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Statements 

1. Accurate automated large-scale genome annotation remains an illusion. 

2. "Gene knockout alone is not sufficient to assess gene function." Bouche, N. and Bouchez, D. (2001) 

Curr. Opin. Plant Biol, 4: 111-117. 

3. Plant chitinases are multifunctional proteins that are not only involved in plant defense. This thesis. 

4. "Experience is something that you only acquire after needing it." Murphy's Law, Arthur Bloch, 1990. 

5. "An expert is someone that has made all possible mistakes in a given field." Murphy's Law, Arthur 

Bloch, 1990. 

6. "The Dutch language in its written form looks like someone sat on a typewriter." The Dutch Courier, 

Australia. 

7. "The more you try to learn Dutch the more the Dutch refuse to speak Dutch to you." The 

Undutchables, 3rd Edition, 1993. 

8. "Having a smoking section in a restaurant is like having a peeing section in a swimming-pool." 

Anonymous. 

Statements from the thesis entitled: 

"Functional Analysis of the Arabidopsis thaliana AtEP3 Endochitinase" 

Paul Passarinho, Wageningen, 12 December 2001. 
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Outline 

Plant chitinases (EC 3.2.1.14) are abundant proteins found in all plants studied to date. They 

belong to the large family of glycosyl hydrolases and are able to catalyze the hydrolysis of 

chitin that is a major component of the insect exoskeleton and of the cell wall of many fungi. 

The results of numerous studies have suggested that chitinases are involved in plant defense 

against fungal pathogens but also in more general stress responses induced for example upon 

wounding, treatment by salicylic acid, plant hormones, heavy metals or UV irradiation. 

Furthermore, it has become apparent that most chitinases are also developmentally regulated; 

specific isoforms are being differentially expressed in particular plant organs at defined 

developmental stages. However, it still remains unclear whether such specific expression is 

related to a role in development or whether it reflects a preparation to a potential defense 

response in these organs. Yet there is evidence of an active role of chitinases in development. 

Tobacco plants overexpressing a maize chitinase gene were shown to grow taller and thicker 

than wild-type plants. But the most direct evidence comes from work done in carrot that 

revealed that the EP3 endochitinase was able to rescue the arrested embryos of the 

temperature sensitive mutant tsll. Further work has demonstrated that this action was 

probably mediated by the processing of signal molecules that contain N-acetylglucosamine 

(GlcNAc), the basis of chitin, since specific rhizobial Nod factors displayed the same rescue 

activity on tsll embryos. This implied the existence in plants of a similar endogenous 

substrate that could be used by chitinases. Recent work has shown that a possible substrate 

could be specific arabinogalactan proteins (AGPs), since they can be processed by the EP3 

chitinase. Since more than one chitinase was shown to be able to lift the embryo development 

arrest imposed on the tsll mutant, the tsll phenotype appears to be indirectly linked to the 

EP3 chitinase. In addition, it appeared that the EP3 chitinase was the member of a family with 

at least five different isoforms. It was therefore becoming clear that studying the role of the 

EP3 chitinase in carrot embryo development using a genetic approach would not be an easy 

task. 
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To avoid some of the expected difficulties it was decided to pursue a reverse genetic 

approach in Arabidopsis thaliana. The small size of its genome combined with all the genetic 

tools developed by the Arabidopsis community were encouraging elements to search for "the" 

single copy gene that was homologous to the most active carrot EP3 chitinase isoform. The 

search for and the subsequent study of the Arabidopsis EP3 gene are described in this thesis. 

In Chapter 1, an overview of all Arabidopsis chitinase genes is presented. This chapter 

follows the release of the complete sequence of the Arabidopsis genome and discusses the 

features of all sequences annotated as chitinase. Modified annotations are proposed and 

possible functions are discussed based on the characteristics of each sequence and in relation 

with other plant chitinases. 

In Chapter 2, the cloning and the characterization of the Arabidopsis ortholog of the 

carrot EP3 chitinase gene are described. The physical and the genetic mapping of the gene 

locus are presented as well, together with a detailed analysis of it expression pattern in planta 

and in vitro, based on RT-PCR and promoter: reporter fusions. 

In Chapter 3, the results of a study on the expression of specific gametophytic markers 

during Arabidopsis somatic embryogenesis are presented. This work was carried out in 

relation to the specific expression of the AtEP3 gene during pollen development in planta and 

during somatic embryogenesis. A number of highly specific GUS markers for the male and 

the female gametophyte were therefore studied during somatic embryogenesis to verify if 

gametophytic gene expression programs are conserved during somatic embryogenesis. 

In Chapter 4, the first functional analysis of a chitinase gene by insertional 

mutagenesis is presented. The details of the screening procedure as well as the subsequent 

analyses are described. The nature of the material and the conditions in which it was studied 

did not allow to determine the function of the AtEP3 chitinase. 

In Chapter 5, the results of a transgenic approach involving the overexpression and the 

antisense suppression of the AtEP3 gene are described. The production and the analysis of 

transgenic plants with altered expression levels of AtEPi mRNA are presented and reveal the 

involvement of the AtEP3 chitinase in seed and root hair development. An additional male 

sterile mutant was also identified and is described. 

In Chapter 6, the results of a successful reverse genetics approach are presented. An 

insertion mutant was identified for the AtEPi gene and the preliminary results of its molecular 

and phenotypic characterization are described. These results lend support to previous 
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hypotheses and confirm a role of the chitinase in seed germination, pollen and root hair 

development. 

In Chapter 7, the results of this research are compiled in a summarizing discussion 

emphasizing on the role of the AtEP3 chitinase during development in relation with putative 

substrate molecules. 



Chapter 1 

Arabidopsis chitinases: a genomic survey 

Abstract. Plant chitinases (EC 3.2.1.14) belong to relatively large gene families subdivided in 

classes that suggest class-specific functions. They are commonly induced upon the attack of 

pathogens and by various sources of stress, which led to associating them with plant defense in 

general. However, it is becoming apparent that most of them display several functions during the 

plant life cycle, including taking part in developmental processes such as pollination and embryo 

development. The number of chitinases combined with their multiple functions has been an obstacle 

to a better understanding of their role in plants. It is therefore important to identify and inventory all 

chitinase genes of a plant species to be able to dissect their function and understand the relations 

between the different classes. Complete sequencing of the Arabidopsis genome has made this task 

feasible and we present here a survey of all putative chitinase-encoding genes accompanied by a 

detailed analysis of their sequence. Based on their characteristics and on studies on other plant 

chitinases, we propose an overview of their possible functions as well as modified annotations for 

some of them. 

Paul A. Passarinho and Sacco C. de Vries 



Chapter 1 

1. Introduction 

Chitinases (EC 3.2.1.14) are classified as glycosyl hydrolases and catalyze the degradation 

of chitin, an insoluble linear P-l,4-linked polymer of N-acetyl-D-glucosamine (GlcNAc). Chitin is a 

major component of the exoskeleton of insects, of crustacean shells and of the cell wall of many 

fungi. According to the glycosyl hydrolase classification system that is based on amino acid 

sequence similarity of the catalytic domains, chitinases have been placed in families 18 and 19 

(Henrissat, 1991). Family 18 chitinases are found in bacteria, fungi, yeast, viruses, plants and 

animals whereas family 19 members are almost exclusively present in plants. A single family 19 

chitinase was identified in Streptomyces griseus (Ohno et ah, 1996; Watanabe et ah, 1999). 

Chitinases of both families do not share sequence similarity and have a different 3D-structure, 

suggesting that they have arisen from a different ancestor (Hamel et ah, 1997). They also differ in 

several of their biochemical properties. For instance, family 18 chitinases use a retention 

mechanism, keeping the catalysis product in the same configuration as the substrate (i.e. p-anomeric 

form) whereas family 19 members use an inversion mechanism turning the product into the oc-

anomeric form (Brameld and Goddard, 1998; Iseli et ah, 1996). In addition, family 18 members 

hydrolyze GlcNAc-GlcNAc or GlcNAc-GlcN linkages whereas family 19 chitinases do so with 

GlcNAc-GlcNAc or GlcN-GlcNAc linkages (Ohno et ah, 1996). Finally, family 18 chitinases are 

likely to function according to a substrate-assisted catalysis model (Brameld et ah, 1998), whereas 

family 19 chitinases probably use a general acid-and-base mechanism (Garcia-Casado et ah, 1998; 

Hart et ah, 1995). 

In all plants analyzed to date, chitinases of both families are present (Graham and Sticklen, 1994). 

They are organized in five different classes numbered from I to V, according to their sequences and 

structure (Neuhaus et ah, 1996) and chitinases from classes I, II and IV belong to the family 19 

whereas classes III and V chitinases are made of family 18 chitinases. Chitinases are often 

considered as pathogenesis-related (PR) proteins, since their activity can be induced by fungal, 

bacterial and viral infections, but also by more general sources of stress such as wounding, salicylic 

acid, ethylene, auxins and cytokinins, heavy metal salts or elicitors such as fungal and plant cell 

wall components (reviewed in Graham and Sticklen, 1994). Plants do not contain chitin in their cell 

walls, whereas major agricultural pests such as most fungi (i.e. Ascomycetes, Absidiomycetes and 

Deuteromycetes; Collinge et ah, 1993) and insects do, leading to the obvious and often quoted 

hypothesis that chitinases act as a defense mechanism against pathogens. Evidence has been 

reported that chitinases can indeed degrade fungal cell walls and inhibit fungal growth in vitro, 

especially in combination with p-l,3-glucanases (Arlorio et ah, 1992; Mauch et ah, 1988; 
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Schlumbaum et al, 1986). The expression of a number of chitinase genes appeared to be induced 

upon fungal infection (Majeau et al, 1990; Roby et al, 1990) and they were shown to accumulate 

around hyphal walls at infection sites in planta (Wubben et al, 1992). Several transgenic studies 

showed that by increasing the expression level of some chitinases the susceptibility of transformed 

plants to certain pathogens was significantly reduced (Broglie et al., 1991; Jach et al., 1995), 

providing an excellent tool for improving pest control. However, other studies were less conclusive. 

A 120-fold increase in expression of a tobacco class I chitinase did not result in any change in 

resistance to fungal infection (Neuhaus et al., 1991a). Similarly, down-regulation of the Arabidopsis 

ATHCHIA class III chitinase by antisense suppression did not increase susceptibility to fungi either 

(Samac et al, 1994). Therefore it remains an open question whether the primary role of chitinases is 

plant defense or whether they have other functions. 

There are several reports of developmentally-regulated chitinase expression, with specific isoforms 

being present only in certain organs and at specific stages, e.g. in flowers from tobacco (Neale et 

al, 1990; Trudel and Asselin, 1989), Arabidopsis (class IV AtEP3/AtchitIV; Passarinho et al 2001 

and class III ATHCHIA; Samac et al, 1990), potato (SK2; Ficker et al, 1997), parsley (class II 

PcCHIl; Ponath et al, 2000) or rice (class I OsChial; Takakura et al, 2000); in ripening banana 

fruit (Clendennen and May, 1997) or grape berries (class IV, VvChi4; Robinson et al, 1997); in 

roots from rice (class IRC24; Xu et al, 1996) or Sesbania rostrata (class III Srchil3; Goormachtig 

et al, 1998); in seeds of barley (class III Chi26; Leah et al, 1994), carrot (class IV EP3; van Hengel 

et al, 1998), pea (Chn; Petruzzelli et al, 1999), soybean (classIII; Yeboah et al, 1998) or in 

embryogenic cultures of carrot (class TV EP3; van Hengel et al, 1998), chicories (Helleboid et al, 

2000), pine tree (Domon et al, 2000), spruce (Dong and Dunstan, 1997; Egertsdotter, 1996). The 

specificity of expression of some chitinase genes suggests that they could also play a role in 

developmental processes such as pollination, senescence, root and root nodule development, seed 

germination and somatic embryogenesis. It was shown that chitinases could rescue the carrot 

somatic embryo mutant tsll (Baldan et al, 1997; de Jong et al, 1992; de Jong et al, 1993; Kragh 

et al, 1996) and could therefore play a crucial role in somatic embryo development. The study of 

Patil and Widholm (1997) also suggested the active participation of chitinases in development by 

over-expression of the maize Ch2 chitinase in tobacco that resulted in taller and stronger plants. 

Furthermore, the role of plant chitinases in Nod factor degradation during the formation of root 

nodules in the Rhizobium-legamQ symbiosis was shown in pea (Ovtsyna et al, 2000). Chitinase-

mediated Nod factor degradation was already hypothesized several times and is especially 

interesting in line with the work of de Jong et al. (1993) showing that Nod factor-like molecules 
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may exist in plants since rhizobial nodulation factors are also able to rescue the same carrot embryo 

mutant tsl 1. 

In conclusion, chitinases are probably involved in a broad range of processes ranging from 

plant defense to development and there might be different functions associated with the different 

types of chitinases (reviewed in Graham and Sticklen, 1994). So far, attention has been mainly 

focused on agronomically important crops based on the preconceived idea that the natural role of 

plant chitinases is indeed in defense against pathogens. Very few studies were carried out in 

Arabidopsis thaliana and dealt with three different chitinases only (de A. Gerhardt et ah, 1997; 

Passarinho et ah, 2001; Samac et ah, 1990; Verburg and Huynh, 1991). We have performed a 

survey of all putative chitinase genes in Arabidopsis and present here a detailed overview of their 

characteristics in relation with other plant chitinases. Based on these characteristics we discuss 

some of their possible functions and propose a modified annotation for some of the sequences, since 

in the release of the complete Arabidopsis genome sequence (The Arabidopsis Genome Initiative, 

2000), most chitinases were annotated as "pathogen-induced or defense-related proteins". In 

another database plant chitinases are annotated as being involved in the "biogenesis of cell wall", 

based on homology with yeast chitinases. Moreover the AtEP3 endochitinase studied in this thesis 

is classified as a protein involved in "cell rescue, defense, cell death and ageing - biogenesis of cell 

wall"; for sure a highly versatile protein. 

2. Arabidopsis chitinase genes and their genomic distribution. 

Using the word chitinase, we performed a keyword-based search on several Arabidopsis 

annotation databases (MATDB (MIPS (Munich Information Center for Protein Sequences) 

Arabidopsis thaliana DataBase); Mewes et ah, 2000; http://mips.gsf.de/proj/thal/db/index.html), 

TIGR (The Institute for Genomic Research; http://www.tigr.org/tdb/e2kl/athl/athl.shtml) and 

DAtA (Database of Arabidopsis thaliana Annotation; 

http://luggagefast.stanford.edu/group/arabprotein/index.html). Each search gave a slightly different 

result, mostly due to differences in clone names and annotations. We compared all returned 

accessions for redundancy and finally came to a total of 24 DNA sequences that, based on their 

annotation, encode putative chitinases (Table 1). The corresponding loci are distributed on all five 

chromosomes of the Arabidopsis genome (Figure 1), with a remarkable degree of clustering at the 

bottom of chromosome II where 6 putative genes are organized in tandem and in the middle of 

chromosome IV where 9 genes are organized in two clusters with 2 unrelated genes in between 

(Figure 1). 

http://mips.gsf.de/proj/thal/db/index.html
http://www.tigr.org/tdb/e2kl/athl/athl.shtml
http://luggagefast.stanford.edu/group/arabprotein/index.html
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Locus 
(Clone name) 

Chr Accessions Annotation 
Length 
(aa) 

MW 
(kDa) 

No of 
ESTs 
found 

Proposed function Class 

At1g02360 

(T6A9.15) 

At1g05870 

(T20M3.10) 

At1g56680 
(F25P12.88) 

At2g43570 
(F18019.32) 

At2g43580 
(F18019.31) 

At2g43590 
(F18O19.30) 

AAG00887.1 Putative 
gi9857532 endochitinase 

AAF29390.1 Putative class I 

gi6850313 chitinase 

AAG09096.1 
gi9954745 

Putative chitinase 

At2g43610 
(F18019.28) 

At2g43620 
(F18019.27) 

At3g12500 
(T2E22.18) 
At3g 16920 
(K14A17.4) 

At3g147540 
(F1P2.90) 

At3g54420 
(T12E18.110) 

AAB64049 Putative 
gi2281113 endochitinase 

AAB64048 Putative 
gi2281112 endochitinase 

AAB64047 Putative 
gi2281111 endochitinase 

At2g43600 AAB64046 Putative 
(F18019.29) gi2281110 endochitinase 

AAB64045 Putative 
gi2281109 endochitinase 

AAB64044 Putative 
gi2281108 endochitinase 

AAG51023.1 
Basic chitinase 

gi12321966 
BAA94976.1 Putative basic 
gi7670022 chitinase 

CAB61980 Endochitinase-
gi6522537 like protein 

CAB81807 
gi7288020 

Class IV chitinase 

At4g01700 ... AAC72865 D , ,. .... 
n - i l n ^ o V oocmcnn Putative chitinase 
(T15B16.5) gi38559599 

272 

321 

280 

265 

273 

281 

335 

333 

214 

273 

280 

30.1 

35.6 

31.2 

>8 

277 29.8 

28.8 

264 28.4 

30.! 

30 

283 30.4 

36.2 

36.7 

23.3 

29.4 

31.5 10 

Biogenesis of cell wall (MATDB) 

Pathogen (fungi) response 
(TIGR). Biogenesis of cell wall IV 

(MATDB) 
Pathogen (fungi) response 

(TIGR). Biogenesis of cell wall IV 
(MATDB) 

Pathogen (fungi) response 
(TIGR). Biogenesis of cell wall IV 

(MATDB) 
Pathogen (fungi) response 

(TIGR). Biogenesis of cell wall IV 
(MATDB) 

Pathogen (fungi) response 
(TIGR). Biogenesis of cell wall IV 

(MATDB) 
Pathogen (fungi) response 

(TIGR). Biogenesis of cell wall IV 
(MATDB) 

Pathogen (fungi) response 
(TIGR). Biogenesis of cell wall IV 

(MATDB) 
Pathogen-induced- Defense . 

related protein 

Biogenesis of cell wall (MATDB) II 

Cell rescue, defense, cell death 
and aging - biogenesis of cell wall IV 

(MATDB) 
Cell rescue, defense, cell death 

and aging - biogenesis of cell wall IV 
(MATDB) 

Biogenesis of cell wall (MATDB) II 

Table 1. Arabidopsis chitinase annotations (continued). 
All non-redundant sequences annotated as chitinase in the various Arabidopsis databases are indicated here, with the 
corresponding locus and clone names, as well as the protein accession numbers and the exact annotation from the 
database, which name is indicated when the annotations differed from one another. The length and the molecular weight 
(MW) of each predicted amino acid sequence is also shown, as well as the number of ESTs found for each one of them. 
The second to last column shows the automatically derived functions proposed in the MATDB and TIGR databases. 
The locus name in bold indicates the AtEP3 chitinase studied in this thesis. The annotation marked (1) is based on 
sequence homology with a yeast endochitinase involved in polarized cell growth and cell separation (Kuranda and 
Robbins, 1991). In "PZ-precursor" (second part of the table), PZ stands for PR-protein isolated by zinc chelate 
chromatography (Heitz et al., 1994). The last column contains the putative class to which the chitinase genes belong, as 
we determined based on their sequence and added to the original annotation. 
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Locus 

(Clone name) 

At4g19720 

(T16H5.80) 

At4g19730 

(T16H5.90) 

At4g19740 

(T16H5.100) 

At4g19750 

(T16H5.110) 

At4g19760 

(T16H5.120) 

At4g19770 

(T16H5.130) 

At4g19800 

(T16H5.160) 

At4g19810 

(T16H5.170) 

At4g19820 

(T16H5.180) 

At5g24090 

(MZF18.2) 

Chr 

IV 

IV 

IV 

IV 

IV 

IV 

IV 

IV 

IV 

V 

Accessions 

CAA19692.1 

gi3250684 

CAB78975.1 

gi7268769 

CAB78976.1 

gi7268770 

CAB78977.1 

gi7268771 

CAB78978.1 

gi7268772 

CAB78979.1 

gi7268773 

CAB78982.1 

gi7268776 

CAB78983.1 

gi7268777 

CAB78984.1 

gi7268778 

BAA21861.1 

gi2342435 

Annotation 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Chitinase -like protein (TIGR) 

Similar to tobacco 

chitinase/lysozyme PZ precursor 

(MATDB) 

Acidic endochitinase 

Length 

(aa) 

421 

332 

272 

371 

365 

248 

398 

379 

366 

302 

MW 

(kDa) 

46.9 

36.7 

30.5 

40.4 

40.1 

27.4 

44.4 

41.1 

40.9 

33.1 

ESTs Proposed function 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

Pathogen-induced- Defense 

related protein 

C-compound and 

carbohydrate utilization, 

3 cytokinesis and 

extracellular/secretion 

protein O 

Class 

V 

V 

y 

V 

y 

V 

y 

y 

y 

III 

Table 1. Arabidopsis chitinase annotations (continuing). 

It has now become obvious from several studies (Blanc et al., 2000; Vision et al., 2000) that the 

Arabidopsis genome contains large segmental duplications, suggesting that Arabidopsis could have 

originated from an ancient tetraploid ancestor (Blanc et al., 2000). It is likely that some of the 

duplicated genes have acquired a certain degree of specialization and are now expressed in different 

conditions. As found during systematic gene knockout in yeast (Ross-MacDonald et al, 1999), 

10 
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many insertion mutants in Arabidopsis do not show an obvious phenotype (Bouche and Bouchez, 

2001; Pereira, 2000). This can be the result of gene redundancy or may point to a failure to detect 

subtle phenotypes perhaps only seen at the level of genome-wide gene expression as found in yeast 

(Beh etal., 2001). 

Expressed Sequenced Tags (ESTs) were found for 16 of these sequences (Table 1) 

indicating that the corresponding genes are transcribed and most likely encode a functional protein, 

whereas the others are putative genes. This must be taken into consideration when drawing 

conclusions from their sequence, since they may be pseudogenes or are only expressed in 

conditions that were not studied in the various EST projects (Blanc et ah, 2000). 

I 
— At1g02360 

At1g05870 

At3g 12500 
(ATHCHIB) 

At3g1620 

IV 

At4g01700 

At5g24090 
(ATHCHIA) 

At1g56680* 
, At2g43570 

/ At2g43580" 
= At2g43590 
S At2g43600-

\ At2g43610 
x At2g43620 

At3g47640-

At3g54420 
(AtChitIV) 

At4g 19720 
, At4g19730 

At4g19740' 
At4g19750 
At4g 19760 
At4g 19770* 

, At4g 19800* 
At4g19810 
At4g19820' 

Figure 1. Genomic distribution of the Arabidopsis chitinase-encoding genes. 
The locus of each accession is shown on the individual chromosomes. The (*) marks the putative genes, for which no 
ESTs were found. 

3. Classification and structure of the Arabidopsis chitinase sequences. 

The deduced amino acid sequences of all 24 accessions revealed that they all have a length 

of around 300 amino acids and a molecular weight of 25-35 kDa, which is typical for chitinases in 

11 
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general (Graham and Sticklen, 1994). The predicted proteins they encode belong to different groups 

according to the classification proposed for plant chitinases (Neuhaus et al, 1996). Based on their 

amino acid sequence all plant chitinases are endochitinases (EC 3.2.1.14) and have been organized 

in five different classes (Figure 2). Class I chitinases have a highly conserved N-terminal cysteine-

rich region of approximately 40 amino acid residues that is involved in chitin-binding (Iseli et al, 

1993). It is separated from the catalytic domain by a short proline-rich variable hinge region and the 

catalytic domain is often followed by a C-terminal extension that is involved in vacuolar targeting 

(Class la; Neuhaus et al, 1991b). 

Members 

Class IV | 

Class la 1 

^ ^ | chitin. binding ( ,] 

A 
^ ^ | chitin_binding \ J 

Class ^ ^ ^ B 

Class III ^ ^ H 

| Glyco_hydro_l 9 | 

A AA 
9 

Glyco_hydro_19 

Glyco_hydro_19 

Chitinase„2 

S 1 

4 

1 

Class V 

H Signal sequence 

I [ Chitin-binding domain 

X/A Hinge region 

I | U Catalytic domain 

V//A C-terminal extension 

X "Deletion" 

Figure 2. Classification and structure of the chitinase proteins found in the Arabidopsis genome. 
The structural domains are schematically represented and include the names of the corresponding signatures found in 
the Pfam protein families database (Bateman et al., 2000). Chitinbinding corresponds to pfam00187 (chitin binding, 
recognition protein); Glyco_hydro_19 to pfam 00182 (chitinases, class I, i.e. family 19); glyco_hydro_18 (i.e. family 
18) to pfam00704 and chitinase_2 to pfam 00192 (chitinases, family 2) that is a subset of family 18. The numbers of 
members present in each class are indicated on the right.(Adapted from Collinge et al., 1993). 

Class II chitinases lack both the N-terminal cystein-rich region and the C-terminal extension, but 

have a catalytic domain with a high sequence and structural similarity to that of class I chitinases. 

Class IV chitinases resemble class I chitinases with a very similar main structure, but they are 

significantly smaller due to four deletions distributed along the chitin-binding domain and the 

catalytic region. Class III chitinasesare more similar to fungal and bacterial chitinases than to other 

plant chitinases (Graham and Sticklen, 1994), except for class V chitinases, that also belong to the 

family 18 of glycosyl hydrolases whereas all other classes belong to family 19. In addition, class V 
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chitinases have a C-terminal extension for vacuolar targeting and may contain a chitin-binding 

domain as well (Heitz et ah, 1994; Ponstein et ah, 1994). Finally, cass III and class V chitinases 

display an additional lysozymal activity (Heitz et ah, 1994; Majeau et ah, 1990). 

Class V 

Classes I, II, 

III and IV H 

Class I 
Class I 

Class IV 
Class V ' 

|At4g 197201 
H_:At4g19740* 
I At4g 19730 

At4g 19750 
HZ At4g 19760 

[At4g 19770*1 
[At4g 19800" 
[At4g19810 

'—[jAt4g 19820* 

rC 
At1g02360 

At4g01700 

At3g 12500 

At2g43590 

r-JZ At3g47540* 
I At2g43580* 

At3g54420 

At2g43570 

r At1g56680* 

L At2g43600* 

j_ At2g43610 

L At2g43620 

_ At1g08570 

L At3g 16920 

Figure 3. Phylogenetic tree of the Arabidopsis chitinase proteins. 
The dendrogram was generated by using the CLUSTALW Multiple Sequence Alignment program at the GenomeNet 
WWW server (http://clustalw.genome.ad.jp/). The belonging classes of each accession are indicated by the shading and 
boxes around their names and as in all figures the (*) marks the putative genes, for which no ESTs were found. 

As in all plants analyzed to date (Graham and Sticklen, 1994), members of all five classes 

are present in the Arabidopsis genome. It is also remarkable that classes I and III are poorly 

represented with only one member each (Figure 2), whereas the other classes are more abundant, 

especially classes IV and V with 9 members each. It is also noteworthy that the class I chitinase 

contains a C-terminal extension, hence belongs to subclass la, and none of he class V members 

possesses a chitin-binding domain. 
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Figure 3 shows the phylogenetic tree generated with the 24 sequences by using the 

CLUSTALW Multiple Sequence Alignment program at the GenomeNet WWW server 

(http://clustalw.genome.ad.jp/). The different classes are nicely clustered and it is clear that class V 

has diverged from the other classes very early during evolution. It also seems that the very similar 

classes I and IV may have arisen from class II in which they are imbedded. Araki and Torikata 

(1995) have indeed suggested that class I chitinases arose from class II chitinases by insertion of the 

chitin-binding domain. This probably occurred in the case of class IV chitinases as well, 

considering their degree of similarity with class I members, including the presence of the chitin-

binding domain. 

4. Sequence characteristics of the Arabidopsis chitinases. 

Based on the classes obtained from the phylogenetic tree, the deduced amino acid sequences 

of all chitinase genes were compared to each other by multiple sequence alignment and the presence 

of elements essential for chitinase activity was analyzed for each sequence. 

Figure 4 shows the sequences of class I and class III chitinases, both of which represent 

actual genes that were isolated by Samac et al. (1990). The class I chitinase sequence contains all 

characteristics of class I chitinases including the C-terminal extension, specific of subclass la, 

indicating that it is targeted to the vacuole. All residues shown to be involved in substrate binding 

and catalytic activity are also present (Garcia-Casado et al., 1998) and indicate that it is most likely 

an active chitinase and one of that is actively transcribed (Samac et ah, 1990). The same holds true 

for the class III chitinase, of which the catalytic domain possesses all essential residues known to 

date (Watanabe et al, 1993). 

Figure 5 shows the multiple alignment of the class II chitinase sequences and one can see 

that they share a relatively high degree of similarity, especially in the catalytic domain. However it 

also appears that two of these sequences do not possess all conserved residues essential for chitinase 

activity. As a matter of fact, only the sequences of the two underlined accessions fulfill all 

requirements described by Garcia-Casado et al. (1998). For example, the H-E-T-T motif including 

the essential glutamic acid residue shown in bold is absent from the two other sequences. The same 

holds true for the first cysteine in the Chitinase 19 1 conserved domain as well as for most of the 

residues in bold that are essential for catalytic activity and the boxed residues involved in substrate 

binding. Nevertheless these residues were only shown to play a specific role in a class I chitinase 

(Garcia-Casado et al., 1998) and there are no reports so far of a similar study with class II 

14 
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< signal sequence >< Chitin-binding-

At3gl2500 1 MPPQKENHRTLNKMKTNLFLFLIFSLLLSLSSAEQCGRQAGGALCPNGLCCSEFGWCGNT 

>< hinge >< 
At3gl2 50 0 61 EPYCKQPGCQSQCTPGGTPPGPTGDLSGIISSSQFDDMLKHRNDAA§PARGFYTYNAFIT 

< (D-
catalytic domain 

At3gi2 500 121 AAKSFPGFGTTGDTATRKKEVAAFFGQTS|HETT|GGWATAPDGPYSWGYCFKQ|E|QNPASDY 
H r-

At3gl2500 181 CEPSAT^PCASGKRYYGRGPMQL|s]WN|YN|YGLCGRAIGVDLLNNPDLVANDAVI&gKAAIH 
^ i ' i *-*—i 1 <.-.{^r 

At3gl2500 241 F W M T A 0 P P 0 P S C H A V I A G Q W Q P S D A D R A A G R L P G Y G V I T N I I H G G L E C G R G Q D G R V A D § I 

r=> 1 I 1 I 1 
><-CTE-> 

At3gl2500 301 GFYQRYCNIFGVNPGGNLDCYNQRSFVNGLLEAAI 

A. 

< signal sequence >< 
At5g24 090 1 MTNMTLRKHVIYFLFFISCSLSKPSDASRGGIAIYWGQNGNEGNLSATCATGRYAYVNVA 

At5g24 090 61 FLVKFGNGQTPELNLAGHCNPAANTCTHFGSQVKDCQSRGIKVMLSLGGGIGNYSIGSRE 

catalytic domain 
At5g24 090 121 DAKVIADYLWNNFLGGKSSSRPLGDAVLDGIDFNlKLGSPQHWDDLARTLSKFSHRGRKI 

<-- (18)--> 

At5g24090 181 YLTGAPQCPFPDRLMGSALNTKRFDYVWIQFYNNPPCSYSSGNTQNLFDSWNKWTTSIAA 

At5g24 090 241 QKFFLGLPAAPEAAGSGYIPPDVLTSQILPTLKKSRKYGGVMLWSKFWDDKNGYSSSILA 

- > 
At5g24090 301 SV 

B. 

Figure 4. Sequences and structural features of the Arabidopsis class I and class III chitinases. 
Structural domains as described in Figure 2 are indicated above the sequences. PROSITE consensus patterns (Bairoch, 
1992) are shown by the shaded residues with their names under the sequences. 
A. At3gl2500 or ATHCHIB (Samac et al, 1990). "Chitin-binding" stands for Chitin recognition or binding domain 
signature PS00026 (C-x(4,5)-C-C-S-x(2)-G-x-c-g-x(4)-[FYW]-C); (1) for Chitinase 1 91 signature PS00773 (C-x(4,5)-
F-Y-[ST]-x(3)-[FY]-[LIVMF]-x-A-x(3)-[YF]-x(2)-F-[GSA]) and (2) for Chitinase 1 92 signature PS00774 ([LIVM]-
[GSA]-F-x-[STAG](2)-[LIVMFY]-W-[FY]-W-[LIVM]). "CTE" stands for C-terminal extension. The residues in bold 
are essential for catalytic activity, the residues marked with an asterisk are important for catalytic activity, the boxed 
residues putatively bind the substrate and the active sites are indicated by the bars under the sequence (Garcia-Casado et 
al, 1998). The tyrosine residue indicated by the arrow is essential for substrate binding in the catalytic site but not for 
catalysis (Verburg et al, 1993; Verburg et al, 1992). B. At5g20490 or ATHCHIA (Samac et al, 1990). (18) stands for 
Chitinase_18 signature PS01095 ([LIVMFY]-[DN]-G-[LIVMF]-[DN]-[LIVMF]-[DN]-x-E). As in (A), residues in bold 
are essential for catalytic activity (Watanabe et al., 1993). 
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chitinases. Therefore it could still be that especially the residues involved in substrate binding 

(boxed) are different in this class. We can eliminate the last 2 sequences (Atlg05870 and 

At3gl6920) as non-active chitinases based on the absence of the H-E-T-T motif and of some of the 

other residues essential for catalytic activity. Furthermore, Atlg05870 and At3gl6920 were also put 

together at the bottom of the phylogenetic tree (Figure 3) indicating that although they are similar to 

each other they also diverge considerably from the other class II members. Interestingly the 

sequences Atlg02360 and At4g01700 considered as encoding active chitinases are also paired in 

the dendrogram shown in Figure 3 and are located on chromosomal regions that were shown to be 

duplicated (i.e the top of chromosome I and the top of chromosome IV; Blanc et ah, 2000) and are 

therefore likely to represent a duplication of the same gene. 

