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CHAPTER 1 

Introduction 

ABSTRACT 

Curved interfaces are a result of the cooperative behaviour of molecules, which 
is demonstrated by means of a simple packing model for surfactant molecules. 
Several more sophisticated ways to model interfaces are brought up. It is 
outlined how these models will be discussed in this thesis. 

1.1. INTERFACIAL GEOMETRY 

Curved interfaces are ubiquitous in everyday life [1]. Often they result from the co

operative behaviour of surfactant molecules, which have a wide variety of applications 

as, e.g., detergents (cleaning), soaps (personal care), emulsifiers (proteins in food sci

ence), and phospholipids (biological membranes). Their chemical structures determine 

the interfacial geometry and by that the physics of a surfactant system to a large extent. 

As a first approximation, the formation of different interfacial geometries can be demon

strated qualitatively from packing constraints using a simple schematic representation 

of surfactant molecules, as shown in table 1.1. The closest packing is determined by 

the effective size or excluded volume of the surfactant molecule. Besides the chemical 

structure, the effective size of a surfactant molecule also depends on variables such as 

the temperature and ionic strength. Suppose the headgroup of a surfactant molecule 

has in a given physical chemical environment an effective area a, whereas the surfac

tant as a whole has an effective length I and a volume v, as shown in figure 1.1. The 

surfactant may be considered as a cylinder in the case that the area times the length 

equals the volume 

al 

If adsorbed, such surfactants can only be packed parallel to each other and therefore 

form planar interfaces. A typical example of such a surfactant is DODAB, where the 

ratio v/l of the tails is (approximately) the same as the area a of the headgroup (cf. 

table 1.1). 

Suppose now that the surfactants aggregate to a spherical micelle of radius R. As

suming that the headgroups with effective area a are all on the surface of the sphere, the 

number of surfactants in the aggregate, N, can be found from the area of the sphere, 

N = 4:TrR2/a. Alternatively, the number of surfactants can also be determined from 
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the volume of the sphere, N = ^wR3/v. The two numbers N are only consistent if 

R = 3v/a. Since the effective length of the surfactants cannot exceed the radius of the 

spherical micelle, R > I, the condition to have spherical aggregates is given by 

v_ 1 
al 3 

A typical example of a surfactant that forms spherical aggregates is SDS at not too high 

concentrations. A part of the spherical micelle is shown schematically in figure 1.1. 

Analogously, the radius of a cylindrical aggregate is given by R = 2v/a > I. Conse

quently, surfactants form cylindrical interfaces when 

v_ 1 
al < 2 

Indeed, for | < v/al < | cylindrical structures are found, for which C12E5 is a typical 

example. Due to the difference in dispersion interactions, the headgroup area of the 

ethylene oxide units is larger than the area of the hydrocarbon tail. 

Apparently, the surfactant parameter, v/al, is a convenient first order approximation 

to demonstrate the existence of various interfacial geometries [2]. For values of the sur

factant parameter greater than unity the headgroup area is relatively small and inverse 

micelles are preferred, which is typically found for AOT. The values of the surfactant 

parameter and the consequent interfacial geometry are summarised schematically in 

figure 1.1. 

The above analysis can be generalized to the cases that surfactants are adsorbed 

at an interface between two adjacent phases in microemulsions or vesicles [3]. The 

geometry of surfactant interfaces can be understood in terms of the effective surfactant 

area, a, length, I, and volume, v. For saturated hydrocarbon chains the effective length 

and volume can be estimated empirically [2, 4]. However, the headgroup area for ionic 

surfactants is determined by electrostatic repulsions, rather than excluded volume alone. 

The addition of much extra salt screens the charges of the headgroups, resulting into 

a smaller effective headgroup area which promotes more planar surfactant layers. As 

mentioned before, the temperature and the solvent may for instance also influence the 

surfactant parameter. 

Despite its restrictions, the packing model provides some basic features on what 

might influence the interfacial geometry and hence the physics of a solution containing 

surfactant aggregates. Using this knowledge, one can play around with the surfactant's 

architecture in order to obtain a desired interfacial geometry. An example is linking 

surfactants chemically such that a 'gemini' surfactant is created, which indeed effects 

the phase behaviour drastically [5]. Another type of amphiphilic molecules are block 
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TABLE 1.1. Examples of some common surfactants, viz. the anionic surfac

tants sodium dodecylsulphate (SDS) and sodium bis(2-ethylhexyl) sulfosuc-

cinate (AOT), the non-ionic surfactant dodecyl penta(ethylene oxide) C12E5, 

and the cationic surfactant di-octadecyldimethylammonium bromide 

(DODAB) 

Surfactant Chemical structure and its schematic representation 

SDS 

O CH CH, CH CH CH CH 

-I / \ / \ / \ / 2 \ / \ / \ 
0 — S — 0 CH CH CH, CH, CH CH 

Cl2E5 

H O / CH V , C H 2 . , C H 2 . 

mm 
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/ 2 \ / 2 \ / 2N / \ 
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/ vv \ , CTH _CH_ , C H . 

yCOO\ / \ / 2 \ / 3 
CH, CH, CH, CH, 
| 2 2 2 2 

O - S — CH CH. ,CH , C H . 
^ C ( X y ^df V ĈH 

I 2 3 

CH, 

I 

3 

copolymers that consist of chemically linked lyophilic and lyophobic blocks. Of the 

many types of water-soluble polymer moieties that can act as a hydrophilic groups [6], 

the poly(ethylene oxide), E„ (cf. table 1.1), is most frequently used. When an E n group 

is chemically bound to either side of a poly (propylene oxide) block, P m , the resulting 

molecule, E n P m E n , is of the type of widely used commercially available surfactants 

known as pluronics. The values of n and m are typically of the order of magnitude 

of 101 — 102. These types of surfactants are particularly powerful in adjusting the 
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FIGURE 1.1. The surfactant parameter, v/al, demonstrates qualitatively the 

existence of various interfacial geometries based on packing constraints only 

interfacial geometry of aggregates and solid interfaces [7]. The interfacial geometry can 

be tuned by choosing the proper kind of oil-phase, ionic strength, and playing around 

with the n : m ratio [8]. 

1.2. MODELLING CURVED INTERFACES 

The interfacial geometry depends in part on the chemical structure of the molecules, 

as illustrated in the previous section for surfactant molecules. However, the above 

packing model is only a first approximation for which the molecular parameters can 

only be obtained empirically. To gain a more profound insight into the geometry of 

interfaces, other models must be used. Models are generally only attempts to describe 

what has been observed experimentally. These descriptions are not necessarily unique; 

it is possible that different models with different assumptions or approximations might 

still describe the same physical behaviour. 

Although models are used to describe experimental observations, they can sometimes 

also be useful to predict physical properties that are not yet observed. This makes them 

valuable to understand processes. A few of the different ways of modelling are briefly 

discussed below. 
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1.2.1. Simulations 

One class of modelling techniques is formed by simulations. Three kinds of simula

tions can be distinguished, all with their own advantages and drawbacks if applied to 

interfacial phenomena [9, 10]. 

Molecular Dynamics. Molecular dynamics simulations provides a method to determine 

dynamic properties of a system. Molecules are seen as a (branched) chain of units, which 

are constantly moving due to mutual forces. Solving Newton's laws, all momenta and 

positions, the so-called phase space, can be evaluated as a function of time using brute 

force algorithms [11]. In this way molecular dynamics can be used to evaluate dynamic 

properties like diffusion coefficients and the viscosity. Owing to the huge computer 

times needed using brute force algorithms to evaluate Newton's laws, only a relatively 

short time period - typically in the order of picoseconds - can be observed. This does 

not guarantee equilibrium values of the observed parameters. 

Brownian Dynamics. Brownian dynamics simulations are typically used for larger par

ticles in a medium, for instance colloids. The large particles obtain a net momentum 

due to interactions and random forces of the small solvent particles. Solving Newton's 

laws with a stochastic friction term, again dynamic properties of the system can be 

obtained [12]. 

Monte Carlo. Monte Carlo simulations sample the phase space randomly. The ran

domly chosen points of the phase space are averaged with a proper weight, determined 

by the probability of that event [13]. Since the phase space is not sampled as a func

tion of time, dynamic properties cannot be derived straightforwardly. However, since a 

much larger part of the phase space can be sampled, equilibrium can be guaranteed. 

1.2.2. Dimensional scaling 

Another class to describe the physics of a system is scaling. Starting from dimen

sional analysis, physical properties can be related to each other [14]. A simple example 

of scaling has already been given in section 1.1 where the interfacial geometry of a sur

factant layer was derived qualitatively from the volume of a surfactant molecule relative 

to the effective headgroup area and tail length. 

A similar, more complicated, example of scaling is in predicting the aggregation 

structure in a melt of diblock copolymers in the so-called strong segregation limit [15]. 

In such systems the polymers consist of a block of length n of type X that is chemically 

linked to a block of length m of type Y. In the strong segregation limit the block types 

are indifferent to themselves, but X and Y strongly repel each other. The fraction / of 
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X in the system is given by 

n 
n + m 

As a usual step in scaling models, the total block length is defined to be unity, i.e. 

n + m = 1. If the system tends to aggregate in a planar bilayer, the thickness of a 

layer consisting of X must be equal to / . Considering unit length and width of the 

aggregates, the volume equals / whilst the total interfacial area is given by a/ = 2. 

Consider the same volume but now for a cylindrical phase of unit length, i.e. / = nR%. 

The radius of such a cylinder is given by Rc = Jf'/ir. Hence, the interfacial area is 

ac = 2irRc = 2\/irf. By analogy, from the radius of a spherical aggregate of the same 

volume, Rs = A/jf, the interfacial area is as = 4nR* = \/36irf2. 

Since a system tends to minimise the interfacial area [16], a cylindrical aggregate is 

more favourable than a spherical in case ac < as 

2^/^fZc < fJmirfUc =• / . - c > ^ « 0.16 

Moreover, a planar interfaces is more favourable than a cylinder in case a/ < ac 

2 < 2Jitfc^f =• / „_ , > - « 0.32 
v 7T 

For symmetrical diblock copolymers, i.e. / = 0.50, the system tends to form planar 

aggregates since there is no preference to curve in another way. For / > 0.5, the above 

analysis can be applied for the block consisting of Y. That is, for / > 0.68 one expects 

inverted cylindrical aggregates, whereas for / > 0.84 one expects inverted spherical 

aggregates. Despite the approximation of the strong segregation limit, the predicted 

'phase transitions' at the different values for / are found experimentally [17]. 

As also found for the packing model, the above scaling model can be extended to, for 

instance, microemulsions [18]. The drawback of scaling that it can only predict certain 

trends rather than giving quantitative results. For instance, in the above examples 

scaling was unable to predict the phase behaviour but had to be put in rather than 

that it followed from the scaling itself. 

1.2.3. Density functional theory 

In density functional theories, state variables are expressed as an integral of the 

corresponding state variable density. In particular, it is assumed that the state variable 

density consists of a homogeneous bulk contribution with an additional term to account 

for the inhomogeneous parts as found in the interfacial region [19]. The contributions 

are typically expressed in terms of the molecular density profile, which makes the state 

variable a functional of the density. Consequently, such a functional considers the 
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average contribution of the molecules to the interactions, i.e. it considers a so-called 

mean-field rather than the individual contributions of the molecules [20]. By optimizing 

the state variable, the molecular density profile can be obtained from which the physics 

of a system can be described phenomenologically. 

1.2.4. Mean-Field lattice theory 

Another example of modelling (polymeric) surfactants is found in the mean-field 

lattice theory [21, 22]. Molecules are build from segments that are placed onto the 

lattice. Each segment is placed next to the previous segment of the same molecule, 

performing a weighted random walk on the lattice. These segments feel the averaged 

interactions of all other segments, i.e. they encounter a mean-field of all the molecules 

instead of a sum of the single contributions. Since each segment contributes to the field 

of the other segments, it also contributes to its own interactions. So, a field must be 

found that is self-consistent. 

Since no individual interactions are taken into account explicitly, fluctuations are 

averaged out. Consequently, a relatively short computing time compared to molecu

lar dynamics and Monte Carlo simulations is needed to obtain equilibrium quantities. 

This makes the mean-field lattice theory a useful alternative to obtain equilibrium infor

mation for molecular dynamics simulations, whereas molecular dynamics can provide 

information on the interactions in the mean-field approximation [23]. Since Monte 

Carlo simulations are able to include fluctuations, they give better qualitative infor

mation than the mean-field approaches both for aggregation structures [24, 25] and at 

interfaces [26, 27]. 

In the case of polymers, the mean-field lattice calculations can for good solvents be 

recovered by an analytical model [28, 29]. Moreover, this lattice theory also showed 

that certain behaviour, predicted to be universal by dimensional scaling, only holds for 

infinitely long chains. On the other hand, scaling theories point to a few features where 

the mean-field approximation fails [30]. For instance, the phase transition for diblock 

copolymers predicted by the lattice theory [31] differs from the scaling results as derived 

in the previous paragraph, of which the latter are in agreement with experiments. 

1.3. OUTLINE OF THE THESIS 

The aim of this thesis is to give a consistent thermodynamic and mechanical descrip

tion of the physics of curved interfaces. It has been shown here that simple models may 

give some insight into the existence of different interfacial geometries. However, more 

sophisticated models are needed to give a profound understanding of curved interfaces 
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in general. Several models as known in the literature are elaborated, discussed and 

compared to the above-mentioned mean-field lattice theory. 

In chapter 2 the mathematical foundation for the description of the curvature of 

interfaces is given. Subsequently, a thermodynamic framework is set up in order to 

predict the stability of (curved) interfaces. This leads, next to the well-known inter-

facial tension, to two other characteristics needed to describe curved interfaces. The 

difference between the thermodynamic approaches as proposed by Gibbs [32] and more 

recently elaborated by Neumann et al. [33], are discussed. It will be shown that the 

interfacial characteristics can be related to the pressure profile in the system. However, 

these so-called mechanical expressions derived here from a thermodynamic route, differ 

essentially from the ones in the literature found by mechanical procedures [33]. The 

thermodynamic consistency of the methods is investigated by deriving the generalized 

Laplace equation of capillarity. 

Since the (local) pressure is strongly related to the interfacial properties, the ther

modynamic and mechanical meaning of the pressure is scrutinized in chapter 3 both 

for homogeneous and inhomogeneous systems. The virial equation of state and its 

properties is among others illustrated by means of molecular dynamics simulations. A 

statistical thermodynamic pressure is found from a lattice gas model. The character

istics of this pressure is compared to the properties of the virial pressure, the van der 

Waals equation of state and a Landau density functional theory. 

The dependence of the interfacial characteristics on the curvature will be considered 

phenomenologically in chapter 4. A first order curvature correction has been proposed 

by Tolman [34]. However, for some applications a correction up to second order in the 

curvature, as first proposed by Helfrich [35], may be more appropriate. The mechanical 

expressions found for these phenomenological descriptions are discussed and evaluated 

with the lattice gas model. The results are related to the ones found from an analytical 

description and a van der Waals model as elaborated by Blokhuis et al. [36]. 

The lattice model is extended to chain molecules, in order to model surfactant bi-

layer membranes in chapter 5. The thermodynamic and mechanical description of the 

preceding chapters give consistent physics of a C12E5 bilayer. Interpretation of the 

phenomenological description yields the generic phase behaviour as also observed ex

perimentally [37, 38]. 
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C H A P T E R 2 

Thermodynamics of Curved Interfaces 

ABSTRACT 

The boundary between two adjacent phases is often not sharp. Consequently, 

one has to choose a particular position of the interface in order to assign inter-

facial thermodynamic characteristics. The chosen interface is first described 

mathematically to arrive at expressions that account for the curvature of the 

interface. Subsequently, the thermodynamic parameters of the interfacial zone 

are considered as a function of the position of the interface. Some thermody

namic quantities are related to the pressure profile through the system. Unlike 

the usual approach in the literature, these mechanic expressions are derived 

from their thermodynamic definition. Although these expressions differ from 

the ones given in the literature, it is shown that these lead to the same general

ized Laplace equation of capillarity. Finally, thermodynamics of small systems 

is introduced in order to describe an open system with many interfaces. 

2.1. MATHEMATICAL DESCRIPTION OF AN INTERFACE 

The boundary between two adjacent bulk phases at equilibrium is often not of the 

size of individual molecules. That is, the local concentration of each component going 

from one phase to the other is not a step function but changes gradually. The interfacial 

region is that part of the system where the local concentrations deviate from both bulk 

concentrations. Following the Guggenheim convention, one can split up the system into 

three subsystems, i.e. two bulk phases and the interfacial region [1-3]. In the more 

customary Gibbs convention, the two-phase system is split up into two bulk phases 

separated by an infinitesimally thin, i.e. mathematical, interface. The bulk values of 

quantities, e.g. the concentration, are extrapolated up to the dividing plane and all the 

deviations from the actual values, i.e. the excess amounts, are assigned to the interface. 

In this section a closer look is taken at the curvature of that interface as a basis to 

describe the interface thermodynamically in subsequent sections. 

2 .1 .1 . Def ini t ion of c u r v a t u r e 

Let the height z of an interface in Cartesian coordinates be given by a certain function 

h(x, y). At each point P of the interface one can define a vector h of unit length that 

is perpendicular to the interface at that particular point. From figure 2.1 it can be 

seen that the direction of this so-called normal vector is approximately proportional to 

n 
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FIGURE 2.1. The normal of a curve given by z = h(x) is proportional to the 
gradient in each point P. 

the gradient along the interface in the point P. This is exact if the z-axis of the local 

coordinate system is parallel to the normal vector 

- v f t 

n~\vh\ 

Now an infinitesimal step df is taken along the interface. The normal changes as 

dn _ _l_rfVft dl/\Vh\ _ _ J _ f dVh _ V/i d\Vh\ 1 _ 
df ~ ~\Vh\~dfr + dr ~ ]Vh\\~drr~ \Vh\ dr J = Q 

The tensor Q completely determines the curvature of the interface and is called the 

curvature tensor. In Cartesian coordinates the elements of the curvature tensor are 

given by 

1 ( 82h 1 dhd\Vh\\ 
Qij ~ |V/»| \didj \Vh\ di dj J 

where i,j = x,y,z respectively. Using |V/i| = y(g^) + (f^j + li this expression 
reduces to 

1 [ d2h 2 dh fdh d2h dhd?h\\ 
Qij~ \Vh\3[didjl ' di\dxdxdj + dydydjjj ( ' 

where use has been made of the property J^p = ^ ^ , which holds if the second deriva

tives of h are continuous functions. Since tensors are independent of the choice of the 

coordinate system, its characteristic polynomial A is invariant under transformation of 

the coordinate system. Consequently, the roots of A, the eigenvalues A, are also invari

ant under rotation. The eigenvalues of the curvature tensor are thus uniquely related 

to the curvature of the interface. From this point of view, it makes sense to determine 

the eigenvalues and use them in further analysis to determine interfacial properties. 

file:///didj
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The characteristic polynomial of a 3 x 3 matrix contains three coefficients: viz. the 

determinant |Q|, the sum of the principal minors M, and the trace Qa 

3 3 

A(\) = \Q\-\J^Mi + X2J2Qii-\
3 (2.2) 

i= l i=\ 

From eqn (2.1) it can easily be seen that Qzi = Qiz = 0, where i = x,y,z. Straight

forward expansion shows that the determinant of the curvature tensor vanishes. Making 

the sum of the principal minors explicit yields 

a^h&h _ ( 92h \2 

\dxdyj £ M i =
 dx2dy* 

, a i ) + ( » + i ; 

Since the z-axis is implicitly chosen parallel to the normal vector on the interface, 

the local coordinate system is such that in the origin ^ = |^ = 0. Moreover, in the 

origin the differential ^ | - vanishes [4]. Hence 

3 B2h d2h 

X« = K-Z?W (23) 

Writing the trace explicitly gives 

d2h ((dh\2 | -i\ , d2h ( (dh\2 , i ^ ndhdh d2h 
3 dx2 y\dy) "T" LJ ~*~ dy2 \\dx J "^ LJ ^dxdydxdy 

((i) +«)+!) 
Evaluated in the origin of the local coordinate system this reduces to 

^ 7 d2h d2h 

Y,Q^J=^ + W (2-4) 
The characteristic polynomial as given in eqn (2.2) evaluated in the origin of the 

local coordinate system, i.e. at a certain point P at the interface, using eqn (2.3) and 

eqn (2.4), reduces to 

d2hd2h\ . ^2(d
2h . d2h 

A^ = -x{wW2)+x[w + W2)-x 

= - \ ( \ 2 - J X + K) (2.5) 

The eigenvalues of the curvature tensor are the roots of the characteristic polynomial. 

Obviously, one of the eigenvalues equals zero. Assuming that there are two other 

eigenvalues C\ and c2, the characteristic polynomial can be written as 

A(A) = -A ((A - Cl)(A - c2)) = -A (A2 - (Cl + c2)A + Clc2) 

file:///dxdyj
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Comparison with eqn (2.5) yields alternative expressions for the sum of the principal 

minors and the trace in terms of the eigenvalues, respectively 

d2h d2h 
J = Cl + C2 = ^ + ^ ( 2-6) 

d2/i d2h 

* = ClC2 = ^ W (2-7) 
The eigenvalues of the curvature tensor Ci and c2 are called the principal curvatures. 

The sum of both principal curvatures, J, is called the total curvature. The product 

of the principal curvatures, K, is called the Gaussian curvature. Note that these local 

quantities completely determine the curvature at each point of an interface. However, 

if the interface is (relatively) flat, i.e. f| -C 1 and P <C 1, the values of J and K 

apply to the entire interface. 

Henceforth, the set of J and K will be used to describe the curvature instead of the 

principal curvatures. This implies a coordinate transformation. The Jacobian of this 

transformation 

dJ dJ 

1 1 

C2 Ci 
= c1-c2 (2.! 

dci dc2 

dK OK 
dc1 dc2 

shows that J and K are independent variables if Ci / c2 [5]. 

Several textbooks use the mean curvature H instead of the total curvature J. The 

mean curvature is denned as the average of both principal curvatures: H = ̂  (ci + c2). 

Another frequently used magnitude is the deviatoric curvature D, which is half the 

difference of the principal curvatures: D = \{c\ — c2). Note that this parameter is not 

symmetrical in cx and c2. 

2.1.2. Derivation of expressions for J and K 

Consider a two-dimensional interface given by z = h(x,y). The origin of the local 

coordinate system is placed at the point P with the z-axis parallel to the normal at 

that point. The unit vector in the direction of the tangent at point P' at a distance 

— \Ax from P is denoted as hx(—^Ax). Similarly, hx(^Ax) denotes the unit vector in 

the direction of the tangent at point P" at a distance |Aa: from P. The angle between 

the two unit vectors is given by a, as shown in figure 2.2. 

A circle is placed at the convex side of the interface. The radius Rx of this circle 

is chosen such that its circumference fits the arc P'P" best. The sector of the circle 

between P' and P" has an angle /?, as also shown in figure 2.2. 
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FIGURE 2.2. The change of the gradient along the interface, Aj^, can be 
related to a sector of a circle of radius Rx in order to determine the principal 
curvature in point P. 

From elementary geometries it can be seen that the angles a and j3 are equal. Con

sequently, from the similarity of the triangles it follows 

Rx \hT\ 

The length of a unit vector is unity by definition. Therefore the limit Ax —> 0 in point 

P yields 

d_dh _ J_ 
dx dx Rx 

Similarly, it can be derived that J-£ = j - . Using their definitions, eqn (2.6) and 

eqn (2.7), the following expressions are derived for the local total and Gaussian curva

ture 

<-k+vK-K5; <29) 

In the above analysis the radii are defined positive relative to the concave side of the 

interface. A planar interface has infinite radii in both directions, so Jfiat = Kfiat = 0. 

A cylindrical interface has a finite radius R in one direction and infinite in the other, 

therefore Jcyi = ^ , Kcyi = 0. A spherical interface has radii R in both directions, so 

Jsph = j j , Ksph = -gs- From the Jacobian, eqn (2.8), it followed that J and K are 

independent unless C\ = c2 or, alternatively, ^- = ^-. As seen, this is only the case for 

planar and spherical interfaces. 

Note that for all aforementioned interfaces the curvatures are uniform over the entire 

interface. However, this is not generally the case. An example is a saddle plane. In the 

saddle point of a regular saddle plane there are two identical local radii R. However, in 

one direction the interface has a convex curvature (R > 0), whereas in the other it is 

curved concavely and R has to be taken negative. Therefore, Jsad = 0 and Ksad = jg 

locally in the saddle point of a regular saddle plane. In other points of the regular 
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saddle plane the local curvatures have to be derived from eqn (2.6) and eqn (2.7), 

where h(x, y) = ^ {x2 — y2) with respect to a global coordinate system of which the 

origin is located in the saddle point. It is also possible to define an average curvature 

of the interface [6]. 

In the above section the curvatures were denned by the change of the normal vec

tor along the mathematical interface. Prom a molecular point of view, the curvature 

might in particular systems also be defined in terms of the change of the director, i.e. 

the normalized orientation, of the molecules. Both definitions are equivalent provided 

that all molecules are at the interface. However, since the interface is usually not 

infinitely sharp, as stated before, the application of the latter definition of the curva

ture is restricted to a system-average. Owing to the thermal motion of the molecules, 

the system-average change of the directors gives a smaller curvature than an interface-

average change of the normal vector of a mathematical interface [7]. A curvature defined 

in terms of the change of the director can therefore serve as an order parameter for the 

geometry of the system [8]. However, since the Gibbs convention is more generally 

applicable, the first-mentioned definition will be used in the subsequent sections. 

2.2. GENERALIZED LAPLACE EQUATION OF CAPILLARITY 

In this section a two-phase system is considered that consists of a phase a and a 

phase (3 separated by a curved interface. Thermodynamic equations can be derived 

for the two phases and the interface. By varying the position of the dividing plane 

between the two phases, the volumes of both phases are changed and so are the extensive 

properties of each phase. However, the intensive quantities of the total system, such 

as the temperature and the Laplace pressure difference between both phases, are not 

affected. So, generally valid thermodynamic equations must be invariant with respect 

to the position of the interface. 

Gibbs counted the two principal curvatures C\ and Ci separately in the change of the 

internal energy of the interface [9] 

dUs = TdSs + Y, M < + -yGdA + ACxdcx + ACydc2 (2.10) 
i 

where U is the internal energy, T the temperature, S the entropy, /i; the chemical po

tential of molecules of type i and n; the number of molecules of type i. The superscripts 

s denote interfacial excess quantities. Moreover, 7Q represents the interfacial tension 

and A the interfacial area at the dividing plane located at Rs (see figure 2.3). Cx and 

C„ are the curvature coefficients. 



2.2. GENERALIZED LAPLACE EQUATION OF CAPILLARITY 17 

I 

FIGURE 2.3. Schematic representation of a system consisting of two phases, 

a and (3, respectively, separated by an infinitesimal thin (curved) interface at 

Rs to which the excesses are assigned. 

Combining the curvature terms, eqn (2.10) can be rewritten as 

-A(Cx + Cy)d(c1 + c2) + -J dUs = TdSs + Y,M»' + iGdA + \A (CX + Cy) d(Cl + c2) + -A {Cx - Cv) d{a - c2) 

Gibbs considered spherical interfaces, i.e. C\ = c2, so the last term in the previous 

equation vanishes. This is also thought to be a good approximation for moderately 

curved interfaces, i.e. C\ ss c2. He also assumed a position of the arbitrary interface, 

the so-called surface of tension [10, 11], where C^ + C ^ vanishes [9]. Consequently, only 

the first three terms on the right hand side remain. This is the well-known expression 

for the internal energy of interfaces [1]. Using the principle of minimum energy yields 

the well-known Laplace equation of capillarity [1, 9] 

Ap = >yGJ (2.11) 

This equation effectively states that the volume work against the Laplace pressure 

difference Ap balances the interfacial work [10, 12]. However, the position of the surface 

of tension is sometimes hard to locate [3, 13, 14], as will be illustrated in section 2.6.2. 

Therefore a more rigorous formalism may be required, as will be put forward in the 

subsequent sections. 

In terms of the total and Gaussian curvatures, J and K, the change in internal energy 

Us of the interface becomes 

dUs = TdSs + Y, Vidn* + -)GdA + AddJ + AC^dK (2.12) 

The coefficients Cx and C2 are the so-called bending stress and torsion stress, respec

tively [11]. Note that compared to eqn (2.10) the definition of the interfacial tension 
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has formally been changed. In eqn (2.10) the interfacial tension is the derivative of the 

energy with respect to the interfacial area at constant entropy, number of molecules and 

principal curvatures C\ and c^. In eqn (2.12) the interfacial tension is the derivative of 

the energy with respect to the interfacial area at constant entropy, number of molecules 

and curvatures J and K. Since J and K are constant as C\ and ci are constant, the 

formal difference between the interfacial tensions JQ is irrelevant [15]. 

Integration of eqn (2.12) yields 

t / s = T S s + X > < + 7 G > l (2.13) 

where Euler's theorem for homogeneous functions has been used. From that theorem it 

follows that the 'intensive' variables J and K do not contribute to the integration [2, 16]. 

Varying the interfacial area A at constant curvatures J and K is possible using radial 

integration [3, 12]. Physically, this means that the internal energy of the total system 

is obtained by adding infinitesimal conical subsystems. 

2.2.1. The grand potential 

In order to arrive at a more general applicable Laplace equation than eqn (2.11), only 

the mechanical work is of current interest. To that end, a Legendre transformation is 

performed that yields the so-called grand potential 0 

0 = f / - T 5 - ^ M i « t (2-14) 
i 

Gibbs derived for the change in internal energy Ub of either bulk phase [1] 

dUb = TdSb - pbdVb + Y, Vidn\ (2.15) 
i 

where pb is the bulk pressure of phase b = a or /3 with volume Vb. Integration yields 

Ub = TSb-pbVb + J2^nb 

i 

For the grand potential of either bulk phase it therefore follows 

0* = -p
bVb (2.16) 

The grand potential of the interface follows from eqn (2.13) 

ns = lGA (2.17) 

Hence, using eqn (2.16) and eqn (2.17), the grand potential fl of the two-phase system 

is written as 

n = na + n0 + ns =-P
ava - p^v0 + JGA (2.18) 
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Since the total volume of the system is given by V = Va + V13, eqn (2.18) can be 

rewritten as 

n = lGA - ApVa - pPV (2.19) 

where Ap = pa — pP is the Laplace pressure difference between the two phases a and j3. 

