
Propositions 

1. Humus may significantly contribute to the intrinsic bioremediation of anaerobic environments 
contaminated with priority pollutants by serving as a terminal electron acceptor. 

This dissertation 
Bradley, P. M ., F. H. Chapelle and D. R. Lovley. (1998). Humic acids as electron acceptor for 
anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64, 
3102-3105. 

2. The application of catalytic concentrations of quinones, as redox mediators, to anaerobic 
wastewater treatment systems enhances the conversion of priority pollutants susceptible to 
reductive biotransformation. The accelerated conversion of this type of contaminants would result 
in more compact wastewater treatment systems. 

This dissertation 

3. The injection of nitrate and sulfate to contaminated aquifers to stimulate the anaerobic 
biodegradation of aromatic hydrocarbons has more environmental risks than the benefits claimed 
by Hutchins et al. (1991) and Lovley (2000). 

Hutchins, S. R., Sewell, G. W., Kovacs, D. A. and Smith, G. A. (1991). Biodegradation of aromatic 
hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol. 25, 68-
76. 
Lovley, D. R. (2000). Anaerobic benzene degradation. Biodegradation 11, 107-116. 

4. A humble recognition of the other's rights will help much more than millions of missiles to bring 
peace in the Middle East. 

5. "Globalization" is a new form of Colonialism, which is contributing to increase the opulence of 
the rich, as well as the misery of the poor. 

6. Legislation on abortion, euthanasia, drugs and sex trade, as well as gay marriages, makes The 
Netherlands one of the most controversial countries. 

7. Those who place much effort on criticizing others are generally blind to look at their own faults. 

8. If the "civilized" countries really want to eradicate the evil of terrorism, they should first come up 
with a correct definition of "terrorist". Otherwise they will loose all credibility. 

9. Vitamin T (tacos, tortillas, tortas, tamales, tostadas, tinga, etc.) and vitamin CH (chile, chorizo, 
chilorio, churros, chuleta, champurrado, etc.) are essential nutrients to keep Mexicans running. 

10. Dutch mood and Dutch weather are highly correlated: both are continuously changing. 
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Abstract 

Cervantes-Carrillo, F. J. 2002. Quinones as Electron Acceptors and Redox Mediators for the 

Anaerobic Biotransformation of Priority Pollutants. Doctoral Thesis, Wageningen University, 

Wageningen, The Netherlands. 

Humus is the most abundant organic fraction in the biosphere. It is composed of a complex structure in which 

recalcitrant polymers prevail with a residence time lasting decades or even centuries. Despite the recalcitrance of 

humic substances, they have recently been recognized to play an important role on the anaerobic conversion of 

organic matter by serving as an electron acceptor for microbial respiration. Quinone moieties are the responsible 

electron-accepting groups accounting for the microbial reduction of humus. Quinones and humus not only serve 

as terminal electron acceptors for microbial respiration, but they also function as redox mediators during the 

transfer of electrons in microbial and chemical reactions. In this dissertation the impact of humus and quinone 

analogues on the anaerobic biotransformation of ecologically important substrates, as well as priority pollutants, 

was evaluated. 

Consortia obtained from many different environments including sandy, organic rich, and contaminated 

sediments, as well as anaerobic and aerobic sludges, showed the capacity for oxidizing a wide variety of 

ecologically significant substrates, such as lactate and acetate, when the humic model compound, anthraquinone-

2,6-disulfonate (AQDS), was provided as a final electron acceptor. AQDS-reducing microorganisms out-

competed methanogens for most of the substrates supplied indicating that quinone reduction is a widespread 

physiological process, which may contribute to important carbon cycling process in many different 

environments. Quinone and humus reduction was also found in pure cultures of different microorganisms, such 

as Desulfitobacterium spp. and Methanospirillum hungatei, indicating that the ubiquity of quinone reduction 

may be due to the wide diversity of microorganisms with the capacity for reducing humic substances. The results 

also illustrate that phylogenetically distinct microorganisms can channel electrons from anaerobic substrate 

oxidation via quinone reduction towards the reduction of metal oxides. Quinone respiring microorganisms could 

also be enriched and immobilized in the microbial community of an anaerobic granular sludge of a upflow 

anaerobic sludge blanket (UASB) reactor. The feasibility to immobilize quinone-reducing microorganisms can 

be applied to accelerate the conversion of xenobiotics susceptible to reductive biotransformations such as azo 

dyes and polychlorinated compounds in continuous bioreactors. 

The long-term goal of this research was to explore the capacity of humus respiring consortia for oxidizing 

priority pollutants through the reduction of humic substances. Anaerobic granular sludge originated from 

different wastewater treatment plants were shown to oxidize phenol and /7-cresol coupled to the reduction of 

AQDS. Both phenolic contaminants were converted to methane in the absence of the humic analogue, but 

addition of AQDS as an alternative electron acceptor diverted the flow of electrons from methanogenesis 

towards quinone reduction. Priority pollutants, which were not degraded under methanogenic conditions, could 

also be mineralized by humus-respiring consortia when humic substances were provided as an electron acceptor. 

Enriched sediments from different origins readily mineralized uniformly labeled [13C]toluene to ,3C02 when 

humic acids or AQDS were provided as terminal electron acceptors. Negligible recovery of 13C02 occurred in the 



absence of humic substances. Additionally, the electrons in the toluene mineralized were recovered 

stoichiometrically as reduced humus or AH2QDS (reduced form of AQDS). 

Humic substances were also shown to accelerate the transfer of reducing equivalents required for the anaerobic 

conversion of different pollutants containing electron-withdrawing groups. AQDS supplemented at sub-

stoichiometric levels in granular sludge incubations enhanced the rate of conversion of carbon tetrachloride (CT) 

leading to an increased production of inorganic chloride. Negligible dechlorination occurred in sterile controls 

with autoclaved sludge and considerably less dechlorination was achieved in active controls lacking AQDS. A 

humus respiring enrichment culture, composed primarily of a Geobacter sp., derived from the same granular 

sludge was also shown to dechlorinate CT, yielding similar products as the AQDS-supplemented sludge 

consortium. Addition of catalytic levels of AQDS to a UASB reactor continuously treating the azo dye, acid 

orange 7 (A07), also enhanced the biotransformation of this pollutant to the corresponding aromatic amines. 

High efficiency (>90 %) of decolorization of A07 occurred even at a hydraulic residence time of 2 hours with a 

molar ratio of AQDS/A07 as low as 1/100, whereas 70 % of color removal occurred in the absence of AQDS 

under the same hydraulic conditions. 

The evidences provided in this study indicate that humic substances may play an important role on the 

stabilization of organic matter, as well as on the intrinsic bioremediation of contaminated environments, by 

serving as a terminal electron acceptor. The application of humic substances for achieving the bioremediation of 

contaminated aquifers can be considered. Humus and quinones can also be applied in anaerobic reactors to 

enhance the conversion of priority pollutants containing electron-withdrawing groups. 



Resumen 

Cervantes-Carrillo, F. J. 2002. Quinonas como Aceptores de Electrones y Mediadores Redox en la 

Biotransformation Anaerobia de Contaminantes Prioritarios. Tesis Doctoral, Universidad de 

Wageningen, Wageningen, Paises Bajos. 

El humus es la fraccion organica mas abundante en la biosfera. Esta compuesto de una estructura compleja en la 

que polimeros recalcitrantes prevalecen por decadas o incluso siglos. A pesar de ser recalcitrantes, las 

substancias humicas pueden jugar un papel importante en la conversion anaerobia de substrates organicos 

mediante su participation en la respiracion microbiana como aceptores de electrones. Las quinonas son los 

grupos funcionales que aceptan los electrones directamente durante la reduccion microbiana del humus. Las 

quinonas presentes en el humus no solamente sirven como aceptores de electrones en la respiracion microbiana, 

sino tambien, como mediadores de oxido-reduccion (redox) durante la transferencia de electrones en reacciones 

quimicas y microbianas. En esta disertacion, el impacto del humus y sus analogos (quinonas) en la 

biotransformation anaerobia de substrates ecologicamente importantes, asi como de contaminantes prioritarios, 

fue evaluado. 

Los consorcios obtenidos de ambientes muy variados, incluyendo sedimentos arenosos, contaminados y ricos en 

materia organica, asi como lodos aerobios y anaerobios, pudieron oxidar una gran diversidad de substrates 

ecologicamente importantes, como el acetato y el lactate, cuando el compuesto modelo, 2,6-disulfonato de 

antraquinona (AQDS), fue adicionado como aceptor final de electrones. En estos consorcios, los 

microorganismos reductores de AQDS superaron a los metanogenicos en la degradation de la mayoria de los 

substrates estudiados, lo cual sugiere que la reduccion microbiana del humus podria contribuir 

significativamente en el ciclo del carbono en diferentes ambientes. La reduccion de humus y AQDS tambien fue 

evidente en cultivos axenicos de diferentes microorganismos, como Desulfitobacterium spp. y Methanospirillum 

hungatei, indicando que la ubicuidad de la reduccion microbiana del humus podria ser debido a la gran 

diversidad de microorganismos que son capaces de reducir substancias humicas. Los organismos capaces de 

reducir quinonas tambien pudieron canalizar electrones hacia oxidos metalicos que fueron a su vez reducidos 

durante la reduccion microbiana de quinonas. Este tipo de microorganismos pudieron ser enriquecidos e 

inmovilizados en la poblacion microbiana del lodo granular de un reactor anaerobio de lecho de lodos de flujo 

ascendente (UASB). La inmovilizacion de microorganismos reductores del humus podria ser aplicado para 

acelerar la conversion de contaminantes recalcitrantes susceptibles a una reduccion, como los colorantes azo o 

compuestos policlorinados. 

La principal meta del presente estudio fue explorar la capacidad de consorcios reductores del humus para oxidar 

contaminantes prioritarios mediante la reduccion de substancias humicas. Los lodos granulares originados de 

diferentes plantas de tratamiento de aguas residuales mostraron la capacidad de oxidar fenol y p-aesol acoplado 

a la reduccion de AQDS. Ambos contaminantes fenolicos fueron convertidos a metano en la ausencia de 

quinonas, pero la adicion de AQDS como un aceptor de electrones alternativo, desvio el flujo de electrones de la 

metanogenesis hacia la reduccion de quinonas. Contaminantes prioritarios que no fueron degradados bajo 

condiciones metanogenicas pudieron tambien ser mineralizados por consorcios respiradores del humus. 

Sedimentos enriquecidos de diferentes ambientes mineralizaron rapidamente [l3C]tolueno marcado 



uniformemente a l 3C02 cuando AQDS o acidos hiimicos fueron incluidos como aceptores de electrones. La 

production de 13C02 en la ausencia de substancias humicas file despreciable. Ademas, los equivalentes de 

electrones del tolueno oxidado fueron recuperados estequiometricamente en forma de humus reducido o como 

AH2QDS (forma reducida de AQDS). 

Las substancias hiimicas aceleraron tambien la transferencia de electrones requeridos para la conversion 

anaerobia de diferentes contaminantes conteniendo grupos electrofilicos. El suplemento de AQDS por debajo del 

nivel estequiometrico a incubaciones de lodo granular acelero la velocidad de conversion de tetracloruro de 

carbono (CT) propiciando un incremento en la production de cloro inorganico en el medio. La decloracion 

ocurrida en los controles esteriles fue despreciable, mientras que una decloracion mucho menor ocurrio en la 

ausencia de AQDS. Un cultivo enriquecido capaz de reducir el humus, compuesto principalmente de una especie 

del genero Geobacter y obtenido del mismo lodo granular, mostro la misma capacidad de decloracion que el 

consorcio original. La aplicacion de niveles cataliticos de AQDS a un reactor UASB incremento la velocidad de 

conversion de un colorante azo, Naranja Acido 7 (A07). Se obtuvieron altas (>90 %) eficiencias de decoloration 

de A07 aun al aplicar 2 horas como tiempo de residencia hidraulico con una relation molar de AQDS/A07 tan 

baja como 1/100, mientras que solo el 70 % del color fue eliminado en la ausencia de AQDS bajo las mismas 

condiciones hidraulicas. 

Las evidencias dadas en el presente estudio indican que las substancias humicas, al actuar como aceptores de 

electrones, podrian jugar un papel importante en la estabilizacion de la materia organica y en la bioremediacion 

intrinseca de ambientes contaminados. La aplicacion de substancias humicas para lograr la bioremediacion de 

acuiferos contaminados puede ser considerada. El humus o quinonas tambien pueden ser aplicados en reactores 

anaerobios para acelerar la conversion de contaminantes prioritarios conteniendo grupos electrofilicos. 
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General Introduction 

Role of quinones in the biodegradation of 

priority pollutants: a review 

*Published in part as: Field, J. A., F. J. Cervantes, F. P. Van der Zee and G. Lettinga. (2000). Water 

Sci. Technol. 42,215-222. 



Chapter 1 

Introduction 

Humic substances constitute a very abundant class of organic compounds that are chemically 

heterogeneous and widely distributed in terrestrial and aquatic environments. These ubiquitous 

substances are generally considered recalcitrant because of their remarkable stability in the 

environment. For instance, high molecular weight humic polymers have a residence time longer than 

500 years {34). However, recent reports have suggested that humus may play different roles in the 

carbon and electron flow in anaerobic environments. Although the chemical properties of humic 

substances depend on the chemical characteristics of the organic matter from which they were derived, 

and the properties of their environment (34), evidences indicated that quinone moieties might be 

important electron acceptors in humic substances for microbial respiration (31). Not only do humic 

substances serve as terminal electron acceptor for anaerobic substrate oxidation (22), but they also act 

as redox mediators to support the reduction of metals (13, 22, 35), as well as polychlorinated (1, 8), 

nitro- (10, 15, 30) or azo- pollutants (16, 18). Moreover, humic substances can also serve as electron 

donors for anaerobic respiration (5, 23). Therefore, humic substances can be involved in different 

abiotic and microbial processes of electron transfer in anaerobic environments. 

Humic substances as terminal electron acceptor 

Anaerobic respiration. Initially, it was observed that a rapid anaerobic oxidation of benzene could be 

achieved by chelating Fe(III) in soil with different chelators, including humic acids (24). This 

phenomenon was attributed to the solubilization of Fe(III) oxides by chelators and thus making Fe(III) 

more available to benzene-oxidizing Fe(III)-reducing bacteria. However, it was observed that humus-

Fe(III) complexes stimulated benzene degradation better than any of the chelators evaluated, such as 

NTA and EDTA, which had higher chelation capacity as compared to humic acids. Therefore, it was 

hypothesized that the stimulated benzene oxidation by humus-Fe(III) complexes was due to the 

coupling of two processes, with microorganisms first donating electrons to humus and the humic 

substances then reducing the terminal electron acceptor (Fe(III), see Figure 1). Further experiments 

elucidated this theory, Geobacter metallireducens, an Fe(III)-reducing bacterium, was capable for 

mineralizing [14C]-acetate to l4C02 when highly purified soil humic acids were provided as sole 

terminal electron acceptors, whereas no mineralization of acetate occurred in the absence of humus 

(22). Reduction of humic substances agreed with the concomitant microbial growth of the Fe(III)-

reducing organism indicating that humic substances, aside from serving as electron acceptors, provide 

energy for anaerobic respiration. 
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Humic 
substance 

V-'VJT Carbon dioxide 

Hydroquinone 

Mineral 
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Fe(III) Fe(II) 
Figure 1. Recycling of quinone moieties in humus by a mineral oxide to achieve the biodegradation of 
benzene (22, 24). 

Quinones. Quinones are important structural units in humus (34), which are the most likely candidates 

for the redox reactions observed. The quinone model moiety, anthraquinone-2,6-disulfonate (AQDS), 

was also shown to be used as a sole terminal electron acceptor by G. metallireducens to support cell 

growth on acetate. The reduced form of AQDS, anthrahydroquinone-2,6-disulfonate (AH2QDS), was 

recovered in stoichiometric yields of 4 mol AH2QDS per mol acetate oxidized (22). Moreover, all 

other microorganisms tested that have been found to have the ability to reduce humus can also reduce 

AQDS (7, 20-22). In further support of the hypothesis that quinones moieties are the responsible 

functional groups in humus for the electron-accepting properties, experiments were conducted 

correlating humus quinone content with its electron accepting capacities. The best quinone indicator is 

the electron spin resonance (ESR) of the reduced humus, due to the unpaired electron in the 

semiquinone radical. This parameter was highly correlated with the microbial electron-accepting 

capacity of a wide variety of humic substances collected from sediments, soil and aquatic 

environments (31). Additionally, the biochemical basis of AQDS and humus reduction in Shewanella 
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putrefaciens MR1 was investigated and found to be related to a respiratory chain utilizing 

menaquinone. The results from this investigation provided genetic evidence of a common biochemical 

basis for humus and AQDS reduction. Mutants of Shewanella putrefaciens MR1, lacking the ability to 

synthesize menaquinone, which were unable to reduce AQDS, were also unable to reduce humus (26). 

Therefore, quinone model compounds should be able to replace the function of humus as terminal 

electron acceptor. 

Substrate and microbial diversity related to humus respiration. Microbial reduction of both 

humus and AQDS can support the anaerobic oxidation of a wide variety of substrates. It was 

suggested that members of the family Geobacteraceae might be the most important group of humus-

reducers since Geobacter and Desulfuromonas species were isolated from different freshwater and 

marine sediments with acetate and AQDS as electron donor and electron acceptor, respectively (7). 

Some of these isolates were also capable of oxidizing other substrates, such as ethanol and hydrogen, 

through AQDS reduction. Pantoea agglomerans SP1, an Fe(III)-reducing facultative anaerobe 

member of the Enterobacteriaceae, was able to grow when AQDS was provided as a terminal electron 

acceptor for the anaerobic oxidation of different substrates (12). The novel thermophilic Fe(III)-

reducing bacterium, Thermoanaerobacter siderophilus sp. nov., could also grow under AQDS-

reducing conditions with peptone as a sole electron donor (33). Furthermore, there is a number of 

microorganisms that gratuitously reduce humic substances. For instance, the uranium-reducing 

bacterium, Deinococcus radiodurans, could reduce AQDS, but was not able to link AQDS reduction 

to growth (14). Lovley et al. (1998) conducted a qualitative screening to determine the phylogenetic 

diversity of quinone respiration. They observed AQDS or humus reduction by Shewanella species, 

Desulfitobacterium dehalogenans, Desulfuromonas acetexigens, Geospirillum barnseii, Wolinella 

succinogenes, and Geothrix fermentens (21). The authors, however, did not investigate whether the 

reduction of humus or AQDS by these microorganisms was linked to growth during this screening. 

More recently, humus and quinone reduction has also been found in a wide variety of thermophilic 

and hyperthermophilic microorganisms including Fe(III)-reducers (e.g. Pyrobaculum islandicum, 

Pyrodictium abyssi, Thermococcus celer) and methanogenic archaea (e.g. Methanopyrus kandleri, 

Methanobacterium thermoautotrophicum), which exhibited hydrogen-dependent AQDS reduction, but 

quinone reduction was not observed to be growth-linked with any of these microorganisms (20). 

Besides the simple substrates that can be oxidized via humus reduction, it was recently reported that 

the microbial oxidation of vinyl chloride (VC) and dichloroethene (DCE) was stimulated by addition 

of humic acids or AQDS as a terminal electron acceptor by an organic rich sediment (4). There was 

not significant mineralization of the chlorinated compounds in the absence of AQDS and humus. 

Moreover, the biodegradation of [1,2-14C]VC was coupled to the reduction of AQDS in the bioassays 

resulting in a net oxidation of the chlorinated pollutant to l4C02 whereas previous works indicated a 

net reduction of this compound to ethene or ethane under anaerobic conditions. These facts suggest 
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that humic compounds can play a potential role during the bioremediation of contaminated anaerobic 

sites by acting as final electron acceptors. 

Table 1. Microbial reduction of humic acids (HA) or the humic analogue, AQDS, as terminal electron 
acceptors 
Electron donor 

Anaerobic Respiration 

Acetate 
Acetate 
Acetate and hydrogen 
Acetate, formate, lactate, 
ethanol, pyruvate and 
hydrogen 
Acetate, propionate, 
ethanol and succinate 
Acetate, propionate, 
ethanol and succinate 
Dichloroethene and vinyl 
chloride 
Lactate and hydrogen 
Peptone 

Electron acceptor 

AQDS and HA 
AQDS and HA 
AQDS 

AQDS and HA 

AQDS 

AQDS 

AQDS and HA 
AQDS and HA 
AQDS 

Qualitative reduction of humic substances" 

Not clearly specified 
Not clearly specified 
Not clearly specified 
Not clearly specified 
Not clearly specified 
Not clearly specified 
Not clearly specified 
Not clearly specified 

AQDS 
AQDS 
AQDS 
AQDS 
AQDS 
AQDS and HA 
AQDS 
AQDS 

Additional electron sink for fermentation11 

Glucose 
Glucose 
Lactate and propionate 

Gratuitous Reduction 

Hydrogen 
Hydrogen 
Hydrogen 
Hydrogen 
Hydrogen 
Hydrogen 
Hydrogen 
Hydrogen 
Lactate 

HA 
HA 
HA 

AQDS and HA 
AQDS 
AQDS 
AQDS 
AQDS 
AQDS 
AQDS 
AQDS 
AQDS 

Microorganism 

Geobacter sp. TC-4 
Geobacter metallireducens 
Pantoea agglomerans SP1 

Geobacter sp. JW-3 

Desulfuromonas sp. SDB-1 

Desulfuromonas sp. FD-1 

Fresh organic-rich sediment 
Shewanella alga 
Thermoanaerobacter siderophilus 

Shewanella putrefaciens 
Shewanella sacchrophila 
Aeromonas hydrophila 
Desulfitobacterium dehalogenans 
Geospirillum barnseii 
Wolinella succinogenes 
Geothrix fermentens 
Desulfuromonas acetexigens 

Enterococcus cecorum 
Lactococcus lactis 
Propionibacterium freudenreichii 

Pyrobaculum islandicum 
Pyrodictium abyssi 
Pyrococcus furiosus 
A rchaeoglobus fulgidus 
Thermococcus celer 
Methanococcus thermolithitrophicus 
Methanobacterium thermoautotrophicum 
Methanopyrus kandleri 
Deinococcus radiodurans 

Reference 

7 
22 
12 

7 

7 

7 

4 
22 
33 

21 
21 
21 
21 
21 
21 
21 
21 

3 
3 
3 

20 
20 
20 
20 
20 
20 
20 
20 
14 

"Reduction of AQDS or humus not quantified but only reported as a qualitative test. Microbial growth was not confirmed to 
be linked to AQDS or humus reduction. 
''Microbial growth was not confirmed to -be linked to AQDS or humus reduction. 
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Fermentation. Humic acid reduction was also observed by Propionibacterium freudenreichii and 

other fermentative bacteria (3). The addition of humic acids to a culture of Propionibacterium 

freudenreichii actively fermenting lactate resulted in the formation of more oxidized products such as 

acetate instead of propionate. Similar results were also observed during the lactic acid fermentation of 

glucose by Enterococcus cecorum and Lactococcus lactis. 

Therefore, the presence of humic substances in anaerobic environments can enhance the oxidation of 

organic substrates by serving as a terminal electron acceptor or by serving as an additional electron 

sink. Table 1 summarizes the literature data concerning the oxidation of various substrates coupled to 

humic reducing processes. 

Recycling of humic substances by metal oxides 

Reduced humic substances can be oxidized directly by metal oxides in soils and sediments. Direct 

reduction of Fe(III) to Fe(II) by reduced humic substances in abiotic systems was reported (17, 22). 

Also hydroquinones (the reduced form of quinones) are among the best known reductants of 

Mn(rV)02 precipitates (35, 36). Table 2 illustrates the reduction of metal oxides by reduced humic 

substances or hydroquinones. Therefore, it is expected that quinone moieties in humus can be recycled 

by the reaction of their reduced form with oxidized minerals naturally present in aquifers and soils. 

This could allow for the recycling of humic substances as electron acceptor enabling their use at sub-

stoichiometric concentrations for bioremediation of contaminated sites (Figure 1). 

Table 2. Abiotic reduction of metals by different reduced humus and humic model compounds 
Metal reduction Humus or humic model compound Reference 
Fe (III) -» Fe (II) Reduced humus and AH2QDS 17, 22 
Mn (IV) —> Mn (II) 3-methoxycatechol, catechol, 3,4-dihydroxybenzoic acid 

and hydroquinone* 35, 36 
A number of other organic compounds caused the reduction of Mn(IV) to Mn(II) at slower rates. 

Humic substances as redox mediators for reductive biotransformations 

Humic substances do not only stimulate the oxidation of a wide variety of organic compounds by 

acting as electron acceptor, but also support the reductive biotransformation of environmental 

pollutants such as azo dyes, substituted nitrobenzenes, polyhalogenated compounds and radionuclides 

by shuttling electrons between an external electron donor and those pollutants. 

Azo dyes cleavage. Azo dyes are readily reductively cleaved to colorless aromatic amines by a wide 

variety of inocula and microorganisms under anaerobic conditions (11). However, recent experiments 

revealed that long reaction times are required for many azo dyes to achieve satisfying extent (>90%) 

of decolorization (37) and therefore, the use of redox mediators is required in these cases to speed up 

the reductive decolorizing processes. It was found that an accelerated decolorization capacity for 
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different azo dyes by anaerobically incubated cells suspensions of the bacterium, Sphingomonas sp. 

BN6, could be obtained if this strain was previously grown with 2-naphthalenesulfonic acid (2NS) 

aerobically (16). The enhancement of the azo dye reduction rate was clarified by an unidentified 

metabolite of 2NS acting as redox mediator. In order to confirm this theory, several quinone 

substances were tested, such as AQDS, anthraquinone-2-sulfonate (AQS), and 2-hydroxy-1,4-

naphthoquinone, which were found to be effective as redox mediators by shuttling reduction 

equivalents from cell suspensions of strain BN6 incubated anaerobically to amaranth, with glucose as 

electron donor. Further experiments indicated that a NADH:ubiquinone oxidoreductase situated in the 

membrane of Sphingomonas sp. BN6 was responsible for the dye reduction (18). The quinone 

moieties thus, transport the electrons from the periplasm to the azo dye at a distance from the cell 

(Figure 2). Several other dyes were reduced by the same system (Table 3). The use of AQDS as redox 

mediator at catalytic concentrations also enabled the continuous treatment of a recalcitrant reactive azo 

dye (Reactive red 2) in anaerobic bioreactors, which otherwise was only marginally biotransformed 

(39). 

The extracellular role of quinones in the reductive decolorization of azo dyes was corroborated by the 

regeneration of an azo-dye-saturated cellulosic anion exchange resin by Burkholderia cepacia. By 

physically separating a cell suspension of Burkholderia cepacia using a dialysis tube, it was 

demonstrated that AQS mediated the transfer of electrons from bacteria to the adsorbed dye (19). The 

results are also consistent with the use of AQDS and AQS to mediate the chemical reduction of acid 

orange 7 by sulfide (38) and the electrochemical cathodic reduction of dispersed dyes (2). 

AHQS aromatic amines 
HO. SO,H 

amaranth 

Sphingomonas sp. 

Figure 2. Proposed mechanism of anthraquinone-2-sulfonate (AQS) mediation of amaranth dye 
decolorization by Sphingomonas sp. BN6. AQS is reduced by the membrane bound respiratory chain 
enzyme, NADH:ubiquinone oxidoreductase (filled box) to anthrahydroquinone-2-sulfonate (AHQS), 
which in turn transfers the electrons to the dye, causing azo cleavage (18). 
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Reduction of nitroaromatics. Quinones and natural organic matter (NOM) from different sources 

were also shown to mediate the abiotic reduction of nitrobenzenes to the corresponding anilines, with 

sulfide as an electron donor (10, 15, 30). The observed pseudo-first-order rate constant for the nitro 

group reduction in the presence of NOM was approximately 500 times faster compared to that 

obtained in the absence of NOM. Furthermore, pseudo-first-order kinetics were observed in solutions 

containing a very low concentration of NOM. This suggested that the reductive NOM constituents act 

as redox mediators at catalytic concentrations. The pH-dependency of the quinone mediated reactions 

indicated that the dissociated species (phenolate and diphenolate) of the reduced quinones were 

responsible for the electron transfer (10). Table 3 summarizes the reductive transformation of several 

nitroaromatic pollutants by humic or model humic compounds reported in literature. 

Reductive dehalogenation. The use of humus and quinones to mediate the reductive dehalogenation 

of polychlorinated pollutants is summarized in Table 3. Most studies concern abiotic processes where 

the reduction by bulk reducing agents is mediated by humic substances. For instance, the addition of 

humic model compounds, such as resorcinol and catechol, to abiotic assays including polychlorinated 

dibenzo-p-dioxins (PCDDs) was shown to stimulate the dechlorination of these contaminants (1). 

Addition of the humic analogues to reaction systems containing octa-CDDs led to the formation of the 

tetra-CDD group of congeners, whereas no reductive dechlorination of octa-CDDs was observed in the 

absence of humic model compounds. Similar dechlorination yields (4-20 %) were observed in the 

presence of humic acids, when the results were compared to those obtained with the humic model 

compounds in terms of phenolic acidity (32). 

Both quinones and humic acids also enhanced the abiotic reductive dehalogenation of 

hexachloroethane (HCA), carbon tetrachloride (CT) and bromoform. The addition of these redox 

mediators to solution containing sulfide, elemental sulfur or Fe(II) as electron donors increased the 

pseudo-first-order rate constant by factors of up to 10 (9, 28). In the case of humic substances, 

quinones are implicated since AH2QDS could mediate the direct reduction of HCA as a sole electron 

donor (9). The pseudo-first-order rate constant for HCA disappearance by AH2QDS was observed to 

depend on the pH. Thus, the overall rate expression for HCA reduction was considered to be the sum 

of three independent, parallel, first-order reactions: 

K'HCA = Ko[A(OH)2] + K,[A(OH)0-] + K2[A(0)2
2] 

Where [A(OH)2], [A(OH)0], and [A(0)2
2] represent the concentrations of the fully protonated, the 

monophenolate, and the diphenolate forms of AH2QDS and Ko, Ki, and K2 are the corresponding rate 

constants. It was observed that K2 was about 8 times faster than Kj while K0 was not different from 

zero indicating that the dechlorination process mediated by quinones proceeds faster at high pH levels. 

Rate results of CT and HCA under different conditions agreed qualitatively with predictions based on 



General Introduction 

a one-electron reduction mechanism (9). A one-electron reduction mechanism would imply that the 

abiotic reduction proceeds via radical intermediates. However, the reduction of polyhalogenated 

alkanes and methanes by sulfide in the presence of juglone (5-hydroxy-l,4-naphthoquinone) is 

distinct. The reduced form of the quinone, juglone hydroquinone (1,4,5-trihydroxynaphthalene) did 

not cause direct dechlorination (28). Instead, sulfide reacted with juglone to form mercaptojuglone, 

which is implicated in the mediation process (29). The observed reaction rates are higher than those 

that would be expected from one-electron reduction alone because the thiol group of mercaptojuglone 

can transfer two electrons by acting as a nucleophile at a halogen of the polyhalogenated alkane. 

In addition to the abiotic dehalogenating processes mediated by humus or quinones, the anaerobic 

biotransformation of CT by Shewanella putrefaciens 200 was also reported to be accelerated by the 

presence of soil organic matter (8). Only 29 % of the chlorinated pollutant initially added (~20 u,M) 

was converted after 33 hours in cell suspensions without soil, whereas 64 % was transformed after 

only 18 hours when soil was present. Further experiments revealed that the humic acid (HA) fraction 

catalyzed the dechlorination reaction to a greater extent (270-442 (ig of CT per gram of HA) than did 

the fulvic acid (FA) fraction (149-234 |ig of CT per gram of FA), and the fraction containing humin 

and inorganic minerals (19-26 u,g of CT per gram). 

Humic substances can also chelate metals improving their catalytic properties for reductive 

dehalogenation. Humic-metal complexes were shown to mediate the abiotic reductive dechlorination 

of TCE with Ti(III) citrate as electron donor (27). Rapid TCE reduction was obtained by Ni-humic 

complexes, with total removal of TCE in less than 23 hours. Cu-humic complexes were less effective 

as catalyst, only 60 % of TCE was reduced after 150 hours. The reductive dechlorination rate of TCE 

in the absence of humic-metal complexes occurred five times slower than in the presence of humic 

acids for the experiments with copper. Only negligible reduction of TCE occurred in the experiments 

with nickel when the humic acids were excluded. In all cases ethene and ethane were the main end 

products of TCE reduction. Further experiments revealed a strong pH dependence of TCE reduction 

by Ni-humic complexes may be due to the variation of both Ni-humic concentration and redox 

potential with pH (25). 

Reduction of radionuclides. Quinone moieties in humus can also mediate the reduction of 

radionuclides. Biogenic AH2QDS caused the direct reduction of U(VI) in the absence of cells (13). 

Moreover, Deinococcus radiodurans Rl, a radiation-resistant microorganism, could almost 

completely reduce U(VI) at concentrations raging from 5 to 200 (iM in the presence of 100 nM 

AQDS. The same microorganism was unable to directly reduce U(VI) in the absence of AQDS 

indicating that biogenic hydroquinones were responsible for the reduction of U(VI) in the bioassays, 

which is consistent with the AQDS-reducing capacity of this microorganism (14). The same 

microorganism was able to reduce the soluble P-particle emitter, Tc(VII), to insoluble Tc(IV) via 

AQDS reduction. 
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Table 3. Reductive transformations of priority pollutants by humic or model humic compounds as redox 
mediators 
Electron donor 

Azo dves 

Cathode 

Glucose 

Glucose 

Glucose 

Sulfide 

Volatile fatty 
acids 

System 

Abiotic 

Bacteriab 

Bacteriab 

Burkholderia 
cepacia 
Abiotic 

Anaerobic 
granular sludge 

Polvhaloeenated pollutants 

Lactate 

Unidentified 
donor in 
sediment 
Sulfide or Fe(II) 
Sulfide or Fe(II) 
Sulfide or Fe(II) 
Sulfide or sulfur 

Nitroaromatics 

Sulfide 

Sulfide 

Radionuclides 

Lactate 

Shewanella 
putrefaciens 200 
Abiotic 

Abiotic 
Abiotic 
Abiotic 
Abiotic 

Abiotic 

Abiotic 

Deinococcus 
radiodurans 

Redox mediator" 

AQS, AQDS or 
DHAQ 
UI-2NS-Morl,2-
naphthoquinone 
AQS, AQDS or 
lawsone 
AQS 

AQDS or 1A2N 

AQDS 

Soil organic matter 

Catechol, resorcinol or 
humic acids 

Humic acids 
Humic acids 
Humic acids 
Juglone 

Natural organic matter 

Juglone or lawsone 

AQDS 

Reductive reaction 

Vat yellow 1 —» 
decolorized dye 
Amaranth —> aromatic 
amines 
Various azo dyesc —» 
aromatic amines 
Various azo dyesd —> 
aromatic amines 
Acid orange 7 —» 
aromatic amines 
Reactive red 2 —> 
aromatic amines 

CC14 -> CHCI3 + 
unidentified products 
Octachlorodioxin —> 
tetrachlorodioxin 

C2C16 -» C2C14 

CCU -» CHCI3 
CHBr3 —> unidentified 
C2C16 -> C2CI4 

Various Nitroaromatics6 

—> anilines 
Various Nitroaromaticsf 

—> anilines 

U(VI) -» U(IV) 
Tc(VlI) -» Tc(IV) 

Reference 

2 

16 

18 

19 

38 

39 

8 

1,32 

9 
9 
9 
28 

10,15 

30 

14 
"AQS, anthraquinone-2-sulfonate; AQDS, anthraquinone-2,6-disulfonate; DHAQ, 1,4-Dihydroxyanthraquinone; UI-2NS-

M, unidentified metabolites from aerobic degradation of 2-NaphthaIenesulfonate; lawsone, 2-hydroxy-l,4-naphthoquinone; 
1A2N, l-amino-2-naphthol; juglone, 5-hydroxy-l,4-naphthoquinone. 
bAnaerobic bacteria incubated anaerobically (Pseudomonas putida, Sphingomonas sp., Escherichia coli and activated 
sludge). 
cAmaranth, Acid red 1, Sunset yellow, Naphthol blue black. 
dAcid orange 7, Reactive red 180. 
Nitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, various amino-, alkyl- and chloro-nitroaromatics, and 
trinitrotoluene. 
Nitrobenzene, nitrophenols, various alkyl- and chloro-nitroaromatics. 

10 
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Acetate Succinate 

Fumarate 

Figure 4. Quinone moieties acting as interspecies electron transfer. AQDS is firstly used as electron 
acceptor by G. metallireducens to oxidize acetate and then, AH2QDS (reduced form of AQDS) is 
employed as electron donor by W. succinogenes for fumarate respiration (23). 

