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PROPOSITIONS 

i. In order to improve the reliability of environmental assessments with GIS and 
remote sensing, one should take into account the multiscale nature of 
observational data. 
(This thesis) 

2. Long time series of high spatial resolution images should be used in order to 
achieve an increased mapping accuracy for the remnants of semideciduous 
Atlantic forest. 
(This thesis) 

3. Propositions should be short, controversial, and significant suggestions that 
advocate changes rather than conclusive statements of facts and results. 

4. Data sets shall be made available "free of charge" for non-profitable studies 
concerning social and environmental issues. 

5. Social security should be rethought in order to stimulate motivation, tolerance 
and patience in the Dutch youth. 

6. Environmental degradation must be considered as threatening to humankind as 
terrorism has been during the past three months. 

Propositions belonging to the Doctoral Thesis entitled 
"Mapping and monitoring forest remnants: a multiscale analysis of spatio-temporal data " 

by Luis M. T. de Carvalho. 

Wageningen, December 10, 2001. 
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PREFACE 

About one decade ago, world leaders met in Brazil and formalised the 
global concern on environmental protection. At that time, forest ecosystems 
received alarming references and a number of research initiatives on the subject 
were encouraged. A whole chapter of the global action plan devised in Rio de 
Janeiro for the 21st century (the Agenda 21) is devoted to forests and 
deforestation and almost every other chapter relates to the primordial role of 
forest ecosystems in maintaining a healthy environment for mankind. The 21st 

century has arrived, but deforestation is still taking place indiscriminately all 
over the world. 

In Brasil, the strongly publicised destruction of forests took the wrong 
direction, giving emphases to charismatic areas in detriment of really 
endangered ecosystems. For example, a few scientific studies have dealt with the 
semideciduous variant of the Atlantic forest biome and little is known world­
wide about its destruction. The semideciduous Atlantic forests of Brazil are in an 
advanced stage of fragmentation and are subject to eminent threats, which can 
generate even more unrecoverable losses. 

The first large scale research project dealing with semideciduous Atlantic 
forest was initiated in 1998 by a cooperation among three outstanding institutes 
in Brazil: "Empresa brasileira de pesquisas agropecudrias" (EMBRAPA), 
"Universidade Federal de Lavras" (UFLA), and "Universidade de Brasilia" 
(UNB). The project, entitled "Estrategia para conservacdo e manejo da 
biodiversidade em fragmentos de florestas semideciduas", aims at defining a 
scientifically based strategy for the conservation and management of this 
ecosystem through the integration of knowledge derived from subprojects at the 
landscape, community, population, and molecular levels. 

Effective tools to study forest ecosystems at the landscape level are 
evolving rapidly with important contributions from remote sensing and 
geographic information technologies. Remotely sensed images cover large areas 
on the ground revealing multispectral, multiresolution, and multitemporal 
information, and hence are regarded as the most economic and effective way of 
gathering environmental data from regional to global scales. They are important 
data sources for the development and validation of ecological models, 
management activities and decision making. 



XII Preface 

The aim of the present contribution was to explore new methodologies for 
geoinformation processing and to solve problems related to forest management 
and research. Moreover, considering the project mentioned before, I intended to 
add information to aid the definition of such strategy within the framework of 
the subproject that studies forest remnants at the landscape and regional levels. I 
hope that you will find this thesis an interesting reading matter and the concepts 
useful to improve our capabilities of monitoring and protecting what still 
remains of the world forests. 

Wageningen, October 2001. 



CHAPTER ONE 

Introduction 

Recently, in July 2001, forests gained renewed interest at the world 
conference on global change in Bonn, Germany, mainly because of their role in 
important environmental matters such as carbon cycle, climate, and biodiversity. 
Even so, the definition of international goals and the creation of a common 
understanding, as achieved by the Vienna Convention1, have been characterised 
by considerable disagreement (Vuuren and Bakkes 1997). At local scales, forests 
also influence soil and water dynamics affecting not only ecological relations, 
but also social decision (Eden 1998). One basic requirement to quantify and 
model environmental processes is the availability of accurate maps of forest 
cover. Data acquisition at appropriate spatial and temporal scales is the keystone 
to achieve the mapping accuracy needed for development and reliable use of the 
so-called environmental models. 

In Brazil, ongoing initiatives have been producing valuable information 
on forest resources and especially concerning assessment and monitoring of 
deforestation the following are relevant references (INPE 1999, INPE 2000, 

The Vienna Convention and the Montreal Protocol on substances depleting the ozone layer 
defined an action program that is currently in implementation phase. This program has already 
demonstrated significant achievements concerning the production and consumption of CFCs. 
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SOS Mata Atlantica and INPE 1993, SOS Mata Atlantica et al. 1998, Souza and 
Barreto 2000, Alves et al. 1999). The Amazonian and the evergreen Atlantic 
forests have been the subject of regular research in many scientific fields (for 
exhaustive references see Goldsmith 1998, Brown and Brown 1992), whereas a 
few recent studies on community ecology deal with the Semideciduous Atlantic 
Forest (Oliveira-Filho and Ratter 1995, Oliveira-Filho et al. 1997, Carvalho et 
al. 2000, Carvalho and Oliveira-Filho 2000, Oliveira-Filho and Fontes 2000). 
Countries that still have natural forests left should look carefully at the sad 
experiences of others, which became aware too late that restoration is much 
more expensive than protection. The Netherlands for example, with its for long 
impoverished flora and fauna, has been one of the leaders on developing 
integrated ecological approaches for nature restoration, but they know that the 
long term success of these efforts is still not known. 

The semideciduous Atlantic forest is eminently more threatened than the 
Amazonian, less studied than its evergreen counterpart, and even more degraded 
than both are. In fact, the Brazilian Amazon forest is almost intact. Since 1977 
less than 5% of the area has changed to land cover types other than forest and 
more than 25% is already under conservation regimes (figure 1.1). On the other 
hand, because of its strongly fragmented state, the more fragile Atlantic rain 
forest systems would have lost about 50% of the species if we consider 
predictions based on island biogeographical theory (figure 1.1). Fortunately, up 
to now no scientific study has been able to indicate any of the threatened plants 
or animals as extinct. Indeed, many species considered extinct 20 years ago have 
recently been rediscovered (Brown 1991). It is true that rare species, which have 
never been described, are probably already gone and the current fragmentation 
of this biome is causing the elimination of local populations and erosion of 
genetic diversity. 

This thesis was motivated by problems that usually start with practical 

questions: 

- What is the spatial pattern of semideciduous Atlantic forest remnants? 

- How can one quantify this pattern? 

- How can one quantify changes in the pattern? 
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Evergreen and semideciduous forests 

Atlantic forest biome according to 
Federal Decree ne 750/93 
Conservation units 

— ( study site 

Figure 1.1 Approximate cover of forest formations in Brazil and Minas Gerais, 
conservation units in the Amazon region, and location of study site. Modified 
from INPE (2000), SOS Mata Atlantica (1998) and IBAMA (2000). 

1.1 Problem definition 

Advances in computer science have aided the proper extraction of relevant 

information from remotely sensed images as well as the effective use of 

geographical information systems (hereafter termed GIS) to store, analyse and 

present all sorts of georeferenced information. GIS allow the integration of 

different land attributes, including remotely sensed images, and offer new 

opportunities to develop and extend ecological models (Burrough and 

McDonnell 1998). 

However, advances in remote sensing, GIS and computational resources 
inevitably pose additional challenges. The current and upcoming production of 
high resolution (spectral, spatial) data sets plus the ever increasing time series 
that have been collected since the Seventies must be effectively explored. 
Although remote sensing time series of images are promising to detect and 
analyse changes at the Earth's surface, many logistic and practical problems 
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hamper the use of remote sensing for that purpose. These problems include 
geometric matching, calibration issues, cloud coverage, and finding effective 
change detection algorithms for specific purposes. This study aims to contribute 
to the improvement of land cover change detection and to provide practical 
examples. 

The integration and proper analysis of high-dimensional data sets are steps 
of utmost importance for environmental research. New conceptual models in 
environmental sciences, like the perception of multiple scales, require the 
development of effective implementation techniques. In GIS, large databases are 
being generated with contributions from all over the world in various data types, 
structures, measurement scales, spatial scales and for different purposes, which 
demand more flexible analysis tools. Improvements in computational 
capabilities open plenty of research opportunities to tackle these challenges, 
where the theoretical formulation of recent approaches like artificial intelligence 
and multiscale transforms have been developed together with the application 
fields. 

The study presented here is concerned, in general terms, with the 
investigation of adequate methods to deal with these new geoinformation 
analysis challenges and, more specifically, with the provision of knowledge and 
tools for forest related research using remote sensing and GIS. 

1.2 Research questions and objectives 

In order to answer the practical questions posed in the beginning of this 
chapter, one needs to know whether the available techniques of measurement 
and data analysis have the necessary capabilities. Thus, the following technical 
questions have to be addressed: 

1) What are the preprocessing requirements to the application of remotely 

sensed time series in environmental modelling? How appropriate are the 

existing preprocessing techniques? How appropriate are the temporal 

analysis tools for change detection and quantification? 

2) What kinds of landscape features derived with remote sensing are relevant 

to map semideciduous Atlantic forests? Can temporal information 

improve traditional multispectral classification? How appropriate are the 

classification tools? 
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3) To what extent can geoinformation processing be automated? 

4) Can artificial intelligence and multiscale methods improve over 

traditional techniques? 

Analysis of research questions 

In the following paragraphs, questions will be translated into statements of 
what has been stressed by the scientific community (axioms) and of what will be 
explored in this thesis (postulates). 

On time series analysis: 

Axiom la) Cloud cover limits time series analysis with data derived from 
optical remote sensors (Addink and Stein 1999, Addink 2001, Wang et al. 
1999, Guo and Moore 1993, Roerink et al. 2000). 

Axiom lb) Temporal analysis of remotely sensed images is sensitive to 
geometric registration (Dai and Knorram 1998, Townshend et al. 1992, 
Singh 1989, Gong et al. 1992, Stow 1999, Igbokwe 1999, Bruzzone and 
Prieto 2000). In order to reach subpixel accuracy, lots of ground control 
points must be defined in a time consuming and difficult task for most 
cases. 

Axiom lc) Temporal analysis is also sensitive to radiometric noise (Johnson 
and Kasischke 1998, Singh 1989, Schott et al. 1988, Hall et al. 1991, 
Elvidge et al. 1995). Differences in atmospheric transparency, sensor 
characteristics and vegetation phenology may yield misleading results. 

On mapping forests: 

Axiom 2a) The spectral information provided by single date remotely sensed 
images is often not enough to distinguish among objects with similar 
reflectance behaviour (Strahler 1980, Janssen and Middelkoop 1992, Hill 
and Foody 1994, Ma and Olson 1989, Skidmore 1988). Spectral overlap 
occurs mainly with coffee and exotic tree crops in the case of natural 
forests in general (Sayer and Whitmore 1990), and particularly, in the case 
of semideciduous Atlantic forests (Varona 2000, Raga 2001). Spectral 
confusion poses theoretical and practical challenges to the operational use 
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of satellite remote sensing for forest mapping at regional scales 
(Townshend et al. 1997). 

Axiom 2b) Classification of agricultural crops has been successfully improved 
with the addition of temporal data of production cycles (Clevers et al. 
1990, Ortiz et al. 1997, Vieira et al. 2000). 

Axiom 2c) In traditional probabilistic classification, a number of statistical 
assumptions about the data, that are not always true, must be defined 
(Atkinson and Tatnall 1997, Friedl and Brodley 1997). These 
discrepancies between analysis tools and available data might lead to poor 
performance and hence suboptimal results. 

On automation: 

Axiom 3) Large scale mapping projects demand a large degree of automation 
to be realised. Limitations in the available tools have prevented the 
operational use of remote sensing for large areas mapping (Townshend et 
al. 1997). 

On alternative techniques: 

Axiom 4) Data sets derived from multiple sources are increasingly available 
for environmental modelling. The development of analysis tools able to 
handle such a data set in one framework has been recognised (Townshend 
etal. 1997). 

List of postulates: 

Postulate 1) Temporal profiles should be modelled with nonlinear regression 
techniques for a more effective minimisation of cloud contamination and 
distortions caused by misregistration. 

Postulate 2) Long time series can be used to improve the separation of spectrally 
similar objects on the Earth's surface. It can be particularly useful to 
distinguish between natural and man-made land cover types. 

Postulate 3) Geographical data carry information at multiple spatial and 
temporal scales. Automation could be more effective if this multiscale 
nature is taken into account during processing. 
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Postulate 4) Artificial intelligence techniques and multiscale methods can 
handle the increasing amount of available data more effectively than the 
traditional techniques. 

Objectives 

A proper balance between practical issues and technical methods is 
required to investigate the usefulness of Earth observation techniques and GIS 
for forest mapping and monitoring. Two practical objectives are listed below, 
where the emphases are on solutions to problems that forest managers have to 
deal with: 

(1) to define a mapping strategy for semideciduous Atlantic forest in the "Vale 

do Alto Rio Grande", and 

(2) to develop a deforestation warning system to enable timely action to be 

taken. 

Considering these practical objectives as a starting point, other specific 
objectives of a more technical nature arise. These are the problems that 
geoinformation scientists have to deal with: 

(1) to investigate methods in order to separate spectrally similar land cover 
types by using other information sources and/or alternative image 
analysis methods, 

(2) to develop a strategy to preprocess and extract information (e.g., change 
detection) from long time series of high spatial resolution data, 

(3) to develop an automatic approach for detection and quantification of 

land cover changes using remotely sensed images. 
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1.3 Scope and organisation 

Although focused on remote sensing image processing, this thesis is 
fundamentally concerned with new and advanced data analysis methods and 
most of the techniques described here can be used virtually in any application 
field. Specifically, applications of multiscale wavelet transforms to analyse and 
process remotely sensed images were explored, since these techniques proved to 
be superior to others for answering some of the research questions. The core 
chapters were developed and applied to aid the solution of problems related to 
mapping forests and deforestation through the use of advanced tools for 
geoinformation gathering, feature extraction and knowledge discovery. 
Multiscale methods for processing 'hyperdimensional' and noisy remotely 
sensed data are proposed and exemplified in case studies within the "Vale do 
Alto Rio Grande", southeastern Brazil. 

The thesis is organised in eight chapters. Most of these individual chapters 
provide an extensive literature review on the subject and a comparison of 
existing techniques. A short overview of each chapter is elaborated in the 
following paragraphs and a schematic outline of the processing steps carried out 
in this study is illustrated in figure 1.2. 

Chapter 1 starts with a description of my reasons for embarking on this project 
followed by the definition of research questions and objectives. The 
chapter ends with an outline of the thesis contents. 

Chapter 2 brings a detailed description of the study site and of the Atlantic 
forest domain in Brazil with emphasis on its seasonal variant: The 
Semideciduous Atlantic Forest. 

Chapter 3 presents the theoretical background on geographical information 
processing with the basic aspects of remote sensing, multiscale analysis, 
and machine learning techniques. 

Chapter 4 presents a new method to denoise remotely sensed time series. In 
particular, to remove outliers due to the presence of clouds and associated 
shadows. 

Chapter 5 explores the use of a declouded time series of NDVI (Normalised 
Difference Vegetation Index) data, terrain elevation, slope and aspect, and 
spectral data to improve discrimination of forested areas. Additionally, 
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classifiers based on artificial intelligence are compared to the traditional 
maximum likelihood classifier. 

Chapter 6 introduces a new approach to improve the results of digital change 
detection by discriminating changed sites according to size classes. The 
technique facilitates a rapid assessment of deforested areas to warn 
authorities and to enable a rapid response. 

Chapter 7 describes a compound procedure for automated GIS updating based 
on the approach developed in chapter 6, on image segmentation, and on 
subsequent classification. 

Chapter 8 evaluates the main outcomes of each chapter and of the thesis as a 
whole. It brings answers to the research questions as well as 
recommendations for future research and operational applications. 
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Main objectives: (1) Definition of a mapping strategy for semideciduous 
Atlantic forest in the "Vale do Alto Rio Grande" region. 
(2) Development of a deforestation warning system. 

Data preparation: preprocessing time series to eliminate corrupted 
observations, to facilitate further analysis, and to enable extraction of 
meaningful information. 

[Chapter four] 

Supervised classification: exploratory 
experiment on mapping forested areas 
using different sets of attributes and 
a number of algorithms for pattern 
recognition. 

[Chapter five] 

Multiscale change analysis: methodology 
development to improve digital change 
detection using remotely sensed images. 

[Chapter six] 

Automation of change detection: system development for GIS updating 
based on feature extraction with multiscale change analysis, segmentation 
with a region growing algorithm, and supervised classification of remotely 
sensed images that have undergone data preparation. 

[Chapter seven] 

Figure 1.2 Schematic outline of the main processing steps carried out in this thesis 
to achieve the given objectives. 
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An Area ofSemideciduous Atlantic Forest 

There are two different definitions of Atlantic forest currently in use. The 
more traditional one, the Atlantic forest sensu strictu, is defined by the areas of 
dense and open evergreen forests (Veloso et al. 1991) that occur along the 
Brazilian coast and extending 300 Km inland. The other definition {sensu lato), 
more complete and increasingly used nowadays, adds the seasonal 
semideciduous and the mixed umbrophilus (Araucaria forests) forests. 
Therefore, the Atlantic forest sensu lato is divided in approximately 45% of 
semideciduous forest, 18% of mixed forest, and 37% of evergreen forest. 

The semideciduous forest included in the sensu lato definition occurs 
between the evergreen Atlantic forest and the "Cerrado" (Brazilian savanna) 
domains. Up to now it has been called dry semideciduous forest (Rizzini 1979), 
subtropical forest (Hueck 1972), seasonal tropical forest (Andrade-Lima 1966), 
and tropical caducifolious forest (Veloso 1982) but no scientific consensus has 
been reached concerning a proper label. Recently, a meticulous study on floristic 
similarities among savanna woodlands, Amazonian, and Atlantic forests has 
shown that the semideciduous forest of southeastern Brazil is in fact a 
subdomain of the Atlantic forest (Oliveira-Filho and Fontes 2000). Hence, it will 
be called semideciduous Atlantic forest throughout this thesis. Another good 
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reason to call it this way is that if included in the Atlantic forest domain it will 
inherit world-wide charisma and the legal instruments of protection that the 
Atlantic forest already possesses. 

2.1 Historical aspects 

It is supposed that the Brazilian Atlantic forests have once covered about 
one million square kilometres (Mori et al. 1981), corresponding to almost 12% 
of the country's area. Unfortunately, only approximations can be obtained 
because deforestation started just after colonisation and in the nineteenth century 
most of the forest was already cut down. Rizzini (1979) suggests that its 
northern limit was located at about 5° S in the state of Rio Grande do Norte. Its 
southern limit is probably the current one, at about 30° S along the river Taquari 
in the north of the state of Rio Grande do Sul (Por 1992). Nowadays, estimated 
figures indicate that it has been reduced to less than 5% of the original cover and 
has become one of the most important examples of the radical destruction of 
tropical forests reported in any book concerned with the subject (e.g., Whitmore 
1990, Terborgh 1992, Whitmore and Sayer 1992). 

The area chosen to study the semideciduous Atlantic forest is located in 
the "Vale do Alto Rio Grande" region in the south of Minas Gerais, southeastern 
Brazil. The occupation of this region was characterised by four economic cycles 
(SEBRAE 1998), viz. gold mining, ranching and agriculture, coffee, and 
industrialisation. Gold mining in the eighteenth century was the first important 
activity in the region. Mining was soon abandoned giving room to ranching and 
agriculture. In the nineteenth century, the region was the main furnisher of cattle 
and working animals to the market of Rio de Janeiro, which was by that time the 
capital of Brazil (Filetto 2000). The main agricultural crops included cotton, 
tobacco and sugar cane. Later in this century, the culture of coffee was 
introduced and increased very fast to become one of the main causes of 
deforestation in the region (Oliveir-Filho et al. 1994). Nowadays, besides the 
increasing industrialisation, coffee and milk production form the main 
economical activities in the region. 

This complex land use pattern has major consequences for interpretation 
and automatic analysis of remotely sensed images. Problems related to spectral 
overlap, spatial variability, mixed observations (i.e., various land cover types 
represented with a single value), and the multiscale nature of the sensed scenes 
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are increased considerably. In addition, forest distribution patterns are strongly 
related to human occupation as mentioned before. 

2.2 Physiographic characteristics 

The following items provide a description of the area chosen to study the 

semideciduous Atlantic forest (figures l.l and2.1). 

Location 

The study area shown in figure 1.1 is delimited by the coordinates 
21° 04'49" - 21° 47'05" S and 44° 01*31" - 45° 03'52" W (figure 2.1). This 
area was chosen because it is one of the study areas of the large scale project 
mentioned in chapter 1 and is very representative of the fragmented landscapes 
that occur in the semideciduous forest domain. 

45°00' W 

de S30 Jos6 

Serra de 
Sao Tom6 

45°00' W 

Figure 2.1 Water resources, urbanisation, and 
principal mountain chains of the study area. 
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Geology and lithology 

Arquean, Proterozoic, and Tertiary-Quaternary Litho-Stratigraphical 
geological units occur in the region (Lacerda 1999). Arquean units are composed 
of calcic alcaline potassic granulites, granitic granodioritic gneisses, mafic and 
ultramafic rocks, anfibolits and metabasalts of the greenstone-belt of Lavras and 
of the greenstone-belt of the Rio das Mortes. Proterozoic units are composed of 
a series of granitic granodioritic plutons and metasedimentary formations of the 
Serra de Bom Sucesso. Tertiary-Quaternary units are represented by alluvial 
covers (Lacerda 1999). Geology and lithology are perhaps the primary factors 
that will determine other physiographic aspects such as geomorphology, 
drainage network and distribution of soil types. All these factors have some 
impact on forest distribution and consequently on remote sensing observations 
as described in the items below. 

Geomorphology 

The "Vale do Alto Rio Grande" is characterised by gentle hills, with 
altitudes ranging, in most of the region, between 700 and 1000 m. However, 
altitudes between 1100 and 1400 m occur on the steeper ridges of the mountain 
chains shown in figure 2.1 (Oliveira-Filho et al. 1994). Additionally, flat areas 
are represented mainly by flood plains at the rivers' margins and by a few 
localised plateaus. It is supposed that geomorphology has an influence in the 
distribution pattern of forests in the region, since they determine the land 
suitability for agricultural practices. Besides, mountainous relief in combination 
with the position of the sun by the time of image generation affects the 
reflectance of terrain objects by forming shadows in the scene. 

Climate 

The climate of the region is classified as Cwb and Cwa types of Koppen's 
system (Koppen 1931), i.e. temperate to subtropical temperate climate with wet 
summer and dry winter. Although lying in the tropics, its altitude explains the 
Cwa and Cwb climate types (Eidt 1968). Data collected by the Meteorological 
Station of Lavras (21° 13' 40" S, 44° 22' 35" W, 900 - 950 m altitude) 
provided the following average figures for the period 1960 - 1992: annual air 
temperature of 19.03 °C with monthly temperatures ranging from 16.03 °C 
(July) to 21.82 °C (February); annual rainfall of 1517.0 mm (93% occurring 
between October and April) with monthly rainfall ranging from 19.2 mm (July) 
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to 293.3 mm (January). The deciduous nature of the forests in the region is 
certainly a reflex of this strong climatic seasonality described above, which in 
turn increases the variability of temporal remote sensing observations. 

Hydrography 

The main river in the study area is the "Rio Grande". After merging with 
the "Rio Parnaiba" in western Minas Gerais, the Rio Grande becomes the "Rio 
Parana", which is the main watercourse of the second largest river system of 
South America. Other important watercourses crossing the study area are the 
"Rio das Mortes" and the "Rio Capivari", besides a number of small 
contributors. Additionally, two artificial water reservoirs, Camargos and 
Itutinga, were built in the region to generate hydroelectric energy (figure 2.1). 
Semideciduous Atlantic forests are strongly related to gallery forest formations 
(i.e., that protect watercourses). The consequences for remote sensing 
observations is that a dendritic spatial pattern is evident from the drainage 
network, characterising a high complexity of forest boundaries associated with 
gallery forests. 

Soils 

The main soil types of the region are Latosols, Cambisols, Lithosols, 
Podzolic soils, Hydromorphic soils, and Alluvial soils (Brazilian Classification 
System). Latosols occur predominantly where the slope gradient is lower than 
12%, although Hidromorphic and Alluvial soils might occur at flooded plains 
where the slope gradient is lower then 3%. Podzolic soils occur where the slope 
gradient is higher than 12% and lower than 45%, although Cambisols and 
Lithosols might occur locally where the slope gradient is higher than 24% 
(Lacerda 1999). 

Soils are probably the most important natural factor that drives the 
distribution of forests in the region. Semideciduous Atlantic forests are very 
interspersed with savanna formations as a function of changes in soil fertility 
(Ratter 1992). 

2.3 Available data 

The main remote sensing data used in this thesis came from the Landsat 
Earth observation satellite program. One image from the Landsat Multi-Spectral 
Scanner (MSS) acquired in July 1981 and 27 images from the Landsat Thematic 
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Mapper (TM) acquired from 1984 till 1999 (table 2.1) were available for this 
study. Landsat TM images were purchased with three spectral bands, viz. red 
(band 3), near infrared (band 4) and mid infrared (band 5), except for the image 
of August 1998, which had all six TM optical bands included. The main reasons 
to use only three TM spectral bands were: (1) less amount of data to be analysed 
and consequently less disk space needed for storage, (2) the selected bands 
represent more than 80% of the spectral information (i.e., the excluded bands are 
highly correlated with the selected ones), and (3) the costs per scene were 
considerably reduced. Auxiliary data comprised orthophotos (1:10.000) and 
digitised contour lines with 20 m of vertical resolution. 

