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CHAPTER 1 

Introduction 

ABSTRACT 

Curved interfaces are a result of the cooperative behaviour of molecules, which 
is demonstrated by means of a simple packing model for surfactant molecules. 
Several more sophisticated ways to model interfaces are brought up. It is 
outlined how these models will be discussed in this thesis. 

1.1. INTERFACIAL GEOMETRY 

Curved interfaces are ubiquitous in everyday life [1]. Often they result from the co­

operative behaviour of surfactant molecules, which have a wide variety of applications 

as, e.g., detergents (cleaning), soaps (personal care), emulsifiers (proteins in food sci­

ence), and phospholipids (biological membranes). Their chemical structures determine 

the interfacial geometry and by that the physics of a surfactant system to a large extent. 

As a first approximation, the formation of different interfacial geometries can be demon­

strated qualitatively from packing constraints using a simple schematic representation 

of surfactant molecules, as shown in table 1.1. The closest packing is determined by 

the effective size or excluded volume of the surfactant molecule. Besides the chemical 

structure, the effective size of a surfactant molecule also depends on variables such as 

the temperature and ionic strength. Suppose the headgroup of a surfactant molecule 

has in a given physical chemical environment an effective area a, whereas the surfac­

tant as a whole has an effective length I and a volume v, as shown in figure 1.1. The 

surfactant may be considered as a cylinder in the case that the area times the length 

equals the volume 

al 

If adsorbed, such surfactants can only be packed parallel to each other and therefore 

form planar interfaces. A typical example of such a surfactant is DODAB, where the 

ratio v/l of the tails is (approximately) the same as the area a of the headgroup (cf. 

table 1.1). 

Suppose now that the surfactants aggregate to a spherical micelle of radius R. As­

suming that the headgroups with effective area a are all on the surface of the sphere, the 

number of surfactants in the aggregate, N, can be found from the area of the sphere, 

N = 4:TrR2/a. Alternatively, the number of surfactants can also be determined from 
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the volume of the sphere, N = ^wR3/v. The two numbers N are only consistent if 

R = 3v/a. Since the effective length of the surfactants cannot exceed the radius of the 

spherical micelle, R > I, the condition to have spherical aggregates is given by 

v_ 1 
al 3 

A typical example of a surfactant that forms spherical aggregates is SDS at not too high 

concentrations. A part of the spherical micelle is shown schematically in figure 1.1. 

Analogously, the radius of a cylindrical aggregate is given by R = 2v/a > I. Conse­

quently, surfactants form cylindrical interfaces when 

v_ 1 
al < 2 

Indeed, for | < v/al < | cylindrical structures are found, for which C12E5 is a typical 

example. Due to the difference in dispersion interactions, the headgroup area of the 

ethylene oxide units is larger than the area of the hydrocarbon tail. 

Apparently, the surfactant parameter, v/al, is a convenient first order approximation 

to demonstrate the existence of various interfacial geometries [2]. For values of the sur­

factant parameter greater than unity the headgroup area is relatively small and inverse 

micelles are preferred, which is typically found for AOT. The values of the surfactant 

parameter and the consequent interfacial geometry are summarised schematically in 

figure 1.1. 

The above analysis can be generalized to the cases that surfactants are adsorbed 

at an interface between two adjacent phases in microemulsions or vesicles [3]. The 

geometry of surfactant interfaces can be understood in terms of the effective surfactant 

area, a, length, I, and volume, v. For saturated hydrocarbon chains the effective length 

and volume can be estimated empirically [2, 4]. However, the headgroup area for ionic 

surfactants is determined by electrostatic repulsions, rather than excluded volume alone. 

The addition of much extra salt screens the charges of the headgroups, resulting into 

a smaller effective headgroup area which promotes more planar surfactant layers. As 

mentioned before, the temperature and the solvent may for instance also influence the 

surfactant parameter. 

Despite its restrictions, the packing model provides some basic features on what 

might influence the interfacial geometry and hence the physics of a solution containing 

surfactant aggregates. Using this knowledge, one can play around with the surfactant's 

architecture in order to obtain a desired interfacial geometry. An example is linking 

surfactants chemically such that a 'gemini' surfactant is created, which indeed effects 

the phase behaviour drastically [5]. Another type of amphiphilic molecules are block 
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TABLE 1.1. Examples of some common surfactants, viz. the anionic surfac­

tants sodium dodecylsulphate (SDS) and sodium bis(2-ethylhexyl) sulfosuc-

cinate (AOT), the non-ionic surfactant dodecyl penta(ethylene oxide) C12E5, 

and the cationic surfactant di-octadecyldimethylammonium bromide 

(DODAB) 

Surfactant Chemical structure and its schematic representation 

SDS 

O CH CH, CH CH CH CH 

-I / \ / \ / \ / 2 \ / \ / \ 
0 — S — 0 CH CH CH, CH, CH CH 

Cl2E5 

H O / CH V , C H 2 . , C H 2 . 

mm 
CH, CH, CH, CH, CH, CH, 

/ 2 \ / 2 \ / 2N / \ 

V v v v V V 
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f«2 
/ vv \ , CTH _CH_ , C H . 

yCOO\ / \ / 2 \ / 3 
CH, CH, CH, CH, 
| 2 2 2 2 

O - S — CH CH. ,CH , C H . 
^ C ( X y ^df V ĈH 

I 2 3 

CH, 

I 

3 

copolymers that consist of chemically linked lyophilic and lyophobic blocks. Of the 

many types of water-soluble polymer moieties that can act as a hydrophilic groups [6], 

the poly(ethylene oxide), E„ (cf. table 1.1), is most frequently used. When an E n group 

is chemically bound to either side of a poly (propylene oxide) block, P m , the resulting 

molecule, E n P m E n , is of the type of widely used commercially available surfactants 

known as pluronics. The values of n and m are typically of the order of magnitude 

of 101 — 102. These types of surfactants are particularly powerful in adjusting the 
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FIGURE 1.1. The surfactant parameter, v/al, demonstrates qualitatively the 

existence of various interfacial geometries based on packing constraints only 

interfacial geometry of aggregates and solid interfaces [7]. The interfacial geometry can 

be tuned by choosing the proper kind of oil-phase, ionic strength, and playing around 

with the n : m ratio [8]. 

