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0 

Flux Analysis of Underdetermined Metabolic Networks: 
The Quest for the Missing Constraints 

Hendrik P.J. Bonarius, 

Georg Schmid, 

and Johannes Tramper. 

ABSTRACT 

Metabolic-flux balancing has become an important tool for the quantitative 

analysis of the physiology of microorganisms and mammalian cells. It has 

successfully been applied to trace potential sites for metabolic engineering, to 

determine metabolic capabilities and to design optimal medium compositions 

and feeding strategies. Traditionally, the intracellular fluxes of complex 

metabolic networks have been quantified by isotopic-tracer experiments. As 

this approach has practical limitations 'metabolic-flux balancing' is emerging 

as a feasible alternative. A fundamental problem of this method is that 

metabolic networks, and in particular cyclic metabolic pathways, are 

underdetermined. The search for constraints which can be used to correctly 

determine fluxes for a range of different conditions offers an exciting 

challenge. 
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INTRODUCTION 

Microorganisms are widely exploited for the synthesis of proteins or low molecular 

weight compounds. Their metabolism is used to transform substrates into a wide 

variety of products. As with chemical-production plants, the flux distribution 

determines the efficiency of the production process. In biological systems, nutrients 

are only partly used for biomass and product synthesis and for energy supply. Besides, 

waste-products accumulate and abundant energy dissipates in futile cycles. In order to 

optimize the capacity of microbial metabolism, and thus increase yields, the 

intracellular metabolite flows have to be quantified. 

Traditionally, metabolic fluxes have been determined by isotopic-tracer 

experiments. As the carbon stoichiometry of metabolic reactions is known, it is 

possible to determine the fluxes at certain branch points by tracing the metabolic 

fate of carbon-labeled substrates. Although these isotopic-tracer techniques are well 

established and have been significantly improved, particularly by the application of 

NMR technology to biological systems (Schulman et al., 1979), they are laborious 

and expensive to conduct, and cannot be used on an industrial scale. As an 

alternative, 'metabolic-flux balancing' (Varma and Palsson, 1994) which only 

requires the measurement of extracellular metabolites (Box 1), has been proposed 

as a means to determine the flow through primary metabolic pathways (Vallino and 

Stephanopoulos, 1990). 

Data from isotopic-tracer experiments have thus been supplemented with mass-

balance equations of the relevant metabolites for the determination of fluxes in 

entire metabolic networks (Blum and Stein, 1982; Marx et al., 1996; Zupke and 

Stephanopoulos, 1994; Bonarius et al., 1998d). Additionally, computational 

methods have been developed to combine these different types of information, 

allowing the calculation of metabolic fluxes with a minimum of algebraic 

manipulation (Marx et al., 1996; Zupke and Stephanopoulos, 1994). For industrial 

applications, however, it is desirable to determine intracellular metabolic fluxes by 

metabolic-flux balancing alone. Since no isotopically-labeled substrate is required, 
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the estimation of fluxes from mass balances (see Glossary) can be made in virtually 
any biological or reactor system regardless of scale. 

Boxl 
Principles of metabolic-flux balancing 
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Principles of metabolic-flux balancing. (Numerical values are chosen arbitrarily.) 

Metabolic-flux balancing techniques are based on relatively simple linear algebra. If 
the stoichiometry of the relevant intracellular reactions and the cellular composition 
are known, and the uptake and secretion rates of the relevant metabolites (for 
example rA, rB and rc in the figure) have been measured, the reaction rates (x, and x2 

in the figure) can be determined using the appropriate mass-balance equations. A 
reaction network is shown for which one unique solution for the variables xl and x2 

can be estimated by least-squares analysis of mass balances A, B, and C. The least-
squares method, which is used here because there are more constraints (mass 
balances) than unknowns (fluxes), is calculated by (pseudo)inverting stoichiometric 
matrix A (Vallino and Stephanopoulos, 1990); 
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For the stoichiometry and measured metabolic rates given in the figure this 
equation reads 
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This shows that intracellular fluxes can be quantified by measuring only the uptake 
and secretion rates of the relevant metabolites. 
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On-line applications o f crude' stoichiometric analysis have already been shown to 

be effective as a means of improving production yields in fermentation processes 

(Wang et al., 1979). It is theoretically possible to measure and control 

Glossary 

Balanceable metabolite. A metabolite whose mass balance can be closed. 