Table 2.1 Acquisition dates (day/month/year) of Landsat TM images used in this study. 

12/10/84 
09/06/85 
15/10/85 
16/11/85 
14/07/86 
03/11/86 
17/07/87 
13/03/88 
03/07/88 

04/06/89 
22/07/89 
26/10/89 
25/07/90 
23/04/91 
14/09/91 
30/07/92 
01/07/93 
05/08/94 

05/06/95 
31/01/96 
07/06/96 
28/07/97 
01/11/97 
16/08/98 
29/04/99 
19/08/99 
23/11/99 
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Geographical Information Processing 

Advanced tools for data gathering and analysis have been developed using 
techniques that resemble biological systems. Man-made devices measure 
physical quantities in an attempt to mimic sensing strategies found in nature. In 
fact, they have gone beyond biological sensors to register signals that range 
from molecules to outer space with ever-increasing capabilities for spatial, 
spectral, temporal and geometric resolutions. The way living beings perceive the 
environment to extract features of interest motivated the development of 
multiscale analysis tools, where the sensed signals are first evaluated as a whole 
and then searched for important structures in a range of 'size' classes. Finally, 
artificial intelligence approaches were developed based on the learning strategy 
of biological systems, which experiment with the features extracted from the 
environment and 'learn' or recognise patterns of events and relationships. 

Some peculiarities of modelling the signals sensed by these remote 'eyes' 
in a land observation context will be described in section 3.1. The chapter 
continues with a detailed description of one particular approach to feature 
extraction, the multiresolution wavelet analysis, which is presented in section 3.2 
and extensively used throughout the thesis. In section 3.3, methods used in 
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further chapters for pattern recognition and knowledge generation from 
geographical data will be briefly introduced. 

3.1 Sensing the Earth's surface 

One of the most basic and important procedures in geographical 
information sciences is appropriate data acquisition. This task has been 
accomplished with field surveys and remote sensing techniques. Remotely 
sensed data are generated by measuring devices that record a physical quantity 
of interest, which has interacted with the Earth's surface. It could be compared 
to the retina of the human visual system, forming images to be further processed 
by the brain. The measured radiation gives an indirect link with environmental 
variables of interest (e.g., tree density) through the use of state variables (e.g., 
vegetation indices) that can be estimated directly with remote sensing (Curran et 
al. 1998). Hence, remote sensing techniques provide an acquisition oriented data 
model representing conceptual views or images of the world (Molenaar 1996), 
which are structured in some way and subject to a number of processing routines 
in an attempt to increase our understanding of the environment. 

Reflectance value 

Figure 3.1 (a) Example of the discretization of a continuous field (i.e., the Earth's 
surface) illustrating the raster structure used to represent reflectance 
measurements. Each square in (b) has a unique value of reflectance. Image of 
the water reservoirs located within the study site. 
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A remotely sensed image represents a description of a region on the 
Earth's surface at one specific point in time. The radiation measurements are 
normally organised as a regular tessellation of cells, called pixels, each 
representing a mixed value of reflectance or emittance of an area on the ground 
(30 x 30m in the case of the image in figure 3.1). The set of adjacent pixels is 
then a discretization of a continuous field or surface of attribute values (e.g., 
reflectance), where the values are assumed to vary somewhat smoothly over a 
certain region (Burrough and McDonnell 1998). This statement describes a 
conceptual model of the real world known as the continuous field and a related 
data structure known as raster (Peuquet 1990), which are widely used in GIS. 
Because the raster is a collection of elements in a regular grid, it can be ordered 
in rows and columns, indexed accordingly and linked to a coordinate system. In 
this way, multivalued raster structures (Molenaar 1998) can be built to provide 
more complete characterisations using more than one attribute for each image 
pixel (figure 3.2), for instance, reflectance features sampled in various portions 
of the electromagnetic spectrum (multispectral images) or in different points in 
time (multitemporal images). 

Figure 3.2 Example of a multivalued raster representing different reflectance 
characteristics of terrain objects along the electromagnetic spectrum. Landsat TM 
(a) band 3, (b) band 4, and (c) band 5. 

The size of the sides of an image pixel defines the resolution of the raster. 
In principle, the smaller the pixel, the better the objects can be resolved in detail. 
The final geometric resolution of a raster is then a compromise between the 
required spatial detail and the amount of data to be acquired and processed. For a 



20 CHAPTER THREE 

complete specification of a given scene, the pixel size should be less than half of 
the size of the smallest detail to be evaluated (i.e., Nyquist rate) (Molenaar 
1998). However, an excessive increase in variability within 'homogeneous' 
terrain objects (e.g., a forest patch) may happen if very small pixels are used 
(Townshend 1981). 

3.2 Perceiving the environment 

In the last decades, much attention has been paid to the multiresolution 
characteristic of processes and patterns in general. Good examples are remotely 
sensed images, which provide different information and noise at various spatial 
scales. Analysts have become aware that image processing is considerably 
improved if the scenes are viewed at multiple resolutions because the 
information of interest might be characteristic of just a few scale levels. In this 
context, the capacity of perceiving scales might be the key for a better 
understanding of our landscapes and an aid to the automatic analysis of remotely 
sensed images. It is a common belief that biological visual systems first evaluate 
the overall scene (i.e., coarse information manifested at large scales) of reflected 
energy and then analyse edges and objects of interest (i.e., detailed information 
appearing at a range of scales). 

A note on scale 

The meaning of scale varies so much between and within disciplines that 
care should be taken to avoid terminological confusion. The ratio between a 
segment on a map and the corresponding segment on the Earth's surface is 
probably the oldest and the most popular notion of scale. Scale is also used to 
indicate the spatial extent of a study area. Comparing the two connotations 
above, a 'large scale map' provides more detailed and, consequently, 
voluminous information, which is usually limited to small geographical areas. 
On the other hand, a 'large scale study' covers a large geographical area and 
usually omits detailed information. Besides the two described concepts of 
cartographic scale (map scale) and geographic scale (extent or domain), other 
important notions of scale include the resolution (grain or sampling interval) and 
the operational scale. The term resolution is used to refer, for instance, to the 
size of the smallest observable object or to the pixel size, which defines, together 
with the geographic scale, the limitations to represent a given scene. Finally, the 
operational scale refers to the interval at which a phenomenon operates (Lam 
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and Quattrochi 1992). In this thesis, the meaning of scale will always be clear 
from the context and used mostly in the sense of resolution or geographic scale, 
where small scales present detailed information and large scales represent coarse 
views of the scenes or signals. 

These important aspects of scale are useful and obvious when we make 
observations as a function of space (i.e., position), but the same principles apply 
to the temporal, spectral or other dimensions of the world and are fundamental to 
their proper characterisation. Even so, the vast majority of techniques for 
geographical information processing have been driven by the 'fixed scale 
paradigm'. Regarding remote sensing and GIS, resolution-invariant methods 
have proliferated mainly because of simpler data structures and analysis (Csillag 
1997). In this framework, the information contained in the multiple scales of the 
data cannot be analysed or used separately yielding results that also combine the 
influence of variables that might be characteristic of just a few scale levels. 
Environmental processes operate at multiple scales generating patterns that have 
a multiscale nature as well. Like the real world they portray, remotely sensed 
data 'show' different or complementary information at different scale levels. 
This fact has important implications for analyses, representations and 
interpretations of data and accuracy. 

The almost infinite resolutions of our world in all of its dimensions have 
raised an increasing interest in scale issues, which are now recognised as 
fundamental to any research area. Nevertheless, only a few (under-development) 
tools exist, which are appropriate to derive and study the information contained 
in multiple scales of the data. 

Introduction to a potential tool 

We now come back to the device measuring a physical quantity of 
interest. In application fields ranging from chemometrics to astronomy, the 
device is a remote sensor and the physical quantity is the reflected 
electromagnetic energy, which is recorded in digital or analogue format usually 
as a function of space J{x,y), e.g. a raster. Lets pick, as an example, one line of 
our digital image and plot it (figure 3.3) as a function of just one variable j{t) to 
simplify presentation. 

One common way to extract information from this function is to compare 
it with a set of test functions. Basically, a high coefficient results from this 
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comparison where the function under evaluation is more similar to the test 

functions. Well-known sets of test functions are the dilations by a factor co of a 

single periodic function e" in Fourier transformations (Fourier 1822). 

a 0.1 

Figure 3.3 Plot of reflectance values referent to the white line of the image on top. 

The Fourier transform accurately reflects in a^ which frequencies occur in 

the input signal: 

«„ = </(0, *'•'>• (3.1) 

Where, i is the imaginary unit (i2 = -1) and < , ) stands for the inner (or scalar) 

product in the space L2 of square integrable functions. If h(t) and g(i) are two 

functions in L2, their inner product in the interval [a,b] is a measure of similarity 

between the two functions, which is defined by: 

(Kt),g(t))=[h(t)-g(t)dt. (3.2) 

Where " " stands for complex conjugate, such that the conjugate of a + ib is 

a - ib, with i being the imaginary part of the complex number ib. For example, 

using the complex conjugate of e"**, the inner product of equation (3.1) becomes: 

{f(t),eia)t)=lJ(t)-e-i"t dt 
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Besides the frequency localisation property mentioned above, practical 

applications require good time (or space) localisation as well. This requirement 

was partially achieved by the windowed Fourier transform (Gabor 1946), which 

uses pieces of periodic functions instead of infinite waves as test functions. 

However, sudden breaks between pieces might generate artefacts, especially in 

2D signals. Moreover, a choice has to be made concerning the size of the 

analysing pieces, generating a compromise towards local or, otherwise, global 

characterisation. The new set of test functions %t(0 in the wavelet transform 

goes a step further and tells us when (or where) each frequency component 

occurs more efficiently than the windowed Fourier transform. One of its aims is 

to provide an easily interpretable visual representation of signals. While Fourier 

coefficients in (1) have an index co related to the frequency, the wavelet 

coefficients are characterised by a parameter j , referring to a scale of octaves 

(doubling the frequency when A/ =1), and a positional parameter k: 

ajk={f(t),\lfjk(t)). (3.3) 

This comparison might operate in continuous time (on functions) or in 
discrete time (on vectors). The raster data structure presented before is strictly 
discrete and consequently, the wavelet transforms used here will also be discrete. 
Fortunately, multiresolution analysis and wavelet transforms have a strong 
connection with the discrete filters of signal processing, which will serve as the 
basis for the following presentation. 

The remainder of this section provides a textual overview of wavelet 
transforms and multiresolution analysis with emphasis on aspects used in further 
chapters. For a complete mathematical characterisation of wavelets, which is not 
the purpose and not even achievable in one section, a whole thesis would be 
necessary. Extensive literature exists on the subject and a few recent references 
will be recommended here. Strang and Nguyen (1997) bring a comprehensive 
introduction to the theory of wavelets and filter banks, whereas Prasad and 
Iyengar (1997) provide a basic mathematical background and some practical 
applications to image processing. Daubechies (1992) and Mallat (1998) present 
in-depth developments, whereas Starck et al. (1998) present application oriented 
material with numerous examples in various fields, including geoinformation 
sciences. 
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Digital filters and filter banks 

In signal processing, a digital filter is a time-invariant operator, which acts on an 
input vector (i.e., digital signal), producing a transformed vector by means of 
mathematical convolution. Let the operator be h = [1/2,1/2] acting on an input 
vector x, with TV elements. Then, the «th element of the transformed output vector 
y is computed from two consecutive elements of x: 

7(»)=Z*('M»-0-
Where, h(l) is the /* element in the operator. 

(3.4) 

This is the so-called moving average, because the output averages the 
current element x(n) with the previous one as the operator moves forward over x. 
The moving average smoothes out the bumps in the signal. It is also called 
lowpass filter because it reduces the high frequency components (i.e., the 
bumps) keeping only the low frequency components of the signal. Now, let the 
operator be g = [1/2, -1/2] acting on the same input vector x to produce another 
output vector. This operator computes "moving differences". It picks out the 
bumps or high frequencies in the signal and thus, is called highpass filter. Figure 
3.4 illustrates the convolution of the example signal with a lowpass and a 
highpass filter. 

0.25 

0.15 

0.05 

-0.05 

0.25 

0.15 

0.05 

-0.05 

Figure 3.4 (a) Line-profile of figure 3.3 with (b) respective low frequency (top) and high 
frequency (bottom) components. 
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These kinds of filtering operations are well known in geoinformation 
sciences and for long have been used to smooth images and enhance objects' 
edges (Burrough and McDonnell 1998), but they can do a lot more. The lowpass 
and highpass filters alone lack the desirable property of invertibility because one 
cannot recover x from y. Together, they separate the input x into complementary 
frequency bands that can be combined to recover the original signal. This 
combination is termed filter bank or quadrature mirror filters (QMF) (Esteban 
and Galand 1977), which only recently have gained attention from the 
geoinformation community and turned out to be extremely useful. The 
advantages are that the subband signals can be efficiently filtered, compressed, 
enhanced, transmitted, and then reassembled if so desired. Figure 3.5 illustrates a 
complete two-channel filter bank with analysis (decomposition), sub-band 
manipulation (e.g., filtering), and synthesis (reconstruction). 

, Analysis . Manipulation. Synthesis 

Input 
ha 

ga gs 
Output 

Figure 3.5 Schematic representation of a filter bank. 

Perfect reconstruction (i.e., output = input) is achieved if no 
manipulation is carried out and if the synthesis bank (hs and gs) is the inverse of 
the analysis bank (ha and ga). In this sense, the filter banks might be orthogonal, 
biorthogonal (h orthogonal to g, h and g independently orthogonal), 
semiorthogonal (h and g independently orthogonal, but spaces associated with h 
and g are not individually orthogonal) or even nonorthogonal (Stark et al. 1998). 

The novelty about wavelets and the key concept of "scale" come from a 
procedure of recursive implementation of the filter bank: signals are represented 
with variable resolutions when we apply the same transform (lowpass and 
highpass filtering) on the outputs of the analysis bank. If this process iterates, we 
move to coarser scales as far as desired, depending on the length of the input 
signal and on the objectives of the analysis. Usually, we consider only the 
outputs of the lowpass filter for iteration (figure 3.6), but other possibilities 
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exist; the complete tree (lowpass and highpass are iterated) and the wavelet 
packets (lowpass and/or highpass are iterated). 

Input 
image 

<— 
-Lowpass-

filter 
Overall 

-Highpass-
filter 

Detail 

-Lowpass-
filter 

-Highpass-
filter 

Overall 

Detail 

Wavelet "logarithmic" tree 

- ^ 

^ 
Complete binary tree Wavelet Packet tree 

Figure 3.6 Schematic representation of three possible structures 
for recursive implementation of filter banks. 

Wavelets and multiresolution 

In continuous-time, there exist a scaling function (j)(f), also known as the 
father wavelet, corresponding to the lowpass filter and a wavelet function w(t), 
also known as the mother wavelet, corresponding to the highpass filter. They 
both involve the sets of filter coefficients h{l) and g(l) from discrete time. The 
scaling function is produced by the so-called dilation equation, whereas the 
wavelet function is produced by the wavelet equation: 

Dilation equation: (j)\t)=2yh{l)(l){2t — l). (3.5) 

Wavelet equation: w(t)=2^g(l)<p(2t — l). (3.6) 

Considering the filter coefficients of our example (1/2, 1/2 and 
1/2, -1/2), we have the dilation equation and the wavelet equation from h and g: 

0{t) = </>{2t)+</>{2t-l) and w(t) = <p(2t)-</){2t-l). 
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In this case the dilation equation produces the box function and the 

wavelet equation produces the Haar function (figure 3.7). 

Hi) 

1 t *-. 0 

H2t) H2t-l) 

1/2 

w(r) w It) 

t 

1/2 1 t 

w(2M) 

Figure 3.7 The box function (top) and the Haar wavelets (bottom). 

Wavelet stands for 'small wave' (a pulse). In the case of the Haar 
wavelet (figure 3.7) it is a 'square' wave. It is one of the simplest wavelets and a 
standard example, which is used to demonstrate the principles in most textbooks 
because the idea is fundamental to all others. Alfred Haar introduced it almost 
70 years before the concept of "ondelette" (wavelet) was born in France (Haar 
1910). Again, the novelty concerns the recursive implementation and not the 
functions; wavelets might be piecewise constant functions, continuous piecewise 
linear functions, splines etc. 

The simultaneous appearance of t and It in the dilation and wavelet 
equations characterises its multiscale nature. Meyer (1989) introduces 
multiresolution using a metaphor: "From a subtle and complicated image, one 
may extract...a schematic version...being a sketchy approximation resembling 
the pictures one can find in cartoons. " Then, a set of better and better sketchy 
approximations of the original image resembles a multiresolution representation. 
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The goal in multiresolution analysis is the decomposition of the whole space of 
functions into subspaces Vj. Functions are projected at each step of the analysis 
onto finer subspaces such that each Vj is contained in the previous subspace Vj.\. 

. . . c V4C ^ c ^ c ^ c F o C . 

The function fit) in the whole space has a projection in each subspace. 

These projections represent the information contained in fit) in an increasing 

fashion, such that f/j) (i.e., the projection of fit) in Vj) approaches fit) for 

decreasing j . Besides the hierarchic and complete scale of (sub-)spaces other 

requirements are crucial to the notion of multiresolution. The dilation 

requirement states that if a function (jit) is in Vj, then (fi(2f) is in Vj.\. The 

translation requirement states that if $7) is in V0, then so are all its translates 

<p(t - k). The final requirement states that the function <f(t) with translates (p{t - 1) 

must form a stable basis for V0, i.e. a Riesz basis: a complete set of linearly 

independent testing functions, say Q,{i), that represents in a unique way every 

function in VQ as X a,$(0, with £ |a,|2 being finite. 

Then, considering dilations by j and translations by k, the basis is 

generated by $*(/)= l/^fll/t - k) and we have: 

k 

representing the projection offit) in Vj. 

The associated error space when moving from Vj to VJ+i is the wavelet 

space Wj+i. The wavelet space, which is seemingly generated by dilations and 

translations of a single function, contains the "difference in information" Afj+I(t) 

=fj(t) -fj+i(t), which is the "detail" at level j+\. Each function in Vj is then the 

sum of two parts, fj+j(t) in Vj+i and AJ}+](t) in Wj+j. Considering the subspaces 

they lie in, we have: 

Vj+l+Wj+l=Vj. (3.8) 

Then, 

V2+W2=Vt andVt+W^Vo, 

hence, 

v2+w2+wx=v«. 
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Seemingly, if wjk(t) = 2//2w(2!t - k) is a stable basis for W} and calling the set of 

associated coefficients by djk we have the complete information of f[t): 

/(0=Ea*M0+E5>W0- (3-9) 
k ;=1 k 

Then, the coefficients ajk, representing the projection fj{t) on Vj are obtained with 

the inner product (f(t\$-k{t)), whereas the coefficients djk, representing the 

projections Af{t) on W) are obtained with the inner product (f(t\ w.k(t)). 

Concluding, wavelets come from the iteration of a filter bank 
(Daubechies 1989) and because of the repeated rescaling, they decompose a 
signal into details at different resolutions. If the signals under consideration are 
remotely sensed images, the scale parameter corresponds to the size of objects 
on the Earth surface, which are effectively modelled with this new 
multiresolution representation revealing patterns that are not so clear in "subtle 
and complicated" remotely sensed images. 

Algorithms for implementation 

Part of the success of the wavelet transform is due to the existence of 
fast algorithms. They rarely compute inner products with wavelet templates 
directly. Rather, implementation is normally achieved via simple discrete 
convolutions, where the filters and filter banks play a major role. Two basic and 
very popular algorithms will be presented now and applied in further chapters. 
Variations of these two as well as other algorithms exist. Some of them will be 
only cited here and the interested reader should refer to the following references. 
The previously mentioned "Wavelet Packet" is described in Coifman et al. 
(1992). Stark et al. (1999) proposed a fusion of the wavelet transform (WT) and 
the pyramidal median transform (PMT), called "PMWT\ which combines the 
advantages of both methods in one algorithm. The "Laplacian Pyramid" by Burt 
and Adelson (1983) was one of the first schemes for multiresolution 
decomposition and afterwards related to the wavelet transform. Bijaoui et al. 
(1992) proposed a scheme similar to the Laplacian pyramid called "Half 
Pyramidal Wavelet Transform" in order to reduce some drawbacks of the 
former. Finally, the so-called "Lifting Scheme" (Sweldens 1996) is probably the 
most famous and innovative algorithm proposed recently for implementation of 
the wavelet transform. 
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Because of simplified notation, the following algorithms will be 
described considering that our input signal is a function of one variable f(t). 
Extensions to XT), with T = (tu.. .tn), are straightforward. 

The "algorithme a trous" (Holschneider et al. 1989): 

LetXO = a0, and / be symmetric around zero, i.e. / = (.. . , -1, 0, 1,...). 

Then, the projections onto Vj are: 

aj,k =Yuk^ "j-l t+2'-'/ ' f01" aXXj > 0 ' L 

I 

Whereas, the projections onto Wj are: 
dj,k = aj-\,k ~aj,k> f o r a l l7 > °- k-

The reconstruction formula is: 
j 

ao,k=aj,k+^dj,k^orallk. 
/=i 

Schematically: 

fl()= | «0,-2 a0,-l [ Qp,0 1 fl0,l | <2Q,2 

(3.10) 

(3.11) 

(3.12) 

\ I / 
A(-l) h(0) h(l) 

\ I / 
I Qi,-21 «i,-i | fli.o 1 «i,i | ai,2 | subtract | dh_2 \ dlrl \ dlfi | rfu | c?li2 

\ I / 
h(-\) h(Q) h(l) 

I «2,-21 «2,-i | «2,o | «2,i | <22,2 I subtract |</:..2 \d2,-i \d2,o \ d2,\ \d22 

Figure 3.8 Schematic representation of the "a trous" algorithm with decomposition ( > and ) 
and reconstruction ( H H R ^ ) paths. 

As an example, let the operator be h{-\) = \IA, h(0) = 1/2, h{\) = 1/4, then the 0th 

element of ax is: 

1 1 1 

Then, for the next resolution level, the 0th element of a2 is: 

1 1 1 
a2,0 ~ . a\-2 •*" - aifi "*" . fll,2 • 
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The 0th element of d\ and d2 are: 

With reconstruction: 

"1,0 ao,o a\,o a n " ^2,0 — fli,o a2,o-

^0,0 ~a2,o ~*~"2,0 "*"^i,o • 

.'••••-•• M S B ^ ^ ' * ^ 

Figure 3.9 Example of a 2D decomposition using the "£ frous" algorithm. 

fl/4~) 
1/2 

M/V 
= 

fl/16 1/8 1/16A 
1/8 1/4 1/8 
1̂/16 1/8 l/16y 

Remarks: 

1) The operator forgets all signal samples but every k + 27"1/. This is achieved 

by inserting zeros between samples of the operator when moving fromy to 

j+l. That is the reason why the algorithm bears its name, "a trous" means 

'with holes'. 

2) 2D signals (figure 3.9) require 2D operators: (1/4 1/2 1/4) < 

3) Values at the boundaries of the signal are normally obtained by reflection, 

periodicity or continuity. 

4) Operators must have an odd number of elements. 

Stephane Mallat's algorithm (Mallat 1989): 

The projections onto Vj are given by: 

aj k=Y,Kl- 2k) aj_u,, for ally >0,k. (3.13) 
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Whereas, the projections onto Wj are given by: 

dhk =yLs(l-2k)dHJ , for ally > 0, k. (3.14) 

The reconstruction formula is: 

aM=^[h(k-2l)aJ+u+g(k-2l)dj+J,forallj,k. (3.15) 

Schematically: 
j[t) = I «0,0 I QQ,1 I 0Q,2 | «0,3 I 0Q.4 I 0Q.5 | «0,6 | 0Q.7 | 

I 01,0 I 01,1 I «1,2 | 01,3 I I 0*1.0 I 0*1.1 I 0*1,2 | ^1,3 I 
•• -V 

1 02.0 1 02,1 1 1 «2.0 1 

A' V 

1 fl3.0 I 1 03.0 1 

03.0 1 0 | I 0*3.0 1 0 

4 i 
1 t 

1 «3.o 1 03.1 1 dr 1 0*3.0 1 0*3.1 

1 «2.0 I «2.1 1 

1 "2,0 0 02.1 1 0 1 1 0*2.0 

1 

h 

t 
1 «2.0 1 «2.1 1 02,2 «2.3 1 + 1 0*2,0 

Y 

^ 

1 ' 

1 0 

0*2,1 

01,0 01,1 1 01.2 01,3 

V 

Ml,2 
1 
g 

t 
1 0*2,2 1 

1 0 1 

^2,3 1 

1 

Remark: Keep only the even 
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Figure 3.10 Schematic representation of Mallat's algorithm with decomposition and reconstruction stages. 
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As an example, let the operators be h = (1/2, 1/2) and g = (1/2, -1/2), then the 0th 

element of ax and d\ are: 

1
 J . 1 A A

 X 1 

«i,o - 2ao,o+-«o,i a nd «,>0 =-a0>0—-fl0 , i-

Then, after undersampling ax and c?i, the 0th element of a2 and d2 are: 

1 1 1 
2,0 - - f l i , o + T a u a n d ^2,0 = Tai,o -

1 
* U -

With reconstruction (after upsampling): 

1 1 
a0,0 ~~ ~ a i , 0 + rs ^ 1 ,0 • 

Figure 3.11 Example of a 2D decomposition using Mallat's directional analysis. 