1.2. MODELLING CURVED INTERFACES 

The interfacial geometry depends in part on the chemical structure of the molecules, 

as illustrated in the previous section for surfactant molecules. However, the above 

packing model is only a first approximation for which the molecular parameters can 

only be obtained empirically. To gain a more profound insight into the geometry of 

interfaces, other models must be used. Models are generally only attempts to describe 

what has been observed experimentally. These descriptions are not necessarily unique; 

it is possible that different models with different assumptions or approximations might 

still describe the same physical behaviour. 

Although models are used to describe experimental observations, they can sometimes 

also be useful to predict physical properties that are not yet observed. This makes them 

valuable to understand processes. A few of the different ways of modelling are briefly 

discussed below. 
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1.2.1. Simulations 

One class of modelling techniques is formed by simulations. Three kinds of simula­

tions can be distinguished, all with their own advantages and drawbacks if applied to 

interfacial phenomena [9, 10]. 

Molecular Dynamics. Molecular dynamics simulations provides a method to determine 

dynamic properties of a system. Molecules are seen as a (branched) chain of units, which 

are constantly moving due to mutual forces. Solving Newton's laws, all momenta and 

positions, the so-called phase space, can be evaluated as a function of time using brute 

force algorithms [11]. In this way molecular dynamics can be used to evaluate dynamic 

properties like diffusion coefficients and the viscosity. Owing to the huge computer 

times needed using brute force algorithms to evaluate Newton's laws, only a relatively 

short time period - typically in the order of picoseconds - can be observed. This does 

not guarantee equilibrium values of the observed parameters. 

Brownian Dynamics. Brownian dynamics simulations are typically used for larger par­

ticles in a medium, for instance colloids. The large particles obtain a net momentum 

due to interactions and random forces of the small solvent particles. Solving Newton's 

laws with a stochastic friction term, again dynamic properties of the system can be 

obtained [12]. 

Monte Carlo. Monte Carlo simulations sample the phase space randomly. The ran­

domly chosen points of the phase space are averaged with a proper weight, determined 

by the probability of that event [13]. Since the phase space is not sampled as a func­

tion of time, dynamic properties cannot be derived straightforwardly. However, since a 

much larger part of the phase space can be sampled, equilibrium can be guaranteed. 

1.2.2. Dimensional scaling 

Another class to describe the physics of a system is scaling. Starting from dimen­

sional analysis, physical properties can be related to each other [14]. A simple example 

of scaling has already been given in section 1.1 where the interfacial geometry of a sur­

factant layer was derived qualitatively from the volume of a surfactant molecule relative 

to the effective headgroup area and tail length. 

A similar, more complicated, example of scaling is in predicting the aggregation 

structure in a melt of diblock copolymers in the so-called strong segregation limit [15]. 

In such systems the polymers consist of a block of length n of type X that is chemically 

linked to a block of length m of type Y. In the strong segregation limit the block types 

are indifferent to themselves, but X and Y strongly repel each other. The fraction / of 
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X in the system is given by 

n 
n + m 

As a usual step in scaling models, the total block length is defined to be unity, i.e. 

n + m = 1. If the system tends to aggregate in a planar bilayer, the thickness of a 

layer consisting of X must be equal to / . Considering unit length and width of the 

aggregates, the volume equals / whilst the total interfacial area is given by a/ = 2. 

Consider the same volume but now for a cylindrical phase of unit length, i.e. / = nR%. 

The radius of such a cylinder is given by Rc = Jf'/ir. Hence, the interfacial area is 

ac = 2irRc = 2\/irf. By analogy, from the radius of a spherical aggregate of the same 

volume, Rs = A/jf, the interfacial area is as = 4nR* = \/36irf2. 

Since a system tends to minimise the interfacial area [16], a cylindrical aggregate is 

more favourable than a spherical in case ac < as 

2^/^fZc < fJmirfUc =• / . - c > ^ « 0.16 

Moreover, a planar interfaces is more favourable than a cylinder in case a/ < ac 

2 < 2Jitfc^f =• / „_ , > - « 0.32 
v 7T 

For symmetrical diblock copolymers, i.e. / = 0.50, the system tends to form planar 

aggregates since there is no preference to curve in another way. For / > 0.5, the above 

analysis can be applied for the block consisting of Y. That is, for / > 0.68 one expects 

inverted cylindrical aggregates, whereas for / > 0.84 one expects inverted spherical 

aggregates. Despite the approximation of the strong segregation limit, the predicted 

'phase transitions' at the different values for / are found experimentally [17]. 

As also found for the packing model, the above scaling model can be extended to, for 

instance, microemulsions [18]. The drawback of scaling that it can only predict certain 

trends rather than giving quantitative results. For instance, in the above examples 

scaling was unable to predict the phase behaviour but had to be put in rather than 

that it followed from the scaling itself. 

1.2.3. Density functional theory 

In density functional theories, state variables are expressed as an integral of the 

corresponding state variable density. In particular, it is assumed that the state variable 

density consists of a homogeneous bulk contribution with an additional term to account 

for the inhomogeneous parts as found in the interfacial region [19]. The contributions 

are typically expressed in terms of the molecular density profile, which makes the state 

variable a functional of the density. Consequently, such a functional considers the 
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average contribution of the molecules to the interactions, i.e. it considers a so-called 

mean-field rather than the individual contributions of the molecules [20]. By optimizing 

the state variable, the molecular density profile can be obtained from which the physics 

of a system can be described phenomenologically. 

1.2.4. Mean-Field lattice theory 

Another example of modelling (polymeric) surfactants is found in the mean-field 

lattice theory [21, 22]. Molecules are build from segments that are placed onto the 

lattice. Each segment is placed next to the previous segment of the same molecule, 

performing a weighted random walk on the lattice. These segments feel the averaged 

interactions of all other segments, i.e. they encounter a mean-field of all the molecules 

instead of a sum of the single contributions. Since each segment contributes to the field 

of the other segments, it also contributes to its own interactions. So, a field must be 

found that is self-consistent. 

Since no individual interactions are taken into account explicitly, fluctuations are 

averaged out. Consequently, a relatively short computing time compared to molecu­

lar dynamics and Monte Carlo simulations is needed to obtain equilibrium quantities. 

