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1 
Introduction 'Horizontal Transfer of Genetic 
Elements in the black AspergilW. 

In the next paragraphs different aspects of the 'horizontal transfer of genetic elements 
in the black AspergilW are introduced. First, horizontal transfer and its consequences for 
populations are discussed. Then the model species in these investigations, the black 
Aspergilli which form a complex of asexual filamentous fungi, are introduced. Heterokaryon 
incompatibility between strains forms a potential barrier to horizontal transfer. Next, 
different genetic elements are considered that may be transmitted in a horizontal way. 
Finally the outline of this thesis is described. 

1.1 Population level consequences of horizontal transfer. 
Two modes of transmission of genetic material can be distinguished: the vertical 

transmission of parent to (sexual and asexual) offspring and the horizontal (or lateral) 
transfer between two, not necessarily related, individuals. Genetic elements with exclusive 
vertical inheritance are not expected to become more frequent in a population unless they 
enhance the fitness (survival and/or reproducibility) of their host and are thus selected or 
show meiotic drive or biased segregation. Vertically transmitted elements which are neutral 
for their hosts will either get lost by genetic drift or get fixed, and those with deleterious 
effects would be selected against and almost always removed from the population. 

Horizontal transfer of genetic information is of evolutionary importance since it leads 
to non-adaptive evolution; DNA or RNA sequences that have both vertical and horizontal 
transmission have the potential to increase in the population, even when they decrease the 
fitness of their host. Horizontal transfer may also lead to genetic recombination and this may 
be particularly important for organisms in which sexual recombination is absent or 
negligible. In bacteria, several mechanisms are known to facilitate horizontal transfer of 
genetic information: Transduction is bacteriophage mediated transfer, Transformation 
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involves the direct uptake of DNA-molecuIes and Conjugation involves the union of two 

bacterial cells. 

The role of horizontal transfer in prokaryotes has now been well established, but the 

importance and extent of horizontal transmission in natural populations of filamentous fungi 

is not yet clear. Filamentous fungi also possess a potential mechanism for horizontal transfer: 

the ability to form anastomoses, making direct cytoplasmic contact between different 

hyphae. The formation via anastomoses of heteroplasmons (mixed cytoplasms), 

heterokaryons (mixed cytoplasms with different nuclei) and a (transient) diploid mycelium 

that after haploidisation results in haploids again is called the parasexual cycle. During the 

parasexual cycle mitotic recombination can lead to exchange of parts of chromosomes, and 

haploidisation of formed diploids can lead to reassortment of the chromosomes. Cytoplasmic 

elements may also recombine or be exchanged. Such a 'parasexual' recombination could be 

an important nuclear and cytoplasmic recombination mechanism for imperfect (asexual) 

fungi (Pontecorvo, 1956). It is, however, unknown to what extent the parasexual cycle that 

can be induced in the laboratory is a relevant event in nature. The formation of anastomoses 

depends on the heterokaryon compatibility between the mycelia involved (see §1.3). 

Incompatibility and the inability to produce viable heterokaryons protects the genetic 

integrity of the fungal individual and prevents the invasion of foreign genetic material. 

This project aimed at elucidating rates of horizontal transfer in populations of the 

imperfect black Aspergilli. This complex of asexual fungi is introduced in the next 

paragraph. The heterokaryon (in)compatibility mechanisms that regulate the formation of 

anastomoses between mycelia, are introduced in paragraph 1.3. Paragraph 1.4 gives a list of 

possible genetic elements that may be transferred horizontally in a population. The 

concluding paragraph gives an outline of this thesis. 

1.2 The black Aspergilli. 

The name Aspergillus was introduced by Micheli in 1729 for moulds with a characteristic 

aspersory-(mop)-like organisation of the conidiophore with spores (c.f. Raper and Fennel, 

1965). The first black-spored Aspergillus, 'Aspergillus niger\ was described by van Tieghem in 

1867 as a fungus capable of using the plant polymer tannin as carbon source. 

Over the years, several Aspergilli turned out to show the characteristic black pigmentation 

of conidial heads, see Figure 1.1. On the basis of morphological data three main groups can be 

distinguished; an A. carbonarius group, an A. japonicuslA. aculeatus group and a group 

centered around the most prevalent member, A. niger (the 'A. niger aggregate') (Raper and 

Fennel, 1965). On the basis of molecular analyses using (ribosomal/mitochondrial) Restriction 

Fragment Length Polymorphisms (RFLPs), isozymes and Random Amplification of 
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Figure 1.1 Schematic view of recognisable types within the group of the black Aspergilli on basis of morphological 
and ribosomal and mitochondrial RFLP data. a) Raper and Fennel, 1965. b) Kusters-van Someren el al., 1991; 
Megnegneaue/a/., 1993. c)Keveie/a/., 1996.") Vargaefa/., 1993; 1994a.e)Hamarie/a/., 1997. 
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Figure 1.2 The asexual and parasexual life cycles of a black Aspergillus. 
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Polymorphic DNA (RAPDs) this A. niger aggregate can be further divided into two main 

groups A. niger and A. tubingensis and a smaller group A. brasiliensis (Kusters-van Someren et 

al. 1991,Megn6gneauefa/., 1993, Vargaef al. 1993, 1994a). 

The black Aspergilli are asexual, but under laboratory conditions vegetatively compatible 

strains can form heterozygous somatic diploids. Mitotic recombinants can be obtained via the 

so-called parasexual cycle (Pontecorvo et al, 1953) (Figure 1.2). However, vegetative 

compatibility between natural isolates appears to be rare and it is unknown whether and to what 

extent parasexual recombination occurs in natural populations. For A. niger a mitotic map has 

been constructed by exploiting the parasexual cycle and an electrophoretic karyotype have been 

determined, recognising eight linkage groups (Debets et al, 1990b; 1993; Verdoes et al, 1994) 

The black Aspergilli occur world-wide with a slight preference for tropical and subtropical 

areas (Rippel 1939, Raper & Fennel 1965, Domsch et al. 1980).The spores are distributed by 

air and the fungi - sometimes called soilbome - can be isolated from a large variety of 

substrates. The black Aspergilli are very versatile in their metabolism and are widely used in 

industry for the production of organic acids, enzymes and food fermentations (Lockwood, 

1975; Underkofler, 1976; Wood, 1977). The widely used A. niger has a GRAS-status 

(Generally Recognised as Safe; US Food and Drug Administration), but occasionally plant and 

animal pathogenic strains are found. Some of the animal/human pathogenic Aspergilli are 

suggested to be infectiously transmitted (Polkey et al, 1993). 

1.3 Heterokaryon incompatibility, a potential barrier to horizontal transfer. 

The first step in the parasexual cycle is the formation of a heteroplasmon-heterokaryon 

after anastomosis between hyphae of different strains. In many ascomycete fungi (see e.g. 

Glass and Kuldau, 1992; Leslie, 1993) this is controlled by heterokaryon (somatic or 

vegetative) incompatibility reactions. Prevention of the formation of s stable heteroplasmon 

may preclude horizontal transfer of genetic elements. Heterokaryon incompatibility in fungi 

can be studied in several ways (for examples see Fincham et al. 1979; Jennings and Rayner 

1984; Perkins 1988; Glass and Kuldau 1992). The two most common phenotypes of 

heterokaryon incompatibility are the formation of a barrage, a zone of dying hyphae 

between mycelia (e.g. Rizet, 1952; Perkins, 1988) and the inability to form a prototrophic 

heterokaryon under forcing conditions. Often, complementation between different nitrate 

non-utilizing mutants is used to test for such prototrophic heterokaryon formation (Cove 

1976; Correl et al. 1987; Joaquim and Rowe 1990; Brooker et al. 1991). 

Leslie and Zeller (1996) have proposed a simple model distinguishing four different 

steps in a heterokaryon (in)compatibility reaction (see Figure 1.3). The initial pre-fusion step 

is under the control of genes like those involved in pheromone production and receptors and 

genes that can be involved in heterokaryon self-mcompatibility (hsi). The actual fusion step 
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is controlled by self/non-self recognition genes like some toerokaryon incompatibility genes 

{het). After fusion the cascade of reactions from non-self recognition to cell death may be 

influenced by several genes among which jwppressor-genes, modifying the signal. Finally 

apoptotic genes lead to cell death. 

Self/Non-Self Maintenance/ 
Initiation Recognition Signalling Rejection 

| Pre-Fusion | — | Fusion | — | Post-Fusion | -• | Apoptosis | 
fa;-genes het-genes sup-genes Apoptotic genes 

Figure 1.3 A simplified model identifying different steps in the heterokaryon incompatibility interaction process 
and genes that may be associated with these steps according to Leslie and Zeller (1996). 

Absence of pre-fusion self-recognition or heterokaryon self-incompatibility has been 

found in several fungal species. In Rhizoctonia solani, non-self-anastomosing strains are a 

common phenomenon and are assumed to play a role in the decline of the disease caused by 

the fungus in monoculture (Hyakumachi & Ui, 1987). In several Fusarium species 

heterokaryon self-incompatible strains are regularly found and make up 1-2% of natural 

populations. These strains lack the ability to form heterokaryons with themselves and usually 

also with other strains (Correll et al, 1989; Jacobson and Gordon, 1990; Campbell et al, 

1992; Hawthorne & Rees-George, 1996). In these strains hyphal branching per se does not 

appear to be affected but the number of hyphal fusions is drastically reduced. 

Most genetic analysis has been done on the het-genes in several sexual ascomycetes. 

Here, both allelic and non-allelic het-gene systems have been found to be involved. In allelic 

systems an allelic difference between two strains at one ZieMocus is sufficient to cause an 

incompatibility reaction. In non-allelic interactions differences at two separate loci result in 

incompatibility (for a scheme see B^gueret et al, 1994). The number of het genes in a 

population determines the number of vegetative compatibility groups (VCGs), within which 

heterokaryons can be readily formed. In a population with 10 bi-allelic het genes, in theory 

at least 2'° VCGs are possible. VCGs can serve as a natural means to subdivide populations 

of fungi that spend a large fraction of their life cycle reproducing asexually (Leslie and 

Klein, 1996). If selection acts to maintain a large number of VCGs within a population, 

either to reduce the spread of infectious elements (Caten, 1972; Hartl et al, 1975; Nauta and 

Hoekstra, 1995) or due to values of individualism (Rayner, 1991), the frequency dependent 

selection may play an important role in maintaining many VCGs and heterozygous het loci 

in the population (Glass et al, 1998; Wu et al, 1998). 

Some genes influencing the post fusion reactions have been identified. In N. crassa a 

number of 'post fusion gene' mutations can override heteroallelic incompatibility reactions 

at one or more het loci (Newmeyer, 1970; Arganoza et al, 1994). In P. anserina mod genes 

were found that can inhibit allelic and/or non-allelic incompatibility genes (Boucherie and 
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Bemet, 1974; Durrens and Bernet, 1982; Bernet, 1992). Other mutations result in broader 

vegetative compatibility (Podospora: Bourges et al, 1996; Neurospora: Jacobson et al, 

1995; Fusarium: Kuhn et al, 1996; Zeller and Leslie, 1996). The final cell death is probably 

caused by proteases and cellulytic enzymes and their regulators in a characteristic manner 

that is conserved across plant and animal kingdoms (Wang et al, 1996). 

Many genes and processes are involved in the heterokaryon incompatibility reactions 

and also the strength of the reaction may vary (and thus also transfer possibilities could 

vary). Partial Aef-genes were identified in A. nidulans strains showing a weak heterokaryon 

by Coenen and co-workers (1994). Heterokaryons that result from protoplast fusions of 

otherwise vegetatively incompatible strains are often quite different from similar 

heterokaryons formed following hyphal anastomoses (Adams et al, 1987; Stasz et al, 1989; 

Molnar et al, 1990). This indicates that some of these heterokaryon incompatibility 

reactions are based on cell wall or cell membrane components. Other reactions involve 

cytoplasmic components because in some instances mixing of cytoplasms leads to cell death 

(Wilson etal, 1961; Williams and Wilson, 1966; Typas, 1983). 

In Aspergilli, often no clear phenotypic heterokaryon incompatibility reactions can be 

observed, perhaps due to a low frequency of anastomoses. Nothing is known about the 

genetics of heterokaryon incompatibility in the black Aspergilli, because genetic analysis is 

difficult in this asexual species complex. The incompatibility is generally assumed to be 

similar to that in related sexual ascomycetes (mediated by to-genes etc.). In the Aspergilli 

complementation of different nitrate non-utilising mutants can be used as test for 

heterokaryon compatibility (Cove, 1976; Debets et al, 1990). In species like A. nidulans, 

heterokaryon incompatibility can (partly) be overcome through the use of intraspecies 

protoplast fusion (Dales and Croft, 1977; Ferenczy et al, 1977; Peberdy and Ferenczy, 

1985). Coenen (1997) selected some het-gene suppressors in A. nidulans. Interspecies 

protoplast fusions between different Aspergillus species have also been successful in some 

cases (e.g. Bradshaw et al, 1983; Kevei and Peberdy, 1984; Liang and Chen, 1987). Horn 

and Greene (1995) found heterokaryon self-incompatibility in two imperfect Aspergillus 

species: Aspergillus flavus wad Aspergillus parasiticus. 

1.4 Genetic elements that may be transmitted horizontally. 

In this paragraph four different classes of genetic elements that may show horizontal 

transmission are discussed. The first class is the mitochondria. The second consists of the 

plasmids that in filamentous fungi are located in the mitochondria, although some nuclear 

and cytoplasmic plasmids have been found in yeasts. Some of the plasmids resemble mobile 

introns. The third type of elements discussed are nuclear transposable genetic elements. 
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Finally mycoviruses are discussed that are normally found in the cytoplasm, though some are 

associated with the mitochondria as well. 

1.4.1 Mitochondria. 

In eukaryotes the mitochondria are the site of ATP synthesis and the citric acid cycle. 

They contain circular double-stranded DNA genomes (mtDNA). The evolutionary origin of 

the mitochondrion is probably as an endosymbiontic prokaryote (Margulis, 1970; 1981; 

Gray et al, 1984; Yang et al, 1984; Cedergen et al, 1988). In the course of evolution most 

of the genes of the mitochondrial genome have been transferred to the nucleus. Although the 

coding capacity of the mtDNA is rather conservative, remarkable size differences in mtDNA 

are observed in fungi ranging from a minimal size of about 17 kb in the yeast 

Schizosaccharomyces pombe (Zimmer et al, 1984) to about 176 kb in Agaricus bisporus 

(Hintz etal, 1985). 

MtDNAs generally do not recombine because of their strictly uniparental inheritance 

(Birky 1978, 1983, 1994). In most sexual eukaryotes the mitochondria are inherited 

maternally, in asexuals transfer is clonal. However, low levels of paternal transmission 

(paternal leakage) have been described in Armillaria species (Smith et al, 1990). Various 

mechanisms have been proposed to explain the predominantly uniparental transmission of 

mitochondria in sexual crosses: (1) an active digestion or methylation-restriction model, 

involving a post-fusion killing effect; (2) selective silencing of mitochondria of one of the 

parents; (3) a multicopy model with unequal numbers of mitochondria of the parents and (4) 

a special kind of anisogamy (Birky, 1994). 

Recombination of mtDNA during the parasexual cycle was described for heterokaryon 

compatible Aspergillus nidulans strains (Rowlands and Turner, 1974, 1975). Also in other 

laboratory studies on fungi and in natural populations of Armillaria gallica recombination in 

mtDNA has been observed (Saville et al, 1998). Mitochondrial transmission and 

recombination can also occur after protoplast fusion between heterokaryon incompatible A. 

nidulans strains and closely related species belonging to the section Nidulantes ( Croft et al, 

1980; Earl etal, 1981; Turner et al, 1982; Croft and Dales, 1983, 1984; Gams et al, 1985). 

The mixed mitochondrial population in heterokaryotic cells rapidly stabilised as 

homoplasmons (Croft et al, 1980; Earl et al, 1981). In (natural) isolates of A. nidulans no 

mtDNA (RFLP) polymorphisms were detected (Croft, 1987; Coenen et al, 1996). 

In the black Aspergilli the mtDNA restriction patterns show considerable variation. The 

mitochondrial genomes of both A. carbonarius and A. japonicus (~50 kb) are larger than 

those of the other black Aspergilli (-30-35 kb) (Varga et al, 1994a). With mitochondrial 

RFLPs at least 3 distinct A. carbonarius types, 5 A. niger types, 6 A. tubingensis types, a A. 
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brasiliensis type and 7 types A. japonicuslA. aculeatus can be recognised (see Figure 1.1) 

(Varga et al, 1993; 1994a; Kevei et al, 1996; Hamari et al, 1997). 

To enable the study of mitochondrial recombination and transfer a mitochondrial 

oligomycin resistance has been selected in an A. niger culture collection strain N402 (mt-

type la). Via protoplast fusions resistant mitochondrial recombinants and rare transfer of an 

unchanged parental mtRFLP profile from haplotype la to different black Aspergillus ( 1 , 2 

and 3) types could be selected (Kevei et al. 1997). Some of these strains could be used for 

anastomoses with nuclear isogenic oligomycin-sensitive strains. Spontaneous mitochondrial 

recombination was found in compatible combinations of strains. The mixed mitochondrial 

populations seemed to influence the compatibility reactions negatively: heterokaryon 

compatible strains with different mitochondria resulted less frequently in heterokaryons, 

which also showed poor growth in comparison to the control (Toth et al. 1998). 

1.4.2 Plasmids 

Plasmids are (autonomously replicating) extrachromosomal DNA molecules. They 

replicate separately from the genome, but some can integrate covalently into the genome and 

replicate as part of genomic DNA. In 1967 the first plasmids were discovered in yeast; since 

the 80s they have been found in filamentous fungi as well. Since then plasmids are known to 

be relatively common in bacteria and fungi, whereas they occur rarely in plants and not at all 

in animals (Hardy, 1981; Esserefa/., 1986). 

In fungi two types of plasmids are found: circular (covalently closed) and linear 

double-stranded DNA plasmids. Nearly all discovered plasmids, especially those in 

filamentous fungi, are located in the mitochondria (for reviews see Griffiths, 1995; 

Kempken, 1995b; Meinhardt et al, 1990). So far the only natural nuclear plasmids found 

were the 2 \im plasmid of Saccharomyces cerevisiae and similar plasmids in related yeasts 

and the Ddpl plasmid of the slime mould Dictyostelium discoideum (Esser et al, 1986). The 

M/er-plasmids in Kluyveromyces lactis are cytoplasmic. 

The linear plasmids share several features: They code for both a DNA-polymerase and 

a RNA polymerase and contain terminal inverted repeats (TIRs), and are protected at their 5' 

ends by proteins. The DNA-polymerase is most similar to viral DNA polymerases. The 

RNA-polymerase in the mitochondrial plasmids resembles a bacteriophage RNA polymerase 

(possibly a remnant from the endosymbiotic origin of mitochondria). Also the TIRs are 

reminiscent of the genomes of some DNA viruses (Griffiths, 1995; Kempken, 1995b; 

Meinhardt et al, 1990). The replication of the circular plasmids may involve a rolling circle 

mechanism, which would use a DNA polymerase. However, the circular Mauriceville 

plasmid in Neurospora was found to code for a reverse transcriptase (Michel and Lang, 
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1985) and could be a mobile intron, capable of insertion by reverse transcription, a property 

shared by retrotransposons (Lambowitz, 1989; Griffiths, 1995). 

Little is known about the effects of plasmids on their host's phenotype. Exceptions are 

the linear and circular plasmids that by integrating into the mitochondrial genome cause 

senescence (or are associated with longevity) in Neurospora sp. and Podospora anserina and 

the M/er-plasmids in K. lactis. However, for most plasmids no measurable effects have been 

observed yet, neither a negative effect caused by the genetic or metabolic burden placed on 

the host's mycelium, nor any selective advantage (Griffiths, 1995). 

Transfer of the mitochondrial plasmids is generally together with the mitochondria and 

mitochondrial genome to the (sexual) offspring. Some paternal leakage of mitochondria and 

plasmids can occur and plasmids can also enter via the cytoplasmic 'back door' after 

anastomoses between mycelia (Van der Gaag et al., 1998; Debets and Griffiths, 1998). In 

Neurospora plasmid-specific suppression mechanisms have been found in sexual crosses 

(Griffiths et al, 1992). Between heterokaryon compatible Neurospora strains horizontal 

intermycelial transmission of plasmids occurs readily, but incompatibility slows this transfer 

(Griffiths et al, 1990; Debets et al, 1994). At asexual spore formation occasionally plasmids 

may fail to get included into a spore. 

Some of the plasmids are widely distributed both within and between species. This 

could be due to vertical descent, but paternal transmission and horizontal transfer may also 

contribute. In some of the possible cases of horizontal transfer, the considerable amount of 

variation in related plasmids indicates that these transfers did not occur recently (Griffiths et 

al, 1990; Collins and Saville, 1990; Kempken, 1995b). Most of the different plasmids were 

found to be distributed in patterns that were statistically independent, suggesting that the 

plasmids are freely mobile and can take up any association and coexist (Griffiths, 1995). An 

exception to the free distribution is the circular (satellite or defective) Neurospora plasmid 

VS that depends on the Varkud plasmid for its replication (Griffiths 1995). Griffiths and 

Yang (1995) have shown that circular and linear plasmids may recombine with one another. 

In Aspergillus so far no natural plasmids have been detected, but 'artificial' plasmids 

have been obtained. Cloning vectors used to transform filamentous fungi are generally 

bacterial plasmids into which fungal genes have been inserted to act as selectable markers. 

Recently, a 6.1 inverted repeat sequence AMA1 (Autonomously Maintained in Aspergillus) 

has been isolated from A. nidulans. This AMA1 confers autonomous replication on plasmids 

that are normally strictly integrative (Gems et al, 1991). Plasmids containing the AMA1 

sequence increase the transformation frequency significantly in both A. nidulans (Gems et 

al, 1991; Gems and Clutterbuck, 1993) and A. niger (Verdoes et al, 1994). This laboratory-

derived autonomously replicating (AR) plasmid (pAB4-ARpl) is confined to the nucleus 
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and appears to be mitotically highly unstable (Gems et al, 1991; Verdoes et al, 1994). In 

heterokaryons of A. nidulans and A. niger the AR plasmid can be transferred between nuclei 

(Aleksenko and Clutterbuck, 1995; Debets, 1998). Transfer could occur via the cytoplasm or 

perhaps more likely via transient contact between (dissimilar) nuclei (Debets, 1998). The 

described rate of AR plasmid transfer between nuclei indicates that when heterokaryons are 

formed exchanges between nuclei may occur very frequently. 

1.4.3 Transposable Genetic Elements. 

Transposable genetic elements are recently discovered mobile genetic units that can 

insert into a chromosome, exit and relocate. Transposable elements include insertion 

sequences, transposons, some phages, and controlling elements. They are ubiquitous in both 

prokaryotic and eukaryotic organisms and are a common cause of spontaneous genetic 

changes that can have wide ranging effects on the biology of the organisms (Doring and 

Starlinger, 1986; Green, 1988; Smith and Corces, 1991; McDonald 1993). Since the '90's 

functional transposable elements have been detected in fungi, especially in field isolates of 

phytopathogenic fungi characterised by a high level of genetic variability (Kistler and Miao, 

1992; Dobinson and Hamer, 1993). The genetic variability observed in the asexual Fusarium 

oxysporum species has been postulated to be caused by the activity of transposable elements, 

of which many different types have been detected in the species (Daboussi et al, 1992). 

Many authors suggest that the ubiquitous presence of transposable elements reflects a role in 

the speciation and adaptation of natural populations (review: McDonald, 1992). 

The transposable elements are divided into two major classes based on their mode of 

propagation (Finnegan, 1989). The class I elements transpose by reverse transcription of an 

RNA intermediate. This class is subdivided into the retrotransposons, which have long 

terminal repeats (LTRs), and the LINE and SINE-like (Long and Short Interspersed Nuclear 

Elements) group of retroelements without LTRs. The second class of transposable elements 

transpose by a DNA-DNA mechanism and can be divided into elements with short inverted 

terminal repeats (ITRs) and elements with ITRs of variable length. Representatives of both 

classes of transposable elements are found in fungi. Some examples are listed in Table 1.1. 

The two major strategies used to identify the transposable elements in fungi are (1) the 

characterisation of dispersed repetitive sequences and (2) the molecular analysis of 

spontaneous (instable) mutants. The former technique led to the identification of mainly 

retrotransposons and retroelements, whereas most of the class II DNA transposon of 

different types have been isolated after transposition in the nitrate reductase structural gene 

niaD. 
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Table 1.1 Classification of different transposable elements and some examples found in fungi. 

Transposable elements 
Class I 

reverse transcription via RNA 
Retrotransposons 

(with Long Terminal Repeats) 

Foret - F. oxysporum 
(Julien etal, 1992) 

grh - Magnaporthe grisea 
(Dobinsonera/., 1993) 

CJT-l - Gladosporium fulvum 
(McHale etal, 1989, 1992) 

Afiitl - Aspergillus fumigatus 
(Neuv6glisee<a/., 1996) 

LINE 
Long Interspersed Nuclear 

Elements 
Tad - Neurospora crassa 

(Hamere/a/., 1989) 
Palm - F. oxysporum 

(Mouynae/a/., 1996) 
SINE 

Short Interspersed Nuclear 
Elements 

MGSR1 and Mg-SINE - M. grisea 
(Sone et al, 1993, Kachroo et 
al, 1995). 

Class II 
transcription via DNA-DNA mechanism 

elements with 
short ITRs 

(Inverted Terminal Repeats) 
impala - F. oxysporum (Tcl/mariner 

superfamily) (Langin et al, 1994) 
Antl - A. niger (Tcl/mariner 

superfamily) (Glayzer et al, 1995) 
Fotl - F. oxysporum (Foil family) 

(Daboussi e/a/., 1992) 
Poll - M. grisea (Fotl family) 

(Kachroo et al, 1994) 

Transposable elements have the ability to induce mutations due to their transposition. 

They can promote changes in gene expression, in gene sequence and probably in 

chromosome structure (Berg and Howe, 1989). In N. crassa insertion of the Tad element 

may create an unstable allele (Cambareri et al, 1996). An alteration of transcription in the 

target gene was also demonstrated in F. oxysporum with the insertion of Fotl in the niaD 

gene (Daboussi and Langin, 1994). Fotl may also leave a footprint of two or three base 

pairs, leading to an often disfunctional protein due to frameshifts or an extra amino acid in 

the protein (Daboussi et al, 1992). Karyotypes of fungi can be quite variable in several plant 

and human pathogens (Skinner et al, 1991; Kistler and Miao, 1992). The translocations, 

deletions and duplications involved may be caused by inter- and intrachromosomal ectopic 

exchanges between transposable elements (Daboussi, 1996). So far in fungi only a small part 

of the existing transposable elements and the genome variation caused by them seem to have 

been detected. In F. oxysporum seven families have been identified, some of which seem 

concentrated in different genomic regions where they appear intermingled with and nested in 

other functional and degenerate transposable elements (Hua-Van et al, 1998). 

In some (sexual) species silencing processes may control the activity of transposable 

elements - of course sex and karyogamy may be the causes of infection. The Repeat-Induced 

Point mutation (RIP) process in N. crassa (Selker and Stevens, 1985; Selker et al, 1993) and 

the Methylation Induced Premeiotically (MIP) process in Ascobolus immersus (Goyon and 

Faugeron, 1989; Rhounim et al, 1992) deactivate linked and unlinked duplicated sequences. 

Species without sexual reproduction (and with strict vegetative incompatibility) may avoid 

transposable elements and may not need silencing processes. 

Transfer of transposable elements may occur vertically as well as horizontally. The 

phylogenetic analysis of retrotransposons of the gypsy class shows that transmission of 
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transposable elements occurs vertically from parent to offspring, since a common ancestor of 

fungi obviously had retrotransposons (Daboussi, 1996). Some sporadic distributions of 

transposable elements in species or subgroups and similarities between elements in distant 

species indicate that horizontal transmission can occur as well (Kinsey, 1990a; Dobinson et 

al, 1993; Capy et al, 1994; Daboussi and Langin, 1994; Kempken et al, 1998). 

In A. niger three transposable elements have recently been isolated. The first, A. niger 

transposon-1 (Antl) was isolated via transposon trapping within the coding region of the 

nitrate reductase gene (niaD) of A. niger strain N402 (Glayzer et al, 1995). The element had 

inserted at a TA site and had duplicated the target site upon insertion. The element is 4798 

bp long and contains 37 bp inverted, imperfect terminal repeats (ITRs). Sequence homology 

and structural features of the ORF1 open reading frame indicated that the element is related 

to the Tcl/mariner group of DNA transposons. Another sequence within the central region 

of the element showed similarity to the 3' coding and downstream untranslated region of the 

amyA gene of A. niger. Antl was present as a single copy in the laboratory strain N402. 

Obviously this mobile transposon can change gene activities by insertion and by leaving 

(TA) footprints. It may also have the ability to transfer (parts of) nuclear genes. 

The Vader transposable element was identified as well by screening unstable niaD 

mutants (Amutan et al, 1996).The examined A. niger var. awamori strain used harboured 

approximately 15 copies of this element. Vader is 437 bp long and flanked by 44 bp inverted 

repeats (IR). Like Antl, insertion of the Vader element causes a 2 bp (TA) duplication of the 

target sequence. The AT-rich Vader does not contain an open reading frame and hence it is 

deduced that the mobility of Vader is dependent upon a transposase activity present 

elsewhere in the genome. 

The search for a transposase for the Vader element resulted in the discovery of a third 

transposable element: transposon A. niger-l (Janl) (NyyssOnen et al, 1996). Tanl provides 

the transposase activity for the numerous mobile copies of Vader dispersed in the genome, 

but is only present in single copy in the genome. The Tanl element is 2.3 kb long and has a 

unique organisation: IR-ORF-IR-IR- Vader-IR with the same IR as detected around single 

Vader elements. The single open reading frame encodes an transposase homologous to that 

of members of the Fotl family, indicating that both Tanl and Vader are members of this 

family. The Vader element may act as an AT-rich terminator of transcription for the 

transposase gene. Tanl also duplicates TA at the target site. 

All three detected transposable elements in A. niger duplicate the dinucleotide TA at 

the target site. F. oxysporum Fotl (Daboussi et al, 1992), M. grisea Pot2 (Kachroo et al, 

1994) and most of the members of the Tel superfamily (Doak et al, 1994) cause the same 

duplication. The open reading frames of transposases coded by these elements also share two 
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motifs: a so-called DE dipeptide and a D35E region. These common features of transposable 

elements in species belonging to unrelated taxa are an indication of a common mechanism of 

transposition (Doak et al, 1994; Kachroo et al, 1994). The common features may also 

indicate horizontal transfer of a progenitor transposon (Nyyssonen et al, 1996). 

1.4.4 Mycoviruses. 

Viruses can be defined as infectious agents that are invisible with the light microscope, 

small enough to pass through a bacterial filter, lacking a metabolism of their own and 

depending on living host cells for their multiplication, but encoding some of the genes 

necessary for their own reproduction. Often the virus DNA or RNA is protected by a protein 

coat. Since the first discovery of a virus in a fungal species, it has become clear that 

mycoviruses and virus-like replicons occur commonly in fungi (Buck, 1986; 1998; Nuss and 

Koltin, 1990; Ghabrial, 1994; 1998). 

The mycoviruses are exceptional in that they do not have an extracellular phase in their 

multiplication cycle and are transmitted only by intracellular routes. Most of the mycoviruses 

have double stranded RNA (dsRNA) genomes, but single stranded (ss) RNA and DNA 

genomes have also been described (Buck, 1986; 1998). Many fungal viruses are enclosed in 

protein capsids, but a significant number lack a protein coat. Some of the viruses without 

capsid are associated with lipid-rich cytoplasmic vesicles, with mitochondria, or are found as 

complexes with an RNA polymerase in the cytoplasm (for a list see Buck, 1998). A protein 

coat may be essential for viruses in general to survive outside the host cell. The mycoviruses 

do not need this function, and other essential functions for mycovirus capsid proteins have 

been described. Wickner (1996) describes a yeast virus capsid protein, that provides both 

protection in the form of a subcellular compartment for transcription and replication, and has 

a catalytic function in decapping host messenger RNA (mRNA) in favour of the viral 

mRNAs. 

