
transfect (in contrast to Sf21 cells) and because cell-to-cell fusion was difficult to 
monitor in Se301 cells (multimorphic cell phenotypes are found in this line), we used 
transfected Sf21 cells to examine cell-to-cell fusion. The examination of cell-to-cell 
fusion of SeMNPV infected Sf21 cells (Fig. 5.1C), indicated that this cell line was 
suitable for studies of membrane fusion mediated by SeMNPV proteins. Cells 
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transfected with the Se8, the Ldl30 or the OpMNPV gp64 construct clearly showed 
low pH-dependent cell-to-cell fusion (Fig. 5.4). Although some membrane fusion was 
observed at earlier times after the pH drop, a substantial degree of fusion occurred by 
4 h after shifting the pH to 5.0. In cells transfected with the empty pl66BRNX-AcV5 
construct, no cell-to-cell fusion was detectable upon lowering the pH to 5 (Fig. 5.4). 
Thus, the Se8 protein or the LdMNPV homolog (Ldl30) protein alone was sufficient 
to mediate pH-dependent membrane fusion in Sf21 cells. 
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Fig. 5.4 Cell-to-cell fusion of Sf21 cells transfected with putative baculovirus EFP. 
Cells (lxlO5) were transfected with 5 ug of plasmid pl66AcV5-Se8 (A), pl66AcV5-Ldl30 (B), 

pl66-OpGP64 (C), or a control pl66BRNX-AcV5 plasmid (D). At 48 h after transfection, cells were 

treated for 2 min with Grace's medium, pH 5.0. Syncytium formation was scored 4 h after dropping 

the pH by phase-contrast microscopy. 

The Se8 protein is localized in the plasma membrane 
To investigate the cellular localization of the Se8 and the Ldl30 proteins, C-terminal 
GFP-fusion constructs were made in plasmid pl66BRNX-AcV5. As a negative 
control, GFP alone was cloned in the same vector. Sf21 cells were transfected with 5 
ug plasmid DNA, incubated for 48 h, and examined for fluorescence by confocal laser 
scanning microscopy. The Se8 and the Ldl30 GFP-fusion proteins were primarily 
localized in the plasma membrane (Fig. 5.5A, B). Diffuse patches of fluorescence 
were observed in the cytoplasm (Fig. 5.5). No fluorescence was observed in the 
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nucleus of transfected insect cells. This is in agreement with the previously observed 
localization of the OpMNPV GP64 in the plasma membrane (Blissard and Rohrmann, 
1989). When expressed alone, the GFP protein showed homogeneous fluorescence in 
the cytoplasm and nucleus (Fig. 5.5C). Similar results were obtained when Se301 cells 
were transfected with the GFP-fusion constructs. Thus, the Se8 and Ldl30 GFP-
fusion proteins were primarily localized in the plasma membrane of Sf21 and Se301 
cells and this localization of Se8 and Ldl30 is consistent with their fusogenic activity. 
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Fig. 5.5 Localization of the Se8 and Ldl30 GFP-fusion proteins in Sf21 cells. 
Sf21 cells were transfected with the plasmid P166AcV5-Se8GFP (A), P166AcV5-Ldl30GFP (B), or 

with the control plasmid P166AcV5-GFP (C). At 48 h after transfection the cells were examined by 

confocal laser scanning microscopy for fluorescence. Phase-contrast micrographs are shown to the 

right of the fluorescence graph. Overlay micrographs of the fluorescence and phase-contrast 

micrographs are shown below the fluorescence micrographs. 
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Discussion 

SeMNPV BV entry into host cells 

The major envelope glycoprotein (GP64) of the AcMNPV BV is involved in host 

receptor binding and fusion with the host cell membrane during viral entry. Deletion 

of the AcMNPV gp64 gene resulted in a virus unable to move from cell to cell, 

nonlethal to infected larvae, and incapable of efficient budding (Monsma et ah, 1996; 

Oomens and Blissard, 1999). Homologs of the AcMNPV gp64 gene (Whitford et ah, 

1989) have been found in Anagrapha falcifera NPV (Federici and Hice, 1997), 

Anticarsia gemmatalis MNPV (Oomens, 1999), BmNPV (Gomi et ah, 1999), 

Choristoneura fumiferana MNPV (Hill and Faulkner, 1994), Epiphyas postvittana 

NPV (AF061579), Galleria mellonella NPV (Blinov et ah, 1984) Hyphantria cunea 

NPV (AF190124), and OpMNPV (Blissard and Rohrmann, 1989). These viruses are 

all phylogenetically placed within subgroup I of the NPVs (Zanotto et ah, 1993). No 

gp64 homolog has been identified so far in group II NPVs and GVs. In this study, we 

provide evidence that group II baculoviruses enter host cells in a manner similar to 

that of group I baculoviruses, and we have identified a functional homolog of the 

group I GP64 protein from the group II virus, SeMNPV. 

We examined the BV entry mechanism of SeMNPV, a group II NPV, using 

ammonium chloride as an inhibitor of the endocytotic pathway. A >95% reduction in 

polyhedra production was observed when Se301 cells were infected with SeMNPV in 

the presence of ammonium chloride. This indicates that BVs of SeMNPV enter insect 

cells primarily by endocytosis. Similar reduction rates were observed when Se301 or 

Sf21 cells were infected with AcMNPV in the presence of ammonium chloride and 

these values are in agreement with those reported for AcMNPV in Sf21 and Sf9 cells 

(Volkman and Goldsmith, 1985; Hefferon et ah, 1999). These data suggest that the 

entry mechanisms of AcMNPV and SeMNPV BVs are similar in this regard for 

Se301, Sf21 and Sf9 cells. Thus, BVs from both group I and II NPVs enter cells by 

endocytosis, although the group II NPVs lack a GP64 protein. 

SeMNPV infection of Sf21 cells did not lead to a productive infection, as 

evidenced by the absence polyhedra. However, the observation that SeMNPV 

infection and also Se8 transfection of Sf21 cells can result in cell-to-cell fusion 

suggests that some viral proteins are expressed from either an early or late SeMNPV 

promoter. This observation further suggests that the abortive infection of Sf21 cells by 

SeMNPV may not be the result of inhibition of early gene expression but is likely the 

result of a block in later events, since BV and polyhedra were not produced from such 

infections (Shirata et ah, 1999). 
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The SeMNPV major envelope protein of BVs 
The SeMNPV structural proteins of BVs and ODVs were isolated and examined by 
SDS-PAGE. The major BV envelope protein of SeMNPV had an apparent molecular 
weight of 60 kDa and a major protein of similar size was not detected in ODVs. 
Sequencing of the N-terminus of the 60-kDa BV major envelope protein from 
SeMNPV revealed that this protein was encoded by Se8 and was present in BVs as a 
truncated product. The amino acid sequence (RRSKR) that immediately precedes the 
N-terminal amino acid (G) of the 60-kDa protein resembles a furin-like proprotein 
convertase cleavage site (R-X-R/K-R). We therefore hypothesize that the N-terminal 
150 amino acids are cleaved from the full-length Se8 protein during Se8 synthesis and 
processing. This processing would likely result in cleavage products with predicted 
molecular weights of approximately 15 kDa (the N-terminal fragment minus the 
signal peptide) and 59 kDa (the C-terminal fragment). 

The size of the 59-kDa cleavage product is in close agreement with the estimated 
60 kDa of the major envelope protein isolated from SeMNPV BVs. The presence of 
the 60-kDa major envelope protein in the BV envelope is in accordance with the 
predicted C-terminal transmembrane domain of the Se8 protein. The 59-kDa product 
possesses a number of putative phosphorylation, N-glycosylation, myristoylation and 
amidation sites. It is not known whether these modifications actually occur, although 
the close similarity between measured and predicted size would suggest that the C-
terminal fragment is not heavily glycosylated. Several protein bands around 15-17 
kDa were detected in SeMNPV BVs (Fig. 5.2) and we might speculate that one of 
these may be the 15-kDa cleavage product of the Se8 encoded protein. 

Se8 may be similar to proteins such as HIV GP160 which requires cleavage to 
form GP120 and GP41 subunits that remain associated, but noncovalently. Other 
proteins such as the influenza hemagglutinin (HA) protein also require cleavage for 
function, but HA subunits remain covalently associated by disulfides. Protein 
sequencing of small protein bands associated with the SeMNPV BV may reveal 
whether a Se8 cleavage product is present in BVs. Whether Se8 cleavage is required 
for fusion activity and whether a cleavage product is necessary for this or other 
functions remain to be determined. 

Function and localization of the Se8 and Ldl 30 proteins 
To determine whether the major envelope protein from SeMNPV and LdMNPV BV 
could mediate pH-dependent membrane fusion, a previously described syncytium 
formation assay of Lymantria dispar cells was adopted for Sf21 cells (Blissard and 
Wenz, 1992). The low pH value (5.0) was selected because similar values have been 
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reported for eucaryotic endosomes after acidification (Helenius et al., 1982) and 
because this pH was shown to be sufficient to trigger AcMNPV, OpMNPV, and 
AgMNPV gp64-mediated membrane fusion (Blissard and Wenz, 1992; Oomens, 
1999). The syncytium formation assays with cells expressing Se8 and the LdMNPV 
homolog (Ldl30) both showed membrane fusion and syncytium formation upon 
acidification of the medium. This is in agreement with the observed pH-dependent 
cell-to-cell fusion observed in Sf21 and Se301 cells infected with SeMNPV BVs. 
Thus, the SeMNPV major BV envelope protein (Se8) and the homolog from 
LdMNPV (Ldl30) are each able to independently mediate low pH-triggered 
membrane fusion. They therefore represent functional homologs of the OpMNPV 
GP64 protein. 

To mediate cell-to-cell fusion, the Se8 and Ldl30 proteins must be localized at 
the plasma membrane. GFP-fusion constructs of Se8 and Ldl30 proteins were 
observed at the periphery of transfected cells using confocal fluorescence microscopy 
(Fig. 5.5). Because Se8 and Ldl30 both contain a predicted hydrophobic signal 
peptide at the N-terminus and a predicted C-terminal transmembrane domain, it is 
likely that both proteins are found at the surface of infected cells. 

Similarities to baculovirus GP64 proteins 
Like GP64 proteins, Se8 and Ldl30 appear to be type I membrane glycoproteins. In 
the AcMNPV and OpMNPV GP64 proteins, 4-3 heptad repeats of leucines and/or 
methionine residues have been identified. These repeats are predicted to form 
amphipathic a-helices (Monsma and Blissard, 1995). Disruption of the OpMNPV 
heptad repeat resulted in defective trimerization (Monsma and Blissard, 1995). 
Mutational analysis of the AcMNPV heptad repeat revealed that it was essential at a 
stage after the initiation of the individual trimer conformational change and before the 
functioning of the putative fusion complex (Kingsley et al., 1999). Hydrophobic 4-3 
heptad repeats and a leucine zipper motif (LANTTNSLNSQVKQLNDELIVL at 
amino acids 177-198 of Se8) have also been identified in the Se8 and Ldl30 proteins 
(Fig. 5.3). Coiled coil regions are predicted for amino acids 222 - 249 of the Se8 
protein and amino acids 165-247 of the Ldl30 protein. It is thus possible that these 
predicted coiled coil regions may play a similar role in the membrane fusion process. 

Homologs of Se8 in other baculoviruses 
Se8 is a homolog of the Ldl30 protein, with 41% amino acid identity and 60% 
similarity (IJkel et al., 1999). Both ORFs also showed very low amino acid identity 
(-22%) to AcMNPV ORF23 (Ac23), BmNPV ORF14 and OpMNPV ORF21 (IJkel et 
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ah, 1999). The latter ORFs also lacked a proprotein convertase consensus cleavage 
sequence in their predicted amino acid sequences. Also, in preliminary syncytium 
formation experiments, we were unable to detect membrane fusion mediated by the 
Ac23 protein (W.F.J. IJkel and J. Mangor, unpublished results). The higher degree of 
relatedness among the group I NPV gp64 genes, combined with a much larger degree 
of divergence among the group II NPVs and GVs and their Se8 homologs, suggest 
that gp64 may have been acquired more recently, perhaps resulting in the branching 
off of the group I NPVs from the group II NPVs and the GVs. 

Cleavage of viral glycoproteins by furin 
Cleavage of viral envelope glycoproteins seems to be a general mechanism used by 
viruses to activate envelope fusion proteins. A number of viral envelope proteins are 
cleaved by furin and these include the human immunodeficiency virus gpl60 
(Hallenberger et ah, 1992), human cytomegalovirus glycoprotein B (Vey et ah, 1995), 
Mouse mammary tumor virus-7 superantigen (Park et ah, 1995), Measles virus F0 

(Watanabe et ah, 1995), Newcastle disease virus F0 (Gotoh et ah, 1992), Sindis virus 
gpE2 (Gotoh et ah, 1992), Human parainfluenza virus type 3 F0 (Ortmann et ah, 
1994) and Avian Influenza virus hemagglutinin A (HA) (Stieneke-Grober et ah, 
1992). 

Furin is a member of a family of subtilisin-like endoproteases called "preprotein 
convertases" that function in proteolytic processing of a large variety of precursor 
proteins. Recently, furin was identified and characterized from S. frugiperda cells 
(Sf9) (Cieplik et ah, 1998). Sf9 cells are a clonal isolate of Sf21 cells and it is likely 
that Se301 cells also contain a subtilisin-like endoprotease like Sf furin. The Sf furin 
was localized mainly in the trans-Go\%\ network (TGN) but was also present at the 
plasma membrane. The cellular localization of Sf furin in the TGN and the presence 
of the Sf furin recognition motif (R-X-K/R-R) at the Se8 cleavage site (and at a 
similar site in Ldl30) strongly suggest that both proteins are cleaved by an Sf furin-
like endoprotease. Although this strong circumstantial evidence suggests Se8 cleavage 
by a cellular furin-like endoprotease, we cannot yet exclude the possibility that Se8 
may be processed by a viral gene product. 