Humic substances as electron donors to support microbial growth 

The role of humic substances as an electron donor for anaerobic respiration has been recently reported 

indicating that hydroquinones in humus may serve as electron donors for denitrification, dissimilatory 

nitrate reduction to ammonium (DNRA), as well as the reduction of fumarate, and the toxic metalloids 

selenate and arsenate (23). AH2QDS oxidation could yield energy to support growth for three 

fumarate-reducing microorganisms, Shewanella alga, Geobacter sulfurreducens and Wolinella 

succinogenes. The fact that these microorganisms did not grow when AH2QDS or fumarate was 

omitted indicates that they obtain energy for growth from AH2QDS oxidation. Further experiments 

indicated that quinones could act as interspecies electron transfer between different microorganisms, 

such as G. metallireducens and W. succinogenes. The former can oxidize acetate with quinones as 

electron acceptor, but cannot use fumarate as electron acceptor. W. succinogenes cannot oxidize 

acetate, but can use fumarate as electron acceptor. There was a negligible acetate oxidation when 

washed cell suspensions of G. metallireducens and W. succinogenes were incubated in bicarbonate 

buffer containing acetate and fumarate. When AH2QDS was included in the culture, acetate was 

oxidized rapidly over time. The finding that there was a negligible acetate oxidation in AH2QDS-

containing cell suspensions with only G. metallireducens or W. succinogenes indicated that quinone 

moieties enhanced the electron transfer between the acetate-oxidizing AQDS-reducing, G. 

metallireducens, and the AH2QDS-oxidizing fumarate-reducing, W. succinogenes (Figure 4). These 

results suggest that reduced humic substances can donate electrons to microorganisms. Hydroquinones 

have also been reported as a potential electron donor for the microbial reduction of (per)chlorate. 

11 
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Strain CKB, a protobacterium closely related to Rhodocyclus tenuis, was able to oxidize AH2QDS 

coupled to the reduction of (per)chlorate and the respiratory process was shown to support growth (5). 

Significance 

Previously humus was considered as inert organic matter. However, new insights from the literature 

indicate that humus can have active roles in anaerobic biodegradation processes including that of 

priority pollutants. The recent evidences reported on the role of humic compounds in electron transfer 

under anaerobic conditions shows that these ubiquitous compounds are mainly involved in 4 different 

phenomena: 

1) Serving as terminal electron acceptors for the anaerobic oxidation of both readily 

biodegradable compounds and priority pollutants. Metal oxides can recycle the reduced 

humus. 

2) Serving as redox mediators in the reductive (bio)transformation of priority pollutants such 

as polychlorinated, nitroaromatics, azo dyes and radionuclides. 

3) Serving as electron donors for the anaerobic respiration of more oxidized compounds, 

such as nitrate, fumarate and (per)chlorate. 

4) Chelating metals to improve their catalytic properties such as the reduction of 

polychlorinated compounds by humic-metal complexes. 

Therefore, humic compounds or analogues can play different roles in the bioremediation of 

contaminated anaerobic sites as well as on the treatment of wastewaters containing priority pollutants. 

Scope and outline of thesis 

The objective of this dissertation is to evaluate the impact of humic substances or humic analogues on 

the anaerobic biotransformation of priority pollutants. The study is divided in two phases: 

Phase 1. Evaluate the capacity of humus-respiring consortia and isolates for oxidizing ecologically 

important substrates and selected priority pollutants with humus or quinones as terminal electron 

acceptors. 

Phase 2. Evaluate the role of humic substances as redox mediators in reductive processes to achieve 

the anaerobic biotransformation of selected priority pollutants. 

Anaerobic consortia obtained from a broad diversity of environments are described in Chapter 2 for 

their capacity to oxidize ecologically important simple substrates, such as acetate, lactate, and 

methanol, with the humic analogue, AQDS, as a final electron acceptor. In Chapter 3, pure cultures of 

different microorganisms, previously not known to have the ability to reduce humic substances, are 

evaluated for their capacity to use humic substances as a terminal electron acceptor for the anaerobic 

oxidation of simple substrates. An AQDS-respiring enrichment derived from an anaerobic granular 

sludge is physiologically and phylogenetically characterized in Chapter 4. AQDS-respiring 

12 
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microorganisms were also immobilized in the granular sludge of a continuous upflow anaerobic 

sludge blanket (UASB) reactor and the application of these microorganisms in anaerobic reactors 

treating wastewaters containing priority contaminants is also discussed in chapter 4. Consortia that 

showed the capacity to oxidize simple substrates with AQDS as a terminal electron acceptor (Chapter 

2) are also tested for their ability to oxidize priority pollutants, such as p-cresol (Chapter 5) and 

toluene (Chapter 6) coupled to AQDS or humus reduction. 

In Chapter 7, the role of quinone-respiring consortia on the anaerobic dechlorination of a 

polychlorinated pollutant (carbon tetrachloride), with quinones as redox mediators, is described. 

Chapter 8 illustrates the application of quinones as redox mediators to accelerate the anaerobic 

biotransformation of an azo dye (Acid orange 7) by anaerobic granular sludge in a continuous reactor. 

Finally, the results obtained from this dissertation are discussed in chapter 9 in relation to their 

relevance for the bioremediation of aquifers and sediments, as well as, for the anaerobic treatment of 

wastewaters containing priority pollutants. 
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(Bennekom, The Netherlands) was also used as inoculum in this study. Additionally, three different 

anaerobic sediments were used in the experiments. Anaerobic Rhine sediment was collected alongside 

the banks of the river near Lexkesveer in Wageningen, The Netherlands. Anaerobic Petroleum Harbor 

sediment was collected from a contaminated site with polycyclic aromatic hydrocarbons (Amsterdam, 

The Netherlands). Anaerobic sediment rich in organic matter (about 50 % dry weight) was collected 

from a small canal ("Voorwetering", Nieuwkoop, The Netherlands). All biomass sources were stored 

at 4 °C before use. 

The basal medium used in all the experiments contained (g l"1): NaHC03, (5); NH4C1, (0.03); K2HP04, 

(0.02); MgCl2*6H20, (0.012); CaCl2*2H20, (0.005); Na2S, (0.013); and 1 ml l1 of both trace elements 

and vitamins. The basal medium was flushed with N2/C02 (70/30) for 10 minutes before use. 

Bioassays. The assays were conducted in batch mode culture by triplicate in 117-ml glass serum 

bottles with a liquid volume of 50 ml (67 ml as headspace). Two sets of assays were run. In the first 

set, basal medium was transferred directly to the vials after flushing it and then, inoculation took place 

by adding 1 g of volatile suspended solids (VSS) per liter for activated and granular sludge or 10 g 

(dry weight) of sediment per liter for the anaerobic sediments. The vials were sealed with butyl rubber 

stoppers and aluminum crimps and then flushed with N2/C02 (70/30) for 10 minutes. Finally, the 

corresponding substrate was added at the final concentration of 300 mg of chemical oxygen demand 

(COD) per liter. The substrates evaluated include hydrogen, acetate, propionate, methanol and lactate. 

Another set was amended with AQDS (20 mM) and run under the same experimental conditions. 

Furthermore, two more sets of assays (one with and another without AQDS) were conducted in the 

presence of the methanogenic inhibitor, 2-bromoethanesulphonic acid (BES) at the final concentration 

of 50 mM. Sterilized controls were also included for the reduction of AQDS with hydrogen as electron 

donor. Endogenous methane production and AQDS reduction refer to the occurrence of these 

phenomena by the inocula evaluated without any addition of substrate in the experiments. The pH was 

corroborated and remained at 7.3±0.1 in all the assays. All incubations were carried out at 30 °C in the 

dark. Refilling the corresponding bottles and following all the parameters at least one more time 

confirmed all the batch experiments. 

Analyses. Analysis of AH2QDS was carried out on anaerobically collected samples in an anaerobic 

chamber under N2/H2 (96:4) atmosphere. Samples were centrifuged (10000 g, 5 min) and then diluted 

in 1 cm disposable plastic cuvettes containing anaerobic bicarbonate buffer (60 mM, pH 6.7±0.1). 

Concentrations of AH2QDS were determined by monitoring absorbance at 450 nm and using an 

extinction coefficient of 2.25 AU per mM obtained from a calibration curve of AQDS chemically 

reduced by dithionite. Figure 1 illustrates the spectrum of AH2QDS obtained from the microbial 

reduction of AQDS by Nedalco sludge with acetate as electron donor and also by chemical reduction 

with dithionite. There was no difference observed in the spectrum obtained by both mechanisms of 
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reduction even at early steps during microbial reduction of AQDS, indicating that reduction of AQDS 

proceeded directly to AH2QDS without any accumulation of partially reduced quinone intermediates. 

2.5 

340 

° Complete chemical AQDS 
reduction 

n Complete microbial AQDS 
reduction 

A AQDS Completely oxidized 

Microbial AQDS reduction at 
different incubation times 

400 460 520 

Wavelength (nm) 
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Figure 1. Spectrum of anthraquinone-2,6-disulfonate in its oxidized (AQDS) and reduced (AH2QDS) 
forms. Chemical reduction of AQDS refers to the formation of AH2QDS with dithionite as reductant 
and microbial AQDS reduction was achieved by "Nedalco" sludge with acetate as electron donor. 
Measurements were conducted in anaerobically collected samples diluted in anaerobic bicarbonate 
buffer (60 mM). Cuwetes containing 0.25 mM of AQDS in all cases. 

Methane production was determined by using a flame ionization gas chromatograph model 438/S 

(Packard-Becker, Delft, The Netherlands). The gas chromatograph was equipped with a steel column 

(2 m x 2 mm) packed with Porapak Q (80/100 mesh, Millipore Corp., Bedford, Mass.). The 

temperatures of the column, injector port, and the flame ionization detector were 60, 200 and 220 °C, 

respectively. Nitrogen was used, as carrier, at a flow rate of 20 ml per min and the sample injection 

volume was 100 |il. Hydrogen concentration was followed by gas chromatography with a thermal 

conductivity detector. The chromatograph was equipped with a 1.5 m x 2 mm steel column packed 

with Mol sieve 5A, 60-80 mesh. The temperatures for the column, injection port and detector were 40, 

110, 125 °C, respectively. The carrier gas was argon at a flow rate of 20 ml per min and the sample 

injection volume was 100 (xl. 

Samples for methanol and volatile fatty acids (VFA) were analyzed after centrifugation at 10000 g for 

5 min. VFA were determined by gas chromatography using a Hewlett Packard 5890 equipped with a 2 

m x 2 mm glass column packed with Supelcoport (100-120 mesh) coated with 10 % Fluorad FC 431. 
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The temperatures of the column, injection port and flame ionization detector were 130, 200, 280 °C, 

respectively. The carrier gas was nitrogen saturated with formic acid (40 ml per min). Methanol was 

analyzed in the same way as VFA except that the temperatures of the column, the injection port and 

the flame ionization detector were 70, 200 and 280 °C, respectively. Lactate was analyzed by high 

performance liquid chromatography (HPLC) in previously centrifuged samples (10000 g, 5 min). The 

HPLC was equipped with an Ion 300 "organic acids" column (30 cm x 7.8 mm), which was kept at 20 

°C, and with a refractive index (RI) detector. H2S04 (1.25 mM) was used as mobile phase at 0.5 ml per 

min. The sample injection volume was 20 (xl. 

Redox measurements were conducted anaerobically using a WTW redox electrode with an Ag/AgCl 

(3 M) reference electrolyte at 25 °C. The readings were corrected for the redox potential of the 

reference electrode (+ 207 mV at 25 °C). The electrode was calibrated at - 480 mV using an anaerobic 

redox standard solution of titanium(III) citrate (75). 

Results 

Reduction of AQDS by different anaerobic consortia with acetate and hydrogen as electron 

donors. All the consortia evaluated were capable of using AQDS as terminal electron acceptor for 

oxidizing hydrogen as substrate after 5 weeks of incubation (Table 1). There was neither AQDS 

reduction nor hydrogen consumption in sterilized controls with autoclaved inocula (data not shown). 

Most of the consortia studied were also able to reduce AQDS with acetate as electron donor, but 

reduction of AQDS by "Shell" granular sludge and "Rhine" sediment occurred rather slowly with this 

substrate (Table 1). Further incubation (8 weeks in total) of these bioassays resulted in only minor 

reduction of AQDS (data not shown). Both substrates were partially or completely converted to 

methane by all the consortia in the absence of AQDS (data not shown). 

Characterization of the AQDS-respiring consortia. The capacity of the methanogenic granular 

sludge obtained from a full-scale UASB reactor (alcohol distillery of Nedalco; Bergen op Zoom, The 

Netherlands) and the anaerobic sediment rich in organic matter obtained from "Voorwetering" 

(Nieuwkoop, The Netherlands) for oxidizing different substrates coupled to the reduction of AQDS 

was explored. All the substrates evaluated were completely converted to methane by "Nedalco" sludge 

when bicarbonate was the only electron acceptor available after two weeks of incubation. There was 

negligible methane production when the methanogenic inhibitor, BES, was included in the cultures. 

Acetate was not consumed under these inhibitory conditions whereas propionate, methanol and 

hydrogen were only partially converted to acetate. Lactate was also converted to acetate and 

propionate under these conditions (Table 2). 
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Table 1. Acetate and hydrogen oxidation coupled to quinone respiration by different consortia after 5 
weeks of incubation3 

Inoculum 

Quinone respiration 
with acetate with hydrogen 

Characteristics 

Methanogenic granular sludge 
Methanogenic granular sludge 
Aerobic activated sludge 
Amsterdam petroleum harbor 
sediment 
Anaerobic sediment rich in 
NOM 
Anaerobic sediment 

% 
substrateb 

86 
7 
100 
88 

102 

21 

% substrate 
consumed0 

128 
101 
102 
102 

109 

104 

% 
substrate 

84 
98 
100 
100 

104 

98 

% 
substrate 
consumed 
84 
98 
100 
100 

104 

98 

Nedalco 
Shell 
Bennekom 
APH 

Voorwetering 

Rhine 
AQDS, anthraquinone-2,6-disulfonate; AH2QDS, anthrahydroquinone-2,6-disulfonate; COD, chemical oxygen demand; 
NOM, natural organic matter. 
"Initial concentration for both substrates 300 mg COD l"1. AQDS concentration of 20 mM in all cases. All calculations based 
on mg COD per liter of liquid fluid. COD in AH2QDS refers only to the hydrogen linked to the structure. Results are means 
of triplicate incubations. In all the cases the standard deviation was less than 10 %. 
b% of substrate consumed via AQDS reduction related to the input COD = (AH2QDS produced - endogenous AH2QDS 
production)/(Input COD). 
c% of substrate converted via AQDS reduction related to the substrate consumption = (AH2QDS produced - endogenous 
AH2QDS production)/(Input COD - substrate not consumed). 

Table 2. COD balance (in mg COD l"1) for the oxidation of different substrates by Nedalco sludge in 
the absence of AQDS after 5 weeks of incubation" 
Culture Endogenous Acetate Propionate Methane Recovery (%) 
Acetate 
Acetate-BES 
Propionate 
Propionate-BES 
Methanol 
Methanol-BES 
Hydrogen 
Hydrogen-BES 
Lactate 
Lactate-BES 

76 
76 
76 
76 
76 
76 
76 
76 
59f 

59f 

-
360 
8 
150 
-
188 
2 
252 
15 
161 

-
27 
7 
200 
-
-
-
17 
-
194.5 

444 
45 
430 
66 
392 
43 
373 
72 
365 
30 

121 
117 
117 
108 
104 
86c 

101 
93d 

107 
109 

All abbreviations refer to the same terms given in Table 1. BES: 2-bromoethanesulphonic acid. 
"All substrates at the initial concentration of 300 mg COD l'1. Results are means of triplicate incubations. In all cases the 
standard deviation was less than 10 %. 
bRecovery = (identified products - endogenous COD)/(input COD). 
Including 98 mg COD 1"' remaining as methanol. 
dNo hydrogen detected at the end of the experiment. 
"No lactate detected at the end of the experiment 
'Conducted with another endogenous control at a different time compared to the other batch cultures. 

In general, both consortia evaluated did not produce methane when AQDS (20 mM) was included in 

the cultures. Instead of this, there was reduction of AQDS with hydrogen, acetate and lactate as 

electron donors by both inocula (Figures 2a and 2b). The role of AQDS as terminal electron acceptor 

was evidenced by the AQDS reduction achieved beyond endogenous controls. Moreover the COD 

recovered as AH2QDS (referring only to the hydrogen linked to the structure and corrected for the 
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endogenous AH2QDS production) agreed with the amount of substrate consumed in all the cases 

(Table 1). The corrected AH2QDS accounted for 56 to 65 % of the lactate consumed by both inocula 

and the remaining was recovered as propionate (Tables 4 and 5). Addition of BES to the AQDS-

containing cultures did not affect the reduction of AQDS with these substrates (Figures 2c and 2d). 

Complete conversion of substrates in BES amended cultures, where methanogenesis was knocked out 

, was only made feasible if AQDS was added. This observation confirmed the role of AQDS as a 

terminal electron acceptor. 

Table 3. COD balance (in mg COD 1"') for the oxidation of different substrates by "Voorwetering" 
sediment in the absence of AQDS after 5 weeks of incubation" 
Culture 
Acetate 
Acetate-BES 
Propionate 
Propionate-BES 
Methanol 
Methanol-BES 
Hydrogen 
Hydrogen-BES 
Lactate 
Lactate-BES 

Endogenous 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

Acetate 
98 
195 
-
35 
-
115 
-
95 
8 
157 

Propionate 
-
78 
255 
248 
-
-
-
-
-
115 

Methane 
215 
10 
59 
5 
303 
32 
249 
7 
295 
12 

Recovery (%)b 

100 
92 
100 
95 
98 
97c 

83d 

87= 
98f 

93f 

All abbreviations refer to the same terms given in Table 1. BES: 2-bromoethanesulphonic acid. 
"All substrates at the initial concentration of 300 mg COD l ' . Results are means of triplicate incubations. In all cases the 
standard deviation was less than 10 %. 
""Recovery = (identified products - endogenous COD)/(input COD). 
'Including 148 mg COD I"1 remaining as methanol. 
•"No hydrogen detected at the end of the experiment. 
'Including 167 mg COD l"1 remaining as hydrogen. 
fNo lactate detected at the end of the experiment. 

Negligible AQDS reduction (compared to the endogenous control) occurred with propionate by 

"Nedalco" sludge (Figures 2a and 2c). There was no methane production detected in the propionate-

AQDS culture, which was found in the absence of AQDS (Table 2), and a small fraction of propionate 

was converted to higher VFA (25-50 mg COD l"1 mainly as butyrate and valerate) by "Nedalco" 

sludge. Furthermore, only partial reduction of AQDS with propionate by "Voorwetering" sediment 

was achieved (Figures 2b and 2d). The reduction of AQDS proceeded through the conversion of 

propionate to acetate. Acetate was then oxidized leading to further reduction of AQDS, but after the 

propionate concentration reached about 1.5 mM, there was no further conversion of this substrate 

(Figure 3). Nevertheless, the reaction was still thermodynamically favorable under the experimental 

conditions (AG' about - 130 kj per mol at the end of the experiment). No methane production was 

detected in the propionate/AQDS culture by this sediment. Addition of BES in the propionate/AQDS 

experiments did not effect the pattern observed in the absence of this methanogenic inhibitor by both 

inocula (Tables 4 and 5). 
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Figure 2. Reduction of anthraquinone-2,6-disulfonate (AQDS) by different consortia with different 
substrates, (a) Reduction of AQDS (20 mM) by "Nedalco" sludge, (b) Reduction of AQDS (20 mM) 
by "Voorwetering" sediment, (c) Reduction of AQDS (20 mM) by "Nedalco" sludge in the presence 
of BES (50 mM). (d) Reduction of AQDS (20 mM) by "Voorwetering" sediment in the presence of 
BES (50 mM). Measurements were conducted spectrophotometrically (450 nm) in anaerobically 
collected samples diluted in anaerobic bicarbonate buffer (60 mM). The results are the means of 
triplicate incubations and the bars indicate the standard deviation. Substrates: ' , acetate; •*•, 
hydrogen; • , lactate, • , propionate; A, endogenous. All the substrates supplied at 300 mg COD l"1. 
Results from repeated experiments in refilled bottles. BES: 2-bromoethanesulphonic acid. 

Methanol was the only substrate that was converted to methane in the presence of the alternative 

electron acceptor, AQDS. In fact, after a lag phase of three weeks, methanogenesis was the preferred 

pathway over AQDS reduction by "Nedalco" sludge with methanol (Figure 4a). On the other hand, 

there was a competition between methanogenesis and acetogenesis for methanol by anaerobic 

"Voorwetering" sediment. Once methanol was completely depleted methanogenic activity ceased. 

After that time point, the consumption of the accumulated acetate led to AQDS reduction by this 

sediment (Figure 4b). Important fractions of COD were recovered both as methane and AH2QDS 

(Table 5). On the other hand, both consortia only oxidized methanol via AQDS reduction when BES 

was included in the medium (Figures 4c and 4d). Methanol oxidation proceeded through the formation 

of acetate as an intermediate in both cases and AQDS reduction coincided with acetate accumulation 

(about 0.6 mM) in the cultures. These observations indicate that the reduction of AQDS was most 

likely caused directly by acetate. The COD recovered as AH2QDS in the BES amended methanol-
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AQDS cultures agreed with the amount of methanol consumed by both AQDS-respiring consortia (80-

90 %). The remaining COD was recovered as acetate. 

Table 4. COD balance (in mg COD l"1) for the oxidation of different substrates by Nedalco sludge in 
the presence of AQDS (20 mM) after 5 weeks of incubation" 
Culture 

Acetate 
Acetate-BES 
Propionate 
Propionate-BES 
Methanol 
Methanol-BES 
Hydrogen 
Hydrogen-BES 
Lactate 
Lactate-BES 

Endogenous 

151 
151 
151 
151 
151 
151 
151 
151 
98J 

98J 

Acetate 

109 
126 
31 
9 
42 
63 
44 
50 
5 
6 

Propionate 

-
-
199 
213 
-
-
-
-
75 
73 

AH2QDSC 

402 
369 
141 
101 
71 
363 
403 
404 
292 
281 

Recovery 
(%)b 

118 
111 
86d 

78e 

72f 

102e 

99h 

101h 

96' 
90' 

All abbreviations refer to the same terms given in Table 1. BES: 2-bromoethanesulphonic acid. 
"All substrates at the initial concentration of 300 mg COD l"1. Results are means of triplicate incubations. In all cases the 
standard deviation was less than 10%. 
''Recovery = (identified products - endogenous COD)/(input COD). 
cCOD calculated only refers to the hydrogen linked to the structure. 
""including 24 mg COD l"1 as higher volatile fatty acids formed (butyrate and valerate). 
'Including 50 mg COD l"1 as higher volatile fatty acids formed (butyrate and valerate). 
Including 240 mg COD 1"' as methane produced. 
including 25 mg COD 1"' remaining as methanol. 
''No hydrogen detected at the end of the experiment. 
•No lactate detected at the end of the experiment. 
^Conducted with another endogenous control at a different time compared to the other batch cultures. 

Toxicity of AQDS over methanogenic activity by anaerobic granular sludge. The toxicity of 

AQDS over the acetoclastic metanogenic activity of "Shell" granular sludge (obtained from Moerdijk, 

The Netherlands) was studied. This consortium was characterized by a high methanogenic activity 

(0.4 g COD-CH4 per g of VSS per day), but negligible capacity of reducing AQDS with acetate as 

electron donor (Table 1). The methanogenic activity of this consortium was diminished or completely 

abolished during the first 75 hours of incubation by the presence of AQDS in the medium (Figure 5). 

However, recovery of the methanogenic activity was achieved by further incubation (20 to 70 hours) 

in the cultures with 5, 10 and 15 mM of AQDS. Recovery of the methanogenic activity of the cultures 

containing 20 and 25 mM of AQDS was also achieved after 120 hours of incubation. 

A toxicity effect of AQDS was also observed over methanogenic activity by "Nedalco" sludge with 

methanol as substrate. Methanol was completely converted to methane in the absence of AQDS after 2 

weeks of incubation; whereas methane production started only after 3 weeks of incubation in the 

AQDS-amended (20 mM) culture with a 25 % lower methane production rate (Figure 6). 
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Discussion 

The results presented here indicated that quinones, analogues of redox active groups in humus, could 

be important electron acceptors for the anaerobic biotransformation of a wide variety of substrates. 

Quinone respiring capacity was observed both in natural habitats, such as anaerobic sediments and 

soils, and in artificial habitats such as sludges from wastewater treatment plants, including aerobic 

treatment. These results agreed with the recovery of humic-reducing bacteria from different 

environments (5) and indicate that AQDS-respiring microorganisms are widespread in nature. This 

study also suggested that humic substances may play an important role in the biotransformation of 

organic matter during anaerobic treatment of waste streams if they are present in the system. 

Table 5. COD balance (in mg COD l"1) for the oxidation of different substrates by "Voorwetering" 
sediment in the presence of AQDS (20 mM) after 5 weeks of incubation" 
Culture 
Acetate 
Acetate-BES 
Propionate 
Propionate-BES 
Methanol 
Methanol-BES 
Hydrogen 
Hydrogen-BES 
Lactate 
Lactate-BES 

Endogenous 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 

Acetate 
21 
53 
153 
10 
8 
49 
-
5 
6 
8 

Propionate 
-
-
9 
167 
-
-
-
-
71 
82 

AH2QDSC 

325 
323 
119 
160 
149 
278 
328 
328 
181 
203 

Recovery (%)" 
109 
110 
91 
109 
118" 
105 
104e 

105e 

84f 

93f 

All abbreviations refer to the same terms given in Table 1. BES: 2-bromoethanesulphonic acid. 
"All substrates at the initial concentration of 300 mg COD l"1. Results are means of triplicate incubations. In all cases the 
standard deviation was less than 10%. 
bRecovery=(identified products - endogenous COD)/(input COD). 
cCOD calculated only refers to the hydrogen linked to the structure. 
including 210 mg COD 1"' as methane produced (in all other cases methane not detectable or at trace levels). 
°No hydrogen detected at the end of the experiment. 
fNo lactate detected at the end of the experiment. 

Our results suggested that hydrogen-oxidizing rather than acetate-oxidizing bacteria are the most 

widespread AQDS-reducing microorganisms in the consortia studied. This was evidenced by the fact 

that all the consortia evaluated were capable of oxidizing hydrogen coupled to complete AQDS 

reduction (20 mM), whereas only three of the five consortia studied achieved complete AQDS 

reduction when acetate was provided as electron donor after 5 weeks of incubation (Table 1). The fact 

that the methanogenic inhibitor, BES, did not affect the reduction of AQDS with different substrates 

by "Nedalco" sludge and "Voorwetering" sediment suggested that methanogenic bacteria may not be 

involved in the quinone respiring processes observed. Although this does not exclude the possibility 

that methanogens might have reduced AQDS by a pathway in which Coenzyme M reduction (BES 

inhibited) is not involved (14). Furthermore, "Shell" sludge, which showed the highest specific 

acetoclastic methanogenic activity of all the consortia studied, could not reduce AQDS with acetate as 

an electron donor. This strongly suggests that acetoclastic methanogens were not involved in quinone 
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respiration. Also the long lag phases observed indicate that methanogens were not reducing AQDS in 

the consortia evaluated. This lag phase suggested enrichment of new quinone-respiring bacteria rather 

than activity of the existing cells. Methanogenic archaea are expected to be very abundant in the 

anaerobic consortia studied based on the high methanogenic activity observed in most of them. The 

shorter lag phase observed in refilled bottles (Figure 2) confirmed that new populations were being 

enriched during these studies. 

• propionate 
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Figure 3. Reduction of anthraquinone-2,6-disulfonate (AQDS, 20 mM) coupled to the conversion of 
propionate to acetate by "Voorwetering" sediment. AH2QDS measurements were conducted 
spectrophotometrically (450 nm) in anaerobically collected samples diluted in anaerobic bicarbonate 
buffer (60 mM). The results are the means of triplicate incubations and the bars indicate the standard 
deviation. Results from repeated experiments in refilled bottles. 

Addition of AQDS (20 mM) to most cultures prevented methanogenesis. In general, quinone 

respiration predominated when AQDS was added. This is consistent with the fact that AQDS was 

found to be toxic to acetoclastic methanogenic activity in "Shell" granular sludge (Figure 5) and toxic 

to methylotrophic methanogenic activity in "Nedalco" sludge (Figure 6). Methanogenesis generally 

occurred more rapidly and with less lag time when AQDS was absent. Moreover, complete conversion 

of acetate to methane by anaerobic sediment obtained from Rhine river, was only possible in the 

absence of AQDS. There was negligible acetate conversion and methane production in the AQDS 

amended culture by this consortium (data not shown). Propionate/AQDS cultures also illustrate the 

toxic effect of AQDS, since no methane production occurred in these experiments even though there 
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was only minor conversion of propionate linked to AQDS reduction. Otherwise, it would have been 

expected that methanogens could have outcompeted the quinone-respiring bacteria for this substrate. 

Thus, toxicity of AQDS is an important factor for determining outcome of competition between 

methanogenesis and quinone respiration. 
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Figure 4. Conversion of methanol in the presence of anthraquinone-2,6-disulfonate (AQDS) by 
different consortia, (a) By "Nedalco" sludge with 20 mM of AQDS. (b) By "Voorwetering" sediment 
with 20 mM of AQDS. (C) By "Nedalco" sludge with 20 mM of AQDS in the presence of BES (50 
mM). (d) By "Voorwetering" sediment with 20 mM of AQDS in the presence of BES (50 mM). 
Methane and AH2QDS corrected for the endogenous production. AH2QDS measurements were 
conducted spectrophotometrically (450 nm) in anaerobically collected samples diluted in anaerobic 
bicarbonate buffer (60 mM). The results are the means of triplicate incubations and the bars indicate 
the standard deviation. Results from repeated experiments in refilled bottles. Methanol ( • ); methane 
( ); acetate ( • ) ; AH2QDS (A). BES: 2-bromoethanesulphonic acid. 

Table 6. Thermodynamic comparison of AQDS reduction with other microbial processes with acetate 
as electron donor (values calculated with data from Sober (1970) (79) and Thauer et al. (1977) (20)) 
Reaction AG" (kJ per reaction) 
CH3COO- + 8 Fe3+ + 4 H20 -» 8 Fe2+ + 9 H+ + 2 HCO3" 
CH3COO" + 8/5 N03" + 3/5 H+ -> 2 HCO3" + 4/5 N2 + 4/5 H20 
CH3COO" + 4 AQDS + 4 H20 -> 4 AH2QDS + 2 HCO3" + H+ 

CH3COO" + S04
2" -» HS + 2 HCO3" 

CH3COO- + H2Q -> CH4 + HCCV 

- 808.6 
-791.9 
-73.0 
-47.6 
-31.0 
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Figure 5. Toxicity effect of anthraquinone-2,6-disulfonate (AQDS) over acetoclastic methanogenic 
activity by "Shell" sludge. All batch experiments containing 300 mg COD-acetate l"1 as substrate. The 
numbers next to the lines indicate the concentration of AQDS in mM. The results are the means of 
triplicate incubations for each treatment. Bars indicate the standard deviation. 
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The fact that methanogenic activity was recovered by further incubation of the cultures of granular 

sludges exposed to AQDS suggested that the toxicity effect by this compound was reversible. AQDS 

(20 mM) increased the redox potential of the culture fluid to about + 130 mV, but it was decreased to 

about - 175 to - 250 mV depending on the extent of reduction of AQDS in the cultures. The high 

redox potential that prevailed at the starting time point probably interfered with biochemical processes 

required for methanogenesis as it is generally assumed that methane production is only possible if the 

redox potential is lower than - 200 to - 400 mV in the medium (15). Besides AQDS-respiring 

bacteria, methanogens in granular sludges might have mechanisms to decrease the redox potential of 

the medium, which allow for the methane production observed. In fact, previous experiments revealed 

that methanogenic bacteria, such as Methanosarcina barken, were capable of generating by 

themselves the redox environment, which suited the production of methane (15). It was shown that the 

capacity for decreasing the redox potential by M. barken was dependent on the amount of methanol 

added. This is in agreement with the fact that methanol was the unique substrate that could be 

converted to methane by "Nedalco" granular sludge in the presence of AQDS. The lag phase (3 

weeks) observed in the methanol/AQDS culture by "Nedalco" sludge (Figure 4a) suggested that this 
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consortium might have also needed this period to decrease the redox potential of the medium before 

starting any methanogenic activity. The fact that methanol was the only substrate that could be 

converted to methane by "Nedalco" sludge in the presence of AQDS might be explained by 

biochemical aspects. Methanol bypasses most of the important biochemical steps towards formation of 

methyl-coenzyme M during methanogenesis compared to acetate (16). This hypothesis is also 

supported by the competition observed between methanogenesis and acetogenesis by "Voorwetering" 

sediment in the methanol/AQDS culture. Methanol was the only substrate that was converted to 

methane in the presence of AQDS, whereas the accumulated intermediate acetate, was probably 

consumed via quinone respiration by this consortium (Figure 4b). 

The fact that reduction of AQDS by "Nedalco" and "Voorwetering" consortia in the 

methanol/AQDS/BES cultures, was only possible when the acetate concentration reached about 0.6 

mM (Figures 4c and 4d) suggested that the reduction of the quinone moieties was not related to the 

direct methanol oxidation, but to the consumption of the acetate intermediate. Moreover, none of the 

AQDS-reducing bacteria recovered from different anaerobic sediments could use methanol as electron 

donor either (5). Thus, methanol seems not to be a suitable direct substrate for AQDS-respiring or 

humus-respiring microorganisms; whereas it can be directly converted to methane by methylotrophic 

microorganisms (17,18). This might have also played an important role for determining the preferred 

pathway during methanol depletion in our experiments because methanogenesis occurred when BES 

was not included in the methanol/AQDS cultures by both consortia studied even though AQDS 

reduction is thermodynamically more favorable than methanogenesis. 

Table 7. Stoichiometry and standard free energy change (AG°") for the reduction of AQDS with 
different electron donors (values calculated with data from Sober (1970) (19) and Thauer et al. (1977) 
(20)) 

AG0' (kJ per 
Reaction reaction) 
methanol 
CH3OH + 3 AQDS + 2 H20 -» 3 AH2QDS + HCO3" + H+ - 109.7 
lactate 
CH3CHOHCOO- + 2 AQDS + 2 H20 -> CHjCOO" + 2 AH2QDS + HCO3" + H+ - 93.0 
acetate 
CHjCOO" + 4 AQDS + 4 H20 -> 4 AH2QDS + 2 HC03" + H+ - 73.0 
propionate 
CH3CH2COO' + 3 AQDS + 3 H20 -> CH3COO" + 3 AH2QDS + HC03" + H+ -57.1 
hydrogen 
H2 + AQDS-> AH2QDS -44.4 
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Figure 6. Toxicity effect of anthraquinone-2,6-disulfonate (AQDS, 20 mM) over methanogenic 
activity by "Nedalco" sludge with methanol as substrate (300 mg COD l"1). The results are the means 
of triplicate incubations for each treatment. Bars indicate the standard deviation. 

AQDS reduction is a very favorable reaction from the thermodynamic point of view. This reaction is 

more favorable than sulfate reduction and methanogenesis (Table 6). The thermodynamic 

favourability might have played an important role for the occurrence of AQDS reduction instead of 

methanogenesis in most of the experiments showed. However, Table 6 illustrates that iron reduction 

and denitrification are expected to be more favorable processes than AQDS respiration. The 

conversions of all the substrates tested in this study are thermodynamically feasible when AQDS is 

provided as terminal electron acceptor (Table 7). Conversion of propionate to acetate coupled to the 

reduction of AQDS was one of the most unfavorable reactions studied (Table 7). However, according 

to the experimental conditions applied, this reaction was thermodynamically favorable during the 

whole period tested by "Nedalco" sludge and "Voorwetering" sediment (AG' between - 155 and - 70 

kJ per mol of propionate in both cases). Nevertheless, there was no reduction of AQDS after the 

concentration of propionate decreased to 1.5 mM in the cultures, which agreed with the point in which 

no further conversion of propionate to acetate was observed (Figure 3). The accumulation of higher 

VFA in the propionate/AQDS cultures by "Nedalco" sludge (Table 4) suggested that the transfer of 

electrons was truncated during these experiments due to unknown reasons. 

As humus is the most abundant organic fraction in the biosphere, it may contribute to important 

carbon cycling process by serving as a terminal electron acceptor for the anaerobic microbial oxidation 

of a wide variety of ecologically important substrates. This is also supported by the fact that reduction 
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of AQDS by "Nedalco" and "Shell" sludges could be coupled to the oxidation of p-cresol (data not 

shown). Moreover, the fact that quinone-respiring capacity was found in a wide variety of 

environments, including contaminated anaerobic sites, suggested that there is an enormous potential 

for using humic substances to clean up anaerobic polluted sediments and aquifers. Humic substances 

do not necessarily have to be present in abundant supply as they can be recycled by chemical 

reoxidation of hydroquinones in humus with metal oxides naturally present in many anaerobic sites 

(2,8). Moreover, humic substances can also be recycled microbially, as hydroquinones can be potential 

electron donors for anaerobic reduction of nitrate (21). 
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Chapter 3 

Abstract 

Physiologically distinct anaerobic microorganisms were explored for their ability to oxidize different 

substrates with humic acids or the humic analogue, anthraquinone-2,6-disulfonate (AQDS), as a 

terminal electron acceptor. Most of the microorganisms evaluated including e.g. the halorespiring-

bacterium, Desulfitobacterium PCE1; the sulfate-reducing bacterium, Desulfovibrio G i l ; and the 

methanogenic archaeon, Methanospirillum hungatei JF1, could oxidize hydrogen linked to the 

reduction of humic acids or AQDS. Desulfitobacterium dehalogenans and Desulfitobacterium PCE1 

could also convert lactate to acetate linked to the reduction of humic substances. Humus served as a 

terminal electron acceptor supporting growth of Desulfitobacterium species, which may explain the 

recovery of these microorganisms from organic rich environments where the presence of chlorinated 

pollutants or sulfite is not expected. The results suggest that the ubiquity of humus reduction found in 

many different environments may be due to the increasing number of anaerobic microorganisms, 

which are known to be able to reduce humic substances. 