T > CHAPTER. THREE 

Remarks: 

1) Mallat's algorithm requires the length of the input signal to be power of 2. 

2) Extension to 2D signals is implemented by applying the same ID scheme 
first to the rows and then to the columns of the 2D signal. In this way, 
Mallat's algorithm might generate three sets of detail coefficients at each 
scale j , depicting high frequencies according to their orientation in the raster, 
i.e. vertical, diagonal and horizontal (figure 3.11). 

3) Values at the boundaries are also obtained by reflection, periodicity or 

continuity. 

Other mutiresolution decompositions 

Stark et al. (1998) developed a robust multiresolution decomposition 
based on the median transform. The median transform is nonlinear, and offers 
advantages for dealing with outliers in the data. Basically, the result from a 
convolution with a median filter is subtracted from the original signal and 
followed by iteration, which leads to multiresolution representations. Similarly, 
multiresolution decomposition based on mathematical morphology (Serra 1982) 
can be realised by taking the difference between the original image and its 
opening. In both alternative transforms, undersampling can be introduced (Stark 
et al. 1998), which leads to pyramidal structures like in Mallat's algorithm. 

3.3 Knowledge generation 

Machine learning techniques have been developed for some decades 
within the larger field of Artificial Intelligence. The objective of Artificial 
Intelligence is to understand the way human beings recognise patterns and to 
develop intelligent systems. Nowadays, machine learning techniques have been 
increasingly applied to develop computational learning (the 6th generation 
computing), solve decision-making problems (e.g., classifications), and 
discovery of knowledge (data mining) (Eijkel 1999). Neural nets and rule 
induction, two popular paradigms of the machine learning field, will be 
described in this section and used in further chapters. They have been applied 
recently to classification problems in geoinformation sciences showing 
promising results. The basic idea in classification of multidimensional data is to 
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identify clusters in the multidimensional feature space and isolate them by using 
some decision boundaries. Machine learning techniques gained considerable 
attention for classification tasks because they provide partitions of feature spaces 
in an essentially non-linear and non-parametric way. 

Artificial Neural networks 

Basically, artificial neural networks identify data clusters through 
experiencing and gradual learning from the experience. This is very much the 
strategy of the brain's nervous systems, strengthening the knowledge after each 
experience and storing information as patterns (Silipo 1999). Once the patterns 
in the data are learned, the classifier uses them to generalise across related, but 
not experienced, instances of the data. For classifying a new instance (e.g., an 
unknown pixel), the model uses knowledge learned from previous experiences 
(e.g., known pixels). The most used neural network model in geoinformation 
sciences will be described in this section. The model is called multilayer 
perceptron (MLP) (figure 3.12). It is characterised by an input layer that receives 
and presents the data to the network, an output layer that stores the final results 
and one or more intermediate layers, which process the data in a number of 
inter-connected processing elements called nodes. 

Output 
layer 

Intermediate 
layers 

Input 
layer 

Figure 3.12 The multilayer perceptron neural network model. 
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The network nodey, receives the output o, of each node / in the preceding 

layer, weights them as ft}, and combines all calculated weights with some 

mathematical function, usually a simple summation, generating a measure of 

node activity: 

' ,=Z<V>, (3-16) 

The output Oj of node j is then computed by the so-called transfer function 
/ , usually a variant of the sigmoid function, before being passed to the next layer: 

Oj=f(Ij) (3-17) 

This process continues until the data reaches the output layer. The 
processing of weighted connections provide differentiated strength to favour a 
certain combination of paths for the present input instance, and hence leading it 
to a given output node. The transfer function introduces non-linearity and is used 
to prevent problems caused by large summation results. 

In supervised classification, the output node that an instance of the data 
must reach is known, enabling interactive refinement of the model to correctly 
classify all instances in the training set. The model refinement has been 
successfully achieved by propagating the classification error back to the network 
and updating the set of connection weights W= {ft},} with the so-called delta 
learning rule, which is used to minimise the global error of the network. This 
updating procedure is based on reducing the error between actual (oj) and 
desired (dj) outputs. 

The model refinement can be summarised as follows (Bishop 1995): 

1. Calculate an error measure E in the output layer, e.g., E(W) = 1 /2^ (o, - dj)2. 

2. Compute the delta learning rules of the output layer as Sj -f(Ij) (oj - dj). 

3. Compute the delta learning rules of the preceding layer as § =f'(I,)/_d0^i Sj. 

4. Use AcOjt = - T]Sj Oj for all ft}, of the network. ' 

Where J] is a small positive number called learning rate parameter. 

This is a refinement procedure (back-propagation learning paradigm) 
widely used for classification tasks, during which the neural network is said to 
be 'learning' the patterns in the input data. The learning process stops when 
some threshold error measure or a maximum number of iterations is reached, 
after which the neural network can be recalled to classify unknown similar data. 
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Decision trees 

Inductive learning is another approach for artificial intelligence. The 
rationale behind it is very simple and intuitive: starting from a set of examples 
(e.g., training pixels) described by a set of features (e.g., a multivalued raster), a 
binary decision rule is defined to split the data into subsets more homogeneous 
than the original (figure 3.13). Each subset is then subject to a new split 
generating even more homogeneous (sub-)subsets. Theoretically, the procedure 
iterates until 'pure' subsets are obtained. Decision rules at each split are 
normally obtained by thresholding the best discriminant attribute (univariate 
tree) or by defining the best discriminant function based on linear combinations 
of attributes (multivariate tree) (Brodley and Utgoff 1995). The choice of 
attributes to be used in each split is guided by a quality measure applied to the 
generated subset. 

iS 

Feature 1 > x ? 

yes >io 

Class 1 

Nk 

Feature 2 < y ? 

+ + \ 

- Class 1 
+ Class 2 

-
yes 

\ * 
Class 2 Class 1 

Feature 1 

Figure 3.13 Illustration of an univariate tree (left) and multivariate decision boundary (right). 

The goal is to induce rules that correctly classify all objects in the training 
sample. However, uncertainty in the data can yield very large trees with few 
pixels in some terminal nodes. Many of the branches leading to these relatively 
empty terminal nodes reflect chance rather than underlying patterns. To mitigate 
this specificity, large trees are then pruned by removing the least statistically 
reliable branches. This is done at the expense of increasing impurity in the 
terminal nodes when classifying the training set, but decreasing it on 
independent test data (Mingers 1989). In the present study, induction of 
univariate and multivariate decision trees was performed with Classification And 
Regression Trees (CART) (Breiman et al. 1984). The 'goodness of split' of 
different attributes was compared by the GINI index1 of diversity, whereas 
pruning was based on the error-complexity method. 

1 named after the Italian economist Corrado Gini (1884-1965) (Murthy 1998). 
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For attribute selection, the GINI index is calculated for each discriminant 
attribute to measure how well they separate classes: 

i-E^taiO (3.18) 

where, at node t, a randomly selected sample is assigned to class C, with 

probability P(Ct \t): 

(3.19) 

where, P(Q) is the Bayes' prior probability for class C„ A7,- is the number of 
samples from class C, in the training set, and N,{i) is the number of samples from 
class C, in node t. 

Tree pruning was carried out with the error-complexity method, which is 
implemented in two stages as follows: 

1) All possible sub-trees are considered and the one giving the smallest 
reduction in error is selected for pruning. By repeating this process, increasingly 
pruned trees are generated. The measure of reduction in error when evaluating 
sub-trees in this first stage is give by: 

a_R(t)-R(Tt) 

N-\ 
(3.20) 

where, R(t) is the error cost of node t after pruned, defined by the number of 
wrongly classified samples in node t multiplied by the number of samples that 
reached node t, R(Tt) is the summation of error costs from the N, terminal nodes 
if node t was not pruned. 

2) The best tree is then selected based on classification errors they make with 
test data. The standard error (SE) of the misclassification rate used in this second 
stage is: 

SE-
Rx(\000-R) 

N 
(3.21) 

where, R is the misclassification rate of the pruned tree, and N is the number of 
samples in the test data. 

Like trained neural networks, classification of new instances with the final 
decision tree is straightforward. 
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Removal ofCbuds from Remotely Sensed Time Series 

The occurrence of clouds prevents the solar energy from "colouring" the 
environment. This fact poses at least three limitations to the extraction of land 
cover information from remotely sensed images: a cloud hides landscape 
features in the scene, shadows other areas on the ground, and if the aircraft flies 
below the clouds, the radiometric resolution is dramatically reduced. If a 
temporal snap shot meets the objectives for a given application, careful selection 
of a cloud free image might provide enough information, but if the analysis of 
dynamic aspects is the aim, one needs repeated observations of the same area, 
part of which will be eventually covered by clouds. 

The time series provided by Earth observation systems are important 
sources of information. In an analogy to hyperspectral imagery, we can already 
use hypertemporal data sets to analyse and model the environment. The Landsat 
system, for instance, has been acquiring images almost weekly since 1971 and 
producing valuable inputs for historical characterisations, predictive modelling, 

Carvalho L.M.T. de, Clevers J.G.P.W, Skidmore A.K. & Jong S.M. de, 2001. Robust nonlinear 
wavelet regression for denoising remotely sensed time series. Photogrammetric Engineering & 
Remote Sensing (submitted). 
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decision-making etc. Other systems, like the NOAA AVHRR, acquire images on 
a daily basis revealing detailed temporal information about the Earth's surface. 
Nevertheless, it is still difficult to perform spatio-temporal analysis of long time 
series acquired by such systems, in special Landsat, because of cloud 
contamination and other distortions. Image analysis techniques to support 
processing and information extraction from existing temporal data must be 
developed. Long term studies on land surface, water, carbon and energy fluxes 
require corrected time series to provide more realistic temporal parameters (Los 
et al. 2000). In this context, our task is to reconstruct as close as possible an 
estimate of the observations, which have been corrupted (e.g., obscured by 
clouds). Then, past records might be effectively used to provide as important 
information as upcoming data of new Earth observation systems. 

The general problem of detecting and estimating corrupted values has 
been tackled before with wavelet transforms (Starck et al. 1998, Donoho 1993). 
The technique is particularly appealing to study signals that are "smooth" in 
some sense and have singularities of short duration. Despite sudden changes in 
land cover, the smoothness requirement is normally met by remotely sensed time 
series, where clouds, shadows, and other anomalies appear as narrow peaks in 
the otherwise smooth temporal profile. 

This chapter can be viewed as a preprocessing step for further analyses 
conducted in the thesis. It describes the application of the product of wavelet 
scales (Sandler & Swami 1999) to generate binary masks of corrupted 
observations. The robust smoother-cleaner wavelets method (Bruce et al. 1994) 
is then applied to each temporal profile where anomalous values were detected. 
The interpolation step is based on nonparametric function estimation applying 
wavelet shrinkage (Donoho & Johnstone 1992) to the "clean" time series. The 
results were compared to other methods applied to the same synthetic data set. 

4.1 Dealing with cioud contamination in remote sensing 

Cloud contamination has been a major limitation of land observation with 
systems that operate in the optical part of the electromagnetic spectrum. 
Especially over tropical regions, where the weather can be overcast for long 
periods, cloud cover hampers the potential use of time series derived from 
optical remote sensing. Yet, clouds might also adversely affect passive 
microwave remote sensing by modifying brightness temperatures of the Earth's 
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surface (Long et al. 1999). In any case, cloud contaminated pixels are marked 
and treated as missing data that must be estimated using additional information, 
e.g., spectral (Guo and Moore 1993, Derrien et al. 1993), spatial and/or temporal 
(Addink and Stein 1999, Roerink et al. 2000). 

An operational procedure for automatic cloud detection in NOAA 
AVHRR imagery was developed by Saunders and Kriebel (1988) and Derrien et 
al. (1993). Their pioneering algorithm uses different threshold tests applied to 
various combinations of channels. Pixels are identified as cloudy if one test is 
successful. The development was based on scenes from Western Europe and the 
authors highlight the necessity of tuning the algorithm if other regions are to be 
processed. Wang et al. (1999) proposed automatic cloud detection in a set of two 
temporal Landsat TM images by simply thresholding the differences. For 
shadow detection they thresholded high frequency components as extracted by a 
2D discrete wavelet transform of both images. Roerink et al. (2000) developed 
the Harmonic ANalysis of Time Series (HANTS) and reported considerable 
improvements over the standard Fourier transform. The algorithm is based on an 
iterative procedure of least squares fitting based on harmonic components. 
Recursively, the outliers are removed and the curve fitting recomputed until it 
reaches a maximum acceptable error or a minimum number of remaining points. 
In this way, clouds and shadows are automatically detected as outliers in the 
temporal profile. 

Once marked, be it manually or automatically, the contaminated pixels are 
replaced to yield cloud free products. Long et al. (1999) compared several 
methods for cloud replacement in images from the Special Sensor 
Microwave/Imager (SSM/I) radiometer. They found that the combination of 
maximum value and mean methods produces better results than any of the 
approaches individually. Addink and Stein (1999) proposed new approaches to 
replace clouded pixels based on geostatistics. They concluded that instead of 
conventional methods, like the widely used maximum value composite (Moody 
and Strahler 1994), unstratified co-kriging using another temporal observation as 
co-variable should be used to replace clouds from NOAA AVHRR images. 
Nevertheless, they also pointed out that the quality of the images used as co-
variables must be very good; otherwise, unstratified kriging is the better option. 
In the algorithm of Wang et al. (1999) mentioned before, they recover the 
missing data by fusing the two images with the inverse wavelet transform. 
Binary decision maps of clouds and shadows are used to mask contaminated 
pixels during the inverse transform. Thus, masked pixels are reconstructed using 
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complementary information, which must be available in at least one of the 
images. The HANTS algorithm is the only procedure listed above which is able 
to deal with long time series in an automatic fashion. It replaces all instances of 
temporal profiles by the respective values of the fitted curves, enabling the 
estimation of cloud free images at any moment in the time series. Similarly, Los 
et al. (2000) developed a corrected data set (FASIR NDVI), which also includes 
steps of Fourier adjustments, interpolation, and reconstruction of cloud free 
NDVI (Normalised Difference Vegetation Index) time series derived from 
NOAA imagery. 

4.2 Automatic detection of cloud contaminated pixels 

Detection of outliers in diverse types of signals has been carried out 
effectively in wavelet transformed space (Starck et al. 1998). In remote sensing, 
outliers caused by clouds and shadows appear as peaks of narrow bandwidth in 
the temporal spectrum. They appear similarly in the spatial domain, but with 
variable bandwidth. If we consider the presence of clouds and shadows as signal 
response against a "noisy" background, a framework for their detection can be 
set forth based on noise modelling in transformed space. 

Recall from chapter 3 that wavelet analysis transforms a given signal (e.g., 

figure 4.1 a) to a set of resolution related views, which are by definition of zero 

mean with variance a2 (figure 4.1b, and c). The discrete wavelet transform was 

implemented with the 'a trous' algorithm (Holschneider et al. 1989) with a linear 

spline as the wavelet prototype. It produces a vector of wavelet coefficients d at 

each scale j , withy" = 0,..., J. The original function/was then expressed as the 

sum of all wavelet scales and the smoothed version a/. 

f(t) = aJ(t) + ftdj(t). (4.1) 
7=1 

In order to further enhance singularities (i.e., edges and peaks) in the 
signal, interscale correlation was explored by forming multiscale point-wise 
products (figure 4.2). The multiscale product (Sadler and Swami, 1999) of an 
arbitrary set K of wavelet scales is given by: 

p(t) = Y[dj(t). (4.2) 
jeK 
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Figure 4.1 (a) Simulated temporal profile with cloud contamination, (b) Wavelet 
coefficients at first scale level, (c) Wavelet coefficients at second scale level. 

Moreover, by using an even number of scales in the product, positive and 

negative singularities in wavelet space are represented only as positive 

singularities in the multiscale product space facilitating the detection procedure 

(Figure 4.2). The detection hypothesis is that the signal is locally constant 

around p(t). Then, a simple approach to model noise that follows an unknown 

distribution is to consider it locally Gaussian. If oj(t) is the local standard 

deviation within the support of the wavelet template at scale j , we have a 

significant singularity when p(t) > Ca,{t). In this study, we used wavelet scales 

d\ and di in the multiscale product and the constant C was empirically set to 2. 

Increasing the detection level might avoid false detection, but also excludes 

weaker singularities. 
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Figure 4.2 Product of wavelet coefficients (bars) and the detection limit (dashed line). 

4.3 Robust nonlinear wavelet regression 

Recovering information obscured by clouds and shadows consists of 
estimating the missing data assuming that land cover varies smoothly over space 
and time. This is a fundamental requirement to the proper utilisation of 
nonparametric regression techniques. Then, wavelet methods might be applied to 
the problem of modelling a given digital signal y by estimating the unknown 
mean response function/: 

y{t)=f{t)+s, 
where the vector e represents noise. 

(4.3) 

The wavelet approach to regression estimators brings a useful new set of 

basis for orthogonal series estimation, which allows characterisations of 

functions in terms of both time and frequency. The estimation is based on the 

representation of the mean response function as a linear combination of basis 

functions i//f. 

f{t) = ^ai¥i{t), 
i 

where the coefficients a, are given by: 

«,=</('M0>-

(4.4) 

(4.5) 

The vector a of associated coefficients is called the transform of/ Thus, 
the problem of estimating / using the known vector y consists of three main 
steps: 

(1) calculate the transform of y: 
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(2) select a subset S of important coefficients from a in an attempt to remove the 

noise component £from the regression model (equation 4.1), and 

(3) invert the transform using the selected coefficients to obtain the regression 
curve: 

f{t) = y{t)-£ = Y,ai¥i{t). (4.6) 
ieS 

The subset S might be obtained with a suitable threshold function applied 
to the wavelet coefficients. In this study the so-called soft threshold (Donoho 
and Johnstone 1994) was used: 

f o ifla.kr 
^ ' ) = isignM,,,|-r) i f W > r

 (47) 

Note that the threshold value Tmay vary from level to level resulting in a locally 
adaptive function evaluation. 

The robust smoother-cleaner wavelets (Bruce et al. 1994) were used in 
the present study to reduce the sensitivity of regression smoothers to outliers. Let 
the input signal b e /= a0, which is first convolved with a median filter. The array 
of robust residuals r in every scale j is given by: 

r]=8T{aJ-a]), (4.8) 

where, a*j is the median filtered version of a,- and &r is a suitable threshold 
function, like in equation (4.7). 

The cleaned version c, is obtained by subtracting the residual r7 from the 
original vector a/. 

cj=aj-rJ. (4.9) 

In practice, it is enough to repeat this procedure twice to remove the 
outliers from the data, which is then ready to be modelled with nonlinear 
estimators such as wavelet shrinkage (Donoho and Johnstone 1992). 

Thus, wavelet regression (Bruce and Gao 1994) consists of carrying out 
some modification to the data in the wavelet space and recombining, in a linear 
or nonlinear way, the modified wavelet functions to represent the data. The 'a 
trous' algorithm with spline wavelets was also used for nonlinear regression and 
the data were regarded as regularly sampled in the time domain. 
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4.4 Test Data and Validation 

The reference cloud-free time series consisted of twenty-six co-registered 
subsets (256 x 256 pixels) of a Landsat TM scene (path 218, row 75). The 
images were acquired in varying intervals of time, from 1984 till 1999. In this 
study, we used TM band 5 images as input to the detection and replacement 
procedures. In a first simulation, real clouds and respective shadows were 
extracted from an image acquired in April 1989 that was not included in the time 
series, and placed over the same area of a cloud-free image acquired in June 
1989, which was included in the time series. Thus, a simulated data set with 
cloud contamination was generated (figure 4.3) in order to test the procedures 
for cloud detection and replacement. A second simulated time series was 
generated for a single forest pixel to illustrate the potential of wavelet regression. 
In this case, the following images were assumed to be representative of a one 
year cycle: Jan 1996, Mar 1988, Apr 1991, Jun 1989, Jul 1989, Aug 1991, Sep 
1991, Oct 1985, and Nov 1985. This cycle was repeated four times and non-
Gausian noise was added, resulting in a 5-year time series (figure 4.1a). 

Figure 4.3 Band 5 of Landsat TM scene acquired in June 1989. Original (left) and 
simulated (right) images. White arrows indicate the locations of the added clouds. 

The first simulated time series had the missing values estimated using five 
methods: 1) mean value, 2) minimum value, 3) maximum value, 4) linear 
regression, and 5) the wavelet-based procedure for nonparametric regression 
described above. Root mean square errors (RMSE) were calculated for the 
cloud-contaminated areas to evaluate the performance of each method in terms 
of accuracy of estimation: 

RMSE = 
|i(ft-ft)5 

AT 
(4.10) 
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where, gt is the i* estimated pixel, g, is the ith original pixel, and N is the number 
of contaminated pixels. In addition, as methods 4 and 5 might replace all values 
in the time series when the spatial localisation of corrupted observations are not 
known in advance, RMSE were also calculated for the whole estimated images 
of 1989 produced by these methods. 

4.5 Results and Discussion 

In total, 2508 out of 3715 contaminated pixels were detected by applying 
the automatic detection procedure described in section 4.2. The pixels that were 
not detected represented fuzzy boundaries of clouds and shadows, as well as 
shadowed forests that already had low reflectance, or even clouded areas of bare 
soil that had high reflectance values in the reference image. These contaminated 
pixels could not be detected because the reflectance values were only slightly 
affected by cloud and shadow cover. For some applications, such small variation 
in reflectance is not significant and may be disregarded. For others, specific 
solutions must be devised to detect cloud and shadow edges. 

Because of their high reflectance values, clouds have been normally 
detected by simply thresholding the original image or a difference image (Wang 
et ah, 1999). In the first case, other objects of high reflectance could be 
misdetected as clouds. In the second case, misdetection might occur in areas of 
significant land cover change. Moreover, the contaminated instance to be 
thresholded must be known in advance and the definition of proper thresholds 
for actual reflectance values could be difficult. Automatic cloud detection for 
NOAA imagery is described in Derrien et al. (1993). Their procedure is based 
on a series of tests and thresholds, which must be updated for different areas or 
illumination conditions. The advantage of the method described in this chapter is 
that detection of outliers in multiscale product space is completely data driven 
and independent of the shape and magnitude of the original signal, avoiding 
false detection and aiding automation. In addition, other anomalies, like 
geometric misregistration, were also detected. Note in figure 4.4, the clouds and 
shadows depicted with the multiscale product in 1989 and the misregistration 
effects depicted in 1992. Burned areas (white patch in the upper left corner of 
the image from 1992 in figure 4.4) due to agricultural practices are susceptible to 
be misdetected as shadows and consequently removed from the time series. 
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Figure 4.4 Binary mask of corrupted values produced by thresholding the 
multiscale product. Time slices are 1989 (left) and 1992 (right). 

The calculated RMSE for the first simulation shows clearly that 
replacement methods widely used for declouding NOAA time series were very 
inaccurate in comparison to regression methods (table 4.1). Specially, the 
maximum value composite gave the worst results for both clouded and 
shadowed areas. The wavelet-based approach was more accurate for clouded 
areas while linear regression performed better in shadowed areas. Even then, the 
time series used in the first simulation represented wet and dry seasons 
sequentially, leading to an up and down pattern which is easy to be modelled 
with linear regression. More complete time series, like our second simulation, 
would certainly demand more elaborated regression techniques if one wants to 
keep track of real trends in the time series. 

Table 4.1 Root mean square errors (x 1000) for the five interpolation methods. 

Interpolation Method 
Minimum value 
Mean value 
Maximum value 
Linear regression 
Wavelet regression 

Figure 4.5 shows the regression curve obtained with the robust nonlinear 
wavelet analysis applied to the simulated forest pixel. Note that the influence of 
outliers was completely removed and the nonlinear estimation could be properly 
applied. The technique is also useful to reduce geometric misregistration, 
radiometric noise, and other anomalies from long time series of remotely sensed 
data. Figure 4.6 shows a small subset contaminated with the larger shadow in the 

Clouded Areas 
1.8364 
1.0286 
3.2227 
0.6699 
0.5757 

Shadowed areas 
1.3319 
0.6250 
2.0406 
0.4197 
0.4339 
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4.6 Conclusions 

A framework for (non-Gaussian) noise suppression (i.e., cloud removal) 
from remotely sensed time series was presented and demonstrated. The 
procedure is a step towards automation because the contaminated instances of 
the time series do not need to be known in advance. Multiscale products of 
wavelet scales might be effectively used to automatically mask corrupted values 
for further replacement with any desired method. The method proposed here not 
only identified clouded and shadowed pixels but also other anomalies like 
misregistration effects and changes of short duration (e.g., burn scars). The 
robust nonlinear wavelet regression can do both, detection and estimation, at the 
same time and produce noise reduced images at any point in the time series. 
Thus, the wavelet approach is promising as a preprocessing step for effective 
time series analysis. It can be adapted to reduce radiometric discrepancies 
among images in the time series, acting as a temporal smoothing operator. 

Although not compared directly with Fourier-based methods (e.g., 
HANTS, FASIR), some advantages of the wavelet-based method may be 
highlighted: (1) lower computational complexity, (2) simultaneous detection of 
positive and negative anomalies in the time series, and (3) patches of outliers 
(e.g., cloud contamination observed sequentially for a given location) are 
efficiently removed from the time series with the robust smoother-cleaner 
wavelets. In the approach proposed by Addink and Stein (1999), the image to be 
declouded as well as the image used as the second variable in co-kriging must 
have low cloud cover because the presence of clouded pixels among the 
interpolators decreases the reliability of the method. 

Considering the comparisons presented in this chapter, wavelet regression 
predicted the reference values for clouded areas better than all others did, and 
performed almost equivalent to linear prediction in shadowed areas. Even so, 
more complete time series, like in our second simulation, would certainly be 
better modelled with nonparametric regression methods. 