Comparison of Se8 with other viral envelope fusion proteins 
The avian influenza HA protein most closely resembles the Se8 protein, when the 
amino acid sequence of its cleavage site and the size of the protein are considered. HA 
is synthesized as a precursor (HA0) of 75 kDa. The precursor, HA0, is post-
translationally cleaved at a conserved arginine residue into two subunits. The two 
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subunits, HA] and HA2, are linked by a single disulfide bond. Cleavage of HA0 is 

necessary for virus infectivity (Klenk et al, 1975; Lazarowitz and Choppin, 1975) 

because it activates the membrane fusion potential of the HA (Maeda and Ohnishi, 

1980; Vey et al, 1992; Steinhauer, 1999). The X-ray crystal structure of HA0 revealed 

that its cleavage site (amino acids 323-341 of HA0) can be seen as a prominent surface 

loop that protrudes out into solution and is accessible to proteases (Steinhauer, 1999). 

The amino acid sequence (PTKRRSKRiGLFNFM) of the putative Se8 cleavage site 

has 71% similarity to the HA0 protein cleavage site (PQRKRKKRxlGLFGAI) and the 

five amino acids at the cleavage site (KR.4-GLF) are identical. It is tempting to 

speculate that cleavage of the Se8 and Ldl30 proteins by a furin-like endoprotease 

may be necessary for virus infectivity and may activate the membrane fusion potential 

of these proteins, similar to that of the HA0 protein (Klenk et al, 1975; Lazarowitz 

and Choppin, 1975). We are currently pursuing a mutational analysis of the cleavage 

site and its potential function in membrane fusion and virion infectivity. 

Materials and Methods 

Cells, Insects and Viruses 
The Spodoptera frugiperda cell-line IPLB-SF-21 (Vaughn et al, 1977) and the 
Spodoptera exigua cell-line Se301 (Hara et al, 1995b) were cultured in plastic tissue 
culture flasks (Nalge Nunc International, naperville, IL) in Grace's insect medium, pH 
5.9-6.1 (GibcoBRL, Gaithersburg, MD), supplemented with 10% foetal bovine serum 
(FBS). A culture of Spodoptera exigua insects was maintained according to Smits and 
Vlak (1988a). The SeMNPV isolate (Gelernter and Federici, 1986b) was originally 
obtained from B.A. Federici (Department of Entomology, University of California, 
Riverside, CA) and was called SeMNPV-USl (Munoz et al, 1998). The AcMNPV-
E2 strain (Smith and Summers, 1978) was originally obtained from M. D. Summers 
(Texas A&M University, College Station, TX). 

Endocytosis assay 
Se301 and Sf21 cells were incubated 30 min prior to infection in Grace's insect 
medium with 10% FBS containing 50 mM ammonium chloride as lysosomotrophic 
reagent, to inhibit acidification of endosomes (Lenard and Miller, 1982), or without 
the latter compound (control). AcMNPV and SeMNPV (m.o.i. of 5 TCID50 units/ml) 
were incubated with cells for 2 h at 4°C in Grace's containing 50 mM ammonium 
chloride to synchronize the binding. Subsequently, the cells were washed gently twice 
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in 2 ml Grace's insect medium with 10% FBS with or without (control) 50 mM 

ammonium chloride and then incubated in the presence or absence (control) of 

ammonium chloride throughout the infection at 27° for 72 h. The number of infected 

cells compared to the control (without ammonium chloride) was determined. 

Purification of SeMNPV BV and ODV 

S. exigua fourth-instar larvae were infected by contamination of artificial diet with 

polyhedra (lOx LD99) (Smits and Vlak, 1988a). To purify BVs, 5 ml hemolymph was 

collected 3 days p.i. in 0.5 ml O.lx TE (TE is 10 mM Tris, pH 7.5, 1.0 mM EDTA) 

containing 5 mM phenylthiocarbamide to inhibit prophenoloxidase activity. 

Hemolymph was clarified at 2,000 g for 10 min at 4°C. The supernatant was filtered 

(0.45-um filter) and the filtrate overlaid onto a 35-ml, 25-56% continuous sucrose 

gradient in O.lx TE. Gradients were centrifuged at 100,000 g for 90 min at 4° 

(Beckman SW28, 24,000 rpm). The BV band was collected and dialyzed overnight at 

4° against O.lx TE. The virus suspension was concentrated by overlaying onto a 1.5-

ml, 25/56% discontinuous sucrose gradient. Gradients were centrifuged at 100,000 g 

for 90 min at 4° (Beckman SW55, 30,000 rpm). Bands were collected and dialyzed 

overnight at 4° against 0. lx TE. 

Polyhedra were purified from larvae using the method of Braunagel and 

Summers (1994). ODVs were purified from polyhedra using a combination of the 

methods described by Caballero et al. (1992) and Braunagel and Summers (1994). 

Briefly, ODVs were liberated from polyhedra (40 mg/ml) by incubating at RT for 15 

min in 0.1 M Na2C03, 166 mM NaCl, 10 mM EDTA, pH 10.5. Undissolved 

polyhedra were removed by low-speed centrifugation for 5 min (500 g). The 

supernatant (5 ml) was layered onto a 35-ml, 25-56% (w/w) continuous sucrose 

gradient in 10 mM Tris-HCl, pH 7.5, and centrifuged at 100,000 g for 90 min at 4°C 

(Beckman SW28, 24,000 rpm). The multiple virus bands were collected, washed by 

dilution in O.lx TE, concentrated by centrifugation at 55,000 g for 60 min at 4° 

(Beckman SW41, 18,000 rpm), and resuspended in O.lx TE. The purity and integrity 

of BVs and ODVs were checked by electron microscopy. 

Fractionating of virions into envelope and nucleocapsids 

BVs were incubated in O.lx TE containing 1% NP-40, at RT for 30 min with gentle 

agitation. NCs were sedimented by centrifugation at 150,000 g for 60 min at 4° 

(Beckman SW55, 35,000 rpm). The pellet was resuspended in O.lx TE. The envelope 

proteins in the supernatant were acetone-precipitated, concentrated by centrifugation 

(4,000 g, 30 min) and the pellet dissolved in 0. lx TE. 
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SDS-PAGE and protein sequencing 
Purified SeMNPV BV proteins were analyzed in a 12 % SDS-PAGE gel, according to 
Laemmli (1970), and stained with Coomassie brilliant blue. Semidry blotting was 
performed onto a polyvinyl difluoride (PVDF) membrane (Bio-Rad, Richmond, CA) 
using CAPS buffer (10 mM CAPS, 10 % (v/v) methanol, pH 11). Proteins were 
visualized on the PVDF membrane using Coomassie brilliant blue. The major protein 
band from SeMNPV BV was N-terminally sequenced (Protein Research Facility 
Amsterdam, The Netherlands). 

Computer-assisted analysis of fusion proteins 
The Se8 (Ukel et al., 1999) and the Ldl30 proteins were analyzed using software of 
the Predict Protein server (Rost, 1996) for the prediction of transmembrane domains, 
N-terminal signal sequences, leucine zippers, coiled coil structures and the pi of the 
cytoplasmic tail domain (CTD). Motif searches were done against the Prosite release 
14 database (Fabian et al., 1997; Bairoch et al, 1997). DNA and protein comparisons 
with entries in the updated GenBank/EMBL, SWISS-PROT, and PIR databases were 
performed with FASTA and Psi-BLAST programs (Pearson, 1990; Altschul et al., 
1997). Multiple sequence alignments were performed with the GCG PileUp and Gap 
computer programs with gap creation and extension penalty set to 8 and 2, 
respectively (Devereux et al., 1984). Alignment editing was performed with Genedoc 
Software (http://www.psc.edu/biomed/genedoc). 

Plasmid constructions 
To construct plasmids that allow expression in insect cells upon transfection, a 
plasmid vector, pl66BRNX-AcV5 that contains the OpMNPV gp64 early promoter 
plus a multiple cloning site and an AcV5 epitope tag (provided by G. Lin), was used 
to construct vectors containing Se8 and Ldl30 encoding putative viral fusion proteins. 
Primers containing 5' BctmHl and 3' EcoBl restriction sites were designed for the 
directional PCR-cloning of SeMNPV ORF 8 and Ldl30. These ORFs were amplified 
by high fidelity "Expand" long template PCR (Boehringer Mannheim, Mannheim, 
Germany) using the plasmids pSe Bglll-H. (IJkel et al., 1999) and genomic LdMNPV 
DNA (Riegel et al., 1994), respectively, as template DNA. The PCR products were 
ligated into the BamHl and EcoRL sites of pl66BRNX-AcV5. The plasmids were 
named pl66AcV5-Se8 and pl66AcV5-Ldl30, respectively, and tested in syncytium 
formation assays. The complete OpMNPV gp64 gene used as a positive control in 
transfection experiments was from plasmid p64-166 and was described previously 
(Blissard and Wenz, 1992). 

95 

http://www.psc.edu/biomed/genedoc


Chapter 5 

To determine the localization of the putative fusion proteins in insect cells, GFP-
fusion constructs were made. The red-shifted GFP ORF (Davis and Vierstra, 1996) 
was amplified by high fidelity "Expand" long template PCR (Boehringer Mannheim) 
using primers containing 5' EcoRl and 3' Xbal restriction sites and cloned in frame as 
an EcoKL/Xbal fragment into the plasmids pl66AcV5-Se8 and pl66AcV5-Ldl30 to 
give C-terminal fusions with the putative BV fusion proteins. Plasmid DNA was 
purified using Jetstar columns according to manufacturer's protocol (ITK Diagnostics, 
Uithoorn, The Netherlands) and used for transfections. All constructs were sequenced 
to confirm the in-frame cloning of the AcV5 tag or GFP with the putative fusion 
ORFs. Sequencing was carried out using an Applied Biosystems automated DNA 
sequencer (Eurogentec, Belgium). 

Syncytium formation assay 
Syncytium formation (Sf21-Sf21 fusion or Se301-Se301 fusion) assays were 
performed by either transfection of 5 x 105 Sf21 or Se301 cells, with 5 ug of plasmid 
DNA using Cellfectin (GibcoBRL) or infection with SeMNPV or AcMNPV BVs 
(m.o.i. of 10 TCID5o units/ml). As a negative control for the syncytium formation 
assay, we used the empty pl66BRNX-AcV5 plasmid vector. Forty-eight hours after 
transfection, cells were washed three times with 2 ml Grace's medium (pH 6.1) 
without FBS, and afterwards cells were treated for 2 min in 1 ml acidic Grace's 
medium at pH 5.0. The acidic medium was removed and replaced with 2 ml Grace's 
(pH 6.1) with 10% FBS. Syncytium formation was scored and observed by light 
microscopy 4 h after treatment with the acidic medium. Syncytium formation was 
recorded when at least 4 nuclei were present in each syncytial mass. 

Fluorescence microscopy 

Sf21 cells (1 x 105) were grown on glass cover slips and transfected with 5 (ig of 
plasmid DNA. At 48 h posttransfection the cells were examined with a Zeiss LSM510 
(confocal) laser scanning microscope for fluorescence using an excitation wave length 
of 488 nm and an emission band pass filter of 505 - 530 nm. 
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Chapter 6 

Isolation of a Spodoptera exigua baculovirus 
recombinant with a 10.6 kbp deletion that retains 

biological activity 

When Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) is grown in 

insect cell culture, defective viruses are generated. These viruses lack about 25 kbp of 

sequence information and are no longer infectious for insects. This makes the 

engineering of SeMNPV for improved insecticidal activity or as expression vectors 

difficult to achieve. Recombinants of Autographa californica MNPV have been 

generated in insects after lipofection with viral DNA and a transfer vector into the 

haemocoel. In the present study a novel procedure to isolate SeMNPV recombinants 

was adopted by alternate cloning between insect larvae and cultured cells. The S. 

exigua cell line Se301 was used to select the putative recombinants by following a 

green fluorescent protein marker inserted in the plO locus of SeMNPV. Polyhedra 

from individual plaques were fed to larvae to select for biological activity. In this way 

a SeMNPV recombinant (SeXDl) was obtained with the speed of kill improved by 

about 25%. This recombinant lacked 10,593 bp of sequence information, located 

between 13.7 and 21.6 map units of SeMNPV and including ecdysteroid UDP 

glucosyl transferase, gp37, chitinase and cathepsin genes, as well as several genes 

unique to SeMNPV. The result indicated, however, that these genes are dispensable 

for virus replication both in vitro and in vivo. A mutant with a similar deletion was 

identified by PCR in the parental wild-type SeMNPV isolate, suggesting that 

genotypes with differential biological activities exist in field isolates of baculoviruses. 

The generation of recombinants in vivo, combined with the alternate cloning between 

insects and insect cells, is likely to be applicable to many baculovirus species in order 

to obtain biologically active recombinants. 

This chapter has been published as: 

Dai, X., Hajos, J. P., Joosten, N., van Oers, M. M., IJkel, W. F. J., Zuidema, D., Pang, 

Y., andVlak,J.M. 