This makes the mean-field lattice theory a useful alternative to obtain equilibrium infor­

mation for molecular dynamics simulations, whereas molecular dynamics can provide 

information on the interactions in the mean-field approximation [23]. Since Monte 

Carlo simulations are able to include fluctuations, they give better qualitative infor­

mation than the mean-field approaches both for aggregation structures [24, 25] and at 

interfaces [26, 27]. 

In the case of polymers, the mean-field lattice calculations can for good solvents be 

recovered by an analytical model [28, 29]. Moreover, this lattice theory also showed 

that certain behaviour, predicted to be universal by dimensional scaling, only holds for 

infinitely long chains. On the other hand, scaling theories point to a few features where 

the mean-field approximation fails [30]. For instance, the phase transition for diblock 

copolymers predicted by the lattice theory [31] differs from the scaling results as derived 

in the previous paragraph, of which the latter are in agreement with experiments. 

1.3. OUTLINE OF THE THESIS 

The aim of this thesis is to give a consistent thermodynamic and mechanical descrip­

tion of the physics of curved interfaces. It has been shown here that simple models may 

give some insight into the existence of different interfacial geometries. However, more 

sophisticated models are needed to give a profound understanding of curved interfaces 
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in general. Several models as known in the literature are elaborated, discussed and 

compared to the above-mentioned mean-field lattice theory. 

In chapter 2 the mathematical foundation for the description of the curvature of 

interfaces is given. Subsequently, a thermodynamic framework is set up in order to 

predict the stability of (curved) interfaces. This leads, next to the well-known inter-

facial tension, to two other characteristics needed to describe curved interfaces. The 

difference between the thermodynamic approaches as proposed by Gibbs [32] and more 

recently elaborated by Neumann et al. [33], are discussed. It will be shown that the 

interfacial characteristics can be related to the pressure profile in the system. However, 

these so-called mechanical expressions derived here from a thermodynamic route, differ 

essentially from the ones in the literature found by mechanical procedures [33]. The 

thermodynamic consistency of the methods is investigated by deriving the generalized 

Laplace equation of capillarity. 

Since the (local) pressure is strongly related to the interfacial properties, the ther­

modynamic and mechanical meaning of the pressure is scrutinized in chapter 3 both 

for homogeneous and inhomogeneous systems. The virial equation of state and its 

properties is among others illustrated by means of molecular dynamics simulations. A 

statistical thermodynamic pressure is found from a lattice gas model. The character­

istics of this pressure is compared to the properties of the virial pressure, the van der 

Waals equation of state and a Landau density functional theory. 

The dependence of the interfacial characteristics on the curvature will be considered 

phenomenologically in chapter 4. A first order curvature correction has been proposed 

by Tolman [34]. However, for some applications a correction up to second order in the 

curvature, as first proposed by Helfrich [35], may be more appropriate. The mechanical 

expressions found for these phenomenological descriptions are discussed and evaluated 

with the lattice gas model. The results are related to the ones found from an analytical 

description and a van der Waals model as elaborated by Blokhuis et al. [36]. 

The lattice model is extended to chain molecules, in order to model surfactant bi-

layer membranes in chapter 5. The thermodynamic and mechanical description of the 

preceding chapters give consistent physics of a C12E5 bilayer. Interpretation of the 

phenomenological description yields the generic phase behaviour as also observed ex­

perimentally [37, 38]. 
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C H A P T E R 2 

Thermodynamics of Curved Interfaces 

ABSTRACT 

The boundary between two adjacent phases is often not sharp. Consequently, 

one has to choose a particular position of the interface in order to assign inter-

facial thermodynamic characteristics. The chosen interface is first described 

mathematically to arrive at expressions that account for the curvature of the 

interface. Subsequently, the thermodynamic parameters of the interfacial zone 

are considered as a function of the position of the interface. Some thermody­

namic quantities are related to the pressure profile through the system. Unlike 

the usual approach in the literature, these mechanic expressions are derived 

from their thermodynamic definition. Although these expressions differ from 

the ones given in the literature, it is shown that these lead to the same general­

ized Laplace equation of capillarity. Finally, thermodynamics of small systems 

is introduced in order to describe an open system with many interfaces. 

2.1. MATHEMATICAL DESCRIPTION OF AN INTERFACE 

The boundary between two adjacent bulk phases at equilibrium is often not of the 

size of individual molecules. That is, the local concentration of each component going 

from one phase to the other is not a step function but changes gradually. The interfacial 

region is that part of the system where the local concentrations deviate from both bulk 

concentrations. Following the Guggenheim convention, one can split up the system into 

three subsystems, i.e. two bulk phases and the interfacial region [1-3]. In the more 

customary Gibbs convention, the two-phase system is split up into two bulk phases 

separated by an infinitesimally thin, i.e. mathematical, interface. The bulk values of 

quantities, e.g. the concentration, are extrapolated up to the dividing plane and all the 

deviations from the actual values, i.e. the excess amounts, are assigned to the interface. 

In this section a closer look is taken at the curvature of that interface as a basis to 

describe the interface thermodynamically in subsequent sections. 

2 .1 .1 . Def ini t ion of c u r v a t u r e 

Let the height z of an interface in Cartesian coordinates be given by a certain function 

h(x, y). At each point P of the interface one can define a vector h of unit length that 

is perpendicular to the interface at that particular point. From figure 2.1 it can be 

seen that the direction of this so-called normal vector is approximately proportional to 

n 
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FIGURE 2.1. The normal of a curve given by z = h(x) is proportional to the 
gradient in each point P. 

the gradient along the interface in the point P. This is exact if the z-axis of the local 

coordinate system is parallel to the normal vector 

- v f t 

n~\vh\ 

Now an infinitesimal step df is taken along the interface. The normal changes as 

dn _ _l_rfVft dl/\Vh\ _ _ J _ f dVh _ V/i d\Vh\ 1 _ 
df ~ ~\Vh\~dfr + dr ~ ]Vh\\~drr~ \Vh\ dr J = Q 

The tensor Q completely determines the curvature of the interface and is called the 

curvature tensor. In Cartesian coordinates the elements of the curvature tensor are 

given by 

1 ( 82h 1 dhd\Vh\\ 
Qij ~ |V/»| \didj \Vh\ di dj J 

where i,j = x,y,z respectively. Using |V/i| = y(g^) + (f^j + li this expression 
reduces to 