2.2.2. Arbitrary dividing plane 

The grand potential f2 is a measurable property of the considered system and can 

therefore not be a function of the choice of the position of the dividing plane. Neither 

can this be the case for the pressures of the bulk phases and, consequently, the Laplace 

pressure difference. If the position of the dividing plane is shifted notionally, i.e. if the 

position of the interface is changed without affecting the system physically, the grand 

potential of the equilibrium state should not change. Therefore, corresponding to the 

principle of minimum free energy [17, 18], the derivative of eqn (2.18) with respect to 

the arbitrary dividing plane Rs yields 

' dfi' 
dRs 

= -pa 
'dVa' 
dRs 

-P9 
dV?' 
dRs 

+ A d'ye 
dRs 

+ 7G 
'dA' 

dRs 
= 0 (2.20) 

where the square brackets denote the notional shift of the dividing plane [12]. As the 

total volume V does not change by the choice of a dividing plane either, it is seen that 

dVa = —dV0. Now, eqn (2.20) can be rewritten as 

Ap=pa A 
d-ya 
dRs 

dRs 
dVa + 7G 

dA' 
dRs 

dRs' 
dVa (2.21) 

The change of the grand potential of the interface can be derived from eqn (2.17) 

dQs = ~iGdA + Ad-ya (2.22) 

On the other hand, from eqn (2.12) and the definition of ft, eqn (2.14), it can also be 

derived that 

dQs =dUs - TdSs - SsdT - J2 frdn'i - Y,nidHi 
i i 

= - SsdT + lGdA + A<CxdJ + AC2dK-J2«,•< (2.23) 

Because only a notional displacement is studied, the intensive variables T and /i,'s are 

unaffected by shifting the dividing plane. Thus, the following Gibbs-Duhem relation is 

derived from eqn (2.22) and eqn (2.23) 

[d-ya] = Ci [dJ] + C2 [dK] (2.24) 
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C" 

FIGURE 2.4. Section of the interface at Rs with local radii of curvature Rx and Ry. 

Using eqn (2.24) differentiated with respect to Rs, eqn (2.21) can be rewritten as 

Ap = A 
dRs 

dVa ( Q 
dJ' 
dRs 

+ c2 
dK' 
dR3 

J +1G 
' dA' 
dVa (2.25) 

Finally, expressions for the remaining derivatives in eqn (2.25) can be derived from 

geometrical considerations in order to arrive at the generalized Laplace equation. This 

will be done now. 

The interface is chosen to be at Rs taken positive relative to the concave side of the 

interface, i.e. from the inside of bulk phase a, as shown in figure 2.3. A segment of 

the interface ABCD of size x x y is considered. The local radius in the rc-direction is 

assumed to be Rx and in the y-direction Ry, as shown in figure 2.4. Now, a step ARS 

is taken in the direction of Rs. The section of the interface A'B'C'D' at Rs + ARS is 

parallel to ABCD and has an area (x + Ax) x (y + Ay). If an infinitesimal step is 

taken, ARS —> dR3, the volume between the parallel section of the interface ABCD 

and A'B'C'D' is given by dVa = xydRs = AdRs. Therefore 

dVa~ 

dRs 

Substitution into eqn (2.25) gives 

Ap = Q 
' dJ' 
dR3 

+ Q 
dK' 
dRs 

+ 1G 
' dA' 
dV°> 

(2.26) 

(2.27) 

The triangles OAB and OA'B' are similar, so [17, 19] 
x Rx A * A r, 

1— = T; rrr & Ax = —xARs 

x + Ax RX + ARS Rx 
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Similarly, it can be derived that 

V Ru • 1 . „ 
" T A = p Z A P ^ Ay = — yARs y + Ay Ry + ARa Ry 

Using these expressions as well as the ones for J and K, eqn (2.9), the interfacial area 

at Rs + AR$ is given by [15] 

A(R3 + ARS) = (x + Ax) (y + Ay) = xy + xAy + yAx + Ax Ay 

=xy + xy—ARs + xy—ARs + xy-—— {ARS)
2 

ILx -tty -L^X -*̂ y 

=A{l + JARs + K{ARsf] 

For an infinitesimal step {ARS) is negligible. So, in the limit ARS 

eqn (2.26) and dA = A(RS + dRs) - A, it follows that 

' dA ' 
dV = 

dA' 
dRs 

dRs 

dVa = J 

Substitution into eqn (2.27) gives 

Ap = jo J + Q 
' dJ' 
dRs 

+ c2 
dK' 
dR3 

(2.28) 

dRs, using 

(2.29) 

(2.30) 

Since the interfaces are taken to be parallel, Rx and Ry are both linear functions 

of R3 [20]. Using the definition of the curvatures, eqn (2.9), the derivatives of the 

curvatures with respect to the position of the dividing plane yield [15] 

dJ 
dRs 

AikH -)} 
dRs 

1 1 

~~ Rl Rl' 

dK' 
dRs 

= 
\Rx Ry J 

dRs 

-a+i)Hir— 
1 1 1 1 ( 1 1 \ 1 1 

R^ Ry Rx Ry \Rx Ry) Rx Ry 
-JK 

Substitution of eqn (2.31) and eqn (2.32) into eqn (2.30) yields 

Ap = 7 G J - Ci ( J2 - 2K) - C2JK 

(2.31) 

(2.32) 

(2.33) 

This is the so-called generalized Laplace equation of capillarity, with the interfacial 

tension according to Gibbs as introduced in eqn (2.10) or, analogously, in eqn (2.12) [15]. 
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Using eqn (2.6) and eqn (2.7) for J and K, eqn (2.12) can be rewritten in the form of 

eqn (2.10) 

dUs = TdSs + J2 Hidni + yGdA + A (Q + C2c2) dCl + A (Ci + G^ci) dc2 (2.34) 
i 

From the identity of eqn (2.10) and eqn (2.34) the relation between the bending and 

torsion stress, Ci and C2, and the curvature coefficients, Cx and Cy, follows immediately. 

Substitution of these relations in the generalized Laplace equation, eqn (2.33), yields 

this equation in terms of curvature coefficients 

Ap = 7GJ - Cxc\ - Cy4 (2.35) 

For spherical interfaces the last two terms can be merged. At the surface of tension 

the sum of the curvature coefficients vanishes by definition, so the last two terms of 

eqn (2.35) vanish at that interface. In this way the classical Laplace equation, eqn (2.11), 

is recovered. From eqn (2.21), using eqn (2.26) and eqn (2.29), it is found that the 

generalized Laplace equation can also be given as 

So, the last two terms of eqn (2.35) are equal to the derivative of the interfacial tension 

with respect to the arbitrary dividing plane which must vanish at the surface of tension. 

Therefore, the condition [dja/dRs] = 0 is more often used to define the surface of 

tension than the original definition by Gibbs. However, it has been shown that these 

definitions are equivalent for spherical and moderately curved interfaces. 

2.3. INTERFACIAL TENSION ACCORDING TO BORUVKA AND NEUMANN 

The first law of thermodynamics states that the internal energy of U of a system can 

only change due to heat flow q and work w done on the system 

dU = 3q + dw 

where the strokes refer to the fact that q and w are not state variables. The second law 

of thermodynamics provides an expression for the heat flow for reversible processes 

ctqlev = TdS 

The work terms for the energy are the 'generalized forces', /;, acting on the system over 

certain 'generalized distances', dXi [21] 

3w = J2 fidXi 
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Therefore, the change of the internal energy should strictly be of the form [20] 

dU = ^intensive variables d(extensive variables) (2.37) 

According to Euler's theorem, only a total differential of this form can be integrated. 

If a change in a desired state variable also contains terms of the form 

y^ extensive variables d (intensive variables) 

one should perform a Legendre transformation in order to arrive at a total differential 

of the form eqn (2.37) of an other state variable. That state variable can be integrated 

and the inverse Legendre transformation gives the desired state variable. It is then seen 

that Euler's theorem effectively states that changes in intensive variables drop out after 

integration [2,16]. This also can be seen in a more physical way. Intensive properties are 

independent of the system's size, whereas extensive variables are proportional to it. So, 

when the characteristic function of the total system is obtained by adding infinitesimal 

subsystems, the intensive variables do not contribute. 

In order to arrive at the internal energy of an interface as given by eqn (2.13) from 

its change eqn (2.12), the curvatures were explicitly taken to be intensive variables. 

However, this is not strictly the case [2] because, unlike e.g. the temperature, they 

might change upon changing the system's size. Moreover, the curvatures were assumed 

to be uniform over the interface. These deficiencies are overcome by introducing the 

extensive curvatures [19] 

J = j JdA, K = j KdA (2.38) 

Where J and K are the local curvatures, as given by eqn (2.6) and eqn (2.7). In terms 

of the extensive curvatures J and K the change of the internal energy of the interface 

can be written as 

dUs = TdSs + Y, mdn\ + ^BNdA + ddj + C2dK. (2.39) 
i 

Here, 'JBN is the interfacial tension proposed by Boruvka and Neumann, i.e. defined 

such that the curvatures are taken to be extensive. Prom eqn (2.12) it is seen that 

the interfacial tension according to Gibbs is the change of the energy with respect to a 

change in the interfacial area at constant curvatures, whereas it follows from eqn (2.39) 

that the interfacial tension according to Boruvka and Neumann is the change of the 

energy with respect to a change in the interfacial area at constant product of area 

and curvature. That means that the interfacial tension according to Gibbs represents 

pure stretching whereas the interfacial tension according to Boruvka and Neumann 

incorporates bending work [18]. Since it is difficult to realize a constant product of 
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interfacial area and curvature, the latter interfacial tension is of little relevance for 

conducting experiments. Integration of eqn (2.39) using Euler's theorem yields [19] 

Us =TSS + Y, mn\ + ~/BN A + d J + C2/C (2.40) 
i 

If the interface is uniformly curved, i.e. J and K are independent of the position on 

the chosen interface, eqn (2.38) can be written as [15, 20] 

J = JA, K = KA (2.41) 

Substitution in eqn (2.40) yields 

U° =TSS + £ nX + jBNA + dJA + C2KA 
i 

=TSS + ]T pun* + (lBN + dJ + C2K) A (2.42) 
i 

Comparison with eqn (2.13) yields the relation between 7G and 'JBN for uniformly 

curved interfaces [15] 

1G=1BN + <CIJ + C2K (2.43) 

Substitution in eqn (2.33) yields the generalized Laplace equation according to Bo-

ruvka and Neumann [17] 

Ap = 7BNJ + 2dK (2.44) 

It has been shown that this expression remains valid for non-uniformly curved in

terfaces and in the absence of an external field [17]. This expression for the Laplace 

pressure is formally more correct although it has been proven that for uniformly, mod

erately curved interfaces it can also be written as eqn (2.33), which, in turn, reduces to 

the classical Laplace equation at the surface of tension. 

2.4. INTERFACIAL PROPERTIES FROM PRESSURE PROFILES 

Consider different infinitesimal elements of a two-phase system at equilibrium, e.g. as 

shown in figure 2.3. Obviously, in either bulk phase the forces on all faces of this element 

must be equal. However, for an element in the interfacial region the forces parallel to 

the faces of the element may differ from those perpendicular to it [22]. These deviations 

give rise to extra stress in the interfacial region: the interfacial tension. From this point 

of view it is customary to relate the prevailing local pressure profile p r ( 0 *0 *n e grand 

potential [23] 

n • fpr(r)df (2.45) 
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FIGURE 2.5. An example of a pressure profile px going in radial direction R 

from phase a to phase /3. 

This is the so-called mechanical expression of the grand potential, i.e. based on the 

pressure profile. 

The grand potential of a bulk phase fib as given by eqn (2.16) can be written as a 

volume integral 

n» -P
bvb [ pbdf 

Jv>> 
(2.46) 

If there were no interfacial contributions in the two-phase system, the grand potential 

would simply be the sum of the grand potentials of both phases. However, as stated, 

in the interfacial region the actual pressure pr lateral to the interface differs from the 

bulk pressures. An example of a pressure profile is given in figure 2.5. If only the bulk 

phases were accounted for, the grey area would be algebraically counted as an excess 

for phase a and the same applies for the hatched area for phase /3. Upon comparison of 

the thermodynamic expression, eqn (2.18), and the mechanical expression, eqn (2.45), 

for the total grand potential with the bulk grand potential as given by eqn (2.46), it is 

found that the excess amounts indeed constitute the grand potential of the interface 

fis = 1GA = j (pa - pT(r))dr+ [ (jpP - pT(r))df 
Jva

 JVP 
(2.47) 

It is now convenient to define p a / 3 , which equals pa in phase a and pi3 in phase (3, 

thus 

« s = J(P"0 ~ Pr(?))dr (2.48) 
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Using the principle of parallel interfaces [11, 19] the volume integral can be replaced 

by an integral over a one dimensional coordinate through the whole system relative 

to the centre of the inner phase a by applying eqn (2.26) as well as eqn (2.28) with 

R = Rs + ARS 

M> = [ [p^ - PT(R)) A(R)dR 

=Aj[l + (R- RS)J + (R- RS)
2K] (pa0 - pT{R)) dR 

Using the grand potential of the interface, eqn (2.17), the interfacial tension jo accord

ing to Gibbs is given by [15] 

7 G = P 0 + P 1 J + P2A- (2.49) 

where the zeroth, first, and second bending moments are introduced, defined as 

P0 = J(pa0 - PT(R))dR (2.50a) 

Px = j(R - Rs){p
a0 - pT(R))dR (2.50b) 

P2 = j(R - Rs)
2(pa0 - PT(R))dR (2.50c) 

It is tempting to match eqn (2.49) term-wise to eqn (2.43). Indeed, since J and K 

are generally independent, in the literature it is sometimes found that corresponding 

terms of eqn (2.49) and eqn (2.43) are matched in order to obtain integral expressions 

for the bending stress, torsion stress, and interfacial tension according to Boruvka and 

Neumann in terms of the pressure profile [19, 20]. That is, the interfacial tension 

according to Boruvka and Neumann, the bending stress and torsion stress are equated 

as the zeroth, first, and second bending moments respectively, viz. •ygx = P0, Q = Pi, 

and C2 = P2. Others actually define the bending stress, torsion stress, and interfacial 

tension this way [11, 24]. However, it is in principle possible that other combinations 

of moments of the pressure profile also lead to the same thermodynamically consistent 

state variable jc since Po, Pi, and P2 are functions of J and K themselves. The 

molecules will generally redistribute upon bending which affects the (excess) pressure 

profile and hence the various bending moments, as can be seen from eqn (2.50). From 

this point of view the matching procedure and, by that, the validity of the mechanical 

expressions for the bending stress and torsion stress is questionable. Progress can be 

made when expressions for Ci and C2 are found from their thermodynamic definitions. 
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2.5. MECHANICAL EXPRESSIONS FOR BENDING AND TORSION STRESS 

The Gibbs-Duhem relation derived from comparison of eqn (2.22) and eqn (2.23) 

reads 

dlG = -s
sdT + ddJ + C2dK - J2 Tidfa (2.51) 

i 

where ss is the excess entropy per unit area and T, = n\jA the excess number of 

molecules of type i per unit area or the adsorbed amount or surface concentration. This 

is the most general version of the well-known Gibbs adsorption equation. Bending an 

interface may force molecules to adsorb at or desorb from the interface. This changes in 

general the composition of the adjacent bulk phases and hence the chemical potential 

of the components, as also can be seen from the Maxwell relations \~5j)TAKr >i = 

(d-^-) and ( |g0 = (&&) . Consequently, the set of 

variables that determine the interfacial tension, T, J, K, and /Vs, is in those specific 

cases redundant. This makes the chemical potentials curvature-dependent 

Substitution in the Gibbs adsorption equation, eqn (2.51), gives 

*» - -*a+ (Q - £r, (£) J */+ (Q - Er. (£g) J « (2.52) 
From this total differential it follows that the bending stress is thermodynamically 

found as 

and the torsion stress as 

Obviously, in the case that the chemical potentials are constant upon bending, the terms 

containing /i; vanish. Using the mechanical expression for 7,3, eqn (2.49), eqn (2.53) is 

written as 

and, by the same token, 

*-*• (3) • ' (£)•'(§) •?»(£)„ (256) 
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where J and K are generally independent state-variables. 

It is crucial to distinguish notional from actual bending of the interface. In the 

former case one changes the position of the dividing plane mathematically and by that 

the curvature without affecting the system physically. As will be shown in section 2.5.1, 

the derivatives of the moments of the pressure profiles can be determined explicitly if the 

curvature is changed notionally. The derivatives of the moments of the pressure profiles, 

the generalized Laplace equation of capillarity, and the thermodynamic expression for 

the interfacial tension, eqn (2.43), can be substituted into eqn (2.55) and eqn (2.56). 

It is then found that all derivatives with respect to the curvatures in eqn (2.55) and 

eqn (2.56) cancel. Hence, in the case of notional bending the bending and torsion stress 

are identified as the first and second bending moment, respectively. Consequently, 

from eqn (2.43) and eqn (2.49) it follows straightforwardly that the interfacial tension 

according to Boruvka and Neumann equals the zeroth bending moment for the case 

that the interface is bend only notionally. 

However, according to the actual definition of bending and torsion stress, one has 

to do real work. That is, for a given choice of the position of the dividing plane 

the curvature of the interface is changed physically. Since bending generally leads to a 

redistribution of the molecules, as stated before, one needs a molecular model to evaluate 

the derivatives of the pressure profile with respect to the curvature in eqn (2.55) and 

eqn (2.56). This implies that eqn (2.55) and eqn (2.56) are the most general expressions 

for the bending and torsion stress, respectively, in terms of the pressure profile. Inserting 

these into eqn (2.43) yields, after comparison with eqn (2.49), for the interfacial tension 

according to Boruvka and Neumann, 

~-*-(&L'-(§),/-(3)r/ 

Although this interfacial tension is formally more correct because it considers the cur

vatures as extensive variables, it is also of little relevance in simulations since detailed 

knowledge of the pressure profile as a function of curvature is required. Indeed, for a 

planar interface (J = K = 0), both eqn (2.49) and eqn (2.57) reduce to the Kirkwood-

Buff expression for the interfacial tension [25]. 
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The mechanical expressions for the interfacial tension according to Boruvka and 

Neumann, eqn (2.57), the bending stress, eqn (2.55), and the torsion stress, eqn (2.56), 

differ significantly from those suggested in the literature [15, 20]. Consequently, it has 

been proven mathematically that matching the terms of eqn (2.43) and eqn (2.49) is 

disputable. 

2.5.1. Mechanical derivation of the generalized Laplace equation 

A thorough analysis both in thermodynamic and mechanic terms gives a result that 

differs essentially from the result that is found with the matching procedure in the 

literature. The thermodynamic consistency of the above expressions is illustrated by 

deriving the generalized Laplace equation of capillarity from the mechanical expressions. 

To that end, it is again of interest how the interfacial tension depends on the choice of 

the position of the interface, without affecting the system physically. When eqn (2.43) 

is used for the derivative of jo with respect to the position of the arbitrary interface, 

it is found that 
n r jm i r j m i r j ; i r JI/' 

(2.58) d-ya 
dRs 

= 
d^BN 

dRs 
+ J 

"dCi' 

dRs 
+ K 

'dQs' 
dRs 

+ Q 
' dJ' 
dRs 

+ C2 
dK 

dRs 

As before, the square brackets denote the notional change of the position of the interface 

[12]. Substitution of the Gibbs-Duhem relation eqn (2.24) differentiated with respect 

to Rs into eqn (2.58) yields 

d^BN 

dRs 
+ J 

'dd' 
dRs 

+ K 
"dCa" 
dRs 

0 (2.59) 

Using the mechanical expressions for the interfacial tension according to Boruvka and 

Neumann, eqn (2.57), the bending stress, eqn (2.55), and the torsion stress, eqn (2.56), 

it turns out that all the derivatives of the bending moments and chemical potentials 

differentiated with respect to the position of the arbitrary dividing plane cancel. Con

sequently, eqn (2.59) can be rewritten as 

'dPo' 
dRs 

+J 
'cffiV 
dRs 

+ K 
'd¥2 

dRs 

+ J 
T,K dJ 

K 
T,K dJ J + £r. 

dK)T/ \dK/TJ 
+ K 

SB 
— I +Vr 

dJ ) 

dfij\ 

T.K 

(2.60) 

Now the derivatives of the bending moments with respect to the position of the 

arbitrary dividing plane, as found on the left-hand side of eqn (2.60), are evaluated. To 
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that end, the excess pressure profile is written as 

pa0 - pT(R) =pa(l-e(R-Rs))+ ^B{R - R.) - pT{R) (2.61) 

where 6(R — Rs) is the Heaviside step function 

6{R - R.) = 

The grand potential is a state variable and therefore not a function of the position 

of the arbitrary dividing plane. It therefore follows from eqn (2.45) that pT can neither 

be a function of Rs. Hence, the derivative of the excess pressure profile with respect to 

R, becomes 

d(p^-PT(R)) 

dRs 
= pad{R - Rs) - p^SiR - Rs) = Ap6{R - Rs) 

where S(R — Rs) is the Dirac delta function and Ap = pa — pP is again the Laplace 

pressure difference. Changing the order of differentiation and integration yields for P0 

dfp"0-PT(R)dR] 
dRs 1 = / dP^'dRT{R) dR = IAp5(R~Rs)dR = Ap (262) 

By way of illustration, consider again the pressure profile pr as in figure 2.5. The 

arbitrary dividing plane was chosen at Rs, so the integral over the excess pressure profile 

can be determined, indicated with both the dark grey and hatched area in figure 2.5. 

Now, the plane is shifted over a distance dRs and again the integral over the excess 

pressure profile can be determined. This is the grey and hatched area in figure 2.6. The 

difference between the two integrals equals exactly the light grey area with the size of 

ApdRs, recovering eqn (2.62) graphically [20]. 

This equivalence can also be shown mathematically by splitting the integral into a 

part up to and one beyond Rs, i.e. one integral over phase a and one over phase /? 

OR? =dRjo {P -pT)dR+dRsL &-*)** 
d rR' d rR°° a d rR°° 

=8RJO
 padR+mL ^-ML

 MR)dR 

where i?oo is the system's radius and use has been made of the fact that the integral 

over PT does not depend on the position of R3. Once again, only the Laplace pres

sure difference remains. Although the integration limits depend on Rs, the identity of 
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FIGURE 2.6. The shift of the dividing plane by dRs in the example pressure 

profile px gives a total change of lpa — p@) dRs for the excess pressure. 

the results of both methods proves that exchange of differentiation and integration in 

eqn (2.62) is allowed. 

The derivative of the first bending moment, P i , can now also be determined 

OR, 

dJ(R-Rs)(p
a0-pT(R))dR 

dRs 

IPa0~ PTWR + f(R - RS)AP6(R - Rs)dR 

JV
a& ~ pT(R)dR = - P 0 

In a similar way it is found that the derivative of the second moment is given by 

dRs 

dS{R-Rs)
2(pa0-pT{R))dR 

dR„ 

= -2 J(R - Rs) (p"" - pT(R)) dR = -2Pi 
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Substitution of the derivatives of the respective bending moments into eqn (2.60) 

gives 

Ap=F0J + 2FiK 

+ :%M^,M^L+v-m>^ 
:S),/'(S),/*(SL+?'.(S)J« 

(2.63) 

where use has been made of eqn (2.31) and eqn (2.32) for the derivatives of the curva

tures with respect to the position of the dividing plane. If Po is expressed in terms of 

IBN, using eqn (2.57), and Pi in terms of Ci, using eqn (2.55), all derivatives of the 

bending moments and chemical potentials cancel and it is obtained that 

Ap = yBNJ + 2C1K 

This recovers the generalized Laplace equation according to Boruvka and Neumann, 

eqn (2.44). This equivalence shows the consistency of the mechanical expressions for the 

thermodynamic interfacial variables. Ironically, all derivatives of the bending moments 

that were extra for the mechanical expressions for JBN, Q , and C2 compared to the 

results known in the literature cancel in eqn (2.63). Consequently, the results found by 

matching eqn (2.43) and eqn (2.49), i.e. ^BN = PO, CI = P I , and Q = P2, give the 

same generalized Laplace equations of capillarity which in turn seems to support the 

consistency of the matching procedure [17, 20]. 

In order to determine the interfacial tension, bending stress, and torsion stress from 

the mechanical expressions for a particular system, one has to introduce a molecular 

model for the (local) pressure. It will be shown in section 3.2.6 that for the case of a 

simple lattice model the above mechanical expressions yield unambiguous results, unlike 

those reported in the literature. 

The method of Boruvka and Neumann, as elaborated in section 2.3, to treat the 

curvatures as extensive parameters formally yields more correct, generally applicable 

interfacial parameters. However, since the curvature and interfacial area can no longer 

be separated in this approach, the practical relevance is limited. It turns out that for 

uniformly curved interfaces the thermodynamic approach as first elaborated by Gibbs 

can be identified with the approach by Boruvka and Neumann. It has been shown in 

section 2.4 that from a quasi-thermodynamic analysis the classical interfacial tension 

according to Gibbs can be obtained from the bending moments of a given system. 
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However, as shown in section 2.5, the interfacial tension according to Boruvka and 

Neumann also requires derivatives with respect to the curvature thereof. This makes 

the approach by Boruvka and Neumann neither practically nor theoretically easily 

applicable. 

2.6. SYSTEMS WITH MANY INTERFACES 

In previous sections, systems with only one interface have been considered. However, 

there is a wide variety of systems with many interfaces, for instance oil/water emulsions. 

Since standard thermodynamics strictly only considers macroscopic systems, systems 

with many interfaces can only be described macroscopically. Although this is satisfac

tory for many purposes, it might also be of interest to consider one subsystem from such 

an 'ensemble' of small systems. Hill derived a complete framework of thermodynamic 

expressions to describe such small, open systems on a mesoscopic level allowing fluctu

ations [26, 27]. This thermodynamics of small systems has been applied successfully to 

the formation of micelles [28, 29] and microemulsions [13] and will be reviewed briefly 

here. 

2.6.1. Thermodynamics of small systems 

The macroscopic system is divided into M identical, non-interacting small systems 

in such a way that each small system contains exactly one object, e.g. a micelle or 

a microemulsion droplet. Since all small systems are identical, the system is assumed 

to be monodisperse. Although this is a very crude approximation for many systems, 

polydispersity can be accounted for by a weighted ensemble average over monodisperse 

systems [27, 30]. The change of the macroscopic internal energy Ut of a system that 

consists of a set of Af small systems is written as 

dUt = TdSt-p
l3dVt + J2vidnti + £dN' (2-64) 

i 

where the subscript t denotes a property of the total, macroscopic, system. The outer 

phase /3 is here taken to be the continuous phase. The new element is that the 'subdi

vision work' edhf has been introduced. Conjugated to the number of small systems, TV, 

is the so-called subdivision potential, s, which represents the energy that is required to 

subdivide the system at constant total entropy, volume and number of molecules. This 

resembles the 'insertion work' Hidnu in which the chemical potential, /i,, conjugated to 

the number of molecules, nti, represents the required energy to change the number of 

molecules of type i at constant entropy, volume, and other molecules j ^ i. 
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For further elaboration, it is not convenient to relate the subdivision potential to a 

characteristic function at constant total entropy. A more useful definition follows from 

the Gibbs energy, found from the Legendre transformation Gt = Ut — TSt + ffiVf Its 

change follows from the definition and eqn (2.64) 

dGt = StdT + Vtdp0 + J2 IHdna + sdAf (2.65) 
i 

In this way, s can be related to a characteristic function at constant temperature, 

external pressure and number of molecules. Since this is a linear homogeneous function, 

integration yields 

Gt = 52tnnti+eM' (2.66) 
i 

The Gibbs energy G per small system containing n, molecules of type i is 

G = ^ M i n i + £ (2.67) 
i 

For a closed set of TV mutually open systems at equilibrium, the Gibbs energy must be 

minimised 

(dGt)T^,nti = 0 (2.68) 

From eqn (2.65) it is then found 

This equilibrium condition for the formation of small objects in a system, found from 

eqn (2.68), resembles the equilibrium condition for a chemical reaction, Yl,ivi^i = 0. 

In the general chemical reaction X)t V%M = 0 the stoichiometric coefficients u, of the 

substances At have to be taken negative for the reactants and positive for the products. 

As the reaction progresses along the reaction coordinate £, the number of molecules 

of species i changes by an amount of drii = ẑ <i£. Consequently, the Gibbs energy 

changes as dG = (J2i ^ifJ-i) d£. From the equilibrium condition, eqn (2.68), the stated 

equilibrium condition is found straightforwardly [2, 16]. Physically this means that 

the system changes the number of molecules until the (weighted) chemical potentials 

are balanced. The total system of small objects changes the number of subdivisions 

completely analogously until, as will be shown in section 2.6.2, the total mechanical 

work for the formation of another object is zero. If the system cannot further decrease 

the number of objects, i.e. J\f = 1, the limit of the thermodynamics of small systems 

has been reached. Although this system is an equilibrium state and the Gibbs energy 

is minimal, it does not satisfy eqn (2.69) since e must then be equal to the 'regular' 
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interfacial terms, as indeed will be demonstrated in section 2.6.2. Therefore, e = 0 is 

not the general equilibrium condition if the system does not subdivide spontaneously, 

e.g. a single oil drop at equilibrium with its saturated vapour. This is the analogue of 

a chemical reaction that goes to completion. 

Note that the above analysis is phenomenological: no assumptions had to be made 

about the size, shape, or nature of the small system. Therefore, the small system can 

for instance also be a polymer in a solvent. In that case eqn (2.67) must reduce to the 

'regular' equilibrium expression for the Gibbs energy of bulk systems, i.e. e = 0. 

2.6.2. Expression for the subdivision potential 

A closer look is taken at the thermodynamics of the small system itself. Here, the 

small system consists of an inner bulk phase .a and a continuous phase /?, as shown in 

figure 2.3. The subdivision is chosen such that the object is located in the centre of 

the small system. From eqn (2.15) and eqn (2.12) the change in internal energy U of a 

homogeneously curved small system is given by 

dU =TdS - P
adVa - pPdV0 + Y, Vidrii + -yGdA + dAdJ + dAdK 

i 

=TdS - ApdVa - j/dV + £ ^ d r i i + -yGdA + dAdJ + dAdK 
i 

The corresponding change in Gibbs energy is 

dG = -SdT - ApdVa + Vdp0 + J2Vidn, + <yGdA + dAdJ + <C2AdK (2.70) 
i 

Owing to the nature of thermodynamics of small systems, this is not a linear homo

geneous function [26, 28]. This is due to the fact that if the small system is TV times 

enlarged, the system will break up spontaneously into N new small systems and has 

to do eAf work extra. However, since the object is located in the centre of the system, 

one can integrate over an angle in the system, as has also been done in section 2.2.1 to 

integrate over the interfacial area A at constant curvatures [3, 12]. Radial integration 

of eqn (2.70) gives 

G = - ApVa + £ (am + lGA (2.71) 
i 

Comparison of eqn (2.67) with eqn (2.71) yields for the subdivision potential 

e = lGA - ApVa (2.72) 

It follows from eqn (2.69) and eqn (2.72) that at equilibrium the interfacial work equals 

the volume work against the outer pressure p13, i.e. the total mechanical work in the 

small system is balanced. 
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Alternatively, the subdivision potential can be related to the grand potential, which 

was introduced in section 2.2.1, using eqn (2.67) 

e = G -^fiiUi = U+pl3V -TS -^fiifii = Q+pdV (2.73) 
i i 

As stated, in the limit of only one subsystem (Af = 1) the result must equal the 

expression for the grand potential if only one interface is present. Indeed, substitution 

of eqn (2.72) into eqn (2.73) yields eqn (2.19). This shows the consistency of the 

thermodynamics of small systems as derived by Hill and the thermodynamics of curved 

interfaces as derived in the previous sections [27]. 