Figure 6 shows the same comparison for class IV chitinases to which the only other 

Arabidopsis chitinase studied, AtEP3/AtChitIV (At3g54420; de A. Gerhardt et ah, 1997; 

Passarinho et ah, 2001) belongs. In this class the degree of conservation is very high and all 

elements specific for class IV chitinases are present, except for accession At3g47540 that lacks the 

chitin-binding domain as well as the accompanying hinge region. Nevertheless it was put in class 

IV, since its shorter catalytic domain is more closely related to that of this class than to that of class 

II chitinases. It is also shorter than the other class TV chitinase genes in the second half of the 

catalytic domain where it also lacks some of the important amino acid residues (i.e. glutamate-170 

and serine-172, as seen in the At2g43590 sequence). Furthermore, there was no EST found for 

At3g47540, so it could very well be that it represents a pseudogene. There were three other 

sequences for which no EST was found (marked by the asterisk) and those also appear to lack some 

essential amino acids in the second half of the catalytic domain, especially At2g43600 that lacks the 

essential glutamic acid residue at position 140 and is therefore probably not active as a chitinase. It 

is also remarkable that in this class some of the residues shown to be involved in substrate binding 

in class I chitinases are here consistently different (Garcia-Casado et al., 1998). For example the H-

E-T-T motif seems to be replaced by H-E-[TS]-G, and the tryptophan residue that should have been 

at position 153 (see the At2g43590 sequence) is replaced by a tyrosine. The same holds true for the 

glutamine-212 and the lysine-214 of the same sequence that are replaced by a valine. These 

differences most likely reflect a class-related difference in substrate specificity, which is also 

illustrated by the tyrosine (shown by the arrow) that was shown to be essential for substrate binding, 

but not for catalysis in the class I chitinase (Verburg et al., 1993) and is replaced by a 

phenylalanine, especially in sequence At3g54420 (i.e. AtEP3/AtChitIV), of which we know that it 

is an active chitinase (Passarinho et al., 2001). 

16 



Arabidospsis chitinases: a genomic survey 

Atlg02360 
At4g01700 
Atlg05870 
At3gl6920 

i |AQ|HSFJ|HCFFLS! 
1 |EK§ISLffiCL|LFl 
1 #SR S G S1PLHL ; 

1 MVSKPLFSLgLlTVALHFQTGTHj 

^IKHNKYKPA-
]FLAL VANGgDipI KVKKJJRGNKVfflTQGWEfflsWWS 
AED(§EPS|STjpPLVKl|KGKKLgDKGWEgKGWS 

Atlg02360 
At4g01700 
Atlg05870 
At3gl6920 

Atlg02360 
At4g01700 
Atlg05870 
At3gl6920 

Atlg02360 
At4g01700 
Atlg05870 
At3gl6920 

Atlg02360 
At4g01700 
Atlg05870 
At3gl6920 

Atlg02360 250 
At4g01700 2 58 RYAQ] 
Atlg05870 287 
At3gl6920 296 

JPSTVPSSSSS 
3SSSSSAPPSSGSSS 

Figure 5. Multiple sequence alignement of Arabidopsis class II chitinases. 
Gaps were introduced for optimal alignment and the degree of shading represents the level of similarity. PROSITE 
consensus patterns (Bairoch, 1992) are indicated above the aligned sequences and their names under. (1) stands for 
Chitinase 19_1 signature PS00773 (C-x(4,5)-F-Y-[ST]-x(3)-[FY]-[LIVMF]-x-A-x(3)-[YF]-x(2)-F-[GSA]) and (2) for 
Chitinase 19_2 signature PS00774 ([LIVM]-[GSA]-F-x-[STAG](2)-[LIVMFY]-W-[FY]-W-[LIVM]). In class I 
chitinases, the residues in bold are essential for catalytic activity, the residues marked with an asterisk are important for 
catalytic activity, the boxed residues putatively bind the substrate and the active sites are indicated by the bars under the 
sequence (Garcia-Casado et at, 1998). The tyrosine residue indicated by the arrow is essential for substrate binding in 
the catalytic site but not for catalysis (Verburg et ah, 1993; Verburg et al., 1992). The underlined accessions possess all 
required characteristics for chitinase activity. 
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As for class II chitinases, based on the missing essential amino acid residues and the failure to find 

ESTs we can conclude that the accessions Atlg56680, At2g43580, At2g43600 and At3g47540 are 

not very likely to encode active chitinases. It is also noteworthy that the majority of class IV 

chitinases is clustered at the bottom of chromosome II and is also found on the lower arm of 

chromosome III (Figure 1) that also seems to be an area duplicated on chromosome II (Blanc et al., 

2000). 

Figure 7 presents the multiple alignment of class V chitinases. The chitinases of this class 

are longer than the members of the other classes. They also seem to possess additional motifs, 

which were not found in other classes and of which we do not know the functional relevance. Little 

is known about class V chitinases and we can therefore only base our analysis on what is known for 

the glycosyl hydrolase family 18 (Watanabe et al., 1993), of which the conserved characteristic 

motif represents a small segment of the whole protein. In this small conserved region we can 

already see that two members of this class (At4g 19720 and At4g 19820) deviate from the others 

since a lysine residue (arrow) replaces the proposed essential glutamic acid. This resembles the 

situation of concanavalin B present in seeds of Canavalia ensiformis (Hennig et al., 1995), where 

the glutamic acid residue is replaced by a glutamine. As a consequence, concanavalin B, a close 

relative of family 18 chitinases, lost its enzymatic activity, but retained its carbohydrate-binding 

function (Hennig et al., 1995). Concanavilin B is biochemically and structurally similar to narbonin 

that is a storage protein found in seeds of Vicia narbonensis (Hennig et al., 1992; Nong et al., 1995) 

and could be involved in "trapping" carbohydrate molecules necessary for the seed. A similar 

function could be proposed here for At4gl9820 and At4gl9720. 

The other sequences, including those for which no EST was found, all have an intact catalytic site 

and should therefore be active class V chitinases. As seen for class IV chitinases they are also 

clustered on a particular chromosomal location, on the lower arm of chromosome IV (Figure 1), but 

this region does not seem to have been duplicated elsewhere in the genome. 

Figure 6. Multiple sequence alignement of Arabidopsis class IV chitinases. • 
Gaps were introduced for optimal alignment and the degree of shading represents the level of similarity. The (*) marks 
the putative genes, for which no EST were found. PROSITE consensus patterns (Bairoch, 1992) are indicated above the 
aligned sequences and their names under. "Chitin-binding" stands for Chitin recognition or binding domain signature 
PS00026 (C-x(4,5)-C-C-S-x(2)-G-x-c-g-x(4)-[FYW]-C); (1) for Chitinase 1 9 1 signature PS00773 (C-x(4,5)-F-Y-[ST]-
x(3)-[FY]-[LrVMF]-x-A-x(3)-[YF]-x(2)-F-[GSA]) and (2) for Chitinase 1 92 signature PS00774 ([LIVM]-[GSA]-F-x-
[STAG](2)-[LIVMFY]-W-[FY]-W-[LIVM]). In class I chitinases, the residues in bold are essential for catalytic 
activity, the residues marked with an asterisk are important for catalytic activity, the boxed residues putatively bind the 
substrate and the active sites are indicated by the bars under the sequence (Garcia-Casado et al, 1998). The tyrosine 
residue indicated by the arrow is essential for substrate binding in the catalytic site but not for catalysis (Verburg et al., 
1993; Verburg era/., 1992). 
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-Signal sequence - -GCxxxxxCCSxxGxCGxxxxYC 
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Atlg56680* 164 
At2g43590 151 
At3g47540* 
At2g43580* 
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At2g43600* 
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At3g47540* 
At2g43580* 
At3g54420 
At2g43570 
At2g43610 
At2g43620 
At2g43600* 220 
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Figure 7. Multiple sequence alignement of Arabidopsis class V chitinases. • 
Gaps were introduced for optimal alignment and the degree of shading represents the level of similarity. The (*) marks 
the putative genes, for which no ESTs were found. PROSITE consensus patterns (Bairoch, 1992) are indicated above 
the aligned sequences and their names under. (TB) stands for TONB_DEPENDENT_RECl signature PS00430 
(x(10,115)-[DENF]-[ST]-[LIVMF]-[LIVSTEQ]-V-x-[AGP]-[STANEQPK]); (18) stands for Chitinase_18 signature 
PS01095 ([LIVMFY]-[DN]-G-[LIVMF]-[DN]-[LIVMF]-[DN]-x-E) and (Crystallin) for CRYSTALLYN_ 
BETAGAMMA signature PS00225 ([LIVMFYWA]-{DEHRKSTP}-[FY]- [DEQHKY]-x(3)-[FY]-x-G-x(4)-
[LIVMFCST]). The residues in bold and italic above the alignment are essential for catalytic activity (Watanabe et al, 
1993). The gray arrows indicate a lysine residue differing from the expected essential glutamic acid, which resembles 
what is found in concanavalin B (Hennig et al., 1995). 

5. Putative function and reannotation of the Arabidopsis chitinase sequences. 

In order to obtain additional clues with respect to the putative function of all chitinases, each 

sequence was also analyzed for the presence of additional specific motifs by using the InterPro 

domain search (http://www.ebi.ac.uk/interpro/; Apweiler et al., 2001) and for the presence of 

targeting sequences using the PSORT (http://psort.nibb.ac.jp/) and targetP 

(http://www.cbs.dtu.dk/services/TargetP/; Emanuelsson et al., 2000) servers. A PSI-BLAST search 

(http://www.ncbi.nlm.nih.gov/BLAST/; Altschul et al., 1997) was also performed in order to obtain 

more functional data on similar chitinases. The results of this analysis are detailed in Table 2. 

5.1. Class I 

In Arabidopsis thaliana, class I chitinases are represented by one member only, ATHCHIB 

(At3gl2500) that was also the first chitinase gene isolated in Arabidopsis (Samac et al., 1990). It is 

a basic chitinase and is most likely targeted to the vacuole by means of the C-terminal extension 

(Neuhaus et ah, 1991b and Figure 4A), although there is no immunocytological evidence for the 

latter. Based on the nature and presence of an N-terminal signal sequence the protein could also be 

apoplastic (Figure 4A and Table 2). Its expression was shown to be regulated in an age-dependent 

and tissue-specific manner. Predominantly expressed in roots of untreated plants, the gene is also 

expressed in leaves and flowers of aging plants and is not induced upon wounding, excluding a role 

in a general stress-response (Samac et ah, 1990). Furthermore, its expression can be enhanced by 

ethylene, which probably also corresponds to increasing ethylene levels in aging plants and a 

possible link with senescence in leaves and flowers. It was proposed that the constitutive expression 

in roots is not controlled by ethylene, since the gene remains expressed in roots of ethylene 

insensitive mutants (Samac et al., 1990). It could be that the ATHCHIB chitinase has multiple 

functions at different stages of plant development, some of which might be regulated by ethylene. 
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Arabidopsis chitinases: a genomic survey 

This was indeed demonstrated in several studies linking induction of this chitinase and 

ethylene-controlled processes such as seedling growth (Chen and Bleecker, 1995; Larsen and 

Chang, 2001). In addition, the role that the basic chitinase could play in plant defense also 

seems to be controlled by ethylene. Purified ATHCHIB chitinase could inhibit the growth in 

vitro of the fungus Trichoderma reesei, but not of any of the other fungi tested, suggesting a 

rather specific pathogen-dependent defense response (Verburg and Huynh, 1991). However, 

Thomma et al. (1999) also clearly showed that ethylene is required for the induction of the 

ATHCHIB chitinase upon fungal infection and consequently for resistance against the fungus. 

This study also confirmed the pathogen-specificity of this response. Therefore, the 

Arabidopsis class I chitinase is likely to be activated by an ethylene-dependent signaling 

pathway and may function in plant defense against specific strains of fungi, perhaps based on 

its primary role in controlling senescence. 

5.2. Class II 

Class II chitinases are represented by four members in Arabidopsis, none of which has 

been studied so far. Two sequences (Atlg05870 and At3gl6920) are not likely to be active as 

chitinases, since they are missing some of the amino acid residues essential for catalytic 

activity (Figure 5). Yet they are actively transcribed and could therefore have an alternative 

function, which cannot presently be deduced from their sequences. It is also not possible to 

derive any function from the sequences to which they are the most similar (Table 2), i.e. a 

potato class II chitinase (Wemmer et al., 1994) and a tomato class II chitinase (Danhash et al., 

1993) since these possess all essential residues. It is therefore likely that the two Arabidopsis 

genes have another unknown function. The two other Arabidopsis class II chitinases 

(Atlg02360 and At4g01700) on the other hand have all necessary residues to act as chitinases 

(Figure 5) that are most likely secreted (Table 2). Based on the homology they share with 

chitinases from other plants we can hypothesize what their function could be (Table 2). For 

example class II chitinase Ch2;l from peanut is exclusively expressed upon treatment with 

fungal spores whereas the gene encoding the isoform Ch2;2 appears to be constitutively 

expressed but is inducible by treatment with ethylene, salicylic acid or fungal spores 

(Kellmann et al., 1996). In parsley, a similar situation is found with differential expression of 

two class II isoforms (Kirsch et al., 1993; Ponath et al, 2000). The gene encoding one of the 

isoforms is highly induced whereas the gene encoding the other one is only moderately 

induced upon fungal infection. Both genes are also constitutively expressed in different 

organs of healthy plants, and it was proposed that they could play distinct roles during plant 
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defense but also have distinct endogenous regulatory functions in plant development (Ponath 

et ah, 2000). Similarly to class I chitinases, class II chitinases may have multiple functions 

depending, on the isoform but also depending on the stage of development. Based on the data 

of the peanut and parsley chitinases, we can also propose that one Arabidopsis isoform is 

probably specialized in defense against a few specific pathogens as well as in development, 

whereas the other isoform is probably involved in a more general stress response. The absence 

of a chitin-binding domain in class II chitinases also suggests that they are most likely acting 

on different substrates and/or in different contexts than class I chitinases. 

5.3. Class III 

The only class III chitinase in Arabidopsis, ATHCHIA (At5g24090) was also isolated 

and studied by Samac et al. (1990). It is a secreted acidic chitinase (Table 2), of which the 

gene also appears to be developmentally regulated as well as induced by pathogens (Samac 

and Shah, 1991). Based on promoter: ̂ -glucuronidase (GUS) studies, the class III chitinase is 

expressed in roots, leaf vascular tissue, hydathodes, guard cells and anthers of healthy plants 

and is also induced in mesophyll cells surrounding lesions caused by fungal infection (Samac 

and Shah, 1991). The same study showed that the induction was dependent on the fungal 

strain used and that it was neither ethylene- nor salicylic acid- or wounding-dependent. This 

suggests a rather specific activation that is probably synonymous with a direct action at the 

infection site, as also suggested by the expression in cells directly around necrotic lesions 

(Samac and Shah, 1991). In contrast with the class I chitinase ATHCHIB, ethylene signaling 

does not seem to be involved here, and activation must rely on a different signaling molecule, 

such as an elicitor from specific fungi. The exact mode of action of the acidic chitinase is 

unknown, and the use of antisense suppression did not provide more clues on the matter. 

Plants with chitinase levels reduced to less than 10% that of the wild-type showed no sign of 

increased susceptibility to fungal infection (Samac and Shah, 1994). This suggests that since 

ATHCHIA is a single copy gene (Samac et al., 1990) and encodes the only Arabidopsis class 

III chitinase, chitinases from other classes are probably able to take over its function. 

Furthermore, no morphological phenotype was described for the antisense plants (Samac and 

Shah, 1994). So this probably holds for pathogen-response as well as development and lends 

support to the apparent multifunctionality of plant chitinases that seem to be functionally 

interchangeable from one class to another. 
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5.4. Class IV 

The members of class IV represent, together with class V, the majority of the 

Arabidopsis chitinases. Among the nine sequences that show all structural characteristics of 

class IV chitinases, four encode apparently inactive chitinases lacking essential amino acid 

residues (Figure 6). All four are not likely to be transcribed and probably correspond to 

pseudogenes. The other five sequences are most likely secreted active chitinases. So far, only 

one of them, At3g54420 encoding AtEP3/AtchitIV, is being studied (de A. Gerhardt et al., 

1997; Passarinho et al., 2001) and as found for the other classes, all experiments suggest 

multiple functions. The detailed analysis of the AtEP3/AtchitTV expression pattern using 

promoter: :GUS fusions revealed that the gene is spatially and temporally regulated. In tissue-

culture, it is specifically expressed in embryogenic cultures. In planta it is expressed in mature 

and germinating pollen, in growing pollen tubes, in the seed coat or the endosperm cap during 

germination, in growing root hairs and in leaf hydathodes and stipules (Passarinho et al., 

2001). This is strikingly similar to what was found for the class III chitinase gene (Samac and 

Shah, 1991). Based on previous work done in carrot (de Jong et al., 1992; van Hengel et al., 

1998; van Hengel et al., 2001), it is very likely that the AtEP3/AtchitIV chitinase is involved 

in embryo development, and may also act via GlcNAc-containing signal molecules (de Jong 

et al., 1993). Such signaling molecules could be released by cleavage of specific types of 

arabinogalactan proteins (AGPs; van Hengel et al., 2001), which suggested that there are 

indeed plant substrates for endochitinase activity. AGPs and chitinases have been co-localized 

in several plant tissues. AGPs are found in the style of several plant species (Cheung et al., 

1995; Du et al., 1996; Lind et al., 1994), just as chitinases (Leung, 1992; Takakura et al., 

2000; Wemmer et al., 1994), and stylar AGPs were shown to play a role in pollen-stigma 

interactions as well as during pollen tube growth (Cheung et al., 1995). Chitinases present in 

pollen and/or in the stigma could therefore contribute to the same processes by AGP 

processing. 

The analysis of total AGP content, crossed electrophoresis patterns, RNA blots, and western 

blots showed that AGP expression is both quantitatively and qualitatively regulated during 

germination and seedling development (Lu et al., 2001). AGPs are also present in the root 

epidermis (Samaj et al., 1999) and are involved in root and root hair development (Ding and 

Zhu, 1997; Willats and Knox, 1996). These observations may indicate that AGP processing 

by chitinases is a widespread phenomenon. 

A role for class IV chitinases in plant defense was also proposed by de A. Gerhardt et al. 

(1997). But most evidence comes from work done on other plant species where it was clearly 
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shown that the expression of some class IV chitinases was induced upon fungal infection and 

could be associated with plant resistance (Lange et al., 1996; Nielsen et al., 1994; Rasmussen 

et al., 1992). Class IV chitinases also respond to a broader range of stress sources, like virus 

infection, heavy metals and UV irradiation (Margis-Pinheiro et al., 1993). This suggests that 

the specificity towards pathogens found with the ATHCHIB class I chitinase (Verburg and 

Huynh, 1991) and the ATHCHIA class III chitinase (Samac and Shah, 1991) may be less 

restricted in class IV chitinases. In other plant species, a role in senescence was suggested 

based on the high levels of class IV chitinase expression found in senescing Brassica leaves 

(Hanfrey et ah, 1996), ripening grape berries (Robinson et al., 1997) or banana fruits 

(Clendennen and May, 1997). This may point to a link between class IV chitinases and 

induction by ethylene. Ethylene is often associated with fruit maturation and aging (Payton et 

al., 1996) but also with programmed cell death (Greenberg and Ausubel, 1993). In conclusion, 

it is clear that class TV chitinases may also have multiple functions, but in Arabidopsis it 

seems that these proteins may be more involved in developmental processes rather than in 

defense reactions. 

5.5. Class V 

As in class IV, nine sequences were found in the Arabidopsis genome that showed the 

structural features of class V chitinases (Figure 7). Among those, two (At4gl9720 and 

At4g 19820) appear to be non-active chitinases from family 18 of glycosyl hydrolases since 

they lack the essential glutamic acid of the catalytic site (Figure 7). This resembles 

concanavalin B (Hennig et al., 1995), a gene that is actively transcribed and produces a 

protein that is a close relative of family 18 chitinases but does not possess any chitinase 

activity. Concanavalin B may have a function in the storage of seed carbohydrates. This is 

interesting, especially since one of the Arabidopsis class V transcribed sequences, At4g 19720, 

contains a motif specific for narbonin (Table 2) another concanavalin B-like molecule (Nong 

et al., 1995). At4g 19720 also has a motif specific for TonB (Figure 7 and Table 2). TonB is a 

bacterial receptor-associated protein, that is involved in active transport of poorly permeable 

substrates through the membrane (Gudmundsdottir et al., 1989). This could indicate that this 

chitinase-like protein might be involved in the perception and recruiting of specific chitin-

derived molecules in order to allow their transport into the cell for subsequent processing by 

active chitinases. Or they could participate in the perception of these molecules by a specific-

receptor and thereby activate a signaling cascade leading to a morphological process or a 

defense response. This is particularly interesting in the light of the work recently published by 
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Day et al. (2001), showing that specific chitin-binding sites are present in the plasma 

membrane of soybean. A previous study in rice had also shown the presence in the plasma 

membrane of suspension-cultured cells of a high-affinity binding protein for a N-

acetylchitooligosaccharide elicitor (Ito et al., 1997). This could be in agreement with the 

identification in tobacco of a receptor kinase with an extracellular domain similar to a class V 

chitinase that, as concanavalin B (Hennig et al., 1995), lacks the essential glutamic acid of the 

catalytic site (Kim et al., 2000). It is noteworthy that At4gl9820, the second Arabidopsis 

concanavalin B-like protein, although it has a sequence highly similar to At4g 19720, does not 

possess a narbonin or a TonB motif (Figure 7 and Table 2). Moreover At4gl9820 is not likely 

to be transcribed, which suggests that in At4g 19720, the narbonin or TonB motifs may be 

functionally relevant, implying a receptor-like function. All other class V sequences possess 

all the essential amino acid residues for catalytic activity and are therefore probably active 

chitinases (Figure 7). However, they are most likely involved in different mechanisms since 

they are targeted to different cell compartments (Table 2). For example, At4gl9750 and 

At4gl9760 that are actively transcribed class V chitinase sequences contain a nuclear 

localization signal. They also contain an additional motif specific for crystallins (Table 2). 

Crystallins are the main constituent of the eye lens but the corresponding motif is also found 

in dormancy proteins of some microorganisms (Wistow, 1990). Dormancy proteins are 

activated in response to various kinds of stress. The relation between the crystallin motif and a 

nuclear localization is unclear, but could point to a role in modifying the cell cycle or in 

inducing programmed cell death. Two other members (At4g 19770 and At4g 19800) contain a 

similar crystallin-like motif, but none of these two class V chitinase sequences is likely to be 

transcribed, furthermore they lack a nuclear localization signal (Table 2). The other members 

of class V are either secreted (At4gl9810) or targeted to the peroxisomes (At4gl9730 and 

At4gl9740). In conclusion, class V chitinases represent a rather diverse group of chitinases 

and very little is known about their functional aspects. In tobacco it was shown that they may 

be involved in plant defense but that they are also developmentally regulated (Heitz et al, 

1994; Melchers et al., 1994). The class V chitinases that resemble concanavalin B could be 

involved in chitin perception and recruiting following the model proposed for the CHRK1 

receptor from tobacco (Kim et al, 2000). 
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6. Conclusions. 

Sequencing and systematic automated annotation of the Arabidopsis genome has led 

to the classification of 24 sequences as putative chitinase-encoding genes. A more detailed 

analysis of the individual sequences reveals one of the limitations of large-scale automated 

genome annotation. Sequence details that are functionally important can be missed because at 

present it is difficult to incorporate an integrated view of all data available on protein families 

into the annotation software. Indeed, out of the 24 chitinase sequences, 8 are not likely to be 

transcribed while 3 others do not contain amino acid residues that are essential for catalytic 

activity. Consequently, they probably have a function different from the hydrolysis of chitin-

derived molecules. This is also true for most of the sequences for which no ESTs were found. 

The genomic distribution of the chitinase-encoding genes shows a remarkable degree 

of clustering per class (class IV on chromosome II and class V on chromosome IV; Figure 8). 

Similar genes are indeed repeated in tandem but also duplicated on other chromosomal 

regions like Atlg02360 and At3gl6920. This reflects one of the characteristics of the 

Arabidopsis genome, that is largely made up of duplicated chromosomal regions (Blanc et al., 

2000; Vision et al., 2000). Chitinase genes belong to relatively large families (Graham and 

Sticklen, 1994) that are probably the result of such duplication events. 

Chitinases are grouped into five different classes that differ in sequence, 3D structure 

and biochemical properties (Neuhaus et al., 1996). In Arabidopsis, as in all other plants 

studied so far, chitinases of each class are present. These are rather equally represented, if one 

removes all sequences that are most likely not transcribed (Figure 8), and it is reasonable to 

assume that they have developed class-specific functions, especially between chitinases of 

family 18 and 19. Furthermore, the analysis we performed here reveals that there are also 

differences between related classes such as class I and class IV as well as within classes, like 

in classes II and V. This is probably indicative of different substrate specificities and thereby 

suggest a rather high degree of specialization. It is also clear that most chitinases, 

independently from their class, are probably involved in several functions. 

Some chitinases (e.g. Arabidopsis classes I and III (Samac et al, 1991; Verburg and Huynh, 

1991) and some isoforms of class II, e.g. in parsley (Ponath et al, 2000) and peanut 

(Kellmann et ah, 1996)) are only activated upon infection with specific strains of fungi, 

implying a role in a highly specialized defense response. Others (e.g. bean class IV (Margis-

Pinheiro et ah, 1993) and some isoforms of class II, e.g. in parsley (Ponath et al, 2000) and 

peanut (Kellmann et al., 1996)) seem to be involved in more general stress responses that do 

not require a very specific interaction with a pathogen. Furthermore, their range of action in 
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Figure 8. Recapitulation of the characteristics of the Arabidopsis chitinase annotations. 
As in Figure 1, the locus of each annotation is indicated on the five Arabidopsis chromosomes. The (*) indicates 
sequences that are not likely to be transcribed. The degree of shading and the boxes around the locus names 
represent the belonging class of the corresponding sequence and those that are underlined miss some of the 
amino acid residues essential for chitinase activity. 

response to pathogen infection also seems to be different. Classes HI and V chitinases that 

belong to the glycosyl hydrolase family 18, seem to be involved in a short-range response that 

suggests a direct action on the invading pathogen. The Arabidopsis class III chitinase 

ATHCHIA that is induced by very specific strains of pathogens and does not seem to require 

any other form of signaling (e.g. ethylene) for activation, is a typical example. This is 

supported by its activation directly at the infection site (Samac and Shah, 1991). Furthermore, 

the inactive chitinases of the concanavalin B-type found in class V suggest a putative role in 

the perception and recruitment of chitin-derived molecules (Hennig et al, 1995; Kim et al, 

2000). This may strengthen the idea of a direct interaction with the invading pathogen. And 

last, the additional lyzosymal activity that is characteristic of these two classes combined with 

the putative localization of some isoforms in the peroxisomes could also indicate an activity 
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involved in direct degradation of the pathogen. Genes of the other classes are more likely to 

be activated indirectly via a signaling cascade triggered upon identification of a specific 

pathogen by, for example, a class V chitinase of the concanavalin B-type. This is probably the 

case for the Arabidopsis class I chitinase ATHCHIB and for some specific isoforms of class II 

(Kellmann et al., 1996; Ponath et al, 2000). Other isoforms of class II as well as class IV 

chitinases are probably activated by more general forms of stress that eventually may lead to 

the same general response. Plant hormones, such as ethylene, may be the mediators of these 

signaling events. 

The role ethylene plays in development also brings us to the developmental regulation of 

chitinase genes. This seems to be valid for all classes and their exact function at this level is 

probably determined by the part of the plant in which they are localized and on the available 

substrates. These substrates can be of a symbiotic origin (rhizobial Nod factors) that upon 

perception and processing by chitinases are able to trigger a cascade of specific events leading 

to the formation of a root nodule (Ovtsyna et al., 2000). Alternatively, substrates must be of 

plant origin, implying the existence of plant endogenous GlcNAc-containing molecules. 

Recent work has demonstrated that these molecules could be AGPs (van Hengel et al, 2001). 

This is in line with the large distribution of AGPs in different plant tissues (Knox, 1999) and 

their great plasticity in carbohydrate composition. Thus, GlcNAc- or GlcN-containing AGPs 

could exist in many plant organs and provide highly specific substrates to matching specific 

chitinases. 

In conclusion, it is clear that the function of plant chitinases is still poorly understood. 

Chitinases seem to be involved in many different aspects of the plant life cycle, and it will be 

difficult to dissect such aspects in great detail. Understanding the role of plant chitinases will 

require the generation of mutant plants that lack one or several specific chitinases, to create a 

background with different combinations of chitinases and circumvent problems of gene 

redundancy but also to understand the specific interrelations between the different classes. It 

will also imply the combined study of the role of AGPs following similar approaches and 

most certainly detailed immunocytological and biochemical studies to unravel the complex 

chitinase-AGP combinations in association with very specific processes. 
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Chapter 2 

Introduction 

Somatic embryos have been used extensively to identify genes involved in 

embryogenesis, while the conditioned medium of embryogenic cultures is a rich source of 

endogenous molecules promoting the formation of somatic embryos (de Vries et ah, 1988; 

Maes et ah, 1997; Schmidt et ah, 1994). The mutant carrot cell line tslh, impaired in 

embryogenesis, allowed the identification of one of these molecules. The tsll mutant only 

forms somatic embryos at permissive temperature (Lo Schiavo et ah, 1990) while at non 

permissive temperature mutant embryos require medium conditioned by wild-type cells in 

order to develop beyond the globular stage. The component in the conditioned medium 

responsible for lifting the arrest was purified and identified as an acidic endochitinase of 32 

kDa, designated as EP3 (de Jong et ah, 1992). The EP3 chitinase not only promoted the 

globular to heart stage transition, but also the formation of globular embryos (de Jong et ah, 

1993). Because in tsll media a fully active EP3 chitinase was present, it was concluded that 

tsll does not have a structural mutation in the encoding gene. Instead, it was found that the 

secretion of EP3 appeared to be transiently reduced in tsll during the early globular stage (de 

Jong et ah, 1995). The ability to rescue tsll embryos was also confined to this same period. 

These results suggested a specific and a transient role of the chitinase during somatic 

embryogenesis. 

Molecular cloning of the gene encoding the carrot EP3 chitinase revealed that the EP3 

protein belongs to the class IV chitinase family of which 4 members have been cloned (Kragh 

et ah, 1996). At least 5 different EP3 isoenzymes were shown to be present in the conditioned 

medium of wild-type cultures (Kragh et ah, 1996). Three of these EP3 isoenzymes, as well as 

a related class I chitinase, showed tsll embryo rescue activity, but exhibited subtle 

differences in their biological effect (Kragh et ah, 1996). The existence of multiple EP3 

isoenzymes encoded by a small multigene family supported the findings that tsll does not 

have a structural mutation in a single chitinase gene, but is affected in the control of the 

extracellular level of several secreted chitinases. The effect of the chitinases was mimicked by 

Nod factors and it was therefore proposed that these chitinases are involved in the generation 

of signal molecules essential for somatic embryogenesis in tsll (de Jong et ah, 1993). 

The EP3 genes were shown to be expressed in a subset of most likely non-

embryogenic carrot suspension cells. In planta, the EP3 genes were expressed at low level 

throughout the plant, but highest during seed development. In situ mRNA localization 

revealed that EP3 gene expression was highest in seeds 10 days after pollination (DAP), and 

found predominantly in the inner integument cells lining the embryo sac. Later, expression 
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was restricted to a small subset of endosperm cells lining the central cavity in which the 

embryo develops. These results were in line with the hypothesis that the EP3 chitinases could 

have a "nursing" function during zygotic embryogenesis and that this function can be 

mimicked by some of the suspension cells during somatic embryogenesis (van Hengel et al., 

1998). 

Other plant chitinases were found to be expressed during seed development. Northern 

analysis showed that in soybean a chitinase was expressed in developing seeds (Yeboah et ah, 

1998). In barley, several chitinases were shown by immunoblotting, in situ hybridization and 

GUS immunolocalization to be expressed in the aleurone, the endosperm and the embryo 

(Leah et al., 1994; Swegle et al., 1992), suggesting their involvement during embryogenesis 

and seed development. 

Based on sequence homology, immunological relationship and biochemical activity 

we have identified and cloned the Arabidopsis ortholog of the carrot EP3 gene. As in carrot, 

the Arabidopsis gene is not expressed in somatic embryos, but in cells of embryogenic 

clusters during somatic embryogenesis. In plants, the AtEP3 gene is expressed in germinating 

pollen and growing pollen tubes, and not in endosperm and integuments as in carrot. Later, 

the AtEP3 gene is expressed in the root epidermis, hydathodes and stipules. 