A similar approach might be used in the spatial domain and combined 
with the temporal analysis presented here. Further research on this direction and 
on more complete data sets (daily or monthly series) will bring insights to other 
possibilities and improvements of the procedure. 
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Classification of Forest Remnants 

It was acknowledged at the environmental conferences in Rio de Janeiro 
and Kyoto that satellite imagery offers the most promising and probably the only 
feasible way for detailed mapping and monitoring of forests over large 
geographical areas. Indeed, the available image processing tools have the 
potential to provide repeatable procedures for analysing standard data sets in a 
comparable framework. Nevertheless, operational applications of remote sensing 
for forest mapping at regional and local scales have many theoretical and 
practical challenges that must be met in order to realise its potential. For 
example, there is a need for effective information extraction and knowledge 
generation from high-resolution (spatial, temporal, and spectral) data sets. The 
preprocessing and analysis tools should be able to deal with a variety of data 
types, sources and distortions to improve our ability to distinguish between 
different landscape features. The need for improved mapping methods is evident 
from our still poor knowledge on basic information about forest extent and 
condition. 

Carvalho L.M.T. de, Clevers J.G.P.W, Skidmore A.K. & Jong S.M. de, 2001. Features for 
mapping semideciduous Atlantic forest: overcoming spectral overlap with remotely sensed time 
series. Remote Sensing of Environment, (submitted). 
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Coarse spatial resolution sensors such as the NOAA AVHRR have been 
widely used for forest and land cover mapping (Miicher et al. 2000, Lucas et al. 
2000a). However, the results are also spatially coarse and, thus, inaccurate for 
analysing fragmented landscapes (Foody et al. 1997, Lucas et al. 2000b). 
Recently, attempts to overcome the spatial constrains imposed by sensors such 
as AVHRR have explored the use of mixture models, fuzzy clustering and 
artificial neural networks (Atkinson et al. 1997, Tatem 2001). Higher spatial 
resolution images (e.g., SPOT and TM imagery) have proven to be suitable for 
mapping forests with the accuracy required by regional-scale models (Frohn et 
al. 1996). A significant limitation for their fully operational use has been 
spectral overlap problems, large data volumes, and consequently the 
computational costs needed for large areas mapping (Kontoes and Rokos 1996, 
Townshend et al. 1997, Suzen and Toprak 1998). Even then, higher spatial 
resolution images still provide the only way of dealing with situations where 
sufficient level of detail must be observed. 

The issues discussed above are evident in the case study presented in this 
chapter: mapping semideciduous Atlantic forest in southeastern Brazil. By 
estimating its actual cover using NOAA imagery, one would probably conclude 
that this forest ecosystem has been completely removed due to its strongly 
fragmented state (see figure 5.1). Spectral overlap affects the use of Landsat 
imagery because of the co-occurrence of land cover types such as coffee and 
eucalyptus plantations (Varona 2000, Raga 2001). 

The operational use of high spatial resolution images for forest mapping is 
still premature, especially within complex and fragmented agricultural systems. 
There is a need for an effective classification procedure that: (a) distinguishes 
among natural forest and classes that spectrally overlap with it, (b) gets the most 
from available features for classification, and (c) requires less human 
intervention, if reliable estimates of forest cover are to be made frequently over 
large geographical areas. Thus, this study intends to evaluate the suitability of 
the following variables to distinguish natural forests from coffee and eucalyptus 
plantations in the study site: 

-Terrain topography, 

-Temporal and spectral information of yearly cycles, 

-Long time series of NDVI (Normalised Difference Vegetation Index) data, 

-Spatial and temporal texture measures, and 

-Classifiers (viz., maximum likelihood, neural networks, and decision trees). 
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5.1 State-of-the-art in land cover mapping 

Since the first images from the Landsat Multi-Spectral Scanner (MSS) 
reached the scientific community, a number of studies have demonstrated the 
applicability of spectral information for discrimination among land cover types. 
Together with the capabilities of multispectral analysis, its limitations were also 
revealed. Scientists found out that some objects on the Earth's surface reflect the 
electromagnetic energy in the same way when sensed at this coarse spectral 
resolution (Skidmore et al. 1988, Ma and Olson 1989), and consequently, their 
discrimination using spectral information was not possible. In addition, objects' 
reflectance may vary according to growth stage, phenology, humidity, 
atmospheric transparency, illumination conditions etc. These drawbacks led to a 
search for alternatives to enable the discrimination of land cover classes with 
similar reflectance behaviour. 

The developed approaches rely on the addition of multisource information 
mainly related to topography, geology, historical imagery, land cover data, 
image textural measures, and multisensor imagery. Skidmore (1989) 
successfully mapped different eucalyptus species in Australia by incorporating 
information on their preferred terrain positions, whereas Bruin (2000) obtained 
up to 14% better classification results by using geological stratification. 
Temporal information has been considered in an attempt to distinguish 
agricultural crops using their developmental trajectories (Clevers et al. 1990, 
Ortiz et al. 1997). Temporal signatures are then treated in the same way as 
spectral signatures. An exception is a recent methodology developed by Vieira et 
al. (2000), the so-called spectral temporal response surface (STRS), which 
characterises the pixel's reflectance over time for each waveband by means of 
analytical surface fitting. Janssen and Middelkoop (1992) used relative 
transitions of land cover in the classification procedure increasing its accuracy 
from 76 to 82 per cent. Seemingly, Jong and Riezebos (1991) improved 
classification by 20% using agroecological zones and the probabilities of a land 
cover type to occur within these zones. Xia (1996) was able to identify five 
additional classes when information about objects' form was combined with 
spectral classification results. Image texture had little effect on improving 
classification accuracy according to Dikshit (1996). In contradiction, Haralick 
(1979) obtained highly accurate results when using textural features derived 
from co-occurrence matrices. Seemingly, Manian et al. (2000) and Zhu and 
Yang (1998) reported promising results when texture features were extracted 
with logical operators and with wavelet transforms. Texture measures have 
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proven to be of utmost importance for the analysis of SAR images (Soares et al. 
1997, Fukuda and Hirosawa 1999, Simard et al. 2000). The synergistic use of 
optical and radar remote sensing holds new opportunities for land cover 
classification (Clevers et al. 2000, Kuplich et al. 2000) since the latter provides 
additional data on vegetation structure and on areas frequently covered by clouds 
(Leeuwen et al. 1994). 

The multisource information has been fed into a variety of classification 
schemes. The algorithms evolved beyond the traditional probabilistic classifiers 
to accommodate these heterogeneous data sets. Three approaches based on 
intelligent data analysis are being increasingly applied in the field of remote 
sensing. The first, known as expert systems, works with encoded information 
termed knowledge base, which is generated by domain specialists. Unlike 
conventional mathematical models, the knowledge is stored in a separate file, 
which is evaluated within a set of rules also defined by specialists (Eijkel 1999). 
Some references cited above have used these models for land cover mapping 
(e.g., Skidmore 1989, Jong and Riezebos 1991). 

The second family of intelligent models is known as artificial neural 
networks. The most popular neural network model for classification of remotely 
sensed data is the Multi-Layer Perceptron (MLP). Skidmore (1997) used the 
backpropagation learning algorithm with a MLP model and reported no 
statistically significant improvements in classification accuracy for mapping 
forest types. New architectures have been developed in an attempt to improve 
over MLP, like the fuzzy ARTMAP (Carpenter et al. 1992), textural neural 
networks (Kaminsky et al. 1997) and combinations of neural networks and 
expert systems (Murai and Omatu 1997). 

Decision trees are the third family of 'intelligent' algorithms used for 
geographical analysis (Skidmore et al. 1996, Simard et al. 2000, Friedl et al. 
2000, Gahegan 2000). Induction of decision trees enables learning from pattern 
and is useful in selecting relevant features for classification (Borak and Strahler 
1999). It has been extensively used in other disciplines as a means of 
discovering and explicating knowledge for expert systems (Quinlan 1986). 
Surprisingly, despite these attractive characteristics and rare investigations in the 
past (Swain and Hauska 1977, Lee and Richards 1985, Belward and Dehoyos 
1987), decision trees have only recently been considered for classification of 
remotely sensed images and not much work has been done up to now (Friedl and 
Bradley 1997, DeFries et al. 1998, Friedl et al. 1999, Borak and Strahler 1999). 
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Finally, large-scale mapping projects using an increasing amount of 
remotely sensed data demand methods that are less dependent on human 
interventions and more capable of handling spectral, spatial, temporal and 
ancillary data from a variety of sources. In this context, decision trees have been 
regarded as one of the most important alternatives (DeFries and Townshend 
1999). 

5.2 Inputs, transforms and feature sets definition 

A subset area in the " Vale do Alto Rio Grande", representing a complex 
and fragmented land cover pattern, was chosen for the analysis (figure 5.1). The 
main land cover types in this area are perennial crops like coffee, eucalyptus and 
pasture, enclosing remnants of semideciduous Atlantic forest and savanna-
related formations. Both natural formations are confused with planted crops 
because of their similar reflectance characteristics. Thus, the potential of 
variables derived from time series of reflectance data, spatial and temporal 
texture, and terrain topography were assessed to define a mapping strategy for 
semideciduous Atlantic forest. 

Figure 5.1 Image used in the present study. The area within 
dashed lines is the subset shown in figure 5.2 
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The input data set consisted of a declouded time series of twenty-seven 
co-registered subsets (figure 5.1) of a Landsat TM scene (path 218, row 75) and 
digitised contour lines with 20 m of vertical resolution. Seven sets of features 
were input to four classification algorithms. Descriptions of derived features, as 
well as the motivation for construction of each feature set, are listed below: 

SET 1 - One year of multispectral data - Bands 3, 4, and 5 of TM data acquired 
in August 1998, April 1999, August 1999, and November 1999 were combined 
to form a set of 12 features. This data set was motivated by the assumption that 
different land cover types exhibit different dynamics throughout the year, which 
might aid the discrimination of spectrally similar objects. 

SET 2-15 years of NDVI data - This data set was created from 15 NDVI 
images. They were calculated from TM images acquired yearly from 1985 till 
1999. NDVI was chosen because it is thought to represent not only phenological 
variation but also rotation and management practices in perennial crops. It is 
assumed that natural forests exhibit a relatively constant temporal profile in 
relation to eucalyptus and coffee plantations. 

SET 3 - Topography - From the digitised contour lines, a regular grid of 
elevation data with 30 m of spatial resolution was generated using Delaunay 
triangulation with linear interpolation. This grid was then used to derive slope 
and aspect information. Elevation, slope and aspect features were combined with 
all TM bands (except for the thermal channel) of an image acquired in August 
1998, thus forming a set with 9 features. The assumption here was that 
topography determines agricultural land use and might provide discriminating 
information for forest classification. 

SET 4 - Spatial texture - Multiscale texture descriptors were extracted in the 
spatial domain using a 2D discrete wavelet transform (see chapter 3, page 26). 
Using this transform, four high-frequency images, representing textural 
variations at increasing scale levels, were obtained for three TM bands (3, 4, and 
5) from 1999. Thus, 15 features (12 texture features and three TM bands) 
composed this set. The 'd trous' algorithm with linear spline basis (Holschneider 
et al. 1989, Carvalho et al. 2001) was used for wavelet decomposition. 
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SET 5 - Temporal texture - The ID discrete wavelet transform was applied to 
extract temporal texture descriptors from the NDVI time series. Temporal 
profiles were decomposed pixel-wise using the Haar wavelet basis and 
pyramidal decomposition (see chapter 3, page 27). Different from the 'a trous' 
algorithm, the pyramidal algorithm is non-redundant, i.e. generates two 
transformed vectors with half of the elements in the original vector; one 
representing low-frequency components and the other high-frequency 
components. One-level decomposition was applied to 14 NDVI images resulting 
in 7 high-frequency texture features. These were stacked with TM bands 3, 4, 
and 5 from 1999 generating a set with 10 features for classification. 

SET 6 - The spectral-temporal response surface (STRS) - Bands 3, 4, and 5 
from 27 images acquired from 1984 to 1999 were used to calculate coefficients 
of the spectral-temporal response surface (Vieira et al. 2000). The coefficients of 
fitted analytical surfaces describe pixels as a function of time and wavelength, 
and represent the spectral-temporal relations. In two dimensions, i.e. spectral (x 
coordinate) and temporal (y coordinate), polynomials derived by multiple 
regression for each pixel in the image are surfaces of the form (Burrough and 
McDonnell 1998): 

f{(x,y)}= 2> ,X/) (5-1) 

of which the first three are: 

r+s<p 

b0 zero order 

b0+bxx + b2y first order 

b0+blx + b2y + b3x
2 + b4xy + b5y

2 second order 

The integer p is the order of the polynomial fit. A horizontal plane is zero order, 
an inclined plane is first order, a quadratic surface is second order, and a cubic 
surface is third order. As suggested by Vieira et al. (2000), a polynomial fit of 
third order was used to generate a set of 10 coefficients (i.e., features) for each 
pixel in the subset scene used in this study. 
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SET 7 - Mined features - The 59 features described previously were fed into a 
data mining package called Classification And Regression Trees-CART 
(Breiman et al. 1984) for exploratory analysis with decision trees (see chapter 3, 
page 33). The top 10 discriminating features were selected to compose the last 
set for classification. The automatically selected features were 6 NDVI images 
from 1985 till 1987 and from 1992 till 1994, band 5 from April 1999 and the 
2nd, 4th and 7th coefficient images of the STRS. 

In this way, sets 1 to 6 reflected expert knowledge on how different 
information might contribute to class discrimination, whereas in set 7, this 
knowledge was automatically generated based on relationships not always clear 
to domain experts. For the purpose of mapping semideciduous Atlantic forests, 
we hypothesise that feature sets 2, 5, 6, and 7, which include long time series, 
should be more relevant than the other feature sets that represent yearly cycles or 
have no temporal information included. 

5.3 Supervised pattern recognition 

The classification task is concerned with the identification of clusters and 
characterisation of their boundaries in multidimensional space, to decide if a 
given image pixel belongs to a certain cluster, i.e. a thematic class. The 
boundaries can be obtained by parametric or nonparametric techniques. 
Parametric classification makes assumptions about the shape of the data 
distributions and defines decision hyper-volumes as a function of estimated 
parameters (e.g., mean), whereas nonparametric classifiers assume that the data 
clusters can be isolated by some discriminant function (e.g., thresholding). In 
supervised classification, the necessary parameters or discriminant functions are 
calculated using predefined samples of known type. 

Maximum likelihood 

This algorithm has been the most popular for classification of remote 
sensing imagery. As a parametric classifier, it assumes that a hyper-ellipsoid 
decision volume can approximate the shape of the data clusters. For a given 
unknown pixel, described by a vector of attribute features, the probability of 
membership in each class is calculated using the classes' mean feature vectors, 
covariance matrices and prior probabilities (Duda and Hart 1973). The unknown 
pixel is considered to belong to the class with maximum probability of 
membership. 
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Artificial neural networks 

This algorithm has capability for self-learning. It has proliferated in the 
remote sensing literature as a promising technique for a number of situations 
such as non-normality, complex feature spaces and multivariate data types, 
where traditional methods fail to give good results (Atkinson and Tatnall 1997). 
The MLP model with backpropagation learning algorithm (see chapter 3, page 
31) was used in the present case. The network architecture was set as follows: 
two hidden layers with 18 nodes each using the sigmoid function as activation 
method, a fixed learning rate set to 0.9 and learning momentum set to 0.7. These 
settings were suggested by Henk van Oosten, author of the software and 
experienced user of neural networks for classification of remotely sensed data. 

Decision trees 

Decision trees share the same advantages of neural networks compared 
with traditional probabilistic algorithms because they are strictly nonparametric, 
free from distribution assumptions, able to deal with nonlinear relations, 
insensitive to missing values, and capable of handling numerical and categorical 
inputs. CART was used in this study to generated univariate and multivariate 
classification trees (see chapter 3, page 33). We expected neural networks and 
decision trees to perform better than the maximum likelihood classifier because 
of the advantages mentioned above and the complex land cover pattern in the 
study site. 

5.4 Classification procedure and accuracy measures 

Classifiers were trained with the same set of 700 sample pixels equally 
distributed in seven main land cover types: natural forest, savanna, coffee, 
eucalyptus, annual crops, grass land and bare land. In addition, decision trees 
were pruned with another set of 700 sample pixels different from the training 
set. A class-oriented approach was chosen and all classes, except forest, were 
merged in a single class named non-forest. 

Each forest/non-forest output map was tested for accuracy using a unique 
set of 2000 pixels selected with simple random sampling. Training, pruning and 
testing pixels were checked during field campaigns in 1999 aided by visual 
interpretation of small-format aerial photos and Landsat TM images. 
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The chosen accuracy measure for classification comparisons was the class 
mapping accuracy proposed by Kalensky and Scherk (1975): 

4 = '—, (5.2) 

where, At is the percentage mapping accuracy of class C„ Nt is the number of 
correctly classified pixels in class C„ and Et is the sum of omissions and 
commissions in class C,. This measure was chosen instead of the overall 
classification accuracy or the Kappa statistics because the former might 
overestimate positional class accuracy (Skidmore 1999) and the latter lack 
probabilistic interpretation due to adjustments for hypothetical chance agreement 
(Stehman 1997). Although included in the calculations of Ah the number of 
omissions and commissions are also presented along with At in table 5.1 because 
they provide meaningful raw indicators of classification performance. In 
addition, entire confusion matrices are shown for the three best combinations of 
classifier and feature set. 

5.5 Results and discussion 

Table 5.1 shows an overview of the results for each combination of 
classifier and feature set. Forest mapping accuracy was higher when using 
temporal texture as input for maximum likelihood classification as shown in 
bold type in table 5.1. Some classifier-feature set combinations omitted less 
forest pixels than the most accurate ones, whereas others classified fewer non-
forest pixels as forest. For example, when mined features were input to neural 
networks, only six forest pixels were omitted from this class, but 658 non-forest 
pixels were classified as forest. On the other hand, neural networks with spatial 
texture showed a few commissions but more omissions than the best 
combination. The third best combination, univariate tree with mined features, 
provided a good balance between omissions and commissions, seemingly to 
multivariate tree with spatial texture, but yet with high accuracy. The worst 
classification accuracy (19%) was provided by the combination of neural 
networks with mined features mainly due to the large number of commissions. 

Maximum likelihood performed relatively well with all input feature sets 
(table 5.1) with accuracy ranging from 34.5% to 51.3%. In contrast, neural 
networks showed the greatest variation, with accuracy ranging from 19.0% to 
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45.2%. Seemingly, commissions made by this type of classifier range from 72 to 
658 pixels (out of 2000 pixels), the lowest and highest commission values in 
table 5.1. Univariate trees provided the most robust results for different feature 
sets. Classification accuracy ranged from 39.6% to 46.7%. 

Table 5.1 Forest mapping accuracy with 99% confidence interval according to 
Thomas and Allcock (1984) with omissions and commissions for each 
combination of feature set/classifier evaluated in this study. 

Feature Sets 

1. One Year cycle 

2. NDVI time series 

3. Topography 

4. Spatial texture 

5. Temporal texture 

6. STRS 

7. Mined features 

1. One Year cycle 

2. NDVI time series 

3. Topography 

4. Spatial texture 

5. Temporal texture 

6. STRS 

7. Mined features 

Classifiers 

Maximum Likelihood 

Forest 
accuracy 

(%) 

46.9 ± 2.4 

44.212.2 

34.5 ±1.7 

39.8+1.6 

51.3 ±3.0 

34.7 + 1.0 

42.8 + 1.5 

Omissions / 
Commissions 

(pixels) 

16/149 

16/168 

16/261 

11/217 

21/113 

6/287 

8/198 

Univariate Tree 

41.8 + 3.1 

43.3 + 1.9 

41.8 + 3.1 

39.6 ± 3.4 

42.0 + 2.5 

44.4 ±2.5 

46.7 ± 4.3 

32 /149 

13/182 

32 /149 

40 /146 

21/174 

23/182 

43/93 

Neural Networks 

Forest 
accuracy 

(%) 

44.2 ± 2.2 

20.8 + 0.8 

33.8 ±2.4 

40.2 ± 5.2 

35.1 ±2.2 

45.2 ± 2.7 

19.0 ±0.6 

Omissions / 
Commissions 

(pixels) 

16/168 

9/574 

29 / 231 

68/72 

23 / 234 

22 /148 

6/658 

Multivariate Tree 

38.4 ± 2.4 

36.0 ±1.4 

44.0 ± 2.9 

40.1 ±4.6 

32.1 ±1.8 

43.4 ±2.7 

35.8 ±1.7 

23 / 200 

10/260 

26 /147 

59/95 

19/283 

23/158 

14/251 

As expected, classification confusion (arrows in Figure 5.2) occurred mainly 
with coffee and eucalyptus plantations, but neural networks and univariate trees 
also misclassified deforested areas currently covered with pasture. 
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Features and classifiers for mapping semideciduous Atlantic forest 

The information provided by high frequency components extracted from 
temporal profiles was relevant in this experiment probably because of the 
different dynamics exhibited by natural forests and managed land cover types 
with similar reflectance characteristics. Considering that temporal information 
provides discriminating features for a given application, we suggest that these 
findings could be applied to other areas as well, and high frequency coefficients 
as extracted with pyramidal wavelet transforms might provide data reduction 
and yet enough information for class discrimination. The Haar wavelet was 
chosen for this study because it is equivalent to subtract subsequent years and, 
thus, represents differences in land cover characteristics between the considered 
years. Wavelet coefficients captured land cover dynamics enabling change 
information to be used effectively during classification. Note that this feature set 
provided more accurate results than the NDVI time series from which wavelet 
coefficients were extracted. This fact may be explained by the so-called curse of 
dimensionality: provided that the number of training samples per class is fixed, 
the classification accuracy decreases as the number of input features increases 
(Bishop 1995). In contrast to the results presented here, Borak and Strahler 
(1999) concluded that features representing time had minor importance for class 
discrimination, but their temporal data set included only images from one-year 
cycle. Long time series (e.g., years or decades) can be very effective for class 
discrimination if the goal is comparisons between natural and managed land 
cover types, since the latter normally exhibits strong dynamics. Another reason 
for this different conclusion could have been the pronounced spectral overlap of 
forests with perennial crops in our study site, preventing the efficient use of 
spectral features for class separation. Neural networks combined with STRS 
coefficients and univariate trees combined with mined features misclassified 
deforested areas currently covered with pasture (black arrows in figure 5.2), 
probably because of not effectively used temporal information. The fact that 
forests once covered these areas might have been more important for the 
mentioned combinations of classifiers-feature set. 
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Landsat TM image from August 1999 Landsat TM image from June 1985 

Semideciduous Atlantic Forest 

Figure 5.2 Comparison of the best four combinations of features 
set and classifier. Black arrows indicate misclassifications. 

From the seven feature sets evaluated, only sets 3 (topography) and 4 
(spatial texture) represented static information. Probably because of the explicit 
combination of features to define discriminant functions, multivariate trees 
performed well when sets 3 and 4 were supplied for classification. For example, 
when a multivariate tree was grown using topographic information, a 
discriminant function for forests was defined such that: 
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J / ( N I R - 0.0021) * slope < -0.199154, then class = forest. 

This important relationship between slope and near-infrared reflectance 
(NIR) could have been hidden for other classifiers hampering their ability to use 
topographic features for classification. Another indication for the lesser 
importance of topography and spatial texture comes from the fact that they were 
rarely selected during data mining and hence considered to have low 
discriminating power. Data mining with decision trees provided effective feature 
selection and reduction, but classification accuracy was improved only when the 
mined features were used to grow another decision tree. Eighty-one features 
were reduced to ten coefficients of the STRS, which kept most of the relevant 
information and showed good accuracy when input to neural networks, 
univariate and multivariate decision trees. Although preprocessing with data 
mining decreased the neural network accuracy, the good results provided by 
feature reduction with the STRS shows the benefit of using data transformations 
and preprocessing before neural network classification. 

It is important to mention that equal prior probabilities were provided to 
the maximum likelihood classifier, whereas neural networks and decision trees 
learned the different prior probabilities from training data distributions. Even 
then, maximum likelihood was the best classifier in this study from which 
improved results can still be achieved by provision of prior probabilities for each 
land cover class. On the other hand, the unpredictable behaviour of neural 
networks could be a reflection of its lack of interpretability, demanding careful 
experimentation before use in particular situations. 

Univariate trees performed better than multivariate trees whenever 
temporal information was used. Classifiers with learning capabilities generally 
improve when more examples (i.e., training samples) are provided. In this study, 
only 100 pixels per class were used for training and that could have limited the 
accuracy levels obtained with decision trees. 

Mapping accuracy 

As for the choice of classifiers, decision of what should be considered the 
best or worst in terms of accuracy depends largely on the objectives of the 
mapping project (Stehman 1997). Because the aim of this study was to evaluate 
classification of forests as a whole, the total number of misclassifications was 
the arbitrarily chosen indicator. As opposed to measures based on indicators of 
type I and type II errors (e.g., user and producer accuracy), the class mapping 
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accuracy proposed by Kalensky and Scherk (1987) takes omissions and 
commissions into account generating an unbiased estimator of positional class 
accuracy (Skidmore 1999) (compare Tables 5.2 and 5.3). The combination 
shown in Table 5.4 would be considered the best for forest mapping if one used 
producer accuracy as indicator. Considering the class-oriented approach and the 
binary classification problem presented in this study, overall accuracy would 
yield similar results, but still, the combination of neural network with spatial 
texture (overall accuracy of 93%) would be misinterpreted as giving the second 
best result even omitting a large number of forest pixels. Stehman (1997) 
criticised the lack of probabilistic interpretation when using coefficients like 
Kappa and conditional Kappa, but in the present study they did not lead to 
misinterpretation of the case mentioned above (compare tables 5.3 and 5.4). 