Table 1.2 Different types of fungal viruses and their characteristics. 

dsRNA viruses 
Totiviridae 
isometric 0 30-40 nm 
1 dsRNA segment 
- viral/protozoan totiviridae 
~ selfreplicating mRNA 
Reoviridae 
isometric 0 60 nm 
11 dsRNA segments 

Partitiviridae 
isometric 0 30-35 nm 
2 dsRNA segments 
- plant cryptoviruses 

La France Virus 
isometric 0 34 nm 
9 dsRNA segments 

ssRNA viruses 
Barniviridae 
bacilliform 
in cytoplasm/mitochondria 
- plant +strand RNA viruses 

Z,ev/v(>irfae-like 
naked 
~ RNA bacteriophages 

Satellite and defective RNAs 

Different mycovirus types can be identified on the basis of presence and shape of the 

protein coat and of their genome organisation (see Table 1.2). The Totiviridae have isometric 
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particles 30-40 nm in diameter and contain a single species of dsRNA, coding for both the 

capsid protein and a RNA-dependent RNA polymerase. The Partitiviridae isometric 

particles are 30-35 nm and the two or three monocistronic segments of dsRNA are 

encapsidated separately. A possible reovirus was detected in C. parasitica (Enebak et al., 

1994). All its 11 dsRNA segments are present in approximately equimolar amounts and 

packed together in a 60 nm isometric particle. The nine dsRNA segments of the La France 

virus in Agaricus bisporus are also associated with an isometric particle (34 nm diameter) 

(Van der Lende et al., 1994), but it is still unknown how these are organised. 

A single-stranded RNA virus with a bacilliform capsid (Barnaviridae) has been found 

in A. bisporus (Revill et al, 1994). The last group, another group of ss and dsRNA replicons 

coding only for a RNA-dependent RNA polymerase and without protein capsid, has been 

found in cytoplasm and/or mitochondria of fungi. These replicons seem to be related to 

positive-stranded RNA bacteriophages of the Leviviridae family (Buck, 1998). 

Two types of extra RNA fragments, satellite and defective RNAs, can be detected in 

association with 'helper' viruses, on which they depend for their replication. Both RNAs can 

potentially interfere with the replication of their helper virus and are likely to be widespread 

in populations of dsRNA mycoviruses. They contribute to the complexity of dsRNA profiles 

from individual fungi (Buck, 1998). The satellite RNAs are comprised largely of sequences 

that are distinct from those of their helper virus (Mayo et al, 1995). The satellite RNAs may 

encode proteins or may be non-coding. Some protein toxins are encoded for by satellite 

RNAs (e.g. in Saccharomyces cereviciae, Wickner, 1996). The defective RNAs are derived 

from their helper viruses, generally by internal deletions (e.g. in Cryphonectria parasitica 

hypovirus, Tartagliae/a/., 1986; Shapira etal, 1991). 

The effects that dsRNA mycovirus infections have on their hosts vary and seem either 

caused by virally coded products or by disturbances of the cell metabolism. The killertoxins 

coded by some viruses or satellite RNAs, can have a selective advantage on infected 

organisms in crowded environments (e.g. Wickner, 1996). Some plant pathogenic fungi are 

known to become hypovirulent due to infections with mycoviruses, which may affect a large 

number of cell processes (e.g. Nuss, 1993; 1996). Other viruses can cause serious crop losses 

as for instance in A. bisporus (La France disease)(Van der Lende et al., 1996) or in Pleurotus 

spp. (Go et al., 1992; Stobbs et al, 1994). Such mycovirus infections can reduce their hosts' 

fitness. Because the effects of many mycoviruses are not yet known and/or less conspicuous, 

such infections are often considered 'cryptic'. 

Mycoviruses may be transferred both vertically and horizontally. The vertical 

transmission of viruses into basidiospores and ascospores of yeasts generally occurs with 

high efficiency. The often restricted transmission into the ascospores of filamentous 

ascomycetes stands in sharp contrast (Buck, 1998). Mitochondrial dsRNAs inherit 
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maternally, though healthy dsRNA-free mitochondria may be transmitted preferentially 

(Polashok and Hillman, 1994; Rogers et al., 1986a). The vertical transmission into asexual 

spores is generally efficient. Horizontal transmission by hyphal anastomosis is in general 

limited to individuals in the same or closely related species. In some fungi virus transmission 

is considered efficient between individuals in the same vegetative compatibility group, but 

restricted between individuals of different VC groups (Buck, 1998). Mixed infections with 

different viruses may be common (Buck, 1986). Generally, viruses are expected to be 

compatible in the same cell if they are sufficiently distinct so as not to compete for the same 

replication proteins (Buck, 1998). 

Table 1.3 Mycovirus infected Aspergillus species and references. 

Aspergillus species Author(s) 
Asexual A. carbonarius 

A. clavatus 
A.Jlavus 
A.foetidus 
A. heteromorphus 
A. japonicus 
A. niger 
A. nomius 
A. ochraceus 
A. parasiticus 
A. tamarii 
A. tubingensis 

Vargas a/., 1994b 
Varga etal., 1998 
Schmidt etal, 1986; Elias and Cotty, 1996 
Ratti and Buck, 1972; Buck and Ratti, 1975 
Varga e< a/., 1994b 
idem 
Bucket a/., 1973; Vaxga etal, 1994b 
Elias and Cotty, 1996 
Kim and Bozarth, 1985; Vargas al, 1998 
Elias and Cotty, 1996 
idem 
Varga et al, 1994b 

Sexual Neosartorya hiratsukae Varga et al, 1998 
Neosartorya quadricincta idem 
Petromyces alliaceus idem 

The recognised groups of mycoviruses are probably of different evolutionary origins. 

Overall, the comparative sequence analysis strongly suggests that both RNA and DNA 

viruses have deep, archaic evolutionary roots both for genome structural organization and as 

regards certain genomic and protein domains (Holland and Domingo, 1998). In the 

Totiviridae comparisons of amino acid sequences of RNA-dependent RNA polymerases 

revealed relationships in viral and protozoal members of the Totiviridae (Bruenn, 1993). But 

also the theory of a cellular self-replicating mRNA as the origin of the monophyletic 

Totiviruses is attractive because of their apparent ancient origin, the close relationship among 

their RNA-dependent RNA polymerases, genome simplicity, and the ability to use host 

proteins efficiently (Holland and Domingo, 1998).The Partitiviridae of different fungi are 

distantly related to one another on comparison of amino acid sequences, but also show a 

relationship with plant cryptoviruses (Buck, 1998). On the other hand Holland and Domingo 

(1998) suggest that the Partitiviruses may originate from the Totiviridae. The ssRNA 

Barnaviridae appear to be distantly related to the plant positive-stranded RNA viruses of the 

genus Luteovirus, and the coatless ssRNA/dsRNA replicons resemble bacteriophage QP and 
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other Leviviridae (Buck, 1998). The modes of virus transmission suggest that mycoviruses 

could have been associated with a particular host species for long periods and that they co-

evolved. But the observed relationships of viruses in different species or taxa also suggest 

the possibility of (rare) horizontal transmissions (Buck, 1998). The La France isometric virus 

appears to be of recent origin since it differs from its host in codon usage, but it may also 

have arisen from a partitivirus by acquiring additional genes (Holland and Domingo, 1998). 

In the Aspergilli mycoviruses have mostly been found in species that are not known to 

reproduce sexually, but recently mycoviruses have also been detected in some sexual species 

(see Table 1.3). The viruses can be detected as dsRNA fragments after gel electrophoresis or 

as isometric particles with electron microscopy (see Figure 1.3). In most of these species the 

viruses are probably located in the cytoplasm. However, in P. alliaceus one viral fragment 

was located in the cytoplasm, another in the mitochondria and only the later transferred to 

the formed asci (Varga et al, 1998). In general the viruses are readily transferred to the 

conidiospores, fairly commonly to ascospores formed by selfing but rarely to outcrossed 

ascospores (Coenen et al, 1997; Varga et al, 1998). In A. nidulans (Emericella nidulans) 

horizontal transfer can take place between vegetatively incompatible strains (Coenen et al, 

1997). In the black Aspergilli a large variety of dsRNA patterns was detected in infected 

strains (Varga etal, 1994b). 

Figure 1.3 Electron Microscopic view of isometric virus particles (a 34-38 nm) in strain N076. 
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1.5 Outline of the Thesis. 

Recently, different genetic elements were discovered in large numbers in fungi: 

mycoviruses, plasmids and transposable elements. Horizontal transfer between fungal strains 

carrying such possibly deleterious elements may have important consequences at the 

population level. It may lead to non-adaptive evolutionary processes, but also be responsible 

for genetic recombination in organisms lacking meiosis. Molecular approaches have become 

available for the detection of recombination in nuclei of species presumed to be asexual 

(e.g. Burt et al., 1996) and between mitochondria, previously thought to be not recombining 

(e.g. Saville et al., 1998). 

This PhD project aimed at elucidating rates of horizontal transfer of genetic elements in 

natural populations of the black Aspergilli, a complex of imperfect species. In laboratory 

experiments isogenic black Aspergilli can be forced to recombine via the parasexual cycle, 

but little is known about recombination or genetic exchange in natural environments. To this 

end it is necessary to determine the genetic population structure, investigate what genetic 

elements are present in the population, how they affect individual fitness, and how and to 

what extent they can be transferred. 

This first Chapter gives a general introduction to the asexual - possibly parasexual -

black Aspergilli. It describes the mechanisms of heterokaryon incompatibility that seem to 

regulate the formation of anastomoses between hyphae of different mycelia and possibly 

control horizontal transfer rates, and gives an inventory of elements that may spread by 

horizontal transfer. 

The second Chapter describes how natural populations of black Aspergilli were 

sampled world-wide and over several years, based on the special ability of black Aspergilli 

to degrade high concentrations of tannin. This resulted in a collection of over 600 isolates. 

The genetic structure of the populations was determined on the basis of mitochondrial RFLP 

patterns, and the occurrence of and variation in dsRNA mycoviruses was examined. 

In Chapters 3, 4 and 5 the transfer of mycoviruses in the black Aspergilli and some 

other species is studied. Chapter 3 deals with heterokaryon incompatibility in a subset of the 

black Aspergillus isolates and its influence on virus transfer. 'Spontaneous' transfer of 

viruses is monitored between heterokaryon compatible and heterokaryon incompatible 

combinations of different black Aspergillus types in co-culture. In Chapter 4 the transfer 

within the black Aspergilli is compared with that in Aspergillus nidulans strains that were 

infected in the laboratory. Intra- and interspecies protoplast fusions between heterokaryon 

compatible and incompatible black Aspergillus strains and A. nidulans strains are described. 

Recombination of a mitochondrial oligomycin marker is used to ascertain cytoplasmic 

contact between the used black Aspergilli, The role of the heterokaryon incompatibility 

reactions in virus transfer is again examined and the possibility of virus resistance is tested. 
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The possibilities of interspecies virus transfer are further examined in Chapter 5, where 

protoplast fusions are described between naturally infected Fusarium poae strains and black 

Aspergillus strains. 

Chapter 6 gives an inventory of the fitness effects of mycoviruses on different fitness-

related traits like mycelial growth rate, spore production, and competitiveness. A model of 

the virus-infected black Aspergillus population is presented and the prerequisites for a stable 

virus infections in the population are discussed: deleterious infecting elements need 

horizontal transmission to be maintained in the population. 

Recombination at the molecular level is tested in Chapter 7. A population of black 

Aspergilli is tested for the occurrence of (para)sexual recombination in nuclear genes. The 

phylogenies on the basis of sequences of several nuclear genes are also compared with 

sequence data of the Antl transposon, mitochondrial and ribosomal RFLP data and 

mycovirus patterns, to test for molecular evidence of horizontal transfer of these elements. 

Chapter 8 summarises and discusses all results on horizontal transfer in natural populations 

of black Aspergilli. 
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Global epidemiology of black Aspergilli based on 
cytoplasmic elements. 

Anne D. van Diepeningen, Alfons J.M. Debets, Klaas Swart and Rolf F. Hoekstra 

Abstract 

A set of culture collection Aspergillus strains and black Aspergilli isolated on non

selective media were used to validate the use of media with 20% tannin for exclusive and 

complete selection of black Aspergilli. The 20% tannin medium proved useful for both 

quantitative and qualitative selection of all types of black Aspergilli. In this way 642 black 

Aspergilli from different populations were isolated from soil samples from different parts of the 

world, over a number of years. The density of black Aspergilli proved highest in tropical 

regions. 

All isolates were classified according to their mitochondrial restriction fragment length 

polymorphism patterns, allowing recognition of different types of A. carbonarius, A. japonicus, 

and, within the A. niger aggregate, of different haplotypes of the two main groups A. niger and 

A. tubingensis. The most frequent A. niger and A. tubingensis haplotypes occur worldwide. 

Though A. carbonarius and A. japonicus were not found in all locations, they can occur in 

relatively high numbers. 

Infections with dsRNA mycoviruses were found in approximately 10% of all strains, 

irrespective of sampling site, mitochondrial type, or year of sampling. This is one of the first 

studies on a global scale of the epidemiology of an asexual non-pathogenic fungal host and its 

mycovirus. The black Aspergillus population consists of many different clonal lineages with a 

highly efficient mode of dispersal, that obviously homogenizes the population world-wide and 

accounts for the high variety of strains per sampling site. The observed high density of black 

Aspergilli in connection with their unique ability to degrade high concentrations of tannin 

points to an important role in the nitrogen cycle in nature. 
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Introduction 

The genetic population structure of a species provides valuable information on mating 

system, migration, and dispersion, and is indispensable for the control of pathogenic organisms. 

In general, random mating (sexual) populations are expected to show a higher degree of 

genotypic diversity than clonal asexual populations (Leung et al. 1993). The relative 

contributions of sexual and asexual reproduction will therefore influence the genetic structure 

of the population. The amount of gene flow will also contribute to the diversity. 

The genetic epidemiology of fungi is relatively underdeveloped compared to plants and 

animals. The genetic population structure of a few, mainly plant pathogenic, fungal species has 

been determined with a variety of molecular techniques. For example, in Ceratocystis 

fagacearum low levels of variation were detected among isolates form a broad geographic area 

in the US. This was correlated with a recent introduction and founder effects (Kurdyla et al. 

1995). The population of Mycosphaerella graminicola (Septoria tritici) proved to be more 

random-mating than clonal during the course of an epidemic and the variation in populations 

was similar around the world (McDonald et al. 1995 and Chen & McDonald 1996). In this 

paper we look at the populations of black Aspergilli. 

The first 'Aspergillus niger' was described by van Tieghem in 1867 as a fungus capable 

of using tannin as carbon source. Rippel reported in 1939 the exclusive selection of Aspergillus 

niger on high concentrations (20%) of tannin, but this characteristic seems to have been largely 

forgotten since. Nowadays A. niger is known to be part of a complex group of black imperfect 

filamentous fungi, many of which of industrial importance. The black Aspergilli show a wide 

range of variability in morphological and physiological characteristics, but share the 

characteristic of black conidiospores on aspersory-(mop)-like conidiophores (Raper & Fennel 

1965, Al-Mussallam 1980). The spores of these mainly saprophytic but occasionally pathogenic 

fungi are distributed by air and the fungus can be isolated from a large variety of substrates. The 

black Aspergilli form a substantial part of the total Aspergillus and fungal populations (e.g. 

Manoharachary 1977, Rao & Venkateswarlu 1983, Ploetz et al. 1985, Misra & Jamil 1991). 

They occur world-wide with a preference for tropical and subtropical areas (Rippel 1939, Raper 

& Fennel 1965, Domsch et al. 1980). 

Within the black Aspergilli, Aspergillus carbonarius and Aspergillus japonicus form two 

distinct types based on distinct morphological characters (Raper & Fennel 1965). The 

remaining strains or simply 'Aspergillus niger aggregate', can be further divided into two main 

groups Aspergillus niger and Aspergillus tubingensis on the basis of molecular analyses like 

(ribosomal/mitochondrial) Restriction Fragment Length Polymorphisms (RFLPs), isozymes 

and Random Amplification of Polymorphic DNA (RAPDs) (Kusters-van Someren et al. 1991, 

Megnegneauefa/., 1993, Vargae/a/. 1993, 1994a). 
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The black Aspergilli are asexual, but under laboratory conditions related, vegetative 

compatible strains can form heterozygous somatic diploids. Mitotic recombinants can be 

obtained via this so-called parasexual cycle (Pontecorvo et al. 1953). However, vegetative 

compatibility between natural isolates is very rare (Van Diepeningen el al. 1997; Chapter 3) 

and it is unknown whether and to what extent parasexual recombination occurs in natural 

populations. 

The aim of these experiments was to obtain a picture of the genetic variation in 

populations of the asexual black Aspergilli on a geographic scale. Several populations were 

sampled in different places worldwide by the selective isolation of all present black Aspergilli. 

The distribution of black Aspergillus types was based on mtRFLP type. The distribution of 

dsRNA viruses was also analysed and correlated with host mtDNA type. 

As a first characterisation method for the populations we chose mitochondrial RFLPs. In 

general mtRFLPs show less variation than nuclear markers (Kurdyla et al 1995, McDonald et al 

1995), but in the black Aspergilli the mitochondrial RFLP classification corresponds exactly to 

M6gnegneau's (et al. 1993) nuclear based classifications (personal data) and the technique is 

easy to perform on large numbers of isolates. Using mitochondrial RFLP data fourteen types 

can be detected within the two w/ger-aggregate groups (Varga et al. 1993, 1994a) and A. 

carbonarius and A. japonicus strains also have their characteristic mitochondrial RFLP's 

(Keveiefa/. 1996, Hamari etal. 1997). 

As second population characteristic dsRNA virus infections were used. Mycoviruses or 

fungal viruses are parasitic cytoplasmic elements that are frequently found in all classes of 

fungi, including Aspergilli (Buck 1986; 1998). Because dsRNA viruses are not viable outside 

the fungal mycelium, infection has to involve intermycelial cytoplasmic contact. The mycovi

ruses found in black Aspergilli consist of an isometric protein coat and variable dsRNA 

molecules (Varga et al. 1994b). No virus infected strains of sexual Aspergillus nidulans were 

found in nature (Coenen et al. 1997). However, in sexual and asexual Aspergillus isolates 

belonging to the sections Fumigati and Circumdati the frequency varied from 3.5 to 8.3 percent 

infected with mycoviruses (Varga et al. 1994b, 1998). In the Aspergilli of the section Flavi 

10.9% was found to be infected (Elias & Cotty 1996); in contrast in the asexual Fusarium poae 

all tested isolates were infected (Fekete et al. 1995). The dsRNA mycoviruses in the black 

Aspergilli are stably maintained during subculturing without observed change in fragment 

patterns or loss of infection. The lateral transfer of viruses is blocked by the often found 

heterokaryon incompatibility between black Aspergilli (Van Diepeningen et al. 1997; Chapter 

3). This incompatibility barrier seems much stronger than in other species and even between 

black Aspergilli and other species (Van Diepeningen et al. in press; Chapter 4). 
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The data on mtRFLPs and dsRNA mycovirus infections show a well-mixed global 

population with an infection frequency of approximately 10% in all black Aspergillus 

haplotypes. The absence of local differentiation and the amount of variation in populations can 

be an indication of the geneflow between populations. 

Materials and Methods 

Growth conditions and isolation of strains 

All strains were incubated at 30°C and grown on either minimal medium (MM) or 

complete medium (CM) (Pontecorvo et al. 1953) with 1 mgl"1 ZnS04, FeS04, MnCl2 and 

CuS04 extra added. For the selective isolation of black Aspergilli 20% (W/V) tannin (Merck) 

was added to complete medium (CM + tan) (Rippel 1939). Samples of the undisturbed top-

layer of soil and humus (5-50g) were collected worldwide between 1990 and 1995 and used as 

inoculum. Depending on the spore density in the samples, aliquots (0.01-lg) or dilutions were 

put on the selective CM + tan. The black Aspergillus colonies floating on this very acidous 

(pH«2), liquid medium were further purified on solid MM. Each isolate was given a code 

indicating isolation site, year and number. 

Strains 

For the experiments three sets of black Aspergilli have been used. The first set contained 

culture collection strains obtained from the CBS (Baarn, the Netherlands). A list of these black 

Aspergilli and the colour mutants that we derived from these is given in Table 2.1. The second 

group consists of black Aspergillus strains isolated on non-selective media. This set contains 26 

non-pathogenic strains isolated in and around hospitals in the Netherlands (Z 1.1- Z 2.25), 15 

English strains (814-828) and 6 Indonesian strains (no numbers). The hospital strains are 

included in Table 2.2. The third and largest set of strains contains isolates selected on CM + tan 

from all over the world. An inventory of these strains is given in Table 2.2. 

Nucleic acid (DNA and RNA) isolation 

Total nucleic acids were isolated from fresh mycelial cultures (» 0.1 g wet weight), grown 

overnight from spores in liquid CM in test tubes. The mycelium was transferred to a 1.5 ml 

Eppendorf tube, frozen with liquid nitrogen and disrupted with a special pestle (size of a 0.5 ml 

Eppendorf tube, fitting exactly in the bigger vial). A phenol/chloroform extraction was 

performed after Maniatis et al. (1982). The nucleic acid isolations were used for determining 

virus content and characterisation of the mitochondrial haplotype. 
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Table 2.1 List of used culture collection strains with their CBS or ATCC number and name, available conidiospore 
colour mutants and the ability to grow on 20% tannin medium.. 

strain code* official name colour mutants' 20% tannin 
N050 
N051 
N052 
N053 
N055 
N056 
N057 
N058 
N059 
N061 
N062 
N063 
N064 
N065 
N066 
N067 
N068 
N069 
N070 
N071 
N072 
N073 
N074 
N075 
N076 
N226 
N400 
A001 
A002 
A003 
A004 
A005 

CBS 111.26 
CBS 112.80 
CBS 707.79 
CBS 677.79 
CBS 114.51 
CBS 621.78 
CBS 172.66 
CBS 115.80 
CBS 554.65 
CBS 134.48 
CBS 557.65 
CBS 563.65 
CBS 126.49 
CBS 135.48 
CBS 136.52 
CBS 131.52 
CBS 139.52 
CBS 553.65 
CBS 117.32 
CBS 118.35 
CBS 125.52 
CBS 558.65 
CBS 425.65 
CBS 121.28 
CBS 681.78 
ATCC 1015 
ATCC 9029 

-
-
-
CBS 567.65 
CBS 225.80 

A. carbonarius 
A. carbonarius 
A. ellipticus 
A. helicotrix 
A. japonicus 
A. japonicus 
A. jap. aculeatus 
A. jap. aculeatus 
A. niger 
A. niger 
A. awamori 
A. awamori 
A. phoenicis 
A. phoenicis 
A. nanus 
A. nanus 
A. usami 
A. usami 
A. intermedius 
A. hennebergii 
A. hennebergii 
A. nigerpulverulentus 
A. niger pulverulentus 
A. foetidus 
A. foetidus 
A. niger 
A. niger 
A.ftavus 
A. ochraceus 
A. candidus 
A. candidus 
A. candidus 

fwn, brn 

fwn, brn, whi, gry 

fwn, brn, whi 

fwn 

fwn, brn 

fwn, brn 

fwn, brn, gry 
fwn, brn 

fwn, brn 

fwn, brn 

fwn, brn, gry, olv 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
-
-
-
-

Schimmelcultures, Baarn, 
conidiospore colours: fwn • 

The Netherlands; ATCC = American Type Culture 
fawn, brn = brown, whi = white, gry = grey and olv = 

CBS = Centraal Bureau voor 
Collection, Rockville, MD USA.b 

olive green. 

Determination ofdsRNA virus content 

To test the strains for virus infection, part of the total nucleic acid solution was run on a 

0.8% agarose gel, stained with ethidiumbromide and examined by transillumination with UV. 

This technique clearly separates the DNA, dsRNA and ssRNA and the viral fragment patterns 

are easily distinguished without standard isolation of viruses by e.g. ultracentrifugation of 

mycelium. AHindHI/EcoRI or Boehringer DNA molecular weight marker X was used as 

molecular weight marker. The sizes of the dsRNA fragments were estimated correcting for the 

differences in mobility of DNA and dsRNA (Livshits et al. 1990). To confirm the dsRNA 

nature of the viruses, nucleic acid solutions were treated with DNase and RNase under low and 

high salt concentrations (Varga et al, 1994b). 
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Table 2.2 List of the natural isolates; all strains were isolated on tannin except the strains isolated near Dutch hospitals. 
The sites, where soil/humus was collected, are listed from North to South. The number of black Aspergillus propagules 
per sample was also estimated on tannin medium. 

Country 
(North-South) 
Brazil 
Canada 
The Netherlands 

The Netherlands 2 
France 
Switzerland 
Egypt 
Israel 
Morocco 
Eq. Guinea 
Gabon 

Kameroon 
Indonesia 
Malaysia 
Nepal 
Australia 
New Zealand 

sample year(s 

1994 
1993-1994 
1991-1994 

1993-1994 
1991 
1993 
1992 
1991 
1991 
1994 
1994 

1994 
1990-1994 
1995 
1993 
1994 
1994 

locations 

Santarem, Campos de Jord&o 
Vancouver and Gauley's 
Delft, Rotterdam, Wijlre 
Wageningen 

Bay 

(total samples) 
andlguacu 

Nijmegen and 

near Hospitals in Gouda & Rotterdam 
Normandy 
Basel and Guarda 
Cairo 
Jerusalem and Haifa 
Agadir 
Cacoloondo river 
Ngounie, Ogooue-Maritime andMoyen-
Ogooue 
South- West and South provinces 
Jakarta 
Penang 
Annapurna Massif 
Orpheus island 
Cambridge 

(3) 
(3) 
(27) 

(8) 
(4) 
(2) 
(2) 
(4) 
(2) 
(1) 
(5) 

(6) 
(12) 
(1) 
(1) 
(1) 
(2) 

code & number of strains 
(total strains) 

B 2.1-4.2 
Can 1.1-3.1 
D 1.1-27.1 

Z 1.1-2.25 
F 1.1-4.1 
CH 1.1-2.1 
Eg 1.1-2.5 
I 1.1-4.1 
M 1.1-2.5 
Gu 1.1-1.9 
G 1.1-5.16 

K 2.1-7.4 
Ind 1.1.1-1.12.45 
Mai 1.1-1.6 
Nep 1.1-1.6 
Au 1.1-1.4 
NZ 1.1-2.5 

(41) 
(11) 
(58) 

(26) 
(9) 
(4) 

(24) 
(6) 

(10) 
(9) 

(85) 

(42) 
(320) 

(6) 
(6) 
(4) 
(8) 

iensity 
# sp/g.) 

50-75 
0-2 
0-8 

-.-
0-2 
0-3 
8-10 
2-3 

25-85 
65 

40-60 

25-150 
50-250 

-.-
4-6 
8-15 
6-12 

Non-pathogenic strains isolated in and around hospitals on non-selective media. 

Mitochondrial characterisation 

The mitochondrial haplotypes of strains were determined by restriction enzyme analysis 

with Belli and Hindlll (Varga et al. 1993, 1994a). The digestion mixtures were examined on 

0.8% agarose in the same way as the virus mixture. The isolation of mitochondria and 

subsequent restriction enzyme analysis of the mitochondrial DNA gave the same gel 

electrophoresis patterns as the direct digestion of total DNA extracts. Therefore, analysis was 

routinely done on total nucleic acid extract or, when virus patterns overlapped with the 

mitochondrial patterns, RNase treated total extract. Bglll/HindlH patterns were compared with 

Varga's restriction patterns to determine A. niger (1) and A. tubingensis (2) types (for a survey 

of these patterns see Varga et al., 1994a). Strains that didn't belong to either of these two 

classes, were further analysed with a single digestion of total DNA with EcoRI and compared 

with A. carbonarius (C) and A. japonicus (J) patterns (Kevei et al. 1996; Hamari et al, 1997). 

All examined natural isolates fell in one of the four described main classes. 

Results 

Isolation on 20% Tannin 

In 1939 Rippel described the selective isolation of A. niger strains on 20% tannin. To test 

whether this method allows reliable and exclusive isolation of black Aspergilli throughout the 

whole range of the A. niger species complex, we tested 79 black Aspergilli and some related 

Aspergillus species. The 32 culture collection strains used covered the whole A. niger complex, 
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Aspergillus species. The 32 culture collection strains used covered the whole A. niger complex, 

A. carbonarius and A. japonicus and related strains (Table 2.1). Twenty-six Dutch hospital 

strains, 6 Indonesian and 15 English strains, all of which were not isolated on tannin medium, 

made up the rest of the test panel. We found that all black Aspergilli as well as the colour 

mutants isolated from these, but none of the other Aspergilli, can utilise the tannin as sole 

carbon source in the 20% tannin medium. Some of the black Aspergilli can endure 

concentrations of 60-80 % tannin, whereas the related (non-black) Aspergillus species can grow 

on media with a maximum of 10% tannin. At lower concentrations of tannin, soil samples 

yield a whole range of yeasts and other fungi. Since the method allowed both quantitative 

(spore density) and qualitative sampling of all black Aspergillus propagules in a soil sample, we 

decided to examine the natural populations of black Aspergilli by using isolation on 20% 

tannin. 

Interesting to note is the fact that most Aspergillus determination keys separate the 

efficient tannin-degrading black Aspergilli on their conidiospore colour from related strains: A 

colour mutant of a black Aspergillus would not be recognised as such but it still has the tannin 

degrading ability. We suggest the ability to degrade high tannin concentrations as a more 

reliable taxonomic character. Spontaneous colour mutants of the different black Aspergillus 

types are easy to obtain in the lab, yet none were found among the natural isolates. The 

resulting colour depends on both spore wall morphology and pigmentation. Fawn and brown 

mutants are easy to obtain in all black Aspergillus isolates. White mutants were only and easily 

isolated in A. japonicus types, despite extensive search for them in other types. Olive and grey 

were only occasionally obtained. 

Quantitative Collection of Populations 

Strains were isolated from undisturbed soil and humus samples collected between 1990 

and 1995 from sites all over the world (Table 2.2). Isolations were done within a few days from 

arrival of the sample in the lab and samples were stored at 5°C to enable isolation of more 

strains. Media were inoculated with small quantities of the sample (0.01-lg) or with dilutions 

in saline (10-100x). After 5-7 days all colonies floating on the medium were collected. 

Although colour mutants can easily be selected in the lab, no natural colour mutants were 

selected. The isolates were coded with a letter code for the country, a number for the sampling 

site and a serial number for the colony in a sample. Four sites in Jakarta were sampled 

successively every two years. These sites were numbered consecutively (1990:1.1-1.4, 1992: 

1.5-1.8 and 1994: 1.9-1.12). In total 642 black Aspergillus strains were isolated on 20% tannin 

from 80 sites in 16 different countries. 

The variation in black Aspergillus spore density ranges from very few spores per gram 

substrate in Canada to sites with over 250 spores on average per gram in Indonesia (see Table 
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2.2). In general, the spore density is maximal around the equator and decreases with increasing 

latitude. This distribution is in accordance with the data of Rippel (1939), who found that A. 

niger spore densities in Europe - from Norway to Hungary - increase with temperature. 

With a Coulter counter and channelyzer relative spore sizes were measured of all 

Indonesian strains isolated in 1992. The smallest spores after mtRFLP typing proved to belong 

to the niger-types (± 3.5um), whereas relatively bigger spores could be either niger or 

tubingensis-types (± 5um). No natural diploids were found among the strains, though one strain 

produced mainly binucleate spores (judged by DAPI staining). 

Characterisation of strains and populations by mtRFLP 

Spatial and temporal variation in and between (sub)populations was examined using 

mitochondrial Restriction Fragment Length Polymorphisms (mtRFLP's) and dsRNA virus 

infections (next paragraph). The mtRFLP technique is easy to perform and distinct types can be 

recognised (Varga et al. 1993, 1994a, Hamari et al. 1997, Kevei et al. 1996). The data agree 

with those of ribosomal RFLP's, isozyme analyses and nuclear RAPD's (as done by Kusters-

van Someren et al. 1991, Megnegneau et al. 1993) (unpublished data). Via protoplast fusions 

resistant mitochondrial recombinants from different black Aspergillus types can be selected 

(Kevei et al. 1997). However, spontaneous mitochondrial recombination was only found 

between isogenic - closely related - heterokaryon compatible strains (Toth et al. 1998). 

The data on the mtRFLP characterisation are given in Table 2.3. Per country and/or 

sampling site the number of isolates with certain mitochondrial types are given {A. niger types 

(la-Id), A. tubingensis types (2a-2f), A. japonicus (J) and A. carbonarius (C)). No novel 

mitochondrial restriction patterns were found in the tested strains compared to those of Varga et 

al. (1993, 1994a), Hamari etal. (1997) and Kevei et al. (1996). The total number of isolates per 

sample, the world-wide totals and the virus infection incidence are also given in Table 2.3. 

The results in Table 2.3 can be summarised as follows: The proportion of A. niger strains 

(the 1-types) and the proportion of A. tubingensis strains (the 2-types) in the populations are 

about the same, perhaps with a slight predominance for A. tubingensis types in more temperate 

zones. Together, A. niger and A. tubingensis form nearly 90% of the isolates. A. japonicus and 

A. carbonarius strains form the rest of the isolates, where A. japonicus reaches relatively high 

numbers only in Gabon and the Ind 1.4 sample. 

Within A. niger and A. tubingensis the mitochondrial types lb&c and 2a&b are the most 

common types world-wide and tend to represent the major part of each (sub)population. The 

other types may occur world-wide but form a smaller fraction of the populations. 

