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Stellingen 

behorend bij het proefschrift 'Dietary factors that affect carotenoid bioavailability' van Karin H. van het Hof. 

Wageningen, 4 juni 1999. 

1. "Natuurlijk" wordt vaak ten onrechte verward met gezond; wat betreft de 

biobeschikbaarheid van carotenoTden zijn juist de "onnatuurlijke" en technologisch 

bewerkte bronnen beter (dit proefschrift). 

2. Optimalisatie van de biobeschikbaarheid van carotenoTden is geen geldig excuus voor 

een vetrijke maaltijd (dit proefschrift). 

3. Homogenisatie verbetert de biobeschikbaarheid van carotenoTden uit groenten. De 

Hollandse stamppot is daarom zo slecht nog niet (dit proefschrift). 

4. Een beperking in de aanwezigheid van gevalideerde biomarkers en gevoelige 

analysemethoden is een limiterende factor voor de vooruitgang in de 

voedingswetenschap. 

5. Het gebruik van functional foods noopt tot een verdergaande individualisering van het 

eetgedrag. 

6. Zolang een meerderheid van de vrouwen valt op mannen die ouder en minstens even 

intelligent zijn als zijzelf, vindt emancipatie aan de top van organisaties geen doorgang. 

7. Voor sommige mensen veroorzaakt de stiptheid van de Nederlandse Spoorwegen 

meer stress dan zijn vertragingen. 
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Abstract 

Dietary factors that affect carotenoid bioavailability 
PhD thesis by Karin H. van het Hof, Department of Human Nutrition and Epidemiology, 
Wageningen Agricultural University, the Netherlands, June 4 1999. 

Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. 
To better understand the potential benefits of carotenoids, we investigated the bioavailability of 
carotenoids from vegetables and dietary factors which might influence carotenoid bioavailability. 

In a four weeks intervention trial, we found that the increases in plasma concentrations of (3-
carotene and lutein after consumption of a high vegetable diet were 14% and 67%, respectively, of 
those after consumption of the same amount of carotenoids, supplied in their purified form. In 
another study, it appeared that the bioavailability of p-carotene was particularly low from spinach. 
Broccoli and green peas were more effective in enhancing plasma concentrations of p-carotene 
after four days consumption (relative bioavailability ca. 3%, 74% and 96% for spinach, broccoli and 
green peas, respectively). Disruption of the vegetable matrix by mechanical homogenisation 
significantly improved the bioavailability of lutein from spinach by 14% and of lycopene from 
tomatoes by 20 to 60%. One hour additional heating of the tomatoes (100°C) also enhanced the 
bioavailability of lycopene but this effect lacked significance. 

Carotenoids are absorbed in association with dietary fat and therefore the presence of dietary 
fat is thought crucial for carotenoid absorption. Four weeks consumption of a full-fat margarine 
(80% fat), supplemented with a-carotene and p-carotene, effectively enhanced blood 
concentrations of these carotenoids. In a further study, we found that in healthy adult volunteers, 
only a small amount of fat (i.e. 3-5 g per meal) was sufficient to ensure uptake of a-carotene and p-
carotene. For lutein supplied as lutein esters, however, the amount of fat required for optimal 
uptake was greater. Daily consumption of an unabsorbable fat replacer, sucrose polyester, with 
the main meal for four weeks, significantly reduced the bioavailability of carotenoids. Plasma 
concentrations of p-carotene and lycopene were reduced by 20% and 38% if 3 g/d sucrose 
polyester was consumed. 

Interaction among carotenoids appeared to interfere with carotenoid bioavailability in some but 
not all cases. Simultaneous ingestion of a-carotene and p-carotene did not affect the bioavailability 
of p-carotene whereas four weeks supplementation with p-carotene and lutein significantly 
reduced the plasma concentration of lycopene by 39%. 

In conclusion, the type of food matrix in which carotenoids are located largely determines their 
bioavailability. Processing, such as mechanical homogenisation or heat treatment, has the 
potential to enhance the bioavailability of carotenoids from vegetables. The amount of dietary fat 
needed to ensure carotenoid absorption seems low, although it depends on the physico-chemical 
characteristics of the carotenoids ingested. Unabsorbable, fat-soluble compounds reduce 
carotenoid absorption and interaction among carotenoids may also result in a reduced carotenoid 
bioavailability. 

Research into the functional benefits of carotenoids should consider the fact that the 
bioavailability of p-carotene in particular is one order of magnitude higher when provided as pure 
compound added to foods than when naturally present in foods. 
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CHAPTER 1 

INTRODUCTION 

The importance of fruit and vegetable consumption has been linked in the past 50-100 

years to the prevention of micronutrient deficiencies. More recently, epidemiological 

studies have indicated that a high intake of fruits and vegetables is also associated with a 

reduced risk of chronic diseases, such as some types of cancer and cardiovascular 

disease (Steinmetz & Potter, 1991; Block et al, 1992; Ness & Powles, 1997; Willet & 

Trichopoulos, 1997; Law & Morris, 1998). These beneficial effects of fruits and vegetables 

cannot fully be explained by their established role as a source of micronutrients. It has 

been suggested that other plant compounds, such as carotenoids, which are abundantly 

present in fruits and vegetables, contribute to the beneficial effects of fruit and vegetable 

consumption (Peto et al, 1981; Gey, 1995; Kohlmeier & Hastings, 1995; Van Poppel, 

1996). 

Carotenoids belong to a large class of fat-soluble, yellowish-red pigments which are 

synthesised by bacteria, algae, fungi and plants, but not by animals, including humans. 

More than 600 carotenoids have been identified in nature. In contrast, only seven 

carotenoids are found in appreciable amounts in humans. These include a-carotene, p-

carotene, lutein, zeaxanthin, lycopene, a-cryptoxanthin and p-cryptoxanthin (Figure 1). 

These carotenoids are found in a wide range of foods, among which fruits and vegetables 

are the richest dietary sources (Mangels et al, 1993; Heinonen et al, 1989; Ollilainen et al, 

1989). Carrots are particularly rich in a-carotene and p-carotene, green vegetables are 

highest in lutein, maize in zeaxanthin and tomatoes and tomato products are the major 

dietary sources of lycopene. Cryptoxanthin is mainly provided by oranges and tangerines 

(Chug-Ahuja et al, 1993; Mangels et al, 1993; Scott et al, 1996; Heinonen et al, 1989). 

Average dietary intake of carotenoids in the US and European countries is about 6-8 mg/d 

of total carotenoids and 0.5-3 mg/d of individual carotenoids, among which the intake of p-

carotene, lycopene and lutein is highest (Chug-Ahuja et al, 1993; Jarvinen et al, 1995; 

Nebeling et al, 1996; Scott et al, 1996; Goldbohm et al, 1998). 

The function of carotenoids in plants is related to light energy collection and 

photoprotection in photosynthetic membranes of the leaves (Cogdell & Gardiner, 1993). In 

humans, some of the carotenoids, such as a-carotene, p-carotene and p-cryptoxanthin, 

can be converted into vitamin A. Other functions of carotenoids may be related to their 

antioxidant properties (Burton and Ingold, 1984; Sies and Stahl, 1995), ability to interfere 

with inter-cellular communication (Zhang et al, 1991) and/or immunomodulation (Santos 

etal, 1996). 
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Figure 1 Structures of major carotenoids found in human plasma. 

Currently, the role of carotenoids in the prevention of chronic diseases is still a 

hypothesis and is not yet confirmed by intervention trials on the effects of carotenoid 

supplementation at dietary intake levels (IARC, 1998; Kritchevsky, 1999). To increase our 

understanding of the possible beneficial effects of carotenoids, it is important to obtain 

more knowledge of the bioavailability of these compounds. In addition, it may be of 

interest to identify options to enhance the contents or bioavailability of carotenoids 

present in fruits and vegetables, in order to optimise their health potential. In particular 

increasing the bioavailability seems relevant for carotenoids. De Pee et al (1995) showed 

that the bioavailability of p-carotene from green leafy vegetables was lower than 

previously thought (Hume & Krebs, 1949). They therefore questioned the effectiveness of 

programmes stimulating home gardening of green leafy vegetables as a way to reduce 

the prevalence of vitamin A deficiency in developing countries. Consumption of foods 

enriched or fortified with carotenoids may be an easier approach than increasing total fruit 

and vegetable consumption to improve the health status of the population. To ensure the 

effectiveness, the choice of the food carrier is very important and requires knowledge of 

the factors that may interfere with the bioavailability and bioefficacy of carotenoids. 

The term "bioavailability" is used above as a descriptor of the processes that occur 

after consumption of a nutrient, which include absorption at the intestinal level, and 

subsequent distribution and metabolism or storage of the nutrient in the body. A working 

definition of bioavailability that is often used originates from pharmacology, i.e.: "the 

proportion of a nutrient ingested that becomes available for usage or storage in a target 

tissue". This introductory chapter describes the current knowledge of the processes 
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CHAPTER 1 

underlying carotenoid bioavailability, i.e. carotenoid absorption, distribution, metabolism 

and excretion. At the end of this introduction, the outline of this thesis and the research 

questions that will be addressed, are presented. 

CAROTENOID ABSORPTION 

Absorption process 

Carotenoids are fat-soluble compounds which are absorbed along with dietary fat. 

Therefore, their absorption process resembles that of fat absorption. Figure 2 shows a 

schematic overview of carotenoid absorption. The first step after ingestion includes 

disruption of the food matrix, mechanically and by digestive enzymes, and the subsequent 

release of the carotenoids from this matrix and from protein complexes (Britton, 1995). 

After solubilisation in lipid droplets, the carotenoids released are incorporated into mixed 

micelles which are formed from triglycerides, phospholipids and cholesteryl esters and 

their hydrolysis products together with conjugated and unconjugated bile salts. 

Subsequently, carotenoids are taken up, most likely by passive diffusion, into the 

enterocytes of the intestinal wall. Within the enterocytes, a proportion of the provitamin A 

carotenoids is enzymatically cleaved and converted to retinol and eventually to retinyl 

esters. These cleavage products and intact carotenoids are then incorporated into 

chylomicrons and transported via the lymph into the blood. Chylomicrons contain 

triacylglycerol, phopholipids, cholesteryl esters, carotenoids, retinyl esters, and other fat-

soluble compounds. Triacylglycerols in chylomicrons are lipolysed, mediated by 

lipoprotein lipase in extrahepatic tissues, resulting in the uptake of lipolysis products by 

these tissues and formation of chylomicron remnants which still contain the carotenoids 

absorbed. The majority of these chylomicron remnants are cleared from the plasma by 

the liver, and a small part is directly taken up by other tissues (Erdman et al, 1993; Olson, 

1994; Parker, 1996; Furr& Clark, 1997). 

Quantification of carotenoid absorption 

Only few data are available on the extent of p-carotene absorption in humans and no 

data are available on carotenoids other than p-carotene. Using p-carotene (0.04 - 40 mg) 

labelled with radioactive or stable isotopes and dissolved in oil, it was shown that 13-23% 

is absorbed after ingestion of a single dose (Goodman et al, 1966; Blomstrand & Werner, 

1967; Novotny et al, 1995). There are certain limitations to these studies, as only a small 

number of volunteers (n=1-4) was included, some of whom were patients, and because it 

was necessary to make assumptions with respect to kinetics of absorption and 

distribution. In comparison with the extent to which fat is absorbed, i.e. 95-99% (Small, 
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1991), the findings suggest that the uptake of p-carotene is rather low. The reason for this 

difference is not clear and it may be related to the poor solubility of p-carotene (Borel et 

al, 1996). 

C a roter*-.--protein M £ T ) 
.•vmptex 

Figure 2 Schematic overview of carotenoid absorption and distribution in humans 

The extent to which carotenoids from natural foods are absorbed may be even lower as 

the matrix in which the carotenoids naturally occur has been shown to be a limiting factor. 

p-Carotene located in a complex matrix, such as vegetables, is less bioavailable than p-

carotene dissolved in oil or added to a fat-rich matrix (Micozzi et al, 1992; De Pee et al, 

1995). In addition, disruption of the vegetable matrix improves the bioavailability of 

carotenoids, as the uptake of lycopene from tomato paste was superior to that of 

lycopene from fresh tomatoes (Gartner et al, 1997). Furthermore, the physical form of 

carotenoids may be an important factor. Crystalline p-carotene has been shown to be less 

available than dissolved p-carotene (Bierer et al, 1995; Zhou et al, 1996). In carrots, p-

carotene is present as crystals and this may also explain the low bioavailability of p-

carotene from carrots as compared to p-carotene dissolved in oil (Micozzi et al, 1992; 

Zhouetal, 1996). 
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There are some indications that the extent of absorption may also vary among different 

carotenoids. Serum responses to a single ingestion of lutein or canthaxanthin were larger 

than those found after ingestion of a similar amount of p-carotene (2.3-fold larger area 

under the serum concentration curve for lutein; 72% higher maximum increase in serum 

concentration of canthaxanthin) (Kostic et al, 1995; Paetau et al, 1997). The observed 

differences may however be affected by differences in serum clearance and rates of 

tissue uptake between the carotenoids investigated and thus not reflect true differences in 

absorption. On the other hand, Paetau et al (1997) found the same difference in 

carotenoid responses in the triglyceride-rich lipoprotein fraction of serum. 

In addition to the variation in extent of carotenoid absorption, caused by the type of 

carotenoid and/or dietary factors interfering with carotenoid absorption, a substantial 

interindividual variation may be present also. De Pee & West (1996) have summarised 

factors related to genetics and other characteristics of the "host", such as gastrointestinal 

infections and parasites, which may influence carotenoid uptake from the diet. In healthy, 

well-nourished populations, a large variability of in particular responses of plasma or 

serum p-carotene concentrations to supplementation has been reported (Brown et al, 

1989; Nierenberg et al, 1991). Some volunteers have even been identified as so-called 

non-responders; people who show no or a very small increase in p-carotene 

concentration in chylomicrons or plasma following p-carotene supplementation (Johnson 

& Russell, 1992; Stahl et al, 1995). The mechanism underlying this variation may not only 

be related to differences in carotenoid absorption but also to differences in lipoprotein 

metabolism among people (Borel et al, 1998). 

In summary, although the pathway of carotenoid absorption is largely known, the extent 

to which carotenoids are absorbed is less clear and may depend on their nature as well 

as on external factors in the diet. In addition, the extent of carotenoid absorption varies 

among individuals. 

CAROTENOID DISTRIBUTION 

After absorption and incorporation in chylomicrons within the enterocytes and 

subsequent uptake in the blood stream via the lymph, carotenoids are released from 

chylomicron remnants into the liver and other tissues. In the liver, provitamin A 

carotenoids can be converted to retinoids as the cleavage enzyme is not only present in 

enterocytes but also in liver cells. Alternatively, carotenoids as such can be stored in the 

liver or incorporated in very low density lipoprotein (VLDL) and be resecreted into the 

blood. VLDL is subsequently transformed into low density lipoprotein (LDL) and 

carotenoids located in LDL are transported to tissues. This is analogous to the role of LDL 
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in delivering cholesterol to peripheral tissues (Figure 2). High density lipoproteins (HDL) 

on the other hand, transport cholesterol from peripheral tissues to the liver and 

carotenoids located in HDL are thus transported along with this reverse cholesterol 

transport. Johnson & Russell (1992) confirmed these processes as they showed that after 

consumption of a (3-carotene supplemented meal (120 mg), the p-carotene concentration 

initially increased in chylomicrons, with maximum concentrations 3 h post ingestion, 

followed by an increase in VLDL carotenoid concentration, reaching peak concentrations 

after 9 h. After an initial reduction, a significant increase in concentrations of p-carotene in 

LDL and HDL was observed from 12 h to 3 days following p-carotene ingestion. 

During fasting, LDL and HDL are the major carriers of carotenoids in plasma as 

chylomicrons and VLDL are formed only after consumption of dietary fat and cleared 

rapidly within 12 hours. Generally, 60-70% of the carotenoids is found in LDL and 10-30% 

in HDL when subjects have been fasting for at least 12 hours (Johnson & Russell, 1992; 

Manago et al, 1992; Romanchik et al, 1995; Traber et al, 1994). This distribution is 

however dependent on the type of carotenoid as lutein, which is less lipophilic than p-

carotene and lycopene, was shown to be equally distributed over LDL and HDL in fasting 

subjects (44% and 38% respectively) (Romanchik et al, 1995). Due to this direct 

association of carotenoids to lipoproteins, plasma or serum concentrations of carotenoids 

are positively related to total cholesterol concentrations (Brady et al, 1996; Vogel et al, 

1997). 

Carotenoids are found in various organs. Examples of tissues which specifically 

accumulate lutein (and zeaxanthin) are the corpus luteum and the yellow spot in the retina 

(macula lutea). The mechanism and importance of this accumulation is not clear, although 

lutein and zeaxanthin may accumulate in the macula to filter blue light and to prevent 

photo-oxidative stress and thus reduce the risk of age-related macular degeneration (Eye 

Disease Case-Control Study Group, 1993; Seddon et al, 1994). The concentrations of 

carotenoids reported to be present in various tissues are shown in Table 1. Adipose 

tissue, liver and the adrenals seem to be the major sites of deposition, although tissue 

distribution varies among the different types of carotenoids. 

As indicated above, LDLs transport carotenoids from the liver to peripheral tissues, 

concurrent with cholesterol transport. Therefore, the number of LDL receptors on tissue 

cells has been suggested to be related to the tissue content of carotenoids because 

tissue uptake of carotenoids may be mediated by these receptors (Parker, 1989). This is 

in line with the relatively high carotenoid concentrations in the liver and adrenals. 

However, the mechanisms underlying the accumulation of specific carotenoids in certain 

tissues has not yet been revealed. 
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CHAPTER 1 

CAROTENOID METABOLISM 

The metabolism of p-carotene and other provitamin A carotenoids (i.e., a-carotene and 

(3-cryptoxanthin) to retinoids has been studied most extensively. Estimates of the 

conversion of labelled p-carotene to retinoids at the intestinal level in vitamin A sufficient 

humans vary widely among different studies and among subjects, ranging from 10% to 

98% (Goodman et al, 1966; Blomstrand & Werner, 1967; Parker et al, 1993; Novotny et 

al, 1995). As indicated before, these studies have some limitations with respect to the 

number of patients included, the use of hospitalised patients and calculations based on 

assumptions related to kinetics of absorption and tissue distribution of p-carotene and 

retinoids. However, more recent studies, in which the postprandial response of p-carotene 

and retinyl esters in triglyceride-rich lipoproteins was monitored in healthy subjects, also 

reported that the proportion of p-carotene converted varies substantially among 

individuals. The proportion of p-carotene converted was estimated to range between 28% 

and 80% (Van Vliet et al, 1995; O'Neill & Thurnham, 1998). 

Very few data are available on the conversion of (non-)provitamin A carotenoids to 

compounds other than thfise related to retinoids. Metabolites of lutein, zeaxanthin and 

lycopene have been found in plasma (Khachik et al, 1992, Khachik et al, 1995). It was 

speculated that these metabolites resulted from oxidation of the parent carotenoids. 

In summary, the conversion of provitamin A carotenoids to retinoids is well documented 

whereas, in contrast, little is known about the formation of other metabolites and the 

metabolism of non-provitamin A carotenoids. 

CAROTENOID EXCRETION 

Excretion of carotenoids or their metabolites may occur via different pathways although 

the nature of excretion of absorbed carotenoids has not yet been revealed and data are 

scarce. Certainly a considerable proportion of the ingested carotenoids is not absorbed 

and excreted in the faeces, either as intact carotenoids or after metabolism by microflora 

in the colon. As discussed above, the proportion excreted is expected to generally exceed 

77%. Absorbed carotenoids are metabolised and they are thought to, either after 

conversion to vitamin A or as intact carotenoids, be oxidised and/or conjugated in the 

liver, secreted into the bile and excreted via the faeces. Another pathway is utilisation in 

tissues and ultimately excretion in the urine or as carbon dioxide in respired air (Olson, 

1994). 
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GENERAL INTRODUCTION 

OUTLINE OF THE THESIS 

The objective of this thesis is to obtain insight in the bioavailability of carotenoids from 

different food matrices and to identify dietary factors that may interfere with carotenoid 

bioavailability. The mnemonic "SLAMENGHI" has been introduced by De Pee and West 

(1996) to describe the factors that may interfere with the bioavailability of carotenoids and 

their provitamin A value. The factors include: Species of carotenoids, Linkages at 

molecular level, Amount of carotenoid, Matrix, Effectors, A/utrient status, Genetics, Host-

related factors and interactions among these factors (De Pee & West, 1996; Castenmiller 

& West, 1998). In this thesis, we primarily determine the effect on carotenoid 

bioavailability of the type and intactness of the food matrix (Matrix), of the digestibility and 

amount of dietary fat (Effectors) and of the interaction among carotenoids (Effectors). 

Disruption of the food matrix is the first step in the process of carotenoid absorption, as 

shown in Figure 2. Therefore, incomplete disruption of the food matrix and thus the type 

or intactness of the matrix in which carotenoids are located upon ingestion, may be a 

limiting factor of carotenoid bioavailability. As discussed above, the presence of dietary fat 

is thought crucial for carotenoid absorption, as carotenoids need to be incorporated in 

mixed micelles and subsequently absorbed along with dietary fat. The amount and type of 

fat present may thus be another factor affecting the bioavailability of carotenoids. The 

step(s) of carotenoid absorption, during which interaction among carotenoids may take 

place and affect their bioavailability, may include solubilisation in lipid droplets and uptake 

in micelles or in the enterocytes. In addition, carotenoids may compete for incorporation in 

chylomicrons, after being absorbed. Such competition between carotenoids can be 

regarded as the influence of the Amount of carotenoids. However, as also a positive effect 

may occur if carotenoids spare each other, e.g. by protection against oxidation, we here 

evaluate the possible interaction among carotenoids as Effectors of carotenoid 

bioavailability. 

We choose to study the effect of the factors mentioned above in healthy human 

volunteers. Although various in vitro and animal models have been proposed as valuable 

models to study carotenoid bioavailability (Poor et al, 1987; Wilson, 1990; Scita et al, 

1992; Wang et al, 1992; Bierer et al, 1995; Moore et al, 1996; Snodderly et al, 1997; Clark 

et al, 1998; Lee et al, 1998) and most of our knowledge about the mechanism of 

carotenoid absorption actually originates from in vitro studies (El-Gorab et al, 1975; 

Hollander et al, 1978), the uncertainty about the value of extrapolation of the results 

obtained to the human in vivo situation remains. However, studies in humans involve 

practical problems which have to be considered also. One important limitation is the 
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access to body tissues. We used changes in plasma carotenoid concentrations after four 

days to four weeks intervention as a measure of carotenoid bioavailability. In the following 

chapters of this thesis, bioavailability is thus determined as the availability of carotenoids 

ingested to the blood stream. It may be assumed that an increase in blood carotenoid 

concentrations relates to an increase in availability of the carotenoid to tissues. Another 

limitation is the control of free living individuals. Approximately three to four weeks are 

needed to induce a new steady state of plasma carotenoid concentrations (Micozzi et al, 

1992). Such a long period requires a major effort of the volunteers to comply with the 

instructions of the study as well as of the investigators to organise such a longer term 

intervention. In the present thesis, we tried to find alternatives for long term studies. In 

addition to four weeks interventions (Chapters 2, 5, 7), we used four to seven days 

protocols during which volunteers received instructions which limited the variation in their 

background diet, thus increasing the contrasts among groups or treatments (Chapters 3, 

4, 6, 8). We determined the value of these short term protocols by comparing the changes 

in fasting plasma carotenoid concentrations observed after four days intervention with the 

postprandial response of carotenoids in triglyceride-rich lipoproteins following single 

consumption of the test "products (Chapter 4). This fraction of blood contains newly 

absorbed carotenoids and comparison of the carotenoid content of this fraction following 

different sources of carotenoids is thus an indicator of differences in carotenoid 

absorption. 

The following research questions will be addressed: 

Does the bioavailability of carotenoids vary among different food matrices and 

does disruption of the matrix enhance the bioavailability of carotenoids from 

vegetables? 

Previous studies have indicated that the bioavailability of p-carotene from carrots and 

green leafy vegetables is low as compared to purified p-carotene ingested as supplement 

or added to a wafer (Brown et al, 1989; Micozzi et al, 1992; De Pee et al, 1995). 

Furthermore, yellow-orange fruits are more effective sources of p-carotene than green 

leafy vegetables (De Pee et al, 1998). Chapter 2 describes a study in which we 

determined the relative bioavailability of p-carotene and lutein from a mixed vegetable 

diet. In another study, described in Chapter 3, we compared the effectiveness of broccoli, 

green peas and spinach in increasing p-carotene and lutein concentrations in plasma. 

The first step of carotenoid absorption includes disruption of the food matrix in which 

they are located (Figure 2). It has been suggested that the intactness of the vegetable 

matrix is an important limiting factor in the bioavailability of carotenoids. For example, 
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Gartner et al (1997) found that consumption of tomato paste induced a larger lycopene 

response in triglyceride-rich lipoproteins than fresh tomatoes. The effects of mechanical 

homogenisation and/or heat treatment of spinach and tomatoes on the bioavailability of p-

carotene, lutein and/or lycopene were addressed in two studies, described in Chapters 3 

and 4. 

Does the amount and digestibility of dietary fat affect the bioavailability of 

carotenoids? 

Previous studies have shown that the bioavailability of carotenoids ingested without 

any dietary fat or any foods is significantly reduced (Dimitrov et al, 1988; Henderson et al, 

1989; Prince & Frisoli, 1993; Shiau et al, 1994). However, the minimum amount of dietary 

fat required is not clear and has been investigated in vitamin A deficient children only 

(Jayarajan et al, 1980). Therefore, we determined the impact of a full-fat margarine, 

enriched with palm oil carotenoids on plasma carotenoid levels (Chapter 5) and we 

compared the bioavailability of carotenoids added to a low fat meal (3 g fat) with those 

added to a high fat meal (35 g fat) in healthy adults (Chapter 6). 

Sucrose polyester is an effective fat replacer which mimics the organoleptic and 

satiating properties of fat, but does not provide the energy (Hulshof et al, 1995; De Graaf 

et al, 1996; Peters et al, 1997). It is a large molecule which is indigestible and is thus 

excreted unmodified. Carotenoids are absorbed along with dietary fat and sucrose 

polyester may interfere with their uptake into mixed micelles from absorbable dietary fat 

and thereby reduce their bioavailability. This has been investigated in the studies 

described in Chapter 7. 

Do individual carotenoids affect the bioavailability of other carotenoids? 

Various studies have investigated whether individual carotenoids affect the absorption 

of other carotenoids. There are indications, for example, that lutein reduces the 

appearance of p-carotene in triglyceride-rich lipoproteins (Van den Berg & Van Vliet, 

1998). Such an interaction may also occur between other carotenoids. We compared the 

bioavailability of p-carotene from a palm oil carotenoids supplement, containing both a-

carotene and p-carotene, with that of synthetic p-carotene (Chapter 8). In addition, we 

assessed the effect of supplementation with purified p-carotene and lutein on plasma 

concentrations of other carotenoids (Chapter 2). 

The results described in this thesis are discussed in a review of the current knowledge 

on dietary factors that affect carotenoid bioavailability (Chapter 9). The answers to the 

research questions mentioned above and the overall conclusion of this thesis are also 
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presented in this chapter. Although other compounds and research topics have been 

investigated in the research described in Chapters 2-8, the discussion and conclusions of 

this thesis focusses on the dietary factors that affect carotenoid bioavailability. 

Seven of the nine chapters were written by the author of this thesis and two chapters 

(Chapters 6 and 7) were co-authored by her because she provided an essential 

contribution to the design, execution and reporting of the studies. As the research 

described closely relates to the subject of this thesis, it was decided to also include these 

chapters. 
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CHAPTER 2 

ABSTRACT 

Background: Carotenoids may contribute to the inverse association between vegetable 

consumption and the risk of chronic diseases. To obtain more insight into this relationship, 

it is important to determine the bioavailability of carotenoids from vegetables and the 

impact of vegetable consumption on suggested biomarkers of chronic diseases. 

Objectives: To assess the bioavailability of p-carotene and lutein from vegetables and 

the effect of increased vegetable consumption on the ex vivo oxidizability of low-density 

lipoproteins (LDL). 

Design: During four weeks, 22 healthy adult volunteers consumed a high vegetable diet 

(490 g/d), 22 volunteers consumed a low vegetable diet (130 g/d) and 10 volunteers 

consumed a low vegetable diet supplemented with pure p-carotene (6 mg/d) and lutein (9 

mg/d). 

Results: Plasma levels of vitamin C and carotenoids (i.e., a-carotene, p-carotene, lutein, 

zeaxanthin and (3-cryptoxanthin) were significantly increased following the high vegetable 

diet as compared to the low vegetable diet. In addition to an increase in plasma levels of 

p-carotene and lutein, the pure carotenoid supplemented diet induced a significant 

decrease in plasma concentration of lycopene (mean (95%CI): -0.11 umol/L (-0.21, -

0.0061)). The plasma p-carotene and lutein responses to the high vegetable diet were 

14% and 67%, respectively, of those to the pure carotenoid supplemented diet. 

Conversion of p-carotene into retinol may have attenuated its plasma response as 

compared to lutein. There was no significant effect on the resistance of LDL to oxidation 

ex vivo. 

Conclusion: Increased vegetable consumption enhances plasma levels of vitamin C and 

carotenoids substantially, but not resistance of LDL to oxidation. The relative 

bioavailability of lutein from vegetables is five times higher than that of p-carotene. 
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INTRODUCTION 

Epidemiological studies have shown that a high vegetable intake is associated with 

reduced risk of free radical-mediated degenerative diseases, such as epithelial cancers 

(Willet & Trichopoulos, 1997), cardiovascular disease (Ness & Powles, 1997) and age-

related eye diseases (Jacques & Chylack, 1991; Hankinson et al, 1992; Seddon et al, 

1994). Vegetables are a major source of carotenoids and mainly due to their antioxidant 

properties, carotenoids are thought to contribute to the beneficial effects of vegetable 

consumption (Seddon et al, 1994; Sie & Stahl, 1995; Van Poppel & Goldbohm, 1995). 

Various studies have shown a significant correlation between habitual vegetable intake 

and plasma concentration of carotenoids (Campbell et al, 1994; Drewnowski et al, 1997; 

Polsinelli et al, 1998). In addition, increased vegetable consumption results in increased 

levels of carotenoids in blood (Yeum et al, 1996; Rock et al, 1997; Zino et al, 1997). 

However, the effectiveness of vegetables as a source of carotenoids has been 

questioned because studies have shown that the bioavailability of p-carotene from 

vegetables is less than previously thought (De Pee & West, 1996; Castenmiller & West, 

1998). This has been shown most conclusively for green leafy vegetables (De Pee et al, 

1995). The bioavailability of p-carotene may however vary among different types of 

vegetables, as a difference was also found between fruits and green leafy vegetables (De 

Pee et al, 1998). Green leafy vegetables are not the sole type of vegetables in many diets 

and it is therefore of interest to determine the relative bioavailability of p-carotene from a 

mixed vegetable diet. 

Furthermore, it is necessary to obtain more information on the bioavailability of 

carotenoids other than p-carotene, because evidence is accumulating that these may also 

have important health benefits (Seddon et al, 1994; Giovannucci et al, 1995; Ziegler et al, 

1996). Lutein is a major carotenoid in vegetables and it has been implicated in the 

etiology of age-related macular disease (Seddon et al, 1994). No information is however 

available on the relative bioavailability of lutein from vegetables. 

Therefore, we performed a 4-weeks dietary controlled intervention study in which we 

investigated the relative bioavailability of p-carotene and lutein from mixed vegetables as 

compared to purified p-carotene and lutein. In addition, we determined the impact of 

increased vegetable consumption on the resistance of low-density lipoproteins (LDL) to 

oxidation ex vivo. Witztum and Steinberg (1991) have suggested that oxidative 

modification of LDL is an important step in the etiology of atherosclerosis. Although the 

impact of p-carotene supplementation on the susceptibility of LDL to oxidation ex vivo was 

shown to be limited (Princen et al, 1992; Reaven et al, 1994; Meraji et al, 1997), 
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increased vegetable consumption may be more effective as a range of antioxidants is 

supplied. 

SUBJECTS AND METHODS 

Volunteers 

Fifty-five apparently healthy, non-smoking men and women, aged between 18 and 45 y, 

were selected for participation in the present study. They did not use dietary supplements 

containing vitamins or minerals, malaria prophylactics or anti-convulsants in the three 

months prior to selection and they reported no gastro-intestinal problems which could 

interfere with nutrient uptake. None of the women were pregnant or lactating. The 

volunteers were recruited among inhabitants of Wageningen and surrounding areas. The 

study protocol was explained to the volunteers before they gave their written informed 

consent. 

Study design 

In a four week strictly controlled dietary intervention study, 22 volunteers received a low 

vegetable diet (130 g/d vegetables; control group), 23 volunteers received a high 

vegetable diet (490 g/d; vegetable group) and 10 volunteers received a low vegetable diet 

(130 g/d vegetables) supplemented with pure p-carotene and lutein (carotenoid 

supplemented group). As this experiment was designed to also investigate the 

bioavailability of folate from fruits and vegetables, an additional group of 22 volunteers 

was included to receive supplemental folic acid. This part of the study will be reported 

separately. The treatment groups were stratified for total energy intake, sex and number 

of vegetarians. Fasting blood samples were taken before the start and at the end of the 

study for analysis of plasma concentrations of retinol, carotenoids and other antioxidants 

(i.e. vitamins C and E), total antioxidant activity and resistance of LDL to oxidation ex vivo. 

For practical reasons, we limited the number of volunteers in the carotenoids 

supplemented group. Power calculations based on data of previous studies, showed that 

n=10 would be sufficient to show a 33-50% difference in plasma responses of p-carotene 

and lutein and a 15% difference in LDL oxidizability (lag phase) (a=0.05; p=0.20). The 

study was executed at the Department of Human Nutrition and Epidemiology of 

Wageningen Agricultural University from November - December 1996. The study protocol 

was approved by the medical ethical committee of the Department. 
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Diets 

During the intervention period, the major part of the diet was supplied to the volunteers. 

Diets were individually tailored to meet each volunteer's energy requirement (±0.5 MJ/d), 

which was estimated by questionnaire before the start of the study (Feunekes et al, 

1993). Body weight was measured twice per week and, if necessary, energy intake was 

adjusted to prevent further changes in body weight. About 90% of total energy intake was 

supplied to the volunteers. They were allowed to choose a limited number of additional 

food items, low in carotenoids, vitamin C, vitamin E and fat. From the food diaries that 

were kept during the study, it was calculated that these foods provided on average (SD) 

11% (1.3) of the total energy intake (Stichting NEVO, 1993). 