Table 5.2 Accuracy measures for the map produced with maximum likelihood classifier applied 
to feature set 5 (temporal texture). Values in the contingency table are number of pixels. 

Mapped class 

Forest 

Non-forest 

Total 

Omission error 

Producer accuracy 

Overall accuracy = 

Forest 

141 

21 

162 

12.96% 

87.04% 

Ground truth 

Non-forest 

113 

1725 

1838 

6.15% 

93.85% 

93.30% Kappa coefficient 

Total 

254 

1746 

2000 

= 0.6425 

Commission 
error 

44.49% 

1.20% 

User 
accuracy 

55.51% 

98.80% 

Table 5.3 Accuracy measures for the map produced with neural network classifier applied to 
feature set 4 (spatial texture). Values in the contingency table are number of pixels. 

Mapped class 

Forest 

Non-forest 

Total 

Omission error 

Producer accuracy 

Overall accuracy = 

Forest 

94 

68 

162 

41.98% 

58.02% 

Ground truth 

Non-forest 

72 

1766 

1838 

3.92% 

96.08% 

93.00% Kappa coefficient 

Total 

166 

1834 

2000 

= 0.5351 

Commission 
error 

43.37% 

3.71% 

User 
accuracy 

56.63% 

96.29% 
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Table 5.4 Accuracy measures for the map produced with maximum likelihood applied to feature 
set 1 (yearly cycle). Values in the contingency table are number of pixels. 

Mapped class 

Forest 

Non-forest 

Total 

Omission error 

Producer accuracy 

Overall accuracy = 

Forest 

146 

16 

162 

9.88% 

90.12% 

Ground truth 

Non-forest 

149 

1689 

1838 

8.11% 

91.89% 

91.75% Kappa coefficient 

Total 

295 

1705 

2000 

= 0.5968 

Commission 
error 

50.51% 

0.94% 

User 
accuracy 

49.49% 

99.06% 

5.6 Conclusions 

Considering the study set up and its outcomes, the following statements 
could be drawn about mapping the semideciduous Atlantic forest: 

Temporal information of vegetation indices was more important than 
image texture, terrain topography and raw spectral information for 
discriminating semideciduous Atlantic forest in the present study site. 

Nevertheless, spatial texture and topographical features were still 
important when neural networks and multivariate trees were used for 
classification. 

The choice of classifiers is dependent on the data, objectives, resources, 
and expertise available for a given mapping project. Aiming at accurate mapping 
of semideciduous Atlantic forest in the "Vale do Alto Rio Grande", using the 
data set available for this study and considering the other factors granted, one is 
advised to use maximum likelihood classification and temporal texture 
descriptors of NDVI time series as input data. 



CHAPTER SIX* 

Multiscak Change Analysis 

Digital change detection as commonly applied to temporal remotely 
sensed images produces another digital image, where pixel values represent the 
degree of difference between the temporal scenes under investigation. In the 
ideal case, areas of land cover change would show high positive or negative 
values, whereas non-changed areas would be zero-valued. Nevertheless, 
additional sources of noise and the spatial multiscale nature of input images are 
propagated to the outputs of digital change detection, demanding the use of tools 
that take these characteristics into consideration. The present chapter gives an in 
depth characterisation of a new approach to deal with noise and multiple spatial 
scales during change detection. The methodology is based on noise modelling in 
wavelet space for efficient and automatic thresholding. The objective of this new 
method was to reduce the sensitivity of digital change detection to the effects of 
radiometric and geometric misregistration by extracting changes according to 
size classes using a multiscale approach. 

Carvalho L.M.T., Fonseca L.M.G., Murtagh F. & Clevers J.G.P.W. 2001. Digital change detection 
with the aid of multiresolution wavelet analysis. International Journal of Remote Sensing 
(in press). 
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6.1 Problems of digital change detection 

Current methods used to compare two or more remotely sensed images 
and to detect differences among them are dependent on accurate radiometric 
normalisation and geometric rectification (Dai and Khorram 1998, Schott et al. 
1988). These prerequisites are generally hard to achieve in many situations due 
to the lack of (radiometric) calibration data and difficulties in locating 
(geometric) control points. In addition, a threshold value to separate change from 
no-change areas must be defined. In the absence of noise, thresholding a 
difference image would be an easy procedure leading to reasonable results. 
Unfortunately, discrepancies in sensor characteristics, atmospheric transparency, 
vegetation phenology and errors in geometric registration are a few examples of 
noise sources present in every multitemporal/multisensor data set derived from 
optical remote sensing. 

In the operational context, digital change detection has been normally 
performed with a category-based approach that compares land cover maps 
produced at different points in time. The choice for this approach is motivated 
by the straightforward information about old and new land cover classes 
represented by each image pixel that has undergone land cover change. 
However, uncertainty propagation reduces considerably the confidence level of 
change detection results obtained with map comparisons (Shi and Ehlers 1996, 
Bruin and Grote 2000). For example, two highly accurate classification results, 
say 80%, would produce a mere 64% accurate change detection result (Stow et 
al. 1980). In the research context, radiometric-based change detection techniques 
are more popular than category-based ones because of their ability to overcome 
the above-mentioned drawback, but as pointed out before, they are more 
sensitive to errors in geometric and radiometric registration. This becomes even 
more important when different sensors with different spatial and radiometric 
resolutions are used for change detection. Moreover, the amount of change is 
dependent on the empirically defined thresholds, to which there is no theoretical 
guidance. 

Consequently, a need for automatic analysis tools able to minimise these 
requirements has been recognised (Singh 1989). The dilemma relies on how to 
differentiate real changes from misregistration (geometric and radiometric) 
noise. 
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6.2 Multiscale feature extraction 

Wavelet analysis in discrete time corresponds to successive band pass 
filters decomposing the signal at each step into details and overall pattern 
(chapter 3). In a two-channel filter bank it separates the high from the low 
frequencies recursively using the same transform at a new scale (Strang and 
Nguyen 1997). A change image, produced by any of the standard radiometric 
change detection methods (e.g., image differencing), is decomposed into several 
high frequency bands with variable resolutions plus a low frequency band at the 
coarsest resolution. The decomposition was obtained by applying the 2D 
extension of the algorithm "a trous" (Holschneider et al. 1989) with a cubic 
spline as the scaling function: After decomposition, the differences between the 
images are separated into five detail levels ranging from fine to coarse, as well 
as a smoothed representation of the original difference image (Figure 6.1). At 
this stage, changed sites are discriminated according to size classes. Small area 
changes and geometric misregistration are captured in the fine details 
representation whereas overall changes, like variations due to phenology, are 
captured at the coarse details levels and at the smoothed representation of the 
original difference image. Thus, by solely using information provided by 
intermediate scale levels, spurious effects of misregistration are filtered out and 
the search space is considerably reduced. 

M w*; • •? . ' / ,^ •< ••• ••' 

Is? jg; i|p! i^V' 

(d) (o) 

Figure 6.1 (a) Result of image differencing (TM band 3 from 1998 and MSS band 2 from 1981). 
(b, c, d and e) Detail images ranging from fine to coarse and (f) smoothed version of (a) 
decomposed with the "a trous" algorithm. 
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Landsat TM bands 2 (520-600 nm), 3 (630-690 nm), 4 (760-900 nm) and 
Landsat MSS bands 1 (500-590 nm), 2 (610-680 nm), 3 (790-890 nm) were 
chosen to perform this experiment because they cover relatively comparable 
portions of the electromagnetic spectrum (Buiten and Clevers 1996). Note that 
spatial resolution, sensor characteristics and phenological conditions are very 
heterogeneous among these images (Figure 6.2). The images were reduced to the 
same pixel size by applying a one level pyramidal wavelet transform using a 
cubic spline as scaling function. Due to decimation, the pixel size for the 
Landsat TM images became 60x60m after the transformation. The Landsat MSS 
image, preprocessed by the U.S. Geological Survey and purchased with a pixel 
size of 57x57m, was resampled to 60x60m with a nearest neighbour algorithm. 
No radiometric rectification was applied to the input images and spatial 
misregistration (RMS error < 1 pixel) ranged from one to three pixels when 
evaluated visually. 

Ground data were recorded during field visits in 1999 when sites of 
deforestation, new rock exploitation, annual crops, and forest regrowth were 
located in the field and over orthophotos (scale 1:10,000) acquired in 1984. 

6.5 Results and Discussion 

Using the multiscale product in a simple colour composite, visualisation 
of changed sites can be readily done. To visualise changes from dark to light 
(e.g. deforestation in TM band 3), one must use the oldest image to make the 
composite (Figure 6.3). Changes from light to dark (e.g. reforestation in TM 
band 3) are better visualised when using the most recent image. This is because 
the background at sites where changes are to be visualised must be dark so that 
the changes of interest are emphasised. All changes detected by this visualisation 
procedure did occur although their quantification was not possible. Note that, in 
Figure 6.3, the whole triangular forest fragment at the bottom right disappeared 
between 1985 and 1998 although only its centre is being enhanced. This 
straightforward visualisation might be of much use when large areas are to be 
evaluated. Misregistration effects and small area changes were isolated as fine 
details (Figure 6.4d), while differences in phenological characteristics and 
atmospheric conditions were captured in the smoothed representation as overall 
differences between the images (Figure 6.4e). 
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Figure 6-4 Landsat TM from (a) 1998, (b) 1985 and (c) respective difference image, (d) 
Details of the difference image at the first scale level, (e) Smoothed version of the difference 
image at the fourth scale level. Note the misregistered road depicted in (d), while overall 
differences like phenological condition of vegetation patches are depicted in (e) 
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Unrelevant information that could be considered noise in the difference 
image (figure 6.5a) does not appear in the change image built with the product of 
wavelet scales (figure 6.5b). This 'cleaning' effect facilitates the analysis and 
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understanding of remotely sensed images. In figure 6.5, vegetation removal 
(black arrows), reforested areas (grey arrows) as well as new rock exploitation 
sites (white arrows) were pinpointed successfully without previous radiometric 
rectification or threshold definition while differences not related to land cover 
changes were bypassed. 

6.6 Conclusions 

The behaviour of changes at different scale levels as resulting from the 
new method presented here enables their discrimination according to size 
classes. Hence, using information from intermediate scale levels one can 
minimise the problems mentioned above. The method was found to be less 
sensitive to spatial and radiometric misregistration, although fine details are lost 
as well. It can be applied to the outputs of any change detection technique such 
as image rationing, principal components, change vector analysis etc. 

As for the selection of significant wavelet coefficients, the selection of 
scale levels to be considered for further analysis can be driven by statistical tests, 
which are useful when no knowledge exists on the size of features of interest. 

Changes in the study area were well discriminated but their quantification 
was not possible when using information from limited scale levels. Further 
research on the combination with other techniques, like region growing 
algorithms, could be a solution to determine the spatial extent of changed sites. 
Applications of the proposed method include, for instance, the automatic 
selection of changed sites for GIS updating and the fast identification of priority 
areas for field check when large data sets are to be evaluated. Finally, the 
visualisation of changed sites is straightforward with a simple colour composite 
avoiding any threshold definition, radiometric rectification or accurate geometric 
registration. 
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Automatic Deforestation Detection 

Remote sensing and GIS are being increasingly used in combination. GIS 
databases are used to improve the extraction of relevant information from remote 
sensing imagery, whereas remote sensing data provide periodic pictures of 
geometric and thematic characteristics of terrain objects, improving our ability to 
detect changes and update GIS databases (Janssen 1993). In the previous 
chapter, a method to extract change information at varying spatial scales was 
presented and discussed. This chapter incorporates the multiscale change 
analysis in an operational environment to automatically detect changes and to 
update GIS databases using multitemporal remote sensing imagery. 

Most research efforts for monitoring land cover change with remote 
sensing have dealt with localised case studies of an experimental nature (Wyatt 
2000). Considering monitoring of forests, the PRODES project (Estimate of 
Amazon gross deforestation) from the Brazilian Institute for Space Research 
(INPE) is one of the few examples of operational application of high spatial 
resolution remote sensing data for change analysis over large geographical areas. 

* based on: 
Carvalho L.M.T., Clevers J.G.P.W., Jong S. & Skidmore A. 2001. Automatic GIS updating using 

feature extraction, segmentation and classification of remote sensing imagery. International 
Journal of Geographic Information Sciences (submitted). 
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It has been providing valuable estimates of deforestation since 1974. The 
methodology used by PRODES still relies on manual delineation of deforested 
areas involving for each assessment approximately 50,000 man-hours with a 
team of 70 remote sensing specialists supervised by 15 researchers (INPE 2000). 
Such a framework would be inapplicable for complex fragmented landscapes, as 
in the case studies presented in this thesis, unless automation of some tasks is 
achieved. The Landsat Pathfinder project (deforestation in the humid tropics) is 
another relevant attempt to monitor land cover at large scales with high spatial 
resolution imagery, which gave strong evidence for the need of automated 
approaches as well (Townshend et al. 1997). 

The difficulties with land cover change detection are further complicated 
when compared to land cover mapping, imposing limits to automation. In fact, 
as change analysis with remote sensing compares image snap shots acquired at 
intervals of time, they inevitably inherit problems of single-date image analysis 
and rise new ones related to the integration of multitemporal data sets. The first 
difficulty while handling time-series of remotely sensed data is (1) the geometric 
transformation of each image in the series to match a reference image or map. 
Errors result from this process and part of detected changes is caused by 
misregistration (Townshend et al. 1992). Another important spatial aspect is 
related to (2) the size of changes to be observed. Change detection is limited by 
the nominal spatial resolution of the sensor, the degree of fragmentation of the 
landscape and the nature of boundaries between objects. They influence land 
cover mixture in a pixel, which may vary from one date to the other, even if no 
land cover change occurs. (3) Temporal scales in which changes occur must be 
considered as well, and the choice of sensors to provide data should be guided 
by the nature of processes under investigation. (4) Atmospheric conditions by 
the time of image acquisition vary considerably and might weaken the signal 
that reaches the sensor or even obstruct it completely, generating differences that 
can be misinterpreted as land cover change. (5) Remote sensing-based land 
cover studies rely on the premise that the radiometric response of objects on the 
Earth's surface must differ in the spectral region covered by the sensor. Finally, 
(6) some changes are gradual and their detection is difficult. Forest degradation 
and regeneration, for instance, are much harder to quantify with remote sensing 
when compared to forest removal. Advances on hyper-spectral and -temporal 
data analysis may help to study such cases, but their use for change detection is 
still premature (Wyatt 2000). 
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7.1 Automation in digital change detection 

Automation has been one of the early goals of geoinformation processing 
due to the potential of performing unsupervised tasks provided by computer-
aided analysis (Tzschupke 1976, Dobson 1983). In digital change detection, little 
work has been carried out in this direction and the few established procedures 
are related to image classification (Tou and Gonzales 1974). Automated change 
detection using remote sensing data is reported by a few recent studies (Chavez 
and Mackinnon 1994, Michener and Houhoulis 1997, Pristnall and Glover 1998, 
Hame et al. 1998, Kwartenge and Chavez 1998, Salvador et al. 2000). Even so, 
the term 'automated' is causing confusion in literature, considering that the 
process of change detection is very broad and should not be misinterpreted as the 
simple act of automatically producing, for instance, a difference or ratio image. 

The approach proposed by Priestnall and Glover (1998) for updating 
vector-based GIS represents an effective step towards automation of change 
detection. Yet, they concluded that the project is still in the beginning and many 
challenges are still to be met. This is because their aim is on cartographic-quality 
updating of high spatial resolution databases involving increased complexity of 
contextual information, which in turn makes the approach complex. Hame et al. 
(1998) described an interesting procedure (called "AutoChange") as a change 
detection and recognition system that could be considered automatic. The 
procedure is also complex and though the term 'recognition' was used to 
describe it, the outputs only provide changes and their magnitudes, but not 
labels. Furthermore, its best reported performance was below 66% of correct 
distinction between changed and unchanged pixels. Machine learning techniques 
are potential tools for automatic change detection, which were evaluated in 
recent studies by Abuelgasim et al. (1999) using fuzzy neural networks and Dai 
and Khorram (1999) using multi-layer perceptron (MLP). 

The aim of this study was to develop an automated, simple and flexible 
procedure for raster-based GIS updating. Automated in the sense that changes 
are detected, segmented, classified, and the GIS layers updated without human 
interaction, though ground-truth for changed sites and spectral signatures of the 
new land cover classes must be known in advance. Note that this is also the case 
with the so-called unsupervised classification algorithms, where the analyst still 
has to label clusters. Flexibility relates to the possibility of accommodating 
various segmentation and classification schemes (e.g., machine learning 
algorithms, parametric classifiers), of taking into consideration knowledge on 
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the changes of interest (i.e., denoising), and of using pixel- or object-oriented 

approaches during classification. 

7.2 A compound procedure for automatic GIS updating 

The procedure proposed and illustrated in this chapter (figure 7.1) uses as 
input two remotely sensed (RS) images acquired at different points in time (tt 
and t2), GIS layers representing the land cover types under investigation, and a 
set of ground-truth data (GT) for the present land cover pattern and for changed 
sites. The most recent image is used to update the GIS layers based on 
radiometric differences with the oldest image. This latter should have been 
acquired near the map production date to give a representative picture of the land 
cover pattern by that time. 

Locate 
changes 

Quantify 
changes 

Qualify 
changes 

Modify 
layer 

Figure 7.1 Flow diagram illustrating the main modules of the procedure. 

Four modules compose the procedure according to the main tasks 
performed: (1) location of changed sites, (2) quantification of changed area, (3) 
classification of the new land cover type, and (4) updating the database. First, 
the difference image is decomposed with wavelet transforms and the maxima of 
multiscale products representing significant singularities are extracted at 
changed sites. Secondly, segmentation is performed on the difference image 
based on a decision rule to check if the pixels surrounding each detected 
maximum are spectrally similar. Thirdly, each changed pixel or each segmented 
region is assigned to the land cover class with the highest probability of 
membership. Then, the output is used to update all the GIS layers where changes 
took place. Each module is explained in more detail in the following sections. 
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Search module 

The extraction of meaningful information from noisy, high-dimensional 
and multi-modal data sets is a complex task, which requires new and appropriate 
tools for tackling the problem. For the present algorithm, feature extraction is 
performed with the aid of multiresolution wavelet analysis and the so-called 
multiscale products (Sadler and Swami 1999, Carvalho et al. 2000), where 
maxima points are extracted at changed sites. Small area changes and geometric 
misregistration are captured in the fine wavelet scales whereas overall changes, 
such as variations due to phenology, are captured at the coarse wavelet scales 
and at the smoothed representation of the original difference image. Thus, 
multiscale products are calculated using only intermediate wavelet scales to 
filter out spurious effects of misregistration and to reduce the search space (see 
chapter 6). At this stage, maxima points are located in the filtered multiscale 
product if the value of a pixel is greater than its eight immediate neighbours. In 
this study, the difference image was produced by subtracting images of different 
dates. 

Segmentation module 

For abrupt radiometric changes (e.g. deforestation, burnings, geometric 
misregistration etc) the decision of what represents change is easily taken by 
level slicing the difference image. In this experiment, segmentation of changed 
areas was performed with a simple region-growing algorithm, where 
neighbouring pixels of the detected maxima were sequentially evaluated by a 
decision rule until no more neighbours of the grown region meet the defined 
criterion. The decision threshold used was empirically extracted from 
groundtruth as 1.5 standard deviations from the mean value of the difference 
image. For example, if some neighbours of the pixel under consideration are 
greater than a threshold, they are stored sequentially in a temporary array. The 
first one is now turned into the pixel under consideration and its neighbours, 
greater than the threshold, are stored at the end of the same temporary array. 
This process iterates until the pixel under consideration has no neighbours 
greater than the threshold. Then, the next pixel in the temporary array is 
considered. The segmentation stops when the end of the temporary array is 
reached. Alternatively, the module may use adaptive thresholding with 
parametric or non-parametric rules applied to the spatial context surrounding 
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each seed pixel (i.e., detected maximum) in single band or multispectral 
difference images. 

Classification module 

The classification of changed areas may be performed according to any 
desired decision rule (e.g., maximum likelihood, minimum distance, neural 
networks, decision trees etc) or even by an unsupervised procedure. If 
classification is unsupervised, the output clusters will have no label. In the 
supervised case, groundtruth for land cover classes of the most recent image 
must exist with which to compare the segmented areas. The comparison might 
be performed pixel-by-pixel or assuming homogeneity within the segmented 
regions. In the first case, each pixel is assigned to the class that has the largest 
probability of membership. The second case can be viewed as an object-oriented 
approach, where each segmented area is considered a single object, which is 
assigned to the class that has the largest probability of membership. The output 
of this module is a thematic change layer where pixels that did not change are 
zero-valued. For this study a supervised scheme with maximum likelihood 
decision rules was used in a pixel-by-pixel base. 

Updating module 

This module assumes that GIS layers are input to the procedure as binary 
raster-based masks. Then, updating is straightforward with two simple 
conditional statements. (1) If a given location (i.e., pixel) in the change layer and 
in the GIS input layer are different from zero, then the land cover at this position 
has changed and the corresponding pixel in the GIS layer is assigned a value of 
zero. (2) If the changed pixel belongs to the land cover class represented by the 
input GIS layer, then a value of one is assigned to that location in the GIS layer 
under consideration. In this way, an updated binary mask representing the new 
land cover configuration is generated for each input GIS layer. 

7.3 Other approaches to automatic change detection 

Two other methods for change detection and identification were applied in 
this study: post classification comparison and direct multidate classification 
using artificial neural networks. The post classification comparison was chosen 
because it is the most popular in an operational context and a standard reference 
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in change detection studies, whereas the neural network approach was chosen 
because it has been regarded as a promising tool for various automated tasks 
concerning geoinformation processing. 

Post-classification comparison 

This simple approach consists of comparing the properly coded results of 
two separate classifications. Normally, the map from time t\ is compared with 
the map produced at time t2, and a complete matrix of categorical changes is 
obtained. For comparison purposes, the post classification approach could be 
illustrated as in the diagram of figure 7.1, which would become: 

Locate 
changes 

Quantify 
changes 

Qualify 
changes 

Modify 
layer 

Figure 7.2 Flow diagram illustrating post classification comparison. 

Artificial Neural networks 

Neural network based change detection follows the same principles of 
traditional image classification, but includes the land cover classes of both times. 
The direct multidate classification procedure proposed and described in Dai and 
Khorran (1999) for change detection was implemented in the present study. The 
authors used the MLP neural network model (chapter 3, page 31) to classify a 
single data set composed by 12 Landsat TM bands, six from time t\ and six from 
time t2. Slightly different from the procedure used by Dai and Khorran (1999), 
our architectural settings were defined as follows: a four-layer fully 
interconnected network with back-propagation learning algorithm was used. The 
network had six nodes in the input layer because only three image bands were 
available for each date. The output layer had one node for each of the 16 change 
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classes (i.e., direct output encoding) and the two intermediate (hidden) layers 
had 6 nodes each. The selected activation method was the sigmoid function with 
a fixed learning rate set to 0.001 and learning momentum set to 0.00005. Using 
neural networks for change detection, the base diagram of figure 7.1 would 
become: 

RS(yj|J 

GTf t ) 

GT (fe) 

Locate 
changes 

Quantify 
changes 

Qualify 
changes 

Modify 
layer 

Figure 7.3 Flow diagram illustrating the neural network approach 
for change detection. 
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Landsat TM from October 1984 Landsat TM from August 1999 

Composite: 

Figure 7.4 Image subsets used in this study. 
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Figure 7.5 Land cover layers to be updated. 

Figure 7.6 Sequence of the results produced by the first three modules 
of the procedure proposed in this chapter, (a and b) Identification of maxima 
points, (c) output from search module, (d) output from segmentation 
module, and (e) output from classification module. 
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7.4 Test site and data 

The case study comprised subsets of 187 x 250 pixels of co-registered 
Landsat TM images (path 218, row 75) from October 1984 and August 1999 
(figure 7.4), for which detailed ground truth was available. Two raster layers 
from a GIS database concerning semi-natural areas of forest and rocky-fields 
were used as the subjects to be updated (figure 7.5). Note that illumination and 
phenological conditions are distinct within the imagery set. The image from 
1999 has more relief shadows and the overall reflectance of vegetated areas in 
1984 is notably higher. Yet, no attempt was made to correct these differences, as 
we believe that the proposed method is insensitive to them. It is also important to 
mention that the proposed method is also considered to be less dependent on 
accurate image registration. Thus, only five ground control points (GCPs) were 
used to register a large image of 6500 x 4000 pixels, which was subset 
afterwards for this study. The root mean square error was 0.64 pixel, but visually 
evaluated displacements ranged from one to three pixels. TM band 3 was input 
to the search and segmentation modules whereas bands 3, 4 and 5 to the 
classification module. 

Ancillary data comprised a complete orthophoto mosaic (1:10,000) from 
1984, small-format aerial photos, and GPS measurements on the ground 
acquired during field campaigns in 1999. Orthophotos were used during field 
surveys to locate ground-truth samples. Thirty sample pixels of forest, rocky-
field, grass land and rock exploitation sites were used to train the classifiers. In 
the neural network approach, training samples included all possible 
combinations of changes, whereas the other two approaches required only 
samples representing the four land cover classes occurring in the area. For 
accuracy assessment, deforestation and new rock exploitation sites were 
identified within a random set of 200 forest pixels and 200 rocky-field pixels. 
The change maps obtained with the proposed procedure, post-classification 
comparison, and neural networks were organised in contingency tables from 
which standard per pixel error estimates were extracted. 