Results 

The Arabidopsis ortholog of the carrot EP3 genes 

Searching the Arabidopsis genome with the carrot EP3 sequence revealed the EST 

tai224 (GenBank Z26409) as the most likely candidate. Although, tai224 shared only 59.2% 

identity with EP3 at the amino acid level, but with 95% of the Arabidopsis genome 

sequencing completed, no chitinase gene was found with higher homology. Yet, class IV 

chitinases in Arabidopsis belong to a small multigene family with six other putative gene 

members (At2g43570, At2g43580, At2g43590, At2g43600, At2g43610 and At2g43620) found 

in tandem on a BAC of chromosome II (GenBank AC002333). Nevertheless they share lower 

identities at the amino acid level, ranging from 34.4 to 50.2% and important domains of the 

proteins are less conserved than between tai224 and EP3 (Figure 1). A corresponding genomic 

clone AAtEP3 was obtained and found to be identical to AtchitIV (GenBank Y14590; de A. 

Gerhardt et al., 1997). The full length AtEP3 cDNA has an open reading frame of 822 bp, 

corresponding to an acidic protein of 273 amino acids with a predicted molecular weight of 
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Figure 1. Comparison of the deduced amino acid sequence of AtEP3 and other Arabidopsis class IV 
chitinases with the carrot EP3 chitinase. 
Sequences are deduced from the corresponding cDNAs, EP3-3 being the carrot class IV chitinase (de Jong et al., 
1992). AtEP3 is underlined. Gaps were introduced for optimal alignment. The EP3-3 sequence and the residues 
identical to this sequence are shaded. Predicted signal sequence cleavage site is shown by the arrowhead. 
Cysteine residues forming disulfide bonds are underlined. Residues postulated to be involved in substrate 
binding and catalysis are shown in bold. And position of a conserved methionine among chitinases of this class 
but absent from EP3 and AtEP3 is shown by * 
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29.4 kDa. When compared to the EP3-3 sequence of carrot (Figure 1), the AtEP3/AtchitIV 

amino acid sequence shows all characteristics of the EP3 class IV chitinases. The predicted 

amino acid sequence has a 28 amino acid signal sequence, probably cleaved before the 

glutamate residue (arrow at position 29 of the AtEP3 sequence in Figure 1). The N-terminus 

of the mature protein then commences with a cysteine-rich region, between the positions 29 

and 59 that is assumed to be the substrate-binding domain. Next there is the same short hinge 

region as in the carrot EP3, between residues 60 and 74, followed by the catalytic domain 

between residues 75 and 273 (Collinge et al, 1993). Except for the signal sequence, each of 

these domains is reasonably conserved. All cysteines are conserved (underlined in Figure 1), 

as well as all residues assumed to be involved in catalysis (in bold in Figure 1; Andersen et 

al, 1997; Verburg et al, 1993). Like all EP3 isoenzymes (Kragh et al, 1996), 

AtEP3/AtchitIV does not contain any methionine in the mature protein, while other known 

class IV chitinases contain one conserved methionine at position 217 (Figure 1). 

To determine whether an Arabidopsis EP3 chitinase was secreted into the medium of 

an embryogenic culture from Arabidopsis, a Western blot of secreted proteins was probed 

with antiserum raised against the carrot EP3 endochitinase (Kragh et al., 1996). Whereas in 

carrot medium five isoforms were detected (Kragh et al., 1996 and Figure 2A), only a single 

protein was recognized by the antiserum in the Arabidopsis medium (Figure 2A). This 

indicates that there might be a single ortholog of EP3 in the Arabidopsis genome, although 

seven different class IV chitinase genes were found so far. To demonstrate that the 

AtEP3/AtchitIV gene encodes the secreted AtEP3 protein as recognized by the carrot EP3 

antiserum (Figure 2A), the full length AtEP3 cDNA was introduced into Sf21 insect cells 

using the baculovirus-based expression system. The medium of AtEP3-producing Sf21 cells 

contained a single protein that cross-reacted with heterologous antisera raised against carrot 

and sugar beet class IV chitinases (Figure 2B). 

In contrast to carrot, where the EP3 endochitinase was found in roughly equivalent 

amounts in both embryogenic and non-embryogenic cell cultures (Kragh et al., 1996; van 

Hengel et al., 1998), AtEP3 is produced in embryogenic suspension cultures only (Figure 2B). 

The AtEP3 protein was purified from insect cell cultures and compared with the native AtEP3 

purified from Arabidopsis cultures as well as with the carrot EP3-3 protein similarly produced 

in Sf21 insect cells. Using 3H-chitin as substrate, the results show a comparable specific 

activity and pH optimum for all 3 chitinases (Table 1). The lower specific activity of the Sf21-

produced AtEP3 compared to the native chitinase could be due to an incorrectly folded or less 
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Figure 2. Immunological relationship between AtEP3/AtchitIV and the carrot EP3 chitinase. 
A. Western blot produced on proteins from medium of Daucus cell suspension cultures (lane D), and of 
Arabidopsis embryogenic cultures (lanes At), incubated with an antiserum raised against the carrot EP3 
chitinase. EP3-1 to EP3-5 represent the different isoforms of the carrot chitinase and AtEP3 the corresponding 
Arabidopsis chitinase. B. Western blot produced on proteins from: lane 1. Sf21 insect cell medium where AtEP3 
is expressed using the baculovirus-based expression system; lane 2. AtEP3 protein purified from the insect cell 
medium; lane 3. Arabidopsis non-embryogenic culture medium; lane 4. Arabidopsis embryogenic culture 
medium. The Western blot was incubated with antisera raised against carrot and sugar beat class IV chitinases 
(de Jong et al, 1992; Kragh et al, 1996). 

stable enzyme. An altered state of the Sf21 -produced proteins is also suggested by the results 

obtained while testing the purified enzymes in a tsll embryo rescue assay. The assay was not 

successful for any of the two Sf21 cell-produced chitinases, whereas the native Arabidopsis 

chitinase was able to rescue tsll embryos (Table 1). Nevertheless, based on the above criteria, 

we conclude that AtEP3/AtChitIV is the Arabidopsis ortholog of the carrot EP3 gene family. 

Specific activity 
nmol GlcNAc min"1 mg"1 pH optimum tsll rescue 

EP3-3 native 
EP3-3 Sf21 
AtEP3 native 
AtEP3 Sf21 

nd 
3200 
6000 
4200 

nd 
5.0 
4.8 
5.0 

Table 1. Biochemical relationship between AtEP3/AtchitIV and the carrot EP3 chitinase. 
EP3-3 and AtEP3 chitinases were purified from embryogenic culture medium (EP3-3 native, AtEP3 native) and 
from Sf21 insect cell medium (EP3-3 Sf21, AtEP3 Sf21) where they were expressed using the baculovirus-based 
expression system. Specific activity and pH optimum were determined using 3H-chitin as substrate. The tsll 
rescue assay was carried out as described in de Jong et al. (1992). nd = not determined; + = rescue; - = no rescue. 
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Mapping of AtEP3/AtchitIV 

Mapping of AtEP3/AtchitIV was performed using 101 Recombinant Inbred (RI) lines 

(Lister and Dean 1993) and a Dra\ RFLP between the ecotypes Landsberg erecta (Ler) and 

Columbia (Col) (Figure 3A). The AtEP3/AtchitIV gene is located at the bottom of 

chromosome 3, 9.4 cM below the TSA1 gene (see the RI map released at 

http://nasc.nott.ac.uk/new_ri_map.html, where for AtEP3/AtchitIV read tai224). 

AtEP3/AtchitIV was also physically mapped by: (i) Fluorescence In Situ Hybridization (FISH) 

on pachytene chromosomes (Figure 3B); and (ii) hybridization to the CIC YAC library 

(Creusot et ah, 1995) which showed that, like TSA1, AtEP31 AtchitIV is in fact located higher 

on the lower arm of chromosome 3 (Figure 3C). This also revealed a discrepancy between the 

genetic and physical maps in this region of chromosome 3. No known mutation has so far 

been identified in the vicinity of the AtEP3/AtchitIV locus (see the classical genetic map of 

Arabidopsis at http://mutant.lse.okstate.edu/). 

The hybridization pattern seen in Figure 3A, at the stringency used (2xSSC at 65°C), 

suggests that AtEP 31 AtchitIV is a single copy gene. The HindlW digestion for instance gives a 

single hybridizing band of 1 kb corresponding to the HindlW-HindlW fragment within the 

coding sequence (Figure 3D). The completed sequencing of chromosome 3 in this region 

allowed verifying the validity of the rest of the hybridization pattern, ruling out the possibility 

of another copy of the gene nearby. The physical mapping (YAC hybridization and FISH) 

supports the Southern blot analysis showing that the AtEP3/AtchitIV gene is a single copy 

gene, as opposed to the two genes proposed previously (de A. Gerhardt et al, 1997). 

Expression of the AtEP3/AtchitIV gene 

Analysis by RT-PCR 

The AtEP 31 AtchitIV mRNA was not detectable by Northern analysis on 10 ug of total RNA 

from either leaves, roots or siliques (data not shown). RT-PCR was then performed using 

AtEP 31 AtchitIV gene-specific primers on reverse-transcribed cDNA from total RNA of 

flowers, stems, roots, old and young siliques, and seedlings. Agarose gel blot analysis was 

carried out on the PCR products using the radiolabeled AtEP 31 AtchitIV cDNA as a probe. 

Transcripts were detected in all the tissues analyzed as a hybridizing band of 822bp. The 

highest level of expression was found in seedlings (Figure 4A). A control RT-PCR was 

performed on the same reverse-transcribed cDNA using ubiquitin gene-specific primers. 

Agarose gel analysis of the PCR products shows that the reverse transcribed cDNA amounts 
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Figure 3. Genetic and physical mapping of the AtEP3/AtchitIV gene. 
A. Genomic Southern blot from RIL parental DNA (Columbia (C) and Landsberg erecta (L)) hybridized with 
the AtEP3/AtchitIV cDNA probe. RFLP used for the mapping was revealed by the enzyme Dral (first 2 lanes). B. 
Fluorescence In Situ Hybridization mapping. Superimposition picture of DAPI stained pachytene chromosomes 
and hybridization signals. The green signal indicated by the arrow represents the AtEP3/AtchitiIV locus on the 
lower arm of chromosome 3, whereas the red signals represent 5S rDNA located on the short arm of 
chromosome 4 and on the upper arm of chromosome 5. C. Physical map of chromosome 3. The AtEP3/AtchitIV 
locus is indicated by the red arrow and named after the EST probe used for the mapping, tai224. The physical 
map depicted here was obtained from the Arabidopsis thaliana Database, at http://genome-
www3.stanford.edu/cgi-bin/AtDB/Pmap. D. Restriction map of the AtEPHAtchitlV locus. 
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used as template were comparable in each sample (Figure 4B). These results are in line with 

those found with the carrot EP3 genes, for which expression is also observed in other plant 

organs, although predominantly in developing seeds (van Hengel et al., 1998). 

+ St Se R F OS YS 

•A. 
Figure 4. Analysis by RT-PCR of 

Jtt^ J k ^ £ £ AtEP3/AtchitIV expression in Arabidopsis 
^ ^ ^ " ^ plants. 

The RT-PCR was performed on total RNA 
from stems (St), seedlings (Se), roots (R), 
flowers (F), old siliques (OS) and young 
siliques (YS). The positive control for the 
PCR reaction (+) was 10 pg of plasmid 
containing the AtEPi/AtchitlV cDNA. A. 
Autoradiogram of the PCR products obtained 
using AtEP3/AtchitIVgene-specific primers 
after hybridization with the AtEPi/AtchitlV 
cDNA. B. Agarose gel of the PCR products 
obtained using ubiquitin gene-specific 
primers. 

Promoter:-.reporter expression 

Expression of the AtEP3/AtchitIV gene was monitored in detail by the use of a 

promoter.:G[/5 construct transformed into Arabidopsis. Eleven independent transformants 

were obtained for the AtEP3/AtchitIV::GUS construct and their progeny allowed to self. 

Plants of each T2 line were stained for expression of the GUS reporter gene. All lines showed 

identical expression patterns differing only in staining intensity. Two of the strongest 

expressing lines were therefore chosen for detailed analysis on homozygous T3 plants. Plants 

were transformed in parallel with an ^£P3/^fcfe/Fpromoter.\Tuciferase (LUC) construct. 

The progeny of two independent transformants was assayed for luciferase activity. No change 

in expression was found when compared with the GUS data (see Figure 6A, B and 7H, M). 

Because the role of the carrot EP3 during embryogenesis was originally demonstrated during 

somatic embryogenesis, it was important to verify whether the AtEP3IAtchitIV gene is 

similarly expressed in Arabidopsis. Embryogenic and non-embryogenic cell suspension 

cultures of Arabidopsis can be established from wild-type immature zygotic embryos or 

directly from germinating seeds of the mutant primordia timing (pt, Mordhorst et al., 1998). 
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AtEP3/AtchitIV::GUS-expressmg embryogenic cultures were initiated from isolated immature 

zygotic embryos of the two homozygous promoter: :GUS lines. In these lines GUS expression 

was found to be similar to that of the carrot EP3 genes (van Hengel et al., 1998). The 

AtEP3/AtchitIV gene appeared to be expressed in cells close to the developing embryos but 

not in the embryos themselves. Promoter activity is observed after overnight staining in 

embryogenic clusters and never in the embryo at any stage (Figure 5A). In contrast with the 

carrot EP3 genes (van Hengel et al., 1998), AtEP3/AtchitIV expression is restricted to 

embryogenic cultures and absent from yellowish non-embryogenic clusters or cultures (Figure 

5B). These results confirmed the Western blot analysis, showing that the AtEP3/AtchitIV 

chitinase was only detectable in the medium of embryogenic cultures (Figure 2B). 

Figure 5. Histochemical localization of GUS activity during somatic embryogenesis in Arabidopsis cultures 
containing the AtEPS/AtchitIVpromoter::GUS fusion. 
Embryogenic cluster (A) and non-embryogenic cluster (B) from Arabidopsis embryogenic lines initiated via 
dissection of immature zygotic embryos according to Mordhorst et al, (1998). ec, embryogenic cluster; nee, 
non-embryogenic cluster; se, somatic embryo. Bar = 1 mm. 

In flowering plants, GUS expression was observed after 2 to 5 days of staining, in a 

stage dependent manner in pollen. Activity of GUS is absent from young developing pollen, 

and increases during pollen maturation (Figure 6A), as was also found when measuring 

luciferase activity under the control of the AtEP3IAtchitIV promoter (Figure 6B). GUS 

expression persists after pollen germination in the pollen tubes growing along the placenta 

and the funiculus (Figure 6C-E). Upon fertilization the GUS-expressing pollen tube enters the 

receptive synergid via the micropyle in order to release the two sperm cells in the embryo sac. 

As this occurs, both receptive synergid and central cell turn blue (Figure 6F). While the 
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zygote develops, GUS product remains in the degenerating receptive synergid (Figure 6G) 

and in some rare cases in the free nuclear endosperm as well (Figure 6H). To determine 

whether the staining in the receptive synergid and central cell represents embryo sac gene 

expression or release of the GUS product from the bursting pollen tube, AtEP3/AtchitIV::GUS 

plants were pollinated with wild-type pollen and vice-versa. It appeared that GUS expression 

in the embryo sac was never observed in the case of fertilization with wild-type pollen (Figure 

61), but only in ovules (wild-type or AtEP3/AtchitIV::GUS) fertilized with 

AtEP3/AtchitIV::GUS pollen. This indicates that the GUS product present in the embryo sac is 

released by the pollen tube. Thus, some constituents of the male gametophyte including the 

AtEP3/AtchitIV chitinase can be transferred along with the sperm cells into the embryo sac. 

Expression was not seen during embryo development up to the mature stage (Figure 6J), 

except in malformed and aborted seeds, in which the embryos appear to be misshapen (Figure 

6 K). Expression of GUS reappears during germination in the differentiating root-hypocotyl 

transition zone of the young germinating seedling (Figure 7A and B). It is also visible in some 

endosperm or seed coat cells at the place where the radicle protrudes (Figure 7B and C). The 

cytoplasm of the cells where the staining is localized seems to show signs of shrinkage 

suggesting that these cells are dying. As the seedling develops, the transition zone 

differentiates, and the first root hair initials and root hairs appear, accompanied by GUS 

expression in some cells of this area (Figure 7B and D). At higher magnification, the mosaic­

like staining pattern appears to represent cells that are differentiating into root hair initials 

(Figure 7E, arrowheads). Further development of the seedling confirms the nature of this 

pattern (Figure 7F and G), clearly showing GUS activity in elongating root hairs (Figure 7G 

and H). Moreover the staining seems confined to the epidermis layer (Figure 7G) and extends 

as the specialization zone does. Staining one week-old seedlings for GUS shows indeed that 

expression remains in the root epidermis of the adult root specialization zone (Figure 7H) and 

is absent from the elongation zone (Figure 71). In the aerial parts of the plant, expression was 

restricted to the few cells forming the stipules and the hydathodes (Figure 7H and J-L), all of 

which is also found in AtEP3/AtchitIV::LUC seedlings (Figure 7M). Hydathodes are known 

as entrance points for pathogens (Hugouvieux et ah, 1998) and roots are also exposed to 

numerous sources of pathogens. Therefore, in order to check for a possible pathogen or stress 

induction of the AtEP3IAtchitIV gene, plants were grown in non- sterilized soil prior to GUS 

staining. No change in staining pattern or intensity was observed when compared to plants 

grown in vitro (data not shown), confirming the lack of pathogen inducibility of the carrot 

EP3 gene (van Hengel etal, 1998). 
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Figure 6. Localization of ,4f£i>5/4<c/n'tfK promoter: :reporter activity in Arabidopsis flowering plants. 
A. Developing flowers from stage 10-11 to 13 and a complete inflorescence stained for GUS, showing the stage-
dependent expression of the reporter gene. B. Luciferase activity measured in flowers from stage 14 and 15. 
Photons are emitted by single pollen grains (arrows). C-D. Expression of GUS in germinating pollen on the 
surface of the stigma and growing pollen tubes (pt). E. Expression of GUS in pollen tubes during entry trough 
the micropyle. F. Ovule just after fertilization with GUS expression in the receptive synergid (rs) and the central 
cell (cc). G. Seed with developing zygote (z) and GUS expression in degenerating receptive synergid (drs). H. 
Young developing seed with GUS expression in the free nuclear endopserm (fne) and the degenerating receptive 
synergid (drs). I. Developing seed from an AtEP3/AtchitIV::GUS flower pollinated with wild-type pollen. No 
GUS expression is observed in the embryo sac. J. Mature embryo stained for GUS, popped out of a seed prior to 
germination. K. Aborted seed with GUS expression in the arrested embryo. All other seeds from the same silique 
were already mature. Bar = 50 um. 

The expression patterns described here were obtained on 11 independent 

promoter::GUS transformants and confirmed by the use of the luciferase reporter gene, 

although luciferase activity measurements do not allow a detailed analysis at the cell level. 

They also confirm the results of the RT-PCR analysis at the organ level. Despite numerous 

attempts, none of these results could be confirmed at the cellular level by in situ hybridization 

on sections or in whole mounts. This is most likely due to low steady state mRNA levels, only 

detectable by RT-PCR. 

Discussion 

The aim of the present work was to identify and characterize an Arabidopsis ortholog 

of the carrot EP3 chitinase. Our results show that the AtEP3/AtchitIV gene is the most likely 

candidate. We base this on (i) sequence homology, (ii) immunological cross-reactivity of the 

encoded proteins, (iii) biochemical activity and (iv) somatic embryo rescue activity. As was 

found in carrot (Kragh et al., 1996), in Arabidopsis there exists a small multigene family of 

related genes. When comparing expression of the AtEP3/AtchitIV gene with that of the carrot 

EP3 gene, correspondences as well as differences were observed. It appears for instance that 

the overall level expression in Arabidopsis is lower. 

In embyogenic cell cultures of Arabidopsis, expression was restricted to a small 

subpopulation of single cells and cell clusters, and not in the embryo itself. This confirms the 

hypothesis made by van Hengel et al. (1998) of a possible "nursing" function during 

embryogenesis. The Arabidopsis gene is however only expressed in embryogenic cultures 

whereas the carrot genes are expressed in non-embryogenic cultures as well. This could be the 

result of the simultaneous detection of several members of the carrot gene family by RT-PCR 
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Figure 7. Histochemical localization of GUS activity in Arabidopsis germinating and developing seedlings 
containing the AtEPS/AtchitIV promoter: :GUS. A. Detail of a protruding radicle, with the embyonic root (r), 
the hypocotyl (h) and initiation of the root-hypocotyl transition zone (t) where expression of GUS is observed in 
some cells. B. Protruding embryo. The root-hypocotyl transition zone is already well defined. The first root-hairs 
have developed and the number of cells expressing GUS increased. The cotyledons are still within the seed and 
the disrupted seed coat expressing GUS is visible. C. Detail of the disrupted seed coat upon germination 
observed in B. D. Detail of the root-hypocotyl transition zone observed in B. E. Higher magnification of a root-
hypocotyl transition zone. Some root hair initials (arrowheads) and epidermal cells are expressing GUS. F. 
Detail of the specialization zone of a further developed seedling. G. Expression of GUS in elongating root-hairs 
and epidermal cells of the specialization zone. H. One week-old seedling. Root expressing GUS, stipules and 
hydathodes are indicated by the arrows. I. Higher magnification of the root, and of a lateral root, with no 
expression of GUS in the elongation zone. J. Shoot meristem area. Stipules and hydathodes expressing GUS are 
indicated by the arrows. K. Higher magnification of the shoot meristem area, showing expression of GUS in the 
stipules. L. Microscopic observation under Nomarski optics of an hydathode expressing the GUS gene. M. 
Luciferase activity measurement in one week-old seedlings, showing the same expression pattern as found with 
the GUS reporter gene. Bar = 100 urn in A-D, I and L; Bar - 50 urn in E-G. 

and in situ mRNA hybridization, as opposed to a single gene-expression study as reported 

here. Based on the expression of the carrot EP3 genes in the integuments and in the 

endosperm, it was argued that the role of the corresponding proteins in somatic 

embryogenesis (de Jong et al., 1992; de Jong et al, 1993) was a reflection of their "nursing 

role" during zygotic embryogenesis (van Hengel et al., 1998). This is difficult to sustain in the 

case of the Arabidopsis AtEP3/AtchitIV gene, that is not expressed in integuments nor in 

endosperm. We have only obtained indirect evidence that chitinase proteins may actually 

enter into the embryo sac through deposition by the pollen tube. Thus, in Arabidopsis the 

function of the AtEP3/AtchitIV class IV chitinase during embryo development may be 

restricted to somatic embryogenesis in tissue culture. It is possible that another member of the 

Arabidopsis class IV chitinase gene family is expressed during seed development. 

The expression pattern of the AtEP3/AtchitIV gene during normal plant development 

appears highly complex and quite difficult to interpret in terms of functional significance. 

High levels of AtEP3/AtchitIV promoter activity were observed in mature pollen prior to 

anthesis and later in growing pollen tubes, suggesting a possible role in the male gametophyte. 

Being a secreted enzyme, the possible plant substrate for the AtEP3 chitinase might be found 

in the environment of the mature pollen grain, the locule, or in the stigma or transmitting tract 

of the style. 

The carrot EP3 chitinase is able to cleave AGPs in vitro (van Hengel et al, 2001), it co-

localizes with AGPs in developing seeds, and after incubation with the EP3 chitinase, the 

promoting effect of AGPs on somatic embryogenesis (Kreuger and van Hoist, 1993) is 

enhanced (van Hengel et ah, 2001). These results suggested that AGPs could be a substrate 

for the carrot EP3 chitinase. Interestingly, AGPs have also been identified in pollen and in the 
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transmitting tract of several plant species (e.g. Cheung et al., 1995; Du et al., 1996; Du et al., 

1994; Gerster et al., 1996; Lind et al., 1994) and it was proposed that they could promote 

pollen germination, pollen tube growth and serve as chemoattractants for their guidance (Wu 

et ah, 1995). It is therefore tempting to speculate that such AGPs can be targets for chitinases 

secreted by pollen. 

After germination, the AtEP3/AtchitIV gene appears to be first expressed in root 

epidermal cells undergoing root hair differentiation, suggesting a correspondence between 

AtEP3/AtchitIV gene expression and tip-growing cells. Mutants such as tip], impaired both in 

pollen tube growth and root hair elongation suggest that both processes share a common 

pathway (Ryan et al., 1998; Schiefelbein et al., 1993). Certain AGPs are also found on the 

root surface (Samaj et al., 1999), where they may be involved in root epidermis cell 

elongation (Ding and Zhu, 1997). 

In addition to developing root hairs and growing pollen tubes, the AtEP3/AtchitIVgene 

is expressed in stipules and hydathodes. ATHCHIA, another Arabidopsis chitinase, 

supposedly involved in plant defense (Samac and Shah, 1991), was found to be expressed in 

the very same organs. Nevertheless, AtEP3/AtchitIV expression did not seem to change when 

grown in sterile or challenging conditions, raising questions on a possible defense function, 

also suggested by de A. Gerhardt et al. (1997). Besides, many genes with unrelated functions, 

such as a specific marker used to study the formation of the serrated margin of leaf blades in 

Arabidopsis (Tsukaya and Uchimiya, 1997), ENOD40 in Sesbania rostrata (Corich et al., 

1998) and fruitful in Arabidopsis (Gu et al., 1998) are expressed in stipules and/or in 

hydathodes. One possibility exists in that expression of the AtEP3/AtchitIV gene in stipules 

and hydathodes corresponds with or just precedes cell death. Stipules are regarded by some 

(Medford et al., 1994; Meicenheimer et al., 1983) as aborted leaf primordia, while hydathodes 

could share the same death fate as termination of the leaf vascular system (Hugouvieux et al., 

1998). In addition entire early aborted zygotic embryos express this gene, suggesting a 

correlation with cellular status rather than with specific cell types. 

Finally there is growing evidence that AGPs are involved in cell death. A study of Gao 

and Showalter (1999) showed that perturbation of AGPs by Yariv reagent induces 

programmed cell death (PCD) in Arabidopsis suspension-cultured cells and they propose that 

AGPs might be involved in other plant PCD responses as well (Dolan et al., 1995; Gao and 

Showalter, 1999; Schindler et al., 1995). Pollination in tobacco is also associated with cell 

death involving AGPs, showing that pollination induces deterioration of the transmitting 

tissue, undergoing PCD and, thus allowing easier penetration of the pollen tubes (Wang et al., 
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1996). This deterioration is accompanied by the release of numerous factors such as 

chemoattractants and "growth factors" like the AGP TTS (Cheung et al., 1995). 

In conclusion, we propose that the AtEP3/AtchitIV chitinase we have cloned is 

involved in regulating PCD in cells that express the AtEP3/AtchitIV gene. AGPs are likely 

candidates for mediators in this process, some of which may require chitinase activation. 

Materials and methods 

Plant material 

Wild-type Arabidopsis thaliana (L.) Heynh, plants were grown under long day light 

conditions from seeds germinated on wetted filter paper. The Recombinant Inbred (RI) lines 

used for the RFLP mapping were generated by (Lister and Dean, 1993) and obtained as seed 

stocks from the Nottingham Arabidopsis Stock Centre and were grown together with the 

parental ecotypes, Landsberg erecta (Ler) and Columbia (Col). The ecotype Ler was also the 

plant material used for RNA isolation and in-situ hybridization. The ecotype Wassilewskija 

(WS) was used for plant transformation. Transformed plants were grown in the same day light 

conditions, after germination on selective medium (0.5x MS salts (Duchefa, Haarlem, The 

Netherlands); Murashige and Skoog, 1962), 1% sucrose, 0.8% (w/v) agar and 100 ug ml"1 

kanamycin sulphate (Duchefa). 

In-vitro culture 

Arabidopsis embryogenic and non-embryogenic lines were initiated and maintained as 

described by Mordhorst et al. (1998), either from seedlings with the primordia timing mutant, 

or from immature zygotic embryos for the wild-type (Ler or WS) and the 

AtEP3/AtchitIV::GUS lines. Yellowish non-embryogenic clusters were selected out of the 

embryogenic cultures in order to establish control non-embryogenic lines derived from the 

same starting material. In-vitro grown AtEP3/AtchitIV::GUS plants were germinated and 

maintained on the selective medium described above. 

Identification and cloning of the AtEP3/AtchitIV gene 

The AtEP3/AtchitIV cDNA, tai224 (GenBank accession number Z26409) was 

identified in the dbEST database with the Daucus EP3 gene as query sequence. The tai224 

clone was obtained from the Institut de Biologie Moleculaire des Plantes of Strasbourg 

(France) as a full length, partially sequenced (375 bases) cDNA, inserted in pBluescript® SK 
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(Stratagene, La Jolla, Calif., USA). Complete sequencing was then performed at our 

laboratory. The full-length clone (822 bp) was used inserted in its original vector (ptai224). 

The genomic library screened, kindly provided by Carlos Alonso-Blanco (Wageningen 

University, The Netherlands), was constructed in the Lambda Fix®II vector (Stratagene) from 

32 the ecotype Ler. The library was screened with the [ P]-labeled tai224 full-length cDNA and 

5 clones were isolated and subcloned into pBluescript® SK~ (Stratagene). Restriction 

mapping and sequencing showed that all clones were identical and truncated at their 3'end. 

Full-length genomic clones were subsequently isolated by PCR on Ler and Col genomic 

DNA, using primers designed against both ends of the cDNA (TAIl: 5'-

AAAATGTTGACTCCCACCATTTCTAAATCC-3' and TAI2: 5'-

TGTTAGCAAGTGAGGTTGTTTCCAGGATCA-3'). Sequence analysis of the different 

clones revealed no difference between these 2 ecotypes. It also revealed that the tai224 

genomic sequence was identical to the one of AtchitIV submitted to the EMBL database by de 

A. Gerhardt et al. (1997) (Accession number Y14590). 

Protein purification, and Western blotting 

Total protein extracts from Arabidopsis and carrot embryogenic and non-embryogenic 

cell suspension culture media were purified as described by (van Hengel et al., 1998). Total 

proteins from Arabidopsis and carrot were separated by SDS-PAGE according to (Laemmli, 

1970) and subsequently transferred to an Immobilon™-P PVDF Transfer Membrane 

(Millipore, Bedford, MA, USA). Immunological detection was performed, as described by de 

Jong et al. (1995) with rabbit antiserum raised against EP3. 

Mapping of AtEP3/AtchitIV 

Mapping by RFLP was performed as described by Lister and Dean (1993). Genomic 

DNA was extracted from each line according to Reiter et al. (1992) and 5 ug parental 

genomic DNA (Ler and Col) was restricted with 25 U of each of six different enzymes 

(Bamm, Bglil, CM, Dral, £coRI and Hindlll) in lx KGB buffer (100 mM potassium 

glutamate, 25 mM Tris-acetate (pH 7.5), 10 mM MgAc, 50 ug ml"1 BSA (fraction V, Sigma), 

0.5 mM 6-mercaptoethanol) containing 1 mM spermidin, separated on a 1% (w/v) agarose 

gel, and transferred to a Nytran-Plus membrane (Schleicher & Schuell, Dassel, Germany) 

following the manufacturer's recommendations. Hybridization with the complete tai224 
32 

cDNA, [ P]-labeled using Random Primer Labeling, was carried out overnight at 65°C in 
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1.5% (w/v) SDS, 10% (w/v) dextran sulphate and 100 ng ml"1 denatured salmon sperm DNA. 

Filter was washed at 65°C in 5x SSC (lx SSC: 150 mM NaCl, 12 mM sodium-citrate, pH7.0), 

0.1% (w/v) SDS and 2x SSC, 0.1% (w/v) SDS (15 min each) before exposure to an X-ray film 

at -80°C for 2 d. Segregation of the revealed polymorphism over the RI line population was 

analyzed according to the same protocol, using 400 ng of genomic DNA from each line 

restricted with the polymorphic enzyme. The data were scored as L (Ler), C (Col) and U 

(unclassified) and sent to the Nottingham Arabidopsis Stock Centre for linkage analysis and 

mapping of the marker towards the markers mapped previously. 
32 

Physical mapping was performed by hybridization of the [ P]-labeled tai224 cDNA to 

the CIC YAC library (Creusot et al., 1995) kindly provided to us by Jo West (John Innes 

Centre, Norwich, UK). Membranes were prehybridized for 2 h at 62°C in hybridization buffer 

(0.25 M NaCl, 0.25 M Na2HP04, 10% (w/v) PEG 6000, 7% (w/v) SDS, ImM EDTA). The 

probe was added and hybridization performed for 24h at 62°C. Following hybridization the 

membranes were rinsed at room temperature in 3xSSC, 0.1% (w/v) SDS and then washed at 

62°C for 20 min in the same solution, followed by 20 min in O.lxSSC, 0.1% (w/v) SDS and 

subsequently exposed to an X-ray film. The map location was obtained from David Bouchez 

(INRA Versailles, France), according to the coordinates of the hybridizing YACs. 

Fluorescence in situ hybridization and subsequent immunocytochemical detection 

were carried out as described by Fransz et al. (1998). A 15Kb lambda clone containing the 

genomic sequence of AtEP3/AtChitIV was used as a probe. 