The expression for the subdivision potential, eqn (2.72), gives for the Laplace pressure 

difference of each droplet 

The derivative of the interfacial tension with respect to the location of the dividing plane 

then reads, recalling that this choice should not affect the equilibrium state variables 

Ap and e = 0 

dla 
dRs 

Ap 
~dVa' 
dRs 

ya 

~ ~A* 

' dA' 
dRs 

Applying the geometrical expressions eqn (2.26) and eqn (2.29), this recovers the gener

alized Laplace equation as given by eqn (2.36). So, as stated before, using the fact that 

the grand potential is independent of the notional position dividing plane, eqn (2.20), 

corresponds to the principle of minimum Gibbs energy. 

If many objects have been formed at equilibrium, i.e. TV > 1, e = 0, the Laplace 

equation eqn (2.74) is given by 

IGA 
Ap = V" 

For spherical objects this reduces to 

for any choice of the arbitrary dividing plane. On the other hand, the corresponding 

generalized Laplace equation reads according to eqn (2.36) 

Ap 2TG 

R + 
d-yo 
dR 

Apparently, for a system with many spherical droplets must apply 

d-yo 
dR 

1G_ 

R 
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As mentioned in section 2.2.2, the surface of tension is found where [dja/dR] vanishes. 

Apparently, this is either where 7G = 0 or where R —> oo. This implies that Ap = 0 

for both cases, which is physically unacceptable. Consequently, for a system of many 

spherical droplets (Af > 1) at equilibrium (s = 0) the surface of tension cannot be 

located from this analysis [13, 14]. 

The preceding analysis leading to eqn (2.72) ignored the translational entropy of the 

small system. In very dilute systems, i.e. no interactions between the objects in the 

total system, this can be corrected by adding the ideal entropy of mixing, i.e. all Af 

objects can move freely in the total volume Vt [31, 32] 

e = TO A - ApVa + kBT In <pm = sm + kBT In ipm 

where kB is Boltzmann's constant, ipm = Af/Vt = 1/V the volume fraction of objects, 

and em is the translationally restricted subdivision potential. Thus, at equilibrium, the 

mechanical work, eqn (2.72), balances the entropy of mixing of the objects. Conse

quently, the Laplace equation of capillarity, eqn (2.74), amounts at equilibrium to 

r T/a Va 

This yields a finite position for the surface of tension in systems with many droplets [33]. 
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C H A P T E R 3 

On the Pressure 

ABSTRACT 

Interfacial characteristics are determined by the pressure profile. A virial and 

a statistical thermodynamic route to the pressure are considered. Bulk prop

erties of the virial pressure are illustrated by means of molecular dynamics 

simulations of hard spheres. Prom a lattice model a statistical thermodynamic 

pressure is defined and elaborated. Results obtained for the bulk pressure of 

this model are compared with those from van der Waals and Landau models. 

The profile of the local pressure across an interface show features that are sim

ilar to that of other models in the literature. It is shown that, although the 

local pressure cannot be determined unambiguously, the mechanical expres

sions derived in chapter 2 give unequivocal results. 

3.1. THE PRESSURE TENSOR 

In this section a virial expression for the pressure is derived. It will be shown that the 

pressure is generally a tensor quantity rather than a scalar as it was used in chapter 2. 

Properties of the pressure tensor are first analysed for a homogeneous bulk system, 

supported by molecular dynamic simulations of hard spheres. Subsequently, properties 

of the pressure tensor are considered for curved interfaces. 

3.1.1. Virial route t o t he pressure 

The intuitive notion of pressure is one of molecules colliding with a wall thus exerting 

a certain force per unit area on the wall. Consider an infinitesimal element of a system. 

In this element all particles i with mass m* move with a velocity vl each. An imaginary 

plane is placed and the momentum that passes that particular plane per time step 

is counted. For instance, consider a plane of size dx x dy, as depicted in figure 3.1a. 

Consequently, the momentum m;i;2ij of all particles i passing this plane in the z-direction 

per time unit is given by 

zz 2 ^ dxdydt 
i 

The superscript k indicates that the kinetic contribution to the pressure is considered. 

The first subscript of P and v denotes the direction the particles moves to, whereas the 

second subscript of P refers to the plane considered. Multiplying the numerator and 

39 
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the denominator by the height of the element, dz, and using the elementary equation 

of motion vz = ^, the equation is rewritten as 

zz ~ Y dxdydz 
Similar analysis can be made for the momentum miVXj and rriiVy^ crossing this plane. 

Obviously, one can also choose a plane dx x dz or dy x dz and count the momentum 

that goes through these planes per time unit in the three different directions. Hence, 

for the kinetic contribution to the pressure in an infinitesimal volume element it applies 

generally that 

^ = E miVa,iV0,i 

dxdydz 

where a, (3 = x, y or z. Integration over all elements of volume dxdydz each yields the 

kinetic contribution to the pressure of the total volume V with N particles 

1 N 

Paf3 = yY,miV<*,iVi3,i (3-1) 
1=1 

This gives the instantaneous kinetic contribution to the pressure. However, by con

ducting experiments always an average is measured. If the system is ergodic, the time 

average of eqn (3.1) equals, according to statistical mechanics, the ensemble average. 

Since the three velocity components are uncorrelated, the ensemble average of eqn (3.1) 

if a 7̂  (3 is given by 

P ^ = 0, a^p (3.2) 

Recalling that for not too low temperature velocities have a Maxwell-Boltzmann distri

bution, the average of the pressure terms a = (3 can be determined term-wise 

This is equivalent to the equipartition theorem which states that the momentum of 

each particle contributes \kBT to the internal energy of the system for each degree of 

freedom [1, 2]. The ensemble average turns out to be independent of the masses of the 

particles. Hence, each particle contributes kBT to the pressure. Therefore the sum over 

all particles finally yields for the ensemble average 

* . - * * £ (3.3) 

which is simply the ideal gas law. 

In the above analysis only the kinetic contributions of point masses have been consid

ered. Obviously, for the complete expression of the pressure interactions in the system 



3.1. THE PRESSURE TENSOR 41 

/ 1 " I y\ " - I 
/ I / I / I y \ 

?-JX4 
f \dz A !• f \dz 1 ^ Z ^ ^ z 7 

«i \s V. \s 
dx dx 

(a) (b) 

FIGURE 3.1. Contributions to the pressure: (a) the kinetic part is determined 
by the momentum of the particles passing a certain plane, (b) the interactions 
are determined by the particles across that plane. 

must also be counted for. Consider once again an infinitesimal element of the system 

and a plane dx x dy. Consider in particular two particles i and j at a distance r~lj 

from each other interacting with a certain force /y, as depicted in figure 3.1b. The 

contribution of the interactions to the pressure is the force exerted on the plane by all 

the pairs of particles, provided that the particles are indeed present on either side of 

the plane 

pint _ 1 y^ y^ -/".'j rP,'i 
Q/5 2 Y j dxdy dz 

where the factor | comes in to correct for double counting each pair and the superscript 

int refers to the contributions of the interactions. Again, integration over all these 

elements yields the total contribution of the interactions to the total volume V with N 

particles 

^45EE/«,ii^ (3-4) 
V Z t = l ]=1 

It follows from the virial theorem, which may be considered as a generalization of the 

equipartition theorem, that the kinetic contribution and contribution of the interactions 

are additive [3, 4]. The total instantaneous pressure is therefore in tensor notation given 

by 
N 1 N N 

PV = Y, rriiViVi + - J2 E far~i3 (3-5) 
i=i z t = i j = i 

The ensemble average reads 

PV = NkBTl + ^ E E ( />y> (3.6) 
Z i=lj=l 
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FIGURE 3.2. Elements of the pressure tensor in Cartesian coordinates. 

This is the Irving-Kirkwood expression for the pressure based on pairwise additive 

potentials [5]. Here, it has explicitly been assumed that the particles i and j interact 

over the straight path rlj. Although this is an obvious choice, alternative paths are also 

feasible [6]. 

Summarising, it is found that the pressure is generally a tensor quantity rather than 

a scalar [7]. In Cartesian coordinates the respective elements of the tensor can be 

represented graphically as shown in figure 3.2 as acting on each of the faces of the 

infinitesimal element. Mathematically the pressure tensor can in that particular case 

be represented as the matrix 

3.1.2. Pressure tensor of homogeneous sys tems 

Since for a homogeneous system the values of the elements of the pressure tensor 

do not depend on the choice of the orientation of the coordinate system, all diagonal 

elements must equal the isotropic pressure p. Moreover, because the directions a and /3 

are uncorrelated on longer time scales, the off-diagonal elements fa^rp^ of the pressure 

tensor should cancel in the ensemble average. Therefore, the tensor quantity P reduces 

to a scalar quantity p. The average contribution of the interactions to the pressure is 

found from eqn (3.4) 

l l 11 
pm y = 2^i 2-*i \Jx,ijrx,ij + Jy,ijry,ij + Jz,ijrz1ij) — „ „ 2^i Zs y « ' r*i) 
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Using the definitions /y- = /; — /, , where /; is the total force acting on particle i, and 

r~ij =fi — fj, where fl and f] are the positions of particles i and j relative to the origin 

of the coordinate system, the double sum can be split up into single sums via 

pint V^l^ifi-r^-lEEifi-^ 

In a homogeneous system the particles j are on average equally distributed around 

particle i. Therefore, on average, the sum over ft • fj does not contribute. It is trivial to 

determine the average of the kinetic contribution, p*. Hence, for homogeneous systems 

the scalar virial pressure p = pk + p% is given by 

pV = NkBT+l-iy^l-fA (3.7) 

The sum is referred to as the (internal) virial [8, 9]. 

The scalar virial pressure eqn (3.7) can be recovered from the time average of the 

quantity J^i rriiVi • fl applying the virial theorem [4]. 

The properties of the pressure tensor will now be demonstrated for a simple, ho

mogeneous system: a hard-sphere liquid. The hard spheres move freely through the 

system but they interact via collisions due to their finite sizes. These lead to the so-

called excluded volume interactions. For an ergodic system the ensemble average of the 

pressure, given by eqn (3.6), is identical to the time average of eqn (3.5). The latter 

has been determined by eqn (3.58) for the hard sphere system by means of molecular 

dynamics simulations in a square box applying periodic boundary conditions, as briefly 

summarized in appendix 3.A. Applying Newton's third law, /y = —fji, as well as 

fij = —fji it can be seen from eqn (3.4) that the pressure tensor must be symmetrical, 

i.e. Pa/3 = Ppa. The time-averaged values of the diagonal and off-diagonal elements 

of the pressure tensor of the hard sphere system are given in figure 3.3 as function 

of the volume fraction of particles. It can be seen that the off-diagonal elements are 

indeed randomly distributed around zero. Although relatively small compared to the 

values of the diagonal elements, at higher volume fractions the off-diagonal elements 

show larger fluctuations than at lower volume fractions. Alternatively, at higher den

sities the fluctuations relax slowly and hence the liquid is found to be more viscous. 

From this point of view it can be understood that the decay of the correlation of the 

off-diagonal elements of the pressure tensor can be related to the viscosity [10, 11]. 

As can be seen from figure 3.3, the diagonal elements of the pressure tensor approach 

the ideal gas pressure for low densities. The excluded volume contributions to the 

pressure can be understood from the distribution of the hard spheres in the system. It 



44 3. ON THE PRESSURE 

is expected that the distribution is basically a function of all direct pair interactions 

only. Ornstein and Zernike combined the radial distribution function and the direct 

correlation function into one integral equation. Since this single equation is a function 

of two variables, viz. the distribution function and the direct correlation function, 

it cannot be solved; a second relation, a so-called closure, is needed. An example 

of such a closure is an approximation for the direct correlation-function as suggested 

by Percus and Yevick (PY). Upon substitution, the Ornstein-Zernike equation can be 

solved analytically for a hard sphere system yielding an expression for the distribution 

function. This expression can, in turn, be substituted into both the virial equation 

of state, eqn (3.7), and the so-called compressibility equation which can be derived 

from the number fluctuations [2, 9, 12]. Owing to the approximations that were made, 

these two expressions for the pressure differ. As can be seen in figure 3.3, the PY-

compressibility equation overestimates the pressure found from the simulation whereas 

the PY-virial equation always gives a too low value. However, a weighted average of the 

pressures obtained by these equations turns out to give a very good fit for the diagonal 

elements of pressure tensor. This is the so-called Carnahan-Starling (CS) equation 

_j>v_ = i + ^ 2 - ^ 3
 ( 3 .8 ) 

NkBT {l-4>f 
It has been shown analytically and by means of molecular dynamics simulation that 

the ensemble average of the pressure tensor, eqn (3.6), gives unambiguous results for the 

pressure of the system. One can define the local one-particle density <f>(f) unambiguously 

as the probability that there is a particle within the volume df at position f. The volume 

integral is the ensemble average of counting all particles at their positions. Obviously, 

this must yield the number of particles in the system 
N 

<t>(r)dr = Y,8(r-fl) = N 

Unlike the one-particle density or, likewise, the temperature, it is not possible to define 

a local pressure unambiguously, although the volume integral gives a unique value. This 

stems from the fact that always pair interactions are considered. As has been mentioned 

before, the path between the particles i and j can be chosen freely. Moreover, the 

dyadic term fijUj cannot be unambiguously assigned to one position [13]. It is possible 

to ascribe half to fl and half to fj, but it is equally plausible to assign the whole 

contribution to, e.g., the average coordinate (fi + rJ)/2 or just to one of the positions 

[14]. Effort has been made to find unambiguous expressions for the pressure [15], 

but always led to other difficulties [16]. Although the ambiguity of defining the local 

pressure has been frequently discussed in the literature (e.g. [5, 6, 17]), this problem is 

/ 
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FIGURE 3.3. Hard sphere pressure as a function of the volume fraction from 

molecular dynamics simulations of 256 particles after 5 million collisions. The 

filled diamonds are the time averaged diagonal elements, whereas the open 

diamonds are the time averaged off-diagonal elements. The dotted curve gives 

the PY-virial equation, whereas the dashed curve gives the PY-compressibility 

equation. The solid line is the CS-approximation. The diagonal elements 

recover the results as found in [9]. 

hardly addressed in calculations where local pressures are used. The consequences for 

interfacial characteristics as derived in the previous chapter will be discussed below. 

3.1.3. Pressure tensor of (curved) interfaces 

In the previous section properties of the pressure tensor have been elucidated for a 

homogeneous bulk system. Here (curved) interfaces are of primary interest. Owing 

to the inhomogeneity of the interfacial region, the elements of the pressure tensor do 

depend on the choice of the orientation of the coordinate system, unlike for homoge

neous bulk systems. However, since the principal axes of the coordinate system are 

uncorrelated, it is plausible that the ensemble average of the off-diagonal elements will 

still vanish [18]. Alternatively, since the decay of the off-diagonal elements is propor

tional to the viscosity [7, 10], these elements of the pressure tensor must vanish because 

the viscosity in the interfacial region is finite for liquids. Hence, the averaged pressure 

tensor has generally a diagonal form with three distinct elements. 

The choice of the coordinate system is arbitrary. Here, a Cartesian coordinate system 

is placed at the interface in such a way that the z-axis is perpendicular to it, i.e. parallel 



46 3. O N THE PRESSURE 

FIGURE 3.4. (a) Infinitesimal segment of an interface with pressure applied 

on each face, (b) A detail of the pressure on the xz-iace. 

to the normal vector at the interface. Hence, the two others axes are parallel to the 

interface. In the interfacial region the normal component Pzz will generally differ from 

the tangential components Pxx and Pyy. Far away from either side of the interface bulk 

conditions prevail and all components must be equal to the isotropic (bulk) pressure, 

as shown in section 3.1.2. This suggests that the components of the pressure tensor are 

somehow related. 

Consider an infinitesimal element of the interface at height z. Each face of the element 

experiences the pressures applied by adjacent elements, as illustrated in figure 3.4a. At 

equilibrium the element must apply the same pressure onto all the adjacent elements 

according to Newton's third law. Consider e.g. the rrz-face, the grey area shown in 

figure 3.4. The fraction F of Pyy(z) of the adjacent elements that contributes to the 

normal direction can be found from similarity of triangles. From figure 3.4b it is seen 

that 

^dx 1 

nx ryyyz) 
pyy(z)-jrdx 

This pressure is exerted on either side of the element with area dy x dz into the normal 

direction. Similarly, Pxx is applied to both faces with area dx x dz. At equilibrium, the 

normal force applied at z + dz must balance both the normal force and extra tangential 

contributions at z 

Pzz{z + dz)A(z + dz) = Pzz{z)A(z) + Pyy(z)^-A{z)dz + Pxx(z)—A{z)dz (3.9) 
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where A(z) = dxdy. Upon substitution of A(z + dz) = A(z) + dA and Pzz(z + dz) = 

Pzz(z)+dPzz, eqn (3.9) gives after rearranging of terms, dividing by A(z), and ignoring 

the second order term dPzzdA 

+ dPzz = Pm—dz + Pxx—dz 
*zzA{z) ' zz VVRX ' xxRy 

Prom eqn (2.29) it follows that dA = J(z)A(z)dz, where J = •£• + 4- is the total 

curvature. Substitution yields the following differential equation for Pzz as function of 

the position z [19] 

^ = (Pm(z) - Pzz{z)) ± + (Pxx(z) - Pzz(z)) ± (3.10) 

If the system is laterally isotropic, the orientation of the axes parallel to spherical or 

planar interfaces can be chosen freely, i.e. they are invariant under rotation around the 

z-axis. Therefore, in analogy to the homogeneous bulk system, two diagonal elements 

must be equal. Hence, there is one component Pzz = Pff of the pressure tensor per

pendicular to the interface and there are two tangential components Pxx = Pyy = pr 

parallel to the interface. This is shown schematically in figure 3.5 for a segment of 

the interface. Although this is only exact for laterally isotropic planar and spherical 

interfaces, it is thought to be a good approximation for other geometries as well [20-22]. 

This approximation reduces eqn (3.10) to 

dj^ = (pT(z)-pN(z))J(z) (3.11) 

This equilibrium equation can also be derived mechanically, as shown in appendix 3.B. 

FIGURE 3.5. Elements of the divergence of the pressure tensor acting on a 
segment of a laterally homogeneous curved interface. 

Some properties of the normal and tangential pressure can be derived from this 

equation. For instance, in the case of a planar interface (J = 0) it is seen from eqn (3.11) 

that the normal pressure does not change and equals the bulk pressure everywhere. For 

curved interfaces it is known that p^ roughly follows the density profile [8, 23]. If, 

following van der Waals, a hyperbolic tangent is taken for the normal pressure [6], the 

tangential pressure can be calculated from eqn (3.11). As depicted in figure 3.6, it turns 
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FIGURE 3.6. Possible pressure profile through a curved interface. The 

normal roughly follows the density profile, here PN{Z) = ^(pc'+P13) — 

3 \Pa ~~ P^) tanh(.z — zs). The tangential pressure follows from differentiation 

of PN using eqn (3.11). 

out that pr can locally have negative values in the interfacial region [8, 14]. This means 

physically that the tangential pressure is locally tensile rather than compressive [23]. 

Integration of eqn (3.11) from bulk phase a into bulk phase (3, gives the Laplace 

pressure difference [24] 

Ap = pa - p " = - / " dPN = f (pN(z) - pT(z)) J(z)dz (3.12) 

Integration of eqn (2.31) gives the total curvature as a function of position [25]. Markin 

et al. showed that substitution of this J(z), as well as the bending moments, eqn (2.50), 

recovers the mechanical expression for 7c , eqn (2.49) [19]. The normal pressure van

ishes upon integrating by parts and gives rise to the bulk pressure term, pa0. Hence, 

eqn (3.12) is an alternative version of the generalized Laplace equation. 

3.2. LATTICE MODEL 

In the preceding section the virial expression for the pressure tensor has been derived. 

In a particular class of modelling of inhomogeneous systems mean-field and lattice 

approximations are used. However, a virial route to the pressure in lattice models is, 

as yet, not found [26]. In this section the grand potential density of the lattice model, 

as found in section 2.4, is identified as the pressure. Although it is thermodynamically 

legitimate to identify the grand potential density as the pressure [27], the mechanical 

properties as outlined in the previous section are not yet clarified for that 'pressure'. 

In this section these properties are specified for a simple lattice model that contains all 
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FIGURE 3.7. Schematic section of (a) planar and (b) spherical/cylindrical lat

tices that consists of z = 1 , . . . , M parallel layers of L(z) sites each. Here, 

i = 0,1,2,3 species are placed on the lattice, where i = 0 represents the voids 

or free volume and the species i = 1,2,3 are represented by differently coloured 

beads. 

basic features of inhomogeneous liquids. With this model the interfacial parameters of 

chapter 2 will also be determined and discussed. 

3.2.1. Statistical thermodynamics 

In order to have an easily accessible partition function, space is divided into sites 

with equal volume v0 = £3, where £ is a characteristic size. From the lattice formed 

in this way, only z = 1 , . . . , M parallel layers are considered. In the layers z < 1 and 

z > M bulk conditions prevail. Each of these layers consists of L sites, as depicted 

in figure 3.7a. To describe curved interfaces, space can also be divided into curved 

elements, as depicted in figure 3.7b. To obtain sites of equal volume, the number of 

sites per layer, L(z), must be a function of z. It has been derived that [28] 

v0L(z) 
I irh (z2 — (z — l )2) £3 cylindrical lattice 

f 7r (z3 - (z - l )3) £3 spherical lattice 
(3.13) 

where h is the length of the cylinder in units of £. 

In the simplest case, the molecules can be represented as single beads of characteristic 

size £ each. Although this approximation is obviously very crude for real liquids, it ac

counts satisfactorily for several main physical features of simple liquids. The molecules 

of the liquid are placed on the lattice. The number of ways to place JVj molecules all of 
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types i on the whole lattice are given by the degeneracy 

A=n 
L(z)l 

LJ1Ui=iNi{z)\(L{z)-EiNi{z))l 
(3.14) 

When all molecules have been placed, the internal energy U of the system can be 

determined. The interactions are assumed to be short ranged such that only adjacent 

sites have to be accounted for. Now the mean-field approximation is imposed that the 

Ni(z) molecules of type i in layer z are on average surrounded by a volume fraction 

(<pj{z)) of molecules of type j . This so-called contact fraction is defined as [29] 

{cj>j(z)) = X-i(z)<l>j(z - 1) + Ao(z)<fc(z) + M(z)</>j(z + 1) (3.15) 

Here 4>j{z) = Nj(z)/L(z) is the volume fraction of molecules of type j in layer z, whereas 

the transition probability A is the fraction of adjacent sites in layer z. The fraction Ao is 

the probability of finding an adjacent site in the same layer, whereas A_i and Ai are the 

probabilities of finding adjacent sites in the previous and next layer, respectively. The 

values for a planar lattice (i.e., X-1 = Ai) are commonly derived from Bravais lattices, 

which are well-known in crystallography. Some examples of frequently used lattices 

are given in figure 3.8, where the white bead is the central one and the Z grey beads 

mark all adjacent positions. The transition probabilities of those lattices are given in 

table 3.1. 

TABLE 3.1. Transition probabilities in different planar lattices. 

lattice 

simple cubic 

hexagonal 

BCC 

FCC 

Ao 
2/3 

1/2 

1/2 

1/3 

Ai = A_j 

1/6 

1/4 

1/4 

1/3 

As can be seen from figure 3.7b, in curved lattices the number of adjacent sites is 

proportional to the area of the layer z. So, Ai = \i(z) ^ A_i = A_i(z). If the lattice 

is sufficiently large, the outer layer is approximately flat. The area of that layer is 
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(a) (b) (c) (d) 

FIGURE 3.8. Frequently used lattice types; (a) simple cubic, Z = 6, (b) hexag

onal, Z = 12, (c) BCC, Z = 8 and (d) FCC, Z = 12. The Z grey beads give 

the number of adjacent molecules of the white bead in the previous (—1), the 

same (0), and next layer (1), respectively. 

a0L(M), where a0 = £2 is the unit area of a planar site. Hence, [28, 29] 

( 2n\ihz£2/aoL(z) cylindrical lattice 

47rXiZ2£2/a0L(z) spherical lattice 

2ir\ih(z - l)£2/aQL(z) cylindrical lattice 

[47rAi(z - l)2£2/a0L(z) spherical lattice 

X0(z) = 1 - Ai(z) - A_i(z) (3.16) 

It is easily seen that the probability of finding an adjacent site in the next layer, 

Xi(z)L(z), is equal to the probability of finding an adjacent site in the previous layer 

relative to the next layer, X-i(z + l)L(z + 1). This is the so-called inversion symmetry 

condition that must always be satisfied on the lattice. 

The interaction energy equals VijksT per Z contacts between species i and j , where 

Z is again the coordination number. Within the afore-mentioned mean-field approxi

mation the internal energy of the system is given by 

77 1 M 

^ = o E E E ^ h ( ^ W ) (3.i7) 
2=1 i = 0 j—0 

kBT 2 

where the factor | corrects for double counting of the interactions. The summation 

goes over all species where the free volume is considered as species i,j = 0. Thus, 

the interactions v0j and vm are those between molecules with the free volume which 

obviously do not contribute. 

The energy can also be related to that of the pure amorphous states of each type 

of molecule, i.e. without free volume. Suppose there are two pure liquids i and j . 
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One molecule of type i is exchanged with one molecule of type j . To that end, Z pair 

interactions of vuksT/Z and Z pair interactions of VjjksTjZ are broken but 2Z pair 

interactions of VijUsT/Z are formed. The total change of interactions in terms of fcgT 

defines the exchange parameter 

Xij = 2 (2 i yy " v» ~ vii) (318) 

Note that now generally for the interaction with the free volume \io = X(H = ~2t/u ¥" 0. 

It is equally sensible to give the internal energy relative to these pure reference states 

rather than the direct pair interactions. This changes eqn (3.17) to 

TT 1 M 

^ = o £ £ £ Wtoxy <&(*)> (3-19) 
z=l 1=0 j=0 

fcBT 2 

The difference between eqn (3.17) and eqn (3.19) is just a matter of defining the reference 

state. 

When the interaction parameters and the number of particles are known, the internal 

energy, as given by eqn (3.19), is fixed. Using the degeneracy A, eqn (3.14), the 

Helmholtz energy F of the system is given by 

F = U-TS = U-kBTlnA 

= kBTj2 ( in U{z) - ENi{z ) ) \ + £ \nNi(z)\ - lnL(z)! 
z=l I V i=l / i=l 

+ 5 E £ W x y < f c ( * ) > j (3-20) 
z t=03=0 J 

Using the definition of the exchange interaction parameter Xij> eq n (3.18), the energy 

term can be expanded in terms of the direct pair interaction parameter i/y. Recalling 

that v0j = Vio = i^oo = 0, all sums accounting for the free volume terms (i,j = 0) 

can be replaced by sums over molecules only (i,j > 1), which will be denoted by 

i,j. Moreover, applying the Stirling approximation for the logarithm of a factorial, as 

outlined in appendix 3.C, gives for the Helmholtz energy 

£ { L ( , ) h M f ) + ? « W h 
kBT z t l \ L(z) ' <t L(z)-EiNi{z) 

+ \ E E Ni{z)Vij (M*)) ~ \ E *(*)"« ~ \ E £(*)"» <̂ -W>} 
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where use has been made of the definition of the contact fraction, eqn (3.15), and the 

transition probabilities, eqn (3.16) 

£ <^(Z)> = X-!(Z) £ ftiz - 1) + \o(z) £ friz) + A^z) £ 0,(2 + 1) 
3=0 3=0 3=0 3=0 

= A_i(z) + A0(z) + A1(z) = l 

Here, it has taken into account that the sum over j > 0 includes the free volume and 

therefore the sum over all sites in a lattice layer. Similarly, Y,i=oNi(z) = L(z). 

Using the definition of the volume fractions, L(z) can be taken from each term in the 

sum over z, yielding for the Helmholtz energy 

F M [ 1 
^f = ! > ( * ) |^o(«)ln^o(z) + £ &(z)ln&(z) + - £ E < M Z K <&(*)> 

- | E " « (&(*) +<&(*)»} (3-21) 

where (fo = 1 — Y,i & is the fraction of the free volume. 

In the canonical ensemble, equilibrium is found at minimum Helmholtz energy. If 

the (reduced) volume V/VQ = Ylf=\ L(z) and temperature T are kept constant, i.e. the 

number of lattice layers M and the interaction parameters i/y are fixed, the constraint 

of constant number of molecules {Ni\ can be met by introducing a set of undetermined 

multipliers {/i,}. According to Lagrange the minimum of eqn (3.21) with the given 

constraint is given by the minimum of the function 

M 

Q = F-J£lMNi = F-J2L(z)'E»Mz) (3-22) 
i z=l i 

upon varying the number of molecules as if they were independent [30, 31]. This is 

obviously a Legendre transformation to the grand potential, as shown section 2.2.1. The 

undetermined multiplier is identified as the chemical potential. Since at equilibrium the 

chemical potential of the molecules of type i must be the same throughout the system, 

Hi is not a function of the lattice layer z. 

The equilibrium condition is found from differentiation of eqn (3.22) with respect to 

Ni(z) and setting the result to zero 

^ ^ = - In Mz) + In Hz) + E "y (M*)) ~ l»« ' {^ = 0 (3-23) 

where use has been made of the definition of the contact fraction, eqn (3.15), the 

inversion symmetry, and the fact that the sum of the transition probabilities equals 
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unity: 

f) M a M 

^ y £ L(z) (<Pi(z)} = ^ ^ £ L{Z) (X-MM* - 1) + AoW^i(z) + \i(z)M* + 1)) 

dNt{z) 
d 

8Ni(z) 

{L(z - l)Ai(2 - 1) + L(z)A0(z) + L(z + l)A_i(z + 1)) &(JZ) 

L^HA^W + AoW + A^z) )^ ) 

Rewriting eqn (3.23), the undetermined multipliers become 

^=ln(m)+E^(^W)-^ (3-24) 

Although the terms on the right-hand side are functions of z, the value of fii must be 

constant throughout the system. This can be the case if either 4>i(z) is also constant 

throughout the lattice, i.e. bulk conditions, or if a density profile <j>i(z) varies in such 

a way that this is satisfied. Note that for a planar two-phase system consisting of one 

component the chemical potential of the liquid phase is given by 

where <j> is the density in the liquid phase. On the other hand, for the vapour phase 

then applies 

"" -ln(i^U„(l-*)-^ 
kBT \ 4> ) 2 

At equilibrium the two chemical potentials should be equal 

which states that 2/ia = 0; in a planar, single component two-phase system the chemical 

potential is zero. 