Journal of General Virology (2000) 81, 2545 - 2554. 
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Introduction 
The beet army worm Spodoptera exigua causes extensive economic losses in many 
cultivated crops throughout the temperate and subtropical regions of the Northern 
hemisphere and in greenhouses. The insect is resistant to many commonly used 
chemical insecticides. S. exigua multicapsid nucleopolyhedrovirus (SeMNPV) is an 
attractive bio-insecticide since the virus is monospecific to the beet army worm and 
highly virulent as compared to other baculoviruses (Smits et al, 1988). It has also 
been commercialized as a bio-insecticide (Smits and Vlak, 1994). However, further 
improvements in the biological activity of SeMNPV are sought, either by strain 
selection (Mufioz et al, 1998) or by genetic engineering. 

The molecular genetics of SeMNPV have been relatively well studied. A 
detailed physical map has been constructed (Heldens et al, 1996) and a number of 
SeMNPV genes have been characterized in detail (Van Strien et al., 1992; Zuidema et 
al, 1993; Van Strien et al, 1996; Van Strien et al, 1997; Heldens et al, 1997b). 
Recently the complete sequence and gene organization of the SeMNPV genome have 
been reported (IJkel et al, 1999). However, the molecular basis for specificity and 
virulence has not yet been revealed. 

Several cell lines have been derived from Spodoptera exigua, such as SeUCR 
(Gelernter and Federici, 1986a), Se301 (Hara et al, 1995b) and IZD2109 (B. Mockel, 
personal communication), and susceptibility to SeMNPV has been reported (Hara et 
al, 1993; 1995a). However, when SeMNPV is grown in insect cell culture defective 
viruses are quickly generated (Heldens et al, 1996). The majority of these viruses lack 
about 25 kbp of sequence information and are no longer infectious for insects. The 
deletion is located approximately between 12.9 and 32.3 map units (m.u.) and 
encompasses the SeMNPV open reading frames (ORFs) 15 to 41 (IJkel et al, 1999). 
This makes the engineering of SeMNPV for improved insecticidal activity or as 
expression vectors difficult to achieve. The generation of defective viruses in cell 
culture limits the structural and functional analysis of the SeMNPV genes and the 
isolation of recombinants with adequate infectivity in vivo and in cell culture. 

SeMNPV has been isolated from many different geographical regions 
throughout the world (Vlak et al, 1981; Gelernter and Federici, 1986b; Hara et al, 
1995a; Mufioz et al, 1998). Wild type (wt) SeMNPV isolates are frequently found 
consisting of several genotypic variants. This is typically indicated by the presence of 
submolar bands in restriction endonuclease digestion profiles of viral DNA (Mufioz et 
al, 1998; 1999). Isolation of individual genotypic variants by in vivo cloning methods 
(Smith and Crook, 1988) has allowed the evaluation of the relative virulence of the 
different genotypic variants (Mufioz et al, 1998; 1999). Since multiple passaging of 
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SeMNPV in cultured insect cells results in the generation of defective viruses 
(Heldens et al, 1996), cloning of genotypic variants of SeMNPV is difficult to obtain 
by conventional plaque purification techniques. Hence, a novel strategy was adopted 
in this study to generate genotypic variants of SeMNPV by cloning alternately in vivo 
and in vitro. 

We previously reported that recombinants of Autographa californica (Ac) 
MNPV were successfully generated in S. exigua larvae by transfection of viral and 
transfer vector DNA into the hemocoel by lipofection (Hajos et al., 1998). In this 
study we used a similar strategy to generate recombinants of SeMNPV. We also 
adopted a novel procedure to isolate SeMNPV recombinants by cloning alternately 
between S. exigua larvae and Se301 cultured cells to secure in vivo and in vitro 
infectivity. By this strategy a SeMNPV recombinant (SeXDl) was generated using 
GFP as a screening marker. This recombinant had a similar genetic make-up to one of 
the variants observed in the SeMNPV isolates and was able to replicate both in vivo 
and in cultured insect cells. However, it lacked 10,6 kbp of nucleotide sequence as 
compared to the complete SeMNPV genome. Bioassays indicated that the 
recombinant has superior speed of kill as compared to the wt isolate. 

Results 

Generation of pl0~ recombinant SeXDl 
To generate a plO SeMNPV recombinant, the transfer vector pSeXDl carrying a 
green fluorescent protein (GFP) marker gene was constructed (Fig. 6.1). The size of 
transfer vector pSeXDl was 4.6 kbp, and it contained 503 bp upstream (includingplO 
promoter) and 673 bp downstream [including the pi0 poly(A) motif; van Oers et al., 
1999] sequences of the SeMNPV plO ORF, and the 747 bp GFP gene driven by the 
authentic plO promoter. 

Seventeen fourth instar larvae were injected with wt SeMNPV and pSeXDl 
DNA at a ratio of 1:30 |i,g, corresponding to a molar ratio of approximately 1:800. 
Sixteen larvae survived the injection treatment. The hemolymph from these 16 larvae 
was transferred to 5 ml of Grace's medium without FBS. The controls included larvae 
injected with only viral DNA, only transfer vector DNA, only Cellfectin and untreated 
larvae. Plaque assays indicated that the total virus titre of the hemolymph was 3.7xl04 

p.f.u./ml. The percentage of recombinants was approximately 3.3% in agreement with 
data obtained previously for AcMNPV (Hajos et al., 1998). The GFP gene driven by 
the plO promoter of SeMNPV induced bright fluorescence, as observed with an UV 
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Fig. 6.1 Schematic representation of the/?70 locus in SeMNPV and in the pi 0-based 
transfer vectors pSeM07 and pSeXDI. Plasmid pSeM02 contains a 1448 bp EcoRl-Bamm 
fragment derived from the Xbal-H fragment of SeMNPV containing the plO locus and its flanking 
sequences. Plasmid pSeM07 is the empty SeMNPV plO promoter-based transfer vector. In plasmid 
pSeXDI the open reading frame for the green fluorescent protein (GFP) is present downstream of the 
plO promoter. PplO: plO promoter; 3'UTR: plO 3' untranslated region including a poly(A) motif. B: 
BamHl, C: Clal, E: EcoRl, H: Hindlll, X: Xbal. 

microscope. With the help of GFP, it was easy to screen by fluorescence and pick 

recombinant plaques from Se301 cells. Several recombinant viruses were isolated by 

three rounds of alternate cloning between third instar S. exigua larvae and Se301 cells 

(see Methods). Finally, recombinant SeXDl was amplified in fourth instar S. exigua 

larvae and analysed. 

To confirm the location of the GFP gene insertion, recombinant SeXDl DNA 

was examined by Spel restriction endonuclease digestion. The SeMNPV plO gene is 

located on the 4.5 kbp Spel I fragment corresponding to nt 122,885 to 127,355 of the 

genome (Fig. 6.2A) (IJkel et al, 1999). When the 264 byplO ORF (corresponding to 

nt 123,740 to 124,006) is replaced with the 747 bp GFP gene ORF, the Spel I 

fragment would become 5.0 kbp (Fig. 6.2A). As shown in Fig. 6.2B, the Spel 

restriction endonuclease pattern of SeXDl confirmed the insertion of the GFP ORF 

into the plO locus in SeXDl. SDS-PAGE and Western analysis showed the absence of 

the PlO protein while GFP was expressed in both Se301 and SeUCR cells infected 

with SeXDl (Fig. 6.2C, D: lane 3 and lane 6). 

Uninfected Se301 cells are shown in Fig. 6.3A. At 16 h p.i., polyhedra were 

observed in about 20% of the Se301 cells infected with either wt SeMNPV or SeXDl 

at a m.o.i. of 10 (data not shown). At 48 h p.i., polyhedra were observed in about 90% 

of the Se301 cells infected with wt SeMNPV (Fig. 6.3B) and in almost 100% of 
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Fig. 6.2 Construction and analysis of SeXDl, & plO SeMNPV recombinant 
expressing GFP. (A) Construction of SeXDl. The top line represents the physical map of the wt 

SeMNPV genome for Spel restriction endonuclease. plO is located in the 4.5 kb Spel I-fragment 

(corresponding to nt 122,885 to 127,355). The 264 bp plO ORF (corresponding to nt 123,740 to 

124,006) was replaced with the 747 bp GFP gene; the Spel I-fragment became 5.0 kb in SeXDl. (B) 

Spel restriction endonuclease analysis of genomic DNAs from wt SeMNPV and SeXDl. (C) and (D) 

SDS-PAGE and Western analysis using anti-GFP antibodies. Uninfected Se301 cells (lane 1), Se301 

cells infected with wt SeMNPV (lane 2) and with SeXDl (lane3); uninfected SeUCR cells (lane 4), 

SeUCR cells infected with wt SeMNPV (lane 5) and with SeXDl (lane 6). PH, polyhedrin. 

Se301 cells infected with SeXDl (Fig. 6.3C). Bright fluorescence was observed in 
SeXDl-infected Se301 cells under the UV microscope (Fig. 6.3D). No fluorescence 
was observed either in wt SeMNPV-infected or in uninfected Se301 cells (data not 
shown). 

Thus, UV microscopy, restriction enzyme analysis, SDS-PAGE and Western 
blot analysis demonstrated that the recombinant virus SeXDl lacked the pi0 gene and 
expressed GFP. This recombinant was capable to complete its replication cycle both 
in S. exigua larvae and in the cultured cell lines Se301 and SeUCR. 
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Fig. 6.3 Phase-constrast and UV micrographs of the S. exigua cell line Se301. 
Se301 cells (A) were infected with wt SeMNPV (B) and with SeXDl (C and D) at 48 h 

Polyhedra were observed in phase-contrast images of wt SeMNPV (B) and SeXDl-infected cells 

The expression of GFP in SeXDl-infected cells is shown by irradiation with UV-light (D). 

p.i. 

(C). 

Analysis of deletion mutants 

Wt SeMNPV is made up of several genotypic variants (Muftoz et ah, 1998; 1999) and 
replication of SeMNPV in cultured cells often results in the generation of deletion 
mutants (Heldens et al, 1996). To determine whether the recombinant SeXDl is one 
of these variants, SeXDl as well as wt SeMNPV were analysed with restriction 
endonucleases. The Spel and Pstl digestions showed several submolar bands in wt 
SeMNPV (Fig. 6.2B and 6.4B), indicating that the wt SeMNPV isolate is a mixture of 
genotypes. No submolar bands were found in the Spel and Pstl digestion patterns of 
SeXDl DNA (Fig. 6.2B and 6.4B). However, the Pstl-D, Spel-E and Spel-R 
fragments were absent in SeXDl (Fig. 6.2B and 6.4B), suggesting that although 
SeXDl is genetically homogeneous it might be a deletion mutant. One of the 
submolar bands found after Spel digestion in SeMNPV wild type (Fig. 6.2B) is a 
molar band in the recombinant, suggesting that a variant with a similar deletion is 
present in wt SeMNPV. 
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To determine in more detail which region was absent, both SeXDl and wt 

SeMNPV DNA were examined by PCR amplification. The restriction analysis had 

shown the absence of the Pstl D-fragment in SeXD 1, while the neigbouring fragments 

L and C were retained (Fig. 6.4A, B). Therefore, PCR primers were designed 

annealing approximately 100 bp up- and downstream of the Pstl D-fragment in 

fragments L and C, respectively (see Methods). In an amplification from complete 

genomic SeMNPV DNA the PCR product should be 11,289 bp, and a product of this 

size was indeed observed (Fig. 6.4A). Amplification from SeXDl DNA, however, 

resulted in a single -700 bp product (Fig. 6.4C), suggesting that about 10 kbp was 

deleted from SeXDl. The PCR analysis also indicated that SeXDl most likely 

contained a single genotype. Amplification using wt SeMNPV DNA as template 

resulted in at least five products, including a l l kbp, 2.8 kbp, 2.0 kbp, 1.2 kbp, and 

700 bp product (approximate sizes; Fig. 6.4C). These results suggested that the wt 

SeMNPV is a mixture containing several deletion mutant variants in this locus. 

Conclusions about the relative amounts of the variants can not be drawn from this 

analysis, however, since smaller fragments are likely to be amplified more efficiently 

than larger ones. 

The -700 bp product was observed in both SeXDl and wt SeMNPV (Fig. 6.4C), 

implying that SeXDl might have originated from one particular genotypic variant in 

the wt SeMNPV isolate. To exactly locate the deleted region and to compare SeXDl 

with wt SeMNPV, the -700 bp fragments from both SeXDl and wt SeMNPV were 

cloned into pGEM-T and sequenced. Sequence analysis showed the presence of both 

primers in the PCR products and mapped the deletion of SeXDl from 13.7 to 21.6 

m.u. (10,593 bp, from nt 18,513 to nt 29,106) (Fig. 6.4A). The deletion in a genotypic 

variant of wt SeMNPV was also from nt 18,513 to nt 29,106, a total of 10,593 bp (Fig. 

6.4A). A total of 12 ORFs was completely deleted, encompassing SeMNPV ORF 16 

to 27 and including ecdysteroid UDP glucosyl transferase (egt), gp37, chitinase 

(chiA), cathepsin (v-cath), ptp-2 and nine others. Two ORFs, ORF 15 and 28, were 

partially deleted. Therefore, the sequences maintained in SeXDl and in one of the wt 

SeMNPV variants were the same, suggesting that SeXDl is derived from an existing 

genotypic variant of wt SeMNPV. 