The diets were provided as a six-day menu cycle and comprised conventional foods 

and drinks. All volunteers received the same basic diet, which was supplemented with a 

fixed amount of additional vegetables and fruits, independent of the volunteers' total 

energy requirements. The control and carotenoid supplemented groups were provided 

with the same additional products (depending on the day of the menu cycle: a rice or 

pasta salad, a soup containing little or no vegetables, a pear or apple and apple juice or 

grape juice). For the carotenoids supplemented group, purified p-carotene (all-frans (5-

carotene 30% FS (E160a), 30% suspension in vegetable oil, Hoffmann-La Roche, Basel, 

Switzerland) and lutein (Flora GLO™ all-frans lutein, 20% suspension in safflower oil, 

Kemin Foods LC, Des Moines, Iowa, USA) were added to the salad dressing. The 

vegetable group received, in addition to the basic diet, 185 g/d of cooked vegetables 

(depending of the day of the menu cycle: green beans, broccoli, spinach, green peas, 

Brussels sprouts or a vegetable mix) and a salad and soup based on vegetables. Instead 

of an apple or pear they received an orange or two tangerines, and instead of the apple or 

grape juice they were supplied with orange juice. The "low" vegetable diet provided on 

average 130 g/d of vegetables, whereas the total daily amount of vegetables in the high 

vegetable diet was 490 g. The amount of vegetables provided by the "low" vegetable diet 

(130 g/d) is comparable with the average vegetable intake in the Dutch population 

(Voorlichtingsbureau voor de Voeding, 1993), whereas the amount of vegetable in the 

high vegetable diet (490 g/d) was chosen as a high but acceptable amount for 

consumption during a four week period. The additional vegetables provided to the 

vegetable group were frozen vegetables, obtained from Birds Eye Wails (United Kingdom) 

Langnese-lglo (Germany), Frudesa (Spain) and Sagit (Italy). The fruit juices were from 

Albert Heijn (Zaandam, The Netherlands) and fresh vegetables and fruits were obtained 

from a local supermarket. 

Hot meals (including the additional cooked vegetables) were consumed under 

supervision at lunch-time at the university from Monday to Friday. Foods for the rest of the 
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day (including additional salad, soup, fruit juice and fruit) and for the weekend were taken 

home by the volunteers. Volunteers were carefully instructed how to prepare these foods. 

Compliance was checked by diaries. 

Analysis of diets 

Duplicate portions of the diets were taken on each day of the six-day menu cycle. One 

pooled sample was prepared and stored at -20°C for analysis of fat, protein, carbohydrate 

and dietary fiber. To assess the amount of carotenoids and vitamin C in the diets, one 

sample from each day of the m- u cycle was analyzed and results were averaged per 

treatment. For these analyses, samples were stored at -80°C. For vitamin C, 5% 

metaphosphoric acid was added for stabilization. Carotenoid content was determined by 

reversed phase HPLC. Samples were extracted with methanol/tetrahydrofuran (1:1, v/v). 

An aliquot of the filtrate was saponified in boiling ethanolic 2 mol/L KOH after addition of a 

sodium ascorbate (10%)/sodiumdisulfide-glycerol mixture (2:1, v/v). After cooling, the 

saponification mixture was extracted with di-isopropylether. The extract was washed three 

times with water. The solvent was evaporated and the residue was dissolved in di-

isopropylether. Carotenoide and a-tocopherol were separated on a Hypochrome column 

filled with nucleosil 120-3C18 (Sandon Southern Products, UK) with 

acetonitrile/methanol/methylene chloride/ammonium acetate (900/50/40/10, v/v) as 

mobile phase at a flow rate of 1 mL/min and room temperature. Calibration was 

performed using external standards. Recovery tests of this method showed 86-103% 

recovery of the carotenoids and the coefficient of variation ranged between 5.4% and 

15.3%, depending on the type of carotenoid. For analysis of the vitamin C content, the 

samples were extracted with metaphosphoric acid/acetic acid (60/80, w/v). Vitamin C 

content was subsequently determined fluorimetrically as ascorbic acid plus dehydro-

ascorbic acid (Vuilleumier & Keck, 1989). The composition of the diets is shown in Table 

1. As we planned to replace the vegetables from the high vegetable diet by other fiber-rich 

foods (e.g. rice or pasta), the difference in fiber content between the high and low 

vegetables diets was only 0.7 g/MJ. Differences in carotenoid and vitamin C levels among 

the diets were generally as expected. However, the lycopene content of the low 

vegetables and carotenoids supplemented diets was higher than that of the high 

vegetable diet. Two of the ready-to-eat soups that were provided in the six days menu 

cycle to the low vegetable and carotenoid supplemented groups but not to the high 

vegetable group apparently contained more lycopene than we expected. The diets were 

calculated to provide ca. 500-600 ug/d of preformed vitamin A (Stichting NEVO, 1993). 

The (3-carotene, a-carotene and p-cryptoxanthin in the control, high vegetable and 

carotenoid supplemented diets hypothetically provided an additional 300, 1000 and 1219 
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|jg retinol equivalents/d, respectively (based on data of Table 1 and the assumption that 6 

ug p-carotene or 12 ug a-carotene or p-cryptoxanthin equals 1 ug retinol equivalents). 

TABLE 1 Composition of the diets 1,2 

Fat (energy%) 

Protein (energy%) 

Carbohydrate (energy%) 

Fiber (g/MJ) 

Vitamin C (mg/d) 

a-Carotene (mg/d) 

(5-Carotene (mg/d) 

Lutein (mg/d) 

Zeaxanthin (mg/d) 

(3-Cryptoxanthin (mg/d) 

Lycopene (mg/d) 

oc-Tocopherol (mg/d) 

Low vegetable diet 

30.5 

13.6 

55.9 

4.1 

27.5 (6.3) 

0.31 (0.25) 

1.5(1.4) 

2.7(3.3) 

nd3 

0.21 (0.04) 

2.1 (2.1) 

20.9 (2.8) 

Intervention group 

High vegetable diet 

31.7 

14.1 

53.0 

4.8 

169 (70) 

0.99(1.2) 

5.1 (3.2) 

10.7(9.4) 

nd3 

0.84 (0.55) 

1.1 (0.99) 

27.4 (2.9) 

Carotenoid supplement 

30.7 

13.7 

55.7 

4.1 

28.4 (5.4) 

0.23 (0.07) 

7.2(1.5) 

12.0(3.1) 

nd3 

nd3 

2.2(2.1) 

23.6 (2.9) 

1 Values are based on analysis of duplicate portions of complete daily menus plus the calculated 

contribution from the free choice items (see methods section). As the amount of additional 

vegetables or carotenoids was the same for all volunteers, irrespective of their total energy intake 

(see methods section), differences in vitamin C, carotenoid and a-tocopherol content among the 

groups are the same for all volunteers. 
2 Values are presented as mean (SD) 
3 Not detectable: <0.2 mg/d 

Analysis of blood samples 

Venous blood samples were obtained while subjects were fasting before the start and at 

the end of the study. Blood samples were collected into heparinized tubes for analysis of 

vitamin C and into sodium EDTA coated tubes for the other analyses. Plasma was 

prepared by centrifugation at 3000 x g for 10 minutes (4°C). Before storage, 5% 

metaphosphoric acid was added for the analysis of vitamin C (9/1, v/v). Plasma samples 

for LDL isolation were stabilized with 6 g sucrose/L. It has been reported that freezing 

LDL in this way does not influence oxidation variables (Ramos et al, 1995). Samples were 

stored at -80°C until analysis. 

Vitamin C concentration in trichloroacetic acid treated plasma was determined 

fluorimetrically as ascorbic acid plus dehydro-ascorbic acid (Vuilleumier & Keck, 1989). 

Plasma levels of carotenoids, retinol and a-tocopherol were assessed by reversed phase 

HPLC on a 201TP54 Vydac column (Separations Group, Hesperia CA, USA) with retinyl 
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acetate as internal standard. After extraction with n-heptane/diethyl ether (1:1, v/v) and 

evaporation of the solvents, the residue was dissolved in eluent and compounds were 

separated at a flow rate of 0.8 mL/min and a column temperature of 20 °C by using a step 

gradient: 0-80 min methanol/amonium acetate (950/50, v/v), 80-85 min 

methanol/tetrahydrofurane (950/50, v/v). Peak areas were measured 

spectrophotometrically at 292 nm for cc-tocopherol, at 325 nm for retinol, at 450 nm for a-

carotene, (3-carotene, lutein, zeaxanthin and p-cryptoxanthin and at 470 nm for lycopene. 

The percent recovery of the internal standards varied between 86% and 99.9% for the 

different compounds and the detection limit was < 0.02 umol/L for carotenoids, 0.03 

umol/L for retinol and 0.65 umol/L for a-tocopherol. Intra assay variation ranged from 

0.6% to 5.1%. 

Total cholesterol and triacylglycerol concentrations were measured in plasma using 

enzymatic colorimetric methods (Boehringer Mannheim, Germany). The antioxidant 

activity of plasma was assessed as its ferric reducing ability (Benzie & Strain, 1996). LDL 

was isolated from thawed plasma by discontinuous density gradient ultracentrifugation for 

24 h at 4°C (Redgrave et al, 1975). EDTA was removed as described by Puhl et al 

(1994). Immediately thereafter, LDL protein content was determined using bovine serum 

albumin (Fraction V, Sigma, St Louis, Mo., USA) as the standard (Markwell et al, 1978). 

Subsequently, resistance to copper-mediated oxidation of the EDTA-free LDL-fraction 

was determined as described by Princen et al (1992). Intra assay variations were 10% for 

the lag phase and 4% for the maximum rate of oxidation. 

Statistical evaluation 

Differences in changes during the experiment among the three groups were compared by 

one-way analysis of variance. Significance of the differences was assessed by Tukey 

(oc=0.05). For plasma concentrations and changes in plasma concentrations of (3-

carotene, data were log-transformed to minimize correlation between mean values and 

standard error. Data for p-carotene are therefore presented as geometric mean with the 

standard error as percentage of the geometric mean. Other data are shown as mean with 

their standard error, or as mean and standard deviation in case of descriptive parameters. 

RESULTS 

Volunteers 

One male withdrew from participation in the vegetable group for personal reasons and 54 

volunteers completed the study. Table 2 shows the descriptive characteristics of the 

participants. 
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TABLE 2 Characteristics of the volunteers1. 

Intervention group 

Males/Females (n) 

Vegetarians (n) 

Age (y) 

Body Mass Index (kg/m2) 

Energy intake (MJ/d) 

Low vegetable diet 

7/15 

5 

22.2 (7.5) 

22.6(1.7) 

9.9 (2.6) 

High vegetable diet 

6/16 

5 

22.4 (5.2) 

22.1 (2.3) 

9.9(2.5) 

Carotenoid supplement 

4/6 

2 

20.9 (2.5) 

23.0 (2.9) 

10.6(2.5) 

1 Values are expressed as mean (SD). Baseline age and Body Mass Index are shown, whereas 

energy intake is based on the average intake over the four weeks intervention period. 

Blood parameters 

Four weeks of increased vegetable consumption resulted in significantly increased 

plasma levels of vitamin C and five of the six carotenoids measured (Table 3). Plasma 

concentration of lycopene was significantly reduced during consumption of the high 

vegetable diet, reflecting the 50% lower lycopene content of this diet compared with the 

low vegetable diet (Table 1). 

As anticipated, consumption of the purified p-carotene and lutein supplemented diet 

significantly enhanced plasma levels of these carotenoids, as compared to the changes 

found in the low vegetable or control group. Surprisingly, however, the plasma 

concentration of lycopene was significantly decreased in the carotenoid supplemented 

group, while the lycopene intake was similar to that of the control group (Tables 1 and 3). 

In comparison to the changes in the carotenoid supplemented group, consumption of 

the high vegetable diet induced significantly smaller increases in plasma concentrations of 

p-carotene and lutein. The high vegetable and carotenoid supplemented diets contained 

slightly different amounts of these carotenoids. We therefore calculated the relative 

plasma carotenoid responses for the high vegetable and carotenoid supplemented groups 

by dividing the changes in plasma carotenoid levels by the carotenoid intake (mg/d), both 

corrected for those observed in the low vegetable group. This revealed that the relative 

plasma p-carotene response to the high vegetable diet was substantially less than that to 

the carotenoid supplement (Table 4). From the ratio of the two responses, a measure of 

relative bioavailability can be obtained by dividing the relative plasma response to 

vegetable p-carotene by that to synthetic p-carotene. This gave a figure of 14% for the 

relative bioavailability of p-carotene from vegetables (Table 4). For lutein, the difference in 

the relative plasma carotenoid responses between the high vegetable and the carotenoid 

supplement group was not as large as for p-carotene and the relative bioavailability of 

lutein from vegetables was calculated to be 67% (Table 4). 
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TABLE 3 Baseline plasma concentrations of antioxidants and oxidizability of LDL and 

changes after four weeks consumption of diets containing low or high amounts of 

vegetables or a low vegetable diet supplemented with (J-carotene and lutein1. 

Vitamin C (pmol/L) 

a-Carotene (umol/L) 

p-Carotene (umol/L) 

Lutein (pmol/L) 

Zeaxanthin (umol/L) 

P-Cryptoxanthin (umol/L) 

Lycopene (pmol/L) 

Retinol (pmol/L) 

a-Tocopherol (mmol/L) 

FRAP (mmol/L) 

Lag time of LDL oxidation2 (min) 

Maximum rate of LDL oxidation2 

(nmol dienes/min/mg LDL 

protein) 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Baseline 

Change 

Low vegetable diet 

(n=22) 

63.6 (3.7) 

-7.5(3.1)a 

0.087(0.017) 

-0.029(0.010)3 

0.34 (9.6%) 

-0.017 (4.2%)a 

0.19(0.016) 

0.068 (0.008)3 

0.048 (0.005) 

0.018(0.003)3 

0.32 (0.043) 

-0.17(0.031)a 

0.27 (0.027) 

0.047 (0.020)3 

1.70(0.071) 

-0.056 (0.036) 

8.63 (0.38) 

0.99 (0.22) 

1.04(0.03) 

0.03 (0.2) 

89.2 (4.4) 

3.5 (5.2) 

10.1 (0.3) 

1.2(0.3) 

Intervention group 

High vegetable diet 

(n=22) 

69.1 (3.6) 

19.0(3.1 )° 

0.083(0.010) 

0.053 (0.008)b 

0.37(11%) 

0.18 (6.5%)b 

0.21 (0.021) 

0.40 (0.027)b 

0.056 (0.005) 

0.13 (0.015)b 

0.37 (0.046) 

0.096 (0.029)b 

0.28 (0.024) 

-0.10(0.023)b 

1.67(0.082) 

-0.008 (0.053) 

8.42(0.41) 

0.71 (0.26) 

1.08(0.04) 

0.06 (0.2) 

83.1 (3.8) 

3.8 (5.8) 

9.5 (0.2) 

1.6(0.4) 

Carotenoid supplement 

(n=10) 

71.4 (4.3) 

-14.0 (4.5)3 

0.065 (0.008) 

-0.017(0.004)3 

0.32(18%) 

2.23 (5.6%)C 

0.18(0.016) 

0.64 (0.048)C 

0.049 (0.005) 

0.022 (0.005)3 

0.24 (0.028) 

-0.077(0.018)3 

0.28 (0.059) 

-0.062 (0.047)b 

1.59(0.13) 

-0.016 (0.058) 

8.30 (0.59) 

0.61 (0.41) 

1.10(0.05) 

0.04 (0.06) 

105(5.7) 

-4.0 (2.4) 

9.8(1.1) 

0.9 (0.2) 

1 Values are presented as mean (SE), except for p-carotene, which was log-transformed and thus the geometric mean 

with the coefficient of variation from the mean (CVM%) is shown 

2 Low vegetable group: n=15; High vegetable group: n=8; Carotenoid group: n=5 

a,b,c Mean changes within the same row with different superscripts are significantly different (P<0.05) 

Note: There were no significant differences among the groups at baseline 

Plasma concentrations of retinol and a-tocopherol remained unchanged in all of the 

three groups and no significant differences were found among the groups (Table 3). 

No significant differences in changes among the groups were found in plasma levels of 

total cholesterol and triacylglycerol (results not shown). 
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Despite the significant increases in plasma levels of vitamin C and/or carotenoids in the 

vegetable and carotenoid supplemented group, the total antioxidant activity of plasma, 

measured as ferric reducing ability (FRAP), remained unchanged (Table 3). Furthermore, 

consumption of the diets supplemented with vegetables or carotenoids did not enhance 

protection of LDL against copper-induced oxidation ex vivo. Neither the changes in lag 

time before onset of oxidation, nor the maximum rate of oxidation were significantly 

different from those found in the control group (Table 3). 

TABLE 4 Relative bioavailability of p-carotene and lutein calculated from the 

relative plasma responses to carotenoids ingested from vegetables or from a 

preparation of pure carotenoids suspended in oil1,2. 

Relative plasma carotenoid response Relative bioavailability from 

(nmol/L/mg) vegetables 

High vegetable diet Carotenoid supplement (%) 

p-Carotene 55(3.3) 394(2.2) 14(1.1) 

Lutein 41 (3.5) 62 (5.2) 67 (8) 

1 Values are presented as mean (SE) 
2 See methods section for details of calculations 

DISCUSSION 

The present study shows that four weeks of increased vegetable consumption 

significantly improves plasma levels of carotenoids and vitamin C. There is a striking 

difference in the bioavailability of p-carotene and lutein from mixed vegetables, as 

calculated from the plasma carotenoid response relative to that following consumption of 

pure carotenoids in oil. The relative bioavailability of p-carotene was 14% and of lutein 

67%. The larger amount of all the carotenoids in the high vegetable diet compared with 

the low vegetable diet was reflected in the increased plasma concentrations of 

carotenoids. Consumption of pure p-carotene and lutein induced a significant reduction in 

plasma concentration of lycopene. 

Bioavailability of p-carotene and lutein 

The relatively low bioavailability of p-carotene from vegetables as compared to pure p-

carotene has been reported previously. Our results confirm the assumption that the matrix 

in which p-carotene is located is a major limiting factor for its bioavailability. The relative 

bioavailability of 14% for p-carotene from the mixed vegetables diet lies within the range 

of relative bioavailabilities from different vegetable types that have been reported by 
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others. It is higher than the 7% availability from green leafy vegetables (De Pee et al, 

1995) but lower than the 19-30% from carrots and 22-24% from broccoli (Brown et al, 

1989; Micozzi et al, 1992; Torronen et al, 1996). In the present study, spinach was the 

only green leafy vegetable in the menu cycle and it contributed about 43% of the total p-

carotene intake (Mangels et al, 1993). It seems that the low bioavailability of p-carotene 

from spinach has been compensated by the higher bioavailability of p-carotene from other 

types of vegetables in the menu cycle. 

Until recently, major focus has been on the health benefits of p-carotene. However, it is 

now being recognized that other carotenoids present in vegetables may also be crucial for 

optimal health (Seddon et al, Giovannucci et al, 1995; Ziegler et al, 1996). Therefore, the 

carotenoid supplemented group received not only p-carotene but also lutein so that we 

could calculate the relative bioavailability of this carotenoid. For lutein in vegetables, the 

bioavailability was found to be 67%. This suggests that the bioavailability from vegetables 

of the more hydrophilic lutein is five times greater than that of p-carotene. On the other 

hand, the difference in relative plasma response between p-carotene and lutein may not 

reflect the true differences in absorbability. Part of the absorbed p-carotene is cleaved 

and converted to retinyl esters before entering the blood stream. In the vegetable group, a 

relatively larger percentage of the absorbed p-carotene may have been converted than in 

the p-carotene supplemented group, because of the large difference in absorbed p-

carotene between these two groups. As this phenomenon does not occur for lutein, which 

has no provitamin A activity, this may have resulted in an underestimation of the relative 

bioavailability of p-carotene from vegetables as compared to lutein. 

Interestingly, the plasma response of lutein following supplementation with pure lutein 

and p-carotene was substantially smaller than that of p-carotene. There are a number of 

explanations for this finding. Firstly, less lutein may have been absorbed per mg ingested. 

The solubility of lutein in oil is lower than that of the more lipophilic p-carotene (Borel et al, 

1996) and a larger part of lutein may have been present as crystals in the salad dressing 

that contained the carotenoids. It has been suggested that the crystalline form of 

carotenoids is less bioavailable (Zhou et al, 1996). In addition, a relatively smaller uptake 

of lutein may have resulted from competition for absorption. As more p-carotene was 

released from the food matrix following ingestion of the purified carotenoids, the ratio of 

released p-carotene to lutein was larger than in the case of the vegetables supplemented 

diet, in which part of the p-carotene was still locked in the cellular compartments of the 

vegetables. Kostic et al (1995) showed that simultaneous ingestion of purified lutein and 

p-carotene decreases the bioavailability of lutein. Secondly, a difference in plasma 

response between different carotenoids may not reflect a difference in true absorption, as 
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the rate and extent of tissue uptake and subsequent metabolism may vary among 

carotenoids. A faster serum clearance of lutein than p-carotene has indeed been 

observed in preruminant calves (Bierer et al, 1995). On the other hand, p-carotene has 

provitamin A activity and the rate and extent of p-carotene metabolism may thus be 

higher. This would however imply, in contrast to our findings, a lower p-carotene response 

as compared to lutein. 

Interaction between p-carotene, lutein and lycopene 

The increases in plasma concentrations of other carotenoids and vitamin C, and the 

decrease in plasma concentration of lycopene in the vegetable group were anticipated, 

based on the composition of the diets (Table 1). The decrease in plasma lycopene 

concentration during consumption of the p-carotene and lutein supplemented diet was 

however surprising. The lycopene content of the control and carotenoid supplemented 

diets was similar (Table 1). Other studies have been equivocal with respect to the effect of 

p-carotene supplementation on plasma or LDL levels of lycopene, whereas no information 

is available on the effect of lutein. Some studies also showed a reduction of lycopene 

levels during supplementation with p-carotene (Prince et al, 1991; Gaziano et al, 1995) 

whereas others found no effect (Fotouhi et al, 196; Albanes et al, 1997) or even an 

enhancing effect (Wahlqvist et al, 1994; Johnson et al, 1997). The enhancing effect in the 

single dose study of Johnson et al (1997) was attributed to an increased solubility of 

lycopene in the suspension which contained p-carotene, whereas during the long-term 

study, reported by Wahlqvist et al (1994), a sparing effect of lycopene as antioxidant may 

have occurred. However, the results of the present study and those of others (Prince et al, 

1991; Gaziano et al, 1995) suggest that the supplemented carotenoids compete with 

lycopene for absorption and/or transport in plasma. This phenomenon may be particularly 

important with respect to the risk of prostate cancer as an inverse association with 

lycopene intake has been reported (Giovannucci et al, 1995). 

Effects on antioxidant capacity 

Consumption of the high vegetable diet increased plasma p-carotene levels by about 50% 

to 0.55 umol/L, whereas the increases in the carotenoid supplemented group were even 

higher (Table 3). These levels and the plasma levels of total carotenoids are beyond the 

threshold levels that were suggested in relation to reducing risk of cardiovascular disease 

(Gey, 1995). Despite these substantial increases in plasma antioxidant levels in the 

vegetable and carotenoids supplemented groups, we found however no significant effect 

on the total antioxidant activity of plasma or on the susceptibility of LDL to oxidation ex 
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vivo. Oxidative modification of LDL has been proposed as an important step in the 

etiology of atherogenesis (Witztum & Steinberg, 1991). Recently, Hininger et al (1997) 

reported that increased fruit and vegetable consumption significantly enhanced the 

resistance of LDL to oxidation, both in smokers and non-smokers. However, the effect 

reported may have been due to external factors as they did not include a control group 

which received a lower level of fruits and vegetables. The decrease in plasma levels of 

lycopene we observed in the high vegetable and carotenoid supplemented groups may 

also have outweighed a possible protective effect of the other carotenoids, thus 

explaining the lack of effect of vegetable or carotenoid supplementation in the present 

study. On the other hand, previous studies have shown that in particular vitamin E 

supplementation is effective in increasing the resistance of LDL to oxidation (Jalal et al, 

1992; Princen et al, 1992), whereas studies on the benefits of synthetic p-carotene only 

have been equivocal (Princen et al, 1992; Reaven et al, 1994; Levy et al, 1995; Lin et al, 

1998). The increased antioxidant levels may have had an impact on other oxidative 

stress-related parameters that were not assessed in this study, such as for example 

isoprostanes (Patrono & FitzGerald, 1997). This should perhaps be addressed in future 

research. 

Conclusion 

When designing future studies on health benefits of carotenoids or formulating 

recommendations on carotenoid intake, the variation in the bioavailability of p-carotene in 

particular should be taken into account. The present study clearly shows that vegetable 

consumption induces a more moderate increase of p-carotene in plasma than purified p-

carotene (Table 4). Five mg p-carotene from vegetables would equal only ca. 0.7 mg p-

carotene from a supplement. This aspect may be less crucial for lutein because the 

differences in plasma responses between vegetables and purified lutein were less 

pronounced. 

In conclusion, the present study shows that increased vegetable consumption (i.e., an 

additional 360 g/day) enhances the plasma levels of vitamin C and carotenoids 

substantially, but not the resistance of LDL to oxidation. The relative bioavailability of p-

carotene and lutein from mixed vegetables as compared to purified carotenoids is 14% 

and 67% respectively. 
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CHAPTER 3 

ABSTRACT 

Carotenoids, folate and vitamin C may contribute to the observed beneficial effects of 

increased vegetable intake. Currently, knowledge on the bioavailability of these 

compounds from vegetables is limited. We compared the efficacy of different vegetables, 

at the same level of intake (i.e. 300 g/d), in increasing plasma levels of carotenoids, folate 

and vitamin C and we investigated if disruption of the vegetable matrix would enhance the 

bioavailability of these micronutrients. In an incomplete block design, 69 volunteers 

consumed a control meal without vegetables and three out of four vegetable meals (i.e. 

broccoli, green peas, whole leaf spinach, chopped spinach; containing between 1.7 and 

24.6 mg p-carotene, 3.8 and 26 mg lutein, 0.22 and 0.60 mg folate and 26 and 93 mg 

vitamin C) or a meal supplemented with synthetic p-carotene (33.3 mg). Meals were 

consumed during four days and fasting blood samples were taken at the end of each 

period. Consumption of the spinach supplemented meal did not affect plasma levels of p-

carotene, although the p-carotene content was 10-fold that of broccoli and green peas, 

which induced significant increases in plasma p-carotene levels (28% (95% CI: 6.4, 55) 

and 26% (95% CI: 2.6, 54), respectively). The p-carotene supplemented meal increased 

plasma concentrations of p-carotene effectively (517%, 95% CI: 409, 648). All vegetable 

meals increased the plasma concentration of lutein and vitamin C significantly. Broccoli 

and green peas were, when expressed per mg carotenoid consumed, also more effective 

sources of lutein than spinach. A significant increase in plasma folate concentration was 

found only after consumption of the spinach supplemented meal, which was most 

abundant in folate. Disruption of the spinach matrix increased the plasma response of 

both lutein (14%, 95% CI: 3.7, 25) and folate (10%, 95% CI: 2.2, 18), whereas it did not 

affect the response of p-carotene. We conclude that the bioavailability of p-carotene and 

lutein varies substantially among different vegetables and that the bioavailability of lutein 

and folate from spinach can be improved by disruption of the vegetable matrix. 
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INTRODUCTION 

Many epidemiological studies have indicated that an increased intake of vegetables is 

associated with a decreased risk of certain cancers (Willet & Trichoupoulos, 1997), 

cardiovascular disease (Ness & Powles, 1997) and age-related eye diseases (Jacques & 

Chylack, 1991; Hankinson et al, 1992; Seddon et al, 1994). This has raised interest in 

determining the nature and bioavailability of active compounds present in vegetables. 

Antioxidants, such as carotenoids and vitamin C, may contribute to the beneficial effects 

of vegetable consumption (Seddon et al, 1994; Van Poppel & Goldbohm, 1995; Gey, 

1995; Weber et al, 1996). In addition, vegetables are a major dietary source of folate (De 

Bree et al, 1997). High intake of folate may be associated with a reduced risk of cancer 

(Glynn & Albanes, 1994) and there is increasing evidence that folate may reduce the risk 

of cardiovascular disease by lowering homocysteine levels in plasma (Boushey et al, 

1995;Verhoefetal, 1996). 

There are indications that the bioavailability of carotenoids and folate from vegetables 

is limited as compared to supplements (Micozzi et al, 1992; Gregory, 1995; De Pee et al, 

1995). It is plausible that the vegetable matrix plays a major role in determining the 

bioavailability of these micronutrients. For instance, disruption of the vegetable matrix 

enhanced the bioavailability of p-carotene from carrots and lycopene from tomatoes (Van 

Zeben & Hendriks, 1948; Gartner et al, 1997). It is of interest to investigate whether 

disruption of the matrix also affects the bioavailability of p-carotene from green leafy 

vegetables, which was found to be low (De Pee et al, 1995). In addition, there are 

indications that there may be significant differences between different vegetables as to 

the bioavailability of carotenoids and folate (Tamura & Stokstad, 1973; Babu & Srikantia, 

1976; Micozzi et al, 1992). The present study was set up to compare three types of 

vegetables, i.e. broccoli, green peas and spinach, at the same level of intake (300 g/day), 

in their effectiveness to increase plasma levels of carotenoids, folate and vitamin C. 

These vegetables are similar in colour, but clearly distinct with respect to the part of the 

plants they represent (i.e. flowers, seeds and leaves). In addition, we investigated 

whether mechanical homogenisation of whole leaf spinach would enhance the 

bioavailability of carotenoids, folate and vitamin C. 

SUBJECTS AND METHODS 

Volunteers 

Seventy-two volunteers were selected for participation in the study. They were 

recruited among inhabitants of Vlaardingen and surroundings and employees of Unilever 
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Research Laboratorium in Vlaardingen, The Netherlands and gave their written informed 

consent before participation. 

Volunteers were eligible if they had a Quetelet Index between 19 and 30 kg/m2 and if 

they were apparently healthy, as assessed by questionnaire (i.e. they regarded 

themselves as being healthy, they did not receive medical treatment or used medicines 

and they reported no chronic gastro-intestinal problems). They did not use dietary 

supplements (e.g. vitamins, minerals, carotenoids) in the month preceding the study and 

they were not on a slimming diet, did not use excessive amounts of alcohol (less than 21 

units/week for females or 28 units/week for males) and smoked maximally 15 

cigarettes/day. Volunteers who adhered to a vegetarian, macrobiotic or other alternative 

diet were excluded from participation. Also pregnant or lactating women were excluded. 

Study design 

The study had an incomplete block design with four experimental periods and with 

persons as blocks. All volunteers would consume a control meal during one of the 

experimental periods and they would consume meals supplemented with vegetables or 

synthetic p-carotene during the other three periods. The vegetable meals contained 300 g 

of one of the following vegetables: broccoli or green peas or whole leaf spinach or 

chopped spinach. The control and the p-carotene supplemented meals contained no 

vegetables. The test meals were consumed for four consecutive days, followed by 10 

days of wash-out. The duration of the wash-out period was chosen as approximately the 

in vivo half-life of plasma p-carotene (Rock et al, 1992). Fasting blood samples were 

taken at the end of each four day experimental period to assess plasma levels of folate 

(only after control and vegetable supplemented meals), carotenoids and vitamin C. To 

determine the effect of the experimental regime without any vegetables and fruits, a sub­

group of 26 randomly chosen volunteers supplied an additional fasting blood sample 

before the start of the experimental period in which they would consume the control meal. 

The protocol was approved by the Medical-Ethical Committee of Unilever Nederland BV. 

Test meals and background diet 

The control meal consisted of a basic pasta meal with ham and a white sauce and 

custard for dessert. The vegetables and p-carotene were added to this basic meal. 

Energy and fibre content and macronutrient composition was equal for all test meals and 

similar to that of an average Dutch main meal (Voorlichtingsbureau voor de Voeding, 

1993). Differences in fibre content was corrected for by addition of beet fibre (Fibrex, 

Tefco Food Ingredients BV, Bodegraven, the Netherlands) to the sauce. Synthetic p-

carotene (30% microcrystalline suspension in oil, 30% FS (E160a), Hoffmann-La Roche, 
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Basel, Switzerland) was added to the sauce. The vegetables (300 g/meal: broccoli, 

Iglo/Mora, The Netherlands; garden peas, Birds Eye Wall's, UK; whole leaf spinach, 

Sagit, Italy) were served simultaneously with the basic meal. Broccoli and green peas 

were cooked conventionally in boiling water during 6 min and 3-4 min respectively. Whole 

leaf spinach was microwaved (3200 Watt) for 16 min with a stir after 8 min. For 

preparation of chopped spinach, whole leaf spinach was minced after 8 min in the 

microwave (3200 Watt) and subsequently microwaved for another 8 min. 

The hot meals were served at lunch time and volunteers were instructed not to 

consume any vegetables or vegetable containing products, fruits, fruit juices or red 

sauces (e.g. tomato ketchup) during the rest of the days of the experimental periods. 

During the wash-out periods the volunteers returned to their habitual diet. 

Composition of test meals 

Duplicate portions (n=5) of the complete test meals (as consumed by the volunteers) 

were analysed and found to provide on average (SD) 20 (1.5) g fat, 80 (4.7) g 

carbohydrates, 32 (1.8) g protein and 16 (1.8) g fibre. Carotenoid, folate and vitamin C 

concentrations were determined in duplicate portions (n=4-8) of the vegetables or sauces 

(as consumed by the volunteers). After extensive extraction of the vegetables or sauces 

with n-heptane/ether (1:1, v/v), ethyl-carotenoate was added as internal standard, (cc+p)-

Carotene, lutein and lycopene were separated by straight phase HPLC using a nucleosil 

5CN column (Machery & Nagel, Duren, Germany) and n-heptane/iso-propanol (1000:25, 

v/v) as mobile phase at a flow rate of 1.0 mL/min and a column temperature of 20°C. The 

eluent was monitored by UV-Vis detection at 450 nm for (a+(3)-carotene and lutein and at 

470 nm for lycopene. In this system, a-carotene coelutes with (J-carotene. As the 

vegetables and (3-carotene supplement contained virtually no a-carotene (i.e. <0.04 

mg/serving, Mangels et al, 1993a), the response of (a+p)-carotene is considered as p-

carotene. The vegetables and control sauce were extracted with 0.1 mol/L phosphate 

buffer (pH 6.1, +0.2% sodium ascorbate) and the filtrate was used for analysis of the 

folate concentration by microbiological assay with Lactobacillus rhamnosus (NCIB 10463), 

using a commercially obtained assay medium (Merck Folic acid medium, Difco 

Laboratories, Detroit, USA). For total folate content, an aliquot of the extract was 

incubated (3 h, pH 4.5, 37°C) with human plasma deconjugase (Sigma Chem Co.) 

(Finglas et al, 1993). This step was omitted for analysis of free folate. After precipitation of 

the proteins and stabilization with 5% metaphosphoric acid, the vitamin C content of the 

vegetables or sauces was determined fluorimetrically as ascorbic acid plus 

dehydroascorbic acid, as described by Vuilleumier and Keck (1989). 
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TABLE 1 Carotenoid, folate and vitamin C content of the control sauce, vegetables and 

synthetic p-carotene supplemented sauce (mean (SD)). 

Compound 

Total folate 

Monoglutamyl folate 

P-Carotene 

Lutein 

Vitamin C 

Control 

nd 

-
nd 

nd 

nd 

Broccoli 

0.35 (0.029) 

-
2.43 (0.2) 

3.78 (0.4) 

84.6 (14.9) 

Type of test meal 

Green peas 

(mg/. 