Substitution of eqn (3.24) and eqn (3.21) into eqn (3.22) gives for the equilibrium 

grand potential 

O M ( 1 1 
- ^ = £ L(z) ln«Mz) - 2 E E M*H (M*)) + 4 E "« (M*) ~ <&(*)» 

(3.25) 
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Since the grand potential provides information on the mechanical work, eqn (3.25) is 

the key equation in the subsequent sections. 

3.2.2. Bulk properties of the lattice model 

The expression for the grand potential of the lattice model, eqn (3.25), is generally 

valid for the case that density gradients are present, i.e. when <f>i(z) varies through the 

lattice. When bulk conditions prevail, i.e. <j>i{z) = 0; = Ni/
y£JZL{z) throughout the 

lattice, eqn (3.25) can be simplified. From its definition, eqn (3.15), and that of the 

transition probabilities, eqn (3.16), it is inferred that the contact fraction {4>i{z)) = <p\. 

Since the densities do not depend on the layer number, the terms of eqn (3.25) in braces 

can be shifted in front of the sum. This leaves the sum over all lattice layers of the 

number of sites per layer L(z), which is simply the reduced volume V/VQ of the lattice, 

as defined above. Hence, for a bulk phase the grand potential of the lattice model 

reduces to 

This should be the same state variable as derived in section 2.2.1. From comparison 

with eqn (2.16) the bulk pressure can therefore be identified as 

f̂  = -ln^ + | £ £ ^ (3-27) 

Note that this grand potential density, which was defined to be the pressure found from 

statistical thermodynamics, has an origin that differs from that for the virial expression 

for the pressure, eqn (3.6). It is therefore not certain whether both 'pressures' have the 

same physical features. In order to make it plausible that eqn (3.27) indeed represents 

the bulk pressure, some of its features are now investigated. 

When the molecules are indistinguishable ( £ , <j>\ = (f>b) series expansion of the loga

rithmic term yields for the pressure 

A o _ ! ,k2 , ,b ^ 1 ,„2 1 ,63 ̂  _ N [ , ^ h „ , i ^» . IA» 2 

kBT 2 ^ + ^ V +a^ + - = V l 1 + 2 ( l / + 1)^ + r + - r ° (3-28) 

which is the well-known Kamerlingh-Onnes virial expansion of the pressure. This clearly 

shows the difference between the statistical thermodynamic and virial route to the 

pressure; the first virial coefficient in eqn (3.28) stems from the configurational entropy 

only, whereas in eqn (3.6) it has a kinetic origin. 
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Prom its definition, F = U — TS, and eqn (2.15), the change of the Helmholtz energy 

of a bulk is given by 

dF = -SdT - pdV + Y, fJ-idNi (3.29) 
i 

Consequently, the pressure is given by 

where / = F/V is the Helmholtz energy per unit volume. For the last step it has been 

used that 

fl=[dNjTV
 = \w)Ty \dN)TV

 = VW)T \dN)TV
 = \w)T

 (3'31) 

According to eqn (3.21), the Helmholtz energy per unit volume of a bulk is given by 

/ 
kBT I 0o In <Po + Y fa ln fa + 9 ? ? fa^ijfa - 2 S v»fa \ ~ (3-32) 

Substitution of eqn (3.32) into eqn (3.30) recovers the bulk pressure as given in eqn (3.27), 

which proves the consistency between the lattice expression for the bulk grand potential, 

eqn (3.26), and its thermodynamic equivalent, eqn (2.16). This thermodynamic result 

supports the assumption that the expression given for the bulk pressure, eqn (3.27), 

indeed describes the desired state variable. It is, however, not yet established whether 

this scalar pressure also has the same spatial properties as the second-order tensor 

elaborated in section 3.1.3. 

The bulk pressure as given by eqn (3.27) can also be used to study the phase behaviour of 

a mono-molecular liquid. The pressure is plotted as a function of the molecular volume, 

l/4>b, as shown in figure 3.9 for a certain value of the interaction parameter v. Most 

striking is the loop in the curve which resembles a van der Waals pressure isotherm. 

This loop contains a region where the pressure increases with increasing volume. This 

region is unstable since for thermodynamically stable system the Helmholtz energy must 

be minimal so that (a(\/§>)*)NT
 = ~ {aU^))NT > °- T l i e P o i n t s where the system is 

about to become unstable are the so-called spinodals and are given by 

dP" ""'v+^r ^ 1 = 0 (3-33) d(i/4>b) Y \ 4>b{i 
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1/f'H i/<|>-

FIGURE 3.9. The bulk pressure of the lattice model, eqn (3.27), plotted as a 

function of the molecular volume for a certain v < vc. This curve resembles 

the familiar van der Waals loop from which phase coexistence can be obtained. 

Since <f>b = 0 is not a solution, eqn (3.33) leads to a quadratic equation in the volume 

fraction from which the two spinodal volume fractions follow 

1 1 , 4 

2+W+u 
>,0 _ 1 1 / 4 

2 - 2 V 1 + ^ 

These spinodals coincide at the critical interaction parameter vc 

S,CX 

(3.34a) 

(3.34b) 

-4 which occurs at 

the critical density <j)c = 4>s'a = (j)8'13 = | . If v < vc both roots are real and distinct and 

two spinodals values are found. If 0 > v > vc both roots are imaginary, so no spinodals 

are found anymore. For v > 0 the roots have no physical relevance since 0 < 0 < 1. 

If the volume fraction of the mono-molecular liquid 0 s ' a < <j> < 0S,/3 the liquid is 

unstable and will phase-separate spontaneously into two phases. The two phases have 

different volume fractions which are called the binodal volume fractions. At equilibrium 

the pressure pb must be equal in both phases. Therefore, in real systems the loop must 

be replaced by a horizontal line. This line is placed in such a way that the areas above 

and below the loop are equal. This is a so-called Maxwell construction [11, 32]. Using 
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eqn (3.27) this reads 

Cv->)«>«=C\-^-P>=> 1/*' 

Solving this integral gives 

1 j.* , ( <t>a \ l n ( l - 0 Q ) pa 1 ±B , / <^ \ l n ( l - ^ ) p" 

Applying eqn (3.27) for pa and p'3 evaluated at <j)a and ^ , respectively, and using 

eqn (3.24) finally yields 

^ » , . . .a * 

"*a + l n ( Y^r) = "̂  + ln (jf^J ^ ̂  = M (3-35) 

This is indeed an extra equilibrium condition. Therefore, whereas the spinodal volume 

fractions are given explicitly by eqn (3.34), the binodals must be determined from the 

two equilibrium conditions, pa = p0 and fia = / / , using eqn (3.27) and eqn (3.35), 

respectively. 

Alternatively, one can plot the Helmholtz energy per unit volume as a function of the 

density. Two different densities, i.e. different phases, are at equilibrium with each other 

if simultaneously fia = /j,13 and pa=pP. According to eqn (3.30) these conditions imply 

that the slopes /J. at both densities are equal and have the same intercept p. That is, 

both points have a common tangent. Therefore, the binodals can also be found from this 

so-called common tangent construction from the / — 0-diagram, as shown in figure 3.10 

for different values of the interaction parameter. Note that the slope, i.e. chemical 

potential, in the coexistence points indeed equals zero, as was derived analytically. 

Apparently, this common tangent construction is identical to the Maxwell-construction 

in the p—V-diagram as will now be proven more generally. 

After integration of eqn (3.29), the Helmholtz energy of a single component bulk is 

given by 

Fb = -pbVb + fibN 

If the system's volume is reversibly increased from Va to V3, the isothermal volume 

work done is according to eqn (3.29) 

- pdV= (dF)N T = -p0V0 + n0N +paVa-iiaN 
JV Ja 

The liquid phase is at mechanical equilibrium with its vapour phase if both phases have 

equal pressure pa = pP = pb. This identity gives for the volume work after dividing by 
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FIGURE 3.10. Helmholtz energy density plotted as a function of the volume 

fraction below, in, and beyond the critical point. From a common tangent 

construction phase coexistence can be determined. 

the number of molecules N 

_ pdv = -pb (v0 - va) +^-fia 

where v = V/N = l/<f> is the molecular volume. The first term on the right hand side is 

simply the volume work of enlarging the volume from va to v13 of a system at constant 

bulk pressure pb. The second term on the right hand side represents the chemical work 

to bring the molecules from phase a to phase f3. Rewriting the volume work gives 

f tf - p)dv = n* - if (3.36) 

To let the liquid phase a be at chemical equilibrium with a vapour phase /3, both phases 

must have equal chemical potentials \ia = ^ . Hence, in the case that a loop in the 

pressure is replaced by a horizontal line at the equilibrium pressure pa = p0 = pb such 

that the areas above and below the lines are equal, this guarantees chemical equilibrium. 

This is indeed the aforementioned Maxwell construction which yielded the expression 

for equal chemical potentials, eqn (3.35). 

For the above lattice model the binodals and spinodals have been determined for 

several values of the interaction parameter. The resulting p—0-phase diagram is shown 

in figure 3.11. The v — 0-phase diagram, figure 3.12, is reminiscent of a van der Waals 
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FIGURE 3.11. The bulk pressures of the lattice model as a function of the 

density. The dashed line is the spinodal, whereas the solid line connects the 

binodal points. 

T — 0-diagram as will be shown in section 3.2.3. It is seen that a low value of the 

temperature corresponds to a large negative value of the interaction parameter. This 

makes it plausible that v oc 1/T. 

3.2 .3 . Vein d e r Waa l s p r e s s u r e 

Assuming that the grand potentials in eqn (2.16) and eqn (3.26) are identical, equat

ing them provides an expression for the bulk pressure in the lattice model. This expres

sion indeed shows all features a bulk pressure should have. The presented model and its 

results are reminiscent of the van der Waals equation of state [2, 9, 33]. Van der Waals 

modified the ideal gas law for non-ideality. In order to account for the excluded volume 

of the molecules in the system with molar volume Vm, he introduced a parameter b. 

Moreover, he accounted for the molecular interactions by adding a — a/V£ term to the 

pressure P [33] 

NkBT a 
P = (3.37) 

V„-b V2 

As will be shown later, it is convenient to work with reduced variables, i.e. relative to 

the values in the critical point. The critical point can for instance be found from (cf. 
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- V 

FIGURE 3.12. Phase diagram for the monomolecular lattice model. The solid 
line gives the binodal whereas the dashed line gives the spinodal. The dotted 
lines intersect in the critical point. 

eqn (3.33)) [12] 

dvm)T \dv^)T 

Using 

dP\ _2a NkBT 

(3.38) 

(3.39) 

(3.40) 

T >m (Vm ~ bf 

it is found that 

(d2P\ 2NkBT 6a 
\dV*)T~{Vm- bf~V^ 

Substitution of eqn (3.39) and eqn (3.40) into eqn (3.38) gives for the critical point 

4a _ 2NkBT _ 6a 

W c - b) ~~ (Vc -bf~Vj 
Dividing the first and last term by a/V^ gives a linear equation in Vc which gives 

straightforwardly Vc = 36. Substitution in eqn (3.39), using eqn (3.38), gives NkBTc = 

8a/27b. Upon substitution of both variables into eqn (3.37), the critical pressure is 

given by Pc = a/27b2. Note that VC,TC, and Pc are determined by the parameters a and 

b whereas in the lattice model these have fixed values (cf. 4>c = 2 vs- 1/K: a n d vc = —4 

vs. NkBTc). This makes the van der Waals equation more adaptable to experiments 

than the lattice model. 
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Introducing the reduced variables p = P/Pc, v = V/Vc, and t = T/Tc, the van der 

Waals equation eqn (3.37) is rewritten as 

3v — 1 v1 

Whereas in eqn (3.37) the variables a and b could be adapted for real gases, the reduced 

van der Waals equation is independent of these quantities. Indeed, it has been shown 

experimentally that for systems that can be described by eqn (3.37), all isotherms 

in reduced units merge [33, 34]. This scaling consideration is called the principle of 

corresponding states or universality. 

Series expansion of the reduced van der Waals equation in terms of the (reduced) 

density gives 

p o 
1 ~ 3v '+G-i);+&--} 
This is reminiscent of the Kamerlingh-Onnes virial expansion of the lattice gas pressure, 

eqn (3.28). Therefore, it is seen that the reduced van der Waals pressure, eqn (3.41), 

must give similar results as the lattice gas pressure. Moreover, from comparison of 

eqn (3.42) with eqn (3.28) it is again likely that v oc 1/T. 

As with eqn (3.27), the binodals are found from the pressure as a function of the (re

duced) density. As shown in the previous section, the Maxwell construction, eqn (3.36), 

gives the expression for equal chemical potentials. In the van der Waals model this yields 

I 
,0 

(pb - p)dv = pbv - |*ln(3v - 1) - -
O V 

= 0 (3.43) 

where 

Solving both equilibrium conditions simultaneously gives the two reduced binodal vol

umes va and v&. As outlined in section 3.2.2, the corresponding spinodals are given 

by 

!),"te-<5^F)-0 <"»> 
This gives three reduced spinodal volumes, of which only two are physically significant 

(v > | ) . The binodals and spinodals can be found for several temperatures, as shown 

in figure 3.13. This is equivalent to the p—^diagram figure 3.11 where <t>/<f>c = 1/u-

Obviously, from the known binodals and spinodals at different temperatures, &t — <j)-

phase diagram can also be determined for a van der Waals gas, like has been done in 

the previous section. As can be seen from figure 3.12, the binodal is approximately a 
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» , 1 

FIGURE 3.13. Van der Waals loops determine the p—v-phase diagram. The 

solid lines gives the pressure for several temperatures below (t < 1), in (t = 1) 

and above (t > 1) the critical temperature; the dotted regions have been 

replace by the horizontal (reduced) bulk pressure. The solid line connects 

these binodal points, whereas the dashed line gives the spinodal. 

parabola. This can also be found from mathematics. Series expansion of the chem

ical potentials, eqn (3.43), around the critical density (<t>/<fic = 1/v = 1) at constant 

temperature gives 

4 t - 6 - ^ l n 2 + 6 ( t - l ) 
- 1 | + 2* 

0 

Series expansion of the pressure gives 

4t - 3 + 6(i - 1) - l ) + 3 ( t - l ) ( f - 1 ) +-t 

Subtraction of both series expansions gives 

1 1 

This gives only two distinct densities if <pa — <pc = 4>c — (j)P\ the densities are symmetrical 

with respect to <pc. Substitution of this result in the series expansion of the chemical 
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FIGURE 3.14. Van der Waals t — 0-phase diagram. The solid line gives the 

binodal whereas the dashed line gives the spinodal. The dotted line gives the 

series expansion around the critical point. 

potential gives 

«->(H+i«(£-' -6(t - 1) "-HS-1 

If 4>a ^ <f)c, rearranging of terms finally yields 

" = - 4 f t ~ 1) 
t 

Or, alternatively, in the vicinity of a critical point (t —> 1) 

(cj)a - 4>c) = 24>c{\ - t ) i 

The fact that the (reduced) density is proportional to the square root of the (reduced) 

temperature is a well-known scaling result for mean-field models as also will be shown 

in section 3.2.4. As can be seen in figure 3.14 this approximation for the (reduced) 

van der Waals binodal seems to fit readily well even for densities beyond the critical 

point. However, experiments show that in the vicinity of the critical point (<ff — <f>c) ex 

( T c - T ) 0 - 3 4 [33,34]. 



3.2. LATTICE MODEL 65 

3.2.4. Landau theory for the lattice model 

Prom figure 3.10 it can be seen that for all values of v the free energy per unit volume 

of a bulk phase is an even function which is symmetrical around the critical density. 

Below the critical temperature three extremum values of the free energy are found. It 

therefore makes sense to write the free energy density as a fourth order series expansion 

around the critical density 

/ = fc - h (0 - 0C) + a2 (<f> - 4>cf + a4 (0 - 0C)4 (3.46) 

This is the so-called Landau expansion of the free energy [35]. Landau omitted the 

third and higher order odd terms to keep the free energy symmetrical. The linear term 

is maintained to account for an external field h. Landau found that a2 vanished at 

the critical point [34]. It also turns out that if a2 > 0, the system is homogeneous 

whereas for a2 < 0 the free energy eqn (3.46) has two minima corresponding to two 

coexisting phases. This gives rise to the approximation that a2 oc (T — Tc) [33]. Since 

a2 determines the phase behaviour, it is plausible to take 04 to be constant near the 

critical point. From a physical point of view this constant must be positive because if 

04 < 0 the free energy would have its minima in cf> = 0 or <f> = 1. 

The bulk Helmholtz energy of a lattice model is given by eqn (3.32). The sum can be 

omitted for a system that consists of only one component. Taylor series expansion up 

to fourth order around the critical density <pc = 2, gives for such a single mono-atomic 

lattice gas 

_f_ 
kBT 

-v-\n2 +i(*4)+K)H)+^-D <"*> 
Indeed, all odd terms in (<f> — 1/2) drop out because both logarithmic, i.e. entropic, 

terms contribute with opposite signs forcing the system to be symmetric. The linear 

term stems from the interactions, i.e. it is an energetic term, which accounts for a 

(mean-)field in the system caused by molecular interactions. Since the energetic term 

is quadratic in the density, it does not contribute higher order odd terms. Note that 

in the lattice model the field is always present, unlike a magnetic field that can be 

externally applied. Nevertheless, magnetism is frequently used as an analogue for a 

molecular system to illustrate the Landau theory [12, 33, 34]. 

The quadratic term in eqn (3.47) is proportional to 2 + f and is identified as <z2 from 

comparison with eqn (3.46). This term vanishes if v = —4, which indeed coincides 

with the critical point. For v < — 4 the system will phase separate and for v > — 4 

it is homogeneous. This again supports the statement that the interaction parameter 

is inversely proportional to the temperature. The coefficient of the fourth order term 
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is indeed a positive constant. So, the series expansion of the free energy of the lattice 

model and the Landau theory completely agree in this respect. 

The chemical potential of the Landau expansion eqn (3.47) can be found from its 

thermodynamic definition, eqn (3.31) 

*-(ik-H<+">K 16 / 1 

For v < — 4 two coexisting phases with densities cj)a and $P may exist. This requires 

equal chemical potentials in the two phases. Owing to the symmetry of the Landau 

expansion, it appears that <$>a—\ = \—$P, as can also be seen in figure 3.10. Substitution 

in the Landau expression for the chemical potential leads to the identity 

Since v is inversely proportional to the temperature, the classical mean-field scaling 

result that {<j> — <pc) oc (vc — v) ' , as also found in section 3.2.3, is recovered. 

In an inhomogeneous system the density is a function of position. In order to account for 

the spatial variance of the density, Landau added a squared gradient [12, 34] analogous 

to the van der Waals model for inhomogeneous systems as will be used in section 4.2.2. 

The total free energy of the inhomogeneous system then reads 

F = J[fe-h (cj>(r) - 4>c) + a2 (4>(r) - 4>cf + a4 (0(r) - <t>cf + c (V^(r))2] df (3.48) 

The total Helmholtz energy of the lattice model for an inhomogeneous system is given 

by eqn (3.21). Since L(z)vo is the volume of a layer, the sum over all layers of the 

Helmholtz energy density is equivalent to the volume integral in continuous space. For 

slowly varying densities, the continuous density profile (f>(f) may be approximated by 

a second order series expansion around the local discrete density. Substitution in the 

contact fraction, eqn (3.15), gives 

(0(z)> = A_KA(Z - 1) + \0<t>(z) + \l(j)(z + 1) 

« A_x ( 0 (0 - t^<l>{f) + ^ V 2 0 ( r ) ) + Aoflf) + Ax ̂ ( r ) + ^V^(r) + ^ 2 V 2 0 ( r ) ) 

= cP(r) + A ^ V ^ r ) 
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Here, a planar lattice has implicitly been assumed, i.e. A_i = Ai. Integration by parts 

gives for the interaction term in eqn (3.21) 

£>(z)i / (0(z)) L(z) « / vcj){f)2dr+ i / A ^ V ^ V ^ f J d f 

= [ v4>(r)2dr- f r/A!£2|V(A(r)|2df 
Ja Ja 

where use has been made of the fact that the density gradient vanishes in both bulk 

phases a [z < 1) and /3 (z > M). Inserting this result into eqn (3.21) gives for the 

continuous version of total Helmholtz energy 

•BT J k 
/ («AW)-^V 2 |V^| 2 

df (3.49) 

where the homogeneous Helmholtz energy density f(4>(r) is given by eqn (3.47). The 

term — \v\\l2 is identified as c of the Landau expansion eqn (3.48). It is concluded 

that the Landau theory is in complete agreement with the derived lattice model in the 

vicinity of the critical point. This equivalence will be used in section 4.2 to compare the 

mechanical expressions for the bending stress and torsion stress, derived in chapter 2, 

with those found in the literature. 

3.2.5. Spatial properties of the pressure in the lattice model 

The grand potential of the lattice model for an inhomogeneous system given by 

eqn (3.25) resembles the state variable derived from thermodynamics, eqn (2.45), as 

proposed by Buff [36]. Although it has been shown that the latter equation does not 

yield a unique virial expression for the pressure tensor for different geometries, it can 

be used to define a local pressure [27]. Upon discretizing eqn (2.45) by replacing the 

integral by a sum and consequently df by VQL(Z), as given by eqn (3.13), the grand 

potential density per layer is identified as the tangential pressure in that layer (cf. 

figure 3.5) 

2|^a = _ in Mz) + ̂  £ £ &(*K- to(*)> - \ E "«(&(*) - <&(*)» (3-50) 
•O i j i 

In the Helmholtz energy as given by eqn (3.20), the energy has been expressed in 

terms of the exchange energies Xij- If e c m (3-17), the energy based on the direct pair 

interaction parameter Vy, had been used instead, the explicit i/,j-terms would drop out 

in all equations. This would then leave for the pressure 

^ g ^ = - ln0o(z) + ^ £ E & ( * K - (Mz)) (3.51) 
i j 
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Since the contact fractions in the bulk equal the local densities, both expressions for 

the local pressure (eqn (3.50) and eqn (3.51)) yield the same bulk pressure as given by 

eqn (3.27). The value of the grand potential of the system is also independent of the 

choice of the reference state for the internal energy since the extra term vanishes after 

summing over all layers: 

M 

J2 L(z) {&(*) - <&(*)>} = • • • + L(z)Uz) - L{z - 1)A!(* - l )^ (s ) 
2=1 

- L(z)X0(z)cl>i(z) - L(z + l)A_i(* + l)(j>i{z) + ... 

= . . . + L(z) (1 - A_!(2) - X0(z) - Ax(z)) k(z) + ... 

= 0 

where use has been made of the inversion symmetry and the definition of the contact 

fraction, eqn (3.15). Thus, both eqn (3.50) and eqn (3.51) substituted in eqn (3.25) 

for the term in braces give the same value for the grand potential and on this basis 

neither expression for the local pressure can thermodynamically be more correct than 

the other. That is, they are thermodynamically indistinguishable as one should expect 

from the pressure defined in this way. However, this is not obvious for a pressure found 

from the virial route [17]. 

The ambiguity in the expression for the local pressure has also been encountered 

for the Irving-Kirkwood expression in section 3.1.2; there is no accepted reasoning to 

assign the forces uniquely to one particular position. It is in the same way impossible 

to define the local tangential pressure in the lattice model unambiguously in terms of 

pair interactions, since eqn (3.50) and eqn (3.51) are believed to be equally correct in 

that they both yield the same grand potential. Both expressions will be used below to 

determine properties of the tangential pressure. Note that any other reference state for 

the energy can be chosen and it is consequently possible to propose various alternative 

thermodynamically consistent expressions for local pressure. 

For a planar lattice containing one type of monomers and free volume, an appropriate 

density profile can be found satisfying the equilibrium condition that the chemical 

potential in each lattice layer equals the bulk chemical potential. Such a profile is 

illustrated in figure 3.15a for a direct interaction parameter which is 1.5 times the 

critical interaction parameter to obtain phase separation (i/ = —6, X = 3). 

The tangential pressure profile through the planar lattice as determined by eqn (3.50) 

is symmetrical with respect to the Gibbs dividing plane at ZGibbs since exchange of all 

monomers with free volume should give indistinguishable results as it follows from the 
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FIGURE 3.15. (a) The density profile and (b) the corresponding pressure pro

file using either p£, given by eqn (3.50), or pj,, given by eqn (3.51), for a 

calculation with \LM monomers on a planar lattice, M = 30, Ao = 2/3, 

v = —6, 1=1. The discrete values are assigned to the centre of the layer and 

interpolated linearly. 

definition of xy , eqn (3.18). On the other hand, the tangential pressure calculated with 

eqn (3.51) is not symmetrical and has a larger tensile part in the interfacial region. 

The normal pressure in a planar interface is constant and equals the bulk pressure in 

order to satisfy mechanical equilibrium as arises mathematically from eqn (3.11). The 

pressures are illustrated in figure 3.15b for the phase-separated system that corresponds 

to the aforementioned density profile. 

Now a droplet is considered. To that end, N = J2Z ip°(z)L(z) monomers are placed 

on a curved lattice where <fi°(z) is the previously determined local density of the planar 

interface. Note that <p° has a totally different physical meaning than fo, which repre

sents the fraction of free volume in the system. Neglecting the curvature dependence of 

the interfacial tension [37], a Laplace pressure difference Ap = 7 ° J is applied in order 

to impose a certain curvature J. According to eqn (2.49), the interfacial tension of the 

planar interface, 70 , can be determined from the zeroth bending moment as also found 

by Kirkwood [22] 

7° = £ ( P - M * ) ) 
vo 
a0 

(3.52) 

With the applied Laplace pressure difference, a density profile similar to figure 3.15a, 

which satisfies the equilibrium conditions, is found again. From this density profile the 
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FIGURE 3.16. (a) The tangential pressure profile pj, using eqn (3.51) with 

the related normal pressure profiel pv
N determined from eqn (3.11) and (b) 

the tangential pressure profile Pj. using eqn (3.50) with the related normal 

pressure profile p^ determined from eqn (3.11), for a calculation with JV = 

53z <P°(z)L(z) monomers on a spherical lattice, where <p° is the density profile 

of the planar interface shown in figure 3.15, M = 30, Ao = 2/3, v = —6, £ = 1. 

tangential pressure profiles can be determined using either eqn (3.50) or eqn (3.51). 

Realising that in the bulk pN = pT, the normal pressure profile can be determined from 

integration of the discretization of eqn (3.11), as outlined in appendix 3.D.I. Both 

components of the pressure tensor are shown in figure 3.16. As for the planar interface, 

the tangential pressure from eqn (3.51) has a larger tensile part than that determined 

by eqn (3.50). The calculated normal pressure and the grand potential densities them

selves show behaviour similar to the 'real' pressure calculated from molecular dynamics 

simulations based on the virial expression for the pressure [6] which, in turn, shows a 

good fit with the hyperbolic tangent expression shown in figure 3.6. This is also found 

for a van der Waals gradient theory [38]. 

3.2.6. Calcultation of interfacial properties of the lattice model 

In the previous sections knowledge of the local pressure has been gained. The me

chanical expressions for the interfacial characteristics found in section 2.4 can now be 

determined explicitly. As stated in chapter 2, the interfacial tension according to Gibbs, 

7G, depends on the choice of the dividing plane, Rs. In figure 3.17 this dependence is 

shown for a single component lattice model liquid-vapour equilibrium on the three dif

ferent lattice types. The number of monomers for each geometry is chosen such that 
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FIGURE 3.17. Interfacial tension according to Gibbs, 7G, as a function of 

the position of the dividing plane, Rs, for \LM monomers on a planar, and 

^2z<fi°{z)L(z) monomers on a cylindrical and spherical lattice, where f°{z) is 

the equilibrium density profile of the planar interface, M = 30, v = —6, and 

A0 = 2/3. 

the Gibbs dividing or equimolar plane is approximately at RGM,S = M/2. The value of 

the interfacial tension according to Gibbs has been determined from eqn (2.49), using 

both p%, and pj. for the local pressure profile. Clearly, JQ is not a function of the choice 

of the pressure profile. This is due to the fact that 7(jA is the excess grand potential 

(cf. eqn (2.17)). Because the area A does not depend on the choice of the pressure pro

file, neither does 7G since the grand potential and the bulk pressures have shown to be 

independent of this choice. With the imposed Laplace pressure difference, Ap = 7°J , 

the surface of tension is found where 7G = 7°, as shown in figure 3.17b for a cylindrical 

and spherical interface. Owing to the curvature of the lattice the surface of tension 

does not exactly coincide with the Gibbs dividing plane. This small difference may give 

rise to a dependence of the interfacial tension on the curvature [37], as will be outlined 

in chapter 4. 

Since the local pressure cannot be determined unambiguously, the respective bend

ing moments given by eqn (2.50) can neither be given unambiguously. By term-wise 

matching of eqn (2.43) and eqn (2.49), the interfacial tension according to Boruvka and 

Neumann, the bending stress, and the torsion stress equal the zeroth, first, and second 

bending moments, viz. JEN = PO, Q = P I , and C2 = P2. As a result, it is concluded 
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that these thermodynamically well-defined parameters cannot be determined unam

biguously. This is physically unacceptable. However, it will now be shown that the 

mechanical expressions eqn (2.55), eqn (2.56), and eqn (2.57) do give identical results 

for the given pressures, eqn (3.51) and eqn (3.50), of the lattice model. 

Here, a liquid-vapour equilibrium is described for cylindrical droplets. In that case 

the total curvature J can be varied at constant Gaussian curvature K. Note that in 

figure 3.17 the curvature of the interface was notionally changed by shifting the divid

ing plane of a given system. Now the curvature is physically changed for a particular 

choice of the dividing plane. The Gibbs dividing plane is chosen for the position inter

face, i.e. T = 0, which is unambiguously determined for a single component system. 

The mechanical expression for the interfacial tension according Boruvka and Neumann, 

eqn (2.57), reduces in that case to 

dP0\ T (dPA T2 

- -M^, / -U^/ (353) 

The mechanical expression for the bending stress, eqn (2.55), reads for a cylindrical 

interface at the Gibbs dividing plane 

To arrive at the interfacial tension according to Boruvka and Neumann, eqn (3.53), 

and bending stress, eqn (3.54), the derivatives of Po and Pi with respect to the total 

curvature J are required. The curvature J of the cylindrical geometry is applied analo

gously as outlined in section 3.2.5 for a spherical droplet. The corresponding zeroth and 

first bending moment Po and Pi from eqn (2.50) were then determined from the excess 

pressure profiles. In this way the bending moments can be determined as a function 

of the curvature. However, the differentiation of the bending moments with respect 

to J must be carried out numerically and introduces a numerical inaccuracy. In the 

results presented here, the J-dependence of Po is determined from a fit with a third 

order polynomial, whereas Pi is fitted with a second order polynomial. From these fits 

the respective derivatives are determined. Consequently, the results presented here are 

correct up to second order in the curvature. 