Only two types with a limited distribution were found in this examination. Type Id was 

discovered only once in Indonesia in 1992. The Id mitochondrial type may have evolved 

recently out of lc mitochondria since their RFLP patterns are quite similar. Mitochondrial type 
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Table 2.3 Population structure per site or country and year based on occurring mitochondrial RFLP types 

(distinguishing between types la-Id: A. niger types, types 2a-2f: A. tubingensis types, A.jap: A. japonicus and A. car: 

A. carbonarius). Virus infections are given in parenthesis. 

mitochondrial type (virus infections) 

place and year 

Brazil 

Canada 

Netherlands! 

Netherlands2 

1994 

1993 

1991-4 

1993-4 

Netherlands total 

France 

Zwitserland 

Egypt 

Israel 

Morocco 

Eq. Guinea 

Gabon 

Kameroon 

Ind 1.1 

Indl.2 

Ind 1.3 

Ind 1.4 

1991 

1993 

1992 

1991 

1991 

1994 

1994 

1994 

1990 

1990 

1990 

1990 

Indonesia 1990 

Ind 1.5 

Ind 1.6 

Ind 1.7 

Ind 1.8 

1992 

1992 

1992 

1992 

Indonesia 1992 

Ind 1.9 

Ind 1.10 

Ind 1.11 

Ind 1.12 

1994 

1994 

1994 

1994 

Indonesia 1994 

Indonesia total 

Malaysia 

Nepal 

Australia 

1995 

1993 

1994 

New Zealand 1994 

World total 

la 

3 

-
1 

5 

6 

3 

-
-
-
-
-
3 

1 

-
-
-
2 

2 

1 

1 

1 

9(1) 

12(1) 

3 

-
4 

6 

13 

21(1) 

-
-
-
-

4 3 0 

A. niger 

lb 

8 0 

-
6(1) 

4(1) 

10(2) 

-
-
7 

1 

-
6 

24(4) 

16(1) 

1 0 

-
1 

1 

3 0 

6(2) 

22(1) 

2 

22(6) 

52(9) 

4 

9 

1 

8 0 

22(2) 

11(12) 

5 

6 

-
7 

\61(21) 

lc 

20(1) 

4 

5(2) 

1 

6(2) 

1 

-
7 

-
-

3 0 

5 0 

6 

1 

1 

3 

5 0 

10(1) 

4 

2 

3 0 

22(2) 

3\(3) 

1(2) 

1 

5 

14 

3 3 0 

14(6) 

-
-
-
-

126(13) 

Id 

-
-
-
-
. 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1 

1 

-
-
-
-
-
1 

-
-
-
-
1 

2a 

5 

6 

40(4) 

13(1) 

53(5) 

-
2 

10 

4(1) 

6 

-
4(1) 

1 

7 

3 

-
4 

14 

-
4(2) 

-
12(1) 

16(3) 

Ml) 
\\(3) 

-
6 

20(4) 

50(7) 

1 

-
-

1 0 

143(15) 

A. 

2b 

5 

-
6 

1 

7 

2 

1 

-
-

2(1) 

-
1 

2 

3 

1 

-
7 

11 

-
-
-
15 

15 

2 

2 

-

Ml) 

1(1) 

33(1) 

-
-
-
-

59(2) 

tubingensis 

2c 

-
-
-
1 

1 

-
1 

-
-
-
-
1 

6 

-
-
-
-
-
-
-
1 

2 

3 

-
-
1 

-
1 

4 

-
-
-
-
13 

2d 

-
-
-
1 

1 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1 

2(1) 

3(1) 

3 

-
-

MO 
6(1) 

9(2) 

-
-
-
-

10(2) 

2e 

-
-
-
-
-
-
-
-
-
-
-

HI) 

-
3 

2 

-
1 

6 

-
-
-
-
. 

4(1) 

-
-

4(1) 

8 0 

14(2) 

-
-
-
-

15(2) 

2f 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
. 
-
1 

-
-
1 

1 

-
-
4 

-
5 

A.jap 

-
-
-
-
-
3 

-
-
-
1 

-
40(5) 

9 

4 

3 

2 

1 0 0 

19W 

1 

-
2(1) 

-
3(1) 

-
-
-
1 

1 

2 3 0 

-
-
-
-

7 6 0 

A.car 

-
-
-
-
-
-
-
-
1 

1 

-
-
1 

1 

4 

-
2(1) 

MD 
-
-
-
-
. 
-
-
-
-
-

1(1) 

-
-
-
-

10(1) 

total 

black A's 

4 1 0 

10 

5 8 0 

2 6 0 

8 4 0 

9 

4 

24 

6(1) 

1 0 0 

9 0 

85(12) 

42(1) 

20(1) 

14 

6 

3 2 0 

12(4) 

1 2 0 

2 9 0 

1 0 0 

%5(11) 

136(18) 

26(4) 

3 0 0 

11 

4 5 0 

112(72J 

320(34) 

6 

6 

4 

8 0 

668(<54 
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2f was so far only detected in Australia (this paper and Varga et al., 1994a) and in 1994 also in 

Indonesia, suggesting a mitochondrial type of possibly Australian origin and with a recent 

expansion to Indonesia. 

Four sites in Indonesia were sampled every two years; sample Indl.8 was examined more 

extensively (85 strains); from the other sites roughly the same amount of soil was examined 

each year of sampling. Spore densities per sample stayed approximately the same. The first year 

relatively many A. japonicus and A. carbonarins strains were found. The distribution of the 

different haplotypes in the other two years was found to be more similar. 

dsRNA Virus Infection 

All isolates were tested for the presence of dsRNA viruses, which are easily and 

accurately detectable as bright and distinct bands with gel electrophoresis (see Figure 2.1). With 

electron microscopy virus particles could also be made visible in mycelium fractions of infected 

strains. In Table 2.3 the number of infected strains per sample and mitochondrial type is given. 

Viruses are present in nearly all black Aspergillus types found. Only the single Id strain, the 

thirteen 2c and the five 2f-strains showed no virus infections. 

The data on virus infection frequencies were tested with Chi2-tests (Sokal & Rohlf 1995). 

Overall, dsRNA virus was present in 9.6% of the isolates in this assay. For the 95% confidence 

interval the lower and upper confidence limits can be set at 7.6% and 12% respectively. Only 

the small Equatorial Guinea sample deviates significantly from an overall infection frequency 

of approx. 10% infection. This average infection frequency of 10% seems to hold for all black 

Aspergilli, irrespective of their mitochondrial type, and the infections are evenly spread 

throughout the population worldwide. 

There is considerable variation in the dsRNA patterns in the different strains (see Figure 

2.1). In the 63 infected strains 50 different patterns were found. Sizes of the dsRNA fragments 

range from 0.5 to 4.4 kb, when calculated according to Livshits et al. 1990. In the examined 

infected black Aspergilli 1 to 8 different sized fragments were detected per strain. Some 

fragments are found as single infecting fragments in some strains (e.g. the fragment of approx. 

4.4 kb in strains Zl . l , Ind 1.7.8 (Fig. 2.1: lanes 6&7) and M 2.2 or the fragment of approx. 3.2 

kb in Ind 1.8.22 (lane 9)) and can be seen in other strains with extra bands (e.g. the 4.4 

fragment in patterns in Fig. 2.1: lanes 2-5&10; the 3.2 kb fragment in the patterns in lanes 

11&12 ). Sometimes more of the fragments similar in size to those that can occur on their own 

are found in the same strain (Strain N330 (lanelO) contains both the 4.4 and the 3.2 kb 

fragment). These data indicate that multiple infection with different independent viruses and/or 

satellite and defective dsRNA fragments may occur in the black Aspergilli. If the similar sized 

fragments in the different strains are indeed related, it would mean that the different viruses (e.g 

the 2.2 kb virus) are well spread both throughout the world (Europe, Africa and Indonesia) and 
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throughout the different haplotypes {niger, tubingensis and japonicus types). If the similar sized 
fragments are not related, then the variety of dsRNAs is even more extensive. 

8 9 10 11 12 13 14 15 16 17 18 191 

%i# •**•• i i i i l 4.4 kb 

3.2 kb 

2.2 kb 

•t||p 

1g# *,,-

Figure 2.1. Gelelectrophoresis of total nucleic acid suspensions of 16 different virus infected strains Lane 1 19-
marker AHindHI/EcoRI, lane 2-18: strains (haplotype): Indl.l.l6(lb), Ind 1.8.7(lb), D14.1(2a), D14.4(2c) ' 
Zl.l(lb), Ind 1.7.8(lc)(= similar to pattern M2.2(2b)), Indl.8.16(lb), Ind 1.8.22(lc), N330 Indl 5 5(lb) Ind 
1.8.16(lb),Ind 1.8.29(la),Ind 1.4.32(J),NZ3.2(2a), Ind 1.10.15(2a), D 16.5(2a) and D19.1(2a). 

Total variation 

The variation in both mitochondrial types and virus infection in a sample can be large. 

Some of the sites with low density, like Equatorial Guinea and Nepal (sampled on a high 

altitude), show little variation in mitochondrial types in their population, and their isolates may 

be recent clones from a few parental strains. But, the soil sample Indonesia 1.8 for example 

contains 8 haplotypes and 11 infected strains with different virus patterns. In combination with 
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heterokaryon incompatibility data (Van Diepeningen et al. 1997; Chapter 3) one can assume 

that this soil sample consists mainly of different clonal lineages. Both high local variation and 

similarities worldwide are probably due to an efficient and wide-ranging aerial distribution of 

black Aspergilli. 

Discussion 

Isolation on 20% tannin 

The first 'Aspergillus niger' was described by van Tieghem (1867) as a fungus capable of 

using tannin as a carbon source. Tannins are acidous plant polymers that form strong 

complexes with proteins (the tannin effect) (e.g. Goldstein & Swain 1965). These complexes 

are difficult to mineralise and can control the availability of organic nitrogen in plant litter 

(Northup et al. 1995). Plants or plant parts can contain 5-20% tannin by weight, plants used for 

their tannin production even up to 40% (Clarke et al. 1949, Bollen & Lu 1969). The black 

Aspergilli and some related species are able to efficiently degrade the tannin by forming 

tannases. These extracellular enzymes have a combined esterase and depsidase activity (Haslam 

& Stangroom 1966). The special efficiency of tannin degrading (even in very high 

concentrations) suggests a unique ecological niche for the black Aspergilli in places where local 

tannin concentration reaches high values. 

We tested 74 different strains encompassing the whole range of black Aspergilli, which 

were not selected on tannin. All black Aspergilli could grow on 20% tannin, but none of the 

related Aspergilli survived and utilised this concentration. It is an intriguing observation that all 

black Aspergilli share the resistance to tannin at concentrations of 20% and higher, whereas 

(closely) related Aspergillus species like Aspergillus candidus (Table 2.1) lack both the black 

spore colour and this efficient resistance, and can endure only up to 10% tannin maximum. All 

the colour mutants of black Aspergilli (olive, fawn, brown, grey or white coloured) that we 

isolated also show the feature of efficient tannin degrading, thus separating the black colour 

from the tannin degrading ability (Table 2.1). That no colour (or cell wall) mutants are found in 

nature, though they are easily selected in the laboratory, suggest a better survival and spread of 

black spores.The observation that some of A. niger-spores are relatively small may suggest that 

these could be more pathogenic in relation to e.g. aspergillosis. 

Tannin selection enables qualitative as well as quantitative isolation of propagules, 

presumably conidiospores from different substrates. For our isolations we chose soil samples 

from sites all over the world as inoculum. The 74 samples yielded a total of 642 black 

Aspergilli on 20% tannin. The density of A. niger propagules varied from only a few per gram 

of wet soil in colder regions up to several hundreds in tropical regions. This number of 

propagules present in a quantity of soil gives an indication of the potential population density of 
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members of the black Aspergillus group. High densities may be a prerequisite for (somatic) 

genetic exchange. 

Characterisation of strains and populations by mtRFLP 

In A. niger mitochondrial RFLP's are an informative characteristic, yielding data in 

accordance with nuclear molecular data. In this examination the isolates could be characterised 

as belonging to twelve of these mtRFLP haplotypes. The populations sampled consisted mainly 

of strains from the A. niger aggregate; A. niger, A. tubingensis, and of smaller numbers of A. 

carbonarius and A. japonicus. A. japonicus was found in relatively high numbers in the 5 

samples of Gabon and in Ind 1.4, suggesting locally favorable conditions. The virus infection 

patterns (2 patterns in five infected strains from different sites) in the Gabon population indicate 

that there is more than one clonal lines present, though each line may have been samped 

repeatedly. 

Four mitochondrial types belonging to the A. niger aggregate (lb&c, 2a&b) are 

widespread and make up the majority of the examined local populations world-wide. The rare 

types Id and 2f could be declining types or -more likely- recent characters: Id seems to be a 

mutant from the lc-mitochondria and 2f may be originally an Australian type, now also found 

in an Indonesian sample (1.10), indicating that the spores can be spread over large distances by 

air. Varga et al. (1994a) describe two more types that were not found in our experiments. New 

local lines may occur, but at the moment a few mitochondrial haplotypes are succesful 

worldwide. 

The numbers of different clonal lines as displayed by haplotypes and virus infections 

indicate that some of the samples were relatively small. Local diversity in the populations is 

high, with little local specialisation. Globally, the population structure of the black Aspergilli 

shows relatively little temporal and spatial variation in mtRFLPs. 

dsRNA Virus Infection 

Mycoviral dsRNAs have to occur at a high enough frequency in the population and to be 

stable enough in clonal lineages to be useful genetic markers (McDonald 1997). No 

spontaneous loss was detected in clonal lineages (Van Diepeningen et al. 1997; Chapter 3) and 

selecting loss of viruses in young mycelium tips, racetubes or with cycloheximide treatment 

yielded only a partially cured strain in a line with exceptional phenotypic effect due to infection 

(Chapter 6). The infections therefore seem persistent enough in the black Aspergilli. The 

infection frequency in the population worldwide appears to be stable around ten percent. 

When the infection data are combined with the data of mitochondrial classifications, viral 

infections appear not to be limited to certain types of black Aspergilli. The 19 representatives of 

three virus-free mitochondrial subclasses are most likely virus-free by chance; there is no 
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evidence for resistance to viruses in these classes. Using protoplast fusion experiments no 

evidence for resistance to viruses in black Aspergillus strains was found either (Van 

Diepeningen et al. 1998; Chapter 4). 

Virus Variation 

The variation in the detected viral dsRNA patterns is enormous in the black Aspergilli. 

Most mycoviruses are considered to be members of the toti- or partitiviridae. The essential 

information (for capsid protein and RNA dependent RNA polymerase) of toti-and partitiviruses 

lies on one or two dsRNA fragments respectively. These fragments can be accompanied by 

satellite and/or defective fragments, creating more variation (Buck 1998). 

In the black Aspergilli several 'basic' fragments can be recognised (e.g. 4.4, 3.2 and 2.2 

kb large) that can occur alone or in combination with other fragments. Some small differences 

in size of viral particles can also be detected with electron microscopy. This indicates that there 

are several different basic viruses present in the black Aspergilli. These types are spread 

throughout the populations and haplotypes independently. Protoplast fusion experiments show 

that coexistence of viruses in one mycelium can occur (van Diepeningen et al., in press; 

Chapter 4) as is also suggested by these screening data. However, it remains to be proven that 

the similar sized fragments in the different strains are indeed related fragments and that other 

fragments may be degenerated or satellite fragments instead of basic viruses. 

Several explanations can be put forward to explain the spread of infection throughout the 

black Aspergillus populations. Maybe the presence of mycovirus is not due to recent infection, 

but reflects an ancient association. The original parent of the black Aspergilli would then have 

been infected with several different viruses. It seems unlikely, however, that loss of (parts of 

the) infection and the accumulation of some defective/satellite fragments finally resulted in a 

population with such widespread similar infection patterns. 

Another explanation for resemblances in infection patterns could be horizontal transfer of 

viruses between different black Aspergillus strains, implicating that there is some kind of 

contact between strains in nature. 

Under laboratory conditions A. niger is capable of mitotic recombination in the so-called 

parasexual cycle, but this has never been observed in nature. The parasexual cycle consists of 

the following sequence of events: heterokaryon formation after hyphal fusion between 

genetically dissimilar colonies, formation of a heterozygous somatic diploid after fusion of 

unlike nuclei, and mitotic recombination by crossing over and/or nondisjunction. Heterokaryon 

formation is necessary for parasexual recombination, but heterokaryon incompatibility between 

strains is very common and seems to block the transfer of viruses in the black Aspergilli (Van 

Diepeningen et al. 1997; Chapter 3). The occurrence of similar infection patterns in distantly 
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related black Aspergillus types as seen in nature can not easily be explained by such horizontal 

transfer. 

Yet another explanation for the variety in infections and the distribution within the range 

of black Aspergilli could be a repeated infection of black strains from other species. Hoffman et 

al. (1994) found interspecies transfer of a plasmid from a transgenic plant to an A. niger strain 

and Marienfeld et al (1997) reported the transfer of nucleic acid sequences of viral origin 

between fungi and plants. Similarities in dsRNA sizes and patterns in different species could 

be the result of (occasional) interspecies transfer. 

A combination of these three ideas, coevolution, intra-, and interspecies transfer, could of 

course also be the cause of the spread of the mycoviral fragments through the population. The 

high densities of black Aspergillus and other species propagules in soil samples suggest that 

inter-and intraspecies encounters between strains may occur. A well exploited sample like Ind 

1.8 shows a large variety in mitochondria as well as in virus infections, but it gives no evidence 

of any exchange. 

Black Aspergillus population structure 

This study is among the first to give a picture of the worldwide population structure of a 

fungus and of its dsRNA mycovirus infections. Little variation was detected in mitochondrial 

structure between the different populations. Occasionally, new local mitochondrial varieties 

occur. Four mitochondrial types now dominate the mondial population. Virus infections are 

widespread in A. niger, but the data give no definite answers about the origin(s) of infection or 

about the transfer of viruses within the population. The airborne distribution of the fungus may 

be the cause of the homogeneous distribution of all different types and viral infections. The 

effective dispersal and the enormous stock of black Aspergillus spores in the soil world-wide 

may also contribute to temporary stability of the population structure. The data suggest a well-

mixed and relatively stable global population structure. 

The combination of all these data on the isolated black Aspergilli yields a picture of a 

diverse eukaryote 'species' with a very wide distribution and an unique niche. The efficient 

ability to utilise tannin suggests a role in the nitrogen cycle. The asexual fungus can be found 

almost everywhere and in very high concentrations. But, in contrast to some pathogenic fungi, 

which show both sexual and asexual propagation, local black Aspergillus populations do not 

primarily consist of a limited number of successful clonal lineages. Instead there can be a 

large number of different clonal lines in a small sample, and potentially a great deal of 

competition between strains. This indicates that the sampled soil is not the substrate 

stimulating growth and spore production, but merely a stock of air dispersed spores waiting 

for better times to produce their own mycelium and large numbers of spores. 
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Abstract 
Heterokaryon (also somatic or vegetative) incompatibility in black Aspergillus strains 

was examined using nitrate-nonutilising mutants selected on chlorate medium. Pairings of 
complementary mutants showed that somatic compatibility between different strains is 
exceptional in natural populations of the asexual black Aspergilli. Mycoviruses are present in 
a considerable fraction of the sampled natural population, but surprisingly, horizontal 
transfer of mycoviruses only occurs - at least under laboratory conditions - between the (very 
rare) compatible combinations of strains. Thus, unlike in other fungal species, somatic 
incompatibility in black Aspergilli efficiently blocks virus transfer. Viruses present in black 
Aspergillus isolates are highly efficiently transmitted to asexual progeny. 

Introduction 
In many ascomycete fungal species heterokaryon formation following anastomosis 

between hyphae of different strains is controlled by heterokaryon (also termed somatic or 
vegetative) incompatibility reactions. Genetic analysis of somatic incompatibility in several 
sexual ascomycete fungi has shown that it is generally caused by allelic differences between 
strains in one or more so-called to-genes (heterokaryon incompatibility genes). Somatic 
incompatibility in fungi can be studied in several ways (for examples see Fincham et ai, 
1979; Jennings and Rayner, 1984; Perkins, 1988; Glass and Kuldau, 1992). Often 
complementation between different nitrate non-utilising mutants is used to test for 
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heterokaryon formation (Correl et ,al. 1987; Joaquim and Rowe, 1990; Brooker et al., 1991). 

As in Aspergillus nidulans, as first demonstrated by Cove (1976) various complementing 

types of nitrate non-utilising mutations can be easily isolated in A. niger on the basis of 

resistance to chlorate (Debets et al., 1990a). These mutants show leaky growth on N03", 

enabling formation and outgrowth of a vigorously growing heterokaryotic mycelium from 

two complementary compatible mutants inoculated in the same plate. Strains unable to form 

such a heterokaryon under these conditions are classified as heterokaryon incompatible. 

In asexual fungi like members of the black Aspergillus aggregate the formation of a 

heterokaryon, followed by the formation of a diploid and subsequent haploidisation, is the 

only way to achieve (mitotic) recombination (parasexual cycle). Mitotic recombination has 

been used for genetic analysis of related mutants in an isogenic background of A. niger (Bos 

et al., 1988; Debets et al., 1990a). Since heterokaryon incompatibility in asexual fungi like 

the black Aspergilli prevents such genetic analysis, it remains unknown whether 

heterokaryon incompatibility is regulated by similar to-genes as in related sexual species. 

The black Aspergillus aggregate consists of a complex of black Aspergillus species. On 

basis of morphological, RAPD, mitochondrial and ribosomal RFLP data the aggregate can be 

divided into several main groups - Aspergillus carbonarius, Aspergillus japonicus, 

Aspergillus niger and Aspergillus tubingensis (Kusters-van Someren et al., 1991; 

M6gn6gneau et al., 1993; Varga et al., 1993; 1994b). All black Aspergillus strains share the 

unique ability to grow on concentrations of 20% (w/v) tannin and on basis of this 

characteristic a wide range of black Aspergilli has been isolated from nature (Chapter 2). 

Most of the isolated black Aspergillus types occur world-wide and at some places in very 

high densities. About 10% of all these strains appeared to be infected with a variety of double 

stranded RNA mycoviruses (Varga et al., 1993a; Chapter 2). 

Horizontal transfer of cytoplasmic elements like viruses and mitochondrial plasmids is 

in many species limited, but not inhibited, by somatic incompatibility reactions (Caten, 1972, 

Anagnostakis and Day, 1979, Anagnostakis, 1983, Debets et al., 1994). In Endothia 

parasitica the variation and stability of the dsRNA virus patterns is influenced by the 

vegetative incompatibility reactions between strains (Anagnostakis and Day, 1979). Virus 

transfer to fungal offspring seems mainly restricted to asexual progeny (Rawlinson et al, 

1973; Day et al, 1977; Lecoq et al., 1979; Rogers et al., 1986b). Virus infection is only 

known to occur after hyphal anastomosis, not via infection by extracellular viruses. Virus 

transfer between black Aspergillus strains has only been detected after protoplast fusion 

between more distantly related strains (Lhoas, 1970; Varga et al., 1994a). 

In the present study we present the results of heterokaryon (in)compatibility 

experiments with nitrate non-utilising (nia and cnx) mutants of the whole range of black 
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Aspergillus field isolates. This provides an estimate of the rate of occurrence of heterokaryon 

formation under natural conditions. The transmission of viral dsRNA fragments to the 

conidiospores (vertical transfer) was also analysed. Furthermore we tested to what extent 

heterokaryon incompatibility is a barrier to the horizontal transfer of mycoviruses between 

different strains when grown in a mixed culture with or without selective pressure for 

heterokaryon formation. These experiments may help to understand the population dynamics 

of mycoviruses in black Aspergilli. 

Materials and Methods 

Strains. 

A list of the used wild-type black Aspergillus strains is given in Table 3.1. The 

Indonesian (Ind) strains were isolated on selective medium with 20% (w/v) tannin from soil 

samples from 1990 and 1992 from Jakarta (Chapter 2). A. niger strains N400 (CBS 120-49 

and ATCC 9029) and strain N062 (CBS 557.65) are culture collection strains. Strain Z 1.1 

was obtained from a hospital in Gouda, the Netherlands. Strains are classified by their 

mitochondrial RFLP type (Varga et al 1993, 1994a; Chapter 2). Some of the strains (marked 

with *) are carrying dsRNA viruses (Varga et al .,1994b; Chapter 2). 

Table 3.1. List of the wild-type black Aspergillus strains used. All Ind strains were isolated from a small yard in 
Jakarta, Indonesia. Strains N400 and N062 are culture-collection strains; strain Z 1.1 is a hospital isolate. Between 
brackets () the mitochondrial RFLP classification of the strains. * indicate dsRNA virus-infected strains, *'A is a 
partially cured strain (4 out of 6 bands lost). 

Black Aspergillus strains employed 
Ind 1.2.15 
Ind 1.4.24 
Ind 1.4.29 
Ind 1.4.32 
Ind 1.5.5 
Ind 1.5.7 
Ind 1.6.18 
Ind 1.6.19 
Ind 1.6.23 

(2b) 
(lc) 
(Q* 
(J)* 
(lb)* 
(la) 
(la) 
(2a)* 
(2a)* 

Ind 1.7.8 
Ind 1.7.9 
Ind 1.8.1 
Ind 1.8.2 
Ind 1.8.3 
Ind 1.8.7 
Ind 1.8.10 
Ind 1.8.11 
Ind 1.8.13 

(lc)* 
(la) 
(lb) 
(la) 
(lb) 
(lb)* 
(lb)* 
(lb)* 
(lc) 

Ind 1.8.16+ 
Ind 1.8.16-
Ind 1.8.19 
Ind 1.8.21 
Ind 1.8.22 
Ind 1.8.26 
Ind 1.8.29 
Ind 1.8.30 
Ind 1.8.31 

(lb)* 
(lb)*'A 
(lb)* 
(lc)* 
(lc)* 
(2d)* 
(la)* 
(la) 
(la) 

Ind 1.8.34 
Ind 1.8.42 
Ind 1.8.47 
Ind 1.8.67 
Ind 1.8.68 
N400 
N062 
Z l . l 

(la) 
(2b) 
(la) 
(la) 
(la) 
(la) 
(lc) 
(lc)* 

Culture conditions. 

Complete medium (CM) was made as described by Pontecorvo et al. (1953) with 10 

mM nitrate and/or 10 mM urea as nitrogen source and 1 mg/1 ZnS04, FeS04, MnCl2 and 

CuSO„ extra added. Chlorate medium (CM+C103) is CM + 200 mM KC103 and 10 mM urea. 

Minimal medium (MM) is an extra reduced form of Pontecorvo's minimal medium, with a 

composition as described by Coenen et al. (1994) without nitrogen source. As nitrogen 

sources for the (test)media 10 mM urea (U), 10 mM nitrate (N), 10 mM nitrite or 0.5 mM 

hypoxanthine were used. As supplements for pro/arg, nic and pyr strains final concentrations 

of 1 mM arginine, wcotinamide and uridin (pynmidine) or 2 mM proline were used. Pyr 
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mutants were grown on CM with uridine and 0.8 mg/ml 5-Fluoro-orotic acid. All incubations 

were done at 30°C. 

Isolation of mutants. 

Fawn-coloured mutants (fwn) were selected on (supplemented) MM+N after irradiation 

of conidiospores with 120 J/m2 Ultraviolet Light (UV). From strain N062 different shades of 

fawn and brown (brri) mutants were also isolated. Nitrate non-utilising chlorate resistant 

mutants were isolated on CM+C103 and tested as described by Cove (1976) and Debets et al. 

(1990a) on MM with different nitrogen sources. Cnx (nitrate and hypoxanthine deficient) and 

nia (nitrate deficient) mutants of each strain were selected. To test the usefulness of the cnx 

and nia mutants heterokaryon self-compatibility tests were carried out: complementing 

mutants were successfully isolated in all natural isolates. The pro/arg (proline/arginine 

deficient) and nic (nicotinamide deficient) mutants of strain N062 were obtained after a dose 

of UV and screening on minimal and supplemented minimal media. The pyr mutants were 

selected on 5-Fluoro-orotic acid and tested on uridine deficiency. 

Heterokaryon compatibility tests. 

Pairs of strains distinguishable on colour and with complementing deficiency mutations 

were inoculated both individually and together on MM+N. The combination of no growth of 

individual strains and growth of a bi-coloured heterokaryon was declared compatible (Figure 

3.ID). For most strains four possible combinations of mutants (strain\nia x strain2/Ww,cra:; 

strainlenx x strain2/iv«,«/a; strainlfwn,nia x strain2c«x and strain\fwn,cnx x strain2«/a) were 

possible and at least two of these combinations were tested. The mutants used have been 

tested in self-compatibility reactions to exclude the possibility that heterokaryon 

incompatibility was due to marker effects. 

Virus detection. 

Total nucleic acids was isolated and tested for viral dsRNA fragment content with gel 

electrophoresis. For a scheme of virus infection patterns in black Aspergillus strains, as seen 

after gel electrophoresis see Varga et al. (1994a) or e.g. Chapter 2. 

Virus stability. 

Virus stability was tested in colonies from random single spores from infected strains 

by checking their mycovirus content (vertical transfer) and by continuous subcultering 

mycelia from infected strains and also testing those subcultures (sequential hyphal-tip 

isolation). 
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Virus infection (horizontal transfer) experiments. 

Three sets of experiments were carried out. (1) Horizontal transfer in heterokaryon 

compatible combinations. Heterokaryons were constructed from heterokaryon compatible 

combinations of strains of which one or both contain virus. Subsequently homokaryons with 

parental phenotypes were re-isolated from these heterokaryons (conidiospores are 

uninucleate) and tested for their virus content. Heterokaryon incompatible combinations 

could not be tested by this method. (2) Horizontal transfer in combinations not selected for 

(transient) heterokaryon formation. Both heterokaryon compatible and incompatible 

combinations of strains could be used in this experiment. Pairs of strains distinguishable on 

basis of colour and chlorate resistance/nitrate deficiency were grown together for 6 weeks on 

minimal medium + urea (MM+U) in test tubes. A new layer of medium (1 ml) was added 

every week. Strains were separated and purified on the selective media CM+C103 and 

MM+N. Both types of pure homokaryotic strains were checked for virus content afterwards. 

(3) Horizontal transfer not selected for (transient) heterokaryon formation and with 

mechanically disturbance. Experiments were carried out as in transfer experiment 2, but 

media and mycelia were disrupted with a scalpel on each of the three days before spores had 

been formed on fresh media. In this way we tested whether free cytoplasmic elements and 

wounds in mycelia would enhance the virus infection rate. 

Results 

Heterokaryon (incompatibility 

Heterokaryon (in)compatibility can be tested in black Aspergillus in several ways. 

Examples of these are shown in Figure 3.1. Figure 3.1A-C show heterokaryons growing from 

mixed mycelial mats; for Figure 3.ID strains were directly inoculated bothe separately and 

together on a Petri dish. In A. niger colour mutants are non-autonomous: colour mutations 

can complement in heterokaryons as shown in Figure 3.1 A (see also Pontecorvo et al., 1953; 

Lhoas, 1980) where fawn- and olive-coloured mutants complement to form black 

conidiospores. Figures 3.1B-D show compatible combinations of strains on selective media, 

where both strains are not able to grow separately but the combination of the two strains can. 

For these heterokaryons combinations between a black and fawn coloured strain were used 

for discrimination between the strains. In Figure 3.IB two auxotrophic strains are used 

{lysine deficient and trp tryptophan deficient) on non-supplemented minimal medium. In 

Figure 3.1C a combination of an auxotrophic marker (wiemionine) and a dominant nuclear 

oligomycine resistance marker (oli) in one of the strains is used to force heterokaryotic 

growth on MM with oligomycine. Two chlorate resistant stains with complementing nitrate 

deficiencies are used on minimal medium with nitrate as nitrogen source in Figure 3.ID. All 

strains in these examples are isogenic and originate from the N400 culture collection series. 
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m v c d h . m t L r r f , ? , f ° r hT°kaiy0n an)compatibiHty; heterokaryons grown from mixed 
mycehum mats (A-C) or tested stoms moculated separately to the sites of the plate and together in the middle 
(D). In B-D, comb.nat,ons of black- and fawn- coloured strains were used. A non-autonomous colour 
expression (<-) between two different colour mutants (a fawn>« and olive oh coloured strain). B combination 
of two auxotrophic strams (me/hionine and /y.ine) on non-supplemented MM. C combination of a strain with 
both an auxotroph.c marker (me/hionine) and a dominant oligomycine resistance (oli) with a wildtype strain on 
MM+ol.gomycme. D comb.nation of two nitrate non-utilising strains (cnx and nia) on MM+N All 
demonstrations with isogenic mutants of culture collection strain N400. 

Of all isolated wild-type strains fawn (jwri) coloured mutants were isolated after a dose 
of ultra-violet light (UV). Of both black and fawn strains chlorate resistant/ nitrate deficient 
mutants were selected. Strains were tested on different nitrogen sources and both nia (nitrate 
deficient) and cnx (nitrate and hypoxanthine deficient) mutants were selected if possible for 
all strains (after Cove, 1976 and Debets et al, 1990a). Combinations of complementing 
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mutant strains can show heterokaryotic growth on minimal medium with N03 as nitrogen 

source when the strains are compatible. All used natural isolates and strains N400 and Zl.l 

were heterokaryon self-compatible (HSC). 