1 [ d2h 2 dh fdh d2h dhd?h\\ 
Qij~ \Vh\3[didjl ' di\dxdxdj + dydydjjj ( ' 

where use has been made of the property J^p = ^ ^ , which holds if the second deriva­

tives of h are continuous functions. Since tensors are independent of the choice of the 

coordinate system, its characteristic polynomial A is invariant under transformation of 

the coordinate system. Consequently, the roots of A, the eigenvalues A, are also invari­

ant under rotation. The eigenvalues of the curvature tensor are thus uniquely related 

to the curvature of the interface. From this point of view, it makes sense to determine 

the eigenvalues and use them in further analysis to determine interfacial properties. 

file:///didj
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The characteristic polynomial of a 3 x 3 matrix contains three coefficients: viz. the 

determinant |Q|, the sum of the principal minors M, and the trace Qa 

3 3 

A(\) = \Q\-\J^Mi + X2J2Qii-\
3 (2.2) 

i= l i=\ 

From eqn (2.1) it can easily be seen that Qzi = Qiz = 0, where i = x,y,z. Straight­

forward expansion shows that the determinant of the curvature tensor vanishes. Making 

the sum of the principal minors explicit yields 

a^h&h _ ( 92h \2 

\dxdyj £ M i =
 dx2dy* 

, a i ) + ( » + i ; 

Since the z-axis is implicitly chosen parallel to the normal vector on the interface, 

the local coordinate system is such that in the origin ^ = |^ = 0. Moreover, in the 

origin the differential ^ | - vanishes [4]. Hence 

3 B2h d2h 

X« = K-Z?W (23) 

Writing the trace explicitly gives 

d2h ((dh\2 | -i\ , d2h ( (dh\2 , i ^ ndhdh d2h 
3 dx2 y\dy) "T" LJ ~*~ dy2 \\dx J "^ LJ ^dxdydxdy 

((i) +«)+!) 
Evaluated in the origin of the local coordinate system this reduces to 

^ 7 d2h d2h 

Y,Q^J=^ + W (2-4) 
The characteristic polynomial as given in eqn (2.2) evaluated in the origin of the 

local coordinate system, i.e. at a certain point P at the interface, using eqn (2.3) and 

eqn (2.4), reduces to 

d2hd2h\ . ^2(d
2h . d2h 

A^ = -x{wW2)+x[w + W2)-x 

= - \ ( \ 2 - J X + K) (2.5) 

The eigenvalues of the curvature tensor are the roots of the characteristic polynomial. 

Obviously, one of the eigenvalues equals zero. Assuming that there are two other 

eigenvalues C\ and c2, the characteristic polynomial can be written as 

A(A) = -A ((A - Cl)(A - c2)) = -A (A2 - (Cl + c2)A + Clc2) 

file:///dxdyj
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Comparison with eqn (2.5) yields alternative expressions for the sum of the principal 

minors and the trace in terms of the eigenvalues, respectively 

d2h d2h 
J = Cl + C2 = ^ + ^ ( 2-6) 

d2/i d2h 

* = ClC2 = ^ W (2-7) 
The eigenvalues of the curvature tensor Ci and c2 are called the principal curvatures. 

The sum of both principal curvatures, J, is called the total curvature. The product 

of the principal curvatures, K, is called the Gaussian curvature. Note that these local 

quantities completely determine the curvature at each point of an interface. However, 

if the interface is (relatively) flat, i.e. f| -C 1 and P <C 1, the values of J and K 

apply to the entire interface. 

Henceforth, the set of J and K will be used to describe the curvature instead of the 

principal curvatures. This implies a coordinate transformation. The Jacobian of this 

transformation 

dJ dJ 

1 1 

C2 Ci 
= c1-c2 (2.! 

dci dc2 

dK OK 
dc1 dc2 

shows that J and K are independent variables if Ci / c2 [5]. 

Several textbooks use the mean curvature H instead of the total curvature J. The 

mean curvature is denned as the average of both principal curvatures: H = ̂  (ci + c2). 

Another frequently used magnitude is the deviatoric curvature D, which is half the 

difference of the principal curvatures: D = \{c\ — c2). Note that this parameter is not 

symmetrical in cx and c2. 

2.1.2. Derivation of expressions for J and K 

Consider a two-dimensional interface given by z = h(x,y). The origin of the local 

coordinate system is placed at the point P with the z-axis parallel to the normal at 

that point. The unit vector in the direction of the tangent at point P' at a distance 

— \Ax from P is denoted as hx(—^Ax). Similarly, hx(^Ax) denotes the unit vector in 

the direction of the tangent at point P" at a distance |Aa: from P. The angle between 

the two unit vectors is given by a, as shown in figure 2.2. 

A circle is placed at the convex side of the interface. The radius Rx of this circle 

is chosen such that its circumference fits the arc P'P" best. The sector of the circle 

between P' and P" has an angle /?, as also shown in figure 2.2. 
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FIGURE 2.2. The change of the gradient along the interface, Aj^, can be 
related to a sector of a circle of radius Rx in order to determine the principal 
curvature in point P. 

From elementary geometries it can be seen that the angles a and j3 are equal. Con­

sequently, from the similarity of the triangles it follows 

Rx \hT\ 

The length of a unit vector is unity by definition. Therefore the limit Ax —> 0 in point 

P yields 

d_dh _ J_ 
dx dx Rx 

Similarly, it can be derived that J-£ = j - . Using their definitions, eqn (2.6) and 

eqn (2.7), the following expressions are derived for the local total and Gaussian curva­

ture 

<-k+vK-K5; <29) 

In the above analysis the radii are defined positive relative to the concave side of the 

interface. A planar interface has infinite radii in both directions, so Jfiat = Kfiat = 0. 

A cylindrical interface has a finite radius R in one direction and infinite in the other, 

therefore Jcyi = ^ , Kcyi = 0. A spherical interface has radii R in both directions, so 

Jsph = j j , Ksph = -gs- From the Jacobian, eqn (2.8), it followed that J and K are 

independent unless C\ = c2 or, alternatively, ^- = ^-. As seen, this is only the case for 

planar and spherical interfaces. 