Introduction 

Humus is the most abundant organic fraction accumulating in terrestrial and aquatic environments. 

Although humus itself is inert as a substrate, it has been reported as a potential electron acceptor 

supporting the anaerobic microbial oxidation of other substrates, such as acetate, and hydrogen (3, 5, 

15). The microbial reduction of humus is ecologically relevant because it may serve as an important 

mechanism for organic substrate oxidation in many anaerobic environments, due to its abundance, and 

because of the high reactivity of humus with metal oxides. Microbially reduced humus can abiotically 

transfer electrons to Fe(III) and Mn(IV) oxides (15, 22) allowing for its regeneration to the oxidized 

form. Thus, even sub-stoichiometric concentrations of humus could mediate anaerobic substrate 

oxidation and reduction of metal oxides in anaerobic environments. 

Quinones are structural units, which are very abundant in humus (21). Electron spin resonance 

measurements revealed direct evidence that quinone moieties are the actual functional groups 

accepting electrons during the microbial reduction of humus (19). Moreover, genetic evidence 

provided a common biochemical basis for quinone and humus reduction in Shewanella putrefaciens 

MR. The study showed that menaquinone was involved in the electron transport chain of S. 

putrefaciens MR during the reduction of humus and the quinone model compound, anthraquinone-2,6-

disulfonate (AQDS). Mutants of this organism, lacking the ability to synthesize menaquinone, were 

unable to reduce AQDS and humus (17). Thus, quinones are good analogues for the function of humus 

as a terminal electron acceptor. Humic acid is the fraction of humus generally containing the highest 

concentration of quinones (21), and it has also been used in different studies for exploring the 

microbial reduction of humus (1, 2, 15). 
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Most known quinone-reducing microorganisms are Fe(III)-reducing bacteria of the family 

Geobacteraceae capable of coupling the respiratory process to growth (4, 5, 15). Other Fe(III)-

reducers, such as Pantoea agglomerans SPl(d) and Thermoanaerobacter siderophilus sp. nov. (20), 

also coupled the reduction of AQDS to growth. Besides, there are many quinone-reducing 

microorganisms in which microbial growth has not been confirmed. The studies include other Fe(III)-

reducing bacteria from the genera Shewanella, Desulfitobacterium, Desulfuromonas, Geospirillum, 

Wolinella, and Geothrix (16); the uranium-reducing bacterium, Deinococcus radiodurans (7); and 

fermentative bacteria, such as Propionibacterium freudenreichii (1). Quinone reduction has also been 

found in thermophilic and hyperthermophilic microorganisms including Fe(III)-reducers (e.g. 

Pyrobaculum islandicum, Pyrodictium abyssi, Thermococcus celer) and methanogenic archaea (e.g. 

Methanopyrus kandleri, Methanobacterium thermoautotrophicum) in which no growth was reported 

(13). In the present study, phylogenetically distinct microorganisms, which were previously not known 

to have the capacity to reduce quinones, were explored for their ability to oxidize simple substrates 

with humic acids or AQDS as a terminal electron acceptor. 

Materials and methods 

Source of microorganisms. Syntrophobacterfumaroxidans (DSM 10017), Desulfovibrio G i l (DSM 

7057), Desulfitobacterium dehalogenans (DSM 9161), Desulfitobacterium PCE1 (DSM 10344), 

Desulforhabdus amnigenus (DSM 10338), and Methanospirillum hungatei JF1 (DSM 864) were 

obtained from the stock culture collection of the laboratory of microbiology of the Wageningen 

University. 

Media preparation. Bicarbonate buffered mineral basal medium (pH 7.2) was prepared as previously 

described (3). For the present study, the concentrations of NH4C1 and K2HP04 were modified to 0.1 

and 0.05 g per liter, respectively, and yeast extract (0.2 g per liter) was also included. Amorphous 

ferric oxide was prepared as previously described (10). The metal oxide suspensions were washed 3 

times by centrifugation and resuspended in distilled water. Finally, the metal oxides were suspended in 

basal medium to obtain a final concentration of 10 mM of Fe(III). Bicarbonate concentration was set 

at 2.5 g per liter when ferric oxide was provided as a terminal electron acceptor and HEPES (N-2-

hydroxyethylpiperazine-Af-2-ethanesulfonic acid, 50 mM, pH 7.2) was included as a buffer. When 

humus was studied as a potential electron acceptor, humic acids (Janssen Chimica Belgium, 20 g per 

liter) were suspended in bicarbonate buffered mineral basal medium. All the media were flushed with 

N2/C02 (80:20) before use. 

Microbial incubations. Incubations were performed in 117-ml bottles sealed with butyl rubber 

stoppers and aluminum caps under a N2/C02 (80/20) atmosphere at 37 °C in the dark. The basal 

medium was supplied with AQDS (5 mM), humic acids (Janssen Chimica Belgium, 20 g per liter) or 

amorphous ferric oxyhydroxide (FeOOH, 10 mM) as a terminal electron acceptor. Acetate ( 2 mM) or 

37 



Chapter 3 

lactate (5 mM) was provided as an electron donor from stock solutions. When hydrogen was included 

as an electron donor, a headspace of H2/C02 (80/20, final pressure 1.7 bars) was used. Depletion of the 

substrate, reduction of the corresponding electron acceptor, and cell numbers were followed in time as 

described below. Protein concentration was also determined at the end of the incubations as described 

below. Controls in which no external electron donor was provided were also included to correct for the 

endogenous reduction of the electron acceptors. Sterile controls in which no inoculation took place 

were also included. All the experiments were applied in triplicate incubations for all the conditions 

studied. 

Analytical techniques. Fe(II) production was determined by the ferrozine technique (14). Electrons 

transferred to humic substances were quantified by reducing Fe(III)-citrate with filtered culture 

supernatants as described previously (15). AQDS reduction was determined by following the 

formation of AH2QDS spectrophotometrically at 450 nm as described before (3). All samples (1 ml) 

were collected under axenic conditions by conventional sterile handling techniques, and immediately 

transferred into anaerobic glass reaction vials (10 ml). All measurements were carried out in an 

anaerobic chamber containing N2/H2 (95/5). 

The concentration of formate, acetate, lactate, hydrogen, and methane was determined by gas 

chromatographic methods previously described (3). Cell numbers were determined by phase-contrast 

microscopy using a Biirker-Turk counting chamber at 400 x magnification. To determine the protein 

content 30 ml of each culture was centrifuged at 17,500 rpm for 10 min at 4 °C. Pellets were washed 

with 2 ml Tris-HCl pH 8 and then centrifuged for 10 min at 14,000 rpm. Pellets were then dissolved in 

200 fj.1 of NaOH (1 M). Samples were then boiled for 10 min in closed vials and after that samples 

were taken for protein determination by a Lowry-based Bio-Rad DC assay. 

Results 

Reduction of humic substances by different anaerobic microorganisms. The capacity for different 

microbial groups generally found in anaerobic environments to use humic substances as a terminal 

electron acceptor was first evaluated with Desulfitobacterium dehalogenans, a previously reported 

halorespiring and sulfite-reducing microorganism isolated from a methanogenic lake sediment (25). D. 

dehalogenans reduced humic acids when either lactate or hydrogen was provided as an electron donor 

(Figure 1). Endogenous substrates (introduced together with inoculum) also led to a partial reduction 

of humus by D. dehalogenans. No reduction of humic acids was observed in the sterile controls 

lacking cells. The reduction of humic acids in the active cultures coincided with growth of D. 

dehalogenans, which was verified by increased cell numbers and protein content after incubation (data 

not shown). D. dehalogenans was also able to reduce AQDS with lactate as an electron donor (Figure 

2A) and the process was also linked to an increase in cell numbers (Figure 2B). The reduction of 

AQDS paralleled the conversion of lactate to acetate by this organism with a ratio of reduced AQDS 
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to lactate converted of 1.35±0.05, which is 33 % lower compared to the stoichiometric value (2:1) 

according to the following reaction: 

Lactate + 2 AQDS + 2 H20 -» Acetate + 2 AH2QDS + HC03 + H+ 

The lower than expected ratio may be due to the capacity of D. dehalogenans to produce acetate from 

the reduction of C02 (27). Formate and other fatty acids were not detected in the cultures. No 

conversion of lactate was observed in cell suspensions without AQDS (data not shown). 
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Figure 1. Reduction of humic acids (20 g per liter) by Desulfitobacterium dehalogenans with different 
substrates. The results are the means of triplicate incubations and the error bars indicate the standard 
deviation. 

As several evidences have documented the implication of quinones during the microbial reduction of 

humic substances (17, 19) and that microorganisms that had been recovered as AQDS-reducers 

showed also the ability to reduce humus (5), AQDS was used as a model compound in further 

experiments with different microorganisms. Another halorespiring bacterium, Desulfitobacterium 

PCE1, isolated from a contaminated soil (8), readily reduced AQDS when lactate or hydrogen was 

provided as an electron donor and in both cases growth was observed (data not shown). 

AQDS reduction was also found in the sulfate-reducing bacteriumDesulfovibrio G i l when hydrogen 

was added as an electron donor (Figure 3), but growth could not reproducibly be established in this 

microorganism. No reduction of AQDS occurred in the absence of hydrogen or in the sterile controls 

lacking cells. In the active cultures, AQDS reduction approximately agreed with the stoichiometric 

consumption of hydrogen (ratio AQDS reduced to hydrogen consumed of 0.8±0.1). Desulforabdus 

amnigenus, another sulfate-reducer, did not reduce AQDS under the same conditions. Furthermore, 

Syntrophobacter fumaroxidans, a sulfate-reducing bacterium, which also has the capacity of 
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converting propionate to hydrogen and acetate in co-culture with hydrogen-oxidizing organisms (9), 

could not reduce AQDS when propionate or hydrogen was added as an electron donor. 
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Figure 2. Reduction of AQDS (A) coupled to growth (B) by Desulfitobacterium dehalogenans with 
lactate as an electron donor. The results are the means of triplicate incubations and the error bars 
indicate the standard deviation. 

Hydrogen + AQDS + cells J 

Endogenous and sterile controls 
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Figure 3. Reduction of AQDS by Desulfovibrio Gl 1 with hydrogen as an electron donor. The results 
are means of triplicate incubations and the bars indicate the standard deviation. 

Methanospirillum hungatei JF1, a hydrogenotrophic methanogen, could also stoichiometrically 

oxidize hydrogen linked to the reduction of AQDS (Figure 4), but microbial growth could not be 

confirmed by direct microscopic counting or protein determinations. No reduction of AQDS occurred 

in the absence of hydrogen or in the sterile controls. No methanogenic activity was detected by M. 

hungatei JF1 in the presence of AQDS. 
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Figure 4. Reduction of AQDS by Methanospirillum hungatei JF1 with hydrogen as an electron donor. 
The results are means of triplicate incubations and the bars indicate the standard deviation. 

Reduction of amorphous ferric oxide via quinone reduction by Desulfitobacterium dehalogenans 

and Desulfovibrio Gi l . The capacity of some of the microorganisms that were able to reduce humic 

substances to channel electrons from anaerobic oxidations to amorphous ferric oxyhydroxide via 

quinone reduction was also explored. Cell suspensions of D. dehalogenans readily transferred 

electrons to goethite when AQDS (500 |iM) was included in the medium, provided with lactate as an 

electron donor (Figure 5). There was no reduction of the metal oxide in the absence of AQDS or in 

sterile controls containing both goethite and AQDS. Negligible production of Fe(II) was observed 

when no external electron donor was included. D. dehalogenans was also able to transfer electrons to 

goethite, via AQDS, when hydrogen was added as an electron donor (data not shown). 

Addition of AQDS at the same level also enhanced the reduction of goethite by cell suspensions of 

Desulfovibrio Gil when hydrogen was provided as an electron donor, which reached about 5 mM of 

Fe(II) produced after 7 days of incubation. Meanwhile, only about 1.5 mM of Fe(II) was produced in 

the absence of AQDS during the same incubation period. No reduction of goethite occurred in the 

endogenous and sterile controls. 

Discussion 

In the present study physiologically different anaerobic microorganisms were explored for their 

capacity to oxidize different substrates with AQDS or humic acids as a terminal electron acceptor. The 

results give further evidence that reduction of humic substances is a physiological property that can be 

found in a wide variety of phylogenetically distinct microorganisms including halorespiring bacteria, 
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e.g. Desulfitobacterium species, the sulfate-reducing bacterium, Desulfovibrio G i l , and the 

methanogenic archaeon, Methanospirillum hungatei JF1. The present study constitutes the first report 

indicating that halorespiring-microorganisms can couple the oxidation of different substrates to the 

reduction of humic acids and AQDS, and the respiratory process was shown to support microbial 

growth in the two Desulfitobacterium species evaluated. Our results also report for the first time the 

reduction of quinones by mesophilic methanogenic archaea. Most humus- or quinone-reducing 

microorganisms previously reported are Fe(III)-reducing bacteria of the family Geobacteraceae (4, 5, 

15). Thermophilic and hyperthermophilic methanogenic archaea (13), as well as mesophilic 

fermentative bacteria (7), were also previously reported as humus-reducing organisms. Moreover, a 

qualitative study indicated that Desulfitobacterium dehalogenans could also reduce AQDS (76"), but 

the authors did not investigate whether cell growth by this organism was linked to AQDS reduction. 

More recently, cell suspensions of Desulfovibrio vulgaris were shown to completely oxidized 

hydrogen linked to the reduction of 2-methyl-l,4-naphthoquinone (vitamin K3), which was coupled to 

an electrode to generate current (23). A periplasmic hydrogenase originated from Desulfovibrio 

vulgaris was shown to reduce vitamin K3, 2,6-dimethyl-l,4-benzoquinone, 1,4-naphthoquinone and 

anthraquinone-2-sulfonate. Thus, it is plausible that this microorganism is also able to reduce quinones 

in humus coupled to the oxidation of hydrogen. 

20 40 

Time (hours) 

60 80 

Figure 5. Reduction of ferric oxyhydroxide (10 mM) by Desulfitobacterium dehalogenans in AQDS 
(500 uM) supplemented medium with lactate (5 mM) as electron donor. The unsupplemented control 
conducted in the absence of AQDS. The results are means of triplicate incubations and the bars 
indicate the standard deviation. 
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The finding that Desulfitobacterium species were able to grow with either lactate or hydrogen when 

AQDS or humic acids were provided as a sole terminal electron acceptor, demonstrates that these 

halorespiring microorganisms coupled the electron transfer from the anaerobic oxidation of lactate and 

hydrogen to humus-respiration with ATP synthesis. The role of humic substances as a terminal 

electron acceptor was corroborated by the absence of substrate oxidation when AQDS and humus 

were omitted in the bioassays. The fact that humus can function as a growth supporting terminal 

electron acceptor for halorespiring microorganisms indicates that such organisms can be expected in 

organic rich pristine environments never exposed to halogenated pollutants. In fact, several 

Desulfitobacterium species have been isolated or detected by polymerase chain reaction (PCR) 

amplifications in sites rich in organic matter, such as forest soil, swamps, and compost, in which the 

presence of chlorinated pollutants and sulfite is not expected (11, 18). 

All the microorganisms, which showed the capacity for reducing AQDS or humus in the present study, 

could use hydrogen as an electron donor and none of them was able to oxidize acetate via quinone 

reduction. The results agree with previous experiments indicating that hydrogen-oxidizing rather than 

acetate-oxidizing are the most widespread quinone-reducing microorganisms in nature (3). The results 

also suggest that acetate-linked humus reduction is rather associated with Fe(III)-reducing 

microorganisms (4, 5, 15). Since hydrogen is an important intermediate in the anaerobic 

biodegradation of organic matter in natural environments, hydrogen-oxidizing humus-reducing 

microorganisms may significantly contribute to anaerobic bioconversions particularly in organic rich 

sites where humic substances could serve as a potential electron acceptor. 

The reduction of AQDS by Desulfovibrio Glland Methanospirillum hungatei JF1 could not 

accurately be linked to growth. Nevertheless, the lack of coupling between quinone reduction and 

microbial growth does not dismiss the ecological impact that these microorganisms may have in 

different environments because they could oxidize hydrogen, an important interspecies substrate, by 

co-metabolically reducing quinones in humus. Different levels of inoculation enhanced the reduction 

AQDS by Desulfovibrio Gl l(data not shown) suggesting that this reducing process may be related to 

a fortuitous enzymatic reaction developed by these microorganisms. Further experiments revealed the 

capacity of a cell extract obtained from Syntrophobacter fumaroxidans to reduce AQDS with different 

electron donors including hydrogen, formate and carbon monoxide (data not shown). This 

microorganism was unable to reduce AQDS when cells suspensions were incubated with hydrogen or 

propionate as an electron donor, suggesting that this strain possesses an electron carrier capable to 

reduce AQDS that was not excreted in the culture in the experiments conducted with entire cells. 

Therefore, there may be many different microorganisms capable of producing reductants of the proper 

redox potential to reduce quinones in humus, but not all may have the proper carrier to transfer the 

electrons to the final electron acceptor. 
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Recent biochemical experiments indicated that menaquinone, a common quinone structure found in 

the respiratory chain of many anaerobic bacteria, was involved in the reduction of AQDS and humus 

by Shewanella putrefaciens (17). Menaquinone is also present in the respiratory chain of some of the 

microorganisms (e.g. Desulfitobacterium dehalogenans (26)), which showed humus reduction in the 

present study. However, given the broad diversity of quinone-reducing microorganisms, which include 

methanogenic organisms lacking menaquinone, it is expected that the electron transport observed in 

humus reduction may include different electron carriers depending on the microorganism involved. 

In the present study, most experiments were conducted with AQDS as a model compound at 5 mM to 

allow microbial growth to reach quantitative levels. The relatively high quinone concentration 

employed may not represent real concentrations found in aquatic environments. The concentration of 

humic substances in water bodies rarely exceeds 5 mg per litter as dissolved organic carbon (DOC) 

and the quinone content of the different humic fractions is generally within the range of 100-400 mmol 

of DOC per gram of humus (12, 21, 24). Thus, the quinone concentration for most aquatic 

environments may be within the range between 0.5 and 2 mmol of DOC (as C=0) per litter. 

Nonetheless, microbial growth linked to the reduction of humic acids was also observed in humic acid 

suspensions (20 g per litter). The microbial reduction of suspended humic substances suggests that 

quinones do not necessarily have to be dissolved to serve as a potential electron acceptor in humus. 

Other studies have also documented the microbial reduction of suspended humic acids coupled to the 

anaerobic oxidation of different organic compounds, including the priority pollutant, toluene (/, 2). 

The fact that hydroquinones in humus are readily oxidized by metal oxides (e.g. Fe(III) and Mn(IV) 

oxides), which are very abundant in many sedimentary environments, implies that the reduction of 

these electron acceptors is not exclusively related to metal-reducing microorganisms, but also to all 

other microorganisms capable to transfer electrons to humic substances. Fermentative bacteria, e.g. 

Propionibacterium freudenreichii, were previously reported to channel electrons from anaerobic 

oxidations via humic acids towards Fe(III) reduction (/). Although it is still uncertain whether the 

reduction of Fe(III) in sedimentary sites proceeds directly by Fe(III)-reducers, or indirectly via 

quinone reduction by humus-reducers (5), the present study and previous results obtained with 

different microorganisms illustrates the possibility that many phylogenetically distinct types of 

organisms may contribute to the reduction of metal oxides via humus reduction. The estimated 

concentration of quinones that prevail in most aquatic environments (see above) may be sufficient to 

support the anaerobic oxidation of different substrates in oligotrophic sites where Fe(III) and Mn(IV) 

are very abundant. Indeed, AQDS supplied at 500 uJVI supported the anaerobic oxidation of lactate and 

hydrogen linked to the reduction of goethite by Desulfitobacterium dehalogenans. Moreover, there are 

some other examples in which the reduction of more crystalline ferric oxides was stimulated via 

quinone reduction when AQDS was added even at lower concentrations (13, 28). 
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corresponding medium was continuously pumped from a container kept at 4 °C in a fridge. The 

reactors with a volume of 160 ml were placed in a 30 °C room and operated with a hydraulic residence 

time of 6 hours throughout the study. The consumption of substrates was monitored over time as 

described below. AQDS reduction was followed in the AQDS-supplemented reactor as described 

below. The produced off-gases were collected from both reactors by a liquid displacement device, 

from which samples were taken to determine the methane concentration as described below. After 

about one year of continuos operation sludge samples were obtained from both reactors to determine 

changes in the microbial population by DGGE. 

Microbial incubations. Incubations were performed in 117-ml bottles sealed with butyl rubber 

stoppers and aluminum caps under a N2/C02 (80/20) atmosphere at 37 °C in the dark. The basal 

medium was supplied with one of the following electron acceptors: AQDS (5 or 20 mM), humic acids 

(Janssen Chimica Belgium, 20 g per liter), nitrate (2 mM), sulfate (1.25 mM), elemental sulfur (10 

mM), fumarate (50 mM), ferric iron chelated with nitrilotriacetic (Fe(III)-NTA, 10 mM) or amorphous 

ferric oxyhydroxide (FeOOH, 10 mM). One of the following substrates was provided as electron 

donor: acetate (2 mM), formate (5 mM), ethanol (5 mM), lactate (5 mM), benzoate (0.5 mM) and 

phenol (0.5 mM). When hydrogen was included as an electron donor, a headspace of H2/C02 (80/20, 

final pressure 1.7 bars) was used. For evaluating the impact of humus on the reduction of amorphous 

ferric oxyhydroxide, humic acids (Janssen Chimica Belgium, 2 g per liter) were included in the 

medium. Depletion of the substrate, reduction of the corresponding electron acceptor, and cell 

numbers were followed in time as described below. Controls in which no external electron donor was 

provided were also included to correct for the endogenous reduction of the electron acceptors. Sterile 

controls in which no inoculation took place were also included. All the experiments were applied in 

triplicate incubations for all the conditions studied. 

Analytical techniques. Fe(II) production was determined by the ferrozine technique (20). Samples 

(0.5 ml) were collected under axenic conditions (nearby a flame) and were immediately transferred 

into 2-ml polypropylene reaction vessels containing 0.5 ml of 1 N HC1 to prevent autoxidation. 

Electrons transferred to humic acids were quantified by reducing Fe(III)-citrate with liquid samples as 

described before (21). AQDS reduction was determined spectrophotometrically at 450 nm in an 

anaerobic chamber as described before (3). The concentration of VFA, formate, lactate, ethanol, 

hydrogen, and methane were determined by previously described gas chromatographic methods (3). 

Benzoate and phenol concentrations were determined by high performance liquid chromatography 

(HPLC) as described previously (4). Cell numbers were determined by phase-contrast microscopy 

using a Burker-Turk counting chamber at 400 x magnification. 

Sulfate concentrations were determined by injecting 30 (j.1 samples by an auto-sampler (Marathon) in a 

HPLC equipped with a VYDAC ion chromatography column (302 IC, 250 x 4.6 mm). The 

temperature of the column and detector (Waters 431 conductivity detector) were 20 and 35 °C, 
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respectively. As eluent 0.018 M potassium biphthalate, at a rate of 1.2 ml per min, was used. Samples 

for sulfate analysis were fixed by 2- to 4-fold dilution with a 0.1 M zinc acetate solution, centrifuged 

(10000 g, 3 min) and diluted with demineralized water. Nitrate and nitrite concentrations were also 

determined by HPLC equipped with the same column used for sulfate analysis and at the same 

temperature. 30 ill samples were also injected by an auto-sampler (Marathon). Potassium dihydrogen 

phosphate (10 g per liter, pH 3) adjusted by phosphoric acid was used as eluent at a flow rate of 1.5 ml 

per min. Nitrate and nitrite were detected by ultra violet detector (783 UV Detector-Kratos Analytical 

USA) at a wavelength of 205 nm. All samples were centrifuged (10000 g, 3 min) before analysis. 

DNA isolation. To determine the phylogenetic diversity of the microbial population of the studied 

granular sludge from laboratory reactors and enrichment cultures, DGGE, cloning and sequencing 

methods were used. Total DNA was extracted from 1-ml homogenized sludge samples and from 10-

ml enrichment cultures as previously described (24). 

PCR. The 16S rRNA-genes were amplified from the genomic DNA by Polymerase Chain Reaction 

(PCR) using a Tag DNA polymerase kit from Life Technologies (Gaithersburg, Md.) with primers for 

conserved domains. Complete eubacteria 16S rDNA was selectively amplified using 7-f (5'-

AGAGTTTGAT(C/T)(A/C)TGGCTCAG-3') and 1510-r (5'-ACGG(C/T)TACCTTGTTACGACTT-

3') primers [15] with the following thermocycling program: 94 °C for 5 min; 25 cycles of 94 °C for 30 

s, 52 °C for 20 s, and 68 °C for 40 s; and 68 °C for 7 min. The reactions were subsequently cooled to 4 

°C. For DGGE use a specific region of eubacteria 16S rDNA (V6-V8 region) was amplified using 968-

GC-f (5 '-CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGCACGGGGGGAACGCGAAGAACC 

TTAC-3') and 1401-r (5'-CGGTGTGTACAAGACCC-3') primers (23) using the same thermocycle 

program but with 35 cycles and an annealing temperature of 56 °C. All primers were purchased from 

MWG-Biotech (Ebersberg, Germany). Size and amount of PCR products were estimated by 1% 

agarose gel (w/v) electrophoresis and ethidium bromide staining. 

DGGE. DGGE analysis of the amplicons was performed on 8% (w/v) polyacrylamide gels containing 

denaturant gradients of 40 to 55%. A 100% denaturant corresponds to 7M urea (GIBCO BRL) and 

40% (v/v) formamide (Merck). Electrophoresis was performed in 0.5 x Tris-Acetic acid-EDTA buffer 

(20 mM Tris, 10 mM acetic acid and 0.5 mM EDTA pH 8) at 85 V and 60 °C for 16 hours using a 

DGENE™ System apparatus (BioRad, Hercules, CA). Previously a voltage of 200 V was applied for 5 

min. Silver-staining and development of the gels were performed according to Sanguinetti et al. (25) 

with minor modifications. Colour fixation solution (8x) was composed by 200 ml of 96 % (v:v) 

ethanol including 10 ml of acetic acid and 40 ml of demineralized water. The silver staining solution 

was prepared by adding 0.4 g AgN03 to 200 ml lx colour fixing solution. The developer agent was 

composed by 10 mg of NaBH^ included in a mixture of 200 ml of 1.5 % NaOH solution and 600 ml of 

formaldehyde. The colour preservation solution contained 50 ml 96 % (v:v) ethanol, 20 ml of glycerol 

and 130 ml of demineralized water. 
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The negative image of DGGE was obtained after drying the gel overnight at 60 °C. The DGGE 

technique was also applied to assess the biodiversity of archaea present in the consortia studied, but 

only the results obtained from the eubacterial screening is shown since no archaea were found in the 

enrichment culture, but only in the anaerobic granular sludge. 

Cloning and sequencing. The amplified 16S rDNA products were purified by a QIAquick Kit 

(Qiagen GmbH, Hilden, Germany) and cloned in E. coli JM109 by using the pGEM®-T Easy Vector 

System (Promega, Leiden, The Netherlands) with ampicillin selection and blue/white screening, 

according to the manufacture's manual. The inserts were screened by Restriction Fragment Length 

Polymorphism (RFLP) analysis with the enzyme Mspl (fragments were compared in a 2 % Boehringer 

(Boehringer Mannheim GmbH, Mannheim, Germany) agarose gel (w/v) electrophoresis and ethidium 

bromide staining) and by mobility comparison on DGGE. Plasmids of selected transformant were 

purified using the QIAprep spin miniprep kit (Qiagen GmbH, Hilden, Germany). Sequencing analysis 

was carried out with the Sequenase sequencing kit (Amersham, Slough, United Kingdom) using the 

sequencing primers Sp6 (5'-GATTTAGGTGACACTATAG-3'), complementary to one adjacent 

sequence of the pGEM®-T cloning site, T7 (5'-TAATACGACTCACTATAGGG-3'), complementary 

to the other adjacent sequence of the pGEM®-T cloning site, and internal primer 533 (5'-

GTGCCAGC(A/C)GCCGCGGTAA-3') labeled with IRD8000 (MWG-Biotech, Ebersberg, 

Germany). The sequences were automatically analyzed on a LI-COR (Lincoln, NE, USA) DNA 

sequencer 4000L and corrected manually. A similarity search of the 16S rDNA sequence, derived 

from the enrichment clone, was performed by using the NCBI sequence search service, available on 

the internet (http//www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0). A 1520 base pairs size cloned 

fragment was sequenced. The sequence was submitted in the GenBank database (Accession number 

AF404348). 

Results 

Characterization of an AQDS-reducing culture obtained from an anaerobic granular sludge. An 

AQDS-reducing enrichment culture was obtained from an anaerobic granular sludge originated from a 

full-scale UASB reactor (Nedalco, Bergen op Zoom, The Netherlands), that previously showed the 

capacity to degrade a wide variety of organic substrates coupled to AQDS reduction (3, 4). The 

enrichment was recovered from the highest positive dilutions of granular sludge in liquid AQDS-

supplemented medium and was transferred to media containing AQDS (5 mM) several times using 

acetate as electron donor. DGGE analysis indicated that one microorganism was predominant in the 

enrichment culture. Sequence analysis revealed that this microorganism was 97 % related in 1520 base 

pairs to Geobacter sulfurreducens, a previously reported iron-reducing microorganism (9). 

The enrichment culture could reduce AQDS with acetate, hydrogen or formate as an electron donor 

(Figure 1), and the molar ratio substrate consumption to AQDS reduction was 1.2:4, 1.3:1, and 1.1:1 
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when acetate, hydrogen or formate was provided, respectively, which approximately agrees with the 

expected stoichiometry of the reactions (1:4, 1:1, and 1:1, respectively). The same enrichment could 

not reduce AQDS with other substrates such as ethanol, lactate, methanol, benzoate or phenol. Acetate 

oxidation was also observed in basal medium containing humic acids (Janssen Chimica Belgium, 20 g 

per liter) as a terminal electron acceptor by the AQDS-reducing enrichment and the acetate 

consumption paralleled the increase in cell numbers in the culture (Figure 2). Furthermore, the 

electrons transferred to the humic acids during acetate oxidation were quantified at the end of the 

experiment by reducing Fe(III)-citrate with liquid samples obtained from this culture. The amount of 

Fe(II) recovered was 6.12 milliequivalents per liter (corrected for the endogenous control), which fits 

with the amount of acetate converted (6.23 milliequivalents electron per liter). This inoculum could 

also oxidize acetate with Fe(III)-NTA as a terminal electron acceptor, but not with nitrate, sulfate, 

elemental sulfur or fumarate. Insoluble ferric oxyhydroxide was not a suitable electron acceptor to 

support acetate oxidation by the Geobacter enrichment, but addition of humic acids (Janssen Chimica 

Belgium, 2 g per liter) allowed the complete reduction of this electron acceptor (Figure 3) and the 

electron equivalents recovered as Fe(II) accounted for 74 % of the acetate consumed. 

endogenous 

Acetate 

Hydrogen 

formate 

0 2 4 6 
Time (days) 

Figure 1. Reduction of anthraquinone-2,6-disulfonate (AQDS, 5 mM) by Geobacter enrichment with 
different substrates. The results are means of triplicate incubations and the bars indicate the standard 
deviation. 
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Figure 2. Acetate oxidation (a) coupled to growth (b) by Geobacter enrichment in humic acids (20 g 
per liter) supplemented medium. Unsupplemented control conducted in the absence of humic acids. 
The results are means of triplicate incubations and the bars indicate the standard deviation. 
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Figure 3. Reduction of ferric oxyhydroxide (10 mM) by Geobacter enrichment in humus (2 g per 
liter) supplemented medium with acetate (2 mM) as electron donor. The unsupplemented control 
conducted in the absence of humus. The results are means of triplicate incubations and the bars 
indicate the standard deviation. 

Competition between methanogenesis and AQDS reduction in continuous reactors. The original 

anaerobic granular sludge from which the enrichment culture was obtained was continuously fed with 

an AQDS (12.5 mM) supplemented medium in a laboratory-scale UASB reactor. Total AQDS 

reduction was achieved in the reactor and sustained even after 11 months of operation, which 

accounted for 71 % of the VFA removal in the UASB reactor. Methane production eventually 

occurred in the AQDS-supplemented reactor accounting for up to 30 % of the VFA removal (Figure 
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4a). A control reactor was operated under methanogenic conditions in the absence of AQDS. 

Methanogenic activity was verified by monitoring the off-gas collected by a liquid displacement 

device. However, accurate quantification of the methane production was only made feasible after 

solving leakage problems in both systems. Figure 4b shows that the VFA removal in the methanogenic 

reactor was highly (92 %) recovered as methane once quantification problems were solved. After 11 

months of continuous operation, sludge samples were obtained from both reactors to compare the 

microbial population of these consortia with the phylogenetic pattern observed in the enrichment 

culture. Figure 5 shows the DNA-based profiles from the bacterial community of the methanogenic 

reactor and from the AQDS-supplemented reactor. A significant change in the DNA-based profiles 

was observed in the reactors after this period. The DGGE gel also shows that the Geobacter 

sulfurreducens-re\ated species clone, which prevailed in the enrichment culture, had the same 

dominant band found in the DNA-based profile of the enrichment. The same DNA fraction, however, 

did not appear as a dominant band in any of DNA-profiles of the reactors. Nevertheless, granular 

sludge obtained from both reactors showed the capacity to reduce AQDS with acetate as an electron 

donor in batch experiments. Remarkably, even the sludge operated under defined methanogenic 

conditions for 11 months was also able to reduce AQDS under the same conditions (Figure 6). The 

granular sludge from the AQDS-supplemented reactor could completely reduce AQDS (20 mM) after 

3 days of incubation, whereas the sludge from the methanogenic reactor reduced AQDS at the same 

rate after a lag phase of several days. 
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Figure 4. Methane production, AQDS reduction and VFA removal from the (a) AQDS-supplemented 
and (b) methanogenic UASB reactors operated at a hydraulic residence time of 6 hours. 

Discussion 

In the present study an AQDS-reducing enrichment culture derived from anaerobic granular sludge 

was characterized. The enrichment culture was predominated by a microorganism closely related to 
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Geobacter sulfurreducens and could grow with acetate, formate or hydrogen at the expense of AQDS, 

humic acids or chelated Fe(III) reduction. The DGGE method did not verify that the same type of 

microorganism was dominant in the anaerobic bioreactor continuously operated for a prolonged period 

with AQDS as a terminal electron acceptor. Nonetheless, the DNA-profile showed new bands (a, b, c 

and d in lane 3 of Figure 6) that appeared dominant in the microbial community of the AQDS-

supplemented reactor compared to the consortium of the methanogenic reactor. The new dominant 

DNA-fractions may represent quinone-reducing microorganisms, yet to be identified, which were 

enriched and immobilized in the microbial community of the granular sludge of the AQDS-

supplemented reactor, permitting the extensive reduction of AQDS and oxidation of acetate with a 

hydraulic residence time of 6 hours. The results indicate that it is feasible to apply quinone-reducing 

microorganisms in continuous bioreactors. The quinone-reducing ability can potentially be important 

in wastewaters rich in humic substances. Since acetate is an important intermediate in anaerobic 

digestion, acetate-oxidizing quinone-reducing microorganisms may significantly contribute to 

anaerobic substrate oxidation in wastewater treatment systems. The wide variety of organic substrates, 

including priority pollutants, such as p-cresol (4) and toluene (2) that can be oxidized through the 

microbial reduction of quinone moieties in humus further emphasizes the significance of humic 

substances serving as a terminal electron acceptor. 

1 

J3 E3 
i n * 

Figure 5. DGGE gel for 16S rDNA fragments obtained from granular sludge, Geobacter enrichment 
and a clone obtained from the dominant DNA fraction from the Geobacter enrichment. (1) Clone from 
Geobacter related microorganism in enrichment, (2) Geobacter enrichment, (3) granular sludge from 
AQDS-supplemented UASB reactor, and (4) granular sludge from the methanogenic UASB reactor, a, 
b, c, and d refer to new dominant bands found in the DNA profile of the sludge obtained from the 
AQDS-supplemented reactor. 
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The quinone reducing activity can also be applied to accelerate the reduction of xenobiotics 

susceptible to reductive biotransformations such as azo dyes (14, 16, 27); carbon tetrachloride (8); as 

well as metals and radionuclides (12, 18). In fact, the enrichment culture in which a Geobacter sp. 

prevailed was shown to generate reducing equivalents via humus-respiration, which allowed for the 

reductive dechlorination of carbon tetrachloride (data not shown). Moreover, addition of sub-

stoichiometric concentrations of AQDS to a laboratory-scale UASB reactor inoculated with the 

original granular sludge enhanced the reductive biotransformation of an azo dye pollutant (5). Thus, 

quinone-reducing microorganisms may also play an important role on the reductive biotransformation 

of different priority pollutants in wastewater streams. 