SeXDl was passaged in Se301 cells several times when purified but still 

retained the same deletion as its parental wt SeMNPV. The result indicated that the 

genotypic variant with a deletion of 10,593 bp was quite stable. The result also 

indicated that naturally eg?-deleted, g/>37-deleted, c/?M-deleted and v-cath-deleted 

genotypes existed in the wt SeMNPV population and that none of the deleted genes 

are required for viral DNA replication either in vivo or in vitro. 
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Fig. 6.4 Analysis of the deletion mutants. 
(A) The top line represents the physical map of the wt SeMNPV genome for Pstl restriction 

endonuclease. A 10,593 bp fragment, including egt, v-cath, gp37, chiA, etc. (corresponding to nt 

18,513 to 29,106; dashed horizontal line), was deleted in the recombinant SeXDl. The deletion in a 

genotypic variant of wt SeMNPV was also from nt 18,513 to nt 29,106 (a total of 10,593 bp). (B) Pstl 

restriction endonuclease analysis of genomic DNAs from wt SeMNPV and SeXDl. The Pstl-D 

fragment was absent in SeXDl. (C) PCR analysis of genomic DNAs from wt SeMNPV and SeXDl. 

The primers A and B correspond to nt 17,874 to 17,904 and 29,135 to 29,163, respectively. 

Biological activity and symptomatology of virus-infected S. exigua larvae 
The insecticidal activities of the recombinant SeXDl and wt SeMNPV were 
determined for third instar S. exigua larvae in terms of LD50 and ST50 (Table 6.1). The 
ST50 value of SeXDl (70.2 h) was 25% lower than that of wt SeMNPV (93.1 h). The 
ST50 value was significantly different (P<0.05). The slopes of the filled time-mortality 
relationships were not significantly different for both viruses. 

The LD50 value of SeXDl [403 occlusion bodies (OBs)/larva] was 
approximately three times higher than that of wt SeMNPV (125 OBs/larva), but this 
was not significantly different (P=0.094) (Table 6.1). The slopes of the filled dose-
mortality curves were not significantly different (P=0.05). 
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There were some differences in symptoms of wt SeMNPV and SeXDl-infected 
S. exigua larvae. The larvae infected with wt SeMNPV became pale and creamy in 
color prior to death. After death infected insects rapidly liquefied. A small proportion 
of the wt SeMNPV-infected larvae first turned black before liquefaction. The larvae 
infected with SeXDl also became pale prior to death but all larvae turned black. In 
addition, the SeXDl-infected larvae did not liquefy after death and remained 
physically intact (data not shown), a typical phenotype of infection with a baculovirus 
lacking cathepsin and/or chitinase (Slack et ah, 1995; Hawtin et al., 1997). 

Table 6.1 Dose mortality (LD50) and lethal time mortality (ST50) of wt SeMNPV and 
recombinant SeXDl for third instar S. exigua larvae. 
The data in the table came from the statistical analysis. The LD50 was determined in three repetitions 

by a leaf disc bioassay and the ST50 in four repetitions by a droplet-feeding bioassay. 

LD5„ 

Viruses Log LDs0 (OBs/Iarva) Slope ST50 (h) Slope 

Wt SeMNPV 4.83a±0.68 125a 1.50a±0.32 93.1b±5.9 10.92a±3.86 

SeXDl 6.00a± 1.15 403a 1.26a±0.34 70.2b±6.7 9.17a±2.16 
a, No significant difference;b significantly different. 

Discussion 
Replication of SeMNPV in cultured cells results in the generation of deletion mutants, 

which are not infectious to S. exigua larvae (Heldens et al., 1996). This is the major 

reason why engineering of SeMNPV has been difficult to achieve in the past several 

years. Based on the successful generation of AcMNPV recombinants by 

cotransfection of viral and transfer vector DNA into the haemocoel of S. exigua larvae 

(Hajos et ah, 1998) and the supposition that a few intact SeMNPV would survive one 

or two passages in cultured cells, we adopted a procedure to engineer SeMNPV by 

alternate cloning between insect larvae and cultured cells. When the molar ratio 

between viral DNA and transfer vector was 1:30, recombinants were observed at 

3.3%. This is in the same order of magnitude as in the case of AcMNPV, where ~2% 

has been recorded (Hajos et al., 1998). Although the same amount of viral DNA per 

larva (0.4 \ig) was used in the injection, the total virus titre in the haemolymph of the 

cotransfected larvae is much lower (3.7xl04 p.f.u./ml) than found for AcMNPV 

(5.2xl08 p.f.u./ml) (Hajos et al., 1998). The result suggests that the transfection with 

SeMNPV DNA is less efficient than with AcMNPV DNA, but that the relative 
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proportion of recombinants is more or less similar. 
A wt SeMNPV isolate is made up of several genotypic variants; some of these 

contain large deletions and are helper dependent (Munoz et al., 1998; 1999). PCR and 
sequence analysis showed that in the recombinant SeXDl 10,593 bp of SeMNPV 
sequence was deleted (Fig. 6.4A, C). The same procedure revealed the presence of a 
genotype with a deletion of the same size in wt SeMNPV (Fig. 6.4C). The question is 
whether the SeMNPV deletion naturally exists in the wt SeMNPV population or 
results from the passages in cultured cells. Since it was reported that extensive 
deletions in the SeMNPV genome occurred very quickly in the SeUCR cell line 
(Heldens et al., 1996), it was generally thought that SeMNPV would loose its 
pathogenic effect in vivo after just one passage with multiple replication cycles in 
cultured cells and that it would be difficult to obtain SeMNPV variants that retained 
biological activity in vivo from cultured cells. However, with this novel approach we 
successfully selected several SeMNPV recombinants infectious in vivo and in vitro, 
one of which, SeXDl, was analyzed in detail. 

Restriction endonuclease and PCR analysis showed the presence of several other 
genotypes in wt SeMNPV (Fig. 6.2B and 6.4B, C). After the first round of plaque 
purification using Se301 cells and the haemolymph of cotransfected larvae, we 
observed several plaques containing polyhedra that were not infectious for S. exigua 
larvae (X. Dai, unpublished data). However, most plaques were pathogenic for S. 
exigua larvae. In our study we picked plaques in Se301 cells 3 days p.i. and then 
amplified the plaques in Se301 cells for another 3 days before harvesting the 
polyhedra-containing cells. Thus, recombinant SeXDl grown in Se301 cells for about 
two passages still retained its biological activity and consisted of a single genotype. 
Apparently in Se301 cells the deletion in SeMNPV does not happen as quickly as in 
SeUCR cells. Hara et al. (1993) reported that SeMNPV produced in Se301 cells was 
still infectious for larvae. Recently, Choi et al. (1999) generated a SeMNPV 
polyhedrin recombinant in these cells, but its infectivity for insects and its genetic 
make-up was not studied. Hence, there might be differences in the induction of 
defective viruses of SeMNPV between Se301 and SeUCR cells and some cell factors 
might be involved in the generation of deletion mutants. 

SeXDl lacked theplO gene of SeMNPV and expressed GFP. SeXDl also lacked 
10,593 bp of additional sequence information of SeMNPV, including egt, gp37, chiA, 
v-cath, and ten other genes located in this region (IJkel et al., 1999). Bioassays 
showed that the ST50 value of SeXDl was 25% lower than of wt SeMNPV, but that 
the LD50 value of SeXDl was approximately the same as for wt SeMNPV (Table 6.1). 
The result suggests that the absence of one or more genes may be responsible for the 
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enhanced speed of kill. Various studies showed that deletion of pi 0 did not lead to an 

increased speed of kill (Martens et al., 1995; Bianchi et al., 2000). Recent results also 

indicated that GFP does not affect the biological activity of Helicoverpa armigera 

SMPV (Chen et ah, 2000). It has been reported that EGT is a key enzyme in 

abrogating the regulation of host insect metamorphosis (O'Reilly and Miller, 1989). It 

conjugates ecdysteroids with sugars and hence blocks molting of the insect. Insects 

infected with an egf-deleted virus exhibit reduced feeding and earlier mortality 

compared to wt virus-infected larvae (O'Reilly and Miller, 1991; O'Reilly, 1995; 

Flipsen et al., 1995). Another study has shown that the LT50 value of egtf-deleted 

Lymantria dispar MNPV was about 33% lower than that of wt LdMNPV for fifth 

instar L. dispar larvae (Slavicek et al., 1999). Our findings are thus consistent with 

these studies on egt deletion mutants. 

Of those ORFs deleted from SeXDl, ORFs 17, 18 and 21 have homologues in 

Xestia c-nigrum granulovirus (XcGV) (Hayakawa et al., 1999). ORFs 15 and 28 have 

homologues in LdMNPV (Kuzio et al, 1999). ORFs 20, 22, 23 and 24 are unique to 

SeMNPV (IJkel et al, 1999), but their function is unknown. SeXDl was able to 

replicate in S. exigua larvae as well as in the cultured Se301 and SeUCR cells, so all 

the deleted genes are dispensable for virus replication both in vivo and in vitro. 

Baculovirus gp37 encodes a spindle-like protein, clearly related to fusolin of 

entomopoxviruses (EPVs) (Dall et al., 1993; Liu and Carstens, 1996; Mitsuhashi et 

al., 1997). There is accumulating evidence that fusolin of EPVs can enhance NPV 

infection in insects (Mitsuhashi et al., 1998; Hayakawa et al., 1996). Baculovirus 

gp37 might also be involved in enhancing virus infection in insects (Phanis et al., 

1999) and the gp371 fusolin gene family might be essential for virus replication (Wu 

and Miller, 1989). In the present study, the absence of gp37 did not affect virus 

replication in a detectable way either in cell culture or in insects. Thus, it remains 

enigmatic what the function of gp37 is in the biology of baculovirus infection. 

The baculovirus-infected insect host liquefies after death (Volkman and Keddie, 

1990) and polyhedra are released. This process plays an important role in ensuring the 

efficient dissemination of virus by physical forces such as wind and rain splash. It has 

been reported that chiA and v-cath are involved in the liquefaction process of virus-

infected insect larvae (Ohkawa et al., 1994; Rawlings et al., 1992; Slack et al., 1995; 

Hawtin et al., 1997). Recombinant SeXDl with a chiA and v-cath deletion could not 

liquefy S. exigua larvae, consistent with previous reports. Gopalakrishnan et al. (1995) 

reported that a recombinant AcMNPV containing a Manduca sexta chiA gene required 

less time to kill Spodoptera frugiperda fourth instar larvae when injected into the 

haemocoel. However, Hawtin et al. (1997) reported that deletion of chiA or v-cath 
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from AcMNPV had no significant effect on LD50 or ST50 of the recombinant. It is not 
clear whether the absence of chiA and v-cath has any effect on the LD50 value of 
SeXDl. 

As a result of fluoresence microscopic studies using GFP as a marker, we 
observed that upon cotransfection of insect larvae SeMNPV recombination took place 
predominantly in fat body cells. In contrast, with AcMNPV, the recombination upon 
cotransfection was found to take place typically in the haemocytes (data not shown). 
GFP also proved to be a helpful marker in the screening of SeMNPV recombinants. 
This marker will also be useful in analysing the pathological effects of this virus in 
target and non-target hosts using, for example, confocal laser scanning microscopy. 
The procedure to generate recombinant viruses followed in this paper is applicable for 
many baculovirus species, for instance, to generate recombinants with improved 
insecticidal characteristics. The method applied in this paper may also be useful for 
the investigation of naturally occurring genotypic variants in virus isolates and their 
insecticidal properties. The isolation of SeXDl confirms a previous observation by in 
vivo cloning of SeMNPV (Munoz et al., 1998; 1999) that genotypes with different 
biological and insecticidal properties exist in natural baculovirus isolates. 

Materials and Methods 

Virus, insects and cells 
The SeMNPV-USl isolate (Gelernter and Federici, 1986b) was originally obtained 
from Dr. B. A. Federici (Department of Entomology, University of California, 
Riverside CA) in the form of polyhedra and propagated in fourth instar S. exigua 
larvae (Smits et al., 1988). Cultures of S. exigua were reared on artificial diet at 27°C, 
70% humidity and a 16:8 h photoperiod. The S. exigua cell lines Se301 (Hara et al., 
1995b) and SeUCR (Gelernter and Federici, 1986a) were donated by Dr. T. 
Kawarabata (Institute of Biological Control, Kyushu University, Japan) and Dr. B. A. 
Federici, respectively. All cells were propagated at 27°C in Grace's supplemented 
medium containing 10% foetal calf serum (FCS; Gibco). Viral DNA used for the 
generation of recombinant viruses and restriction endonuclease analysis was extracted 
from polyhedra produced in S. exigua larvae by standard methods (O'Reilly et al., 
1992). 
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Construction of an SeMNPV plO promoter-based transfer vector for GFP 
expression 
The SeMNPV 5.1 kbp Xbal H-fragment containing the plO gene flanked by p26 and 
p74 sequences (Zuidema et ah, 1993; Ukel et ah, 1999) was used as a basis for the 
construction of a SeMNPV plO promoter-based transfer vector (Fig. 6.1). A 1448 bp 
EcoRl/BamHl fragment was derived from the Xbal H-fragment and cloned into 
pUC19 (pSeM02). The BamRl and Xbal sites located at one end of the insert were 
both removed by filling in with Klenow resulting in plasmid pSeM04. The 5' 
flanking sequence of the SeMNPV plO locus, containing the 3' end of the p26 gene 
and the plO promoter, was isolated by PCR with the forward Ml3 and a specific 
antisense primer (5' TCTAGACCTAAGGGATCCTAATGTATAATATAATTAC 
3') using pSeM04 as template. With this PCR a BamHl site was introduced 
immediately downstream of the adenosine residue of the pi 0 translational start codon. 
The PCR product was cloned into pUC19 as a 513 bp EcoRllBamHl fragment 
(pSeM05) and its identity was verified by sequence analysis. A second PCR was 
performed on pSeM04 with the reverse Ml3 primer and a sense primer 
(5'GGATCCCTTAG GTCTAGATAAAACTTAACGACGACG 3') to generate the 
3' flanking region of the transfer vector containing the pi 0 3' untranslated region and 
the 3' end of the p74 gene. With this PCR a Xbal site was generated immediately 
upstream of the p 10 translational stop codon TAA. The PCR product was cloned into 
pUC19 as a 680 bp Xbal/Hindlll fragment (pSeM06). Sequence analysis showed the 
correct sequence between the introduced Xbal site and the internal Clal site. A three-
point ligation was performed to bring the 5' and 3' flanking regions of the pi 0 gene 
together, separated by BamHl and Xbal sites. An approximately 3.2 kbp EcoRl-Clal 
fragment of pSeM04 containing pUC19 sequences and part of the 3' flanking 
sequence, was combined with the 513 bp EcoRl-BamHl fragment of pSeM05 and the 
130 bp BamHl-Clal fragment of pSeM06 to give pSeM07. In this new vector the 
BamHl site is juxtaposed to the Xbal site. Finally, a 747 bp BamHl fragment 
containing the green fluorescent protein (GFP) open reading frame (ORF), derived 
from pUC19 GFP (Reilander et ah, 1996) was cloned into the BamHl site of pSeM07 
to give the transfer vector pSeXDl. 