0.22(0.015) 

-
1.72(0.07) 

4.22 (0.2) 

25.7(2.1) 

Whole leaf 

spinach 

serving)1 

0.60 (0.049) 

0.17(0.015) 

24.6(1.8) 

25.0 (2.7) 

91.6(10.3) 

Chopped 

spinach 

0.59 (0.030) 

0.18(0.0) 

23.8 (2.4) 

26.0 (2.8) 

92.6(9.1) 

Synthetic p-

carotene 

-
-

33.3(1.2) 

nd 

nd 

1 Based on analysis of duplicate portions of the prepared vegetables or sauces, as consumed by the volunteers; N=4 
for folate and vitamin C analysis, N=8 for carotenoid analysis 
nd = not detectable: < 0.03 mg/serving for folate; < 0.3 mg/serving for carotenoids; < 5 mg/serving for vitamin C 
- = not determined 
Note: the amount of lycopene was below detection level in all of the meals (< 0.3 mg/serving) 

Plasma and serum analyses 

Fasting blood samples were taken by vena puncture. Plasma samples were stored at -

70°C for analysis of carotenoids and trichloroacetic acid-treated plasma was stored at -

70°C for analysis of vitamin C. For the other analyses, plasma and serum samples were 

stored at -20°C. All analyses were executed within six months after the study. Plasma 

concentrations of p-carotene, lutein and lycopene were determined by straight phase 

HPLC as described previously (Weststrate & Van het Hof, 1995). p-Carotene and 

lycopene were separated on a Nucleosil 5-N (CH3)2 column with n-heptane as mobile 

phase at a flow rate of 1 ml/min and ethyl-p-apo 8'-carotenoate as internal standard. 

Lutein was separated on a Nucleosil 5CN column with n-heptane/dichloromethane/ 

isopropanol (900/100/5, v/v) as mobile phase at a flow rate of 1 ml/min and p-apo-8'-

carotenol as internal standard (intra-assay variation: <5.7%, as determined in control 

plasma samples with the following average carotenoid concentrations: p-carotene 0.2 

umol/L; lycopene 0.4 umol/L; lutein 0.15 umol/L). Plasma folate concentration was 

assessed by using a chemiluminescence competitive protein binding test (Magic Lite, 

Ciba Corning Diagnostics GmbH, Fernwald, Germany) (intra-assay variation: 4.7%, as 

determined in plasma samples varying in folate concentration between 10 and 48 nmol/L). 

Vitamin C was analysed fluorimetrically in trichloroacetic acid-treated plasma as the 

concentration of ascorbic acid plus dehydroascorbic acid (intra-assay variation: 1.9%, as 

determined in control plasma samples with 58 and 283 umol/L vitamin C) (Vuilleumier & 

Keck, 1989). Total cholesterol and triacylglycerol concentration in serum was assessed by 

using commercially available colorimetric test kits (respectively CHOD-PAP, Boehringer, 
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Mannheim, Germany and GPO-PAP (Roche, Basel, Switzerland)/GPO-Trinder (Sigma, 

St. Louis, USA)). 

Statistical evaluation 

The significance of the changes in plasma carotenoid, folate and vitamin C 

concentration during the experimental period in which volunteers consumed the control 

meal was determined by Student's t test for paired data. Analysis of variance with persons 

as blocks and, sex, smoking habits, period, treatment x sex and treatment x smoking as 

factors, was used to compare the plasma and serum values found after consumption of 

the supplemented meals with those found after consumption of the control meal. 

Significance of the differences was assessed by Dunnett's test. As sex and smoking had 

no significant effect, these variables were excluded from the ANOVA model. Differences 

between the two types of spinach were assessed by orthogonal contrasts. 

Plasma carotenoid concentrations were log-transformed to minimize correlation 

between mean values and standard errors. For these parameters, geometric means are 

presented with the standard error as percentage of the geometric means. Other variables 

are shown as least square means with their standard error. Plasma concentrations of 

carotenoids, normalized for serum cholesterol and triacylglycerol levels, were also 

analyzed for differences between the treatments (carotenoid concentration/(cholesterol + 

triacylglycerol concentration)). 

All comparisons were at the two-sided 0.05 significance level, except for the difference 

between chopped and whole leaf spinach which was tested one-sided, based on the 

hypothesis that disruption of the spinach matrix would enhance the bioavailability of 

carotenoids, folate and vitamin C. 

RESULTS 

Three volunteers dropped out of the study before the end of the first experimental 

period because of lack of time to participate in the trial and four volunteers were not able 

to participate in all of the four experimental periods for various reasons (e.g. illness, 

business trip) (see Figure 1). Data of 31 males and 38 females were included in the 

statistical analyses. Sixty-five of these volunteers participated in all of the four 

experimental periods whereas three volunteers participated in three experimental periods 

and one volunteer in only two periods. Two volunteers did not receive the control meal. 

The average age (SD) of the participants was 42 (13) y and their mean Quetelet Index 

(SD) was 24.6 (2.3) kg/m2. Ten of the 69 volunteers were smokers (5 females and 5 

males, maximum 15 cigarettes/d). 
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N=72 volunteers selected for participation 

N=3 volunteers dropped out from study 

N=69 volunteers included in statistical evaluation 

N=65: all 4 experimental periods, 
incl. control meal 

N=2: 3 experimental periods, 
incl. control meal 

N=1: 3 experimental periods, 
excl. control meal 

N=1: 2 experimental periods, 
excl. control meal 

4 days 4 days 4 days 4 days 

control meal 10 days 
supplemented 

meal 10 days 
supplemented 

meal 
10 days 

supplemented 
meal 

4 experimental periods, 10 days wash-out between periods 

Figure 1 Experimental design of the study. The control meal contained no vegetables or 

carotenoids whereas the other test meals were supplemented with broccoli, green peas, 

whole leaf spinach, chopped spinach or synthetic p-carotene. Volunteers received three out of 

these supplemented meals. The combinations of supplemented meals and the order of the 

test meals was varied among the participants. 

Table 2 shows the least square means of the plasma concentrations of carotenoids, 

folate and vitamin C and serum concentrations of total cholesterol and triacylglycerol 

before and after four days of consumption of the control meal without vegetables (low in 

carotenoids, folate and vitamin C) and after four days of the same meal supplemented 

with vegetables or p-carotene. As no vegetables and fruits were allowed to be consumed 

during the experimental periods, consumption of the control meal without any vegetables 

significantly reduced plasma carotenoid and vitamin C levels (mean (SE): p-carotene 

0.069 (0.018) umol/L; lutein 0.038 (0.0034) umol/L; vitamin C 14 (1.5) umol/L, p<0.005), 

whereas plasma folate concentrations were not significantly affected. 

Unfortunately, consumption of the meal supplemented with p-carotene induced a carry­

over effect in plasma concentrations of p-carotene. The plasma levels of p-carotene, 

found in the first and second test periods following consumption of the p-carotene 
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CHAPTER 3 

supplemented meal, were therefore excluded from the statistical evaluation (i.e. using a 

wash-out period of 38 days). A significant increase in plasma concentration of p-carotene 

was found after consumption of the p-carotene supplemented meal (5-fold increase (95% 

CI: 409, 648%)) as well as after the broccoli and green peas supplemented meals (28% 

(95% CI: 6.4, 55%) and 26% (95% CI: 2.6, 54%), respectively), whereas consumption of 

the spinach supplemented meals had no significant effect as compared to consumption of 

the control meal (Table 2). As the intake of p-carotene was different in each of the test 

meals, we calculated the plasma response per mg dietary p-carotene supplied per 

serving. Figure 2 shows the efficacy of each supplemented meal to raise the plasma level 

of p-carotene as compared to consumption of the control meal. Per mg p-carotene, 

broccoli and green peas induced a similar response in plasma concentration of p-

carotene as consumption of the meal supplemented with synthetic p-carotene. 
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Figure 2 Plasma response of p-carotene after four days of supplementation with vegetables 

or p-carotene as compared to consumption of a low carotenoid control meal, expressed as 

increase per mg p-carotene intake from the vegetable or p-carotene supplemented meal 

(mean ± 95% confidence interval) (p-carotene intake/serving: broccoli: 2.43 mg; green peas: 1.72 mg; 

whole leaf spinach: 24.6 mg; chopped spinach: 23.8 mg; synthetic all-trans p-carotene: 33.3 mg). 

Consumption of either of the vegetable supplemented meals resulted in a significantly 

increased plasma level of lutein as compared to consumption of the control meal (1.3-fold 

(95% CI: 104, 150%) for broccoli, 1.3-fold (95% CI: 108, 155%) for green peas, 1.7-fold 

(95% CI: 139, 197%) for whole leaf spinach, 2.0-fold (95% CI: 173, 239%) for chopped 
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spinach) (Table 2). Chopping of spinach enhanced this effect and plasma lutein levels 

after consumption of chopped spinach were significantly higher than those after whole 

leaf spinach (difference: 14% (95% CI: 3.7, 25%)). Figure 3 shows for each vegetable 

type the plasma lutein response per mg lutein present in the vegetable per serving. Per 

mg of intake, lutein seems more bioavailable from broccoli and green peas than from 

spinach. 
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Figure 3 Plasma response of lutein after four days of supplementation with vegetables as 
compared to consumption of a low carotenoid control meal, expressed as increase per mg 
lutein intake from the vegetable supplemented meal (mean ± 95% confidence interval) (lutein 
intake/serving: broccoli: 3.78 mg; green peas: 4.22 mg; whole leaf spinach: 25.0 mg; chopped spinach: 26.0 

mg). 

As anticipated, because of the virtual absence of lycopene in the experimental meals, 

none of the vegetables or the p-carotene supplemented meals induced a significant 

change in lycopene levels in plasma (results not shown). No significant differences were 

found in serum lipid levels (Table 2) and normalizing plasma concentrations of 

carotenoids for serum lipids did not alter the results. Also, treatment effects were not 

significantly different between males and females and between smokers and non-

smokers. 

Folate levels in plasma were significantly increased by respectively 1.9 umol/L (95% 

CI: 0.021, 3.8) and 4.2 umol/L (95% CI: 2.3, 6.2) after four day consumption of the meal 

supplemented with whole leaf or chopped spinach as compared to the levels found after 
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consumption of the control meal (Table 2). In addition, a significant difference (2.3 umol/L 

(95% CI: 0.8, 3.8)) was found between chopped and whole leaf spinach, such that the 

folate concentration was higher after consumption of the chopped spinach supplemented 

meal. None of the other vegetable supplemented meals increased folate levels in plasma 

significantly (Table 2). However, when expressed per mg of folate intake, the plasma 

response of folate following green peas consumption was larger than that following 

consumption of broccoli or whole leaf spinach (Figure 4). 

As compared to four days of consumption of the control meal, all of the vegetable 

supplemented meals increased plasma concentration of vitamin C significantly, while the 

synthetic p-carotene supplemented meal had no effect (Table 2). 
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Figure 4 Plasma response of folate after four days of supplementation with vegetables as 
compared to consumption of a low carotenoid control meal, expressed as increase per mg 
folate intake from the vegetable supplemented meal (mean ± 95% confidence interval) (folate 
intake/serving: broccoli: 0.35 mg; green peas: 0.22 mg; whole leaf spinach: 0.60 mg; chopped spinach: 0.59 

mg). 

DISCUSSION 

The present study investigated the effect of four days consumption of different 

vegetables on the plasma status of carotenoids, folate and vitamin C. Three-hundred g/d 

of vegetables was chosen as a relatively high, but acceptable amount with a reasonable 

chance of significant effects. In addition, the changes induced by the vegetables 
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supplemented meals were compared with those following consumption of a vegetable-

free diet. Indeed, the results show that 300 g/d was sufficient to increase plasma levels of 

lutein and vitamin C for all vegetables in such a short time, whereas plasma levels of p-

carotene were increased following consumption of broccoli or green peas but not spinach. 

The plasma concentration of folate was increased after consumption of spinach, which 

provided the largest amount of folate in this study. It should be taken into account that the 

changes induced by vegetable consumption are the sum of the decrease due to exclusion 

of any vegetables and fruits from the diet and the increase due to consumption of 300 g/d 

of vegetables. Furthermore, although the changes in plasma levels are used as a 

measure of relative bioavailability, it is not possible to extrapolate these changes into 

estimates of actually absorbed carotenoids, folate or vitamin C as the underlying kinetics 

of plasma and tissue distribution have not been assessed. 

It is unlikely that four days is sufficient to reach new steady state plasma 

concentrations for the investigated micronutrients and antioxidants as previous studies 

have indicated that this would take approximately 2-6 weeks (Micozzi et al, 1992; Levine 

et al, 1996; Truswell & Kounnavong, 1997). However, previous studies have shown that 

differences in plasma levels of carotenoids (Micozzi et al, 1992) and folate (Brouwer et al, 

personal communication, 1997) after short term supplementation are related to the 

differences found after reaching a new steady state, although the absolute differences 

may deviate. Such a short-term protocol is advantageous as compared to a long-term 

protocol because it is less labour-intensive and compliance to instructions is easier during 

a short period. Furthermore, in contrast to a single-dose protocol, it is possible to apply 

more realistic circumstances and investigate the effect of the test meals as part of a 

normal diet. 

Effect of vegetable consumption on plasma carotenoid levels 

We found a substantial difference between the various vegetables in their efficacy to 

increase plasma levels of p-carotene. Despite a ten times higher p-carotene content of 

spinach, the total increase in plasma levels induced by broccoli or green peas exceded 

that of spinach. We calculated the plasma response per mg p-carotene intake as a 

measure of the efficacy (Figure 1), assuming a linear dose-response relation at the 

dosages provided. When expressed as percentage of the response induced by one mg 

synthetic p-carotene, the plasma response of p-carotene after consumption of broccoli or 

green peas was, per mg p-carotene supplied, 74% and 96% of the response following 

supplementation with p-carotene. Micozzi et al (1992) found that broccoli was 22-24% as 

effective to increase plasma levels of p-carotene as compared to encapsulated p-
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carotene. In their study, the changes in plasma p-carotene levels were compared after six 

weeks intervention. As indicated above, the absolute percentages found after short term 

supplementation may deviate from those found in steady state plasma concentration. 

Both values are however higher than the percentage that we found in the present study 

for spinach, which was only 3-4% as effective as compared to the p-carotene 

supplemented meal. De Pee et al (1995) also showed that the relative bioavailability of p-

carotene from green leafy vegetables is low. The present data indicates that this 

observation is specific for green leafy vegetables and should not be extrapolated to all 

green vegetables. 

There may be several explanations for the observed differences in bioavailability of p-

carotene from vegetables. The vegetables contained different amounts of p-carotene and 

the efficiency of p-carotene absorption or conversion into retinol may decrease with 

increasing intake. The first phenomenon would imply a relatively lower plasma response 

following spinach consumption as this vegetable contained more p-carotene than broccoli 

and green peas. However, the increase induced by broccoli or green peas consumption 

exceded that of spinach, also without correction for the difference in p-carotene intake 

(Table 2). A less efficient conversion to vitamin A can also not explain our findings as a 

larger p-carotene response would be expected from a recuded conversion of p-carotene 

absorbed from spinach. 

We used different cooking methods and times and heat treatment is suggested to 

enhance the bioavailability of carotenoids by loosening their binding to proteins (Erdman 

et al, 1988). However, spinach was heated longer than broccoli and green peas and this 

difference does therefore not explain the relatively lower availability of p-carotene from 

spinach. Another explanation might be the interaction of p-carotene with other 

carotenoids. It has been suggested that the presence of lutein may decrease the 

bioavailability of p-carotene (Kostic et al, 1995; Van den Berg et al, 1998). However, the 

ratio p-carotene/lutein was higher and thus more favourable, for spinach than for broccoli 

and green peas. Other absorption modifiers, such as fibre (Rock & Swendseid, 1992) may 

explain the differences. Although the meals were designed to provide the same amount of 

fibre, the type of fibre may have varied as the ratios hemicellulose:cellulose:lignin are 

different among broccoli, green peas and spinach (Spiller, 1992). Another factor is 

probably typical characteristics of the vegetables. In plant leaves, carotenoids are present 

in chloroplasts and have a function in the process of photosynthesis by photoprotection 

and light collection (Cogdell & Gardiner, 1993). Little is known about the location of 

carotenoids in other parts of plants. De Pee et al (1998) recently found that p-carotene 

from fruits was more effective in increasing plasma levels of p-carotene and retinol than 

green leafy vegetables. If, like in fruits, carotenoids are present in chromoplasts of 
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broccoli (the flower) or green peas (the seeds), this may explain the higher p-carotene 

response as compared to spinach. 

For lutein, the difference between spinach and the two other vegetables was less 

pronounced, although also for this carotenoid, broccoli and green peas were, per mg 

provided, more effective sources than spinach (Figure 3). Again, one explanation may be 

a difference in location of the carotenoids in the plant cells. In addition, the higher p-

carotene/lutein ratio in spinach as compared to broccoli and green peas may have 

reduced lutein absorption (Kostic et al, 1995). The efficiency of lutein absorption from 

spinach may also have been reduced due to the larger amount of lutein present in the test 

meal. 

Vegetable processing may improve the bioavailability of carotenoids, as has been 

indicated for p-carotene from carrots (Van Zeben & Hendriks, 1948; Hussein & El-

Tohamy, 1990; Torronen et al, 1996) and lycopene from tomatoes (Stahl & Sies, 1992; 

Gartner et al, 1997; Porrini et al, 1998). Mechanical homogenization of the spinach before 

consumption resulted in a significantly higher plasma response of lutein. It did not, 

however, affect the plasma response of p-carotene. Lutein is more hydrophilic than p-

carotene and this may have enhanced the release of lutein from the chloroplasts in the 

cytosol during disruption of the cell structure. The effect was moderate and the release of 

lutein was still lower than that from broccoli or green peas (Figure 3). This suggests that a 

difference in characteristics of the vegetables may be the major determinant. 

The differences in relative carotenoid bioavailability between different vegetables are 

important for the interpretation of health benefits of carotenoid consumption. Most 

epidemiological studies do not take into account the apparently substantial variation in 

carotenoid bioavailability from different foods. Giovannucci et al (1995) showed that the 

association between intake of lycopene-rich foods and risk of prostate cancer varied 

among different foods. Differences in lycopene bioavailability may have been responsible 

for this observation (Gartner et al, 1997). The present study shows that for p-carotene and 

lutein not only the extent of vegetable processing should be taken into account, but also 

the type of vegetable ingested. This may be an important reason for the rather low 

correlation coefficients (ca. 0.50) found in most studies between carotenoid intake and 

plasma levels (Campbell et al, 1994; Scott et al, 1996; Drewnowski et al, 1997). 

Effect of vegetable consumption on plasma folate level 

A significant increase in plasma concentration of folate was found after four days 

consumption of spinach, which contained the highest amount of folate, whereas the 

increases following broccoli or green peas consumption almost reached significance. 

These increases indicate that the different vegetables are valuable sources of folate. 
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When expressed per mg of folate intake the investigated vegetables also differ in their 

folate bioavailability as green peas induced a larger response per mg folate intake than 

broccoli and whole leaf spinach (Figure 4). The major part of folate in vegetables is 

present as polyglutamyl folate, which has to be converted enzymatically into 

monoglutamyl folate before absorption. This conversion is suggested to be one of the 

limiting steps during the uptake of folate from natural dietary folate sources (Bailey, 1988). 

Muller (1993) found that 32% of the total folate content was present as monoglutamyl 

folate in green peas. The percentage monoglutamyl folate in the spinach used in the 

present study was ca. 30% (Table 1). This suggests that other characteristics may 

account for the possible differences in folate bioavailability among the vegetables 

investigated. Possibly the differences in amount of folate supplied by the different 

vegetables have interfered with their effectiveness to increase plasma folate levels 

(Truswell & Kounnavong, 1997). 

Disruption of the whole leaf matrix of spinach enhanced the bioavailability of folate. 

However, the finding that chopped spinach induced a larger plasma folate response than 

whole leaf spinach can not be attributed to a difference in mono/polyglutamyl folate ratio 

(Table 1). Our study shows that disruption of the matrix makes folate more accessible for 

absorption. Apparently, the disruption of the whole leaf spinach matrix in the gastro­

intestinal tract is not complete and limits the bioavailability of folate. 

Effect of vegetable consumption on plasma vitamin C level 

Plasma vitamin C levels were increased after consumption of either of the vegetables 

and the differences in increases between the vegetables were related to differences in 

their vitamin C content. Due to saturation of plasma levels at about 80 umol/L, the major 

factor predicting the plasma response of vitamin C following supplementation appears to 

be the prior vitamin C status of the volunteers (Levine et al, 1996). This concentration was 

not achieved in our study, which may explain the dose-response effect of vitamin C we 

found. Previous studies have shown that the bioavailability of vitamin C from vegetables is 

similar to that from a supplement (Mangels et al, 1993b). Therefore, it is not surprising 

that chopping of whole leaf spinach did not improve the bioavailability of vitamin C. 

Release of vitamin C from the food matix is apparently not a limiting step during 

absorption of vitamin C. 

In conclusion, the present study shows that the bioavailability of p-carotene and lutein 

varies substantially among different types of vegetables. Processing of vegetables, such 

as mechanical homogenisation, can improve the bioavailability of lutein and folate. This 
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variation in nutrient bioavailability should be considered when the impact of vegetable 

consumption on health is assessed. 
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CHAPTER 4 

ABSTRACT 

Tomatoes are the main dietary source of lycopene and the bioavailability of lycopene from 

tomato paste is higher than that from fresh tomatoes. We investigated systematically the 

effect of mechanical homogenisation and heating on the bioavailability of carotenoids from 

canned tomatoes. Further, we compared the carotenoid response in triglyceride-rich 

lipoproteins (TRLs) after single consumption with the change in fasting plasma carotenoid 

concentrations after four days. 

In a split plot design, 17 volunteers consumed tomatoes which had received minimal 

additional heating and 16 others consumed extensively heated tomatoes (1 h at 100°C). 

These tomatoes were not, mildly or severely homogenised. The tomato products were 

consumed daily (ca. 22 mg/d lycopene) during four days. Eleven participants provided 

postprandial blood samples on the first day and all gave fasting blood samples on the first 

day and after four days. 

Homogenisation enhanced the lycopene response significantly (P<0.05) both in TRLs 

(mean area under the curves: 54.9, 72.0 and 88.7 nmol/L.h (SE 11.0) for not, mildly and 

severely homogenised tomatoes, respectively) and in plasma (mean changes: 0.19, 0.22 

and 0.23 umol/L (SE 0.009), respectively). Additional heating also enhanced the lycopene 

responses in TRLs and plasma, but the differences lacked significance. Similar effects as 

those for lycopene were found for (3-carotene. 

We conclude that the intactness of the cellular matrix of tomatoes determines the 

bioavailability of carotenoids and that matrix disruption by mechanical homogenisation 

and/or heat treatment enhances the bioavailability. The carotenoid response in plasma after 

four days intervention can be used to compare the bioavailability of carotenoids from 

different foods. 
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INTRODUCTION 

High lycopene and tomato intakes have been found to be associated with a reduced 

risk of prostate cancer (Giovannucci et al, 1995). Interestingly, the association was 

strongest for tomato paste, which was the tomato product that showed the best 

correlation with serum lycopene levels. Differences in lycopene bioavailability among 

different tomato products may explain this latter observation. This is supported by the 

finding that the lycopene response in plasma or triglyceride-rich lipoproteins (TRLs) is 

higher after consumption of tomato paste than after consumption of fresh tomatoes 

(Gartner et al, 1997, Porrini et al, 1998). The production of tomato paste from fresh 

tomatoes involves homogenisation and heat treatment. Previous studies have shown that 

a combination of these treatments enhances the bioavailability of carotenoids from 

vegetables (Van Zeben & Hendriks, 1948; Rock et al, 1998). However, up until now, the 

contribution of each of these processes has not been clear. As heat treatment can have a 

deleterious effect on the micronutrient content of vegetables, it is important to determine 

systematically the separate effect of homogenisation and heat treatment on the 

bioavailability of lycopene and p-carotene from tomatoes and the interaction between 

these two processes. 

Various approaches have been used to investigate carotenoid bioavailability. Most 

studies have used carotenoid responses in plasma following 3 to 6 weeks supplementation 

as a measure of carotenoid bioavailability (e.g., Van Zeben et al, 1948; Micozzi et al, 1992; 

Torronen et al, 1996; Rock et al, 1998). Recently, the carotenoid response in the TRL-

fraction of plasma was suggested as a valuable model, as TRLs contain newly absorbed 

carotenoids (Van Vliet, 1996). A disadvantage of such a single dose protocol is the large 

number of blood samples that need to be drawn. However, longer term supplementation is 

also a burden on the volunteers and labour intensive. Therefore, we determined whether a 

short term intervention period would be a suitable approach to estimate carotenoid 

bioavailability from tomatoes processed in different ways. We compared the postprandial 

carotenoid response in the TRL fraction of plasma after single consumption with the 

carotenoid response in fasting plasma after four days consumption of the same tomato 

products. The tomato products had received different degrees of homogenisation and heat 

treatment to determine systematically the effect of these processing conditions on the 

bioavailability of carotenoids from canned tomatoes. 

67 



CHAPTER 4 

MATERIALS AND METHODS 

Volunteers 

Participants were recruited via advertisements in the weekly periodical of the 

laboratory, in local newspapers and on local radio and television stations. Volunteers 

were employees of Unilever Research Vlaardingen or inhabitants of the surrounding area. 

They were eligible when they met the following criteria: aged between 18 and 70 y; Body 

Mass Index between 19 and 30 kg/m2; no excessive use of alcohol (males < 28 units/wk, 

females < 21 units/wk); intensive sporting activities < 10 h/wk; smoking < 5 cigarettes, 

cigars or pipes/d. Volunteers were apparently healthy, as assessed by questionnaire, and 

they did not use any medications except oral contraceptives or reported gastrointestinal 

disturbances. Their body weight was stable for at least the previous two months and they 

had not used dietary supplements (e.g. vitamins or minerals) during the month prior to the 

start of the study. Volunteers were exclused if they were adhering to a medically 

prescribed, slimming or vegetarian diet or if they were pregnant or lactating. Volunteers 

who were selected for participation in the postprandial measurement of the carotenoid 

response in TRLs, had normal fasting serum triglyceride concentrations (i.e. < 3.0 

mmol/L) and normal whole blood haemoglobin concentrations (i.e. > 8.0 mmol/L for 

males; > 7.5 mmol/L for females). 

Volunteers received information on the background and design of the study and they 

gave their informed consent before participation. The protocol of the study was approved 

by the Medical Ethical Committee of Unilever Nederland BV. 

Study design 

The study had a split-plot design with three degrees of homogenisation of the tomatoes 

(none, i.e. whole tomatoes; mild, i.e. blended tomatoes; severe, i.e. tomatoes blended 

under high pressure) and two levels of additional heat treatment (minimal, i.e. only 

heating before serving; extensive, i.e. one hour at 100° C before serving). The effect of 

homogenisation was tested within persons during three experimental periods and that of 

additional heat treatment between persons. Thirty-six volunteers were divided in two 

groups, stratified for gender. 

The tomato products were served as part of a pasta meal at lunch time on four 

consecutive days and no other vegetables, fruits or tomato products were consumed 

during these days. These four day experimental periods were separated by a wash-out 

period often days during which volunteers returned to their habitual diet with a restriction 

for their consumption of vegetables, fruits and tomato products. Fasting blood samples 
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were taken before and at the end of each experimental period for analysis of plasma 

carotenoid concentrations and plasma total antioxidant activity. 

A sub-group of 12 participants, 6 for each heat treatment group, participated in 

measurements of the postprandial carotenoid response in the TRLs following 

consumption of the tomato products. On the first day of each of the three experimental 

periods, they consumed the tomato-pasta meals in the morning, instead of at lunch time. 

After a fasting blood sample had been drawn, they consumed the meal within 30 min. 

Additional blood samples were taken 2, 3, 4.5, 6 and 8 h after start of consumption of the 

experimental meal for measurement of carotenoids, retinyl palmitate, triglycerides and 

total antioxidant activity in the TRL-fraction of plasma. A low fat, carotenoid-free lunch 

was provided after the 4.5 h blood sample. 

We calculated that, based on previous studies, the number of volunteers included in 

the four days study would be sufficient to show a 35% difference in plasma lycopene 

response in the parallel comparison of the heat treatment effects. The choice of the 

number of volunteers for the measurement of the carotenoid response in TRLs was based 

on practical considerations as no data were available on the within person variation of 

lycopene responses in TRLs. 

Tomato products, experimental meals and background diet 

Starting material for the tomato products were peeled and canned whole tomatoes 

(Lycopersicum esculentum) (Lipton, Stockton, CA, USA). In the factory, these tomatoes 

had received a 55 min heat treatment at 100°C after canning to ensure microbiological 

safety. After reaching 100°C in the centre of the cans, they had been cooled to about 

50°C within one hour. We did not use fresh tomatoes because the physical and chemical 

properties of fresh tomatoes may change during storage and that might have interfered 

with the effects of processing which we assessed in a cross-over study design over three 

weeks. 

Mildly homogenised tomatoes were prepared on the experimental days by blending for 

2 min (Ultra-Turrax T50, IKA-Labortechnik, Staufen, Germany). Severe homogenisation 

included blending for 2.5 min using the same blender, followed by processing in a high 

pressure homogeniser at 200 bar (APV-GAULIN homogeniser, type Lab 60-10 TBS, APV-

GAULIN GmbH, Liibeck, Germany). Severely homogenised tomatoes were prepared in 

one batch before the start of the experiment and batches of 2.8-3 kg were stored at -20°C 

until use on the experimental days. 

Additional heat treatment was given on the experimental days, just before serving. The 

minimally heated tomatoes were heated to approximately 80°C and served immediately 
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thereafter, whereas the extensively heated tomatoes were first boiled for one hour and 

then served. 

Tomato products were served with macaroni, ham and a white sauce and a dessert of 

custard. The total energy content and macronutrient composition of the meals were the 

same for all volunteers and the total energy content was about 70% of an average Dutch 

main meal (Voorlichtingsbureau voor de Voeding, 1993) to ensure that everyone would be 

able to consume the complete meal. Participants consumed the experimental meals 

under supervision in the kitchen of our laboratory. They were free to choose their own 

foods during the rest of each experimental day. However, they were instructed not to 

consume products high in carotenoids, such as vegetables, fruits, fruit juices and tomato 

products, or high in vitamin A, such as liver products. Compliance was assessed by 

questionnaire. 

During the postprandial studies, volunteers consumed no other foods until 8 h after 

consumption of the experimental meal, except for a standard lunch of low fat and 

carotenoid and vitamin A-free products 4.5 h after start of consumption of the 

experimental meal. This lunch was consumed under supervision as well. 

Seven days before the start of each experimental period, volunteers received the same 

instructions with respect to consumption of carotenoid and vitamin A-rich products as 

during the experimental periods. We supplied them with frozen ready to eat meals (Iglo, 

Veldhoven, the Netherlands), which were low in carotenoids, to replace their hot main 

meal. 

Analysis of tomato products and experimental meals 

Duplicate portions of the complete experimental meals (3 samples per type), as 

consumed, were analysed for macronutrient and fibre content. The meals were 

formulated to provide 157 ug of preformed retinol (Holland et al, 1991). The carotenoid 

content of the tomato products (9 samples per type) was determined by HPLC on a ET 

200/4 nucleosil 100-5CN column (Machery & Nagel, Duren, Germany). After extensive 

extraction (five times, until the last extract was colourless) with tetrahydrofurane/methanol 

(1:1, v/v), ethyl-p-apo-8'-carotenoate was added as internal standard. p-Carotene and 

lycopene were separated by gradient elution with n-heptane/4% iso-propanol 0-3 min 

97.5:2.5 (v/v); 3-15 min change from 97:2.5 to 50:50 (v/v); 16-30 min 97.5:2.5 (v/v) at a 

flow rate of 1.0 mL/min and a column temperature of 20°C. The eluent was monitored by 

UV-Vis detection at 450 nm for p-carotene and at 470 nm for lycopene. In this system, a-

carotene coelutes with p-carotene. As tomatoes contain no a-carotene (Khachik et al, 

1992), the HPLC response is considered as p-carotene. Table 1 shows the macronutrient 
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and fibre content of the experimental meals and the carotenoid content of the tomato 

products. 

Table 1 Composition of experimental meals, expressed per serving (mean (SD)). 

Fat (g)1 

Protein (g)1 

Carbohydrate (g)1 

Fibre (g)1 

Lycopene (mg)2 

P-Carotene (mg)2 

1 Based on analysis 
2 Based on analysis 

Minimal 

Additional heat treatment 

Degree of homogenisation 

None 

22.8 (0.7) 

27.0 (0.8) 

59.0 (2.8) 

5.8 (0.5) 

20.9(1.8) 

1.1 (0.16) 

Mild 

22.8(1.2) 

27.9(1.8) 

58.3(0.1) 

6.0 (0.5) 

21.3(1.1) 

1.1 (0.17) 

Severe 

22.6 (0.7) 

28.1 (2.3) 

59.7 (0.5) 

5.8 (0.8) 

21.2(1.5) 

1.0(0.14) 

of duplicate samples of experimental meals 

of duplicate samp es of tomato products, as 

Extensive 

Degree of homogenisation 

None 

23.0 (0.2) 

27.3 (0.6) 

58.6(1.6) 

6.1 (0.6) 

23.4 (3.2) 

1.2(0.19) 

as consumed (n= 

consumed (n=9) 

Mild 

23.1 (1.5) 

27.4(1.1) 

58.8 (2.4) 

5.4 (0.3) 

20.7(1.1) 

0.99 (0.17) 

=3) 

Severe 

22.7 (0.5) 

27.3 (0.4) 

58.4 (0.6) 

5.5 (0.5) 

20.5(1.2) 

0.93(0.11) 

The integrity of the cells in the differently processed tomato products was assessed by 

light microscopy. After addition of sodium azide (0.001%) for preservation of the samples, 

the samples were examined as wet preparations. Figure 1 shows photographs of 

representative samples of the homogenised tomato products. The majority of the cells 

were intact in the minimally heated tomatoes, whereas after severe homogenisation, 

and/or extensive heat treatment, many of the cell walls were no longer intact. Heat 

treatment had a less destructive effect than severe homogenisation, as more cells were 

still intact after extensive heat treatment only. 

In vitro release of lycopene from tomato products 

Mild extraction of lycopene was used as an in vitro test to estimate the in vivo release 

of this carotenoid from tomatoes. Ca. 1 g of tomato product was mixed thoroughly by 

using a vortex during 1 min with 3 mL n-heptane. After 30 min at room temperature in the 

dark, the sample was mixed again on a vortex for 1 min and subsequently centrifuged at 

1000 x g for 3 min. The supernatant was collected, the residue was mixed with n-heptane 

for 1 min on a vortex and immediately thereafter centrifuged. Lycopene content of the 

extracts was determined by spectophotometry (UV 2101 PC, Shimadzu Corporation, 

Japan) at 470 nm, using an extinction coefficient of 3450. 
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Figure 1. Light microscopy pictures of tomato products (bar=100 m) A" mildly 

homogenised, minimally heated tomatoes; B: mildly homogenised, extensively heated 

tomatoes; C: severely homogenised, minimally heated tomatoes; D: severely 

homogenised, extensively heated tomatoes. 
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Collection and analysis of blood samples 

Blood samples were obtained from fasting subjects before and after each of the four 

days experimental periods. In a subgroup, additional samples were collected for 

measurement of the carotenoid response in TRLs after consumption of the experimental 

meal. Blood samples were collected into sodium EDTA-coated tubes and plasma was 

separated by centrifugation at 1500 x g for 10 min at room temperature. Plasma samples 

were stored at -80°C until analysis or isolation of the TRL-fraction. Isolation of the TRL-

fraction was performed as described by Van Vliet et al (1995). After thawing, 3.5 mL 

plasma was overlayered with 8 mL NaCI (0.9%, w/v; d=1.004) The samples were 

centrifuged for 1 h at 150,000 x g at 20°C in a Beckman L8-60M ultracentrifuge (Beckman 

Instruments, Pao Alto, CA, USA). The TRL-containing fraction was then removed (2.1 mL) 

and stored at -80°C until further analysis within 6 wk. 