25 

20 
AQDS-supplemented reactor 

b -

lethanogenic reactor 
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Time (days) 

Figure 6. Reduction of anthraquinone-2,6-disulfonate (AQDS, 20 mM) by anaerobic granular sludge 
obtained from the methanogenic and AQDS-supplemented UASB reactors with acetate (1 g COD per 
liter) as electron donor. The results are means of triplicate incubations and the bars indicate the 
standard deviation. 

In this study, quinone respiring activity was observed to rapidly develop in methanogenic granular 

sludges, including reactor sludge obtained after long-term operation under defined methanogenic 

conditions. Quinone reduction has also been observed in other methanogenic consortia with these 

characteristics (3). The activity could be due to gratuitous reduction of AQDS by methanogens or 

associated syntrophic bacteria (/, 19). Selective inhibition of methanogenic activity in the same 

granular sludge suggested that acetoclastic methanogens were not involved in the AQDS-reducing 

activity observed in this consortium, because AQDS reduction still occurred in the presence of 

bromoethanesulfonic acid (3). Furthermore, all the acetate-oxidizing quinone-reducing 

microorganisms reported in the literature belong to the Geobacteraceae family (6, 7, 21, 22). Thus, the 

AQDS-reducing capacity of the methanogenic consortium may rather be associated to the presence of 
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the Geobacter related species, which prevailed in minor proportion in the sludge community for a 

prolonged period by an unknown electron acceptor. This factor may significantly contribute to the 

ubiquity of quinone-reducing microorganisms in nature because the seasonal fluctuations in terminal 

electron acceptors eventually occurring in soil and sediments may not strongly affect the survival of 

humus-respiring community in these habitats. 
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Chapter 5 

Abstract 

The capacity of anaerobic granular sludge for oxidizing phenol and p-cresol under anaerobic 

conditions was studied. Phenol and /?-cresol were completely converted to methane when bicarbonate 

was the only terminal electron acceptor available. When the humic model compound, anthraquinone-

2,6-disulfonate, was included as an alternative electron acceptor in the cultures, the oxidation of the 

phenolic compounds was coupled to the reduction of the model humic compound to its corresponding 

hydroquinone, anthrahydroquinone-2,6-disulfonate. These results demonstrate for the first time that 

the anaerobic degradation of phenolic compounds can be coupled to the reduction of quinones as 

terminal electron acceptor. 

Introduction 

Phenols are common constituents of industrial aqueous effluents from processes such as polymeric 

resin production, oil refining and coking plants. Phenol is both toxic and lethal to fish at relatively low 

concentrations (e.g. 5-25 mg l"1) and imparts objectionable tastes to drinking water at much lower 

concentrations (13). Due to their widespread use, phenolic compounds are common contaminants of 

water bodies, which receive untreated streams containing these compounds. It has been shown that 

phenol can be degraded by microorganisms participating in methanogenic consortia (24). 

Additionally, phenol can be degraded anaerobically by pure cultures using alternative electron 

acceptors such as sulfate (7), nitrate (23) and ferric iron (18). 

In this study humus is considered as a terminal electron acceptor for phenolic compounds degradation. 

Humus is the stable organic matter accumulating in sediments and soils. It has been recently reported 

to play an active role in the anaerobic oxidation of various organic compounds, such as functioning as 

a terminal electron acceptor for the microbial oxidation of acetate (17). A microbial humus-respiring 

consortium obtained from an organic rich streambed sediment was also shown to mineralize vinyl 

chloride and dichloroethene under anaerobic conditions (3). The fact that humus was serving as the 

electron acceptor for the anaerobic oxidation of these contaminants was demonstrated by stimulating 

the oxidation through the addition of humic acids or the humic model compound, anthraquinone-2,6-

disulfonate (AQDS). 

Quinone moieties are the most likely candidates for the redox reactions observed in humus. This is 

supported by recent experiments, which correlated the humic substance quinone content with their 

electron accepting capacity (19). Therefore, quinone model compounds should be able to replace the 

function of humus as terminal electron acceptor. Most known humus-reducing microorganisms are 

capable of transferring electrons to AQDS, reducing it to anthrahydroquinone-2,6-disulfonate 

(AH2QDS) (4, 10, 17). Furthermore, isolation of AQDS-reducing microorganisms from a variety of 

sediments consistently resulted in the recovery of microorganisms that could also reduce humic acids 

(-0-
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The fact that there is a wide variety of organic compounds which can be utilized by a humus-respiring 

consortia (7) leads to the question of whether humus or humic model compounds can also achieve the 

oxidation of phenolic compounds by acting as terminal electron acceptors. In this study, the capacity 

of two different anaerobic granular sludges for oxidizing phenolic compounds with AQDS as a 

terminal electron acceptor was explored. 

Materials and methods 

Inocula and basal medium. Methanogenic granular sludge from a full-scale upflow anaerobic sludge 

blanket (UASB) reactor treating effluent from an alcohol distillery of Nedalco (Bergen op Zoom, The 

Netherlands) and from a full-scale UASB reactor treating wet oxidized industrial effluent of Shell 

Nederland Chemie (Moerdijk, the Netherlands) were used for the present study. These consortia were 

chosen based on their capacity for both degrading phenolic compounds under methanogenic 

conditions and for reducing AQDS with readily biodegradable substrates such as hydrogen and 

acetate. Both granular sludge sources were washed and sieved to remove the fine particles before use 

in the batch tests. Both biomass sources were stored at 4 °C before use. 

The basal medium used in all batch experiments contained (g l"1): NaHC03, (5); NH4CI, (0.03); 

K2HPO4, (0.02); MgCl2.6H20, (0.012); CaCl2.2H20, (0.005); Na2S, (0.013); and 1 ml 1"' of both trace 

elements and vitamins solutions. The trace elements solution contained (mg l"1): FeCl2.4H20, (2000); 

H3BO3, (50); ZnCl2, (50); CuCl2.2H20, (38); MnCl2.4H20 (500); (NH4)6Mo7024.4H20, (50); 

A1C13.6H20, (90); CoCl2.6H20, (2000); NiCl2.6H20, (92); Na2Se0.5H20, (162); EDTA, (1000); and 1 

ml l'1 of HC1 (36 %). The vitamins solution contained (mg l"1): biotin, (20); /?-aminobenzoate, (50); 

pantothenate, (50); folic acid dihydrate, (20); lipoic acid, (50); pyridoxine, (100); Nicotinamide, (50). 

Thiamine, riboflavin and cyanocobalamine were prepared separately in individual flasks and were 

added to the basal medium at the final concentrations of 100, 50 and 10 u,g l"1, respectively. The basal 

medium was flushed with N2/C02 (70/30) by passing this gas mixture through the liquid bulk for 10 

minutes and was used without sterilization in the experiments. 

Bioassays for the biodegradation of phenolic compounds under anaerobic conditions. The assays 

were conducted in batch mode by triplicate cultures in 117-ml glass serum bottles with a liquid 

volume of 50 ml (67 ml as headspace). Two sets of assays were run. In the first set, basal medium was 

transferred directly to the vials and then, inoculation took place by adding 1 g of volatile suspended 

solids (VSS) per liter in the cultures. The vials were sealed with butyl rubber stoppers and aluminum 

crimps and then flushed with N2/C02 (70/30) for 10 minutes. Finally, either phenol orp-cresol was 

added as substrate at the final concentration of 300 mg of theoretic chemical oxygen demand (COD) 

per liter; namely, 1.35 mM for phenol and 1.1 mM for/?-cresol. Another set was amended with AQDS 

(25 mM) and run under the same experimental conditions. Furthermore, two more sets of assays were 

conducted (one with and the other without AQDS) in the presence of the methanogenic inhibitor, 2-
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bromoethanesulphonic acid (BES) at a final concentration of 50 mM. Controls without phenolic 

compounds to correct for endogenous methane production and AQDS reduction were also conducted. 

Sterilized controls were also included to discard chemical transformations. The pH under these 

conditions was monitored and remained at 7.3±0.1 in all the assays. 

Analyses. Analysis of AH2QDS was carried out on anaerobically collected samples in an anaerobic 

chamber under N2/H2 (96:4) atmosphere. The anaerobic chamber was a Type B Coy chamber (Coy 

Laboratory Products Inc.) made of pressed polished clear vinyl with a manual airlock installed. 

Samples (0.5 ml) were collected by using 1 ml disposable syringes and centrifuged (10000 g, 5 min) 

under these conditions and then diluted in 1 cm disposable plastic cuvettes containing anaerobic 

bicarbonate buffer (60 mM, pH 6.7±0.1). Concentrations of AH2QDS were determined by monitoring 

absorbance at 450 nm and using an extinction coefficient of 2.25 absorbance units per mM obtained 

from a calibration curve of AQDS chemically reduced by dithionite. 

Phenol and p-cresol were analyzed on previously centrifuged samples (10000 g, 5 min) by gas 

chromatography using a Hewlett Packard 5890 gas chromatograph equipped with 2 m x 6 mm x 2 mm 

glass column packed with Supelcoport (100-120 mesh) coated with 10 % Fluorad FC 431. The 

temperatures of the column, the injector port and the flame ionization detector were 130, 200 and 280 

°C, respectively. The carrier gas was nitrogen saturated with formic acid (40 ml/min). The retention 

times were 9.3 and 13.7 min for phenol and/?-cresol, respectively. The sample injection volume was 

10 nl. 

Using a flame ionization gas chromatograph model 438/S (Packard-Becker, Delft, The Netherlands), 

methane production was determined. The gas chromatograph was equipped with a steel column (2 m x 

2 mm) packed with Porapak Q (80/100 mesh, Millipore Corp., Bedford, Mass.). The temperatures of 

the column, injector port, and the flame ionization detector were 60, 200 and 220 °C, respectively. 

Nitrogen was used, as carrier, at a flow rate of 20 ml/min and the sample injection volume was 100 u,l. 

Volatile fatty acids (VFA) were analyzed as previously described (16). 

The intermediates benzoate and p-hydroxybenzoate were analyzed with high performance liquid 

chromatography (HPLC) at the end of the experiments. Samples from the batch experiments were 

centrifuged (10000 g, 5 min) and diluted in demineralized water, and 10-ul samples were injected with 

a Marathon autosampler (Separations, Hendrik Ido Ambacht, The Netherlands). These compounds 

were detected spectrophotometrically with a Spectroflow 783 UV detector (Kratos Analytical, Hendrik 

Ido Ambacht, The Netherlands) at their maximum absorbance (218 nm). Methanol with 2 % 

demineralized water (A) and triethylamine (5 mM) in acetate buffer (10 mM) (B) were used as liquid 

phase and were pumped (Separations High Precision Pump Model 104, Separations, Hendrik Ido 

Ambacht, The Netherlands) at a flow rate of 500 (xl min"1 first through a Separations GT-103 degaser 

(Hendrik Ido Ambacht, The Netherlands) and afterwards through a reverse-phase C18 column 

(Chromosphere CI8, Chrompack, Bergen op Zoom, The Netherlands). The liquid phase composition 
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was 15 % of solution A and 85 % of solution B; namely, the final composition was 4.25 mM of 

triethylamine and 3.7 mM of methanol in acetate buffer (8.5 mM). The retention times were 2.45 min 

and 4.38 min forp-hydroxybenzoate and benzoate, respectively. 

The VSS content of the granular sludges was determined by subtracting the ash content from the dry 

weight after the sludge was incubated overnight at 105 °C. The ash content was determined after the 

dry sludge was heated at 550 °C for 2 hours. The sample size used in the analyses was 10 g of wet 

sludge. 

Results 

Complete conversion of both phenol and p-cresol to methane was observed when batch experiments 

were conducted in the absence of AQDS and BES by the anaerobic granular sludge obtained from a 

full-scale UASB reactor treating effluent from an alcohol distillery of Nedalco (Figure 1). There was a 

lag phase of about 30 days before this granular sludge started to consume the phenolic compounds, but 

after this period, degradation took place in both bioassays. Evidence of complete degradation is based 

on the elimination of the phenolic compounds and recovery of the stoichiometric amounts of methane 

in excess of that produced in the endogenous substrate control cultures (Tables 1 and 2). 

Phenol was completely consumed by "Nedalco" granular sludge also in the presence of BES in which 

negligible methane production was observed (Figure 2A). Further analyses revealed that phenol was 

completely converted to benzoate under these conditions (Table 1). On the other hand, />-cresol was 

partially converted after 105 days of incubation by "Nedalco" sludge, only 56 % of/>-cresol was 

consumed (Figure 2B) and benzoate was only detected at low levels under these conditions (Table 1). 

The very low recovery observed in the balance for the p-cresol-BES culture (Table 1) suggests that 

this phenolic compound was converted to another unidentified intermediate by this consortium. The 

missing COD could not be attributed to either VFA or to/?-hydroxybenzoate, which were only present 

at trace levels at the end of the experiment (data not shown). 

Phenol degradation could also be coupled to AQDS reduction by "Nedalco" granular sludge (Figure 

3A), but at a 3-fold lower extent of degradation as compared to methanogenic conditions (Table 2). 

The coupling between phenol degradation and AQDS reduction is evidenced by the amount of phenol 

degraded, which fits with the COD recovered as hydrogen in AH2QDS corrected for the endogenous 

AQDS reduction (Table 2). No benzoate was detected at the end of the experiment under these 

conditions. When BES was included in the phenol-AQDS culture, the extent of phenol degradation 

was slightly lower (Table 2) and it was partially converted to benzoate (Table 1). In the presence of 

BES no significant AQDS reduction was observed as compared to the endogenous AQDS reduction 

(Figure 3B). Further experiments confirmed that benzoate oxidation can be coupled to AQDS 

reduction by this granular sludge (about 100 mg COD l"1 of benzoate recovered as AH2QDS, corrected 

for endogenous AQDS reduction, after 5 months of incubation). Neither phenol conversion nor AQDS 
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reduction was observed in sterilized controls with autoclaved "Nedalco" sludge. Moreover, there was 

no methanogenic activity detected in the presence of AQDS. 

350 _~ 350 

30 60 90 

Time (days) 

120 30 60 90 

Time (days) 

120 

Figure 1. Conversion of phenolic compounds (A) to methane (A) by "Nedalco" sludge, (a) Phenol, (b) 
p-cresol. Methane production reported as mg COD per liter of culture fluid and corrected for 
endogenous methanogenesis. 

Table 1. COD balance (in mg COD l"1) in different cultures for phenol and p-cresol biodegradation by 
"Nedalco" sludge after 15 weeks of incubation 
Culture (added 
substrate) 
Phenol(293) 
Phenol-BES 
(293) 
Phenol-AQDS 
(292) 
Phenol-AQDS-
BES (283) 
p-cresol (281) 
p-cresol-BES 
(299) 
/>-cresol-AQDS 
(265) 
/>-cresol-AQDS-
BES (263) 

Endogenous1 

406+18 
12±2 

161+14 

157+12 

214+41 
10+4 

117+7 

113+10 

Phenol 

ND2 

ND 

205+7 

202±7 

ND 
ND 

ND 

ND 

p-Cresol 

ND 
ND 

ND 

ND 

ND 
132+35 

84±45 

149+4 

Benzoate 

ND 
312±4 

ND 

159+0.7 

ND 
8+3 

ND 

ND 

CH4
3 

701+57 
15+6 

ND 

ND 

477+29 
10+6 

ND 

ND 

AH2QDS4 

-
-

262±54 

137±19 

-
-

297+101 

224+21 

Recovery5 

(%) 
100.7 
107.5 

104.8 

120.5 

93.6 
46.8 

99.6 

98.9 

Endogenous production of methane (AQDS not present) or AH2QDS (AQDS present) in sludge controls. 
2ND: Not detected. 
'Total production of methane not corrected for endogenous methane production. Methane concentration expressed as mg COD 
per liter of culture fluid. 
COD calculated only refers to the hydrogen linked to the structure, total concentration of AH2QDS measured not corrected for 

endogenous AH2QDS production. 
5Recovery=(identified products - endogenous COD)/(initial COD), no VFA were detected in all the samples at the end of the 
experiment. 
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Table 2. Extent of degradation and ratio reduced products:substrate consumed (RRPSC) for phenol 
and p-cresol by "Nedalco" and "Shell" sludge under different anaerobic conditions after 15 weeks of 
incubation1 

Culture Conditions 
Extent of degradation (%) 

"Nedalco" sludge "Shell" sludge 
RRPSC (%)2 

"Nedalco" sludge "Shell" sludge 
Phenol 
Phenol-BES 
Phenol-AQDS 
Phenol-AQDS-BES 
p-cresol 
p-cresol-BES 
p-cresol-AQDS 
p-cresol-AQDS-BES 

100±0 
100±0 
30±3 
28±3 
100±0 
56±12 
69±16 
44±2 

100±0 
100±0 
38±12 
41±3 
100±0 
70±5 
96±1 
100±0 

101±8 
Not applicable3 

116±21 
Not applicable 
94±6 
Not applicable 
99±34 
98±8 

113±5 
Not applicable 
47±274 

Not applicable 
102±3 
Not applicable 
79±14 
106±8 

Data from experiments with "Shell" sludge after 20 weeks of incubation. 
2RRPSC=(total CH4-endogenous CH4)/(phenol orp-cresol consumed) for methanogenic culture, RRPSC=(total AH2QDS-
endogenous AH2QDS)/(phenol or/7-cresol consumed) for the AQDS containing cultures. Ratio based on mg COD per liter of 
culture fluid. COD calculated as AH2QDS only refers to the hydrogen linked to the structure. 
3Not applicable refers to the lack of coupling between degradation and methanogenesis or AQDS reduction. 
4Total recovery 75 % including 28 mg COD l"1 as benzoate. 

30 60 90 

Time (days) 

120 30 60 90 
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Figure 2. 
mM). 

Phenol (a) and p-cresol (b) degradation by "Nedalco" sludge in the presence of BES (50 

Oxidation of p-cresol could also support AQDS reduction by "Nedalco" granular sludge both in the 

presence and in the absence of BES (Figure 4). Evidence is based on decrease in p-creso\ and 

concomitant increase in AH2QDS production beyond the level observed in the endogenous substrate 

control. Furthermore, the COD recovered as hydrogen in AH2QDS (corrected for endogenous 

AH2QDS production) agrees with the amount of p-cresol consumed in both experiments (Table 2). 

There was no benzoate nor VFA detected at the end of the experiment under these conditions (Table 

1). There was no methanogenic activity in the presence of AQDS in the experiments for/>-cresol 

degradation. In sterilized controls neither/»-cresol conversion nor AQDS reduction was observed. The 

extent of degradation of p-cresol observed in the presence of AQDS was about the same level 
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compared to that observed in the p-cresol-BES culture, but about 1.5-2.0-fold lower than under 

methanogenic conditions (Table 2). 
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Figure 3. Degradation of phenol (A) by "Nedalco" sludge, (a) In the presence of AQDS (25 mM). (b) 
In the presence of AQDS (25 mM) and BES (50 mM). (A), AH2QDS; (+), endogenous AH2QDS. 
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Figure 4. Degradation of/7-cresol (A) by "Nedalco" sludge, (a) In the presence of AQDS (25 mM). (b) 
In the presence of AQDS (25 mM) and BES (50 mM). (A), AH2QDS; (+), endogenous AH2QDS. 

Additional experiments were carried out with anaerobic granular sludge obtained from a full-scale 

UASB reactor treating wet oxidized industrial effluent of Shell Nederland Chemie. This sludge 

referred to as "Shell" sludge was able to completely degrade p-cresol coupled to AQDS reduction both 

in the absence and in the presence of BES (Figure 5). This is evidenced by the consumption of this 

phenolic compound, which fits with the COD recovered as hydrogen in AH2QDS corrected for the 
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endogenous AQDS reduction (Table 2). However, there was only minor phenol degradation linked to 

AQDS respiration by "Shell" sludge after 5 months of incubation. The COD recovered as AH2QDS 

accounted only for 47 % (Table 2) of the phenol degraded (about 100 mg COD-phenol l"1) and 

benzoate was detected as an intermediate (28 % of the phenol degraded). When BES was included in 

the phenol-AQDS culture, no coupling between phenol degradation and AQDS reduction was 

observed by "Shell" sludge. There was no methane production by "Shell" sludge in the AQDS 

amended media. Moreover, neither conversion of the phenolic compounds nor reduction of AQDS 

was observed in the sterilized controls with autoclaved "Shell" sludge. 

~ 250 

40 80 120 

Time (days) 

40 80 120 

Time (days) 

160 

Figure 5. Degradation ofp-cresol (A) by "Shell" sludge, (a) In the presence of AQDS (25 mM). (b) In 
the presence of AQDS (25 mM) and BES (50 mM). (A), AH2QDS; (+), endogenous AH2QDS. 

Both phenolic compounds were completely converted to methane when bicarbonate was the only 

electron acceptor available by "Shell" granular sludge after 3 months of incubation (data not shown). 

The COD recovered as methane (corrected for the endogenous methane production) agreed with the 

amount of phenol andp-cresol consumed (Table 2). Phenol was completely converted to benzoate (98 

% of recovery) when the methanogenic inhibitor, BES, was included in the culture; whereas about 70 

% of p-cresol was consumed under the same conditions, p-cresol was mainly converted to VFA, but 

this COD only accounted for about 60 % of the consumed p-cresol indicating that this phenolic 

compound was transformed to another unidentified intermediate also by "Shell" sludge when BES was 

included in the medium. 

Discussion 

The observation that phenol and p-cresol degradation occurred under methanogenic conditions is 

consistent with numerous, previous reports, which indicate that these pollutants can be utilized by 

methanogenic consortia (2, 6, 21, 24). This also agrees with thermodynamics, which indicates that 
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conversion of these phenolic compounds is favorable under methanogenic conditions (see Table 3). 

The lag phase observed during these experiments was due to the inocula used, which were not 

previously exposed to the phenolic contaminants. Time was required for the growth of the responsible 

degrading bacteria and the development of the enzymatic systems involved in the degradation 

pathway. 

The complete conversion of phenol to benzoate in the presence of the methanogenic inhibitor, BES, 

agrees with previous reports, which showed the same pattern by inhibiting the culture. Field and 

Lettinga (8) observed complete conversion of phenol to benzoate in methanogenic cultures that were 

inhibited by an excess concentration of phenol. Knoll and Winter (15) used an atmosphere of 80 % H2 

and 20 % C02 to stimulate feedback inhibition and this also led to the accumulation of benzoate 

during degradation of phenol under methanogenic conditions. Conversion of phenol to benzoate is 

feasible according to thermodynamics if hydrogen is available from endogenous substrates (AG°' = -

64.9 kJ mol"1). Considering the proposed pathway of phenol degradation, which proceeds through 

benzoyl-CoA (12), it seems that equilibrium is reached between benzoyl-CoA and benzoate when 

inhibitory conditions predominate in the culture and no further transformation occurs towards 

saturating the aromatic ring, which are the next steps in the pathway (Figure 6). This may be explained 

by thermodynamics which indicates that conversion of benzoate to acetate is an unfavorable reaction, 

whereas the global conversion of benzoate to methane is thermodynamically favorable (Table 3), but 

this last reaction did not occur under these conditions due to the presence of BES. 

The limited conversion of p-cresol achieved when BES was included in the medium suggests that this 

methanogenic inhibitor has a stronger effect on the degradation of p-cresol compared to the effect 

observed during phenol degradation by both inocula tested. Since there was no major accumulation of 

benzoate or p-hydroxybenzoate during these experiments, other intermediates such as p-

hydroxybenzyl alcohol and />-hydroxybenzaldehyde, which are formed during the conversion of p-

cresol top-hydroxybenzoate (5), might have accumulated. 

In this study we observed that quinones can be used as alternative electron acceptors for supporting the 

anaerobic oxidation of phenols. Upon addition of the model compound, AQDS, the flow of electrons 

was diverted away from methanogenesis and was directed towards quinone reduction. The coupling of 

phenol andp-cresol degradation to quinone reduction was supported by the stoichiometric recovery of 

electrons in the reduced quinone, AH2QDS, as compared to the amount of phenols degraded (see 

Table 2). 

AQDS reduction was most likely related to the oxidation of intermediates (e.g. benzoate) and not to 

the direct oxidation of phenol by "Nedalco" sludge. This is suggested by the negligible AQDS 

reduction observed (compared to the endogenous control) when BES was included in the phenol-

AQDS culture in which partial conversion of phenol to benzoate was observed by "Nedalco" sludge. 

72 



Anaerobic microbial oxidation of phenols coupled to quinone respiration 

This theory is also supported by the fact that benzoate degradation led to AQDS reduction by this 

anaerobic granular sludge. 
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- • Intermediates 

Figure 6. Proposed pathway involved in the anaerobic degradation of phenol (9, 12). 

On the other hand, the coupling between p-cresol degradation and AQDS reduction was observed both 

in the presence and in the absence of BES, without any accumulation of intermediates by both 

consortia evaluated. This may indicate that p-cresol degradation was carried out directly through 

quinone respiration by both sources of anaerobic granular sludge. 

Addition of AQDS to the consortia prevented methanogenesis. This may be due to the fact that AQDS 

was inhibitory to methanogens or that AQDS was the preferred electron acceptor over bicarbonate. 

AQDS increased the redox potential of the culture fluid (data not shown). This high redox potential 

probably interferes with biochemical processes required for methanogenesis. 

Thermodynamically, AQDS reduction is more favorable than methanogenesis (Table 3) and therefore, 

it can be expected that AQDS reduction would proceed instead of methanogenesis according to this 
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point of view. However, this does not agree with the slower degradation for both phenolic compounds 

observed with AQDS as alternative electron acceptor compared to that obtained under methanogenic 

conditions by both sources of granular sludge. The slower degradation rates may be attributed to the 

type of inocula used in these experiments, which are characterized by a high methanogenic activity 

and thus, may only contain few quinone respiring microorganisms. This may also explain the longer 

lag phase observed during biodegradation of p-cresol via AQDS reduction by "Shell" sludge (Figure 

5) compared to that observed under methanogenic conditions (only one month as lag phase). 

Table 3. Reactions involved in the degradation of phenolic compounds under anaerobic conditions (all 
AG°' values are calculated with data from references 14 and 22)' 
Reaction AG°' (kJ reaction') 
phenol: 
C6H60 + 6.5 H20 -» 3.5 CFL, + 2.5 HCCV + 2.5 H+ -155.3 
C6H60 + 17 H20 + 14 AQDS -* 14 AH2QDS + 6 HCO/ + 6 H+ - 302.0 
p-cresol: 
C7H80 + 7.5 H20 -> 4.25 CH4 + 2.75 HC03" + 2.75 H+ - 187.5 
C7H80 + 20 H20 + 17 AQDS -» 17 AH2QDS + 7 HCC-3 + 7 FT -365.7 
benzoate: 
C7H502- + 7 H20 -> 3 CH3COO- + HCCV + 3 H+ + 3 H2 + 70.4 
C7H502- + 7.75 H20 -» 3.75 CH4 + 3.25 HCO3" + 2.25 Ff -124.1 
C7H5Q2- + 19 H2Q + 15 AQDS -» 15 AH2QDS + 7 HCQ3 + 6 FT - 281.5 
'AG°' for reactions with AQDS include reduction of AQDS by hydrogen according to Nernst equation with data from 
reference 20. AG°' = - 44.4 kJ mol"1. 

To our knowledge, this investigation is the first report of quinones serving as a terminal electron 

acceptor to support the oxidation of phenolic compounds under anaerobic conditions. Thus, the results 

have important implications for bioremediation of anaerobic sites contaminated with phenolic 

compounds. In fact, the results suggest that humus, which is very abundant in many anaerobic sites 

and rich in quinone moieties, may contribute to the bioremediation capacity of sites contaminated with 

aromatic compounds by serving as a terminal electron acceptor. These results also suggest that 

quinones may play an active role in the biodegradation of plant material, which contains a variety of 

simple and complex phenolic substances (11). Therefore, quinones in humus may contribute to 

important carbon cycling process in the biosphere. 

Conclusions 

The results presented in this study indicate that quinones can contribute in the oxidation of phenolic 

compounds by serving as terminal electron acceptors. The results also suggest that humus may be a 

potential electron acceptor for the biodegradation of aromatic compounds in anaerobic sites. This 

information needs to be considered in future studies of electron and carbon flow in soils and sediments 

as it may have important implications for the biotransformation of organic matter. 
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Chapter 6 

Abstract 

The anaerobic microbial oxidation of toluene to CO2 coupled to humus respiration was demonstrated 

in enriched anaerobic sediments from Amsterdam Petroleum harbor (APH) and Rhine river. Both 

highly purified soil humic acids (HPSHA) and the humic quinone moiety model compound, 

anthraquinone-2,6-disulfonate (AQDS) were utilized as terminal electron acceptors. After two weeks 

of incubation, 50 and 85 % of added uniformly labeled [13C]toluene was recovered as 13C02 in 

HPSHA and AQDS supplemented APH sediment enrichment cultures, respectively; whereas 

negligible recovery occurred in unsupplemented cultures. The conversion of [l3C]toluene agreed with 

the high recovery of electrons as reduced humus or as anthrahydroquinone-2,6-disulfonate. APH 

sediment was also able to use nitrate, and amorphous manganese dioxide as a terminal electron 

acceptor to support the anaerobic biodegradation of toluene. Addition of substoichiometric amounts of 

humic acids in bioassays containing amorphous ferric oxyhydroxide as a terminal electron acceptor 

led to more than 65 % conversion of toluene (1 mM) after 11 weeks of incubation, which paralleled 

the partial recovery of electron equivalents as acid extractable Fe(II). Negligible conversion of toluene 

and reduction of Fe(III) occurred in these bioassays when humic acid was omitted. The present study 

provides clear quantitative evidence for the mineralization of an aromatic hydrocarbon by humus 

respiring microorganisms. The results indicate that humic substances may significantly contribute to 

the intrinsic bioremediation of anaerobic sites contaminated with priority pollutants by serving as a 

terminal electron acceptor. 

Introduction 

Toluene is an important constituent of gasoline accounting for 5-7 % (wt/wt) of its composition (39). 

Due to leaks in underground fuel storage tanks, improper disposal techniques and spills of all types of 

petroleum products, widespread contamination of toluene has occurred in soil, sediment and 

groundwater. The relatively high aqueous solubility of toluene of 515 mg/liter at 20 °C (39) accounts 

for its mobility in the environment. Due to its toxicity, toluene is considered as a priority pollutant by 

the Environmental Protection Agency (39). Toluene is a depressant of the central nervous system (39), 

and an enhancing agent in skin carcinogenesis (12). 

Microbial degradation of toluene readily occurs under aerobic conditions (32, 33) by a wide variety of 

aerobic bacteria utilizing several monooxygenases and a dioxygenase to initiate the attack. However, 

many polluted sites are often depleted of oxygen. Consequently, alternative degradation pathways 

under anaerobic conditions are important in determining the fate of toluene. In the absence of oxygen, 

various investigators have shown that toluene degradation is linked to methanogenesis, sulfate-, 

nitrate-, and iron reduction (16). Recently, toluene degradation was also shown to occur linked to the 

reduction of manganese oxides (21, 22) and to a fermentative oxidation process with fumarate as a 

terminal electron acceptor (29). These alternative electron acceptors either occur naturally in 
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groundwater and sediments (e.g., iron) or are possible additives to stimulate in situ biodegradation 

processes. 

In the present study, humus is evaluated as a potential electron acceptor for toluene biodegradation. 

Humus is the stable organic matter accumulating in sediments and soils (35). Although humus is 

generally considered to be inert for microbial catabolism, it has recently been reported to play an 

active role in the anaerobic oxidation of a wide variety of ecologically relevant organic substrates 

(e.g., acetate, lactate) as well as hydrogen, by serving as a terminal electron acceptor (4, 7, 9, 28). 

These studies demonstrate that reduction of humic substances may be an important mechanism for 

organic substrate oxidation in many anaerobic environments. Quinone moieties of humus are 

implicated as the redox active groups (31) accepting the electrons. Anthraquinone-2,6-disulfonate 

(AQDS) has been used as a defined model for such moieties (7, 9, 17, 28). Most humus-respiring 

microorganisms are also capable of transferring electrons to AQDS, reducing it to 

anthrahydroquinone-2,6-disulfonate (AH2QDS) and therefore, quinone model compounds imitate the 

function of humus as terminal electron acceptor. Since reduced humus and hydroquinones are readily 

oxidized by Fe(III) and Mn(IV) (28, 36), humus only needs to be present at substoichiometric 

concentrations to be an effective electron acceptor as long as these metal oxides are abundant in the 

sediment. Thus, humus can link the degradation of substrates to dissimilatory metal reduction. 

Aside from the simple substrates initially tested, evidence is accumulating that more complex 

substrates are degraded by quinone respiration. The anaerobic microbial oxidation of phenol and p-

cresol in granular sludge was recently found to be coupled to the reduction of AQDS (8). Addition of 

humic acids or AQDS was also shown to stimulate the mineralization of the priority pollutants, vinyl 

chloride and dichloroethene, by a humus-respiring consortium under anaerobic conditions (5). 

The fact that there are a wide variety of organic compounds, which can be utilized by humus-respiring 

consortia, leads to the question whether humus can also support the anaerobic oxidation of toluene by 

serving as a terminal electron acceptor. In this study, the capacity of two different sediments for 

oxidizing toluene with humic acids or AQDS as terminal electron acceptor was explored. The results 

constitute a clear quantitative demonstration for the mineralization of an aromatic hydrocarbon priority 

pollutant by humus respiring microorganisms. 

Materials and methods 

Sediments. Two different sediments were used for the present study. Petroleum Harbor sediment was 

dredged from the Amsterdam Petroleum Harbor, which was constructed for storage and transshipment 

of petroleum and coal. Around the Petroleum Harbor (APH), industrial activities developed and oil 

tanks were built. At the beginning of World War II, oil storage tanks were destroyed and large 

quantities of oil leaked into the harbor, causing major oil contamination of the sediment. Diverse other 

sources, such as industrial discharges, shipping, and tanker cleaning have also contributed to 
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contamination of the sediment. As a consequence, Amsterdam Petroleum Harbor sediment, referred to 

as "APH sediment" in this study, is contaminated with oil and polycyclic aromatic hydrocarbons (11). 

Anaerobic Rhine sediment was collected alongside the banks of the river near Lexkesveer in 

Wageningen, The Netherlands. This sediment was chosen because toluene, benzene and naphthalene 

have been detected as contaminants in Rhine water (20). This sediment has been previously shown to 

degrade aromatic compounds, such as toluene and sulfanilic acid, under different redox conditions (21, 

37). Both sources of inoculum were able to oxidize hydrogen and acetate with AQDS as terminal 

electron acceptor (7). 

Sediment incubations. Bicarbonate buffered basal medium (pH 7.2) was prepared as previously 

described (7). For the present study, the concentrations of NH4C1 and K2HP04 were modified to 0.1 

and 0.05 g per liter, respectively. The basal medium was supplied with one of the following electron 

acceptors: AQDS (25 mM), nitrate (10 mM), sulfate (6.25 mM). AQDS was previously dissolved in 

boiled water and then all the components of the basal medium were included. The medium was cooled 

in a stream of N2/C02 (80:20). All the media were dispensed in 117-ml glass serum bottles after being 

flushed with N2/C02 (80:20) at the final volume of 50 ml (67 ml as headspace) and then inoculation 

took place by adding 10 g (dry weight) per liter of previously homogenized sediment. The vials were 

sealed with Viton stoppers (Maag Technic AG, Diibendorf, Switzerland) and aluminum crimps and 

were flushed with N2/C02 (80:20). Sulfate and nitrate were added from anaerobic and sterilized stock 

solutions in distilled water. Toluene (1 mM final concentration) was added from a stock solution in 

hexadecane. Hexadecane did not exceed 0.2 % (v/v) of the liquid volume in the bioassays. 

Biodegradation of toluene was also confirmed in the absence of hexadecane, but the results presented 

in this study came from experiments in which toluene was added in hexadecane to facilitate minimal 

handling error during its addition. All the bioassays were statically incubated in a 30 °C room and 

were manually shaken before sampling to ensure homogenous distribution of toluene. Sterile controls 

were prepared under the same conditions and autoclaved for 20 minutes at 120 °C two times prior to 

addition of toluene. Controls without toluene addition, but with the same amount of hexadecane 

added, were also included to correct for the endogenous reduction of the different electron acceptors 

provided and to verify the absence of hexadecane metabolism. All the experiments were applied in 

triplicate incubations for all the conditions studied. Toluene degradation and reduction of the 

corresponding electron acceptor was followed in time as described below. 

Metal oxides as terminal electron acceptors for the anaerobic toluene degradation. The capacity 

of APH sediment for degrading toluene with insoluble metal oxides as terminal electron acceptors was 

also explored. Vernadite (amorphous Mn02) and Goethite (amorphous FeOOH) were prepared as 

previously described (2, 19). The metal oxide suspensions were washed 3 times by centrifiigation and 

resuspended in distilled water. Finally, the metal oxides were suspended in basal medium to obtain a 

final concentration of 25 mM and 50 mM of Mn(IV) and Fe(III), respectively. Bicarbonate 
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concentration was set at 2.5 g per liter in these experiments and HEPES (50 mM, pH 7.2) was 

included as a buffer. The metal suspensions were flushed with N2/C02 (80:20) and homogeneously 

distributed in 117-ml glass serum bottles at the final volume of 50 ml (67 ml as headspace). The vials 

were inoculated with 10 g (dry weight) per liter of APH sediment and sealed with Viton stoppers and 

aluminum crimps. All the bioassays were conducted in a N2/C02 (80:20) atmosphere. When the 

impact of humic substances on the biodegradation of toluene with metal oxides was studied, humic 

acids (Janssen Chimica Belgium, 2 g per liter) were added to the medium and distributed in the same 

form as described above. Toluene was added to the cultures from a stock solution in hexadecane. 