Note that for all aforementioned interfaces the curvatures are uniform over the entire 

interface. However, this is not generally the case. An example is a saddle plane. In the 

saddle point of a regular saddle plane there are two identical local radii R. However, in 

one direction the interface has a convex curvature (R > 0), whereas in the other it is 

curved concavely and R has to be taken negative. Therefore, Jsad = 0 and Ksad = jg 

locally in the saddle point of a regular saddle plane. In other points of the regular 



16 2. THERMODYNAMICS OF CURVED INTERFACES 

saddle plane the local curvatures have to be derived from eqn (2.6) and eqn (2.7), 

where h(x, y) = ^ {x2 — y2) with respect to a global coordinate system of which the 

origin is located in the saddle point. It is also possible to define an average curvature 

of the interface [6]. 

In the above section the curvatures were denned by the change of the normal vec­

tor along the mathematical interface. Prom a molecular point of view, the curvature 

might in particular systems also be defined in terms of the change of the director, i.e. 

the normalized orientation, of the molecules. Both definitions are equivalent provided 

that all molecules are at the interface. However, since the interface is usually not 

infinitely sharp, as stated before, the application of the latter definition of the curva­

ture is restricted to a system-average. Owing to the thermal motion of the molecules, 

the system-average change of the directors gives a smaller curvature than an interface-

average change of the normal vector of a mathematical interface [7]. A curvature defined 

in terms of the change of the director can therefore serve as an order parameter for the 

geometry of the system [8]. However, since the Gibbs convention is more generally 

applicable, the first-mentioned definition will be used in the subsequent sections. 

2.2. GENERALIZED LAPLACE EQUATION OF CAPILLARITY 

In this section a two-phase system is considered that consists of a phase a and a 

phase (3 separated by a curved interface. Thermodynamic equations can be derived 

for the two phases and the interface. By varying the position of the dividing plane 

between the two phases, the volumes of both phases are changed and so are the extensive 

properties of each phase. However, the intensive quantities of the total system, such 

as the temperature and the Laplace pressure difference between both phases, are not 

affected. So, generally valid thermodynamic equations must be invariant with respect 

to the position of the interface. 

Gibbs counted the two principal curvatures C\ and Ci separately in the change of the 

internal energy of the interface [9] 

dUs = TdSs + Y, M < + -yGdA + ACxdcx + ACydc2 (2.10) 
i 

where U is the internal energy, T the temperature, S the entropy, /i; the chemical po­

tential of molecules of type i and n; the number of molecules of type i. The superscripts 

s denote interfacial excess quantities. Moreover, 7Q represents the interfacial tension 

and A the interfacial area at the dividing plane located at Rs (see figure 2.3). Cx and 

C„ are the curvature coefficients. 



2.2. GENERALIZED LAPLACE EQUATION OF CAPILLARITY 17 

I 

FIGURE 2.3. Schematic representation of a system consisting of two phases, 

a and (3, respectively, separated by an infinitesimal thin (curved) interface at 

Rs to which the excesses are assigned. 

Combining the curvature terms, eqn (2.10) can be rewritten as 

-A(Cx + Cy)d(c1 + c2) + -J dUs = TdSs + Y,M»' + iGdA + \A (CX + Cy) d(Cl + c2) + -A {Cx - Cv) d{a - c2) 

Gibbs considered spherical interfaces, i.e. C\ = c2, so the last term in the previous 

equation vanishes. This is also thought to be a good approximation for moderately 

curved interfaces, i.e. C\ ss c2. He also assumed a position of the arbitrary interface, 

the so-called surface of tension [10, 11], where C^ + C ^ vanishes [9]. Consequently, only 

the first three terms on the right hand side remain. This is the well-known expression 

for the internal energy of interfaces [1]. Using the principle of minimum energy yields 

the well-known Laplace equation of capillarity [1, 9] 

Ap = >yGJ (2.11) 

This equation effectively states that the volume work against the Laplace pressure 

difference Ap balances the interfacial work [10, 12]. However, the position of the surface 

of tension is sometimes hard to locate [3, 13, 14], as will be illustrated in section 2.6.2. 

Therefore a more rigorous formalism may be required, as will be put forward in the 

subsequent sections. 

In terms of the total and Gaussian curvatures, J and K, the change in internal energy 

Us of the interface becomes 

dUs = TdSs + Y, Vidn* + -)GdA + AddJ + AC^dK (2.12) 

The coefficients Cx and C2 are the so-called bending stress and torsion stress, respec­

tively [11]. Note that compared to eqn (2.10) the definition of the interfacial tension 
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has formally been changed. In eqn (2.10) the interfacial tension is the derivative of the 

energy with respect to the interfacial area at constant entropy, number of molecules and 

principal curvatures C\ and c^. In eqn (2.12) the interfacial tension is the derivative of 

the energy with respect to the interfacial area at constant entropy, number of molecules 

and curvatures J and K. Since J and K are constant as C\ and ci are constant, the 

formal difference between the interfacial tensions JQ is irrelevant [15]. 

Integration of eqn (2.12) yields 

t / s = T S s + X > < + 7 G > l (2.13) 

where Euler's theorem for homogeneous functions has been used. From that theorem it 

follows that the 'intensive' variables J and K do not contribute to the integration [2, 16]. 

Varying the interfacial area A at constant curvatures J and K is possible using radial 

integration [3, 12]. Physically, this means that the internal energy of the total system 

is obtained by adding infinitesimal conical subsystems. 

2.2.1. The grand potential 

In order to arrive at a more general applicable Laplace equation than eqn (2.11), only 

the mechanical work is of current interest. To that end, a Legendre transformation is 

performed that yields the so-called grand potential 0 

0 = f / - T 5 - ^ M i « t (2-14) 
i 

Gibbs derived for the change in internal energy Ub of either bulk phase [1] 

dUb = TdSb - pbdVb + Y, Vidn\ (2.15) 
i 

where pb is the bulk pressure of phase b = a or /3 with volume Vb. Integration yields 

Ub = TSb-pbVb + J2^nb 

i 

For the grand potential of either bulk phase it therefore follows 

0* = -p
bVb (2.16) 

The grand potential of the interface follows from eqn (2.13) 

ns = lGA (2.17) 

Hence, using eqn (2.16) and eqn (2.17), the grand potential fl of the two-phase system 

is written as 

n = na + n0 + ns =-P
ava - p^v0 + JGA (2.18) 
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Since the total volume of the system is given by V = Va + V13, eqn (2.18) can be 

rewritten as 

n = lGA - ApVa - pPV (2.19) 

where Ap = pa — pP is the Laplace pressure difference between the two phases a and j3. 