Prior to analysis of the carotenoid and retinyl palmitate content, the TRL-fraction was 

extracted with n-heptane/ether (3:1, v/v). Carotenoid concentrations in plasma and 

carotenoid and retinyl palmitate concentrations in TRLs were determined by HPLC on a 

nucleosil 100 5CN column (Machery & Nagel, Duren, Germany) with n-heptane as mobile 

phase at a flow rate of 0.7 mL/min. Ethyl-apo-8-carotenoate was used as internal 

standard. UV-Vis detection was used to monitor concentrations of lycopene at 470 nm, p-

carotene at 450 nm and retinyl palmitate at 325 nm. Intra assay variation was 4.5% for 

lycopene and 3.9% for p-carotene in plasma. 

The ferric reducing ability of plasma (FRAP) and the TRL-fraction was determined as a 

measure of total antioxidant activity, as described by Benzie & Strain (1996). Total 

cholesterol and triacylglycerol concentrations in plasma and triglyceride concentrations in 

the TRL-fraction were assessed by using commercially available colorimetric test kits 

(plasma cholesterol: CHOD-PAP, Boehringer, Mannheim, Germany; plasma 

triacylglycerol: GPO-PAP (Roche, Basel, Switzerland)/GPO-Trinder (Sigma, St. Louis, 

MO, USA); triglycerides in TRL: Unimate 5 TRIG kit (Roche, Basel, Switzerland)). 

Statistical evaluation 

The data obtained were normally distributed as determined by visual evaluation. The 

data were analysed using analysis of variance with persons (within heat treatment) and 

period as blocks and heat treatment (minimal or extensive) and degree of homogenisation 

(none, mild or severe) as factors in a split plot model. The significance of the treatment 

effects on the in vitro release of lycopene from the tomato products was determined by 

analysis of variance with heat treatment and degree of homogenisation as factors. If a 

significant interaction was found between the effect of heat treatment and degree of 

homogenisation, their effects were tested separately. For the carotenoid responses in the 
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TRL-fraction, the statistical analysis was performed with and without the triglyceride 

response included as covariable. The responses considered were changes in plasma 

concentrations and changes from baseline in TRL concentrations at each time point as 

well as the area under the curve of the concentrations in TRLs. Treatment effects on 

carotenoid responses in plasma and TRLs and antioxidant activity in TRLs were tested 

one-sided, based on the hypothesis that a more extensive heat treatment or more severe 

homogenisation would induce larger responses. For all other parameters (i.e., plasma 

lipid concentrations, antioxidant activity of plasma, triglyceride and retinyl palmitate 

concentrations in TRLs and in vitro lycopene release), differences among treatments were 

tested two-sided. P-values below 0.05 were considered significant. 

Results are expressed as mean (SD) for descriptive variables and as least square 

mean (SE) for all other variables. 

RESULTS 

Volunteers 

Thirty-three participants.completed the study. One subject dropped out before the start 

of the study for unknown reasons and two others did not complete the study due to 

illness. Eleven volunteers participated in the measurement of the TRL- responses. Table 

2 shows the descriptive characteristics of the participants. Only two of them smoked (< 5 

cigarettes/d). 

Table 2. Baseline characteristics of participants of the postprandial and four days study, 

per treatment group (mean (SD)). 

Males/Females (n) 

Age (y) 

Quetelet Index (kg/m2) 

Plasma Lycopene (umol/L) 

Plasma p-Carotene (umol/L) 

Plasma antioxidant activity (mmol/L) 

Plasma total cholesterol (mmol/L) 

Plasma triacylglycerol (mmol/L) 

Postprandial study 

Additional heat treatment 

Minimal 

2/4 

40 (13) 

23.8 (3.0) 

0.41 (0.23) 

0.54 (0.27) 

0.97(0.12) 

4.9 (0.7) 

0.72 (0.2) 

Extensive 

3/2 

39(11) 

24.4(2.8) 

0.30 (0.070) 

0.37 (0.16) 

1.1 (0.1) 

5.3 (0.9) 

1.3(0.5) 

Four days study 

Additional heat treatment 

Minimal 

6/11 

44(12) 

24.2 (3.5) 

0.31 (0.17) 

0.52 (0.27) 

1.0(0.1) 

4.9 (0.7) 

0.97 (0.5) 

Extensive 

7/9 

44(15) 

25.1 (3.3) 

0.27 (0.096) 

0.46 (0.25) 

1.0(0.2) 

5.4(1.3) 

1.2(0.5) 

Note: There were no significant differences between heat treatment groups, except for the difference in 

baseline fasting plasma triacylglycerol concentration between the heat treatment groups of the postprandial 

study (P<0.05). 
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In vitro release of lycopene from tomato products 

A significant difference was found in lycopene extractability from the different tomato 

products. Figure 2 shows the percentage of lycopene extracted after mild heptane 

treatment as compared to the contents measured after extensive extraction (see Table 1). 

Both additional heat treatment and homogenisation enhanced the release of lycopene 

during mild extraction. However, as 100% release was already reached by minimally 

heated, severely homogenised tomatoes, additional heat treatment did not further 

enhance the release of lycopene from the severely homogenised tomato products (Figure 

2). 
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Figure 2. In vitro release of carotenoids from tomato products (lycopene content 

measured after mild extraction, expressed as proportion of the content measured after 

extensive extraction (n=3, mean ±SE)). The proportion of lyocene released was 

significantly different among all degrees of homogenisation for the minimally heated 

tomatoes and between severely homogenised and not or mildly homogenised for the 

extensively heated tomatoes (P<0.05). Additional heat treatment significantly enhanced 

the release of lycopene only for the unhomogenised and mildly homogenised tomatoes 

(P<0.05). 

Carotenoid response in TRLs after a single consumption of tomato products 

Figures 3 and 4 show the triglyceride, lycopene and total antioxidant activity response in 

the TRL-fraction of plasma after consumption of the experimental meals. The triglyceride 

responses were not significantly different among the treatments (Tables 3 and 4) and 
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inclusion of the triglyceride response as covariable did not change the treatment effects 

on carotenoid responses in TRLs. Therefore, here we consider the treatment effects on 

the carotenoid responses without correction for triglyceride concentrations. 
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Figure 3. Mean changes (±SE) in concentrations of triglycerides and lycopene and 

antioxidant activity of triglyceride-rich lipoprotein fraction of plasma after single 

consumption of tomato products (21-23 mg lycopene/serving). Effect of homogenisation 

(n=33). 
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Figure 4. Mean changes (±SE) in concentrations of triglycerides and lycopene and 

antioxidant activity of triglyceride-rich lipoprotein fraction of plasma after single 

consumption of tomato products (21-23 mg lycopene/serving). Effect of heat treatment 

(n=16or17). 

The area under the curves of the TRL-responses are shown in Tables 3 and 4 for the 

effects of homogenisation and heat treatment, respectively. In line with the enhanced in 

vitro release of lycopene, we found a significantly larger area under the curve of the TRL-
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response of both lycopene and p-carotene after consumption of the severely 

homogenised tomatoes than after consumption of the whole tomatoes (Table 3). 

Additional heat treatment also induced a larger TRL-response of lycopene and p-

carotene. However, the difference in areas under the curves was not significant (Table 4). 

The change in ferric reducing ability of the TRLs reflected the changes in carotenoid 

concentration. Homogenisation significantly improved the antioxidant activity of TRLs 

(Table 3), whereas the effect of additional heat treatment was not significant (Table 4). 

The responses of retinyl palmitate (results not shown) were not significantly different 

among the different treatments. 

Table 3. Effect of homogenisation of tomatoes on the response of carotenoids and 

antioxidant activity in TRLs1 and plasma after a single or four days consumption of the 

tomato products, respectively (mean (SE)). 

Postprandial TRL response2 

Lycopene (nmol/L.h) 

p-Carotene (nmol/L.h) 

Triglycerides (mmol/L.h) 

Antioxidant activity (|jmol/L.h)3 

Four days plasma response4 

Lycopene (umol/L) 

Antioxidant activity (mmol/L)3 

Before 

Change 

Before 

Change 

None 

54.9(11.0)" 

2.51 (6.5)" 

0.94 (0.19) 

63.9 (16.5)" 

0.33 (0.009) 

0.19 (0.009)" 

1.02(0.011) 

0.072(0.013) 

Degree of homogenisation 

Mild 

72.2(11.0)"" 

16.6 (6.5)"b 

1.09(0.19) 

82.6 (16.5)"" 

0.31 (0.009) 

0.22 (0.009)" 

1.02(0.01) 

0.046(0.01) 

Severe 

88.7(11.0)" 

23.0 (6.5)" 

1.23(0.19) 

118(16.5)" 

0.32 (0.009) 

0.23 (0.009)" 

1.04(0.01) 

0.039(0.01) 

1 Triglyceride-rich lipoprotein fraction of plasma 
2 Area under the concentration curve, change from baseline 

'Antioxidant activity determined as ferric reducing ability (see Methods section) 
4 Plasma response of p-carotene is shown in Table 5 because there was a significant interaction between 

homogenisation and heat treatment 

""Values in the same row with different superscripts are significantly different (P<0.05) 

Carotenoid response in plasma after four days consumption of tomato products 

The effect of homogenisation and heat treatment on the change in fasting plasma 

lycopene concentrations following four days consumption of the differently processed 

tomatoes, were similar to those found for the lycopene response in TRLs after single 

consumption. We observed significantly larger plasma lycopene responses with 
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increasing degree of homogenisation (Table 3). Further, additional heat treatment tended 

to increase the plasma lycopene response, but this effect lacked significance (Table 4). 

Table 4. Effect of heat treatment of tomatoes on the response of carotenoids and 

antioxidant activity in TRLs1 and plasma after a single or four days consumption of the 

tomato products, respectively (mean (SE)). 

Postprandial TRL response2 

Lycopene (nmol/L.h) 

p-Carotene (nmol/L.h) 

Triglycerides (mmol/L.h) 

Antioxidant activity (umol/L.h)3 

Four days plasma response4 

Lycopene (umol/L) 

Antioxidant activity (mmol/L)3 

Before 

Change 

Before 

Change 

Additional heat treatment 

Minimal 

59.0 (16.6) 

7.53 (8.8) 

0.94(0.21) 

78.6(15.4) 

0.32 (0.03) 

0.20 (0.02) 

1.02(0.03) 

0.054(0.01) 

Extensive 

84.9 (16.6) 

20.5 (8.8) 

1.23(0.21) 

97.9(15.4) 

0.32 (0.03) 

0.22 (0.02) 

1.04(0.03) 

0.051 (0.01) 

1 Triglyceride-rich lipoprotein fraction of plasma 
2 Area under the concentration curve, change from baseline 
3 Antioxidant activity determined as ferric reducing ability (see Methods section) 
4 Plasma response of p-carotene is shown in Table 5 because there was a significant interaction of degree 

between homogenisation and heat treatment 

Note: none of the responses were significantly different between minimal and extensive additional heat 

treatment (a=0.05) 

With respect to the plasma response of p-carotene, there was a significant interaction 

between the effects of the degree of homogenisation and those of additional heat 

treatment. Homogenisation enhanced the plasma response of p-carotene only if the 

tomatoes were not given additional heat treatment (Table 5). Furthermore, a significant 

effect of additional heat treatment was found only for whole tomatoes whereas it did not 

enhance the plasma p-carotene response induced by homogenised tomatoes. 

The ferric reducing ability of plasma was not affected by any of the treatments and no 

significant differences were found among the different degrees of homogenisation or heat 

treatment (Tables 3 and 4). Total cholesterol and triacylglycerol concentrations in plasma 

remained unchanged (results not shown). 
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Table 5. Effect of homogenisation and heat treatment of tomatoes on p-carotene 

response in plasma after four days consumption of the the tomato products (mean (SE)). 

p-Carotene (|jmol/L) 

Additional 

heat treatment 

Minimal 

Extensive 

Before 

Change 

Before 

Change 

Degree of homogenisation 

None 

0.52(0.015) 

0.009 (0.010)ax 

0.43 (0.007)" 

0.043 (0.009)y 

Mild 

0.50(0.015) 

0.044(0.010)" 

0.44 (0.007)"" 

0.040 (0.009) 

Severe 

0.49(0.015) 

0.035 (0.010)" 

0.45 (0.007)" 

0.022 (0.009) 

"•"Values in the same row with different superscripts are significantly different (P<0.05) 
x,y Values in the same column with different superscripts are significantly different (P<0.05) 

DISCUSSION 

The present study is the first to demonstrate the separate effects of homogenisation 

and heating on the bioavailability of carotenoids from tomatoes and the interaction 

between these treatments. It appears that both processes effectively enhance the 

carotenoid bioavailability from tomatoes, although the effect of heating was not always 

significant. The study design we used had less power to show significant effects of heat 

treatment as compared to that of homogenisation. The processing effects were apparent 

both in the carotenoid response in TRLs after single consumption and in fasting plasma 

after four days consumption of the tomato products. This indicates that, qualitatively, the 

plasma response of carotenoids after short term supplementation is a good model to 

compare the bioavailability of carotenoids from different foods. Disruption of the tomato 

matrix also enhanced the extractability of carotenoids from the tomatoes. The in vitro 

release of carotenoids from a food matrix can thus be used as a screening method for the 

effects of processing on carotenoid bioavailability. 

Comparison of carotenoid responses in TRLs and plasma 

The use of the postprandial carotenoid response in the TRL-fraction of plasma as a 

measure of carotenoid absorption is based on the fact that carotenoids present in 

chylomicrons originate directly from the enterocytes. In contrast, in experiments with 

repeated carotenoid consumption, changes in fasting plasma carotenoid concentrations 

are not only affected by the amount of carotenoids absorbed, but also by carotenoid 

metabolism, tissue distribution and transfer of carotenoids between lipoproteins in blood. 

As mentioned above, we found similar differences in lycopene responses in plasma and 

TRLs among the different treatments. This indicates that both approaches can be used to 

determine the effects of tomato processing on lycopene bioavailability. However, with 
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respect to p-carotene, the results were slightly different as a significant interaction was 

found between the degree of homogenisation and additional heat treatment for the 

response of (3-carotene in plasma but not in TRLs. This suggests that the postprandial 

TRL-response is a less sensitive measure of p-carotene bioavailability than the plasma 

response after four days. It should be noted however, that the p-carotene intake was low 

(i.e., 1 mg, see Table 1). 

Four days is not sufficient to achieve a new steady state in plasma carotenoid 

concentrations, as this takes at least three weeks (Micozzi et al, 1992). The differences 

we observed after four days will relate to those observed after longer intervention 

although quantitatively, they may differ. However, a short intervention period has several 

advantages. It is less labour-intensive and compliance to instructions is probably better 

during a short period. In contrast to a single dose design, it is possible to apply more 

realistic conditions and investigate the effect of the test meals as part of a normal diet. 

This latter aspect may be particularly relevant. 

We found a second peak in carotenoid concentrations following the consumption of a 

second carotenoid-free, low fat meal after the 4.5 h blood sample. This was also reported 

by Borel et al (1998), who used a comparable design. In studies where only one meal was 

supplied, only one peak at 4-7 h was found (Van Vliet et al, 1995; O'Neill & Turnham, 

1998; Van den Berg & Van Vliet, 1998). Borel et al (1998) explained their finding by the 

larger p-carotene content of their test meal as compared to the earlier studies (i.e., 120 

mg vs ca. 15 mg respectively). In the present study, we supplied 21-23 mg lycopene 

(Table 1). The amount of fat in our test meals was less than that used by others (i.e., 23 g 

vs 43-50 g). Consequently, the triglyceride content of the TRLs was lower. This may have 

reduced our initial carotenoid responses due to a limited capacity of chylomicrons to take 

up carotenoids, as suggested by Borel et al (1996). Part of the initially absorbed 

carotenoids may have remained in the enterocytes and entered the blood stream 

following the uptake of the second meal. 

Effects of homogenisation and heat treatment 

The extent to which the food matrix, in which carotenoids are incorporated, is intact is 

an important determinant of carotenoid bioavailability as indicated by the present results. 

The first steps of carotenoid absorption include disruption of the food matrix, mechanically 

and by digestive enzymes, and the subsequent release of the carotenoids from this matrix 

and from protein complexes (Britton, 1995). Homogenisation and heat treatment disrupt 

cell membranes, whereas heat treatment has been suggested to disrupt further the 

protein-carotenoid complexes (Erdman et al, 1988). Previous studies have shown that 

homogenisation or a combination of homogenisation and heat treatment enhances 
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carotenoid bioavailability from vegetables in humans (Van Zeben & Hendriks, 1948; 

Torronen et al, 1996; Gartner et al, 1997; Porrini et al, 1998; Rock et al, 1998). Our 

results indicate that the difference in carotenoid bioavailability from tomato paste versus 

fresh tomatoes (Gartner et al, 1997; Porrini et al, 1998) can be explained by alterations of 

the cellular matrix of tomatoes, due to the effect of both homogenisation and heat 

treatment. 

The canned tomatoes used were heated for 55 min at 100°C during manufacturing. 

Further processing was still able to enhance the bioavailability of carotenoids from these 

tomatoes significantly, despite the processing steps which had previously been applied. 

As anticipated, homogenisation under high pressure was more effective in increasing 

carotenoid bioavailability than homogenisation under normal pressure. As shown in 

Figure 1, in part of the cells, the cell walls were still intact after mild homogenisation, 

whereas high pressure treatment destroyed the majority of the cell structures. The release 

of carotenoids from intact cells is thus indeed a limiting factor for carotenoid uptake. This 

confirms data from Van Zeben & Hendriks (1948), who found that homogenisation of 

cooked carrots enhanced the bioavailability of p-carotene as measured by changes in 

plasma concentrations. 

Published data on the effects of heat treatment on the bioavailability of carotenoids 

from vegetables are not consistent. Previous studies in experimental animals showed no 

significant differences in p-carotene responses following consumption of raw or cooked 

homogenised carrots, unheated or heated carrot juice or carrot chromoplasts (Poor et al, 

1993; Zhou et al, 1996). As the cellular matrix of the carrots had been disrupted, these 

results may indicate that heat treatment is only effective for unhomogenised carrots. That 

would be in line with our observation of an enhanced plasma p-carotene response by 

additional heating of whole tomatoes but not homogenised tomatoes. Also, the amount of 

c/s-isomers of p-carotene may have interfered with these findings as heat treatment can 

induce in cis-trans isomerisation in tomatoes (Nguyen & Schwartz, 1998). The 

responsiveness of plasma concentrations of a\\-trans p-carotene to supplementation is 

larger than that of c/s-isomers (Gaziano et al, 1995; Tamai et al, 1995). However, 

although we could not quantify the presence of c/s-isomers of p-carotene, visual 

inspection of the chromatograms from reversed phase HPLC analysis indicated that the 

amount did not change with processing (data not shown). 

The increases in carotenoid concentrations in TRLs were accompanied by an increase 

in the total antioxidant activity of the TRL-fraction of plasma (Figures 3C and 4C). In 

contrast, no significant differences were found in fasting plasma after four days. Uric acid 

accounts for 60% of the variation in the ferric reducing ability of plasma (Benzie & Strain, 

1996; Cao & Prior, 1998). As TRLs do not contain uric acid or other endogenous 
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antioxidants, the sensitivity of this fraction of plasma to show differences in antioxidant 

uptake may be larger than that of plasma itself. The implication of such a postprandial 

increase in ferric reducing ability for the overall antioxidant status remains however to be 

established. 

Conclusion 

In conclusion, the cellular matrix of tomatoes, which can be disrupted by mechanical 

homogenisation and/or heat treatment, determines the bioavailability of carotenoids. The 

carotenoid response in plasma after four days consumption can be used to compare the 

bioavailability of carotenoids from different foods. This conclusion is based on the finding 

that the treatment effects shown were similar to those found in postprandial changes of 

carotenoids in TRLs. 
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CHAPTER 5 

ABSTRACT 

Objective: To assess the effect of supplementation with an antioxidant fortified margarine 

on the body's antioxidant status and on parameters of oxidative damage to lipids. 

Design: Single blind, placebo controlled trial, two treatment groups balanced for sex, age 

and Quetelet Index. 

Setting: Unilever Research Laboratorium, The Netherlands. 

Subjects: Thirty-one healthy adult volunteers accomplished the study. Volunteers were 

recruited among inhabitants of the surrounding area of the research laboratory. 

Interventions: Volunteers consumed during four weeks either 15 g/d of an antioxidant 

fortified margarine (providing 121 mg vitamin C, 31 mg vitamin E, 2.7 mg acarotene and 5.3 

mg p-carotene) or an ordinary margarine. Fasting blood samples were taken before and at 

the end of the study. 

Results: Consumption of the antioxidant fortified margarine significantly increased the 

levels of the supplied antioxidants in plasma and LDL as compared to the changes found 

after consumption of the control margarine, with the largest increases found in LDL levels of 

a-carotene (15.5-fold increase, 95% CI: 8.4-fold to 27.8-fold) and p-carotene (4.3-fold 

increase, 95% CI: 2.2-fold to 7.9-fold). This increased antioxidant status in the antioxidant 

fortified margarine group resulted in a significantly increased total antioxidant activity of LDL 

and resistance of LDL to oxidation (lag time and rate of oxidation) as compared to baseline 

but not in comparison to the changes found in the control group. 

Conclusion: Consumption of moderate doses of vitamin E, vitamin C, a-carotene and p-

carotene, supplied in a full-fat margarine and consumed as part of a normal diet, effectively 

increases the blood levels of these antioxidants. 
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INTRODUCTION 

Elevated plasma concentrations of low-density lipoprotein (LDL) cholesterol are 

associated with accelerated atherogenesis and increased risk of cardiovascular disease 

(Lipid Research Clinics Program, 1984). There is increasing evidence from experimental 

studies that in addition to the level of LDL-cholesterol, also the susceptibility of the LDL 

particle to oxidative modification may play a crucial role in atherogenesis (Steinberg et al, 

1989; Witztum & Steinberg, 1991; Esterbauer & Ramos, 1995). As a consequence it is 

plausible that antioxidants act in preventing atherosclerosis. Several epidemiological studies 

have indeed indicated that a higher intake or increased plasma levels of the antioxidants 

vitamin E, vitamin C and p-carotene are associated with a reduced risk of cardiovascular 

disease (Stampfer et al, 1993; Rimm et al, 1993; Kardinaal et al, 1993; Riemersma et al, 

1991; Gale et al, 1991; Knekt et al, 1994; Kushi et al, 1996) and a recent intervention study 

demonstrated that a-tocopherol supplementation reduced the rate of non-fatal myocardial 

infarction in patients with coronary atherosclerosis (Stephens et al, 1996). In addition, 

dietary intake of flavonoids, antioxidants which mainly occur in vegetables, tea and wine, 

have recently also been shown to be inversely associated with mortality from coronary heart 

disease (Hertog et al, 1993; Knekt et al, 1996). 

The evidence from animal studies that antioxidants possess anti-atherogenic properties 

has been summarized by Daughterty and Roselaar (1995). In addition to animal studies, the 

effect of high doses of vitamin E and p-carotene on the resistance of LDL to oxidation has 

been investigated extensively in humans in short-term intervention studies. 

Supplementation with 100 to 1600 mg vitamin E per day has consistently been shown to 

increase the resistance of LDL to oxidation ex vivo (Dieber-Rotheneder et al, 1991; Jialal & 

Grundy, 1992; Princen et al, 1992; Reaven et al, 1993; Jialal et al, 1995; Jialal & Grundy, 

1993) and lower doses also seem to be effective. Princen et al (1995) showed that vitamin 

E intake at a dose as low as 25 mg/d (2.5 times the recommended daily allowance, (Food 

and nutrition board, 1989)) significantly increased the duration of the lag phase before LDL 

oxidation ex vivo. On the other hand, Jialal et al (1995) found that only vitamin E doses of 

400 mg/d and higher were effective. Supplementation with high doses of p-carotene or 

vitamin C does not seem to increase the resistance of LDL to oxidation (Reaven et al, 

1993). 

Atherogenesis is a multifactorial disease and combinations of antioxidants may be 

particularly effective in reducing the risk of cardiovascular disease. Synergistic effects may 

occur between different antioxidants because of differences in lipophilicity and thus the site 

of free radical scavenging activity may be in the LDL particle or intracellularly. Synergism 

has been found between vitamin C and E due to regeneration of vitamin E by vitamin C 
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(Sato et al, 1990). However, there is currently little knowledge on the beneficial effects of 

combinations of antioxidants and in particular little is known of the effects of lower doses of 

mixtures of these compounds that can be achieved by dietary means. 

Therefore, the effect of consumption of moderate doses of a combination of antioxidants, 

incorporated into a habitually used food product, on the body's antioxidant status and on 

parameters of oxidative damage to lipids was assessed. A full-fat margarine, fortified with 

31 mg/d vitamin E, 121 mg/d vitamin C, 2.7 mg/d a-carotene and 5.3 mg/d p-carotene, was 

used as vehicle to supply the antioxidants. These daily amounts equalled two to three times 

the recommended daily intake for vitamin E and C (Food and Nutrition Board, 1989) and 

about two times the average intake of p-carotene (Yong et al, 1994) and are in line with 

optimal intake levels recently proposed by Lachance (1996). 

SUBJECTS AND METHODS 

Volunteers 

Non-smoking subjects, healthy as assessed by a medical investigation, between 18 and 

65 years old, were eligible for participation in the study. The volunteers did not use vitamin 

C, E, carotenoid, selenium or zinc supplements. Subjects were not using a medically 

prescribed diet or slimming regime and had been weight-stable for at least one month prior 

to the start of the study. Females were not pregnant or lactating. Volunteers were recruited 

from employees of our laboratory and from inhabitants of Vlaardingen and the surrounding 

district. Subjects gave their written informed consent prior to participation. 

Study design 

After a two week run-in period during which time subjects consumed 15 g/d of an 

ordinary (control) margarine, 32 volunteers either continued to consume the control 

margarine or started to consume 15 g/d of an antioxidant fortified margarine, providing 121 

mg vitamin C, 31 mg vitamin E, 2.7 mg a-carotene and 5.3 mg p-carotene, during the next 

four weeks. Volunteers were allocated to either of the two treatment groups, taking into 

account an equal distribution of sex, age and Quetelet Index. Due to the difference in colour 

of the margarines, the study was only blind to the analysts analysing the blood samples. 

The effects of consumption of the antioxidant fortified margarine on plasma and LDL 

antioxidant status, LDL-resistance to oxidation and markers of in vivo oxidative damage to 

lipids were evaluated. In addition, we calculated the contribution of individual antioxidants to 

parameters of the total antioxidant activity of plasma and LDL. For this part of the study, we 

used the initial values measured in plasma and LDL of volunteers from the present study 

90 



SUFFICIENT DIETARY FAT 

and of volunteers from a study which was executed at the same time (Van het Hof et al, 

1997). The protocol of the study was approved by our local Research Ethics Committee. 

Based on data of Abbey et al (1993a), we calculated that a number of 16 volunteers per 

group would be sufficient to detect a difference of 13% in changes in resistance of LDL to 

copper-induced oxidation (lag phase) between both groups (<x=0.05; (5=0.10). 

Experimental margarines 

The full-fat margarines were prepared in our laboratory. Ascorbic acid (L(+)-ascorbic acid, 

Merck, Darmstadt, Germany), a-tocopherol (L-a-tocopherol, Merck, Darmstadt, Germany) 

and natural palm carotene, containing a-carotene and p-carotene (30% suspension in corn 

oil, Quest International, Naarden, The Netherlands), were added to the antioxidant fortified 

margarine. Fat content (82%) and fatty acid composition were similar in the control and 

antioxidant fortified margarine. Volunteers consumed 15 g/d of either the control or 

antioxidant fortified margarine. This daily amount of the antioxidant fortified margarine 

contained 121 mg ascorbic acid, 31.1 mg a-tocopherol, 2.7 mg a-carotene and 5.3 mg p-

carotene. The control margarine contained no ascorbic acid, no carotenoids and 0.97 mg a-

tocopherol/15 g margarine. The daily amounts of vitamins C and E provided by the fortified 

margarine equalled two and three times the RDA of vitamin C and vitamin E respectively 

(Food and nutrition board, 1989) whereas the daily amount of p-carotene was similar to the 

amount advised by the National Cancer Institute in the United States (Lachance, 1988). 

Lifestyle and dietary intake 

Volunteers were requested to maintain their habitual lifestyle during the entire 

experiment. They were instructed to replace their habitual margarine on bread products by 

the supplied margarine and not to use the margarine for baking or frying. Changes in dietary 

intake of vitamin .C, E and carotenoids were assessed by a self-completed food frequency 

questionnaire at the start and at the end of the study. The food frequency questionnaire was 

validated for carotenoid intake (Weststrate & Van het Hof, 1995) and vitamin C intake 

(Pearson's coefficient of correlation between estimated intake and plasma levels r=0.60, 

P=0.0001). 

Plasma and LDL-analyses 

Fasting venous blood samples were taken once before and once at the end of the 

experimental period and collected into Na2EDTA coated tubes for plasma and into plain 

tubes for serum preparation. Plasma and serum were prepared by low-speed centrifugation. 

Plasma used for the analysis of ascorbic acid was treated with trichloro-acetic acid (150 

mmol/L final concentration) immediately after preparation to prevent degradation of ascorbic 
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acid. Plasma samples for LDL isolation were stabilized with 6 g/L sucrose, immediately 

frozen in liquid nitrogen and stored at -70 OC. It has been established that freezing LDL in 

this way does not influence oxidation parameters (Ramos et al, 1995). LDL was isolated 

from thawed plasma by discontinuous density gradient ultracentrifugation for 24 hours at 4 

OC (Redgrave et al, 1975). The LDL fraction (density 1.019 -1.063 g/ml) for the analysis of 

LDL a-tocopherol, cc-carotene, p-carotene and lipid hydroperoxides was stored at -70 OC. 

Immediately following LDL isolation, LDL protein content was determined using bovine 

serum albumin (Fraction V, Sigma, St. Louis, Mo., USA) as the standard (Markwell et al, 

1978) and in vitro oxidation studies were carried out thereafter. Serum was stored at -20 0C 

for the analysis of lipids. 

a-Tocopherol, a-carotene and b-carotene were determined in plasma and LDL. After 

addition of appropriate internal standards (a-tocopherol-acetate and ethyl-apo-p'-

carotenoate), extraction was performed with n-heptane and n-heptane/diethyl ether (1:1, 

v/v). Following evaporation of the solvents, the residue was dissolved in eluent and a-

tocopherol, a-carotene and b-carotene were separated by reversed phase HPLC using 201 

TP54 Vydac column (Separations Group, Hesperia CA, USA) and 

methanol/tetrahydrofuran/ammonium acetate solution (1 g/L) (95:5:2, v/v) as mobile phase 

at a flow rate of 0.8 ml/min and a column temperature of 13 0C (Craft et al, 1992; Epler et 

al, 1992). Vitamin C concentration in trichloroacetic acid-treated plasma was determined 

fluorimetrically as ascorbic acid plus dehydroascorbate as described by Vuilleumier and 

Keck (1989). Albumin, bilirubin, uric acid, total cholesterol, LDL-cholesterol, HDL-cholesterol 

and triacylglycerol were determined in serum using enzymatic colorimetric methods 

(Boehringer Mannheim, Germany). Total antioxidant activity in plasma (Miller et al, 1993) 

and in LDL (Miller et al, 1995) were determined by the ABTS/ferryl myoglobin assay using 

reagents of Randox Diagnostics (County Antrim, UK). Results are expressed relative to 

Trolox (Randox Diagnostics, County Antrim, UK). The inter assay variation was 3% for 

plasma total antioxidant activity. Malondialdehyde was determined in plasma after 

complexation with diethylthiobarbituric acid. The malondialdehyde-thiobarbituric acid adduct 

was separated from interfering substances by HPLC essentially as described previously 

(Wong et al, 1987) and the adduct was detected fluorimetrically using an excitation 

wavelength of 538 nm and emission wavelength of 554 nm. LDL lipid hydroperoxides were 

determined as previously described (Wieland et al, 1992). The resistance of LDL to 

oxidation was determined by monitoring the production of conjugated dienes during copper-

mediated LDL oxidation as described previously (Princen et al, 1992). To minimize effects 

due to between assay variability, LDL samples from the same subject, before and after the 

treatment period, were analyzed in the same run. The inter assay variation was 10% for the 

lag phase and 4% for the maximum rate of oxidation. 
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Statistical analyses 

Data were analyzed using SAS computer software (Statistical Analysis System Institute, 

1987). Plasma and LDL concentrations of a-carotene and p-carotene were log-transformed 

to minimize correlation between mean values and standard errors within the treatment 

groups. All comparisons were made at the two-sided 0.05 significance level. Data was 

analyzed using ANOVA with treatment, time, subject (within treatment) and the 

treatment*time interaction as effects. Means are presented with standard error (CVM if log-

transformation was applied). TreatmenPtime effects are presented as difference between 

the time changes within the treatment groups with 95% confidence interval. In case of log-

transformation these values are expressed as percentage of the time change within the 

control group. Plasma concentrations of vitamin E, a- and p-carotene, normalized for serum 

cholesterol and triacylglycerol levels, were also analyzed for differences in changes 

between the treatments (vitamin E, a- or p-carotene concentration/(cholesterol + 

triacylglycerol concentration). 

Stepwise multiple linear regression analysis was used to analyze the relation between 

plasma total antioxidant activity as dependent variable and plasma concentrations of 

vitamin C, vitamin E, a-carotene, p-carotene, albumin, bilirubin and uric acid as independent 

variables as well as the relation between total antioxidant activity of LDL and LDL 

concentrations of vitamin E, a-carotene and p-carotene. Stepwise multiple linear regression 

analysis was also used to analyze the relation between the resistance of LDL to oxidation 

(duration of lag phase and maximum rate of oxidation) and the concentrations of the above 

mentioned, lipophilic antioxidants in LDL. The total number of observations included was 49 

to 60, depending on the number of missing data for each parameter. 

RESULTS 

Fifteen men and sixteen women completed the study. The volunteer who withdrew from 

participation in the study did so for medical reasons not related to the experimental 

treatment. Table 1 shows descriptive statistics of the volunteers who completed the study. 

The volunteers ranged in age from 18 to 57 years. 

Compliance to treatment 

Treatment compliance of the volunteers, as monitored by assessment of unused tubs of 

margarine, was very good. More than 99.5% of the provided margarine was consumed in 

both treatment groups. The average intake of margarine was 15.2 g/d (SEM: 0.03). 

Changes in dietary intake of vitamin E, vitamin C and carotenoids were calculated 

without the antioxidants supplied by the fortified margarine. The estimated intake of most of 
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the antioxidants investigated showed a significant decrease during the study in both 

treatment groups (Table 1). However, no significant differences in changes between the 

treatment groups were found. 

Table 1 Mean1 volunteers' descriptive characteristics, baseline serum lipid levels and 

dietary intake of antioxidants in control and antioxidant fortified margarine group. 