Sterile and endogenous controls were prepared in the same manner as described for the bottles with 

alternative electron acceptors evaluated and all bioassays were incubated under the same conditions as 

described above. Toluene degradation was followed in time as described below and the reduction of 

the metal oxides was also measured at the end of the experiment as described below. 

Mineralization of [I3C]toluene with AQDS and humic substances as terminal electron acceptor. 

Bioassays in which anaerobic degradation of toluene was observed coupled to the reduction of AQDS 

were decanted and refilled with anaerobic fresh medium (containing 25 mM of AQDS) in a N2/H2 

(95:5) atmosphere. The vials were sealed again with Viton stoppers and aluminum crimps and flushed 

with N2/C02 (80:20) before adding more toluene (1 mM). The bioassays were refilled 3 times (when 

all toluene had been depleted) in the same way before transferring the sediment to the vials for the 

studies with uniformly labeled [13C]toluene. The basal medium was prepared without bicarbonate 

addition for the studies with [13C]toluene and amended with AQDS (5 mM) or with highly purified 

soil humic acids (HPSHA, 12 g per liter) obtained from the International Humic Substances Society 

(IHSS). The media were neutralized by adding sodium hydroxide or hydrochloric acid and buffered 

with sodium phosphate (10 mM, pH 7.2). The media were homogeneously dispensed into 57-ml glass 

serum bottles (final volume 25 ml with a headspace of 32 ml) and the enriched sediment was added at 

10 g (dry weight) per liter in the bioassays under anaerobic conditions. The vials containing the 

enriched sediment were flushed with pure nitrogen gas and then uniformly labeled [13C]toluene was 

added from a stock solution in anaerobic and sterile distilled water. All the experiments were applied 

in triplicate incubations for all the conditions studied. All the bioassays were statically incubated in a 

30 °C room and were manually shaken before sampling to ensure homogenous distribution of toluene. 

The production of 13C02 from [,3C]toluene and the depletion of [l3C]toluene was monitored in time as 

described below. The electrons transferred to AQDS and to HPSHA during [13C]toluene degradation 

was also followed as described below. Sterile controls were prepared under the same conditions and 

autoclaved for 20 minutes at 120 °C two times prior to addition of [13C]toluene. Controls without 

[13C]toluene addition were also included to correct for the background level of 13C02 and reduction of 

AQDS and humus by endogenous substrates in the enrichment culture. 
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Analytical techniques. The toluene concentrations in 100 fil headspace samples were determined by 

gas chromatography (Hewlett Packard Series II 5890) and a flame ionization detector. The 

chromatograph was equipped with a CP-sil 8CB column and helium (4.3 ml per min) was used as a 

carrier gas. The temperature of the injection port, oven and detector, were 225, 120 and 225 °C, 

respectively. Standards were prepared in basal medium containing the same amount of sediment (10 g 

dry weight per liter) used for the experiments and therefore, reflect the equilibrium in toluene 

concentrations between the headspace and the sediment. Toluene was added to the standard bottles 

from a stock solution in hexadecane. The standard bottles were previously autoclaved for 20 minutes 

at 120 °C two times and incubated at 30 °C overnight before adding toluene (4 hrs before analysis). 

Concentrations of AH2QDS were determined spectrophotometrically by monitoring absorbance at 450 

nm in an anaerobic chamber as previously described (7). Mn(II) production was estimated by 

measuring the accumulation of soluble manganese in 0.5 N hydrochloric acid at the end of the 

experiment as previously described (25). Samples were collected in an anaerobic chamber with a 

N2/H2 (96:4) atmosphere. After 30 min, acidified culture medium (1 ml) was filtered through a 0.2 |a.m 

filter and properly diluted before determining the concentration of Mn(II) by atomic adsorption 

spectroscopy (SpectrAA-300, Varian Nederland B. V.). An air-acetylene flame was used and the 

wavelength was at 403.1 nm with a lamp current of 5 mA. Fe(II) production was determined by 

measuring the accumulation of HCl-soluble Fe(II) at the end of the experiment. As previously 

described (24), the amount of Fe(II) that was soluble after a 30-min extraction in 0.5 N hydrochloric 

acid was determined with ferrozine. Samples for Fe(II) determinations were also collected in an 

anaerobic chamber with a N2/H2 (96:4) atmosphere. Methane production was determined as previously 

described (7). 

Electrons transferred to humic substances were quantified as previously described (28). Samples were 

collected in an anaerobic chamber with a N2/H2 (96:4) atmosphere and filtrated through a 0.2 u,m-

pore-diameter filter. Anaerobic Fe(III)-citrate solution (10 mM final concentration) was added to 

filtrates and after 30 min of reaction, sub-samples were taken for Fe(II) determination. When no 

Fe(III)-citrate was added to liquid samples and Fe(II) determinations were carried out, negligible 

recovery of electrons was achieved beyond the endogenous control indicating the lack of iron bound in 

the sources of humus applied. 

Sulfate concentrations were determined by injecting 30 uj samples by an auto-sampler (Marathon) in a 

HPLC (high performance liquid chromatography) equipped with a VYDAC ion chromatography 

column (302 IC, 250 x 4.6 mm). The temperature of the column and detector (Waters 431 conductivity 

detector) were 20 and 35 °C, respectively. As eluent 0.018 M potassium biphthalate, at a rate of 1.2 ml 

per min, was used. Samples for sulfate analysis were fixed by 2- to 4-fold dilution with a 0.1 M zinc 

acetate solution, centrifuged (10000 g, 3 min) and diluted with demineralized water. Nitrate and nitrite 

concentrations were also determined by HPLC equipped with the same column used for sulfate 
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analysis and at the same temperature. 30 fxl samples were also injected by an auto-sampler (Marathon). 

Potassium dihydrogen phosphate (10 g per liter, pH 3) adjusted by phosphoric acid was used as eluent 

at a flow rate of 1.5 ml per min. Nitrate and nitrite were detected by ultra violet detector (783 UV 

Detector-Kratos Analytical USA) at a wavelength of 205 nm. All samples were centrifuged (10000 g, 

3 min) before analysis. 

Production of 13C02 from [l3C]toluene was quantified based on the ratio of 13C02 to
 12C02 in 100 ul 

headspace samples. Carbon has two stable isotopes, with 12C comprising 98.89 % and 13C comprising 

1.11 % of the total abundance (14). Samples were injected in a gas chromatograph (Hewlett Packard 

5890 Series II) equipped with a fused silica capillary column (PoraplotQ, Chrompack, the 

Netherlands), which was connected to a mass spectrometer selective detector (Hewlett Packard 5971 

Series). Helium was used as a carrier gas at a flow rate of 1.5 ml per min. The temperature of the 

injector port and detector were 100 and 280 °C, respectively. The oven temperature was maintained at 

40 °C during the first 3 min and then gradually (20 °C per min) increased to 240 °C for achieving 

[13C]toluene quantification in the same samples. The extent of mineralization of [13C]toluene was 

calculated according to the concentrations of 13C02 measured in the headspace, which were corrected 

for the theoretical amount of 13C02 dissolved in the liquid phase based on Henry's law. This was 

corroborated by taking representative bioassays at the end of the experiments from which total 

recovery of 13C02 was achieved by acidification with concentrated hydrochloric acid. The data 

obtained from these representative cultures were very closely related (more than 90 % of similarity) to 

those theoretically calculated. 

Chemicals. AQDS was purchased from Aldrich Chemical (Milwaukee, Wis.). Toluene (99.5 %) and 

humic acid sodium salt were purchased from Janssen Chimica (Geel, Belgium). Hexadecane (99 %) 

was purchased from Acros Organics (Geel, Belgium). Uniformly labeled [,3C]toluene (99 % 13C] was 

purchased from Campro Scientific (Veenendaal, The Netherlands). Highly purified soil humic acids 

were purchased from the IHSS. The elemental composition of this soil humic acids was as follows (in 

% of dry weight): carbon, 58.1; hydrogen, 3.7; oxygen, 34.1; nitrogen, 4.1; sulfur, 0.4; and it had a 

phenolic-OH content of 1.73 mol per Kg of dry humus. Further information can be obtained at the 

website of the IHSS (http://www.ihss.gatech.edu). All other chemicals were obtained from Merck 

(Damstadt, Germany). 

Results 

Biodegradation of toluene with alternative electron acceptors. APH sediment degraded toluene in 

the absence of oxygen when AQDS was included in the medium. During the initial exposure, toluene 

(1 mM) was completely eliminated after 2 months of incubation (with a lag phase of 40 days) and 

there was a concomitant reduction of AQDS to AH2QDS. When these bioassays were decanted and 

refilled with fresh medium containing AQDS (25 mM) and toluene (1 mM), the lag phase was 
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significantly decreased and the same rate of toluene degradation was observed (Fig. 1 A). There was no 

significant toluene disappearance when bicarbonate was provided as a sole electron acceptor nor was 

methane production detectable. If toluene was incubated with AQDS in autoclaved sediment, no 

significant loss of toluene was observed. In the biologically active sediment, the toluene consumption 

agreed with the reduction of AQDS (Fig. IB). The ratio of AQDS reduction (corrected for the 

endogenous control) to toluene degradation was 20.2±5.2 (mean ± standard error; n=3), which is very 

close to the stoichiometric value (Table 1) suggesting that toluene was probably completely converted 

to carbon dioxide under these conditions. Only negligible endogenous AQDS reduction occurred when 

toluene was omitted in the cultures, but including the same amount of hexadecane (0.2 % v/v). No 

reduction of AQDS was detected in the sterilized control. 

30 60 90 

Time (days) 

120 30 60 

Time (days) 

90 120 

Figure 1. Simultaneous toluene conversion (A) and AQDS reduction (B) by APH sediment in 
anaerobic culture bottles containing bicarbonate-buffered basal medium supplemented with 25 mM of 
AQDS. The unsupplemented control was prepared in the same manner without AQDS. Endogenous 
control (without toluene addition) containing the same amount of hexadecane (0.2 % v/v) used for 
toluene addition. AQDS reduction was quantified spectrophotometrically as the increase in absorbance 
at 450 nm. Data are means ± standard deviation for triplicate incubations in each treatment. Arrows 
indicate addition of fresh medium containing AQDS and toluene in depleted bioassays. 

The possibility that toluene degradation in APH sediment could also be linked to the reduction of other 

anoxic electron acceptors was explored. Of all the alternative electron acceptors tested, only nitrate, 

Mn(IV) and AQDS supported toluene degradation. No toluene degradation was detected under sulfate 

reducing or methanogenic conditions after 4 months of incubation. Also no degradation of toluene was 

observed when Fe(III) in the form of goethite was used as a direct electron acceptor during the same 

incubation time. These results coincided with the absence of methane production and Fe(II) production 

as well as the lack of sulfate elimination during the experiments. 
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Toluene conversion agreed with the reduction of nitrate by APH sediment and the ratio of nitrate 

reduction (corrected for the endogenous control) to toluene degradation was 5.9±0.7 (mean ± standard 

error; n=3), which is very closely related to the stoichiometric value (Table 1). Toluene conversion by 

APH sediment was also evident with the addition of amorphous Mn02 in the medium. Parallel with 

toluene conversion in the Mn02-supplemented cultures was the partial recovery of acid-extractable 

Mn(II) accounting for 40 % of electron equivalents in toluene consumed. 

Table 1. Thermodynamic comparison for the biodegradation of toluene with alternative electron 
acceptors (values calculated with data from references 20, 34, 38) 
Reaction AG0' (kj/mol) 
C7H8 + 36 Fe3+ + 21 H20 -» 36 Fe2+ + 43 H+ + 7 HC03" - 3629.6 
C7H8 + 7.2 N03- + 0.2 H+ -> 3.6 N2 + 0.6 H20 + 7 HC03" - 3554.8 
C7H8 + 18 Mn02 + 18 H2C03 -» 7 C02 + 18 MnC03 + 22 H20 - 3358.8a 

C7H8 + 36 FeO(OH) + 36 H+ -> 7 C02 + 36 Fe(OH)+ + 22 H20 - 1443.6a 

C7H8 + 18 AQDS + 21 H20 -» 18 AH2QDS + 7 H+ + 7 HC03" - 319.7 
C7H8 + 4.5 S04

2" + 3 H20 -> 4.5 HS" + 2.5 H+ + 7 HCCV - 205.2 
C7H8 + 7.5 H2Q -» 4.5 CH4 + 2.5 IT" + 2.5 HCQ3 - 130.7 
'Solid-phase free energies were used 

Humic acid stimulation of toluene biodegradation linked to metal oxides reduction. To explore 

the potential link between biodegradation of toluene and dissimilatory reduction of metal oxides by 

channeling the electrons via humus respiration, APH sediment incubations were supplemented either 

with goethite (FeOOH, 50 mM) or with vernadite (Mn02, 25 mM) together with a substoichiometric 

amount of humic acids (Janssen Chimica Belgium, 2 g per liter). The electron accepting capacity of 

Janssen humic acids was determined as previously described (28) with an acetate-oxidizing humus-

respiring enrichment culture indicating an average electron uptake of 0.306 milliequivalents per g of 

humic acids (Janssen). Namely, addition of Janssen humic acids at this level could only account for 

the biodegradation of 1.7 % of the toluene added in the cultures (1 mM). Nevertheless if these low 

levels of humic acid were added, more than 65 % of the toluene was depleted in the goethite-humus 

supplemented bioassays by APH sediment after 11 weeks of incubation (Fig.2A). The consumption of 

toluene in these cultures paralleled the partial recovery of electron equivalents as acid-extractable 

Fe(II), accounting for 30 % of the electron equivalents in the toluene consumed. Negligible conversion 

of toluene and release of acid-extractable Fe(II) occurred in the goethite-supplemented cultures when 

humic acids were omitted from the medium. Likewise, none of these phenomena appeared in sterilized 

incubations with autoclaved sediment supplemented with goethite and humic acids (Fig. 2A). 

When the same source of humic acids was applied in vernadite-supplemented cultures at the same 

level, toluene conversion proceeded with a shorter lag phase time compared to that observed in the 

absence of humic acids (Fig. 2B). Toluene was completely depleted in both cases after 5 weeks of 
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incubation and this coincided with the partial recovery of acid-extractable Mn(II), accounting for 34 % 

of electron equivalents in toluene consumed. 
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Figure 2. Conversion of toluene by APH sediment in anaerobic culture bottles containing HEPES-
buffered basal medium supplemented with (A) amorphous ferric oxyhydroxide (goethite, 50 mM) or 
(B) amorphous manganese dioxide (vernadite, 25 mM). Goethite-humus and vernadite-humus 
supplemented cultures also containing 2 g humic acids (Janssen Chimica Belgium) per liter. 
Unsupplemented controls prepared in the same manner without metal oxide and humus. Sterile 
controls containing both metal oxide and humus with autoclaved sediment. Data are means + standard 
deviation for triplicate incubations in each treatment. 

| "C | toluene conversion to "C02 with AQDS and humic substances as terminal electron 

acceptor. To confirm mineralization of toluene to C02 under anoxic quinone and humus respiring 

conditions, enrichment cultures from sediment samples were incubated with uniformly labeled 

[13C]toluene. Enriched APH sediment was able to convert [13C]toluene to 13C02 in medium 

supplemented with AQDS (5 mM) or with HPSHA (12 g per liter) without any lag phase (Fig. 3A). 

There was negligible recovery of 13C02 in the endogenous control in the absence of [13C]toluene and 

in the presence of [l3C]toluene and HPSHA incubated with autoclaved sediment. In the absence of 

AQDS and HPSHA, less than 7 % of the added [13C]toluene was recovered as 13C02 probably due to 

the presence of small amounts of AQDS remaining in the sediment from previous enrichment. This 

was confirmed by the slight orange color developed in these controls and by the slight reduction of 

Fe(III)-citrate by the culture fluid from these controls (Table 2). The conversion of [13C]toluene to 
13C02 by APH sediment was concomitantly coupled to an increase in electrons recovered as AH2QDS 

or as reduced humus in the cultures (Fig. 3B). In fact, there was a high recovery of both [l3C]carbon 

and electrons in the AQDS and HPSHA cultures (Table 2). Enriched sediment obtain from the Rhine 

river was also able to convert [13C]toluene to 13C02 with AQDS or HPSHA as terminal electron 

acceptor, but the rate of toluene mineralization was slower compared to that observed with enriched 
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APH sediment (Fig. 3C). Controls showed no significant recovery of 13C02 and [13C]toluene 

conversion. The extent of [13C]toluene mineralization observed (about 1.8±0.1 milliequivalents per 

liter in both cases) paralleled the stoichiometric recovery of electrons as AH2QDS or as reduced 

humus (Fig. 3D). There was negligible recovery of electrons in the sterilized and endogenous (without 

[ C]toluene addition) controls. 

Rhine sediment 

AQDS and humus supplemented 

Time (d) 

Figure 3. Mineralization of [13C]toluene to 13C02 (A and C) coupled to the reduction of AQDS or 
humus (B and D) by enriched APH (A and B) or Rhine (C and D) sediments in anaerobic culture 
bottles containing phosphate-buffered basal medium supplemented with AQDS (5 mM) or with highly 
purified soil humic acids (12 g per liter). Uniformly labeled [13C]toluene added at the initial 
concentration of 100 uM referred to the liquid volume. Unsupplemented control prepared in the same 
manner without AQDS and humus. All data corrected for the endogenous control (without 
[13C]toluene addition). Data are means ± standard deviation for triplicate incubations in each 
treatment. 

Discussion 

Humic substances as a terminal electron acceptor for the anoxic microbial oxidation of toluene. 

In the present study humic acids and the humic model compound, AQDS, were explored as potential 
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electron acceptors to achieve anoxic microbial oxidation of toluene by different inocula. Toluene 

biodegradation was coupled to the reduction of humic acids and AQDS by APH and Rhine sediments. 

The results from this study demonstrate multiple evidences that the humic compounds are implicated 

in the anoxic biodegradation of toluene. Firstly, toluene biodegradation became feasible when the 

anaerobic sediments were supplied with HPSHA and AQDS. Secondly, the electron equivalents from 

the consumed toluene were highly recovered as AH2QDS (85 %) and reduced humic acids (65 %), 

respectively when AQDS and HPSHA served as the terminal electron acceptors. Thirdly, uniformly 

labeled [13C]toluene was mineralized to ,3C02 and the recovery of 13C-labeled carbon as 13C02 

accounted for 74-91 % of the [13C]toluene consumed. The results constitute a clear quantitative 

demonstration of anoxic aromatic hydrocarbon biodegradation linked to the reduction of quinones and 

humic acids. 

Previously, Lovley et al. (28) hypothesized that humus had served as a direct electron acceptor during 

benzene biodegradation when humic acids were added as chelators to increase Fe(III) oxide 

bioavailability for a benzene-degrading Fe(III)-reducing consortium in contaminated sediment. This 

hypothesis was based on the observation that humic acids stimulated benzene biodegradation better 

than synthetic chelators (e.g. EDTA and NT A) even though humus had inferior chelating properties 

(27). The mechanism proposed implies that benzene had been degraded with humic substances acting 

as the direct electron acceptor and the obtained reduced humus had been recycled back to the oxidized 

form by chemical reaction with Fe(III) oxides. The impact of AQDS on the anaerobic benzene 

oxidation was also studied in three different sites of Fe(III)-reducing sediments (1). Stimulation of 

benzene oxidation was observed at one site when 600 |iM AQDS was applied, which may have been 

due to the use of AQDS as an electron acceptor, but the reduction of AQDS was not demonstrated. 

The same sediment sample did not oxidize benzene when 300 u\M AQDS was applied, yet the amount 

of benzene added (12 uM) would have only required 180 iiM AQDS for complete oxidation. Strains 

of Geobacter have been isolated that can oxidize toluene with Fe(III) as an electron acceptor (10). The 

same strains can also reduce AQDS with acetate; thus, it is conceivable that they could couple toluene 

oxidation to AQDS reduction. 

The Gibbs free energy of toluene degradation linked to AQDS reduction is more favorable than 

degradation linked to sulfate reduction and methanogenesis (Table 1). Thermodynamic differences 

might partly explain why toluene degradation in this study readily occurred with AQDS, but not with 

sulfate or bicarbonate as electron acceptors. Biodegradation of toluene coupled to sulfate reduction (3, 

30) and methanogenesis (13, 18, 40) has previously been reported to occur but these processes usually 

require long lag periods before rates become appreciable. 

The anoxic biodegradation of toluene with humic substances as terminal electron acceptors was not 

evident at all sites but only found in historically polluted sites indicating long-term enrichment of 

hydrocarbon-degrading microorganisms after prolonged exposure to aromatic hydrocarbon pollutants. 
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Sludge, soil and sediment material from pristine sites previously reported to degrade readily 

biodegradable compounds with AQDS as terminal electron acceptor (7) were not able to degrade 

toluene under AQDS-reducing conditions (data not shown). 

Table 2. Balances of electrons and [13C]carbon for the anaerobic conversion of uniformly labeled 
[l3C]toluene with anthraquinone-2,6-disulfonate (AQDS) and highly purified soil humic acids 
(HPSHA) as terminal electron acceptors by enriched APH sediment after 2 weeks of incubation" 

Culture F13 [ C]toluene Products and remaining toluene 
added 

Total 
recovery 
(%)b 

Electron Equivalent Balance (in milliequivalents per liter)0 

Unsupplemented 3.7 [ C]toluene remaining 3.4 
Fe(III)-citrate reduced by liquid fluid 0.1 
Total 3.5 

95 

AQDS-supplemented 3.4 [l3C]toluene remaining 
AH2QDS 
Total 

ND 
2.9 
2.9 

85 

HPSHA-supplemented 3.5 [13C]toluene remaining 0.9 
Fe(III)-citrate reduced by liquid fluid 1.7 
Total 2.6 

74 

|"'3C"|Carbon Balance (in mmol l3C per liter)' 

Unsupplemented 0.75 

AQDS-supplemented 0.69 

HPSHA-supplemented 0.71 

[l3C]toluene remaining 
13co2 
Total 

[13C]toluene remaining 
13co2 
Total 

[13C]toluene remaining 
13co2 
Total 

0.69 
0.05 
0.74 

ND 
0.63 
0.63 

0.18 
0.39 
0.57 

99 

80 

aData represent mean values obtained from triplicate incubations for the different conditions applied and standard deviations 
were in general within 10 % of the mean value. Negligible conversion of [ C]toluene and reduction of the corresponding 
electron acceptor occurred in sterilized incubations with autoclaved sediment. 
bTotal recovery of electrons = (electrons recovered in electron acceptor -+- [' C]toluene not consumed)/([ CJtoluene added). 
Total recovery of [13C]carbon = (carbon recovered as 13C02 + [13C]toluene not consumed)/([l3C]toluene added). 
cCorrected for endogenous controls. Less than 2 % of endogenous reduction occurred in all cases. 
dND, not detected. 
"Corrected for the background level of 13C02 found in the absence of [l3C]toluene. 

APH sediment showed the capacity to utilize other more favorable electron acceptors (nitrate and 

Mn(IV)) to support biodegradation of toluene reflecting that this consortium may contain a wide 

variety of microorganisms with different capacities to degrade aromatic hydrocarbons or that 
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microorganisms involved in toluene biodegradation may achieve this anoxic process with different 

electron acceptors. Other consortia have previously showed the capacity to degrade toluene with both 

nitrate and Mn(IV) as a terminal electron acceptor (23). 

Humic acid stimulation of toluene biodegradation linked to metal oxides reduction. Goethite was 

not utilized directly as an electron acceptor by APH sediment to achieve anoxic biodegradation of 

toluene. Conversion of toluene was only made feasible by supplementing the goethite-containing 

cultures with substoichiometric levels of humic acid in terms of electron accepting equivalents. The 

electron accepting capacity of Janssen humic acids could only account for 1.7 % of the potentially 

degradable toluene and yet 65 % of the toluene was degraded in these experiments. The stimulation 

can thus only be accounted for by a chelating effect of humic acids with Fe(III) (27) or a redox 

mediating effect (28). Based on previous observations in the literature that demonstrate the 

involvement of humic substances as redox mediators linking the oxidation of simple substrates (e.g. 

acetate) to goethite reduction (17, 26, 28), it is plausible that goethite reduction by toluene degraders 

in APH sediment was a result of reduced humic acids acting as electron shuttles in the goethite-humus 

bioassays. Non-iron reducing bacteria, e.g. Propionibacterium freudenreichii, were recently reported 

to channel electrons from anaerobic oxidations via humic acids towards Fe(III) reduction, suggesting 

that dissimilatory iron reduction in soil and sediments may not be exclusively related to iron-reducing 

microorganisms (4). Hydroquinones in humus can reach micropores that remain inaccessible to 

Fe(III)-reducing microorganisms (41) and may eliminate the need of direct contact between humus-

reducing microorganisms and metal oxides as a pre-requisite for achieving anoxic organic matter 

oxidation. 

The partial recovery of electron equivalents from converted toluene either as Mn(II) or Fe(II) in the 

metal oxides-humus-supplemented cultures may be explained by a series of post-reduction 

biogeochemical reactions. Biogenic Fe(II) and Mn(II) might have undergone sorption to bacteria or to 

the residual metal oxide surface, as well as precipitation with sulfide (6, 42), which may have 

accounted for a decreased recovery during the acid extraction technique applied. 

Ecological implications. The results presented in this study for toluene and previous results with vinyl 

chloride and dichloroethene (5) suggest that humus, the most abundant organic fraction in nature, may 

be a more important electron acceptor for bioremediation of contaminated environments than 

previously thought. Biodegradation of recalcitrant contaminants may take place in organic rich 

sediments, wetlands, eutrophic lakes, and in microniches in compost, where humic substances could 

serve as a potential electron acceptor for the anoxic microbial oxidation of a wide variety of organic 

pollutants. Moreover, quinone or humus reducing bacteria and activities have previously been found in 

many organic matter rich environments (7, 9). Therefore, intrinsic bioremediation may be much larger 

than previously considered in these habitats. Humic substances may also greatly stimulate the anoxic 

biodegradation of organic contaminants in oligotrophic environments as well by linking the 
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biodegradation of these pollutants to the reduction of other electron acceptors. Particularly, quinones 

in humus may channel electrons from anoxic pollutant oxidation to metal oxide reduction by serving 

as redox mediators, which was shown to be the case for the anoxic oxidation of methyl tert-butyl ether 

(15). 
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Chapter 7 

Abstract 

The impact of humic acids and the humic model compound, anthraquinone-2,6-disulfonate (AQDS), 

on the biodegradation of carbon tetrachloride (CT) by anaerobic granular sludge was studied. Addition 

of both humic acids and AQDS at sub-stoichiometric levels enhanced the rate of conversion of CT 

leading to an increased production of inorganic chloride, which accounted for 40-50 % of the CT 

initially added. Negligible dechlorination occurred in sterile controls with autoclaved sludge or in 

active controls lacking humic substances. Accumulation of chloroform (1-10 %) and dichloromethane 

(traces) also accounted for the CT converted. The accumulation of a chlorinated ethene, 

tetra(per)chloroethylene (PCE, up to 9 % of added CT), is also reported for the first time as an 

intermediate of CT degradation. The enhanced CT conversion observed could be attributed to humus-

respiring bacteria in the sludge as evidence by the selective inhibition of quinone respiration with the 

antibiotic, neomycin. Also, a humus-respiring enrichment culture (composed primarily of a Geobacter 

sp.) derived from the granular sludge was shown to dechlorinate CT, yielding similar products as the 

AQDS-supplemented granular sludge consortium. 

Introduction 

Carbon tetrachloride (CT) is a toxic, carcinogenic compound listed as a priority pollutant by the U. S. 

Environmental Protection Agency. CT can produce liver and kidney damage in mammals by 

accidental acute exposure incidents. Chronic exposure of humans to CT has resulted in neurological 

effects and it also has lethal effects on humans and animals at high doses (1, 2). CT was the favorite 

chlorinated hydrocarbon dry-cleaning agent used until its utilization was banned in the 1950s at which 

time it was gradually replaced by trichloroethylene (TCE) and tetra(per)chloroethylene (PCE) (J). 

Other industrial activities, such as degreasing processes, usage as a grain fumigant, as well as 

production of chlorinated paraffin wax and chlorofluorocarbons have also demanded a large amount of 

this solvent. Improper disposal, leaking storage tanks, and spills during all these activities have led to a 

widespread contamination of soils, wastewaters, groundwater, sediments, and off-gases by CT. 

CT generally resists aerobic biotransformation because it is an oxidized species with its carbon atom 

having the same oxidation state as C02. However, there are a few reports indicating that oxygen 

substitution of the carbon atom of CT may lead to the formation of C02 via carbonyl-containing 

intermediates (4). As a polyhalogenated hydrocarbon, CT readily undergoes chemical and microbial 

reductive transformations (5, 6). Anaerobic biological conversions include different cometabolic 

reductive pathways in which reactions are catalyzed by reduced cofactors present in microorganisms, 

such as cytochromes (7), cobalamins (8, 9), porphyrins (10, 11), pyridines (12) and factor F430 (13), or 

by biogenic inorganic reducing agents, such as pyrite (14), Fe(II) and sulfide (5). Microorganisms with 

different physiological characteristics, including methanogens (e.g. Methanobacterium 

thermoautotrophicum) (15), acetogens (e.g. Acetobacterium woodii) (8), nitrate-reducers (e.g. 
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Pseudomonas stutzeri) (12), and iron-reducers (e.g. Shewanella putrefaciens) (7) were shown to 

convert CT under axenic conditions. Biodegradation of CT also occurred in mixed cultures containing 

different consortia under methanogenic- (16, 17) and sulfate-reducing (18) conditions. 

Mechanisms of microbially catalyzed reductive dehalogenation of CT are not well understood and 

may be species and compound dependent. Most inocula evaluated are capable to reductively convert 

CT to chloroform (CF). As the number of chlorine substituents decreases, removal of additional 

chlorine substituents becomes energetically and kinetically more difficult (6). However, rapid 

biological dechlorination of CT to C02 and inorganic chloride, with minor accumulation of lower 

chlorinated methanes, may occur when appropriate conditions prevail. It has been reported that the 

mechanism of mineralization of CT may proceed through the formation of a trichloromethyl radical 

followed by its reduction to dichlorocarbene, which subsequently can react with water leading 

ultimately to the formation of C02 via either formate or CO (19). Dichlorocarbene may also react with 

sulfide resulting in CS2 formation (17) and the trichloromethyl radical can be converted to 

hexachloroethane (HCA) via dimerization reactions (20, 21). 

Humic substances and quinones, representative of structural moieties in humus, were also shown to 

mediate the abiotic reductive dehalogenation of polyhalogenated pollutants by inorganic electron 

donors (22). The conversion of HCA to PCE by Fe(II), sulfide or elemental sulfur was significantly 

stimulated up to 10-fold by the presence of humus or quinones (5, 23). The reduced humic model 

compound, anthrahydroquinone-2,6-disulfonate (AH2QDS), could also directly cause dechlorination 

of HCA (5). In a similar fashion, quinones and natural organic matter from different sources could also 

catalyze the abiotic transformation of nitrobenzenes and azo dyes to the corresponding aromatic 

amines by sulfide (24, 25). Although many abiotic experiments have shown that quinones and humic 

substances can catalyze reductive dehalogenation reactions, there is much less evidence that such 

compounds are involved in biological dehalogenation. The anaerobic biotransformation of CT by 

Shewanella putrefaciens 200 was recently reported to be accelerated by the presence of high-organic-

carbon soil, but the actual functional groups responsible for the enhanced CT transformation rates 

were not elucidated (26). The role of quinones as redox mediators to stimulate the microbial reduction 

of azo dyes has on the other hand been demonstrated (27-30). 

In the present study, the impact of humic acids and the humic model compound, anthraquinone-2,6-

disulfonate (AQDS), on the dechlorination of CT by anaerobic granular sludge was explored. The 

results indicate that CT conversion rates and dechlorination efficiency by anaerobic granular sludge 

were increased by the addition of sub-stoichiometric quantities of AQDS. The enhancement could be 

attributed to humus respiring bacteria in the sludge. 
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Materials and methods 

Inocula and basal medium. Methanogenic granular sludge from a full-scale upflow anaerobic sludge 

blanket (UASB) reactor treating effluent from an alcohol distillery of Nedalco (Bergen op Zoom, The 

Netherlands, referred to as "Nedalco" sludge) and from a full-scale UASB reactor treating wet 

oxidized industrial effluent of Shell Nederland Chemie (Moerdijk, The Netherlands, referred to as 

"Shell" sludge) were used for the present study. Both sources of granular sludge were continuously fed 

in lab-scale UASB reactors with basal medium containing a mixture of acetate (4.45 mM), propionate 

(0.07 mM), and butyrate (0.05 mM) to obtain active biomass for the batch experiments. The influent 

was set at the initial concentration of 1.5 g chemical oxygen demand (COD) 1"' with the described 

mixture of volatile fatty acids. The reactors were operated in a 30 °C room with a hydraulic residence 

time of 6 hours. The COD removal efficiency was higher than 95 % in both reactors under steady state 

conditions. The inocula were washed and sieved to remove fine particles before use in the batch tests. 

A humus-respiring enrichment culture obtained from "Nedalco" granular sludge was also used in this 

study. The enrichment, composed almost exclusively by a Geobacter sulfurreducens related species 

(referred to as Geobacter NS1), was shown to degrade acetate, hydrogen and formate using AQDS as 

terminal electron acceptor. Moreover, the oxidation of acetate was also shown to be linked to humus 

respiration by the same enrichment (data not shown). 

The basal medium used in all batch experiments contained (g l"1): NaHC03, (5); NH4HCO3, (0.04); 

K2HP04, (0.02); MgS04.7H20, (0.015); Ca(OH)2, (0.003); Na2S, (0.013); and 1 ml l"1 of trace 

elements. The experiments conducted with the enrichment culture were carried out in basal medium 

also containing 1 ml l"1 of vitamins solution with a composition previously described (31). 

Bioassays for the reductive biotransformation of CT with quinones and humic acids as redox 

mediators. The experiments were conducted in batch mode by triplicate in 117-ml serum bottles with 

a liquid volume of 50 ml (67 ml as headspace). Anaerobic basal medium supplemented with AQDS (5, 

20 or 50 u.M) or with highly purified soil humic acids (0.5 g l"1) obtained from the International Humic 

Substances Society (IHSS) was transferred directly to the vials and then, inoculation took place by 

adding 0.25 g of volatile suspended solids (VSS) l"1 in the cultures. The vials were sealed with Viton 

stoppers (Maag Technic AG, Dubendorf, Switzerland) and aluminum crimps and then flushed with 

N2/C02 (80/20) for 10 minutes. The pressure was set at 1.5 bars in all the bottles with this gas mixture. 

Acetate, glucose, or methanol was provided as co-substrate at the final concentration of 1 g COD l"1 

from stock solutions prepared in sterile anaerobic distilled water. When hydrogen was provided as a 

co-substrate a headspace of N2/H2 (80/20) was established in the bioassays at the final pressure of 1.5 

bars. When the effect of different levels of acetate (20, 100 and 500 (J.M) on the conversion of CT was 

evaluated, inoculation was provided at 0.1 g VSS l"1 to decrease any interference provided by 

endogenous substrates. Bioassays performed with the enrichment culture obtained from "Nedalco" 

sludge were inoculated with a washed cells suspension propagated in basal medium amended with 
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AQDS (5 mM) and acetate (2 mM). Cells were harvested after complete reduction of AQDS under 

anaerobic conditions and resuspended in basal medium without AQDS. The cells suspension 

contained 7*106 cells ml"1 and was added at 5 % (v/v) to the bioassays. All bioassays were pre-

incubated overnight prior to addition of CT and co-substrate. CT was added to the vials from a stock 

solution at the final concentration of 100 jiM referred to the liquid volume. The stock solution of CT 

was prepared in sterile anaerobic distilled water. All batches were incubated in a 30 °C room and 

softly shaken. When the impact of different specific antibiotics over the dechlorination of CT was 

studied, vancomycin (100 mg l"1), gentamycin (100 mg l"1), neomycin (100 mg l"1) and 2-

bromoethanesulphonic acid (BES, 30 mM) were included in the cultures from stock solutions. Batch 

controls to which no inoculum was added were included to check any leakage of the chlorinated 

compounds through the stoppers. Sterile controls including autoclaved sludge were prepared by 

autoclaving the vials for 15 min at 121 °C two times before starting the experiments. Batch controls, to 

which no addition of CT was provided, were also included to correct for the background level of 

chloride. When the effect of different co-substrates on the conversion of CT was studied, an 

endogenous control lacking any external electron donor was also included. Conversion of CT, 

accumulation of intermediates and release of inorganic chloride were determined in the bioassays in 

time as described below. Methane production and reduction of AQDS and humus were also monitored 

in time as described below. 