Analysis by RT-PCR 

RT-PCR was carried out as described by van Hengel et al. (1998) using 9514PP (5'-

AAAATGTTGACTCCCACC-3') as upstream primer and 9515PP (5'-

TGTTAGCAAGTGAGGTTG-3') as downstream primer for amplification of the 

AtEP3/AtchitIV reversed transcribed cDNA. Ubiquitin was amplified as a control of the RNA 

using 5'-TAGAAGCTTATGCAGATC/TTTTGTGAAGAC-3'and 5'TATGGATCCACCA 

CCACG / A A G A C G G A G - 3 ' as upstream and downstream primers respectively (Horvath et 

al., 1993). PCR products were analyzed by agarose gel electrophoresis and Southern blot 

analysis was performed, as described above, on the AtEP3/AtchitIV samples using the full-

length tai224 cDNA as a probe. 
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Construction of AtEP3/AtchitIV promoter::reporter fusions, plant transformation and 

analysis of the reporter gene expression 

The AtEP3IAtchitIV promoter-reporter constructs were made in a 2-step cloning. The 

AtEP3/AtchitIV promoter was first cloned into pBluescript® SK~ (Stratagene) as a Pstl-Xbal 

HOObp fragment ending directly upstream the AtEP3IAtchitIV ATG, after introduction, by 

PCR mutagenesis, of a Xba\ site at the 3'end, using the primers 5'pTAI (5'-

CCCTGCAGATCTTCCTGG-3') and 3'pTAI (5'-GCTCTAGATTTGATGTTGTTGAGG-

3'). From pBluescript® the promoter was cloned in the GUS binary vector pGPTV-KAN 

(Becker et al., 1992) as a Sall-Xbal fragment and as a Sstl-Kpnl fragment in the luciferase 

binary vector pMT500 (Toonen et al., 1997). The constructs were transformed into 

Arabidopsis plants, ecotype WS, by vacuum infiltration according to Bechtold et al. (1993). 

Transformants were selected on kanamycin at each generation and homozygous T3 plants 

were assayed for reporter gene expression together with control plants transformed with the 

same binary vector, but having the GUS or luciferase gene driven by the CaMV 35S 

promoter. Seeds of these plants were kindly provided by Valerie Hecht (Wageningen 

University, The Netherlands). Histochemical GUS assays were performed as described in 

Vroemen et al. (1996), using 2mM of potassium ferri- and ferrocyanide and staining at 37°C 

for up to 5 d. Luciferase activity was measured as described in Toonen et al. (1997). 
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Chapter 3 

Expression of gametophytic markers during Arabidopsis 

thaliana somatic embryogenesis 

Abstract. Plant cells have the remarkable ability to be totipotent and can be triggered to form 

somatic embryos under the proper conditions. This provides a convenient system to study the 

mechanism(s) by which somatic cells acquire their embryogenic potential and undergo the 

specific patterning required for the formation of an embryo. Very little is known about the 

genes involved in these processes and even less about the analogies between zygotic and 

somatic embryogenesis in terms of genetic control. We have addressed this question in 

Arabidopsis thaliana by studying the expression pattern of gametophytic marker genes during 

somatic embryogenesis. The analysis of their respective expression patterns revealed that all 

markers tested are also expressed during somatic embryogenesis. Their expression patterns 

appeared to be restricted both spatially and temporally, suggesting that they had retained a 

certain degree of specificity and that at least a number of gametophytic gene expression 

programs are conserved in somatic embryogenesis. 
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Introduction 

Somatic embryogenesis has been frequently employed to identify genes preferentially 

expressed during early plant embryogenesis. This is based on the premise that there is 

substantial similarity between genetic programs controlling zygotic and somatic embryo 

development (for reviews see Yeung (1995) and Mordhorst et al., 1997). Far less is known 

about genes that are involved in the acquisition of embryogenic competence. In Arabidopsis 

thaliana, recessive mutations in different genes result in the formation of somatic embryos 

under in vitro conditions (Mordhorst et al., 1998; Ogas et al., 1997), while ectopic expression 

of LEC1 was reported to give spontaneous somatic embryo formation (Lotan et ah, 1998). 

Other genes such as the carrot SERK gene were identified based on their expression in 

embryogenic cells (Schmidt et al, 1997). 

It is not clear which phase of zygotic embryogenesis is equivalent to embryogenic cell 

formation in vitro. Cells that show signs of chromosome reduction and morphological features 

of gametophytic cells such as immature mononucleate pollen or embryo sac cells, were 

identified in carrot embryogenic cultures (Giorgetti et al., 1995). This suggests that during 

somatic embryogenesis some cells pass through a gamete-like state that may be a prerequisite 

for embryogenic cell formation. The in planta expression pattern of genes such as AtSERKl 

(Hecht et al, submitted) and AtEP3 (Passarinho et al., 2001) supports this hypothesis. The 

AtSERKl gene is first expressed in ovule primordia, subsequently in the female gametophyte 

and finally in the zygotic embryo (Hecht et al, submitted). The AtEP3 gene is expressed in 

several somatic cell types but predominantly in mature and germinating pollen (Passarinho et 

al., 2001). These observations show that cells present in embryogenic cultures may share gene 

expression programs with gametophytic cells. 

In this work we reversed this approach and asked whether the expression of specific 

gametophytic marker genes was also detectable during Arabidopsis thaliana somatic 

embryogenesis. Markers for all elements of the embryo sac have been identified while 

screening an enhancer-trap collection for such genes (Grossniklaus, unpublished data). We 

have made use of a number of these markers to trace the expression of ovule genes during 

somatic embryogenesis in Arabidopsis. As marker for the male gametophyte, we have used 

the LAT52 promoter fused to (J-glucuronidase (GUS; Eady et al., 1994). Interestingly, all 

markers tested appear to be expressed during Arabidopsis somatic embryogenesis in highly 

specific and restricted patterns, suggesting a correspondence between genes expressed in 

embryogenic cells in vitro and in gametophytic cells in planta. 
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Results 

Expression pattern of gametophytic markers in vitro 

Embryogenic cultures were initiated from all pt lines harboring the different ET 

constructs and from the LAT52::GUS marker line. The expression pattern of these markers in 

planta is summarized in Table 1. Three weeks after initiation, embryogenic and non-

embryogenic cultures of each line were maintained separately and subcultured weekly. 

Expression of the different markers was followed over a period of two months by GUS 

histochemical localization. Stainings were performed weekly upon subculturing of each 

marker line. The results obtained are summarized in Table 2. All markers tested this way were 

expressed in a temporally and spatially different fashion. 

Marker line 

ET127 

ET133 

ET184 

ET204 

ET1081 

LAT52::GUS 

GUS expression pattern in ovules 

Synergids 

Stripe at chalazal pole and megagametophyte 

Dorsal micropyle or synergids 

Synergids and funiculus 

Egg cell and synergids 

Microspores from late uninucleate stage onwards 

Table 1. Marker lines used for the female and male gametophyte 
The expression patterns of the ET lines were observed while screening for genes involved in ovule and early 
seed development (Grossniklaus, unpublished results). GUS stainings were performed as described in (Vielle-
Calzada et al., 2000). The expression pattern of LAT52::GUS is fully described in (Eady et ah, 1994). 

Lines ET127 and ET204 both mark the synergids in planta and they have expression 

patterns quite similar to one another in vitro as well, as can be seen by comparing Figure 1A-

D (ET127) with Figure 1E-H (ET204). The only difference is that the expression level of 

ET204 is lower than that of ET127. GUS staining is detected in cells of non-embryogenic 

clusters (nee) present in embryogenic cultures (Figure 1A, IB and 1E-G). These clusters are 

yellowish to whitish and have a "rougher" surface than embryogenic clusters (ec) that are 

bright green and smooth. When subcultured, non-embryogenic clusters only proliferate and no 

embryos arise from such calli, whereas embryogenic clusters continuously develop 

embryogenic structures that are able to form embryos when cultured in hormone free medium 
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(Mordhorst et al., 1998). In embryogenic cultures the ET127 and ET204-expressing cells are 

located in those parts of the callus that are in close vicinity to the developing embryogenic 

structures (Figure 1A, IB and 1E-G). No expression of either of these markers was ever seen 

in the embryogenic structures themselves. Upon subsequent subculturing of non-embryogenic 

cultures without visual selection for green embryogenic clusters any remaining embryogenic 

cells are rapidly lost (Mordhorst et ah, 1998). This is accompanied by an increased expression 

of both ET127 and ET204 to an almost equal level (compare Figure 1C with ID and 1H). In 

embryogenic cultures expression of both markers remains constant and is fully comparable to 

what is shown in Figure 1A, B and 1E-G. This suggests that the expression of ET127 and 

ET204 is negatively correlated with the presence of embryogenic cells. In addition, their 

expression is not homogeneously distributed and seems to be confined to certain sectors of the 

non-embryogenic calli (Figure ID and 1H). This shows that not all cells are identical in these 

non-embryogenic calli and some level of differentiation is apparently maintained in culture. 

In line ET133 (Figure 1I-L), GUS staining is spatially less restricted in embryogenic 

calli (compare Figure IB or IF with U) and is even occasionally observed in the basal end of 

the embryogenic structures (Figure U and IK). However, all three markers are expressed in 

comparable regions of the calli. Remarkably, this mimics the situation in planta where ET127 

and ET204 expression (synergids) is much more restricted than the one of ET133 (entire 

embryo sac). ET133 expression is not restricted to embryogenic calli, but is also apparent in 

non-embryogenic calli (Figure 1L), although more abundantly in the former (Figure U). In 

contrast to ET127 and ET204, which appear to be more abundantly expressed in non-

embryogenic calli, ET133 expression is weaker in these calli and decreases in time with 

subculturing. Yet, the expression pattern of all three markers in non-embryogenic calli is 

rather similar in its heterogeneity (compare Figures ID, 1H and 1L). Unfortunately, it is very 

difficult to identify morphologically different cell types in these stained calli and therefore we 

cannot answer whether the cells marked by ET127 and ET204 are indeed the same cells that 

are also marked by ET133. 

In planta, lines ET184 and ET1081 have slightly different expression patterns, being restricted 

to the micropylar region or the synergids and the egg cell or the synergids respectively 

(Grossniklaus, unpublished results). However, in culture their expression pattern is rather 

similar (see Figure lM-O for ET184 expression and P-R for ET1081 expression). It is more 

restricted than the ones of ET127, ET204 and ET133. In embryogenic cultures, ET184 GUS 

staining was only observed in a few cells in the close vicinity of developing embryogenic 

clusters (Figure 1M). Somewhat later the expression becomes stronger but remains restricted, 
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reminiscent of the pattern observed for ET133 much more restricted both spatially and in 

intensity. GUS staining was only observed in some of the calli (compare Figures 10 with ID, 

1H and 1L). 

Marker line GUS expression pattern during somatic embryogenesis 

ET127 High expression level (2h staining) 
Never expressed in green embryogenic clusters 
Maximum expression in non-embryogenic (NE) cultures 
Negatively correlated with embryogenicity, but never uniform 
expression in NE calli 

ET204 Identical to ET127, but lower expression level (4h staining) 

ET13 3 High expression level (2h staining) 
Maximum expression in embryogenic cultures, some expression in 
green embryogenic clusters and in starting NE cultures 
Positively correlated with embryogenicity 

ET 184 Low expression level (overnight staining) 
and Restricted to a few sectors of NE callus in both embryogenic and NE 

ET1081 cultures 
Never expressed in green embryogenic clusters 
No apparent correlation with embryogenicity 

LAT52::GUS Low expression level (overnight staining) 
Expression restricted to NE callus and older embryogenic clusters both 
underlying developing embryogenic clusters 
Correlated with embryogenicity? '*' 

Table 2. Summary of GUS expression patterns during somatic embryogenesis. 
'*' The expression of the LAT52::GUS marker could not be analyzed in non-embryogenic cultures initiated from 
the same starting material. 

Expression of ET 1081 that of all markers tested here shows the most restricted expression in 

planta, also showed the most restricted pattern in culture. In Figure IP only a few stained cells 

are seen in torpedo stage embryos (Figure 1Q), while in non-embryogenic cultures, similar to 

in embryogenic ones, only a few cells show GUS staining. 

Thus, all of the five markers tested show subtle differences in expression patterns. None is 

specific for embryogenic cultures only, and most remarkably, all seem to maintain a certain 

restriction in expression as also found in planta. 

The reverse seems also true, since the AtSERKl gene that was identified as a marker 

for single embryogenic cells in carrot (Schmidt et al., 1997) is expressed in the ovule 

primordia, in the entire female gametophyte and later during zygotic embryogenesis in 
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Figure 1. GUS histochemical localization of female gametophytic markers expression during somatic 
embryogenesis. 
A-D. Expression pattern of the synergid marker ET127. (A-B) embryogenic calli; (C-D) non-embryogenic calli 
with decreasing embryogenic potential. E-H. Expression pattern of the synergid marker ET204. (E-G) 
embryogenic calli; (H) non-embryogenic callus. I-L. Expression pattern of the megagametophyte marker ET133. 
(I-K) embryogenic calli; (L) non-embryogenic calli. M-O. Expression pattern of the synergid or dorsal 
micropyle marker ET184. (M-N) embryogenic calli; (O) non-embryogenic callus. P-R. Expression pattern of the 
egg cell and synergid marker ET1081. (P) embryogenic callus; (Q) embryos isolated from hormone-free 
medium; (R) non-embryogenic calli. Examples of positive cells are indicated by the arrows, (ec) embryogenic 
cluster; (nee) non-embryogenic cluster, (se) somatic embryo. 

Arabidopsis (Hecht et al, submitted). In embryogenic cultures the AtSERKl promoter is 

active in embryogenic clusters, as can be seen in Figure 2A (see also Hecht et al., submitted). 

GUS staining is restricted to some of the developing embryogenic structures probably 

reflecting specific stages of their development among those present in this embryogenic 

cluster. Another gene we identified for its role during carrot somatic embryogenesis (de Jong 

et al., 1992) was also studied in Arabidopsis (Passarinho et al., 2001). The AtEP3 

endochitinase gene is specific for embryogenic cultures where its promoter is active in 

embryogenic clusters but not in developing embryogenic structures themselves (Figure 2B 

and Passarinho et al., 2001). Interestingly, in planta the gene is not expressed in the female 

gametophyte, but in mature and germinating pollen instead. In addition, the AtEP3 gene is 

also expressed in somatic cells in planta (root hairs, hydathodes and stipules; Passarinho et al., 

2001). 

To answer if other genes more specifically expressed in the male gametophyte are also 

expressed during somatic embryogenesis, we analyzed the expression of a specific pollen 

marker gene during somatic embryogenesis. In Arabidopsis, the LAT52 promoter is activated 

in late uninucleate microspores immediately prior to microspore mitosis (Eady et al., 1994) 

and remains active throughout the early stages of pollen tube growth (Twell et al., 1998). 

We found that during somatic embryogenesis the LAT52 promoter is also activated 

and appears to be regulated both spatially and temporally. Green embryogenic clusters arise 

from the shoot meristem area of the germinating seedling and the first signs of LAT52 

promoter activity are observed in this region (Figure 3A and B). As these clusters proliferate, 

GUS staining remains localized in the cells underlying them and is absent from the 

embryogenic structures themselves (Figure 3C and D). 
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Figure 2. GUS histochemical localization of AtSERKl.-.GUS and AtEP3::GUS expression during somatic 
embryogenesis. 
A. Expression of AtSERKl::GUS in an embryogenic callus. Some of the positive embryogenic structures are 
indicated by the arrowheads. B. Expression of AtEP3::GUS in an embryogenic callus. Some of the positive cells 
in the non-embryogenic cells are indicated by the arrowheads, (ec) embryogenic cluster; (nee) non-embryogenic 
cluster. 

Figure 3. GUS histochemical localization of LAT52::GUS expression during somatic embryogenesis. 
A. 3-week old embryogenic callus, with developing embryogenic clusters arising from the shoot meristem 
region. B. 4-week old embryogenic callus. The shape of the germinating seedling from which it arose is still 
visible. The cotyledons were overgrown by developing embryogenic clusters. C-E. More developed 
embryogenic clusters. F-G. Embryogenic calli, where development of secondary embryogenic clusters is visible 
on top of older ones. H. Higher magnification of an embryogenic cluster. Positive cells are indicated by the 
arrows, (ec) embryogenic cluster, (nee) non-embryogenic cluster; (pec) primary embryogenic cluster on top of 
which new embryogenic clusters (ec) form. 

At later stages, secondary embryogenic clusters form continuously on top of each other 

(Mordhorst et al, 1998). LAT52 expression seems to follow this cycle since the promoter 
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activity spreads to the first embryogenic clusters that were up to that point devoid of activity 

(Figure 3E-H). However, we could not verify whether the activity of the LAT52 promoter was 

directly linked to embryo formation since we were not able to establish any LAT52::GUS 

non-embryogenic lines from the same material. 

Discussion 

In the present work we have shown that markers expressed in the female and in the 

male gametophyte are also expressed during somatic embryogenesis. The expression pattern 

of these markers was not uniformly distributed in cultured cells and appeared to be restricted 

both spatially and temporally. From this observation, a number of general conclusions can be 

drawn. 

Markers such as ET127 and ET204 that are expressed in the same cell type in the plant 

(in this case the synergids) are also expressed in an almost identical pattern in tissue culture. 

This parallel could also be observed in the case of the embryo sac marker ET133 and the 

ET1081 and ET184 markers. This is quite remarkable, in view of the completely different 

level of tissue organization in planta and in tissue culture. However, when comparing markers 

in tissue culture with one another, differences were also observed. For instance, the expression 

pattern of the synergid marker ET184 should be more similar to the one of ET127 or ET204 

and yet appears quite different. Apparently markers that are expressed in the same cell type in 

the embryo sac can be part of different cellular mechanisms. This may become visible in 

terms of expression pattern when the cells are placed in the different context of a culturing 

system. 

A second general conclusion is that except for ET133 none of the female 

gametophytic markers are expressed in somatic embryos themselves. This mimics the 

situation as it is in planta and it is not an artifact of our system because zygotic embryo-

expressed genes such as AtSERKl (Hecht et al, submitted) are also expressed in 

embryogenic clusters as well as in embryos. 

A third general conclusion comes from looking at the correlation with embryogenicity. 

Expression of the synergid markers ET127 and ET204 does indeed increase as cultures lose 

their embryogenic potential. In plants synergids degenerate after fertilization and upon 

development of the embryo. One could assume that they would remain expressed in case no 

embryo was formed and still express a number of genes among which these markers. Non-

embryogenic cultures could mimic such a situation and explain our observations. In contrast, 
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other markers like ET133 appear to be positively correlated with embryogenic capacity. 

ET133 marks all cells of the embryo sac in planta, i.e. including the egg cell and the central 

cell. One could imagine that some of the gene expression programs in these cells would 

remain active during early embryogenesis. This is apparently what happens in these 

embryogenic cultures where ET133 is the only marker that is expressed to a low level in the 

basal end of the developing embryogenic cluster. On the other hand, in non-embryogenic 

cultures these functions would no longer be needed and only some of the ET133 expression 

seems to remain, which could in fact be due to the partial "synergid" expression pattern of this 

marker. 

The same assumptions can be made for LAT52::GUS, although we could not analyze 

its expression in non-embryogenic cultures and compare it with other specific male 

gametophytic markers. The LAT52 promoter activity is precisely regulated, closely 

accompanying embryo development. The cells where it is active are always underneath newly 

developing embryogenic clusters resembling the expression pattern of the AtEP3 chitinase 

gene that is also expressed in mature pollen (Passarinho et al., 2001). These last results are 

rather intriguing, suggesting that not only maternal tissues need to be present for embryos to 

develop in vitro (van Hengel et al., 1998) but that a paternal contribution might be required as 

well. This also supports the findings of Giorgetti et al. (1995) who observed cells with the 

morphological features of immature mononucleate pollen in carrot embryogenic cultures. 

The expression patterns of these genes and markers also confirm previous 

observations made in carrot embryogenic suspension cultures in which it was shown that 

various cell types co-exist and have different fates and functions (McCabe et al., 1997; 

Toonen et al., 1994). For instance, the immunolocalization of the specific arabinogalactan 

epitope JIM8 (Pennell et al., 1991) in carrot embryogenic cultures revealed that a certain type 

of cells first has and then becomes devoid of the JIM8 epitope. Further work suggested that it 

was the JIM8-negative cells that develop from these JIM8-positive cells that are competent to 

form embryos in culture (McCabe et al., 1997) The JIM8-positive cells present in these 

cultures would then play the nursing role of the seed endosperm allowing the formation and 

the development of the embryo, although the exact mechanisms of this communication in 

vitro might differ from those occurring in a developing seed. The localization of the JIM8 

epitope in the cell wall of gametophytic cells in planta - e.g. Brassica sperm and Lilium sperm 

and generative cells (Southworth and Kwiatkowski, 1996); micropyle of Amaranthus 

hypochondriacus ovules (Coimbra and Salema, 1997) - is also well established following 
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earlier observations of its occurrence in Brassica young embryos but also prior to that in the 

nucellar epidermis, synergid cells, and the egg cell (Pennell et al., 1991). 

In conclusion, the results we describe in this work support the hypothesis that a 

number of pathways are shared between gametogenesis and embryogenic cell formation in 

vitro. 

Materials and methods 

Plant material 

Enhancer-trap (ET) lines marking female gametophytic cells (Table 1 and Vielle-

Calzada et al., 2000) were crossed into the primordia timing (pt) mutant background in which 

somatic embryogenesis is highly facilitated (Mordhorst et al., 1998). Subsequent generations 

of this cross were selected on kanamycin for co-segregation of the pt mutant phenotype and 

the enhancer-trap construct. F3 seeds, homozygous for both traits, were used for analysis. 

These plants, and LAT52::GUS homozygous plants (Eady et al., 1994) were grown under 

long day light conditions after germination on selective medium containing 0.5x MS salts 

(Duchefa, Haarlem, The Netherlands; Murashige and Skoog, 1962), 1% (w/v) sucrose, 0.8% 

(w/v) agar and 100 ixgml"1 kanamycin sulphate (Duchefa). 

Initiation of embryogenic marker lines 

Embryogenic lines were initiated as described by Mordhorst et al. (1998). 

Homozygous F3 seeds from crosses between pt and the different ET marker lines were 

directly germinated in liquid medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 

Mordhorst et al., 1998). LAT52::GUS embryogenic lines were initiated without prior crossing 

with the pt mutant, using dissected immature zygotic embryos from LAT52::GUS 

homozygous plants. 

Cultures were selected after 3 weeks for the presence of embryogenic and non-

embryogenic calli. From that point on, embryogenic and non-embryogenic cultures were 

maintained separately and subcultured on a weekly basis. 

GUS histochemical localization 

GUS expression was determined by histochemical staining of both embryogenic and 

non-embryogenic tissues as described in Passarinho et al. (2001). Stainings were repeated 
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weekly for a period of two months for relevance of the results that might be affected by the 

stage of the different cultures. Observations were done with a Nikon SMZ-2T binocular. 
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Chapter 4 

A search for AtEP3 null mutants by insertional 

mutagenesis: screening and phenotypic analysis 

Abstract. The EP3 class IV endochitinase (EC 3.2.1.14) was shown to play a crucial role in 

somatic embryo development in carrot (Daucus carota L.). We have previously identified the 

Arabidopsis thaliana (L.) Heynh ortholog AtEP3 and analyzed its expression pattern during 

development. In this work, we have searched for insertions into the AtEP3 gene and for this 

purpose we have screened two plant collections representing over 80,000 T-DNA and 

transposon insertions. A total of six insertions were identified and the corresponding plants 

were analyzed for putative mutant phenotypes. We report here the details of the screening and 

of the phenotypic analysis, which showed that the absence of AtEP3 protein does not result in 

any visible developmental phenotype under regular growth conditions. To our knowledge, this 

is the first report of a reverse genetics approach in an attempt to understand the function of 

one of the 24 Arabidopsis chitinase genes. 
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Chapter 4 

Introduction 

Transposon and T-DNA insertional mutagenesis has been widely employed in 

Arabidopsis and other plant species to tag genes and generate knockout mutants (Aspiroz-

Leehan and Feldmann, 1997; Speulman et al., 1999). Pooling collections of insertional 

mutants has made it feasible to screen for insertions in any given gene of interest by a PCR-

based approach. This has been successfully used in Arabidopsis (Bouchez and Hofte, 1998; 

Geelen et al., 2000; Papi et al., 2000) and provides a powerful method for functional gene 

analysis, allowing the study of gene families (Meissner et al., 1999; Winkler et al., 1998). 

We have searched for insertional mutants in the Arabidopsis AtEP3 endochitinase gene 

(Passarinho et al., 2001). The AtEP3 gene was identified as the Arabidopsis ortholog of the 

carrot EP3 endochitinase gene. The carrot EP3 protein was shown to play a crucial role during 

carrot somatic embryo development (de Jong et al., 1992). In Arabidopsis, the AtEP3 gene 

was genetically and physically mapped but no mutation was associated with the AtEP3 locus. 

The AtEP3 gene is expressed in a complex pattern, most conspicuously in the male 

gametophyte, stipules and hydathodes, as well as in the root epidermis and emerging root 

hairs. In cultured cells, the gene is only expressed in embryogenic cultures (Passarinho et al., 

2001). No firm conclusion could be made with respect to its function in planta, except that the 

AtEP3 chitinase may have multiple roles during development. Generating AtEP3 null mutants 

was therefore essential to verify this hypothesis and understand the role of the AtEP3. 

For this purpose, we have screened by PCR two different populations of plants 

containing T-DNA (the Versailles lines) or transposon insertions (the AMAZE lines), 

representing in total more than 80,000 independent insertion sites. The screening of both 

collections was successful and allowed the identification of one T-DNA insertion and five En-

1 insertions in the AtEP3 gene. We report here that one of the En-1 insertions resulted in the 

complete absence of AtEP3 chitinase into the medium of embryogenic cultures. Neither in 

culture nor in plants, any consistent developmental mutant phenotype was associated with the 

disruption of the AtEP3 gene. In this work, we describe the details of the screening procedure 

as well as the phenotypic analysis. 
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Results 

Screening of the Versailles T-DNA collection 

AtEP3 gene-specific primers were designed according to INRA's recommendations 

(Figure 1A). Sixteen primer pairs were tested under simulated screening conditions on total 

genomic DNA from the ecotype WS (the genetic background of the T-DNA lines) using 

amounts of DNA between 100 and 0.1 ng. Eventually, the primers PP1 and PP6 gave the best 

amplification results and were used for the screening in combination with two T-DNA 

primers (TAG3 and TAG6, Figure IB) to cover the possible orientations of the inserted T-

DNA. 

TAI1 PP1 PP3 PP9 
• - ^ - ^ - *~ 

5'UTR — > 3 

PP12 PP6 PP8 TAI2 

• 100 bp 

TAI1 

TAG 

PP1 

PP3 

PP6 

PP8 

PP9 

PP12 

5'-MAATGTTGACTCCCACCATTTCTAAATCC-3' 

5'-TCOTi«3CaftCnX3Aajn?GTTTCaGGA3,CA-3' 

5,-TT03TCfiGMXn,AT(nrKnftGTX3«3TTTGG-3' 

5'-̂ rCCOTECCriX3CAAATGGTGTCTCTGTGG-3' 

5-CCACAAGGCGGTTTTGAAGGATATGACTGG-3 

5'-GTTMTGGCACX3GATW3TTGCACCAAAACC-3' 

5'-TTGAGGCCTTAGACTCATATTCTCGTrTCG-3' 

S-TATrGOXSTTGCATTCTCGTCGCAGTAATCC-S' 

TAG5 TAG6 

RB I LB T-DNA 
TAQ3TAG1 

TAGl 

TAG3 

TAGS 

TAG6 

En205 

Eh8130 

En8202 

5'-GGACGTAACATAAGGGACTGAC-3' 

5,<rK»TACCAGACGTTGCCKGCM,AA-3' 

5^7TACAAATTGCCTTITCTTATCGAC-3' 

5'<»CTCAGTCmCATCTACGGCA-3' 

En-1 

En8130 En8202 

5 ' -AGAAGCACGACGGCTGTAGAATAGGA-3' 

5 ' -GAGCGTCGGTCCC(»CACTTCTATAC-3' 

5 ' -CACTO^ACCTTmTCTTGTAGTG-3' 

Figure 1. Primers used for 
screening the Versailles and 
AMAZE collections. 
A. Positions (arrowheads) and 
sequences of the 
AtEPi/AtchitIV primers on its 
genomic sequence. The open 
boxes represent the two exons 
of the gene and the arrow the 
start codon. B. Positions and 
sequences of the T-DNA-
specific primers. C. Positions 
and sequences of the En-1-
specific primers. 
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Figure 4. First round of the screening of the AMAZE collection. Identification of the three-tray pools with 
an En-1 insertion in the AtEPS gene. 
Autoradiogram of the PCR performed on the three-tray pools using primer combinations PPl/En8202 and 
PP6/En8202. The loading pattern of the gel is indicated above the autoradiogram. The numbers represent the tray 
pools contained in each three-tray pool (e.g. 1-3 contains the tray pools 1, 2 and 3). The negative controls for the 
PCR reaction were performed on wild-type DNA from the ecotypes Columbia and Landsberg erecta and were 
loaded in the lanes marked Col wt and Ler respectively. The arrowheads show the positive three-tray pools. 
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primers were then tested individually for aspecific amplification with each £n-specific primer 

(Figure 1C). 

m n S S l 2 3 4 5 6 A B C D E F G H I 

m i 
31A3 

1 
N. N. CO i l - - - A c 

j - . . h , ao &t c 
M w r i n n . o 3 4 < 

Mi 

6 A B C D E 

5 6 A B C D E 

t i l ^ * 

- G H 1 
37A3 

F G H 1 
12973 

Hii. 

Figure 5. Second round of the screening of 
the AMAZE collection. Confirmation of 
the positive three-tray pools and 
identification of the corresponding 
individual lines. 
Autoradiograms of the PCRs performed on 
all pooling dimensions contained in the 
identified three-tray pools, after 
hybridization with an /t^W-specific probe. 
The PCR reactions were performed either 
with PPl/En8202 (A, B, D and E) or with 
PP6/En8202 (C). The outlined numbers 
represent the three-tray and single tray pools, 
the plain numbers the rows and the capital 
letters the columns. The arrowheads indicate 
the bands specifically amplified in all 4 
dimensions (three-tray, single tray, column 
and row) allowing the identification of 
individual lines, e.g. 17F4 in A: three-tray 
16-18, tray 17, column F and row 4. 

No amplification product was observed. The screening was subsequently performed on the 

three-tray pools, and it appeared that on this material the En8130 primer produced many 

unspecific amplifications with both gene-specific primers (data not shown). It was therefore 

decided to use the En8202 primer for the £w-3'end, which considerably improved the quality 
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of the PCR amplifications and allowed the identification, after hybridization, of nine positive 

three-tray pools (Figure 4). The same PCR reactions were repeated on each of the positive 

three-tray pools and the three other dimensions for these pools. Positives were confirmed 

when the same PCR product was amplified in all dimensions and that the coordinates obtained 

corresponded to an individual line (Figure 5). This brought the number of true positives down 

to four, with the tray-column-row coordinates 17F4, 29F2, 31A3 and 37A3 (Figure 5A-D; 

these coordinates were subsequently used as identification number for the insertion lines) plus 

an additional positive for which the column dimension was unclear (Figure 5E). All positive 

coordinates were confirmed by nested PCR using PP3/En8202 and PP12/En8202, for the lines 

identified with PP1 and PP6 respectively and by amplifying the other end of the insertion 

sites, using the En205 primer with TAI1 or TAI2. For the positive 12973, without column 

coordinate, the reaction was repeated on each column pool, which allowed the identification 

of column C, giving the coordinates 129C3 (data not shown). Amplification products were 

purified, cloned and sequenced. 

PP1 

5'UTR -r £1 pre pre / / / / / 

PP12 PP6 PP8 TAI2 

noobp 

Figure 6. Position of the En-1 insertions in the AtEP3 gene. 
En-1 insertions are depicted by the shaded boxes accompanied by the number of the line in which the element is 
present at this position. The exact insertion sites were determined by sequencing of the PCR products generated 
with the AtEP3 primers (arrowheads) in combination with the En8202 and En205 primers. 

Sequence analysis revealed, as expected, that all lines identified had an insertion into the 

AtEP3 gene. It also appeared that the insertions were scattered along its coding sequence and 

3'-untranslated region (Figure 6), giving us reasonable chances of a gene knockout and maybe 

several mutant phenotypes with AtEP3 proteins truncated at different positions. 

90 



AtEP3 null mutants by insertional mutagenesis 

Genetic andphenotypic analysis ofAtEP3 insertion lines 

Seeds of the corresponding AMAZE lines were obtained from the Max-Planck Institut 

ftir Zuchtungsforchung (Koln, Germany) and plants were grown for analysis. Due to the 

presence of the transposase in the En-1 element, both somatic and gametophytic insertions are 

unstable. Therefore the presence of the En-1 insertion needs to be verified in each successive 

generation. The insertional alleles were first confirmed in each plant of each insertion line by 

PCR amplification and Southern blot analysis. To have an internal standard for DNA quality, 

two gene-specific primers were used simultaneously with one ZiH-specific primer (Figure 7). 

This way, we also hoped to directly determine the genotype of the tested plant. However, due 

to the frequency of the excision events the wild-type allele, even in a plant homozygous for 

the insertion, was always amplified. By following the segregation of the En-1 element 

inserted into AtEP3 we were able to determine the insertion genotype of the mother plant for 

each line (Figure 7C). 