Male/female sex (n) 

Age (y) 

Body weight (kg) 

Body height (m) 

Quetelet Index (kg/m2) 

Total cholesterol (mmol/L) 

HDL-cholesterol (mmol/L) 

LDL-cholesterol (mmol/L) 

Triacylglycerol (mmol/L) 

Antioxidant intake3 

Vitamin E (mg/d) 

Carotenoids (mg/d) 

Vitamin C (mg/d) 

Wk -4 to 0 

W k 0 t o 4 

Wk-4 to0 

W k 0 t o 4 

Wk-4 to0 

W k 0 t o 4 

Control group 

(n=16) 

8/8 

38(12) 

74.15(9.97) 

1.75(0.10) 

24.19(2.39) 

5.39 (0.82) 

1.48 (0.43) 

2.46(0.51) 

0.96 (0.36) 

11.0(0.44) 

9.8 (0.44) 

7.4 (0.55) 

5.5 (0.55)4 

88.8 (4.7) 

71.4(4.7)4 

Antioxidant fortified 

group 

(n=15) 

7/8 

36 (12) 

73.80(11.44) 

1.75(0.10) 

24.12(2.92) 

5.34 (0.78) 

1.44(0.39) 

2.42 (0.67) 

1.00 (0.36) 

12.5 (0.45) 

10.4(0.45)4 

6.5 (0.57) 

4.8 (0.57)4 

102.0 (4.9) 

78.3 (4.9)4 

Difference 

(95% Cl)2 

-0.93 (-2.8, 0.90) 

0.13 (-2.2, 2.4) 

-6.2 (-26, 13) 

P value 

0.31 

0.91 

0.53 

1 Data are expressed as mean (SD) for descriptive characteristics and serum lipid levels and as mean (SE) for 

antioxidant intake 

2 Calculated as differences between changes from week -4 to 0 (4 wk before start of study) to week 0 to 4 (during 

study) in the two groups 

3 Estimated by use of a food frequency questionnaire 
4 Value in week -4 to 0 is significantly different from value in week 0 to 4 (P<0.05) 

Note: none of the descriptive characteristics or serum lipid levels were significantly different between the two 

groups 

Plasma and LDL antioxidant status 

Table 2 shows the effect of consumption of antioxidant fortified margarine on plasma 

concentrations of vitamin E, a-carotene, (3-carotene, vitamin C, albumin and uric acid and 

the total antioxidant activity of plasma. LDL concentrations of vitamin E, a-carotene and p-

carotene and total antioxidant activity of LDL are shown in Table 3. Daily consumption of 

the antioxidant fortified margarine significantly increased plasma levels of vitamin E by 16% 

as compared to the consumption of a control margarine. In LDL vitamin E concentration 

increased by 22%, but this increase was not significantly different from that found in the 

control group. Intake of the antioxidant fortified margarine resulted in a 15% increase in the 
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plasma vitamin C level. The effect of consumption of the antioxidant fortified margarine was 

most striking with regard to blood levels of a-carotene and p-carotene. As compared to the 

control group, a-carotene levels showed a 14.5-fold increase in plasma and a 15.5-fold 

increase in LDL. p-Carotene concentration was increased 3.4-fold in plasma and 4.3-fold in 

LDL. 

Table 2 Mean1 plasma concentrations of antioxidants and total antioxidant activity in 

plasma before and after four weeks of consumption of antioxidant fortified or control 

margarine. 

Vitamin E (umol/L) 

a-Carotene (umol/L)1 

p-Carotene (umol/L)1 

Vitamin C (umol/L) 

Albumin (g/L) 

Uric acid (mmol/L) 

Total antioxidant 

activity (mmol/L)3 

WkO 

Wk4 

WkO 

Wk4 

WkO 

Wk4 

WkO 

Wk4 

WkO 

Wk4 

WkO 

Wk4 

WkO 

Wk4 

Control group 

(n=16) 

18.72(0.36) 

19.31 (0.36) 

0.040 (8.5%) 

0.046 (8.5%) 

0.13(5.9%) 

0.14 (5.9%) 

56.93(1.89) 

56.61 (1.89) 

50.74(0.41) 

50.48(0.41) 

0.283 (0.0054) 

0.291(0.0054) 

1.51 (0.01) 

1.47 (0.01 )4 

Antioxidant fortified 

group 

(n=15) 

20.06 (0.37) 

23.81 (0.37)4 

0.038 (8.8%) 

0.66 (8.8%)4 

0.12(6.1%) 

0.57 (6.1%)4 

67.55(1.95) 

77.43(1.95)4 

50.17 (0.43) 

49.49 (0.43) 

0.295 (0.0056) 

0.298 (0.0056) 

1.51 (0.01) 

1.47 (0.01 )4 

Difference 

(95% CI)2 

3.16(1.65,4.66) 

1452% (989, 2113) 

343% (246, 466) 

10.20(2.3,18.1) 

-0.41 (-2.13,1.31) 

-0.0055 (-0.028, 0.017) 

0.0 -0.04, 0.04) 

P value 

0.0002 

0.0001 

0.0001 

0.01 

0.63 

0.63 

1.00 

1 Data are expressed as mean (SE) except for a-carotene and p-carotene. Data for a-carotene and p-carotene are 

presented as mean (CVM) because these concentrations were log-transformed before statistical analysis 
2 Calculated as differences between changes from week 0 to week 4 in the two groups 

3 Expressed relative to Trolox (Randox Diagnositics, County Antrim, UK) 
4 Value at week 4 is significantly different from value at week 0 (P<0.05) 

Because the mean change in serum levels of total cholesterol and triacylglycerol were 

not significantly different between the treatment groups (data not shown), the differences 

between the treatment groups in changes of plasma concentration of vitamin E, a- and p-

carotene normalized for serum lipids (data not shown) were comparable to the differences 

between changes of plasma concentrations as such. 

Plasma concentrations of the endogenous components with antioxidant activity, albumin 

and uric acid, were not affected by the treatments (Table 2). 
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Consumption of the antioxidant fortified margarine did not significantly alter the total 

antioxidant activity of plasma as determined by the ABTS/ferryl myoglobin assay (Table 2). 

The total antioxidant activity of LDL from the antioxidant-treated subjects was significantly 

higher at the end of the study as compared to the initial value, but this change was not 

significantly different from the change in the subjects who had consumed control margarine 

(Table 3). 

Malondialdehyde and lipid hydroperoxides were measured as markers of oxidative stress 

in vivo as these compounds are breakdown products of lipid peroxidation. Supplementation 

with the margarine fortified with vitamin C, vitamin E, a-carotene and p-carotene did not 

affect the concentration of malondialdehyde in plasma (difference between changes (95% 

CI): -0.09 mmol/L (-0.34, 0.16)) nor that of lipid hydroperoxides in LDL (difference between 

changes (95% CI): 0.12 nmol/L LDL (-1.23, 1.46)). 

The resistance of LDL to copper-induced oxidation was assessed by measurement of the 

lag phase before oxidation and the maximum rate of oxidation. The lag phase before 

oxidation was significantly increased after four weeks of consumption of antioxidant fortified 

margarine as compared to baseline values. No significant difference in changes was found 

however between the two.treatment groups. The maximum rate of oxidation decreased 

significantly when the antioxidant fortified margarine was consumed, and the difference of 

this change compared to the change found in the control group was of borderline 

significance. 

To establish the contribution of individual antioxidants to the total antioxidant activity, we 

determined the regression line between the status of vitamin C, vitamin E, a-carotene, (3-

carotene, albumin (g/L), bilirubin (mmol/L) and uric acid (mmol/L) in plasma and LDL and 

the total antioxidant activity of plasma and LDL. For this purpose, we combined the initial 

values from the present study (n=31) (Tables 2 and 3) and from a study executed in our 

laboratory in the same period (n=29) (Van het Hof et al, 1997). Total antioxidant activity of 

plasma was mainly determined by albumin and uric acid with an explained variance of 0.19 

(equation: total antioxidant activity of plasma = 0.969 + 0.00904 [albumin]p,asma + 0.000244 

[uric acid]piasma). No correlation was found between plasma total antioxidant activity and 

plasma concentrations of vitamin E, a-carotene, p-carotene or vitamin C. 

The regression line of the total antioxidant activity of LDL appeared to be affected by 

each of the supplied antioxidants (equation: total antioxidant activity of LDL = -0.651 + 

2.541 [a-tocopherol]LDL + 0.0108 [p-carotene]LDL - 0.0555 [a-carotene]LDL. R2=0.85). Vitamin 

E was the main contributor to the total antioxidant activity of LDL, explaining 79% of the 

variance. A higher level of a-carotene in LDL, however, was associated with a decreased 

total antioxidant activity of LDL. 
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In addition, the relation between the LDL antioxidant levels and the resistance of LDL to 

oxidation was assessed by stepwise multiple linear regression analysis. The concentration 

of a-carotene in LDL appeared to be inversely associated with the lag phase before 

oxidation of LDL, with an explained variance of only 9% (equation: lag phase = 104.2 - 0.15 

[a-carotene]LDL). The LDL levels of vitamin E, a-carotene and p-carotene were not 

significantly associated with the maximum rate of oxidation. 

DISCUSSION 

In the present study the effects of 4-weeks supplementation with an antioxidant fortified 

margarine on the body's antioxidant status and LDL oxidizability were investigated. The 

fortified margarine contained a mixture of different fat-soluble (vitamin E, a-carotene, (3-

carotene) and water-soluble antioxidants (vitamin C) in amounts equivalent to two to three 

times the recommended intakes or average daily intake. The results show that daily 

consumption of this antioxidant fortified margarine induces significant increases in both 

plasma and LDL levels of the supplied antioxidants. 

Supplementation with 121 mg/d of vitamin C resulted in a 15% increase of plasma levels 

of vitamin C. Due to a tight regulation of the vitamin C status, the response to 

supplementation with vitamin C is dependent on the vitamin C status of the body before 

supplementation (Levine et al, 1996). Depending on the vitamin C status of the volunteers 

and the size of the doses (600 mg/d to 2 g/d), increases in plasma concentrations of 25% to 

275% have been found previously (Reaven et al, 1993; Jialal & Grundy, 1993; Abbey et al, 

1993b Salonen et al, 1991). Final concentrations reported in these studies were between 75 

and 85 mmol/L and thus very similar to the concentration of 77 mmol/L we found at the end 

of our study in the antioxidant fortified margarine group. This indicates that consumption of 

moderate amounts of vitamin C is sufficient to achieve saturation levels of plasma vitamin C 

and that, quite surprisingly, a full-fat margarine is a good carrier for supplementation with 

water-soluble compounds. 

In addition to vitamin C which functions as a water-soluble antioxidant, we supplied 

moderate amounts of fat-soluble antioxidants, i.e. vitamin E, a-carotene and p-carotene. 

The plasma levels of vitamin E increased by 16% after supplementation with 31 mg/d 

vitamin E, which is comparable to the 20% increase after supplementation during two 

weeks with 25 mg/d of vitamin E that has been reported previously (Princen et al, 1995). 

An important finding of the present study is that margarine is an excellent vehicle for 

carotenoid supplementation. Our data show that 2.7 mg/d of a-carotene and 5.3 mg/d of p-

carotene incorporated in margarine resulted in respectively 14.5-fold and 3.4-fold increases 

in plasma levels of these carotenoids. It has been shown in previous studies that, in 
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comparison with plasma levels of vitamin E and vitamin C, plasma carotenoid 

concentrations are most sensitive to supplementation (Jialal & Grundy, 1993; Abbey et al, 

1993b; Salonen et al, 1991; Zenhua et al, 1991). The increases in carotenoid 

concentrations observed in the present study also exceed the 2.6-fold increase in a-

carotene and 1.9-fold increase in p-carotene levels in plasma found by Carughi et al (1994) 

after 4 weeks supplementation with slightly higher doses of carotenoids (3.5 mg/d a-

carotene and 8.5 mg/d p-carotene). Abbey et al (1993b) reported a 5-fold increase in 

plasma p-carotene after 3 months of supplementation with p-carotene at a dose of 18 mg/d. 

All of these data pertain to well-nourished individuals. De Pee et al (1995) showed that in 

anaemic women, 12 weeks supplementation with 3.5 mg/d p-carotene resulted in a 3.9-fold 

increase in serum p-carotene levels and a 1.4-fold increase in serum retinol levels. 

Interestingly, the increase of plasma levels of a-carotene exceeded that of p-carotene. 

The final concentration of a-carotene in plasma and in LDL was similar to that of p-carotene, 

although the intake of a-carotene was only 50% of that of p-carotene. This is in contrast 

with Carughi et al (1994) who found that the ratio of final plasma concentrations of a-

carotene and p-carotene was the same as the supplemented ratio. One possible 

explanation for our results is that the bioavailability of a-carotene is higher than that of p-

carotene. This is however not likely because Van den Berg (personal communication) found 

no difference after consumption of a single dose of either a- or p-carotene in chylomicron 

concentration response. It is also possible that the metabolism of a-carotene is slower than 

that of p-carotene. Both a- and p-carotene have provitamin A activity and in vitro 

experiments have shown that retinal formed from a-carotene was only 29% of the amount 

formed from equal amounts of p-carotene (Van Vliet et al, 1996). These results support the 

suggestion of a lower turn-over rate of a-carotene as compared to p-carotene. It is also 

possible that the rate of oxidative degradation of p-carotene is higher than that of a-

carotene or that a quantitative difference in tissue distribution of a- and p-carotene has 

contributed to the difference in blood levels, but there are no data available to support these 

hypotheses. 

Despite the observed increase in blood levels of individual antioxidants after 

supplementation with the antioxidant fortified margarine, no significant treatment effect on 

total antioxidant activity of plasma was found. The total antioxidant activity of plasma 

reflects the "sum" of endogenous and dietary antioxidants in plasma and is mainly 

determined by the concentration of albumin and uric acid (Miller et al, 1993; Wayner et al, 

1987). However, only 19% of the variation in total antioxidant activity of plasma appeared to 

be explained by the variation in concentration of these two endogenous antioxidants. 

Apparently, variation in plasma levels of other than the measured antioxidants determine 
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the between subject variation in the total antioxidant activity of plasma. Plasma 

concentrations of albumin and uric acid were unchanged in both treatment groups. The 

magnitude of the changes in dietary antioxidant concentrations in plasma may have been 

too small to significantly increase the total antioxidant activity of plasma in the antioxidant 

fortified margarine group. 

In addition to measurement of the total antioxidant activity of plasma, the total antioxidant 

activity of the LDL particles was assessed. LDL mainly contains fat-soluble components and 

we found a significant contribution of all of the supplied fat-soluble antioxidants to LDL 

antioxidant activity at baseline. LDL antioxidant activity increased significantly in the 

antioxidant fortified margarine group compared to baseline and the difference with the 

change found in the control group almost reached significance (P=0.08). This indicates that 

supplementation with a combination of the fat-soluble antioxidants vitamin E, a- and (3-

carotene, in dosages comparable to those used in the present study, may increase the 

protection of LDL to oxidative stress in vivo. 

Despite significant increases in the antioxidant levels in plasma and LDL and the LDL 

antioxidant activity, no alteration of the lipid peroxidation products malondialdehyde in 

plasma and lipid hydroperoxides in LDL was found. It is however conceivable that effects of 

antioxidant supplementation on lipid peroxidation are detectable only in subjects exposed to 

increased levels of oxidative stress, e.g. in heavy smokers. Allard et al (1994) showed that 

daily supplementation with 20 mg (3-carotene for four weeks reduced lipid peroxidation in 

smokers but not in non-smokers. Our results are in agreement with those of Allard et al 

(1994) and with those of Abbey et al (1993b), who also found no change of 

malondialdehyde levels in LDL of non-smoking subjects after six months of dietary 

supplementation with a combination of a-tocopherol (200 mg/d), p-carotene (18 mg/d) and 

vitamin C (900 mg/d). 

Consumption of the antioxidant fortified spread for four weeks tended to increase the 

resistance of LDL to oxidation as compared to the changes found in the control group. Both 

the lag time as well as the maximum oxidation rate were significantly affected as compared 

to baseline in the fortified margarine group. This is in line with Princen et al (1995) who also 

found that supplementation with 25 mg/d vitamin E significantly increased the lag time of 

LDL oxidation as compared to baseline. In the latter study, the maximum rate of oxidation 

was however only affected if 400 mg/d or more of vitamin E was consumed. This lower 

sensitivity of the oxidation rate to increased antioxidant status was also observed by Jialal et 

al (1995). In their study, the oxidation rate was affected only after supplementation with 800 

mg/d vitamin E, whereas the lag time was significantly increased as compared to baseline 

after supplementation with 400 mg/d but not after supplementation with 60 or 200 mg/d 

vitamin E. It is possible that the greater effectiveness of antioxidant supplementation found 
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in the present study is due to the combination of antioxidants supplied to the volunteers. Not 

only did the vitamin E status increase significantly but also the concentrations in plasma and 

LDL of a- and p-carotene and the plasma concentration of vitamin C were increased in the 

antioxidant fortified margarine group. For the lag time, however, an inverse correlation was 

found with a-carotene level in LDL. The a-carotene concentration explained only 9% of the 

variation in the duration of the lag phase and this may be the reason that the increase in 

LDL concentration of a-carotene in the fortified margarine group did not abolish the 

protective effect of the other antioxidants. The role of a-carotene in the protection of LDL 

against oxidation in vitro has not yet been investigated, whereas for p-carotene Esterbauer 

et al (1991) have shown that this carotenoid is used sequentially to vitamin E as protective 

barrier to LDL oxidation. Furthermore they showed that vitamin C, when added to LDL, was 

oxidized even before vitamin E and p-carotene. Previous studies in which different 

antioxidants were supplemented showed no additional protective effects of p-carotene and 

vitamin C as compared to supplementation with vitamin E alone (Princen et al, 1992; 

Reaven et al, 1993; Jialal & Grundy, 1993). However, the pharmacological doses of vitamin 

E used in these studies may have masked the protective effects of the other antioxidants. 

Vitamin C can protect against oxidative stress both by its role as antioxidant defence 

against aqueous radicals (Jialal & Grundy, 1991) as well as by regenerating vitamin E from 

the vitamin E radical at the water-lipid interface of LDL as has been observed in vitro (Sato 

et al, 1990). The role of a- and p-carotene as antioxidants is however still not elucidated. 

The inverse correlation we found between the level of a-carotene in LDL and both the LDL 

antioxidant activity and the duration of the lag phase before LDL oxidation does not support 

the hypothesis that this carotenoid protects against cardiovascular disease by increasing 

intrinsic LDL antioxidant protection. However, the resistance of LDL to oxidation in vitro is 

only one suggested biomarker of the risk of cardiovascular disease and the role of 

carotenoids in the process of atherogenesis has recently been suggested to be mediated by 

conversion into retinoic acid rather than via protection of LDL against oxidation (Shaish et 

al, 1995). 

In conclusion, the results of our study clearly show that consumption of moderate doses 

of vitamin E, vitamin C, a-carotene and p-carotene, supplied at two to three times the RDA 

in a full-fat margarine and consumed as part of a normal diet, effectively increases the blood 

levels of these antioxidants to achieve threshold plasma levels that have been suggested 

for optimal health (Gey et al, 1995). 
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CHAPTER 6 

ABSTRACT 

Background: The fat-soluble vitamin E and carotenoids are regarded as being protective 

against chronic diseases. Little is known about the effect of dietary fat on their 

bioavailability. 

Objective: To asses the effect of the amount of dietary fat on plasma concentrations of 

vitamin E and carotenoids after supplementation with these compounds. 

Design: During two 7-d periods, four groups of 14-15 volunteers received daily with a low-

fat hot meal, one of 4 different supplements: vitamin E (50 mg), a- plus p-carotene (8 mg), 

lutein esters (8 mg lutein) or placebo. The supplements were provided in a low-fat or high-

fat spread which were supplied in random sequence during either of the two experimental 

periods. 

Results: As anticipated, significant increases in plasma concentrations of vitamin E, oc-

and p-carotene or lutein were found in the supplemented groups as compared to the 

placebo group. The amount of dietary fat consumed with the hot meal (3 g vs 36 g) did 

not affect the increases in plasma concentrations of vitamin E (low vs high-fat, 20% vs 

23% increase) or a-carotene and (3-carotene (low vs high-fat, a-carotene: 315% vs 226% 

increase and p-carotene: *139% vs 108% increase). The plasma lutein response was 

higher when lutein esters were consumed with a high-fat meal (207% increase) than with 

a low-fat meal (88% increase). 

Conclusion: Optimal uptake of vitamin E and a- and p-carotene requires a limited 

amount of fat whereas the amount of fat required for absorption of lutein esters is greater. 
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INTRODUCTION 

Epidemiological studies have indicated that an increased intake of vitamin E or 

carotenoids is associated with a reduced risk of cardiovascular disease (Stampfer et al 

1993, Rimm et al 1993; Gey, 1995) or cancer (Van Poppel & Goldbohm, 1995; Willet & 

Trichopoulos, 1997, Heinonen et al 1998). Vitamin E and carotenoids have biological 

activity as antioxidants (Sies & Stahl, 1995) which may mediate these putative beneficial 

effects. 

Important dietary sources of vitamin E are oils and fats (FASEB, 1995; Eitenmiller, 

1997) and the richest dietary sources of carotenoids are fruits and vegetables (Chug-

Ahuja et al, 1993, Mangels et al, 1993). Vitamin E and carotenoids are fat-soluble 

compounds and their absorption involves solubilization in bile salts and incorporation into 

micelles. Actual absorption is believed to occur by passive diffusion along with dietary fat. 

The presence of dietary fat is thought to be important for micelle formation in the small 

intestine and it may therefore also be crucial for absorption of vitamin E and carotenoids 

(Kayden and Traber, 1993; Parker, 1996; Cohn, 1997). 

There is little information available on the influence of dietary fat on vitamin E 

absorption in humans and results from animal studies are conflicting. Dimitrov et al (1991) 

concluded from a small study in humans (n=6) that dietary fat enhanced vitamin E 

absorption. However, in some studies with rats, the amount of dietary fat present did not 

influence the apparent absorption of vitamin E (Brink et al 1996; Tijburg et al 1997). In 

contrast, vitamin E absorption, measured as lymphatic appearance of radiolabelled 

vitamin E in rats, was increased with higher intakes of saturated fat (Gallo-Torres et al 

1971). 

Most of the research on the effect of dietary fat on carotenoid bioavailability in humans 

has focussed on p-carotene (Jayarajan et al 1980; Dimitrov et al, 1988; Prince & Frisoli, 

1993; Shiau et al 1994; Jalal et al, 1998). These studies indicated that the presence of fat 

was essential for the absorption of p-carotene. However, in some studies, the influence of 

dietary fat was assessed in comparison with its complete absence at the time of p-

carotene ingestion (Dimitrov et al, 1988; Prince & Frisoli, 1993). Although this situation 

may be applicable to the very low-fat diets of some populations in developing countries, it 

is not representative for a western diet. For comparison, an average hot meal in the 

Netherlands contains as much as 40 g of fat (Voorlichtingsbureau voor de Voeding, 

1992). 

The present experiment was designed to investigate the effect of the amount of dietary 

fat on the plasma response to supplementation with vitamin E or carotenoids. We 

compared two amounts of dietary fat that are achievable in a western diet. 
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SUBJECTS AND METHODS 

Subjects 

Participants were recruited from the local population by means of advertisements in 

newspapers. Sixty non-smoking subjects (23 men, 37 women) aged between 18 and 70 

years and with a reported body mass index (BMI) between 19 and 30 kg/m2, were selected 

for participation. They did not use medication, apart from oral contraceptives, or follow a 

medically prescribed diet or weight-loss regime. They did not use any supplements 

containing vitamin C, vitamin E, carotenoids, calcium or iron. Their body weights had been 

stable for > 1 month prior to the start of the study. None of the female volunteers were 

pregnant or lactating. The selected subjects were apparently healthy as evaluated by a 

medical history questionnaire. 

Two females were withdrawn from the experiment: one because her fasting plasma 

cholesterol level was > 8.5 mmol/L and one because of intercurrent illness not related to the 

treatment. Data from a third subject were not used because of suspicion of prior carotenoid 

supplement use (plasma a-carotene: 285 nmol/L; plasma p-carotene: 2068 nmol/L). 

The protocol of the stwdy, which had been approved by our local Medical Ethical 

Committee, was fully explained to the volunteers and they gave their written informed 

consent before participation. 

Experimental design 

The study was carried out according to a split-plot design. Each subject was randomly 

assigned to one of four experimental groups after stratifying for sex, age and BMI. One 

group received a placebo during two 7-d experimental periods. The other three groups 

received supplements of vitamin E or a- plus p-carotene or lutein esters. The placebo 

and antioxidant supplements were provided in a low-fat or high-fat spread. All subjects 

consumed these low-fat and high-fat spreads in a cross-over design during either of the 

two experimental periods. They were randomly allocated over the treatment sequences. 

The experimental periods were separated by a wash-out period of five weeks during 

which no intervention was carried out. 

The spread was consumed daily with a low-fat hot meal in the evening. The amount of 

fat, carotenoids and vitamin E consumed during the rest of the experimental days was 

restricted. 

Volunteers were instructed to maintain their habitual pattern of physical activity and 

lifestyle during the entire study period, including the wash-out period. In addition, they 

were not allowed to take any supplements containing vitamin C, vitamin E, carotenoids, 

calcium or iron. 
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Before and after each experimental period, body weight was measured and fasting 

venous blood samples were collected. At the end of the first experimental period, body 

height was measured also. 

Dietary restrictions 

All volunteers were asked to keep to strict dietary prescriptions to limit intake of fat, 

carotenoids and vitamin E during the experimental periods. They were instructed to eat a 

breakfast and a low-fat lunch with negligible amounts of vitamin E and carotenoids, a 

maximum of only 0.25 g of fat after lunch and in the late evening, and no fat for 2 hours 

before and after the supplemented hot meal. From previous work, it was deducted that this 

range of 2 hours would minimalize the influence of fat from other dietary sources than the 

experimental meal (Van Amelsvoort et al, 1989). After lunch the subjects were not allowed 

to consume any products containing vitamin E or carotenoids. Besides the low-fat hot meal 

and experimental spread, the volunteers received an additional low-fat spread without (3-

carotene and vitamin E (Promise Ultra®, VandenBergh Foods Co., Lisle, Illinois, USA) to 

use with their lunch during the experimental periods. Compliance to the instructions was 

assessed by asking the volunteers about their diet during the experimental periods, 

consumption of experimental spread and hot meals, and by weighing the amount of 

spread left over in the tubs. 

Experimental spreads 

The supplementary dose of vitamin E was 50 mg/d a-D-tocopherol (Sigma, St. Louis, 

MO, USA, purity 67%), equivalent to 5 times the recommended daily allowance of 10 

mg/d (RDA for males aged 22-50 y, National Research Council, 1989; Voedingsraad, 

1989). The carotenoid-enriched spreads provided either 8 mg/d a- and (3-carotene 

(equivalent to 15 umol/d a- and p-carotene together; 30% suspension in oil, Vegex® 

Carotene, Quest International Ireland Ltd., Cork, Ireland), or 8 mg/d lutein (as lutein 

esters, equivalent to 15 umol/d lutein, 3.2% suspension in oil, Vegex® Lutein OS30, 

Quest International Ireland Ltd., Cork, Ireland). The daily amount of carotenoids added to 

the spread equalled about 1-1.3 times the daily carotenoid intake in the US (6 mg, Chug-

Ajuha et al 1993) and the Netherlands (7 mg, Goldbohm et al, 1998). The control spread 

contained no added carotenoids or vitamin E. 

Volunteers were required to eat daily 50 g of the experimental spread, which contained 

about 3% fat (w/w) during the low-fat period and about 80% fat (w/w) during the high-fat 

period. In this way, a maximum contrast between the low and high-fat intervention, 

together with an acceptable meal, could be achieved. 
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The spread was freshly prepared in our laboratory for each experimental period. Fat 

content and fatty acid composition were kept similar in the control and supplemented 

spreads for the low-fat spreads and high-fat spreads. 

Experimental meals 

Volunteers were instructed to consume the spread together with the low-fat hot meal 

which was provided for consumption at home. These low-fat hot meals consisted of ca. 70 

g of prepared lean meat, ca. 160 g of low-carotenoid vegetables containing negligible 

amounts of vitamin E. Consumption of low-fat gravy and potatoes was allowed ad libitum. 

These low-fat hot meals were designed to contain less than 5 g fat. The low-fat spread 

contained about 1.5 g fat and the high-fat spread provided an additional amount of about 

40 g. Thus, total fat intake per meal was calculated to be < 6.5 g for the low-fat treatment 

and < 45 g for the high-fat treatment. 

In order to correct for the effects of meal preparation on the amounts of fat, 

carotenoids and vitamin E consumed, duplicate portions were collected. Following the 

instructions given to the volunteers, representative meals were prepared for each 

different study group and each period. The average amount of potatoes (266 g) and low-

fat gravy (29 g) used by the subjects was calculated based on the quantities used, as 

reported by the volunteers on a questionnaire. The samples were stored under argon at -

80°C until analysis. 

Laboratory analyses 

Plasma 

Fasting venous blood samples were collected before and after each intervention 

period. EDTA-plasma was prepared and stored at -80°C. Plasma total cholesterol and 

triacylglycerol concentrations were determined spectrophotometrically by enzymatic 

methods using commercially available test kits (Boehringer, Mannheim, Germany). 

Carotenoids in plasma were extracted with heptane/dichloromethane (5:1, v/v). After 

addition of ethyl-p-apo-8'-carotenoate (gift from Hoffmann-LaRoche, Switzerland) as 

internal standard, the sample was injected onto a Suplex column pkb-100, 25 cm x 4.6 

mm ID, 5 urn (Supelco Inc., Bellefonte, PA, USA), and eluted with 93.5% 

methanol/acetonitrile/toluene (A) (55/44/2, v/v/v) and 6.5% water containing 0.1% 

ammonium acetate (B). Ten minutes after sample injection, a linear gradient started from 

93.5% A and 6.5% B to 100% A at 45 min. Between 45-47 min the eluent returned to 

93.5% A and 6.5 % B, which was maintained until 55 min. The flow rate was 1.0 mL/min. 

Detection of carotenoids was performed by UV-vis dectection at 450 nm. Plasma <x-
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tocopherol was determined by HPLC on a Lichrospher RP-18 (5nm) Merck column (Merck, 

Darmstadt, Germany). a-Tocopheryl-acetate was used as internal standard (Merck, 

Darmstadt, Germany). The mobile phase consisted of methanol/isopropanol/water 

(50/50/8, v/v/v) and the flow rate was 0.6 mL/min. a-Tocopherol was detected by UV-vis 

detection at 292 nm and a-tocopheryl acetate at 284 nm. 

Experimental meals 

The duplicate samples of the meals were analysed for content of fat, fatty acids, a-

tocopherol, a- and p-carotene and lutein. The values in Table 1 are based on the 

chemical analyses and expressed as daily intake from an average hot meal. The fat 

content was determined after freeze drying the duplicate samples, followed by extraction 

with dichloromethane. Fatty acid composition was determined as described previously 

(Tijburg et al 1997). Extraction of vitamin E and carotenoids from the meals containing the 

high-fat spread was performed with heptane/diethylether (3:1, v/v). These extractions were 

repeated three times, whereas in case of the low-fat meals diethylether/methanol (5:2, v/v) 

was used. These extractions were repeated two times with diethylether. a-Tocopherol and 

carotenoids were analysed by reversed phase HPLC using a C30 S-5^m column, 4.6 x 

150 mm (YMC, Inc., Wilmington, NC, USA). Ethyl-p-apo-8'-carotenoate and a-tocopheryl 

acetate were used as internal standards. The column was eluted with 95% methanol/tert-

butylmethylether/1.5% aq ammonium acetate (A) (83/15/2, v/v/v) and tert-butylmethyl 

ether/5% methanol/1.5% aq ammonium acetate (B) (90/8/2, v/v/v). Ten minutes after 

sample injection, a linear gradient started from 95% A and 5% B to 55% A and 45% B at 

22 min. Between 22-34 min a linear gradient was used from 55% A and 45% B to 5% A 

and 95% B which remained until 39 min, from 39-44 min the eluens returned to 95% A and 

5% B, which was maintained until 50 min. The flow rate was set at 1.0 mL/min. 

Carotenoids were detected by UV-vis detection at 450 nm, a-tocopherol at 292 nm and a-

tocopheryl-acetate at 284 nm. 

Statistics 
The present study was carried out according to a split-plot design. Different supplement 

conditions were tested against the between subject error and the effect of the amount of fat 

against the within subject error. 

The changes over the experimental periods of the variables measured in the 

supplemented groups were compared with those in the control group. The following factors 

were used in the analysis of variance: amount of fat, type of supplement, subject, gender, 

experimental period and their interaction. In addition, the analysis was executed for each 
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amount of fat and type of supplement separately. Significant deviations from the control 
group were determined by the Dunnett-test. 
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To compare the relative plasma response after a-carotene, p-carotene and lutein 

supplementation, the changes in each of the plasma carotenoid concentrations were 

expressed relative to their intake. For each level of fat intake, differences in relative 

response of a-carotene vs p-carotene, in the group that received the a- plus p-carotene 

supplement, were determined with a paired t-test. Differences between lutein response in 

the lutein group and a-carotene or p-carotene response in the group that received the a-

plus p-carotene supplement were determined by an unpaired t-test. 

All comparisons were made at a two-sided level (a=0.05). 

RESULTS 

Baseline characteristics and compliance 

There were more women than men participating in the study (Table 2). Mean BMI and 

age at baseline (SD) were 25.0 (3.2) kg/m2 and 46.4 (13.4) y, respectively. There were no 

significant differences among the four groups (data not shown). Compliance, as assessed 

by means of compliance forms and weighing of spread left over in the tubs, was excellent. 

All subjects consumed all of the meals during the two experimental periods and < 3% of 

the spread was left over. 

Body weight, plasma cholesterol and triacylglycerol 

In all groups, body weight and plasma concentrations of cholesterol and triacylglycerol 

decreased during each of the two 7-d intervention periods (Table 2). However, there were 

no significant differences between the supplemented groups and the control group, 

except for the difference in change of plasma cholesterol concentrations between the 

lutein supplemented group and the control group. With respect to the differences between 

the low-fat and high-fat treatments, significant differences were found only for the vitamin 

E supplemented group. The decrease in body weight was smaller following the high-fat 

treatment whereas the decrease in plasma triacylglycerol concentration was smaller after 

the low-fat treatment. 

Plasma a-tocopherol and carotenoids 

As plasma a-tocopherol and carotenoid concentrations are associated with plasma lipid 

concentrations (Traber et al 1994), they were corrected for plasma cholesterol and 

triacylglycerol concentrations prior to statistical analysis. Table 3 illustrates the 

uncorrected baseline concentrations and changes in concentrations of plasma a-

tocopherol and carotenoids after their supplementation with the low-fat or high-fat meals. 
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CHAPTER 6 

Plasma concentrations of a-tocopherol, a- and p-carotene and lutein increased 

significantly after consumption of spread supplemented with vitamin E, a- and p-carotene 

or lutein when compared to the control spread. Decreases in plasma a-tocopherol and 

carotenoid concentrations in the control group and in plasma lycopene and p-

cryptoxanthin concentrations in all groups, were demonstrated. Changes in plasma 

concentrations of lycopene and p-cryptoxanthin in the supplemented groups were not 

significantly different from those in the control group. 
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FIGURE 1 Plasma carotenoid responses (mean ± SEM) following 7-d consumption of a 

low or high-fat meal supplemented with carotenoids, expressed as increase per umol 

carotenoid supplemented: (a-carotene intake: 4.1 and 3.8 umol/d; p-carotene intake: 8.1 

and 7.8 umol/d; lutein intake: 14.0 and 13.3 umol/d, for low and high-fat respectively). For 

both the low- and high-fat treatment, the relative plasma responses were significantly 

different among the different carotenoids (a-carotene vs p-carotene; a-carotene vs lutein; 

p-carotene vs lutein: P < 0.001). Only for lutein the relative responses between the low-fat 

and the high fat treatment were signifiantly different (P < 0.001). 