Condition number of stoichiometric matrix. The condition number of matrix 
stoichiometric matrix A -the ratio of the largest to smallest eigenvalue of A- measures 
the sensitivity of the equation Ax = r (Box 1). 

Directionality constraint. The demand that a (number of) flux(es) is non-negative. 

Linear-dependent metabolite balances. Metabolite balances are linear dependent if 
(a combination of) the solution planes determined by the metabolite-balances are 
parallel. (For example, the metabolite balances of A and B in Fig. 2 are linear 
dependent.) 

Metabolite (or 'mass') balance. An equation that describes the accumulation and all 
relevant incoming and outgoing fluxes of a metabolite pool. 

Observability. Here, the extent to which intracellular metabolic fluxes can be 
determined by the measurement of the extracellular metabolic rates and the biomass 
composition. 

Rank of stoichiometric matrix. The maximum number of linear-independent 
metabolite balances in a metabolic network is defined as the rank of the stoichiometric 
matrix. If the rank is smaller than the number of metabolic fluxes (the number of rows 
of the stoichiometric matrix), the metabolic network is rank deficient. 

Stoichiometric matrix. Matrix that contains information of the reaction stoichiometry 
of cellular metabolism (f.e., A in Box 1). The rows and the columns of the 
stoichiometric matrix are associated with the metabolite balances and the metabolic 
fluxes, respectively. 

Underdetermined networks. Rank-deficient metabolic networks are designated 
'underdetermined' to indicate that there are insufficient linear-independent metabolite 
balances to determine the intracellular metabolic fluxes. 
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metabolic conversions on the level of single enzymatic reactions by metabolic-flux 

balancing techniques, with the measurement of only a limited number of 

extracellular metabolites (Van Gulik and Heijnen, 1995). Apart from controlling 

complex metabolic networks or tracing potential site for metabolic engineering, 

other applications such as rational medium design (Xie and Wang, 1994), 

elucidation of metabolic and toxicological effects, location of metabolic control 

(Kacser and Burns, 1973), determination of maximum theoretical yields (Varma 

and Palsson, 1993), and a quantitative prediction of biochemical phenotypes from 

gene data banks (Palsson, 1997), will all benefit from this computational technique. 

In this review, the fundamental problem that currently hinders the development of 

such a method is discussed, and various proposed solutions are reviewed. Finally, 

experiments are suggested to investigate which of these solutions might lead to a 

method for quantifying metabolic fluxes using only mass balances. 

PROBLEM DEFINITION 

Two fundamental problems have been identified in applying this technique to large, 

complex metabolic networks (Vallino and Stephanopoulos, 1990). First, the 

estimated flux vector, which is calculated by the least-squares method, may be 

sensitive to slight perturbations in the measured extracellular rates (r, in Box 1). 

This sensitivity to error propagation can be checked by calculating the condition 

number of the system (Vallino and Stephanopoulos, 1990; Savinell and Palsson, 

1992a), which depends solely on the reaction stoichiometry of the metabolic 

network. In Figure 1 the condition number (see Glossary) can be seen to increase 

with the complexity (Fig. la) and the ratio of stoichiometric coefficients (Fig. 2b). 

A large condition number (>100) indicates that the estimated flux distribution is 

sensitive to measurement errors. Combinations of reactions that cause network 

sensitivities can be identified using an algorithm developed by Savinell and Palsson 

(1992a). The flows through these reactions either have to be determined 

independently by isotopic-tracer experiments or have to be removed from the 

network. However, with a few exceptions (Savinell and Palsson, 1992b), the 

condition number of a metabolic network is generally small (< 100), which 
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indicates that error propagation is insignificant (Vallino and Stephanopoulos, 

1990). Nevertheless, the condition number of the stoichiometric matrix should be 

determined prior to least-squares analysis. 