The plants for which the insertion into AtEP3 was confirmed were analyzed further at 

the morphological level and compared to wild-type Columbia plants as well as to plants of the 

same line without an insertion in the AtEP3 gene. A broad range of morphological defects was 

observed together with an extensive variation between individual plants of the same line. This 

is most likely due to continuous transposon activity in the genome of these plants. The 

observed phenotypes ranged from high levels of anthocyanin, altered phyllotaxis, late 

flowering, very large or extremely small rosettes, no silique development to complete sterility, 

and were found in all possible combinations (Figure 8). None of these phenotypes segregated 

with the En-1 insertion in AtEP3 and therefore no direct link could be made with a disruption 

of the chitinase gene. 

Based on the proposed role of AtEP3 during pollination and embryogenesis (Passarinho et al., 

2001) particular attention was paid to seed development, and siliques of all plants were 

analyzed in detail for seed abnormalities. Seed abortions were scored in dissected siliques of 

each plant and the results are summarized in Figure 9. Interestingly, some plants showed up to 

100% seed abortion. The siliques were however fully developed, suggesting that the arrest in 

seed development was uncoupled from pod development. The seed abortion phenotype was 

highly variable within plants of the same line and even between siliques of the same plant. 

This variation was also qualitative, ranging from an early to a late arrest in seed development 

or both intermingled in the same silique. This phenotype was also found in plants that had no 

insertion in the AtEP3 gene. However, the excision activity of the En-1 element itself could 

also explain this situation. It remained therefore possible that the En-1 element had excised 
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PP1 

5DTR -e 
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I —3'UTR 

100 bp PP6 
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Line Segregation En-1 Genotype mother % developed seedling 

17F4 

29F2 

31 A3 
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129C3 

Col. 

100% 
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3:1 

-
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Heterozygous 

Heterozygous 

Homozygous 

Heterozygous 

-

100 
70 
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94 

Figure 7. Molecular analysis of the AtEP3 insertion lines. 
A. Position of the primers used for determining the presence of the En-1 insertions in the AtEPi gene for each 
individual plant of the lines identified, as well as their genotype for the insertion. The example of line 31 A3 is 
shown here. B. Example of an autoradiogram of the multiplex-PCR performed on genomic DNA from each plant 
of the individual line 31 A3, after hybridization with an ^£M-specific probe. The numbers above the lanes 
indicate the plant numbers of line 31 A3 (e.g. 2 represents plant 31A3-2), 0 is the negative control of the PCR 
reaction (no DNA), and Col. is the positive control for the AtEPi primers (Columbia genomic DNA). When the 
En-1 element is inserted in AtEPi, the lower band (En-1) is amplified and detected by the probe, the 
corresponding lane is marked E. The upper band (AtEPi) represents the wild-type AtEPi gene without insertion. 
Because of the presence of revertant sectors, both bands can be detected simultaneously, even in a plant 
homozygous for the insertion. On the other hand some plants gave no PCR product for En-1 (noted -) indicating 
that the mother plant was heterozygous or that the En-1 element has excised from its original position. Plants for 
which no PCR product was amplified, probably due to a DNA of bad quality, were not scored (noted ?). C. 
Segregation and genotype of the En-1 insertion in the AtEPi gene for each individual positive line. The presence 
of the En-1 element was verified per plant of each line by the PCR experiment described in A and B. The 
segregation ratios were determined by dividing the number of plants with the En-1 insertion by the number of 
plants without. In the case of the line 31A3, shown in B, this was 10:3, i.e. ± 3:1. The genotype of the mother 
plant was deduced from these ratios. We also counted the percentage of seedlings that had developed 6 days after 
transfer to soil. 
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from the AtEP3 gene in these lines but had left a footprint. Unfortunately, the seed abortion 

phenotype was absent in plants that still had an insertion into the AtEP3 gene, suggesting that 

this phenotype is not linked to a disruption of the AtEP3 gene. The detailed analysis of these 

plants was further complicated by the presence of multiple En-1 insertions and by the high 

activity of the transposase that generated chimeric plants. To simplify the analysis, we 

decided to pursue with only one line and chose 31 A3, which has an En-1 element inserted in 

the first exon of AtEP3. In theory, this should provide us with the best opportunity of having a 

functional knockout. Some plants were back-crossed to Columbia in an attempt to eventually 

be able to analyze plants with a single En-1 insertion in AtEP3. The progeny of those crosses 

and from selfed plants were grown and observed in detail. None of the already observed 

defects segregated in a Mendelian manner (data not shown). This reflected the instability of 

the various En-1 elements present and confirmed that there was no phenotype at the plant 

level that could be linked to the disruption of the AtEP3 gene. 

Since the function of EP3 in carrot was only demonstrated during somatic embryogenesis (de 

Jong et ah, 1992) and supported by the expression pattern of AtEP3 in cultured cells 

(Passarinho et ah, 2001), we continued the analysis of line 31A3 by looking at somatic 

embryo development in some of its homozygous descendants. Embryogenic cultures were 

initiated in triplicate from dissected immature zygotic embryos from the En-1 lines 31A3-7 

and 31 A3-10 and from Columbia as control. After three weeks, these cultures were scored for 

their embryogenicity. All cultures had only produced a few somatic embryos and rapidly 

became non-embryogenic (data not shown). No apparent difference between En-1 lines and 

Columbia was observed. Medium was collected from these cultures and analyzed for the 

presence of the AtEP3 protein (Figure 10). The AtEP3 chitinase is only present in 

embryogenic cultures (Passarinho et al, 2001) and although the embryogenic potential of 

wild-type cultures was rather low in these experiments, it was clear that the AtEP3 chitinase 

was produced and secreted at detectable levels in the medium. In the En-1 cultures, AtEP3 

was no longer detectable. This indicated that the disruption of the AtEP3 gene indeed, as in 

lines 31A3-7 and 31A3-10, led to a complete absence of AtEP3 protein synthesis, or maybe to 

a truncated protein that is no longer recognized by the antibody. We conclude that absence of 

the AtEP3 protein does not lead to a visible developmental phenotype, neither at the plant 

level nor in embryogenic cultures. 
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Figure 8. Examples of morphological defects observed in some AtEP3 insertion lines. 
A. Overview of plants from AtEPS insertion line 37A3 showing from right to left: tiny plants with small rosette 
and hardly any development, plants with a very large rosette and delayed development, plants with a single stem 
and a tiny rosette, plants with a very large rosette and a rather short shoot, and plants that are similar to the wild-
type, which is in the last row from the right. B. Closer view of a sterile plant from line 37A3 compared to the 
wild-type on the left. The right panel shows a higher magnification of the non-elongating siliques found on the 
sterile plant. C. Overview of plants from AtEPS insertion line 31 A3, showing some additional phenotypes such 
as plants (3rd row from the right) that are taller than the wild-type in the last row from the right. D. Closer view 
of a plant of line 29F2 having a delayed development as compared to the wild-type on the left. The first siliques 
are just appearing (arrowheads on the right panel) and the rosette leaves are smaller. E-F. Some of the 
phenotypes also seen in A and B are also present in lines 29F2 (E) and 17F4 (F) with a gradient in the severity of 
the defects (plant size and fertility in E, as well as branching (first plant from the right) and branching and rosette 
size in F). The wild-type is the last plant from the right in both panels. 
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Discussion 

The aim of this work was to obtain a knockout mutation in the Arabidopsis AtEP3 

endochitinase gene. We have successfully screened two Arabidopsis plant populations 

generated by insertional mutagenesis, representing over 80,000 insertions. In total, we have 

identified six insertions in the AtEP3 gene and determined their exact position by sequencing. 

A T-DNA insertion was located at the start of the second exon, corresponding to the catalytic 

domain of the enzyme, and this should have resulted in a truncated non-functional protein. 

However, the individual insertion line could not be identified, most likely due to a problem in 

the pooling procedure. In addition, one En-1 insertion was found in the first exon, three in the 

second and a final one in the 3'-untranslated region. All corresponding individual insertion 

lines were identified and a detailed phenotypic analysis was performed. Multiple En-1 

insertions are present in these plants, and they are somatically and germinally unstable. This 

may have caused the observed variety of phenotypes. Putative AtEP3 mutants were analyzed 

in detail for morphological defects during plant development that could be linked to an 

insertion in the AtEP3 gene. The main focus was on seed development and somatic 

embryogenesis in view of the expression pattern of the AtEP3 gene (Passarinho et al., 2001). 

Although in one En-1 insertion line we could show that the AtEP3 protein was no longer 

produced, it appeared that none of the observed phenotypes could be genetically linked to the 

disruption of the AtEP3gene. 

In carrot, the EP3 endochitinase was identified by its ability to restore embryo development in 

the mutant cell line tsll (de Jong et al, 1992). Later studies revealed that it is not only the 

absence of the EP3 protein, but presumably also the absence of a related class I chitinase that 

made tsll respond to the addition of EP3 protein (de Jong et al., 1995; Kragh et al., 1996). 

Indeed, tsll also responded to this class I chitinase by producing more embryos (de Jong et 

al., 1995). The phenotype of the tsll mutant line is thought to be the result of a secretory 

defect rather than a mutation in the carrot EP3 chitinase gene (Baldan et al., 1997). Recent 

results (van Hengel et al., 2001) showed that this chitinase had a stimulatory effect on somatic 

embryogenesis from carrot wild-type protoplasts, suggesting that the effect of chitinases on 

embryogenesis was not restricted to tsll. Therefore, it could well be that without disrupting 

other Arabidopsis chitinase genes, we will not be able to see any somatic embryo phenotype. 

Based on these observations we did not pursue the further analysis of these insertion lines, 

neither at the molecular (mRNA quantification) nor at the genetic (back-crossing) level. 
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Figure 9. Phenotypic analysis of seed development in the AtEPS insertion lines. 
A-E. Distribution of seed abortions per plant of each line containing an En-1 element in the AtEPi gene. Values 
on the Y-axis represent the percentage of total seed abortions per plant. The plant numbers are indicated on the 
X-axis. Columbia (Col.) is the wild-type used for comparison with each line. Plants without a percentage of seed 
abortion recorded were fully sterile and did not produce any silique. F. Example of a silique with nearly 100% 
seed abortion. Only two normal seeds (ns) are visible. The aborted seeds show either early abortions (eas) and 
are small and white or show late abortions (las) and are shrunken and brown. Bar = 1 2 mm. G. Higher 
magnification of early (eas) and late aborted seeds (las). Bar = 3 mm. 

The efficient screening of large plant collections depends largely on the pooling 

strategy employed that must allow the analysis by PCR of thousands of individual plants 

simultaneously for a rapid identification of an individual plant. Extreme care must be taken in 

this operation since, as we experienced, a small mistake can be fatal for the identification of 
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an individual insertion line. Three-dimensional pooling of the DNA of these plants, such as 

performed for the AMAZE collection, has proven to be a very effective method. Another 

limiting factor to consider in this approach is the nature of the inserted element. T-DNA 

insertions are stable and thereby allow an easier molecular and genetic analysis of mutant 

phenotypes. However, their integration into the plant genome is often the cause of truncations 

and local rearrangements after which only one of the T-DNA borders is recovered (Krysan et 

al., 1996). In addition T-DNA insertions often consist of several copies inserted in tandem, all 

of which can complicate their detection in a gene of interest. Another disadvantage is that 

their insertion frequency is low (1-2 loci per line, (Bouchez and Hofte, 1998)), making it more 

difficult to achieve genome saturation. Indeed, one needs to generate very large plant 

populations, considering that 120,000 independent insertions are estimated to be necessary for 

having 95% chance of hitting any gene at least once (Bouchez and Hofte, 1998). 

Transposon mutagenesis allows the generation of a large number of insertions in a relatively 

small population of plants. Depending on the system used, up to 30 transposon copies can be 

present in the genome of a particular line (Speulman et al., 1999), which makes it easier to 

identify insertions in a given gene. However, this large number of insertions can also 

significantly complicate the phenotypic analysis and be very time consuming. Indeed, such 

plants often have multiple phenotypes, linked or not, and it can be difficult to associate them 

with a particular insertion. This requires an extensive genetic and molecular analysis on large 

progenies with several generations of back-crossing involved in order to reduce the number of 

insertions to the one in the gene of interest. In the AMAZE collection for instance, the 

transposon is autonomous and is active both somatically and germinally. Consequently, one 

needs to "stabilize" the insertion of interest and this cannot be done, as in two-component 

systems, by crossing out the transposase source (Speulman et al., 1999; Tissier et al., 1999). 

One way out is to screen for lines with excised elements that left a footprint behind in the 

gene of interest and that have no other insertion in their genome, which is particularly time-

and labor-consuming. This implies successive back-crosses to eliminate all other mobile 

elements and systematic molecular confirmation of the presence/absence of the transposon in 

each plant at each generation. The identification of a footprint requires then systematic 

amplification, cloning and sequencing of the locus of interest. In two-component transposon 

systems this analysis is facilitated by the stability of the insertion and the presence of a 

selection marker in the transposon construct (Altmann et al., 1995; Speulman et al., 1999; 

Tissier et al., 1999). Transposon mutagenesis also allows the remobilization of the 

transposable element in order to determine if reversion of the observed phenotypes occurs, to 
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confirm their link with the analyzed insertion. In the case of T-DNA mutagenesis, this 

requires the introduction of a wild-type allele for complementation of the mutant phenotype. 

AtEP3 

29 kD 

Figure 10. Western-blot analysis of AtEP3 
protein production in somatic embryogenic 
cultures otAtEP3 insertion lines. 
Equal amounts of proteins isolated from the 
medium of embryogenic cultures of Columbia 
(Col.) and two homozygous 31A3 lines (31A3-7 
and 31 A3-10) were analyzed by Western-
blotting, using an antibody raised against the 
carrot EP3 protein (de Jong el al., 1995). In the 
lane marked AtEP3, a sample of an in vitro-
produced AtEP3 protein (Passarinho et al, 
2001) is shown as the positive control for the 
immunodetection. 

A more general problem associated with both methods is the frequently observed 

absence of a phenotype for an insertion in the gene of interest. It is indeed estimated that only 

1-5% of the insertions do display mutant phenotypes (Pereira, 2000). The reason often 

proposed is genetic redundancy. Many genes belong to families that are the result of gene 

duplications(The Arabidopsis Genome Initiative, 2000) and of which the members can have a 

similar function, thereby masking any possible phenotype. This is clearly demonstrated in the 

work of Meissner and coworkers (Meissner et al., 1999) who showed that individual knock­

out of 36 members of the R2R3 MYB gene family does not give rise to a visible 

morphological phenotype. This genetic redundancy could also account for the absence of a 

phenotype in plants without a functional AtEP3 protein, since six other class IV chitinase 

genes and a related class I chitinase gene are known to be present in the Arabidopsis genome 

(Passarinho et al, 2001). 

Another cause for seemingly redundant functions is a failure to spot the actual 

phenotype under the screening conditions applied. In several cases, growing the putative 

mutant plants in a variety of environments appeared to be essential for revealing their 

phenotypes (Geelen et al., 2000; Hirsch et al., 1998; Meissner et al., 1999). When there is no 

clear hint on what type of phenotype can be expected, this can be a difficult task. In the case 
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of AtEP3, based on its expression pattern one could envisage defects in pollen development, 

anther dehiscence, pollen germination and/or pollen tube growth, all leading to male sterility. 

We could also expect a root or root hair phenotype or an effect on somatic embryo 

development. Since none of these was apparent or linked to the absence of AtEP3 protein, it 

remains uncertain which function this chitinase has in Arabidopsis. Nevertheless, this is the 

first report, to our knowledge, of a reverse genetics approach to study the role of a chitinase 

gene during plant development and it clearly reveals some of the limitations of these 

strategies, principally when dealing with gene families. 

Systematic large-scale sequencing of insertion sites should allow the identification in 

silico of knockout mutants per family, saving a substantial amount of work (Arabidopsis 

Sequenced Inserts at http://ukcrop.net/agr/insert.html). Subsequent crosses could then be 

immediately initiated to generate multiple mutants. The Arabidopsis Knockout Facility 

developed at the University of Madison (Sussman et ah, 2000) also aims at improving this 

methodology e.g. using the concept of "launching pads" to create double mutants in one go. 

New methods are continuously under development. For example Targeting Induced Local 

Lesions IN Genomes (TILLING, McCallum et ah (2000) allows the identification of 

chemically induced mutations in target sequences, combining the efficiency of Ethyl Methane 

Sulfonate (EMS) mutagenesis with the ability to automatically detect Single Nucleotide 

Polymorphisms (SNPs) by denaturating high-performance liquid chromatography (DHPLC, 

Steinmetz et al. (2000). 

Materials and Methods 

Plant growth conditions 

Arabidopsis thaliana (L.) Heynh plants were grown in soil under long day conditions 

(16h photoperiod, 22°C). Seeds were germinated on wet filter paper and transferred to soil 

after 2 days of vernalization at 4°C. 

Plant collections 

The Versailles T-DNA lines were generated by vacuum infiltration of the ecotype 

Wassilewskija (WS) with the pGBK5 binary vector (Bechtold et al., 1993; Bouchez et al., 

1993). Genomic DNA of each individual line was pooled in primary pools (PPs), each 

containing 48 individual lines, these were gathered into superpools (SPs) of 8 PPs, and 29 
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hyperpools (HPs) were formed of 2 SPs each. A total of 22,176 lines were screened, 

representing approximately 33,000 insertions. 

The AMAZE lines were generated in the ecotype Columbia (Col.), as described in 

(Baumann et al., 1998). They were organized in four dimensions, allowing each individual 

line to be designated according to its three-tray, single tray, row and column coordinates 

(Baumann et al., 1998). Subpopulations I and II were screened representing a total of 8,000 

lines carrying approximately 48,000 En-1 insertions. 

Screening of the Versailles T-DNA collection 

The PCR screening was performed with AtEP3 gene-specific primers designed 

according to INRA's recommendations and tested in the screening conditions described 

hereafter. Because T-DNA insertions often have only one intact border (Nacry et al., 1998), 

primers for both ends of the T-DNA were used in combination with the selected gene-specific 

primers. The primary screenings were performed at INRA (Versailles, France) on the 29 HPs 

and the primer pair giving the best amplification was used further. The PCR reactions were 

performed using 25 pmol of each primer, 0.2 mM dNTPs, and 1 unit of Taq Polymerase 

(Boerhinger Manheim, Germany) in 10 mM Tris-HCl pH 9.0, 50 mM KC1, 0.1% (v/v) Triton 

X-100 and 2.5 mM MgC^. The cycle parameters were the following: 5 min at 94°C; 10 cycles 

of 1 min at 94°C, 1 min at 65°C (minus 1°C per cycle), 2 min at 72°C; 40 cycles of 1 min at 

94°C, 1 min at 55°C and 2 min at 72°C followed by 5 min at 72°C. PCR products were 

analyzed by agarose gel electrophoresis and transferred by alkali blotting onto two Hybond-

N+ (Amersham, UK) membranes simultaneously. Each membrane was hybridized separately 

to a gene-specific probe (AtEP3 genomic sequence) and a T-DNA probe (mixture of Left and 

Right Border sequences). Only bands hybridizing with both probes were considered as being 

positive and the corresponding HPs were analyzed in the very same way at the SP level and so 

forth until the identification of individual lines carrying a T-DNA insertion in the AtEP3 gene. 

The site of insertion was confirmed by nested PCR and sequencing of the obtained PCR 

products. 

Screening of the AMAZE collection 

Each tested AtEP3 gene-specific primer was used in combination with the En-1-

specific primers En205 {En 5' end) and En8130 or En8202 (En 3' end, Figure 1C). The PCR 

reactions were performed using 20 pmol of each primer, 50 uM dNTPs, and 1.25 units of Taq 

Polymerase (Boerhinger Manheim, Germany) in 10 mM Tris-HCl pH 9.0, 50 mM KC1, 0.1% 
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(v/v) Triton X-100 and 2.5 mM MgC^. The cycle parameters were the following: 2 min at 

85°C; 40 cycles of 40 sec at 94°C, 1 min at 65°C and 2 min at 72°C; followed by 5 min at 

72°C. PCR products were analyzed by agarose gel electrophoresis and transferred by alkali 

blotting onto Hybond-N+ (Amersham, UK). The produced membranes were hybridized with a 

radiolabeled AtEP3 cDNA probe and samples giving hybridizing PCR products for each 

pooling dimension were considered as positives, their coordinates corresponding to the 

individual lines with an insertion into the AtEP3 gene. Insertion sites were confirmed by 

nested PCR and sequencing of the obtained PCR products. 

Morphological screening 

Plants from En-1 lines with and without insertion in the AtEP3 gene were grown in 

parallel with Columbia wild-type plants and visually monitored for morphological defects 

such as leaf shape and number, phyllotaxis and fertility. Seed set was analyzed by collecting 

about 10 siliques per plant starting from the fourth silique below the terminal inflorescence. 

Siliques were opened under a Nikon SMZ-2T binocular microscope and seeds were counted 

and classified according to their stage of development: early aborted (white and tiny), late 

aborted (brown and shrunken) and fully developed. Percentages of seed abortion per silique 

and per plant (total early plus late) were then determined. 

In vitro culture 

Arabidopsis embryogenic cultures were initiated from dissected immature zygotic 

embryos of the ecotype Col. and AMAZE lines homozygous for an En-1 insertion in the 

AtEP3 gene and maintained as described by (Mordhorst et ah, 1998). 

Protein purification, and Western blotting 

Total protein extracts from Arabidopsis embryogenic cell suspension culture media 

were obtained as described by (van Hengel et ah, 1998), separated by SDS-PAGE according 

to (Laemmli, 1970) and subsequently transferred to an Immobilon™-P PVDF Transfer 

Membrane (Millipore, Bedford, MA, USA). Immunological detection was performed as 

described by (de Jong et ah, 1995) with a rabbit antiserum raised against carrot EP3. 
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Chapter 5 

Functional analysis of the Arabidopsis AtEP3 

endochitinase: overexpression and antisense approaches 

Abstract. Plant endochitinases (EC 3.2.1.14) play multiple roles in defense and stress 

responses as well as in development. It is therefore essential to first determine the role of 

individual chitinases in order to understand how they can be involved in such different 

processes. Based on its expression pattern, the Arabidopsis AtEP3 endochitinase may be 

involved in several developmental processes. We have generated transgenic plants with 

altered levels of AtEP3 chitinase mRNA and studied the effect of these changes on the 

development of Arabidopsis plants. Overexpression of the AtEP3 gene did not result in any 

visible morphological change whereas down-regulation revealed defects in seed set and root 

hair development. An additional mutant, for which we could not establish a link with a change 

in AtEP3 expression was identified. This mutant showed a male sterility phenotype as well as 

a defect in root hair development. Functional implications of the observed phenotypes are 

discussed in relation with the AtEP3 chitinase. 
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Present address: Swammerdam Instituut voor Levenswetenschappen, Faculteit der Natuurwetenschappen, 
Wiskunde en Informatica, Plantage Muidergracht 12, NL-12018 TV Amsterdam, The Netherlands 
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Introduction 

Endochitinases (EC 3.2.1.14) are abundant hydrolases widely found in higher plants 

(Graham and Sticklen, 1994). Based on their primary structure, endochitinases are organized 

in five different classes numbered from I to V (Neuhaus et al., 1996). Endochitinases are often 

qualified as pathogenesis-related (PR) proteins since the genes encoding some, but not all, 

chitinases can be induced by various elicitors of fungal, bacterial and viral origin. They have 

been proposed as potential fungal growth inhibitors (Schlumbaum et al., 1986) as some 

endochitinases are capable, especially in association with P-l,3-glucanase (EC 3.2.1.39), of 

degrading fungal cell walls and inhibiting hyphal tip growth (Mauch et al., 1988). Class HI 

chitinases exhibit lysozymal activity and are therefore believed to be involved in resistance to 

bacteria (Majeau et al., 1990). However, endochitinases are also induced in more general 

stress reactions such as wounding and application of salicylic acid or heavy metal salts, as 

well as after application of growth regulators such as ethylene, auxins and cytokinins 

(reviewed in Graham and Sticklen, 1994). 

There are also reports of chitinases, of which the expression appears to be developmentally 

regulated, e.g. at specific stages in organs of tobacco flowers (Neale et al., 1990; Trudel et al., 

1989) suggesting that chitinases could also play a role in developmental processes such as 

pollination (Leung, 1992). But the first functional evidence came from work done on a carrot 

mutant cell line, from which arrested somatic embryos could be rescued by the EP3 

endochitinase, a member of the class IV chitinases (de Jong et al., 1992). Interestingly the 

same effect could be mimicked by certain bacterial lipo-chitooligosaccharide signals (Nod 

factors) involved in the Rhizobium-legume symbiosis (de Jong et al., 1993), indicating that 

similar N-acetylglucosamine (GlcNAc)-containing signal molecules could be present in 

plants. This led to the hypothesis that such hypothetical molecules require processing by 

chitinases to induce or control developmental processes such as embryo development. More 

recent studies tend to support this hypothesis by showing that plant chitinases are involved in 

the processing of Nod factors required for root nodule formation (Ovtsyna et al., 2000); 

(Schultze et al., 1998), suggesting that Nod factors are natural substrates for some legume 

chitinases. However, to date no plant-derived Nod analogue has been identified. Recently, 

evidence of an endogenous plant substrate for endochitinases was obtained by van Hengel et 

al. (2001), who showed that certain classes of arabinogalactan proteins (AGPs), present in 

carrot embryogenic cultures and seeds, contain GlcNAc residues. While these AGPs were 

active in promoting embryo formation from carrot protoplasts, after processing by the EP3 

chitinase their activity on embryo formation was enhanced. These observations suggest that 
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endogenous substrates for plant chitinases do exist and that they have a biological activity that 

can be enhanced by chitinase treatment (van Hengel et al., 2001). 

In order to eventually provide a genetic background to analyze these mechanisms, we 

have decided to study the Arabidopsis ortholog of the carrot EP3 chitinase (Passarinho et al., 

2001). The expression pattern of the Arabidopsis gene was found to be highly regulated and 

suggested that it might be involved in development but as also proposed in carrot (van Hengel 

et al., 1998), this role is probably not restricted to somatic embryogenesis. Based on this 

work, AtEP3 could be involved in pollen maturation, germination and/or pollen tube growth 

as well as root hair elongation. Expression in non-dividing tissues (i.e. leaf hydathodes and 

stipules) suggested a possible role in programmed cell death (PCD). Although difficult to 

determine, solely based on expression studies, it was argued that a role in PCD might be at the 

heart of the different functions of the AtEP3 chitinase (Passarinho et al., 2001). 

In this work, we addressed the possible function(s) of this chitinase by generating 

transgenic Arabidopsis plants transformed with the AtEP3 cDNA in sense and antisense 

orientation under the control of the strong cauliflower mosaic virus 35S RNA (CaMV 35S) 

promoter. Transformants were analyzed for changes in AtEP3 gene expression and 

phenotypes correlated with such changes. 

Results 

Transformant selection 

We have generated a number of transgenic lines in an attempt to affect the AtEP3 

endochitinase level by means of overexpression, co-suppression or antisense suppression. 

Two constructs were designed for this purpose (Figure 1A and B) and introduced into the 

genome of Arabidopsis wild-type plants by using Agrobacterium-mediated transformation. 

Transformants were selected on the basis of their resistance to kanamycin conferred by the 

presence of the neomycin phosphotransferase II (NPTII) gene in the introduced construct. The 

progeny of the selected transgenic plants subsequently underwent a number of analyses as 

summarized in Table 1. 

Plants transformed with the overexpression construct Pe35S::AtEP3 yielded a 

sufficient number of transformants, whereas transformation with the antisense construct 

Pe35S::cc-AtEP3 resulted in only three transformants. However, this was due to technical 

difficulties rather than to the construct used. Seeds of all individual transformants were 

harvested and selected as the Ti seeds of their mother plant on germination medium with 
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Figure 1. Schematic representation of the generated T-DNA constructs and DNA analysis of the 
transformed plants. 
The arrows under the AtEP3 and NPTII cDNAs indicate the orientation of the coding sequence and the arrow 
under the enhanced CaMV 35S promoter (Pe35S) indicates the direction of the transcription A. AtEP3 
overexpression construct Pe35S::AlEP3. The arrowheads (1) and (2) indicate the position of the primers used for 
the PCR analysis, 35S-5' and TAI2, respectively. B. AtEP3 antisense construct Pe35S::a-AtEP3. The 
arrowheads (1) and (2) indicate the position of the primers 35S-5' and PP5, respectively. The bar above the 
NPTII gene represents the fragment used as a probe for the Southern blot analysis (Figure 5A). 

kanamycin. T2 and T3 resistant plants were analyzed at the DNA level to confirm the actual 

presence of the construct and to verify that the Pe35S::AtEP3 and the Pe35S::a-AtEP3 

cassettes were intact. This was done by PCR using specific primers present in this part of the 

transgene only (Figure 1A and B). The result of the kanamycin selection was confirmed for all 

plants tested (Table 2) and this also showed that at least one copy of the introduced transgene 

was intact in all selected plants. 

Transgene 

Pe35S::AtEP3 

Pe35S::a-AtEP3 

T, 
Lines 

52 

3 

Segregation 
analysisa 

38 

3 

DNA analy 
Southern 

nd 

3 

sisb 

PCR 

38 

3 

RT-
PCR 

12 

3 

Seed 
set' 

21 

3 

Pollend 

nd 

3 

S.E.e 

9 

2 

Rootf 

9 

3 

Table 1. Analyses performed on AtEP3 overexpression and antisense lines. 
Ti lines are the number of independent transformants obtained for each transgene. Each column indicates the 
number of families descending from the T, lines on which the analyses were performed. 
a The segregation analysis was carried out on the basis of resistance to Kanamycin.b The DNA analysis consisted 
of determining the presence of the transgene (PCR) in the plants analyzed and the number of copies inserted per 
genome (genomic Southern blotting). Expression levels of the AtEP3 gene were determined by gene-specific 
RT-PCR. ° Determination of the number of normal seeds formed per silique and per plant. d Pollen in vitro 
germination.e Seeds or dissected immature zygotic embryos of these lines were tested for their ability to form 
somatic embryos. fThe roots of seedlings from these lines were analyzed for morphological defects. 
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Chapter 5 

Segregation of the transgene was analyzed by scoring the ratio between seedlings that 

are resistant and seedlings that are sensitivity to kanamycin. Table 2 only shows the results 

obtained with lines that in the subsequent analyses displayed possible phenotypes. The line 

nomenclature used through this manuscript is as follows. The capital letter denotes the 

transformed plant (T0), the number that follows represents a Ti line descendant, an additional 

number separated by a dash is added at each subsequent generation. For example, B1-8-18 is 

the 18' T3 line descending from the 8th T2 line descending from Ti line Bl, itself originating 

from transformed plant B. 

The main conclusion from the kanamycin selection is that a great variability was observed 

among the Ti lines but also and mainly among their descendants. This is probably the result of 

multiple insertions as suggested by ratios of kanamycin resistance over kanamycin sensitivity 

(KanR:Kans) that were above the 3:1 value expected in case of a single transgene insertion. A 

large number of lines presented such high ratios, especially visible at the T3 generation where 

it was sometimes accompanied by a loss of kanamycin resistance. This is illustrated in Table 2 

by the results of the descendants of the T] lines C4, D3 and D8 transformed with the 

overexpression construct, and Ti lines Bl and B2, transformed with the antisense construct. 

The occurrence of multiple insertions of the transgene was shown by Southern blot analysis 

on some of the lines (Figure 5). Seeds of descendants such as C4-1 and C4-2 became totally 

sensitive to kanamycin (0) whereas those of descendants such as C4-4 gave inverted 

Kan :Kan ratios (<1), with a larger number of seedlings that are sensitive to kanamycin as 

compared to the seedlings that are resistant. These "newly" sensitive seedlings often showed 

less severe phenotypes, being slightly bigger than fully sensitive seedlings and their 

cotyledons showing patches of green, also indicative of partial resistance. However when 

transferred to soil most of the partially resistant seedlings died and in the subsequent 

generation only normal Mendelian segregation ratios were found (Bl and B2 lines). 

Some ratios indicative of transmission defects were also found especially in lines with 

the Pe35S::AtEP3 construct. The lines presented here (C4, D3 and D8) indicate 1:1 ratios at 

the T2 generation suggesting a gametophytic lethal phenotype that allows complete seed 

development only if the transgene is transmitted by one of the gametes but not by the other. 

However, at the T3 generation we can see that only C4-5 and D8-8 still segregate 1:1. The 

other descendants are homozygous (e.g. D3-6 or D8-6) or show different segregation ratios 

such as D3-1 (8:1) or D8-1 (15:1). Therefore, based on the variations observed from the T2 to 

the T3 generation, it is not very likely that these KanR:Kans ratios are the result of actual 

transmission defects. They most likely reflect artifacts of the kanamycin selection. 
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Another remarkable observation concerned antisense line B3 and its progeny. This is the only 

line in which the transgene segregated as a single insertion giving a 3:1 ratio. However, this 

ratio remained the same in all subsequent generations. Seeds always seemed to come from 

heterozygous plants, since they were never 100% resistant to kanamycin. A closer look at this 

line revealed that one third of the kanamycin-resistant descendants did not produce any seeds. 

This suggests that homozygous plants would be sterile as a result of a recessive sporophytic 

effect of the transgene. 