Generation of a SeMNPV plO minus recombinant expressing GFP 
A SeMNPV recombinant was generated by injection of viral and transfer vector DNA 
into the hemocoel of fourth instar S. exigua larvae according to Hajos et ah (1998) 
followed by alternate cloning between 5. exigua larvae and Se301 cells. The injection 
into insect larvae was performed using a 1.5 ml volume B-D Pen (Becton & 
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Dickinson) and 28 gauge half-inch NovoFine needles (Novo Nordisk). The injection 

solution was added to 1.5 ml injector cartridges (Eli Lilly) in a sterile hood (Hajos et 

ah, 1998). Twenty ul of the cotransfection solution containing 0.4 fig circular 

SeMNPV DNA and 12 ug transfer vector pSeXDl DNA, and 30% Cellfectin (Gibco-

BRL), were injected into the haemocoel of each larva. Haemolymph was obtained 

from a cut proleg 3 days post transfection and added to 5 ml of serum free Grace's 

medium containing a few crystals of phenylthiourea, filtered through a 0.45 um filter 

(Schleicher & Schuell) and stored at -80°C. The haemolymph filtrate was tested for 

virus titre and the relative proportion of wild type and recombinant SeMNPV by 

plaque assay determinations (O'Reilly et ah, 1992). The assays were scored for 

fluorescence under a UV microscope. 

Recombinant plaques were selected by their GFP expression and each plaque 

was diluted with 200 ul Grace's medium without FBS to elute extracellular virus. The 

virus was amplified in a 24-well plate by adding 100 ul of the plaque eluate to a well 

with approximately 2xl04 Se301 cells. Wells with polyhedra-containing cells were 

harvested 3 days post infection (p.i.) and the cells were suspended in 12 ul distilled 

water. S. exigua third instar larvae were then orally fed after adding the cell 

suspensions of each well onto Chrysanthemum leaf discs with a diameter of 4 mm and 

placed in 6-well tissue culture plates containing 1 ml 1.5% agarose layer to prevent 

desiccation. One larva was put in each well with one leaf disc. After consumption of 

the leaf disc (approx. 16 h) the larvae were placed on artificial diet. Haemolymph was 

collected at 3 p.i. from larvae showing infection symptoms (lethargy, impared 

locomotion, pale appearance, no food consumption) and used to measure virus titre 

and to perform a second round of plaque purification. After three rounds of alternate 

in vivo and in vitro cloning, the SeMNPV recombinants were amplified in fourth 

instar S. exigua larvae. 

SDS-PAGE and Western analysis 
Se301 cells were infected at a m.o.i. of 10 with wt SeMNPV and the recombinant 
(SeXDl), respectively. Infected cells were harvested at 48 h p.i. and the proteins were 
analysed by electrophoresis in a 12.5% SDS-polyacrylamide gel using a Bio-Rad 
Mini-Protein II apparatus. Western blot analysis was performed with a GFP antibody 
(Molecular Probes) (1:2000 diluted) by standard methods (Sambrook et al, 1989). 

PCR, cloning and sequencing 
To analyse deletions in the SeMNPV Pstl-D fragment, a PCR was performed with the 
Expand Long Template PCR system (Boehringer Mannheim) using forward primer A 
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(5' GTAGGGGACGCGAATTTGACTGTTGTTGCAG 3') and reverse primer B (5' 
CGCACGCTCCACGCTACTCGACTTTGATA 3'), corresponding to nt 17,874 to 
17,904 and 29,135 to 29,163 of the SeMNPV genome (Ukel et al, 1999), 
respectively. The PCR products were cloned into pGEM-T (Promega) and sequence 
reactions were performed at the Sequencing Core Facility of Eurogentec using 
universal primers. 

Bioassays 
The infectivities of wt SeMNPV and recombinant SeXDl were determined in a leaf 
disc bioassay as described by Bianchi et al. (2000). Chrysanthemum leaf discs were 
prepared using a cork borer with a diameter of 9 mm and placed individually in a 12-
well tissue culture plate containing 1 ml 1.5% agarose. Droplets (3 (J.1) of polyhedra 
suspensions containing 0 (control), 3 x 103, 104, 3 x 104, 105, 3 x 105 polyhedra/ml 
were applied to each leaf disc and dried using a fan. One third instar S. exigua larva 
was added per well. For each dose 36 larvae were used. Larvae that consumed whole 
leaf disc within 24 h were transferred to a 12-well tissue culture plate containing fresh 
artificial diet and were further reared at 27°C. Mortality was recorded daily until all 
larvae had either pupated or died due to SeMNPV infection. The bioassay was 
performed in three repetitions. 

The speed of action of wt SeMNPV and the recombinant SeXDl was determined 
in a modified droplet-feeding bioassay (Hughes and Wood, 1981). Third instar S. 
exigua larvae were starved for 16-20 h at 27°C prior to bioassaying. The larvae were 
allowed to drink from an aqueous suspension containing 10% (w/v) sucrose, 0.001% 
(w/v) SAURE-blue and polyhedra at concentrations of 0 (control), 103, 3 x 103, 104, 3 
x 104, 105 polyhedra/ml. The first 36 larvae that drank from the solution within 10 min 
were transferred to individual wells of three 12-well tissue culture plates with fresh 
artificial diet. Larvae were reared at 27°C, and mortality was recorded every 12 h until 
all larvae had either pupated or died. The bioassay was performed in four repetitions. 
Dose mortality data were analyzed with the computer program "POLO" (Russell et 
al., 1977). For the calculation of LD50 values, median ingested volumes of 0.55 |Ltl for 
third instar S. exigua larvae were used as measured by Bianchi et al. (2000). Median 
survival times (ST50) were calculated using the Vistat program (Version 2.1; Boyce 
Thompson Institute, Cornell University, Ithaca, New York). Log LD50 and ST50 values 
were analyzed by regression analysis and t-tests of pairwise differences between 
treatments with Genstat (Payne et al., 1993). 
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General Discussion 

Introduction 
The research presented in this thesis centered around the unravelling of the genetic 
and biological properties of the baculovirus SeMNPV. To gain insight in the structure 
and genomic organization, the full sequence of its DNA genome (135,612 bp) was 
determined. Furthermore, the role of some selected genes in this genome during the 
viral infection process has been investigated. Over the past 5 years an increasing 
number of complete genomic sequences of other large eukaryotic DNA viruses has 
become available. This allows a comparative genetic and phylogenetic analysis of 
these viruses on the level of genome structure, gene content and gene arrangement, 
and thus to determine their genetic relatedness. This chapter will provide a brief 
overview on the genetic characteristics of large eukaryotic DNA viruses, with special 
reference to the Baculoviridae family, and discuss which types of genes are widely 
conserved and which genes are more specific on the level of virus family or even virus 
species to gain insight in common and distinct features of DNA virus genomes. 

Characteristics of large viral DNA genomes 
Eukaryotic double stranded DNA viruses appear to form a diverse group of pathogens 
with a wide varation in host range, virulence, virion morphology and genome 
complexity. Among these viruses a distinct set of families with genomes larger than 
100 kb can be discerned (Table 7.1; van Regenmortel et al., 2000). These families 
comprise viruses infecting vertebrates, invertebrates and algae. The presently 
unclassified white spot syndrome virus of shrimp (WSSV; Yang et al., 1997) also falls 
in this category. The Adenoviridae and Rhizidovirus with genomes of 25 to 45 kb in 
size take an intermediate position between the large and small DNA viruses, the latter 
with genomes of less than 20 kb. Since baculoviruses are large DNA viruses (>100 
kb), the DNA viruses with small and intermediate genomes are not further discussed. 

The genomes of large DNA viruses generally contain tightly packed, 
predominantly non-overlapping ORFs, lacking introns, preceded by virus-specific 
promoters that temporally regulate transcription of an early and a late gene class in a 
cascaded manner. The early genes are expressed prior to DNA replication and encode 
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many non-structural proteins, including enzymes involved in genome replication, viral 
transcription initiation and host response modulation. The late genes are dependent on 
expression of early genes and mainly encode structural virion proteins. In general, 
there is no correlation between the transcription polarity or function of a gene and its 
position in the genome. This is in contrast to the regulation in bacterial genomes, 
where functionally-related genes tend to cluster along the genome (Huynen et al., 
2000). 

Table 7.1 Double stranded DNA viruses: genome and virion characteristics. 

Family 

Phycodnaviridae 

Iridoviridae 

Poxviridae 

WSSV 

Polydnaviridae 

Herpesviridae 

Asfarviridae 

Ascoviridae 

Baculoviridae 

Adenoviridae 

Rhizidiovirus 

Size 

160-380 

140-303 

130-375 

293 

150-250 

125-240 

170-190 

100-180 

80-180 

28-45 

27 

Genome 

Topology 

linear 

linear 

linear 

circular 

circular 

linear 

circular 

linear 

circular 

linear 

linear 

1 Rep 

N? 

C 

C 

N 

N? 

N 

C 

N 

N 

N 

N 

Virion 

Morphology 

Isometric 

Isometric 

Pleomorphic 

Bacilliform 

rod fusiform 

Isometric 

Spherical 

Reniform 

Bacilliform 

Isometric 

Isometric 

Env 

-

-

+ 

+ 

+ 

+ 

+ 

+ 

+ 

-

-

Host 

Algae 

V/I 

V/I 

I 

I 

V 

V 

I 

I 

V 

F 

Other double stranded DNA viruses with genome sizes smaller than 15 kb and phages are not listed. 

Genome sizes in kb. (Env, envelope; I, Invertebrates; V, Vertebrates; F, Fungi; Rep, Replication site; 

C, Cytoplasm; N, Nucleus; ?, not known). 

Genes conserved among all large DNA viruses 
Some DNA viruses replicate in the host cell nucleus, while others replicate in the 
cytoplasm (Table 7.1). The nuclear viruses generally utilize the host's transcriptional 
apparatus for early gene expression with modulation of virus specified factors, while 
the cytoplasmatic viruses encode their own transcriptional enzymes. Hence, the latter 
have to be present in the virus particle to enable the initiation of viral gene expression. 
The difference in replication site, however, is generally not reflected by the absence of 
transcription enzymes, such as RNA polymerase and transcription regulator genes, in 
the nuclear replicating viruses (Hannenhalli et al, 1995; Hayakawa et al., 2001). In 
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contrast to cellular RNA polymerases, the viral RNA polymerases are capable of 
enhancing the expression of late genes, which are generally expressed at very high 
levels as compared to cellular and early viral genes. Thus, genes encoding the RNA 
polymerase and transcription regulators are present in all DNA viruses and, therefore, 
can be considered as 'core' genes for large DNA viruses. 

Also DNA replication enzymes are commonly conserved between large DNA 
viruses. These include a DNA polymerase, DNA polymerase processivity factor(s), a 
major DNA binding protein and components that make up a helicase-primase complex 
(Hannenhalli et al, 1995; Hayakawa et al, 2001). The viral DNA polymerase is one 
of the very few gene products, which has sequence motifs conserved among all large 
DNA viruses and host organisms. Therefore, this gene is frequently used to study the 
phylogenetic relatedness of viruses (Bulach et al, 1999; Knopf, 1998; Tidona and 
Darai, 2000; Moser et al, 2001). 

All large DNA viruses also possess structural virion core, capsid and tegument 
proteins as well as proteins involved in cell attachment and entry (Hannenhalli et al, 
1995; Hayakawa et al., 2001). They are considered 'core' genes because they are 
functionally conserved, but usually do not show similarity on amino acid level. A 
striking example, even within a single genus, is observed in the Baculoviridae, where 
group II NPVs contain a functional homolog of the group I NPVs envelope fusion 
protein not displaying amino acid similarity (IJkel et al., 2000; Chapter 5). The 
diversity in these structural proteins reflects the distinct features of virus particles, the 
different mechanisms used to enter host cells, and the diversity in host ranges. 

Genes conserved among the Baculoviridae 
Nowadays, the complete DNA sequences of three group I NPVs (Ayres et al., 1994 
Ahrens et al, 1997, Gomi et al, 1999), of three group II NPVs (IJkel et al, 1999 
Kuzio et al, 1999; Chen et al, 2001) and of three GVs (Hayakawa et al, 1999 
Hashimoto et al, 2000; Luque et al, personal communication) have been reported. 
The overall characteristics of these viruses are shown in Table 7.2. The variation in 
the baculovirus genome sizes is mainly due to differences in the number of repeated 
ORFs, unique ORFs and homologous regions (hrs) (Table 7.2). The coding density is 
higher in baculoviruses (on average 1 ORF per kb; Table 7.2) than those found in 
herpesviruses (0.5 till 0.9 ORF per kb) and poxviruses (on average 0.4 till 0.6 ORF 
per kb) (Hannenhalli et al, 1995; Isegawa et al, 1999; Vink et al, 2000). 
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Table 7.2 Baculoviral genome characteristics. 