From eqn (2.43) it is found that JBN = 1G for a planar interface (J = K = 0). Realising 

that 7G does not depend on the local pressure profile, it is concluded that the same 

JBN must be found from pv
T and pj. for a planar interface. However, when JBN = Po 

is applied to a curved interface, as has been done in the literature [23], it is found that 

using pj. always gives a stronger curvature dependence of j B N than when p£ is used. 
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Using eqn (3.53) for JBN it is seen that within the numerical accuracy of the derivatives 

p£ and Pj. give both the same interfacial tension according to Boruvka and Neumann. 

This is illustrated for v = 1.5^c in figure 3.18a. 

If Ci = Pi is taken, as has been done in the literature [23], it is found that the bending 

stress has qualitatively the same curvature dependence irrespective of whether pj, or 

Pj. is used. However, the values at the planar interface differ significantly. When p£ is 

used, it gives a finite positive value for the bending stress, whereas p£ gives a vanishing 

bending stress at the planar interface for all values of the interaction parameter. As 

will be outlined in chapter 4, the bending stress of the planar interface gives the first 

order curvature correction to -ya, the so-called Tolman length [18, 37]. Owing to the 

symmetry at this single component liquid-vapour equilibrium, the Tolman length and 

hence the bending stress should vanish [39]. Although the first bending moment using 

Pj. shows this feature for all values of the interaction parameter, there is no (statistical) 

thermodynamic reasoning why this expression for the local pressure would be more 

correct than p^., which shows incorrect physical behaviour. Indeed, eqn (3.54) for the 

bending stress gives the same values using both p£ and p£ within the numerical accuracy 

of the derivatives. This is illustrated for v= \.5vc in figure 3.18b. It will be shown in 

chapter 4 that eqn (2.55) gives identical results for the Tolman length as the well-known 

van der Waals density functional theory in the vicinity of the critical point. 

The torsion stress cannot be evaluated directly in the present model. As can be seen 

from eqn (2.56), this requires information on the dependence of the bending moments 

on the Gaussian curvature K at constant total curvature J. In the presented lattice 

model where only planar, cylindrical, and spherical geometries can be considered, it 

is not possible to model such a minimal surface. However, the torsion stress can be 

determined indirectly from comparison of a spherical interface, where J and K are 

coupled (ci = C2), with a cylindrical interface. This requires an extra fit which does not 

favour the numerical accuracy. Calculations show that within this numerical inaccuracy 

Pj. and p? also give identical torsion stress in the limit of a planar interface, as will be 

shown in chapter 4. 

3.3. DISCUSSION 

A simple lattice model has been elaborated to model liquid-vapour interfaces for 

planar and curved geometries. The local grand potential density is determined and 

identified as the local tangential pressure. It was not obvious that this statistical 

thermodynamic pressure resembled the pressure tensor found from the virial route. 

Nevertheless, the bulk pressure from the grand potential density is consistent with the 
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FIGURE 3.18. (a) The interfacial tension according to Boruvka and Neumann 

of a cylindrical interface evaluated at the Gibbs dividing plane as a function 

of curvature with v — —6, Ao = 2/3: the circles give the values for ^/BN = 

PQ using eqn (3.51) for the local pressure, the squares for JBN = IPo u s m g 

eqn (3.50) for the local pressure, the diamonds give the values determined by 

eqn (2.57) using both PQ and PJ, whereas the crosses give the values determined 

by eqn (2.57) using both PQ and P*. (b) The bending stress of a cylindrical 

interface evaluated at the Gibbs dividing plane as a function of curvature with 

v = —6, Ao = 2/3: the circles give the values for Ci = PJ using eqn (3.51) 

for the local pressure, the squares for C\ = Pj using eqn (3.50) for the local 

pressure, the diamonds give the values determined by eqn (2.55) using both 

PQ and P j , whereas the crosses give the values determined by eqn (2.55) using 
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thermodynamic definition of the pressure and a virial expansion is found. The tangen

tial pressure profile shows a large compressive, i.e. positive, part in the system but also 

a tensile, i.e. negative, part in the interfacial region. From eqn (3.52) or, equivalently, 

eqn (2.49) it can be seen that this tensile part might be necessary to provide a positive 

interfacial tension. The normal pressure in the lattice model is constructed from the 

equilibrium condition of the pressure tensor. It has been shown that despite their differ

ent origins the same physics apply to the (local) pressure from both the virial route and 

the statistical thermodynamic route in the above lattice model. The key difference is, 

however, that in the lattice model the pressure yields by definition the grand potential. 

This is not the case for the pressure from the virial route in curved interfaces. This 

difference makes the lattice model an interesting tool for modelling curved interfaces. 
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The simple lattice model can be extended straightforwardly to chains, as will be done 

in chapter 5. The chain connectivity is then taken into account by a Green function 

of a random walk of the segments biased by local mean-field potentials [29]. It is also 

possible to prevent backfolding in chains [40-42]. Moreover, it is convenient to insert 

a Lagrange multiplier that satisfies the constraint that the lattice is completely filled; 

the free volume is then considered as monomeric species in the system. The Lagrange 

multiplier only biases the statistics of the chain on the lattice but does not affect the 

physical meaning of the grand potential density. Hence, the pressure in the extended 

mean-field lattice model also has the physical characteristics of the pressure from the 

virial route. The compressive and tensile parts in the tangential pressure profile are both 

found and are completely analogous to the model given above. A detailed understanding 

of these positive and negative parts is particularly desirable to describe interfaces with 

very low interfacial tensions, e.g. microemulsions or vesicles. For these systems the 

tensile and compressive parts balance each other. Given the molecular detail that can 

be built into the mean-field theory by Scheutjens and Fleer and the basic correctness 

as ascertained above, it is concluded that this model is particularly useful in modelling 

the physics of curved interfaces. 

It is instructive to discuss briefly the pressure as found in other mean-field models. 

In the work by Szleifer et al. a Lagrange multiplier is also introduced to satisfy packing 

constraints [43-45]. Although this multiplier indeed represents an energy needed to 

change the volume, it is actually a generalized pV-term [46] which includes the chemical 

potentials of the system as well. Hence, their Lagrange multiplier cannot show the same 

physical features as the tangential pressure as claimed in their work [43-45]. Indeed, the 

Lagrange multiplier fails to recover the ideal gas limit [47]. Moreover, their Lagrange 

multiplier vanishes in the region where the average area of the molecules is lower than 

the available area. However, this lower occupancy would actually allow the chains to 

redistribute and give a tensile contribution to the pressure. Therefore, by identifying 

the Lagrange parameter with specified characteristics as the tangential pressure, they 

ignore a physically important feature by setting this Lagrange multiplier to zero in the 

region where it is negative. 

In a mean-field Landau theory the Helmholtz energy of a system is written as a func

tional of an order parameter [34]. As shown in section 3.2.4, the Landau functional can 

be fully recovered from the lattice expression for the Helmholtz energy, eqn (3.21). Con

sequently, the pressure found from Landau theories also show the mechanical features 

found from the virial expression. Gompper et al. showed that the spatial properties of 
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the Landau pressure are indeed satisfied [48, 49]. A comparison of the mechanical ex

pressions for interfacial characteristics between the closely related van der Waals model 

and the lattice model will be made in section 4.2. 

The interfacial characteristics, viz. the interfacial tension, the bending stress, and 

the torsion stress, are thermodynamically well-defined. However, the moments of the 

pressures profile, eqn (2.50), depend on the definition of the local pressure. The origin 

of this difference is that the interactions used in the expressions for the pressure cannot 

be uniquely assigned to a certain position. Consequently, identification of the interfacial 

characteristics as the bending moments, give ambiguous mechanical results. It has been 

shown that the expressions given in section 2.5 correct for this problem, so no effort 

to avoid the ambiguities in the local pressure has to be made when it is defined as the 

grand potential density. 

APPENDIX 3.A. MOLECULAR DYNAMICS OF HARD SPHERES 

A collection of hard spheres can only interact via collisions. Therefore, a molecular 

dynamics simulation of hard spheres can be restricted to tracing the particles from 

collision to collision. Consider a system of monodisperse hard spheres with uniform 

mass m and diameter a. When each particle i is at time t on position r, with velocity 

Vi, the shortest collision time tij between particles i and j can be determined from [8] 

(fy • Vijf - v?j (j% - a2) 

*y = * ^ (3-55) 

where r^ = fj — fj is the relative position and vtj = Vi — Vj is the relative velocity of 

particles i and j . When all shortest collision times between the particles at a given 

moment have been determined, the particles are moved by the shortest collision time 

tc. The displacement Afj of all particles i are determined from the elementary equation 

of motion 

Af{ = Vitc (3.56) 

Since there is only one binary collision, only the new velocity of the colliding particles i 

and j has to be determined. For an elastic collision the change of velocity At/; is given 

by 

Av{ = -Avj = ^fiifij (3.57) 

With the new positions and velocities, the new collision times of all particles can be 

determined and the above procedure can be repeated. 
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For the determination of thermodynamic quantities of the system, an infinite number 

of molecules should be taken. Obviously, this cannot be carried out in practice. To 

that end, only a set of N particles is considered in an open box. Each particle that 

leaves the box on the one side, enters the box on the opposite side. Using this so-called 

periodic boundary condition, the macroscopic system can be mimicked as an ensemble 

of exact copies of the central box such that the simulation of N particles represents the 

whole system. 

The time average of the pressure tensor can now be determined by summing the 

contributions to the pressure over all collisions c. The kinetic contribution is determined 

from (cf. eqn (3.1)) 

1 N m N 

PkV = ~ E £rnViVitc = — E E % A ^ 
T c i=l T c i=l 

where r = 52ctc is the total simulation time. 

The contribution of the interactions follow from (cf. eqn (3.4)) 

Pintv = E \ £ £ fa* = E m^s(te) = E "4%- = v £ A w(tc) 
c Z i=\ j=\ c a l c lc ~ c 

where the Dirac delta function S(tc) denotes that only the binary collision between 

particles i and j at tc has to be accounted for. 

Consequently, the time average of the (reduced) pressure tensor of a collection of N 

hard spheres after a simulation time r of c collisions is given by 

Mj? = ] V £ T 7 ? { | ^ + ̂ A ^4 (3-58> 
The pre-factor on the right-hand side of eqn (3.58) can at equilibrium be determined 

from the equipartition theorem £ 4 2
m^i =

 \^^BT. Since elastic collisions are consid

ered, this factor is constant throughout the simulation. 

For a more detailed review on molecular dynamics simulations the reader is referred 

to the literature [8, 50]. 

APPENDIX 3.B. NORMAL PRESSURE FROM PRESSURE TENSOR 

The force acting on an infinitesimal area dA is given by P • fid A, where n is the 

normal vector on that particular area. At equilibrium, all forces on the total interface 

dA are balanced. Using Gauss's theorem this is mathematically represented as 

/ P-hdA= f V • PdV = 0 
JdA JV 
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where the nabla operator is defined as 

^ - 9 - d _ d 
V = e x - h e2^ h e3-^— 

ax\ ax2 axz 

Here, e{ are the unit vectors of the coordinate system in the directions i. 

As stated in section 3.1.3, the equilibrium condition must apply to each infinitesimal 

element. Hence, the divergence of the pressure tensor must vanish term-wise 
V - P = 0 (3.59) 

3 .B . I . Cylindrical geometry 

If the interface has a cylindrical geometry, it is convenient to transform to cylindrical 

coordinates {r, <j>, z) 

X\ = r c o s ^ 1 e~i 

X2 -r sin < 

= COS( 

e^ = sin <j 

e~3 =ez 

> er + cos c 

This converts the nabla operator to 

d 1 
or r 

,d_ ^d_ 
bd<P+6zdz 

After straightforward expansion using tensor analysis, the divergence of the pressure 

tensor becomes (cf. for symmetrical tensors [51]) 

V P = <t>4> 

+ 

+ 

r 

PTi> + P<k; 

\JA f"p \J ± Z1 

dr dz + 
ld /V 

+ dPrl + dP2 

r d(f> 

ldP. 

1 dPrz 
r or 

dr 

dP2: 
+ • 

dz r d<f> 

1 dP, ~ 

dz r d(f> 

In a cylindrical geometry the r-direction is normal to the interface. Since in the present 

scope only the normal pressure has to be considered, only the term proportional to er is 

of interest. Recall that at equilibrium the off-diagonal elements of the pressure tensor 

vanish: P^. = PZT = 0. Substitution of this equilibrium condition in eqn (3.59) gives 

for the term proportional to er 

+ • 
dP„ 0 (3.60) 

r dr 

Since r is perpendicular and 0 is parallel to the cylindrical interface, P„ = PN and P^ = 

PT- Recall moreover that for a cylinder the total curvature J = \/r (cf. section 2.1.2), 

so that eqn (3.60) corresponds to eqn (3.11). Furthermore, it is seen with the vanishing 

off-diagonal elements, that both P^ = Pzz = PT are constant for each r. 
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3.B.2. Spherical geometry 

For a spherical interface, a transformation to spherical coordinates {r, (j>, z) is conve

nient 

X\ =r sin 0 cos 0l e[ = sin 8 cos 4> e"r + cos 6 cos <fi eg — sin <f> ej 

X2 =r sin 0 sin 4> \ =>• e~2 = sin 6 sin (j) er + cos 0 sin <fi eg + cos 0 ej 

z3 =rcos0 J €z=cos8 er — sin0 eg 

Substitution into the nabla operator gives in spherical coordinates 

d 1 J 1 ^ 9 
. _j pn 1 p, 

hd<t> 

1 - d 
OT r cw rsint 

From tensor analysis, the divergence of the pressure tensor is given by (cf. for symmet

rical tensors [51]) 

V P = 
dPr 2 ldPgr 1 
or r r of) r rsmO oq> 

1 8P6r cot<9 1 
H "gT fs, 

r r 

+ 

2 dPrg 1 IdPgg 1 dP* ^ COt 0 Cot 0 
r or r r 06 rsva.0 00 r r 

dPr*,2p , ±dPg, 1 dP„ cat6 1 ,cot£> 
or r r of) rsmv oq> r r r 

eg 

Again, only the term proportional to e"r is of current interest since the r-direction is 

normal to the interface. It has been shown that the off-diagonal elements Pap = 0, 

a / / 3 vanish at equilibrium. Substitution of these values for the off-diagonal elements 

in eqn (3.59) gives for the term proportional to eT 

2Prr-PH-Pgg + g g I = 0 ( 3 6 1 ) 
r or 

Since r is perpendicular to the spherical interface, Prr = p^. Analogously, because 

both 9 and <j> are parallel to the spherical interface, Pgg = P^ = PT- In has been 

shown in section 2.1.2 that the total curvature J = 2/r for a sphere. Consequently, 

eqn (3.61) is equivalent to eqn (3.11). Moreover, since the off-diagonal elements vanish 

and Pgg = P44 = pr it is found that px is constant at each r. 

APPENDIX 3.C. STIRLING'S APPROXIMATION 

A factorial is given by the well-known T-function 

N\ f 
Jo 

xNe xdx •• 7° 
Jo 

-x+N\nx dx (3.62) 
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The exponent of the last term is approximated by a second order Taylor series around 

it maximum x = TV 

-x + TV In x = -TV + TV In TV + 0 - ^ (x - TV)2 + 0(x3) 

Substitution into eqn (3.62) gives 

TV! « /""expl-TV + TVlnTV- ~N I dx 

1 NlnN-N r \ (X~N)2\j 

= 2e Le*P\-^N-jdX 

Using the error function yields 

TV! = eNlnN-NV2:KN 

From this it follows that 

InTV! = 7Vln/V-/V + - ln27r/V«iVlniV-iV (3.63) 

The last expression on the right hand side is the so-called Stirling approximation, where 

the term In 2irN is negligible if TV is sufficiently large. 

The relative error of the Stirling approximation is less than 2% if TV > 50. Therefore, 

in the thermodynamic limit (TV ss 1023) this approximation is sufficiently accurate. 

However, the relative error is rather large for small values of TV. In that case the 

accuracy can be improved considerably by adding the In 2irTV-term. The error is then 

less than 2% if TV > 3. So, this correction term might be introduced for expressions 

where TV is not sufficiently large (e.g., TV < 100) to have a better approximation. 

APPENDIX 3.D. DISCRETIZED INTERFACIAL PROPERTIES 

The expressions in chapter 2 were all derived in continuous space. Owing to the 

discretization of space, imposed by the lattice model, they must be rewritten. Here the 

discretized version of the normal pressure on the lattice will be derived as well as the 

expressions for the bending moments and the generalized Laplace equation. 

3.D.I. Discretized normal pressure 

As the tangential pressure was identified with the grand potential density, it is con

stant within each lattice layer. Therefore, this also holds for the normal pressure. The 

change of the normal pressure from one layer to another is according to eqn (3.11) given 

by the difference equation 
rz+l /.z+1 

/ dpN = pN(z + 1) - pN(z) = (pr(z) - PN(Z)) I J(z)dz 
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Using the total curvature of a sphere, J(z) = 2/z, this reads 

pN(z + 1) = pN(z) + 2 (pr(z) - pN(z)) In (l + - J 

For a cylinder, the difference equation for the normal pressure is given by 

V 
pN{z + 1) = pN(z) + (pT(z) - PN{Z)) In (1 + 

because J(z) = 1/z. For a planar geometry this implies that the normal pressure of all 

layers are equal to the bulk pressure since J(z) = 0. 

3.D.2. Discretized bending moments 

In section 2.5 thermodynamically consistent mechanical expressions for the bending 

moments were found as given by eqn (2.50). As stated before, the tangential pressure 

is constant within each lattice layer. Consequently, a bending moment can be written 

as a sum over all layers. The zeroth bending moment, eqn (2.50a), is simply given by 

Po = kva0 - PT)dR = £ f (Pa" - Mz))dR = J2(P
a0 - PT(Z)) (3.64) 

J z Jz-l z 

As before, pal3 equals pa up to the dividing plane and p13 beyond, where both bulk 

pressures are given by eqn (3.27). Either bulk pressure pa and pP is evaluated by 

applying <f>f = <f>i(l) and </>f = (f>i(M), respectively. The integral in eqn (2.50a) is 

thus effectively replaced by a sum. However, this cannot be done for the first bending 

moment, eqn (2.50b) 

Pi = f(R - Rs)(p
a? - PT)dR = Y, f (R~ Rs)(pa0 - pT(z))dR 

J , Jz-l 

E i t — RSR (Pa0 - PT(Z)) = Y.(*-R.-1) (Pa(3 ~ PT(Z)) (3.65) 

Owing to the discretization, an extra factor half enters. Analogously, it is found that 

the second bending moment, eqn (2.50c), is given by 

P2 = £ (iz - Rs)
2 -{z-Rs- | ) ) (P°0 ~ PT{Z)) (3.66) 

Applying the relation between the bending moments and the interfacial tension ac

cording to Gibbs, eqn (2.43), as well as using eqn (2.28) with z — Rs + Ai?s, the excess 

grand potential, given by eqn (2.17), becomes 
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It is easily seen that for a planar geometry (J = 0, K — 0) this recovers eqn (3.64) 

since A(z) = A throughout the lattice. For a spherical lattice (J = -£-, K = ^ , 

A{z) = Airz2) it is found that 

lGA = £ 4TT,2 (l - \ + -L) ( ^ _ Mz)) 

= £ ^ (*3 - (z - !)3) {P°0 ~ **(*)) (3-67) 

Using eqn (3.13) for L(z), eqn (3.67) recovers the excess grand potential as given by 

eqn (3.25) 

M 

W = lGA = YL{z){pa0-PT{z)) 
2=1 

In the cylindrical case (J = -£-, K = 0, A{z) = hirz2) the excess grand potential 

is recovered analogously. This shows that the discretized expressions for the bending 

moments as given by eqn (3.64), eqn (3.65), and eqn (3.66) form a consistent set of 

equations. 

3.D.3. Discretized generalized Laplace equation 

The generalized Laplace equation was derived from the invariance of the grand po

tential with respect to the choice of the arbitrary dividing plane. This implies (cf. 

eqn (2.18)) 

-paVa{RStl) -jfV0(RsA) +1G{RS,I)A{RS]1) 

= -P
aVa(RS:2)-^V0(Rs,2)+lG(Rs,2)A(Rs,2) 

where RSti and RSt2 are the two choices of the dividing plane. For a sphere this equation 

reduces to 

MRsJRl-MRsJRh (368) 
p l{Rh-Rh) 

In continuous space, one could take RS2 = Rs,i + dRs, such that 7G(-R«,2) = JG(RS,I) + 

dja- Neglecting higher order terms, this reduces eqn (3.68) to 

which recovers the generalized Laplace equation eqn (2.36). Analogously, the gener

alised discrete Laplace equation for a cylindrical geometry reads 

A _ lG(Rs,l)Rs,l - 1G(RS,2)RS,2 
P~ \(Rh-Rh) 

For a planar geometry this gives 7G(-RS,I) = 1G{RS,2) because Ap = 0. 
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C H A P T E R 4 

Mechanical Propert ies of Curved Interfaces 

ABSTRACT 

The change of the interfacial tension according to Gibbs as a function of the 

physical curvature is described by an expansion up to first and second order 

in the curvature leading to a definition of the Tolman length and the Helfrich 

constants, respectively. Generally valid expressions for the Helfrich constants 

in terms of the local pressure profile are found which seem to differ from those 

in the literature. These discrepancies are attributed to different definitions 

of the local pressure. Using a lattice model, the descriptions are applied to 

a simple liquid-vapour interface. It is found that the mechanical quantities, 

derived in this way, evaluated at the Gibbs dividing plane give unambiguous 

results for the Helfrich constants. The constants that were found reproduce a 

direct fit to the interfacial tension within numerical accuracy. The results of 

the lattice model are compared to the results found from the van der Waals 

model and from an analytical expansion of the van der Waals model around the 

critical point. The three approaches are in agreement in the regions where these 

theories apply. The practical relevance of the Helfrich constants is discussed. 

4.1. BENDING AN INTERFACE 

In chapter 2 it is shown that the interfacial tension can be obtained from the excess 

pressure profile. Although the pressure could locally not be determined unambiguously, 

a unique value for the interfacial tension according to Gibbs is found, as shown in 

chapter 3. Nevertheless, the interfacial tension has shown to be a function of the 

notional position of the chosen dividing plane. This is caused by the fact that by 

changing the notional position of the dividing plane, the chosen interface has a different 

area and principal curvatures and both phases occupy different volumes. Since this 

mathematical choice of the dividing plane does not change the system physically, the 

grand potential cannot change and thus the interfacial tension must change accordingly. 

However, for a fixed particular choice of the dividing plane the interfacial tension is 

determined unambiguously. 

In this chapter the change of the interfacial tension is investigated as a function of a 

physical change in the curvature of the interface for a given choice of the mathematical 

dividing plane. As derived in section 2.5, the isothermal change of the interfacial tension 

85 
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according to Gibbs is given by the Gibbs-Duhem relation 

<*»>,- (*-Er.(fs) J "+ (« i -E r ' ( ^ ) J ' 0 f <") 
where it has been assumed that the chemical potentials of the system will generally 

change upon the physical change of the dividing plane. Obviously, in the case that the 

chemical potentials are constant upon bending, the terms containing /x, vanish. 

Two phenomenological descriptions of the change of the interfacial tension will be 

given below. One description, up to first order in the curvature, is by Tolman [1]. The 

Tolman description has been elaborated among others by using the penetrable-sphere 

model [2, 3] and molecular dynamics simulations [4, 5]. A more generally applicable 

description, up to second order in the curvature, was given by Helfrich [6]. Several 

models, e.g. a molecular model [7-9] and a Ginzburg-Landau model [10, 11], have been 

proposed to describe complex surfactant systems this way. Blokhuis and Bedeaux gave 

a thorough overview of the application of both phenomenological descriptions using 

various models [12]. 

4.1.1 . First order discription: the Tolman length 

The curvature terms in the expression for the internal energy vanish by definition at 

the surface of tension, as discussed in section 2.2. Therefore, at that particular interface 

the isothermal Gibbs adsorption equation, eqn (4.1), reduces for a single-component 

system to 

dla,s = -Tsdv (4.2) 

Here the subscript s refers to the quantities with respect to the surface of tension. Prom 

the Gibbs-Duhem relation derived from eqn (3.29) and eqn (3.30) it is found that, at 

constant temperature 

where 4>a and <jfl are the densities in the respective bulk phases. Substitution into 

eqn (4.2) yields 

*rc, = -r±W = - ^ (i - £ ) *• = -^~d (f - / ) 

Using the classical expression for the Laplace pressure difference pa — p&, eqn (2.11), 

valid at the surface of tension only, this gives 

—r — Ts —r 
dlG,s = -rz—s-jfld("fGtSJs) = ——s—f,lG,sdJs + -TZ—^TzJid-ya,, 
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»~.8* 

FIGURE 4.1. A possible density profile of a planar interface; the hatched areas 

are equal for the Gibbs dividing plane zgibbs whereas the grey bar indicates 

the extra adsorbed amount by shifting the dividing plane over a distance S to 

the surface of tension zs. 

After rearranging terms, the following differential equation is obtained 

-r. 
1 

lG,s 
-d-yG,s -dJ. (4.3) 

1 + - -,J. 

/

ZGibbs POO 

{4>a-4>{r))dr = -
•°° JzGibhs 

At the Gibbs dividing plane, zgibbs, the interfacial excess vanishes by definition, i.e. 

for a planar interface 

f - <p(r)) dr (4.4) 

However, if the dividing plane is shifted to the surface of tension, zs, the adsorbed 

amount changes. As can be seen from figure 4.1, this change is given by 

T, = (0° - / ) (zGibba - z.) = (r - <f) 6 (4.5) 

which defines the so-called Tolman length 5 = ZGMS — zs. This derivation is completely 

analogous to that of eqn (2.62) in section 2.5.1, where the pressures have been replaced 

by densities. There it has been made plausible that a mathematical derivation, as given 

by Tolman [1], indeed gives the same result as the above graphical construction. 

Substitution of eqn (4.5) into the differential equation eqn (4.3) gives 

dlc,s = , , , 7 dJs 

7G,S 1 + 6 Js 
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The Tolman length has been defined from the density profile of a planar interface. 

However, for a curved interface one also has to account for the change of the interfacial 

area when the dividing plane is shifted. This leads to a differential equation that is 

difficult to solve. However, since the Tolman length is thought to be of the order of 

molecular distances [1], this change is negligible for weakly curved interfaces and hence 

5 is assumed to be constant. Integrating at constant temperature from the planar 

interface (Js = 0) with an interfacial tension 70 to a certain, albeit weak, curvature Js 

gives for the interfacial tension 

I^-TTSJ. ( 46 ) 

Since the assumption of a constant Tolman length is only valid for weak curvatures 

(Js « 0), eqn (4.6) can be written in a power series up to first order in curvature as [2] 

1G,S = 7° (1 - 6J,) (4.7) 

The Tolman length is defined to be the distance between the Gibbs dividing plane 

and the surface of tension of the planar interface. The position of the Gibbs dividing 

plane of a planar interface can be found from its definition, eqn (4.4). The surface of 

tension was defined to be at that position where the curvature terms vanish, i.e. where 

the generalised Laplace equation, eqn (2.33), reduces to the classical Laplace equation, 

eqn (2.11), that is, when 

Q (Js
2 - 2KS) + C2JSKS = 0 (4.8) 

If spherical droplets are considered (J = ^ , K = ^ ) , the surface of tension is found 

at (Ci + C2 ^-) = 0 . Hence, in the limit of of a planar interface (Rs —> 00), the surface 

of tension is found where the bending stress of a planar interface vanishes; Cj = 0. 

Tolman derived a mechanical expression for the position of the surface of tension of 

planar interfaces as F^ = 0 [13]. Using 70 = j G = -yBN = FQ for a planar interface [14], 

eqn (4.8) leads after rearranging of terms to 

7°zs = Jz(p0-p°T(z))dz (4.9) 

where the superscript a/3 has been dropped since pa = p8 = PN{Z) throughout a planar 

interface, as outlined in section 3.1.3. The superscript 0 refers again to evaluation at 

the planar interface. This equation is often found in the literature, although it has been 

acknowledged that it gives ambiguous results [2, 14]. Although eqn (4.9) provides an 

equation to an interface where the tension acts [15] (cf. the way to find the position of 

the fulcrum where a lever is balanced), it is not clear that this surface coincides with 

the surface of tension from its thermodynamic definition, [d'yc/dR] = 0, as found in 
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section 2.2.2. Applying eqn (2.55) for the bending stress of the planar interface, the 

mechanical expression for the position of the surface of tension is found to be 

l°z. /'(•'-•a'DMSL^^L (il0> 

In contrast to eqn (4.9), the surface of tension at the planar interface has to be invoked 

in order to obtain it. Therefore, eqn (4.10) has to be solved self-consistently. Moreover, 

it remains to be established whether the same mechanical expression for the surface 

of tension holds for other geometries, e.g. cylindrical (J = 1/RS,K = 0). Therefore, 

eqn (4.10) is not an easy way to assess the position of the surface of tension and hence 

the mechanical route to the position of the surface of tension is not recommended. 

Since at the surface of tension the Laplace equation of capillarity reduces to Ap = 7 J, 

the surface of tension can straightforwardly be found from eqn (2.18) once the grand 

potential and the bulk pressures are known. This provides a much easier, unambiguous 

way to locate the surface of tension. 

4.1.2. Second order description: the Helfrich equation 

The thermodynamic analysis in the previous section only holds for a single-component 

system. For a multi-component system the position of the Gibbs dividing plane will 

generally depend on the component to which it refers to. Consequently, the Tolman 

length cannot uniquely be denned. Moreover, the Tolman description as given by 

eqn (4.7) is an approximation which is only valid up to first order in the curvature. It 

can be seen from eqn (4.1) that a description of the interfacial tension of second order in 

the curvature is more appropriate. Therefore, a more general description up to higher 

order is desirable. 

Consider the interfacial work needed to bend a planar interface at constant temper

ature. The requires integration of eqn (4.1) from the planar interface to an interface 

with a certain curvature (J, K) 

/; «, -1', (* - E r, (tjOj « + f (« " ?r. (£) J *, «.n, 
It is generally impossible to evaluate these integrals without a model. Considering the 

interface as a harmonic spring, the work per unit area to deform it, 7 c may phenomeno-

logically be given by a series expansion up to second order in the curvature. For small 

differences between x0 and x, an integral of a function f(x) can be approximated up to 
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second order as 

£ f(x')dx' = F{x) - F(x0) « ( g ) (x -x0) + l (^pj (x - x0f 

1 fdf\ /_ _ ^2 = f{x0){x - x0) + - I — 1 ( z - z 0 ) 

Applying this expansion up to second order in curvature to eqn (4.11) yields 

w.io-1s-(c.-i:r.(^)J,,+i(Ajc-s:r1(^)jV, 

+ | c 2 - v r i | ^ | \ K V0) T,J 

(4.12) 

Helfrich gave a similar expression for a phenomenological description of the undulation 

of lipid bilayers [6] 

7G(J, K)-l0 = \kcJ
2 - kcJ0J + kK (4.13) 

where Jo is the so-called spontaneous curvature. The saddle-splay modulus k determines 

the topology of the interface rather than its rigidity, which is in turn determined by the 

bending modulus kc. The Helfrich equation, eqn (4.13), has frequently been used in the 

literature to describe curved interfaces, undulation forces, and predict phase transitions 

in multi-component, e.g. surfactant, systems like vesicles and microemulsions [9, 16]. 