Analysis of the AtEP3 expression level in the Pe35S::AtEP3 and Pe35S::a-AtEP3 

transformants 

A first step of our analysis was to determine the effect of the transgenes on the 

expression of the AtEP3 gene. RNA was isolated from seedlings and inflorescences of 

individual lines of each family and gene-specific RT-PCRs were performed on these samples. 

The AtEP3 mRNA levels were compared for each line with the wild-type using the 

cyclophilin gene ROCS (Chou and Gasser, 1997) as an internal standard (Figure 2). During 

this analysis we encountered a number of difficulties mostly due to the low expression level 

of the AtEP3 gene in wild-type plants. This hindered quantification in the case of expression 

levels that may have been lower than the wild-type for which the detection was limited by the 

number of PCR cycles used to stay in the linear range of the reaction from our internal 

standard. 

In the case of the Pe35S::AtEP3 lines, the analysis was reasonably straightforward and clearly 

showed that the AtEP3 gene was overexpressed in most of the lines, with relative expression 

levels reaching almost 7 times the level of the wild-type (Figure 2A and B). These levels also 

varied quite a lot within individuals of a family (see D19 and D8 samples). Lines D8-4 and 

D8-5 on the other hand showed expression levels comparable to the wild-type and only one 

line, C4-5, showed an approximately 10-fold decrease in expression. 

In the case of the Pe35S::a-AtEP3 lines, the analysis was somewhat more complicated since 

our RT-PCR experiments were not designed to distinguish between endogenous AtEP3 

mRNA and the antisense mRNA. When using AtEP3 gene-specific primers that amplified 

both transgene and endogenous mRNAs, often the relative expression levels were found to be 

higher in the transgenic plants than in the wild-type. We interpreted this as a manifestation of 

the transgene expression in all cells of the tissue used for RNA isolation. The expected 

antisense suppression is likely to occur only in cells expressing both the endogenous gene and 
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the transgene simultaneously. The expression pattern of the AtEP3 gene is very restricted 

(Passarinho et ah, 2001) and represents only a minor fraction of the cells present in the tissues 

we analyzed, i.e. pollen grains versus complete inflorescences or root hairs versus complete 

seedlings. To overcome these potential drawbacks we undertook several approaches, (i) RNA 

was extracted from isolated pollen grains and (ii) a primer was designed to be specific for the 

3'untranslated region of the endogenous gene upstream the polyadenylation signal in order to 

rule out amplification of the cDNA reverse-transcribed from the transgene mRNA. Both 

approaches failed to provide a reliable quantification. The variations between individual 

experiments, especially with pollen RNA due to the low amounts of starting material, were 

simply too high. Consequently, we did not succeed to determine any change in AtEP3 

expression in the antisense lines. 

AtEP3 

ROC5 sL^^k tfM^4ib M ^ 

Figure 2. RT-PCR analysis of AtEP3 gene expression in Pe35S::AtEP3 plants. 
A. Autoradiogram of an RT-PCR performed on RNA from seedlings of Pe35S::AtEP3 lines. The upper panel 
shows the result for the AtEP3 mRNA and the lower the result for the ROC5 mRNA after hybridization of the 
PCR products with a radiolabeled gene-specific probe. The sample names/plant codes are indicated under the 
lanes using the following nomenclature. The capital letter represents the plant transformed with the construct and 
the number that follows stands for the Ti descendant. For T2 descendants this is followed by an additional 
number separated by a dash and for T3 lines a third number is added and so forth. For example D19-8 is the 8 
T2 line descending from the T, line D19. WS is the wild-type. B. Quantification of the hybridization signals from 
panel A. Hybridization signals were quantified using the software ImageQuant® and the AtEP3 values were 
corrected according to the values obtained with ROCS. These values were then expressed as a ratio (corrected 
signal intensity for transgenic plant -s- corrected intensity for WS) representing the relative expression level of 
AtEP3 in the transgenic plant as compared to the wild-type and plotted as an histogram with the sample names 
above the bars. 
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Analysis of seed formation in the Pe35S::AtEP3 and Pe35S::a-AtEP3 transformants 

In parallel to the analysis of the AtEP3 mRNA levels we conducted a phenotypic 

analysis on the selected transformants. Based on the supposed role of the AtEP3 chitinase 

during embryo development, we began by looking for defects in seed formation. Siliques of 

individual plants were analyzed for a number of transgenic T2 lines (Table 1). Most lines 

presented no difference with the wild-type and only the results of the lines for which we did 

find a difference are shown in Table 3. 

Line 

C4-5 
D8-5 
D8-6 
D3-8 

Bl 
B2 
B3 

WS 

Normal seeds 

385 
518 
225 
336 

320 
716 
1167 

607 

Late abortions 

2 
0 
2 
1 

3 
11 
23 

7 

Early abortions 

265 
218 
94 
204 

256 
461 
1562 

74 

Total abortions 

267 
218 
96 
205 

259 
472 
1585 

81 

Total seeds 

652 
736 
321 
541 

579 
1188 
2752 

688 

% abortions 

40.9 
29.6 
29.9 
37.9 

44.7 
39.7 
57.6 

11.8 

Table 3. Seed set analysis of the Pe35S::AtEP3 and Pe3SS::a-AtEP3 lines. 
This table shows an example of the results we obtained while observing seed formation in immature siliques. 
Only Pe35S::AtEP3 lines differing from the wild-type, WS, are shown here. D8-5 and D8-6 are T2 lines 
descending from the same Ti line D8. The results of the Pe35S::a-AtEP3 lines consist of the observations made 
on several T2 heterozygous descendants of each of the three Ti lines. 

A first conclusion to be drawn is that the transmission defects suggested by the kanamycin 

selection may be found back in this analysis. Indeed, in lines where the seed set is affected, 

the level of seed abortion is about twice that of the wild-type. This could be in agreement with 

the 1:1 KanR:Kans ratios shown in Table 2. Although, based on the results of the kanamycin 

selection this would only be true for line C4-5. However, we cannot rule out a genetic 

discrepancy between the actual transmission of the transgene and the observed resistance to 

kanamycin. The level of resistance may indeed depend on the location and number of 

transgene insertions. The second conclusion concerns the type of abortions observed. They 

consist in great majority of early arrests, while late arrests are only found at the level seen in 

the wild-type (± 1%). The early arrests we observed can be due to ovule or pollination defects. 

Based on the expression pattern of the AtEP3 gene in developing pollen (Passarinho et al., 

2001), the latter possibility is more likely. A lower or higher expression of the gene in pollen 

grains could indeed disturb pollen germination and or pollen tube growth and consequently 
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affect fertilization and seed development. 

In antisense line B3, the level of seed abortion is above 50% in heterozygous plants whereas 

in homozygous plants, there is no silique elongation. However some escapes do occur and 

were noticed when harvesting the dried sterile plants. 24 plants were put into individual seed 

bags and on average 5.38 ± 4.95 seeds were found per plant, indicating that fertilization can 

still occur in these plants. Some of the harvested seeds were sown and all plants appeared to 

be sterile (data not shown), confirming that the B3 sterile plants are homozygous. This is the 

only line where such a phenotype could be observed. 

Interestingly, line C4-5 that exhibits a strongly reduced seed set (Table 3) also shows a 10-

fold decrease in AtEP3 mRNA level (Figure 2). However, lines D3-8 or D8-6 that have a 2 

and 3-fold increase, respectively, of AtEP3 expression as compared to the wild-type (data not 

shown), show a very similar phenotype. In addition, lines with the highest expression levels 

(D19 family, Figure 2), do not show any defect in seed set (data not shown) and lines with 

expression levels comparable to the wild-type (e.g. D8-5, Figure 2) do show a seed abortion 

phenotype. Furthermore, our failure to quantify the AtEP3 mRNA levels in the antisense lines 

does not allow us to conclude whether the observed defects in the lines Bl, B2 and B3 could 

be due to a reduction in AtEP3 expression. Nevertheless, based on the variations found in 

these results we can assume that a direct correlation between the AtEP3 expression level and 

the observed seed set defects is not very likely. 

Analysis of embryogenic capacity in thePe35S::AtEP3 andPe35S::a-AtEP3 transformants 

Since a role of the EP3 endochitinase was so far only demonstrated in carrot somatic 

embryo development, we continued our analysis by looking at the formation of somatic 

embryos in several of the transformants we generated. In Arabidopsis, embryogenic cultures 

can be established by direct seed germination in auxin-containing medium, which only works 

well for some mutants, or by using dissected immature zygotic embryos (Mordhorst et ah, 

1998). We used the first method for the Pe35S::AtEP3 lines and the second for the Pe35S::a-

AtEP3 The results are described in Table 4. 

First of all, the success rate in obtaining embryogenic structures was rather low in all cases, 

and the qualitative aspect of these structures, even in the positive control pt, was not very 

good, probably due to suboptimal culture conditions. Some of the overexpression lines did 

give a few embryogenic structures after 3 weeks of culture whereas the wild-type did not. 

Some did look reasonably good and remained embryogenic for as long as 7 weeks (C6-8, D8-
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1, D8-5, D8-6 and D19-9), but most of them gave no or poorly embryogenic structures and 

lost their embryogenicity with time. Although these were promising observations, when 

comparing the results with the expression levels found in the RT-PCR analysis (Figure 2B) 

we cannot correlate the increase in embryogenic capacity with a higher expression level of the 

AtEP3 gene. For example, D8-4 and D8-5 have similar AtEP3 expression levels, comparable 

to the wild-type, yet D8-5 was one of the best cultures, whereas D8-4 did not give any 

embryogenic structure. The same is true for the D19 family, all of which have higher AtEP3 

expression levels than the wild-type but only D19-9 produced an embryogenic culture. The 

C4-5 line was not tested because of the limited seed set in this line. 

Line 

pt 
WS 

C6-2 
C6-3 
C6-8 
D8-1 
D8-2 
D8-3 
D8-4 
D8-5 
D8-6 
D19-1 
D19-2 
D19-5 
D19-6 
D19-9 

WS 
Bl-2 
B3-3 

Seedlings / 
embryos tested 

37 
122 

9 
56 
40 
76 
77 
77 
71 
77 
91 
43 
89 
32 
71 
94 

s 
nd 
nd 

After 3 weeks 
total ES 

5 
0 

2 
1 
1 
5 
0 
0 
3 
2 
5 
0 
0 
1 
0 
1 

nd 
nd 
nd 

Emb. cap. 

+++ 
NE 

± 

-
+ 
± 

NE 
NE 
NE 
+ 
+ 

NE 
NE 
NE 
NE 
± 

± 
±-
±-

Emb. cap. 
after 7 weeks 

++ 
NE 

NE 
NE 
+ 
± 

NE 
NE 
NE 
+ 
+ 

NE 
NE 
NE 
NE 
+ 

± 
±-
-

Table 4. Analysis of embryogenic capacity in the Pe35S::AtEP3 and Pe35S::a-AtEP3 lines. 
This table shows examples of T2 lines tested for their ability to form somatic embryos via direct seedling 
germination (Pe35S::AtEP3 lines descending from T| lines C6, D8 and D19) or after immature zygotic embryo 
dissection (last three examples; Pe35S::a-AtEP3 lines descending from T, lines Bl and B3). The formation of 
embryogenic structures (ES) was scored after 3 weeks of culture as well as their embryogenic capacity (Emb. 
cap.). This appreciation was mostly based on the color and the smoothness of these structures and was noted on a 
scale of - or + signs, going from - to +++. The greening of calli was directly correlated with embryogenicity. 
This observation was repeated weekly and after 7 weeks, cultures were considered embryogenic if there were 
still greenish and smooth ES were present. The primordia timing (pt) mutant was used as a positive control for 
the establishment of embryogenic lines via direct seedling germination (Mordhorst et al., 1998). Non-
embryogenic structures are noted NE. 
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A similar conclusion could be drawn for the two antisense lines we tested. Embryogenic 

structures did form in both to the level of the wild-type, which was already very low. The two 

lines maintained their embryogenic capacity although it degraded with time for line B3-3. 

Considering the poor quality of the wild-type cultures as well, it was difficult to estimate 

whether an effect of the transgene was visible here. 

Analysis of the sterility phenotype in the Pe35S::a-AtEP3 transformants 

Regardless of the possible lack of correlation with the AtEP3 gene, the sterility 

phenotype observed in the B3 antisense line was interesting enough by itself to pursue its 

analysis further. Since none of the overexpression lines displayed a similar phenotype they 

were not included in this analysis. 

Flowers from sterile B3 plants carried no pollen on the anthers nor on the surface of the 

stigma (Figure 3A and B). Manual opening of the anthers revealed that pollen was produced 

but was apparently not released from the locules. This was confirmed by sectioning of these 

flowers (Figure 3C) and showed that dehiscence was not completed. The septum seems to 

undergo normal degradation (small arrows in Figure 3C) but the stomium on the other hand 

appears intact (arrowheads in Figure 3C) and as a result the locules are unable to open and 

release the pollen. A closer look at the pollen grains does not reveal any morphological defect 

(Figure 3D). We analyzed the viability of the pollen grains by their ability to germinate and 

form pollen tubes in vitro, according to Krishnakumar and Oppenheimer (1999). Figure 3E 

shows the experimental set up, i.e. the stigma of a wild-type flower laid on the surface of solid 

germination medium surrounded by pollen grains. 

Figure 3. The male sterility phenotype of AIEP3 antisense line B3. • 
A. Close view of a WS wild-type flower post-anthesis, on which pollen is clearly visible on the outside of the 
opened anthers and at the surface of the stigma. B. On a B3 sterile flower at the same stage as the wild-type 
flower in A no pollen is visible, neither on the anthers nor on the stigma. C. Cross section of an anther from a B3 
sterile flower. Pollen grains are visible within the locules and dehiscence was initiated since the septum has 
degraded with only some tissue left (small arrows), whereas the stomium is still intact (arrowheads) prohibiting 
pollen release. Bar = 28 um. D. High magnification of pollen grains within a locule of a B3 sterile flower. Bar = 
10 um. E. Overview of the experimental setup used for pollen in vitro germination, with a stigma laid on the 
surface of the solid germination medium and pollen grains dispersed on the same medium covered by a drop of 
liquid germination medium (Krishnakumar and Oppenheimer, 1999). The pollen grains on this view are from the 
WS wild-type and have already germinated with elongated pollen tubes clearly visible. Bar = 10 um. F. Example 
of pollen germination in the wild-type. Nearly all pollen grains have germinated. Bar = 150 um. G. Example of 
pollen germination with pollen from B3 sterile flowers. Only one pollen grain was considered as having 
germinated in this microscope field, at the bottom. Germination was initiated in most cases but pollen tubes did 
not elongate. Bar = 75 um. 
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The results visible in Figure 3F and G are summarized in Table 5. The percentages of 

germination obtained clearly show that the pollen of homozygous B3 sterile plants poorly 

germinates with values only around 3%, whereas in heterozygous non-sterile plants of the 

same line a pollen germination at the wild-type level is observed. Since the pollen of sterile 

flowers had to be released manually from the anthers we cannot exclude that the poor 

germination frequencies could partly be the result of physical damage. Moreover, as a result 

of the manual release less pollen grains could be analyzed. 

Line 

Bl-16-2 
Bl-17-2 
B2-4GG-1 
B2-10 
B2-15 
B3-6-1 het. 
B3-6-1 hom. 
B3-8-1 hom. 

WS 

Germinationa 

144 
150 
105 
77 
96 
169 
2 
3 

160 

Totalb 

229 
258 
208 
249 
204 
279 
72 
107 

243 

% germinationc 

62.9 
58.1 
50.5 
30.9 
47.1 
60.6 
2.8 
2.8 

65.8 

Table 5. Analysis of pollen in vitro germination on the Pe35S::a-AtEP3 lines. 
a number of germinated pollen grains with a pollen tube length at least twice the diameter of the pollen grain. b 

total number of pollen grains counted.c number of germinated pollen grains + total number of pollen grains x 
100. A number of homozygous descendants of Ti lines Bl and B2 are shown here as well as descendants of Ti 
line B3. 'het.' is for heterozygous and 'hom.' is for homozygous. 

Homozygous descendants of line B2 do show somewhat reduced pollen germination 

compared with the wild-type, which could reflect the reduced percentages of seed abortion 

that were found (see Table 3). However, line Bl that shows a similar frequency of seed 

abortion does not seem to have a pollen germination defect. 

To verify whether the sterility observed was only due to a defect in the male gametophyte we 

performed cross-pollinations using wild-type pollen. Normal silique elongation was observed, 

suggesting that ovule development is not affected. Sectioning of sterile flowers before 

fertilization also showed that ovule morphology was normal (Figure 4A) and that after 

fertilization the embryo sac undergoes degeneration (Figure 4B), which corresponds to the 

early aborted seeds we found (see Table 3). We tried to pollinate wild-type plants with pollen 

manually released from anthers of sterile plants but none of our crosses succeeded. We did not 

investigate whether the amount of pollen released was too low for successful pollination, 

whether it was damaged by the release procedure or whether it was caused by a mutation due 
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to the transgene. The escaped seeds we found on sterile plants and the in vitro germination 

tests seem to indicate that the pollen is still viable, although in lower amounts. 

In conclusion, the strong sterility phenotype observed in line B3 could be the result of a 

double defect, i.e. no dehiscence and therefore no pollen release and reduced pollen 

germination rate affecting fertilization even further. 

• • --v.*.-. 

\\v 

B 

\ »* 

Figure 4. The female gametophyte in sterile flowers oiAtEPi antisense line B3. 
A. Longitudinal section of an ovule before fertilization from a flower bud of a B3 sterile plant. All cells of the 
embryo sac are present and look normal. B. Cleared ovule from an opened B3 sterile flower for which 
fertilization could not occur. Cells of the embryo sac are no longer distinguishable from one another as if cell 
boundaries had disappeared and only some nuclei remain visible, showing that the embryo sac cells have 
degenerated in the absence of fertilization. Bar = 180|im. 

Analysis of the transgene insertion site in the antisense line B3 

The absence of AtEP3 mRNA quantification in the antisense lines led to us to analyze 

the insertion site of the Pe35S::a-AtEP3 transgene in the male sterile line B3. We first 

determined the number of transgene copies inserted per genome by genomic Southern blotting 

using a fragment of the NPTII gene as a probe (Figure IB). This was done together with the 

Bl and B2 lines. Figure 5 A shows an example of hybridization pattern obtained with plants 

from two generations. The autoradiogram clearly shows that some of the transgenic plants 

have multiple copy insertions and that these insertions are segregating within the families. 

This also confirms the results of the kanamycin selection (Table 2). Plants Bl-13 and Bl-15, 

for example, have an identical hybridization pattern that is probably very 
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1 unknown cDNAs (17 bp) 

2 genomic sequence chr V (23 bp) 
3 alcohol dehydrogenase (21 bp) 

4 beta-adaptin-like protein C (20 bp) 

Figure 5. Analysis of the T-DNA insertion site in AtEPS antisense line B3. 
A. Autoradiogram of a Southern blot performed on genomic DNA from Pe35S::a-AtEP3 transformants 
restricted with EcoRl and hybridized with the probe indicated in Figure IB. The name of the samples is indicated 
above the lanes. Some descendants of the three T[ lines, Bl, B2 and B3 are represented and the nomenclature 
used is as in Figure 2, i.e. B3-8-6 is the 6th T3 line descending from the 8lh T2 line descending from Ti line B3. 
The numbers under each lane represent the estimated number of T-DNA insertions based on the hybridization 
pattern. B. The area amplified by TAIL-PCR and sequenced is schematically represented, with the position of 
the primers used. LB2 was used in combination with AD2 or AD4 for the second PCR round and LB4 was used 
instead of LB2 in the third PCR round. The four PCR products generated by the four primer combinations were 
sequenced and assembled in the DNA fragment shown here, going from primer LB2 to primer AD4. The DNA 
sequences belonging either to the T-DNA construct or to the plant genome are indicated, as well as the stretches 
of plant DNA found homologous to known sequences identified by the numbers. 
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similar to the one of the mother plant Bl. On the other hand, plant Bl-16, descending from 

the same plant, only has three common bands left and in the case of Bl-8-18, that is already 

one generation further, only one band remains. This segregation is also clearly visible for 

descendants of transformant B2. The B3 family is the only antisense line with a single 

transgene insertion, as suggested by the results of the kanamycin selection (Table 2). Based on 

this result we could confidently undertake the isolation of the DNA flanking the transgene 

insertion site. 

For this purpose we employed TAIL-PCR (Liu et al., 1995) and were successful in generating 

a number of DNA fragments with two of the degenerate primers (AD2 and AD4). All PCR 

products originated from the left border of the T-DNA, suggesting that, as a result of the 

insertion, the right border was probably not intact anymore. The amplified DNA fragments 

were subsequently analyzed by sequencing. This revealed that they were overlapping and all 

contained the left border of the T-DNA. Figure 5B shows a schematic representation of the 

sequenced area. BLAST searches were performed on the longest sequence and only very 

small stretches between 16 and 23 nucleotides were found to be homologous to known 

sequences, including several repeats. No significant homology was found suggesting that the 

transgene was not inserted in a coding sequence or in a sequenced area of the Arabidopsis 

genome, since no BAC sequence was identified by the BLAST search. The latter fact and the 

presence of several repeats in this DNA fragment suggest that the T-DNA might have landed 

in a heterochromatic region. This indicates that in the B3 antisense line no recognizable 

coding sequence is disrupted by the transgene. However, additional sequence information, 

especially from the right border of the insertion site is needed to make a more definite 

statement. Unfortunately, no flanking DNA could be amplified from this end of the T-DNA. 

Morphological analysis of root hair formation in the Pe35S::AtEP3 and Pe35S::a-AtEP3 

transformants 

The AtEP3 gene is also expressed in elongating root hairs and it was therefore a 

logical next step to look at root development in the lines we generated. There were no 

differences found in most of the lines we analyzed. Root length seemed normal and there was 

no obvious defect in root and root hair morphology. However and interestingly, line B3 did 

show a root hair phenotype. The number of root hairs produced was indeed dramatically 

reduced, as can be seen in Figure 6A-C, especially in homozygous seedlings (Figure 6C). 
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We found another root phenotype in line C4-5, in which root hair and/or epidermis cell 

morphology seemed affected. Cells appeared swollen and deformed (Figure 6D). 

In conclusion, from the phenotypic and molecular analysis of both AtEP3 

overexpression and antisense lines generated, only one line was recovered in which three 

phenotypes were correlated with a reduction in AtEP3 expression to 10% that of the wild-

type. This line, C4-5, exhibits a root epidermal cell defect, defective transmission and a high 

level of seed abortion. While the latter two phenotypes were also found in lines with normal 

AtEP3 mRNA levels, the defect observed in root epidermal cells may be the most specific 

effect of a reduction in AtEP3 mRNA level. More detailed analyses still need to be performed. 

This is also true for the B3 antisense line that shows a male sterility phenotype and reduced 

root hair growth, but for which no link with the AtEP3 gene could be established. 

Figure 6. Analysis of root hair growth in AtEP3 antisense and overexpression lines. 
A. WS wild-type seedling root showing normal root hair growth. B. Heterozygous antisense B3 seedling root, 
showing a longer elongation zone and fewer root hairs than the wild-type. C. Homozygous antisense B3 seedling 
root, showing an even longer elongation zone than in heterozygous seedlings and hardly any root hairs. D. Root 
of a seedling from co-suppression line C4-5. Root hairs cells appear swollen. In A and C, Bar = 0.8 mm, in B, 
Bar = 1 mm and in D, Bar = 0.5 mm. 

Discussion 

In this work, we have addressed the role of the AtEP3 endochitinase during 

Arabidopsis development by means of a reverse genetics approach. Our aim was to generate 

transgenic plants with an altered expression of the chitinase gene by using an overexpression 

and an antisense construct. A number of transformants were successfully generated for both 
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constructs and molecular analysis showed that the AtEP3 mRNA levels were successfully 

affected by the presence of the overexpression construct with several lines showing increases 

up to 7-fold as compared to the wild-type, and a line showing a 10-fold decrease. However, 

due to technical difficulties the AtEP3 mRNA level could not be measured in the antisense 

lines. 

DNA and genetic analysis showed that the transgenes had been inserted in multiple 

copies in a number of transgenic lines. We did not determine their mode of insertion, i.e. 

tandem repeats, inverted repeats, or isolated copies since in these plants the transgene was 

often silenced in the subsequent generation as indicated by a loss of kanamycin resistance. 

This phenomenon is frequently observed in the analysis of transgenes using this type of 

approaches (for a review see Kooter et al., 1999). Analysis of the transgene segregation also 

revealed transmission defects, indicative of embryo and/or gametophytic lethality, but they 

were not correlated with a change in AtEP3 mRNA level. 

Based on the expression pattern of the AtEP3 gene (Passarinho et al., 2001), we 

performed a phenotypic analysis focused on seed set, pollen development, root hair formation 

and somatic embryo development. In general, increasing the AtEP3 expression level up to 7-

fold did not seem to have any visible consequence on any of these processes. We only 

observed differences with the wild-type in the case of line C4-5. Since AtEP3 expression 

could not be quantified in antisense lines, it was not possible to correlate the phenotypes 

observed in the latter and therefore could not be compared with those of line C4-5. 

Antisense line B3 did show two interesting phenotypes that appeared genetically 

linked with the presence of the transgene. B3 plants homozygous for the transgene are male 

sterile and are therefore not able to produce seeds, apart from some rare escapes. We 

established that this recessive phenotype is due to incomplete dehiscence. The septum seems 

to degenerate but the stomium remains intact and although pollen is produced it cannot be 

released. The female gametophyte is not affected as demonstrated by microscopic observation 

and pollination with wild-type pollen. It also appeared that when released manually B3 

homozygous pollen germinates poorly, but is probably still partly viable as suggested by the 

few seeds that were produced in these plants. The number of root hairs was also dramatically 

reduced as compared to the wild-type. These observations could have matched a defect in 

AtEP3 expression, since the gene was shown to be expressed in maturating pollen, growing 

pollen tubes and root hairs (Passarinho et al., 2001). However, in the absence of AtEP3 

mRNA quantification it could also be that these phenotypes are the result of a gene disruption 

by the T-DNA construct. The insertion site of the antisense construct was analyzed by TAIL-
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PCR (Liu et al., 1995) to verify this possibility. Sequencing revealed that the Pe35S::a-AtEP3 

construct was not inserted in any coding sequence. The very small stretches of homology 

found in the analysis were not consistent with a precise chromosomal location and together 

with the numerous repetitive sequences identified it could suggest that the T-DNA was 

inserted in a heterochromatic region of the Arabidopsis genome that remains unsequenced. 

Unfortunately, this sequence analysis could not be performed on DNA flanking the T-DNA 

right border, most likely due to a rearrangement of the latter while inserting in the plant DNA. 

Therefore we cannot draw definite conclusions from the analysis of the insertion site. It could 

also be that the transgene inserted into some essential regulatory sequence present in 

heterochromatin and would act in trans on a gene involved in pollen and root hair 

development. There are only few examples of similar male sterility phenotypes and none of 

the corresponding genes has been isolated so far (Park et al., 1996; Sanders et al., 1999). 

Based on their chromosomal locations, these mutations represent different genes, none of 

which can be AtEP3. It has also not been reported whether root hair formation is also altered 

in these mutants. The only described mutant that is affected in both pollen and root hair 

development is tipl (Schiefelbein et ah, 1993). Tipl homozygous plants are not fully sterile 

and although the mutated gene, that remains unidentified, was proposed to function in tip 

growth it is not likely to be the one affected in our B3 plants. If an essential pollen-specific 

gene was defective in these plants, a large majority of the pollen grains would be unable to 

complete maturation. As a result germination would only occur in small numbers, as we 

indeed observed in our in vitro germination tests. This could also indirectly influence a proper 

opening of the anthers if signals were to be sent from the mature pollen to the locule in order 

to trigger a cascade of events leading to dehiscence. 

The only line for which we could correlate a phenotype with a change in AtEP3 expression 

did not show any defect in anther dehiscence. Pollen is indeed released normally in line C4-5 

that has a 10-fold decrease in AtEP3 expression. Although the 1:1 segregation ratio of the 

transgene together with the observed reduced seed set suggest gametophytic lethality we do 

not think that the latter phenotypes are linked with the AtEP3 gene. There was indeed too 

much variation between two generations. Furthermore, no correlation could be made with the 

AtEP3 expression levels. Similar seed set and transmission defects were also observed in lines 

that had similar or higher levels of AtEP3 mRNA than the wild-type. Root hair formation is 

affected in line C4-5 only and this is in agreement with the expression of the AtEP3 in root 

hairs (Passarinho et al., 2001). Root hairs do form and grow but they are swollen, suggesting 

a weakened cell wall. Interestingly, (Ding and Zhu, 1997) showed that blocking AGP activity 
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by using (3-glucosyl Yariv reagent resulted in a very similar phenotype, while the same 

phenotype was also observed in the rebl-1 mutant (Baskin et ah, 1992). It was also noted in 

this study that the AGP profile in the rebl-1 mutant is different than in the wild-type, 

suggesting that specific AGPs are absent or are not processed properly. This could also be in 

agreement with a defect in AtEP3 expression in relation with cell wall AGPs and lends 

support to a role of the AtEP3 chitinase in the processing of signal molecules. 

In conclusion, this work shows that down-regulation of the AtEP3 gene at the RNA level can 

affect root hair morphology and is therefore most likely involved in a developmental process. 

Materials and Methods 

Plant material 

Arabidopsis thaliana (L.) Heynh plants were grown under long day light conditions 

after germination on 0.5x MS salts (Murashige and Skoog, 1962), 1% (w/v) sucrose, 0.8% 

(w/v) agar. The ecotype Wassilewskija (WS) was used as wild-type and for plant 

transformation. Transformed plants were selected on the same germination medium 

containing 100 jxg ml"1 kanamycin sulphate (Duchefa, Harleem, The Netherlands). 

Construction ofAtEP3 overexpression and antisense cassettes and plant transformation 

The AtEP3 cDNA was cloned between the enhanced CaMV 35S promoter (Pe35S) 

and the NOS terminator (NOS3) in the vector pMON999 (van Bokhoven et al., 1993) as a 

Bglll-Kpnl fragment for the overexpression construct and as a Kpnl-Bglll fragment for the 

antisense construct. The Kpnl and BgR\ sites were engineered at the extremities of the cDNA 

by PCR mutagenesis, using the primers 5'taiBglII (5'-GAAGATCTTCAAAGTG 

CTCCCACC-3') and 3'taiKpnI (5'-CGGGGTACCCCGAAATAGATGTTTTTGTTAGC-3') 

or 5'taiKpnI (5'-GGGGTACCCCTATTCCTCAACAACATC-3') and 3'taiBglII (5'-

GAAGATCTTTAGATGTTTTTGTTGCAAGTGAGG-3') for the overexpression and the 

antisense construct, respectively. The Pe35S::AtEP3::NOS3 and the Pe35S::oc-AtEP3::NOS3 

cassettes were subsequently introduced into the binary vector pMOG800 (Figure 1A-B; 

kindly provided by Mogen-Zeneca, Leiden, The Netherlands) and the resulting constructs 

were transformed into Arabidopsis plants, ecotype WS, by vacuum infiltration according to 

Bechtold et al. (1993). Twelve plants were transformed per construct and named from A to L. 

Transformants were then selected on kanamycin at each generation and named after their 

mother plant, e.g. Ti transformants derived from plant A, were named Al to Ax, T2 
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descendants were named Al-1 to Ax-x, T3 descendants were named Al-1-1 to Ax-x-x, and so 

forth. 

DNA analysis 

Genomic DNA was isolated from individual kanamycin resistant plants of each 

transgenic line as well as from wild-type plants, according to Kozik et al. (1996). The 

presence of the transgene in the genome of the transgenic plants was confirmed molecularly, 

by PCR analysis using construct-specific primers (Figure 1A-B: 35S-5', 5'-

TCTGTCACTTCATCAAAAGG-3', and TAI2, 5'-TGTTAGCAAGTGAGGTTGTTTC 

CAGGATCA-3' (for the overexpression construct), or PP5, 5'-ATATCCTTCAAAA 

CCGCCTTGTGGTACTGG-3' (for the antisense construct)). The number of copies inserted 

per genome was determined by genomic Southern blotting as described in Passarinho et al. 

(2001) using the enzymes EcoRl and Kpnl and a radiolabeled fragment of the neomycin 

phosphotransferase II gene (NPTII, Figure IB) as a probe. 

RT-PCR analysis 

Total RNA from seedling and inflorescences was isolated according to Kay et al. 

(1987). Total RNA was also isolated from pollen grains using TRIZOL® reagent (Invitrogen 

Life Technologies, Breda, The Netherlands) according to manufacturer's recommendations. 

Pollen grains were isolated from about 100 flowers essentially according to Treacy et al. 

(1997). 

RNA was DNAse-treated for 30 min at 37°C with 3 units RQ1 DNAse (Invitrogen Life 

Technologies) in 40 mM Tris-HCl pH 8.0, 10 mM NaCl, 6 mM MgCl2 and 10 mM CaCl2. 