Size (kb) 

Coding (%) 

Total ORFs 

Unique ORFs 

Repeated ORFs 

hrs 

GC (mol%) 

Classification 

Px 

101 

86 

120 

16 

10 

4 

40 

GV 

Cp 

124 

nk 

143 

26 

nk 

nk 

nk 

GV 

Bm 

128 

90 

136 

1 

9 

7 

40 

NPVI 

Ha 

131 

87 

135 

23 

5 

5 

39 

NPVII 

Op 

132 

89 

152 

18 

13 

5 

55 

NPVI 

Ac 

134 

90 

154 

11 

4 

9 

41 

NPVI 

Se 

136 

90 

139 

16 

9 

4 

44 

NPVII 

Ld 

161 

87 

163 

31 

32 

13 

58 

NPVII 

Xc 

179 

88 

181 

52 

30 

9 

41 

GV 

Se, SeMNPV, IJkel et al., 1999; Ld, LdMNPV, Kuzio et al, 1999; Ha, HaSNPV, Chen et al, 2001; 

Ac, AcMNPV, Ayres et al, 1994; Bm, BmNPV, Gomi et al., 1999; Op, OpMNPV, Ahrens et al, 

1997; Xc, XcGV, Hayakawa et al, 1999; Px, PxGV, Hashimoto et al., 2001, Cp, CpGV, Luque et al. 

personal communication, nk, not known. 

Comparison of the baculovirus gene content revealed sixty-three genes 
conserved among all based on amino acid similarity (Table 7.3). These genes can be 
considered as 'core' genes of lepidopteran baculoviruses. Approximately half of these 
genes have assigned functions either in DNA replication and gene expression or in 
virus structure (Table 7.3), which is consistent with the functions of conserved genes 
among large DNA viruses in general. The total number of 63 ORFs conserved among 
the nine baculoviruses compared, is considerably higher than for the 13 herpesviruses 
which share about 25 conserved ORFs (Hannenhalli et al., 1995; Montague and 
Hutchison, 2000). Besides the 'core' genes all baculoviruses contain an alkaline exq-
nuclease, a fibroblast growth factor, a superoxide dismutase and an ubiquitin gene, 
which may affect different host cell processes. The functions of the other conserved 
genes are unknown. 

Table 7.3 Functions of SeMNPV genes conserved among all baculoviruses*. 

Repl. / Trans. Virion structure Auxiliary Unknown 

39K, dbp, helicase, 

left, left, left, lef4, 

left, lef6, left, left, 

lefll, dnapol, iel, 

me53, p47, vlfl 

Se8, fp25K, gp41, p74, 

odv-el8, pkl, odv-e25, 

p95, odv-ec27, p6.9, 

odv-e56, vpl034, pol, 

odv-e66, vp39 

alk-exo, 

fgf.sod, 
v-ubi 

38K, 38.7K, se35, se36, se50, se53, 

se59, se60, se69, se72, se73, se78, 

se79, se81, se90, se92, se94, se95, 

sel08, sell8, sel28, sel33 sel34, 

seJ37,pl2,p40,p45 

Abbreviations of gene names are described in Chapter 2. Repl., Replication; Trans., Transcription. 

* Following the classification of O'Reilly in The Baculoviruses (1997). 
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Genes conserved on genus and group level within the Baculoviridae 
In addition to the 63 'core' genes, the six NPVs and three GVs share a further set of 
15 and 27 genes, respectively, which are not present in the other genus (Table 7.4). 
These genus-specific genes may underscore the distinct phenotypic characteristics of 
NPVs and GVs, such as occlusion body morphology and nuclear disintegration. Only 
a few of these genus-specific genes are characterized - vp80, pp34 and orfl629 as 
structural proteins (Funk et ah, 1997), iap2 and iap4 as inhibitors of apoptosis (Clem 
and Miller, 1994), mnpase as a metalloproteinase (Hayakawa et ah, 1999), pkipl as a 
protein kinase interacting factor (Fan et ah, 1998) and arifl as a cytoskeleton 
rearrangement inducing factor (Roncarati and Knebel-Morsdorf, 1997) - and their 
functions may be associated with the biological differences between NPVs and GVs. 
A similar correlation is found in NPVs belonging to either group I or group II (Table 
7.4). 

Table 7.4 ORFs conserved within baculovirus genera and groups. 

GVs 

2, 7, 8, 17, J 8, 19, 25, 26, 29, 

34, mpnase, 47, 54, 85, 86, 90, 

113, 116, 136, iap4, 142, 143, 

165, 169, 172, 173, 178 

NPVs 

orfl629, 29, pkip, arifl, 

42, 58, 101, 102, 104, 

124, p26, 125, iap2, 

vp80capsid, pp34 

NPV group I 

1, ptpl, odv-e26, iapl, 

30, gta, ets, 72, 73, 

p87, 114, 122, 124, 

lef7, gp64/67, 132, ie2 

NPV group II 

30, 52, 107 

GVs; ORF numbers are from XcGV. NPVs and NPV group II; ORF numbers are from SeMNPV. 

NPV group I; ORF numbers are from AcMNPV. Abbreviations of genes are described in Ukel et al. 

(1999) for SeMNPV, in Ayres et al. (1994) for AcMNPV and in Hayakawa et al. (1999) for XcGV. 

Thus, the taxonomic classification of baculoviruses, based on morphological 
differences (NPV versus GV) and single gene comparisons (group I versus group II 
NPV), correlates with the presence of a set of genes specific for each group. These 
group-specific genes are possibly involved in the distinct biological properties of 
lepidopteran baculovirus groups. The occurrence of the M NPV morphotype, does 
correlate to genetic relatedness, as one gene Se43 is present in all MNPV genomes, 
whereas it is absent in HaSNPV. Since, the sequence of only one S NPV is known 
(Chen et ah, 2001), a correlation between the genes specific to the S NPV type can not 
be investigated yet. It remains to be investigated if the Se54 gene is related to the M 
NPV morphotype. It is equally possible that the S and M NPV morphotypes are 
caused by subtile changes in proteins encoded by genes conserved among these 
viruses. 

A correlation between the taxonomic classification and the presence of group-
specific genes is also observed for the mammalian and avian herpesviruses (Montague 
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and Hutchison, 2000). However, the herpesviruses of fish and amphibians, which are 
very distantly related to those of mammals and birds on the basis of single gene 
phylogeny, do not seem to have group-specific genes (Davison, 1992 and 1998; 
Davison et al., 1999). Thus, it seems that the correlation of group-specific genes with 
the taxonomic classification is not a common feature for all large DNA viruses and so 
far an exceptional feature for baculoviruses and some herpesviruses. Since alpha- and 
beta-herpesviruses likely cospeciated with their hosts (McGeoch and Cook, 1994; 
McGeoch et al., 1995; McGeoch et al., 2000), this could suggest that baculoviruses 
also co-evolved with their hosts. 

Prediction of protein function by comparative genome analysis 
The phylogenetic profile of a gene indicates which of the genomes compared code for 
homologs of this gene (Tatusov et al., 1997). For each gene a phylogentic profile can 
be constructed. Comparison of these profiles could reveal clusters of genes with 
identical profiles. Bacterial genes with identical phylogenetic profiles tend to have 
related functions (Pellegrini et al., 1999). Furthermore, it was speculated that some 
herpesvirus genes with identical phylogenetic profiles may determine the cell-type 
specificity of the latent state of beta-herpesviruses (Montague and Hutchison, 2000). 
Therefore, baculovirus genes with an identical phylogenetic profile may also have 
related functions based on the assumption that proteins that function together in a 
pathway or complex are likely to evolve in a correlated fashion. The baculovirus 
genes which are conserved among all, on genus or on group level, were excluded. 
Comparison of the conservation of the other baculovirus genes revealed eight identical 
phylogenetic profiles that occured at least twice (Table 7.5). It is well possible that the 
genes within each profile have biochemically related functions. In line with this 
supposition, an interaction of chitinase and v-cathepsin has recently been 
demonstrated (Horn and Volkman, 2000). Furthermore, an interaction between 
ribonucleotide reductase-1 (rr) 1 and rr2 as well as between dnaligase and helicase2 
is likely. Thus, phylogenetic profiles can be helpful to predict the function of some but 
not all baculovirus genes. 
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Table 7.5 Genes with special phylogenetic profiles. 

Genetic Profile Genes 

All except PxGV gp37, leflO, v-cath, chit 

All except CpGV plO, ieO 

NPVs group I and SeMNPV se3 7, se84 

NPVs group I and LdMNPV ac4, acll 

NPVs group I and HaSNPV lef!2, ac74 

NPVs except LdMNPV selOi, sell], sell3, se47, cg30, gpl6 

In OpMNPV, SeMNPV, LdMNPV and CpGV only se54, rrl, rr2 

GVs and LdMNPV dna-ligase, helicase2 

ORF numbers and abbreviations in Ayres et al. (1994) for AcMNPV and in IJkel et al. (1999) for 

SeMNPV. 

Genes unique to a single virus species 
All baculoviruses sequenced so far contain genes that are unique to a single virus 
species. Their number ranges between 1 for BmNPV and 52 for XcGV (Table 7.2) 
and might be somewhat biased as three closely 'related' group I and three less 
'related' group II NPVs have been sequenced. Comparison of the unique SeMNPV 
genes to the recently sequenced baculovirus genomes (XcGV, PxGV and HaSNPV) 
revealed that Sel7/18, Se21 and Se68 share homology to Xcl29, Xcl28 and Ha83, 
respectively. Thus, SeMNPV contains as yet 16 unique genes instead of 20 as reported 
by IJkel et al. (1999). Approximately half of the total of -425 baculovirus genes 
identified are genes unique to baculovirus species. It is tempting to speculate that 
acquisition of these unique genes from the host may contribute to baculovirus 
speciation by causing alterations in host range and or virulence. 

Gene order conservation among baculoviruses 
In addition to single gene comparisons, the arrangement of overall conserved genes 
was also used to study qualitatively the relatedness of lepidopteran baculoviruses 
(Chapter 2). Several clusters of conserved genes were identified between 
baculoviruses. The genes within a cluster are conserved in order and direction of 
transcription, but the clusters can have different orientation and arrangement among 
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Fig. 7.1 Arrangement of gene cluster in baculoviruses. 
The numbers of the clusters and the ORFs within are derived from IJkel et al. (1999). Arrows indicate 

the orientation of cluster. The box indicates the 'core' clusters of baculoviruses. 

baculoviruses (Fig. 7.1). One of these clusters (cluster 14), encompassing Sel32 -
Sel38, contains the only spliced baculoviral gene (ie-1; Sel32; van Strien et al., 
2000). The conservation of this region may be due to preservation of either splicing 
signals or the exon of the gene (Sel38) to which it is spliced. 

Based upon the number of gene clusters, their length and relative order it was 
concluded that SeMNPV is most closely related to LdMNPV (IJkel et al, 1999). 
Comparison of the genomic organization between SeMNPV and HaSNPV reveals that 
these viruses are also very closely related (Fig. 7.1; Chen et al., 2001). This is in 
agreement with the phylogenetic analysis of individual genes such as egt, lef-2, dnapol 
and rr (Chen et al, 1997 and 1999; Bulach et al, 1999; van Strien et al, 1997). When 
the order of gene clusters is taken to represent the baculovirus genome organization, 
the common structure of group II baculoviruses becomes apparent (Fig. 7.1). Within 
each group, the structural difference is relatively small and predominantly determined 
by inversions of gene clusters as well as inversions of individual genes. The latter is 
surprising, considering that the non-coding region between most baculovirus genes is 
on average only 100 nt and random inversion would therefore, in most cases result in 
disruption of genes. 
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Although the baculovirus genomes show a high degree of variability in their 
relative cluster order, one region of partial conservation appears within their genomes. 
This region consists of four clusters (8-9-10-11) and is located in the 'central' region 
(Se62 - Sel08) of baculovirus genomes. The maintenance of this gene cluster 
conservation suggests that this region may play a critical role in gene expression and 
genome replication. Comparison of the two NPV groups showed extensive genomic 
translocations in addition to cluster inversions. A common genome structure for group 
I and II viruses can be derived, showing a major inversion of a genomic segment 
containing the clusters 4-6-2-1-13-14 (Fig. 7.1). The relative order of gene clusters 
seems to be more scrambled among group II NPVs than among group I NPVs and 
GVs (Fig. 7.1). Whether this gene cluster variablity is a special feature for group II 
NPVs or occurred by mere chance will become clear when more group II NPVs 
genomes are analyzed. Furthermore, statistical programmes need to be developed or 
applied to quantify the relationship on the basis of gene order. 