Table 3.2 Mutants of self-incompatible strain N062 (CBS 557.65). fwn = fawn coloured spores, brn = brown 
coloured spores, pro/arg = proline or arginine-deficient, nic = nicotinamide-deficient, nia = chlorate-
resistant/nitrate-deficient, cnx = chlorate-resistant/nitrate and hypoxanthine-deficient, pyr = 5- Fluoro-orotic acid-
resistant/uridine deficient. 

Strain 
N062 
N062-01 
N062-02 
N062-03 
N062-04 
N062-05 

Mutations 

fwn-\ 
pro/arg-\ 
nic-l 
nia-l 
cnx-l 

Strain 
N062-06 
N062-07 
N062-08 
N062-09 
N062-10 
N062-11 

Mutations 
lfwn-l, nia-l 
dfwn-l, nia-l 
lfwn-l, cnx-l 
dbrn-2, cnx-l 
fwn-1, nia-l,pyr-1 
brn-l, cnx-l,pyr-l 

However, one tested culture collection strain, N062, did not show heterokaryotic 

growth of nia and cnx mutants. To avoid any special marker effects additional colour 

mutants ( c?ark and /ight shades of fawn and (dark)brown (d)brn) as well as extra deficiency 

mutants (proline/arginine, w'cotinamide and pyr (uridine deficient) strains) of N062 were 

isolated. In Table 3.2 a list of mutant strains originating from N062 is given. None of the 

possible combinations of in principle complementary mutants of this strain showed 

heterokaryon growth. The colour mutants of strain N062 also lack the non-autonomous 

colour-expression evidence for heterokaryon compatibility when paired. We therfore 

conclude that this strain is heterokaryon self-incompatible (hsi). 

The results of inter- and intrastrain pairings are listed in Table 3.3. In these experiments 

26 strains spanning the whole range of black Aspergilli were tested for heterokaryon 

formation. Only very few combinations of strains showed compatible growth. Strain 

Indonesia 1.8.16 is represented twice in this table strain: once with virus infection, once in its 

cured form. Both forms are still compatible with one another. Strain Zl. l was added in the 

heterokaryon compatibility tests because of its close resemblance to strain Ind 1.7.8 both in 

mitochondrial type as in virus infection (1 similar-sized band). Despite the resemblance the 

strains are heterokaryon incompatible. 

A subset of the natural isolates consisting of strains with a similar mitochondrial type 

(la) as the commonly used culture-collection strain N400 was also tested on heterokaryotic 

complementation. In this set (results shown in Table 3.4) only two strains both isolated from 

sample Indonesia 1.8 were heterokaryon compatible and probably isogenic. 
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Table 3.4 Heterokaryon (in)compatibility reactions between 13 A. niger strains of mitochondrial type la. + 
Heterokaryon (self)compatible, - heterokaryon incompatible. 

Strain N Ind Ind Ind Ind hid Ind ind hid Ind Ind hid Ind 
40 1.4 1.5 1.6 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 
0 33 7 18 9 2 29 30 31 34 47 67 68 

N400 + 
Ind 1.4.33 - + 
Ind 1.5.7 - - + 
Ind 1.6.18 + 
Ind 1.7.9 + 
Ind 1.8.2 + 
Ind 1.8.29 + 
Ind 1.8.30 + 
Ind 1.8.31 + 
Ind 1.8.34 + 
Ind 1.8.47 + 
Ind 1.8.67 + 
Ind 1.8.68 + + 

Virus stability 

From virus infected strains single-spore colonies were obtained from plated spore 

suspensions. Twenty-four to eighty colonies derived from strains Ind 1.5.5 (24), Ind 1.7.8 

(24), Ind 1.8.7 (80), Indl.8.16 (24) and Z 1.1 (24) were tested for their virus content. In all 

cases all progeny showed the same pattern of infection as the parental strain; no loss of any 

fragments nor addition of fragments was observed (data not shown). Thus vertical transfer is 

very efficient and clonally related isolates are expected to harbour identical viruses. 

Other experiments tested the stability of viruses in mycelium during weeks of sub-

culturing hyphal tips. Virus patterns were found to be stable in all strains during sub-cloning. 

Only the phenotypically exceptional strain Ind 1.8.16 could be cured of part of its virus this 

way: it lost four bands from the pattern of six bands and also its abnormal phenotype of non-

sporulating sectors. 

Virus transfer experiments 

Transfer can be detected in those strain combinations where one of the strains is 

infected or where the two strains have different dsRNA patterns. Heterokaryon compatible 

combinations of strains showed transfer of the viruses (transfer experiment 1; Table 3.4). 

Also the re-infection of partially cured strain Ind 1.8.16 took place readily. Strains from 

heterokaryon incompatible combinations could not be recovered from these heterokaryon 

compatibility tests, because both mutants used in the incompatible mixture lack the ability to 

utilise the nitrate medium (MM+N) and fail to grow. 

In preliminary transfer experiments between sets of strains without pressure for 

heterokaryotic growth, no transfer was detected after short periods of coculturing on different 

media. We were unsure if this was due to lack of transfer (possibilities), to resistance to 
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viruses or to non-detectable levels of dsRNA. Therefore we tested combinations after 
prolonged co-cultivation on minimal medium with urea (MM+U) to enhance transfer 
possibilities and to give the virus time to reach detectable levels throughout the mycelium 
after transfer (transfer experiments 2 and 3). After 6 weeks the strains were separated on 
selective media and subsequently tested for virus presence. In undisturbed combinations 
(transfer experiment 2) only virus transfer has been detected in the heterokaryon compatible 
combination (strains Ind 1.8.9 and Ind 1.8.22). The results of these experiments on horizontal 
transfer in combinations not selected for (transient) heterokaryon formation are listed in the 
left row (u) of each column in Table 3.5. 

Table 3.5 Transfer experiments 2 and 3. Transfer between virus-free and virus-containing strains in the upper part 
of the table. In the lower part of the table combinations of two-virus-containing strains with different infection 
patterns. Left columns undisturbed (u), right columns mechanically disturbed (d) conditions (see Materials and 
Methods). * = virus infected strain; - = no transfer detected; p = partial transfer, not all dsRNA bands transferred; + 
= full transfer of virus pattern; n.d. = no acceptor selected; empty cell = transfer not detectable due to overlapping 
patterns. Alls strains were incompatible except for the combination Ind 1.8.9 and Ind 1.8.22. 

Donor - Ind Ind Ind Ind Ind Ind 
Acceptor 1 1.8.16* 1.8.7* 1.7.8* 1.8.22* 1.6.19* .26* 

(lb) (lb) (lc) (lc) (2a) (2d) 
(u) (d) (u) (d) (u) (d) (u) (d) (u) (d) (u) (d) 

Ind 1.8.2 era (la) 
Ind 1.8.1 era: (lb) 
Ind 1.8.13 cnx (lc) 
Ind 1.8.9 era: (Id) - p - - - - + + - - - -
Ind 1.8.39 era (2a) n.d. 
Ind 1.8.42 era (2b) n.d. 
Ind 1.7.6 (J) n.d. n.d. n.d. - n.d. n.d. n.d. 
Ind 1.5.5* era (lb) - - - - '- - - -
Ind 1.7.8* era: (lc) -
Ind 1.8.22* era: (lc) . . . . . . 
Ind 1.6.19* era: (2a) 

The right row (d) of each column of Table 3.5 shows the results of similar experiments, 
but with mechanical disturbance of the mycelia during growth (transfer experiment 3). In 
these combinations free cytoplasm could be an extra source of infection in wounded mycelia. 
In one combination of incompatible strains partial infection occurred after this treatment. The 
largest fragment of the virus infecting strain Ind 1.8.16 (normally 6 bands) was detected in 
strain Ind 1.8.9, but caused no phenotypic effect. Test of transfer between two different virus 
containing strains yielded no multiply infected strains. Though in these cases the acceptor 
strains are clearly capable of harbouring viruses, no extra infection with different dsRNA 
fragments occurs. Not all combinations of virus infected strains could be tested due to 
overlapping virus patterns in some of them. 
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Discussion 

The dsRNA viruses in the black Aspergilli do not show any phenotypic abnormalities, 

the only exception being the virus(es) in strain Ind 1.8.16 which produces non-sporulating 

sectors within the colony. Yet viruses may lower the fitness of their host even though they 

are seemingly neutral passengers. Without the possibility of horizontal virus transfer, even 

slight fitness effects would result in selection against virus-infected strains thus reducing the 

virus frequency in the fungal population. Yet, the global population of black Aspergilli 

shows an apparently stable infection frequency of approximately 10% (Chapter 2). Thus, one 

would expect that either the viruses have no negative effect on their host's fitness or that 

there is horizontal transfer. In this study we describe the stability of the viruses within their 

host and the limited possibilities for virus transfer in natural populations of black Aspergilli. 

The dsRNA patterns of these mycoviruses vary between different host strains, but tests 

of virus stability both in mycelia and in the asexual progeny show that the virus patterns 

within a host line show no variation or loss of fragments. Only one infected strain, the only 

one in which the virus produced a phenotypic effect, lost part of its virus or one of its viruses 

after sequential sub-cultering of mycelia. All 24 randomly chosen conidiospores from this 

strain were found to be infected. In sexual species progeny from ascospores produced on 

infected mycelium can be free of virus, but for the infected asexual black Aspergilli there 

seems to be no escape. 

The stability of mycoviruses outside their host appearss to be very low. Uptake 

experiments from purified virus particles in the media did not show any transfer via the 

medium (Van Diepeningen, unpublished data). Disruption of mycelia might occur regularly 

in nature, but partial transfer took place in only one strain in which the mycelia were 

repeatedly mechanically disrupted. A combination of wounded mycelium and a mixture of 

free cytoplasm around it may be the cause of this uptake of a single dsRNA fragment. The 

transferred fragment from donor strain Ind 1.8.16 forming a part of a more complex pattern 

can apparently cause a stable infection on its own in the acceptor strain Ind 1.8.9. The same 

fragment and three smaller bands are also the ones lost in the cured variant of Ind 1.8.16, 

while the two smallest fragments remain as a stable infection. This suggests that some 

dsRNA patterns may consist of more than one independent virus. 

The variation in dsRNA patterns among infected strains and their stability within a host 

begs the question how such infection could become so widespread within the population. 

Information on transmission rates of viruses and on the fitness effects a virus has on its host, 

is clearly essential to answer this question. 

To test for the horizontal spread of mycoviruses we first studied the occurrence of 

somatic (in)compatibility among natural black Aspergillus isolates, since in other species 

incompatibility can strongly reduce transfer of genetic elements by limiting the formation of 
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anastomoses and of transient heteroplasmons or heterokaryons. Chlorate resitance mutations 

are positive selectable and yield different deficiency mutations, making them very useful for 

compatibility tests. Isolationand characterisation of auxotrophic mutations is more laborious. 

Colour mutants (especially fawn) are easily detected by eye. A drawback of these muatations 

is the fact that colour complementation could be a consequence of cross-feeding possibly 

without heterokaryon formation (Lhoas, 1980) Dominant oligomycine resistance can only be 

used in combination with deficiencies or other dominant resistancies in the tester strain. 

On our medium black Aspergillus strains produce on our medium no clear signs of 

anastomosis or antagonism when they meet; but the use of complementary mutants in 

vegetative compatibility tests works very well. All used strains were tested on their ability to 

form anastomoses by testing complementing mutants of each line. All strains were self-

compatible except one culture collection strain, which appeared to be heterokaryon self-

incompatible in all the combinations of mutants tested. Heterokaryon incompatibility was the 

rule between isolates though exceptionally strains were compatible, in which case also virus 

transfer occurred. 

In separate experiments without heterokaryon forcing conditions, virus transfer 

between incompatible strains was not found even after prolonged cocultivation of strains on 

very minimal media. This suggests that in black Aspergilli heterokaryon incompatibility acts 

as a strict barrier for virus transfer under laboratory conditions, unlike other fungi like 

Ceratocystus ulmi and Endothia parasitica (Brasier 1984, Anagnostakis and Day 1979). 

Only when the mycelia are thoroughly disrupted was one of the virus fragments transferred 

in one experiment (from Ind 1.8.16 to Ind 1.8.9), so even when disruption occurs transfer 

takes place at a very low rate. 

It is conceivable that infections of black Aspergillus populations originate from other 

fungi or other organisms. Hoffmann et al. (1994) did experiments growing transgenic plants 

together with a black Aspergillus strain under sterile conditions. Transfer of the resistance 

gene hph from four different plant species to an A. niger strain was reported. Kempken 

(1995a) found evidence for the transfer of a mitochondrial plasmid from Ascobolus immersus 

(a dicomycete) to Podospora anserina (a pyrenomycete), two fungi that share the same 

ecological niche. Perhaps the source of the wide-spread viruses in the black Aspergilli may 

have to be sought outside the species rather than through spread within the black Aspergilli 

and infections may occur rather frequent and in different backgrounds. 

Another possibility would be that one or more viruses have co-evolved with their black 

Aspergillus hosts for a long time. Viruses may have lost their virulence and some hosts may 

have lost their virus and perhaps evolved resistance to viruses. However, virus transfer to the 

asexually produced offspring of black Aspergillus strains is very efficient: all 196 tested 

progeny contained all dsRNA fragments of the parental strain. Apparently virus loss through 
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conidiospores does not occur or else is very rare. In the few detected heterokaryon 

compatible combinations viruses were readily transferred and no virus resistance was 

observed. Strains with a virus infection did not receive any other bands showing that the 

heterokaryon incompatibility blocks the transfer to virus-competent strains. 

For Aspergillus nidulans Butcher et al. (1972) postulated that isolates within a 

vegetative compatibility group (VCG) are more closely related than isolates belonging to 

different VCG's. But outcrossing may produce offspring belonging to different VCGs as a 

consequence of recombination between Aef-genes. In plant pathogens a close relationship 

between VCG and host pathogenicity or specificity is often found (Bosland & Williams 

1987, Larkin et al. 1990, Ploetz & Correl 1988). In asexual non-recombining species all 

members of a VCG would be clonally related. In asexual Aspergillus flavus members of one 

VCG indeed share many characteristics regardless of geographic origin (Bayman & Cotty, 

1993). In our study of 36 black Aspergilli, 33 originating from four sites in a single yard in 

Indonesia, strains often contained similar type mitochondria and sometimes similar 

mycovirus patterns, but were almost always heterokaryon incompatible. The occasional 

compatible combinations are closely related types on basis of their mitochondrial RFLPs 

(type Id is supposedly a recent mutation of type lc). Due to absence of recombination new 

VCG's are most likely the result of mutations. 

Heterokaryon self-incompatibility could be a consequence of the generation of 

incompatibility by mutation, resulting in colonies where lack of anastomises limits the 

internal communication. Horn and Greene (1995) also found heterokaryon self-

incompatibility in two other imperfect Aspergillus species: Aspergillus flavus and Aspergillus 

parasiticus. Decline in disease caused by Rhizoctonia solani in monoculture is a common 

phenomenon and is associated with th occurrence of non-self-anastomosing strains 

(Hyakumachi & Ui, 1987). The mechanism of anasomosis loss is unknown, but self-

incompatible strains of R. solani are able to form anastomoses when a self-anastomosing 

strain is encountered. Some Fusarium solani (Nectria haematococcd) heterokaryon self-

incompatible (HSI) strains have been shown to form only a reduced number of hyphal 

fusions (Hawthorne & Rees-George, 1996). However, in all the tested combinations with A. 

niger strain N062 no compatibility reaction was detected and this was not due to any marker 

effects. 

The extent of vegetative compatibility can be expressed by the ratio of the number of 

VCG's to the sample size (S/N). The two sets of compatibility tests yield an S/N of 22/26 

(0.85) respectively 12/13 (0.92). The high diversity among strains from the same soil 

samplebreflects the effective aerial dispersion of the fungus. Horn and Greene (1995) also 

found higher numbers of VCG's per sample size for the air dispersed asexual A. flavus then 

for more restrictedly dispersing asexual A. parasiticus, which has a more-limited dispersal. 
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As a function of heterokaryon (in)compatibility both (inhibition of) nuclear 

recombination and (inhibition of) exchange of genetic material have been proposed (Glass 

and Kuldau, 1992). Our results indicate that in black Aspergilli somatic incompatibility 

completely blocks the transfer of (possibly deleterious) mycoviruses. Virus transfer is thus 

limited between somatically compatible combinations of identical, or closely related, black 

Aspergillus strains. Once infected there seems to be little escape. Black Aspergilli thus seem 

to have a more efficient barrier for the transfer of genetic elements than many (related) 

fungal species do. 
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Abstract 

Intra- and interspecies transfer of dsRNA viruses between black Aspergilli and A. 

nidulans strains has been investigated using protoplast fusion. We found interspecies transfer 

of virus in all combinations of black Aspergillus and A. nidulans strains and vice versa. 

Using the same conditions, intraspecies virus transfer among heterokaryon incompatible 

strains was also tested. Whereas such transfer was always found among A. nidulans strains, 

transfer among black Aspergilli was frequently unsuccessful. The lack of virus transfer 

between black Aspergillus isolates was further investigated by using a mitochondrial 

oligomycin resistance marker as a positive control for cytoplasmic exchange. These 

experiments showed independent transfer of the oligomycin resistance and dsRNA viruses 

during protoplast fusion of heterokaryon incompatible black Aspergilli. The inefficient 

transfer of dsRNA viruses between black Aspergilli is not caused by absolute resistance to 

viruses but may be related to heterokaryon incompatibility reactions that operate 

intraspecifically. Consequences for the dynamics of mycoviruses in populations of black 

Aspergilli are discussed. 

Introduction 

The black Aspergilli form a diverse group of asexual and black-spored Aspergilli, many 

of which are of industrial importance. The natural population structure of black Aspergilli 

seems very homogeneous worldwide when mitochondrial data are considered. In tropical 

regions these fungi can reach high densities (Chapter 2). Infections with various double-

stranded (ds) RNA mycoviruses are common in black Aspergilli and nearly ten percent of 
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the population is infected (Chapter 2). Both Aspergillus niger and Aspergillus tubingensis, 

representing two closely related types of black Aspergilli (Kusters-van Someren et al, 1991; 

Megn^gneau et al, 1993; Varga et al, 1993, 1994b), as well as less related black Aspergillus 

types, can harbour mycoviruses in nature (Varga et al, 1994a, Van Diepeningen et al, 1997; 

Chapter 3). 

DsRNA viruses are commonly found in fungal species. Some viruses are connected 

with hypovirulence or killer-phenomena in their host, many are without known phenotypic 

effect (Buck, 1986). Only one virus in the black Aspergilli was found with a debilitating, 

phenotypic, effect (Chapter 6). Transfer of the mycoviruses between black Aspergillus 

strains has only been successful in heterokaryon compatible strains and via protoplast 

fusions (Lhoas, 1970, Liang et al, 1983; Liang and Chen, 1987, Varga et al, 1994a, Van 

Diepeningen et al, 1997; Chapter 3). Direct transfer of these mycoviruses between mycelia 

is prevented by the heterokaryon incompatibility barrier, present between most strains (Van 

Diepeningen et al, 1997; Chapter 3). 

Nothing is known about the mechanism of heterokaryon incompatibility in black 

Aspergilli. It is generally assumed to be similar to that in related sexual ascomycetes, where 

the formation of heterokaryons and heteroplasmons following interstrain hyphal fusions 

(anastomoses) is regulated by heterokaryon incompatibility genes (het-genes). Both allelic 

and non-allelic te/-gene systems have been found to be involved in heterokaryon formation. 

In allelic systems an allelic difference at one het-\ocus is sufficient to cause an 

incompatibility reaction. In non-allelic interactions differences at two separate loci result in 

incompatibility (for a scheme see Begueret et al, 1994). In Neurospora crassa and 

Podospora anserina several to-genes are identified to be responsible for cytoplasmic -

postfusion- incompatibility reactions (Wilson et al, 1961; Williams and Wilson, 1966; 

Begueret et al, 1994). In many other species, it is unknown whether the self/nonself 

recognition is due to pre- and/or postfusion reactions. 

In Aspergilli, often no clear phenotypic heterokaryon incompatibility reactions can be 

seen, perhaps due to a low frequency of anastomoses. Here, complementation of different 

nitrate non-utilising mutants can be used as test for heterokaryon compatibility (Cove, 1976; 

Debets et al, 1990a). In species like Aspergillus nidulans, heterokaryon incompatibility can 

(partly) be overcome through the use of intraspecies protoplast fusion. Reassociation and 

recombination can be obtained via the transient heterokaryons and unstable diploids (Dales 

and Croft, 1977). Interspecies protoplast fusions between different Aspergillus species have 

also been successful in some cases (e.g. Bradshaw et al, 1983; Kevei and Peberdy, 1984; 

Liang and Chen, 1987). 

No viruses have been found in Aspergillus nidulans in nature. Previous experiments in 

our laboratory showed that a mycovirus from A. niger could be introduced into A. nidulans 
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by protoplast fusion relatively easily and that, in contrast to the experiments with black 

Aspergilli, spontaneous transfer between strains is not prevented by heterokaryon 

incompatibility (Coenen et al, 1997). From this and other studies (Liang et al, 1983, Liang 

and Chen, 1987, Varga et al, 1994a), it was suggested that virus transfer after protoplast 

fusions occurs readily. 

In this study, we investigate the transfer of mycoviruses following inter- and 

intraspecies protoplast fusion of different black Aspergillus (heterokaryon compatible and 

incompatible combinations) and A. nidulans strains (incompatible combinations). The 

protoplast fusion experiments described here show that the intra- and interspecies 

incompatibility barrier for viruses in natural isolates of black Aspergilli is stronger than the 

interspecies barrier between black Aspergilli and Aspergillus nidulans. 

Materials and methods 

Strains and mutations. 

A list of the strains and mutations used for the virus transfer experiments is given in 

Table 4.1. The black Aspergillus Ind strains were isolated in 1992 from soil from one 

sampling site in Jakarta, Indonesia and characterised as A. niger (1-types) or A. tubingensis 

(2-type) on basis of mitochondrial RFLP (after Varga et al 1993, 1994b). Strains N400 (CBS 

Table 4.1. Used black Aspergilli and A. nidulans strains. * = infected, the number indicates the virus dsRNA 
pattern; the numbering corresponds to the numbers in Fig 4.1 A; mlOli' = mitochondrial oligomycine resistance; 
fwn and y = fawn, yellow coloured spores respectively; cnx and nia = chlorate resistant/nitrate non-utilizing; ade", 
arg" and pro" = adenine, arginine and proline auxotroph; n.d. = not determined, SI = self-incompatible. 

Donors 
black Aspergilli 

A. nidulans 

strain 
N909 
Ind 1.5.5 
Ind 1.7.8 
Ind 1.8.3 
Ind 1.8.7 
Ind 1.8.16 
341 (CBS 223.43) 
701 

mitotype 
la 
lb 
lc 
lb 
lb 
lb 
n.d. 
nid. 

virus/mutations 
—,fwn, met, mtOli' 
XmtOIi' 
*2, mtOli' 
*4, mtOli' 
* 
'3, mtOli' 
*4, ade", arg", pro" 
*4 

acceptors 
black Aspergilli 

A. nidulans 

strain 
Ind 1.5.5 
Ind 1.7.8 
Ind 1.8.1 
Ind 1.8.3 
Ind 1.8.9 
Ind 1.8.16 
Ind 1.8.42 
N062(CBS 557.65) 
701 
702 
703 
704 

mitotype 
lb 
lc 
lb 
lb 
Id 
lb 
2a 
lc SI 
nid. 
nid. 
nid. 
nid. 

mutations 
'I, fwn, cnx 
'2, fwn, cnx 
fwn, nia 
fwn, nia 
fwn, cnx 
*i,fwn, cnx 
fwn, nia 
fwn, nia 
y, nia 
y, nia 
y, nia 
y, nia 
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120.49 = ATCC 9029), 341 (CBS 223.43) and the heterokaryon self-incompatible strain 

N062 (CBS 557.65) are culture collection strains. Mutated strains N522 and N909 (see 

below) were derived from N400. The A. nidulcms strains were isolated from soil samples 

from Birmingham, England in 1992 (Coenen et al. 1996). 

Figure 4.1.A Schematic picture of the infection patterns of different viruses: lane T Ind 1.5.5, lane '2 ' Ind 1.7.8, 

lane ' 3 ' Ind 1.8.16 and lane '4 ' strain 341. B Analysis of parental strains and fusion products: lane T strain Ind 

1.8.16, lane '2 ' strain Ind 1.7.8, lanes '3 '- '4 ' recombinant strains Ind 1.8.16 superinfected with the virus of strain 

Ind 1.7.8. M = marker X£coRI////ndIII. 

The virus donor strains Ind 1.5.5, Ind 1.7.8, Ind 1.8.7, Ind 1.8.16 and 341 were selected 

on the basis of their varying infection patterns (Figure 4.1 A). The varying infections consist 

of one to eight fragments, with some similar sized fragments in the different dsRNA patterns. 

Strain Ind 1.8.16 is known to have a deteriorating phenotypic effect, due to its virus 

infection. The other infected strains show no abnormal phenotype. The virus donor strain A. 

nidulans 701 was infected via protoplast fusion with A. niger strain 341. The A. niger strain 

Ind 1.8.3 was infected with the same virus via protoplast fusion with the infected A. nidulans 

strain 701. This way we constructed an A. niger donor strain infected with a virus that has 

gone through another host species: A. nidulans. The acceptor strains were either virus free or 
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contained viruses with dsRNA patterns dissimilar from that of the donor (differences 

detectable with gel electrophoresis). 

From the strains colour, chlorate- and mitochondrial oligomycin resistant mutants were 

isolated to distinguish between them when used in the protoplast fusion experiments. The 

mutations used v/ere.fwn = fawn-coloured conidiospores in the black Aspergilli, y - yellow-

coloured conidiospores in A. nidulans, nia and cnx = chlorate resistant/nitrate (and 

hypoxanthine) non-utilizing and ade, arg, met and pro = adenine, argenine, methionine 

respectively proline auxotroph. MtOlf is a mitochondrial oligomycin resistance. The 

mitochondrial oligomycin resistance in A. niger was originally isolated in strain N522 

(fwnAl, metB\ 1) from our collection derived from N400. This new strain was named N909 

(fwnA\, metBW, mtOlf). For this two hundred oligomycin resistant colonies were screened 

in a heterokaryon test, only ten segregated independently from nuclear markers and were 

concluded to be mitochondrial mutants. Resistant mitochondria can be transferred between 

heterokaryon compatible strains. 

The black Aspergillus donor strains containing mtO/f used in the experiments described 

in this paper, were constructed via protoplast fusion with collection strain N909 (fwnAl, 

metBW, mtOir). The selection for oligomycin resistant wild-type strains and subsequent 

testing for virus content and nature (nuclear or mitochondrial) of the resistance marker in a 

heterokaryon test yielded suitable donor strains. Spontaneous oligomycin resistant colonies 

would be predominantly nuclear based resistances. We have observed nuclear oligomycin 

resistance in none of the tested colonies in our protoplast fusion experiments. Therefore, the 

mitochondrially based oligomycin resistant colonies are considered to be fusion products. 

Moreover in control experiments with oligomycin sensitive fusion partners we have never 

observed spontaneous resistance: four incompatible combinations of strains (non oligomycin 

resistant 'donor' strains Ind 1.7.8 and Ind 1.8.16 and acceptors Ind 1.8.1, fwn, nia and Ind 

1.8.3, fwn, nia) were tested on the occurrence of spontaneous (mitochondrial) oligomycin 

resistance after protoplast fusion according to our protocol. No resistant colonies were found. 

Heterokaryon (incompatibility 

All used A. nidulans and black Aspergillus strains, except strain N062, were 

heterokaryon self-compatible. Strain N062 lacks the ability to form anastomoses between 

its own hyphae. Between the A. nidulans strains there was no heterokaryon compatible 

combination of strains. Between the black Aspergilli only the combinations between the 

infected strain Ind 1.5.5 - virusfree Ind 1.8.1 and between infected Ind 1.8.3* and virusfree 

Ind 1.8.3 were heterokaryon compatible. 
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Culture conditions. 

The complete medium (CM) used was made essentially as described by Pontecorvo 

et al. (1953) with 10 mM nitrate and/or 10 mM urea as nitrogen source and 1 mg/1 ZnS04, 

FeS04, MnCl2 and CuS04 added. The minimal medium (MM) was as described by Coenen 

et al. (1994) with nitrogen sources 10 mM urea (U) or 10 mM nitrate (N). Chlorate 

medium (+C103) contained 200 mM KC103 and 10 mM urea. For protoplasts osmotically 

stabilised media with 1M sucrose were used, with a similar top layer with half the agar 

concentration. Mitochondrial oligomycin resistant mutants grow on 1 ug oligomycin/ml. 

For the recovery of oligomycin resistant protoplasts concentrations of 0.1 ug/ml in the top 

layer and of 1.0 ug/ml as concentration in bottom layer were used. For ade, met, arg and 

pro deficient strains final concentrations of 0.05 mM adenine, 0.05 mM methionine, 1 mM 

arginine or 2 mM proline respectively were used. All incubations were done at 30°C. 

Protoplast fusion experiments. 

Mycelium was harvested from an overnight culture in liquid MM + 0.1M glucose + 

0.5% yeast extract + 0.2% casamino acids. Black Aspergillus strains were protoplasted with 

1 mg/ml Novozym 234 in 0.7M NaCl, 0.2M CaCl2 (2000 mOsm), A. nidulans with 2 mg/ml 

Novozym 234 in 0.8M NaCl, 0.075M CaCl2 (1800 mOsm) for l'/2-2 hours at 30°C. 

Suspensions were filtered over glasswool to remove mycelium and protoplasts were counted 

with a haemocytometer. Dilutions of black Aspergilli protoplasts were made in STC (1.4 M 

Sorbitol, 10 mM Tris, 50 mM CaCl2; 2000 mOsm), for/*, nidulans a similar buffer of 1800 

mOsm was used. Protoplasts were pelleted by centrifugation during 5 minutes in a swing-

out rotor at HOOg. 

Dilutions of protoplast suspensions of every strain were plated on normal and 

osmotically stabilized medium to test for protoplastation rates and protoplast survival. For 

each donor strain 24 colonies derived from single protoplasts were tested for presence of the 

virus. 

Equal amounts of donor and acceptor protoplasts (106-107 each) were fused in a 30% 

w/v Polyethylene glycol 6000 (PEG6000), 50 mM CaCl2 solution at 30°C for 30 minutes. 

Protoplasts were plated in a toplayer in osmotically stabilised media. 

Virus transfer was tested in two ways: (I) analysis of the total protoplast fusion mixture 

(duplicated experiments) and (II) analysis of individual recombinant fusion products from 

the same fusion mixtures as in I (approximately 10 recombinants analysed). 

(I) Total analysis. For testing qualitative virus transfer, the total mixture of donor and 

acceptor protoplasts was plated on osmotically stabilised medium with chlorate to select for 

chlorate resistant acceptor strains and against wild-type donor strains. After a week all 

conidia were harvested and transferred to fresh selective medium (+ C103). This scheme was 
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repeated once. Cultures were then tested for contamination with donor (spore colour on 

supplemented medium/ growth on donor selective medium (MM + N)) and the purified 

acceptors (two per combination) were tested twice for virus content. 

(II) Individual recombinant fusion product analysis. In intraspecific fusion experiments 

of the black Aspergilli, combinations of infected wild-type donor strains with mitochondrial 

oligomycin resistance and chlorate resistant/nitrate deficient acceptor strains were used. 

Recombinant products of single fusion events were selected by plating dilutions of the fusion 

mixture (I) on selective osmotically stabilised medium with oligomycin and chlorate. The 

mitochondrial nature of the oligomycin resistance was tested in heterokaryotic transfer to 

sensitive clones. Recombinant products were subcultured and tested for their virus content. 

Virus detection. 

Total nucleic acids were isolated via a phenol/chloroform extraction (Maniatis et at. 

1982), extracts were tested for viral dsRNA fragment contents with gel electrophoresis 

(0.8% agarose), stained with Ethidium Bromide and visualised by UV transillumination. The 

infection patterns of the different viruses detected in this way are shown in Fig. 4.1. 

Results 

The protoplasts of the infected Aspergillus donor strains in the different fusion 

experiments (both black Aspergilli and A. nidulans) were tested for their virus content. All 

24 colonies derived from single protoplasts from each donor contained their expected virus 

patterns. Thus it is assumed that in all interstrain protopast fusion experiments viruses are 

present in the initial fusion product. 

Transfer of viruses by protoplast fusion was tested by analysis of the total protoplast 

fusion mixtures (see Materials and Methods). Per combination of strains two fusion mixtures 

were tested. The results of the various protoplast fusion experiments are given in Tables 4.2-

5. 