2.2.2. Arbitrary dividing plane 

The grand potential f2 is a measurable property of the considered system and can 

therefore not be a function of the choice of the position of the dividing plane. Neither 

can this be the case for the pressures of the bulk phases and, consequently, the Laplace 

pressure difference. If the position of the dividing plane is shifted notionally, i.e. if the 

position of the interface is changed without affecting the system physically, the grand 

potential of the equilibrium state should not change. Therefore, corresponding to the 

principle of minimum free energy [17, 18], the derivative of eqn (2.18) with respect to 

the arbitrary dividing plane Rs yields 

' dfi' 
dRs 

= -pa 
'dVa' 
dRs 

-P9 
dV?' 
dRs 

+ A d'ye 
dRs 

+ 7G 
'dA' 

dRs 
= 0 (2.20) 

where the square brackets denote the notional shift of the dividing plane [12]. As the 

total volume V does not change by the choice of a dividing plane either, it is seen that 

dVa = —dV0. Now, eqn (2.20) can be rewritten as 

Ap=pa A 
d-ya 
dRs 

dRs 
dVa + 7G 

dA' 
dRs 

dRs' 
dVa (2.21) 

The change of the grand potential of the interface can be derived from eqn (2.17) 

dQs = ~iGdA + Ad-ya (2.22) 

On the other hand, from eqn (2.12) and the definition of ft, eqn (2.14), it can also be 

derived that 

dQs =dUs - TdSs - SsdT - J2 frdn'i - Y,nidHi 
i i 

= - SsdT + lGdA + A<CxdJ + AC2dK-J2«,•< (2.23) 

Because only a notional displacement is studied, the intensive variables T and /i,'s are 

unaffected by shifting the dividing plane. Thus, the following Gibbs-Duhem relation is 

derived from eqn (2.22) and eqn (2.23) 

[d-ya] = Ci [dJ] + C2 [dK] (2.24) 
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C" 

FIGURE 2.4. Section of the interface at Rs with local radii of curvature Rx and Ry. 

Using eqn (2.24) differentiated with respect to Rs, eqn (2.21) can be rewritten as 

Ap = A 
dRs 

dVa ( Q 
dJ' 
dRs 

+ c2 
dK' 
dR3 

J +1G 
' dA' 
dVa (2.25) 

Finally, expressions for the remaining derivatives in eqn (2.25) can be derived from 

geometrical considerations in order to arrive at the generalized Laplace equation. This 

will be done now. 

The interface is chosen to be at Rs taken positive relative to the concave side of the 

interface, i.e. from the inside of bulk phase a, as shown in figure 2.3. A segment of 

the interface ABCD of size x x y is considered. The local radius in the rc-direction is 

assumed to be Rx and in the y-direction Ry, as shown in figure 2.4. Now, a step ARS 

is taken in the direction of Rs. The section of the interface A'B'C'D' at Rs + ARS is 

parallel to ABCD and has an area (x + Ax) x (y + Ay). If an infinitesimal step is 

taken, ARS —> dR3, the volume between the parallel section of the interface ABCD 

and A'B'C'D' is given by dVa = xydRs = AdRs. Therefore 

dVa~ 

dRs 

Substitution into eqn (2.25) gives 

Ap = Q 
' dJ' 
dR3 

+ Q 
dK' 
dRs 

+ 1G 
' dA' 
dV°> 

(2.26) 

(2.27) 

The triangles OAB and OA'B' are similar, so [17, 19] 
x Rx A * A r, 

1— = T; rrr & Ax = —xARs 

x + Ax RX + ARS Rx 
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Similarly, it can be derived that 

V Ru • 1 . „ 
" T A = p Z A P ^ Ay = — yARs y + Ay Ry + ARa Ry 

Using these expressions as well as the ones for J and K, eqn (2.9), the interfacial area 

at Rs + AR$ is given by [15] 

A(R3 + ARS) = (x + Ax) (y + Ay) = xy + xAy + yAx + Ax Ay 

=xy + xy—ARs + xy—ARs + xy-—— {ARS)
2 

ILx -tty -L^X -*̂ y 

=A{l + JARs + K{ARsf] 

For an infinitesimal step {ARS) is negligible. So, in the limit ARS 

eqn (2.26) and dA = A(RS + dRs) - A, it follows that 

' dA ' 
dV = 

dA' 
dRs 

dRs 

dVa = J 

Substitution into eqn (2.27) gives 

Ap = jo J + Q 
' dJ' 
dRs 

+ c2 
dK' 
dR3 

(2.28) 

dRs, using 

(2.29) 

(2.30) 

Since the interfaces are taken to be parallel, Rx and Ry are both linear functions 

of R3 [20]. Using the definition of the curvatures, eqn (2.9), the derivatives of the 

curvatures with respect to the position of the dividing plane yield [15] 

dJ 
dRs 

AikH -)} 
dRs 

1 1 

~~ Rl Rl' 

dK' 
dRs 

= 
\Rx Ry J 

dRs 

-a+i)Hir— 
1 1 1 1 ( 1 1 \ 1 1 

R^ Ry Rx Ry \Rx Ry) Rx Ry 
-JK 

Substitution of eqn (2.31) and eqn (2.32) into eqn (2.30) yields 

Ap = 7 G J - Ci ( J2 - 2K) - C2JK 

(2.31) 

(2.32) 

(2.33) 

This is the so-called generalized Laplace equation of capillarity, with the interfacial 

tension according to Gibbs as introduced in eqn (2.10) or, analogously, in eqn (2.12) [15]. 



(2.36) 

22 2. THERMODYNAMICS OF CURVED INTERFACES 

Using eqn (2.6) and eqn (2.7) for J and K, eqn (2.12) can be rewritten in the form of 

eqn (2.10) 

dUs = TdSs + J2 Hidni + yGdA + A (Q + C2c2) dCl + A (Ci + G^ci) dc2 (2.34) 
i 

From the identity of eqn (2.10) and eqn (2.34) the relation between the bending and 

torsion stress, Ci and C2, and the curvature coefficients, Cx and Cy, follows immediately. 