Figure 1 

Metabolic network Reaction Condition 
stoichiometry number 

/ _ \ IX .-•• x '"" ' \ ru 
W r » A — - B - > • * i : A • » C(A)=1.0 

Xl Xi Xj 

" A — » B »C ' 

x , : A — > . B 
« j : B » C C(A>=5.4 
x, : C • D 

X,: A • B C(A)= 1.7 
X,: B » C 

"—• CJ. » 
•-... *" ..-• He-7 ' . „ r C (A)=16 

x , : A — • 0.1 B 

(c) ^ U A ^ ^ B 4 _ 

X I : A . L I B C(A)=42.1 
X, : A • 1.0 B 

X, : A » 1.0 B 
X,: A • 1.0 B C(A) = tat 

The error sensitivity of a metabolic network is only dependent on the 
reaction stoichiometry and can be determined by the condition number of 
the stoichiometric matrix (Vallino and Stephanopoulos, 1990). (a) The 
condition number increases with growing complexity, (b) If only rA and rB 

are known, the fluxes x, and x2 can be estimated. It is shown that the 
condition number increases with the ratio of the stoichiometric 
coefficients, (c) Networks which contain cyclic pathways are error 
sensitive or not observable (C(A) = oo). 

A special case of error-sensitive metabolic networks is reaction dependency (Figure 

lc). In contrast to error propagation, this causes observability problems in the 

determination of the fluxes in the metabolic networks of almost all prokaryotic 

(Noorman et al., 1991; Savinell and Palsson, 1992a; Vallino and Stephanopoulos, 

1993; Van Gulik and Heijnen, 1995; Varma and Palsson, 1993; Sauer et al., 1996) 

and eukaryotic (Fell and Small, 1986; Savinell and Palsson, 1992a; Bonarius et al., 

1996) cells. Reaction dependency occurs particularly due to cyclic pathways, which 
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are abundantly present in metabolic systems. In Figure 2a the problem associated 

with a cyclic metabolic pathway is visualized. 

Figure 2 

Mass balances 
over A: rA = -3 = -x, - x2 

over B: rB = 3 = x, + x. 

(a) 

mass balances 
over A and B 

No unique 
solution 

Mass balances 
. over A: rA = -3 = -x, - x2 

over B: rB = 3 = x, + x : 

overC: r c = 2= xt 

Unique solution 

(b) 

An undetermined (a) and a determined (b) metabolic network, (a) Reactions x, 
and x2 are linear dependent. (Numerical values are chosen arbitrarily.) 

Reactions in metabolic cycles are linear dependent and cannot be derived from the 

extracellular measured rates. In a metabolic network such reactions cause 

singularities, as a result of which the set of mass balance equations is 

underdetermined. It is also apparent that the mass-balance equations of metabolites 

A and B yield the same information, as a result of which the fluxes 1 and 2 cannot 

be quantified solely by flux-balancing techniques. In this case, the solution space 

that contains all admissible solutions for fluxes x, and x2 can be visualized by a 

single line (Fig. 2a). Underdetermined networks such as that shown in Figure 2a are 

rank deficient. 

THEORETICAL AND EXPERIMENTAL SOLUTIONS 

In the last years, various approaches have been proposed to estimate fluxes of large, 

complex metabolic networks by supplementing the underdetermined network with 

various theoretical assumptions or constraints (Fell and Small, 1986; Vallino and 

Stephanopoulos, 1990; Vallino and Stephanopoulos, 1993; Varma and Palsson, 

1993; Van Gulik and Heijnen, 1995; Bonarius et al., 1996; Sauer et al., 1996; Pons 
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et al., 1996). This accounts in particular for fluxes in major metabolic cycles such 

as the TCA cycle, the pentose phosphate cycle, and the malate shunt (The 

quantification of fluxes in "futile cycles", where there is no branching off the cycle 

(Fell, 1990), is not covered in this review). Currently, several research groups are 

comparing flux distributions estimated on the basis of such assumptions with 

experimentally determined fluxes using isotopic-tracer methods (Schmidt et al., 

1998; Bonarius et al., 1998b). Here, several 'candidate' constraints are reviewed 

and control experiments are suggested in order to find a method for the 

determination of intracellular fluxes without using isotopic tracers. 