After phenol/chloroform extraction and ethanol precipitation, the RNA was resuspended to a 

concentration of 500 ng al"1. Two ug DNAse-treated RNA were reverse-transcribed for lh at 

37°C, using 1 ug oligo-dTn, ImM dNTPs, 40 units RNAse out (Invitrogen Life 

Technologies) and 200 units M-MLV reverse-transcriptase (Invitrogen Life Technologies) in 

50 mM Tris-HCl pH 8.3, 75 mM KC1, 3 mM MgCl2 and 5 mM DTT. Presence of remaining 

genomic DNA was verified by a control reaction performed for each sample without reverse-

transcriptase. After enzyme denaturation for 5 min at 95°C and a 20-fold dilution, 2 ul 

reverse-transcribed RNA were analyzed by PCR, using AtEP3 gene-specific primers (PP1, 5'-

TTCGTCAGAGCTATGTTGTAGTCAGTTTGG-3', and PP6, 5'-CCACAAGGCGGTTTT 

AGATATGACTGG-3' or AtEP3-3'rev, 5'-CCATTCCATTCTTAAAGCTTGTCTATT-3') 

and, as an internal standard for quantification, primers specific for the constitutive cyclophilin 

126 



AtEP3 overexpression and antisense suppression 

gene ROC5 (Chou and Gasser, 1997; ROC5-5', 5'-TCTCTCTTCCAAATCTCC-3', and 

ROC5-3', 5'-AAGTCTCTCACTTTCTCACT-3'). PCR products were analyzed by agarose 

gel electrophoresis, Southern blotting and hybridization to radiolabeled gene-specific probes. 

Quantification of the autoradiogram signals was carried out using the software ImageQuant® 

(Molecular Dynamics, Sunnyvale, CA, USA). 

Phenotypic analysis 

Pollen in vitro germination tests were carried out as described by Krishnakumar and 

Oppenheimer (1999). Germination was scored per microscope field by counting the number 

of pollen tubes with a length at least twice the diameter of the pollen grain and the total 

number of pollen grains. The germination frequencies were determined on the added numbers 

of all microscope fields. 

Seed set was analyzed by collecting about 10 siliques per plant starting from the fourth 

silique below the terminal inflorescence. Siliques were opened under a Nikon SMZ-2T 

binocular microscope and seeds were counted and classified according to their stage of 

development: early aborted (white and tiny), late aborted (brown and shrunken) and fully 

developed. Percentages of seed abortion per silique and per plant (total early plus late) were 

then determined. 

Embryogenic capacity of the transgenic lines was analyzed in vitro by establishment 

of embryogenic cultures as described by Mordhorst et al. (1998). Overexpression lines were 

tested in conditions where Arabidopsis wild-type is not able to form somatic embryos, i.e. 

directly from seedlings (Mordhorst et ah, 1998). Antisense lines, on the other hand, were 

tested by using dissected immature zygotic embryos, a method that allows the formation of 

somatic embryos in wild-type (Mordhorst et al., 1998). Embryogenic capacity was scored the 

third week after initiation by counting the number of embryogenic clusters formed versus the 

number of seeds or embryos used to initiate the culture. The evolution of these clusters was 

followed weekly and compared to the wild-type cultures. 

Cytological observations were performed on sections of flowers after fixation in 3.7% 

(v/v) formaldehyde, 50% (v/v) ethanol and 5% (v/v) acetic acid, followed by embedding in 

Technovit 7100 (Heraeus Kulzer, Wehrheim, Germany) according to the manufacturer's 

recommendations. Embedded material was sectioned with a microtome to a thickness of 3 |am 

and was subsequently stained in 1% (w/v) toluidine blue and 1% (w/v) sodium tetraborate. 

Sections were observed after mounting in Euparal (Agar Scientific, Stansted, UK). 

Observations of ovules were also performed with Nomarski optics after clearing of opened 
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carpels in a solution of 8 g chloral hydrate (Merck, Darmstadt, Germany) in 2 ml water and 1 

ml glycerol. 

TAIL-PCR 

TAIL-PCR was performed on genomic DNA from B3 plants essentially as described 

by Liu et al. (1995), replacing the Ds primers by nested primers specific for the T-DNA right 

and left border. The primers were designed to allow band shifts detectable on a 3% (w/v) 

agarose gel. Primers for the right border were, in outwards direction: RBI, 5'-

ACAACGTCGTGACTGGGAAAACC-3'; RB2, 5'-AGCTGGCGTAATAGCGAAGAGG-3' 

and RB3, 5'-ATCAGATTGTCGTTTCCCGCC-3'. Primers for the left border were, in 

outwards direction: LB1, 5'-AGCGGGACTCTGGGGTTCG-3'; LB2, 5'-AATGTGTGAG 

ATCAAGG-3' and LB4, 5'-TCCTAAAACCAAAATCCAGTACTAAAATCC-3\ PCR 

products were analyzed by agarose gel electrophoresis and bands giving the expected band-

shifts were purified from gel using an Agarose Gel DNA Extraction Kit (Roche Molecular 

Biochemicals, Mannheim, Germany), cloned in the pGEM-T vector (PROMEGA, Madison 

WI, USA) and sequenced. 
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The chitinase mutant ep3-l is affected in seed germination, 

root hair and pollen development 

Abstract. The Arabidopsis AtEP3 gene was isolated based on its homology to the carrot EP3 

endochitinase gene. Previous work has shown that the AtEP3 gene is expressed in maturing 

and germinating pollen, in growing pollen tubes, in the endosperm cap or inner layers of the 

seed coat upon germination and in elongating root hairs. Expression was also found in leaf 

hydathodes and stipules and in embryogenic suspension cultures. In this work, we present a 

mutant transgenic line with an insertion into the second exon of the AtEP3 gene. As a result of 

the insertion no AtEP3 mRNA is produced and the corresponding plants display a range of 

subtle phenotypes that, eventhough further investigations are required, are in agreement with 

the expression pattern of the gene. 
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Introduction 

Since it was first demonstrated that a bean endochitinase (EC 3.2.1.14) could have an 

antifungal activity (Schlumbaum et al., 1986), plant chitinases have received great attention 

for their potential use in pest control in agriculture. Numerous studies were therefore 

conducted with the preconceived idea that the natural role of plant chitinases is defense 

against fungal pathogens. In vitro experiments in the line of Schlumbaum's work in other 

plant species and on other chitinases confirmed this idea (Arlorio et al., 1992; Garcia-Casado 

et al., 1998; Mauch et al., 1988). Besides, a number of findings also strengthened this opinion 

by showing that transgenic plants with increased levels of chitinase were less sensitive to 

certain fungi (Broglie et al., 1991; Grison et al., 1996; Jach et al., 1995). However, in other 

studies similar approaches failed to demonstrate such an effect (Neuhaus et al., 1996; Samac 

and Shah, 1994). Furthermore, other studies indicated that the expression of some chitinases 

was developmentally regulated, with specific isoforms appearing in certain organs only 

during certain stages of development (Neale et al., 1990; Trudel et al., 1989). And there is 

now growing evidence that at least some of these chitinases might actively participate to 

developmental processes such as embryo development (de Jong et al., 1992; van Hengel et 

al., 2001) and pollination (Leung, 1992). The role of chitinases appears therefore more 

general and there might be many functions, in line with the large families of chitinase genes 

present (reviewed in Graham and Sticklen, 1994). This makes the mutational analysis of a 

single particular chitinase rather complicated, since not only a broad spectrum of processes 

needs to be tested, but also problems generally attributed to genetic redundancy may arise. 

In this work we have addressed the role of the Arabidopsis thaliana (L.) Heynh AtEP3 

chitinase (Passarinho et al., 2001), the ortholog of the carrot EP3 endochitinase, which was 

shown to play a crucial role during somatic embryo development (de Jong et al., 1992). The 

EP3 chitinase is able to lift the arrest imposed on somatic embryos of the temperature 

sensitive carrot cell line tsll when grown at non-permissive temperature (de Jong et al., 

1992). Further work has shown that the EP3 chitinase is most likely acting via signal 

molecules containing N-acetyl glucosamine (GlcNAc) generated from a larger precursor (de 

Jong et al., 1993). Recently it was found that certain arabinogalactan proteins (AGPs) are a 

potential substrate for the EP3 chitinase, since they not only contain cleavage sites for this 

enzyme but also the promoting effect of AGPs on somatic embryogenesis was enhanced after 

chitinase treatment (van Hengel et al., 2001). AGPs are also often associated with 

developmental processes in several plant compartments (Knox, 1999), including embryos. In 
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combination with co-localizing specific chitinases, such as EP3, modulation of their activity 

through hydrolytic processing could be an important mechanism in plant development. 

We have looked for knockout mutants of the AtEP3 chitinase gene and have identified 

one insertion line among the Sainsbury Laboratory Arabidopsis Transposants (SLAT lines 

Sainsbury Laboratory, Norwich, UK). We have demonstrated that this line contains a dSpm 

insertion in the second exon of the AtEP3 gene, which in homozygous plants results in a 

complete loss of AtEP3 mRNA. We performed a detailed phenotypic analysis aided by the 

prior knowledge of the expression pattern of the AtEP3 gene (Passarinho et al., 2001) and 

have detected a range of subtle developmental phenotypes. Although these need to be further 

confirmed they are in general agreement with the expression pattern of AtEP3. To our 

knowledge, this is the first report of a functional analysis based on a chitinase knockout 

mutant. 

Results 

Identification of an AtEP3 insertion line 

We have performed a BLAST search with the AtEP3 gene sequence against sequenced 

inserts of Arabidopsis using the NASC SINS BLAST server 

(http://nasc.nott.ac.uk/blast.html). This server of the Nottingham Arabidopsis Stock Centre 

(NASC, Nottingham, UK) allows homology searches against Sequenced INsertion Sites 

(SINS) from several insertion collections. By this means we have identified in the SLAT 

collection of the Sainsbury Laboratory (Norwich, UK; Tissier et al., 1999) 3 insertions into 

the AtEP3 coding sequence, all in the second exon (Figure 1). The corresponding pools (DNA 

and seeds) were obtained from the NASC and plants of each pool were grown and screened 

by PCR for the presence of a dSpm insertion in the AtEP3 gene, using the pool DNA as a 

positive control. Two gene-specific primers were used in combination with two dSpm 

primers, each from a different extremity to cover all possible orientations. We could only 

identify a positive plant for pool 2 2 8 using the primers PP1 and dSpmll (Figure 1A). The 

pools are made of seeds harvested from 50 different plants and we only grew 50 seeds of each 

pool. Therefore, there is a big chance that we missed the positive plant of the two other pools 

due to the small scale of our screening. However, we continued with the plant we had 

identified ( 2285 ) . 
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Figure 1. Disruption of the AtEP3 gene by a dSpm insertion. 
A. Schematic representation of the dSpm insertion site in the AtEP3 gene. The coding sequence is represented by 
the open boxes surrounding the intron (shaded box). The primers used to confirm the insertion and for RT-PCR 
are represented by the arrowheads. Representation of the dSpm element is adapted from Tissier et at. (1999). B . 
Effect of the dSpm insertion on the AtEP3 protein sequence. The AtEP3 amino acid sequence (AtEP3) is here 
aligned to the translated sequence of the AtEP3 gene after insertion of the dSpm element (atep3). The (.) stands 
for a stop codon and the arrows indicate the functional domains of the protein. CBD stands for chitin-binding 
domain, which is followed by the catalytic domain made of regions (1) and (2) containing consensus sequences 
for PROSITE signatures Chitinase 1 9 1 and Chitinase 1 9 2 , respectively. Cysteine residues forming disulfide 
bonds are underlined and residues indicated in bold and italic above the alignment are essential for catalytic 
activity (Garcia-Casado et al., 1998). 

Molecular analysis of the ep3-l mutant 

The precise insertion site in the AtEP3 gene was confirmed by nested PCR using the 

dSpm5 primer, upstream of dSpmll. Products of both PCRs were purified and sequenced. 

The sequence analysis confirmed the presence of the dSpm element in the second exon of the 

AtEP3 gene (Figure 1A). The sequence resulting from the insertion was translated and aligned 
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with the intact AtEP3 protein sequence (Figure IB). This revealed that the insertion causes a 

frame-shift within the catalytic domain of the chitinase after the Rus residue followed by a 

stop codon 14 residues further. Although the chitin-binding domain, as well as the first region 

of the catalytic domain including one of the conserved regions, proposed to be involved in the 

hydrolytic activity of the enzyme are intact, the second conserved region and all residues 

essential for hydrolytic activity are missing (Garcia-Casado et ah, 1998). Therefore, if the 

disrupted AtEP3 mRNA was still produced and translated, the corresponding protein would 

no longer be acting as an active AtEP3 chitinase. 

We also determined by PCR the genotype of the identified plant for the dSpm insertion 

into AtEP3. For this purpose we analyzed DNA of this plant and of 53 of its descendants with 

2 gene specific primers (PP1 and PP6) and the dSpmll primer in the same reaction (Figure 

1A). In case of a segregating population we would have amplified the wild-type allele only 

(PP1-PP6 PCR product) in the wild-type plants (1/4), both the wild-type and the insertional 

alleles (PP1-PP6 and PPl-dSpmll PCR products) in heterozygous plants (1/2) and the 

insertional allele only (PPl-dSpmll PCR product) in plants homozygous for the insertion 

(1/4). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 + 

•dSpm 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 + 

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 + 

- dSpm 

- dSpm 

52 53 

Figure 2. Genotype of SLAT line 2_28_5. 
Agarose gel electrophoresis of the PCR products obtained by using the primers PP1, PP6 and dSpmll on 
genomic DNA from plant 2 2 8 5 and 53 of its descendants (numbers above the lanes) as well as from plant 
2 2 8 6 , which originated from the same pool as 2 28 5 but does not have an insertion in AtEP3, plus from the 
wild-type ecotypes Columbia wild-type (Col-0) of two different DNA isolations and Wassilewskija (WS). The 0 
indicates the negative control (no DNA). The sizes of the PCR product corresponding to the disrupted and intact 
AtEP3 alleles are noted dSpm and AtEPS, respectively. 
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All plants were in the latter situation (Figure 2), indicating that the mother plant was already 

homozygous and that in all plants to be analyzed phenotypically both alleles of the AtEP3 

gene are disrupted. 

Total RNA was isolated from flowers of 2 2 8 5 homozygous plants in order to verify 

the effect of the dSpm insertion on the level of AtEP3 messenger. RT-PCR was performed 

with gene-specific primers for the AtEP3 gene and the cyclophilin gene ROCS (Chou and 

Gasser, 1997), our internal standard. The results shown in Figure 3 clearly demonstrate that 

intact AtEP3 mRNA is no longer produced in plants that are homozygous for a dSpm insertion 

into the AtEP3 gene. Therefore we have renamed the AtEP3 insertion line 2_28_5 as ep3-l. 

2 28 5 2 28 6 Col-0 

AtEP3 

ROC5 

Figure 3. No AtEP3 mRNA is produced in the ep3-l mutant. 
Autoradiogram of a RT-PCR performed on flower RNA from Columbia wild-type (Col-0) and SLAT lines 
2 2 8 5 (ep3-l) and 2 2 8 6 using the primers PP1 and PP6 (see Figure 1A). The upper panel shows the result 
obtained for the AtEP3 gene, whereas the lower panel shows the results obtained for the internal standard we 
used, the cyclophilin gene ROCS (Chou and Gasser, 1997). As in Figure 2, plant 2 2 8 6 that does not have an 
insertion in AtEP3 was used as an additional control. 

Genetic and phenotypic analysis of the ep3-l mutant 

Based on the expression of the AtEP3 gene in maturing and germinating pollen and 

also in growing pollen tubes (Passarinho et al., 2001), we started our observations with pollen 

germination and performed a pollen in vitro germination test according to Krishnakumar and 

Oppenheimer (1999) with pollen from Col-0 and ep3-l homozygous plants. The results 

shown in Table 1 and in Figure 4 indicate that pollen germination is reduced in ep3-l. A 

minority of the pollen grains does germinate (Figure 4A and D) and some pollen tubes are 

able to elongate normally (Figure 4B-C and E-F) but the frequencies remain much lower than 

in the wild-type. 
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Figure 4. Pollen germinates poorly in the epi-l mutant. 
A-C. In vitro germination of Columbia wild-type pollen. D-F. In vitro germination of epi-l pollen. Bar = 200 
Hm in A and D; 40|im in B; 20 |i.m in C; 35 |im in E and 25 ^m in F. 

We divided the surface of the germination medium in two zones to account for the influence 

of stigma exudates: (1) more than 5 millimeters away from the stigma placed on the surface of 

the medium and (2) closer than 5 millimeters. In the case of epi-l pollen we could observe a 

large difference between the two zones (14% in (1) versus 54% in (2)) whereas in the case of 

wild-type pollen this difference was less obvious (68% in (1) versus 84% in (2)). This 
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suggests that stigma exudates are able to partly compensate for the poor germination rate of 

ep3-l pollen. 

Line 

eP3-l ' 
2 

3 

Col-0 ' 
2 

3 

Germination * 

158 
197 
355 

96 
46 
142 

Totalb 

1142 
368 
1313 

142 
55 
194 

% germination c 

14 
54 
27 

68 
84 
73 

Table 1. Analysis of pollen in vitro germination in the ep3-l mutant. 
a number of germinated pollen grains with a pollen tube length at least twice the diameter of the pollen grain. b 

total number of pollen grains counted.c number of germinated pollen grains •*• total number of pollen grains x 
100. ' total of pollen grains counted in all microscope fields excluding the area around the stigma. 2 total of 
pollen grains counted in microscope fields around the stigma only. 3 total of pollen grains counted in all 
microscope fields. 

The fact that some of the pollen can still germinate in the presence of stigma exudates is 

probably sufficient to allow normal fertilization in planta, since we observed no defects in 

seed set as compared to the wild-type. We only found one early aborted seed out of 415 in the 

siliques we looked at (8 out of 230 for Col-0). No further defect was observed in the 

developing seeds either. Previously we have shown that this chitinase is exclusively expressed 

in embryogenic cultures (Passarinho et al., 2001). Therefore, we dissected bent cotyledon 

embryos and germinated them in auxin containing-medium to give rise to embryogenic 

clusters according to Mordhorst et al. (1998). No difference was seen in induction rate of 

embryogenic clusters compared to that of the wild-type. Ep3-1 clusters were subcultured and 

remained embryogenic (data not shown), indicating that the absence of AtEP3 alone is not 

sufficient to impair somatic embryo development. We conclude that neither zygotic nor 

somatic embryos are impaired in their development in the absence of AtEP3 protein. 

We have previously noted that the AtEP3 promoter was also active during germination 

in the inner layers of the seed coat or in the endosperm at the location where the radicle 

protrudes (Passarinho et al., 2001). When investigating seed germination in ep3-l we found 

an additional defect. It appeared that when put to germinate shortly after harvest, ep3-l seeds 

are non-dormant and can germinate without stratification (Table 2). 
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Line 

ep3-l 

Col-0 

Germinationa 

81 

1 

Total b 

111 

174 

% germinationc 

73 

0.5 

Table 2. Analysis of seed germination in the epi-l mutant. 
One week-old or younger seeds were germinated on wet filter paper and counted after 5 days.a number of seeds 
germinated after 5 days. b total number of seeds put to germinate.c number of seeds germinated + total number of 
seedsx 100 

Next we investigated root and root hair development in young seedlings. Root elongation was 

faster in ep3-l seedlings than in the wild-type (Figure 5). 

12.0 

10.0 

8.0 

f> 6.0 

E 
£ 

_0J 

o 4.0 o 
EC 

2.0 

0.0 

I Col-0 
I2_28_5-

fiB 
Figure 5. Root growth is 
accelerated in in the epS-1 mutant. 
A. ep3-l seedlings (left, 2 2 8 5 ) 
and Col-0 seedlings (right) grown in 
the presence of 1% (w/v) sucrose. B. 
ep3-l seedlings (left, 2 2 8 5 ) and 
Col-0 seedlings (right) grown in the 
absence of sucrose. C. Histogram of 
the measured root lengths. 

When looking at 3 day-old seedlings germinated on regular germination medium (i.e. with 1% 

(w/v) sucrose) root length was almost double that of the wild-type (Figure 5A and C). 

Interestingly, in the absence of sucrose this difference was considerably reduced (Figure 5B 
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and C). The role of sucrose also appeared important in root hair development. In the presence 

of sucrose we observed that root hairs were formed closer to the root tip than in the wild-type, 

a difference that was noted as a decrease in the length of the elongation zone (Figure 6A-D). 

We also observed that root hairs were longer in ep3-l than in the wild-type (Figure 6A and 

B). However, in the absence of sucrose these differences were hardly visible (Figure 6E and 

F). 

No anomaly was found in leaf morphology or in any of the aerial parts of the plant, although 

AtEP3 expression was also found in stipules and hydathodes (Passarinho et al., 2001). 

Discussion 

To our knowledge, this work is the first example of a functional study based on a true 

chitinase mutant that we have named ep3-l. We have demonstrated that in homozygous plants 

of this line no AtEP3 mRNA is transcribed as a result of a dSpm insertion in the second exon 

of the gene. Under normal growth conditions, the absence of AtEP3 chitinase mRNA did not 

affect embryo development nor did it result in major alterations in plant morphology. The 

subtle phenotypes we observed are in part in agreement with the expression pattern of the 

AtEP3 gene (Passarinho et al., 2001). 

First, inactivation of the AtEP3 locus caused a clear reduction of pollen germination in vitro. 

Yet, this did not result in any fertility problems in planta. Such a defect may be difficult to 

observe in vivo since it would probably be complemented by stigma exudates, as we have 

seen in vitro. Together with sufficient remaining germinating pollen, this is probably enough 

for fertilization to occur normally. This defect in pollen germination correlates well with the 

observed expression of the AtEP3 gene in maturing pollen grains and growing pollen tubes in 

planta (Passarinho et ah, 2001). The second phenotype we observed was an almost complete 

absence of seed dormancy. This is also consistent with the expression of the AtEP3 gene in 

the endosperm cap or inner layers of the seed coat prior to radicle protrusion (Passarinho et 

al., 2001). A third effect was observed during root hair development, where absence ofAtEP3 

mRNA was reflected by an increase in root hair length and a decrease of the elongation zone, 

resulting in more "hairy" roots. Again this is in agreement with the expression of AtEP3 in 

growing root hairs (Passarinho et al., 2001). 

Although the only role of the EP3 chitinase known so far is during somatic embryogenesis (de 

Jong et al., 1992) and in spite of the expression of AtEP3 in embryogenic cultures and not in 
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Figure 6. Root hair growth is disturbed in the ep3-l mutant. 
A. Root of a Col-0 seedling grown in the presence of 1% (w/v) sucrose. B. Root of an ep3-l seedling grown in 
the presence of 1% (w/v) sucrose. C. Enlargement of the elongation zone from the root seen in A. D. 
Enlargement of the elongation zone from the root seen in B. E. Root tip and root hairs of a Col-0 seedling grown 
in the absence of sucrose. F. Root tip and root hairs of an ep3-l seedling grown in the absence of sucrose, ezl 
stands for elongation zone length, and rhl stands for root hair length. Bar = 1.25 mm in A and B, 0.5 mm in C 
and D and 0.75 mm in E and F. 
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non-embryogenic ones (Passarinho et al, 2001), we did not observe any noticeable difference 

with the wild-type at this level. This suggests that the absence of AtEP3 chitinase alone is not 

sufficient to impair somatic embryo development, which also supports the hypothesis of 

Kragh et al. (1996) who proposed that the tsll mutant phenotype was caused by the absence 

of several chitinases. Chitinases other than EP3 could also rescue tsll embryos, which 

probably suffer a more general secretion defect (Baldan et al, 1997; de Jong et al, 1995). In 

Arabidopsis cultures that have no secretion defect, the effect of the absence of a single 

chitinase is most likely obscured by the presence of other chitinases. Apparently, this does not 

happen during pollen germination in vitro, which may be due to the absence of other 

chitinases. This could also explain the complementation of the pollen germination phenotype 

by stigma exudates that might contain other chitinases able to replace AtEP3. As a matter of 

fact, several chitinases were described to be present in the style of a number of plant species 

(Leung, 1992; Takakura et al., 2000). An important question is what the biological function of 

chitinases in pollen development, seed dormancy and root hair formation is. While no proof is 

currently available, there are several interesting observations that suggest that chitinases may 

act through a class of cell wall proteoglycans designated as arabinogalactan proteins (AGPs). 

Van Hengel et al. (2001) have recently demonstrated that certain AGPs can be cleaved by 

endochitinases, suggesting that AGPs are a natural substrate for these enzymes. Furthermore, 

other studies have shown that certain AGPs were able to stimulate and guide pollen tube 

growth in vitro, suggesting an active role in pollen germination pollen tube growth (Cheung et 

al, 1995; Wu et al., 1995; Wu et al, 2000). It is not known whether chitinases other than EP3 

are able to cleave AGPs and modulate their action. However, during pollen germination and 

pollen tube growth, both chitinases and AGPs indeed co-localize. Interestingly, Lu et al. 

(2001) have shown that AGP expression is both qualitatively and quantitatively regulated 

during tomato seed germination. By blocking the activity of AGPs, using (3-glucosyl Yariv, 

they did not observe any germination defect. However seed dormancy was not addressed in 

their study. In addition, in carrot and in Arabidopsis, AGPs and EP3 chitinase clearly co-

localize at seed maturity (Passarinho et al, 2001; van Hengel et al, 1998a; van Hengel et al, 

1998b). However it is not clear how chitinases and AGPs may be involved in the maintenance 

of seed dormancy. 

Seed dormancy is induced by the plant hormone abscisic acid (ABA) and most mutants that 

show reduced dormancy are impaired in ABA biosynthesis or sensitivity (Koornneef and 

Karssen, 1994; Leon-Kloosterziel et al, 1996). Therefore, it will be interesting to see whether 

dormancy is reestablished in ep3-l seeds when germinated in the presence of ABA and see if 
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there is any link with ABA signaling. 

A possible link between endochitinases and AGPs can also be made in the case of root and 

root hair development. AGPs are indeed localized on the root epidermal surface (Samaj et al, 

1999) and it was shown that blocking their action inhibits overall root length, epidermal root 

cell elongation, root cell numbers and root hair formation (Lu et al, 2001; Willats and Knox, 

1996). The nature of the defect observed in ep3-l plants together with these observations 

suggest that a mechanism in which AGPs and AtEP3 are involved is probably affected here as 

well, although we observe a promoting effect rather than the inhibitory ones observed by 

general interference with AGPs, using (3-glucosyl Yariv. Therefore, we can only speculate 

that this reflects highly specific interactions between AGPs and the AtEP3 chitinase. 

Another interesting observation was that the root and root hair phenotypes were only visible 

in the presence of sucrose, implying a different sensitivity to sucrose in ep3-l plants that 

results in promoting root and root hair growth. We did not analyze if there was any dosage 

effect or the influence of other sugar sources. However, this is clearly a next step for this 

work, especially in the light of a possible link between sucrose and ABA signaling (Laby et 

al, 2000). 

In conclusion, our data suggest that the AtEP3 chitinase is involved in a largely 

unknown signaling pathway, perhaps employing AGPs or AGP-derived GlcNAc-containing 

signal molecules and maybe coupled to sugar signaling. And although it still needs further 

confirmation, the nature of the phenotypes we observed in ep3-l plants is in line with a role in 

intercellular communication essential for processes such as somatic embryo development 

(Mordhorst et al, 1997), pollen-stigma interactions (Pruitt, 1999), seed germination 

(Koornneef and Karssen, 1994) and root development (Scheres, 1997). 

Materials and methods 

Plant material 

Arabidopsis thaliana (L.) Heynh wild-type and transgenic plants were grown under 

long day light conditions after germination on wet filter paper or on 0.5x MS salts (Murashige 

and Skoog, 1962), 1% (w/v) sucrose, 0.8% (w/v) agar. Seeds of the Sainsbury Laboratory 

Arabidopsis Transposants (SLAT lines; generated at the laboratory of Jonathan Jones, 

Sainsbury Laboratory, Norwich, UK) were obtained from The Nottingham Arabidopsis Stock 

Centre (Nottingham, UK). The wild-type ecotype Columbia (Col-0) was used as control. 
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DNA analysis 

Genomic DNA was isolated from individual transgenic plants as well as from wild-

type, according to Kozik et ah (1996). The dSpm insertion into the AtEP3 gene was confirmed 

by PCR using AtEP3 gene-specific primers (PP1, 5'-TTCGTCAGAGCTATGTTGTAGT 

CAGTTTGG-3' or PP6, 5'-CCACAAGGCGGTTTTGAAGGATATGACTGG-3') in 

combination with JSpm-specific primers (dSpml, 5'-CTTATTTCAGTAAGAGT 

GTGGGGTTTTGG-3' or dSpmll, 5'-GGTGCAGCAAAACCCACACTTTTATTC-3' and 

the nested primer dSpm5, 5'-CGGGATCCGACACTCTTTAATTAACTGACACTC-3'). 

PCR products were directly sequenced, after purification using the High Pure PCR Product 

Purification kit (Roche Molecular Biochemicals, Mannheim, Germany). 

RT-PCR analysis 

Total RNA was isolated from flowers using TRIZOL® reagent (Invitrogen Life 

Technologies, Breda, The Netherlands) according to manufacturer's recommendations. RNA 

was DNAse-treated for 30 min at 37°C with 3 units RQ1 DNAse (Invitrogen Life 

Technologies) in 40 mM Tris-HCl pH 8.0, 10 mM NaCl, 6 mM MgCl2 and 10 mM CaCl2. 

After phenol/chloroform extraction and ethanol precipitation, the RNA was resuspended to a 

concentration of 500 ng uT1. Two ug DNAse-treated RNA were reverse-transcribed for lh at 

37°C, using 1 ug oligodTn, ImM dNTPs, 40 units RNAse out (Invitrogen Life Technologies) 

and 200 units M-MLV reverse-transcriptase (Invitrogen Life Technologies) in 50 mM Tris-

HCl pH 8.3, 75 mM KC1, 3 mM MgCl2 and 5 mM DTT. Presence of remaining genomic 

DNA was verified by a control reaction performed for each sample without reverse-

transcriptase. After enzyme denaturation for 5 min at 95 °C and a 20-fold dilution, 2 ul 

reverse-transcribed RNA were analyzed by PCR, using AtEP3 gene-specific primers (PP1 and 

PP6, see above) and, as an internal standard for quantification, primers specific for the 

constitutive cyclophilin gene ROCS (Chou and Gasser, 1997; ROC5-5', 5'-

TCTCTCTTCCAAATCTCC-3', and ROC5-3', 5'-AAGTCTCTCACTTTCTCACT-3'). PCR 

products were analyzed by agarose gel electrophoresis, Southern blotting and hybridization to 

radiolabeled gene-specific probes. 

Phenotypic analysis 

Seed set was analyzed by collecting about 10 siliques per plant starting from the fourth 

silique below the terminal inflorescence. Siliques were opened under a Nikon SMZ-2T 

binocular microscope and seeds were counted and classified according to their stage of 
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development: early aborted (white and tiny), late aborted (brown and shrunken) and fully 

developed. 

Embryogenic capacity was analyzed in vitro by establishing embryogenic cultures 

using dissected immature zygotic embryos, as described by Mordhorst et al. (1998). The 

cultures were scored by visual observation starting from the third week after initiation. The 

formation of smooth green embryogenic clusters was noted weekly and compared with the 

wild-type. 

Seed germination tests were performed on fresh seeds (maximum 1 week old) that 

were germinated on wet filter paper without stratification. The number of germinated seeds 

was counted 5 days later. 

Root and root hair observations were carried out on young seedlings (up to 7 days old) 

grown vertically on 0.5x MS salts (Murashige and Skoog, 1962), 0.8% (w/v) agar with or 

without 1% (w/v) sucrose. Root length measurements were done directly on the seedlings, 

whereas elongation zone and root hair length were determined by computer on digital images 

of the roots. 

Pollen in vitro germination tests were done essentially as described by Krishnakumar 

and Oppenheimer (1999). 
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Chapter 7 

Summarizing discussion 

The work presented in this thesis deals with the role plant chitinases may have in 

development. Plant chitinases represent a large family of proteins of which the biological 

functions remain poorly understood. They are glycosyl hydrolases that catalyze the hydrolysis 

of chitin, a polymer of N-acetylglucosamine (GlcNAc). Since chitin is not found in plants but 

in the cell walls of most fungi, chitinases are thought to be involved in plant defense against 

fungal pathogens. A role in plant development was also suggested by several studies. We 

present here the first genetic evidence that a plant chitinase, the Arabidopsis AtEP3 class IV 

endochitinase, is indeed involved in development. While the biochemical details of the action 

of this chitinase are not known, they may involve cell to cell signaling. 

The study of the Arabidopsis AtEP3 chitinase is based on previous work carried out in 

our laboratory that had shown the important role of the EP3 carrot chitinase during somatic 

embryo development (de Jong et al., 1992). Unfortunately studying the function the EP3 

chitinase in carrot was hindered by the fact that it belongs to a family of at least five members 

that are so closely related in sequence that they are not serologically distinguishable (de Jong 

et al., 1995; Kragh et al., 1996). It was therefore decided to investigate the role the EP3 

chitinase could play in development in another plant species. The model plant Arabidopsis 

thaliana was the obvious choice based on the small size of its genome and the growing 

number of genetic tools available. The identification and the study of the Arabidopsis 

ortholog of the carrot EP3 chitinase gene are the focus of this thesis. The main goal was to 

identify an Arabidopsis knockout mutant for the AtEP3 gene and perform a functional 

analysis in order to unravel its role during embryogenesis. 



Chapter 7 

Reverse Genetics. 