Since the coefficients of J and K in eqn (4.12) are constants, matching with the Helfrich 

equation, eqn (4.13), is allowed 

-fc*-(*-Er.(&)J' <"•»») 

Using eqn (2.55) and eqn (2.56) for, respectively, the bending stress and torsion stress 

in terms of the excess pressure profile, the following mechanical expressions for the 



4.1. BENDING AN INTERFACE 91 

Helfrich constants are obtained 
o 

-kcJ0 = Px° + I ̂  | (4.15a) *-(3L 
0 

dK) 
T,J 

At first sight, all second terms on the right-hand sides of eqn (4.15) are extra compared 

to the expressions given in the literature, viz. —kcJo = F^, kc = (-fj) , and k = Pj 

[9, 12, 16]. Moreover, in the first term on the right hand side of eqn (4.15b) a factor 

2 comes in compared to the literature due to differentiation of the extra terms in 

eqn (2.55). The extra terms make the thermodynamic variables independent of the 

choice of the expression for the local pressure, as demonstrated in section 3.2.6. In 

addition, these terms require that one has to do real bending work. Hence, according 

to eqn (4.15), evaluation of the planar interface only, as found in the literature [9,12,16], 

is not sufficient when the pressure is thermodynamically defined. 

Safran [16] derived mechanical expressions for the bending and saddle-splay moduli 

from virtual work. He first determined the tangential volume work — prdV needed to 

bend an element of a planar interface to certain curvatures J and K. Then the volume 

work —puidV is applied perpendicular to the interface in order to recover the original 

volume of the planar interface; this guarantees that there is no net volume work thus 

satisfying the principle of virtual work [17]. The change in the pressure profile upon 

curvature is found from a first order series expansion around the pressure profile of the 

planar interface. Consequently, he assigned all the work done to the pressure tensor. 

The generally allowed change of the chemical potentials are embodied in the pressure, 

which is not consistent with its thermodynamical definition. As outlined in section 3.3, 

something similar occurs in the work by Szleifer et al. [8]. Their pressure enters as 

a Lagrange multiplier introduced to satisfy packing constraints; this is not obviously 

identical to the local pressure. Inserting this constraint into the partition function only 

adds a generalized pV-term [9], also accounting for the chemical potentials. Gompper 

et al. [10, 11] define the Ginzburg-Landau free energy density as the excess pressure 

profile. All these local pressures differ from the thermodynamic definition as found 

from eqn (2.45) on which the above analysis leading to eqn (4.15) has been based. The 

differences between eqn (4.15) and the expressions given in the literature may thus stem 

from the different definitions of the local pressure. 
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The Helfrich equation, eqn (4.13), was derived by series expansion up to second 

order in the curvature. If only the first order terms are evaluated, the approximated 

Tolman equation, eqn (4.7), is recovered. Comparison of both equations yield for a 

one-component system 

"-«"-•!-(*)!„ (416) 

The Tolman length can be replaced by its thermodynamic definition, 6 = ZQMS — zs. 

Subsequently, eqn (4.10) can be substituted for "f°zs. Using 7 0 = IP$, eqn (4.16) gives 

after rearranging terms 

(zGibbs-Zs)70 = S70 = r0(^)° (4.17) 

This is an alternative expression for the bending modulus times the spontaneous curva

ture. Here, it has implicitly been assumed that (ZGMS — zs) is constant within first order 

in the curvature, i.e. eqn (4.6) is consistent with eqn (4.7). It follows from eqn (4.17) 

that bending an interface is a thermodynamic rather than a completely mechanical 

process. 

Note that for a one-component system the Tolman length is a fixed distance between 

two well-defined dividing planes, viz. the Gibbs dividing plane and the surface of 

tension. Moreover, it can be seen from eqn (2.50a) that 7 0 = ¥Q does not depend on 

the choice of the dividing plane. Hence, the product #7°, and consequently kcJo, is 

independent of the choice of the dividing plane. However, the bending modulus kc, as 

given by eqn (4.15b), and the saddle-splay modulus k, found from eqn (4.15c), are a 

function of the position the interface. Alternatively, it is found from eqn (4.13) that 

whereas the first order curvature correction to the interfacial tension is independent of 

the choice of the interface, the second order curvature corrections do depend on that 

choice. This might be the basic reason that the Helfrich equation is still in dispute 

[18-20]. 

4.2. APPLICATION TO A SIMPLE LIQUID-VAPOUR INTERFACE 

The curvature corrections to the interfacial tension in the previous section were phe-

nomenological. These descriptions have frequently been used to describe the phase 

behaviour of complex interfaces [9, 16]. It is, however, illuminating to elaborate the 

phenomenological descriptions for a simple, i.e. monomeric, liquid-vapour interface. 

The practical relevance of such simple interfaces is among others found in the under

standing of nucleation phenomena [21]. 
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In this section the curvature corrections are determined from eqn (4.15) using the 

lattice model as elaborated in chapter 3. Subsequently, the results are verified by the 

well-known van der Waals theory of interfaces, which has been employed before [22]. 

4.2.1. Lattice model for curved interfaces 

In section 3.2.1 the grand potential of a multi-component lattice has been derived. 

For a single component system, the grand potential as given by eqn (3.22) reduces to 

£*! = E L(z) [/(*(*))-/4(*)] (4-18) 

where the Helmholtz energy density f{4>) follows from eqn (3.21) 

/(</») = <fr\n<fi + (1 - 0) In ( l - 0 ) - < ^ < 0 ) + \x {<A+(<A}} (4-19) 

Here, it has been used that for a single component system the exchange parameter is 

given by x — ~\v^ using eQn (3.18). It has also been shown that if the direct interaction 

parameter v had been used, the last term in eqn (4.19) vanishes. Although this has led 

to a unique bulk pressure, eqn (3.27), two different expressions for the local pressure, 

eqn (3.50) and eqn (3.51), were found. Consequently, the bending moments, eqn (2.50), 

cannot be given unambiguously. 

The chemical potential can be found from its definition, eqn (3.31) 

"-{%)M^>)-^-))+x •• (4-20) 
which recovers eqn (3.24) for a single component system. The density profile varies 

spatially in such a way that the chemical potential is constant throughout the lattice. 

Considering the chemical potential as an undetermined Lagrange multiplier, it has been 

seen that this density profile minimizes the Helmholtz energy. 

In order to obtain a certain curvature J of an interface, a Laplace pressure difference 

Ap = 7° J ' is imposed. The interfacial tension of the planar interface, 70, is deter

mined from the zeroth bending moment, as given by eqn (3.52). The total curvature 

J ' is an approximation for the desired curvature J. The bulk chemical potential corre

sponding to the applied pressure difference is determined and subsequently molecules 

are 'titrated' on a curved simple cubic lattice until the chemical potential of the phase 

separated system, as given by eqn (4.20), equals the desired bulk chemical potential. 

This procedure prevents so-called lattice artefacts [23], as outlined in appendix 4.A. 

After that, the equilibrium density profile of the curved system is known, so that all 

state variables can be determined. 
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FIGURE 4.2. The distance in units off between the Gibbs dividing plane RGMS 

and the surface of tension Rs of a spherical interface as a function of the total 

curvature J , determined from the Gibbs dividing plane, for four values of the 

interaction parameter \- The limiting value for a planar interface yields a zero 

Tolman length for each value of \-

It follows from eqn (2.11) that the value of interfacial tension according to Gibbs 

evaluated at the surface of tension is given by 7,3 = Ap/J. Consequently, the position 

of the surface of tension Rs can be found from the grand potential, eqn (2.18), if the 

bulk pressures are known. With the given density profile, the position of the Gibbs 

dividing plane RGMS can be determined from eqn (4.4). Note that although space 

has been discretized, neither the surface of tension nor the Gibbs dividing plane are 

necessarily integers. In figure 4.2 the distance between these dividing planes has been 

plotted as a function of the total curvature J = I/RGMS of a spherical interface for 

several values of the interaction parameter \- Recalling that the Tolman length 8 is 

the distance between the Gibbs dividing plane and the surface of tension of a planar 

interface, 8 may alternatively be given by [2] 

8 = Urn (Rams - Rs) 

Using this definition, it is found from figure 4.2 that the Tolman length vanishes for all 

values of the interaction parameter, as should be the case from symmetry considerations 

[24]. It is easily seen from eqn (4.19) that exchange of species (with volume fraction 

<j>{z)) and free volume (1 — <j>{z)) gives the same minimal Helmholtz energy of the planar 

interface. 
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The discretized bending moments PQ , Pi, and P2 are evaluated at the Gibbs dividing 

plane as outlined in appendix 3.D.2 for several curvatures in cylindrical and spherical 

drops. This has been carried out for the two definitions of the local pressure, eqn (3.50) 

and eqn (3.51). The interfacial tension according to Gibbs is determined from these 

bending moments, using eqn (2.49). As stated in section 3.2.6, 7G does not depend on 

the choice of the local pressure profile. The interfacial tension according to Gibbs as a 

function of the curvature is shown by the symbols in figure 4.3. Obviously, the curvature 

dependence of the interfacial tension is very weak but noticeable. This explains the lack 

of experimental evidence for the existence of second order curvature corrections to the 

interfacial tension of simple liquid-vapour interfaces [19]. 

The spontaneous curvature kc Jo and the bending modulus kc can only be determined 

from a cylindrical interface because in order to evaluate the derivatives of the bend

ing moments, as given in eqn (4.15), the total curvature J must be varied at constant 

Gaussian curvature K. Third order polynomials were fit through the bending moments 

of the cylindrical interface as a function of curvature in order to evaluate the derivatives 

numerically. The values for fccJo, determined from eqn (4.15a), and kc, determined from 

eqn (4.15b), are given in table 4.1 for four values of the interaction parameter. Both 

expressions for the local pressure yielded the same results for kc Jo and kc within numer

ical accuracy. The values of Fg and (j&) , from both eqn (3.50) and eqn (3.51), are 

also given in table 4.1 to compare the calculated values with the ones if the expression 

from the literature were used uncarefully, i.e. —kcJo = Pj and kc = (-fy) • 

The saddle-splay modulus cannot be determined from a consideration of the cylin

drical interface only, since, according to eqn (4.15c), K must be varied at constant 

J. Neither can this be done from a spherical interface since 1/R\ = I/R2 = l/R 

such that J and K are no longer independent state variables, as demonstrated in sec

tion 2.1.1. Consequently, for a spherical interface one of the curvature terms in the 

starting thermodynamic equation of the interface, eqn (2.12), is redundant and the 

thermodynamic analysis should be gone through again. However, it is easily seen that 

this leads to only one new state variable conjugated to the total curvature that incor

porates both the bending and torsion stress. Only one 'effective' modulus, kc + \k, is 

then found from eqn (4.14b) for the Helfrich equation. Consequently, the mechanical 

expression for the effective modulus is given by eqn (4.15b), where the respective bend

ing moments are found from a spherical interface. Prom the effective bending modulus, 

determined completely analogously to the bending modulus from a cylindrical geome

try, the saddle-splay modulus k can be extracted since kc was already known from the 

cylindrical interface. The bending modulus, kc, and the effective modulus, kc+^k, were 
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TABLE 4.1. Helfrich constants of a simple liquid-vapour interface determined 

from a lattice model using (a) a parabolic fit through the actual values of the 

interfacial tension, (b) eqn (4.15) for both expression for the local pressure, 

and the expressions kcJo = F j , kc = (-fj1) , and k = P^ where (c) pj,, as 

given by eqn (3.51), and (d) pj, from eqn (3.50) have been used for the local 

pressure. The units are chosen such that ksT = 1 and £ = 1 

X 
-kcJ0 2.5 

3.0 

3.5 

4.0 

kc 2.5 

3.0 

3.5 

4.0 

k 2.5 

3.0 

3.5 

4.0 

(a) 

0.0000 

0.0000 

0.0000 

0.0000 

-0.0946 

-0.1028 

-0.0908 

-0.0749 

0.05351 

0.05711 

0.04971 

0.03971 

(b) 
0.0000 

0.0000 

0.0000 

0.0000 

-0.0943 

-0.1035 

-0.0907 

-0.0733 

0.05061 

0.05831 

0.04891 

0.03711 

(c) 
-0.1480 

-0.2146 

-0.2696 

-0.3191 

-0.1392 

-0.1785 

-0.1968 

-0.2101 

0.1883 

0.2367 

0.2603 

0.2784 

(d) 
0.0000 

0.0000 

0.0000 

0.0000 

-0.1392 

-0.1785 

-0.1968 

-0.2101 

0.1883 

0.2367 

0.2603 

0.2784 
1 from comparison of cylindrical and spherical geometry 

determined from a third order polynomial fit through the respective bending moments. 

Consequently, the extracted value for the saddle-splay modulus is subject to relatively 

much numerical noise. However, within numerical accuracy the two expressions for the 

pressure gave identical results. The (average) values of k that are found in this way are 

given in table 4.1 for some values of the interaction parameter. The values of lP̂  for the 

two definitions of the local pressure are also given for comparison with the value if the 

expression from the literature had been applied imprudently, i.e. k = IP .̂ 

On the basis of the calculated values of the spontaneous curvature, the bending 

modules, and the saddle-splay modulus, the Helfrich equation, eqn (4.13), can be plotted 

for several values of the interaction parameter \- These are the solid lines in figure 4.3. 

Alternatively, the Helfrich constants can also be determined from a direct parabolic 

fit through the symbols in figure 4.3. Those values are listed in table 4.1. For the 

sake of completeness, the Helfrich descriptions using the expressions from the literature 

carelessly are included in figure 4.3 as dashed and dotted lines for the two definitions 

of the pressure, respectively. 
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FIGURE 4.3. The curvature dependence of the interfacial tension according 

to Gibbs for a (a) cylindrical and (b) spherical liquid-vapour interface. The 

symbols give the interfacial tension according to eqn (2.49); o: x = 2.5, • : 

X = 3.0, o: x = 3.5, x: \ = 4.0. The solid lines give the Helfrich description as 

found by eqn (4.15). The dashed and dotted lines give the Helfrich description 

using kcJ0 = IP?, kc = (|Fjf>) , and k = P^ where eqn (3.50) (dashed) and 

eqn (3.51) (dotted) have been used for the local pressure. The units are chosen 

such that ksT = 1 and £ = 1. 

It is concluded that the phenomenological description using the parameters as given 

by eqn (4.15) is consistent with the thermodynamic data for the liquid-vapour interface 

from the lattice model. The values of kc and k are identical for the two choices of the 

local pressure when the expressions from the literature are used imprudently. Never

theless, these are in poor agreement with the parabolic fit to the curvature dependence 

of the interfacial tension. Moreover, the pressure profile p%,, based on direct contact 

interactions, fails to reproduce a zero Tolman length from kcJo This failure is 

due to the fact that pi^ is asymmetric, as can be seen from figure 3.16. The interactions 

are rather assigned to the inner part of the droplet emphasizing the tensile part inside 

the droplet. This causes Pj to become asymmetric around the Gibbs dividing plane, 

yielding a finite value for the surface of tension. Consequently, the surface where the 

tension acts does not coincide with the surface of tension. 

The values for the interfacial tension of the planar interface, 70 , are determined from 

eqn (3.52) for several values of the interaction parameter, as shown in figure 4.4. It 

has been shown in section 3.2.2 that for x < Xc = -\vc = 2 no phase separation can 

be obtained. Since the two faces become identical at the critical point, the interfacial 
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tension vanishes. For \ > 2 the interface becomes sharper such that the interfacial 

entropy becomes less important with increasing x- Eventually, the interfacial tension 

is completely energetic: 70 = x^i-

The bending modulus kc is also determined as a function of the interaction parameter 

and shown by the symbols in figure 4.5a. The bending modulus in the lattice model as 

given by eqn (4.15b) vanishes in the critical point. Beyond the critical point, for larger 

values of the interaction parameter, an interface is formed and the system is affected 

by the applied curvature. This yields a finite bending modulus. The bending modulus 

from the lattice model goes through a minimum. For very large \ it appears that the 

bending modulus goes to zero. This physically means that in the lattice model the free 

energy of the interface is for large \ apparently dominated by the interfacial tension 

rather than by the curvature. 

The results for the saddle-splay modulus as a function of the interaction parameter 

are shown in figure 4.5b and give the same qualitative behaviour as the bending modu

lus. In the spherical geometry the interactions are in two directions affected by bending, 

whereas in the cylindrical only in one direction. Consequently, a simple liquid-vapour 

interface is more resilient against bending into a spherical geometry than into a cylin

drical geometry. Consequently, the effective bending modulus is less negative than the 

bending modulus, which leads to a positive saddle-splay modulus that goes through a 

maximum. 

4.2.2. Van der Waals theory of curved interfaces 

Since L(Z)VQ is the volume of a layer, the sum over all layers of the grand potential 

density, as given by eqn (4.18), is equivalent to a volume integral in continuous space. 

Consequently, the grand potential of a lattice model can be regarded as the discretized 

version of the well-known free energy functional as given by van der Waals. In that 

continuous limit the discrete density profile <j>(z) reduces to p(r). For slowly varying 

densities, the contact fraction (4>{z)) may be replaced by a squared gradient of the 

density profile, as outlined in section 3.2.4. In units such that kBT = 1 , I = 1, and 
\ = ^, the continuous version of the grand potential, eqn (4.18), then reads 

Q\p] = | d r [ | |Vp(r)|2 + f(p) - »p(r)} (4.21) 

with the free energy density f(p) 

f(p) = pln(p) + (l-p) ln(l -p) + pX(l - p) (4.22) 

As demonstrated analytically and graphically in section 3.2, the chemical potential of 

a planar interface is zero. Consequently, the chemical potential p gives the distance to 



4.2. APPLICATION TO A SIMPLE LIQUID-VAPOUR INTERFACE 

2.0 

99 

FIGURE 4.4. The interfacial tension of the planar interface as a function of 

the exchange interaction parameter in such units that fcgT = 1 and £ = 1. 

The symbols are determined by the lattice model using a simple cubic lattice. 

The dotted line gives the limiting value 70 = x/6. The solid line gives the 

corresponding van der Waals description, eqn (4.26a), whereas the dashed line 

gives the asymptotic values, eqn (4.32a), valid in the vicinity of the critical 

point x = 2. 

liquid-vapour coexistence. It will hence be used in the calculation to vary the curvature 

of the liquid-vapour interface. 

As shown in section 2.2.2, the volume element df depends on the geometry of the 

system. The Euler-Lagrange equation that minimizes the above grand potential in 

spherical geometry is given by [25, 26] 

4 x 1 X m 
3 r 

P's(r)+f'(ps)-»s (4.23) 

where r is the radial distance. The subscript s denotes the fact that a spherical interface 

is considered, whereas the prime denotes the derivative with respect to its argument. 

In order to relate the grand potential to the curvature coefficients 70 , kc, and k, an 

expansion is made in the reciprocal radius, 1/R, of the spherical droplet. The density 

and chemical potential expanded to first order are 

Ps(r) = Po(r)+Pl(r)^ + 0(^) (4.24a) 

(4.24b) 
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FIGURE 4.5. (a) The bending modulus and (b) the saddle-splay modulus as 

a function of the interaction parameter in units such that fcsT = 1 and 1=1. 

The symbols are determined on a simple cubic lattice. The solid line gives the 

corresponding van der Waals description, eqn (4.26c) and eqn (4.26d), whereas 

the dashed line gives the asymptotic values, eqn (4.32b) and eqn (4.32c). 

where it can be shown that Hi = 2^y°/Ap [24], with Ap = pe — pv the density difference 

between the liquid (pt = 4>a) and vapour (pv = (j/) phase at coexistence. The Euler-

Lagrange equation in eqn (4.23) is also expanded to first order in the reciprocal radius 

XJI 
PoW = f'(Po) 

\m ;XPo(z) + f"(Po)Pi(z)-Vi 

(4.25a) 

(4.25b) 

where it has been denned that z = r—R, which must not be confused with the lattice in

dex in the previous sections. Using the above differential equations, the grand potential 

of the interface can be extracted from eqn (4.21) up to second order in the curvature. 

Comparison with the Helfrich equation, eqn (4.13), yields the interfacial tension of the 

planar interface and Helfrich constants expressed in terms of the density profiles po(z) 
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and pi(z) [22] 

7° = | Jdz [p'0(Z)}
2 (4.26a) 

— OO 

OO 

kcJ0 = | Jdzz [p'0(z)}
2 (4.26b) 

—OO 

OO OO 

kc = - | Jdz Pi(z)p'0(z) + ^ Jdz z2p'0(z) (4.26c) 
—OO —OO 

OO 

* = | Jdzz2[p'0(z)}
2 (4.26d) 

— OO 

Similar expressions were previously derived from Landau theory [10, 24]. As also found 

in section 4.2.1, kc and k depend, unlike 70 and kc J0, on the choice of the position of the 

dividing plane. In order to make a fair comparison with the lattice model, the above 

expressions were derived by locating the interface at the equimolar plane, defined by 

T = Jd? \ps{z) - pbulk(z)} = 0 (4.27) 

where pbuik = pe9(—z) + pv9(z). Expanded to first order in l/R, eqn (4.27) gives the 

following set of conditions for the profiles Po(z) and Pi(z) 

00 

Jdz [po(z) - p0,buik(z)} = 0 
— OO 

OO OO 

Jdz [pi(z) - piMik{z)] = Jdz z2p'0(z) 
—00 —00 

With these two conditions, the differential equations in eqn (4.25) have been solved 

numerically for the density profiles po(z) and pi(z), using the explicit expression for 

f(p) in eqn (4.22). The resulting density profiles have then been substituted into the 

expression for the interfacial tension and Helfrich constants as given by eqn (4.26). 

The results of this numerical approach are shown as the solid lines in figure 4.4 and 

figure 4.5. 

The lattice model and the van der Waals theory both required a numerical solution of 

the density profiles. However, in the vicinity of the critical point, Xc = 2, analytical 

solutions for the interfacial tension of the planar interface and Helfrich constants can 

be derived [18]. To that end, the density is expanded around the critical density, 

pc=2- Analogously as it was found in the Landau expansion of the free energy density, 
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eqn (3.46), /(p) can be expanded to fourth order in (p — pc) 

HP) = f(Pc) - (x - Xc) (p ~ Pc)2 + | ( P - Pc)4 + 0((p - pcf) (4.28) 

Solving the Euler-Lagrange equation for po(z) in eqn (4.25) with the above form for 

/(p), yields the well-known hyperbolic-tangent profile [2, 16] 

Po(z) =Pc~'=Y tanh(z/2£) (4.29) 

where the density difference Ap and bulk correlation length £, which is a measure of 

the thickness of the interface, are given by 

(Ap)2 = | ( X - X c ) (4.30) 

and 

i = \V6 (X - Xc)"- (4.31) 

Within the van der Waals theory, the expressions for the interfacial tension of the planar 

interface and Helfrich constants have already been determined by eqn (4.26) [22]. The 

above expression for p0 can simply be substituted, using eqn (4.30) and eqn (4.31) for 

Ap and £, respectively. This gives 

7o = g(M! = i^ ( x_Xc) i (432a) 

K = " I ( 7 r ' " 3 ) (Ap)2^ = l o s 1 ^ ( 7 r ' " 3 ) {x ~ Xc)i (432b) 

k = | (^2 - 6) (Ap)2 £ = ^ V 6 (TT2 - 6) (X - Xcf> (4.32c) 

The familiar mean-field result for the interfacial tension of the planar interface [2] is 

recovered by eqn (4.32a). The asymptotic expressions eqn (4.32) are the dashed curves 

in figure 4.4 and figure 4.5. 

4.3. DISCUSSION 

The change of the interfacial tension according to Gibbs as a function of an imposed 

curvature is described phenomenologically using the Tolman and the Helfrich descrip

tions. The former applies up to first order in the curvature whereas the latter is up to 

second order in curvature. 

The Tolman length is found thermodynamically as the distance between the Gibbs 

dividing plane and the surface of tension of a single-component planar interface and is 

assumed to be constant within first order of the curvature. As a consequence of the 

mechanical expression for the bending stress as found in section 2.5, the position of 
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the surface of tension of a planar interface can only be found self-consistently from the 

mechanical route. However, it can be found straightforwardly from the grand potential 

if the bulk pressures are known. In the limit of planar interfaces, it turns out that 

the distance between the two planes vanishes for a single-component monomer lattice 

gas, i.e. the interfacial tension is up to first order independent of the curvature. This 

feature must result case from symmetry considerations [24] and has indeed also been 

found mechanically for the first order curvature correction in the Helfrich description. 

The Helfrich constants are found from the moments of the pressure profile and deriva

tives thereof evaluated at the flat interface. Calculations for a simple liquid-vapour 

interface from the lattice model show that the given Helfrich constants yield unambigu

ous results that are in agreement with the values found from a direct parabolic fit to 

the interfacial tension as a function of the curvature. This correspondence shows that 

when the pressure is defined from the grand potential density, it gives fully consistent 

results. 

It has been shown that the grand potential of this lattice model is the discretized 

version of the well-known van der Waals free energy functional. The continuous version 

of this free energy is expanded up to second order in the curvature. Comparison with the 

Helfrich equation yields independent expressions for the interfacial tension of the planar 

interface and the Helfrich constants in terms of (derivatives of) the density profile of the 

planar interface. These results are given by the solid lines in figure 4.4 and figure 4.5. 

Substitution of a series expansion of the free energy density up to fourth order around 

the critical density in the van der Waals expressions, yields analytical expressions for 

the interfacial tension of the planar interface and the Helfrich constants. These are 

given by the dashed lines in figure 4.4 and figure 4.5. 

The interfacial tension of the planar liquid-vapour interface, 70 has been studied 

extensively before [2]. As clearly shown in figure 4.4 all three models have the same 

known mean-field behaviour in the vicinity of the critical point \c = 2. Away from 

the critical point non-local effects must be included and the analytical solution, which 

does not account for that, deviates from the other two. Further away from the critical 

point (x > 1.2xc) the density profile in the interfacial region becomes steeper and the 

square gradient term in the van der Waals expression for the free energy is no longer 

sufficient to account for this rapidly varying density profile and higher order derivatives 

of the density profile should be included. In the lattice gas expression for the Helmholtz 

energy the contact fraction also accounts for rapidly varying density gradients, as can be 

seen from the truncated series expansion in section 3.2.4. Consequently, only the lattice 

model gives the appropriate linear behaviour of 70 far away from the critical point. This 
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recovers the differences between square gradient and the more exact integral-functional 

theory as already known in the literature [27]. Some progress in the van der Waals 

description can be made by adding a square Laplacian [22, 28]. 

The bending modulus, kc, determined from the lattice model using eqn (4.15b), is 

in good quantitative agreement with the ones found from the van der Waals theory, 

eqn (4.26c), up to the interaction parameter where the higher order derivatives of the 

density profile become important (x < l-2Xc). The saddle-splay modulus, k, is also 

in good qualitative agreement with the ones found from the van der Waals theory, 

eqn (4.26d), in the region where the latter is valid. 

In the region where all the above-mentioned theories are valid they gave identical 

and physically relevant results for the interfacial tension of the planar interface and 

the bending constants. Within the mean-field approximation for the pair density, the 

van der Waals expressions for the Helfrich constants, eqn (4.26), are consistent with 

the those found from the virial route [22]. Gompper et ad. [10, 11] derived expressions 

that were very reminiscent of eqn (4.26). They defined a free energy density, in this 

particular case for instance %[Po]2, ^ the tangential pressure profile, PT(Z). Szleifer et 

ad. did the same with their free energy density [8] to arrive at the same expressions 

for the Helfrich constants as from the principle of virtual work [16]. It is therefore 

concluded that the Helfrich constants as given by eqn (4.15) are consistent with all 

previously mentioned models within the mean-field approximation. 

The first order curvature correction to the interfacial tension turned out to be inde

pendent of the choice of the dividing plane. However, the generally applicable second 

order curvature corrections as given by eqn (4.15) depend on the position of the inter

face. In the above analyses the Gibbs dividing plane is chosen for the location of the 

single-component liquid-vapour interface. However, in a multi-component system, this 

choice is ambiguous because for each of the different species that are in surface excess 

an equimolar plane can be allocated. Although the surface of tension provides a unique 

choice for the position of the dividing plane, it cannot be located for, e.g., microemul-

sions when the translational entropy is neglected, as shown in section 2.6.2. For the 

curvature dependence of the adsorption of polymer brushes to a solid interface, the sur

face of the substrate seems an obvious choice for the position of the dividing plane [29]. 

Something similar has been done in the work of Szleifer et aJ. where surfactants are 

adsorbed at a predefined interface for the formation of a surfactant (bi-) layer [8]. The 

ambiguity regarding the position of the interface may lead to confusion in the calcula

tion of the Helfrich constants from a model. Nevertheless, the existence of the Helfrich 
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constants is experimentally clearly established, see e.g. [30, 31]. However, with Rowl-

inson [19], it is believed that the thermodynamic meaning of these measured moduli 

is restricted. The series expansions that led to eqn (4.12) are up to second order in 

the curvature around the planar interface, which means that its validity is restricted to 

relatively small curvatures. It is therefore doubtful whether this quasi-thermodynamic 

description also holds for highly curved interfaces like in microemulsions. Although it 

is quite successful in a phenomenological way [32], one should be very cautious in the 

thermodynamic interpretation of the constants obtained from a fit to second order in 

the curvature. 

One should also be careful with a thermodynamic interpretation of Jo from a model. 

This 'spontaneous curvature' is thought to be the curvature that minimizes the free 

energy. This condition is in the grand canonical ensemble given by the minimum of the 

interfacial tension, although it is yet unclear how this is generally realised in practice 

at constant chemical potential. From eqn (4.13) it is found indeed that 

^ £ = -kcJ0 + kcJ = 0 =• J = JQ 
aJ 

However, the spontaneous curvature does not give a complete description of the pre

ferred geometry of an interface since this is also determined by the preferred Gaussian 

curvature, KQ. The latter drops out in the Helfrich equation owing to that the fact 

that the expansion is only up to second order in the curvature [33]. For a spherical 

interface, where a description in terms of J is sufficient, the above condition gives for 

the 'preferred curvature' 

dyo,_ u T . fkc + h\J = 0 ^ J= kcJ0 = -kcJ0 + (h 
dj v c 2 ; kc + \k 

The curvature in the last term is sometimes referred to as the 'natural curvature' and 

only equals the spontaneous curvature Jo if k vanishes. Moreover, in real systems the 

curvature of droplets has a certain distribution [34] which is among others entropically 

favourable. 