Mass balances of co-factors or co-metabolites as additional constraints 

When a co-metabolite is produced or consumed in cyclic pathway reactions, the 

addition of its mass balance may yield a unique solution. In Figure 2b it is shown 

that a least-squares solution exists for a cyclic pathway when the mass balance of 

metabolite C is added to the network. In reality, addition of the mass balance(s) of 

co-metabolites is generally not sufficient to generate an (over)determined system. 

In complex networks, co-metabolites are either produced in more than one cyclic 

pathway, for example carbon dioxide, or are not balanceable, such as ATP. In most 

organisms, carbon dioxide is produced in the pentose cycle, the TCA cycle and the 

malate shunt and consumed in the pyruvate carboxylase reaction (Fig. 3). 

Therefore, the addition of the carbon-dioxide balance to the metabolic network will 

not allow an independent determination of the fluxes in these cycles. Nevertheless, 

useful information can be obtained from the carbon dioxide production rate, as it 

provides a means of checking the consistency of the estimated fluxes with respect 

to the carbon balance. 

By addition of the ATP balance to a metabolic network such as shown in Figure 3, 

the rank of the stoichiometric matrix increases with one unit. As a result the 

observability increases, and the split ratio of fluxes at either the glucose-6-

phosphate or the pyruvate branch-point can be determined. However, the ATP mass 

balance cannot be closed due to the fact that both ATP yields and ATP 
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requirements for maintenance processes can only be estimated (Savinell and 
Palsson, 1992b; Van Gulik and Heijnen, 1995). It has been suggested that 
theoretical calculations of ATP yields result in significantly higher levels than can 
be deduced from experimental data (Verduyn et al., 1990). Moreover, relatively 
small changes in such estimations will have large effects on the calculated flux 
distribution (Bonarius et al., 1998b). 

Figure 3 

Metabolic pathways of hybridoma cells. Dashed arrows indicate fluxes 
which can be quantified using mass balances. Solid, numbered arrows 
represent fluxes that are linear dependent and consequently not calculable 
using balancing techniques. (The dashed line represents the 
mitochondrial membrane.) Abbreviations: ACoA acetyl-CoA, AKG cc-
ketoglutarate, CHOL cholesterol, CIT citrate, E4P erythrose-4-phosphate, 
GAP glyceraldehyde 3-phosphate, GLC glucose, G6P glucose-6-
phosphate, G3P 3-Phosphoglycerate, LAC lactate, MAL malate, OAA plus 
oxaloactetate, PEP phosphoenolpyruvate, PYR pyruvate, R5P ribose-5-
phosphate, Ru5P ribulose-5-phosphate, S7P sedoheptulose-7-phosphate, 
TC total carbohydrates, TP total protein, X5P xylulose-5-phosphate. 

The mass balances of reducing equivalents, for example NADH and NADPH, are 
often used to determine the split ratio of metabolic fluxes at branch points, such as 
occur in the metabolism at (phosphoenol)pyruvate or glucose-6-phosphate (Savinell 
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and Palsson, 1992a; Vallino and Stephanopoulos, 1993; Van Gulik and Heijnen, 

1995; Bonarius et al., 1996). However, microorganisms interconvert these co-

factors with unknown reaction rates using transhydrogenases. Therefore, in order to 

estimate fluxes in underdetermined networks, NADH and NADPH should be used 

as a lumped factor to circumvent the problem of transhydrogenase activity 

(Bonarius et al., 1996). As a consequence, the split ratio of only one branch point 

(instead of two) can be estimated. Additionally, it has been shown for liver cells 

(Fell and Small, 1986), hybridomas (Bonarius et al., 1998b) and Bacillus subtilis 

(Sauer et al., 1996) that the estimated flux distribution is very sensitive to the 

assumptions made or to small changes in the NAD(P)H balance. 