Analytical techniques. The removal of CT, and the production of volatile chlorinated hydrocarbons, 

such as CF, dichloromethane (DCM), methyl chloride (MC), HCA, TCE and PCE were determined in 

100 u.1 headspace samples by gas chromatography (GC, Hewlett Packard 6890 series) equipped with 

an electron capture detector. The gas chromatograph was equipped with a CP-Poraplot Q column and 

operated under the following conditions: injector temperature, 200 °C; detector temperature, 250 °C; 

oven temperature, 70 °C. Helium was the carrier gas, and nitrogen was the makeup gas. Total gas flow 

was 60 ml min"1. The retention times of MC, DCM, CF, CT, TCE, PCE and HCA were 2.5, 3.1, 3.8, 

4.5, 8.8, 9.2, and 9.4 min, respectively. Identification of volatile chlorinated intermediates was 

confirmed in 100 fxl headspace samples, which were injected in a gas chromatograph (Hewlett Packard 

5890 Series II) equipped with a fused silica capillary column (PoraplotQ, Chrompack, The 

Netherlands) and connected to a mass spectrometer (MS) selective detector (Hewlett Packard 5971 

Series). Helium was used as a carrier gas at a flow rate of 1.5 ml per min. The temperature of the 

injector port, detector and oven were 200, 280 and 70 °C, respectively. 

Chloride concentrations were determined by an absorbable organic halogen (AOX) analyzer (ECS 

1600, Euroglas Analytical Instruments, Delft, The Netherlands). Samples (50-100 ul) were directly 

injected into the micro-colorimeter that contained 75 % (v/v) of acetic acid in water as electrolyte. The 

concentration of volatile fatty acids, hydrogen and methane was determined by previously described 

chromatographic methods (32). Reduction of AQDS was determined qualitatively by observing a 

99 



Chapter 7 

development of orange color in the culture fluid or quantitatively by following the formation of 

AH2QDS at 450 run in an anaerobic chamber as previously described (31). Reduction of humic 

substances was also followed under anaerobic conditions as described before (33). 

Results 

Biodegradation of CT by anaerobic granular sludge. Two sludges were chosen for evaluating the 

effect of AQDS on CT removal. The first sludge, "Nedalco", has robust quinone-respiring activity 

with acetate as substrate; while the second sludge, "Shell", has insignificant quinone respiring activity 

with acetate (32). Reductive biotransformation of CT was achieved by "Nedalco" granular sludge 

without any lag phase. About 60 % of the CT initially added (100 (iM) was converted after 12 days of 

incubation by this inoculum (Fig. 1). The conversion of CT paralleled the partial recovery of inorganic 

chloride from these cultures at the end of the experiment (Table 1). There was no CT conversion in 

basal medium controls lacking sludge and only minor conversion occurred in the cultures containing 

autoclaved "Nedalco" sludge. Addition of AQDS (20 (xM) enhanced both the biodegradation of CT 

(Fig. 1) and the efficiency of dechlorination by this consortium (Table 1). The reduction of AQDS 

was qualitatively evident in the bioassays by the development of orange color in the culture fluid due 

to the formation of AH2QDS. 
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Figure 1. Conversion of CT by "Nedalco" sludge (0.25 g VSS 1"') with acetate as electron donor (1 g 
COD l"1) and AQDS (20 |iM) as redox mediator. Conditions: A, chemical control; O, chemical 
control with AQDS; A, autoclaved sludge without AQDS; • , autoclaved sludge with AQDS; • , 
living sludge without AQDS; , living sludge with AQDS. Results obtained from triplicate 
incubations and error bars indicate the standard deviation. 

The reductive biotransformation of CT by "Shell" sludge proceeded slower compared to the rate of 

conversion observed in "Nedalco" sludge. Furthermore, AQDS addition had a negligible effect. After 

12 days only, 37 and 51 % of the CT was removed, respectively, in batches unsupplemented and 
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supplemented with AQDS. No orange color development was evident indicating negligible AQDS 

reduction by "Shell" sludge. 

Lower chlorinated methanes - CF, DCM, but not MC - were detected as intermediates during CT 

degradation by both sources of granular sludge regardless the presence of AQDS accounting for less 

than 10 % of the initial amount of CT in all cases after 12 days of incubation (Table 1). No 

methanogenic activity was detected in any source of granular sludge during the conversion of CT. 

Table 1. Chlorine balance for the biodegradation of CT (100 pMf by "Nedalco" granular sludge (0.25 
g VSS 1"') with acetate (1 g COD 1"') as an electron donor after 12 days of incubation 
Culture conditions Chlorine concentration ((iM) ___ Recovery (%) 

Unsupplemented control 
AQDS (20 iiM) supplemented 
Autoclaved Sludge Control 
Sterilized Medium Control 

CT 
144 
BDL 
216 
368 

CF 
33 
21 
3 
BDL 

DCM 
BDLe 

BDL 
BDL 
BDL 

crb 

64 
172 
59 
NDf 

crc 

16±1 
43+10 
15+3 
ND 

Total" 
60±9 
48+11 
70+.17 
92+8 

MOO |j.M in terms of chlorine linked to CT. 
"Values corrected for the background level of chloride in the absence of CT. 
"Efficiency of chloride release compared to the initial amount of CT. Values represent means of triplicate incubations ± 
standard deviation. 
dTotal amount of products compared to CT at time zero. Values represent means of triplicate incubations + standard 
deviation. 
eBelow detection limit. 
fNot detected beyond the background level of chloride observed in the absence of CT. 

Addition of different concentrations of AQDS was shown to accelerate the reductive dechlorination of 

CT by "Nedalco" sludge. This was evidenced by the quicker CT conversion observed by increasing 

the AQDS concentration in the medium (Fig. 2A). Moreover, increasing the AQDS concentration in 

the cultures led to an enhanced production of inorganic chloride in the medium (Fig. 2B). CF and 

DCM were also detected as intermediates during these experiments and they accounted for less than 

10 % of the CT initially added after 12 days of incubation. 

Effect of different antibiotics on the conversion of CT by granular sludge. The impact of four 

different antibiotics (BES; vancomycin; gentamycin and neomycin) on the bioconversion of CT by 

"Nedalco" sludge was studied. None of the inhibitors had any effect on the conversion of CT in the 

absence of AQDS. In all cases about 60 % of CT was converted after 12 days of incubation regardless 

of the presence or absence of antibiotics (data not shown). On the other hand, when the experiments 

were performed with AQDS (20 \}M) in the culture medium, protein synthesis inhibitors (gentamycin 

and neomycin) cancelled the enhanced activity due to AQDS supplementation so that the rates were 

similar to the AQDS-unsupplemented control (Fig. 3). The methanogenic inhibitor, BES, had no effect 

except for a delaying in achieving full activity for 3 days in the bioassays. The broad eubacterial cell-

wall synthesis inhibitor, vancomycin, had an intermediate effect on the conversion of CT with AQDS 

as redox mediator (Fig 3). The negative impact of neomycin and gentamycin was also evident on the 

efficiency of dechlorination of CT by "Nedalco" sludge (Table 2) and the same inhibitors were shown 
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to inhibit the reduction of AQDS as indicated by the negligible orange color developed in bioassays 

including these antibiotics. In contrast, inclusion of BES and vancomycin to CT-degrading cultures 

did not affect the reduction orange color development by "Nedalco" sludge. 
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Figure 2. (A) Conversion of CT; and (B) recovery of inorganic chloride from CT biodegradation by 
"Nedalco" granular sludge (0.25 g VSS l"1) at different AQDS concentrations with acetate (1 g COD 1" 
') as an electron donor. Unsupplemented control refers to bioassays conducted in the absence of 
AQDS. The number next to the lines indicates the concentration of AQDS (in uM) in supplemented 
cultures. Recovery of chloride referred to the amount added of chlorine as CT and corrected for the 
chloride present in basal medium in the absence of CT. Results obtained from triplicate incubations 
and error bars indicate the standard deviation. 
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Figure 3. CT removal by "Nedalco" granular sludge (0.25 g VSS l"1) after 12 days of incubation with 
acetate as electron donor (1 g COD l"1) and AQDS (20 uM) as redox mediator in the presence of 
different antibiotics. Uninhibited refers to bioassays conducted in the absence of inhibitors including 
AQDS. Control refers to bioassays conducted in the absence of AQDS and inhibitors. All the 
antibiotics, except for BES (30 mM), applied at 100 mg l"1. Data represent average from triplicate 
incubations and the standard deviation was within 5 % of the mean value in all cases. 
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Table 2. Chlorine balance for the biodegradation of CT (100 uM)a by "Nedalco" sludge (0.25 g VSS 1" 
') with acetate as an electron donor (1 g COD l"1) in the presence of AQDS (20 u.M) and different 
antibiotics after 12 da 
Culture conditions 

ys of ii lcubatio 

CT 

n 
Chlorine concentration (|iM) 

CF DCM crb 
Recovery (%) 

Clc Total" 
Unsupplemented control 
AQDS-Neomycin 
AQDS-Gentamycin 
AQDS-Vancomycin 
AQDS-BES 
AQDS-Uninhibited 

136 
128 
96 
28 
BDL 
BDL 

33 
33 
42 
30 
30 
24 

BDLe 

2 
2 
BDL 
BDL 
2 

58 
72 
96 
157 
169 
162 

15+12 
18+2 
24±15 
39±14 
42+8 
40±4 

57±14 
59±8 
59±9 
54±14 
50±8 
47±10 

"400 JlM in terms of chlorine linked to CT. 
"Values corrected for the background level of chloride in the absence of CT. 
'Efficiency of chloride release compared to the initial amount of CT. Values represent means of triplicate incubations ± 
standard deviation. 
dTotal amount of products compared to CT at time zero. Values represent means of triplicate incubations ± standard 
deviation. 
'Below detection limit. 

Effect of different substrates on the conversion of CT by granular sludge. Different substrates 

were compared as a primary electron donor for the reductive biodegradation of CT by "Nedalco" 

sludge. In medium lacking AQDS, methanol and acetate were poor electron donors, only negligibly 

improving the rate of CT conversion compared to the endogenous control (not supplied with any 

external electron donor). In contrast, hydrogen and glucose significantly contributed to enhance the 

reductive process (Fig. 4A). When the same substrates were provided as an electron donor in medium 

containing AQDS (20 (iM), the rate of conversion proceeded faster, regardless of the type of electron-

donor included (Fig. 4B). Most noteworthy, is the fact that acetate and methanol became effective 

electron-donors only when AQDS was provided to the medium. CT conversion in the endogenous 

substrate control in the presence of AQDS was slow and similar to the rate observed for the 

endogenous control in the absence of AQDS. Addition of any of the electron donors studied together 

with AQDS also improved the efficiency of dechlorination by the granular sludge (Table 3). 

In this experiment (and onwards), monitoring of chloroethanes and chloroethenes became part of the 

analytical protocol. In addition to the accumulation of lower chlorinated methanes (CF and DCM) 

from the anaerobic bioconversion of CT, PCE was also identified as an important intermediate which 

was consistently prevalent in many of the treatments. Its identification was confirmed by MS analysis. 

The PCE concentrations accounted for up to 9 % of the CT converted in terms of chlorine when H2 

was used as electron-donor with AQDS (Table 3). PCE was not detected in endogenous controls nor 

when glucose was used as the electron donor, otherwise its concentration was higher for any given 

electron donor with AQDS supplemented compared to unsupplemented cultures. None of the other 

chlorinated two-carbon intermediates monitored were detected during this and other experiments. 

Further experiments revealed no significant difference in the rate of conversion of CT by "Nedalco" 

sludge when different levels of acetate (20 100 and 500 U.M) were provided as an external electron 
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donor in the presence of AQDS. Almost complete conversion of CT was achieved for all the 

concentrations of acetate provided, including sub-stoichiometric levels of the co-substrate, after 4 

weeks of incubation. Only about 40 % of the CT initially added disappeared in the endogenous control 

during the same incubation period. The addition of different levels of acetate, however, showed an 

enhanced efficiency of dechlorination by increasing the concentration of the co-substrate leading to 

31, 48 and 51 % of dechlorination at 20, 100 and 500 uM of acetate, respectively, after 4 weeks of 

incubation. Only 15 % of the CT included in the endogenous control (without any external electron 

donor) was dechlorinated during the same incubation period. The accumulation of CF, DCM and PCE 

during this experiment occurred at the same level compared to that observed in previous assays. 

The conversion of CT by "Nedalco" sludge in the absence of AQDS was only evident when acetate 

was added at 500 uM (70 % of conversion after 4 weeks of incubation). No significant difference in 

the extent of conversion of CT was observed at 20 and 100 uM of acetate compared to the endogenous 

control and in all these cases the conversion of CT did not exceed 40 % of the amount initially added 

during the same incubation period. 
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Time (days) 

Figure 4. Conversion of CT by "Nedalco" granular sludge (0.1 g VSS l'1) in the absence (A) and in 
the presence (B) of AQDS (20 uM) with different substrates as electron donors. All substrates 
provided at 1 g COD 1"'. When hydrogen was included as an electron donor, a headspace of H2/C02 

(80/20) was established with a total pressure of 1.5 bars. Substrates: • , endogenous control (No 
external substrate provided); A, acetate; O, methanol; • , Glucose; , hydrogen. Results obtained 
from triplicate incubations and error bars indicate the standard deviation. 

Biodegradation of CT by a humus-respiring enrichment culture. A humus-respiring enrichment 

culture originated from "Nedalco" granular sludge was also studied for its capacity to degrade CT 

under anaerobic conditions. The enrichment, predominated by a Geobacter sp., was previously shown 

to oxidize acetate, formate and hydrogen when AQDS, humic acids and Fe(III)-NTA were provided as 

terminal electron acceptors (data not shown). The oxidation of these substrates agreed with the 
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recovery of AH2QDS, Fe(II), and reduced humus from these cultures. The humus-respiring inoculum 

was unable to convert CT when AQDS and humus were omitted in the medium. However, addition of 

AQDS (5 \\M) or highly purified soil humic acids (0.5 g l"1) to cell suspensions of this enrichment 

allowed for the anaerobic biodegradation of CT (Fig. 5), which agreed with the recovery of AH2QDS 

and reduced humus from these cultures (data not shown). Neither conversion of CT nor reduction of 

AQDS or humus was observed in the sterile controls lacking cells or in bioassays inhibited by the 

addition of neomycin (data not shown). The impact of AQDS and humic acids in the active controls 

was also favorable reflected on the partial recovery of inorganic chloride from these incubations, 

which was not observed in the unsupplemented and sterile controls. The recovery of inorganic 

chloride in the AQDS- and humus-supplemented bioassays accounted for 43 and 52 %, respectively, 

of the chlorine initially linked to CT after 22 days of incubation. Additionally, CF, DCM and PCE also 

accumulated during the conversion of CT by the enrichment culture accounting for 5, 2, and 3 %, 

respectively, of the CT-chlorine initially added in the AQDS-supplemented bioassays during the same 

incubation period. Likewise, 5, 2, and 2 % of the chlorine initially linked to CT was recovered as CF, 

DCM, and PCE, respectively, in the humus-supplemented cultures. 

Table 3. Chlorine balance for the biodegradation of CT (100 uM)a by "Nedalco" sludge (0.1 g VSS 1" 
') with different electron donors after 27 days of incubation 
Culture conditions 

Endogenous6 control 
Hydrogen 
Acetate 
Glucose 
Methanol 
AQDS-Endogenous control 
AQDS-Hydrogen 
AQDS-Acetate 
AQDS-Glucose 
AQDS-Methanol 

CT 
260 
53 
185 
64 
220 
237 
44 
30 
23 
35 

Chlorine concentration (u.M) 
CF DCM 
2 BDL* 
4 1 
3 BDL 
9 BDL 
3 BDL 
4 BDL 
4 BDL 
2 BDL 
5 1 
4 BDL 

PCE 
BDL 
12.4 
2 
BDL 
BDL 
BDL 
35 
17 
BDL 
8 

CT5^ 
48 
135 
99 
112 
85 
67 
223 
181 
184 
158 

Recov 

cr 
13+5 
33+12 
23+8 
28+10 
20+5 
16+5 
49+12 
38±9 
39±7 
38±7 

ery (%) 
Total" 
84±18 
50+12 
68±9 
47+6 
72+8 
75+14 
67+11 
48±7 
44±9 
49+10 

MOO LiM in terms of chlorine linked to CT. All substrates added at 1 g COD 1 . Hydrogen supplied with a headspace of 
H2/C02 (80/20) at 1.5 bars. 
Values corrected for the background level of chloride in the absence of CT. 
'Efficiency of chloride release compared to the initial amount of CT. Values i 
standard deviation. 
dTotal amount of products compared to CT at time zero. Values represent 
deviation. 
"No external electron donor provided 
Below detection limit. 

i represent means of triplicate incubations ± 

means of triplicate incubations ± standard 
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0 5 10 15 20 25 

Time (days) 

Figure 5. Conversion of CT (25 jiM) by a humus-respiring enrichment culture originated from 
"Nedalco" sludge in the presence of AQDS (5 (iM) or highly purified soil humic acids (0.5 g l"1) with 
acetate (1 g COD l"1) as an electron donor. Sterile control containing both AQDS and humus in the 
absence of cells. Unsupplemented control conducted in the absence of AQDS and humus. Results 
obtained from triplicate incubations and error bars indicate the standard deviation. 

Discussion 

The present study indicates that quinone groups in humus may play an important role in the 

conversion of polychlorinated pollutants by increasing their rate and extent of dechlorination in 

anaerobic consortia. CT dechlorination by an anaerobic granular sludge was enhanced by addition of 

the humic model compound, AQDS, at sub-stoichiometric concentrations. The role of quinone 

moieties was further emphasized by the addition of AQDS or highly purified humus to cell 

suspensions of a humus-respiring enrichment culture derived from the sludge. Dechlorination of CT 

by the enrichment culture was only made feasible by supplementing the cultures with these quinone-

containing compounds. The lack of any conversion in sterile medium and autoclaved sludge (or cell) 

controls indicates that biological mechanisms were important in the transformation of CT. 

The present study provides multiple evidences that quinone-respiring microorganisms were 

responsible for the enhanced conversion of CT observed. First, enhancement of CT-conversion was 

only observed upon addition of AQDS or humus into the media. Second, the enhanced CT-conversion 

was only significant in bioassays with measurable quinone respiring activity. Third, antibiotics 

targeting protein translation (neomycin and gentamycin) cancelled the stimulating effect of AQDS on 

CT-dechlorination in anaerobic granular sludge and the same antibiotics completely inhibited CT-

dechlorination by the quinone-respiring enrichment culture. Presumably the antibiotics prevent the 

synthesis of new proteins required for quinone respiration. The partial inhibition caused by 

vancomycin coincides with the effect of the inhibitor on eubacterial growth (by blocking cell wall 

synthesis), but not necessarily inhibiting the activity of existing cells. BES, a specific inhibitor of 
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methanogens, did not significantly inhibit CT-dechlorination by the granular sludge, suggesting that 

methanogens were not directly involved. 
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Figure 6. Proposed formation of degradation products observed in this study. Compounds in brackets 
were not identified, and 14C02 as a major product of [14C]-CT was confirmed in a previous study with 
anaerobic granular sludge (17). Formate and CO were also previously observed in an electrolytic 
model system (19). 

Anaerobic biodegradation of CT was previously described under different conditions including 

methanogenic (15-17), sulfate-reducing (18), nitrate-reducing (12), and Fe(III)-reducing (7, 34) 

conditions by mixed or pure cultures. To our knowledge, the present study constitutes the first report 

for the anaerobic biodegradation of CT under humus-reducing conditions. Addition of high-organic-

carbon soil to cell suspensions of Shewanella putrefaciens 200 was previously shown to accelerate the 

anaerobic conversion of CT to CF and unidentified products (26), but the actual functional groups and 

mechanisms involved were not elucidated during this process. More recently, Fe(III)-reducing bacteria 

were shown to stimulate the conversion of CT to CF (34). The mechanism proposed includes the 

biological reduction of Fe(III) to Fe(II), followed by the chemical conversion of CT to CF by the 

biogenic Fe(II). Most quinone-respiring bacteria reported in the literature are Fe(III)-reducers of the 

family Geobacteraceae (35) and the quinone-respiring enrichment culture utilized here was also 

predominated by a Geobacter sp. The present study indicates that these Fe(III)-reducing bacteria may 
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have a more important role in the conversion of polychlorinated pollutants than previously considered. 

Fe(III)-reducing microorganisms may significantly contribute to the conversion of polychlorinated 

pollutants by generating reducing equivalents via quinone- and humus-respiration in organic rich 

sediments and soils, as well as in wetlands, eutrophic lakes, and in microniches in composts. Quinones 

in humus, once being microbially reduced may transfer the reducing equivalents to the chlorinated 

compounds. Indeed the chemical dechlorination of HCA by AH2QDS was demonstrated (5). This 

regenerating mechanism allows for the application of humic substances at sub-stoichiometric 

concentrations for the bioremediation of contaminated sites. The enhanced conversion of CT observed 

in the present study occurred in all cases at sub-stoichiometric concentrations of AQDS. In the humus-

respiring enrichment culture, 5 uM AQDS supported up to 43 % dechlorination of 25 uM CT 

(equivalent to 43 uM AH2QDS in electron equivalents). Our results also indicate that addition of an 

external electron donor is necessary to maintain the reductive biodegradation of CT. A wide variety of 

substrates could be used as an electron donor to enhance the reductive process. This agrees with the 

fact that a wide variety of organic substrates can be oxidized via quinone or humus respiration (31-33, 

35, 36). Quinones were also able to extend the possible electron donors utilized by anaerobic granular 

sludge consortium to acetate and methanol that otherwise were not utilized to support CT 

dechlorination. Very low concentrations of electron donor had a large impact on dechlorination. For 

example, 20 uM acetate (160 microelectron equivalents l"1) removed an additional 40 to 50 uM of CT 

beyond that observed in the endogenous control in granular sludge. 

The main product of CT conversion was inorganic chloride accounting for 40 to 50% of the chlorine 

initially linked to CT in various experiments. Additionally, the accumulation of lower chlorinated 

methanes, CF (from 1 up to 10 % of added CT) and to a lesser extent DCM (traces), was observed. 

These intermediates suggest a sequence of two-electron reductive hydrogenolysis as a dechlorinating 

pathway in this study. Lower chlorinated methanes do not account for the bulk of the chlorine 

observed. Thus, alternative pathways are likely. Previously, C02 was found as a major end product of 

CT degradation by anaerobic granular sludge, which could be explained by the hydrolysis of a 

dichlorocarbene intermediate (17). Also in the present study the accumulation of a chlorinated ethene, 

PCE (from 0.5 up to 9 % of added CT) is reported for the first time as an intermediate of CT 

degradation. The formation of PCE, suggests a coupling reaction occurred between Q radicals, such 

as trichloromethyl radical resulting from a one-electron-reduction of CT. The most likely explanation 

for the formation of PCE during the biodegradation of CT, is the coupling of two trichloromethyl 

radicals to form HCA (20, 21). HCA is then readily reduced to PCE preventing HCA accumulation. 

The rapid reduction of HCA to PCE is reported for anaerobic granular sludge (37). Also the chemical 

conversion of HCA to PCE by hydroquinones is reported (5). Figure 6 illustrates a scheme accounting 

for the reactions observed in this study. The products identified could not account for approximately 

40 to 50% of the chlorine of the CT-converted. Identifying the missing chlorine-containing products 
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should be the subject of future research. However, since coupling was shown to occur as evidenced by 

PCE formation, it is reasonable to assume that at least some of the missing products may be complex 

polymerized products or adducts with biomass components (38, 39). 

The accumulation of PCE is certainly undesirable because it is also an environmental pollutant. 

However PCE is also amendable to anaerobic bioremediation by halorespiring bacteria (40). 

Depending on the halorespiring microorganisms present at a given site, either partial or complete 

dechlorination occurs. Partial reduction of PCE leads to the potential accumulation of carcinogenic 

chlorinated ethenes, such as dichloroethene and vinyl chloride, which are more recalcitrant under 

anaerobic conditions. The presence of humic substances, however, may contribute to attenuate the 

accumulation of these pollutants, since both AQDS and humic acids were previously shown to serve 

as a terminal electron acceptors supporting the anaerobic oxidation of dichloroethene and vinyl 

chloride to mineralized products (36). 
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Chapter 8 

Abstract 

The reductive biotransformation of acid orange 7 (A07) was explored in a lab-scale upflow anaerobic 

sludge blanket (UASB) reactor at low hydraulic residence times (HRT). A colour removal of 85 % 

was achieved when the reactor was operated at a HRT of 6 hours, but decreased up to 70 % when the 

HRT was lowered to 2 hours. Addition of the quinone model compound, anthraquinone 2,6-

disulfonate (AQDS), as redox mediator, allowed for a considerably higher decolourising efficiency 

(>90 % at all the HRT evaluated). The results indicate that the use of catalytic concentrations of 

AQDS (AQDS/A07 molar ratio about 0.01) can accelerate decolourising processes achieving 

satisfying extent of decolourisation. 

Introduction 

Synthetic azo dyes are extensively used as dyes for textiles, food, and cosmetics. More than 7 x 105 

tons of these dyes are produced annually world-wide (Zollinger, 1987). Most of the azo dyes, which 

are released into the environment, originate from the textile industry and the dyestuff manufacturing 

industry (Meyer, 1981). Their discharge is undesirable, not only for aesthetic reasons, but also 

because many azo dyes and their breakdown products have been proven to be toxic to aquatic life 

(Chung and Stevens, 1993) and mutagenic to humans (Chung and Cerniglia, 1992). They are 

frequently found chemically unchanged under aerobic conditions (Levine, 1991). However, under 

anaerobic conditions, many bacteria gratuitously reduce azo dyes by reductive cleavage of the azo 

bound to colourless aromatic amines (Field et al, 1995). The reductive ring fission of the azo linkage 

is generally presumed to be an unspecific extracellular process in which reducing equivalents from an 

external electron donor are transferred to the dye (Laszlo, 2000). 

Preliminary experiments showed that long reaction times are required for many azo dyes to achieve 

satisfying extent (>90%) of decolourisation, which may represent a serious problem for applying 

high-rate anaerobic treatment as the first stage in the biological degradation of azo dyes (Van der Zee 

et al, 2001). However, quinone based redox mediating compounds have been recently reported to 

accelerate azo reduction rates by shuttling reducing equivalents from bacteria to azo dyes (Kudlich et 

al, 1997, Laszlo, 2000). Therefore, the use of these redox mediators may eliminate the transfer of 

reduction equivalents as a rate-limiting step in decolourising processes. These observations are 

consistent with the use of the quinone model compounds, anthraquinone disulfonate (AQDS) and 

anthraquinone sulfonate (AQS), to mediate the electrochemical cathodic reduction of dispersed dyes 

(Bechtold et al, 1999). Furthermore, other reports indicate that quinone moieties can also mediate 

abiotic reductive dehalogenation and nitroaromatic reduction, by ferrous iron or sulfide (Field et al, 

2000). Quinones increased the reduction rate of these reductive processes by one to several orders of 

magnitude. 
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In the present study, the role of the quinone model compound, AQDS, in accelerating the reductive 

biotransformation of Acid Orange 7 (A07) was explored in a continuos upflow anaerobic sludge 

blanket (UASB) reactor. 

Materials and methods 

A 1.3-L UASB reactor (Figure 1) was placed in a 30 °C room and seeded with methanogenic granular 

sludge (30 g of volatile suspended solids (VSS) per litre) obtained from a full-scale UASB reactor 

treating effluents of an alcohol distillery of Nedalco (Nergen op Zoom, The Netherlands). The lab-

scale UASB reactor was fed with a volatile fatty acids (VFA) mixture 

(acetate:propionate:butirate=l:l:l based on chemical oxygen demand (COD) ratio) at a final 

concentration of 1.5 g COD/L prepared in basal medium. The concentration of the azo dye A07 was 

kept at 100 mg A07/L throughout the study. Eventually, different concentrations of AQDS were 

added in the medium. The influent was kept at 4 °C and continuously pumped to the reactor with a 

peristaltic pump. 

Biogas 

Gas meter 
Gas bubble 

Figure 1. Schematic diagram of the UASB system used for the present study. 

The basal medium contained (rng/L): NH4CI (280), K2HP04 (250), MgS04-7H20 (100), CaCl2»2H20 

(10) and 1 ml/L of trace elements and the pH was adjusted to 7 in the influent. Methane production 

was measured with a wet test gas meter after washing the biogas in a 10 % NaOH solution to remove 

carbon dioxide. 

Colour was measured spectrophotometrically with a Spectronics 60 spectrophotometer (Milton Ray 

Analytical Products Division, Belgium) at the A07's wavelength of maximum absorbance (484 nm). 

Liquid phase samples (0.75 ml) were centrifuged (10000 g, 3 min) and diluted up to an absorbance of 

less than 1 in a phosphate buffer (10.86 g l"1 NaH2P04«2H20; 5.38 g 1"' Na2HP04-H20). The buffer 

contained freshly added ascorbic acid (-200 mg 1"') to prevent autooxidation reactions. Without dye, 
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absorbance of the medium and buffer was less than 0.5 % of the absorbance right after dye addition. 

Soluble COD and VSS were analysed according to standard methods (APHA, 1985). Sulfanilic acid 

was measured by high performance liquid chromatography (HPLC) according to the method described 

by Tan et al. (1999). 

Acid orange 7 (Orange II, dye content 98 %) was purchased from Aldrich Chemical Company Ltd., 

Gillingham, England. Sulfanilic acid (99 %, A. C. S. reagent) was purchased from Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany. Anthraquinone-2, 6-disuphonic acid, disodium salt and 1-

amino-2-naphthol hydrochloride (technical grade, 90 %) were purchased from Aldrich Chemical 

Company Inc., Milwaukee, USA. 

Results and discussion 

During the start-up period, the UASB reactor was operated for 75 days at a VFA-COD loading rate of 

5.3 g COD/L.d, including 100 mg A07/L in the medium, with a hydraulic residence time (HRT) of 6 

hours. The total removal of soluble COD achieved during this period was about 80 % and removal of 

colour was about 85 % when steady state conditions were reached. 

Table 1. Performance of the decolourising UASB reactor at different AQDS concentrations in steady 
state with a HRT of 6 hours 

AQDS (uM) 
COD Removal (%) 
Decolourisation (%) 

CH4 production 
(g COD-CH^L-d) 

0* 
80.1+0.2 
85.7+1.1 
4.24+0.1 

3 
79.1+0.9 
97.3±0.7 
4.18+0.1 

10 
81.1±0.1 
98.8+0.1 
4.19+0.2 

30 
86.7+0.2 
98.9±0.2 
4.21+0.1 

•Initial period prior to any exposition to AQDS 

After this period, the UASB reactor was supplied with different AQDS concentrations while the COD 

loading rate was kept constant. A significant improvement in the colour removal occurred in the 

UASB reactor directly after amending the medium with AQDS when the colour removal increased up 

to 97-99 % (Table 1). This represented an increase in the A07 reduction rate from 39.9 ± 0.5 

umol/L.hr (without AQDS) to 45.8 + 0.2 (imol/L.hr (for all different concentrations of AQDS 

applied). When AQDS was intermittently omitted in the medium, colour removal decreased as shown 

in Figure 2. However, it was surprisingly observed that in these intermittent periods colour removal 

did not drop back to 85 %, but only decreased to 94 %. This suggests that some quinones might have 

been retained in the reactor stimulating the azo dye reduction at catalytic concentrations. Moreover, 

the complete decolourisation achieved with the lowest AQDS concentration tested (3 iiM) also 

suggests that quinone moieties can act at catalytic concentrations as redox mediators. Namely, a molar 

ratio of AQDS/A07 of about 0.01 was sufficient to achieve an efficient decolourising process. These 
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results are consistent with previous experiments (Kudlich et ah, 1997), which revealed that addition 

of AQDS and AQS at different levels accelerated the anaerobic microbial transformation of different 

azo dyes (e.g. amaranth, acid red 1, sunset yellow, naphthol blue black). 
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55 75 95 115 
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135 

Figure 2. Performance of the decolourising UASB reactor at different AQDS concentrations with a 
HRTof6hours. 

Figure 3 illustrates the role of AQDS during the decolourisation of A07 with a mixture of VFA as 

potential electron donors. These substrates are converted to methane and carbon dioxide by the 

anaerobic consortium during the first step of the process. The biologically generated electrons reduce 

AQDS to the corresponding hydroquinone (AH2QDS), which subsequently transfers the electrons to 

the azo dye. The reaction of AH2QDS with the azo dye regenerates the quinone moieties to their 

oxidised form. Recycling the AQDS/AH2QDS couple in this form enables its use at catalytic 

concentrations as a redox mediator to accelerate the reduction of the azo dye. This may explain the 

same extent of stimulation achieved in the decolourisation of A07 by adding different concentrations 

of AQDS in the reactor. Moreover, similar rates of reduction of A07 (20-90 |imol/L.hr) were 

obtained in pure cultures by Burkholderia cepacia when different concentrations of AQS were added, 

even with an AQS/A07 ratio as high as 6.25 (Laszlo, 2000). Therefore, quinone moieties do not 

necessarily have to be present in abundant supply to accelerate the decolourisation of azo dyes, as 

they can be easily recycled in the decolourising process. 
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CH4 + C02 

VFA 

Figure 3. Proposed mechanism for the anaerobic microbial reduction of acid orange 7 by a 
methanogenic AQDS-respiring consortium with AQDS as redox mediator. 
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Figure 4. Colour removal from the UASB reactor at different HRT in steady state. Data obtained after 
exposing the reactor with different AQDS concentrations at 6 hours as HRT. 

Reduction of A07 leads to the formation of the aromatic amines, sulfanilic acid and l-amino-2-

naphthol. The latter is an unstable aromatic amine that can undergo autooxidation reactions, but 

sulfanilic acid is rather stable and was followed during the conversion of A07 in the decolourising 

reactor. The results showed no further conversion of sulfanilic acid in the continuous reactor or in 

batch experiments both in the absence and in the presence (25 mM) of AQDS (data not shown). 

However, the capacity of "Nedalco" sludge to oxidise aromatic compounds (e.g. phenol, p-cresol) 

both under methanogenic and AQDS reducing conditions (Cervantes et al, 2000) suggests that 
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aromatic amines characterised by the presence of hydroxyl or carboxyl groups may be degraded by 

this inoculum during the anaerobic reduction of azo dyes containing these functional groups. The 

anaerobic biodegradation of this type of aromatic amines has been previously reported (Kuhn and 

Suflita, 1989; Razo-Flores etal., 1996). 

After the lowest concentration of AQDS was tested, the HRT was gradually decreased in the UASB 

reactor keeping the same VFA and A07 concentrations in the influent. This resulted in decreasing 

efficiency of decolourisation in the reactor. However, when AQDS (3 \iM) was added in the medium, 

a significant improvement in decolourisation was obtained at all the HRT tested (Figure 4), whereas 

the COD removal efficiency did not differ significantly in all cases (data not shown). This indicates 

that AQDS can mediate a satisfying extent of decolourisation of A07 at catalytic concentrations, even 

at a HRT of 2 hours. The results also support preliminary studies, which indicated that, the transfer, 

rather than the production of reducing equivalents was the rate-limiting factor for determining the rate 

of reduction of azo dyes (Van der Zee et al, 2001). 

The application of anaerobic digestion as the first step for the treatment of textile wastewaters may 

constitute a sustainable technology considering the following aspects. Azo dyes cleavage may be 

carried out at low HRT, which would demand very compact anaerobic digesters. Redox mediators do 

not necessarily have to be present in abundant supply, as they can be easily recycled during the 

decolourising process (see Figure 2). Model redox mediators can be replaced by humic substances, 

which are very abundant in nature and have inert properties. Humus is characterised by a high content 

in quinone groups in its structure (Stevenson, 1994) and therefore, represents the most abundant 

source of quinone moieties. Moreover, addition of AQDS to UASB decolourising reactors has also 

enhanced the reductive biotransformation of other azo dyes, e.g. reactive red 2, which were 

decolourised at a much lower rate (data not shown). 

Conclusions 

The results presented in this study demonstrate that the quinone model compound, AQDS, can 

accelerate the rate of azo dye (A07) reduction by mediating the transfer of reducing equivalents to the 

dye. Results also suggest that AQDS can mediate a satisfying extent of decolourisation at catalytic 

concentrations (AQDS/A07 molar ratio about 0.01), even with a HRT of 2 hours. Therefore, the use 

of redox mediators, such as AQDS, eliminates the transfer of reducing equivalents as the rate-limiting 

step in anaerobic decolourising processes. 
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Introduction 

Humus is the most abundant organic fraction in the biosphere. Humic substances are poorly 

biodegradable polymers formed during the decomposition of plant material in soil and sediments. The 

remarkable recalcitrance of humus is reflected by its long residence times in the environment, which 

exceeds 500 years (44). However, it has recently been recognized that humic substances may play an 

important role in the anaerobic biodegradation and biotransformation of organic as well as inorganic 

compounds. Humus can serve as a terminal electron acceptor supporting the anaerobic microbial 

oxidation of a wide variety of organic substrates. Microbially reduced humus can transfer electrons to 

metal oxides, such as Fe(III) and Mn(IV), allowing for the regeneration of humus to the oxidized 

form. Thus, even sub-stoichiometric concentrations of humic substances can mediate both anaerobic 

substrate oxidation and metal oxide reduction. Humic substances can also serve as electron shuttles 

abiotically transferring electrons from an external electron donor to priority pollutants, which are 

susceptible to reductive transformations (e.g., polyhalogenated compounds, nitroaromatics, azo dyes 

and radionuclides). Moreover, reduced humic substances can also serve as an electron donor to 

achieve the microbial reduction of more oxidized electron acceptors, such as nitrate, fumarate and 

(per)chlorate. Figure 1 summarizes the different mechanisms that contribute to the recycling of humic 

substances in nature. In this closing chapter, the results obtained from the studies included in this 

dissertation will be discussed. The discussion focuses on the ubiquity and diversity of humus-respiring 

microorganisms and on the competition of quinone-respiring microorganisms over methanogens for 

different ecologically important substrates. Microbial humus reduction is also discussed from the 

ecological point of view. Likewise, the role of humic substances on the bioremediation of aquifers and 

sediments, as well as, on the anaerobic treatment of wastewaters containing priority pollutants will be 

discussed here. 