7.5 Results and discussion 

Figure 7.6 (a) and (b) illustrate the local maxima (arrows) found in the 
multiscale product image. They correspond to sites where land cover has 
changed in the GIS layers under consideration. Note that the multiscale product 
image presented in figure 7.6(a) and (b) is almost flat everywhere except for 
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changed sites facilitating their automatic location. The detected maxima are then 
located in the data set that will be subject to the region growing algorithm, 
which, in the present case corresponds to a single band difference image (figure 
7.6c). The regions segmented with the region growing algorithm are illustrated 
in figure 7.6 (d). Pixels surrounding the detected maxima were considered to 
have changed and included in the region if they exceeded the threshold value. In 
this study, the threshold value was empirically determined because enough 
groundtruth data were available. Yet, this threshold might be automatically 
defined by considering the standard deviation of immediate neighbours of all 
detected maxima and by applying statistical significance tests. Finally, figure 7.6 
(e) shows the segmented regions classified on a pixel-by-pixel basis. These 
results were then used to update the GIS layer representing forest areas. 

Comparison with other approaches 

Tables 7.1, 7.2, and 7.3 show the calculated change detection accuracy for 
the method proposed in this chapter, the neural network-based change detection, 
and for the classification comparison method, respectively. Although not 
significantly different (z = 0.1992) (Cohen 1960), artificial neural networks 
performed slightly better than our approach. On the other hand, post 
classification comparison results were far worse than the other approaches, 
confirming the expected error propagation of separate classifications. 

Table 7.1 Confusion matrix of the change detection results produced by the method 
proposed in this chapter. 

Mapped class 

Ground truth (pixels) 
Rock 

exploitation Grass 
Rocky 
field Forest Totals 

Rock exploitation 
Grass 
Rocky field 
Forest 
Totals 

14 
1 
4 
0 
19 

0 
21 
1 
4 
26 

0 
0 

181 
0 

181 

0 
3 
1 

170 
174 

14 
25 
187 
174 
400 

Overall Accuracy = 96.5% (386/400) Kappa Coefficient = 0.9410 
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Table 7.2 Confusion matrix of the change detection results produced by the neural 
network-based change detection. 

Ground truth (pixels) 
Rock 

Mapped class exploitation 
Rocky 

Grass field Forest Totals 
Rock exploitation 
Grass 
Rocky field 
Forest 
Totals 

15 
0 
4 
0 
19 

0 
21 
0 
5 

26 

0 
0 

181 
0 

181 

0 
3 
1 

170 
174 

15 
25 
186 
175 
400 

Overall Accuracy = 96.75% (387/400) Kappa Coefficient = 0.9452 

Table 7.3 Confusion matrix of change detection results produced by the post 
classification comparison method using maximum likelihood supervised classification. 

Ground truth (pixels) 

Mapped class 
Rock exploitation 
Grass 
Rocky field 
Forest 
Totals 

Rock 
exploitation 

15 
0 
4 
0 
19 

Grass 
0 

21 
2 
3 

26 

Rocky 
field 

1 
16 
142 
22 
181 

Forest 
1 
7 
8 

158 
174 

Totals 
17 
44 
156 
183 
400 

Overall Accuracy = 84.0% (336/400) Kappa Coefficient = 0.7400 

Field surveys revealed that changed patches were converted to only one 
new cover type. Forest areas were replaced by grassland, and rocky-field areas 
by rock exploitation. Thus, the results provided by our approach might be further 
improved if an object-oriented approach is used. Each segmented region would 
then be treated as a single entity and assigned to a unique class. This would 
reduce the problem of speckled misclassification, which was not well 
represented in the test samples but visually detected as a considerable problem in 
changes from rocky-field to rock exploitation areas, mainly at the segments' 
edges. On the other hand, classification of deforested areas was well described 
by the confusion matrix, since visual evaluation showed just a few 
misclassifications. 

Figure 7.7 shows the change maps produced by each method evaluated in 
this study to update the GIS layer representing forest cover. Note the strong 
effect of geometric misregistration represented by many small and linear change 
patterns depicted with post classification comparison (figure 7.7c) and the neural 
network-based change detection (figure 7.7b). The method proposed here (figure 
7.7a) was more effective in depicting important changes. 
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Figure 7.7 Change maps produced with our compound procedure (a), with 
artificial neural networks (b), and with post classification comparison (c). 

The techniques currently available for detecting changes on remotely 
sensed data are dependent on accurate radiometric and geometric rectification 
(Dai and Khorram 1998, Schott et al. 1988), which are difficult tasks in most 
situations (e.g. poor quality of old sensors). The method proposed here detected 
changes using TM band 3, which is the one most influenced by atmospheric 
effects within the available set (i.e., bands 3, 4 and 5). Temporal images were 
acquired in different seasons of the year and were considerably misregistered. 
Even then, the procedure performed well and was insensitive to these problems. 
The methodology developed in an earlier work (Carvalho et al. 2000, chapter 6) 
and incorporated in the present procedure enabled the automation of change 
detection with remotely sensed data by taking advantage of singularity detection 
and denoising capabilities of wavelet transforms. These capabilities have already 
proven to be useful in the field of remote sensing to automate other tasks like 
GCPs definition for geometric registration (Djamdji et al. 1993) and extraction 
of linear features (Ji 1996). Furthermore, the wavelet approach eases change 
detection in images with different pixel sizes in a straightforward manner 
because of its multiresolution nature (Carvalho et al. 2000, chapter 6). Remotely 
sensed images are relatively noisy signals, which provide lots of information at 
different spatial scales. In this sense, the procedure presented in this chapter 
provides considerable improvements over post classification comparison and 
direct multidate classification (figure 7.7), even considering that the latter 
provided a slightly better classification accuracy (compare tables 7.1 and 7.2). 
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In spite of considering only one spectral band for analysis, the algorithm 
proposed here can be easily extended to the multispectral case by adding data 
integration steps during search and segmentation. Because information provided 
by various spectral bands is different, detected maxima in the search module 
would also differ from band to band. Segmentation in multidimensional space 
would have to evaluate the feature vector of each pixel being considered for 
inclusion in the region in the very same way as multispectral classification. 
These are two future directions to improve the procedure. 

The possibility of using different decision rules in the segmentation and 
labelling modules is an important characteristic of the procedure to meet specific 
requirements in different situations. For instance, when classes under 
investigation are accurately modelled by unimodal probability distributions, a 
maximum likelihood decision rule would be well suited. Unfortunately, this is 
not always the case and the possibility of using other non-parametric rules is 
acknowledged. Finally, the procedure is especially attractive for monitoring 
large areas, where detailed inspection of difference images is prohibitive. 

7.6 Conclusions 

In this chapter, a framework for digital change detection and automatic 
GIS updating has been developed, demonstrated, and compared with other 
commonly used methods. The approach is relatively simple and provides 
advantages over traditional methods like post classification comparisons and 
direct multidate classifications. First, the method is less sensitive to geometric 
and radiometric misregistrations because of the multiresolution approach to 
feature extraction included in the search module. Second, different from post 
classification comparisons, it requires groundtruth data only for the present land 
cover pattern. In comparison to direct multidate classification, change-classes do 
not need to be defined or training samples to be collected at changed sites. 
Finally, an object-oriented approach might be used, avoiding speckled 
misclassifications, which could improve classification accuracy. Further 
refinements of the procedure include the automatic threshold definition and the 
possibility of working with multivariate difference images. 
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Conclusions 

According to the main objectives of this thesis, a remote sensing-based 
strategy to map and monitor forest remnants in highly fragmented areas has been 
developed for the "Vale do Alto Rio Grande" region. The research was part of a 
larger project that investigates forests in southeastern and central Brazil, which 
is called "Strategy for Conservation and Management of biodiversity in 
fragments of semideciduous forests". A procedure that could be easily 
implemented by non-experts in image processing for rapid assessment of 
deforestation hot spots over large areas has been developed for and tested on a 
study area with a complex land cover pattern in southeastern Brazil. It has the 
potential to provide local authorities and governmental institutes with a 
deforestation warning system for the remnants of semideciduous Atlantic forest, 
where the visualisation of changed sites is straightforward with a simple colour 
composite avoiding any threshold definition, radiometric rectification or 
accurate geometric registration. 

The use of temporal information was intensively explored not only for 
monitoring, but also for mapping purposes. In this context, methodologies had to 
be developed to correct, integrate and enable the proper use of time series of 
Landsat TM imagery. 
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This concluding chapter is organised as follows. In section 8.1, significant 
achievements of this study related to mapping and monitoring the semideciduous 
Atlantic forest with remotely sensed data are described. In section 8.2, a 
multiscale processing environment for high-dimensional data sets is proposed, 
which synthesises all the data processing carried out in this thesis and gives 
room for further improvements. Future research topics as well as possible 
directions for improvement are listed in section 8.3. 

8.1 Answers to the research questions 

The main research questions of this study will be listed again, followed by 
the respective answers proposed in this thesis. 

Question: What are the preprocessing requirements to the application of 
remotely sensed time series in environmental modelling? How 
appropriate are the existing preprocessing techniques? 

The effective application of multitemporal Landsat images to environmental 
modelling requires a great amount of preprocessing to bring the data to a usable 
format, mainly because of cloud cover and misregistrations. Clouded areas must 
be identified as well as replaced and image registration must be as accurate as 
possible. Existing preprocessing techniques can carry out these tasks but they are 
difficult and time consuming, requiring a great amount of human interaction. 
The wavelet-based regression technique described in chapter 3 removed clouds 
and corrected for misregistration simultaneously and automatically, while 
providing reliable estimates for the values that were replaced. 

Question: How appropriate are the temporal analysis tools? 

In terms of time series processing, the multiscale approach provided an effective 
tool for studying remotely sensed images that were arbitrarily sampled in time, 
contaminated by clouds and shadows, corrupted by misregistration as well as 
random Gaussian noise. In terms of traditional change detection using images of 
two distinct dates, the framework described in chapter 6 and implemented in 
chapter 7 is less sensitive to noise caused by misregistration, it might be 
combined with any standard change detection technique and provides an aid to 
rapid change detection over large geographical areas. A minor disadvantage of 
the method is that fine details are regarded as noise and removed as well. 
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Question: What kind of remotely sensed data is relevant to map semideciduous 
Atlantic forests? Can temporal information improve traditional 
multispectral classification? 

The strong spectral similarity between natural forests and some planted crops 
hampers the use of single date remote sensing data for mapping forests in the 
study site. Temporal information is of utmost importance for mapping the 
semideciduous Atlantic forest and particularly NDVI time series proved to be 
useful features for classification. This fact could be explained by the contrasting 
long-term and seasonal dynamics exhibited by natural forests and planted crops. 
As shown in chapter 5, terrain elevation, slope and aspect are apparently less 
important than temporal information probably because forested areas occur 
across all relief types in the study site. Nevertheless, topographic properties still 
provide improvements in classification accuracy when compared to the use of 
spectral information alone. 

Question: To what extent can geoinformation processing be automated? 

Machine learning and multiscale approaches can facilitate automation, but even 
then, some degree of human input will always be necessary due to the complex 
nature of the Earth's surface. Multiscale methods reduce the amount of 
information to be analysed when performing automated tasks, but knowledge on 
which scale levels to look at must exist. Similarly, neural networks and decision 
tree models must be carefully constructed with a considerable amount of 
training data before accurate generalisations over larger domains can be done. 

Question: How appropriate are the classification tools? Can artificial 
intelligence improve over traditional techniques? 

In the experiment concerning mapping remnants of semideciduous Atlantic 
forest (chapter 5), the traditional maximum likelihood classification algorithm 
clearly outperformed the algorithms based on machine learning techniques 
when temporal features were used for classification. This could be due to the 
fact that the distribution of forest pixels in multidimensional feature space 
(constructed with temporal information) was not so complex as expected, and 
could be accurately described with parametric models. Nevertheless, this is an 
intrinsic characteristic of specific thematic classes, which justify a class-oriented 
approach in classification. This observation suggests that probabilistic classifiers 
should always be considered and evaluated for future mapping projects. 
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Question: Can multiscale methods improve over traditional techniques? 

The multiscale nature of our world is portrayed in remotely sensed data 
sets. These data sets also present intrinsic multiscale patterns (e.g., distortions) 
generated by the measuring devices, measuring conditions and integration 
processes. In this thesis, emphasis has been given to techniques that are able to 
separate the information contained in remotely sensed data sets according to the 
dominant scale levels in which the information manifests itself. The aim was to 
use this scale-specific information to improve over fixed-scale approaches to 
geographical information processing. As shown in this thesis, multiscale 
analysis should be seen as a complement rather than a substitute for traditional 
geoinformation processing techniques. It provides a series of representations of 
the Earth's surface that isolates landscape features according to the dominant 
scale levels in which they appear. It follows that traditional techniques might 
then be applied to selected scale levels according to the objectives of a given 
project. 

It is concluded that postulates 1, 2 and 3 have been confirmed by the 
research described in this thesis, but postulate 4 has only partially been 
confirmed. Thus, based on the findings presented in this thesis, the postulates are 
reformulated as: 

1) Nonlinear and nonparametric regression techniques are more effective to 
analyse and process time series of Landsat imagery in order to minimise the 
effects of cloud contamination and distortions caused by misregistration. 

2) Long time series are useful to improve the separation of spectrally similar 
objects on the Earth's surface. It can be particularly useful to distinguish 
between natural and man-made land cover types. 

3) Geographical data carry information at multiple spatial and temporal scales. 
Automation can be improved if this multiscale nature is taken into account 
during processing. 

4) Multiscale methods can handle the increasing amount of available data more 
effectively than fixed-scale approaches. Traditional pattern recognition methods 
still provide important tools for geographical information processing. 



Conclusions 93 

P. 
«2 

Orthophotos 
1984 

Landsat MSS 
1981 

Hyperspectral 
imagery 

Radar 
imagery 

Landsat TM 
1984 

1 
1999 

—1 

DEM 

'.1 IxtiatKiCIN T1 .,!»' 

•••! !;:>.•••..•. ••:! • Ai'lnfr 

Multiscale 
Transform 

Spatially-Spedrally 

S Jkeyisler L> . ! 

Compress I 

T: 

Sioiv ami 
iransimt 

> ' 

Inverse 
Transform 

> ' 

W' 

" 

(Original) Data set 

KNOWLEDGE on 
EVENTS and 

RELATIONSHIPS 

e.g., classifications, 
regressions, forecasting, 
indicators, ecological 
indices,... 

Figure 8.1 The multiscale processing environment. 
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8.2 A multiscale processing environment 

The framework proposed here (figure 8.1) was based on multiscale 
transforms and artificial intelligence. Each raster data set was decomposed into a 
multiscale representation using wavelet transforms. Data integration, regression, 
compression and information extraction were carried out in the transformed 
domain (dark-grey area in figure 8.1). 

The outputs, transformed back (or not) to the spatial-temporal-spectral 
domain in any desired resolution, were input to a machine learning system, 
which generated knowledge on events and relationships independently from data 
type or measurement scale. In this framework, events and relationships can then 
be translated into classifications, regressions, indicators, predictions etc. 

The case studies presented in this thesis illustrate some of the possibilities 
when working within the proposed framework. The input data set comprised 
orthophotos, multi-temporal Landsat (MSS and TM) images and a digital 
elevation model. The tasks carried out in this thesis (light-grey boxes in figure 
8.1) have included spatial resolution merging (chapter 6), nonparametric 
regression for cloud removal (chapter 4), extraction of texture descriptors for 
land cover classification (chapter 5), and extraction of objects at multiple spatial 
scales for change detection studies (chapter 7). Then, the knowledge generated 
with artificial intelligence was used to generate maps of forest cover and 
deforestation in an area of semideciduous Atlantic forest of southeastern Brazil. 

8.3 Recommendations and perspectives 

(Semi)Automatic change detection and GIS updating are feasible tasks 
that should be implemented by local authorities and planners to monitor and 
understand forest dynamics in the region. The procedure developed in this thesis 
enables a relatively easy implementation by non-experts in image processing, 
which might then concentrate on further aspects of landscape change or control 
of illegal activities. 

Significant improvements in automatic change detection according to the 
proposed method include the development of algorithms for automatic scale 
selection within the multiscale approach. Even so, expert knowledge still has to 
be used to define the rules for such algorithms. 
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The preprocessing methodology presented in chapter 3 might be used to 
increase the temporal availability of Landsat images by replacing areas 
contaminated by clouds. Entire time series can be used to provide ecologically 
meaningful temporal profiles by reducing the variation caused by external 
sources. Institutes responsible for distribution of satellite sensor images could 
provide cloud free and/or estimated time series of high spatial resolution 
imagery increasing the levels of preprocessing currently available to the end 
users, e.g. GVI (Global Vegetation Index) and GMMS-NDVI (Global 
Inventory, Modelling, and Monitoring System) data sets derived from NOAA 
AVHRR. Such a data set of high spatial resolution imagery would be a useful 
input for studies concerning vegetation dynamics, mapping, land transformation, 
ecological indicators and predictive modelling. 

Effective classification of semideciduous Atlantic forest in the "Vale do 
Alto Rio Grande" should always take temporal information into account. The 
maximum likelihood classification algorithm is considered to be most 
appropriate in this study and is therefore recommended. Nevertheless, increased 
image size, landscape complexity and/or class complexity could generate more 
complex feature spaces and data distributions, where nonparametric classifiers 
are thought to be superior. A class-oriented approach is indicated whenever the 
objectives are exclusively focused on forest mapping. For mapping other land 
cover types, research should look for relevant features and suitable classifiers. 

Concerning forest mapping in the region, further research should be 
directed to within-forest classification and to the definition of important features 
for this task. Again, temporal profiles preprocessed according to the proposed 
techniques are expected to play a decisive role for mapping forest subclasses. 

Finally, the techniques described in this thesis have been developed to 
solve problems in the temporal and spatial domains. However, the same 
principles might be applied to the spectral domain as well, especially with the 
increasing availability of hyperspectral images. Applications in this direction 
include the identification and quantification of absorption features in spectral 
signatures, data reduction and denoising. 
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SUMMARY 

1. Introduction 

The world leaders have recognised in unprecedented meetings that forest 
ecosystems play a fundamental role in vital processes such as carbon cycle, 
climate change, soil degradation, and water dynamics. One basic requirement to 
quantify and model these processes is the availability of accurate maps of forest 
cover. In this context, remote sensing and geographical information 
technologies represent promising tools, where data acquisition and analysis at 
appropriate scales are the keystone to achieve the mapping accuracy needed for 
development and reliable use of environmental models. The upcoming 
production of high-resolution data sets and the increasing time series that have 
been collected have the potential to improve dramatically our knowledge about 
the environment, but data integration and proper analysis of such data set is a 
challenge of utmost importance to realise this potential. 

Hence, the following questions were addressed in this study: 
(1) What are the preprocessing requirements to the application of remotely 

sensed time series with high spatial resolution in environmental modelling? 

(2) What kinds of analytical tools and landscape features derived from remote 
sensing are relevant to map forests in the study area? 

(3) To what extent can geoinformation processing be automated? 
(4) Can artificial intelligence and multiscale methods improve over traditional 

techniques? 

The questions were drawn based on the objectives listed below: 

(1) to define a mapping strategy for forests in the study area, 
(2) to develop a deforestation warning system to enable timely action to be 

taken, 
(3) to develop a strategy to preprocess and extract information from long time 

series of Landsat data, 
(4) to investigate methods to separate spectrally similar land cover types by 

using other information sources and/or alternative image analysis methods, 
and 

(5) to develop an automatic approach for detection and quantification of land 
cover changes using remotely sensed images. 
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2. An Area of Semideciduous Atlantic Forest 

It is supposed that the Brazilian Atlantic forests (evergreen, 
semideciduous, and Araucaria forests) have once covered about one million 
square kilometres, corresponding to almost 12% of the country's area. Estimated 
figures indicate that it is now reduced to less than 5% of the original cover. The 
semideciduous Atlantic forest represents an important subdomain of the Atlantic 
forest biome, which is eminently more threatened than the Amazonian, less 
studied than its evergreen counterpart, and even more degraded than both are. 

The area chosen to study the semideciduous Atlantic forest is located in 
the "Vale do Alto Rio Grande" region in the south of Minas Gerais, southeastern 
Brazil. In the end of the nineteenth century, the culture of coffee was introduced 
in the region and increased very fast to become one of the main causes of 
deforestation. Nowadays, besides the increasing industrialisation, coffee and 
milk production form the main economical activities in the region. The study 
area is delimited by the coordinates 21° 05' - 21° 47' S and 44° 02' - 45° 04' W. 

The area was studied using a long time series (28 images from 1981 to 
1999) of remote sensing data, which came from the Landsat Earth observation 
satellite program. Auxiliary data comprised orthophotos (1:10.000) and digitised 
contour lines with 20 m of vertical resolution. 

3. Geographical Information Processing 

Observations with remote sensing are measurements of reflectance or 
emission after the radiation has interacted with the objects on the Earth's surface 
and with the atmosphere. The measurements are organised as an image or 
description of a region at a certain point in time. Repeated observations of the 
same area form a multitemporal data set. Seemingly, observations of the same 
area at a fixed point in time, but in different portions of the electromagnetic 
spectrum, form a multispectral data set. 

Recently, much attention has been paid to the multiscale characteristic of 
environmental phenomena and, as a consequence, of our observations with 
remote sensing. Multiscale wavelet analysis separates the information of interest 
according to the dominant scales in which it appears, no matter the domain (i.e., 
spatial, spectral, temporal etc) under consideration. Wavelets come from the 
iteration of a filter bank and because of the repeated rescaling, they decompose a 
signal into details at different resolutions. If the signals under consideration are 
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remotely sensed images, the scale parameter corresponds to the size of 
objects on the Earth surface, which are effectively modelled with this new 
multiresolution representation, revealing patterns that are not so clear in "subtle 
and complicated" remotely sensed images. 

Machine learning techniques have been developed for some decades 
within the larger field of Artificial Intelligence. The objective of Artificial 
Intelligence is to understand the way human beings recognise patterns and to 
develop intelligent systems. Neural nets and rule induction, two popular 
paradigms of the machine learning field, have been applied recently to 
classification problems in geoinformation sciences showing promising results. 
The basic idea in classification of multidimensional data is to partition the 
multidimensional feature space by using some decision boundaries. Machine 
learning techniques gained considerable attention for classification tasks because 
they provide partitions of feature spaces in an essentially nonlinear and 
nonparametric way. 

4. Removal of Clouds from Remotely Sensed Time Series 

The use of temporal information is extensively explored in this thesis. 
Novel schemes based on multiresolution wavelet analysis are introduced in this 
chapter to preprocess long time series of Landsat data and improve its 
applicability on environmental assessment. Particularly, removal of clouds and 
their shadows is addressed. This chapter can be viewed as a necessary 
preprocessing step for further analyses conducted in the thesis. It describes the 
application of the product of wavelet scales to generate binary masks of 
corrupted observations. The robust smoother-cleaner wavelets method was then 
applied to each temporal profile where anomalous values have been detected. 
The interpolation step is based on nonparametric function estimation applying 
wavelet shrinkage to the "clean" time series. Cloud contamination was simulated 
in a cloud-free time series and the missing values were estimated using five 
methods: 1) mean value, 2) minimum value, 3) maximum value, 4) linear 
regression, and 5) the wavelet-based procedure for nonparametric regression 
proposed in this chapter. Comparisons were made on the basis of root mean 
square errors (RMSE). Contamination was simulated for 3715 pixels, but only 
2508 were automatically detected by applying the procedure based on the 
product of wavelet scales. The contaminated pixels that were not detected 
represented fuzzy boundaries of clouds and shadows, shadowed forests that 
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already had low reflectance, and clouded areas of bare soil that had high 
reflectance values in the reference image. In addition, other anomalies, like 
geometric misregistration, were also automatically detected. Concerning 
interpolation of the missing values, the wavelet-based approach was more 
accurate for clouded areas while linear regression performed better in shadowed 
areas. 

Multiscale products of wavelet scales might be effectively used to 
automatically mask corrupted values for further replacement with any desired 
method. The method proposed here not only identified clouded and shadowed 
pixels but also other anomalies like misregistration effects and changes of short 
duration (e.g., burn scars). The robust nonlinear wavelet regression can do both, 
detection and estimation, at the same time and produce noise reduced images at 
any point in the time series. Thus, the wavelet approach holds promise as a 
preprocessing step for effective time series analysis. 

5. Classification Forest Remnants 

The need for improved mapping methods is evident from our still poor 
knowledge on basic information about forest extent and condition. Fragmented 
ecosystems such as the semideciduous Atlantic forest demand the use of high 
spatial resolution imagery. Nevertheless, because of spectral overlap problems, 
the occurrence of coffee and eucalyptus plantations in the region poses 
limitations to an accurate classification of forest remnants using the currently 
available high spatial resolution data. The experiment described in this chapter 
related attribute features derived from a digital elevation model, raw remote 
sensing data, and various transformations to enhance vegetation areas, image 
texture and spectro-temporal relations. Feature sets were defined based on expert 
knowledge and on data mining techniques to be input to traditional and machine 
learning algorithms for pattern recognition, viz. maximum likelihood, univariate 
decision trees, multivariate decision trees, and neural networks. 