There was no significant effect of the amount of fat on the response in plasma a-

tocopherol concentration after consumption of the vitamin E supplemented meals (Table 

3). Table 3 also shows that in case of the meals supplemented with a- and p-carotene, 

the increases in plasma a- and p-carotene concentrations following the low-fat meal were 
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slightly larger than after the high-fat meal. This could at least in part be explained by a 

larger amount of a- and p-carotene in the low-fat meal (Table 1, Figure 1). The difference 

in plasma response of a- and p-carotene between the low-fat and the high-fat meal was 

however not statistically significant after correction for plasma cholesterol and 

triacylglycerol concentrations. The increase in plasma lutein concentration was 

significantly larger after the high-fat treatment when compared with the low-fat treatment. 

As a- and p-carotene and lutein esters were consumed in about the same amounts 

(Table 1), we compared the responses in plasma carotenoid concentrations, relative to 

their intakes. For both the low- and high-fat treatment, these relative responses were 

significantly higher for a-carotene and p-carotene than for lutein and the relative response 

for a-carotene was significantly (20%) higher than for (3-carotene (Figure 1). In addition, 

the relative response for lutein was significantly higher on the high fat diet than on the low 

fat diet (Figure 1). 

DISCUSSION 

The present study shows that the bioavailability of vitamin E, a-carotene and p-

carotene was similar when consumed with a low-fat meal (ca. 3 g fat) or a high-fat meal 

(ca. 36 g fat), whereas for lutein esters, the bioavailability was significantly lower when 

consumed as part of a low-fat meal. Bioavailability was assessed as changes in plasma 

concentrations after 7-d supplementation with vitamin E, a- and p-carotene or lutein 

esters. 

The reductions observed in plasma concentrations of carotenoids other than those 

supplied and in plasma a-tocopherol concentration in the control group are most probably 

the result of a good compliance to the dietary restrictions. The volunteers were instructed 

to refrain from foods rich in vitamin E and carotenoids and the experimental meals 

contained virtually no carotenoids and little vitamin E. Body weight and plasma lipid levels 

also decreased during the two study periods, but there were no major differences among 

the groups and between the low-fat and high-fat treatments. 

Analysis of the composition of the meals demonstrated that the fat content of both the 

low and high-fat meals was lower (3 g and 36 g, respectively) than expected (6.5 g and 45 

g, respectively) (Table 1). The slightly smaller amount of vitamin E and carotenoids in the 

high-fat meals when compared to the low-fat meals may be due to the larger amount of 

unsaturated fatty acids in the high-fat meals. It is likely that the supplemented antioxidants 

were used to prevent oxidation of these polyunsaturated fatty acids. It cannot be excluded 

this has also reduced the bioavailability of the antioxidants from the high-fat meals (Gallo-
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Torres et al 1971, Tijburg et al 1997). Although it is impossible to quantify this effect in the 

present study, this may explain the slightly lower plasma response after a- and p-carotene 

supplementation with the high-fat meal as compared to the low-fat meal. 

Vitamin E 

Based on the absorption mechanism of vitamin E, the presence of dietary fat is generally 

believed to be necessary for its intestinal uptake (Kayden and Traber, 1993; Cohn, 1997). 

We conclude from the present results that the small amount of fat in the low-fat meal (ca. 3 

g) was already sufficient to ensure the uptake of vitamin E. A previous cross-over study with 

only six human volunteers showed a larger increase in plasma a-tocopherol concentrations 

when 5-d vitamin E supplementation was followed 6-8 h later by a high fat intake (>45 g fat) 

as compared to a low fat intake (about 6 g fat) (Dimitrov et al 1991). However, this study 

was rather small and could be flawed by the fact that the vitamin E intake with the high-fat 

treatment was higher than with the low-fat treatment (Dimitrov et al 1991). In the present 

study it was shown that when diets were equalized for vitamin E content, a small amount of 

fat was sufficient to facilitate vitamin E absorption. 

a-Carotene and p-carotene 

Previous studies have found that the presence of dietary fat is crucial for the absorption 

of p-carotene. However, in these studies, the importance of dietary fat was assessed in 

comparison with its complete absence at the moment of ingestion of p-carotene (Dimitrov 

et al, 1988; Prince & Frisoli, 1993). Recently, Jalal et al (1998) reported a significantly 

larger increase in serum retinol in vitamin A deficient children if a sweet potato snack 

(providing about 4.5 mg/d p-carotene) was ingested with 18 g fat when compared to 3 g 

fat. In addition, Jayarajan et al (1980) found no difference in improvement of the vitamin A 

status when 5 g or 10 g of dietary fat was added to spinach (providing 1.2 mg/d p-

carotene), whereas 0 g fat resulted in a smaller increase. Although there were differences 

in food matrices in these studies, the data suggest that there could be a minimum amount 

of dietary fat in a meal of about 3-5 g, needed to ensure carotene absorption. In the 

present study, the fat content of the low-fat meal with which a- and p-carotene were 

ingested, contained about 3 g fat. Apparently, this amount of fat was just sufficient for the 

uptake of a- and p-carotene. 

Lutein 

The influence of dietary fat on lutein bioavailability differed from that of vitamin E and a-

and p-carotene. About 3 grams of dietary fat was not sufficient to ensure absorption of the 
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same magnitude as that found when about 36 g fat was present. This result was 

unexpected as lutein is less lipophilic than a- and p-carotene and a larger impact of the 

amount of dietary fat would have been expected for the more lipophilic carotenoids. 

However, the lutein used in this study was esterified, mainly with palmitic acid (Granado et 

al 1998). Although the partition coefficient between fat and water for the lutein esters is 

unknown (Straub, 1987), it is likely that lutein esters are more lipophilic than a- and p-

carotene. It can thus be speculated that in the presence of only small amounts of fat, the 

emulsification in the intestine of lutein esters is less than that of a- and p-carotene. 

After 4 mo of supplementation with lutein esters (15 mg/d), some lutein monopalmitate 

was detected in plasma by Granado et al (1998). However, it is generally assumed that 

most of the lutein esters are hydrolysed prior to or during absorption and that free lutein is 

absorbed, as this is the case for cholesteryl esters (Tso, 1994) and p-cryptoxanthin esters 

(Wingerath, 1995). Hydrolysis of esters is mediated by esterases and possibly also 

lipases. The excretion of these enzymes by the pancreas is regulated by the presence of 

fat in the stomach and duodenum. In addition, the activity of esterases and lipases is 

substantially enhanced if the amount of fat is sufficient to form lipid/aqueous interfaces in 

the duodenum (Tso, 1994). Our results suggest that either the release of esterases and 

lipases and/or the formation of lipid/aqueous interfaces was hampered at low-fat intake, 

resulting in a reduced uptake of lutein esters. 

It has previously been shown that the bioavailability of lutein esters is similar to lutein 

when supplemented to a normal diet (Herbst et al 1997). Results from the present study 

suggest, however, that this may depend on the amount of fat that is consumed with the 

lutein esters. If lutein is present as free lutein, as it is the case in lutein-rich vegetables 

such as spinach, broccoli, kale and green peas (Khachik et al, 1991), the amount of fat 

needed to be present may be smaller than that needed for optimal uptake of lutein esters. 

Comparison of relative plasma responses of carotenoids 

The study design, with similar amounts of a- and p-carotene and lutein allowed to 

compare plasma responses. The analysed daily intake of carotenoids varied slightly 

(Table 1). The relative plasma response was calculated by dividing the plasma responses 

measured by the amount of carotenoids supplied daily, thus assuming a linear dose-

response relationship (Figure 1). Substantial differences in relative plasma responses 

among the carotenoids were demonstrated. Previous studies also found that the relative 

plasma response of lutein was less than that of p-carotene after 3-4 weeks 

supplementation (Castenmiller et al, 1999; Van het Hof et al, submitted). In line with Van 

het Hof et al (1998), the relative plasma response of a-carotene exceeded that of p-
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carotene after supplementation with palm oil carotenoids. These differences may result 

from differences in absorption, metabolism and/or tissue distribution between the 

carotenoids. Kostic et al (1995) suggested that when p-carotene and lutein were 

supplemented simultaneously, the lower plasma response of lutein may be due to 

competition for absorption between the carotnoids. Although this interaction cannot be 

excluded, the present study shows that the plasma response after lutein supplementation 

was lower than that of p-carotene, independent from the simultaneous presence of p-

carotene. 

The present study illustrates that enrichment of food products with a-carotene, p-

carotene, lutein and vitamin E can be an effective way to enhance the plasma status of 

these antioxidants and thus possibly reduce the risk of degenerative diseases (Gey 1995, 

Van Poppel & Goldbohm 1995, Stampfer et al 1993, Rimm et al 1993, Heinonen et al 

1998). Fat containing products are suitable carriers for these fat-soluble antioxidants and 

they need to contain only a small amount of fat to ensure uptake of these fat-soluble 

minor components. The minimal amount of fat needed depends however on the physico-

chemical characteristics of the fat-soluble compounds. 

In conclusion, the present study shows that consumption of a low-fat or high-fat meal, 

enriched with vitamin E, a-carotene and p-carotene or lutein esters, enhances the plasma 

concentrations of these antioxidants. Simultaneous ingestion of only small amounts of fat 

with vitamin E, supplied as a-D-tocopherol, guarantees good bioavailability of vitamin E. 

Likewise, a small amount of fat is sufficient to optimise the uptake of a- and p-carotene, 

whereas a comparable amount of lutein esters requires a larger amount of fat. 
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CHAPTER 7 

ABSTRACT 

A double-blind, placebo-controlled cross-over study of the effects of the non-absorbable 

fat analogue, sucrose polyester (SPE; 12.4 g/d) on plasma concentrations of five different 

carotenoids and vitamin E in 21 volunteers, and a double-blind, placebo-controlled 

parallel comparison study in 53 subjects of the effect of 3 g/d SPE on plasma 

concentrations of two different carotenoids were undertaken. SPE-containing margarine 

added to the main meal was used. SPE (12.4 g/d) reduced plasma p-carotene 

concentrations by 0.13 umol/L (34%, P=0.0001) and concentrations of lycopene by 0.14 

umol/L (52%, P=0.0001). Smaller but significant reductions were found for plasma 

concentrations of (3-cryptoxanthin, lutein, zeaxanthin and vitamin E. SPE (3 g/d) reduced 

plasma concentrations of p-carotene by 0.094 umol/L (20%, P=0.0001), and 

concentrations of lycopene by 0.12 umol/L (38%, P=0.0001). Even at low doses, SPE 

strongly reduces plasma carotenoid concentrations. This finding merits careful 

consideration in assessing the long-term health effects of SPE-containing consumer 

foods. 
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INTRODUCTION 

Excessive consumption of total fat and saturated fat increases the risk for coronary 

heart diseases, obesity, some types of cancer, and possibly gallbladder disease (US 

Surgeon General, 1988). Therefore, health authorities in many countries have advised 

individuals to reduce their total fat intake (WHO, 1990; Committee on Medical Aspects of 

Food Policy, 1991). The food industry has recognized that the perceived health benefits 

of a diet reduced in fat offer opportunities for reduced-fat products. Food companies are 

therefore active in developing low- or zero-energy fat substitutes, produced both from 

existing food sources and from chemical synthesis. The latter compounds, so called fat 

analogues, are designed to mimic natural fats and oils but are partially or totally 

undigested. An interesting synthetic fat analogue is the nontoxic sucrose polyester (SPE), 

which has generated much interest among consumers, industry and regulatory 

authorities. SPEs are fatty acyl esters of sucrose, in which the fatty acyl chains are of the 

types familiarly found in edible oils and fats. The chemical and physical properties of 

SPEs closely parallel those of triacylglycerols. Currently available information indicates 

that SPEs are neither broken down nor absorbed as such in the gastrointestinal tract and 

that they are thus a truly nonenergetic fat substitute. 

Replacement of traditional fatty foods by foods containing SPE may be an effective 

means to reduce total fat and energy intakes of the population. Several studies have 

shown that SPEs reduces fat intake at the expense of carbohydrates (Rolls et al, 1992) 

and at the expense of total energy intake (Glueck et al, 1982; Cotton et al, 1993; Hulshof 

et al, 1993). Other studies showed a reduction in cholesterol absorption (Jandacek et al, 

1990) or in plasma cholesterol levels (Glueck et al, 1983) when SPEs were present in the 

diet. These positive nutritional effects are obvious reasons for introduction of SPEs in food 

products. Currently, however, SPE is not yet cleared by the FDA for use in typical 

consumer goods. 

Apart from the technical and nutritional benefits, consumption of SPE may produce 

some potential adverse health effects. These effects have to be addressed before a 

decision can be made on the introduction of SPE in the food supply. One of the possible 

adverse effects is the sequestering in the gut of essential fat-soluble compounds and 

subsequent elimination in the stool along with intact SPE. Although SPE was found to 

reduce the body's vitamin E status (Koonvitsky et al, 1991), no adverse effect was 

reported for the status of vitamins D and K (Jones et al, 1991a; Jone et al, 1991b). 

To our knowledge no results have been published of the effect of SPE consumption on 

carotenoid status. Carotenoids are a class of fat-soluble compounds that have antioxidant 

properties and occur naturally in vegetables and fruits (Gerster, 1993). In addition to a 
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role for some carotenoids, particularly p-carotene, as safe precursors of vitamin A, it has 

been suggested that carotenoids may protect against the development of cancer (Gerster, 

1993), coronary heart disease (Gerster, 1991), cataracts and age-related maculopathy 

(Sarmaetal, 1994). 

We report on two 4-wk studies of the effect of consumption of realistic daily doses of 

SPE-containing margarine on blood concentrations of carotenoids. 

SUBJECTS AND METHODS 

Subjects 
The protocols of both studies were approved by our local Research Ethics Committee. 

Volunteers were recruited from employees of our laboratory and from inhabitants of 

Vlaardingen and surroundings. Subjects gave their written informed consent before 

participation. 

Eligible subjects were healthy as assessed by a medical examination. The volunteers 

did not use a medically prescribed diet or weight-loss regime and had been weight-stable 

for > 1 month before the start of the study. Females were non-pregnant and non-lactating. 

Subject characteristics for both studies are shown in Table 1. Twenty-one volunteers 

entered the high-dose crossover study, nine males and two females were assigned to the 

group starting with the SPE treatment and nine males and one female to the group 

starting with the control treatment. Only three volunteers smoked. The volunteers ranged 

in age from 23 to 55 years and their Quetelet Index at the start of the study was between 

20.4 and 27.2 kg/m2. In the low-dose study, 53 volunteers participated. Twelve male and 

14 female volunteers were assigned to the SPE group and 12 males and 15 females to 

the control group. None of the volunteers in the SPE-group smoked, whereas four 

volunteers in the control group smoked. Age ranged from 19 to 64 years and Quetelet 

Index was between 20.0 and 28.4 kg/m2. 

Experimental design 

For the high-dose study we used a randomised double-blind placebo-controlled 4-wk 

crossover design to evaluate the effect on plasma cholesterol, triacylglycerol, vitamin E, p-

carotene, lycopene, p-cryptoxanthin, lutein and zeaxanthin concentrations, of 

consumption at the main meal of 31 g margarine/d, containing 12.4 g SPE. The order of 

the treatments was randomised and balanced for sex as much as possible. No washout 

period between the two treatments was included. SPEs are unabsorbed and no 

metabolites of the preceding treatment were expected to circulate in the subject's body 

during the following treatment period. We calculated that 19 volunteers would be sufficient 
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to detect a difference of 15% between both treatments in plasma p-carotene 

concentrations with a power of 90% at a confidence of 5%. 

Six months after the first study we carried out a low-dose SPE study. In this study a 

randomised double-blind parallel comparison trial of 4 wk was used to assess the effect 

on plasma cholesterol, triacylglycerol and p-carotene and lycopene concentrations of 

consumption at the main meal of 7.5 g margarine/d, containing 3 g SPE. (These 

carotenoids were found to be most responsive to SPE in the high-dose study.) Volunteers 

were randomly assigned to the control or SPE group, ensuring an equal distribution of 

both sexes over the groups. Both groups were matched for mean age, Quetelet Index and 

mean prestudy plasma concentration of total carotenoids. Using data from the first study 

we calculated that 23 volunteers per group would provide a power of 90% to detect at a 

confidence of 5% a difference of 20% in changes of plasma p-carotene concentration 

between both groups. 

Table 1 Descriptive characteristics of volunteers in the high-dose sucrose 

polyester (SPE) (whole group) and low-dose SPE groups1. 

Characteristic 

Age (y) 

Body weight (kg) 

Body height (m) 

Quetelet index (kg/m2) 

Plasma total carotenoids 

(extinction at 447 nm)2 

Number of smokers4 

High dose 

(n = 18 m, 3f) 

39.1 (10.5) 

77.7 (8.4) 

1.80(0.096) 

24.0(1.8) 

na3 

3 

Low dose 

SPE group 

(n = 12m, 14 f) 

37.9 (12.4) 

72.3 (9.5) 

1.73(0.083) 

24.0 (0.073) 

0.25 (0.073) 

0 

Control group 

(n = 12m, 15f) 

37.8(11.1) 

73.6 (9.5) 

1.75(0.11) 

24.0(1.8) 

0.26 (0.086) 

4 

1 Mean (SD) 
2 Assessed as described by Oliver and Kafwembe (1993) 

Maximum of seven cigarettes per day 

Experimental foods 

Subjects were instructed to consume the margarine together with the main meal. We 

expected that the main meal, because of its vegetable content, would contain the largest 

amount of carotenoids compared to the other meals of the day. The concurrent ingestion 

of SPE and carotenoids was hypothesized to maximize the effect of a single dose of SPE 

on plasma carotenoid concentrations. Margarines and SPEs were prepared in our 

laboratory and tubs containing the appropriate amount of margarine were labelled with a 
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blind product code. Table 2 shows the composition characteristics of the margarines. No 

carotenoids were added to the margarines. Both types of margarine were identical in 

appearance. Compliance with treatment was assessed by asking the volunteers about 

margarine consumption and by weighing left-overs from the tubs. 

Table 2 Composition of experimental margarines, based on analytical data. 

Component 

Total fat 

Sucrose polyester 

Digestible fat 

Saturated fatty acids 

Monounsaturated fatty acids 

Polyunsaturated fatty acids 

a-Tocopherol 

Water 

High dose 

SPE 

80.4 

40.0 

40.4 

6.8 

18.3 

15.3 

0.0124 

19.6 

margarines 

Control 

Low dose 

SPE 

%bywt 
80.6 

0 

80.6 

25.2 

38.5 

16.9 

0.0108 

19.4 

80.7 

40.3 

40.4 

7.0 

22.9 

10.5 

0.00922 

19.3 

margarines 

Control 

81.4 

0 

81.4 

22.1 

43.7 

15.6 

0.00896 

18.6 

Lifestyle and dietary intake 

Volunteers were requested to keep their normal lifestyle during the entire experiment. 

Changes in dietary intake of carotenoids and vitamin E were assessed from a self-

completed food frequency questionnaire that was completed at the end of each period of 

the crossover study and at the start and end of the parallel study. The food-frequency 

questionnaire contained 114 items, which represented the main sources of carotenoids 

and vitamin E and vitamin supplements. The difference in p-carotene, other carotenoids 

and vitamin E intake was estimated as far as possible by available food-composition data 

(Voorlichtingsbureau van de Voeding, 1989; TNO Nutrition, 1990; Reed Mangels et al, 

1993). 

Measures 

In the high-dose crossover study, fasting venous blood samples were taken before the 

study started and at 3 and 4 wk of each treatment. At each point in time, two blood 

samples were taken, one d apart, to obtain more accurate estimates of true plasma 

carotenoid concentrations of the individual. Plasma samples for analysis of plasma 

concentrations of p-carotene, lycopene, p-cryptoxanthin, lutein, zeaxanthin and <x-

tocopherol were stored under argon at -70°C until analyzed, but no longer than 4 mo 

(Craft et al, 1988). After extraction, p-carotene and lycopene were separated by HPLC on 

a Nucleosil 5-N(CH3)2 column (Machery & Nagel, Duren, Germany) with n-heptane as the 
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mobile phase. The chromatographic system for a-tocopherol, p-cryptoxanthin, lutein and 

zeaxanthin consisted of a Nucleosil 5CN column and a mobile phase of n-

heptane/dichloromethane/isopropanol (90:10:0.2, v/v) for 5 min followed by n-

heptane/dichloromethane/isopropanol (90:10:2, v/v) for 20 min at a flow rate of 1 mL/min. 

Total cholesterol and triacylglycerol in plasma were determined by enzymatic methods 

using commercial test kits from Boehringer (Mannheim, Germany). Body weight was 

assessed before the start of the high-dose study and after 4 wk of each treatment, with 

the subjects wearing light indoor clothing and no shoes and after voiding. In the low-dose 

parallel comparison study, a fasting venous blood sample was taken prior to the study for 

plasma concentration of total carotenoids (Oliver & Kafwembe, 1993), to match control 

and treatment groups for total plasma carotenoids concentration at randomisation. In the 

low-dose study, additional blood samples were taken once before the start and once after 

the treatment. Only p-carotene, lycopene, total cholesterol and triacylglycerol were 

determined. Body weight was assessed before and after the treatment. 

Statistical analyses 

In the high-dose study the mean of the analyses of the two blood samples was used in 

the statistical analyses. Statistical analyses were performed on plasma concentrations of 

carotenoids, cholesterol and triacylglycerol as well as on normalized plasma 

concentrations of carotenoids. Normalized plasma concentrations of carotenoids were 

calculated as follows: [carotenoid concentration/(cholesterol + triacylglycerol 

concentration)]. Adjustment of plasma carotenoid concentrations for concentrations of 

cholesterol and other lipids may provide a better reflection of dietary intake of carotenoids 

(Willet et al, 1983). However, expression of the plasma carotenoid concentrations as 

normalized levels revealed no different effects of SPE compared with the results of the 

unadjusted concentrations. Only the results of the unadjusted plasma carotenoid 

concentrations are therefore shown. For the statistical evaluation of the treatment effect, 

plasma carotenoid concentrations in the high-dose study and plasma lycopene 

concentrations in the low-dose study were log-transformed to minimize correlation 

between mean and SD of the analysed variables. However, descriptive statistics are 

shown for untransformed data. Body weight after 4 wk; plasma carotenoid, vitamin E, 

cholesterol and triacylglycerol concentrations after 3 and 4 wk; and dietary intake of 

carotenoids and vitamin E during the 4 wk were compared by analysis of variance for 

differences between the treatments. Both treatment and period effects along with any 

interaction were assessed. Student's f-test for paired data was performed on the 

difference between plasma concentrations after 3 and 4 wk of SPE treatment, to assess 

whether a plateau was reached in the change of plasma carotenoid and vitamin E 
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concentrations. In the parallel comparison design, the mean change in body weight and 

plasma concentrations after 4 wk and the mean change in dietary intake of p-carotene 

and lycopene during the treatment period compared with the 4 wk before the start of the 

experiment in the SPE group was compared by Student's f-test with the mean change in 

body weight, plasma concentrations, and dietary intake of p-carotene and lycopene found 

in the control group. Differences in baseline concentrations between sexes were also 

compared by Student's Mest. Analysis of variance was used to assess the effect of sex 

on the treatment effect. To assess the validity of the food-frequency questionnaire, 

Pearson's correlation coefficients between baseline dietary intake and plasma 

concentrations of p-carotene and lycopene were calculated from the data of the low-dose 

study because of the larger number of volunteers. SAS computer software was used for 

all statistical calculations (Statistical Analysis System Institute, 1987). All comparisons 

were made at the two-sided 0.05 significance level. 

RESULTS 

In both studies, all volunteers completed the entire experiment. In the high-dose study 

none of the volunteers used dietary supplements. In the low-dose study, one volunteer in 

the SPE group consumed four times a week a supplement containing vitamin A, C, D and 

E and 6 mg p-carotene per capsule. In the control group three volunteers used 

supplements, but none of these contained carotenoids. There was no effect of SPE on 

body weight, neither in the crossover study (P=0.50) nor in the parallel comparison 

investigation (P=0.15). 

Compliance with treatment 

The mean daily intakes of margarine in the high-dose study were 31.3 g (range 30.6 -

31.8 g) and 31.4 g (range: 30.7 - 31.9 g) for the SPE and control treatments, respectively. 

Mean SPE intake was 12.4 g/d. In the low-dose study, the mean daily intake of margarine 

was 7.4 g (range: 7.2 - 7.6 g) for both the SPE and control treatments. Mean SPE intake 

was 3 g/d. All volunteers reported to have consumed the experimental margarines for > 

26 d in the high-dose study, and for > 27 d in the low-dose study. In the high-dose study a 

maximum of three main meals was used by a particular volunteer without adding the 

SPE-containing margarine. In the low-dose study this occurred for a maximum of two 

meals. 
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Dietary intake of carotenoids and vitamin E 

The mean estimated intake of carotenoids and vitamin E did not differ significantly 

between the treatments in the high-dose study (carotenoids: P=0.3, vitamin E: P=0.2). In 

the low-dose study, the change in estimated mean intake of p-carotene in the control 

group was not significantly different from the change in the SPE group (P=0.3). In both 

groups, estimated intake of lycopene did not change during the study. p-Carotene and 

lycopene intakes correlated significantly with plasma concentration of p-carotene (r=0.27, 

P=0.05) and lycopene (r=0.39, P=0.004). 

Plasma carotenoid and serum lipid concentrations 

Table 3 shows plasma carotenoid concentrations for both studies. All plasma 

carotenoid concentrations were significantly reduced after 4 wk consumption of the SPE-

containing margarine compared with the control margarine for both the high- and the low-

dose study. In the high-dose study plasma cholesterol and vitamin E concentrations were 

also significantly lowered by SPE. The greatest reductions in the high-dose study were 

observed for p-carotene (-0.13 pmol/L, P=0.0001; 95% CI, -0.088, -0.18 pmol/L) and for 

lycopene (-0.14 umol/L, P=0.0001; 95% CI, -0.070, -0.20 pmol/L). These differences 

correspond to a decrease of 34% and 52%, respectively, compared with the control 

margarine. The reductions of the hydroxylated carotenoids, p-cryptoxanthin, lutein and 

zeaxanthin were somewhat smaller: 23%, 20% and 18%, respectively. Plasma vitamin E 

concentrations decreased by 13%. Figure 1 shows the individual responses in the high-

dose study for p-carotene and for lycopene only. Nearly all individuals showed a decrease 

in plasma concentrations of these carotenoids. The reductions were already significantly 

different between the SPE-containing and the control margarine after 3 wk. A significant 

further reduction in the fourth week compared with the value in the third week was shown 

only for zeaxanthin (-0.0023 pmol/L, P=0.02). 

The results of the high-dose study showed that p-carotene and lycopene were most 

susceptible to the effect of SPE. In the low-dose study, therefore, only these carotenoids 

were assessed. Also in this study, SPE significantly reduced plasma concentrations of p-

carotene and lycopene. Plasma concentrations of p-carotene and lycopene were reduced 

by -0.094 pmol/L (P=0.0001; 95% CI, -0.031, -0.16 pmol/L) and -0.12 pmol/L (P=0.0001; 

95% CI, -0.070, -0.17 pmol/L). These reductions correspond with 20% and 38%, 

respectively. Figure 2 shows individual responses in the low-dose study for both 

treatments, separately for males and females and smokers and non-smokers. As 

expected, responses in the control were evenly distributed around the baseline. In the 

SPE group nearly all subjects had reduced plasma levels compared with baseline. No 
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significant differences were observed in the response and baseline concentrations of (3-

carotene and lycopene between males and females. 

The serum total cholesterol concentration decreased significantly by ca. 6% after 

consumption of the high dose of the SPE- containing margarine compared with the control 

margarine. Serum triacylglycerol concentrations were not affected by the treatment in 

either study. 

0 4 W 
SPE - CONTROL TREATMENT 
pmol/L 

0.2 

U-Carotene 

G 4 W 
SPE • CONTROL TREATMENT 
innol/L 

Lycopene 

FIGURE 1 Individual differences in plasma p-carotene and lycopene concentrations 

of volunteers consuming a margarine containing 12.4 g/d of a nonenergy-containing 

fat substitute, sucrose polyester (SPE), compared with a margarine without SPE 

(control). Each bar represents an individual difference between the SPE and control 

treatments. 
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DISCUSSION 

The present study clearly shows that daily consumption of even a very small quantity of 

the non-absorbable fat substitute SPE (3 g) strongly reduces plasma concentrations of 

carotenoids in healthy volunteers. We observed that the magnitude of the effect of a small 

dose of 3 g SPE/d is comparable to the one found with a higher dose of 12.4 g/d. This 

suggests that no linear dose-response relation exists and that SPE is a powerful 

sequestrant of lipophilic carotenoids. Our findings are important in view of the strong 

suggestions that carotenoids may protect against the development of cancer, coronary 

heart disease and cataracts and age-related maculopathy (Gerster, 1991; Gerster 1993; 

Sarmaetal, 1994). 

We believe that the observed effects cannot be ascribed to a reduction in the dietary 

intake of carotenoid-rich foods during the SPE treatment. Both studies had a double-blind, 

placebo-controlled design and our dietary intake data, validated against plasma 

carotenoid concentrations, indicated no differences between both treatments in the 

estimated dietary intake of carotenoids and vitamin E. 

Baseline plasma concentrations of (3-carotene and lycopene were different between 

both studies. This might be related to seasonal differences in the intake of carotenoid-rich 

vegetables or fruits. The high-dose study was performed during winter, whereas the low-

dose study was executed in June. 

It might be argued that the particular set-up of our studies reflects a worst-case 

scenario for the effect of a single ingestion of SPE on plasma carotenoid concentrations, 

because the main meal is the most important source of carotenoids of the day. The 

simultaneous presence of SPE and carotenoids in the lumen of the gut would maximize 

the chance for the carotenoids to become retained in the nonabsorbable fat phase and to 

be excreted in the faeces. We believe that a realistic consumption scenario of SPE in 

typical consumer goods will never exclude the possibility of concurrent ingestion of dietary 

carotenoids and such low amounts of SPE as used by our low-dose study. 

The substantial drops of between 18% to 52% of the plasma concentrations of 

carotenoids we found in the high-dose SPE study suggest that a large part of the dietary 

carotenoids in the main meal was solubilised and retained in SPE rather than in the 

dietary fat fraction. The variability in response of plasma carotenoid concentrations to 

SPE was small in both studies, indicating that we have reliably estimated the effects of 

SPE. 

Rock et al (1992) found a reduction of ca. 50% in the plasma concentrations of 

carotenoids after 12-13 d of a low-carotenoid diet. The changes we found were generally 

smaller than those reported by Rock et al. In the high-dose study we observed the largest 
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reductions in plasma concentrations of the most lipophilic carotenoids, p-carotene and 

lycopene. This indicates that partition in the gut of carotenoids between the lypophilic SPE 

phase and the more lypophobic bile salt-, phospholipids-, fatty acid- and 

monoacylglycerol-containing micellar phase is improved when carotenoids contain more 

polar groups. 

We observed that 12.4 g SPE/d reduced plasma p-carotene levels from an average 

concentration of 0.37 umol/L after the control margarine to 0.24 umol/L This is a greater 

difference than that measured between cancer patients and control subjects in 

prospective studies involving measurement of plasma p-carotene concentrations (Wald et 

al, 1988; Comstock et al, 1991). Also, an amount of 3 g/d of SPE was sufficient to reduce 

plasma concentration of p-carotene to the concentrations found in those who developed 

cancer (Comstock et al, 1991). 

The results of our high-dose study suggested that after 4 wk of SPE the reduction in 

plasma concentrations of most carotenoids had reached a plateau. Other investigators 

have reported similar responses of blood carotenoid concentrations when SPE was given 

over 3 mo to volunteers (DH Thurnham, personal communication, 1993). 

In conclusion, we showed that SPE, in relatively small quantities of 3-12 g/d, causes 

substantial decreases in blood concentrations of major carotenoids. In view of the 

evidence that carotenoids may have positive effects on health, decreases of the 

magnitude we observed are undesirable. 
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CHAPTER 8 

ABSTRACT 

Palm oil carotenoids are a mixture of a- and p-carotene which are used as a food 

colorant. They may also be applied as a functional foods ingredient because of the 

provitamin A activity of a-carotene and p-carotene and their proposed beneficial roles in 

prevention of chronic diseases. We executed an incomplete balanced cross-over study 

with 69 healthy adult volunteers to compare palm oil carotenoids with synthetic p-carotene 

in their efficacy to increase plasma levels of carotenoids. Four days supplementation with 

natural palm oil carotenoids (7.6 mg/d a-carotene, 11.9 mg/d a\\-trans p-carotene, 7.5 

mg/d cis p-carotene) or synthetic p-carotene (23.8 mg/d aW-trans p-carotene, 4.4 mg/d cis 

p-carotene), added to a mixed meal, resulted in significant increases in plasma levels of 

the supplied carotenoids as compared to consumption of a low-carotenoid meal (i.e. 7.2-

fold increase in a-carotene and 3.5-fold increase in a\\-trans p-carotene following palm oil 

carotenoids; 6.9-fold increase in all-frans p-carotene following synthetic p-carotene). As 

the carotenoid content differed between the treatments, we calculated the relative plasma 

responses per mg p-carotene intake. These were similar for the two supplements, 

suggesting that the presence of a-carotene does not affect the bioavailability of p-

carotene from palm oil. We conclude that four days supplementation with palm oil 

carotenoids or synthetic p-carotene improves the plasma p-carotene status substantially, 

whereas a-carotene is additionally delivered by the palm oil supplement. 
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INTRODUCTION 

Carotenoids may play a beneficial role in human health beyond their provitamin A 

function. Several biological activities of carotenoids have been demonstrated in vitro or in 

vivo, such as scavenging of free radicals, singlet oxygen quenching (Burton & Ingold, 

1984; Sies & Stahl, 1995), enhancement of intercellular communication (Zhang, 1991) 

and immunomodulatory effects (Santos et al, 1996). Among the major carotenoids 

present in the human body (i.e. a-carotene, p-carotene, lycopene, lutein, zeaxanthin, <x-

cryptoxanthin and (3-cryptoxanthin), p-carotene has been studied most extensively. 

Interest in other carotenoids is growing, particularly since several intervention studies 

showed no protective effect of supplementation with high doses of p-carotene (ATBC 

Cancer Prevention Study Group, 1994; Hennekens et al, 1996; Omenn et al, 1996). 

Recent epidemiological studies have indicated beneficial effects of a-carotene (Ziegler et 

al, 1996), lycopene (Giovannucci et al, 1995) and lutein (Seddon et al, 1994). 

In the light of the emerging interest in carotenoids other than p-carotene, it is important 

to increase the knowledge on the bioavailability and metabolism of these carotenoids. 

Palm oil is a rich source not only of p-carotene, but also of a-carotene and palm oil 

carotenoids are currently used as a food colorant. Ziegler et al (1996) recently postulated 

that a-carotene may be more effective in reducing the risk of lung cancer than p-carotene. 

In line with their observation, in vitro and animal studies have shown that a-carotene is a 

more potent inhibitor of cancer cell proliferation than is p-carotene (Murakoshi et al, 1992; 

Levy et al, 1995). Little is known about the bioavailability of a- and p-carotene from palm 

oil and it may well be that the two carotenoids compete for absorption as has been 

suggested for lutein and p-carotene (Kostic et al, 1995; Van den Berg & Van Vliet, 1998). 

The objective of the present study was to compare the changes in plasma 

concentrations of a- and p-carotene following 4-day consumption of palm oil carotenoids 

with the changes following consumption of synthetic p-carotene alone. 

MATERIALS AND METHODS 

Volunteers 

A total of 72 apparently healthy volunteers, aged 18-65 y, were enrolled in the study. 