Gene clusters are not an exceptional feature of baculoviruses since also 
herpesviruses contain blocks of genes conserved in order and polarity. Among the 
herpesviruses of mammals and birds a subset of about 25 genes is conserved, which is 
arranged in seven gene clusters (Hannenhalli et al., 1995). Like in baculovirus 
clusters, the gene clusters have different orders and orientations in different 
herpesvirus subfamilies but genes within a given cluster maintain order and 
transcriptional polarity (Gompels et al., 1995). The conserved herpesvirus genes 
encode capsid proteins, components of the DNA replication complex, transcription 
regulators, nucleotide-modifying enzymes, membrane proteins, and tegument 
proteins, hence most of them are 'core' genes of large DNA viruses. However, the 
herpesviruses of fish and amphibians are very distant from those of mammals and 
birds and analysis of the sequences of these viruses has so far not revealed common 
gene clusters (Minson et al., 2000). Thus, gene clustering is observed in several DNA 
viruses, but seems not to be a common feature of all large DNA viruses. Nonetheless, 
the relatedness between baculoviruses based on gene clusters is in agreement with 
their taxonomic classification and with single gene comparisons and therefore, can be 
used as an independent marker of baculovirus relatedness. 

Genes with scrambled genome positions 
Comparison of the position of conserved genes in baculovirus genomes revealed a 
number of genes, whose genomic position is extremely scrambled. These genes can be 
divided in two categories. The first category includes genes with multiple copies in a 
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single genome, such as odv-e66, p26, plO, ptp, ctl, rr2, dbp, fgf, helicase, enhancins, 

iaps and bro genes (Hayakawa et al., 2001). At least one of the copies will show a 

scrambled genomic position. These repeated genes could either have been acquired 

independently or have been duplicated during multiplication followed by diversion 

and rearrangement. The second category possesses single copy genes, such as pk-2, 

pkip,p35, sod, odv-ec27, v-ubi, rrl, dutpase, alk-exo, lef-2, cathepsin, chitinase, gp37, 

egt, arifl, pp34, glycogenin, p94, leJ8, p47 and me53, with a wide variety in function. 

A number of the genes with scrambled genomic positions has a cellular homolog 

(Elledge et al, 1992; Guarino, 1990; van Strien et al, 1997). Since some of these 

genes are more closely related to eukaryotic than prokaryotic homologs, it is well 

possible that they have been acquired from cellular sources (van Strien et al., 1997; 

Kuzio et al., 1999). A similar situation is observed in herpesviruses, where the 

majority of genes having cellular homologs is located in between the seven conserved 

gene clusters (Megaw et al., 1998; Minson et al., 2000). However, in the latter the rr 

gene is located in a conserved gene cluster indicating that exceptions to this broad 

generalization certainly exist (Minson et al., 2000). 

Genes possessing properties of cellular homologs are observed in all large DNA 

viruses and their wide spectrum most likely reflects the extent and diversity of the host 

responses (Tidona and Darai, 2000; Raftery et al, 2000; Bugert and Darai, 2000). 

Since baculoviruses in contrast to other large DNA viruses lack genes that display 

homology to the humoral and cellular immune system genes in vertebrates, it seems 

likely that such systems, if present, do not play an important role in the invertebrate 

host response upon baculovirus infection. 

Baculovirus genes as possible determinants of specific biological 
properties 
Comparative baculovirus genomics may reveal gene determinants for specific 

biological properties, such as host range and virulence. An AcMNPV mutant 

containing the LdMNPV host range factor-1 (hrf-1) gene showed an expanded host 

range towards otherwise non-permissive Ld-652Y cells (Thiem et al., 1996; Du and 

Thiem, 1997). Furthermore, the AcMNPV p35 deletion mutant causes cell line-

specific apoptosis after infection in contrast to the wild-type (Griffiths et al, 1999). 

These observations support the view that gene products can influence the host range 

of a baculovirus. 

To investigate possible correlations between the presence of specific genes and 

biological characteristics of baculoviruses, the gene content of AcMNPV that can 
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infect 5. exigua, O. pseudotsugata, H. armigera and P. xylostella larvae (Adams and 
McClintock, 1991) was compared to SeMNPV, HaSNPV, OpMNPV and PxGV, 
which only can infect a single insect species within the AcMNPV host range. Twenty 
genes are present in AcMNPV, while absent in the other viruses compared, and these 
may correlate with the wider host range of AcMNPV (Table 7.6). The observed 
functions for some of these genes, such as a cell-specific factor required for 
transcription (hcf-1; Lu and Miller, 1996), the polynucleotidekinase / RNA ligase 
(pnk/pnl; Durantel et al., 1998a), the protein kinase (pk2; Dever et al., 1998) and the 
antiapoptotic inhibitor p35 (Griffiths et al., 1999), indicate that they could play a role 
in modulating host stress responses. The narrow host ranges of SeMNPV, HaSNPV, 
OpMNPV and PxGV can not be correlated to the presence of genes in these four 
viruses. Whether the limited host range of SeMNPV infecting only S. exigua and its 
relatively high virulence can be correlated to the presence of unique genes or to 
conserved genes with altered properties remains to be investigated. 

Table 7.6 Possible gene determinants of the broad AcMNPV host range. 

AcMNPV ORFs 

Ayres etal. (1994) 

7, 12, 39 (p43), 45, 58, 70 (hcf-1), 84, 86 (pnk/pnl), 97, 107, 112, 113, 

118, 121, 123 (pk2), 135 (p35), 140, 149, 152, 154 

Although comparative genomics may identify candidate genes involved in 
specific biological properties of baculoviruses, caution should be taken since amino 
acid changes in overall conserved proteins can also influence host range as shown for 
the AcMNPV helicase gene (Kondo and Maeda, 1991; Croizier et al, 1994). In 
addition, functional homologs that do not display similarity on amino acid level, such 
as the envelope fusion proteins (EFP) of group I and II baculoviruses, will be 
misinterpreted. Finally, host factors may play an important role in the determination of 
the virus host range, as observed for human herpesvirus-4 where cell surface receptors 
are involved (Aubry et al., 1993). Similarly, the tissue and or host range of group II 
NPVs could be restricted by host factors compared to group I NPVs, as the group II 
EFP may require cleavage by a cellular furin-like proprotein convertase (Chapter 5). 

Future aspects 
The elucidation of the SeMNPV genome and comparison to other baculoviruses as 
described in this thesis contribute significantly to the emerging genome-wide view on 
their patterns of organization and structure (Chapter 2 and 7). The more focussed 
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study on two genes unique to SeMNPV, Sel 16 and Sel 17 (Chapter 3), the latter being 
an ODV-specific nucleocapsid protein, and on Sel7/18 having a homolog in a 
distantly related granulovirus (Chapter 4), is an initial step to understand their 
function(s). The function of the novel BV envelope fusion protein identified in 
SeMNPV is characterized and an interaction with a cellular furin-like proprotein 
convertase is reported (Chapter 5). It is anticipated that this envelope fusion protein is 
a good marker for group II NPVs (Chapter 5; Pearson et al., 2000). To investigate the 
functions of these genes in more detail, a major technical difficulty hampering the 
generation of SeMNPV recombinants was resolved (Chapter 6). This novel approach 
can now be applied to characterize the functions of all SeMNPV genes by 
constructing site-specific or null mutants and study their phenotype(s) in vivo as well 
as in cell culture. 

Mutation analysis and biochemical techniques applied towards proteins, such as 
the yeast two-hybrid system and two-dimensional gel electrophoresis, are 
unfortunately often tedious, labour intensive, expensive and incomplete. This can be 
enlighted using computational methods that assign function by sequence similarity 
(Fischer and Eisenberg, 1997; Koonin et ah, 1998; Bork and Koonin, 1998; Bork et 
al., 1998; Przytycka et al., 1999) or other shared characteristics, such as identical 
phylogenetic profiles (Tatusov et al., 1997; Pellegrini et al., 1999; Montague and 
Hutchison, 2000), domain-fusion analysis (Marcotte et al., 1999) and correlated 
mRNA expression profiles under the same series of conditions (Eisen et al., 1998). 
However, even a combination of these approaches will not reveal the function for the 
majority of the SeMNPV genes nor their interaction with host factors as there are 
many exceptions to the assumptions underlying these methods. 

An approach that is a step closer to assign the biological function of baculovirus 
genes is proteomics. A promising technique is mass-spectrometric identification of 
gel-separated proteins (Pandey and Mann, 2000). This sensitive technique could be 
applied to identify the presence of multiple baculovirus proteins at different times post 
infection and in different tissues. This would provide insight at the timing of protein 
function and possible protein-protein interactions. The interaction of virus proteins 
with each other or with host proteins could be investigated by purifying entire multi-
protein complexes by affinity-based methods, such as glutathione S-transferase-fusion 
proteins, antibodies, DNA, RNA, or a small molecule binding specifically to a cellular 
target. For instance, a bait protein carrying a tag or epitope can be overexpressed in 
cells and afterwards be immunnoprecipitated by an antibody against the epitope. The 
precipitated factors can than be identified by mass spectrometry. With the information 
on the complete SeMNPV genome as well as other baculovirus genomes available, 
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these approaches can be applied to study the function of the encoded proteins. This 
will give further insight in the baculoviral strategies to modulate host response 
pathways and in the principles underlying their specific biological properties. 
Ultimately, these functional annotations can be used to further improve SeMNPV as a 
biological control agent and more recently as a gene delivery factor in gene therapy 
(Merrihew et al, 2001; Van Loo et al, 2001). 
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Summary 

The Baculoviridae are a family of rod-shaped viruses with large circular double-
stranded DNA genomes (Chapter 1). The family is subdivided into two genera, 
Granulovirus (GV) and Nucleopolyhedrovirus (NPV) on the basis of the type of body 
occluding the virions. NPVs are further subdivided in group I and II based on 
phylogenetic evidence of the DNA polymerase protein. Baculoviruses almost 
exclusively infect insects and are, therefore, attractive biological alternatives to 
chemical insecticides for insect pest control. The baculovirus Spodoptera exigua 
multicapsid nucleopolyhedrovirus (SeMNPV) infects the beet army worm S. exigua 
(Lepidoptera: Noctuidae) and has been successfully used as a bioinsecticide to control 
this world-wide insect pest of agricultural importance. SeMNPV differs from many 
other baculoviruses in that it is mono-specific and highly virulent for S. exigua larvae. 
The research described in this thesis aimed at the molecular characterization of the 
baculovirus SeMNPV to gain insight in its gene content and organization in 
comparison to those of other baculoviruses. At the same time this study will support 
or reject its current taxonomic position using gene and genome phylogeny analyses 
and might reveal insight in the molecular mechanisms associated with the biological 
properties of SeMNPV. 

As a start the complete nucleotide sequence of the DNA genome of SeMNPV, a 
putative group II NPV, was determined and analyzed (Chapter 2). The genome was 
composed of 135,612 bp containing 138 putative genes or open reading frames 
(ORFs). Major differences in SeMNPV gene content and arrangement were found 
compared with the group I NPVs Autographa californica (Ac), Bombyx mori (Bmj, 
Orgyia pseudotsugata (Op) and the group II NPV Lymantria dispar (Ld). Sixteen 
ORFs were unique to SeMNPV, while the remaining ORFs (122) all had a homolog in 
one or more of the nine baculoviruses sequenced to date (Chapter 7). Sixty-three 
ORFs were conserved among all nine baculoviruses and are likely to be essential for 
NPV multiplication and survival. Strikingly, two of these NPV 'core' genes, odv-e66 
and p26, were found duplicated in SeMNPV. Gene parity analysis of baculoviral 
genomes indicated that SeMNPV and LdMNPV are closely related and that they are 
only distantly related to group I NPVs. Therefore, SeMNPV can be considered as a 
group II NPV. 

Two of the 16 unique SeMNPV genes, Sell6 and Sell7, share similarity on 
amino acid level, but are not related on nucleotide level. To investigate the function, if 
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any, of the unique SeMNPV genes in general, Sell6 and Sell7 were analyzed and 
characterized (Chapter 3). Sell6 and Sell7 were expressed from early till late in 
infection both in cultured cells and in larvae of S. exigua. Their transcripts were 
polyadenylated and initiated from typical baculovirus early promoter motifs. Sell6 
and Sell7 encoded proteins of 27 and 23 kDa, respectively, which were localized in 
the virogenic stroma of the nucleus. While the function of the Sell6 protein remains 
enigmatic, the Sell7 protein appeared to be a structural protein associated with 
nucleocapsids of occlusion-derived virus (ODV), but not of budded virus (BV). 
Further investigation will reveal if and how these proteins are involved in the 
SeMNPV virulence or host range determination. 

The research on unique SeMNPV genes was extended (Chapter 4) by the 
characterization of another gene, Sel7/18, unique among NPVs, but strikingly having 
a homolog (ORF129) in the granulovirus Xestia c-nigum (XcGV), which is only 
distantly related to SeMNPV. Sel7/18 was transcribed in cultured S. exigua 301 cells 
from early till late in infection. However, in vivo transcripts could only be detected 
late in infection. These polyadenylated transcripts started in a region containing a 
baculovirus consensus early promoter motif. In contrast to the Sell6 and Sell7 
proteins, the Sel7/18 protein was primarily localized in the cytoplasm. A chicken 
polyclonal antiserum was raised that reacted specifically to Se 17/18 protein expressed 
in E. coli. However, no immunoreactive protein was detected in SeMNPV-infected 
insect cells. The absence of immunoreactive Sel7/18 protein implies that it is rapidly 
turned over in insect cell culture or that the gene is only active in larvae and possibly 
has a regulatory function. 