Virus Transfer from Black Aspergilli to A. nidulans 

The protoplast fusions with black Aspergillus donors and A. nidulans acceptors are 

described in Table 4.2. Four different donor strains were used in combination with four 

different acceptor strains. One combination failed as only the donor strains could be 

recovered from the mixture and therefore transfer could not be tested. All other fifteen 

combinations showed virus transfer. In all cases, the complete virus pattern of the original 

donor was found in the acceptor (data not shown). 
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Table 4.2. Vims transfer via protoplast fusion from black Aspergillus donor strains to A. nidulans acceptor 

strains. + = succesfull transfer; n.d. = not determined, see text. 

A. nidulans 
acceptors 
701, nia 
702, nia 
701, nia 
704, nia 

341 
+ 
+ 
+ 
+ 

black Aspergillus 
Ind 1.7.8 
+ 
+ 
+ 
+ 

donors: 
Ind 1.8.7 
+ 
+ 
n.d. 
+ 

Ind 1.8.16 
+ 
+ 
+ 
+ 

Virus Transfer from A. nidulans To Black Aspergilli and A. nidulans 

The results of the protoplast experiments with A. nidulans as donor are described in 

Tables 4.3 and 4.4 . Transfer between the heterokaryon incompatible A. nidulans strains was 

always successful (Table 4.3). Also the transfer from A. nidulans to A. niger and A. 

tubingensis strains was a complete success (Table 4.4). Even the heterokaryon self-

incompatible strain N062-07 became infected. However, in contrast to the heterokaryon 

selfcompatible strains the mycelium of N062 was only partially infected. Some parts of the 

resulting culture appeared virus free through lack of intramycelial transfer. These transfer 

experiments with A. nidulans as donor yielded black Aspergillus strains that were infected 

via A. nidulans. The infected strain Ind 1.8.3* was subsequently used as donor in the 

transfers between black Aspergillus protoplasts. The results show that A. nidulans is an 

efficient donor to both other A. nidulans and black Aspergillus strains. 

Table 4.3. Virus transfer via protoplast fusion between heterokaryon incompatible A. nidulasn strains. + = 
successful transfer. 

A. nidulans 
acceptors 
701, nia 
102, nia 
701, nia 
704, nia 

A. nidulans donor: 
701 
+ 
+ 
+ 
+ 

Table 4.4. Virus transfer via protoplast fusion between A. nidulans strain 701, infected with the virus from A. 
niger strain 341, and several black Aspergillus strains. + = successful transfer. +/- = partially infected: the 
infection is not spread throughout the whole mycelium. 

black Aspergillus 
acceptors 
Ind 1.8.1,/wi, nia 
Ind 1.8.3,/WH, nia 

Ind l.8.9,fwn, cnx 
Ind 1.8.42,/H?I, nia 

N062,/w«, nia 

A. nidulans donor: 
701 
+ 
+ 
+ 
+ 
+/-

Limited Transfer Between Black Aspergilli 

The data of transfer between the different black Aspergilli are shown in Table 4.5. The 

left columns (I) show the data of the total analysis experiments, the right columns (II) show 
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the data of combined transfer of virus and mitochondrial marker, which will be detailed in 
the next paragraph (the individual recombinant experiments). All strains belong to the A. 
niger type, except Ind 1.8.42 which is an A. tubingensis strain. 

The results of the protoplast fusion experiments between black Aspergillus strains may 
be summarised as follows: 
(1) Virus is transferred efficiently between protoplasts of heterokaryon compatible strains. 
Strain Ind 1.5.5 and Ind 1.8.1 are heterokaryon compatible and in protoplast fusion 
experiments virus transfers efficiently. Likewise, the isogenic infected and virus free strains 
Ind 1.8.3 are somatically compatible and virus is transferred in fusion experiments. This 
observation is consistent with our previous finding that virus is transferred between 
compatible isolates already during co-cultivation (Van Diepeningen et ai, 1997; Chapter 3). 

(2) Virus transfer is inefficient in heterokaryon incompatible interactions. In the 
incompatible niger-niger and niger-tubingensis combinations (i.e. all combinations except 
Ind 1.8.1-Ind 1.5.5 and Ind 1.8.3-Ind 1.8.3) only about half of the transfer attempts were 
successful; in the combination Ind 1.8.1 - Ind 1.8.3 only one of the duplicates became 
infected, while the other remained virusfree. This inefficient transfer forms a contrast with 
the highly successful transfer of viruses in the A. nidulans experiments described above 
(Tables 4.2, 3 and 4). 

Table 4.5. Virus transfer between different black Aspergillus strains. In the left columns (I) the results of the total 
analyses of the protoplast fusion mixtures, in the right columns (II) the analyses of individual recombinant fusion 
products; the number of virus containing colonies/total number of recombinant oligomycin resistant colonies 
tested. + = succesful (lumped) transfer; - = no transfer detected; +/- = one of the duplicate experiments succesful; 
X = not determined because the virus patterns are overlapping; v = only donor pattern present, acceptor pattern 
disappeared; * = virus originally from A. niger 341, transferred via A. nidulans 701. 

back Aspergillus 
acceptors: 

Ind \.i.\,fwn, nia 
Ind 1.8.3,/wi, nia 
Ind \.%.9,fwn, cnx 
Ind 1.8.42,/ww, nia 
Ind 1.5.5, fwn, cnx 
Ind \.l.i,fwn, cnx 
Ind 1.8.16,/wn, cnx 
N062,/H>n, nia 

black Aspergillus donors: 
Ind 1.5.5 Ind 1.7.8 
(I) (II) (I) 
+ 4/4 

0/10 
10/10 
0/10 

X X 
+ 0/10 
X X 

0/10 

+ 
-
+ 
+ 
+ 
X 
+ 

-

(II) 
73/77 
0/10 
4/10 
10/10 
10/10 
X 
10/lOv 
0/6 

Ind 1.8.16 
(I) 
-
+ 
+ 
+ 
X 
+ 
X 

-

(H) 
4/6 
4/10 
0/10 
0/10 
X 
0/10 
X 
0/2 

Ind 1.8.3* 
(I) 
+/-
+ 

-
+ 
X 
X 
X 

-

(II) 
0/9 
10/10 
12/12 
0/10 
X 
X 
X 
0/8 

(3) Different viruses can coexist in the same host. When the infected strain Ind 1.8.16 is 
fused with another infected strain, e.g. Ind 1.7.8, which has a different infection pattern, Ind 
1.8.16 can be reisolated in which both viruses are present (see Figure 4.1B). Likewise, 
double infection of strain Ind 1.7.8 also occurs. Also, in the combinations of Ind 1.5.5 and 
Ind 1.7.8 such coinfections are obtained. 
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(4) Heterokaryon self-incompatibility and the resulting lack of intramycelial transport 

protects against virus infection from other black Aspergillus strains. The heterokaryon self-

incompatible strain N062 was never infected when black Aspergilli are used as donor strains 

(Table 4.5). In the fusion experiments with A. nidulans as virus donor, infection did occur 

(Table 4.4). 

(5) Viruses are not restricted to a specific host. Each of the viruses is capable of infecting 

other strains and even after cultivation in a new host {A. nidulans) the virus remains infective 

for black Aspergilli when returned to its original host. However, in our experiments not all 

strains became infected with each of the viruses. For instance the virus from strain Ind 1.8.16 

infected strains Ind 1.8.3, Ind 1.8.9, Ind 1.8.42 and Ind 1.7.8, but it did not infect strains Ind 

1.8.1 or N062. Strain Ind 1.8.1 on the other hand could be infected with each of the three 

other viruses used. 

(6) Transfer of virus also depends on the donor host strain or donor-acceptor interaction. The 

virus from A. niger 341 can be transmitted via A. nidulans strain 701 to strain Ind 1.8.9. 

However, in a similar bulk mixing experiment with Ind 1.8.3* as donor the same virus is not 

transmitted to strain Ind 1.8.9. 

Analysis of Individual Recombinant Black Aspergillus Fusion Products 

Since the virus transfer was only successful in half of the total mixture experiments 

between black Aspergilli, we wanted to have a control for cytoplasmic contact during the 

black Aspergilli protoplast fusions. We decided to use the transfer of an mitochondrial 

oligomycin resistance as a selectable marker for cytoplasmic exchange between donor and 

acceptor strain. Absence of (detectable levels of) viruses in fusion products would then result 

from loss of the virus during outgrowth of the initial fusion product. Uninfected initial fusion 

products are unlikely because all tested donor protoplasts contained virus. 

In our protoplast fusion experiments, all oligomycin resistances in the donor and 

acceptor strains were found to be mitochondrial, when checked in a heterokaryon test with 

isogenic strains with different markers. No spontaneous (mitochondrial) oligomycin 

resistances were found upon fusion of sensitive protoplasts or after PEG-treatment of 

acceptor protoplasts. This suggests that resistance was due to transfer of the mitochondrial 

marker and not to spontaneous novel resistance. In heterokaryon self-incompatible strains 

such tests are not possible: here mitochondrial rearrangements or mitochondrial 

replacements in combination with the oligomycine resistance could be used as indication for 

cytoplasmic contact (data not shown). 

After the protoplast fusion, individual oligomycin resistant colonies were picked, 

checked for the mitochondrial nature of their resistance and tested for their virus content. 

Results are listed in the right columns of Table 4.5. The combination of strains Ind 1.7.8 and 
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Ind 1.8.1 was the first to be tested and many (77) colonies were checked. In later 
experiments approximately 10 colonies of each combination were tested. 

Overall these more stringent selective protoplast fusions yielded the following results: 
(1) The mitochondrial marker was transmitted in all combinations, suggesting that fusion 
took place. It also means that transfer of the mitochondrial marker and the necessary 
cytoplasmic contact is not per se lethal to the acceptor strains. 
(2) In concordance with the previous experiments, the two heterokaryon compatible 
combinations (Ind 1.5.5 - In 1.8.1 and 1.8.3* - 1.8.3), both yielded 100% cotransfer of 
viruses with the oligomycin marker. 
(3) Between heterokaryon incompatible strains there is independent transfer of the 
mitochondrial oligomycine resistance marker and dsRNA viruses during protoplast fusion. 
Cotransfer of viruses with the mitochondrial marker can take place in none, some or all of 
the tested oligomycin resistant recombinants. These transfer data can vary from the results in 
the bulk experiments. 
(4) Coexistence of viruses was again observed in the combination of strains Ind 1.7.8 and 
Ind 1.5.5. In the fusion experiment of Ind 1.7.8 and Ind 1.8.16 the original (deleterious) virus 
of Ind 1.8.16 was replaced by the donor's virus. 
(5) Oligomycin resistant colonies of the heterokaryon self-incompatible strain N062 could 
also be isolated, but could not be further tested in a heterokaryon test. In none of these 
colonies virus transfer was observed. 

Discussion 
We found about ten percent of the world-wide population of black Aspergilli to be 

infected with dsRNA mycoviruses (Chapter 2). The infection patterns, as detected in gel 
electrophoresis vary considerably in number and size of the dsRNAs, but appear stable in 
time. Understanding of this population structure requires information on virus transfer rate, 
virus stability and fitness consequences. This paper focuses on the virus transfer rate and 
virus stability in a new host. Previous studies in our laboratory have shown that horizontal 
transfer of these viruses is efficient between heterokaryon compatible strains but is 
effectively prevented by heterokaryon incompatibility (van Diepeningen et al. 1997; Chapter 
3). By protoplast fusion it was possible to introduce mycovirus from a black Aspergillus 
isolate into A. nidulans in which no mycoviruses have been detected in nature (Coenen et al. 
1997). In A .nidulans, heterokaryon incompatibility slowed down but did not prevent virus 
transfer, while viruses were transmitted via asexual conidiospores but not via sexual 
ascospores (Coenen et al. 1997). In this paper, we further analysed factors affecting the rate 
of virus transfer in black Aspergilli using protoplast fusions. We tested whether lack of 
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infectivity is due to the viruses themselves, due to specific resistance mechanisms in the host 

or due to the specific interaction between heterokaryon incompatible protoplasts. 

Efficient transfer was obtained using protoplast fusion experiments from black 

Aspergillus strains to A. nidulans and vice versa. Between A. nidulans strains transfer was 

successful as well, but poor transfer took place between black Aspergillus isolates. In the 

bulk experiments all the protoplasts were lumped together and therefore these tests are not 

quantitative. All experiments were conducted in a similar way. Apparently under protoplast 

fusion conditions there is no absolute interspecies barrier between A. nidulans and the black 

Aspergilli. In A. nidulans, heterokaryon incompatibility forms a relative obstacle to virus 

transfer between strains (Coenen et al, 1997) that can be totally overcome by protoplast 

fusion. However, in the various experiments with black Aspergilli only in approximately half 

of the cases transfer was demonstrated. The protoplast fusion experiments using total 

analysis of lumped protoplast cultures indicated that virus exchange between black 

Aspergillus and A. nidulans is more successful than between black Aspergillus isolates. But 

even when transfer of a mitochondrial oligomycin transfer involves cytoplasmic contact 

between black Aspergilli, only half of the virus transfers is successful. 

Virus infectivity, multiple infection and absence of resistance 

All the used viruses are capable of infecting both black Aspergillus and A. nidulans 

strains, so all are still functional viruses. Therefore absence of virus infectivity cannot 

explain failure of transfer. The variation and similarities in infection patterns in the black 

Aspergilli raises the question whether a pattern is caused by a single infection or composed 

of more then one virus and perhaps includes defective virus fragments. Via the protoplast 

fusions between infected strains with different gel electrophoresis patterns, composed 

patterns could be constructed, showing the possibility of multiple infection (as illustrated in 

Figure 4. IB). 

Intrahost competition between viruses may cause the replacement of one virus by the 

other as seen in the oligomycin transfer experiments where the virus in acceptor Ind 1.8.16 

was replaced by the virus from the donor Ind 1.7.8. The observed infection patterns in the 

natural isolates are all very stable when subcultured. The black Aspergilli are not resistant to 

viruses per se: in all isolates tested one virus or the other could be introduced via protoplast 

fusion, either from another black Aspergillus donor or from A. nidulans. These data suggest 

that absence of virus in the majority of natural isolates of black Aspergilli is not due to virus 

resistant genotypes, although variation between Aspergillus strains in resistance to specific 

dsRNAs cannot be excluded. 
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Independent transfer of cytoplasmic dsRNAs and mitochondrial oligomycin resistance 

The question remains what causes the poor virus exchange between black Aspergillus 

strains. One can think of pre-fusion (I) and post-fusion and regeneration (II) events leading 

to non-infected mycelium. 

(I) Pre-fusion exclusion of the virus. The total or partial absence of virus infection after 

protoplast fusion could formally have resulted from experimental artefacts. But, when donor 

protoplasts were tested for their virus content, all tested single (nucleate and viable) 

protoplast colonies were found to contain their virus(es). These controls demonstrate that 

virus must have been present in most if not all of initial fusion products. Furthermore, 

successful cytoplasmic contact between donor and acceptor protoplasts was ascertained by 

transfer of a mitochondrial oligomycin resistance. However, viruses were not detectable in a 

considerable fraction of the colonies derived from the fusion products. This suggests 

selective loss and elimination of the virus upon regeneration and outgrowth of the 

protoplasts. However, as stated above, there is no absolute general resistance in any of the 

black Aspergillus strains tested, and virus can be introduced very successfully in any black 

Aspergillus strain via protoplast fusion from A. nidulans. 

(II) Post-fusion exclusion of virus. Alternatively, there may be elimination of dsRNA 

due to heterokaryon incompatibility reactions following cytoplasmic mixing in the fusion 

experiments. The severity of the incompatibility reaction can vary depending on type and 

number of het-genes involved. Evolutionary, the het-gene products of A. nidulans and black 

Aspergilli may be diverged, resulting in less specific recognition and few or no 

incompatibility reactions between the species after fusion. 

The severity of the incompatibility reaction may also depend on the amount of 

cytoplasmic mixing. The tested viable donor protoplasts all contained virus, but the selected 

(oligomycin resistant) recombinants could be the results of fusions with small, possibly 

anucleate and virusfree protoplasts (combination of I and II). Transfer of large amounts of 

foreign cytoplasm may be lethal to the recipient. The selection for the mitochondrial marker, 

guarantees that there has been cytoplasmic contact, but not on what scale transfer has taken 

place. 

Heterokaryon incompatibility 

The role of heterokaryon incompatibility in nature is unknown. It has been suggested 

that heterokaryon compatibility may serve to enable recombination via the parasexual cycle 

and that heterokaryosis is a way for haploid fungi to enjoy the benefits of functional diploidy 

(Leslie, 1993). Prevention of heterokaryons may be beneficial in a natural population when 

incompatibility limits the transfer of possibly deleterious elements (e.g. Caten, 1972; 

Anagnostakis, 1983; Debets et al, 1994). Alternatively, it may be essentially neutral 
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(Etegueret et al, 1994). Van Diepeningen et al. (1997; Chapter 3) demonstrated that in 

cocultured black Aspergilli virus transfer is completely blocked by heterokaryon 

incompatibility, whereas between heterokaryon compatible strains viruses are readily 

transmitted. In A. nidulans heterokaryon incompatibility only slows down the rate of transfer 

(Coenen et al, 1997). The experiments described in this paper suggest that heterokaryon 

incompatibility in black Aspergilli forms a more serious barrier to virus transfer that cannot 

always be overcome by protoplast fusion. 

The heterokaryon self-incompatibility of strain N062 is a curiosity; all tested natural 

isolates of black Aspergilli were heterokaryon selfcompatible. Self-incompatible strains are 

not capable of fusion with isogenic and heterogenic hyphae and apparently this self-

incompatibility causes the strain to be uninfectable via other black Aspergillus strains. 

Individual protoplasts can be infected via A. nidulans, but virus cannot spread between the 

isogenic self-incompatible colonies, which results in a patchy infection on the selection 

plates. 

Virus dynamics 

When the somatic incompatibility mechanisms differ, as might be between black 

Aspergilli and A. nidulans, a strong cytoplasmic incompatibility reaction may be absent. 

Transfer of cytoplasmic elements such as viruses may then occur after protoplast fusion. 

Whether spontaneous fusion of non-related mycelia occurs in nature remains unclear. 

Kempken (1995a) reported the transfer of a mitochondrial plasmid under semi-natural 

conditions from Ascobolus immersus to Podospora anserina, two fungi which inhabit the 

same ecological niche. Hoffmann et al. (1994) described the transfer of a resistance gene 

and other foreign sequences to Aspergillus niger during co-culture with transgenic plants. 

Interspecies transfer after contact seems therefore possible. 

Mycoviruses in the black Aspergilli have a (small) deleterious effect on their host's 

fitness and are stable in the clonal lineages (Chapter 6). Intraspecies transfer is limited to the 

rare occurrence of heterokaryon compatibility among natural isolates (Van Diepeningen et 

al, 1997; Chapter 3). Our results suggest that interspecies transfer could help explain the 

apparently stable virus infection throughout the black Aspergillus population. We therefore 

suggest that under natural conditions horizontal virus transfer should occur sufficiently 

frequent to offset the selective elimination of virus-infected strains. The unexpected 

observation that infection of black Aspergilli by A. nidulans is more successful than by other 

black Aspergilli may indicate that in nature the majority of these infections may come from 

other fungal species. Other authors also reported the ability of viruses to survive in new hosts 

or hinted at the relatedness of viruses in different host species (e.g. Lhoas, 1971; Kim and 
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Bozarth, 1985). A test of this hypothesis requires the quantitative estimation of the transfer 

rates and fitness effects of the dsRNA viruses involved, which will not be an easy task. 
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Interspecies virus transfer via protoplast fusions 
between Fusarium poae and Aspergillus niger 
strains. 

Anne D. van Diepeningen1, Alfons J.M. Debets1, S. Marijke Slakhorst1, Csaba Fekete2, 
Laszl6 Hornok2 & Rolf F. Hoekstra1 

Abstract 
Protoplast fusion experiments were done between virus infected Fusarium poae strains 

and virusfree black Aspergillus strains. Partial and total transfer of Fusarium virus patterns 
occurred and the viruses survived in their new hosts. Protoplasting conditions can influence 
the transfer rate, but fusion can effectively bridge the differences between the two species. 
The mycoviruses are not restricted to their Fusarium host, but may have a broader host 
range. Also, similarities between the genome organisation of dsRNA mycoviruses and 
dsRNA patterns in different fungal species suggest a relatedness between these viruses, 
which could be the result of co-evolved infections or of interspecies transfer. Occasional 
interspecies transfer between species as suggested by these experiments could explain the 
scattered infection pattern seen throughout the population in the natural black Aspergillus 
population. 

Introduction 
Viruses are commonly found in animals, plants, bacteria and fungi. For instance, many 

plant viruses are found in connection with symptoms in their host. The majority of plant 
viruses have a single-stranded RNA genome, but some have double-stranded RNA or single 

') Laboratory of Genetics, Agricultural University Wageningen, Dreijenlaan 2, 6703 HA Wageningen, The 
Netherlands. 

2) Agricultural Biotechnology Centre, 2101 GodollO, P.O. Box 411, Hungary. 
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or double stranded DNA genomes (Zaitlin and Hull, 1987). These plant viruses vary widely 
in their host ranges. The barley stripe mosaic virus (BSMV) is in nature limited to barley 
(Timian, 1974), whereas viruses like cucumber or tobacco mosaic virus (CMV and TMV), 
tomato spotted wild virus (TSWV) and tobacco ringspot virus (TRSV) have very wide host 
ranges (Matthews, 1991). For example, CMV can affect members of the Cucurbitaceae, 
Solanaceae, Violaceae, Iridaceae and others. 

As more research on fungi is being conducted, an increasing number of 'myco'-viruses 
are discovered (Buck, 1986; 1998). Most of these mycoviruses have genomes of double-
stranded (ds) RNA. Though most viruses in animals, plants and bacteria have an infectious 
extracellular phase in their multiplication cycle, mycoviruses are transmitted only via 
intracellular routes (Buck, 1998). Very little is known about the host ranges of these 
mycoviruses. Some mycoviruses from different hosts have similar sized particles and/or 
dsRNA fragments. Also (sequence) homology between viruses in distantly related fungal 
species has been found, suggesting relatedness of these viruses (Buck, 1998; Kim and 
Bozarth, 1985;Liang and Chen, 1990; Liang et al, 1995). This could be due to long-lasting 
infections derived from a common ancestor, or due to more recent transfer events. 

Fungal viruses vary in their effects: Killer viruses in yeast can be considered beneficial 
under high density conditions for their host (Dulfree and Bussey, 1979), whereas the 
mycoviruses in economically interesting species such as Agaricus bisporus (Hollings, 1962) 
and Pleurotus spp. (Go et al, 1992; Stobbs et al, 1994) are deleterious. Mycovirus in 
Penicillium chrysogenum can cause lysis of its host (Lemke et al., 1973). Most of the 
mycoviruses, however, are cryptic in their effects on their host (Ghabrial, 1980). These 
mycoviruses spread mainly via asexual spores (Lecoq et al., 1979) and often less efficiently 
via sexual spores (Rawlinson et al., 1973; Day et al, 1977; Roger et al., 1986). Intraspecies 
transfer can be limited or blocked by the barrier formed by heterokaryon incompatibility 
reactions (Anagnostakis and Day, 1979; Brasier, 1984; Liu and Milgroom, 1996). 

In the black Aspergilli, ten percent of the population world-wide is infected with a great 
variety of dsRNA mycoviruses, with similar infections in distantly related haplotypes (Varga 
et al, 1994a; Chapter 2 & 7) The wide-spread heterokaryon incompatibility between 
different Aspergillus niger strains in nature blocks the intraspecies transfer of these viruses 
via direct hyphal contact in laboratory experiments (Van Diepeningen et al, 1997; Chapter 
3). Even in protoplast fusion experiments the black Aspergillus intraspecies transfer is 
limited (Van Diepeningen et al, in press; Chapter 4). However, transmission via protoplast 
fusion from A. niger to A. oryzae and A. ficuum was mostly successful (Liang and Chen, 
1987) and to naturally uninfected A. nidulans strains virus transfer was 100% successful 
(Van Diepeningen et al, in press; Chapter 4). From a population dynamic point of view 
these viruses with (small) deleterious effects on fitness are expected to decline in the A. niger 
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population without (intraspecies) means of transfer, but the natural infection frequency is 
stable world-wide (Chapter 2). 

Since extracellular mycoviruses are not infective, other routes of viral infection must be 
considered. When mycoviruses are transferred via transient interspecies hyphal contact or 
through (animal) vectors, such transfers could explain the observed extent of infection in a 
population with highly restricted intraspecies transfer. Mycoviruses could then have wider 
potential host ranges. In Fusarium poae, another ascomycete, all natural isolates were found 
to contain dsRNA viruses (Fekete et al, 1995), some of which have similar sized fragments 
as A. niger viruses. In the experiments described in this paper we have tested the qualitative 
possibility of virus transfer and maintenance of several mycoviruses from F. poae in black 
Aspergillus strains. We have chosen infection via interspecies protoplast fusion as means of 
transfer. 

Materials and Methods 
Fungal isolates 

The wild-type F. poae isolates All, TAPO-18, TAPO-21 and TAPO-30, isolated from 
wheat kernels, were used as virus donors. The black Aspergillus strains used as acceptors 
were isolated from soil from Jakarta, Indonesia, on selective medium with 20% tannin. Ind 
1.8.1, Ind 1.8.3 and Ind 1.8.9 were characterised as A. niger and Ind 1.8.42 as A. tubingensis 
on basis of their mitochondrial RFLP's (Varga et al., 1993; 1994b). Nia chlorate 
resistant/nitrate deficient mutants of the black Aspergilli were used to enable direct selection 
of either donor or acceptor from the fusion mixtures (Van Diepeningen et al, 1997; Chapter 
3). 

Culture Conditions 
The Fusarium strains were grown on Czapek-Dox medium enriched with yeast extract, 

casamino acids and neopepton (3 g l'1 each). Liquid cultures were inoculated with 106 spores 
ml"1 and grown for 20 h at 25°C in a rotary shaker at 120 rev. min'1. Mycelium was harvested 
by filtration and protoplasted with 2 mg ml"1 Novozym 234 or with Novozym in combination 
with Oerscovia both in 0.7M NaCl, 0.2M CaCl2 (± 1800 mOsm) for 2-2'/2 h at 30°C. The 
'Oerscovia' lytic enzymes are excreted by Oerscovia xanthineolytica when grown on A. 
nidulans cell wall material. Portions of the enzyme preparations were freeze-dried and kept 
at -50°C (Bos and Slakhorst, 1981). Tested protoplasting mixtures with different 
concentrations of pure Novozym or Novozym in combination with either helicase, 
cytohelicase or cellulase yielded far fewer protoplasts than the combination of Novozym and 
Oerscovia. 
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The Aspergilli were grown on minimal medium (MM) with 0.1M glucose and lOmM 

urea and supplemented with 0.5 gl"1 yeast extract and 0.2 gl"1 casamino acids or in the case of 

strain Ind 1.8.3 on complete medium (CM) with lOmM urea (Pontecorvo et al., 1953). 

Liquid cultures were inoculated with 106 spores ml'1 and grown for 20 h. at 30°C at 180 rev. 

min"1. Harvested mycelium was protoplasted with 1 mg ml"1 Novozym 234 in 0.7M NaCl, 

0.2M CaCl2 (± 2000 mOsm) for 2-244 h at 30°C. 

Protoplast Fusion Experiments 

Protoplast suspensions were filtered over glasswool to remove mycelium and 

protoplasts were counted with a haemocytometer. Dilutions of suspensions were made in 

STC (1.4M Sorbitol, lOmM Tris, 50 mM CaCl2; 2000 mOsm). Equal amounts of donor and 

acceptor protoplasts (106-0.5xl07) were fused in a 30% w/v PEG6000, 50 mM CaCl2 

solution for 45min at 30°C. The fusion mixture was gradually diluted to 1:1 with STC. These 

diluted fusion mixtures were directly plated in duplicate in a top-layer of osmotically 

stabilised medium containing 1M sucrose. Due to the strong aggregation and fusion of cells 

no distinct estimates of cell survival or number of cells per aggregate could be made. Adding 

200mM KC103 and 10 mM urea enabled direct selection of the Aspergillus acceptors. After 

two selection rounds the fusion products were tested for contaminations with the donor on 

selective medium with N03 ' as sole nitrogen source. The purified acceptors were tested for 

virus content. Both fusions and tests for virus content were done in duplicate. 

dsRNA detection 

Mycelium cultures were grown overnight and were powdered in liquid nitrogen. From 

these, total nucleic acids were isolated by a phenol/chloroform extraction (Maniatis et al, 

1982). Following agarose gel electrophoresis viral dsRNA fragments were stained with 

Ethidium Bromide and detected by UV transillumination (e.g. Figure 5.1). The dsRNA 

nature of the virus fragments was verified by treating the nucleic acid suspension with 

various nucleases (Fekete et al, 1995). 

Results 

To test the donor Fusarium protoplasts for their virus content 24 single protoplast 

colonies of each donor were checked. All of these colonies contained the typical dsRNA 

banding pattern of the donor. In controls PEG-treatment of the black A. niger and A. 

tubingensis protoplasts never produced extra nucleic acid fragments. Occurrence of dsRNA 

viral fragments after fusion must therefore be the result of transfer. In total two sets of 

interspecies fusion experiments were done. 
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In the first set of experiments the F. poae strains were protoplasted with 2 ngml"1 

Novozym 234 as protoplasting agent and the A. niger acceptor strains with 1 ugml"1 

Novozym. The different F. poae strains yielded relatively few (max. 5* 10s protoplasts ml"1), 
generally small, protoplasts. The Aspergillus strains yielded normal amounts of protoplasts 
(1-5* 10' protoplasts ml"1). The protoplasts of Fusarium strains A-ll, TAPO-18 and TAPO-
30 were collected and fused with protoplasts of A. niger strain Ind 1.8.9 and in case of F. 
poae strain TAPO-18 also with A. niger strain Ind 1.8.3. After two weeks of selective 
culturing the A. niger acceptor strains were tested for their virus content. Transfer of the 
complete virus pattern was detected in the combination of F. poae strain TAPO-18 and A. 
niger strain Ind 1.8.9 and transfer of only the largest virus fragment was detected in the 
combination of strains A-ll and the same acceptor strain (Figure 5.1). Only the third 
combination with acceptor Ind 1.8.9 showed no transfer at all. 

Figure 5.1. Gel electrophoresis patterns of 
three sets of fusion products and parental 
strains. The first set shows parental F. poae 

strain TAPO-18 and two fusion products with 
A.niger Ind 1.8.9. Set two TAPO-30 and virus-
free fusion products with Ind Ind 1.8.9. Set 
three: virus-free parental strain Ind 1.8.9, Donor 
strain A-l 1 and partially infected products. 
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Experiments were performed to increase the yield of protoplasts of the different F. 
poae strains. Mycelia of different age were protoplasted with different cell wall degrading 
enzymes or mixtures of these. Numbers of protoplasts were scored after various 
protoplasting periods. A mixture of Novozym and Oerscovia yielded the highest protoplast 
numbers (1-5* 107 protoplasts ml'1) under conditions as described in Material and Methods. 
Strain TAPO-18, successful in the first transfer experiments, performed poorly under the 
new conditions and was omitted from the second set of experiments. 

The second set of fusion experiments was done under these new protoplasting 
conditions with Novozym and Oerscovia. Wild type F. poae donors were the strains All, 
TAPO-21 and TAPO-30, and the two A. niger strains Ind 1.8.1 and Ind 1.8.9 and the A. 
tubingensis Ind 1.8.42 were used as acceptors. The results of these experiments are listed in 
Table 5.1 together with the results of the first experiment. These experiments with 
considerably more, differently obtained, protoplasts showed no detectable virus transfer, 
although the single donor protoplasts tested contained virus as normal. 

Table 5.1. Virus transfer experiments via protoplast fusions between F. poae and A. niger strains. The 
experiments were done in duplicate; + = successful transfer, ± = partial transfer, - = no transfer, n.d.= not 
determined,' or2 = first or second experiment. 
A. niger acceptor 
strains 
Ind 1.8.1 
Ind 1.8.3 
Ind 1.8.9 
Ind 1.8.42 

F.poae donor strains: 
A-ll TAPO-18 
- 2 n.d. 
n.d. - ' 
±' +' 
- 2 n.d. 

TAPO-21 TAPO-30 
—i -J. 
n.d. n.d. 

2 1 

Discussion 
In this study we have examined the possibility of virus transfer and maintenance 

following protoplast fusion between two distantly related fungal species. Successful transfer 
and stable maintenance would imply that mycoviruses do not have to be limited to one host 
species and may have a broader host range. In a previous study (Van Diepeningen et al, in 
press; Chapter 4) interspecies virus transfer was more efficient from A. niger to A. nidulans 
and vice versa than intraspecies transfer from an A. niger isolate to other vegetatively 
incompatible A. niger isolates. However, although mycoviruses can be introduced and 
maintained in A. nidulans, natural isolates of A. nidulans are virus free (Coenen et al, 1997). 
Transfer from A. niger to A. oryzae and A. ficuum was also shown to be possible (Liang and 
Chen, 1987). For species in which intraspecies virus transfer is blocked by intraspecies 
heterokaryon incompatibility barriers as in the black Aspergilli (Van Diepeningen et al, 
1997; Chapter 3), sources of infection could probably be found in other species. 