Irreversibility of reactions as additional constraints 

Some reactions in metabolic networks are considered irreversible. This additional 

information allows one to set lower boundaries to these particular reactions and to 

further constrain the solution space, in which all admissible solutions are situated. 

Although these constraints do not help to overcome observability problems, they 

can be used to fine tune the unconstrained solution to equation in Box 1 (Vallino 

and Stephanopoulos, 1993), if certain fluxes are negative where they should be 

irreversible, i.e. 0. An algorithm for the determination of all non-negative, 

admissible fluxes has been described (Schuster and Schuster, 1993). This 

computational method was applied to describe the basic reaction modes at the 

corner points of admissible solution space in cyclic pathways (Schuster and 

Hilgetag, 1994) and to determine optimal flux distributions for the conversion of 

sugars to aromatic metabolites in Escherichia coli (Liao et al, 1996). Further, 

directionality constraints are essential when applying linear optimization 

techniques, as will be shown below. 

10 
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Objective functions as additional constraints; linear optimization 

As pointed out above, the mass balances of co-factors such as ATP and NADH can 

either be closed by mere approximation or not be closed at all, as certain 

biochemical parameters are not quantifiable. Instead, these mass balances can be 

used to formulate objective functions. Intracellular pools of co-factors for the 

transfer of energy or reducing power regulate many enzymatic reactions. Therefore, 

a surplus of, or a need for, these co-metabolites influences the flux distribution of 

entire metabolic networks. The metabolic pressure from such needs may be 

translated into linear objective functions and help to estimate optimal solutions that 

satisfy various metabolic goals (Fell and Small, 1986). Objective functions that can 

be applied to estimate fluxes in cyclic routes include, for example, 'maximize 

NADPH production' (Fell and Small, 1986), 'minimize ATP production' (Savinell 

and Palsson, 1992a) or 'minimize the sum of the squares of fluxes' (Bonarius et al., 

1996). 

Figure 4 

Objective function: 
Maximize NADH 

Constraints: 
x, > 0, x2 > 0 

Objective function: 
Maximize ATP 

Constraints: 
x, > 0, x2 > 0 

Linear-optimization techniques to estimate fluxes in 

underdetermined metabolic networks. 

11 
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Optimal solutions can be calculated using linear-optimization techniques. The 

principle of applying these techniques to estimate fluxes in underdetermined 

metabolic networks is shown in Figure 4. By definition, linear optimization results 

in extreme ('optimal') solutions, i.e., the end points of the stoichiometrically 

feasible domain (Varma and Palsson, 1994). In some cases certain objective 

functions have no feasible solutions due to lack of lower or upper boundaries of 

cyclic routes. In Figure 4 for example, this would be the case if the objective 

function is 'maximize NADH' and if the flux x, is not constrained instead of 

irreversible. Lower boundaries (which are determined by the irreversibility of 

fluxes) are essential for obtaining a feasible solution by linear optimization, 

especially because data for maximum reaction rates are not usually available. 

However, it is unclear whether the end points of the solution space that is 

constrained by the mass balance equations really represent the true flux 

distributions. The answer to this question can be found by isotopic-tracer 

experiments. 

Finding the missing constraint 

Little research has been carried out to validate the theoretical assumptions that are 

required to determine fluxes in rank-deficient networks by isotopic-tracer methods. 

Therefore, it is now desirable to compare the estimated flux distributions on the 

basis of mass balances and labeling experiments for a large range of growth 

conditions in order to obtain a fundamental understanding of the effects of different 

constraints and to investigate whether certain theoretical assumptions are generally 

valid. There are various methods for inducing drastic changes in the primary 

metabolism of microorganisms. A limitation of important carbon- or nitrogen 

sources, or electron acceptors (oxygen), will force microorganisms to rearrange 

their flux distribution. Alternatively, an increase in the growth rate, which can be 

induced by raising the dilution rate of cells in continuous culture, would result in an 

elevated NADPH requirement for anabolic processes. Theoretically, this will result 

in higher activity of two cyclic pathways, the pentose-phosphate shunt and the 

malate shunt. Another possible method for specifically stimulating certain fluxes is 