We have succeeded to identify a knockout mutant for the AtEP3 chitinase and to 

initiate the analysis of its function. In the course of this analysis we came across several 

difficulties inherent to reverse genetic approaches. 

The first difficulty resides in the identification of a phenotype. Many gene knockouts 

do not generate visible phenotypes under normal growth conditions (Bouche and Bouchez, 

2001). It is only based on the detailed knowledge of a gene expression pattern that one can 

direct the search for a phenotype. The subtle phenotypes we identified in ep3-l plants would 

have been easily missed on a large-scale analysis. This was probably the case in Chapter 4, 

where we conducted a phenotypic analysis on a large plant population that was not genetically 

defined. Our attention was mainly focused on embryo development and fertility, but as we 

saw in ep3-l plants for which we knew that the AtEP3 mRNA was not produced, there is 

nothing visible at the plant level. We did not perform pollen in vitro germination tests on the 

whole plant population, neither did we analyze seed dormancy which needs to be specifically 

investigated. The difficulty in detecting such phenotypes also comes from the problem of 

gene redundancy. The absence of a given protein can easily be masked by other proteins of 

the same family. Therefore it is only when placed in conditions where these proteins would 

not be present that we can possibly identify a phenotype due to the absence of a single 

member of a family, such as in the pollen in vitro germination test. This is not always possible 

and it may mean that one has to make multiple knockouts within a family to be able to 

visualize a phenotype. Now that the sequencing of the Arabidopsis genome has reached 

completion standardized methods are arising to be able to perform detailed phenotypic 

analyses on a large-scale. This implies the definition of very specific stages of development 

together with specific methods of observations with defined criteria for different processes 

(Boyese/o/.,2001). 

The second difficulty encountered in reverse genetic approaches is directly linked to 

the nature of the plant collection used for the screening (Chapter 4) and reflects the mistakes 

of an emerging technology. A large number of mutagenized populations are available and it is 

possible to screen most of them by high throughput PCR methods. However, not all of them 

are suitable for reverse genetic approaches. The design of such a collection is indeed of great 

influence on the subsequent analysis of a knockout line. The number of inserted elements 

should be very small, ideally limited to one. These elements should be stable and possess a 

readily usable selection marker allowing a fast an easy selection at the plant level. This also 

means that very large plant populations are required and implies the setup of large facilities 
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such as the Arabidopsis Knockout Facility at the University of Wisconsin-Madison (Sussman 

et al, 2000). Therefore new methodologies are needed and are arising in order to provide 

powerful tools to the research community that will allow to simultaneously study the function 

of complete gene families, such as chitinases. 

Is AtEP3 the Arabidopsis ortholog of the carrot EP3 chitinase? 

We have identified an Arabidopsis gene that based on sequence similarity is the 

ortholog of the carrot EP3 endochitinase (Chapter 2). The AtEP3 gene is a single copy gene 

that is most similar to the carrot EP3-3 gene, that encodes the isoform that is the most active 

in the rescue of tsll mutant embryos (Kragh et al, 1996). Both chitinases are serologically 

related and have very similar biochemical properties (specific activity and pH optimum). In 

addition, the native encoded AtEP3 chitinase was able to rescue the carrot mutant cell line 

tsll. The knockout of the Arabidopsis AtEP3 gene did not result in a defect in embryo 

development as we had expected based on the work previously done in carrot (de Jong et al., 

1992). Instead, we found subtle phenotypes during pollen development, seed germination and 

root hair development. Another explanation for the fact that we do not find a phenotype 

during Arabidopsis zygotic and somatic embryogenesis could be that tsll is not a chitinase 

mutant but has a more general secretion defect affecting other chitinases as well (Baldan et 

al, 1997; de Jong et al, 1995). This was confirmed by the fact that other chitinases than EP3 

can rescue the tsll mutant (Kragh et al, 1996). It is therefore very likely that, as in the 

embryo mutant tsll, we can only have a visible effect on somatic embryogenesis if more than 

one chitinase is absent from the culture medium. Therefore it is possible that the true 

functional ortholog is encoded by one of the Arabidopsis sequences with less sequence 

homology to the carrot genes. At the time we performed our database searches the sequencing 

of the Arabidopsis genome was still far from completion. We later realized that there are more 

related chitinase genes than we found initially (Chapter 1). 

All three phenotypes found are in agreement with the expression pattern of the gene that was 

analyzed in detail by RT-PCR and by means of promoter: :GUS fusions. It appeared to be 

rather similar to the expression found in carrot during somatic embryogenesis (van Hengel et 

al, 1998a) but there were some discrepancies as well. However, we should keep in mind that 

in carrot, the EP3 family members are serologically indistinguishable and the probes used for 

RNA in situ hybridization did not allow to distinguish between the different EP3 genes (van 

Hengel et al, 1998a). All isoforms might therefore have been looked at simultaneously. 
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Furthermore, in Arabidopsis we could perform a more detailed expression analysis at the 

tissue level that may extend the results found in carrot, especially during vegetative 

development. This may also be true for the phenotypes we found in Arabidopsis. In carrot, it 

was not possible to conduct a similar mutant analysis. It is therefore unknown whether the 

carrot EP3 chitinase is also involved in processes other than embryogenesis. The results of the 

RT-PCR analysis carried out in carrot tend to indicate that this may be the case since the 

carrot EP3 mRNA was also found in storage roots, flowers and in imbibed mature seeds (van 

Hengel etal, 1998a). 

On the occurrence of gametophytic gene expression programs during somatic 

embryogenesis. 

Based on the specific expression pattern of the AtEP3 gene in embryogenic suspension 

cultures and its expression during pollen development, we have investigated the occurrence of 

gametophytic gene expression programs during somatic embryogenesis. Highly specific GUS 

markers for the male and the female gametophytes were included in this study and this 

revealed that all gametophytic markers tested were expressed during somatic embryogenesis 

in a temporally and spatially regulated manner. Such a specific regulation confirmed previous 

observations that were made in carrot embryogenic suspension cultures, where it was also 

shown that various cell types co-exist and have different fates and functions (McCabe et al., 

1997; Toonen et al., 1994). For instance, the immunolocalization of the specific 

arabinogalactan (AGP) epitope JIM8 (Pennell et al., 1991) in carrot embryogenic cultures 

revealed that a certain type of cells first possesses and then looses the JIM8 epitope. Further 

work suggested that it was the JIM8-negative cells that develop from these JIM8-positive 

cells that are competent to form embryos in culture (McCabe et al., 1997). The JIM8-positive 

cells present in these cultures would then mimic a postulated nursing role of the seed 

endosperm allowing the formation and the development of the embryo. The localization of the 

JIM8 epitope in the cell wall of gametophytic cells in planta - e.g. Brassica sperm and Lilium 

sperm and generative cells (Southworth and Kwiatkowski, 1996); micropyle of Amaranthus 

hypochondriacus ovules (Coimbra and Salema, 1997) - is also well established following 

earlier observations of its occurrence in Brassica in the nucellar epidermis, synergid cells, the 

egg cell and young embryos (Pennell et ah, 1991). These observations suggest that at least a 

number of pathways are shared between gametogenesis and embryogenic cell formation in 
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vitro. Whether the gene products have the same role in both processes remains to be 

elucidated, as well as its significance. 

At£P3 is involved in seed dormancy, pollen and root hair development; is there a 

common mechanism? 

In Chapter 5 and 6 we have shown that the AtEP3 chitinase is involved in pollen and 

root hair development as well as in seed dormancy. These observations were in general 

agreement with the expression pattern of the AtEP3 gene. One can wonder about the common 

denominator in the mechanism(s) by which the AtEP3 chitinase is involved in these three 

developmental processes without obvious correlation. 

The expression of the AtEP3 gene in mature pollen and growing pollen tubes and the 

pollen in vitro germination defect we observed imply the presence of a plant substrate in the 

direct environment of the mature pollen grain. AtEP3 being a secreted chitinase, such a 

substrate might be found in the locule, the stigma or in the transmitting tract of the style 

during pollen tube elongation. We have seen that the reduced pollen germination was only 

visible in vitro, without the influence of surrounding tissue. We have also observed that 

stigma exudates were able to mask the absence of AtEP3 chitinase in vitro. This also explains 

the absence of a phenotype in planta. As in embryogenic cultures, other chitinases produced 

by the stigma are most likely compensating the absence of AtEP3. This suggests that AtEP3 

and probably other chitinases are active in the pollen grain environment. They most likely 

participate to pollen germination and the subsequent elongation of the pollen tubes through 

the processing of a substrate present in the transmitting tract. So far, the nature of this 

substrate is unknown. Interestingly, arabinogalactan proteins (AGPs) have been identified in 

pollen and transmitting tract of several plant species (e.g. Cheung et al., 1995; Du et al., 1996; 

Gerster et al., 1996; Lind et al., 1994). It was proposed that they could promote pollen 

germination, pollen tube growth and serve as chemoattractants for their guidance (Wu et al., 

1995). From the work of van Hengel et al. (2001) we know that the carrot EP3 chitinase is 

able to cleave specific AGPs in vitro. AGPs co-localize as well with the presence of the 

enzyme in carrot, and after incubation with the EP3 chitinase their promoting effect on 

somatic embryogenesis (Kreuger and van Hoist, 1993) is enhanced. These results strongly 

suggest that GlcNAc-containing AGPs could be a substrate for the EP3 chitinase. However, 

we do not know whether the AGPs involved in pollen tube growth in tobacco (Cheung et al, 

1995) contain GlcNAc residues and therefore whether they could be a substrate for chitinases. 
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We also do not know whether Arabidopsis stylar AGPs can be processed by chitinases. 

Therefore we can only speculate on a possible link between the AtEP3 chitinase and AGPs of 

the transmitting tissue that could be at the heart of signaling events eventually leading to the 

growth of a pollen tube. 

The analysis of the expression pattern of the AtEP3 gene also revealed that after the pollen 

tube enters the receptive synergid its content is released into the latter along with the two 

sperm cells and even reaches the central cell, as illustrated by the observed GUS stainings 

(Chapter 2). This suggests that the pollen tube does not only supply the two sperm cells to the 

female gametophyte but carries a number of other factors that could favor the fertilization 

event itself and/or the very first steps of embryo development. The AtEP3 chitinase could be 

one of these factors, providing there is a substrate such as GlcNAc-containing AGPs that is 

present in the embryo sac or that is carried along with the chitinase from the pollen tube. The 

studies of Coimbra and Salema (1997) and Pennell et al. (1991) indicate that AGPs are 

present in the female gametophyte prior to fertilization. It is unknown whether these specific 

AGPs contain cleavage sites for the EP3 chitinase. 

The second defect we observed in the ep3-l mutant was also very subtle and was only 

identified based on the expression of the AtEP3 gene upon germination in the endosperm cap 

or the inner layers of the seed coat. We did not observe any reduction in seed germination but 

instead reduced seed dormancy was observed. This suggests a role of the AtEP3 chitinase in 

maintaining the dormancy state in wild-type seeds. The mechanism by which a chitinase 

could be involved here is totally obscure. The plant hormone abscisic acid (ABA) is known 

for inducing seed dormancy and most mutants that show reduced dormancy are impaired in 

ABA biosynthesis or sensitivity (Koornneef and Karssen, 1994; Leon-Kloosterziel et al, 

1996). This may point to a role of the AtEP3 chitinase in a pathway correlated to ABA or in 

some unknown pathway that also controls seed dormancy. Therefore, it would be interesting 

to see whether ep3-l seeds remain non-dormant in the presence of ABA. A possible 

mechanism could also involve AGPs, as proposed for pollen development. Lu et al. (2001) 

have indeed shown that AGP expression is both qualitatively and quantitatively regulated 

during seed germination. By blocking the activity of AGPs they did not observe any 

germination defect. Seed dormancy was not addressed in their study. AGPs are also present in 

Arabidopsis seeds (van Hengel et ah, 1998b), but as for other plant species it is unknown 

whether, as in carrot, these AGPs contain cleavage sites for the EP3 chitinase. How the 

processing of a hypothetical GlcNAc-containing AGP would influence seed dormancy is not 

known. 
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Finally, we observed a defect in root hair development that could be in line with the 

pollen tube growth observations, since root hair and pollen tube elongation both occur 

through tip growth. This is clearly illustrated in the Arabidopsis tipl mutant that is impaired 

both in pollen tube growth and root hair elongation (Schiefelbein et al., 1993). In ep3-l 

plants, we see a root hair phenotype opposite to the one of the tipl mutant. Root hairs are 

longer than in the wild-type, and in C4-5 plants where the AtEP3 mRNA level is 10% that of 

the wild-type root hairs are swollen. The significance of this difference in phenotype is 

unknown, but in the C4-5 line other chitinase genes may have been affected as well as the 

AtEP3 gene. The precise combination of chitinases remaining expressed may have resulted in 

such a difference. The nature of the root hair phenotype suggests that the AtEP3 chitinase 

may act through a different mechanism in root hair than in pollen development. If the AtEP3 

chitinase is involved in tip growth it may have both stimulating effects as seen in pollen tube 

elongation and inhibitor effects as seen in root hair growth. AGPs are present on the root 

surface (Samaj et al., 1999) and it was shown that blocking the action of AGPs inhibits 

overall root length, epidermal root cell elongation, root cell numbers and root hair formation 

(Lu et al., 2001; Willats and Knox, 1996). The nature of the defect observed in ep3-l plants 

together with these observations is not in contradiction with a mechanism involving specific 

combinations of AGPs and chitinases. We will need to look specifically at the roots of ep3-l 

plants to describe the root hair phenotype in more detail. Other indications for a function in 

root hair development arise from the observations made in the Rhizobium-legyime symbiosis, 

in which lipochitinoligosaccharides (LCOs) produced by the bacterium are responsible for 

morphological changes occurring in the root hair among which elongation (Dazzo et al., 

1996). We also know from previous work of de Jong et al. (1993) that LCOs are able to 

rescue tsll mutant embryos. This suggests that similar signals are involved in both 

morphological processes of root hair deformation prior to forming a root nodule and the 

formation of an embryo. In addition, plant chitinases are able to process LCOs (Schultze et 

al., 1998) that as the AGPs described in van Hengel et al. (2001) contain GlcNAc residues. 

Taken together our observations support the hypothesis that GlcNAc-containing molecules 

such as AGPs that are processed by the EP3 chitinases are involved in a developmental 

process such as tip growth. 
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Summary 

Chitinases are enzymes that are capable of catalyzing the hydrolysis of chitin, a 

homopolymer of N-acetylglucosamine. Chitin is the main constituent of the 

exoskeleton of insects, of crustacean shells and of the cell wall of many fungi but is 

absent in plants. This led to the commonly accepted hypothesis that plant chitinases are 

involved in defense against pathogens with chitin in their cell wall such as certain 

classes of fungi. Yet their role is not restricted to responding to pathogen attacks since 

plant chitinases are also induced by various types of stress, for instance after treatment 

with heavy metals or after UV irradiation. Chitinases can also be induced by plant 

hormones and they have been associated with a number of developmental processes, 

most notably in embryogenesis and during pollination. In addition, some chitinases 

may play a role in defense as well as in development, depending on their expression at 

particular stages in the plant life cycle. Plant chitinases belong to a relatively large 

protein family, which has hampered attempts to gain a better understanding of their 

role. A detailed study of individual chitinases is a prerequisite to unravel their precise 

role as well as to determine the function the different members of the five classes in 

which plant chitinases are subdivided. 

In this thesis, we have addressed the role of one particular chitinase, AtEP3, in the 

model plant Arabidopsis thaliana. The work presented illustrates some of the 

difficulties inherent to the study of individual genes that belong to fairly large gene 

families. Chapter 1 gives a detailed overview of all chitinase genes present in the 

Arabidopsis genome. The genomic distribution and the sequences of these genes 

revealed interesting evolutionary relationships between the different classes. We 

discuss the possible significance of some of their sequence characteristics in light of 

their predicted role and propose a number of functions based on chitinases studied in 

other plants. 

In Chapter 2, we present an elaborate analysis of the expression pattern of the AtEP3 

gene. The expression pattern of the AtEP3 chitinase gene suggested possible functions 

in somatic embryo development, pollen maturation and/or germination, pollen tube 

growth, seed germination and root hair growth. All of these aspects have been looked 
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at when searching for morphological aberrations (Chapters 5 and 6). The analogy 

between the expression of the gene found in pollen and in embryogenic cultures 

suggested there may be a correlation between gametogenesis and embryogenic cell 

formation. This notion was further taken into account by a study of GUS markers for 

specific cells of the female gametophyte and for the male gametophyte (Chapter 3). 

This work clearly indicated that a number of genetic programs specific for both 

gametophytes in planta are reproduced in tissue culture and that they are regulated in a 

spatially and temporally manner. 

In Chapter 4, we were confronted with some of the pitfalls of reverse genetics. We 

performed a molecular and phenotypic analysis of several mutant plants in which the 

AtEP3 gene had been disrupted. However, we did not succeed in identifying any 

phenotype that could be directly linked to the absence of the AtEP3 chitinase. This was 

mainly due to the genetic instability of the material we studied, combined with the 

growth conditions in which we performed our analysis. It became clear from this work 

that small errors introduced while generating the available mutant plant collections can 

prevent the recovery of the desired individual mutant plants. In addition, the number of 

elements inserted for mutagenesis greatly influences the ease by which the phenotypic 

analysis of the mutant plants can be performed since multiple insertions can lead to 

several unlinked phenotypes. 

In Chapter 5, we describe several transgenic lines in which the expression levels of the 

AtEP3 gene had been manipulated. An increase in AtEP3 expression did not result in 

any visible change in plant morphology, nor in embryogenic potential in vitro. 

However, a reduction of AtEP3 expression to 10% the level of the wild-type resulted in 

a defect in root hair morphology. Similarly, complete knockout of the gene produced a 

root hair phenotype in a mutant plant now renamed ep3-l (Chapter 6). Both 

phenotypes suggest a role for AtEP3 in root hair formation. Complete absence of 

AtEP3 mRNA also gave rise to the direct germination of fresh seeds without prior 

stratification, indicating that the chitinase could also be involved in the maintenance of 

seed dormancy. An additional defect was a strong reduction of pollen development in 

vitro. Surprisingly, the reduced pollen germination phenotype in the ep3-l mutant 

could be compensated by stigma exudates in vitro. This makes it very unlikely that 

such a phenotype could ever be observed in planta. The absence of AtEP3 in pollen is 

most likely compensated by the presence of other chitinases in the stigma. This is 

probably the case in embryogenic cultures as well, where the absence of a single 
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chitinase might not be sufficient to hinder embryo development. Previous work done in 

carrot is in line with these observations. 

We have previously proposed the involvement of arabinogalactan proteins (AGPs) as a 

possible substrate for the AtEP3 chitinase. We base this hypothesis on the findings that 

carrot EP3 chitinases can cleave specific AGPs and that as a result the promotive effect 

of these now "cleaved" AGPs on somatic embryo development is enhanced. Second, 

AGPs are often found at the same location as chitinases and finally AGPs have been 

shown by others to be involved in pollen and root development as well as in seed 

germination. Taken together these observations suggest a role for the AtEP3 chitinase 

in intercellular communication through N-acetylglucosamine-containing signal 

molecules. The work presented in this thesis provides the groundwork that is essential 

to address the role of plant chitinases by molecular, genetic and biochemical means. 
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Samenvatting 

Chitinases zijn enzymen die de hydrolyse van chitine, een homopolymeer van N-

acetylglucosamine, kunnen katalyseren. Chitine is het belangrijkste bestanddeel van 

het exoskelet van insecten, van schaaldieren en van de celwand van vele schimmels 

maar is afwezig in planten. Dit leidde tot de algemeen geaccepteerde hypothese dat 

plantchitinases betrokken zijn bij het bescherming van planten tegen pathogenen met 

chitine in hun celwand zoals bepaalde klassen van schimmels. Maar toch is hun rol niet 

beperkt tot het reageren tegen pathogenenaanvallen aangezien plantchitinases ook door 

diverse types stress kunnen worden gei'nduceerd, bijvoorbeeld na behandeling met 

zware metalen of na UV-straling. Chitinases kunnen eveneens door planthormonen 

worden gei'nduceerd en worden geassocieerd met een aantal ontwikkelingsprocessen, 

voornamelijk embryogenese en polinisatie. Bovendien, zouden sommige chitinases een 

rol kunnen spelen in bescherming en in ontwikkeling, afhankelijk van hun expressie in 

specifieke stadia van het plantlevenscyclus. Plantchitinases behoren tot een vrij grote 

eiwitfamilie en dit heeft het verkrijgen van een beter inzicht in hun rol belemmerd. Een 

gedetailleerde studie van individuele chitinases is vereist om hun nauwkeurige rol te 

ontrafelen evenals om de functie te bepalen van de verschillende leden van de vijf 

klassen waarin plantchitinases worden onderverdeeld. 

In dit proefschrift hebben wij ons gericht op de rol van een specifiek chitinase, AtEP3, 

in de model plant Arabidopsis thaliana. Het hier beschreven werk illustreert enkele van 

de moeilijkheden die behoren bij de studie van individuele genen die onderdeel zijn 

van vrij grote genfamilies. Hoofdstuk 1 geeft een gedetailleerd overzicht van alle 

chitinasegenen aanwezig in het Arabidopsis genoom. De genomische verdeling en de 

sequenties van deze genen brachten interessante evolutieverbanden tussen de 

verschillende klassen aan het licht. De mogelijke betekenis van sommige van hun 

sequentiekenmerken in relatie tot hun voorspelde rol wordt besproken en een aantal 

functies die worden gebaseerd op bekende chitinases uit andere planten worden 

voorgesteld. 
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In Hoofdstuk 2, stellen wij een gedetailleerde analyse van het expressiepatroon van het 

gen AtEP3 voor. Het expressie patroon van dit gen duidt op mogelijke functies in de 

somatische embryo-ontwikkeling, stuifmeelrijping en/of ontkieming, de groei van de 

stuifmeelbuis, zaad ontkieming en de groei van wortelharen. Elk van deze aspecten 

zijn bekeken tijdens het zoeken naar morfologische afwijkingen (Hoofdstukken 5 en 

6). De analogie tussen de expressie van het gen in stuiftneel en in embryogene culturen 

impliceert een mogelijke correlatie tussen gametogenese en embryogene celvorming. 

Dit werd verder onderzocht met behulp van GUS markers voor specifieke cellen van 

de vrouwelijke gametophyte en voor de mannelijke gametophyte (Hoofdstuk 3). Dit 

werk wees duidelijk uit dat een aantal genetische programma's specifiek voor beide 

gametophytes in planta in de weefselkweek worden gereproduceerd. Deze 

programma's zijn ook in tijd en ruimte gereguleerd. 

In Hoofdstuk 4, werden wij geconfronteerd met enkele valkuiten van 'reverse 

genetics'. Wij voerden een moleculaire en fenotypische analyse van verschillende 

mutantplanten uit waarbij het gen AtEP3 werd uitgeschakeld. Een fenotype dat direct 

met de afwezigheid van de AtEP3 chitinase zou kunnen worden verbonden werd echter 

niet gei'dentificeerd. Dit is hoofdzakelijk toe te schrijven aan de genetische instabiliteit 

van het bestudeerde materiaal, gecombineerd met de groeiomstandigeden waarin de 

analyse werden uitgevoerd. Uit dit werk werd duidelijk dat kleine fouten 

geintroduceerd tijdens het produceren van de beschikbare collecties van mutantplanten 

het verkrijgen van de gewenste individuele mutantplanten kan verhinderen. Bovendien, 

be'invloedt het aantal elementen die voor mutagenese worden ingebracht zeer het 

gemak waarmee de fenotypische analyse van de mutantplanten kan worden uitgevoerd, 

aangezien veelvoudige inserties tot verschillende onafhankelijke fenotypes kunnen 

leiden. 

In Hoofdstuk 5, worden verschillende transgene lijnen beschreven waarin het 

expressieniveau van het gen AtEP3 is gemanipuleerd. Een verhoging van AtEP3 

expressie resulteerde niet in een zichtbare verandering in de morfologie van de planten, 

noch in embryogene vermogen in vitro. Een vermindering van AtEP3 expressie tot 

10% van het niveau van het wild-type resulteerde daarentegen in een defect in de 

morfologie van wortelharen. Zo ook, veroorzaakte de volledige 'knock-out' van het 

gen een fenotype in wortelharen in de mutantplant nu ep3-l genoemd (Hoofdstuk 6). 

Beide fenotypes wijzen op een rol voor AtEP3 in de vorming van het wortelhaar. De 

volledige afwezigheid van AtEP3 mRNA leidde ook tot de directe ontkieming van 
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verse zaden zonder voorafgaande stratificatie. Dit wijst erop dat het AtEP3 chitinase 

ook in het onderhoud van zaadkiemrust gei'mpliceerd zou kunnen zijn. Een extra defect 

was een sterke vermindering van de stuifmeelontwikkeling in vitro. Verrassend genoeg 

kon het verminderde in vitro stuifmeelontkieming in de mutant ep3-l door stigma 

afscheidingen gecompenseerd worden. Dit maakt het zeer onwaarschijnlijk dat een 

dergelijk fenotype ooit in planta kan worden waargenomen. De afwezigheid van 

AtEP3 in stuifmeel wordt waarschijnlijk door de aanwezigheid van andere chitinases in 

het stigma gecompenseerd. Dit is vermoedelijk ook het geval in embryogene culturen, 

waar de afwezigheid van een enkele chitinase niet zou kunnen volstaan om de embryo-

ontwikkeling te belemmeren. Voorgaand werk dat in de wortel werdt uitgevoerd stemt 

met deze observaties overeen. 

Wij hebben eerder de betrokkenheid van arabinogalactan protei'nen (AGPs) als een 

mogelijk substraat voor het AtEP3 chitinase voorgesteld. Deze hypothese wordt 

gebaseerd op de bevindingen dat wortel EP3 chitinases specifieke AGPs kunnen 

splitsen en dat dientengevolge het stimulerende effect van de nu 'gesplitste' AGPs op 

somatisch embryo-ontwikkeling wordt verhoogd. Verder, worden AGPs vaak 

gevonden op de zelfde plaats als chitinases en het is door anderen aangetoond dat 

AGPs in stuifmeel en wortelontwikkeling evenals in zaadontkieming zijn 

gei'mpliceerd. Tezamen genomen deze observaties duiden op een rol voor het AtEP3 

chitinase in intercellulaire communicatie door N-acetylglucosamine-bevatende 

signaalmoleculen. Het werk dat in deze proefschrift wordt beschreven legt de basis die 

essentieel is om het onderzoek naar het de rol van plantchitinases door middel van 

moleculaire, genetische en biochemische middelen aan te pakken. 
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Les chitinases sont des enzymes capables de catalyser l'hydrolyse de la chitine, un 

homopolymere de N-acetylglucosamine. La chitine est le constituent principal Du 

squelette externe des insectes, des crustacees et de la paroi cellulaire de nombreuses 

moisissures, mais elle est absente des plantes. Ceci a mene a l'hypothese generalement 

acceptee que les chitinases de plantes sont impliquees dans la defense contre des agents 

pathogenes contenant de la chitine dans leur paroi cellulaire telles que certaines classes 

de moisissures. Pourtant leur role n'est pas limite a repondre aux attaques de 

pathogenes puisque les chitinases de plantes sont egalement induites par divers types 

de stress, comrae par exemple apres traitement par des metaux lourds ou apres 

irradiation aux ultra-violets. Les chitinases peuvent egalement etre induites par des 

hormones vegetales et ont ete associees a un certain nombre de processus du 

developpement, plus particulierement l'embryogenese et la pollinisation. En outre, 

certaines chitinases peuvent jouer un role aussi bien dans la defense des plantes que 

dans leur developpement en fonction des stades specifiques auxquels elles s'expriment 

pendant le cycle de vie de la plante. Les chitinases de plantes appartiennent a une 

relativement grande famille de proteines, ce qui a entrave de nombreuses tentatives 

visant a acquerir une meilleure comprehension de leur role. Une etude detaillee de 

chaque chitinase est necessaire pour determiner leur role precis ainsi que la nature des 

relations entre les differents membres des cinq classes dans lesquelles les chitinases de 

plante sont subdivisees. 

Dans cette these, nous avons adresse le role de la chitinase AtEP3 chez la plante 

modele Arabidopsis thaliana. Le travail presente illustre certaines des difficultes 

inherentes a l'etude de genes qui appartiennent a une grande famille. Le Chapitre 1 

donne une vue d'ensemble de tous les genes de chitinase presents dans le genome 

&'Arabidopsis. La distribution genomique et les sequences de ces genes ont revele des 

relations interessantes en termes d'evolution entre les differentes classes de chitinases. 

Nous discutons la signification possible de certaines de leurs caracteristiques a la 

lumiere de leur role predit et proposons un certain nombre de fonctions basees sur des 

chitinases etudiees chez d'autres plantes. 
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Dans le Chapitre 2, nous presentons une analyse detaillee du profil d'expression du 

gene AtEP3. Les resultats de cette analyse ont suggere des fonctions possibles dans le 

developpement de l'embryon in vitro, la maturation et/ou la germination du pollen, la 

croissance des tubes polliniques, la germination de la graine et la croissance des poils 

racinaires. Tous ces aspects ont ete abordes en recherchant des anomalies 

morphologiques (Chapitres 5 et 6). L'analogie entre l'expression du gene dans le pollen 

et dans les cultures embryogenes suggere une correlation possible entre la 

gametogenese et la formation de cellules embryogenes in vitro. Cette notion a ete prise 

en consideration par une etude de marqueurs GUS pour des cellules specifiques du 

gametophyte femelle et pour le gametophyte male (Chapitre 3). Ce travail a clairement 

indique que certains des programmes genetiques specifiques pour les deux 

gametophytes in planta sont reproduits en culture in vitro. Ces programmes sont 

egalement regules spacialement et temporellement. 

Dans le Chapitre 4, nous avons ete confronted avec certains des pieges de la genetique 

inverse. Nous avons execute une analyse moleculaire et phenotypique de plusieurs 

plantes mutantes pour lesquelles le gene AtEP3 a ete interrompu. Cependant, nous 

n'avons pas reussi a identifier un phenotype qui pourrait etre directement lie a l'absence 

de chitinase AtEP3. Ceci est principalement du a l'instabilite genetique du materiel que 

nous avons etudie, ainsi qu'aux conditions de croissance des plantes dans lesquelles 

nous avons execute notre analyse. Cette etude a clairement montre que d'infimes 

erreurs introduites au cours de la production des collections de mutants, peut empecher 

la recuperation de la plante mutante recherchee. En outre, le nombre de transgenes 

influence considerablement la facilite par laquelle l'analyse phenotypique des plantes 

mutantes peut etre executee puisque des insertions multiples de transgenes peuvent 

mener a plusieurs phenotypes independants les uns des autres. 

Dans le Chapitre 5, nous decrivons plusieurs lignees transgeniques dans lesquelles le 

niveau d'expression du gene AtEP3 a ete manipule. Une augmentation de l'expression 

d'AtEP3 n'a eu aucune consequence visible sur la morphologie de la plante, ni sur le 

potentiel embryogene in vitro. Cependant, une reduction de l'expression d'AtEP3 a 

10% du niveau du type sauvage a resulte en un defaut dans la morphologie des poils 

racinaires. De meme, le KO complet du gene a produit un phenotype au niveau des 

poils racinaires chez une plante mutante maintenant nominee ep3-l (Chapitre 6). Ces 

deux phenotypes suggerent un role pour AtEP3 dans la formation des poils racinaires. 

L'absence complete d'ARNm d'AtEP3 a egalement provoque la germination directe de 

172 



Resume 

graines fraiches sans vernalisation anterieure, indiquant que la chitinase pourrait 

egalement etre implique dans le maintien de la dormance de la graine. Un defaut 

supplemental a ete observe, correspondant a une forte reduction du developpement 

du pollen in vitro. Etonnamment, le phenotype de reduction de germination du pollen 

in vitro dans le mutant ep3-l a pu etre compense par des exsudats de pistil. Ceci rend 

l'observation d'un tel phenotype in planta tres peu probable. L'absence d'AtEP3 dans 

le pollen est tres probablement compensee par la presence d'autres chitinases dans le 

pistil. C'est probablement le cas aussi dans les cultures embryogenes ou l'absence d'une 

seule chitinase pourrait ne pas etre suffisante pour gener le developpement de 

l'embryon. Des travaux effectues chez la carotte sont en conformite avec ces 

observations. 

Nous avons precedemment propose la participation de proteines contenant de 

l'arabinogalactane (AGPs) comme substrat possible pour la chitinase AtEP3. Nous 

basons cette hypothese sur le fait que les chitinases EP3 de la carotte peuvent cliver des 

AGPs specifiques et qu'en consequence l'effet promoteur de ces AGPs, maintenant 

clives, sur le developpement de l'embryon somatique est accru. En second lieu, les 

AGPs sont souvent trouves au meme endroit que les chitinases et finalement il a ete 

montre que les AGPs sont impliques dans le developpement du pollen et de la racine 

ainsi que dans la germination de la graine. Toutes ces observations suggerent un role 

pour la chitinase AtEP3 dans la communication intercellulaire par l'intermediaire de 

molecules signal contenant de FN-acetylglucosamine. Le travail presente dans cette 

these fournit la trame de fond essentielle pour etudier le role des chitinases de plantes 

par des moyens moleculaires, genetiques et biochimiques. 
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