The black Aspergilli and F. poae for example have some overlap in their ecological 
niches and consequently may co-occur. Infected Fusarium poae isolates could be a potential 
natural source of infection for A. niger. The black Aspergilli are mainly saprophytic, but 
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occasionally pathogenic and have a world-wide occurrence. Black Aspergilli are also 

frequently found on harvested products and their spores are distributed by air. F. poae is a 

secondary pathogen of small-grain cereals and both species occur soilborne. 

Both Aspergillus and Fusarium species carry viruses in nature: Ten percent of the A. 

niger strains throughout the world contain dsRNA viruses, whereas most if not all F. poae 

strains are infected with dsRNA mycoviruses (Fekete et al, 1995). Some of these viruses 

have similar sized dsRNA fragments as in A. niger, though their relationship is not yet 

confirmed on the basis of molecular data. In the F. poae population the vegetative 

incompatibility is less severe (Ker6nyi et al, 1997) and it is not clear whether this vegetative 

incompatibility blocks transfer as in the black Aspergilli. 

We took four naturally infected F. poae strains with different infection patterns as 

possible virus donors in protoplast fusion experiments and four virus-free members of the 

black Aspergillus aggregate as acceptors. These black Aspergilli could be classified as A. 

niger and A. tubingensis strains on the basis of molecular data. The F. poae strains were 

protoplasted with Novozym or a combination of Novozym and Oerscovia. 

Virus transfer was observed in two combinations of strains. One was a complete 

transfer, the other a partial transfer of the respective dsRNA patterns of the donor strains. 

The Oerscovia enzyme seems to enhance the number and size of obtained protoplasts but 

also seem to affect the transfer negatively. Smaller protoplasts with less cytoplasm may 

result in fusion products with fewer incompatibility reactions and thus more surviving 

recombinants. This would be in accordance with the observations that in A. niger-A. niger 

fusions with strong intraspecies incompatibility barriers, transfer of an mitochondrial 

oligomycin resistance is not absolutely linked to virus transfer, but probably dependent on 

the size and thus survival of the fusion products. Due to clustering of protoplasts during 

PEG treatment no exact quantification of protoplast survival and transfer can be made. 

However, from a qualitative point of view, transfer is possible. 

Compared to the transfer from A. nidulans to black Aspergilli and vice versa, the 

transfer from the F. poae strains to the black Aspergilli is less efficient. This could be 

explained by a stronger species barrier between Fusarium and Aspergilli or simply by 

differences in the effects of the protoplastation and fusion on the two species. 

Transformation of Aspergillus protoplasts with Fusarium viruses could be another way to 

test for the survival of viruses in a new host, but the technique excludes any influences of the 

direct fungal contact on transfer. Co-cultivation of the two species in Petri dishes on rich 

media resulted in rapid outgrowth and expulsion of one of the partners and no spontaneous 

transfer was detected. Poorer and more natural conditions may be necessary for these 

transfers. So although protoplast fusion is an unnatural way for virus transfer, these 
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experiments show the possibility of mycovirus survival in a new host after at least some 
transient cytoplasmic contact. 

The transfer of only one dsRNA fragment of the pattern from F. poae strain A-l 1 to A. 
niger Ind 1.8.9 indicates that either this strain is infected by more than one virus or that the 
extra bands are not necessary. These extra fragments could be defective derivatives of the 
virus or satellite fragments (Buck, 1998). The native black Aspergillus viruses have a (small) 
deleterious effect on their host (Chapter 6). Whether the Fusarium viruses have such effects 
on Fusarium and/or Aspergillus hosts is unknown. 

The experiments indicate that mycoviruses might indeed have broader host spectra than 
as yet assumed and that interspecies transfer in nature could be successful. Further molecular 
analyses is required to test whether this occurs/occurred in nature. The Fusarium and 
Aspergillus viruses consist of similar sized dsRNA fragments and the experiments described 
here showed that the Fusarium viruses can be maintained in new Aspergillus hosts. Perhaps 
such occasional interspecies transfer between species could result in a both geographically 
and genetically scattered infection pattern throughout the population as found in the black 
Aspergillus population. It could also explain the variation and spread of similar mycoviruses 
in the black Aspergillus species lacking intraspecies transfer. However, direct mycelial 
contact via anastomoses does not have to be the exclusive mode of dispersal for 
mycoviruses. Exchange of DNA from transgenic plants to A. niger has been demonstrated by 
Hoffmann et al. (1994). Marienfeld et al. (1997) reported to have evidence for the transfer of 
nucleic acid transfers between fungal viruses and plant mitochondria. Insect or nematode 
vectors could also be involved in mycovirus transfer as they are in the transfer of plant 
viruses. Once infected, an asexual fungal host obviously has no active mechanism against 
that virus infection. 
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6 
Fitness effects of mycoviruses in black 
Aspergillus strains. 

Anne D. van Diepeningen, Alfons J.M. Debets and Rolf F. Hoekstra 

Abstract 
Fitness effects of dsRNA mycoviruses on black Aspergillus strains were determined in 

isogenic infected and virus free strains that were constructed for this purpose. Comparison of 
the isogenic infected and virus-free strains showed small but detectable negative effects of 
the mycoviruses. One of the viruses causes a strong host phenotype with non-sporulating 
sectors. The fitness effects of the viruses were quantified on different media for mycelial 
growth rate (growth area)(~ 2%), spore production (~ 5%) and competition capacity of the 
host (~ 45%). A model is presented for the virus and host population interactions. This 
model predicts that for deleterious infections to cause a stable infection frequency, the 
horizontal transfer should equal the selective disadvantage and spontaneous loss. The 
consequences of the fitness effects on the population are discussed. 

Introduction 
Mycoviruses are widespread in fungi (Buck, 1986; 1998). They consist of an isometric 

or different formed protein coat and an often segmented double stranded RNA genome. 
Infection ratios vary per species. Mycoviruses have not been found in the sexual Aspergillus 
nidulans (0/112 isolates tested) (Coenen et al, 1997). In sexual and asexual Aspergillus 
isolates belonging to the sections Fumigati, Circumdati and Flavi the infection frequency varies 
from 3.5 to 10.9% (Varga et al., 1998; Elias and Cotty, 1996). In asexual Fusarium poae 
100% of the population (55/55) is infected with mycoviruses displaying a great variety of 
dsRNA patterns (Fekete et al., 1995). The vertical transfer of mycoviruses from parent to 
progeny is mainly through asexual spores (Lecoq et al., 1979) and not or less efficiently via 
sexual spores (Rawlinson et al, 1973; Day et al, 1977; Rogers et al, 1986b; Coenen et al, 
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1997). Intraspecies transfer through direct mycelium contact can be limited or blocked by 

the barrier formed by heterokaryon incompatibility reactions (e.g. Anagnostakis and Day, 

1979; Brasier, 1984; Liu and Milgroom, 1996). Little is known about interspecies transfer in 

nature and host ranges of the mycoviruses. 

Most of the mycoviruses have no known effects on their host and live a 'cryptic' life 

(Ghabrial, 1980; 1996). Some can be considered beneficial to their host under certain 

conditions, like the killer viruses in yeasts and Ustilago maydis in high density populations. 

These killer viruses code for toxins killing uninfected strains, but protect infected strains, 

thus enhancing their and their host's relative proportion in the population (Koltin et al, 

1978; Wickner, 1991). Others, like the mycoviruses in economically important species like 

Agaricus bisporus (Hollings, 1962) and Pleurotus spp. (Go et al, 1992; Stobbs et al, 1994), 

are pathogens causing serious crop reductions. 

Comparisons between infected and virusfree strains can be used to quantify the 

phenomena caused by the virus infections. Differences were observed between hypovirus 

infected and dsRNA-free strains of Cryphonectria parasitica (Elliston, 1985). Kazmierczak 

et al. (1996) attributed the cause of the reduced virulence, sporulation and pigmentation to 

the reduced accumulation of a small number of host mRNAs and proteins of especially four 

host genes under influence of the virus infection. In Pleurotus florida comparisons between 

different infected and virus free strains showed reduced growth and growth abnormalities, 

increased infections in culture beds and a reduction in fruitbody yield of circa 30% (Go et 

al, 1992). Rinker et al (1993) compared isogenic infected and virus free lines of Pleurotus 

pulmonarius and found reduced growth, no changes in carpophore morphology or colour, 

and a total reduction in yield of 50%. 

The physiological effects of mycoviruses on their hosts are largely unknown. Perhaps 

the best characterised are the virus-produced killer toxins of U. maydis, which function by 

creating pores in the cell membrane and disrupting ion fluxes. Immunity to these toxins is 

conferred by the preprotoxins and their derivates or by nuclear resistance genes (Park et al, 

1994). In other fungi small viral effects may be caused by simple usage of metabolism and 

resources of their host. Ghabrial (1996) states that, as a rule, infections due to mycoviruses 

are both latent and persistent. 

In the asexual black Aspergilli mycoviruses have a prevalence of 10% in natural 

populations and occur in many different haplotypes (Varga et al, 1994b; Chapter 2). 

Vertical transmission of the variety of viral dsRNA fragments via conidiospores is highly 

efficient: all progeny contain the complete parental set of fragments and no spontaneous loss 

could be detected. In contrast, horizontal transfer is effectively blocked by the extensive 

heterokaryon incompatibility between strains (Van Diepeningen et al, 1997; Chapter 3). 

Virusfree strains are not resistant to viruses since these can be introduced and maintained 
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successfully via intra- and interspecies protoplast fusion (Van Diepeningen et al., 1998; 

Chapter 4). The (phenotypic) symptoms of virus infection are hidden in all but one of our 

infected (68) strains. In this paper we quantify the cost of such 'cryptic' virus infections in 

different black Aspergillus strains on three different fitness traits: mycelial growth rate 

('vigour'), asexual spore production ('fecundity') and competition ability with respect to 

other strains ('competitiveness'). 

Estimates of the fitness effects and the rates of the different modes of transfer of a 

parasite allow model predictions of implications for a host population. Fine (Fine, 1975) 

specified that in an asexual host a parasite limited to vertical transfer cannot persist in a 

population if it lowers the fitness. Lipsitch et al. (1995) analysed a model for a parasite 

transmitting both vertically and horizontally. Their model predicts that if prevalence is high, 

most transmission will be vertical, but that horizontal transmission rates must be high to 

reach and maintain a stable equilibrium prevalence. For the black Aspergilli we present a 

simple population model and discuss the implications of the viral fitness effects and 

transmission limits for host and mycovirus. 

Materials and Methods 

Strains 

The Ind strains used were isolated from soil samples from Indonesia on selective 

medium with 20% tannin (Van Diepeningen et al, 1997; Chapter 3). Strain Zl.l originated 

from a Dutch hospital. The strains were characterised based on their mitochondrial 

haplotypes according to Varga et al. (1993; 1994a). The strains were classified as 

'Aspergillus niger'-(l)-types, except strain Ind 1.8.42 which is a 'Aspergillus tubingensis'-

(2)-type. Both these types are members of the lA. niger aggregate' and only distinguishable 

with molecular markers. 

Table 6.1. List of the strains used divided in originally virus free and infected strains. Strains characterised on 
mitochondrial haplotypes as A. niger (1 -types) or A. tubingensis (2-type). 

virus-free strains 
strain 
Ind 1.8.1 a 

Ind 1.8.2 
Ind 1.8.4 
Ind 1.8.9 
Ind 1.8.42 

mt-
lb 
la 
lc 
Id 
2b 

type 
infected strains 
strain 
Ind 1.4.24 
Ind 1.5.5 a 

Ind 1.7.8 
Ind 1.8.7 
Ind 1.8.16 
Z l . l 

mt-
lc 
lb 
lc 
lb 
lb 
lc 

type virus-pattern 
6 
3 
2 
1 
4 + 5b 

2 
a) Strains Ind 1.8.1 and Ind 1.5.5 are heterokaryon compatible, all other combinations of strains are heterokaryon 
incompatible.b) Patterns of the infected and partially cured line respectively. 
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A list of the strains used with mitochondrial classification and virus content is given in 

Table 6.1. All pairwise combinations of these strains, except for the combination Ind 1.5.5 

and Ind 1.8.1, are heterokaryon incompatible (Van Diepeningen et al, 1997; Chapter 3). 

Curing and Infecting 

Isogenic lines with the same genetic wildtype background that only differ in their virus 

infection were constructed for the fitness experiments. From the naturally infected strains, 

strain Ind 1.8.16 could be cured from its virus by sequential hyphal tip isolation (two-daily 

subculturing of young hyphae over a period of three weeks). In the other strains this 

technique did not yield virus free lines. Addition of different amounts of the protein 

synthesis inhibitor cycloheximide hampered fungal growth, but did not cause loss of virus 

infections. 

Infection of strains was obtained via spontaneous infection between the heterokaryon 

compatible strains (Van Diepeningen et al., 1997; Chapter 3) or via protoplast fusion 

experiments between heterokaryon incompatible strains (Van Diepeningen et al, 1998; 

Chapter 4). After infection, either spontaneous or via protoplast fusion, further transfer 

between isogenic (compatible) mutants can be obtained by co-culturing of these strains. 

Media 

Complete Medium (CM) and Minimal Medium (M) were made as described by 

Pontecorvo et al. (1953) with 10 mM nitrate as nitrogen source and 1 mg/1 ZnS04, FeS04, 

MnCl2 and CuS04 extra added. The more depleted Very Minimal Medium (MM) as 

described by Coenen et al. (1994), was also added with 10 mM nitrate. Water Agar (WA) 

consists of demiwater with 15 g/1 agarose. In some linear growth tests 0.01 mM of the 

protein synthesis inhibitor cycloheximide (cyc) was added to complete and minimal medium. 

All incubations took place at 30°C. 

Fitness tests. 

The strains used in the 3 different fitness tests were tested before and after the 

experiments on their virus content. The data of the fitness experiments were tested with a 

Student's t-test (Sokal and Rohlf, 1995). 

1) Linear growth rate (vigour). Linear growth tests were done on (a selection of) all 

used media (CM, M, MM, WA, CMcyc and Mcyc). Spores of a virusfree or infected strain 

were inoculated in the middle of a Petri dish or at the beginning of a race tube: a glass tube 

of 50 cm with raised ends, half filled over the whole length with medium. After a day the 

extent of the hyphal growth was marked and used as starting point. Linear growth was 

measured at fixed time intervals along two perpendicular axes (4 measurements) in the Petri 
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dishes or along the race tubes. Linear growth was converted to growth per day (linear growth 
rate). Virus stability was checked before and after growth. In some special race tubes with 
sampling holes mycelium could be sampled during growth. Isogenic virusfree and infected 
strains were compared to estimate the fitness effect of the virus infection. 

2) Spore production (fecundity). Spore production was measured on complete and very 
minimal medium (CM and MM). The total spore production of strains was measured in 
Eppendorf tubes with 0.75 ml medium or in 0.5 cm2 punches from full grown Petri dishes 
from growth rate experiments. Spores were inoculated with the tip of a needle. After 11-13 
days of growth a spore suspension was made of the fully grown colonies in 0.5 ml Saline 
(0.8% NaCl) + 0.005% Tween vortexing 30 seconds. Further dilutions in Saline were made 
and spore numbers were counted in duplicate with a Coulter Counter (model ZF with 
channelyzer). The comparisons were made between isogenic virusfree and infected strains. 

Figure 6.1. DsRNA mycovirus patterns of the 
infected strains. Lane 1 strain Ind\.%.l, lane 2 
strain Ind\.l.% (similar to infection in strain 
Zl.l), lane 3 strain Indl.5.5, Lane 4 strain 
/wc/1.8.16 (+), lane 5 strain Airfl.8.16(-) = 
partially cured, lane 6 strain IndlA.24. M's are 
molecular weight markers ^//;'ndIII/£coRI. 
Sizes of the dsRNA fragments range from 0.9 kb 
to 4.1kb (strain Ind\ .8.7) (calculation of sizes on 
basis of DNA-marker sizes after Livshits et al. 
(1990)). 

3) Competition experiments (competitiveness). The competition experiments were done 
on two media: complete and very minimal medium (CM and MM). Equal amounts of 
infected or virusfree wildtype strain and heterokaryon incompatible, fawn-coloured 
reference strain Ind 1.8.3 or Ind 1.8.9 (approx. 1000 viable spores each) were spread on 
medium in 9 cm 0 Petri dishes. After five days all spores were harvested and dilutions in 
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Saline were plated on medium with 0.05% triton. The numbers of black and fawn colonies 
respectively were counted after 2-3 days. Ratios between reference strain and infected or 
virus-free strains were calculated and compared. 

Virus detection 
Total nucleic acid was isolated via a phenol/chloroform protocol and DNA, viral dsRNA and 
ssRNA were separated via gel electrophoresis (Maniatis et al., 1982). The dsRNA nature of 
the viral fragments was confirmed by treating the nucleic acid suspensions with different 
nucleases under various salt concentrations (Fekete et al, 1995; Varga et al, 1993) Figure 
6.1 shows the different dsRNA virus patterns of the used stains. 

Results 
To estimate the effects of a virus infection, isogenic lines which only differ in their infection 
need to be compared. Such strains were constructed in various ways. We first tried to cure 
strains of their viruses in order to produce such isogenic lines. A set of naturally infected 
strains was used for this. Spontaneous loss of virus in colonies grown from single spores 
could not be detected, nor did addition of the protein synthesis inhibitor cycloheximide yield 
cured lines, neither by the formation of cured spores nor by producing virus-free sectors in 
the colony. Because some infected strains do show a slightly ragged colony rim, we also 
tried sequential isolation of hyphal tips at the colony rim. This yielded one partly cured strain 
Ind 1.8.16, as shown in Figure 6.1, which gives an example of the virus infection patterns of 
the strains used in these experiments. The strong phenotypic effect due to the virus infection 
in strain Ind 1.8.16 is illustrated in Figure 6.2A. All other infected strains, which showed no 
apparent phenotypic effects, could not be cured of their virus by sequential hyphal tip 
isolation. 

Infection of strains proved more useful than curing for obtaining isogenic virus-free 
and infected lines. In the case of heterokaryon compatible strains virus transfer took place 
spontaneously between co-cultured mycelia (e.g Ind 1.5.5 and Ind 1.8.1). The used strains 
were made to differ in a colour or resistance marker to discriminate between the partners. 
Between some heterokaryon incompatible combinations transfer could be obtained via 
protoplast fusion experiments (Van Diepeningen et al, 1998; Chapter 4). Once established 
in a line, virus can be freely transmitted between the heterokaryon compatible mycelia of 
different isogenic (mutant) strains. In this way we obtained most isogenic wildtype strains 
with their virus infection as the only difference. 

Fitness can be measured on different traits of the fungal colony. We checked the linear 
colony growth (1), the maximum spore production (2) and the success in competition (3). 
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Figure 2A. Photograph of 
infected and virusfree strain Ind 
1.8.16 grown on Petri dish. B. 
Linear growth of strain Ind 
1.8.16 infected (O) and cured 
(A) on complete medium (CM; 

), minimal medium (M; —) 
and very minimal medium (MM; 
....). C. Spore production over 
time of strain Ind 1.8.16 on very 
minimal medium. 
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1). Vigour. Mature fungal colonies increase in radius at a linear rate or at least the 
hyphal extension is linear when measurements are made over intervals longer than several 
seconds (Trinci et al, 1994). By measuring the growth of infected and virus-free lines over a 
time interval the viral effect on growth rate (vigour) can be determined on different media 
(e.g. the growth of Ind 1.8.16, infected and virusfree, in Figure 6.2B). Table 6.2 shows the 
radial growth rate measured in Petri dishes along four perpendicular axes. Longer periods of 
growth were measured in race tubes (Table 6.3). The rates of hyphal extension in both sets of 
experiments are comparable. 

Table 6.2. Fitness effects of viruses on the daily linear growth ratea of their host in Petri dishes on different media. 
P-values calculated with Student's t-tests (* i 90%, ** ;> 95%, *** k 99% reliability). 

Strain 

Ind 1.8.16 

Ind 1.8.16 
part, cured 
Ind 1.8.1 
Ind 1.8.2 
Ind 1.8.4 

Ind 1.8.9 

Ind 1.8.42 

Virus 

Ind 1.8.16 

Ind 1.8.7 

Z l . l 
Z l . l 
Ind 1.4.24 
Ind 1.5.5 
Ind 1.7.8 
Ind 1.5.5 
Ind 1.8.7 
Z 1.1 
Ind 1.7.8 
Z l . l 

medium 

CM 
MM 
M 

WA 
CM^C 

Mcyc 

M 

M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

Growth rate 
virus free in cm day"1 

1.21+0.14(50) 
1.03 ±0.11(48) 
0.68 ±0.07 (119) 

0.65 ±0.11(75) 
1.18 ±0.08 (34) 
0.82 ± 0.07 (68) 
0.75 ± 0.06 (65) 

0.85 ± 0.04 (46) 
0.71 ±0.04(71) 
0.73 ±0.06 (51) 
0.73 ±0.06 (51) 
0.73 ±0.06 (51) 
0.77 ± 0.04 (80) 
0.77 ± 0.04 (80) 
0.77 ± 0.04 (80) 
0.57 ± 0.03 (91) 
0.57 ±0.03 (91) 

Growth rate 
infected 
in cm day"1 

1.18 ±0.12 (46) 
0.77 ±0.10 (53) 
0.61 ±0.11 (98) 

0.61+0.05(75) 
1.15 ±0.08 (36) 
0.80 ± 0.08 (102) 
0.73 ± 0.06 (42) 

0.84 ± 0.03 (43) 
0.70 ± 0.04 (60) 
0.72 ± 0.06 (70) 
0.74 ± 0.04 (47) 
0.71 ±0.05 (59) 
0.77 ± 0.06 (44) 
0.74 ± 0.05 (58) 
0.77 ± 0.04 (58) 
0.55 ± 0.05 (95) 
0.56 ± 0.06 (86) 

Effect % 

- 2.6% 
-26 % 
-10% 
(-5 -13%)b 

- 6.6% 
- 2.8% 
- 3.0% 
- 2.8% 

- 1.4% 
- 1.1% 
- 1.8% 
+ 0.8% 
- 2.8% 
+ 0.7% 
- 3.8% 
- 0.4% 
- 4 . 1% 
- 2.2% 

p-value 
(t-test) 

0.129 
<0.00 
<0.00 

<0.00 
0.047 
0.025 
0.043 

0.070 
0.129 
0.089 
0.236 
0.020 
0.295 
<0.00 
0.306 
<0.00 
0.045 

*** 
*** 

»*» 
** 
** 
** 

* 

* 

** 

+ * * 

*** 
** 

a) All growth rates are means ± standard deviation (number of measurements). b) Strain Ind 1.8.16 shows sectorial 
growth, effect differentiated between sporulating and non-sporulating sectors. 

Table 6.3. Fitness effects of viruses on the daily linear growth rate a of their host in race tubes on different media. 
P-values calculated with Student's t-tests (* 2 90%, ** 2 95%, *** 2 99% reliability). 

Strain 

Ind 1.8.16 

Ind 1.8.1 

Ind 1.8.9 

Virus 

Ind 1.8.16 

Ind 1.5.5 

Ind 1.8.7 

Ind 1.5.5 
Ind 1.8.7 

exp. 

CM-1 
MM-1 
M-l 
CM-1 
M-l 
M-2 
M-l 
M-l 

Growth rate 
virus free in cm day"1 

1.29 ±0.13 (19) 
-
0.97 ±0.11(58) 
1.38 ±0.12 (60) 
0.82 ± 0.06 (80) 
0.87 ±0.06 (31) 
0.75 ± 0.05 (84) 
0.75 ± 0.05 (84) 

Growth rate 
infected in cm day' 
1.23 ±0.21 (12) 
0.84 ±0.07 (17) 
0.94 ±0.10 (55) 
1.34 ±0.13 (124) 
0.80 ± 0.05 (66) 
0.85 ±0.14 (77) 
0.75 ± 0.07 (85) 
0.70 ± 0.07 (80) 

Effect % 

-5.4% 

-
-3.2% 
-3.0% 
-1.8% 
-2.1% 
-0.0% 
-6.7% 

p-value 

0.131 
-

0.062 
0.013 
0.018 
0.048 
0.428 
<0.00 

* 
** 
** 
** 

*** 
") All growth rates are means ± standard deviation (number of measurements). 
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Mycelial growth rate is determined by the concentration of nutrients in the medium and 

by genetic factors. Cured and infected lines of strain Ind 1.8.16 were tested on a selection of 

different media (Table 6.2). The largest differences in growth rate were observed on minimal 

and very minimal medium. On rich substrate like complete medium the effect of harbouring 

virus seems to be neutralized by the surplus of nutrients. On a very poor medium like water 

agar or media supplemented with cycloheximide the growth rates are so low that viral effects 

are harder to detect. 

Most strains showed a small, though not always significant, reduction in growth rate of 

a few percent due to virus infection on complete or (very) minimal medium. Strain Ind 

1.8.16 showed the highest growth reduction in non-sporulating sectors of the mycelium 

(Figure 6.2A) and a lower reduction in other parts of the mycelium (e.g. 13 vs. 5% reduction 

on MM). Analysis of a racetube of the infected Ind 1.8.16 strain showed that a temporary 

reduction in growth rate was correlated with an increase in the number of viruses in the 

mycelium (data not shown). At least in this strain the effects were correlated with the virus 

titer. 

Table 6.4. Fitness effects of viruses on the spore production a of their host. Spore production measured in 1.5 ml 
Eppendorf tubes or in Petri dishes b on different media, counted with a Coulter counter. P-values calculated with 
Student's Wests (* i 90%, ** ;> 95%, *** k 99% reliability). 

Strain Virus exp. Spore production Spore production Effect % p-value 
virus free per cm-2 infected cm-2 

Ind 1.8.16 Ind 1.8.16 MM- 2.92± 1.12107(5) 0.75 ±0.29107(5) -74% 0.002 *** 
1" 
MM-2 2.33 +0.35'107(10) 1.15 ±0.21107(10) - 5 1 % 
MM-3 2.44±0.55107(15) 0.88±0.36107(15) -64% 
CM- 2.32 + 0.88-107 (5) 1.88 ±0.47107 (5) -19% 
lb 

CM-2 2.66 + 0.28107(10) 2.10±0.19107(10) - 2 1 % 0.001 *«* 
Ind 1.8.1 Ind 1.5.5 MM-1 1.41 ±0.15107(12) 1.27 ± 0.22-107( 12) - 1 1 % 0.006 *** 

MM-2 1.61±0.33107(18) 1.40 ± 0.18 107(18) -15% 0.001 *** 
Ind 1.8.2 Ind 1.8.7 MM-1 1.49 ± 0.20-107 (8) 1.63 ± 0.19107 (8) + 8 % 0.023 ** 

MM-2 1.34 + 0.24107(18) 1.30 ± 0.27-107(18) - 3% 0.260 
Ind 1.8.4 Ind 1.5.5 MM-1 1.37±0.19107(12) 1.28 ± 0.20-107( 12) - 7 % 0.132 

MM-2 1.40±0.15107(16) 1.35 ± 0.22 107(16) - 4% 0.154 
Ind 1.8.42 Ind 1.7.8 CM 2.35 ±0.72107 (4) 1.02 + 0.51107 (4) -57% 0.020 ** 

Ind 1.8.16 CM 2.35 ±0.72107 (4) 1.52 ± 0.21-107 (4) - 35% 0.052 * 
a) All spore productions are means + standard deviation (number of duplicate measurements).b) Spore production 
measured in Petri dishes. 

2). Fecundity. The spore production (fecundity) of the different virus-free and infected 

strains were measured on two media: very minimal and complete medium. Mycelium of 

about one day old started producing conidiophores and subsequently conidiospores. The 

spore production followed a parabolic curve towards a maximum production depending on 

strain and nutrient availibility. Figure 6.2C shows the spore production of infected and virus-

free strain Ind 1.8.16 over time. Maximum production in our experimental setting was 
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approached after 11-13 days. Table 6.4 lists the maximum numbers of spores for tested 
strains counted with a Coulter counter when the colonies were fully grown. The virus 
infections appeared to have a stronger impact on the spore production than on the growth 
rate. 

3). Competitiveness. Competition experiments tested the ability of the strains to 
compete for the same resources. They tested for a combination of colony growth, spore 
production, resource use and other factors of importance under competition. A heterokaryon 
incompatible strain was used as reference strain to exclude heterokaryon formation and virus 
transfer. Very minimal and complete medium were again used as substrates. Plates were 
inoculated with equal amounts of viable spores of tester and reference strains. Table 5 lists 
the final ratios of the spores produced by the two strains after the competition. Again a 
strong negative effect on the host strain could be attributed to virus infections. No adverse 
effects on the competitor strain (as by killer-strains in yeast) were observed. The effects 
measured in these competition experiments were larger than those in the separate growth rate 
and spore production experiments. 

Table 5. Competition experiments with infected and virusfree strains in comparison to a reference strain. The 
competition started with 1000 spores of each strain (1:1). The final ratiosa of reference strain to (un)infected strain 
are given. P-values calculated with Student's t-tests (* 2 90%, ** 2 95%, *** 2 99% reliability). 

Strain 

Ind 1.8.16 

Ind 1.8.9 

Ind 1.8.42 

Virus 

Ind 1.8.16 

Ind 1.8.16 

Ind 1.7.8 

Ind 1.8.16 

Reference 
strain 

Ind 1.8.3 

Ind 1.8.9 

Ind 1.8.3 

Ind 1.8.3 

Ind 1.8.9 

Ind 1.8.3 

Ind 1.8.9 

exp. 

MM 
CM 
MM 
CM 
MM 
CM 
MM 
CM 
MM 
CM 
MM 
CM 
MM 
CM 

ratio 
reference: un infecte 
d 
8.51 ±4.42 
2.97 ±1.22 
1.03 ±0.62 
2.43 ±1.51 
4.67 ±4.80 
1.43 ±0.38 
9.24 ± 8.63 
7.13 ±4.67 
8.48 ±2.74 
10.5 ±3.19 
9.24 ± 8.63 
7.13 ±4.67 
8.48 ± 2.74 
10.5 ±3.19 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

(3) 
(3) 
(3) 
(3) 
(3) 
(3) 
(2) 
(2) 
(2) 
(2) 
(2) 
(2) 
(2) 
(2) 

ratio 
reference: infected 

> 105 
3.10 ±3.89 
9.59 ±6.32 
7.11 ±3.48 
8.17 ±4.65 
8.31 ±5.16 
11.0 ±4.95 
6.29 ±3.37 
19.3 ± 8.24 
23.8 ±13.1 
22.0 ±10.6 
8.99 ±3.83 
19.7 ±6.87 
37.1 ±8.52 

1 (3) 
1 (3) 
1 (3) 
1 (3) 

1 (3) 
1 (3) 

1 (2) 
1 (2) 
1 (2) 
1 (2) 
1 (2) 
1 (2) 
1 (2) 
1 (2) 

Effect 
% 

- 9 1 % 
- 4% 
- 89% 
- 83% 
- 43% 
- 83% 
- 16% 
+ 13 % 
- 55% 
- 56% 
- 58% 
- 20% 
- 57% 
- 72% 

P-
value 

<0.00 
0.471 
0.004 
<0.00 
0.114 
0.004 
0.368 
0.395 
0.024 
0.048 
0.055 
0.293 
0.012 
0.001 

*** 

*** 
*** 

*** 

** 
** 
* 

** 
*** 

a) Final ratios of reference strain to (un)infected strain are means: 
mixtures tested). 

standard deviation (number of competition 

Model 
The negative effects of ds RNA on fungal growth rate, spore production, and 

competitive ability in A.niger as found in our study suggest that novel infections should 
occur at a rate sufficient to counteract the expected decline of infected strains. 
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To obtain a better insight into the dynamics of ds RNA virus infection in Aspergillus 

niger populations, we analyzed a simple population model. In this model we can incorporate 

the fitness effects resulting from viral infection as estimated from our measurements, and 

study the effect of the rates of novel virus infection and of production of virus-free spores by 

infected strains. 

x,2 

• • 

^ 

(i-p)(i-s)J-

• 

x t+l 

2Xt(l-Xt) •o 
6\o 
^ ^ l-h 

*̂ 6 
l-x t+i 

(1-X2)
2 

oo 
/ 

Vegetative growth + 
possible infection 

Spore production 

Figure 6.3. Schematic model of the black Aspergillus population dynamics, black = virus infection, x, = fraction 
infected strains at generation t, h = rate of horizontal transmission to uninfected strains, s = selective disadvantage, 
p = spontaneous loss of virus. 

We assume a population will consist of two types of colonies, either infected with ds 

RNA (relative frequency x) or uninfected (relative frequency l-x). Furthermore, we suppose 

that all fungal colonies are subject to the following life cycle (see Figure 6.3): upon 

germination they may encounter close contact with a conspecific during their vegetative 

growth; following this they sporulate, giving rise to the next generation. Pairwise contacts 

occur randomly, therefore two infected strains will meet with a probability proportional to x2, 

two uninfected ones with probability proportional to (l-x)2, and an infected strain will merge 

with an uninfected one with probability proportional to 2x(l-x). We assume that in the latter 

category close contact may result in infection of the virus-free colony with probability h, 

either as a consequence of anastomosis (in case of vegetative compatibility), or otherwise. 