Ubiquity and diversity of humus-respiring microorganisms 

Humus reduction has recently been recognized as a novel respiratory pathway, which may contribute 

to the anaerobic microbial oxidation of different ecologically important substrates (33). Various 

evidences have documented the implication of quinone sub-structural units of humus during the 

microbial reduction of humic substances (33, 37, 41) and thus, the terms "humus respiration" and 

"quinone respiration" will be used alike in the present chapter. 

In chapter 2 anaerobic consortia obtained from different environments showed quinone-respiring 

capacities (8). In all the consortia evaluated, including sandy and organic rich sediments, contaminated 

soils, and anaerobic as well as aerobic sludges originating from wastewater treatment plants, quinone-

respiring bacteria out-competed methanogens for a number of distinct simple organic substrates, such 

as acetate and lactate, as well as hydrogen. The results are consistent with the recovery of humus-
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reducing bacteria from many different habitats (15) and indicate that quinone-respiring 

microorganisms are widespread in nature. 

Acetate 

Microbial NO, 

umus-oxidizingNj Microbia l 
bacteria 

N 2 orNH 4
+ 

Oxidized humus 

Figure 1. Abiotic and microbial reactions involved in the redox cycling of quinone moieties in humus: 
1) microbial reduction of humus coupled to the anaerobic oxidation of an organic substrate (acetate); 
2) abiotic oxidation of reduced humus by a metal oxide (Fe3+); 3) reduced humus as an electron donor 
for the microbial reduction of a more oxidized electron acceptor (N03). 

Figure 2 shows the phylogenetic tree including all the humus-reducing microorganisms reported in the 

literature. It can be observed that a broad diversity of physiologically distinct microbial groups can 

reduce humic substances when they are supplied as a terminal electron acceptor for the anaerobic 

oxidation of different substrates. Most of the humus-reducing microorganisms can oxidize hydrogen 

linked to the reduction of humus or the humic analogue, anthraquinone-2,6-disulfonate (AQDS); 

whereas acetate-linked humus reduction is rather associated with Fe(III)-reducing microorganisms 

members of the family Geobacteraceae (12, 14, 15, 33). The wide diversity of microorganisms, 

including Fe(III)-reducers (e.g., Geobacter spp. (14, 15, 33)), nitrate-reducers (e.g., Shewanella 

putrefaciens (34, 37)), sulfur-reducers (e.g., Desulfuromonas spp. (15, 34)), fermentative bacteria 

(e.g., Propionibacterium freudenreichii (4), and methanogenic archaea (e.g., Methanococcus 

thermolithotrophicus (30)), that can reduce humic substances may be an important factor for 

determining the ubiquity of humus-reduction in many anaerobic environments. Moreover, the ability 

to reduce humic substances have also been reported in hyperthermophilic microorganisms, such as 
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Pyrobaculum islandicum, which are the organisms most closely related to the last common ancestor of 

extant organisms suggesting that the last common ancestor had the ability to reduce humus (30). In 

chapter 3 of this dissertation different microorganisms generally found in anaerobic environments, 

which were previously not known to have the ability to reduce humic substances, are reported as 

quinone-reducers for the first time. All the microorganisms, including the sulfate-reducing bacterium, 

Desulfovibrio G i l , the halorespiring microorganisms, Desulfitobacterium PCE1 and 

Desulfitobacterium dehalogenans, and the hydrogenotrophic methanogen, Methanospirillum hungatei, 

oxidized hydrogen linked to the stoichiometric reduction of AQDS. The Desulfitobacterium spp. were 

also able to oxidize lactate coupled to humus and AQDS reduction and the respiratory process was 

shown to support growth (11). The capacity of halorespiring microorganisms to grow under humus-

reducing conditions suggests that humus may be the natural occurring electron acceptor for these 

microorganisms explaining their occurrence in pristine sites, where the presence of chlorinated 

pollutants and sulfite is not expected (27, 39). 
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Figure 2. Phylogenetic diversity of humus-reducing microorganisms reported in the literature. The 
scheme does not show any similarity among the different phylogenetic groups illustrated (data 
obtained from references 4, 11, 14, 15, 22, 23, 30, 33, 34, 42). 
*, Microorganisms in which quinone respiration has been confirmed to support microbial growth. • , 
Contribution of this dissertation to the phylogenetic tree. 

Given the versatility of several humus-reducing microorganisms, which can utilize a number of 

different electron acceptors, it is expected that the seasonal fluctuations in terminal electron acceptors 
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occurring in soil and sediments may not strongly affect the survival of humus-reducing 

microorganisms in these habitats. The versatility of humus-respiring microorganisms is also reflected 

in the wide diversity of substrates that can be oxidized via quinone respiration (8, 20). Table 1 

summarizes the substrates reported in the literature supporting quinone or humus respiration in 

different pure and mixed cultures. Furthermore, the reduction of humic substances has also been 

linked to the anaerobic oxidation of recalcitrant compounds by different consortia (see below). The 

metabolic versatility of humus-respiring bacteria may also be an important factor, which accounts for 

the ubiquity of these microorganisms. 

Table 1. Anaerobic microbial oxidation of ecologically important substrates and priority pollutants 
linked to the reduction of humus or the humic model compound AQDS 
Substrate El^ecfroiiacce£tor_ Inoculum Reference 

Ecologically important substrates 

Hydrogen Humus or AQDS 

Acetate Humus or AQDS 

Formate 
Lactate 

Propionate 

Ethanol 

Pyruvate 
Succinate 
Glucose 

AQDS 
Humus or AQDS 

Humus or AQDS 

AQDS 

AQDS 
AQDS 
Humus 

Most humus reducing microorganisms in 8, 11, 15, 
mixed or pure culture 22, 30, 33 
Pure cultures of Geobacter spp. and 8, 12, 14, 
Desulfuromonas spp. and several consortia 15,22,33, 
from different environments 34 
Pure cultures of Geobacter spp. 12, 15 
Pure cultures of Geobacter spp., 
Desulfitobacterium spp., Shewanella alga, 
Propionibacteriumfreudenreichii and 
Deinococcus radiodurans, and several 4, 8, 11, 
consortia from different environments 15, 23, 33 
Pure cultures of Desulfuromonas spp. and 
Propionibacterium freudenreichii, and 
several consortia from different 
environments 4, 8, 15 
Pure cultures of Geobacter spp. and 
Desulfuromonas spp. 15 
Pure cultures of Geobacter spp. 15 
Pure cultures of Desulfuromonas spp. 15 
Pure cultures of Enterococcus cecorum and 
Lactococcus lactis 4 

Priority pollutant substrates 

Humus or AQDS 

AQDS 

Humus or AQDS 

Dichloroethene and 
vinyl chloride 
•Phenol andp-
cresol 
•Toluene 

Fresh organic rich sediment 6 

Anaerobic granular sludge from different 9 
origins 
Anaerobic sediments from different origins 7 

• Contribution of this dissertation to the diversity of substrates that can be oxidized through the reduction of humic 
substances 

127 



Chapter 9 

Considering all these observations, it is not surprising that reduction of humic substances and recovery 

of quinone-respiring bacteria had been found in many different natural environmental, such as organic 

rich and oligotrophic sediments and soils (8, 15), as well as artificial habitats, such as sludges from 

wastewater treatment plants (12). The presence of humus-reducing microorganisms in wastewater 

treatment systems may have important implications for the anaerobic biotransformation of priority 

pollutants via quinone respiration (see below). 

Competition of quinone respiration over methanogenesis for ecologically important 

substrates 

Chapter 2 describes the addition of the humic analogue, AQDS, as an electron acceptor for sediment, 

soil, or sludge incubations. The AQDS-additions prevented methanogenesis and AQDS reduction 

became the preferred pathway for the conversion of most of the simple substrates provided (8). In the 

absence of AQDS, all the substrates, including hydrogen, acetate, lactate, propionate and methanol 

were partially or completely converted to methane. 

There are multiple reasons that can explain why quinone-respiration out-competes methanogenesis. As 

shown in Figure 3, the reduction potential of the AQDS/AH2QDS electron acceptor couple is superior 

to that of methanogenesis and sulfate-reduction. AQDS reduction is also thermodynamically superior 

than the reduction of the main Fe(III) forms found in nature, such as goethite and magnetite, which are 

poorly bioavailable. There is more free energy available for utilizing AQDS as an electron acceptor 

compared to these final electron acceptors. Humic substances from different origins have also showed 

redox potential within the same superior range (Figure 3). Microorganisms that reduce electron 

acceptors with a higher redox potential generally out-compete methanogens for hydrogen and acetate 

because they gain more energy from the oxidation of these substrates (5, 31, 32, 52). Therefore, 

competitive effects due to thermodynamic differences may contribute for the prevalence of quinone-

respiring organisms over methanogens. However, other alternative electron acceptors, such as some 

metal oxides, as well as nitrate, are higher up in the reduction potential tower compared to quinone 

respiration (Figure 3). Consequently, denitrification and dissimilatory reduction of metal oxides, 

which are more bioavailable, such as vernadite and ferrihydrite, would be expected to out-compete 

quinone respiration. 

In many of the consortia tested, initially there was a relatively high concentration of methanogens 

compared to the initial quinone-respiring population, thus thermodynamics can not account completely 

for the sudden predominance of quinone respiration over methanogenesis. Thus the fact that AQDS 

increased the redox potential (up to + 130 mV) of the culture fluid when supplied as an electron 

acceptor (8) may be important. The elevated redox potential may interfere with biochemical processes 

required for methanogenesis as it is generally assumed that methane production is only feasible at 

redox potentials below - 200 mV (19). AQDS supplied at high concentrations was even shown to be 
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toxic for acetoclastic and methylotrophic methanogenesis in anaerobic granular sludges (8). Toxicity 

may also play an important role for enabling quinone-reducing microorganisms to out-compete 

methanogens. 
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Figure 3. Reduction potentials (in V) under standard conditions (E °) of the main redox couples in 
nature. Data obtained from references 43 and 46. 

Ecological impact of microbial humus reduction 

The broad spectrum of ecologically important substrates (Table 1), that can be oxidized through 

quinone-reducing processes indicates that quinones in humus may significantly contribute to carbon 

cycling process by serving as a terminal electron acceptor. The ecological relevance of microbial 

reduction of humic substances is further emphasized by the abundance of this organic fraction in many 

anaerobic sites, such as soil, sediments, swamps, eutrophic lakes, and compost. 

Moreover, the high reactivity of hydroquinones in humus with metal oxides, such as Fe(III) (33) and 

Mn(IV) (45), allows for their regeneration to the oxidized. The recycling mechanism implies that even 

sub-stoichiometric concentrations of humic substances may lead to both anaerobic substrate oxidation 

and reduction of metal oxides (Figure 1), which are very abundant in many sedimentary environments. 

Oxidation of organic substrates via humus-respiration occurs more rapid than oxidation of substrates 
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linked directly to the reduction of metal oxides (33) probably because soluble humic substances are 

more readily accessible for microbial reduction than are insoluble metal oxides, which is also reflected 

on the higher redox potential observed in humus compared to the main Fe(III) forms in nature. 

AH2QDS has been shown to access micropores inside geological oxides that cannot be reached by 

bacteria (53); thus, it is still questionable whether the reduction of Fe(III) and Mn(IV) proceeds 

directly by metal-reducers, or indirectly via quinone reduction by humus-reducers in nature. Humus-

reducing microorganisms, such as Propionibacteriumfreudenreichii, which do not have the ability to 

reduce Fe(III), were shown to channel electrons from anaerobic oxidations, via humus reduction, 

towards the reduction of amorphous Fe(III) oxides (4). In chapter 3, the capacity of an halorespiring 

microorganism, Desulfitobacterium dehalogenans, and a sulfate-reducing bacterium, Desulfovibrio 

Gil , for reducing amorphous Fe(III) oxides via quinone reduction is reported for the first time. 

Desulfitobacterium dehalogenans was unable to reduce the metal oxide in the absence of humic 

substances, but addition of sub-stoichiometric concentrations of AQDS (500 u;M) allowed for the 

reduction of Fe(III), which was coupled to the oxidation of lactate or hydrogen. AQDS added at the 

same level enhanced the reduction of Fe(III) by Desulfovibrio Gl 1 with hydrogen as an electron donor 

(11). The results suggest that many phylogenetically distinct types of organisms may contribute to the 

reduction of metal oxides via humus reduction in sedimentary habitats. 

Humus as an electron acceptor for the bioremediation of aquifers and sediments 

After humus reduction was recognized as a respiratory pathway in 1996 (33), a number or 

investigations have reported the potential of humic substances to serve as a terminal electron acceptor 

for achieving the microbial oxidation of recalcitrant compounds. The first finding that humic 

substances could act as electron acceptors for the anaerobic oxidation of priority pollutants was 

reported in an organic rich streambed sediment capable of mineralizing vinyl chloride and 

dichloroethene under humus-reducing conditions (6). These chlorinated contaminants were negligibly 

degraded in the absence of humic substances under anaerobic conditions, whereas addition of humic 

acids greatly stimulated the recovery of 14C02 from [l,2-l4C]vinyl chloride and [1,2-
l4C]dichloroethene. The role of humic substances as an electron acceptor was corroborated in AQDS-

supplemented bioassays in which the mineralization of [l,2-14C]vinyl chloride was concomitant to the 

reduction of AQDS. In the present dissertation multiple priority pollutants were shown to be 

vulnerable to anaerobic biodegradation under quinone-reducing conditions. In chapter 5, anaerobic 

sludges originated from different wastewater treatment plants were shown to convert phenol and p-

cresol under AQDS-reducing conditions and the conversion of the phenolic contaminants agreed with 

the stoichiometric recovery of the corresponding hydroquinone (anthrahydroquinone-2,6-disulfonate, 

AH2QDS) in the bioassays (9). The phenolic compounds were completely converted to methane in the 

absence of humic substances, but addition of AQDS as an alternative electron acceptor diverted the 
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flow of electrons from methanogenesis towards quinone respiration. These results demonstrate for the 

first time that quinones in humus may contribute to the anaerobic microbial oxidation of phenolic 

compounds by serving as a terminal electron acceptor. Most importantly is the fact that priority 

pollutants (e.g., toluene), which were not degraded under methanogenic conditions, could be 

mineralized by humus-respiring consortia when humic substances were provided as an electron 

acceptor. In chapter 6, enriched anaerobic sediments originated from the Rhine river and from the 

Amsterdam Petroleum Harbor (APH) readily mineralized uniformly labeled [13C]toluene to 13C02 

when humic acids or AQDS were provided as terminal electron acceptors (7). After two weeks of 

incubation, 50 and 85 % of added [l3C]toluene was recovered as 13C02 in humus- and AQDS-

supplemented enrichment cultures of APH sediment, respectively, whereas negligible recovery 

occurred in the absence of humic substances. Additionally, the electron equivalents in the toluene 

mineralized were recovered stoichiometrically as reduced humus or AH2QDS. These evidences 

constitute the first direct and quantitative demonstration for the mineralization of an aromatic 

hydrocarbon by humus-respiring microorganisms. 

Therefore, humus may be a more important electron acceptor for the bioremediation of contaminated 

environments than previously considered. Organic rich environments are particularly concerned 

because humic substances could support the anaerobic oxidation of organic pollutants by serving as a 

terminal electron acceptor and thus, contributing to the intrinsic bioremediation of these habitats. 

Addition of humic acids (35) or AQDS (/) to petroleum-contaminated aquifer sediments rich in Fe(III) 

oxides, but deficient in humus, showed promising stimulation of the anaerobic biodegradation of 

benzene at some sites. Humic substances are also claimed to stimulate the anaerobic degradation of the 

gasoline additive, methyl-/erf-butyl ether, in aquifer sediments provided with Fe(III) as a final electron 

acceptor (21). Moreover, in chapter 6 of this dissertation it was shown that APH sediment did not use 

amorphous Fe(III) oxide as an electron acceptor for toluene degradation, but when sub-stoichiometric 

amounts of humic acids were included in sediment incubations, toluene biodegradation could be 

coupled to the reduction of Fe(lII). Presumably humus-respiring microorganisms transferred electrons 

from anaerobic toluene oxidation to the metal oxide via humus reduction (7). Figure 4 summarizes the 

mechanisms of anaerobic toluene biodegradation in the humus-respiring consortium. Therefore, an 

eventual technology based on pumping humic substances or quinones into oligotrophic aquifers and 

sediments to enhance the anaerobic oxidation of priority pollutants can also be considered. All the 

Fe(III)-reducing microorganisms evaluated are also able to utilize humus or AQDS as an electron 

acceptor (12, 14, 15, 30, 33, 34) and quinones have much higher aqueous solubility than alternatives, 

such 02, Fe(III) and Mn(IV), which may warrant good transport into the aquifer. The regeneration of 

hydroquinones in humus by chemical reaction with metal oxides may allow for the application of 

humic substances in contaminated sites at sub-stoichiometric concentrations as long as the 

mechanisms for achieving the recycling process are also available. For engineered bioremediation 
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systems with groundwater recirculation, quinone recycling can also be achieved by direct chemical 

reaction of pumped up hydroquinones with oxygen and the resulting recycled quinones can be 

reinjected into the aquifer. 

Reduced humus 

F e ( I I ) [soluble] 

F e ( I I I ) [insoluble] 

Oxidized humus 
Figure 4. Anaerobic oxidation of toluene in the quinone-respiring Amsterdam Petroleum Harbor 
sediment (7). 

The application of humic substances for achieving bioremediation of contaminated aquifers and 

sediments have some other advantages. Humus does not represent any risk when applied in aquifers 

and sediments deficient in organic matter given its inert properties. Although humic substances may 

enhance the movement of a contaminant plume in ground waters due to their ability to bind 

hydrocarbons and heavy metals (44), the increased mobilization may also improve hydrocarbon 

bioavailability, which could also improve its biodegradation. Another important implication is the 

possible solubilization of metals, such as Fe(II) and Mn(II), during the regeneration of hydroquinones 

in humus. However, Fe(II) and Mn(II) may undergo sorption to bacteria or to the residual metal oxide 

surface. The results presented in chapter 6 illustrate this possibility. Only 30-34 % of the reducing 

equivalents as Fe(II) or Mn(II), which were expected during the anaerobic oxidation of toluene, could 

be recovered when goethite ( a-FeOOH) and vernadite (Mn02) were provided as a terminal electron 

acceptor in the presence of humic acids (7). Furthermore, aerobic, phototrophic and nitrate-reducing 

microorganisms can oxidize substantial amounts (up to 8-10 mM) of soluble Fe(II) leading to the 

formation of insoluble ferrihydrite, which is excreted outside the cells (46). Biogenic ferrihydrite has 

been shown to be a suitable electron acceptor for iron-reducing bacteria (47) indicating that biological 

Fe(II) oxidation indeed contributes to the recycling of iron in anaerobic environments. Another 

advantage of the application of humic substances for the bioremediation of anaerobic sites is 

represented by the lack of undesirable intermediates during the microbial reduction of humic 

132 



General Discussion and Conclusions 

substances. The injection of nitrate and sulfate for the bioremediation of contaminated environments 

has limitations due to the accumulation of intermediates (e.g., nitrite) or end products (e.g., sulfide), 

which represent pollutants themselves (2, 25). Therefore, the utilization of humic substances to 

stimulate the bioremediation of contaminated anaerobic sites containing recalcitrant pollutants 

represents an attractive alternative. 

Humus as a redox mediator for the reductive (bio)transformations of priority pollutants 

Humic substances do not only serve as final electron acceptors for the anaerobic oxidation of 

pollutants. Humus and quinone analogues can also stimulate the reductive (bio)transformation of azo 

dyes, nitroaromatics, polyhalogenated contaminants and radionuclides by shuttling electrons between 

an external electron donor and those pollutants. Mechanisms mediated by humic substances include 

abiotic as well as biological processes in which quinones or humus accelerate the reductive 

transformations by one to several orders of magnitude. 

The most well studied abiotic mediation of humic substances in reductive reactions is the conversion 

of hexachloroethane (HCA) to tetrachloroethylene, also known as perchloroethylene (PCE), by ferrous 

iron, sulfide or elemental sulfur (17). Addition of quinones accelerated up to 10-fold the rate of these 

chemical reactions and the reduced quinone moiety (AH2QDS) could also cause the direct 

dechlorination of HCA (17). Addition of humic model compounds, such as resorcinol and catechol, to 

abiotic assays including chlorinated dibenzo-p-dioxins (CDDs) led to the dechlorination of these 

contaminants (3). Reactions systems containing octa-CDDs and any of the humic analogues achieved 

the formation of the tetra-CDDs group of congeners, whereas no reductive dechlorination of octa-

CDDs occurred in the absence of humic model compounds. Quinones and humus also enabled the 

abiotic reduction of nitroaromatics (18, 40) and azo dyes (50) to the corresponding aromatic amines 

with bulk reducing agents commonly found in anaerobic environments, such as sulfide and ferrous 

iron. 

Humus and quinones have also been implicated in the reductive biotransformations of priority 

pollutants. Deinococcus radiodurans, a radiation-resistant microorganism, could reduce the soluble 

radionuclides, U(VI) and Tc(VII), to their insoluble species, U(IV) and Tc(IV), when AQDS was 

provided as a redox mediator at sub-stoichiometric concentrations, whereas no reduction of the 

radionuclides occurred in the absence of AQDS (23). The precipitation of these ionization radiation 

emitters through quinone reduction may have important implications for the bioremediation of metal-

and radionuclide-contaminated sites. 

Cell suspensions of Shewanella putrefaciens including soil organic matter converted carbon 

tetrachloride (CT) to chloroform and unidentified products at a higher rate compared to bioassays 

lacking organic matter (16). The humic acid fraction was shown to catalyze the conversion of CT at a 

greater extent than did the fulvic acid and humin constituents, but the actual functional groups and 
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mechanisms involved in the redox reactions were not elucidated. The evidences presented in chapter 7 

indicate that quinone-respiring microorganisms may play a more important role on the conversion of 

polyhalogenated pollutants than previously considered. Addition of AQDS at sub-stoichiometric levels 

enhanced the rate and extent of dechlorination of CT by anaerobic granular sludge leading to an 

increased production of inorganic chloride, which accounted for 40-50 % of the chlorine initially 

linked to the chlorinated contaminant (JO). A wide variety of substrates could be used as an electron 

donor to enhance the dechlorinating process, which agrees with the fact that a broad spectrum of 

compounds can be oxidized through quinone respiration (see above). AQDS was also able to extend 

the possible electron donors utilized by the anaerobic sludge to acetate and methanol, which otherwise 

were not used to support CT dechlorination in the absence of quinones. The enhanced CT 

dechlorination observed was attributed to humus-respiring bacteria in the sludge as evidenced by the 

selective inhibition of quinone respiration with the antibiotic, neomycin. Neomycin inhibited both 

AQDS reduction and the enhanced CT conversion by the anaerobic granular sludge. The 

methanogenic inhibitor, 2-bromoethanesulfonic acid, which showed no effect on AQDS reduction, did 

not inhibit the conversion of CT by the same inoculum. Furthermore, a humus-respiring enrichment 

culture, composed primarily of a Geobacter sulfurreducens related species, derived from the granular 

sludge was also shown to dechlorinate CT in the presence of either AQDS or humic acids at low 

concentrations, yielding similar products as the AQDS-supplemented sludge. The conversion of CT 

was paralleled by the reduction of AQDS and humus in the bioassays constituting the first 

demonstration that quinone-respiration can contribute as a mechanism generating electron equivalents 

for dechlorinating processes. No conversion of CT was observed in the absence of humic substances 

by the enrichment culture. Chloroform and dichloromethane accounted for a minor proportion (1-10 

%) of the CT converted in the bioassays supplemented with humic substances. The accumulation of a 

chlorinated ethene, PCE, is also reported for the first time as an intermediate of CT biodegradation in 

this study. The most likely explanation for the accumulation of PCE (up to 9 % of the CT initially 

added) during the conversion of CT, is the coupling of two trichloromethyl radicals to form HCA. 

HCA, in turn, could be readily converted to PCE either by abiotic reduction with hydroquinones (17) 

or by further microbial dechlorination (51). The accumulation of PCE is undesirable because it could 

lead to the formation of lower chlorinated pollutants, such as dichloroethene and vinyl chloride, which 

are more recalcitrant than PCE under anaerobic conditions. The presence of humic substances, 

however, may contribute to attenuate the accumulation of these contaminants, since both AQDS and 

humus, as previously shown, can serve as a terminal electron acceptor for the anaerobic microbial 

oxidation of dichloroethene and vinyl chloride to mineralization products (6). 
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Impact of humus on the anaerobic treatment of wastewaters containing priority 

pollutants 

Azo dyes, nitroaromatics and polyhalogenated pollutants are common constituents of wastewaters 

originated from the chemical and petrochemical industry, which have been shown to be toxic for the 

biological systems continuously treating these discharges. As electron-withdrawing pollutants, 

however, they can be converted in anaerobic reactors allowing for the detoxification of the systems. A 

number of reports have indicated that quinone moieties could accelerate the reductive 

biotransformation of these pollutants. For instance, different quinone structures have been shown to 

accelerate the reduction of azo dyes to the corresponding colorless aromatic amines (26, 28). 

Substrate 

CO, 

Aromatic 
amines 

R-®-N—-©-" 
Azo dye 

Figure 5. Mechanism of AQDS mediated reduction of azo dyes. Quinone-respiring bacteria reduce 
AQDS to the corresponding hydroquinone, AH2QDS, which in turn directly transfers the electrons to 
the dye resulting in azo cleavage. 

In chapter 8 of this dissertation, the application of different levels of AQDS to accelerate the reductive 

decolorization of Acid Orange 7 (A07) in a continuous upflow anaerobic sludge blanket (UASB) 

reactor is reported (13). High efficiency (>90 %) of decolorization of A07 occurred even at a 

hydraulic residence time of 2 hours with a molar ratio of AQDS/A07 as low as 1/100, whereas 70 % 

of color removal occurred in the absence of AQDS under the same hydraulic conditions. Moreover, 

recent experiments have revealed that addition of AQDS at very low concentrations also enhanced the 

reductive biotransformation of other azo dyes (e.g. Reactive Red 2) which are decolorized at a much 

lower rate in the absence of quinones (49). The enhancement in the decolorizing process not only lead 

to detoxification (49), but it also accelerated the reductive process, which in turn, could decrease the 

hydraulic residence time required (13) enabling more compact anaerobic reactors. Since microbially 

reduced quinones are responsible for the terminal reaction with the azo dyes, the quinone-reducing 

microorganisms do not need to be in direct contact with the dye to carry out the decolorizing process 

(28). Figure 5 shows the mechanism of azo dye reduction mediated by quinones. Thus, quinones, as 
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redox mediators, do not necessarily have to be present in abundant supply, as they can be easily 

recycled during the reductive mechanisms. According to these evidences, the application of humus or 

quinones to wastewater treatment reactors could enhance the biotransformation of different 

contaminants susceptible to reductive conversion. 

High rate wastewater treatment systems, such as UASB and expanded granular sludge blanket (EGSB) 

reactors, in which anaerobic granular sludge is developed, represent attractive technologies for 

achieving the anaerobic conversion of priority pollutants. Anaerobic granular sludge maintains 

superior settling characteristics and the washout of biomass is decreased to a minimum by creating a 

quiescent zone within the reactors, enabling the sludge particles to flocculate, to settle, and to be 

entrapped in a secondary sludge blanket (29). Therefore, quinone-respiring bacteria, which have been 

shown to play an important role on the reductive biotransformation of priority pollutants (10), may be 

retained in the reactors facilitating their involvement in reductive conversions. In fact, in chapter 4, an 

AQDS-respiring enrichment culture that was developed in anaerobic granular sludge is described. The 

enriched quinone-respiring granular sludge of a UASB reactor was capable of continuously reducing 

AQDS for a prolonged period in steady state indicating that quinone-respiring microorganisms can be 

immobilized in the microbial community of the anaerobic granular sludge (12). Furthermore, 

immobilization of other types of microorganisms with the capacity to degrade different priority 

pollutants has successfully been achieved in UASB reactors allowing for the continuous conversion of 

the contaminants (24, 48). Therefore, granular sludge constitutes a suitable form of immobilization of 

quinone-respiring microorganisms in continuous anaerobic reactors. Further advantages of the UASB 

and EGSB reactors is the hydraulic and gas mixing conditions that prevail in the systems, which allow 

for minimal biological dead-space and prevent localized high concentrations of the toxic pollutants 

present in the wastewater. Moreover, the granular structure provides protection to microorganisms 

inside the granules attenuating the toxic impact of the contaminants (38). 

Concluding remarks 

Humus was generally considered as an inert material in the past due to its remarkable stability in the 

environment. However, the evidences discussed here indicate that quinone moieties in humus can play 

different roles contributing to the anaerobic biodegradation and biotransformation of ecologically 

important substrates, as well as priority pollutants. Humic acids and quinone model compounds 

supported the anaerobic microbial oxidation of several important substrates by serving as a terminal 

electron acceptor in many different environments. Quinone-respiring activity was ubiquitously 

observed both in natural environments, such as sandy and organic rich sediments, and in artificial 

habitats, such as sludges originated from wastewater treatment plants. The capacity to reduce humic 

substances was also found in axenic cultures of phylogenetically distinct microorganisms, which 

oxidized different substrates via humus reduction, indicating that many different microorganisms may 
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be involved in the reduction of humic substances in nature. Humus-respiring consortia also showed the 

capacity of mineralizing priority pollutants, such as toluene, when humus and quinones were provided 

as a final electron acceptor. Thus, a technology based on injecting humic substances into aquifers and 

sediments to stimulate the bioremediation of contaminated sites can be considered. Humic substances 

do not necessarily have to be supplied abundantly to stimulate the bioremediation of these sites. 

Microbially reduced quinones in humus can be recycled by chemical reaction with metal oxides, 

which are abundant in many anaerobic environments, allowing for the application of humic substances 

at sub-stoichiometric levels. 

Quinones and humus also served as redox mediators accelerating the reductive biotransformation of 

different contaminants with electron-withdrawing groups. Catalytic concentrations of AQDS and 

humic acids enhanced both the rate and extent of dechlorination of carbon tetrachloride by quinone-

respiring consortia. Addition of micromolar concentrations of AQDS to a UASB reactor continuously 

treating an azo dye also allowed for a decrement in the hydraulic residence time required for an 

efficient decolorizing process. Therefore, the application of catalytic levels of quinones or humus to 

anaerobic reactors may enhance the reductive biotransformation of priority pollutants in wastewaters. 

The enhanced biotransformation of these contaminants may have important implications because it 

may lead to detoxification of the microbial community in wastewater treatment systems. Likewise, the 

application of humic substances may demand more compact wastewater treatment systems due to the 

accelerated conversion of priority pollutants. 
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Hoofdstuk 9 

Introductie 

Humus is de meest voorkomende organische fractie in de biosfeer. Humusstoffen zijn biologisch 

slecht-afbreekbare polymeren die gevormd worden gedurende de decompositie van plantenmateriaal 

in bodems en sedimenten. Lange verblijftijden van meer dan 500 jaar geven blijk van de opmerkelijke 

persistentie van humus in het milieu (44). Het is recentelijk echter onderkend dat humeuze 

verbindingen een belangrijke rol kunnen spelen in de anaerobe biotransformatie en biodegradatie van 

zowel organische als anorganische stoffen. Humus kan dienen als terminale elektronenacceptor voor 

de anaerobe microbiele oxidatie van een gevarieerde reeks organische stoffen. Microbieel gereduceerd 

humus kan elektronen overdragen op metaaloxiden zoals Fe(III) en Mn(IV). Hierdoor vindt 

regeneratie plaats van de geoxideerde vorm van humus. Humus kan daarom, ook wanneer het slechts 

aanwezig is in substoichiometrische hoeveelheden, als mediator ('bemiddelaar') optreden bij zowel de 

anaerobe oxidatie van organische substraten als de anaerobe reductie van metaaloxiden. Humuszuur 

kan eveneens als mediator dienst doen in de abiotische overdracht van elektronen van een externe 

elektronendonor op reduceerbare zwartelijststoffen (b.v. polyhalogeenverbindingen, nitroaromaten, 

azokleurstoffen en radionucliden). Bovendien kunnen gereduceerde humusstoffen dienen als 

elektronendonor voor de microbiele reductie van hoger-geoxideerde elektronenacceptoren zoals 

nitraat, fumaraat en (per)chloraat. Figuur 1 vat de verschillende mechanismen samen die bijdragen aan 

de kringloop van humus in de natuur. In dit afsluitende hoofdstuk zullen de resultaten van het 

onderzoek dat is opgenomen in dit proefschrift worden besproken. De discussie richt zich op de alom-

tegenwoordigheid en diversiteit van humusrespirerende micro-organismen en op de competitie tussen 

chinonrespirerende en methanogene micro-organismen met betrekking tot de omzetting van 

verschillende ecologisch belangrijke substraten. Ook zal microbiele humusreductie vanuit ecologisch 

gezichtspunt worden besproken en voorts zal worden ingegaan op de rol van humuszuren in de 

bioremediatie van waterbodems en sedimenten en in de anaerobe behandeling van zwartelijststoffen in 

afvalwater. 

Alomtegenwoordigheid en diversiteit van humusrespirerende micro-organismen 

Het is pas recentelijk onderkend dat humusreductie als respiratieroute een bijdrage kan leveren aan de 

anaerobe microbiele oxidatie van verschillende ecologisch belangrijke verbindingen (33). Volgens 

verscheidene aanwijzingen behelst microbiele humusreductie de reductie van chinongroepen in de 

humusstoffen (33, 37, 41). Daarom worden in dit hoofdstuk de termen "humusademhaling of -

respiratie" en "chinonademhaling of-respiratie" naast elkaar gebruikt. 

In hoofdstuk 2 van dit proefschrift werd vastgesteld dat anaerobe consortia uit verschillende milieus 

chinonrespirerende capaciteit vertoonden (8). De geevalueerde consortia waren afkomstig van zandige 

sedimenten, van sedimenten die juist rijk waren aan organische stof, van verontreinigde bodems en 

van slib uit zowel anaerobe als aerobe afValwaterzuiveringsinstallaties. De chinonrespirende micro-

144 



Algemene Discussie en Conclusies 

organismen in al deze consortia verdrongen de methanogenen tijdens de competitie om een aantal 

verschillende eenvoudige substraten zoals acetaat, lactaat en waterstof. Deze resultaten zijn in lijn met 

de ophoping van humusreducerende micro-organismen uit vele verschillende verspreidingsgebieden 

(75) en geven aan dat humusrespirerende micro-organismen wijdverbreid zijn in de natuur. 

OH 

Acetaat 

Microbieel l Humusreducerende 
bacterien 

CO-

NO," 

Humusoxiderende N Microbieel 
bacterien 

N , o rNH , ' 

Geoxideerd humus 

Figuur 1. Abiotische en microbiele readies die betrokken zijn bij de redoxcyclus van chinon-
structuren in humus: 1) microbiele humusreductie gekoppeld aan de anaerobe oxidatie van een 
organisch substraat (acetaat); 2) abiotische oxidatie van gereduceerd humus door een metaaloxide 
(Fe3+); 3) gereduceerd humus als een elektronendonor voor de microbiele reductie van een hoger-
geoxideerde elektronenacceptor (N03). 

Figuur 2 toont de fylogenetische stamboom van alle in de literatuur gerapporteerde humusreducerende 

micro-organismen. De figuur illustreert dat bacterien uit een brede verscheidenheid aan fysiologisch 

verschillende groepen humus kunnen reduceren als terminale elektronenacceptor in de anaerobe 

oxidatie van verschillende substraten. De meeste humusreducerende micro-organismen kunnen de 

oxidatie2 van waterstof koppelen aan de reductie van humus of van de humus-analoge verbinding 

antrachinon-2,6-disulfonaat (AQDS); terwijl oxidatie van acetaat door humusreducerende micro-

organismen meestal is voorbehouden aan Fe(III)-reducerende leden van de familie GeobqcteraqEae 

(12, 14, 15, 33). De brede verscheidenheid aan humusreducerende micro-organismen, waaronder 

Fe(III)-reduceerders (b.v. Geobacter spp. (14, 15, 33)), nitraatreduceerders (b.v. Shewanella 

putrefaciens (34, 37)), sulfaatreduceerders (b.v. Desulfuromonas spp. (15, 34)), fermentatieve 

bacterien (b.v. Propionibacterium freudenreichii (4)) en methanogene archaebacterien (b.v. 

Methanococcus thermolithitrophicus (30)) is waarschijnlijk bepalend voor de alomtegenwoordigheid 

van humusreductie in vele anaerobe milieus. Bovendien is humusreductie eveneens gerapporteerd 

voor hyperthermofiele micro-organismen zoals Pyrobaculum islandicum. Deze hyperthermofielen zijn 
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de organismen die het dichtst gerelateerd zijn aan de laatste gemeenschappelijke voorouder van alle 

huidige levensvormen, dus wellicht heeft deze laatste gemeenschappelijke voorouder reeds het 

vermogen gehad om humus te reduceren (30). 