When the interfacial tension is the characteristic function, the sign of the (effective) 

bending modulus indicates whether a curved interface is stable or not. In the grand 

canonical ensemble the stability condition is given by 

921G I ̂ c > 0 general curved interfaces 

I kc + \k > 0 spherical interfaces 

Note that the calculations for the simple liquid-vapour interface were in a canonical 

ensemble. The chemical potential had not been fixed; it was in the van der Waals 
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theory actually used to vary the curvature. Therefore, a negative (effective) bending 

modulus in conjunction with a positive interfacial tension is feasible for simple liquid-

vapour interfaces. 

Note that from the Helfrich equation, eqn (4.13), the generalized Laplace equation 

of capillarity, eqn (2.36), can be given in terms of the Helfrich constants 

AP = 7°J + 2kc(J - Jo)K -\kcJ* + \[^\j2 +[^]K 

where the square brackets denote again a notional change of the position of the dividing 

plane. 
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APPENDIX 4.A. MEAN-FIELD LATTICE CALCULATIONS 

In an inhomogeneous system, consisting of C components, the chemical potential of 

species i, given by eqn (3.24), must be equal in each of the M lattice layers to guarantee 

chemical equilibrium; /i*(l) = /J;(2) = . . . = fii(M). These equilibrium conditions give 

C(M — 1) equations for the CM variables <j>i(z). The C mass balances complete the 

set of equations 

M 

^L{z)4>i{z) = Ni 
2=1 

The set of equations can be solved numerically; the Nt molecules are distributed over 

the lattice in such a way that their mean-field interactions result a constant chemi

cal potential throughout the lattice. Hence, the field caused by the presence of the 

molecules is made self-consistent. 

In the above calculation technique, the Ni molecules are 'squeezed' on the lattice. 

Alternatively, owing to the discretization of space, molecules are forced to take place 

in one layer or the other. Consequently, an extra field is introduced as a result of the 

presence of the lattice which causes a spurious Laplace pressure difference, Ap;oM,ce [23]. 

In order to study the actual physics of the lattice model, this so-called lattice artefact 

must be eliminated. To that end, the true chemical potentials of the bulk phases are 

determined. 
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The chemical potential of species i in the bulk phases b = a or /3 are according to 

eqn (3.24) given by 

/ i - = In (4) + E vat) ~ -"« (4-33) 
for \̂ y Y 2 

In order to guarantee chemical equilibrium, the chemical potentials of the two phases 

must be equal; /if = /if. For a two-phase system this equilibrium condition gives a set of 

C equations, with 2C variables, viz. <pf and </>f for each of the components i = 1 , . . . , C. 

The applied Laplace pressure difference Ap = pa — p13, that can be determined from 

eqn (3.27), provides another equation. In order to give a complete set of equations, a 

mass balance for each of the components is also required 

r C + ( l - r ) ^ f = § (4.34) 

where the variable r is the relative extent of phase a. Consequently, a set of 2C + 1 

equations has been obtained for the 2C + 1 variables which can be solved numerically. 

Since r is not restricted to discrete lattice layers, the solution is free of artefacts. Note 

that the mass balance is not required for a single component system since p," = pP and 

Ap = pa — p0 already provide the two equations for the unknowns 4>a and <fp. 

Now the number of particles on the lattice can be adjusted until the chemical po

tential, that is determined self-consistently, equals the chemical potentials in the bulk 

phases. This guarantees that the Laplace pressure difference equals the applied Ap, or, 

alternatively, Ap;ottjce = 0. The difference between the chemical potential of the bulk 

phase and that of the homogeneous system as a function of the number of molecules 

is shown in figure 4.6a for three types of planar lattices for a single component liquid-

vapour equilibrium. Clearly, the artefact oscillates by a periodic deviation that is ap

proximately the thickness of a lattice layer. The artefact is relatively large for A0 = 2/3, 

smaller for Ao = 1/2, and small for Ao = 1/3. Two situations can be distinguished at 

which fib — fi; one zero in a descending and one in an ascending branch. The for

mer, where (aw) = ( IA^ ) < >̂ corresponds to a maximum in the Helmholtz 

energy, whereas the latter corresponds to a minimum in the Helmholtz energy since 

(dNl ~ iaN^) ^ 0- Consequently, only the ascending branch must be consid

ered. 

In a curved system the oscillations are superimposed on the thermodynamic change 

of the chemical potential, as shown in figure 4.6b. From the isothermal Gibbs-Duhem 

relation Nd^i" = Vadpa it can be derived that 

(dfia)T = -cJ-^N-^lddN (4.35) 
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0.004 0.04 

FIGURE 4.6. (a) The lattice artefact measured by the difference between the 

chemical potential of the bulk and that of the self-consistent system for a planar 

liquid-vapour interface with v = — 6 in units so that IZBT= 1 and £ = 1. The 

solid line gives the lattice artefact for Ai = 1/3, the dashed one for Ai = 1/4, 

and the dotted one for Ai = 1/6. The dots indicate the artefact-free points, 

(b) An example of the lattice artefact for a spherical liquid-vapour interface 

with v = — 6 and Ao = 1/2. The lattice artefact of the planar interface is 

superimposed on the dotted line given by eqn (4.36) with d = 3 for the spherical 

interface. The only artefact free point is indicated by the thick dot 

where d is the dimensionality of the system and the constant Cd includes the interfacial 

tension of the planar interface, 70 , and the molecular volume. It has been assumed that 

Ap = 7°(d — 1)1 R, that the bulk pressure fp is constant, and that all molecules N are 

in the phase a. Integration of eqn (4.35) yields 

H = cd(d - l ) ^ " 1 ^ + ii, (4.36) 

For a planar interface (d=l) it is indeed found from this simple scaling consideration 

that the chemical potential should be constant. In the case that the oscillations are very 

weak, it is very well possible that there is no ascending branch that goes through zero. 

Consequently, in the vicinity of the critical point or Ai = 1/3 there are no artefact-free 

points found for curved interfaces. However, the oscillations for the lattice Ai = 1/3 are 

so small, that for some calculations the 'artefact poor' points may suffice. 
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C H A P T E R 5 

Thermodynamics and Mechanics of Bilayer 

Membranes 

ABSTRACT 

A mean-field lattice model is applied to chain molecules for the study of sur

factant systems. As an example, C12E5 surfactants, modelled as Ci20(C20)s 

chains, are forced into cylindrical and spherical shaped vesicles in a monomer 

solvent. These aggregates are used to obtain the Helfrich constants of the bi-

layers as a function of the hydrophilicity of the surfactant's headgroup from 

both a thermodynamic and mechanical route. The magnitude and sign of the 

Helfrich constants are interpreted to gain insight into features of the experi

mentally well-established phase diagram. It is concluded that the lattice model 

is a potentially valuable tool to help understand the generic phase behaviour 

of surfactant systems. 

5.1. INTRODUCTION 

In an aqueous environment surfactants self-assemble into finite-sized aggregates if 

their concentration exceeds the so-called critical micellization concentration. The char

acteristic length scale of these aggregates, e.g. the radius of spherical or cylindrical 

micelles, is comparable to that of the surfactant molecules. The formation dynamics [1] 

and interfacial geometry [2] of the aggregates can be related to this common length 

scale, as has also been made plausible in chapter 1. This chapter will be focused on bi

layer membranes, in which a double sheet of surfactants separates two aqueous phases. 

The exterior of the sheet consists of the hydrophilic headgroups, whereas the interior is 

formed by the hydrophobic tails of the surfactants. The thickness of the membrane is 

comparable to the size of the constituting surfactant molecules. Bilayer systems are of 

interest for industrial applications, e.g. cleaning and catalysis [3], and in life sciences, 

e.g. as models for biomembranes. 

The headgroups of the surfactants are hydrated on the one hand but also overlap to 

some extent with the conformationally disordered tails. Consequently, the conforma

tional fluctuations within the various parts of the surfactant molecules are correlated. 

If the headgroups are well-hydrated, i.e. swollen, their relatively large headgroup area 

i l l 
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allows for a disorder of the tail region. Conversely, a collapsed headgroup induces more 

conformational order in the tails. 

Bilayer membranes are also subject to collective, wave-like, thermal motions of the 

constituting surfactant molecules. These so-called undulations give rise to a conforma

tional disorder on the level of the membrane. When two bilayers approach each other, 

the undulations are confined which gives a loss of conformational entropy. This loss 

leads to a repulsive steric interaction between the bilayers. A low rigidity allows for 

large shape fluctuations of a membrane and yields a strong steric repulsion. This sug

gests that the contribution to the Helmholtz energy per unit area owing to undulations, 

fu, is inversely proportional to the bending rigidity of the bilayer membrane. Since 

the bending modulus kc as introduced in section 4.1.2 is of the order kBT, dimensional 

analysis gives 

U a [ir) "75- (5-1} 

Here a is a numerical constant and r is the distance between two adjacent membranes. 

Indeed, Helfrich showed that a = 1 [4] and has been confirmed by others [1, 5]. However, 

the proportionality constant is still disputed [6]. Depending on the magnitude of kc, and 

the prefactor in eqn (5.1), the repulsive undulation energy, eqn (5.1), may overcome the 

attractive van der Waals energy fvdw <x —A/r2, where A is the Hamaker constant [1]. In 

those cases the stability of bilayer membranes largely depends on the bending rigidity. 

Hence, it is of interest to determine kc for these types of surfactant systems. 

The saddle-splay modulus k, introduced in section 4.1.2, is of interest for the phase 

behaviour of the surfactant layer as well. If k is positive, the free energy of the interface 

can be lowered by forming saddle planes which have negative Gaussian curvatures K 

(cf. eqn (4.13)). It follows from the Gauss-Bonnet theorem [5, 7] 

J KdA = A-K{l-g) 

that g handles can be formed on a closed interface. For instance, g = 0 for a spheri

cal interface (K = l/R2). Consequently, a positive saddle-splay modulus favours the 

formation of handles. Hence, k determines the topology of surfactant layers. 

The phase behaviour of surfactants can thus be understood in terms of the Helfrich 

constants [8]. In order to study these constants kc and k of a bilayer membrane, the 

free energy of the interface has to be considered as a function of curvature, as outlined 

in chapter 4. This can best be done by considering closed bilayers or so-called vesicles. 

Vesicles are of interest for many biological purposes and are used as, e.g., drug delivery 

vehicles [1-3, 7]. In the case of vesicles there are no end-cap contributions to the free 
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energy of the bilayer [2]. This also allows the application of the lattice model as derived 

in chapter 3, where spherically and cylindrically shaped structures have been studied. 

In this chapter the phase behaviour of the non-ionic surfactant dodecyl penta(ethylene 

oxide), or briefly C12E5, will be considered. This non-ionic surfactant forms vesicles and 

is widely used as an emulsifying agent and detergent. It exhibits the same character

istic features as more complex, multi-component surfactant systems [9]. Consequently, 

much experimental data is available for this system [9, 10]. In order to study surfac

tants, the lattice model as previously elaborated will be extended to chain molecules in 

section 5.2. Subsequently, in section 5.3 the Helfrich constants of C12E5 vesicles will be 

investigated as a function of the hydrophilicity of the headgroup. From the obtained 

values possible implications for the phase behaviour will be discussed in section 5.4. 

Finally, recommendations for further study are given. 

5.2. EXTENSION OF THE LATTICE MODEL 

Surfactant molecules typically have an amphiphilic nature. Consequently, the sur

factants must be modelled as consisting of at least two different, connected, species. 

Hence, the monomer lattice model derived in section 3.2 must be extended to include 

chain molecules. To that end, consider a diffusing monomer on a lattice of z = 1 , . . . M 

layers, each consisting of L{z) indistinguishable sites of volume v0. The path covered 

by the particle on the lattice may be regarded as a chain; the next segment of the chain 

emerges from the previous segment like an unfolding accordion or fan. 

5.2.1. Diffusing monomer on a lattice 

Consider first the diffusion of a monomer alone. The (unnormalized) probability to 

find that monomer in layer z at time t, given it was in layer ZQ at time tQ, is given by 

the Green function 

G(z, t\z0, t0) = S(z-z0)6(t- t0) (5.2) 

where S(z) is the Dirac delta function. The probability that the particle, originally in 

ZQ at t, arrives in layer z via z' at time t + At is given by the Chapmann-Kolmogorov 

equation [11] 

G(z, t + At\z0, t0) = J G{z, t + At\z', t)G{z', t\z0, t0)dz' (5.3) 

This describes a so-called first-order Markov process in which the probability at t + At 

only depends on t and not on the completed path. Consequently, the monomer can 

come back to positions where it has already been. 
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Series expansion of G(z,t + At\z',to) up to first order in At yields for infinitesimal 

At the Fokker-Planck or Smoluchowski equation [12, 13] 

^G(z,t) = CsG(z,t) (5.4) 

where Cs is the Smoluchowski operator [14] which includes the interactions present in 

the system given by the energy u(z). Note that u(z) represents the complete mean field 

that a segment of the emerging chain encounters. Hence, within the mean-field ap

proximation, it is not profitable to distinguish between intra and intermolecular forces, 

albeit suggested otherwise in the literature [15, 16]. 

The stationary, i.e. equilibrium, solution of eqn (5.4) yield for the Green function 

(13, 14] 

°«-•"•"(-$) (5-5) 
This gives the probability to find a monomer in layer z. 

5.2.2. Chain statistics 

Upon each discrete time step t the chain, created by the random walk of monomers 

on the lattice, emerges a new segment. Consequently, in the equations of section 5.2.1 

the time t may be replaced by the segment number s. Note that the chain of monomers 

created this way is not self-avoiding. Since each segment can be accounted for individ

ually, they can be of different types. When the first segment of a chain of type i is in an 

arbitrary layer z0, the discretization of the Chapmann-Kolmogorov equation, eqn (5.3), 

yields after summation over all Zo the following recurrence relation for the probability 

Gi(z, s\zo, 1) to find segment s of chain type i in layer z 

Gi(z, s\l) = Gi(z, s) (Gi(z, s - 1|1)> (5.6) 

The boundary condition of this recurrence relation is given by Gj(z, 1|1) = Gj(z,l) 

(cf. eqn (5.2)). In equilibrium, the so-called segment weighting factor is according to 

eqn (5.5) given by 

G{(z, s) = Y: GA(Z)6LA = £ exp [ ~ ^ f ) SU (5-7) 

where the Kronecker delta function 6l
s A = 1 when segment s of molecule i is of type A 

and 6l
s A = 0 otherwise. 

The energy UA{Z) a segment of type A encounters at z is, relative to the bulk phase 

/?, given by (cf. eqn (3.19)) [17] 

uA{z) = u'{z) + kBT £ XAB ( (M*)> " <&) (5-8) 
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Here <pB is the volume fraction of all other segment types B. Since exchange energies 

XAB are used, the free volume is accounted for as species such that the lattice must be 

completely filled. The energy u'(z) comes in to account for this constraint. 

The angular brackets in eqn (5.6) denote averaging over adjacent layers, like it has 

been done for the contact fraction in eqn (3.15) 

(Gi(z, a|l)> = \-i(z)Gi(z - 1, «|1) + X0(z)Gi{z, s\l) + X^G^z + 1, s | l ) 

For any position of the last segment Ni, the probability to find segment s of chain 

type i in layer z reads 

Gt(z,s\NJ = Gi{z, a) (G^z, s + l|JVi)> (5.9) 

Here the boundary condition Gi(z,Ni\Ni) = G,(z,iV;) must be satisfied. The total 

volume fraction of segments of type A stemming from all chain types i in layer z 

follows from connecting the subchains of segments 1, . . . s in layer z with the subchains 

8,...N{ [17] 

M*) = E Ci E Gi{z,8^(
Gi(ylNik,A (5-io) 

s = l 
Gi(z,s) 

The denominator corrects for the double counting of segment s that came in from both 

subchains, as can be seen from eqn (5.6) and eqn (5.9). Considering that the sum over 

all layers of the volume fractions yields the total number of monomers, Y,z L{z)(j>i(z) = 

riiNi, it follows that the normalization factor d reads 

c ni . $ (5in 
°8 ZzL(z)Gi(z,Ni\l) Nt

 l°- i i ; 

The second normalization factor on the right hand side of eqn (5.11) is actually the 

same as the first albeit evaluated in the reference bulk phase. The first normalization 

factor allows for calculations with a fixed number of molecules of type i, n,, whereas 

the second one may be used to fix the bulk concentration of type i, 0f. 

The volume fractions of type A can be determined from the segment weighting factors 

eqn (5.7), which follow from the energies UA(Z). However, as can be seen from eqn (5.8), 

the energies UA{Z) depend, in turn, on the volume fractions. Consequently, the set 

of equations has to be solved iteratively until the energies and volume fraction are 

consistent. 
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The grand potential relative to its bulk value can be derived in terms of the volume 

fraction profiles from statistical thermodynamics [17, 18] 

Q+^V ( <f>? - faiz) ^ <t>A{z)uA{z) 

z \ i lyi A 

Z A B 

= YjL{z){p0-pT{z)} 

(5.12) 

The factor 1/2 enters to correct for double counting the interactions while summing 

over all species A and B. This means that the interactions between species A and B are 

effectively locally averaged over both species. However, one can also perform the double 

sum J E A E B as Y,AT,B>A, using the property that <j>A{z) (<fo?(2)) = <J>B{Z) (<PA{Z)) 

when summing over all layers. In this way the interactions are assigned to only one 

of the species. Although both ways of counting the interactions yield the same grand 

potential, the excess pressure profile p0 — PT(Z) is locally different. Still other schemes 

to calculate the double sum can be thought of, each yielding the same grand potential 

but different excess pressure profiles. Consequently, like it has been shown in chapter 3, 

the local pressure is ambiguous although it yields a unequivocal value for the grand 

potential. 

5.3. BENDING A BILAYER 

5.3.1. Thermodynamics of bilayer membranes 

As outlined in section 5.1, the rigidity of a bilayer determines the phase behaviour 

of bilayer membranes to some extent. The Helfrich constants can be derived from the 

curvature dependence of the interfacial tension, as expressed in the Helfrich equation, 

eqn (4.13) [19]. Thermodynamically the interfacial tension follows from (cf. eqn (2.19)) 

n + p0 V = - ApVa + iGA (5.13) 

where A is the area of the bilayer and Va the volume enclosed by the membrane. 

Since the inner bulk phase a, enclosed by the bilayer, is identical to the continuous 

outer phase /3, there is no Laplace pressure drop, i.e., Ap = 0. An equilibrium system 

of membranes that forms spontaneously from the surfactant solution can adapt its 

own number of bilayers with the corresponding interfacial area A. Consequently, as 

outlined in section 2.6, it follows from the thermodynamics of small systems that for 
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an equilibrium bilayer membrane (cf. eqn (2.72), eqn (2.73), and eqn (2.69)) 

Consequently, if the translational entropy of the membrane is neglected, the equilibrium 

bilayer is tensionless, i.e. 7G = 0 [18]. Moreover, it is easily seen from symmetry 

considerations that the equilibrium membrane has on average a planar geometry [20], 

i.e., Jo = 0. In conjunction with the previously found result that the equilibrium 

membrane is tensionless, neglecting the translational entropy of the membrane, the 

Helfrich equation eqn (4.13) reduces to 

^ ^ = l a = lk^ + kK (5.14) 

where J and K are the total and Gaussian curvature, respectively. 

5.3.2. Mechanics of bilayer membranes 

It has been shown in section 4.1.2 that the Helfrich constants can also be obtained 

mechanically, i.e. in terms of the (excess) pressure profile. The bending modulus kc and 

spontaneous curvature Jo can be found directly from the cylindrical bilayer. The saddle-

splay modulus k can only be determined from comparison of the bending modulus and 

the effective modulus of the spherical vesicle (cf. eqn (4.15)) 

H%1 kcJ0 = I f + ( ̂  ) (5.15a) 

where the superscripts c and " refer to evaluation at the cylindrical and spherical 

interface, respectively. As it follows from appendix 3.D.2, for the lattice model the 

bending moments are given by 

P0 = ApRs + jjr(j/> - pT(z)) (5.16a) 
2 = 1 

1 M f 1\ 

?1 = - '-ApR* + Yt(z-Rt--j(pP- pr(*)) (5.16b) 

1 M / 1 \ 
P2 = -ApRs

s + E ((* - R»)2 - ( * - * . - 3)) (P" - PT(*)) (5-16C) 
z = l 
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where the excess pressure profile pP — PT(Z) is given by eqn (5.12). Using the fact 

that there is no Laplace pressure difference, all first terms on the right-hand side of 

eqn (5.16) vanish for bilayer membranes. 

5.3.3. Results for C12E5 in water 

Using the lattice model, the C12E5 surfactants will be modelled as the chain molecule 

Ci20(C20)5. Here, C stand for CH2 or CH3 groups, which will not be discriminated, 

and O mimics the oxygen or hydroxyl groups in the surfactant. The water molecules will 

be modelled by a simple monomer solvent W. Obviously, this is a poor model for water 

but can be improved by accounting the orientation-dependent interactions [21]. Given 

the three monomer types C, O, and W, three exchange parameters Xco, Xcw, and xow 

need to be specified. Indicating that the interactions with the C group are hydrophobic, 

the exchange parameters are positive and are taken to be constant \co = Xcw = 1-6 

[22-25]. However, owing to the hydration of the hydrophilic O groups by the water 

molecules, Xow is more strongly temperature dependent. Consequently, varying Xow 

may be regarded as changing the temperature. Moreover, an FCC lattice type will be 

used, i.e. Ao = Ai = 1/3. As shown in appendix 4.A, this lattice type in conjunction 

with the relatively low exchange parameters x> suppresses the lattice artefact. 

In order the determine the interfacial tension from the bending moments, eqn (5.16) 

(cf. eqn (2.49)), the position of the dividing plane Rs remains to be defined. Although 

both the inner and outer radius of the bilayer are possible choices, the dividing plane 

is here found from 

M 

£ (z - R.) (4>,(z) - O = 0 (5.17) 
2 = 1 

where <fis = 4>c + 4>o is the total surfactant volume fraction. The volume fraction 

profiles <j>c(z), <fro(z), and <f>w(z) are illustrated in figure 5.1a for a cylindrical vesicle, 

where Xow = —0.5 and the centre of the vesicle is located at z = 0. Using eqn (5.17), 

the dividing plane is located in the middle of the membrane. The contributions to 

the C groups come from both the headgroups and the tails and are distributed over 

the complete bilayer. However, the O segments of the headgroups prefer the exterior 

of the vesicle but are relatively diffusively distributed because they are bound to the 

hydrophobic C groups. Furthermore, the vesicle is asymmetric due to the curvature; 

the O groups are slightly more densely packed inside the vesicle (z < Rs) than the 

groups on the outside. This forces the tails outwards, hence the maximum of the C 

groups is found for z > Rs. Note the relatively large penetration of the monomeric 

water in the centre of the membrane due to the lack of specific interactions. 
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FIGURE 5.1. (a) Volume fraction profiles of a cylindrical C12E5 vesicle in wa

ter. The surfactant C12E5 is modelled as Ci20(C20)s, where the C represents 

CH2 or CH3 groups and the O mimics the O or OH groups. Water has been 

treated as a monomer with orientation-independent interactions. A lattice of 

40 layers has been used with Ao = 1/3, xcw = XCO = 1-6, and xow = —0.5. 

The dividing plane at Rs is chosen to be in the middle of the bilayer, whereas 

the centre of the vesicle is located at z = 0. (b) The tangential excess pressure 

profile corresponding to the density profiles as given in (a) can be determined 

in various ways yielding the same grand potential. The excess pressure repre

sented by the solid line (left vertical axis) effectively averages the interactions 

over adjacent layers, whereas the dashed line (right vertical axis) gives the ex

cess pressure where the interactions with adjacent layers is assigned to either 

one of the layers. Note that the scales differ one order of magnitude. 

Given the volume fractions, the excess profile can be determined from eqn (5.12). 

As stated, several ways to perform the double sum counting the interactions can be 

considered. Note the different features of the two examples given in figure 5.1b. For 

instance, the two examples differ one order of magnitude and the pressure given by the 

solid line has three maxima whereas the one given by the dashed line only one. Never

theless, both excess pressure profiles are slightly more tensile, i.e. negative, inside the 

vesicle than outside due to the curvature. The tensile parts are needed to compensate 

for the compressive, i.e. positive, parts resulting in the typical small interfacial tension, 

as discussed in section 3.3. 

With the above set of parameters, eqn (5.12), and eqn (5.14), the Helfrich constants 

can be determined from the curvature dependence of the interfacial tension as a function 
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of the hydrophilicity Xow of the headgroup. The curvature of a bilayer is varied by 

changing the number of surfactants in the system. Given the number of surfactants, 

rii, the constrained equilibrium density profiles are found from eqn (5.10), using the 

first normalization factor of eqn (5.11). The equilibrium is constrained since the bilayer 

is forced into a curved, rather than a planar, geometry which was shown to be the 

global equilibrium geometry. The resulting interfacial tensions are displayed by the 

symbols in figure 5.2a for both a spherical and cylindrical geometry as a function of 

the curvature taking xow = —0.5. A direct fit to the interfacial tension with a second 

order polynomial, shown by the solid lines, yields according to eqn (5.14) the Helfrich 

constants. However, according to eqn (5.14), the Helfrich constants can also be found 

from a linear fit to 

n+jfV _1G _ HkcW. cylinders 

JA ^ \ ( k + 2 *0 Rl spheres 

The fit to eqn (5.18) is shown in figure 5.2b for the same data. Using both the fit to 7G 

and (fl + p^V)/ J A gives information about the accuracy of the fits. Deviations may 

occur for two reasons. First, the calculated interfacial tensions are subject to lattice 

artefacts. As can be seen from the magnifications in figure 5.2, the deviations from the 

fits are relatively small as expected for the given set of parameters. Second, the Helfrich 

equation is strictly only valid for J —> 0. However, as can most easily be seen from 

figure 5.2b, the description remains appropriate for relatively large curvatures. Con

sequently, the curvature energy, {d2^a/dJ2)T, is hardly dependent on the curvature. 

This explains why vesicles, although not the equilibrium structure of the bilayer mem

branes, are relatively stable; the system can hardly change its free energy by growing 

or shrinking the vesicles. The system can only lower its free energy by fusing vesicles, 

which is an activated process. The average Helfrich constants derived from figure 5.2, 

read kc = 1.645 ± 0.002 and k = -2.236 ± 0.002. Apparently, the errors are relatively 

small. Since they are of a total different origin, it is not likely that the two different 

types of errors cancel each other. 

The Helfrich constants can also be determined mechanically, as given by eqn (5.15). 

The derivatives in eqn (5.15) are subsequently determined from a second order poly

nomial and linear fit to the zeroth and first bending moment respectively. Although 

the results are independent of the choice of the pressure profile, one may prefer a 

certain choice for favourable numerical accuracy. As can be seen from figure 5.3 for 

Xow = —0.5 these fits are fairly accurate and are hardly subject to lattice artefacts. 

Moreover, ¥Q — TQ = 0 recovers the fact that the planar interface is tensionless by 
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FIGURE 5.2. (a) The interfacial tension of C12E5 bilayer membranes in water 

as a function of the curvature, with Ao = 1/3, xcw = Xco = 1-6, and xow = 

—0.5. The position of the dividing plane is given by eqn (5.17). The squares 

apply to a spherical vesicle, whereas the circles give the calculated values for 

a cylindrical geometry. The solid lines are a second order polynomial fit to 

the points, (b) The linearized interfacial tension as given by eqn (5.18) as 

a function of the curvature. The solid lines are linear fits to the calculated 

points. The magnifications show that the calculated values are subject to a 

relatively small lattice artefact. 

neglecting the translational entropy (cf. eqn (2.49)). Since the planar bilayer is com

pletely symmetrical with respect to its centre (cf. eqn (5.17)), it is found indeed that 

PJ' = PJ' = 0. Furthermore, it is found that for the system as shown in figure 5.3 
p.,0 = jpAO = _ 2 L 5 3 6 . 

From the fits to the bending moments in figure 5.2, using eqn (5.15), it is found that 

J0 = 0.00, kc = 1.61, and k = —2.11. The exact error in these values is unknown; 

the accuracy of the fits is hard to determine and the sum of the respective derivatives 

typically yields a number that is one order of magnitude smaller than the individual 

values. Otherwise stated, the discrepancies between the values for the Helfrich constants 

determined from the direct fit to the interfacial tension and those determined from the 

bending moments are due to numerical errors. 

The above procedure has been repeated for several values of xow- The results for 

the bending modulus and saddle-splay modulus are shown in figure 5.4. The solid 

lines connect the symbols calculated from the direct fits to the interfacial tension. 

The error bars are smaller than the symbols. The dotted lines connect the symbols 
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FIGURE 5.3. (a) The zeroth bending moment of C12E5 bilayer membranes in 

water as a function of the curvature, with Ao = 1/3, xcw = Xco — 1-6, and 

Xow — —0.5. The position of the dividing plane is given by eqn (5.17). The 

squares refer to a spherical vesicle, whereas the circles give the calculated values 

for a cylindrical geometry. The solid lines are a second order polynomial fit to 

the points. The graph recovers the analytical result that the planar membrane 

is tensionless; 70 = PQ = 0. (b) The first bending moment as a function of the 

curvature. The solid lines are linear fits to the calculated points. As expected 

from symmetry considerations, Fj = 0. The magnifications show that the 

calculated values are subject to a relatively small lattice artefact. 

determined mechanically from the bending moments. There appears to be a constant, 

minor deviations between the mechanically determined Helfrich constants and those 

determined from the fit to 7,3. This is due to the fact that the error in the fits to the 

bending moments is systematic. This apparently leads to the conclusion that the value 

for the mechanically determined bending modulus is always too low. Consequently, 

since the sum must yield the same interfacial tensions as those from the direct fit to 

7G, the saddle-splay modulus from the bending moments is always overestimated. 

5.4. DISCUSSION 

Consistent Helfrich constants have been determined from both a thermodynamic 

and mechanical route as a function of the hydrophilicity of the headgroup. Different 

regions may be distinguished in figure 5.4. For Xow ^ —0.8 the value of kc is almost 

constant and relatively high. Owing to the relatively good solubility of the O groups, the 

headgroups are well hydrated. Consequently, the hydrophobic tails of the surfactants 
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FIGURE 5.4. The bending modulus and saddle-splay modulus for a C12E5 

bilayer membrane as a function of the hydrophilicity of the headgroup with 

Xco = Xcw = 1-6, Ao = 1/3. The dividing plane is chosen to be in the middle 

of the membrane, using eqn (5.17). The roman numbers indicate different 

phase regions. 

are forced more inwards into the bilayer, as outlined in section 5.1. As a result, the 

membrane remains relatively rigid. 