They did not use dietary supplements (e.g. vitamins, minerals, carotenoids), consume a 

medically prescribed or weight loss diet or use excessive amounts of alcohol (i.e., < 21 

glasses/wk for females; < 28 glasses/wk for males; ca. 10 g alcohol/glass), and they 

smoked maximally 15 cigarettes/d. The women were not pregnant or lactating. Volunteers 
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were employees of our laboratory or inhabitants of the Vlaardingen area and they gave 

their written informed consent before participation. 

Study design 

In an incomplete cross-over design of four experimental periods, 72 volunteers 

received a palm oil carotenoid supplement, a synthetic p-carotene supplement, no 

supplement (control) or one of four other supplements. The results of the latter treatments 

are outside the scope of this paper and will be reported separately. All volunteers 

received the control treatment during one of the experimental periods. The treatments 

were supplied randomized over the volunteers and in randomized order. The carotenoid 

supplements were added to a standard hot meal which was consumed at lunch time on 

four consecutive days. Fasting plasma levels of carotenoids were assessed at the end of 

the four days. These experimental periods were separated by 10 days of wash out, during 

which volunteers returned to their habitual diet. Volunteers were instructed not to 

consume any vegetables, fruits, fruit juices or red sauces (e.g. tomato ketchup, pizza) 

during the experimental periods. Compliance was assessed by questionnaire and the 

experimental meals were consumed under supervision in the laboratory. 

Carotenoid supplements 

The palm oil carotenoids (Vegex Natural Carotene, 30% suspension in oil, Quest 

International, Ireland) or synthetic aU-trans p-carotene (p-carotene 30% FS (E160a), 30% 

suspension in oil, Hoffmann-La Roche, Switzerland) were consumed with a standard 

meal. This was a pasta meal with ham and a white sauce and custard for dessert. The 

carotenoids were added to the sauce at the end of the preparation and the sauce 

remained heated until being served to the volunteers (ca. 80 °C, 5-30 min). Energy and 

fiber content and macronutrient composition of the meal were similar to that of an average 

Dutch main meal (Voorlichtingsbureau voor de Voeding, 1993) (Table 1). Carotenoid 

extraction from the control and supplemented sauces was done according to Hart & Scott 

(1995). Extracts were appropriately diluted in HPLC solvent A (methanol/acetonitrile/2-

propanol (54/44/2, v/v/v)). Analysis was performed on a 5 urn Suplex pKb 100 column 

(250 x 4.6 mm, Supelco, Bellefonte, PA), using a step gradient: 0-10 min 97% solvent A 

and 3% water, 10-25 min 100% solvent A, with a flow rate of 1 ml/min and detection at 

450 nm. Peaks were identified spectrophotometrically by diode array detection (model 

168, Beckman, Munich) and by coelution with synthetic reference carotenoids. Response 

factors determined for our HPLC system were used to calculate the carotenoid contents 

of the sauces. Reference carotenoids were either a gift from Makhteshim Chemical Works 

(Beer Sheva, Israel) (lycopene) and Hoffmann-La Roche (Basel, Switzerland) (lutein, 
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zeaxanthin) or purchased from Sigma (Deisenhofen, Germany) (a-carotene). All other 

chemicals were obtained from Merck (Darmstadt, Germany). Results of the analyses are 

shown in Table 1. The synthetic (3-carotene supplement contained small amounts of cis-

isomers, probably due to isomerisation during heating of the sauce. As we intended to 

supply similar amounts of total carotenoids, the p-carotene content of the palm oil 

carotenoids supplemented meal was lower than that of the synthetic p-carotene 

supplemented meal. 

TABLE 1 Macronutrient and carotenoid content of the experimental meals1. 

Component 

Fat(g) 

Carbohydrate (g) 

Protein (g) 

Fiber (g) 

a-Carotene (mg) 

all-frans p-Carotene (mg) 

9-c/s p-Carotene (mg) 

13-c/s p-Carotene (mg) 

Control 

19.8(1.3) 

82.1 (5.4) 

32.4 (0.7) 

16.0(1.1) 

4 

4 

4 

4 

Type of experimental meal 

Palm oil 

carotenoids2 

21.6(0.7) 

84.5 (2.6) 

32.4(1.5) 

16.1 (1.1) 

7.6 (0.7) 

11.9(1.3) 

5.3 (0.8) 

2.2(1.0) 

Synthetic 

p-carotene3 

21.8(1.1) 

84.1 (3.1) 

33.8(1.7) 

15.7(0.5) 

4 

23.8(3.1) 

0.48 (0.04) 

3.9 (0.8) 

1 Values are expressed as mean (SD) per daily serving (n=3-5) 
2 Quest International, Ireland 
3 Hoffmann-La Roche, Switzerland 
4<0.3 mg/serving 

Note: the amounts of lutein, zeaxanthin and lycopene were each < 0.3 mg/serving in all of the meals 

Plasma and serum analyses 

Blood samples, obtained while subjects were fasting, were collected at the end of each 

experimental period into tubes coated with sodium EDTA and tubes containing a serum 

separator for serum preparation. Plasma and serum were prepared by low-speed 

centrifugation (1500 x g for 10 min at 4°C). Plasma was stored at -70°C under argon for 

analysis of carotenoids, and serum at -20°C for analysis of lipids. 

Extraction of carotenoids from plasma was performed as described by Wingerath et al 

(1995). Dry carotenoid residues from plasma extraction were redissolved in HPLC solvent 
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A (methanol/acetonitrile/2-propanol (54/44/2, v/v/v)) and analysis was performed using 

the same HPLC system as described above. 

Total cholesterol and triacylglycerol concentration in serum were assessed by using 

commercially available colorimetric test kits (CHOD-PAP, Boehringer, Mannheim, 

Germany and GPO-PAP (Roche, Basel, Switzerland)/GPO-Trinder (Sigma, St. Louis, 

USA), respectively). 

Statistical evaluation 

Analysis of variance with persons as blocks and sex, smoking habits, period, treatment, 

treatment x sex and treatment x smoking as factors, was used to compare the plasma 

and serum values found after consumption of the supplemented meals with those found 

after consumption of the control meal. Significance of the differences was assessed by 

Dunnett's test (a=0.05). As sex and smoking had no significant effect, these variables 

were excluded from the ANOVA model. Differences between the two carotenoid 

supplements were assessed by orthogonal contrasts (a=0.05). Plasma carotenoid 

concentrations were log-transformed to minimize correlation between mean values and 

standard errors and the geometric means are presented with the standard error as 

percentage of these means. 

RESULTS 

Three volunteers dropped out of the study before the end of the first treatment period 

because of lack of time to participate in the trial and four volunteers were not able to 

participate in each of the experimental periods for various reasons (e.g. illness, business 

trip). Two of these latter volunteers did not receive the control treatment. Data of 31 males 

and 38 females were included in the statistical analyses, n=67 received the control 

treatment, n=31 the palm oil carotenoids supplement and n=28 the synthetic p-carotene 

supplement. The average age (SD) of the volunteers was 42 (13) y and their mean 

Quetelet Index (SD) was 24.6 (2.3) kg/m2. Ten of the 69 volunteers were smokers 

(maximum 15 cigarettes/d). 

Carotenoid concentrations in plasma as determined at the end of the experimental 

periods, are shown in Table 2. Unfortunately, the carotenoid supplements induced a 

carry-over effect in plasma concentrations of a- and p-carotene. The plasma levels of a-

and p-carotene, found in the first and second test periods following consumption of the 

supplements, were therefore excluded from the statistical evaluation (i.e., using a wash­

out period of 38 days). For a-carotene, this extended wash-out period was only applied 

following consumption of the palm oil carotenoids supplement. No carry-over effect was 
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found for lutein, zeaxanthin and lycopene. The numbers presented in Table 2 are based 

on the data actually included in the statistical evaluation. 
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As compared to the control meal, consumption of the carotenoid supplements resulted 

in significantly increased plasma levels of a\\-trans p-carotene (mean (95% CI): 345% 

(267, 439) for palm oil carotenoids; 686% (539, 867) for synthetic p-carotene) and 13-c/s 

p-carotene (154% (76.8, 265) for palm oil carotenoids; 265% (149, 536) for synthetic p-

carotene), whereas only consumption of the palm oil carotenoids supplemented meal 

induced a significant increase in plasma concentration of a-carotene (716% (590, 865)). 

Plasma concentrations of lutein, zeaxanthin and lycopene (Table 2) and serum lipid levels 

(data not shown) remained unchanged. Data of 9-c/s p-carotene are not presented in 

Table 2 because almost half of the plasma concentrations measured were below the 

detection level (<0.002 umol/L). However, after consumption of the palm oil carotenoids 

supplement, the percentage of volunteers with plasma concentrations of 9-c/s p-carotene 

within the detectable range was significantly larger than after consumption of the control 

or synthetic p-carotene supplemented meals (84% for the palm oil carotenoids 

supplemented meal and 55% for the other two meals, P<0.005). None of the treatment 

effects were significantly different between males and females and smokers and non-

smokers. 
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Figure 1 Plasma carotenoid response to four days consumption of palm oil carotenoids or 

synthetic p-carotene, as compared to a low-carotenoid diet, expressed per mg carotenoid 

intake (mean, 95% confidence interval). 
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Consumption of synthetic p-carotene resulted in a higher plasma level of a\\-trans p-

carotene and 13-c/s p-carotene than consumption of palm oil carotenoids (Table 2). On 

the other hand, consumption of palm oil carotenoids resulted in a 7-fold higher plasma 

level of a-carotene than consumption of the synthetic p-carotene supplement, which 

contained no a-carotene at all (Tables 1 and 2). The differences in increases of plasma 

levels of all-frans p-carotene and 13-c/s p-carotene between the palm oil carotenoids and 

synthetic p-carotene supplement could be explained by the differences in composition of 

the two supplements. This is illustrated in Figure 1, which shows the increases in plasma 

concentrations of these carotenoids per mg carotenoid intake after consumption of the 

supplemented meals as compared to those after consumption of the control meal. 

DISCUSSION 

Four days supplementation with palm oil carotenoids or synthetic p-carotene, added to 

a standard hot meal, resulted in significantly increased plasma levels of the supplied 

carotenoids. The magnitude of the differences between the two supplements in increases 

of plasma concentrations of alkrans p-carotene and 13-c/s p-carotene appeared to be 

proportional to the differences in level of intake (Figure 1). 

No effect was found on plasma levels of lutein, zeaxanthin and lycopene. The standard 

meal contained no detectable amounts of these carotenoids (Table 1) and volunteers 

avoided carotenoid-containing foods during the rest of the experimental days. Hence it is 

unlikely that competition for uptake has occurred between these carotenoids and the 

supplemented carotenoids. In addition, these results suggest that four days 

supplementation with a- and/or p-carotene does not affect circulating lutein or lycopene 

levels and tissue uptake or metabolism of these carotenoids. 

Our findings of a significantly increased plasma carotenoid status following 

supplementation with purified a-carotene and/or p-carotene are in line with other studies 

and the magnitude of the increases were within the ranges expected (Brown et al, 1989; 

Micozzi et al, 1992; Rock & Swenseid, 1992; Carughi & Hooper, 1994; Torronen et al, 

1996; Canfield et al, 1997). The relative differences in plasma levels of all-frans p-

carotene and 13-c/s p-carotene between the two carotenoid supplements were in line with 

the differences in composition of the supplements (Figure 1). Apparently, at this level of 

intake a proportional relation exists between intake of these carotene isomers and their 

plasma response. Other studies also found a proportional association between carotenoid 

intake and plasma responses after supplementation with 12 to 90 mg p-carotene 

(Dimitrov et al, 1986; Brown et al, 1989; Micozzi et al, 1992). In addition, our findings 
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reveal that a\\-trans and 13-c/s p-carotene were equally available from the natural palm oil 

carotenoids supplement and the synthetic p-carotene supplement. Apparently, 

simultaneous ingestion of a-carotene had no effect on the response of plasma p-carotene 

levels following supplementation with palm oil carotenoids. 

The present data do not allow to speculate about the effect of p-carotene on the 

bioavailability of a-carotene because we did not include supplementation with a-carotene 

only. Although the palm oil carotenoids supplement increased the plasma level of a-

carotene significantly, the response per mg ingested was smaller than that of all-frans p-

carotene (Figure 1). In a previous study the plasma response of a-carotene was more 

pronounced than that of p-carotene after four weeks of supplementation with palm oil 

carotenoids, resulting in similar final plasma concentrations for a- and p-carotene (Van 

het Hof et al, 1998). This difference may be due to the shorter period of supplementation 

in the present study. The kinetics of the plasma increase may differ between a- and p-

carotene, with a slower rate of increase for a-carotene. As a new steady state may not 

have been reached in four days, the relative difference between a- and p-carotene may 

be affected by differences in kinetics between the two carotenoids. 

The relative plasma responses were not only different for a- and p-carotene, they also 

varied between the isomers of p-carotene. No specific function has been reported for 13-

c/s p-carotene, whereas 9-c/s p-carotene can be converted into 9-c/s retinoic acid (Nagao 

& Olson, 1994; Wang et al, 1994), which is involved in the regulation of gene expression 

(Heyman et al, 1992; Levin et al, 1992). All-frans p-carotene is however the predominant 

isomer in plasma and the present study indicates that this is not entirely due to the fact 

that all-frans p-carotene is also the major isomer in the diet. As has been reported 

previously for 9-c/s p-carotene (Stahl et al, 1993; Gaziano et al, 1995; Tamai et al, 1995; 

Ben-Amotz and Levy, 1996; Johnson et al, 1996; Von Laar et al, 1996; Yeum et al, 1996; 

You et al, 1996), the impact of increased intake of 9-c/s and 13-c/s p-carotene on their 

plasma levels was very low as compared to that of all-frans p-carotene. This may be due 

to inefficient intestinal uptake or degradation of the cis isomers, more extensive 

conversion to vitamin A, isomerisation to all-frans p-carotene or rapid uptake by tissue 

cells. You et al (1996) found evidence for isomerisation of 9-c/s p-carotene to a\\-trans p-

carotene. The present study does not support this hypothesis. Figure 1 shows that the 

increase in plasma level of a\\-trans p-carotene relative to the intake was similar for both 

carotenoid supplements. Based on the hypothesis of cis-trans isomerisation, a relatively 

larger increase would be expected after consumption of the palm oil carotenoids 

supplemented meal because of the higher content of c/s-p-carotene isomers. However, 

the dosage used in this study may have been too large to detect such an effect. 
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We conclude that four days consumption of a meal supplemented with about 25 mg/d 

of either palm oil carotenoids (a- and p-carotene) or synthetic p-carotene improves 

plasma carotenoid status substantially. The presence of a-carotene does not affect the 

bioavailability of p-carotene from palm oil and may deliver additional benefits. 
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CHAPTER 9 

INTRODUCTION 

Carotenoids are thought to contribute to the inverse relationship between fruit and 

vegetable consumption and the risk of coronary heart disease and some types of cancer 

(Van Poppel, 1996). To increase our understanding of the potential benefits of 

carotenoids, it is important to obtain more insight in their bioavailability from foods and the 

factors that determine carotenoid bioavailability. This latter aspect may also lead to 

options for improvement of carotenoid bioavailability from foods and thus possibly their 

beneficial effects. 

The absorption of carotenoids includes several steps, as described previously (Van het 

Hof et al, 1998) and shown in Figure 1. Factors that may interfere with the rate of each of 

these steps will impact on the overall bioavailability of the carotenoids ingested. The 

mnemonic "SLAMENGHI" describes these factors: Species of carotenoids, Linkages at 

molecular level, Amount of carotenoid, Matrix, Effectors, A/utrient status, Genetics, Wost-

related factors and /nteractions between these variables (De Pee & West, 1996; 

Castenmiller & West, 1998). As this mnemonic has been proposed to determine the 

provitamin A value of carotenoids, the Species of carotenoids is of importance: two 

molecules of retinol may be formed from one molecule p-carotene, whereas other 

provitamin A carotenoids provide only one molecule of retinol. In addition, different 

carotenoids and carotenoid isomers may vary in absorbability as indicated by differences 

in responses of plasma concentrations to supplementation (Gaziano et al, 1995; Kostic et 

al, 1995; Ben-Amotz & Levy, 1996; Paetau et al, 1997; Chapters 5 and 8). 

Linkages at a molecular level include esterification of carotenoids with fatty acids, such 

as lutein esters and p-cryptoxanthin esters, which are present in some fruits and 

vegetables (Khachik et al, 1991) and in marigold flowers from which lutein is extracted for 

use as food colourant or supplement (Granado et al, 1998). 

The Amount of carotenoid ingested defines the maximum amount that may be 

absorbed. However, the efficiency of conversion to vitamin A or even of absorption may 

decrease with increasing amounts. This latter aspect seems to become important at very 

high doses only. A more or less proportional relation has been found between intake of p-

carotene and its plasma response after supplementation with 12 to 90 mg p-carotene 

(Dimitrov et al, 1986; Brown et al, 1989; Micozzi et al, 1992). In contrast, 210 mg p-

carotene supplemented in a single dose resulted in a similar increase in plasma p-

carotene concentrations as 60 mg (Canfield et al, 1997). This suggests a plateauing of 

the dose-response curve beyond dosages of 60 to 90 mg p-carotene. 
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The Matrix in which the carotenoids ingested are incorporated is an important 

determinant of their bioavailability. This aspect of carotenoid bioavailability will be 

discussed in detail below. 

Effectors include both bioavailability enhancing as well as inhibiting constituents in the 

diet. An enhancing agent is dietary fat, which is essential in the absorption process of 

carotenoids. Inhibitors may include other carotenoids. It has been speculated that 

interaction between carotenoids at the intestinal level may reduce the absorbability of 

some carotenoids. Such competition between carotenoids may also be considered as an 

effect of the -Amount of carotenoids ingested. 

A/utrient status, Genetics, Host-related factors are all related to the persons' 

characteristics, /nteractions reflect the mathematical interactions among all factors of the 

SLAMENGHI-mnemonic. 

The research described in this thesis focused on the effect of dietary factors, i.e. Matrix 

and Effectors, on the bioavailability of carotenoids. The following paragraphs will discuss 

our findings together with the current scientific literature in these areas. 

IMPORTANCE OF FOOD MATRIX 

Bioavailability of carotenoids from different food matrices 

Disruption of the food matrix and release of carotenoids is the first step in carotenoid 

absorption. Several studies have indicated that the food matrix in which carotenoids are 

located is a major factor determining the bioavailability of carotenoids. Although 

consumption of carotenoid-rich foods (i.e. vegetables and fruits) is significantly associated 

with plasma concentrations of carotenoids in cross-sectional studies (e.g., Campbell et al, 

1994; Yong et al, 1994; Scott et al, 1996; Drewnowski et al, 1997; Polsinelli et al, 1998), 

and increased vegetable and fruit consumption enhances plasma carotenoid 

concentrations (Yeum et al, 1996; Rock et al, 1997; Zino et al, 1997), the bioavailability of 

in particular p-carotene from vegetables has been shown to be low when compared to 

that of purified p-carotene added to a simple matrix (e.g. capsule, oil, sauce, salad 

dressing). 

Table 1 summarises studies in humans in which the plasma response of carotenoids 

after supplementation with vegetables or fruits has been compared with the response to 

supplementation with pure carotenoids. As in some cases, the carotenoid intake differed 

among the different supplements, we divided the plasma responses by the daily intake of 

the carotenoids provided. Dividing the plasma responses, thus corrected for differences in 

intake, induced by vegetables or fruit consumption by those induced by pure carotenoid 

supplementation, provides a measure of "relative carotenoid bioavailability". This 

156 



GENERAL DISCUSSION AND CONCLUSIONS 

calculation assumes a proportional linear relationship between the extent of carotenoid 

absorption and the plasma response. It should be noted, however, that the plasma 

response is the result of various processes, of which the extent of absorption at the 

intestinal level is only one. Tissue uptake and release, and metabolism of carotenoids, 

which may all be affected by the amount of a carotenoid entering the body, also interfere 

with the plasma response observed. 

The relative bioavailability of (3-carotene from vegetables as compared to purified p-

carotene ranges between 3-6% for green leafy vegetables, 19-34% for carrots and 22-

24% for broccoli (Brown et al, 1989; Micozzi et al, 1992; De Pee et al, 1995; Torronen et 

al, 1996; Castenmiller et al, 1999; Chapter 3). p-Carotene from fruits was found to be 2.6-

6 times more effective in increasing plasma concentrations of retinol and p-carotene than 

green leafy vegetables (De Pee et al, 1998). In fruits, such as mango and tomatoes, 

carotenoids are located in chromoplasts in their crystalline form (Gidley, personal 

communication). In this location, they are suggested to function primarily as colouring 

agent to attract insects and animals for reproductive reasons. In plant leaves, carotenoids 

are present in the chloroplasts where they play a role in light energy collection and 

photoprotection during photosynthesis (Britton, 1995). It was speculated that p-carotene is 

released more easily from the chromoplasts where they are located in fruits than from the 

chloroplasts in green leafy vegetables (De Pee et al, 1998). Chloroplasts may be less 

efficiently disrupted in the intestinal tract. 

We found that broccoli and green peas induced a larger p-carotene response in plasma 

than whole leaf and chopped spinach, despite a ten times lower p-carotene content in the 

former vegetables (Chapters). The location of carotenoids in other parts of the plant than 

the leaf and fruit, such as the flower (e.g. broccoli) or seeds (e.g. green peas), has not yet 

been elucidated and probably they are located in chromoplasts. 

The above mentioned studies indicate that the bioavailability of p-carotene may vary 

substantially, not only among vegetables, fruits and other foods, but also between 

different types of vegetables. 

Few data are available on the relative bioavailability of carotenoids other than p-

carotene from vegetables. We showed that the relative bioavailability of lutein from a diet 

supplemented with a variety of vegetables is much higher than that of p-carotene (i.e. 

67% vs 14% respectively) (Chapter 2). The same was found for the relative bioavailability 

of lutein and p-carotene from spinach (i.e. 45% vs 5.1%, respectively) (Castenmiller et al, 

1999). The release of lutein into an aqueous environment is probably higher than that of 

P-carotene, due to its lower lipophilicity compared to p-carotene. Also the bioavailability of 
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lutein seems lower from green leafy vegetables than from other vegetables, although the 

differences are less pronounced than those of (5-carotene (Chapter 3) 

The presence of dietary fibre in vegetables and fruits may partly explain the lower 

bioavailability of carotenoids from plant foods. It has been suggested that fibre interferes 

with micelle formation by partitioning bile salts and fat in the gel phase of dietary fibre. 

This may explain the effect of pectin on carotenoid bioavailability. A 60% reduction in 

plasma p-carotene response was observed after simultaneous ingestion of p-carotene 

with pectin as compared to the plasma response after p-carotene alone (Table 4) (Rock & 

Swenseid, 1992). A similar reduction was found in chicks, not only for pectin but also for 

other dietary fibres (Erdman et al, 1986). 

In addition, the presence of carotenoids in protein complexes has been suggested as 

limiting for their bioavailability from e.g. vegetables (Erdman et al, 1993). These 

complexes have to be disrupted before carotenoids are dissolved in lipid droplets and 

incorporated into mixed micelles (Figure 1). 

Effect of disruption of the food matrix 

Not only the intracellular location, but also the intactness of the cellular matrix may be a 

determinant of carotenoid bioavailability from vegetables and fruits. Several data indicate 

that processing of vegetables (i.e. homogenisation and/or heat treatment), which disrupts 

the vegetable matrix, improves the bioavailability of carotenoids. Table 2 shows an 

overview of human and animal studies in which the effect of vegetable processing on 

carotenoid bioavailability has been assessed. 

Effect of mechanical homogenisation 

Van Zeben & Hendriks (1948) investigated the influence of homogenisation on the 

bioavailability of p-carotene from carrots in humans. After 3 weeks, the response in 

plasma p-carotene concentration was 4.9-fold greater in the group which received 

homogenised carrots than in the group which consumed whole carrots. Two later studies 

examined the effect of homogenisation of carrots to juice on carotene bioavailability as 

determined from the increase in plasma concentrations of retinol or p-carotene (Hussein & 

El-Tomahy, 1990; Torronen et al, 1996). In vitamin A-depleted boys who consumed raw 

grated carrots or carrot juice for two weeks, plasma concentrations of retinol and p-

carotene were slightly higher in the group consuming carrot juice (Hussein & El-Tomahy, 

1990). However, no statistical evaluation was presented in this study and the p-carotene 

and retinol concentrations in plasma continued to decrease during the supplementation 

period in most of the volunteers. On the other hand, Torronen et al (1996) showed no 
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significant difference in bioavailability of p-carotene from raw carrots or carrot juice when 

consumed by adult females for 6 wk, although the average increase in plasma p-carotene 

concentration was ca. 70% larger following consumption of carrot juice. However, they 

found a large variation in plasma carotenoid responses between individuals, which 

reduced the power to show significant effects. 

There are also indications that disruption of the matrix affects the bioavailability of 

various carotenoids differentially. The plasma response of lutein was significantly 

increased by ca. 14% when spinach was consumed as chopped spinach in stead of as 

whole leaf spinach, whereas the plasma response of p-carotene was not affected 

(Chapter 3). There are several explanations for this finding. Firstly, the different lipophilic 

character of the two carotenoids, resulting in a greater release of lutein in response to 

homogenisation. Secondly, it may well be that homogenisation releases both carotenoids 

to the same extent but that lutein inhibits p-carotene absorption (Kostic et al, 1995; Van 

den Berg & Van Vliet, 1998). In contrast, however, Castenmiller et al (1999) found that 

disruption of the matrix of spinach by enzymatic treatment enhanced the plasma response 

of p-carotene (by 60-70%) but not of lutein. As the bioavailability of lutein from spinach, 

relative to a supplement, is higher than that of p-carotene (Castenmiller et al, 1999; 

Chapter 2), it can be speculated that the vegetable matrix is a less important determinant 

of the bioavailability of the less lipophilic lutein than that of p-carotene. 

This difference in effectiveness of homogenisation to enhance carotenoid bioavailability 

between different carotenoids was also found for lycopene and p-carotene from tomatoes 

(Chapter 4). Homogenisation enhanced the plasma response of p-carotene only for 

tomatoes which had not received additional heat treatment (289%). This points to a 

maximum p-carotene bioavailability from tomatoes, which can be achieved by either 

homogenisation or heat treatment, whereas a combination of these treatments induces no 

further enhancement. This was not found for lycopene, for which the bioavailability was 

enhanced by homogenisation irrespective of the duration of heat treatment (21-62%). 

Possibly, due to the difference in lipophilic character, the maximum bioavailability of the 

less lipophilic p-carotene is achieved under milder processing conditions than that of 

lycopene. That would be in line with the differences between lutein and p-carotene 

observed by Castenmiller et al (1999). 

Effect of heat treatment 

Some studies have found that cooking enhances the carotenoid content measured in 

vegetables, possibly due to increased extractability of carotenoids from the vegetable 

matrix (Dietz et al, 1988; Granado et al, 1992; Khachik et al, 1992). This has led to the 
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suggestion that increased extractability due to heat treatment may be associated with 

improved bioavailability of carotenoids from the vegetable matrix (Erdman et al, 1988). 

This hypothesis has been tested in studies in which homogenised carrots, carrot juice and 

carrot chromoplasts were fed to preruminant calves and ferrets (Poor et al, 1993; Zhou et 

al, 1996). In these studies, however, heat treatment, involving steaming of the carrot 

products, did not result in increased levels of a- or p-carotene in serum, adrenals or liver. 

We found that heat treatment increased the bioavailability of p-carotene from whole 

tomatoes but not homogenised tomatoes (Chapter 4). As homogenised carrots were used 

as starting material in the previous studies, heat treatment may also be effective in 

increasing p-carotene bioavailabiltiy from unhomogenised carrots only. 

Prolonged heating of tomatoes tended to improve the bioavailability of lycopene also, 

but the effects did not reach significance {Chapter 4). The effectiveness of heat treatment 

in enhancing lycopene bioavailability from tomato products may be enhanced if oil is 

added before the treatment. Stahl & Sies (1992) showed that consumption of tomato juice 

which had been heated in the presence of oil, resulted in a significantly larger increase in 

serum lycopene concentration than did consumption of the unheated mixture. Further, in 

vitro studies have indicated that addition of oil during processing enhances the partitioning 

of the lipophilic lycopene in the fat phase after release from the by heat treatment 

disrupted tomato matrix (Van het Hof et al, 1998). 

Effect of a combination of homogenisation and heat treatment 

Processing of tomatoes into tomato paste includes both mechanical homogenisation 

and heat treatment. There is evidence that this process is very effective in increasing 

lycopene bioavailability. The lycopene response in plasma or triglyceride-rich lipoproteins 

was 22-380% larger after consumption of tomato paste than when the same amount of 

lycopene was consumed as fresh tomatoes (Gartner et al, 1997; Porrini et al, 1998). This 

supports the suggestion of Giovannucci et al (1995) that the association between 

consumption of various tomato products and risk of prostate cancer depends on the 

bioavailability of lycopene. An association was only found with consumption of tomato 

paste and not with consumption of unprocessed and minimally processed tomatoes. Our 

own data indicate that the disruption of the matrix caused by homogenisation and heat 

treatment, applied during the production of tomato paste from fresh tomatoes, may both 

contribute to this enhanced lycopene bioavailability [Chapter 4). 

Rock et al (1998) found that the plasma response of p-carotene was enhanced after 

consumption of pureed, cooked carrots and spinach as compared to that after 

consumption of the vegetables in their raw, unhomogenised form (3-fold higher increase 

in plasma p-carotene). 
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In conclusion, carotenoids are less available from more complex matrices, such as 

vegetables and fruits than when ingested as pure compounds, dissolved in oil or added to 

a fat rich wafer or salad dressing. Disruption of the vegetable matrix, either by mechanical 

homogenisation or heat treatment enhances carotenoid bioavailability. However, as 

shown in particular for p-carotene, this will not result in similar bioavailability as observed 

for the pure compound. 

IMPORTANCE OF AMOUNT AND TYPE OF DIETARY FAT 

Effect of amount of dietary fat present 

A second step in the absorption process of carotenoids which may affect their 

bioavailability involves the incorporation of released carotenoids into mixed micelles. 

Formation of these micelles is, among other factors, dependent on the presence of fat in 

the intestine. Therefore, ingestion of fat along with carotenoids is thought to be crucial. 

Table 3 shows studies in which the effect of dietary fat on the bioavailability of carotenoids 

(mainly p-carotene) has been investigated. 

Various studies assessed the importance of dietary fat in comparison with its complete 

absence at the moment of ingestion of p-carotene (Jayarajan et al, 1980; Dimitrov et al, 

1988; Prince & Frisoli, 1993). Under these circumstances absorption of p-carotene seems 

to be suboptimal, as the increases in plasma concentrations improved substantially when 

fat was added to the test meals. However, from the findings of Jayarajan et al (1980) it 

appears that 5 g fat in a meal is already sufficient to ensure carotenoid uptake. They 

found no difference in improvement of the vitamin A status when 5 g or 10 g of dietary fat 

was added to spinach, whereas 0 g fat resulted in less improvement. A recently reported 

study of Jalal et al (1998) indicates that the cut-off point lays between 3 and 5 g of fat. 

They observed a significantly smaller increase in serum retinol if 3 g fat was added to a 

sweet potato snack than if 18 g fat was added. 

Under normal circumstances, in Western countries, the presence of dietary fat seems 

not to be limiting. The average fat content of a hot main meal in, for instance, the 

Netherlands is about 35 g (Voorlichtingsbureau voor de Voeding, 1993). In case of fruit or 

vegetable drinks (e.g. tomato juice), consumed between meals, without snacks, the 

amount of fat may however be too low. In addition, very low fat products which are 

designed to replace full-fat products may reduce the bioavailability of carotenoids present 

either in the meal or in the product itself. We investigated the bioavailability of carotenoids 

from a very low fat spread enriched with carotenoids and compared that with the 

effectiveness of a full-fat carotenoid enriched spread (Chapter 6). In a previous study we 
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had shown that a full-fat spread (80% fat) fortified with a-carotene and p-carotene was 

highly effective in enhancing plasma concentrations of these carotenoids (Chapters). The 

amount of fat present in the very low fat spread (3 g/meal) was sufficient to ensure uptake 

of a-carotene and p-carotene. However, with respect to lutein, which was added as lutein 

esters, the plasma response was ca. 100% higher following consumption of the full-fat 

spread (35 g/meal) than following the very low fat spread (Chapter 6). We speculated that 

the low amount of fat may have limited the solubilisation of lutein esters in the fat phase 

and/or the release and activity of esterases and lipase. These enzymes are crucial for the 

hydrolysis of lutein esters, required before absorption. 

Effect of type of fat and digestibility of fat-soluble components present in the diet 

It has been shown that if subjects consume fat-soluble components that are not or only 

to a limited extent absorbable, their plasma carotenoid concentrations may decrease 

substantially. Table 4 provides an overview of studies on this subject. 

Sucrose polyester, a non-absorbable fat replacer, decreased plasma levels of 

carotenoids by 20-120%, depending on the amount of sucrose polyester and the type of 

carotenoid (Koonvitsky et*al, 1997; Schlagheck et al, 1997; Chapter 7). The largest 

decreases were found for the most lipophilic carotenoids (i.e. lycopene and p-carotene). 

Apparently, carotenoids released from the food matrix were incorporated into the non­

absorbable sucrose polyester rather than into the micelles that were formed from dietary 

fat. This is supported by the fact that the effect was less pronounced if participants were 

allowed to consume snacks containing sucrose polyester at their own will (Koonvitsky et 

al, 1997) rather than together with the major dietary sources of carotenoids, i.e. during the 

main meal (Schlagheck et al, 1997; Chapter 7). 

Plasma carotenoid concentrations also reduced during consumption of dietary 

phytosterols (Weststrate & Meijer, 1998). Phytosterols are largely unabsorbable plant 

components which are used as cholesterol lowering agents. Currently, the mechanism by 

which phytosterols decrease carotenoid status has not been elucidated. Phytosterols 

could perhaps hinder the incorporation of carotenoids into mixed micelles by aspecific 

binding or solubilisation of carotenoids. 

Borel et al (1998) recently reported that the type of fat present in the diet also 

influences carotenoid bioavailability. This could not be explained by a reduced 

absorbability of the fat itself. Medium chain triglycerides are absorbed primarily via the 

portal vein and thus the chylomicron formation is low after a meal containing only these 

type of triglycerides. Borel et al (1998) showed that if p-carotene was added to such a 

meal, the incorporation of p-carotene in chylomicrons was also low, compared to when p-

carotene was added to a meal containing long chain triglycerides. 
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In conclusion, the amount of dietary fat needed to be present simultaneously for 

complete absorption of carotenoids is low (ca. 3 g). This is thus not a limiting factor in 

Western diets in which, on average, fat is present in abundance. However, in case 

carotenoids are ingested as carotenoid esters, the amount of dietary fat needed for 

absorption is higher. The presence of non-absorbable fat replacers or other fat-soluble 

compounds with reduced absorbability may also interfere with carotenoid absorption and 

reduce their bioavailability. 

INTERACTIONS BETWEEN CAROTENOIDS AND WITH OTHER FAT-SOLUBLE 

MICRONUTRIENTS 

Interaction between carotenoids and other fat-soluble micronutrients at the intestinal 

level may reduce absorption of either the carotenoids or the other compounds. 

Competition for absorption may occur at the level of micellar incorporation, intestinal 

uptake, lymphatic transport or at more than one level. On the other hand, simultaneous 

ingestion of various carotenoids or carotenoids with other antioxidants may induce a 

sparing effect in the intestinal tract and thus result in increased levels of uptake of the 

protected carotenoids or antioxidants. A similar phenomenon may occur within the body, 

both with respect to sparing of other antioxidants as well as provitamin A carotenoids, and 

thus result in an enhanced status of carotenoids or other antioxidants. 