In hoofstuk 3 van dit proefschrift werden verschillende in anaerobe milieus algemene micro-

organismen, waarvan niet bekend was dat ze humus konden reduceren, voor de eerste maal als chinon-

reduceerders herkend. Al deze micro-organismen, waaronder de sulfaatreducerende bacterie 

Desulfovibrio G i l , de halorespirerende bacterien Desulfltobacterium PCE1 en Desulfitobacterium 

dehalogenans en de hydrogenotrofe methanogeen Methanospirillum hungatei, oxideerden waterstof 

gekoppeld aan stoichiometrische reductie van AQDS. De Desulfitobacterium spp. waren eveneens in 

staat oxidatie van lactaat te koppelen aan de reductie van humus en AQDS. Dit respiratoire proces 

bleek de groei van de culturen te bevorderen (11). Het vermogen van halorespirerende micro-

organismen om onder humusreducerende omstandigheden te groeien doet vermoeden dat humus de 

natuurlijke elektronenacceptor voor deze micro-organismen is, hetgeen zou verklaren waarom ze 

kunnen worden aangetroffen in ongerepte gebieden waar de aanwezigheid van gechloreerde 

verontreinigingen en sulfiet geenszins te verwachten is (27, 39). 

ARCHAEA 

EUBACTERIEN 
*Pantoea agglomerans . 

Methanococcales^J^Sur^hicus 

Methanopyrales\ Methanopynts kandleri 

*. ., i . . , [ Methanobacterium 

Methanobactenales^,hermoau,on.ophicum 

Methanomicrobiales {* Tu'„
H™%'"r"''""-

Gamma- I Geospirillum barnseii 

Proteobacterien \ Wolinella succinogenes 
Aeromonas hydrophila 

*Shewanella spp. 

Delta- [ *Geobacter spp., 

Proteobacterien ] * ^ » ' / ™ » < " *PP-
I * Desulfovibrio G i l 

DeinOCOCCi -j Deinococcus radiodurans 

Thermotogales 4 Thermotoga maritima 

GeothrixfermentensVNiet-ge'identificeerd 

*Thermoanaerobacter siderophilus 1 

Propionibacteriumfreudenreichii I Gram-

Enterococcus cecorum [Positieven 
Lactococcus lactis 
• 'Desulfitobacterium spp. 

n\ Pyrobaculum islandicurm 

Pyrodictium abyssi \ Thermoproteales 
Thermococcus celer 

PyrococcusfuriosusV Thermococcales 

Archaeoglobusfulgidus\ Archaeoglobales 

Gemeenschappelijke voorouder 

Figuur 2. Fylogenetische diversiteit van de uit de literatuur bekende humusreducerende micro-
organismen. Het schema laat zien dat er geen gelijkvormigheid is tussen de verschillende 
fylogentische groepen (data van referenties 4, 11, 14, 15, 22, 23, 30, 33, 34, 42). *, micro-organismen 
waarvan is vastgesteld dat chinonrespiratie de groei bevordert; • , bijdrage van dit proefschrift aan de 
fylogenetische stamboom. 

Aangezien verscheidene humusreducerende micro-organismen veelzijdig zijn voor wat betreft de 

elektronenacceptoren die ze kunnen gebruiken, valt te verwachten dat de seizoensgebonden fluctuaties 
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in het aanbod van terminate elektronenacceptoren in bodems en sedimenten het overleven van deze 

organismen in deze milieus niet sterk zal bei'nvloeden. De veelzijdigheid van humusrespirerende 

micro-organismen uit zich ook in de brede diversiteit van elektronendonoren voor chinonademhaling 

(8, 20). Tabel 1 geeft een overzicht van de in de literatuur vermelde substraten die door verschillende 

rein- of mengculturen via chinon- of humusademhaling kunnen worden geoxideerd. De reductie van 

humuszuren blijkt verder eveneens gekoppeld te kunnen worden aan de anaerobe oxidatie van 

persistente verbindingen (zie hieronder). De metabole veelzijdigheid van humusrespirerende bacterien 

verklaart waarschijnlijk in belangrijke mate waarom deze micro-organismen zo alomtegenwoordig 

zijn. 

Tabel 1. Anaerobe microbiele oxidatie van ecologisch belangrijke substraten en zwartelijststoffen, 
gekoppeld aan de reductie van humus of van de humus-modelverbinding AQDS. 
Substraat Elektronenacceptor Inoculum Referentie 

Ecologisch belangrijke substraten 

Watersof Humus of AQDS 

Acetaat Humus of AQDS 

Formaat 
Lactaat 

Propionaat 

Ethanol 

Pyruvaat 
Succinaat 
Glucose 

AQDS 
Humus of AQDS 

Humus of AQDS 

AQDS 

AQDS 
AQDS 
Humus 

Vooral humusredurende micro-organismen 
in meng- of reincultuur 
Reinculturen van Geobacter spp. en 
Desulfuromonas spp., alsmede 
verscheidene consortia uit diverse milieus 
Reinculturen van Geobacter spp. 
Reinculturen van Geobacter spp., 
Desulfitobacterium spp., Shewanella alga, 
Propionibacterium freudenreichii en 
Deinococcus radiodurans, alsmede 
verscheidene consortia uit diverse milieus 
Reinculturen van Desulfuromonas spp. en 
Propionibacterium freudenreichii, alsmede 
verscheidene consortia uit diverse milieus 
Reinculturen van Geobacter spp. en 
Desulfuromonas spp. 
Reinculturen van Geobacter spp. 
Reinculturen van Desulfuromonas spp. 
Reinculturen van Enterococcus cecorum en 
Lactococcus lactis 

8, 11, 15, 
22, 30, 33 
8, 12, 14, 
15, 22, 33, 
34 
12,15 

4, 8, 11, 
15,23,33 

4,8,15 

15 
15 
15 

Zwarteli j ststoffen 

Dichlooretheen en Humus of AQDS 
vinylchloride 
• Fenol enp-cresol AQDS 

• Tolueen Humus of AQDS 

Vers eutroof sediment 

Anaeroob korrelslib van verschillende 
oorsprong 
Anaeroob sediment van verschillende 
oorsprong 

• Dit proefschrift 
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Gezien al deze waamemingen is het niet verrassend dat in vele verschillende habitats, in natuurlijke 

milieus zoals eutrofe of juist oligotrofe sedimenten en bodems (8, 15), maar ook in kunstmatige 

milieus zoals slib van afvalwaterzuiveringsinstallaties (12), humusreductie is geconstateerd en chinon-

respirerende bacterien werden aangetroffen. De aanwezigheid van humusreducerende micro-

organismen in afvalwaterzuiveringssystemen kan belangrijk zijn voor de anaerobe biotransformatie 

van zwartelijststoffen via chinonademhaling (zie hieronder). 

Competitie tussen chinonademhaling en methanogenese voor ecologisch belangrijke 

substraten 

Hoofdstuk 2 beschreef wat er gebeurt als de humuszuur-analoge verbinding AQDS wordt toegevoegd 

als elektronenacceptor aan incubaties van sediment, bodem of slib. AQDS-additie verhinderde 

methanogenese, omdat AQDS-reductie meestal werd verkozen als omzettingsroute van de eenvoudige 

substraten die werden getest (8). In afwezigheid van AQDS werden alle substraten, waaronder 

waterstof, acetaat, lactaat, propionaat en methanol, gedeeltelijk of volledig omgezet in methaan. 

Er zijn vele redenen ter verklaring van het verdringen van methanogenese door chinonademhaling. 

Zoals blijkt uit Figuur 3 is de redoxpotentiaal van het AQDS/AH2QDS-koppel gunstiger dan dat van 

methanogenese en sulfaatreductie. AQDS-reductie is ook thermodynamisch gunstiger dan reductie van 

de gebruikelijkste Fe(III)-vormen in de natuur, zoals goethiet en magnetiet. Voor het gebruik van deze 

vormen van ijzer als terminale elektronenacceptor is minder vrije energie beschikbaar dan voor het 

gebruik van AQDS. Humusstoffen van verschillende oorsprong vertonen een redoxpotentiaal die 

vergelijkbaar is met die van AQDS (Figuur 3). Micro-organismen die elektronenacceptoren met 

hogere redoxpotentiaal gebruiken, winnen in het algemeen de competitie met methanogenen om 

waterstof en acetaat, omdat ze meer energie halen uit de oxidatie van deze substraten (5, 31, 32, 52). 

Competitieve effecten als gevolg van thermodynamische verschillen zullen daarom bijdragen aan het 

overwicht van chinonrespirerende organismen ten opzichte van methanogenen. Andere alternatieve 

elektronenacceptoren, zoals sommige metaaloxiden en nitraat, staan echter hoger dan AQDS en humus 

in het rijtje van redoxpotentialen (Figuur 3). Dientengevolge kan men verwachten dat denitrificatie en 

dissimilatorische reductie van metaaloxiden zoals vernadiet en ferrihydriet het zullen winnen van 

chinonrespiratie. 

In veel van de geteste consortia was de populatie chinonrespirerende bacterien in eerste instantie 

relatief gering ten opzichte van de populatie methanogenen. Thermodynamica kan daarom de 

plotselinge overhand van chinonrespiratie ten opzichte van methanogenese niet volledig verklaren. De 

toename van de redoxpotentiaal (tot +130 mV) van het cultuurmedium door de introductie van AQDS 

zou hier weleens belangrijk geweest kunnen zijn. De verhoogde redoxpotentiaal zou kunnen 

interfereren met de voor methanogenese vereiste biochemische processen, want het wordt algemeen 

aangenomen dat methaanproductie alleen mogelijk is bij redoxpotentialen die lager zijn dan -200 mV 
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(19). Het werd zelfs aangetoond dat hoge concentraties AQDS toxisch waren voor acetoclastische en 

methylotrofe methanogenese in anaeroob korrelslib (8). Toxiciteit kan er dus ook voor zorgen dat 

chinonreducerende micro-organismen in staat zijn om methanogenen te overheersen. 
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Figure 3. Redoxpotentialen (in V) onder standaardcondities (E °) van de belangrijkste redoxkoppels in 
de natuur. Data van referenties 43 en 46. 

De ecologische betekenis van microbiele humusreductie 

Het brede spectrum van ecologisch belangrijke substraten dat kan worden geoxideerd door chinon

reducerende processen (Tabel 1), wijst erop dat chinonen in humus, door op te treden als terminale 

elektronenacceptor, weleens significant zouden kunnen bijdragen aan de koolstofkringloop. De 

ecologische relevantie van microbiele reductie van humusstoffen wordt verder benadrukt door de 

overvloedige aanwezigheid van deze organische fractie in vele anaerobe milieus, zoals bodems, 

sedimenten, moerassen, eutrofe meren en compost. Bovendien zorgt de hoge reactiviteit van hydro-

chinonen in humus met metaaloxiden zoals Fe(III) (33) en Mn(IV) (45) voor regeneratie van de 

geoxideerde vorm. Dit kringloopmechanisme houdt in, dat zelfs substoichiometrische concentraties 

humusstoffen kunnen leiden tot zowel anaerobe oxidatie van substraten als reductie van de -in vele 
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sedimentaire milieus overvloedig voorkomende- metaaloxiden (Figuurl). Oxidatie van organische 

substraten via humusademhaling geschiedt sneller dan oxidatie van substraten die direct gekoppeld 

zijn aan de reductie van metaaloxiden (33). Dit wordt waarschijnlijk veroorzaakt doordat opgeloste 

humuszuren beter beschikbaar zijn dan onopgeloste metaaloxiden, hetgeen ook blijkt uit de hogere 

redoxpotentiaal van humus vergeleken met die van de meest voorkomende Fe(III)-vormen in de 

natuur. Van AH2QDS is aangetoond dat het binnendringt in microporien binnenin geologische oxiden 

die niet door bacterien kunnen worden bereikt (53). Het valt daarom te betwijfelen of de reductie van 

Fe(III) en Mn(IV) in de natuur direct wordt veroorzaakt door metaalreduceerders, ofwel dat het 

indirect geschiedt, via chinonreductie door humusreduceerders. Humusreducerende micro-organismen 

die, zoals bijvoorbeeld Propionibacterium freudenreichi, niet het vermogen hebben om Fe(III) te 

reduceren, blijken elektronen van anaerobe oxidatiereacties via humusreductie naar amorfe Fe(III)-

oxiden te kunnen leiden (4). In hoofdstuk 3 werd voor de eerste maal verslag gedaan van het 

vermogen van twee micro-organismen (de halorespirerende bacterie Desulfltobacterium dehalogenans 

en de sulfaatreducerende bacterie Desulfovibrio G i l ) om amorfe Fe(III)-oxiden te reduceren via 

chinonreductie. Desulfltobacterium dehalogenans was niet in staat om het metaaloxide te reduceren in 

afwezigheid van humusstoffen, maar het toevoegen van substoichiometrische concentraties AQDS 

(500 uM) leidde ertoe dat Fe(III) werd gereduceerd, gekoppeld aan de oxidatie van lactaat of 

waterstof. Toevoeging van eenzelfde hoeveelheid AQDS aan Desulfovibrio Gl 1, die zonder AQDS en 

met waterstof als elektronendonor wel in staat was om Fe(III) te oxideren, verbeterde de Fe(III)-

reductie (11). Deze resultaten geven aan dat, vooral in veel sedimentaire milieus waar metaaloxiden 

overvloedig aanwezig zijn, vele fylogenetisch verschillende typen organismen een bijdrage kunnen 

leveren aan de reductie van metaaloxiden via humusreductie. 

Humus als elektronenacceptor voor de bioremediatie van waterbodems en sediments 

Nadat humusreductie in 1996 (33) was herkend als ademhalingsroute is er onderzoek verricht naar de 

mogelijkheden van humus als elektronenacceptor in de microbiele oxidatie van persistente 

verbindingen. De eerste publicatie waarin gerapporteerd werd dat humusstoffen optraden als 

elektronenacceptor voor de anaerobe oxidatie van zwartelijststoffen handelde over een eutroof 

beekbedsediment dat vinylchloride en dichlooretheen mineraliseerde onder humusreducerende 

condities (6). Deze gechloreerde verontreinigingen werden niet of nauwelijks afgebroken onder 

anaerobe condities in afwezigheid van humusstoffen, terwijl het toevoegen van humuszuren de 

vorming van 14C02 van [1,2-14C]vinylchloride en [l,2-14C]dichlooretheen sterk stimuleerde. De 

elektronenaccepterende rol van humusstoffen werd bevestigd in biologische tests in aanwezigheid van 

AQDS, waarin de mineralisering van [1,2-14C]vinylchloride gelijktijdig verliep met de reductie van 

AQDS. In dit proefschrift werd van vele zwartelijststoffen aangetoond dat ze onder chinonreducerende 

omstandigheden anaerobe biodegradatie kunnen ondergaan. In hoofdstuk 5 werd aangetoond dat het 
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anaerobe slib van verschillende afValwaterzuiveringsinstallaties in staat was fenol en /7-cresol om te 

zetten onder AQDS-reducerende omstandigheden (9). De omzetting van deze fenolverontreinigingen 

was in overeenstemming met de stochiometrische vorming van het corresponderende hydrochinon 

(antrahydrochinon-2,6-disulfonaat, AH2QDS). Fenol en p-cresol werden in afwezigheid van humus-

stoffen volledig omgezet naar methaan, maar het toevoegen van AQDS leidde ertoe dat de elektronen-

stroom omboog van methanogenese naar chinonrespiratie. Deze resultaten tonen voor de eerste keer 

dat chinonen in humus, door op te treden als alternatieve elektronenacceptor, bij kunnen dragen aan de 

anaerobe microbiele oxidatie van fenolverbindingen. Belangrijker is echter dat humusrespirerende 

consortia in staat waren om zwartelijststoffen te mineraliseren die onder methanogene omstandig

heden niet werden afgebroken, b.v. tolueen. In hoofstuk 6 werd namelijk gerapporteerd dat verrijkte 

anaerobe sedimenten van de Rijn en van de Amsterdamse Petroleumhaven (APH) het uniform 

gelabelde [l3C]tolueen vlot naar 13C02 mineraliseerden indien humuszuren of AQDS werden 

aangeboden als terminale elektronenacceptor: na twee weken incubatie was respectievelijk 50 % en 85 

% van het toegevoegde [,3C]tolueen door APH-sediment gemineraleerd (7). Bovendien werden de 

elektronenequivalenten van het gemineraliseerde tolueen stoichiometrisch teruggevonden als 

gereduceerd humus of als AH2QDS. Deze resultaten vormen het eerste directe en kwantitatieve bewijs 

voor de mineralisering van een aromatische koolwaterstof door humusrespirerende micro-organismen. 

Humus kan dus voor de bioremediatie van verontreinigde milieus weleens een belangrijkere 

elektronenacceptor zijn dan oorspronkelijk werd aangenomen. Een en ander heeft vooral betrekking 

op eutrofe milieus, aangezien humusstoffen de anaerobe oxidatie van organische verontreinigingen 

kunnen helpen in hun rol als terminale elektronenacceptor. Het toevoegen van humuszuren (35) of 

AQDS (1) aan met petroleum verontreinigde waterbodemsedimenten die rijk waren aan Fe(III)-oxiden 

maar arm aan humus, leidde op sommige plaatsen tot veelbelovende stimulering van de anaerobe 

biodegradatie van benzeen. Ook wordt beweerd dat humusstoffen de anaerobe afbraak van methyl-

tert-butyl ether, een loodvervanger in benzine, kunnen stimuleren in waterbodemsedimenten waaraan 

Fe(II) als terminale elektronenacceptor is toegevoegd (21). In hoofdstuk 6 van dit proefschrift werd 

bovendien aangetoond dat amorf Fe(III)-oxide niet door APH-sediment als elektronenacceptor voor 

tolueenafbraak kon worden gebruikt, tenzij wanneer substoichiometrische hoeveelheden humuszuur 

werden toegevoegd. Vermoedelijk zorgden de humusrespirerende micro-organismen voor de 

overdracht van elektronen van tolueen naar het ijzeroxide via humusreductie (7). Figuur 4 vat samen 

hoe tolueen anaeroob wordt afgebroken in het humusrespirerende consortium. 

Het zou dus kunnen worden overwogen om, teneinde de anaerobe oxidatie van zwartelijststoffen te 

verbeteren, een technologie te ontwikkelen die gebaseerd is op het injecteren van humuszuren of 

chinonen in oligotrofe waterbodems en sedimenten. Het vermogen om humus of AQDS als 

elektronenacceptor te gebruiken blijkt een eigenschap te zijn van alle daarop geteste Fe(III)-

reducerende micro-organismen (12, 14, 15, 30, 33, 34) en waarschijnlijk wordt, omdat chinonen een 
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veel hogere wateroplosbaarheid hebben dan alternatieve elektronenacceptoren zoals 02, Fe(III) en 

Mn(IV), goed transport naar de waterbodem gewaarborgd. Vanwege de regeneratie van 

hydrochinonen in humus in chemische readies met metaaloxiden, vergt het gebruik van humusstoffen 

voor het schoonmaken van verontreinigde terreinen slechts substoichiometrische concentraties, 

zolang de mechanismen om de kringloop in stand te houden maar beschikbaar zijn. Voor 

geconstrueerde bioremediatiesystemen met grondwaterrecirculatie kan de chinonkringloop ook in 

stand worden gehouden door de geinjecteerde hydrochinonen in een direct-chemische reactie met 

zuurstof te laten reageren tot chinonen, die vervolgens weer terug worden geleid naar de waterbodem. 

Gereduceerd humus 

F e ( I I ) [oplosbaar] 

F e ( I I I ) [onoplosbaar] 

Geoxideerd humus 
Figuur 4. Anaerobe oxidatie van tolueen in het chinonrespirerende Amsterdam Petroleumhaven-
sediment (7). 

De toepassing van humusstoffen om bioremediatie van verontreinigde waterbodems en sedimenten te 

bewerkstelligen heeft enkele andere voordelen. Er is geen risico verbonden aan het gebruik van humus 

in waterbodems en sedimenten met een tekort aan organische stof, want humus is verder inert. Hoewel 

humuzuren de verplaatsing van een verontreinigingspluim in grondwater kunnen versnellen door kool-

waterstoffen en zware metalen te binden (44) kan de versnelde mobilisatie ook de biobeschikbaarheid 

-en daarmee de biologische afbraak- van koolwaterstoffen verbeteren. Een ander belangrijk gevolg is 

dat metalen als Fe(II) en Mn(II) oplosbaar worden ten gevolge van de regeneratie van hydrochinonen 

in humus. Fe(II) en Mn(II) kunnen echter sorptie ondergaan, aan bacterien of aan het oppervlak van 

het resterende metaaloxide. De resultaten die in hoofstuk 6 werden gepresenteerd illustreren deze 

mogelijkheid. Tijdens de anaerobe oxidatie van tolueen met goethiet (a-FeOOH) en vernadiet (Mn02) 

als terminate elektronenacceptor in aanwezigheid van humuszuur kon slechts 30-34% van de 

verwachte hoeveelheid reductie-equivalenten als Fe(II) en Mn (II) worden teruggevonden (7). Verder 

kan oplosbaar gemaakt Fe(II) niet alleen door aerobe bacterien worden teruggeoxideerd, maar ook 

door fototrofe en nitraatreducerende micro-organismen die flinke hoeveelheden (8 tot 10 mM) ferreus 
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ijzer oxideren tot ferrihydriet dat buiten de eel wordt afgezet (46). Biogeen ferrihydriet blijkt een 

geschikte elektronenacceptor voor ijzerreducerende bacterien te zijn (47), hetgeen aangeeft dat 

biologische Fe(II)-oxidatie inderdaad bijdraagt aan de kringloop van ijzer in anaerobe milieus. 

Nog een voordeel van het gebruik van humus voor de bioremediatie van anaerobe terreinen is dat er 

gedurende de microbiele reductie van van humusstoffen geen ongewenste intermediairen worden 

gevormd. Het injecteren van nitraat of sulfaat voor de bioremediatie van verontreinigde milieus kent 

beperkingen in verband met de accumulatie van intermediaren (b.v. nitriet) of eindproducten (b.v. 

sulfide) die zelf verontreigingen zijn (2, 25). Het gebruik van humusstoffen is dan ook een 

aantrekkelijk alternatief voor de bioremediatie van anaerobe terreinen die met persistente stoffen 

verontreinigd zijn. 

Humus als redoxmediator voor de reductieve (bio)transformatie van zwartelijststoffen 

Humusstoffen en chinon-analogen doen niet alleen dienst als terminale elektronenacceptor voor 

anaerobe oxidatie van verontreinigingen, maar ze kunnen ook de reductieve (bio)transformatie van 

azokleurstoffen, nitroaromaten, polyhalogeenverbindingen en radionucliden stimuleren, middels de 

overdracht van elektronen van een externe elektronendonor naar deze verontreinigingen. Processen die 

door humusstoffen worden geholpen kunnen zowel abiotisch als biologisch zijn. Chinonen of humus 

kunnen deze reductieve omzettingen een tot enkele orden van grootte versnellen. 

De best-bestudeerde abiotische redoxmediatie door humusstoffen is de reductieve omzetting van hexa-

chloorethaan (HCA) naar tetrachloorethyleen (ook bekend als perchloorethyleen, PCE) door ferrous 

ijzer, sulfide of elementair zwavel (/ 7). Toevoeging van chinonen versnelde de snelheid van deze 

chemische readies tot het tienvoudige. Daarnaast bleek ook dat de gereduceerde chinonstructuur 

(AH2QDS) in staat was HCA direct te dechloreren (17). Toevoeging van humus-modelstoffen, zoals 

resorcinol en catechol, in abiotische proeven met gechloreerde dibenzo-p-dioxines (CDDs) leidde tot 

dechlorering van deze verontreinigingen (3). In reactiesystemen met octa-CDDs en een humus-

analoge verbinding werd vorming van de corresponderende tetra-CDDs bereikt, terwijl octa-CDDs 

niet reductief gedechloreerd werden in afwezigheid van humus-modelstoffen. Chinonen en humus 

maakten voorts mogelijk dat nitroaromaten (18, 40) en azokleurstoffen (50) abiotisch naar hun 

corresponderende aromatische aminen werden gereduceerd door gewone bulk-reductanten in anaerobe 

milieus, zoals sulfide en ferreus ijzer. 

Humus en chinonen zijn ook betrokken bij de reductieve biotransformatie van zwartelijststoffen. 

Deinococcus radiodurans, een stralingsresistent micro-organisme, kon de opgeloste radionucliden 

U(VI) en Tc(VII) reduceren naar hun onopgeloste vormen U(IV) en Tc(IV) als AQDS in sub-

stoichiometrische concentraties werd toegevoegd als redoxmediator, terwijl de radionucliden niet 

gereduceerd werden in afwezigheid van AQDS (23). Precipitatie van deze ionisatiestralingsbronnen 
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door chinonreductie kan van belang zijn voor de bioremediatie van terreinen die verontreinigd zijn met 

metaal- en radionucliden. 

Celsuspensies van Shewanella putrefaciens met organisch bodemmateriaal zetten koolstoftetrachloride 

(CT) sneller om in chloroform en andere, niet-gei'dentificeerde, producten dan celsuspensies zonder 

organisch bodemmateriaal (16). De humuszuurfractie bleek de omzetting van CT in sterkere mate te 

katalyseren dan de fulvozuurfractie en de huminefractie, maar de daarvoor verantwoordelijke 

functionele groepen en de mechanismen werden niet opgehelderd. 

De gegevens die in hoofdstuk 7 werden gepresenteerd geven aan dat chinonrespirerende micro-

organismen bij de omzetting van polyhalogeenverontreinigingen een belangrijkere rol kunnen spelen 

dan tot dusver werd aangenomen. Het toevoegen van substoichiometrische hoeveelheden AQDS 

verhoogde zowel de snelheid als de mate van CT-dechlorering door anaeroob korrelslib. Dit leidde tot 

toenemende productie van anorganisch chloride, tot 40-50 % van het chloorgehalte van de 

oorsponkelijke gechloreerde verbinding (10). Een grote varieteit aan substraten kon dienen als 

elektronendonor in het verbeterde dechloreringsproces. Dit is in overeenstemming met het brede 

spectrum van verbindingen dat via chinonademhaling kan worden geoxideerd (zie hierboven). 

AQDS was bovendien in staat om het aantal mogelijke elektronendonoren voor de reductieve 

dechlorering van CT door anaeroob slib uit te breiden met acetaat en methanol, substraten die in 

afwezigheid van chinonen niet worden aangewend voor deze reactie. Deze verbeterde CT-

dechlorering kon worden toegeschreven aan humusrespirerende bacterien in het slib, want het 

antibioticum neomycine, een selectieve remmer van chinonrespiratie, onderdrukte zowel de reductie 

van AQDS als de verbeterde omzetting van CT. Voorts werd waargenomen dat een uit het korrelslib 

opgehoopte humusrespirerende cultuur, die voornamelijk bestond uit een soort die gerelateerd was aan 

Geobacter sulfurreducens, in staat was om, in aanwezigheid van lage concentraties AQDS of humus-

zuur, CT te dechloreren onder vorming van dezelfde reactieproducten als wanneer de reactie werd 

uitgevoerd door korrelslib in aanwezigheid van AQDS. In de biologische tests verliep de omzetting 

van CT parallel aan de reductie van AQDS en humus, terwijl in afwezigheid van humusstoffen 

omzetting van CT door de ophopingscultuur niet werd waargenomen. Dit resultaat demonstreert voor 

het eerst dat chinonrespiratie een bijdrage kan leveren aan het vrijmaken van elektronenequivalenten 

voor dechloreringsprocessen. Slechts een klein gedeelte (1-10%) van het omgezette CT kwam vrij als 

chloroform en dichloormethaan. Ook werd er een gechloreerde etheen, PCE, gevormd. Nooit eerder 

werd gerapporteerd dat PCE een intermediair van CT-biodegradatie kan zijn. De aannemelijkste 

verklaring voor de accumulatie van PCE (tot 9% van het oorspronkelijk toegevoegde CT) gaat uit van 

de koppelingsreactie van twee trichloormethylradicalen tot HCA. HCA zou dan vervolgens 

gemakkelijk kunnen worden omgezet in PCE, ofwel door abiotische reductie met hydrochinonen (17) 

ofwel door verdere microbiele dechlorering (51). PCE-accumulatie is onwenselijk, omdat het kan 

leiden tot de vorming van lager gechloreerde verontreinigingen, zoals dichlooretheen en vinylchloride, 
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waar onder anaerobe omstandigheden verder niets mee gebeurt. Aanwezigheid van humusstoffen zou 

er echter toe bij kunnen dragen dat deze verontreinigingen minder accumuleren, want AQDS en 

humus kunnen, zoals eerder is aangetoond, beide dienst doen als terminale elektronenacceptor voor de 

microbiele mineralisatie van dichloorethaan en vinylchloride (6). 

De betekenis van humus voor de anaerobe behandeling van afvalwaters die zwartelijst-

stoffen bevatten 

Azokleurstoffen, nitroaromaten en polyhalogeenverbindingen zijn gewone verontreinigingen in afval-

water van chemische en petrochemische industrieen. Van deze stoffen is bekend dat ze toxisch zijn 

voor continue biologische afvalwaterbehandelingssystemen. Aangezien het verontreinigingen betreft 

met een elektronenzuigende werking kunnen ze echter in anaerobe reactoren worden omgezet, zodat 

detoxificatie optreedt. In een aantal rapportages is erop gewezen dat chinongroepen de reductieve bio-

transformatie van deze verontreinigingen kunnen versnellen. Zo bleek bijvoorbeeld dat verschillende 

chinonstructuren de reductie van azokleurstoffen tot de corresponderende kleurloze aromatische 

aminen versnellen (26, 28). 

Substraat 

CO, 

Aromatische 
aminen 

R -0 - N =H2^ R 
o 

AQDS 
Azokleurstof 

Figuur 5. Mechanisme van de door AQDS versnelde reductie van azokleurstoffen. 
Chinonrespirerende bacterien reduceren AQDS naar het corresponderende hydrochinon, AH2QDS, dat 
de elektronen vervolgens direct overdraagt op de kleurstof, hetgeen resulteert in splitsing van de 
azoband. 

Hoofdstuk 8 van dit proefschrift behandelde de toepassing van verschillende concentraties AQDS om 

de reductieve ontkleuring van Acid Orange 7 (A07) in een continue opwaarts doorstroomde slibbed-

reactor (UASB) te versnellen (13). A07 werd met hoge efficientie ontkleurd, zelfs bij een 

hydraulische verblijftijd van 2 uur en een molaire AQDS/A07-verhouding van slechts 1/100. In 

afwezigheid van AQDS, maar onder gelijke hydraulische condities, werd daarentegen slechts 70% 

kleurverwijdering bereikt. Uit recent onderzoek bleek bovendien dat AQDS bij zeer lage concentraties 

eveneens de reductieve biotransformatie verbetert van kleurstoffen (b.v. Reactive Red 2), die in 
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afwezigheid van AQDS met een veel lagere snelheid worden ontkleurd (49). De verbeterde 

ontkleuring leidde niet alleen tot detoxificatie (49), maar ook tot een zodanige versnelling van het 

reductieve proces, dat de vereiste hydraulische verblijftijd kon worden verkort (75). Aangezien de 

terminate reactie van het ontkleuringsproces een chemische reactie is tussen de azokleurstof en de 

microbieel gereduceerde chinonen, is het niet nodig dat er direct contact plaatsvindt tussen chinon-

reducerende micro-organismen en de kleurstof (28). Figuur 5 toont het mechanisme van de door 

chinonen versnelde reductie van azokleurstoffen. Als redoxmediatoren hoeven chinonen dus niet per 

se overvloedig aanwezig te zijn, want ze kunnen gemakkelijk worden teruggevormd door reductie. 

Gezien het voorafgaande valt het te verwachten dat, middels toepassing van chinonstructuren in 

anaerobe continu-reactoren, de biotransformatie van reduceerbare zwartelijststoffen verbeterd kan 

worden. Afvalwaterzuiveringssytemen met hoge opwaartse snelheid en korrelslib, zoals de UASB-

reactor en de geexpandeerde korrelslibbedreactor (EGSB), zijn aantrekkelijke technieken om anaerobe 

omzetting van zwartelijststoffen te bewerkstelligen. Anaeroob slib kent uitstekende bezinkings-

eigenschappen en de uitspoeling van biomassa wordt tot een minumum beperkt doordat er in de 

reactoren een stille zone is ingesteld die de slibdeeltjes in staat stelt te flocculeren of te bezinken (29). 

Het zou daarom kunnen dat chinonrespirerende bacterien, waarvan gebleken is dat ze een belangrijke 

rol spelen in de reductieve biotransformatie van zwartelijststoffen (10), in het slibbed vastgehouden 

worden, waardoor hun betrokkenheid bij reductieve omzettingen wordt vergemakkelijkt. In feite werd 

in hoofdstuk 4 reeds gewag gemaakt van een chinonrespirerende cultuur die was opgehoopt uit korrel

slib. De UASB-reactor vanwaaruit dit korrelslib afkomstig was reduceerde AQDS continu gedurende 

een langdurige en stabiele periode. Een en ander betekent dat chinonrespirerende micro-organismen 

gei'mmobiliseerd kunnen worden in de microbiele gemeenschap van het anaerobe korrelslib (12). In 

UASB-reactoren is bovendien met succes de immobilisatie van andere typen zwartelijststoffen-

omzettende micro-organismen verwezenlijkt (24, 48). Daarom bezit korrelslib een geschikte vorm 

voor immobilisatie van chinonrespirerende micro-organismen in continue anaerobe reactoren. Een 

verder voordeel van UASB- en EGSB-reactoren is de goede menging van vloeistof en gas. Hierdoor is 

de biologisch-dode ruimte minimaal en wordt verhinderd dat er lokaal hoge concentraties voorkomen 

van toxische verontreinigingen in het afvalwater. Tenslotte zorgt de korrelstructuur van het slib voor 

bescherming van de micro-organismen in de korrel, zodat de toxische werking van de veront

reinigingen wordt afgezwakt (38). 

Concluderende opmerkingen 

Humus werd in het verleden doorgaans beschouwd als een inert materiaal, aangezien het opmerkelijk 

stabiel is in het milieu. Wat in dit proefschrift werd besproken geeft echter aan dat humusstoffen op 

verschillende manieren een rol kunnen spelen in de anaerobe biodegradatie van ecologisch belangrijke 

substraten en zwartelijststoffen. Humuszuren en chinon-modelstoffen dragen bij aan de microbiele 
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oxidatie van verscheidene belangrijke substraten door in vele verschillende milieus dienst te doen als 

elektronenacceptor. Chinonrespirerende activiteit is alomtegenwoordig, zowel in natuurlijke milieus, 

van zandige sedimenten tot sedimenten die juist rijk zijn aan organische stof, als in kunstmatige 

habitats, zoals slib van afValwaterzuiveringsinstallaties. Het vermogen om humusstoffen te reduceren 

wordt ook aangetroffen in axenische culturen van fylogenetisch verschillende groepen micro-

organismen, die humusreductie koppelen aan de oxidatie van uiteenlopende substraten. Dit wijst erop 

dat vele verschillende micro-organismen betrokken kunnen zijn bij de reductie van humusstoffen in de 

natuur. Humusrespirerende consortia hebben bovendien het vermogen om zwartelijststoffen, waar-

onder tolueen, te oxideren in aanwezigheid van humusstoffen of chinonen als terminate elektronen

acceptor. Een technologie die gebaseerd is op het injecteren van humusstoffen in verontreinigde 

waterbodems en sedimenten zal daarom de bioremediatie van de verontreinigingen kunnen stimuleren. 

Het is daartoe niet noodzakelijk dat humusstoffen in grote hoeveelheid worden toegevoegd, want de 

microbieel gereduceerde chinonen in humus kunnen worden geregenereerd doordat ze chemisch 

reageren met de metaaloxiden die in veel anaerobe milieus overvloedig aanwezig zijn. Toepassing van 

humusstof-injectie vereist daarom slechts substoichiometrische hoeveelheden. Chinonen en humus 

kunnen ook dienen als redoxmediatoren die de reductieve biotransformatie van verontreinigingen met 

elektronenzuigende groepen versnellen. Katalytische concentrates AQDS en humuszuur verbeterden 

namelijk zowel de snelheid als de mate van dechlorering van koolstoftetrachloride door chinon

respirerende consortia en tevens leidde het toevoegen van micromolaire concentraties AQDS tijdens 

de behandeling van azokleurstoffen in UASB-reactoren tot een zodanige versnelling van het 

ontkleuringsproces, dat de voor een efficiente ontkleuring benodigde hydraulische verblijftijd, 

verlaagd kon worden. Toepassing van katalytische concentraties chinonen of humusstoffen in 

anaerobe reactoren kan daarom de reductieve omzetting van zwartelijststoffen in afvalwater in sterke 

mate verbeteren. Deze verbetering kan belangrijke gevolgen hebben: het kan leiden tot verlaging van 

de toxiciteit van afvalwaters voor de aanwezige microbiele gemeenschappen en het kan leiden tot 

verlaging van de benodigde hydraulische verblijftijd en dus tot compactere reactoren. 
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