A thorough analysis of the complete SeMNPV genome revealed that it lacked a 
homolog of the major budded virus glycoprotein gene gp64, that is found in AcMNPV 
and other group I NPVs. Upon infection, by representatives of this group, acidification 
of the endosome triggers fusion of the viral and endosomal membrane, which is 
mediated by the BV envelope glycoprotein GP64. Therefore, the entry mechanism of 
SeMNPV in cultured cells was examined. SeMNPV budded virus (BV) entered insect 
cells by endocytosis like BVs of group I NPVs. Furthermore, a functional homolog of 
the envelope fusion protein GP64 was identified in Se8 (76 kDa) and appeared to be 
the major envelope protein of SeMNPV BVs. Surprisingly, a 60 kDa cleavage product 
of this protein was present in the BV envelope. A furin-like proprotein convertase 
cleavage site was identified immediately upstream of the N-terminus of the mature 
Se8 protein and this site was also conserved in the LdMNPV homolog (Ldl30) of 
Se8. Syncytium formation assays showed that Se8 and Ldl30 alone were sufficient to 
mediate membrane fusion. Both proteins were primarily localized in the plasma 
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membrane of insect cells, which was consistent with their fusogenic activity. If Se8 is 
cleaved by a cellular convertase the host could also play a role in the determination of 
virus host range and virulence. 

The research on function of single SeMNPV genes and also the engineering of 
this virus for improved insecticidal activity or as expression vector have been 
hampered as defective viruses are quickly generated when using insect cell culture. 
These defective viruses lack 25 kb sequence information and are no longer active in 
vivo upon oral feeding. A novel procedure to isolate SeMNPV recombinants was 
adopted by alternate cloning between insect larvae and cultured cells. In this way a 
SeMNPV recombinant (SeXDl) was obtained infectious both in vivo and in cell 
culture and with an improved speed of kill. This recombinant lacked 10.6 kb of 
sequence information, including ecdysteroid UDP glucosyl transferase (egt), gp37, 
chitinase and cathepsin genes, as well as several genes unique to SeMNPV. One of 
these unique genes was Sel7/18. The result indicated, however, that these genes are 
dispensable for virus replication both in cell culture and in vivo. A mutant with a 
similar deletion was identified by PCR in the parental wild type SeMNPV isolate 
suggesting that genotypes with differential biological activities exist in field isolates 
of baculoviruses. 

The research on SeMNPV described in this thesis, has provided a complete 
overview of its coding potential and insight in several features common to 
lepidopteran baculoviruses, such as 'core' genes, unique genes and clustering of 
conserved genes (Chapter 7). The initial characterization of several SeMNPV genes 
resulted in the identification of a novel ODV-specific nucleocapsid protein unique to 
SeMNPV and a novel major BV envelope fusion protein. The latter is the first 
baculovirus protein reported to be cleaved by a cellular furin-like proprotein 
convertase. The development of a novel procedure to generate recombinants in vivo is 
presumably applicable to many baculovirus species in order to obtain biologically 
active recombinants. Exploitation of this technique will enable the further 
characterization of (unique) SeMNPV genes by deletion, insertion and mutation by in 
vivo recombination. Understanding the function of SeMNPV genes will ultimately 
lead to the unravelling of the molecular basis underlying the mono-specificity and 
high virulence of SeMNPV for the beet army worm Spodoptera exigua. 
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Baculovirussen vormen een familie {Baculoviridae) van staafvormige DNA-virussen, 
die alleen geleedpotigen (Arthropoda) infecteren. Op grond van de verschijningsvorm 
van de virusdeeltjes, als polyeders of als granula, is deze familie in twee genera 
verdeeld: de kernpolyedervirussen (NPV, nucleopolyhedrovirus) en de 
granulovirussen (GV). Daarvan zijn de NPVs weer onderverdeeld in twee groepen (I 
en II) op basis van fylogenetische verwantschap in het DNA polymerase eiwit. Veel 
baculovirussen hebben een beperkt gastheerbereik en zijn daarom een aantrekkelijk 
alternatief voor breed werkende chemische insecticiden. Het baculovirus Spodoptera 
exigua MNPV (SeMNPV) infecteert het larvale stadium van de floridamot (S. exigua) 
en wordt in de praktijk met succes toegepast als biologisch bestrijdingsmiddel tegen 
dit plaaginsect. SeMNPV heeft twee opvallende biologische kenmerken: het is alleen 
infectieus voor S. exigua en is in vergelijking tot andere baculovirussen relatief 
virulent. Het onderzoek, beschreven in dit proefschrift, had als doel om de genetische 
organisatie van het baculovirus SeMNPV volledig in kaart te brengen en te 
vergelijken met die van andere baculovirussen. Dit onderzoek zou tevens uitsluitsel 
kunnen geven over de juistheid van de voorlopige indeling van SeMNPV als groep II 
NPV en een eventuele genetische basis van de specifieke biologische eigenschappen 
aan het licht kunnen brengen. 

Daartoe werd allereerst de gehele nucleotidenvolgorde van het SeMNPV DNA-
genoom bepaald en geanalyseerd (Hoofdstuk 2). Dit genoom bleek uit 135.612 
nucleotiden te bestaan met daarin 138 mogelijke genen, ook wel 'open reading 
frames' (ORFs) genoemd. De genensamenstelling van SeMNPV bleek zeer afwijkend 
te zijn van die van Autographa californica (Ac) MNPV, Bombyx mori (Bm) NPV en 
Orgyia pseudotsugata (Op) MNPV (groep I NPV) en ook van die van Lymantria 
dispar (Ld) MNPV (groep II NPV). Zestien ORFs bleken uniek te zijn voor SeMNPV, 
terwijl de overige 122 ORFs een homoloog gen hadden in een of meer van de negen 
baculovirussen, waarvan de volledige nucleotidenvolgorde ondertussen is bepaald 
(Hoofdstuk 7). Van deze 122 ORFs waren 63 ORFs aanwezig in alle negen 
baculovirussen. Deze 63 ORFs worden derhalve beschouwd als 'core'-genen en zijn 
waarschijnlijk essentieel voor de basale processen van deze virussen, zoals genoom 
replicatie en transcriptie regulatie. Twee van deze 'core'-genen, odv-e66 en p26, 
bleken elk gedupliceerd te zijn in SeMNPV. Vergelijking van de gen-organisatie in 
diverse baculovirussen bracht aan het licht dat SeMNPV het meest verwant is aan 
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LdMNPV en minder verwant aan groep I NPVs. Hieruit werd geconcludeerd dat 
SeMNPV inderdaad als een NPV van groep II kan worden beschouwd. 

Twee van de 16 unieke SeMNPV-genen, Sell6 en Sell7, vertonen onderling 
verwantschap in hun translatieproduct, maar niet in hun nucleotidenvolgorde. Om de 
functie van deze genen te bestuderen, werden hun transcriptie- en translatiepatronen 
geanalyseerd (Hoofdstuk 3). Sel 16 en Sel 17 transcripten komen van 'vroeg' tot 'laat' 
in infectie voor in zowel celculturen als in S. exzgwa-larven. De Sel 16- en Sel 17-
transcripten zijn gepolyadenyleerd en initieren beide in een promotermotief, dat vaak 
voorkomt in baculovirusgenen die 'vroeg' tot expressie komen. De translatieproducten 
van Sel 16 en Sel 17, eiwitten van respectievelijk 27 en 23 kDa, werden gelokaliseerd 
in het virogene stroma van de celkern. Met betrekking tot de functie van het Sel 16-
eiwit konden geen verdere aanknopingspunten gevonden worden, maar het Sel 17-
eiwit bleek een nieuw structureel eiwit te zijn dat voorkomt in de nucleocapsiden van 
virions uit polyeders (ODV, occlusion derived virus) maar niet in virions uit 'budded 
virus' (BV). Verder onderzoek zal moeten uitwijzen of, en zo ja hoe, deze eiwitten 
een rol spelen in de biologische eigenschappen van SeMNPV, zoals gastheerbereik en 
virulentie. 

Het onderzoek naar de functie van unieke SeMNPV-genen werd voortgezet door 
het Sel7/18-gen te bestuderen (Hoofdstuk 4). Weliswaar komt er geen homoloog van 
dit gen voor in andere NPVs, maar opvallend genoeg wel in het granulovirus Xestia c-
nigum (XcGV ORF129), dat verder weinig genetische verwantschap heeft met 
SeMNPV. In Se301 cellen komen gepolyadenyleerde transcripten van Sel7/18 zowel 
in de 'vroege' als 'late' stadia van infectie voor, maar in S. exigua-larven alleen 'laat'. 
In tegenstelling tot de Sel 16- en Sell7-eiwitten bleek het Sel7/18-eiwit niet 
aantoonbaar te zijn in geinfecteerde insectencellen met behulp van een tegen dit eiwit 
gericht antiserum. Door het Sel7/18-eiwit te fuseren met GFP kon door middel van 
fluorescentie aangetoond worden dat Sel7/18 een cytoplasmatisch eiwit is. Dit zou 
kunnen betekenen dat Sel7/18 eiwit of weinig wordt aangemaakt of snel wordt 
afgebroken in insectencellen en derhalve een regulerende functie zou hebben. Een 
andere verklaring zou kunnen zijn dat het Sel7/18-eiwit alleen actief is in larven. 

Uit een nauwgezette analyse van het SeMNPV-genoom bleek dat er geen 
homoloog voor het BV glycoprotei'ne GP64 aanwezig is, terwijl dit gen geconserveerd 
is in de groep I NPVs. Het GP64-eiwit speelt daar een cruciale rol in het 
bewerkstelligen van de fusie tussen de virale en cellulaire membraan bij de start van 
de infectie. Omdat GP64 in SeMNPV afwezig is, werd gezocht naar het fusie-eiwit in 
SeMNPV virions en het coderende gen (Hoofdstuk 5). Uit onderzoek bleek dat 
SeMNPV eenzelfde mechanisme (endocytose) gebruikt als groep I NPVs om 
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insectencellen binnen te dringen, maar daarbij geen GP64-gerelateerd eiwit aanwendt. 
In plaats daarvan werd een ander eiwit, het translatieproduct van Se8 (76 kDa) 
gei'dentificeerd als celfusie-eiwit. Verrassenderwijs, werd niet het volledige Se8 eiwit 
maar een kleiner (60 kDa) klievingsproduct in BVs van SeMNPV gevonden. Dit 60 
kDa-eiwit is het meest voorkomende virale eiwit in de envelop van SeMNPV BV. Het 
kon aannemelijk gemaakt worden dat een tot de furine (een klasse van proteasen) 
behorend 'proprotein convertase' van de gastheer betrokken was bij de klieving. Dit 
bleek ook op te gaan voor de LdMNPV (groep II NPV) homoloog (Ldl30) van Se8. 
Met syncytium-inductie-experimenten werd vervolgens aangetoond dat de Se8- en 
Ldl30-eiwitten zelfstandig in staat zijn om deze fusie te bewerkstelligen. Tenslotte 
werden deze twee eiwitten voornamelijk in de celmembraan van insectencellen 
gedetecteerd, hetgeen in overeenstemming is met hun fusogene activiteiten. Als het 
Se8-eiwit wordt gekliefd door een cellulaire 'convertase', een nieuw fenomeen bij 
baculovirussen, kan dit proces een belangrijke rol spelen als determinant van 
gastheerbereik en virulentie van SeMNPV. 

Het onderzoek naar de functie van specifieke SeMNPV-genen en de toepassing 
van het virus als bio-insecticide of als expressievector, wordt gehinderd doordat het 
SeMNPV-genoom instabiel is in celculturen. Als gevolg daarvan ontstaan 
deletiemutanten, die ongeveer 25.000 nucleotiden aan sequentie-informatie missen en 
daardoor hun infectiositeit voor S. exigua-larven hebben verloren. Daarom werd een 
nieuwe procedure aangewend om infectieuze SeMNPV-recombinanten te isoleren 
(Hoofdstuk 6). Door beurtelings S. exigua-larven en celcultuur te gebruiken werd een 
eerste SeMNPV-recombinant (SeXDl) verkregen, die infectieus was voor zowel S. 
exigua-larven als insectencellen en deze zelfs nog sneller doodde. De SeXDl -
recombinant miste slechts 10.600 nucleotiden aan sequentie-informatie, waaronder de 
genen voor ecdysteroid UDP glucosyl transferase (egt), gp37, chitinase, cathepsin en 
ook een aantal unieke SeMNPV-genen, waaronder Sel7/18. De resultaten impliceren 
dat al deze genen dus niet essentieel zijn voor vermenigvuldiging van het virus in 
insectencellen en S. exigua-larven. Een mutant met eenzelfde deletie als in SeXDl 
werd met behulp van PCR-technieken gedetecteerd in een veldisolaat van SeMNPV. 
Blijkbaar bestaan er dus dergelijke varianten met verschillende biologische 
activiteiten in natuurlijke veldisolaten. 

Samenvattend kan gesteld worden dat het onderzoek beschreven in dit 
proefschrift een compleet overzicht verschaft met betrekking tot de 
genensamenstelling van het SeMNPV-genoom en tevens inzicht geeft in de genetische 
eigenschappen van baculovirussen in het algemeen, zoals het bestaan van 'core'-
genen, unieke genen, en de wijze waarop de genen gegroepeerd liggen in een beperkt 
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aantal genclusters (Hoofdstuk 7). De karakterisering van een aantal geselecteerde 
SeMNPV-genen resulteerde in de ontdekking van een nieuw ODV-specifiek 
nucleocapsid-eiwit, uniek voor SeMNPV en een nieuw type fusie-eiwit voor 
baculovirussen. De ontwikkeling van een nieuwe procedure om recombinanten te 
isoleren uit S. ex/gwa-larven zal verder onderzoek naar de functie van (unieke) 
SeMNPV-genen via gerichte mutagenese mogelijk maken. Inzicht in de functie van de 
individuele genen zal vervolgens kunnen uitwijzen wat de moleculaire basis is van de 
karakteristieke biologische eigenschappen van SeMNPV, zoals de specificiteit en 
hoge virulentie voor de floridamot Spodoptera exigua. 
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