Table 5 shows an overview of human studies in which the interaction between 

carotenoids and between carotenoids and vitamin E has been investigated. The majority 

of these studies have investigated the effect of supplementation with p-carotene on 

concentrations of other carotenoids and vitamin E in plasma or serum. Most animal 

studies have focused on the effects of canthaxanthin supplementation (Tang et al, 1993; 

White et al, 1993; Tang et al, 1995; Brown et al, 1997; Clark et al, 1998). This latter 

carotenoid is normally not present in the human diet in significant amounts and plasma 

levels of this carotenoid are generally low (Paetau et al, 1997). 

The effect of p-carotene supplementation (12-300 mg/d) on plasma or serum 

concentrations of other carotenoids and vitamin E in humans is limited. Although some 

studies have shown that supplementation with p-carotene reduced plasma concentrations 

of other carotenoids or vitamin E (Prince et al, 1991; Micozzi et al, 1992; Morbarhan et al, 

1994) and also an enhancing effects have been reported (Wahlqvist et al, 1994; Albanes 

et al, 1997), in most studies, no effect was found for the majority of the carotenoids 

investigated and six of the seven studies showed no effect on plasma or serum 

concentrations of vitamin E (Calzada et al, 1995; Fontham et al, 1995; Fotouhi et al, 

1996; Albanes et al, 1997; Nierenberg et al, 1997; Mayne et al, 1998). Supplementation 
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with both p-carotene and lutein reduced plasma concentrations of lycopene in one study 

(Chapter 2), but not in another study (Castenmiller et al, 1999). 

Single simultaneous ingestion of p-carotene with lycopene enhanced the lycopene 

response in serum (Johnson et al, 1997), whereas a reduced plasma or serum lutein and 

canthaxanthin response was found after single simultaneous ingestion of p-carotene with 

lutein or canthaxanthin (Kostic et al, 1995; White et al, 1994; Pateau et al, 1997). 

P-Carotene was not affected by any other carotenoid (i.e. a-carotene, lycopene, lutein 

and canthaxanthin) or vitamin E in the majority of the studies (White et al, 1994; Kostic et 

al, 1995; Calzada et al, 1995; Johnson et al, 1997; Paetau et al, 1997; Chapter 8). 

Recently, Van den Berg & Van Vliet (1998) reported however a reduced a-carotene and 

p-carotene response in chylomicrons after simultaneous ingestion of these carotenoids 

with lutein or lycopene. 

In conclusion, these data show that p-carotene supplementation has limited or no effect 

on plasma or serum concentrations of other carotenoids and vitamin E. However, the 

supplements may have been ingested at other times during the day than at which foods 

rich in carotenoids and vitamin E were consumed. Studies on simultaneous ingestion of 

carotenoids indicate that p*-carotene may interfere with lutein (Kostic et al, 1995; Van den 

Berg & Van Vliet, 1998) and canthaxanthin (White et al, 1994; Paetau et al, 1997). 

Although the exact mechanism is unclear, the bioavailability of mainly the other 

carotenoids seems to be reduced as a result of this interaction. 

CONCLUSION 

Figure 2 summarises the dietary factors that affect carotenoid bioavailability and the 

steps during which they may interfere with the process of carotenoid absorption. 

Estimates of the quantitative impact of each factor, as far as possible, on the 

bioavailability (i.e. the responses in plasma, serum or triglyceride-rich lipoproteins) of 

carotenoids are presented in Table 6. 
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Dietary factor Step in absorption 

V 

Matrix type 
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1 

Figure 2 Dietary factors that affect carotenoid absorption. 
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In answer to the research questions stated in the introduction of this thesis, we 

conclude the following: 

Does the bioavailability of carotenoids vary among different food matrices and 

does disruption of the matrix enhance the bioavailability of carotenoids from 

vegetables? 

Goodman and his colleagues and Blomstrand & Werner showed in the 1960s that the 

absorption of carotenoids is far from complete (Goodman et al, 1966; Blomstrand & 

Werner, 1967). This thesis and research from others shows that the proportion absorbed 

is even smaller if carotenoids are located in complex food matrices, such as vegetables, 

than if they are present as pure compounds added to foods or capsules. Incomplete 

disruption of the vegetable matrix in the gastro-intestinal tract partly explains this 

observation, as disruption of this matrix prior to consumption enhances the carotenoid 

bioavailability. Disruption of the vegetable matrix does however not result in similar 

bioavailability shown for pure carotenoids. Other characteristics of vegetables, such as 

the presence of fibre, the physical state of carotenoids (e.g. crystalline form, carotenoid-

protein complexes) or their intracellular location in the plant material (e.g. in chloroplasts 

or chromoplasts) may explain this gap. 

Does the amount and digestibility of dietary fat affect the bioavailability of 

carotenoids? 

Unless completely absent, the amount of dietary fat is not a limiting factor for 

carotenoid bioavailability as 3-5 g, simultaneously ingested with carotenoids, was already 

sufficient to ensure absorption. However, we also showed that if carotenoids are present 

as esters, solubilisation and/or hydrolysis of the esters prior to absorption may become a 

critical step if the amount of fat present is low. If fat-soluble, unabsorbable compounds are 

ingested along with carotenoids, as shown for sucrose polyester in the present thesis, 

they may solubilise part of the carotenoids, thereby preventing the absorption of these 

carotenoids and reducing their bioavailability. 

Do individual carotenoids affect the bioavailability of other carotenoids? 

With respect to the third factor investigated in this thesis and discussed in this chapter, 

i.e. interaction between carotenoids, the current data are less consistent. Simultaneous 

presence of the carotenoids in the diet seems crucial for their interaction and in these 

cases, competition rather than enhancement may occur. We showed that such an 

interaction was not present between a-carotene and p-carotene, but that supplementation 
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with p-carotene and lutein did affect the bioavailability of lycopene. The mechanism or 

steps in absorption where such an interaction takes place are yet unknown. 

In conclusion, the type of food matrix in which carotenoids are located largely 

determines their bioavailability and unabsorbable, fat-soluble compounds reduce 

carotenoid absorption. Although some dietary fat needs to be present to ensure 

absorption of carotenoids, the amount seems to be very low (3-5 g per meal). The 

minimal amount needed depends however on the physico-chemical characteristics of the 

carotenoids ingested. Interaction among carotenoids may occur, depending on the type of 

carotenoids and on their simultaneous presence in the diet. 

IMPLICATIONS 

In future, more research will be needed to further increase our understanding of the 

bioavailability and function of carotenoids. The development and use of carotenoids 

labelled with stable isotopes incorporated into foods may contribute quantitative data on 

the extent to which carotenoids are absorbed from different food matrices. The studies 

presented in this thesis show that different types of vegetables may vary substantially with 

respect to the bioavailability of carotenoids. The underlying differences, e.g. cellular 

location of carotenoids, should be further explored. In addition, novel, non-invasive 

measurement techniques will provide more insight in the accumulation of carotenoids in 

tissues and allow to investigate this in healthy subjects (e.g. Stahl et al, 1998). 

Research into the functional benefits of carotenoids should consider the data 

presented in this thesis, which show that the bioavailability of p-carotene in particular is 

one order of magnitude higher when provided as pure compound added to foods than 

when naturally present in foods. This should be taken into account when deciding on the 

amount of carotenoids to be provided either added to foods or to pharmaceutical 

preparations. 

Processing, such as mechanical homogenisation or heat treatment, has the potential to 

enhance the bioavailability of carotenoids from vegetables. This may be applied in the 

development of foods with enhanced carotenoid bioavailability. A possible negative 

impact of such conditions on the content of other, more vulnerable, micronutrients should 

be taken into account. If novel food ingredients are developed, in particular if they are fat-

soluble and absorbable only to a limited extent, attention should be paid to a possible 

negative impact on the bioavailability of carotenoids. 
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CHAPTER 9 
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Summary 

Carotenoids are thought to contribute to the relationship between a high fruit and 

vegetable consumption and a reduced risk of chronic diseases, such as some types of 

cancer and cardiovascular disease. To increase our understanding of the potential 

benefits of carotenoids, it is important to obtain more insight into their bioavailability from 

foods and the factors that influence carotenoid bioavailability. This latter aspect may lead 

to options for improving the bioavailability of carotenoids from foods and thus possibly 

enhancing their beneficial effects. The aim of this thesis was to determine the 

bioavailability of carotenoids from different food matrices and to identify dietary factors 

that affect carotenoid bioavailability. We primarily investigated the effect on carotenoid 

bioavailability of the type and intactness of the food matrix, of the digestibility and amount 

of dietary fat and of the interaction among carotenoids. Bioavailability was determined as 

the availability to the blood stream of carotenoids ingested. It may be assumed that an 

increase in blood carotenoid concentrations relates to an increase in availability of the 

carotenoids to tissues. 

In the studies described in Chapters 2-4, we investigated whether the bioavailability of 

carotenoids varies among different food matrices and whether disruption of the matrix 

enhances the bioavailability of carotenoids from vegetables. In a 4-week intervention 

study (Chapter 2), we compared the changes in plasma carotenoid concentrations 

following consumption of a high vegetable diet with those following a low vegetable diet 

supplemented with pure p-carotene and lutein added to a salad dressing. The plasma 

carotenoid response induced by the high vegetable diet, expressed as the proportion of 

that induced by the pure carotenoids, corrected for differences in intake, was 14% for (3-

carotene and 67% for lutein. In another study (Chapter 3), we found that four days 

consumption of spinach did not significantly affect the plasma concentration of p-

carotene. This was despite the fact that the p-carotene content of spinach was 10-fold 

greater than that of broccoli and green peas, both of which did induce statistically 

significant increases in plasma p-carotene concentrations. Compared to the increase 

resulting from supplementation with pure p-carotene, added to a mixed meal, the relative 

plasma responses observed for the vegetables were 74% for broccoli, 96% for green 

peas and only 3% for spinach. All three vegetables increased the plasma concentration of 

lutein. Broccoli and green peas were also more effective sources of lutein than spinach, 

when expressed per mg carotenoid ingested. Disruption of the spinach matrix increased 

the plasma response of lutein by 14%, whereas it had no significant effect on the 

bioavailability of p-carotene. The importance of the intactness of the vegetable matrix as a 
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determinant of carotenoid bioavailability from tomatoes was also demonstrated (Chapter 

4). We investigated the effect of homogenisation and heating on the bioavailability of 

carotenoids from canned tomatoes. It appeared that both processes effectively enhanced 

the carotenoid bioavailability from tomatoes, although the effect of heating was not always 

statistically significant. The processing effects were apparent both in the carotenoid 

response in triglyceride-rich lipoproteins following single consumption and in fasting 

plasma after four days consumption of the tomato products. The plasma response of 

lycopene was increased by 21% and the area under the curve of the lycopene response 

in triglyceride-rich lipoproteins increased by 62% when the tomatoes were homogenised 

under high pressure (200 bar), compared to whole tomatoes. One hour of additional heat 

treatment (100°C) enhanced the lycopene responses by about 10% and 40% in plasma 

and triglyceride-rich lipoproteins respectively, but this effect was not significant (P>0.05). 

The second question addressed in this thesis is related to the effects of the amount 

and digestibility of dietary fat on carotenoid bioavailability. Carotenoids are absorbed in 

association with dietary fat and therefore, the presence of dietary fat is thought crucial for 

carotenoid absorption. In the study described in Chapter 5, volunteers consumed 15 g/d 

of a full-fat margarine enriohed with a- and p-carotene (2.7 mg/d a-carotene and 5.3 mg/d 

p-carotene) for four weeks. Compared to the group which consumed a non-enriched 

margarine, the concentrations of these carotenoids in plasma and low density lipoproteins 

increased substantially (15.5-fold and 4.3-fold in low density lipoproteins for a-carotene 

and p-carotene, respectively). In a subsequent study (Chapter 6), we compared the 

plasma responses of a-carotene, p-carotene and lutein following supplementation of 

these carotenoids together with a low-fat or high-fat meal (ca. 3 g vs 36 g fat). The 

carotenoids were added to a low-fat spread or a full-fat margarine (3% or 80% fat) which 

were provided with a standard hot meal. The plasma responses of a-carotene and p-

carotene were not affected by the amount of fat present in the meal. In the case of lutein, 

however, the plasma response was significantly larger when lutein was added to the high-

fat spread (2.3-fold larger increase in plasma lutein concentration). Lutein was present as 

lutein esters and we speculated that, in case of the low-fat treatment, the small amount of 

fat may have limited the solubilisation of lutein esters in the fat phase and/or the release 

and activity of esterases and lipases in the intestine. These enzymes are crucial for the 

hydrolysis of lutein esters, which is most probably a prerequisite for absorption. This study 

thus showed that a small amount of fat is sufficient to optimise the bioavailability of a-

carotene and p-carotene, whereas the amount of fat required for the absorption of lutein 

esters is greater. In two other studies, we investigated the effect of an indigestible fat-

replacer, sucrose polyester, on the plasma status of carotenoids (Chapter 7). Carotenoids 
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must be incorporated into mixed micelles before they are absorbed along with dietary fat. 

Sucrose polyester may intefere with the uptake of carotenoids into mixed micelles from 

dietary fat. Subsequently, carotenoids may be excreted together with intact sucrose 

polyester. In line with our hypothesis, we found that four weeks consumption of 3 g/d or 

12.4 g/d of sucrose polyester, supplied in a spread and consumed with the main meal, 

reduced plasma concentrations of carotenoids. We found the largest decrease for the 

most lipophilic carotenoids, lycopene (48% and 62% with 3 g/d and 12.4 g/d sucrose 

polyester, respectively) and p-carotene (20% and 34%, respectively). It seems that a 

substantial proportion of the carotenoids ingested with the main meal was solubilised in 

the sucrose polyester, rather than in the dietary fat fraction. 

Finally, we investigated whether individual carotenoids affect the bioavailability of other 

carotenoids. We compared the bioavailability of p-carotene from a palm oil carotenoid 

supplement, containing both a-carotene and p-carotene, with that of synthetic p-carotene 

(Chapter 8). Four days supplementation with the carotenoids, added to a mixed meal, 

resulted in significant increases in their plasma concentrations as compared with the 

consumption of a low-carotenoid meal. The relative plasma responses of p-carotene, per 

mg intake, were similar for the two supplements. We therefore concluded that a-carotene 

does not intefere with the bioavailability of p-carotene. The results of another study, 

however, suggest that carotenoids may interact with each other and affect bioavailability. 

In the study described in Chapter 2, we found that in the group which had received the 

low vegetable diet, supplemented with p-carotene (6 mg/d) and lutein (9 mg/d), plasma 

concentrations of lycopene were significantly reduced as compared to the control group 

receiving the low vegetable diet only. Apparently, p-carotene and/or lutein compete with 

lycopene for absorption and/or transport in plasma. Until now, however, data from other 

studies are conflicting. 

In conclusion, the type of food matrix in which carotenoids are located largely 

determines their bioavailability and unabsorbable, fat-soluble compounds reduce 

carotenoid absorption. Although some dietary fat needs to be present to ensure 

absorption of carotenoids, the amount seems to be very low (3-5 g per meal). The 

minimal amount needed depends however on the physico-chemical characteristics of the 

carotenoids ingested. Interaction among carotenoids may occur, but the exact mechanism 

is unclear and data from ourselves and others are conflicting. 

Research into the functional benefits of carotenoids should consider the data 

presented in this thesis, which show that the bioavailability of p-carotene in particular is 

one order of magnitude higher when provided as pure compound added to foods than 

when naturally present in foods. This should be taken into account when deciding on the 
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amount of carotenoids to be provided either added to foods or to pharmaceutical 

preparations. 

Processing, such as mechanical homogenisation or heat treatment, has the potential to 

enhance the bioavailability of carotenoids from vegetables. This may be applied in the 

development of foods with enhanced carotenoid bioavailability. If novel food ingredients 

are developed, in particular if they are fat-soluble and absorbable only to a limited extent, 

attention should be paid to a possible negative impact on the bioavailability of 

carotenoids. 
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Samenvatting 

De laatste jaren is uit grote bevolkingsonderzoeken gebleken dat een hoge consumptie 

van groenten en fruit samenhangt met een lager risico op het krijgen van ziekten die op 

latere leeftijd voorkomen, zoals kanker (vnl. longkanker en kanker aan het 

maagdarmkanaal) en mogelijk ook met hart- en vaatziekten en bepaalde oogziekten. Er 

wordt gedacht dat deze chronische ziekten ontstaan doordat het lichaam wordt blootgesteld 

aan zogenoemde vrije radicalen die het genetisch materiaal, het DNA, of andere moleculen, 

zoals de lipoprotefnen in het bloed, beschadigen. Deze vrije radicalen kunnen uit de 

omgeving komen, zoals luchtvervuiling, sigarettenrook of teveel zonlicht, maar ook van 

binnenuit tijdens het metabolisme. Stoffen in groenten en fruit die vrije radicalen 

onschadelijk kunnen maken, zoals bijvoorbeeld carotenoTden, zouden de gunstige effecten 

van een hoge groenten- en fruitconsumptie kunnen verklaren. Er bestaan heel veel 

verschillende typen carotenoTden. Er zijn zo'n 600 verschillende ge'fdentificeerd. In het 

menselijk lichaam zijn er echter maar 6 die in grotere hoeveelheden voorkomen. Dat zijn p-

caroteen, a-caroteen, p-cryptoxanthine, a-cryptoxanthine, luteTne, zeaxanthine en 

lycopeen. De eerste drie carotenoTden kunnen in het lichaam worden omgezet in vitamine 

A. 

Om de werking van carotenoTden te kunnen begrijpen is het belangrijk om te weten in 

welke mate ze uit de voeding worden opgenomen in het lichaam, met andere woorden, hun 

biobeschikbaarheid. Daarnaast is kennis van de factoren die de opname beTnvloeden van 

belang om na te gaan hoe de biobeschikbaarheid uit voedingsmiddelen kan worden 

verbeterd. We denken namelijk dat een grotere opname gunstig is voor de gezondheid. Het 

doel van dit proefschrift was daarom het bepalen van de biobeschikbaarheid van 

carotenoTden uit verschillende voedingsmiddelen en het identificeren van factoren in de 

voeding die de biobeschikbaarheid beTnvloeden. We hebben gekeken naar de invloed van 

het type en de "intactheid" van de voedingsmatrix, de verteerbaarheid en hoeveelheid vet in 

de voeding en de aanwezigheid van andere carotenoTden. De biobeschikbaarheid werd 

bepaald aan de hand van veranderingen in de gehaltes van carotenoTden in het bloed van 

gezonde vrijwilligers. Vaak wordt biobeschikbaarheid omschreven als de mate waarin een 

voedingscomponent beschikbaar is voor het weefsel waar het zijn functie uitoefent. 

Afgezien van het feit dat het niet bekend is welk weefsel dat voor de verschillende 

carotenoTden is, is dit met gezonde proefpersonen wat moeilijk. Je zou er echter vanuit 

kunnen gaan dat een verhoogde concentrate in het bloed samenhangt met een verhoogde 

beschikbaarheid van carotenoTden in het weefsel. 

In de studies die in de hoofdstukken 2-4 beschreven zijn hebben we onderzocht of de 

biobeschikbaarheid van carotenoTden verschilt tussen verschillende voedingsmatrices en of 
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het kapot maken van de matrix de biobeschikbaarheid van caroteno'i'den uit groenten 

vergroot. In een vier weken durende voedingsproef hebben we de veranderingen in 

carotenoTd concentraties in plasma na consumptie van een dieet met veel groenten 

vergeleken met de veranderingen na consumptie van een dieet met weinig groenten, 

aangevuld met een supplement van eenzelfde hoeveelheid p-caroteen en luteTne als in het 

hoog-groentendieet. De plasma respons in de groep die het groentendieet had gekregen 

was, uitgedrukt als percentage van de plasma respons in de groep die het supplement had 

gekregen, 14% voor p-caroteen en 67% voor luteTne. Met name de stijging in het plasma 

gehalte van p-caroteen was dus veel kleiner in de groentengroep dan in de 

supplementgroep. In een andere studie, beschreven in hoofdstuk 3, vonden we dat de 

biobeschikbaarheid van caroteno'i'den niet alleen verschilt tussen groenten en een 

supplement, maar ook tussen groenten onderling. Vier dagen consumptie van extra 

spinazie gaf geen significante stijging van de plasma concentrate van p-caroteen, in 

tegenstelling tot vier dagen met extra broccoli of doperwten. Het frappante was dat de 

spinazie tien keer zoveel p-caroteen bevatte dan de broccoli en doperwten. In vergelijking 

met de stijgingen die een p-caroteen supplement gaf waren de relatieve stijgingen in 

plasma gehalten 74% voor broccoli, 96% voor doperwten en slechts 3% voor spinazie. Alle 

drie de groenten deden het plasma gehalte van luteTne stijgen. Echter, ook voor luteTne 

waren broccoli en doperwten effectiever, als rekening gehouden werd met de verschillen in 

hoeveelheid luteTne die de groenten leverden. Het malen van de bladspinazie vergrootte de 

plasma respons van luteTne met 14%, maar het had geen significant effect op de 

biobeschikbaarheid van p-caroteen. Het belang van de "intactheid" van de groentenmatrix 

voor de biobeschikbaarheid van caroteno'i'den werd ook gevonden voor tomaten (hoofdstuk 

4). We onderzochten het effect van homogenisatie en verhitting op de biobeschikbaarheid 

van caroteno'i'den in tomaten. Het bleek dat beide processen effectief waren om de 

biobeschikbaarheid van caroteno'i'den uit tomaten te verbeteren, hoewel de effecten van 

verhitting niet altijd statistisch significant waren. De respons van lycopeen in het bloed was 

verhoogd met 62% direct na het eten van de tomaten en met 21% na vier dagen tomaten 

consumptie, als de tomaten niet als hele tomaten maar na homogenisatie onder hoge druk 

(200 bar) werden aangeboden. Een uur extra verhitting (100°C) verhoogde de respons van 

lycopeen met zo'n 40% direct na de maaltijd en 10% na vier dagen, maar deze effecten 

waren niet significant (P>0.05). 

De tweede vraag die is beantwoord in dit proefschrift had betrekking op de invloed van 

de hoeveelheid en verteerbaarheid van voedingsvet op de biobeschikbaarheid van 

caroteno'i'den. Caroteno'i'den worden tegelijk met voedingsvet opgenomen in de dunne darm 

en daarom wordt gedacht dat de aanwezigheid van vet cruciaal is voor de opname van 

caroteno'i'den. In een proef beschreven in hoofdstuk 5, consumeerden vrijwilligers 
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gedurende vier weken dagelijks 15 gram van een margarine (80% vet) die verrijkt was met 

a- en p-caroteen (2.7 mg/dag a-caroteen en 5.3 mg/dag p-caroteen). Na vier weken waren 

de concentraties van deze carotenoTden sterk gestegen in het plasma. In vergelijking met 

de groep die een gewone margarine consumeerde, was er een 14.5-voudige stijging in a-

caroteen en een 3.4-voudige stijging in p-caroteen gehaltes in het plasma. In een daarop 

volgende studie (hoofdstuk 6) vergeleken we de plasma responsen van a-caroteen, p-

caroteen en luteTne na consumptie van deze carotenoTden met een maaltijd die weinig of 

veel vet bevatte (ca. 3 g vs 36 g vet). De carotenoTden waren toegevoegd aan een laag-vet 

spread of een volvette margarine (3% of 80% vet) en deze spread of margarine werd 

gegeten met een standaard warme maaltijd gedurende zeven dagen. De plasma responsen 

van a-caroteen en p-caroteen waren niet afhankelijk van de hoeveelheid vet in de maaltijd. 

De plasma respons van luteTne was echter significant groter als het luteTne was toegevoegd 

aan de volvette margarine (2.3-voud grotere stijging). LuteTne was toegevoegd als luteTne-

esters en we denken dat de hoeveelheid vet die nodig is voor het oplossen van deze esters 

of voor de uitscheiding van esterases en lipases in de dunne darm groter is dan de 

hoeveelheid die aanwezig was in de laag-vet maaltijd. Esterases en lipases zijn nodig voor 

het splitsen van luteTne-esters en waarschijnlijk moet het luteTne eerst vrijgemaakt worden 

voor het kan worden opgenomen. In twee andere studies hebben we onderzocht wat de 

invloed was van een niet-verteerbare vetvervanger, nl. sucrose polyester, op de plasma 

gehaltes van carotenoTden (hoofdstuk 7). Dit sucrose polyester smaakt precies hetzelfde als 

gewoon vet, maar levert geen calorieen omdat het niet verteerbaar is. Een negatief bij-

effect zou kunnen zijn dat het ook de opname van carotenoTden vermindert. In plaats van 

opname met het normale voedingsvet in de dunne darm zouden ze samen met het sucrose 

polyester uitgescheiden kunnen worden in de faeces. Deze hypothese werd bevestigd. We 

vonden namelijk dat consumptie van 3 g/dag of 12.4 g/dag sucrose polyester, toegevoegd 

aan een spread en met de warme maaltijd gegeten, de plasma concentraties van 

carotenoTden verlaagde. De grootste reductie werd gevonden voor de meest vetoplosbare 

carotenoTden, lycopeen (48% en 62% reductie met respectievelijk 3 g/dag en 12.4 g/dag 

sucrose polyester) en p-caroteen (20% en 34% reductie met respectievelijk 3 g/dag en 12.4 

g/dag sucrose polyester). Het lijkt erop dat een deel van de carotenoTden uit de warme 

maaltijd beter oplost in het sucrose polyester dan in het normale vet van de warme maaltijd. 

Tenslotte hebben we onderzocht of carotenoTden de biobeschikbaarheid van andere 

carotenoTden beT'nvloeden. We vergeleken de biobeschikbaarheid van p-caroteen uit een 

palmolie-supplement dat zowel p-caroteen als a-caroteen bevatte, met de 

biobeschikbaarheid van synthetisch p-caroteen (hoofdstuk 8). Na vier dagen 

supplementatie waren de plasma gehaltes van de carotenoTden significant gestegen, in 
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vergelijking met de gehaltes die gevonden werden na vier dagen consumptie van een 

maaltijd zonder carotenoi'den. Per miligram inname was de stijging in p-caroteen-gehalte 

vrijwel gelijk voor de twee typen supplementen. Daarom concludeerden we dat de 

aanwezigheid van a-caroteen geen invloed heeft op de biobeschikbaarheid van p-caroteen. 

In een andere studie, echter, vonden we wel dat carotenoi'den elkaars biobeschikbaarheid 

kunnen bei'nvloeden. In de studie die in hoofdstuk 2 beschreven staat, vonden we in de 

groep die het supplement van p-caroteen en lute'fne had gekregen een significante daling in 

de plasma concentrate van lycopeen. Blijkbaar heeft er een competitie plaatsgevonden 

tussen p-caroteen en/of lute'fne en lycopeen tijdens absorptie en/of voor transport in het 

plasma. 

Op basis van deze gegevens concluderen we dat de biobeschikbaarheid van 

carotenoi'den grotendeels bepaald wordt door het type voedingsmatrix waarin de 

carotenoi'den zich bevinden en dat onverteerbare, vetoplosbare componenten in de voeding 

de absorptie van carotenoi'den verminderen. Hoewel vet in de voeding aanwezig moet zijn 

voor de opname van carotenoi'den, is de hoeveelheid die nodig is zeer klein (3-5 g in een 

maaltijd). De minimum hoeveelheid hangt echter af van de fysisch-chemische kenmerken 

van de carotenoi'den. Interactie tussen carotenoi'den kan plaatsvinden, maar het 

mechanisme dat daarvoor verantwoordeijk is, is niet bekend en de data beschreven in dit 

proefschrift en die van andere onderzoekers op dit gebied zijn niet eenduidig. 

Toekomstig onderzoek naar de gezondheidseffecten van carotenoi'den moet rekening 

houden met onze bevinding dat de biobeschikbaarheid van met name p-caroteen zo'n tien 

keer groter is als het als pure component wordt aangeboden dan als het in de natuurlijke 

voedselmatrix (nl. groenten) aanwezig is. Dat is met name van belang bij de beslissing over 

de hoeveelheid die wordt verstrekt, toegevoegd aan voedingsmiddelen of als farmaceutisch 

preparaat. 

Bewerking van groenten, zoals homogenisatie of hittebehandeling, kan de 

biobeschikbaarheid van carotenoi'den uit groenten vergroten. Dit zou toegepast kunnen 

worden bij de ontwikkeling van producten met een verhoogde biobeschikbaarheid van 

carotenoi'den. Bij de ontwikkeling van nieuwe ingredienten voor voedingsmiddelen moet 

rekening worden gehouden met een mogelijk negatief effect op de biobeschikbaarheid van 

carotenoi'den. Dit geldt met name voor vetoplosbare ingredienten met een verminderde 

opneembaarheid. 
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Omgevingsfactoren die het succes van een promovendus bepalen 
In dit proefschrift zijn factoren besproken die de biobeschikbaarheid van carotenoi'den kunnen 

be'invloeden. We denken dat voldoende opname van carotenoi'den in het lichaam van belang is 

voor een goede gezondheid. Daarom streven we naar een zo optimaal mogelijke opneembaarheid 

van carotenoi'den uit de voeding. De besproken factoren vertonen een interessante gelijkenis met 

de factoren die het succes van een promovendus bepalen. Deze gelijkenis wil ik in dit dankwoord 

bespreken. 

Het soort carotenofd 

Dat is de basis, het allereerste begin. Uit welk hout is de promovendus of promovenda gesneden. 

Dat was mijn eerste geluk. Mama, dank je wel dat je mij (naast natuurlijk vele andere dingen) 

discipline en doorzettingsvermogen hebt bijgebracht. Zonder die eigenschappen lukt slechts 

weinig. Op deze plaats wil ik ook mijn vader noemen, die helaas niet meer is. De helft van mij 

bestaat uit hem. Het is zo jammer dat ik niet meer van hem mocht leren. Dank echter aan alien die 

wel een voorbeeld konden geven en mij stimuleerden om mezelf te ontplooien. Marian van Duren, 

bedankt dat je me bij de invulling daarvan hebt geholpen. Michiel Meijers en Merel Ritskes, 

bedankt voor jullie stimulans om een rode lijn in mijn onderzoek te ontdekken. 

De matrix waarin een carotenofd zich bevindt 

Unilever, het Unilever Nutrition Centre en de Landbouwuniversiteit Wageningen, de afdeling 

Humane Voeding en Epidemiologie: de pijlers waarop ik heb kunnen bouwen. Jan Weststrate, je 

was een echte leermeester en ik dank je voor de plaats die je mij gegeven hebt in Unilever. Je 

eisen waren altijd hoog maar inspirerend. Professor Hautvast, Jo, bedankt voor het vertrouwen dat 

je in mij stelde en dat je mijn promotor wilde zijn. Het voelde zo vertrouwd om weer een beetje 

"Wageninger" te zijn. Clive West, we hebben een vreemde relatie, zo formuleerde je het tijdens de 

ENLP. Maar voor mij is het altijd een heel prettige relatie geweest. Dank je voor je steun, 

suggesties en alle extra informatie die je met me deelde. Onno Korver, al sta je niet in het rijtje 

begeleiders vooraan in dit proefschrift, zonder jouw goedkeuring en steun was dit proefschrift er 

niet geweest. Dank je wel voor de mogelijkheid om te kunnen promoveren. 

De hoeveelheid carotenofd aanwezig 

De vele collega's van het UNC en elders die meegewerkt hebben aan alle studies die in dit 

proefschrift zijn opgenomen zijn onmisbaar geweest. Willy Dubelaar en Bert Dubbelman, met jullie 

begon ik aan mijn eerste humane voedingsproeven in het Unilever Nutrition Centre. Heel veel 

dank voor jullie inzet en de kennis die ik van jullie kreeg. Tom Wiersma, dank voor je bijdrage en 

kennis op het gebied van de statistiek en voor de vele extra analyses die je wilde uitvoeren. 

Edward Haddeman, je hebt heel wat proeven voor me gecoordineerd. Fijn dat je me zo 

195 



DANKWOORD 

slagvaardig bijstond. Willem Kloots, Wim van Nielen, Yvonne Gielen, Annet de Visser, Cor Blonk, 

Gerard Kivits, Jan Don, Jolanda Mathot, Frans van der Sman, Rinus Boers, Wil van Oort, Koos 

van Wijk, Jan van Toor, Henk van Toor, Wim Tuitel en Nora Zaal, de stagiaires Hilde de Boer, 

Marleen Essenberg, Itske Zijp en Bianca Lucius, en alle collega's die ik niet bij name noem: 

bedankt voor jullie inzet en hulp. De samenstelling van de studie teams wisselde nog weleens, 

maar een kenmerk hadden ze altijd gemeen: we stonden samen voor de klus en iedereen werkte 

er zeer gemotiveerd aan. Daar heb ik van genoten. Speciaal ook mijn dank aan de mensen die 

gewerkt hebben aan de studie die in Wageningen is uitgevoerd. Ingeborg Brouwer, Marijke van 

Dusseldorp en hun collega's: dank dat ik een extra vraagstuk aan de Zwafol-studie mocht 

koppelen. 

Interactie met andere carotenoiden 

Als we het over interactie tussen carotenoi'den wat betreft biobeschikbaarheid praten, denken we 

in eerste instantie aan een remmend effect van de een op de ander. Het kan echter ook zo zijn dat 

die carotenoi'den elkaar sparen of versterken en er sprake is van synergie. Dat laatste is ook voor 

een promotie en voor een optimaal functioneren in het algemeen, van belang. Mijn collega's van 

het UNC en in Colworth en gelijkgezinden in Wageningen en in Diisseldorf hebben daarom een 

belangrijke bijdrage geleverd aan mijn wetenschappelijke en werk-sociale vorming. Een paar 

noem ik bij naam: Lilian Tijburg, Sheila Wiseman, Annet Roodenburg en Rianne Leenen, dank 

jullie wel voor de samenwerking en voor de ruggespraak die ik met jullie kon houden. Lilian, fijn dat 

je mijn paranimf wilt zijn. Misschien kun je me nog wat "tactische" antwoorden toespelen. Ben de 

Boer, dank voor alles wat ik van jou over groenten en communicatie heb geleerd. And my 

colleagues in Colworth from the Veg Nutrition team: thanks for the good team work we have built 

over the years. Jacqueline Castenmiller, gelijkgezinde in Wageningen, dank voor de informatie en 

gegevens die we samen uitwisselden. Willi Stahl and Christine Gartner from the University of 

Diisseldorf: thank you for the fruitful co-operations we have had. 

De aanwezigheid van vet 

Vet is essentieel voor de vorming van micellen en de opname van carotenoi'den. Zo is het ook met 

vrijwilligers die aan voedingsproeven deelnemen. Zonder hen geen studie en zonder hen geen 

proefschrift. Ik heb altijd weer bewondering gehad voor de flexibiliteit en bereidheid van "onze" 

vrijwilligers. Daarom bij deze: mijn dank aan hen. Daarnaast is een andere groep mensen van 

essentieel belang: vrienden en familie die ervoor zorgden dat ik kon functioneren. Dank jullie voor 

de belangstelling voor mijn werk en de tips die ik van jullie kreeg. Lianne Pieters-van het Hof, mijn 

zus, er komt nu eindelijk een feestje, je hebt het verdient. En dan mijn speciale druppel olie: Albert 

Krikke, die mij stimuleert en steunt. Mijn lief, mijn dank, mijn liefde. 
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