Substitution of these relations in the generalized Laplace equation, eqn (2.33), yields 

this equation in terms of curvature coefficients 

Ap = 7GJ - Cxc\ - Cy4 (2.35) 

For spherical interfaces the last two terms can be merged. At the surface of tension 

the sum of the curvature coefficients vanishes by definition, so the last two terms of 

eqn (2.35) vanish at that interface. In this way the classical Laplace equation, eqn (2.11), 

is recovered. From eqn (2.21), using eqn (2.26) and eqn (2.29), it is found that the 

generalized Laplace equation can also be given as 

So, the last two terms of eqn (2.35) are equal to the derivative of the interfacial tension 

with respect to the arbitrary dividing plane which must vanish at the surface of tension. 

Therefore, the condition [dja/dRs] = 0 is more often used to define the surface of 

tension than the original definition by Gibbs. However, it has been shown that these 

definitions are equivalent for spherical and moderately curved interfaces. 

2.3. INTERFACIAL TENSION ACCORDING TO BORUVKA AND NEUMANN 

The first law of thermodynamics states that the internal energy of U of a system can 

only change due to heat flow q and work w done on the system 

dU = 3q + dw 

where the strokes refer to the fact that q and w are not state variables. The second law 

of thermodynamics provides an expression for the heat flow for reversible processes 

ctqlev = TdS 

The work terms for the energy are the 'generalized forces', /;, acting on the system over 

certain 'generalized distances', dXi [21] 

3w = J2 fidXi 
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Therefore, the change of the internal energy should strictly be of the form [20] 

dU = ^intensive variables d(extensive variables) (2.37) 

According to Euler's theorem, only a total differential of this form can be integrated. 

If a change in a desired state variable also contains terms of the form 

y^ extensive variables d (intensive variables) 

one should perform a Legendre transformation in order to arrive at a total differential 

of the form eqn (2.37) of an other state variable. That state variable can be integrated 

and the inverse Legendre transformation gives the desired state variable. It is then seen 

that Euler's theorem effectively states that changes in intensive variables drop out after 

integration [2,16]. This also can be seen in a more physical way. Intensive properties are 

independent of the system's size, whereas extensive variables are proportional to it. So, 

when the characteristic function of the total system is obtained by adding infinitesimal 

subsystems, the intensive variables do not contribute. 

In order to arrive at the internal energy of an interface as given by eqn (2.13) from 

its change eqn (2.12), the curvatures were explicitly taken to be intensive variables. 

However, this is not strictly the case [2] because, unlike e.g. the temperature, they 

might change upon changing the system's size. Moreover, the curvatures were assumed 

to be uniform over the interface. These deficiencies are overcome by introducing the 

extensive curvatures [19] 

J = j JdA, K = j KdA (2.38) 

Where J and K are the local curvatures, as given by eqn (2.6) and eqn (2.7). In terms 

of the extensive curvatures J and K the change of the internal energy of the interface 

can be written as 

dUs = TdSs + Y, mdn\ + ^BNdA + ddj + C2dK. (2.39) 
i 

Here, 'JBN is the interfacial tension proposed by Boruvka and Neumann, i.e. defined 

such that the curvatures are taken to be extensive. Prom eqn (2.12) it is seen that 

the interfacial tension according to Gibbs is the change of the energy with respect to a 

change in the interfacial area at constant curvatures, whereas it follows from eqn (2.39) 

that the interfacial tension according to Boruvka and Neumann is the change of the 

energy with respect to a change in the interfacial area at constant product of area 

and curvature. That means that the interfacial tension according to Gibbs represents 

pure stretching whereas the interfacial tension according to Boruvka and Neumann 

incorporates bending work [18]. Since it is difficult to realize a constant product of 
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interfacial area and curvature, the latter interfacial tension is of little relevance for 

conducting experiments. Integration of eqn (2.39) using Euler's theorem yields [19] 

Us =TSS + Y, mn\ + ~/BN A + d J + C2/C (2.40) 
i 

If the interface is uniformly curved, i.e. J and K are independent of the position on 

the chosen interface, eqn (2.38) can be written as [15, 20] 

J = JA, K = KA (2.41) 

Substitution in eqn (2.40) yields 

U° =TSS + £ nX + jBNA + dJA + C2KA 
i 

=TSS + ]T pun* + (lBN + dJ + C2K) A (2.42) 
i 

Comparison with eqn (2.13) yields the relation between 7G and 'JBN for uniformly 

curved interfaces [15] 

1G=1BN + <CIJ + C2K (2.43) 

Substitution in eqn (2.33) yields the generalized Laplace equation according to Bo-

ruvka and Neumann [17] 

Ap = 7BNJ + 2dK (2.44) 

It has been shown that this expression remains valid for non-uniformly curved in­

terfaces and in the absence of an external field [17]. This expression for the Laplace 

pressure is formally more correct although it has been proven that for uniformly, mod­

erately curved interfaces it can also be written as eqn (2.33), which, in turn, reduces to 

the classical Laplace equation at the surface of tension. 

2.4. INTERFACIAL PROPERTIES FROM PRESSURE PROFILES 

Consider different infinitesimal elements of a two-phase system at equilibrium, e.g. as 

shown in figure 2.3. Obviously, in either bulk phase the forces on all faces of this element 

must be equal. However, for an element in the interfacial region the forces parallel to 

the faces of the element may differ from those perpendicular to it [22]. These deviations 

give rise to extra stress in the interfacial region: the interfacial tension. From this point 

of view it is customary to relate the prevailing local pressure profile p r ( 0 *0 *n e grand 

potential [23] 

n • fpr(r)df (2.45) 
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FIGURE 2.5. An example of a pressure profile px going in radial direction R 

from phase a to phase /3. 

This is the so-called mechanical expression of the grand potential, i.e. based on the 

pressure profile. 