Going through the range —0.8 < xow < —0.22, the hydrophilicity decreases such that 

the headgroups can dissolve easier in the hydrophobic core of the membrane, making 

the membrane less rigid. Consequently, the values of the bending modulus decreases. 

Hence, the undulations increase with increasing Xow- As can be seen from eqn (5.1), 

the repulsive forces in the system increase, which makes the spacing r between bilayer 

sheets larger. The correlates well with the experimental finding that the so-called L a 

phase swell with increasing T [9, 10]. 

For —0.22 < xow < —0.12 the saddle-splay modulus becomes positive, which favours 

the formation of saddle planes. Consequently, although the low value of the bending 

modulus gives rise to a large repulsive force between the membrane sheets, connecting 

handles are formed between the bilayers. This may explain the experimentally observed 

L3 or sponge phase at relatively high temperature [9]. 

If Xow > —0.12, the bending modulus tends to become negative and, like the saddle-

splay modulus, even seems to diverge. This implies that the bilayer membranes are 

no longer stable. Moreover, the solubility of the headgroup has become that low, that 

the system will phase-separate into an aqueous and a surfactant rich phase. Since the 

O and C groups still repel each other, the surfactant molecules tend to form inverted 



124 5. THERMODYNAMICS AND MECHANICS OF BILAYER MEMBRANES 

2s» & m 
a^o. 

I II III IV 
FIGURE 5.5. Different phases can be obeserved from the calculations for C12E5 

vesicles. I. For xow ^ —0.8 the C12E5 membranes are relatively rigid. II. For 

—0.8 < xow < —0.22 kc decreases, causing the bilayer to be less stiff and yields 

an increasing spacing between the membranes. III. For —0.22 < xow < —0.12 

k becomes positive which favours the formation of connecting handles between 

the bilayers. IV. If xow > —0.12 the headgroups are not hydrophilic enough, 

such that the bilayers are instable and the surfactants phase separates into a 

phase of inverted micelles. 

micelles in which small amounts of water are dissolved. Such phases have indeed been 

observed experimentally at high temperatures [9]. 

The described phase behaviour is summarized and illustrated schematically in fig

ure 5.5 for the regions indicated in figure 5.4. Since all these phases have been observed 

experimentally for the C12E5 surfactant system in water [9, 10], it is concluded that the 

lattice model is suitable for studying the phase behaviour of surfactant systems. Al

ready with a restricted set of parameters, the basic experimental features of the phase 

diagram can be recovered. In order to do so, vesicles were forced into a cylindrical and 

spherical geometry, thus neglecting the end-cap energy and translation entropy of the 

actual bilayer membranes. From these vesicles two independent fits to the interfacial 

tension yield consistent values for the Helfrich constants of the surfactant bilayer mem

brane as a function of the hydrophilicity of the headgroup. The values are recovered 

with less numerical accuracy from the mechanical expressions for the Helfrich constants. 

Consequently, a direct fit to the interfacial tension suffices for future studies. 

From the sign and magnitude of the bending and saddle-splay modulus one can deter

mine in what phase the surfactant layer prefers to be when the geometry restrictions are 
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relaxed. Hence, minimal surfaces may be studied from cylindrical and spherical inter

faces only. Nevertheless, the balance between attractive and repulsive forces accounting 

for the translational entropy of the bilayers upon actual inclusion of multiple membrane 

sheets in the calculations remains of interest. Incorporation of the influence of charges 

in ionic surfactant systems [26] and the role of, e.g., a co-surfactant or co-solvent on 

the phase behaviour of surfactant layers are also challenges for future study. Moreover, 

the phase behaviour of surfactant monolayers, like e.g. in microemulsions [27], as a 

function of the aforementioned parameters deserves profound attention. 

It has been argued that the bending route to the Helfrich constants, as elaborated 

here, may lead to different Helfrich constants and, by that, different phase behaviour as 

compared to the fluctuation route [28]. This may be due to the fact that the undulations 

on the interface of the vesicle are subject to boundary conditions which makes the 

number of waves quantized (cf. the 'particle in a box' from quantum mechanics). This 

restriction introduces another entropic term that is not accounted for in the above route 

to the Helfrich constants [29, 30]. It is also of interest to study the influence of this 

kind of entropy on the differences in Helfrich constants. 

In the model for surfactant bilayers presented in this chapter, contributions of lattice 

artefact have shown to be negligible. However, in the previously recommended systems, 

this artefact may need attention. In the case of microemulsions, the amount of oil may 

be adjusted until the pressure difference due to the artefact is eliminated, like it has 

been done for the liquid-vapour interface (cf. appendix 4.A). Since the enclosed phase 

equals the outer phase, this method is not applicable to vesicle systems. In a previous 

study [18], the number of surfactants of a vesicle system had been adjusted until Po = 0. 

As it can be seen from eqn (5.15), this implies that & = P^, as had been found indeed. 

However, the condition 7G = Po = 0 only holds for the planar equilibrium membrane. 

This method eliminated thus the artefact by introducing one. Consequently, at present 

there is no longer a condition available to warrant artefact-free vesicles. Since the 

sign and the order of magnitude rather than the exact value of the Helfrich constants 

determines the phase behaviour, the lattice model may prove to be a very valuable tool 

for the study of surfactant systems. 
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APPENDIX A 

List of Symbols 

TABLE A.l. Latin symbols 

A 

a 

a0 

Q 

c2 

c c 
Cl, c 2 

F 

/ 

/I 
Jij 

G 

h(x,y) 

h 

J 

J 
Jo 
K 

K 
k 

kB 

Kc 

L(z) 

interfacial area 

effective headgroup area of surfactant 

unit area of a lattice site 

bending stress 

torsion stress 

curvature coefficients 

principal curvature 

Helmholtz energy 

Helmholtz energy per unit volume 

net force acting on particle i 

force interacting between particles i and j 

Gibbs energy 

height profile of interface 

length of cylindrical lattice 

total curvature 

extensive total curvature 

spontaneous curvature 

Gaussian curvature 

extensive Gaussian curvature 
saddle-splay modulus 

Boltzmann's constant 

bending modulus 

number of sites in lattice layer z 

£ characteristic size in a lattice 

M number of lattice layers 

rrii mass of particle i 

N total number of particles 
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Nt 

N 
n 

Ui 

P 

P 

Po 

Pi 

P2 

P 

P 

PN{r) 

Pr(r) 
Ap 

q 
Rs 

fi 

Tij 

s 
s 

T 

t 

U 

uA 

V 

vm 

V 

V 

v0 

w 

Vi 

Z 

chain length of molecules of type i 

number of small systems 

normal vector at interface 

number of particles of component i 

van der Waals pressure 

pressure tensor 

zeroth bending moment 

first bending moment 

second bending moment 

bulk pressure 

reduced van der Waals pressure 

normal pressure at position f 

tangential pressure at position f 

Laplace pressure difference 

heat 

position of the interface 

position of particle i 

path between particle i and j 

entropy 

entropy per unit area 

temperature 

reduced temperature 

internal energy 

energy encountered by a segment of type A 

volume 

molar volume 

effective length of surfactant 

reduced molar volume 

unit volume of a lattice site 

work done on the system 

velocity of particle i 

coordination number 
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z lattice layer index 

z radial distance from the interface 

ZGibbs position of Gibbs dividing plane in a planar interface 

zs position of surface of tension in a planar interface 

TABLE A.2. Greek symbols 

Ti adsorbed amount of type i 

7SJV interfacial tension according to Boruvka and Neumann 

7G interfacial tension according to Gibbs " 

A degeneracy 

5 Tolman length 

5{R) Dirac delta function 

Sij Kronecker delta" function 

e subdivision potential 

0(R) Heaviside step function 

\i{z) transition probability to go to layer-z + i 

fii chemical potential of component i 

i>ij interaction energy between species i and j 

£ bulk correlation length 

p bulk density 

p(f) continuous density at position f 

<f> volume fraction in bulk 

<t>i{z) volume fraction of i in layer z 

tp°(z) density profile of the planar interface 

(pm volume fraction of small systems 

Xtj exchange interaction energy between species i and j 

fi grand potential 
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TABLE A.3. Notations 

3 inexact differential 
0 evaluated at the planar interface 

c value in critical point 
mt contribution of interactions 
k kinetic contribution 

" with respect to the interface 

s with respect to the surface of tension 

t total over all small systems 

<>,a,0 with respect to the mentioned bulk phases 

" based on interaction energies 
x based on exchange energies 

unit vector 

[... ] virtual displacement 

( . . . ) ensemble average 

( . . . ) contact fraction 



Summary 

Although relatively much is known about the physics of curved interfaces, several models 

for these kind of systems seem conflicting or internally inconsistent. It is the aim of 

this thesis to derive a rigorous framework of thermodynamic and mechanical expressions 

and study their relation to previous models. 

In chapter 2 interfaces are described mathematically. It turns out that their cur

vatures can generally be determined by two independent coefficients, viz. the total 

curvature J and the Gaussian curvature K. These degrees of freedom of a system must 

be accounted for in the thermodynamic expression for the internal energy and are con

jugated to the bending stress <CX and torsion stress Qj, respectively. The curvatures 

can then be taken as intensive variables, as has been done by Gibbs, or as extensive 

variables, as proposed by Boruvka and Neumann. The two ways of accounting for cur

vature leads to different definitions of the interfacial tension, which are referred to as 7G 

and JBN, respectively. In the former way the curvatures can be fixed when changing the 

interfacial area A, whereas in the latter the area times the curvature must be constant 

upon variation of the interfacial area. Consequently, the interfacial tension according 

to Boruvka and Neumann incorporates bending as well as stretching work. Hence, for 

homogeneously curved interfaces, the difference between 7G and ^BN is the bending 

work. 

It follows from a quasi-thermodynamic description that the interfacial work according 

to Gibbs, 7G^4, can be described mechanically as the volume integral of the excess pres

sure profile. Writing the volume element in terms of the curvatures, 7^ can be expressed 

in terms of the zeroth, first, and second bending moments Po, Pi, and P2, respectively. 

Using their thermodynamic definitions, the bending and torsion stress can also be given 

mechanically, i.e., in terms of the excess pressure profile. Subsequently, using the rela

tion between 7G and JBN, the interfacial tension according to Boruvka and Neumann 

is expressed in terms of the bending moments. The newly derived equations differ sig

nificantly from those known in the literature. However, it is shown that the Laplace 

equations of capillarity derived from either the thermodynamic or the mechanical route 

are consistent. 

The mechanical and thermodynamic notion of 'pressure' are scrutinized in chapter 3. 

The mechanical or virial route to the pressure is reviewed as a result of the forces exerted 
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by the momenta and interactions of the particles per unit area. The mechanical pressure 

turns out to be a tensor quantity and is used to recover results known in the literature. 

Since the interactions cannot be assigned unambiguously to one position in space, the 

local pressure is found to be equivocal. 

A lattice model allowing spatial gradients is elaborated. The grand potential density 

of a system, which is the work of changing the volume of the system reversibly, is 

identified as the scalar thermodynamic pressure. For a bulk system, the grand potential 

density recovers the Kamerlingh-Onnes virial expansion of the pressure and has the 

same features as the reduced van der Waals pressure. Moreover, it has been shown 

that in the continuous limit the Helmholtz energy of the lattice gas can be written as 

the Landau expression for the free energy. For an inhomogeneous system of monomers, 

pressure profiles are found from the grand potential density that have similar features 

as those found from the virial route. That is, in the vicinity of an interface both tensile 

and compressive regions are observed. In the model by Szleifer et al. the tensile, i.e., 

negative region of the locale pressure is omitted. Since that region may be necessary to 

obtain low interfacial tensions for some systems, an important feature of their 'pressure' 

has been ignored. Since the reference state of the energy of the lattice model can be 

chosen freely, it is concluded that the thermodynamic pressure can neither be given 

unambiguously. 

The bending and torsion stress of a monomer liquid-vapour interface are determined 

from their mechanical expressions using two definitions of the local pressure. The ex

pressions as derived in chapter 2 turn out to give unique consistent results, whereas the 

expressions known in the literature give ambiguous outcomes for the thermodynami-

cally well-defined parameters. The latter is physically unacceptable. Since, unlike the 

virial route to the pressure, the thermodynamic pressure of the lattice model yields by 

definition a unique expression for the grand potential, it is concluded that this lattice 

model is a useful tool to model curved interfaces. 

A phenomenological description of the curvature dependence of the interfacial tension 

is given in chapter 4. Up to first order in the curvature, the change of the interfacial 

tension is determined by the Tolman length. A second order description is given by 

the Helfrich equation, which, in turn, is determined by the bending modulus, kc, and 

the saddle-splay modulus ^- These Helfrich constants turn out to be the (derivatives of 

the) bending and torsion stresses of the planar interface, respectively. As a consequence 

of the different mechanical expressions for Q and C2, the Helfrich constants cannot be 

obtained from the properties of the planar interface only but also require the curvature 

dependence of the bending moments. This difference with the equations known in the 
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literature can be traced back to the difference of the definition of the pressure from either 

a virial or thermodynamic route. It is shown that for a simple liquid-vapour interface the 

extra terms are needed when the pressure is found from the grand potential density. 

Only then are the Tolman length and the mechanically obtained Helfrich constants 

consistent with a parabolic fit to the interfacial tension. 

The Helfrich constants of the simple liquid-vapour interface can be determined as a 

function of the intermolecular interactions. It is shown that a van der Waals density 

functional theory and its asymptotic expressions reproduce the Helfrich constants found 

from the lattice model in the vicinity of the critical point. Away from the critical point 

the square gradient of the van der Waals theory is not sufficient to account for the 

changes in the density profile across the interfacial region. 

The phase behaviour of a bilayer membrane is considered in chapter 5. In order to 

model surfactants, the lattice gas model is extended to chain molecules. It is thought 

that each segment of the chain emerges from its predecessor such that the end of the 

chain can be considered as a diffusing particle obeying the Fokker-Planck equation. 

The grand potential density is again identified as an (ambiguous) local pressure. By 

choosing proper interactions, the formation of surfactant vesicles can be modelled. 

For this study, the non-ionic surfactant C12E5 is modelled. The interfacial tension of 

the vesicle is determined as a function of its radius. The resulting Helfrich constants 

determined both mechanically and from a parabolic fit to the interfacial tension are 

consistent. Keeping the hydrophobicity of the tail group constant, the Helfrich con

stants of the vesicle are obtained as a function of the hydrophilicity of the head group. 

It is found that for very hydrophilic head groups the bending modulus has an almost 

constant positive value, whereas the saddle-splay modulus is negative. This is thus in

terpreted that the membranes are relatively rigid. When the hydrophilicity decreases, 

the bending modulus becomes less positive and the saddle-splay modulus less negative. 

This renders less rigid bilayers, allowing large collective fluctuations, i.e. undulations, 

of the membranes. Hence, owing to steric hindrance, the spacing between a set of bilay

ers increases with decreasing hydrophilicity. For moderate hydrophilicity, the bending 

modulus is decreasingly positive. However, the saddle-splay modulus becomes posi

tive which favours the formation of handles between the undulating bilayers. When 

the hydrophilicity is relatively low, the Helfrich constants seem to diverge because the 

head groups do not longer hydrated and the system phase-separates into surfactant 

and solvent rich phases. Since all these phases have been observed experimentally, it 

is concluded that the lattice model is a potentially valuable tool to study surfactant 

systems. 



Samenvatting 

Gekromde oppervlakken zijn fascinerend. Niet voor niets trekken vele Nederlanders 

tijdens hun vakanties de bergen in, of komen veel buitenlanders naar het 'vlakke land' 

voor onze duinen (om daar kuilen te graven). Ook op kleinere lengteschaal beheersen 

gekromde oppervlakken het dagelijks leven; een rimpelloze watervlakte of anders dan 

ronde regendruppels of hagelstenen zullen erg verrassend zijn. Op een nog kleinere 

lengteschaal, niet of nauwelijks met het blote oog waarneembaar, zijn gekromde op

pervlakken eveneens overal aanwezig. Zo is in melk het vet als minuscule druppeltjes 

aanwezig, kunnen wasmiddelen vuil insluiten en zijn lichaamscellen vaak nagenoeg ges-

loten, ronde eenheden. Het zijn met name deze 'toepassingen' die een studie naar 

gekromde oppervlakken interessant maken. Hoe kan het dat gesmolten melkvet niet 

zomaar als druppeltjes in water kan oplossen? Aan welke eisen moet een wasmiddel 

voldoen om verschillende soorten vuil goed in te sluiten? Waarom zijn lichaamscellen 

gesloten, zodat er leven kon ontstaan? 

Inmiddels is er redelijk veel inzicht verkregen in de vorming van gekromde opper

vlakken. Langer houdbare melk en betere wasmiddelen zijn hier bijvoorbeeld het gevolg 

van. Deze, vaak empirische, kennis geeft echter geen antwoord op de overkoepelende 

vraag; waarom worden er in zijn algemeenheid gekromde oppervlakken gevormd? Om 

het antwoord op deze vraag inzichtelijk te maken, zijn er diverse theorieen ontwikkeld 

die gekromde systemen beschrijven of modelleren. Echter, sommige modellen geven 

(inwendig) tegenstrijdige voorspellingen. Het doel van dit proefschrift is om een een-

duidige beschrijving te geven van gekromde oppervlakken en die te vergelijken met 

andere modellen. 

In hoofdstuk 2 wordt een thermodynamische beschrijving gegeven van gekromde 

grensvlakken. Thermodynamica, in eerste instantie ontwikkeld om stoommachines op-

timaal te laten functioneren, is het vakgebied dat beschrijft hoe warmte en arbeid in 

elkaar kunnen worden omgezet. In essentie kan de thermodynamica worden terug ge-

bracht tot twee zogenaamde hoofdwetten. De eerste hoofdwet zegt dat energie niet uit 

niets kan ontstaan, zodat warmte slechts in arbeid kan worden omgezet en omgekeerd. 

De tweede hoofdwet zegt dat er bij een gegeven hoeveelheid energie in een systeem altijd 

gestreefd wordt naar een zo groot mogelijke wanorde, die direct aan de verandering van 

de warmte in een systeem gekoppeld kan worden. Als een grensvlak gekromd wordt, 
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zijn er twee soorten arbeid noodzakelijk; de grensvlakarbeid en de krommingsarbeid. 

De grensvlakarbeid is die hoeveelheid energie die nodig is om een oppervlak te vergroten 

en is gerelateerd aan de zogenaamde grensvlakspanning. Dankzij deze grensvlakspan-

ning kunnen insecten op het water drijven of kunnen steentjes met keilen op het water 

ketsen. De krommingsarbeid is die hoeveelheid energie die nodig is om een grensvlak 

te krommen en is gerelateerd aan de zogenaamde buig- en torsiespanning. Om nu een 

grensvlak met een gegeven oppervlak en mate van kromming te vervormen, kunnen er 

twee dingen worden gedaan. Eerst kan het oppervlak worden vergroot tot de gewenste 

eindwaarde en vervolgens kan dat oppervlak worden gekromd. Het is ook mogelijk om 

beide tegelijkertijd te doen. Hoewel beide manieren om van een gegeven begintoestand 

tot de gewenste eindtoestand te komen evenveel energie zal kosten, is de verdeling 

van die energie over grensvlakarbeid en krommingsarbeid anders. Dit leidt tot twee 

afwijkende definities van de grensvlakspanning. De eerste manier om te krommen is 

voorgesteld door Gibbs, de tweede manier door Boruvka en Neumann. Als de krom

ming overal op het oppervlak gelijk is, dan is het verschil tussen de grensvlakspanning 

van Gibbs, 7G, en die van Boruvka en Neumann, 'JBN, juist de krommingsarbeid per 

oppervlakte-eenheid. 

Het bestaan van de grensvlakspanning komt voort uit het feit dat moleculen in het 

grensvlak anders omringd zijn dan elders in het systeem. Dat wil zeggen dat de druk 

die een molecuul in het grensvlak ondervindt van de omringende moleculen verschilt 

van de druk die eenzelfde molecuul ervaart ver weg van het grensvlak. Deze lokale extra 

druk, ofwel overschotsdruk, kan dus gerelateerd worden aan de grensvlakspanning. Dit 

leidt tot de zogenaamde mechanische uitdrukking voor de grensvlakspanning. Gebruik 

makende van de hierboven vermeldde thermodynamische definitie, kunnen er nu ook 

mechanische uitdrukkingen worden gegeven voor de buigspanning Ci en de torsiespan

ning C2. Het blijkt nu dat de aldus gevonden mechanische uitdrukkingen niet dezelfde 

zijn als die die bekend zijn in de vakliteratuur. Er wordt bewezen dat zowel de thermo

dynamische als de mechanische vergelijkingen dezelfde uitdrukking oplevert voor het 

zogenaamde Laplace drukverschil dat over een gekromd oppervlak heerst. 

De betekenis van het begrip 'druk' wordt onderzocht in hoofdstuk 3. Allereerst wordt 

de mechanische betekenis van de druk bekeken; de krachten die de moleculen uitoefe-

nen per eenheid van oppervlakte. Volgens het zogenaamde viriaaltheorema zijn deze 

krachten gelijkelijk verdeeld over die veroorzaakt door de bewegingen van de individu-

ele moleculen enerzijds en de paarsgewijze wisselwerking tussen moleculen anderzijds. 

Omdat deze krachten niet in alle richtingen even groot hoeven te zijn, heeft de mecha

nische druk dus behalve een grootte, ook een richting. Wiskundig betekent dit dat de 
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druk in het algemeen een tensoriele, in plants van een scalaire grootheid is. Alle verkre-

gen resultaten voor de mechanische druk komen overeen met die die bekend zijn in de 

vakliteratuur. De bijdrage aan de druk door de bewegingen van de moleculen is uniek 

op een plaats vast te leggen, namelijk op de plaats van het deeltje. De bijdragen van 

de paarinteracties laat zich echter niet eenduidig localiseren. Immers, de wisselwerking 

kan bijvoorbeeld worden toegekend aan de plaats van een van beide moleculen, maar 

ook ergens tussen de moleculen in. Het gevolg is dat de lokale mechanische druk niet 

ondubbelzinnig gedefinieerd kan worden. 

De druk wordt thermodynamisch gei'nterpreteerd als een arbeid die nodig is om het 

volume te veranderen. Om de eigenschappen van deze thermodynamische druk te be-

kijken, wordt een roostermodel afgeleid. De ruimte wordt daarbij zodanig in hokjes 

gedeeld, dat er per hokje maximaal een molecuul past. De moleculen worden op het 

aldus gevormde rooster geplaatst, zodat uit de wisselwerking met de naburige rooster-

plekjes de energie van het systeem kan worden bepaald. Er zijn echter vele manieren 

om de deeltjes op het rooster te plaatsten. Niet al deze mogelijkheden leveren dezelfde 

energie op; elk mogelijke energie moet worden gewogen met de kans dat zij voorkomt. 

Het aantal mogelijkheden om de moleculen op het rooster te plaatsen is een maat voor 

de wanorde van het systeem, hetgeen op zijn beurt via de tweede hoofdwet van de ther-

modynamica gekoppeld is aan de verandering van de warmte. Door deze van de meest 

waarschijnlijke energie af te trekken, wordt de totale hoeveelheid arbeid gevonden die 

in evenwicht aanwezig is in het systeem. Door hier vervolgens weer de zogenaamde 

chemische arbeid van af te trekken, blijft alleen de mechanische arbeid over. Het totaal 

aan mechanische arbeid wordt de grootse potentiaal genoemd. De grootse potenti-

aaldichtheid, de mechanische arbeid per volume eenheid, wordt dan gei'ndentificeerd als 

de (lokale) druk. De op deze manier gedefinieerde statistisch thermodynamische druk, 

blijkt ver van het grensvlak vandaan dezelfde eigenschappen te vertonen als bekend 

voor andere modellen in de vakliteratuur. Het drukprofiel heeft veel overeenkomsten 

met dat gevonden voor de mechanisch gedefinieerde druk. Er worden zowel uitrek-

bare, negatieve, als samendrukbare, positieve gedeeltes gevonden in het drukprofiel. 

Omdat de drukoverschotten ten grondslag liggen aan de grensvlakspanning, kunnen de 

negatieve lokale drukken van belang zijn om de lage grensvlakspanning, die in som-

mige systemen te vinden zijn, te realiseren. Een model dat deze, tegen-intui'tieve, 

negatieve druk weghaalt, verwaarloost daarmee dus een belangrijke fysische eigenschap 

van de druk. Ook in het roostermodel kunnen de paarinteracties niet eenduidig worden 

toegekend, zodat ook daar lokale druk niet ondubbelzinnig bepaald kan worden. 
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Voor twee verschillende definities van de thermodynamisch gedefinieerde druk, leveren 

de in hoofdstuk 2 gevonden mechanische uitdrukkingen voor de buig- en torsiespanning 

een eenduidig antwoord op. Dit zou ook zo moeten zijn omdat ze ondubbelzinnig 

gemeten kunnen worden. De uitdrukkingen zoals die bekend zijn in de vakliteratuur 

geven echter twee verschillende waardes. 

In plaats van een gedetailleerde thermodynamische beschouwing, kan een krom-

mingsproces ook meer beschrijvend worden gegeven. Bij een dergelijke fenomeno-

logische beschrijving worden alleen de belangrijkste bijdragen meegeteld. In hoofd

stuk 4 wordt beschouwd hoe de grensvlakspanning over het algemeen afhangt van de 

kromming. Door een grensvlak te beschouwen als een rekbare veer, blijken termen 

kwadratisch in de kromming nodig te zijn. Een zogenaamde tweede orde Taylorreeks van 

de thermodynamische uitdrukking voor de grensvlakspanning rond het vlakke grensvlak 

levert dan vier coefficienten op die de krommingsarbeid van een grensvlak fenomenolo-

gisch kunnen beschrijven. Een benadering tot op nulde orde is de grensvlakspanning van 

het vlakke grensvlak. Tot op eerste orde kan de grensvlakspanning benaderd worden 

door de zogenaamde Tolmanlengte of voorkeurskromming, die de buigspanning blijkt 

te zijn van het vlakke grensvlak. De kwadratische, tweede orde bijdrage aan de krom

mingsarbeid wordt gegeven door twee 'veerconstanten': de buigingsmodulus kc en de 

zadelvlakmodulus k. Deze blijken respectievelijk de afgeleide van de buigspanning en 

de torsiespanning van het vlakke oppervlak te zijn. Omdat de mechanische uitdrukkin

gen van de buig- en torsiespanningen anders waren dan die bekend in de literatuur, 

verschillen ook de vergelijkingen voor de fenomenologische krommingscoefficienten. 

Om de geldigheid van de uitdrukkingen voor de vier fenomenologische krommingsco

efficienten te controleren, wordt het bovengenoemde roostermodel gebruikt. De grens-

vlakspanningen worden berekend voor vloeistofdruppels van verschillende groottes. Het 

blijkt dat de fenomenologische beschrijving met de hier gevonden mechanische uit

drukkingen voor de krommingscoefficienten de werkelijk berekende grensvlakspannin-

gen zeer nauwkeurig beschrijft ongeacht hoe de paarinteracties werden geteld in de 

lokale druk. Het domweg gebruiken van de vergelijkingen uit de vakliteratuur levert 

onnauwkeurige beschrijvingen op, die afhangen van de manier waarop de paarinteracties 

worden geteld. 

De met het roostermodel verkregen waardes voor de krommingscoefficienten worden 

vergeleken met die van een zogenaamd Van der Waals-model. In het gebied waar laatst-

genoemde geldig is, leveren beide modellen dezelfde resultaten op. Het Van der Waals-

model is echter ook in overeenstemming met andere modellen uit de vakliteratuur. Dat 

de mechanische uitdrukkingen voor de krommingscoefficienten in de vakliteratuur toch 
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verschillen van de hier afgeleide, kan alleen maar worden toegeschreven aan het feit dat 

niet alle energiedichtheden 'druk' genoemd mogen worden. 

Zoals de naam al doet vermoeden, kunnen oppervlakte-actieve stoffen het gedrag van 

grensvlakken beinvloeden. Een laagje zeep op water verlaagt de grensvlakspanning 

dusdanig, dat insecten niet langer op het oppervlak kunnen drijven. In hoofdstuk 1 is 

benaderend uiteengezet hoe oppervlakte-actieve stoffen ook eventueel kromming kunnen 

aanbrengen. Dit ligt ten grondslag aan, bijvoorbeeld, de werking van wasmiddelen. 

Oppervlakte-actieve stoffen kunnen dit bewerkstelligen door de tweeslachtige aard van 

hun moleculen. Deze bestaan uit een waterminnend (hydrofiel) en een watervrezend 

(hydrofoob) deel. Als ze in water worden gebracht, zullen de hydrofiele delen graag 

in water oplossen, maar de hydrofobe delen niet. De hydrofobe delen kunnen echter 

hun leed verzachten door bij elkaar te gaan zitten, waardoor de hydrofiele delen hen 

afschermen van het water. De aldus gevormde gekromde systemen worden micellen 

genoemd waarin vuil dat slecht in water oplost, kan worden opgenomen. 

In hoofdstuk 5 wordt het gedrag van vlakke micellen, ofwel bilagen, bestudeerd 

die model staan voor biomembranen. Door de bilaag te krommen en de uiteinden 

van een bilaag aan elkaar te koppelen, worden er gesloten blaasjes gevormd. De 

oppervlakte-actieve stoffen worden als een kralenketting in het roostermodel gemo-

delleerd, waarbij elke kraal in de ketting of hydrofiel of hydrofoob gemaakt kan worden. 

Door het aantal oppervlakte-actieve moleculen per blaasje gunstig te kiezen, kunnen 

er zo op het rooster gesloten bilagen met verschillende kromming ontstaan waarvoor 

telkens de grensvlakspanning wordt bepaald. Zodoende kunnen opnieuw de krom-

mingscoefficienten worden bepaald. Er wordt bekeken hoe de waarde en het teken 

van die krommingscoefficienten afhangen van de opgelegde temperatuur. Hoe hoger de 

buigingsmodulus kc, hoe moeilijker het is om een bilaag te vervormen. Daarentegen 

geeft een lage waarde voor kc aan dat een bilaag slap is. Als kc negatief wordt, dan 

zijn de bilagen instabiel en willen de oppervlakte-actieve stoffen niet meer in water 

oplossen. Het teken van de zadelvlakmodulus * Seef t d e neiging aan om zadelvlakken 

te vormen, dat wil zeggen de drang om handvatten tussen bilagen te laten ontstaan. 

Voor realistisch gekozen mate van hydrofobiciteit en hydrofiliciteit, wordt inderdaad in 

grote lijnen het experimenteel waargenomen gedrag van bilagen met het roostermodel 

gevonden. Er wordt geconcludeerd dat het roostermodel met de onderling overeenkom-

stige thermodynamische en mechanische beschrijving veel inzicht kan verschaffen in het 

gedrag van oppervlakte-actieve stoffen. 
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