The results showed that maximum likelihood classification using temporal 
texture descriptors as extracted with wavelet transforms was most accurate to 
classify the semideciduous Atlantic forest in the study area. Maximum 
likelihood performed relatively well with all input feature sets, providing a forest 
mapping accuracy that ranged from 34.5% to 51.3%. In contrast, neural 
networks showed the greatest variation, with an accuracy that ranged from 
19.0% to 45.2%. The worst classification accuracy (19%) was provided by the 
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combination of neural networks with mined features mainly due to the large 
number of commissions. As expected, classification confusion occurred mainly 
with coffee and eucalyptus plantations, but neural networks and univariate trees 
also misclassified deforested areas currently covered with pasture. Univariate 
trees provided the most robust results for different feature sets, with a forest 
mapping accuracy that ranged from 39.6% to 46.7%. Temporal information of 
vegetation indices was more important than image texture, terrain topography 
and raw spectral information for discriminating semideciduous Atlantic forest in 
the present study site. Nevertheless, spatial texture and topographical features 
were still important when neural networks and multivariate trees were used for 
classification. Therefore, aiming at accurate mapping of semideciduous Atlantic 
forest in the "Vale do Alto Rio Grande", using the data set available for this 
study and considering the other factors granted, one is advised to use maximum 
likelihood classification and temporal texture descriptors of NDVI time series as 
input data. 

6. Multiscale Change Analysis 

Current methods used to compare two or more remotely sensed images 
and to detect differences among them are dependent on accurate radiometric 
normalisation and geometric rectification, which are hard to achieve in many 
situations due to the lack of (radiometric) calibration data and difficulties in 
locating (geometric) control points. The objective of the method proposed in this 
chapter was to reduce the sensitivity of digital change detection to the effects of 
radiometric and geometric misregistration by extracting changes according to 
size classes using a multiscale approach. A change image, produced by any of 
the standard radiometric change detection methods (e.g., image differencing), is 
decomposed into several high frequency bands with variable resolutions plus a 
low frequency band at the coarsest resolution by means of wavelet transforms. 
The product of wavelet scales was then used to enhance changed sites and 
suppress misregistration effects. 

Using the multiscale product in a simple colour composite, visualisation 
of changed sites can be readily done. All changes detected by this visualisation 
procedure did occur although their quantification was not possible. This 
straightforward visualisation might be of much use when large areas are to be 
evaluated. Misregistration effects and small area changes were isolated as fine 
details, while differences in phenological characteristics and atmospheric 
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conditions were captured in the smoothed representation as overall differences 
between the images. Vegetation removal, reforested areas, as well as new rock 
exploitation sites were pinpointed successfully without previous radiometric 
rectification or threshold definition, while differences not related to land cover 
changes were bypassed. The behaviour of changes at different scale levels as 
resulting from the new method presented here enables their discrimination 
according to size classes. The method was found to be less sensitive to spatial 
and radiometric misregistration, although fine details are lost as well. It can be 
applied to the outputs of any change detection technique such as image 
rationing, principal components, change vector analysis etc. Applications of the 
proposed method include, for instance, the automatic selection of changed sites 
for GIS updating and the fast identification of priority areas for field check when 
large data sets are to be evaluated. Finally, the visualisation of changed sites is 
straightforward with a simple colour composite avoiding any threshold 
definition, radiometric rectification or accurate geometric registration. 

7. Automatic Deforestation Detection 

Automation has been one of the early goals of geoinformation processing 
due to the potential of performing unsupervised tasks provided by computer-
aided analysis. The difficulties with land cover change detection are further 
complicated when compared to land cover mapping, imposing limits to 
automation. The main difficulties while handling time series of remotely sensed 
data are related to (1) geometric transformations, (2) the size of changes to be 
observed, (3) the temporal scales in which changes occur, (4) atmospheric 
conditions, (5) the radiometric response of objects on the Earth's surface, and (6) 
the gradual nature of some types of changes. The aim of this study was to 
develop an automated, simple and flexible procedure for raster-based GIS 
updating. 

The procedure proposed and illustrated in this chapter uses as input two 
remotely sensed images acquired at different points in time {h and t2), GIS layers 
representing the land cover types under investigation, and a set of groundtruth 
data for the present land cover pattern and for changed sites. The most recent 
image is used to update the GIS layers based on radiometric differences with the 
oldest image. Four modules compose the procedure according to the main tasks 
performed: (1) location of changed sites, (2) quantification of changed area, (3) 
classification of the new land cover type, and (4) updating the database. First, 
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the difference image is decomposed with wavelet transforms and the maxima of 
multiscale products are extracted at changed sites according to the methodology 
developed in chapter 6. Secondly, segmentation is performed on the difference 
image based on a decision rule to check if the pixels surrounding each detected 
maximum are spectrally similar. Thirdly, each changed pixel or each segmented 
region is assigned to the land cover class with the highest probability of 
membership. Then, the output is used to update all the GIS layers where changes 
took place. This procedure was compared with two other approaches to change 
detection and identification, viz. post classification comparison and direct 
multidate classification. 

The procedure described in this chapter was less sensitive to geometric 
and radiometric misregistrations because of the multiresolution approach to 
feature extraction included in the search module. Different from post 
classification comparisons, it requires ground truth data only for the present land 
cover pattern. In comparison to direct multidate classification, change-classes do 
not need to be defined or training samples to be collected at changed sites. 
Finally, segmented areas could be considered individual objects and classified as 
such, avoiding speckled misclassifications and improving classification 
accuracy. Further refinements of the procedure include the automatic threshold 
definition and the possibility of working with multivariate difference images. 

8. Conclusions 

According to the main objectives of this thesis, a remote sensing-based 
strategy to map and monitor forest remnants in highly fragmented areas was 
developed for the "Vale do Alto Rio Grande" region. A procedure that could be 
easily implemented by non-experts in image processing for rapid assessment of 
deforestation hot spots over large areas was proposed. It has the potential to 
provide local authorities and governmental institutes with a deforestation 
warning system for the remnants of semideciduous Atlantic forest. 

The wavelet-based regression technique described in chapter 3 removed 
clouds and corrected for misregistration simultaneously and automatically, while 
providing reliable estimates for the values that were replaced. The multiscale 
approach provided an effective tool for studying remotely sensed images that 
were arbitrarily sampled in time, contaminated by clouds and shadows, 
corrupted by misregistration, as well as random Gaussian noise. The framework 
described in chapter 6 and implemented in chapter 7 is less sensitive to noise 
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caused by misregistration, it might be combined with any standard change 
detection technique and provides an aid to rapid change detection over large 
geographical areas. Temporal information is of utmost importance for mapping 
the semideciduous Atlantic forest and particularly NDVI time series proved to 
be useful features for classification. Multiscale methods reduce the amount of 
information to be analysed when performing automated tasks, but knowledge on 
which scale levels to look at must exist. In chapter 4, the traditional maximum 
likelihood classification algorithm clearly outperformed the algorithms based on 
machine learning techniques when temporal features were used for 
classification. Multiscale analysis should be seen as a complement rather than a 
substitute for traditional geoinformation processing techniques. It provides a 
series of representations of the Earth's surface that isolates landscape features 
according to the dominant scale levels in which they appear. It follows that 
traditional techniques might then be applied to selected scale levels according to 
the objectives of a given project. 

Based on the findings presented in this thesis, postulates 1 to 3 were 

confirmed, whereas the postulate 4 was partially confirmed: 

1) Nonlinear and nonparametric regression techniques are more effective to 
analyse and process time series of Landsat imagery in order to minimise the 
effects of cloud contamination and distortions caused by misregistration. 

2) Long time series are useful to improve the separation of spectrally similar 
objects on the Earth's surface. It can be particularly useful to distinguish 
between natural and man-made land cover types. 

3) Geographical data carry information at multiple spatial and temporal scales. 
Automation can be improved if this multiscale nature is taken into account 
during processing. 

4) Multiscale methods can handle the increasing amount of available data more 
effectively than fixed-scale approaches. Traditional pattern recognition 
methods still provide important tools for geographical information 
processing. 

In the multiscale processing environment proposed in this thesis, each 
raster data set was decomposed into a multiscale representation using wavelet 
transforms. Data integration, regression, compression and information extraction 
was carried out in the transformed domain. The outputs, transformed back (or 
not) to the spatial, temporal and spectral domains in any desired resolution, were 
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input to a machine learning system, which generated knowledge on events and 
relationships independently from data type or measurement scale. In this 
framework, events and relationships can then be translated to classifications, 
regressions, indicators, predictions etc. 

(Semi)Automatic change detection and GIS updating are feasible tasks 
that should be implemented by local authorities and planners to monitor and 
understand forest dynamics in the region. Significant improvements in automatic 
change detection according to the proposed method include the development of 
algorithms for automatic scale selection within the multiscale approach. The 
preprocessing methodology presented in chapter 3 might be used to increase the 
temporal availability of Landsat images and entire time series can be used to 
provide ecologically meaningful temporal profiles. Effective classification of 
semideciduous Atlantic forest in the "Vale do Alto Rio Grande''' should always 
take temporal information into account. A class-oriented approach is indicated 
whenever the objectives are exclusively focused on forest mapping. Concerning 
forest mapping in the region, further research should be directed to within-forest 
classification and to the definition of important features for this task. Finally, the 
techniques described in this thesis were developed to solve problems in the 
temporal and spatial domains. However, the same principles might be applied to 
the spectral domain as well, for identification and quantification of absorption 
features in spectral signatures, data reduction and denoising. 
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SAMENVATTINC 

1. Inleiding 

De wereldleiders hebben tijdens de diverse klimaat- en milieuconferenties 
erkend dat bos-ecosystemen een essentiele rol spelen in processen zoals de 
koolstofcyclus, klimaatveranderingen, bodemdegradatie en de dynamiek van het 
water. Een eerste vereiste om deze processen te kwantificeren en te monitoren is 
de beschikbaarheid van nauwkeurige kaarten van bosgebieden. In dit verband 
spelen remote sensing en geograflsche informatie-technieken een cruciale rol. 
Gegevens-inwinning en -analyse op dejuiste schaalniveaus vormen de basis om 
de karteringsnauwkeurigheid te bereiken die nodig is voor de ontwikkeling en 
het betrouwbaar gebruik van gebruikte milieumodellen. Binnen het 
aandachtsgebied van de aardobservatie bieden de opkomende productie van 
hoge-resolutie gegevens en de beschikbaarheid van steeds verder reikende 
tijdseries de mogelijkheid om onze kennis over het milieu aanzienlijk te 
verbeteren, maar gegevens-integratie en de juiste analyse van dergelijke 
gegevens is een zeer belangrijke uitdaging om deze mogelijkheden te benutten. 

Gebaseerd op het bovenstaande werden de volgende vragen in deze studie aan 
de orde gesteld: 

(1) Welke eisen moeten worden gesteld aan de voorbewerking van remote 
sensing-tijdseries met een hoge ruimtelijke resolutie voor toepassing in de 
milieumodellering? 

(2) Welke soorten remote sensing-gegevens en analysegereedschappen zijn van 
belang om bossen te karteren in het studiegebied? 

(3) n hoeverre kan de geo-informatie-verwerking geautomatiseerd worden? 
(4) Kunnen kunstmatige intelligence en multischaal-methoden verbeteringen 

opleveren ten opzicht van traditionele technieken? 

Genoemde vragen werden op basis van de volgende doelstellingen gesteld: 
(1) het definieren van een strategic om de bossen in het studiegebied te 

karteren; 
(2) het ontwikkelen van een waarschuwingssysteem voor ontbossing om het 

nemen van tijdige actie mogelijk te maken; 

(3) het ontwikkelen van een strategic om lange tijdseries van Landsat-gegevens 
te bewerken en de relevante informatie te extraheren; 
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(4) het onderzoeken van methoden om spectraal-gelijkende bedekkingtypen te 
onderscheiden met gebruikmaking van andere informatiebronnen en/of 
altematieve analysemethoden, en 

(5) het ontwikkelen van een automatische benadering voor de detectie en 
kwantificering van veranderingen in landbedekking gebruikmakend van 
remote sensing-beelden. 

2. Een Gebied van Half-loofverliezende Atlantische Bossen 

Men veronderstelt dat de Atlantische bossen in Brazilie' (groenblijvende, 
half-loofverliezende en Araucaria bossen) ooit een gebied van een miljoen 
vierkante kilometer bestreken. Geschatte cijfers geven aan dat dit nu 
gereduceerd is tot minder dan 5% van de oorspronkelijke bedekking. Het half-
loofverliezende Atlantische bos is een belangrijke representant van het 
Atlantische bos, dat meer bedreigd wordt dan dat van de Amazone, minder 
bestudeerd is dan de groenblijvende tegenhanger en meer achteruitgegaan is dan 
beide. Het gebied dat als studiegebied voor dit proefschrift geselecteerd is om 
het half-loofverliezende Atlantische bos te bestuderen bevindt zich in het 
zogenaamde " Vale do Alto Rio Grande" gebied in het zuiden van de provincie 
Minas Gerais in het zuidoosten van Brazilie. Tegen het eind van de negentiende 
eeuw werd de verbouw van koffie in het gebied geintroduceerd en het areaal 
groeide erg snel, hetgeen een van de belangrijkste oorzaken van ontbossing 
werd. Tegenwoordig zijn koffie- en melkproductie de belangrijkste economische 
activiteiten in het gebied, naast de toegenomen industrialisatie. Het gebied wordt 
gekarakteriseerd als glooiend, met hoogten varierend tussen 700 en 1000 m in 
het grootste deel van het gebied. Er komen echter ook hoogten tussen l l 00 en 
1400 m voor op de steilere bergkammen. Het klimaat is een gematigd tot 
subtropisch klimaat met een natte zomer en een droge winter. De belangrijkste 
rivier in het studiegebied is de "Rio Grande". Het gebied is bestudeerd met 
behulp van een lange tijdserie aan remote sensing-gegevens (28 beelden van 
1981 tot 1999), afkomstig van het Landsat-aardobservatieprogramma. 
Hulpgegevens bestonden uit orthofoto's (1:10.000) en gedigitaliseerde 
contourlijnen met een verticale resolutie van 20 m. 

3. Geografische Informatieverwerking 

Remote sensing-waarnemingen zijn metingen van de reflectie of emissie 
van straling nadat deze in meer of mindere mate in wisselwerking is getreden 
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met het aardoppervlak en met de atmosfeer. De metingen worden georganiseerd 
in de vorm van een beeld of als een beschrijving van een gebied op een bepaald 
moment in de tijd. Herhaalde waarnemingen van een bepaald gebied vormen een 
zogenaamde multitemporele gegevensset. Zo vormen waarnemingen van 
hetzelfde gebied op een bepaald moment in de tijd, maar in verschillende delen 
van het electromagnetische spectrum, een zogenaamde multispectrale 
gegevensset. Recent wordt veel aandacht besteed aan de eigenschappen van 
milieuverschijnselen op verschillende schaalniveaus en dientengevolge aan 
waarnemingen met behulp van remote sensing op verschillende schaalniveaus. 
Een zogenaamde "multischaal-waveletanalyse" scheidt de gezochte informatie 
naar gelang de overheersende schaal waarop het verschijnt, onafhankelijk van 
het domein (dat wil zeggen ruimtelijk, spectraal, temporeel, etc.). Wavelets 
worden berekend door iteratie van een signaal met een serie filters, zodat ze het 
signaal ontleden in informatie op verschillende resolutieniveaus. Als de 
beschouwde signalen remote sensing-beelden zijn, dan correspondeert de 
schaalparameter met de afmeting van objecten op het aardoppervlak. Deze 
kunnen effectief gemodelleerd worden met deze nieuwe multiresolutie-
weergave. Wavelets kunnen zo patronen blootleggen die op de oorspronkelijke 
remote sensing-beelden niet duidelijk zijn. Computers en programma's met een 
zelflerend vermogen (machineleertechnieken) worden binnen het ruimere veld 
van de kunstmatige intelligence al enkele decennia ontwikkeld. Neurale 
netwerken en regel-inductie, twee populaire voorbeelden uit het veld van de 
machineleertechnieken, zijn recentelijk met veelbelovende resultaten toegepast 
op het classificatieprobleem in de geo-informatie-wetenschappen. 

4. Het Verwijderen van Wolken uit een Remote Sensing-tijdserie 

In dit hoofdstuk worden nieuwe schema's gebaseerd op de multiresolutie-
waveletanalyse geintroduceerd om lange tijdseries van Landsat-gegevens voor te 
bewerken en om de toepasbaarheid in milieugerelateerde toepassingen te 
verbeteren. Met name het onderwerp van het verwijderen van wolken en hun 
schaduwen wordt behandeld. Het beschrijft het toepassen van de 
vermenigvuldiging van wavelet-schalen om binaire maskers van slechte 
waarnemingen te genereren. De robuuste effenende-opschonende 
waveletmethode wordt vervolgens toegepast op elk temporeel profiel waarin 
afwijkende waarden zijn ontdekt. De interpolatiestap is gebaseerd op niet-
parametrische functieschattingen met toepassing van "wavelet-krimping" op de 
opgeschoonde tijdseries. Verontreiniging met wolken is in een wolkenvrije 
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tijdserie gesimuleerd en de ontbrekende (slechte) waarden werden met behulp 

van vijf verschillende methoden geschat. 

Verontreiniging met wolken is gesimuleerd voor 3715 pixels. Er werden 
2508 pixels automatisch gedetecteerd door middel van toepassingen van de 
procedure gebaseerd op vermenigvuldiging van wavelet-schalen. De 
verontreinigde pixels, die niet gedetecteerd werden, vertegenwoordigden vage 
grenzen van wolken en schaduwen, bos in de schaduw met al een lage reflectie, 
en bewolkte delen met kale bodem die hoge reflectiewaarden in het 
referentiebeeld hadden. Bovendien werden andere afwijkingen, zoals een 
geometrisch onjuiste passing (misregistratie), ook automatisch gedetecteerd. De 
waveletgebaseerde methode was nauwkeuriger voor bewolkte gebieden met 
betrekking tot de interpolatie van ontbrekende waarden, terwijl de lineaire 
regressie methode het beter deed in beschaduwde gebieden. Multischaal-
waveletproducten zouden effectief ingezet kunnen worden om automatisch 
slechte waarden in een beeld te vinden zodat deze vervolgens door middel van 
een of andere gewenste methode vervangen kunnen worden. De hier 
voorgestelde methode identificeerde niet alleen wolken en beschaduwde pixels, 
maar ook andere afwijkingen zoals misregistratie-effecten en kortdurende 
veranderingen (bijvoorbeeld de littekens van branden). De robuuste niet-lineaire 
waveletregressie kan tegelijkertijd zowel de detectie als ook de schatting 
uitvoeren en ruis-gereduceerde beelden op ieder punt in de tijdserie produceren. 
De waveletbenadering is dus veelbelovend als voorbewerkingsstap voor een 
effectieve tijdserie-analyse. 

5. Het Classificatie van Bosrestanten 

De noodzaak voor verbeterde karteringsmethoden wordt duidelijk uit onze 
nog matige kennis van basisinformatie over bosarealen en -condities. 
Gefragmenteerde ecosystemen, zoals het half-loofverliezende Atlantische bos, 
vragen om het gebruik van beelden met een hoge ruimtelijke resolutie. Het 
voorkomen van koffie- en eucalyptusplantages in het studiegebied levert 
beperkingen op voor een nauwkeurige classificatie van bosrestanten met de 
momenteel beschikbare hoge-resolutie gegevens ten gevolge van spectrale 
overlap tussen de betreffende klassen. 

In dit hoofdstuk werden een voorbewerkte tijdserie (geproduceerd zoals 
beschreven in hoofdstuk 4) en andere informatie met betrekking tot spectrale en 
ruimtelijke eigenschappen gebruikt om bosgebieden te classificeren. Het 
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experiment onderzocht de relaties tussen kenmerken afgeleid uit een digitaal 
hoogtemodel, ruwe remote sensing-gegevens en verschillende transformaties om 
begroeide gebieden, beeldtextuur en spectrale-temporele relaties te versterken. 
Gebaseerd op expert-kennis en zogenaamde "data mining" technieken werden 
series met kenmerken gedefinieerd om als invoer te dienen in traditionele en 
machineleer-algoritmes voor patroonherkenning, te weten de zogenaamde 
"maximum likelihood" classificatie, univariate en multivariate beslisbomen en 
neurale netwerken. De resultaten lieten zien dat de maximum likelihood 
classificatie met temporele textuurbeschrijvingen verkregen met 
wavelettransformaties het meest nauwkeurig was voor het classificeren van het 
half-loofverliezende Atlantische bos in het studiegebied. De maximum 
likelihood methode voldeed relatief goed voor alle series met invoerkenmerken, 
resulterend in een karteringsnauwkeurigheid voor bos tussen 34,5% en 51,3%. 
Hier staat tegenover dat neurale netwerken de grootste variatie vertoonden met 
een nauwkeurigheid varierend van 19,0% tot 45,2%. Zoals verwacht trad 
verwarring vooral op met koffie- en eucalyptusplantaties, maar neurale 
netwerken en univariate beslisbomen classificeerden ontboste gebieden, die 
nu als grasland in gebruik zijn, ook foutief. Univariate beslisbomen gaven 
de meest robuuste resultaten voor verschillende kenmerksets, met een 
classificatienauwkeurigheid voor bos tussen 39,6% en 46,7%. Temporele 
informatie van vegetatie-indices was belangrijker dan beeldtextuur, 
terreintopografie en ruwe spectrale informatie voor het onderscheiden van het 
half-loofverliezende Atlantische bos in het onderzochte studiegebied. Op basis 
van dit onderzoekwerd geconcludeerd dat het beter is om de maximum 
likelihood classificatie en temporele textuurbeschrijvingen van NDVI-tijdseries 
als invoergegevens te gebruiken indien men een nauwkeurige kartering van het 
half-loofverliezende Atlantische bos in het "Vale do Alto Rio Grande" 
studiegebied wil uitvoeren met de gegevensset die voor deze studie beschikbaar 
was en rekening houdend met de overige gegeven factoren. 

6. Multischaal-analyse van Veranderingen 

De huidige methoden om twee of meer remote sensing-beelden te 
vergelijken en om onderlinge verschillen te detecteren zijn afhankelijk van een 
nauwkeurige radiometrische normalisatie en geometrische rectificatie, welke in 
veel gevallen moeilijk te realiseren zijn ten gevolge van gebrekkige 
(radiometrische) ijkgegevens en problemen in het bepalen van (geometrische) 
paspunten. Het doel van de in dit hoofdstuk voorgestelde methode was om de 
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gevoeligheid van een geautomatiseerde detectie van veranderingen voor de 
effecten van radiometrische en geometrische misregistratie te verkleinen door 
veranderingen te extraheren volgens grootteklassen gebruikmakend van een 
multischaal-benadering. 

Een beeld met veranderingen, geproduceerd door een van de standaard 
radiometrische methoden voor de detectie van veranderingen (bijvoorbeeld het 
berekenen van het verschil in pixelwaarde tussen twee beelden), werd ontleed in 
verschillende hoge frequentiebanden met variabele resoluties en een lage 
frequentieband op de grofste resolutie door middel van een 
wavelettransformatie. De vermenigvuldiging van de wavelet-schalen werd 
vervolgens gebruikt om veranderde locaties te versterken en misregistratie-
effecten te onderdrukken. 

Visualisatie van veranderde locaties kan eenvoudig gerealiseerd worden 
door het multischaal-product als een simpele kleurcomposiet weer te geven. 
Deze simpele visualisatie kan erg nuttig zijn als grote gebieden geevalueerd 
moeten worden. Misregistratie-effecten en veranderingen van kleine gebieden 
werden als fijne details gei'soleerd, terwijl verschillen in fenologische 
eigenschappen en atmosferische gesteldheid gevangen werden in de geeffende 
voorstellingen als algemene verschillen tussen de beelden. Verwijdering van 
vegetatie, herbeboste gebieden en nieuwe ontginningen van mineralen werden 
succesvol gelokaliseerd zonder voorafgaande radiometrische correctie of 
definitie van een drempelwaarde, terwijl verschillen die niet gerelateerd waren 
aan verandering in de bedekking vermeden werden. 

7. Automatische Detectie van Ontbossing 

Automatisering is een van de eerste doelen van de geo-informatie-
verwerking geweest vanwege de mogelijkheid tot het uitvoeren van taken zonder 
direct menselijk ingrijpen met behulp van computer-ondersteunde analyses. De 
grootste beperkingen bij het bewerken van remote sensing-tijdseries zijn 
gerelateerd aan (1) geometrische vervormingen, (2) de kleinschaligheid van de 
waar te nemen veranderingen, (3) de temporele schalen waarop veranderingen 
plaatsvinden, (4) atmosferische condities, (5) de radiometrische respons van 
objecten op het aardoppervlak en (6) het geleidelijke karakter van sommige 
typen van veranderingen. Het doel van deze studie was om een 
geautomatiseerde, eenvoudige en flexibele procedure voor raster-gebaseerde 
GIS-actualisatie te ontwikkelen. 
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De in dit hoofdstuk voorgestelde en geillustreerde procedure gebruikt 
twee remote sensing-beelden, die op verschillende momenten in de tijd 
opgenomen zijn, GIS-lagen die de te onderzoeken typen landbedekking 
vertegenwoordigen en veldgegevens voor het huidige patroon van 
landbedekking en voor de veranderde locaties. Het meest recente beeld wordt 
gebruikt voor de actualisatie van de GIS-lagen gebaseerd op radiometrische 
verschillen met het oudste beeld. De procedure bestaat uit vier modules die elk 
een verschillende taak uitvoeren: (1) lokalisering van de veranderde locaties, (2) 
kwantificering van het veranderde gebied, (3) classificatie van het nieuwe type 
landbedekking en (4) actualisatie van de database. Allereerst wordt het 
verschilbeeld ontleed met een wavelettransformatie en de maxima van de 
multischaal-producten worden geextraheerd voor de veranderde locaties volgens 
de methodologie ontwikkeld in hoofdstuk 6. Vervolgens wordt een segmentate 
op het verschilbeeld toegepast volgens een bepaalde beslisregel om te 
controleren of de buurpixels van ieder gedetecteerd maximum spectraal 
overeenkomstig zijn. Ten derde wordt iedere veranderde pixel of gesegmenteerd 
gebied aan die landbedekkingklasse toegekend waarvoor de kans op 
lidmaatschap het grootst is. Tenslotte wordt het resultaat gebruikt om alle GIS-
lagen waar veranderingen optraden te actualiseren. Deze procedure is vergeleken 
met twee andere benaderingen om veranderingen te detecteren en te 
identificeren, namelijk de zogenaamde post-classificatie vergelijking en de 
directe multitemporele classificatie. 