Then all colonies sporulate; an infected colony produces \-s times the number of spores from 

an uninfected colony. Finally we assume that a fraction p of the spores produced by an 

infected colony will carry no ds RNA (spontaneous 'curing'). 

From these assumptions we deduce the following equation for the change of the 

relative frequency of infected strains over one generation 
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(1-/>)(1-SX[1+A(1-*,)] 
•^t+1 

l-s(\+h)(l-p)xt(\-xd 

Solving this equation analytically is possible but yields results that do not provide intuitive 

insight. Instead we provide the following summarizing conclusions based on linearization at 

sufficiently small values of xt and standard stability analysis. 

1. If p = 0 (there is no spontaneous curing and ds RNA is included in all spores 

produced by an infected colony), then a stable coexistence of infected and uninfected strains 

is not possible. Eventually there will only be uninfected strains (if h < s[\-sY) or only 

infected strains (if A > j[l-s]"'). 

2. If p > 0 (there is at least some virus-free progeny from infected colonies), then 

two outcomes are possible: 

(i) if (l-p)(l-s)(l+/») > 1 (if the rate of infection h is sufficiently high to compensate 

for the virus loss caused by spontaneous curing and by an impaired fitness of infected 

colonies), then a stable coexistence of infected and uninfected strains is possible; 

(ii) if {\-p){\-s%\+h) < 1 (if the rate of infection h is too low), then the viruses are 

expected to disappear from the population. 

Discussion 

Isogenic infected and virusfree strains were constructed for the analyses of fitness 

consequences of mycoviruses. The different methods used to cure infected black Aspergillus 

strains yielded little results. Only the sequential isolation of hyphal tips resulted in a line that 

had lost part of the dsRNA infection pattern of the parental strain Ind 1.8.16. Together with 

the partial loss of the virus pattern this strain lost its abnormal phenotype (Fig 6.2A). 

However, all other isolations of young hyphal tips or single spores or treatment with 

cycloheximide yielded no cured lines. Infected lines could be created via virus transfer 

between some heterokaryon compatible strains or protoplast fusions between incompatible 

strains (Van Diepeningen et al, 1998; Chapter 4). Once infected, these strains seem to have 

no active mechanisms to dispose of their virus(es). The omnipresent heterokaryon 

incompatibility between strains which strongly limits the virus transfer (Van Diepeningen et 

al, 1997; Chapter 3) could very well be maintained to prevent such infections that are hard 

to get rid off. 

Fitness comparisons between the infected and cured strain Ind 1.8.16 and other virus 

free and infected isogenic lines were done on different traits and media. The effects of the 

infection appear to depend on both nutrient availability of the medium and genetic 

background of fungal strain and virus infection. On rich media the viral effects can be 

masked by the abundance of available nutrients. On very poor medium the struggle for 
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growth reduces the measurable effect of infection. The effects caused by the viruses are 
easiest measured on media with intermediate nutrient availability. 

The strongest effects in all comparisons were seen in the infected strain Ind 1.8.16, 
whose virus can reach extremely high titers in the mycelium. But, in strains without visible 
phenotypic effects a significant decrease in fitness could also be found. The effect of 
infection on linear growth rate in Ind 1.8.16 was -7.8% versus an average of-2.1% in all 
other infected strains when measured on the very minimal medium. In Ind 1.8.16 infection 
caused a reduction in maximum spore production of 63% on minimal medium and 20% on 
complete medium. In the other strains the reduction was on average 5.3% on MM and 46% 
on CM. In competition with a reference strain Ind 1.8.16 produced 90% fewer spores for the 
next generation on minimal medium due to its infection and 44% less on complete medium. 
For the other strains infection reduced the fitness in competition on average 43% and 44% 
on minimal and complete medium. 

The relation between the different fitness traits seems to be as follows: spore 
production is a product of growth area (~ linear growth x linear growth x it) and the number 
of spores per colonised area. Therefore, the selective disadvantage on spore production (sSp) 
appears to be proportional to the third power of the linear growth rate (s/g). In competition 
with another uninfected strain deleterious effects of the virus on properties such as nutrient 
uptake, efficiency, and conversion further enlarge the total reduction in fitness. 

Little is known about nutrient availability in the natural habitat of the black Aspergilli, 
but in all likelihood this availability is variable and discontinuous. Effects of viral infection 
may vary per location. In nature each strain will be surrounded by competitors: bacteria, 
fungi, nematodes etc. The success of a strain will depend on its colonizing abilities (e.g. 
growth rate), its competitive abilities (e.g. nutrient uptake) and its success in reproduction 
(e.g. formation of spores). Our data suggest that virus-infected strains will be less successful 
than uninfected strains in all these traits. 

Viruses are widespread in fungi. In general they are supposed to have evolved in 
concert with their host and are usually associated with symptomless infections (Ghabrial, 
1996). In these experiments, however, we have shown that there is a considerable cost to 
harbouring such presumed cryptic parasites. Most infected black Aspergillus strains show no 
immediate visible effect, but careful comparisons of infected and uninfected isogenic lines 
reveal the fitness costs of infection. 

The black Aspergillus population seems to have a stable virus infection rate of 10% 
worldwide. These viruses can vary in number and size of their dsRNA fragments and can be 
accompanied by satellite and/or defective fragments (Buck, 1998). Infections with more than 
one virus are also possible. Similar fragments and patterns can be found in different 
mitochondrial haplotypes of strains indicating an ancient origin or horizontal transfer 
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(Chapters 2 & 7 ). In general, the mycoviruses are believed to be of ancient origin (Ghabrial, 

1996).This begs the question how deleterious viruses can be maintained in fungal 

populations. Fine (Fine, 1975) already predicted the decline of a deleterious parasite with 

only vertical transfer. 

Based on estimates of the selective disadvantage caused by virus infection one can use 

models to predict the population level consequences. If horizontal transfer of viruses occurs, 

our model predicts that horizontal transfer should be in balance with the selective 

disadvantage and spontaneous loss to achieve a stable infection frequency. In laboratory 

experiments no transfer of virus was found between heterokaryon incompatible strains (Van 

Diepeningen et al., 1997; Chapter 3). Most pairs of strains isolated from nature are 

incompatible and no resistant isolates have been found. Based on the infection frequencies in 

different haplotypes of black Aspergilli and the frequencies of these types in a sampled 

population (Chapter 2), the chance for a strain to meet a compatible infected strain can be 

calculated to be less than 1 percent. Spontaneous loss of virus was not detected in any of the 

experiments, indicating that p will be very small. If the horizontal transfer rate h should 

equal the selective disadvantage s (ranging between -2% - 44% for the average strain), far 

more transfer should take place than was observed. Perhaps higher rates of intraspecies 

transfer occur in nature than under laboratory conditions, facilitated by certain conditions or 

because strains meet higher numbers of other black Aspergillus strains (which, however, 

would also intensify the competition). 

Another, perhaps more likely, possibility would be that interspecies transfer is more 

frequent than sofar considered. Transfer via protoplast fusions between black Aspergilli and 

A. nidulans and vice versa is more frequent (-100% transfer) than transfer between black 

Aspergillus strains (-50% transfer) (Van Diepeningen et al, 1998; Chapter 4). In addition, 

exchange of nucleic material from fungi to plants is reported to occur regularly. Hoffmann et 

al. (1994) showed that DNA from transgenic plants could be exchanged with A. niger and 

Marienfeld et al. (1997) reported to have evidence for the transfer of nucleic acid transfers 

between fungal viruses and plant mitochondria. 

Regular intra- and/or interspecies transfer could explain the similarities in some 

infection patterns in different haplotypes of a species and even in members of different 

species. Transfer could involve transient cytoplasmic contact or perhaps another species 

acting as vector. Our results suggest that there is need for investigating possible interspecies 

transfer of viruses in fungi. 
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7 
Recombination in phylogenies of nuclear genes 
and transposon in black AspergillL 

Anne D. van Diepeningen, Alfons J.M. Debets, Duur K. Aanen and Rolf F. Hoekstra 

Abstract 
Several methods can be used to detect recombination on the basis of molecular data; 

mosaic structures in the genome, the excess of homoplasies in the construction of a most 
parsimonious tree, and incongruencies between phylogenies based on different parts of the 
genome. The black Aspergilli are a complex of presumably asexual species, capable - at least 
in laboratories - of parasexual recombination. To discover whether recombination occurs in 
nature, parts of three genes coding for non-essential extracellular enzymes were sequenced 
in 21 black Aspergillus strains. Evidence was found for a very low level of nuclear 
recombination. Sequences of Ant] transposable element-homologues showed that this 
element has a spread within the population indicative of horizontal transmission independent 
of other nuclear genes. 

Introduction 
For many ascomycete fungi it is not known whether they have a sexual cycle since they 

do not show any direct evidence of sex (Anderson and Kohn, 1998). Next to sexual 
recombination, mitotic (parasexual) recombination is known to occur in fungi under 
laboratory conditions. The first step to parasexual recombination is the formation of a 
heteroplasmic and heterokaryotic mycelium after hyphal fusion of different genotypes. The 
ability of two mycelia to fuse is under the control of so-called heterokaryon 
(somatic/vegetative) incompatibility (het-) genes (Glass and Kuldau, 1992; B^gueret et al, 
1994). Populations often contain many different to-alleles that lead to different vegetative 
compatibility groups, between which parasexual recombination and transfer of cytoplasmic 
elements is limited (Caten, 1972, Anagnostakis and Day, 1979, Anagnostakis, 1983, Debets 
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et al., 1994; Van Diepeningen et al, 1997). It is still unknown whether parasexual 

recombination occurs in nature. 

The occurrence of (meiotic or mitotic) recombination has an important effect on the 

population structure (Anderson and Kohn, 1998). Several methods for detecting 

recombination are possible. (1) In bacteria one can look for a 'mosaic structure' in 

sequences, where recombination can lead to blocks of high similarity interspersed with 

blocks of high sequence divergence (Maynard Smith, 1992). (2) Another option, applicable 

both in prokaryotes and eukaryotes, is comparison of the number of homoplasies (similar 

changes at one site) in the most parsimonious tree with the number expected without 

recombination (homoplasy test) (Hudson and Kaplan, 1985; Maynard Smith and Smith, pers. 

comm.) (3) The third method compares phylogenies based on different sequences. The 

underlying theory states that in clonal lineages genotypic diversity is based purely on 

accumulation of mutations and that genealogies based on different parts of the non-

recombining genome will be fully compatible. Recombination leads to shuffling of the 

mutations and thus to genealogies that are not consistent (Woese et al., 1980; Dykhuizen and 

Green, 1991; Dykhuizen et al., 1993; Hey and Kliman, 1994). The combination of (new) 

molecular techniques and phylogenetic analysis of detected polymorphisms has made it 

possible to detect recombination in presumed asexuals and, alternatively, to detect partitions 

in non-recombining (sub)populations in (para)sexual species (Burt et al., 1996; Koufopanou 

et al., 1997; Geiser et al., 1998). The comparison of phylogenies of different host species 

and symbionts or parasites can in a similar manner be used to determine coevolution 

('clonal') vs. horizontal transfer ('recombination'). 

The black Aspergilli form a complex of related asexual species, some of which of 

industrial and economicly importance. In nature both morphologically distinct types and 

types only distinguishable on molecular characters can be found conspecifically and in very 

high numbers (Chapter 2). Isogenic lines of Aspergillus niger, the most abundant member of 

the group, have been used in parasexual recombination studies which resulted in a linkage 

map (Debets et al., 1990a; 1993). However, most of the natural isolates do not form 

heterokaryons with one another due to incompatibility reactions (Van Diepeningen et al., 

1997), so it is questionable whether horizontal transfer of nuclear or cytoplasmic genetic 

material occurs at all. In black Aspergilli dsRNA mycoviruses have been found to affect 

approximately ten percent of the population (Varga et al., 1994a; Van Diepeningen et al., 

1997, Chapter 3). Transfer of these viruses is limited to heterokaryon compatible strains and 

with insufficient intraspecies transfer, interspecies virus transfer may be necessary to explain 

the infection frequency (Chapter 3-6). In addition, three transposable elements have recently 

been characterised in different black Aspergillus species (Glayzer et al., 1995; Amutan et al., 

1996; NyyssOnen et al., 1996). 
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The experiments described here concentrate on two closely related black Aspergilli: A. 

niger and A. tubingensis and try to detect recombinational events. Both Aspergillus types are 

believed to be imperfect and in principle capable of parasexual recombination. The types can 

be distinguished on basis of ribosomal (Kusters-van Someren et al., 1991; Megn6gneau et 

al., 1993) and mitochondrial Restriction Fragment Length Polymorphisms (Varga et al., 

1993; 1994b). Many genes of the two have been cloned and sequenced and their sequences 

are available from public databases on the Internet. These genes can form the basis for 

comparisons of gene sequences and the construction of different gene genealogies. In our 

laboratory a large collection of natural black Aspergilli has been made by selecting for them 

from soil samples on high concentrations of tannin. Though experimental data and natural 

survey do not suggest any (para)sexual recombination or horizontal transfer, the molecular 

evidence for recombination and horizontal transfer may be found in these strains. 

Materials and Methods 
Strains. 

For a list of the black Aspergillus strains used, see Table 7.1. N402 is a culture 

collection strain (derived from CBS 120-49 = ATCC 9029), Z 1.1 is a hospital isolate from 

Gouda, The Netherlands. The other strains are wildtype natural isolates selected on medium 

containing 20% (w/v) tannin. Strains Ind 1.1.16-1.8.42 were isolated from soil samples from 

Jakarta, Indonesia and G 1.3 is an isolate from Gabon (Van Diepeningen et al., 1997, 

Chapter 2 and 3). 

Table 7.1. Strains used: N402 is a culture collection strain (derived from CBS 120-49 = ATCC 9029), Z 1.1 is a 
hospital isolate from Gouda, The Netherlands. Strains Ind 1.1.16-1.8.26 are wildtype isolates from Jakarta, 
Indonesia. G 1.3 is a wildtype isolate from Gabon. The wildtype isolates were isolated on selective medium with 
20% tannin (Van Diepeningen et al., 1997). 

Strain 
N400 
G1.3 
Ind 1.1.16 
Ind 1.2.15 
Ind 1.4.24 
Ind 1.4.32 
Ind 1.5.5 
Ind 1.6.19 
Ind 1.6.23 
Ind 1.7.8 
Ind 1.8.2 

Mt-typea 

la 
2e 
lb 
2b 
lc 

jap 
lb 
2a 
2a 
lc 
la 

rRNA" 
I 
II 
I 
II 
I 
jap 
I 
II 
II 
I 

r 

Virus 

-
+ 
+ 

-
+ 
+ 
+ 
+ 
+ 
+ 

-

Strain 
Ind 1.8.3 
Indl 
Indl 
Indl 
Indl 
Indl 
Ind 1 
Indl 
Indl 

8.7 
8.9 
8.10 
8.11 
8.13 
8.16 
8.22 
8.26 

Z 1.1 

Mt-type 
lb 
lb 
Id 
lb 
lb 
lc 
lb 
lc 
2d 
lb 

rRNA 

r 
I 
I 

r 
I 
I 

r 
i 
II 
i 

Virus 

-
+ 

-
+ 
+ 

-
+ 
+ 
+ 
+ 

mitochondrial Restriction Fragment Length Polymorphisms after Varga et al. (1993, 1994b), and b ribosomal 
classification after Kusters-van Someren et al. (1991) and M6gnegneau et al. (1993). 

Total nucleic acids of these strains were isolated via a standard phenol/chloroform 

extraction (Maniatis et al. 1982; Chapter 2). The extracts of the strains were tested for viral 
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dsRNA fragment contents with gel electrophoresis (0.8% agarose), stained with Ethidium 

Bromide and visualised by UV transillumination. 

The strains themselves were characterised as A. niger (1/I-types), A. tubingensis (2/II-

types), A. japonicus (J) on the basis of Bglll and Haelll digested mitochondrial Restriction 

Fragment Length Polymorphisms (RFLPs) (Varga et al., 1993; 1994b; Hamari et al., 1997) 

and on ribosomal RFLPs (Kusters-van Someren et al., 1991; M^gn^gneau et al., 1993). The 

ribosomal typing was done on Smal and on EcoRl digested DNA, after gel electrophoresis 

and southern blotting onto a Hybond-N+ nucleic acid transfer filter (Amersham) 

(Megn£gneau et al., 1993), the Aspergillus nidulans ribosomal repeat unit (pMNl) was used 

as probe with DIG-labelling and CSPD-detection (Boehringer Mannheim, user's manual). 

Mitochondrial haplotype, ribosomal type and virus infections are also listed in Table 7.1. 

Sequencing and Analysis of Polymorphisms. 

Primers were developed with the Generunner program, version 3.02 (Hastings software 

Inc., 1994) for three unlinked nuclear genes of black Aspergilli of which the nucleotide 

sequences are deposited in GenBank: Pgall coding for a polygalacturonase, PepF a 

peptidase and PhyA a phytase. The primers were designed for coding regions of the genes 

and when the gene was sequenced in more black Aspergillus strains, the primer regions were 

found to be identical in the different strains. For the transposable element Antl two primer 

sets were made, resulting in the amplification of two partly overlapping sequences. The 

primers were made by Pharmacia and are listed in Table 7.2. 

Table 7.2. Primers of the nuclear genes Pgall, PepF and PhyA and transposes Antl, used in this study. 

Gene 

pgall 

PepF 

PhyA 

Antl 

Accession numbers 
& Authors 
X58894a, X58893a and 
X 54146" (GenBank) 
"Bussink etal. (1991), 
bRuttkowskie/a/. (1991) 
X79541'(GenBank) 
•Van den Hombergh et al. (1994) 
Z16414dandL02421e 

(GenBank) 
•Van Hartingsveldt et al. (1993), 
Tiddington etal. (1993) 
D486B15sf(EMBL) 
fGlayzer e< a/. (1995) 

Primer 

pga-1 

pga-2 

pep-1 
pep-2 
phy-1 

phy-2 

antl-1 
antl-2 
ant2-l 
ant2-2 

Primer sequence 5' to 3' 

CAGCGGAAAGAAGAAGCC 

TGCTCACGGTGGAGTGTT 

CTGGTTGTAGTTCCCTTG 
GAGGGCATTGTTCTTCTG 
CTCATAGGCATCATGGGCGTCTC 

CGTTCTGCTGGATCTCCTCAATG 

GGCTGTAACCCAAGTGCTG 
GCCATCTTCCGCAGTGTTG 
GCCATATTTCTGTGGGAC 
ATCTTGACACCTGCTTGC 

Nucleotide 
site 
360-377 

783-801 

1564-1582 
2111-2128 
12-34 

396-418 

363-382 
921-940 
531-551 
1010-1029 

PCR amplifications were performed in 50 ul volume, with concentrations of the 

chemicals as recommended by the manufacturer and a final concentration of 2.5 uM MgCl2 

and 0.75 units Taqpolymerase per reaction (Promega). The amplifications were done in a 
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Techne Progene thermal cycler, cycling parameters set for 1 cycle 92/37/74° for 3/1/1 min., 

40 cycles 92/37/74° for 1/1/3 min. and ending with 1 cycle 92/37/74° for 1/1/7 min. 

PCR fragments were purified with the 'freeze-squeeze' method (Tautz et al, 1983) 

(gene fragments) or PEG-cleaned (Rosenthal et al., 1993) (transposon fragments). The 

fragments were then sequenced directly with one of the two primers with the Applied 

Biosystems Taq DyeDeoxy terminator cycle sequencing kit in a Perkin-Elmer thermal cycler 

and analyzed in an Applied Biosystems 373 DNA sequencer. 

Sequences were aligned in Sequence Navigator (v. 1.0), a matrix with the 

polymorphisms was created and phylogenetic relationships using parsimony were inferred 

from these in PAUP 3.1.1 (Swofford, 1993) or PAUP 4.0bl (test version, 1998). Alignment 

gaps were treated as data. All transformations were unordered and equally weighted. 

Results 

To address the question of recombination in the nuclei of the black Aspergilli, parts of 

three nuclear genes were sequenced in 21 strains, including an A.japonicus strain and sets of 

different A. niger (mtRFLP-types la-Id) and A. tubingensis (mtRFLP-types 2a, b, d & e) 

strains (see Table 7.1). The sequenced peptidase F gene (PepF) encodes a serine 

carboxypeptidase (van den Hombergh et al., 1994). The phytase A gene (PhyA) catalyzes the 

hydrolysis of phytate to myo-inositol and inorganic phosphate (van Hartingsveldt et al., 

1993; Piddington et al., 1993) and the polygalacturonase II gene (Pgall) is one of the genes 

in the complex degradation of pectin (Bussink et al., 1991; Ruttkowski et al., 1991). All 

three genes are non-essential extracellular degrading enzymes. 

The polymorphic sites of the three genes in the 21 strains (for PepF 18 strains) are 

listed in Tables 7.3-5. Of the 983 nucleotide sites analysed, a high number, 172, were 

polymorphic (17.5%). Of these polymorphic sites 130 were parsimony informative and 36 

had nonsynonymous substitutions (21 of which in parsimony informative sites). The 

sequenced introns contained a higher relative number of polymorphic sites than the exons. 

Of the different techniques to detect recombination the homoplasy test is less suitable to use 

for this data set because of the high number of polymorphic sites (Maynard Smith and Smith, 

pers. comm.). 

Direct examination of the sequences of the three genes shows that three groups of 

strains can be recognised: two groups of A. niger (a la/lc/ld and a lb-group on the basis of 

mitochondrial RFLP) and a group of A. tubingensis strains. In the first part of the Pgall gene 

a block of 20 polymorphic sites is found with 8 similar character states in five lb-type strains 

and in the A. tubingensis group (Table 7.4; bold characters), whereas the remainder of the 

lb-strain sequences resembles the other A. niger types. Thus, the sequenced Pgall gene 

shows a mosaic structure, indicative of an intragenic recombination event. 
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Examination of the PhyA data shows that in A. niger strain Ind 1.8.7 the mutation of a 

cytosine to adenine at site 255 resulted in a stopcodon at that location, leading to a non

functional 'pseudogene'. Without the selection for a functional gene the sequence obviously 

accumulated more mutations (reversions, unique mutations and mutations resulting in 

homoplasy). A. tubingensis strain Ind 1.2.15 also shows quite a number of mutations in 

PhyA, though there is no evidence in the sequenced part of the gene that this also resulted in 

a pseudogene. PepF shows most of its differences between the 3 groups and little within. 

Recombination could be detected in gene genealogies. The genealogy of a locus is best 

described by the most parsimonious (MP) tree. Therefore, MP trees of the three separate 

genes and the combined data set were constructed by branch and bound searches in PAUP 

(Swofford, 1993; 1998). The mosaic Pgall gene was also divided into two subsets, PgaII-1 

containing the first 20 polymorphic sites, including the possibly recombined block, and 

PgaII-2 with the remainder of the sequence. One MP tree for each data set is given in Figure 

7.1. 
PgalM 

Figure 7.1. One MP tree from each of the three gene regions sequenced, from the two subsets of the Pgall gene 
(PgaII-1 and PgaII-2) and for the total data set. Trees are made on basis of all polymorphic characters and rooted 
with the A. tubingensis strains as outgroup. The CI= consistency index; RI= retention index and RC= rescaled 
consistency index are calculated on informative characters only. 

All trees support the recognition of a separate group of A. tubingensis strains. The A. 

niger isolates fall into two groups: one containing the la, lc and Id mitochondrial 

haplotypes, the other the lb haplotypes, where the A. japonicus strains is also most often 
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connected to. The clearest example of recombination is seen in the two subsets of the Pgall 
gene. A group of five lb A. niger strains clusters in PgaII-1 with the tubingensis strains, but 
in the PgaII-2 tree this cluster is found further in the tree with other lb A. niger isolates and 
the A. japonicus strain. In the combined Pgall tree these conflicting data result in a lowering 
of the consistency indices due to more apparent homoplasies. 

Recombination leads to more apparent homoplasies in the genealogy. But, even when 
two sequences have diverged more and mutations have accumulated, more homoplasies are 
expected by chance (compare with the homoplasy test). Comparison of the actual number of 
steps of MP trees with the minimal tree length gives this number of apparent homoplasies. In 
Table 7.6 actual and minimum tree lengths are listed for the different genes and (sub)sets of 
strains. Obviously the black Aspergilli subgroups are not recombining freely, but very rarely 
some recombination may occur. 

Table 7.6. Actual and minimum MP tree lengths - based on informative characters only - for the three genes, two 
subdivisions of Pgall and the Antl transposon. (#) number of MP trees, -* no informative characters. 

Locus 
PepF 
PgaII-1 
PgaII-2 
Pgall 
PhyA 

all three 
genes 

PepF 
PgaII-1 
PgaII-2 
Pgall 
PhyA 

all three 
genes 

Total black 
MP tree 
length 

(#) 
62(1) 
26(5) 
59(1) 
93(1) 
34(5) + 
189 
199 -

Aspergilli 
Min. 
tree 
length 
59 
19 
44 
63 
25 + 
147 
189 = 
147 = 

A. niger la/lc/ld 
MP tree 
length 

(#) 
-
-
2(1) 
2(1) 
3(1) + 
5 
6 

Min. 
tree 
length 

-
-
2 
2 
3 + 
5 
5 
5 

Excess 
steps 

3 
7 
15 
30 
9 

10 
52 

Excess 
steps 

-
-
0 
0 
0 

1 
1 

A. niger 
MP tree 
length 

(#) 
24(1) 
13(5) 
14(1) 
29(1) 
13(2) + 
66 
72 

A. niger lb 
MP tree 
length 

(#) 
-
10(2) 
2(1) 
12(1) 
4 (D + 
16 
16 -

Min. 
tree 
length 
24 
11 
12 
23 
11 + 
58 
66 = 
58 = 

Min. 
tree 
length 

-
10 
2 
12 
4 + 
16 
16 = 
16 = 

Excess 
steps 

0 
2 
2 
6 
2 

6 
14 

Excess 
steps 

-
0 
0 
0 
0 

0 
0 

A. tubingensis 
MP tree 
length 

m 
-
KD 
4(1) 
6(2) 
1 + 
7 
7 

Min. 
tree 
length 

-
1 
4 
5 
1 + 
6 
7 = 
6 = 

Excess 
steps 

-
0 
0 
1 
0 

0 
1 

The Ant 1 transposon was described as occurring in single copy in the genome of strain 
N402, a derivative of strain N400 (Glayzer et al., 1995). Two sets of primers were developed 
for the sequence of the putative transposase. With the first primer set 8 strains were found to 
contain an ̂ //-fragment, with the second set 9 of the 21 strains. Per strain the overlapping 
region of the two sequenced fragments matched exactly. The missing strain in the first 
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Recombination in molecular phytogenies 

dataset had mutations in the region of primer antl-1. Ant] sequences are listed in Table 7.7. 
Of the 97 polymorphic sites, 72 were parsimony informative. The MP Antl tree is shown in 
Figure 7.2; this tree yields only five apparent homoplasies and good consistency indices (CI 
= consistency index = 0.940, RI = retention index = 0.969 and RC = rescaled consistency 
index = 0.911). The topology of this Antl MP tree is not concordant with the trees based on 
the nuclear genes (in Figure 7.2 without the pgal data) and indicates horizontal transmission 
of the transposable element. 
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Figure 7.2. Combination of the MP phylogenetic tree of the three nuclear genes (without the PgaII-1 data set) and 
the Antl MP tree. Strains are listed with their mitochondrial haplotype, * = virus infection and ribosomal 
classification. 

Figure 7.2 also includes data on mitochondrial and ribosomal RFLPs and virus 
infections. The set of strains in this experiments harboured many virus infected strains used 
in earlier experiments (Chapter 2-6) and propartionally more than the 10% infected found in 
nature. These previous experiments showed that the population structure in the black 
Aspergilli can only be explained by assuming (inter- and/or intraspecies) transmission of the 
mycoviruses. The mitochondrial RFLP data do not contradict the nuclear phylogenetic tree 
and both types la and Id seem derived form haplotype lc, which may in turn be derived 
from lb or vice versa. The ribosomal classification of I and II types is in accordance with the 
split of A. niger and A. tubingensis, but the I and I' types occur in both subgroups of A. 
niger. This can be explained either by recombination or by the population having stayed 
polymorphic for this (~ multigenic) character for a long period of time. 
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Conclusions and discussion 

The methods used for detecting recombination within the genome are based on the 

detection of data contradicting clonality. This can either be stretches of DNA showing a 

mosaic structure as found in bacteria, an unexpectedly large number of homoplasies 

necessary to produce a most parsimonious tree of a part of the genome, or incongruencies 

between phylogenies based on different parts of the genome. In this study three unlinked 

genes coding for extracellular degrading enzymes were partly sequenced in 21 different 

black Aspergilli. The genes showed a high level of divergence: 17.5% of the nucleotide sites 

were polymorphic, which may indicate a long history for the presumably asexual black 

Aspergilli. 

Three main groups can be distinguished in the data: A. niger groups lb and la/c/d and 

an A. tubingensis group. The morphological different A. japonicus seems most related to the 

lb A. niger strains. Similarity within these groups is larger than that between them. 

Intragenic recombination in the Pgall is suggested by the mosaic structure of this gene. 

Homoplasies were detected both within MP trees of separate genes and in the MP tree of the 

total data set. The phylogenies of different (parts of) genes were not all congruent. Most data 

confirm asexuality in the black Aspergilli and the sequencing data largely support the trees 

based on mitochondrial and nuclear RFLPs. Some of the data are indicative of occasional 

(para)sexual recombination. 

The most significant recombinational event in these data is found within the Pgall 

gene. The first part of this gene in five strains of the Ib-A. niger type seems to be derived 

from an A. tubingensis strain. From these data we can not conclude whether only a small 

fragment or the remainder of the chromosome was exchanged, or which mechanism has 

caused the recombination. Possible mechanisms could involve mitotic crossing over between 

chromosomes in a transient heterokaryotic diploid or transfer of genomic fragments 

mediated by, for instance, transposable elements. Also, dating the recombinational event is 

difficult. The variation between the five \b-A. niger the A. tubingensis strains in the Pgall-1 

and PgaII-2 subset of the sequence (assuming a similar molecular clock), suggests that this 

recombination event occurred a relatively long time ago (PgaII-1 contains 75% percent of 

the variation found between the strains in PgaII-2). However the five A. niger strains vary 

little within this group and from the other lb-types, which suggests a more recent 

introduction via an A. tubingensis strain that had diverged from the A. tubingensis strains in 

this study. 

The Antl transposon was discovered in strain N402 (derived from N400) through its 

active transposition in the niaD gene (Glayzer et al, 1995). The primer sets were developed 

for overlapping stretches in the coding sequence of the putative transposase gene. 
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Comparison of the sequences of the different strains shows /4wf/-homologues with both 

insertions and deletions, indicating that not all homologues have to be active transposons, or 

that the sequenced part is not that essential for functioning. Per strain the sequences obtained 

with either primerset in the overlapping parts exactly matched, suggesting that only one type 

of Antl is present per strain, presumably in low-copy number. 

Comparison of the phylogeny of the Antl transposable element with those of the 

nuclear gene sequences, indicates that the element is most likely transferred (occasionally) 

between strains. Coevolution can not explain why very similar ^«/7-types are found in 

distantly related strains (e.g. in A. niger types Ind 1.8.3 and Ind 1.8.11 and A. tubingensis Ind 

1.6.23) or very dissimilar types in closely related strains (e.g. in N400 and Ind 1.8.2). Antl is 

a transposon of the class that transposes by a DNA-DNA mechanism and contains short 

inverted terminal repeats (Glayzer et al., 1995; Chapter 1). For Tad, a LINE-like element in 

Neurospora that transposes via reverse transcription via RNA (classl), transfer between 

nuclei has been found in heterokaryons. Because nuclei in heterokaryons of Neurospora do 

not normally fuse, Tad is supposed to have a cytoplasmic intermediate in its transposition 

(Kinsey, 1990b). Other studies indicate that horizontal transfer of transposable elements may 

occur (Kinsey, 1990a; Dobinson et al, 1993; Capy et al., 1994; Daboussi and Langin, 1994; 

Kempken et al, 1998). Kempken and Kilck (1998) recently found evidence for circular, 

possibly intermediate states of the class II transposon Restless. These elements were fused at 

the inverted repeat sites of the transposable elements and contained short insertions of up to 

93 bp long. In our case, Antl may be transferred between nuclei when they fuse, even 

without any further parasexual recombination, or may have a hypothetical and unknown 

cytoplasmic state that mediates transfer between nuclei. 

Transposable elements have the ability to induce mutations because of their 

transposition and can promote changes in gene expression, in gene sequence, and probably 

in chromosome structure (Berg and Howe, 1989). They can also incorporate parts of their 

host's genome, as illustrated by the Antl sequence that has strong similarities to the 3' 

coding and downstream untranslated region of the amyA gene of A. niger (Glayzer et al, 

1995). In transposable elements incorporated genomic parts may also recombine when 

transferred to another nucleus. 