The grand potential of a bulk phase fib as given by eqn (2.16) can be written as a 

volume integral 

n» -P
bvb [ pbdf 

Jv>> 
(2.46) 

If there were no interfacial contributions in the two-phase system, the grand potential 

would simply be the sum of the grand potentials of both phases. However, as stated, 

in the interfacial region the actual pressure pr lateral to the interface differs from the 

bulk pressures. An example of a pressure profile is given in figure 2.5. If only the bulk 

phases were accounted for, the grey area would be algebraically counted as an excess 

for phase a and the same applies for the hatched area for phase /3. Upon comparison of 

the thermodynamic expression, eqn (2.18), and the mechanical expression, eqn (2.45), 

for the total grand potential with the bulk grand potential as given by eqn (2.46), it is 

found that the excess amounts indeed constitute the grand potential of the interface 

fis = 1GA = j (pa - pT(r))dr+ [ (jpP - pT(r))df 
Jva

 JVP 
(2.47) 

It is now convenient to define p a / 3 , which equals pa in phase a and pi3 in phase (3, 

thus 

« s = J(P"0 ~ Pr(?))dr (2.48) 
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Using the principle of parallel interfaces [11, 19] the volume integral can be replaced 

by an integral over a one dimensional coordinate through the whole system relative 

to the centre of the inner phase a by applying eqn (2.26) as well as eqn (2.28) with 

R = Rs + ARS 

M> = [ [p^ - PT(R)) A(R)dR 

=Aj[l + (R- RS)J + (R- RS)
2K] (pa0 - pT{R)) dR 

Using the grand potential of the interface, eqn (2.17), the interfacial tension jo accord­

ing to Gibbs is given by [15] 

7 G = P 0 + P 1 J + P2A- (2.49) 

where the zeroth, first, and second bending moments are introduced, defined as 

P0 = J(pa0 - PT(R))dR (2.50a) 

Px = j(R - Rs){p
a0 - pT(R))dR (2.50b) 

P2 = j(R - Rs)
2(pa0 - PT(R))dR (2.50c) 

It is tempting to match eqn (2.49) term-wise to eqn (2.43). Indeed, since J and K 

are generally independent, in the literature it is sometimes found that corresponding 

terms of eqn (2.49) and eqn (2.43) are matched in order to obtain integral expressions 

for the bending stress, torsion stress, and interfacial tension according to Boruvka and 

Neumann in terms of the pressure profile [19, 20]. That is, the interfacial tension 

according to Boruvka and Neumann, the bending stress and torsion stress are equated 

as the zeroth, first, and second bending moments respectively, viz. •ygx = P0, Q = Pi, 

and C2 = P2. Others actually define the bending stress, torsion stress, and interfacial 

tension this way [11, 24]. However, it is in principle possible that other combinations 

of moments of the pressure profile also lead to the same thermodynamically consistent 

state variable jc since Po, Pi, and P2 are functions of J and K themselves. The 

molecules will generally redistribute upon bending which affects the (excess) pressure 

profile and hence the various bending moments, as can be seen from eqn (2.50). From 

this point of view the matching procedure and, by that, the validity of the mechanical 

expressions for the bending stress and torsion stress is questionable. Progress can be 

made when expressions for Ci and C2 are found from their thermodynamic definitions. 
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2.5. MECHANICAL EXPRESSIONS FOR BENDING AND TORSION STRESS 

The Gibbs-Duhem relation derived from comparison of eqn (2.22) and eqn (2.23) 

reads 

dlG = -s
sdT + ddJ + C2dK - J2 Tidfa (2.51) 

i 

where ss is the excess entropy per unit area and T, = n\jA the excess number of 

molecules of type i per unit area or the adsorbed amount or surface concentration. This 

is the most general version of the well-known Gibbs adsorption equation. Bending an 

interface may force molecules to adsorb at or desorb from the interface. This changes in 

general the composition of the adjacent bulk phases and hence the chemical potential 

of the components, as also can be seen from the Maxwell relations \~5j)TAKr >i = 

(d-^-) and ( |g0 = (&&) . Consequently, the set of 

variables that determine the interfacial tension, T, J, K, and /Vs, is in those specific 

cases redundant. This makes the chemical potentials curvature-dependent 

Substitution in the Gibbs adsorption equation, eqn (2.51), gives 

*» - -*a+ (Q - £r, (£) J */+ (Q - Er. (£g) J « (2.52) 
From this total differential it follows that the bending stress is thermodynamically 

found as 

and the torsion stress as 

Obviously, in the case that the chemical potentials are constant upon bending, the terms 

containing /i; vanish. Using the mechanical expression for 7,3, eqn (2.49), eqn (2.53) is 

written as 

and, by the same token, 

*-*• (3) • ' (£)•'(§) •?»(£)„ (256) 
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where J and K are generally independent state-variables. 

It is crucial to distinguish notional from actual bending of the interface. In the 

former case one changes the position of the dividing plane mathematically and by that 

the curvature without affecting the system physically. As will be shown in section 2.5.1, 

the derivatives of the moments of the pressure profiles can be determined explicitly if the 

curvature is changed notionally. The derivatives of the moments of the pressure profiles, 

the generalized Laplace equation of capillarity, and the thermodynamic expression for 

the interfacial tension, eqn (2.43), can be substituted into eqn (2.55) and eqn (2.56). 

It is then found that all derivatives with respect to the curvatures in eqn (2.55) and 

eqn (2.56) cancel. Hence, in the case of notional bending the bending and torsion stress 

are identified as the first and second bending moment, respectively. Consequently, 

from eqn (2.43) and eqn (2.49) it follows straightforwardly that the interfacial tension 

according to Boruvka and Neumann equals the zeroth bending moment for the case 

that the interface is bend only notionally. 

However, according to the actual definition of bending and torsion stress, one has 

to do real work. That is, for a given choice of the position of the dividing plane 

the curvature of the interface is changed physically. Since bending generally leads to a 

redistribution of the molecules, as stated before, one needs a molecular model to evaluate 

the derivatives of the pressure profile with respect to the curvature in eqn (2.55) and 

eqn (2.56). This implies that eqn (2.55) and eqn (2.56) are the most general expressions 

for the bending and torsion stress, respectively, in terms of the pressure profile. Inserting 

these into eqn (2.43) yields, after comparison with eqn (2.49), for the interfacial tension 

according to Boruvka and Neumann, 

~-*-(&L'-(§),/-(3)r/ 

Although this interfacial tension is formally more correct because it considers the cur­

vatures as extensive variables, it is also of little relevance in simulations since detailed 

knowledge of the pressure profile as a function of curvature is required. Indeed, for a 

planar interface (J = K = 0), both eqn (2.49) and eqn (2.57) reduce to the Kirkwood-

Buff expression for the interfacial tension [25]. 