De nauwkeurigheid van de detectie en identificatie van veranderingen met 
gebruikmaking van de hier voorgestelde procedure was vergelijkbaar met die 
van een directe multitemporele classificatie gebaseerd op neurale netwerken, 
maar aanzienlijk beter dan post-classificatie vergelijking. Dit resultaat bevestigt 
de verwachte foutenvoortplanting indien men dit vergelijkt met de resultaten van 
afzonderlijke classificaties. De voorgestelde methode detecteerde veranderingen 
met TM band 3, welke de band binnen de beschikbare set (TM band 3, 4 en 5) is 
die het meest bei'nvloed wordt door atmosferische effecten. Temporele beelden 
werden in verschillende seizoenen van het jaar verkregen en ze vertoonden een 
aanzienlijke misregistratie ten opzichte van elkaar. Toch voldeed de procedure 
goed en bleek ongevoelig voor deze problemen. 

De in dit hoofdstuk beschreven procedure was minder gevoelig voor 
geometrische en radiometrische misregistraties vanwege de multiresolutie-
benadering die in de zoekmodule opgenomen is. Tenslotte konden 
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gesegmenteerde gebieden als individuele objecten beschouwd worden en ook als 
zodanig geclassificeerd worden waarbij foutieve classificaties van ge'fsoleerde 
pixels vermeden werden en de nauwkeurigheid van de classificatie verbeterd 
werd. 

8. Conclusies 

In overeenstemming met de belangrijkste doelstellingen van dit 
proefschrift is een strategie op basis van remote sensing-informatie ontwikkeld 
om bosrestanten in sterk gefragmenteerde terreinen voor het "Vale do Alto Rio 
Grande" gebied te karteren en te monitoren. Er is een procedure ontwikkeld 
voor het snel bepalen van locaties met ontbossing over een groot gebied die 
eenvoudig gei'mplementeerd kan worden door leken op het terrein van de 
beeldbewerking. Het heeft de mogelijkheid om locale overheden en 
overheidsinstituten een ontbossings-waarschuwingssysteem voor de 
overblijfselen van de half-loofverliezende Atlantische bossen te bieden. 

De in hoofdstuk 3 beschreven regressietechniek gebaseerd op wavelets 
verwijderde wolken en corrigeerde tegelijkertijd en automatisch misregistraties 
terwijl betrouwbare schattingen voor de vervangen waarden werden verkregen. 
De multischaal-benadering leverde een effectief gereedschap op voor het 
bestuderen van remote sensing-beelden, die willekeurig in de tijd ingewonnen 
zijn, verontreinigd met wolken en schaduwen zijn, verstoord zijn door 
misregistraties of willekeurige Gaussische mis bevatten. Het raamwerk zoals 
beschreven in hoofdstuk 6 en gei'mplementeerd in hoofdstuk 7 helpt bij het snel 
detecteren van veranderingen voor grote geografische gebieden. Temporele 
informatie blijkt van het grootste belang voor het karteren van het half-
loofverliezende Atlantische bos en vooral NDVI-tijdseries bleken waardevolle 
kenmerken voor de classificatie te zijn. In hoofdstuk 4 voldeed het traditionele 
maximum likelihood algoritme duidelijk beter dan de algoritmen gebaseerd op 
machineleertechnieken indien temporele kenmerken voor de classificatie 
gebruikt werden. De multischaal-analyse moet men zien als een aanvulling op en 
niet als een vervanging voor traditionele geo-informatie-verwerkingstechnieken. 
Het levert een serie schaalafhankelijke representaties van het aardoppervlak op 
en isoleert landschapskenmerken naar gelang de dominante schaalniveaus 
waarop ze voorkomen. 

Gebaseerd op de bevindingen uit dit proefschrift kunnen de stellingen uit 

hoofdstuk 1 als volgt geherformuleerd worden: 
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1) Bij het analyseren en bewerken van tijdseries van Landsat-beelden zijn niet-
lineaire en niet-parametrische regressietechnieken effectiever in het 
minimaliseren van de effecten van verontreinigingen met wolken en 
afwijkingen veroorzaakt door misregistraties. 

2) Lange tijdseries zijn bruikbaar bij het onderscheiden van spectraal-gelijkende 
objecten op het aardoppervlak. Deze kunnen vooral nuttig zijn bij het 
onderscheiden van natuurlijke en door de mens gemaakte 
landbedekkingtypen. 

3) Geografische gegevens bevatten informatie op diverse ruimtelijke en 
temporele schalen. Automatisering kan verbeterd worden indien bij de 
bewerking met dit multischaal-karakter rekening wordt gehouden. 

4) Multischaal-methoden kunnen toenemende hoeveelheden gegevens 
effectiever hanteren dan benaderingen op een vastliggende schaal. 
Traditionele patroonherkenningsmethoden leveren echter ook nog steeds 
belangrijke gereedschappen voor geografische informatiebewerking. 

(Half)Automatische detectie van veranderingen en GIS-actualisatie zijn 
uitvoerbare taken die door locale bestuurders en planners ge'implementeerd 
zouden moeten worden, om de bosdynamiek in een bepaald gebied te monitoren 
en te begrijpen. Een significante verbetering in de automatische detectie van 
veranderingen volgens de voorgestelde methode omvat de ontwikkeling van 
algoritmen voor het automatisch selecteren van de schalen binnen de 
multischaal-benadering. Voor het karteren van andere bedekkingtypen dan bos 
moet onderzoek relevante kenmerken en geschikte classificatoren opleveren. 
Met betrekking tot het karteren van bossen in het studiegebied moet verder 
onderzoek zich richten op het classificeren van objecten binnen de bosklasse en 
op het definieren van belangrijke kenmerken om dit uit te voeren. De in dit 
proefschrift beschreven technieken zijn uiteindelijk ontwikkeld om problemen in 
het temporele en ruimtelijke domein op te lossen. Dezelfde principes kunnen 
echter ook toegepast worden op het spectrale domein, bijvoorbeeld voor de 
identificatie en kwantificering van absorptiekenmerken in spectrale signaturen, 
voor gegevensreductie en voor het verwijderen van ruis in beelden. 
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SUMARIO 

1. Introdugao 

Os lideres mundiais tem reconhecido em reunioes sem precedentes que os 
ecossistemas florestais desempenham um papel fundamental em processos vitais 
como ciclo de carbono, mudancas climaticas, degradacao do solo e dinamica da 
agua. Uma exigencia basica para quantificar e modelar estes processos e a 
disponibilidade de mapas precisos da cobertura florestal. Neste contexto, 
tecnologias de sensoriamento remotos e sistemas de informagoes geogrdjicas 
representam ferramentas promissoras, onde a aquisicao e a analise de dados em 
escalas apropriadas sao fundamentals para o desenvolvimento e utilizacao de 
modelos ambientais confiaveis. A producao de dados de alta-resoluqao e a 
crescente serie temporal coletada ate agora apresentam um potencial para 
melhorar dramaticamente o nosso conhecimento acerca do meio ambiente. No 
entanto, integracao e andlises apropriadas de tal conjunto de dados constituem 
um desafio para a realizacao deste potencial. Assim, as seguintes perguntas 
foram consideradas neste estudo: 

(1) Quais sao as exigencias de pre-processamento para a aplicacao de series 

temporais de sensoriamento remoto em modelagem ambiental? 

(2) Que tipos de ferramentas analiticas e variaveis derivadas atraves de 
sensoriamento remoto sao pertinentes para mapear florestas na area de 
estudo? 

(3) Ate que ponto o geoprocessamento pode ser automatizado? 

(4) Inteligencia artificial e metodos de analise em multiplas escalas podem 

melhorar o geoprocessamento? 

Estas perguntas foram baseadas nos objetivos listados abaixo: 

(1) Definir uma estrategia para mapear florestas na area de estudo, 

(2) Desenvolver um sistema para deteccao de desmatamento para que acoes 
oportunas sejam tomadas, 

(3) Desenvolver uma estrategia de pre-processamento e extracao de informacao 
para ser aplicada em longas series temporais de imagens Landsat, 
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(4) Investigar metodos para separar tipos de cobertura de terra que sao 
espectralmente semelhantes usando outras fontes de informacao e/ou 
metodos de analise de imagem alternatives, e 

(5) Desenvolver um metodo automatico para deteccao e quantificacao de 
mudancas na cobertura da terra usando imagens de sensoriamento remote 

2. Uma Area de Floresta Atlantica Semidecidual 

Acredita-se que a floresta Atlantica sensu lato chegou a cobrir 
aproximadamente um milhao de quilometros quadrados, o que corresponde a 
quase 12% da area do pais. Hoje em dia, este bioma esta reduzido a menos que 
5% da cobertura original. As florestas semideciduas representam um subdominio 
da floresta Atlantica que carece em estudos cientificos quando comparado com o 
subdominio das florestas costeiras, e que corre riscos mais eminentes do que as 
florestas amazonicas. A area escolhida para se estudar a floresta Atlantica 
semidecidual fica situada no "Vale do Alto Rio Grande" no sul de Minas Gerais. 
Ao final do seculo XIX, a cultura de cafe foi introduzida na regiao e aumentou 
rapidamente para se tornar uma das principais causas de desmatamento. Hoje em 
dia, alem da crescente industrializacao, a cultura do cafe e a producao de leite 
sao as principais atividades economicas da regiao. A area em estudo e delimitada 
pelas coordenadas 21° 05' - 21° 47' S and 44° 02' - 45° 04' O. A area foi 
estudada usando-se uma serie temporal (28 imagens de 1981 a 1999) de dados 
provenientes do programa Landsat de observacao da Terra via satelite. Dados 
auxiliares incluiram ortofotos na escala de 1:10.000 e curvas de nivel com 
resolucao vertical de 20 m, digitalizadas a partir de cartas topograficas da regiao. 

3. Processamento de informacoes geogrdficas 

Observacoes atraves de sensoriamento remoto sao medicoes da energia 
refletida ou emitida apos a radiacao eletromagnetica haver interagido com os 
objetos na superficie da Terra e com a atmosfera. As medicoes sao organizadas 
como uma imagem de forma a retratar uma regiao da superficie da Terra em um 
dado momento. Repetindo-se observacoes de uma mesma area e/ou em 
diferentes porcoes do espectro eletromagnetico, formamos um conjunto de dados 
multitemporal e/ou multispectral. Recentemente, muita atencao te sido 
dada as multiplas escalas que caracterizam os fenomenos ambientais e 
consequentemente, de nossas observacoes com sensoriamento remoto. A analise 
com wavelets separa a informacao de interesse de acordo com as escalas 
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predominantes nas quais esta se manifesta. Wavelets vem da infinita repeticao 
de um banco de filtros, e por causa das repetidas filtragens com filtros cada vez 
maiores, elas decompoem um sinal em detalhes que indicam a informacao 
contida em diferentes escalas. Se os sinais em consideracao sao imagens de 
sensoriamento remoto, o termo "escala" em analise com wavelets corresponde 
ao tamanho dos objetos na superficie da Terra, que passam a ser modelados com 
mais facilidade usando-se esta nova representacao em multiplas escalas. 
Tecnicas de aprendizado de maquina tem sido desenvolvida ha algumas decadas 
dentro do campo de inteligencia artificial. O objetivo da inteligencia artificial e 
entender como os seres humanos reconhecem padroes e desenvolver sistemas 
computacionais inteligentes. Redes neuroniais e regras de inducao, dois 
paradigmas populares em aprendizado de maquina, foram recentemente 
aplicados a problemas de classificacao em geoprocessamento e mostram 
resultados promissores, principalmente na modelagem de fenomenos nao-
lineares e nao-parametricos. 

4. Remocdo de Nuvens em Series Temporais de Sensoriamento Remoto 

O uso de dados temporais e extensivamente explorado nesta tese. Neste 
capitulo, sao apresentados esquemas baseado na analise em multiplas resolucoes, 
usando wavelets, para o pre-processamento de longas series temporais de 
imagens Landsat e para melhorar sua aplicabilidade em avaliacoes ambientais. 
Particularmente, foram consideradas metodologias para remocao de nuvens e 
suas sombras. Este capitulo descreve a aplicacao do produto entre escalas da 
transformacao com wavelets para gerar mascaras binarias de observacoes 
corrompidas. O metodo "robust smoother-cleaner wavelets" foi aplicado em 
cada perfil temporal onde foram encontrados valores anomalos. A fase de 
interpolacao foi baseada em estimacao nao-parametrica usando-se "wavelet 
shrinkage". Contaminacoes por nuvens foram simuladas em uma serie temporal 
livre de nuvens e os valores desconhecidos foram estimados usando-se cinco 
metodos: 1) valor medio, 2) valor minimo, 3) valor maximo, 4) regressao linear, 
e 5) o procedimento baseado em regressao nao-parametrica com wavelets 
proposta neste capitulo. As comparacoes foram feitas com base na raiz do 
quadrado medio do erro (RMSE). Na interpolacao dos valores desconhecidos, a 
regressao baseada em wavelets foi mais precisa para areas com nuvens, 
enquanto que a regressao linear apresentou os melhores resultados em areas 
sombreadas. O metodo proposto aqui identificou tanto pixels contaminados por 
nuvens e sombras, quanto outras anomalias como erros de registro de imagens e 
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mudansas de curta dura^ao. Ja o metodo de regressao foi capaz de detectar e 
estimar os valores desconhecidos ao mesmo tempo. Assim, a analise com 
wavelets apresenta-se promissora para um efetivo pre-processamento de series 
temporais. 

5. Classificagao dos Remanescentes Florestais 

A necessidade de melhores metodos de mapeamento se faz evidente pelo 
nosso pouco conhecimento sobre informacoes basicas, como por exemplo, 
extensao e condi9ao das florestas em geral. Ecossistemas fragmentados como a 
floresta Atlantica semidecidual demandam o uso de imagens com alta resolucao 
espacial. Nao obstante, por causa de problemas relativos a similaridade 
espectral, a ocorrencia de plantacoes de cafe e de eucalipto na regiao traz 
limitafoes para a classificacao de remanescentes de florestas semideciduas. O 
experimento descrito neste capitulo relacionou atributos derivados de um 
modelo de elevacao digital, de dados de sensoriamento remoto, e varias 
transforma9oes de imagens para realcar areas de vegeta?ao, textura de imagem e 
rela9oes spectro-temporais. Conjuntos de atributos foram definidos usando-se o 
conhecimento de especialistas e tecnicas de minera9ao de dados. Estes conjuntos 
foram usados em classifica9oes tradicionais e em classifica9oes baseadas em 
aprendizado de maquina, viz. maxima verossimilhan9a, redes neuroniais e 
arvores de decisao univariadas e multivariadas. Os resultados mostraram que a 
classifica9ao por maxima verossimilhan9a usando medidas de textura temporal 
foi a melhor combina9ao para se classificar os remanescentes de floresta 
Atlantica na area de estudos. O classificador de maxima verossimilhan9a 
apresentou um desempenho relativamente razoavel com todos os conjuntos de 
atributos, mostrando precisao de classifica9ao de florestas variando entre 34,5% 
e 51,3%. Em contraste, redes neuroniais mostraram a maior varia9ao, com 
precisao variando entre 19,0% e 45,2%. O pior precisao de classifica9ao (19%) 
foi proveniente da combina9ao de redes neuroniais com o conjunto de atributos 
obtidos via minera9ao de dados, principalmente devido ao grande numero de 
comissoes. Como esperado, confusao na classifica9ao aconteceu principalmente 
com planta9oes de cafe e de eucalipto, mas redes neuroniais e arvores 
univariadas tambem fizeram confusao com areas desmatadas. Arvores 
univariadas proporcionaram os resultados mais robustos para os conjuntos de 
atributos, com precisao de mapeamento variando entre 39,6% to 46,7%. 
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6. Andlise de Mudancas em Multiplas Escalas 

O objetivo do metodo proposto neste capitulo foi o de reduzir a 
sensibilidade de deteccao digital de mudanca aos efeitos de discrepancia 
radiometrica e geometrica, atraves da extracao de mudancas de acordo com 
classes de tamanho e usando metodos em multiplas escalas. Uma imagem-
mudanca, produzida por qualquer metodo padrao de deteccao de mudancas 
radiometricas (e.g., subtracao de imagens), e decomposta com wavelets em seus 
componentes de alta frequencia e em uma representacao aproximada relativa ao 
componente de baixa frequencia. O produto entre escalas de alta frequencia foi 
usado para realcar locais onde ocorreram mudancas na cobertura e para suprimir 
os efeitos derivados dos erros de registro. Usando-se o produto entre escalas de 
alta frequencia em uma simples composicao colorida, a visualizacao de areas 
onde ocorreram mudancas fica simples e rapida. Todas as mudancas detectadas 
por este procedimento de visualizacao foram verificadas na realidade, embora 
sua quantificacao nao tenha sido possivel. Efeitos do registro impreciso e 
mudancas de pouca extensao foram isolados nas primeiras escalas de 
decomposicao, enquanto que diferencas por causa de estagios fenologicos e 
condicoes atmosfericas foram isolados nas ultimas escalas e na representacao 
aproximada. Remo?ao de vegeta9ao, areas reflorestadas, bem como novas areas 
de exploracao de pedra foram efetivamente detectados sem a necessidade de 
previa retificacoes radiometrica ou definicao de valores de "threshold", enquanto 
que diferencas nao relacionadas com mudancas na cobertura da superficie foram 
evitadas. 

7. Deteccao Automdtica de Desmatamento 

Automatizacao tem sido uma das primeiras metas em geoprocessamento, 
devido ao potencial de executar tarefas nao-supervisionadas proporcionada pelo 
uso de computadores. As dificuldades com deteccao de mudan?as em imagens 
de satellites sao ainda maiores do que o mapeamento estatico, impondo limites 
para a automacao. As principals dificuldades estao relacionadas com: (1) as 
transformacoes geometricas, (2) o tamanho das mudancas que devem ser 
observadas, (3) a escala temporal em que as mudancas ocorrem, (4) as condicoes 
atmosfericas, (5) a resposta radiometrica dos objetos sobre a superficie da Terra, 
e (6) a natureza gradual de alguns tipos de mudancas. O objetivo deste estudo foi 
o de desenvolver um procedimento automatico, simples e flexivel para 
atualizacao de sistemas de informacoes geograficas (SIG) rasterizados. O 
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procedimento proposto e ilustrado neste capitulo usa duas imagens de 
sensoriamento remoto adquiridas em diferentes datas, camadas do SIG 
representando as coberturas em estudo e um conjunto de verdades de campo 
para a cobertura atual e para areas onde ocorreram mudanca. A imagem mais 
recente e usada na atualizacao baseando-se em diferencas radiometricas com a 
imagem mais antiga. Quatro modulos compoe o procedimento de acordo com as 
principals tarefas executadas: (1) localizacao de areas onde ocorreram 
mudancas, (2) quantificacao da area modificada, (3) classificacao das novas 
coberturas e (4) atualizacao da base de dados. O procedimento foi comparado 
com dois outros muito usados para deteccao e quantificacao de mudancas, viz. 
comparacao pos-classificatoria e classificacao multitemporal direta. O 
procedimento foi menos sensivel a erros de registro por causa da abordagem 
multiescala usada. Diferente de comparacao pos-classificatoria, o procedimento 
apresentado requer verdade de campo somente para a cobertura atual. Ja em 
comparacao com a classificacao multitemporal direta, as classes de mudanca nao 
precisam ser definidas nem amostras precisam ser coletadas em locais que 
sofreram mudancas. Por fim, as areas segmentadas podem ser consideradas 
objetos homogeneos e classificadas com tal, reduzindo o efeito de salpicamento 
nos resultados da classificacao. Possiveis refinamentos incluem a determinacao 
automatica de limites de deteccao e a possibilidade de se trabalhar com imagens 
multivariadas. 

8. Conclusoes 

De acordo com os objetivos principals desta tese, uma estrategia baseada 
em sensoriamento remoto visando mapear e monitorar remanescentes florestais 
em areas fragmentadas foi desenvolvida para a regiao do "Vale do Alto Rio 
Grande". Um procedimento que poderia ser facilmente implementado por nao-
peritos em processamento imagem para uma rapida avaliacao de locais 
desmatados foi proposto. O metodo apresenta o potencial de proporcionar para 
autoridades locais e para institutes governamentais um sistema de controle de 
desmatamento para os remanescentes de floresta Atlantica semidecidual. A 
abordagem em multiplas escalas mostrou-se uma ferramenta efetiva para estudar 
imagens de sensoriamento remoto que foram arbitrariamente amostradas na 
dimensao temporal, contaminadas por nuvens e sombras, e corrompidas por 
erros de registro. O procedimento descrito no capitulo 6 e implementado no 
capitulo 7 foi menos sensivel ao barulho gerado durante o registro de imagens, 
pode ser combinado com qualquer tecnica padrao de deteccao de mudancas e 
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pode proporcionar vantagens quando areas muito extensas devem ser avaliadas. 
Dados temporais mostraram-se de extrema importancia para mapear a floresta 
Atlantica semidecidual e, particularmente, series temporais de NDVI provaram 
ser caracteristicas uteis durante a classificacao. Metodos de multiplas escalas 
reduzem a quantia de informacao para ser analisada ao executar tarefas 
automatizadas, mas, mesmo assim, deve existir urn conhecimento previo quanto 
as escalas importantes para uma dada aplicacao. No capitulo 4, o classificador de 
maxima verossimilhanca superou claramente os algoritmos baseado em 
aprendizado de maquina sempre que caracteristicas temporais foram usadas para 
classificacao. A analise em multiplas escalas deveria ser vista como um 
complemento no geoprocessamento tradicional e nao como um substitute para 
tecnicas estabelecidas. Esta proporciona uma serie de representacoes da 
superficie da Terra que isola caracteristicas de paisagem de acordo com os niveis 
de escala dominantes nos quais as caracteristicas se manifestam. Conclui-se que 
tecnicas tradicionais poderiam, entao, ser aplicadas a escalas selecionadas de 
acordo com os objetivos de um determinado projeto. Baseado nos achados 
apresentados nesta tese, postulados 1 a 3 foram confirmados, mas o postulado 4 
foi parcialmente confirmado: 

1) Tecnicas de regressao nao-linear e nao-parametrica sao mais efetivas para se 
analisar e processar series temporais de imagens Landsat com o intuito de 
minimizar os efeitos de contaminacao de nuvem e distorcoes causadas por 
erros de registro. 

2) Longas series temporais sao uteis para melhorar a separacao de objetos 
espectralmente semelhantes na superficie da Terra. Estas podem ser 
particularmente importantes na distincao entre tipos de cobertura naturais e 
artificiais. 

3) Dados geograficos apresentam informacao em multiplas escalas espaciais e 
temporais. A automatizacao pode ser melhorada se esta caracteristica for 
levada em consideracao durante o processamento. 

4) Metodos em multiplas escalas podem lidar com o crescente volume de dados 
disponiveis mais efetivamente que abordagens baseadas em escalas fixas. 
Metodos tradicionais de reconhecimento de padrao ainda proporcionam 
ferramentas importantes para processamento de informacoes geograficas. 

No ambiente de processamento em multiplas escalas que foi proposto 

nesta tese, cada conjunto de dados foi decomposto em uma representacao em 
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multiplas escalas usando transforma9oes com wavelets. Integragao de dados, 
regressao, compressao e extragao de informacao foram realizadas no dominio 
transformado. Os resultados, transformados de volta (ou nao) para os dominios 
espacial, temporal e espectral em qualquer resolucao desejada, foram usados em 
sistemas de aprendizado de maquina que geraram conhecimento relativa a 
eventos e relacoes independentemente do tipo de dado. Neste contexto, eventos e 
relacoes foram entao traduzidos em classificacoes, regressoes, indicadores, 
predi9oes etc. Deteccao (semi)automatica de mudancas e atualizacao de SIGs 
sao tarefas plausiveis que deveriam ser implementadas por autoridades locais e 
planejadores para monitorar e entender a dinamica de florestas na regiao. 
Melhorias significativas na detec9ao automatica de mudancas incluem o 
desenvolvimento de algoritmos para sele9ao automatica de escalas. A 
metodologia de pre-processamento apresentada no capitulo 3 pode ser usada 
para aumentar a disponibilidade temporal de imagens Landsat e series temporais 
mais completas podem ser usadas para proporcionar perfis temporais com 
significado ecologico mais coerente. A efetiva classifica9ao da floresta Atlantica 
semidecidual do Vale do Alto Rio Grande deveria sempre que possivel levar em 
considera9ao dados temporais. No que diz respeito ao mapeamento de florestas 
da regiao, pesquisas futuras deveriam focar na classifica9ao de sub-tipos 
florestais e na defini9ao de caracteristicas relevantes para esta tarefa. Por fim, as 
tecnicas descritas neste estudo foram desenvolvidas para a solu9ao de problemas 
relacionados com os dominios do espa90 e do tempo. No entanto, os mesmos 
principios podem ser aplicados ao dominio espectral para identifica9ao e 
quantifica9ao de bandas de absor9ao em assinaturas espectrais, para redu9ao de 
dados e redu9ao de barulho nos dados. 
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