Earlier experiments showed that some inter- or intraspecies recombination should occur 

to explain the spread of viruses throughout the black Aspergillus population (Chapter 3-6). 

Toth et al. (1998) showed that when different mitochondrial types are brought together 

recombination occurs readily. Mitochondria may fuse to recombine. In our data set we have 

no proof of such mitochondrial recombination. The presence of multiple copies of the 

mitochondrial genome per mitochondrion may perhaps obscure such recombination. The 

ribosomal classification of I and II types is in accordance with the split of A. niger and A. 
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tubingensis, but the I and I' designation must either have recombined or the population has 

remained polymorphic for this (~ multigenic) character for a longer period of time. 

Most strains used in this study are wildtype isolates from the same site in Jakarta, 

Indonesia. The diversity in strains on this site for nuclear and cytoplasmic characters is 

enormous (Chapter 2 and this Chapter). However, strains N400, used for decennia as 

laboratory strain, and Z 1.1, a Dutch hospital isolate, fit in nicely with the Indonesian strains. 

This supports the idea that the black Aspergilli have an efficient aerial distribution and a 

rather homogeneous world-wide population (Chapter 2), and that due to a large 'spore bank' 

this population can be quite stable over time (Anderson and Kohn, 1998). 

The black Aspergilli can be considered to be successful and diverse asexual organisms. 

We find evidence in the phylogenetic data described here for occasional parasexual 

recombination, perhaps through transient heterokaryon formation or transfer of 

chromosomal fragments. Nuclear and mitochondrial recombination via nuclear or 

mitochondrial fusions seem to occur at very low rates, but recombination via transposition of 

transposable elements may occur at a much higher frequency. 
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8 
General Discussion 

8.1 Black Aspergillus population structure. 

The imperfect filamentous black Aspergilli form a complex group of species. Some 

members such as A. carbonarius and A. japonicus can be recognized on morphological 

characteristics, other types such as A. niger and A. tubingensis can only be distinguished on 

the basis of different molecular markers (Raper and Fennel, 1965; Kusters-van Someren et 

al, 1991; Megnegneau et al, 1993; Varga etal, 1993; 1994a). 

The black Aspergilli can be selectively isolated on media with 20% tannin from a large 

variety of substrates (Rippel, 1939). All black Aspergillus types share, next to their 

characteristic black conidiospore color, this ability to efficiently degrade high concentrations 

of the plant polymer tannin (Chapter 2). These tannins form complexes with proteins that are 

difficult to mineralize. Such complexes may control the availability of organic nitrogen in 

plant litter (Northup et al, 1995). The black Aspergilli may thus, with their efficient tannin 

degrading system, occupy a special niche in the control of the natural nitrogen cycle. 

For the experiments described in this thesis, populations of black Aspergilli were 

isolated from soil samples collected world-wide. The isolates from these populations were 

characterized with mitochondrial Restriction Fragment Length Polymorphisms (mtRFLPs) 

(Varga et al., 1993; 1994a; Kevei et al, 1996; Hamari et al, 1997). Classifications based on 

MtRFLPs are mostly consistent with those based on other molecular techniques like 

ribosomal RFLPs, RAPDs and genealogies based on nuclear genes (Kusters-van Someren et 

al, 1991; Megnegneau etal, 1993; Chapter 7). 

In the sampled natural populations mixtures of A. niger types la-Id, A. tubingensis 

types 2a-2f and A, carbonarius and A. japonicus types were found. Especially the l b& \cA. 

niger and 2a & 2b A. tubingensis types occurred world-wide in high numbers. In general, 

several to many different haplotypes were present in local populations. Obviously, an 

efficient aerial distribution of the black conidiospores causes the wide distribution of 

haplotypes and the well-mixed population of spores in the soil (Chapter 2), leading to similar 

populations over large distances. 
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The black Aspergilli are considered to be soilborne fungi. Judging by the large numbers 
of different strains on a location, what we sampled was a sporebank full of conidiospores of 
different black Aspergilli rather than growing colonies. The presence of such a black 
Aspergillus sporebank (Anderson and Kohn, 1998) world-wide will also lead to a more 
stable population structure over time, depending on the survival of conidiospores. 

Especially in warmer and more tropical regions high densities of black Aspergilli can 
be isolated per gram substrate (Chapter 2). Once conditions favor growth, large numbers of 
germinating spores present in such areas will have to compete for resources. In less dense 
(colder) areas the chances for different black Aspergillus strains to get in close contact are 
smaller. Estimates of the amount of black Aspergillus spores present world-wide can be 
made on the basis of the densities found: 10l8-1019 spores would probably be a conservative 
estimate (based on 1 spore per cm3 in the top-layer world-wide). 

8.2 Heterokaryon incompatibility. 
When two strains grow close together, the possible fusion of their hyphae and survival 

of a formed heteroplasmon will depend on the (absence of) heterokaryon incompatibility 
reactions between them. For the exchange of nuclear and cytoplasmic genetic information 
which may result in infection of foreign genetic elements and parasexual recombination, 
(transient) contact between strains is necessary. Leslie and Zeller (1996) described different 
stadia in a heterokaryon incompatibility reaction: prefusion (under the control of hsi-genes), 
fusion (het-genes), postfusion (sup-genes) and finally apoptosis (apoptotic genes). 

In the black Aspergilli nothing is known about the mechanism of incompatibility. Two 
strains in our collection show a heterokaryon self-incompatible phenotype and their 
heterokaryon formation (even between isogenic lines) is arrested in a prefusion stage. All 
other (50) examined strains are heterokaryon self-compatible, but unable to form 
heterokaryons with most other strains (Chapter 3). In these strains het- (heterokaryon 
incompatibility) genes and genes involved in later stages of the incompatibility reactions 
may be active (Chapters 3 and 4). In general the vehemence of an incompatibility reaction is 
assumed to depend on the number of genes involved. In the black Aspergilli many pre- and 
postfusion acting incompatibility genes and alleles could have evolved, which would explain 
the large number of vegetative compatibility groups and the often strong incompatibility 
reactions. 

It is concievable that many extracellular, membrane, or intracellular protein that form 
complexes are involved in such incompatibility reactions. Some genes code for proteins that, 
when paired with a product of another allele or other gene (allelic and non-allelic 
incompatibility reactions), may either produce or lack a functional product, which leads to a 
cascade of reactions ending in apoptosis; these are strong het-gtnes. Other genes may not 
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lead to fatal reactions, but only influence the fitness of the formed heterokaryon as some 

•partial' het-genes seem to do. Mutations in the systems for the recognition of other strains 

may result in pre-fusion incompatibility. In this way heterokaryon incompatibility could be a 

byproduct of mutations in functional genes and the existence of a large number of 'net '-

genes can be explained. 

A positive (side-)effect of heterokaryon incompatibility for individual black Aspergillus 

strains could be protection from recombination or infection. The prevention of, or reduction 

in somatic transfer of, deleterious elements can maintain the het-gtnts in a population if 

these elements are more important than positive fitness effects from mitotic recombination 

via the parasexual cycle. 

The chance of two random strains in a population being heterokaryon compatible is 

small (Chapter 2 and 3). Even in areas where large numbers of black Aspergilli are present 

the chance of successful heterokaryon formation is minimal. The probability of a genetic 

element transferring during a heterokaryon incompatibility reaction may depend on its 

physical size (larger elements may be more restricted) and its location in the cell (cytoplasm 

may be more accessible than nuclear or mitochondrial compartments). Our experiments on 

horizontal transfer show that some elements are not transferred, but that others seem to have 

spread throughout the population (see §8.3). 

8.3 Recombination and horizontal transfer 

8.3.1 Mitochondria 

The mitochondria of the black Aspergilli can be classified by their restriction fragment 

length polymorphisms (mtRFLPs). The different species A. carbonarius, A. japonicus, A. 

niger and A. tubingensis can be distinguished and subgroups can be determined (Varga et al, 

1993; 1994a; Kevei et al. 1996; Hamari et al. 1997). The mtRFLP technique is easy to 

perform and large numbers of isolates could thus be characterised (Chapter 2). 

Comparison of mtRFLP data with data of nuclear gene genealogies and ribosomal 

RFLPs (Chapter 7) confirms that the mitochondrial classifications are quite accurate. No 

horizontal transfer of mitochondria was detected in our set of natural isolates, though 

recombination between mitochondria and even exchange can be forced in protoplast fusions 

(Kevei et al.. 1997; Chapter 4). A mitochondrial based oligomycin resistance (difficult to 

obtain sponatneously) can be used as a transferable marker for cytoplamic contact. 

Mutations (and of course recombination cannot be ruled out) may lead to new 

mitochondrial haplotypes. Our data suggest for instance that both types la and Id are 

derived form the lc-haplotype (Chapter 7). Toth et al. (1998) showed that when different 

mitochondrial types are brought together recombination occurs readily. The presence of 
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multiple copies of the mitochondrial genome per mitochondrion and multiple mitochondria 
per fungal cell may limit detectable recombination in nature. 

3.8.2 Transposable elements 
So far three transposons have been described in black Aspergillus strains (Glayzer et 

ah, 1995; Amutan et ai, 1996; Nyyssonen et ai, 1996). The Antl (A. niger transposon) 
transposon was discovered in strain N402 (derived from N400) through its active 
transposition in the niaD gene and is considered to be a single or low copy number class II 
(DNA-DNA) transposon (Glayzer et ai, 1995). Using two primer sets developed for the 
putative transposase gene of Antl, Antl -homologous sequences were found in nine out of 21 
examined strains and nucleotide sequences were determined. Comparison of the sequences 
of the different strains shows ,4/tf/-homologues with both insertions and deletions, indicating 
either that not all homologues have to be active transposons (perhaps silenced transposons or 
/weiwfotransposons?), or that the sequenced part is not essential for transposition. 

Comparison of the phylogeny of the Antl transposable element with those of nuclear 
gene sequences shows that Antl is most likely (occasionally) transferred between strains, 
perhaps even between species. Co-evolution is not likely, since similar Antl sequences are 
found in diverged black Aspergilli and, on the other hand, diverged sequences are found in 
closely related strains. A possible transmittable stage of a class II DNA-DNA transposon was 
recently described by Kempken and KOck (1998). They found ciruclar states of the 
transposon Restless, which were fused at the inverted repeat sites and contained short 
insertions of genomic DNA of up to 93 bp long. In our case, similar plasmid-like 
intermediate states of Antl may either be transferred between nuclei when they fuse, even 
without any further parasexual recombination or may have a hypothetical cytoplasmic state 
that mediates transfer between nuclei. Transfer of an artificial and autonomously replicating 
plasmid in A. niger could occur via the cytoplasm or perhaps more likely via transient 
contact between (dissimilar) nuclei. The described rate of the AR plasmid transfer between 
nuclei indicates that when heterokaryons are formed exchanges between nuclei may occur 
very frequent (Debets, 1998). 

Transposable elements have the ability to induce mutations because of their 
transposition and their footprints and can promote changes in gene expression, in gene 
sequence, and probably in chromosome structure (Berg and Howe, 1989). They can also 
incorporate parts of their host's genome, as illustrated by the Restless transposon (Kempken 
and KOck, 1998) and by the Antl sequence that has strong similarities to the 3' coding and 
downstream untranslated region of the amyA gene of A. niger (Glayzer et ai, 1995). 
Transposition of class-Il transposon within a genome is in general a rather rare incident, but 
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the genomic parts incorporated in transposable elements may be responsible for 
recombination within a nucleus and between different nuclei. 

8.3.3 Black Aspergillus mycoviruses. 
The major part of this thesis deals with mycoviruses in the black Aspergilli and their 

possibilities of horizontal transfer. These mycovirus infections, found world-wide in 
different black Aspergillus haplotypes in a frequency of approximately 10%, show a variety 
of dsRNA fragments and patterns in their infections (Chapter 2). Though no sequences of 
these viruses have been determined, their organization of dsRNA and particles suggest that 
they are related to the Totiviridae, but Partitiviridae may also be present. The 'basic' viruses 
containing one (or two) dsRNA fragments can be accompanied by both defective and 
satellite dsRNA fragments, which may account for the high variety and similarities in 
detected banding patterns. Multiple infections with mycoviruses can occur. Although the 
mycoviruses do have a protein coat they are not infectious outside the mycelium; perhaps the 
coat protects against degradation within the cytoplasm. 

Infection with mycoviruses is not without fitness costs for black Aspergillus strains 
(Chapter 6): infected strains have a reduced growth rate, produce fewer spores and are less 
competitive with other strains when compared with isogenic virus free strains. One of the 
natural isolates (Ind 1.8.16) shows these effects in an extreme phenotype. Vertical transfer to 
the asexual spores is very efficient and no spontaneous loss was detected. Population genetic 
models predict that deleterious elements should disappear from a population, unless they 
have an extra route of transfer besides vertically transmission to the offspring. 

Horizontal transfer may occur when two mycelia fuse. In many filamentous fungi the 
ability to form anastomoses between different strains is regulated by heterokaryon 
incompatibility or Aef-genes. Strains can be tested for heterokaryon compatibility in different 
ways. One of the most often used methods is the forcing of different chlorate resistant/nitrate 
non-utilizing strains to form a heterokaryon on medium containing nitrate as sole nitrogen 
source. Tests between black Aspergillus strains show that the majority of natural isolates are 
heterokaryon incompatible. This heterokaryon incompatibility may involve both pre- and 
postfusion reactions. Combinations of heterokaryon compatible and incompatible strains 
were tested for their ability to transfer mycoviruses between them. In compatible 
combinations mycoviruses were transmitted very easily, but in incompatible combinations 
no spontaneous transfer could be detected. When the mycelia were in close contact and 
regularly damaged transfer of a single dsRNA fragment was detected in one of the 
incompatible combinations (Chapter 3). 

Some of the heterokaryon incompatibility reactions can be evaded by using protoplast 
fusions (Chapter 4). The cell wall and some membrane components of the incompatibility 
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reaction-network are thus bypassed. However, the intraspecies transfer of mycoviruses 

remains limited in the black Aspergilli, whereas interspecies transfer from black Aspergilli to 

A. nidulans and vice versa is successful. Obviously cytoplasmic components of the 

incompatibility reactions can also result in apoptotic reactions in the black Aspergilli. 

Exchange of a mitochondrial oligomycin resistance marker is not necessarily correlated with 

mycovirus transfer. This suggests that small amounts of cytoplasm can be survived in 

heterokaryon incompatibility reactions and that tranfer of the mitochondrial resistance does 

not imply that viruses are also transferred. 

The divergence between the black Aspergilli and A. nidulans may also have resulted in 

diverged Zief-genes. While the species may perhaps very rarely form anastomoses in nature 

due to lack of recognition, postfusion reactions may have become less severe. This would 

explain why A. niger - A. nidulans interspecies protoplast fusions yield more virus transfer 

than intraspecies fusions between black Aspergilli. 

Fusarium poae has a similar niche to the black Aspergilli and in natural isolates of this 

fungus mycoviruses were always (Fekete et al, 1995). Similar sized dsRNA fragments occur 

in both species. After protoplast fusions between F. poae and black Aspergillus strains, black 

Aspergillus stains could be recovered which were infected with the F. poae viruses. This 

shows that at least the viruses are viable in their new host and thus that viable infections 

could occur in nature after interspecies contact. 

A curious case is the heterokaryon self-incompatible strain N062. This strain does not 

form anastomoses with itself or any of the other tested strains. However, via protoplast 

fusion with A. nidulans viruses can be introduced, though these cannot spread between 

different colonies of strain N062. In effect this strain is immune to virus infections even from 

isogenic lines. Resistance to viruses was not observed in the other black Aspergilli used: all 

strains could be infected with virus, although the strength of the heterokaryotic 

incompatibility response influences the infection rate. 

An alternative explanation for the wide-spreaded infection in the black Aspergilli could 

be an old infection that co-evolved with the species. This explanation is less likely because 

so many similar infection patterns would not be expected to occur in very diversified lines. 

8.3.4 Nuclear recombination 

In a heterokaryon, different nuclei can fuse to form a (transient) diploid. Upon 

haploidisation reassortment of chromosomes as well as mitotic crossing-overs may lead to 

recombination. This has been shown to occur between isogenic lines under selective 

laboratory conditions. In nature parasexual recombination may be limited by the almost 

omnipresent heterokaryon incompatibility between strains (Chapter 3). Recombination may 
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also be the result of exchanges with genetic elements of foreign origin such as transposable 

elements. 

Remnants of recombination in nuclear genes may be detected by a mosaic structure, 

where blocks of high similarity are interspersed with blocks of high sequence divergence in 

the gene or genome (Maynard Smith, 1992). An unexpected large numbers of apparent 

homoplasies in a most parsimonious tree of a gene is also suggestive of recombination 

(Hudson and Kaplan, 1985; Maynard Smith and Smith, pers. comm.). A third method is 

based on inconsistencies in phylogenies of different parts of the genome (Woese et al., 1980; 

Dykhuizen and Green, 1991; Dykhuizen et al, 1993; Hey and Kliman, 1994). The last 

method revealed that (a considerable number of) recombination occurs in several fungal 

species previously presumed to be asexual (Burt et al., 1996; Koufopanou et al., 1997; 

Geiser et al., 1998). The comparison of phylogenies of different host species and symbionts 

or parasites can in a similar manner be used to determine coevolution ('clonal') vs. 

horizontal transfer ('recombination'). 

Nuclear sequences of different extracellular non-essential genes were determined in a 

variety of black Aspergillus strains. Phylogenies based on these sequences have been 

compared. In the pgall gene a presumably intragenic recombination event has lead to a 

mosaic structure, extra homoplasies and incongruencies between genealogies. Overall there 

seems to be some but very little recombination in the population. The black Aspergilli appear 

to be a largely clonal population with incidental recombination either through heterokaryon 

formation or through transfer of genetic elements with incorporated genomic parts (Chapter 

7). 

In one of the strains a non-functional pseudogene of phytaseA was sequenced, with a 

stopcodon in the sequenced part. Different phytase genes have been described in black 

Aspergilli and phytaseA is obviously not essential. However, without selection for a 

functional gene the defective PhyA locus accumulated much more mutations than sequenced 

parts in other strains with the same functional gene. 

The ribosomal RFLP classification of I and II types is in accordance with the split of A. 

niger and A. tubingensis, but the I and I' types within A. niger must either have recombined 

or the population has remained polymorphic for this (~ multigenic) character over a longer 

period of time. 
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Summary 
This thesis deals with the horizontal transfer of genetic elements in the black Aspergilli. 

The black Aspergilli form a complex group of asexual species. All share a characteristic 

black conidiospore color and the ability to efficiently degrade tannin. Selective isolation of 

all different black Aspergillus types is possible on media with 20% tannin. Tannins can form 

complexes with proteins that are difficult to mineralize. Therefore, the strains may have a 

special niche in the control of the natural nitrogen cycle. Black Aspergilli occur worldwide 

and especially in warmer regions at high densities. The spores have an efficient aerial 

distribution, which produces a well-mixed sporebank in soil throughout the world. 

Under laboratory conditions isogenic lines are capable, after hyphal fusions, to form a 

heteroplasmic heterokaryon and (transient) diploids. This so-called parasexual cycle can 

result in recombination via reassortment of chromosomes, mitotic crossing-over and/or 

exchange of cytoplasmic genetic elements. Most of the natural isolates are heterokaryon 

incompatible with one another and unable to form a stable heterokaryon. About the exact 

mechanism of the heterokaryon incompatibility reactions in the black Aspergilli little is 

known. Confrontations between heterokaryon self-incompatible strains suggest that 

prefusion genes are involved. The fact that protoplast fusions are partly able to overcome 

incompatibility reactions suggests that also fusion and postfusion genes are involved. 

One of the cytoplasmic candidates for horizontal transfer is the mitochondrion. 

Different mitochondrial haplotypes can be distinguished, corresponding with different black 

Aspergillus types. No horizontal transfer or recombination of mitochondria was observed in 

our natural isolates, though in protoplast fusions mitochondria can recombine. In nature new 

mitochondrial types may result from mutations. 

Most of the transfer experiments in this thesis were done with cytoplamsic dsRNA 

mycoviruses. In nature 10% of the population is infected with a variety of different dsRNA 

fragments of different viral origins. These mycoviruses can cause serious reductions in their 

host's fitness on traits as spore production and growth rate. Population genetic models 

predict that deleterious elements should disappear from a population, unless they have an 

extra way of transfer than just vertical transmission to offspring. Interspecies transfer of 

mycoviruses with species like Fusarium poae was in our experiments less difficult to 

achieve (and thus perhaps more likely in nature) than intraspecies transfer between different 

black Aspergillus types. 

In a diploid both interchromosomal and intrachromosomal mitotic recombination could 

take place. However, molecular data suggests that there is little (para)sexual recombination 

in the black Aspergillus population, in contrast to other presumably asexual fungi tested so 

far. Recently transposable elements have been found in black Aspergillus strains. These do 
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seem to have transposed between different, quite unrelated strains. Circular intermediates of 
these transposable elements may also transfer little parts of genomic DNA, which may lead 
to some recombination. The size of the genetic elements may influence the chance on 
horizontal transfer during cell contact: no detectable transfer of mitochondria, very little of 
mycoviruses and some transfer of transposable elements. 
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Samenvatting 
Dit proefschrift gaat over de horizontale overdracht van genetische informatie in de 

zwarte Aspergilli. Deze zwarte Aspergilli bestaan uit een complexe groep aseksuele soorten. 

Allemaal bezitten ze karakteristiek zwart gekleurde conidiosporen en de eigenschap om 

tannine efficient af te breken. Selectieve isolatie van alle verschillende typen zwarte 

Aspergilli is mogelijk met media die 20% tannine bevatten. Deze tanninen kunnen met 

eiwitten complexen vormen (die moeilijk af te breken zijn). Mogelijk hebben de zwarte 

Aspergilli daardoor een special niche in de stikstofcyclus in de natuur. De zwarte Aspergilli 

komen wereldwijd voor en kunnen vooral in warmere streken hoge dichtheden bereiken. De 

sporen hebben een efficiente verspreiding via de lucht, wat zorgt voor een goed gemengde 

'sporenbank' in de bodem over de hele wereld. 

Onder laboratorium omstandigheden kunnen isogene stammen, na fusie van hyphe 

draden, een heteroplasmatisch heterokaryon en (tijdelijk) een diploid vormen. Deze 

zogenaamde 'para'seksuele cyclus kan tot recombinatie leiden via onafhankelijke 

hergroepering van chromosomen, mitotische overkruising en/of uitwisseling van 

cytoplasmatisch genetische elementen. De meeste natuurlijke isolaten zijn echter niet in staat 

om met elkaar een stabiel heterokaryon te vormen en zijn dus heterokaryon incompatibel. 

Het precieze mechanisme waarlangs heterokaryon incompatibiliteitsreacties in de zwarte 

Aspergilli verlopen is niet bekend. Experimenten met heterokaryon zelf-incompatibele 

stammen geven een indicatie dat genen betrokken zijn bij de herkenning van andere 

stammen (prefusie). Dat protoplasten fusies een deel van de incompatibiliteitsreacties helpen 

omzeilen suggereert dat verder ook genen betrokken zijn bij de fusie zelf en de reacties 

daarna. 

Het mitochondrium is een van de cytoplasmatische elementen die horizontaal zou 

kunnen overerven. Verschillende mitochondriale typen kunnen worden onderscheiden, die 

overeenkomen met de verschillende herkenbare zwarte Aspergillus typen. Horizontale 

overdracht of recombinatie van mitochondrign kon niet worden aangetoond in de bekeken 

isolaten, alhoewel dit wel kan gebeuren tijdens protoplasten fusies. Waarschijnlijk dat in de 

natuur nieuwe type mitochondrien ontstaan door mutaties. 

De meeste experimenten beschreven in dit proefschrift zijn gedaan naar de overdracht 

van dsRNA schimmelvirussen. In de natuur is zo'n 10% van de populatie gei'nfecteerd met 

een verscheidenheid aan dsRNA fragmenten van verschillende virale herkomst. Deze 

mycovirussen kunnen de 'fitness' van hun gastheren flink reduceren. Populatie genetische 

modellen voorspellen dat zulke fitnessverlagende elementen uit de populatie zullen 

verdwijnen tenzij ze niet alleen aan de nakomelingen worden overgedragen, maar ook 

horizontaal naar andere stammen worden overgedragen. Overdracht tussen zwarte 
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Aspergillus stammen en andere soorten als Fusarium poae bleek in onze experimenten 

gemakkelijker dan overdracht tussen verschillende zwarte Aspergilli onderling. Dit kan er op 

wijzen dat ook in de natuur overdracht tussen verschillende soorten gemakkelijker zou 

kunnen zijn. 

In een diploide kern kan mitotische recombinatie zowel binnen als tussen 

chromosomen plaatsvinden. Op grond van onze moleculaire data blijkt er echter weinig 

(para)seksuele recombinatie plaats te vinden in de populatie van verschillende zwarte 

Aspergilli. Dit is in tegenstelling tot andere geteste voorheen aseksueel geachte schimmels 

die wel bleken te recombineren. Onlangs zijn ook de eerste 'transposable elements' 

(nucleaire overdraagbare fragmenten) aangetoond in zwarte Aspergillus stammen. Deze 

overdraagbare elementen lijken wel te zijn uitgewisseld en zelfs tussen niet nauw verwante 

stammen. De circulaire tussenstadia van deze overdraagbare elementen kunnen stukjes 

genomisch DNA meenemen die elders zouden kunnen recombineren. De overdracht van 

genetische elementen tijdens celcontact zou bepaald kunnen worden door hun fysieke 

afrnetingen: kern en mitochondrium wisselen niet waarneembaar uit, mycovirussen zelden 

en transposable elementen redelijk vaak. 
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Inleiding 
Bij de werkgroep microbiele/populatiegenetica van de vakgroep Erfelijkheidsleer wordt 

al jaren onderzoek gedaan aan verschillende filamenteuse schimmels. Rolf Hoekstra en Fons 

Debets boden mij binnen deze groep alle ruimte en steun om aan de genetica van de zwarte 

Aspergilli te werken en om in een fijne, vriendschappelijke omgeving een heleboel te leren. 

Behalve veel dank aan deze twee begeleiders, natuurlijk ook veel dank aan de 'vaste' 

werkgroepleden Klaas, Gerda, Marijke en Edu en andere mensen van de vakgroep 

Erfelijkheidsleer, die tesamen de omgeving voor dit promotieonderzoek vormden. 

Materiaal en Methode 
Het genetisch materiaal van de onderzoeker werd liefdevol samengebracht en 

grootgebracht door Abe en Steeph van Diepeningen-Nagelkerke, lieve ouders voor het leven. 

Ik ben heel blij dat pappa en mama altijd paraat staan voor me en dat er van het 'spreek-met-

je-vader-en-het-komt-in-orde' nog altijd gebruik kan worden gemaakt. 

Een groot deel van mijn erfelijke materiaal, en nog veel meer, wordt gedeeld met mijn 

kleine-grote zusje Jitske. Jip is altijd bereid om te helpen relativeren en zonodig met 

(gedeelde) chocolade de stemming te verbeteren. Zij merkte ook na een dagje meelopen op 

het lab fijntjes op dat wetenschappelijk onderzoek toch echt voor het grootste deel uit 

schoonmaken en opruimen bestaat. 

De rest van het genetisch materiaal werd geleverd door verschillende zwarte Aspergilli, 

die te voorschijn zijn gekomen uit allerlei vieze zakjes en obscure potjes met grand, 

meegebracht of toegezonden vanuit allerlei mooie plekken ter wereld. Iedereen die een 

'schimmeltje' heeft bijgedragen, bij deze bedankt. 

Resultaten 
Veel van de beschreven resultaten zouden er niet zijn geweest zonder de hulp van 

'mijn' studenten en stagiaires. Heleen Broekhuis, Hanneke Jousma, Alex van Harn, Christina 

Rekers, Annemarie de Jong, Oscar van Marie, Marga Kluitenberg, Gaby Scholte en Robert 

Vellema hebben dan ook een 'significante' tot 'zeer significante' bijdrage geleverd aan het 

in dit proefschrift beschreven practische werk. Ik ben hen dan ook zeer dankbaar voor hun 

hulp, de gezellige tijd samen en hun vriendschap. 

Also students (or some would say 'slaves') from abroad came to participate in my work 

and to join the joyfull laughter in the group. Roland Grey, David McLay en Jarkko Routtu 

thanks for what you did! 
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Bram van de Pas was misschien niet mijn student, maar ondertussen wel een goede 

vriend en van zijn resultaten heb ik goed gebruik kunnen maken. Olga en Grad hebben dit 

proefschrift op taalfouten nagelezen en er de komma's in geplaatst. En dan is er nog een hele 

rits 'oude' en 'nieuwe' collegas's; Maarten, Arjan, Alex, Marijn, Duur, Peter, Ronny, Judith, 

Henk en Menno die samen met tal van studenten de werkvloer opluisterden. Ook Eeke Anne 

en andere vrienden van buiten de vakgroep bedankt voor het luisteren en misschien kunnen 

we het nu weer eens over wat anders hebben dan over mijn proefschrift. 

Discussie en Conclusies 
Het fenotype wordt bepaald door de combinatie van genotype en milieu. Dit geldt ook 

voor het fenotype van een proefschrift. Dit proefschrift bevat net als de schimmel waarover 

het gaat acht 'linkage groups' en nog wat andere informatie. Op het verschijnen en de 

uiteindelijke vorm van dit proefschrift zijn veel mensen van invloed geweest, die ik hiervoor 

zeer erkentelijk ben. Allen daarvoor bedankt en in het bijzonder Marijn. 

Weinig mensen zullen zo'n lief, gek en aardig vriendje hebben als ik. We leven 

(werken, wonen en knutselen) ondertussen al heel wat jaartjes samen en ik vrees dat ik niet 

meer zonder kan: Marijn, ik hou van je. 

j ^ * * -

140 



Curriculum Vitae 

Op 20 april 1969 werd ik in Araemuiden geboren. In dit Zeeuwse stadje bezocht ik de 

kleuterschool - waar ik een grote aversie kreeg tegen het gedwongen met de armen over 

elkaar zitten - en de lagere school, waar vrij lezen mijn favoriete 'vak' was. Aan de 

Stedelijke Scholengemeenschap te Middelburg behaalde ik in 1987 mijn gymnasium p 

diploma. In hetzelfde jaar begon ik met de studie biologie aan de Landbouwuniversiteit te 

Wageningen en sloot het eerste studiejaar af met de propedeuse (cum laude). In 1992 

studeerde ik eveneens cum laude af met als afstudeervakken microbiologic en genetica en na 

een stage genetica aan het St. Patrick's College te Maynooth, Ierland. 

Aansluitend begon ik als onderzoeker in opleiding in dienst van de Nederlandse 

organisatie voor Wetenschappelijk Onderzoek (NWO) met een promotieonderzoek bij het 

laboratorium voor Erfelijkheidsleer van de Landbouwuniversiteit. Ruim vierenhalf jaar 

onderzoek aan 'Horizontale overdracht van genetische informatie in de aseksuele schimmel 

Aspergillus niger' heeft geresulteerd in dit proefschrift. 

Na mijn promotieonderzoek was ik een half jaar in dienst van het laboratorium voor 

Erfelijkheidsleer als toegevoegd docent en deed freelance wat 'computerwerk' en maakte 

examenvragen voor de module 'Evolutie' van de Open Universiteit. Per 1 januari 1999 treed 

ik in dienst als postdoc op een EG-gefmancieerd project aan oplosmiddelresistente stammen 

van de bacterie Pseudomonas putida bij het laboratorium voor Industriele Microbiologic van 

de Landbouwuniversiteit te Wageningen. 
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Het begon met een kleine eel, die splitste zich in twee 

en even later zwom opeens de eerste vis in zee. 

Toen hij pootjes kreeg, klom hij op het land. 

En daarna ging hij ook nog vliegen. 

Ja, Darwin had het goed gezien: 

de bijbel bleek te liegen. 

De eerste mens, een Sapiens, werd later Neanderthaler. 

Sindsdien is er niet veel gebeurd; hij werd alleen wat kaler. 

Maar gisteren toen zag ik jou: een schoonheid, zo fantastisch! 

Jij bent zo mooi, ik denk dat nou de evolutie af is. 

Ja, Darwin kan tevreden zijn. 

De evolutie is voltooid. 

Zo machtig mooi was de mens nog nooit. 

Jij hebt die taak volbracht 

Miljoenen jaren lang gewacht, 

maar nu jij er bent is het afl 

Supporters, patsers, politici en wilde wegpiraten 

Het is overal zo goed te zien: we stammen van de apen. 

Het is dus maar goed dat jij er bent, als pleister op de wonde. 

Of zou er toch een God bestaan, 

die jou hier heeft gezonden? 

Het begon met een kleine eel 

en jij, jij bent het einde. 

Pater Moeskroen, Darwin kan tevreden zijn. 
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