12 
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the addition of sub-lethal concentrations of toxic compounds with known effects on 

metabolism. For example, phenazine methosulphate specifically reoxidates NADH 

and NADPH (Dickens and Mcllwain, 1938), resulting in an increase in NAD(P)H-

producing reactions. In this case, the constraint 'maximize NADH and NADPH 

production' would theoretically result in an estimated flux distribution that is 

similar to the experimentally determined fluxes. Similarly, chemical decouplers of 

oxidative phosphorylation, such as 2,4-dinitrophenol, will lower the activity of the 

TCA cycle. Fluxes determined from mass balances supplemented with data from 

isotopic-tracer methods, combined with fluxes estimated from mass balances 

supplemented with different theoretical constraints may lead to a fundamental 

understanding of the validity of the assumptions previously made (Fell and Small, 

1986; Savinell and Palsson, 1992a; Vallino and Stephanopoulos, 1993; Van Gulik 

and Heijnen, 1995; Bonarius et al., 1996; Sauer et al., 1996). In addition, the 

combined information from mass-balancing techniques and isotopic-tracer 

experiments will allow to test the consistency of both methods, as their combination 

renders overdetermined networks. This is relevant, because the use of isotope 

tracers for the determination of fluxes is not a solved problem (Larrabee, 1989). 

In addition, there are some alternatives, that do not require the demanding effort of 

isotopic- tracer studies, which may help to solve the observability problems of 

rank-deficient metabolic networks. 

Firstly, various studies have already reported quantitative flux data of entire 

metabolic networks, which were determined using a set of isotopic-tracer sources 

(Blum and Stein, 1982; Mancuso et al., 1994). From these data (vector x), the 

extracellular metabolic rates (vector r ) can easily be determined using the equation 

in Box 1. Subsequently, the constraints determined by the mass balances and the 

metabolic rates can be calculated and various theoretical constraints can be tested 

for their ability to correctly estimate the fluxes. 

Secondly, the presence of certain single enzyme reactions in metabolic 

networks causes singularities in the linear set of equations that describes these 

networks. For example, the pyruvate carboxylase and the transhydrogenase reaction 

directly cause observability problems. In some cases, however, these enzymes are 

13 
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not active (Mancuso et al., 1994), a feature which can easily be measured using 

enzymatic assays. Indeed if no enzymatic activity is found, the particular flux can 

be deleted and the observability improved. 

Thirdly, for several organisms, the estimated flux distribution, and in 

particular the split ratio at the glucose-6-phophate branchpoint, has been shown to 

be overly sensitive to the NAD(P)H balance (Bonarius et al., 1998b). As this 

balance is mainly dependent on the rate of oxygen uptake, improvement in the 

accuracy of this measurement may lead to completely observable metabolic 

networks. Additionally, a weighted least-squares solution could be used to account 

for uncertainties in mass balances such as the NAD(P)H balance. 

OUTLOOK 

The near future will show whether investigations (such as some of those suggested 

here) will lead to a universally valid method for the measurement of intracellular 

fluxes. In the past, it has been regarded as unwise to make generalizations about the 

metabolic role of futile cycles, because the lack of available experimental flux data 

under in vivo conditions (Fell, 1990). In contrast, this will not be the case for other 

metabolic cycles such as the pentose shunt, the malate shunt and the TCA cycle. As 

metabolic pathways have become targets for genetic and biochemical engineers to 

improve yields of cell lines, the number of isotopic-tracer studies under well-

defined conditions will increase. The resulting data may provide a basis for a 

quantitative understanding of metabolism and help to find missing constraints. 

Until then, however, isotopic-tracer experiments remain indispensable for the 

quantification of fluxes in cyclic metabolic pathways. 

Other applications, such as rational medium design (Xie and Wang, 1994), 

elucidation of metabolic and toxicological effects without using radioactive or 

stable isotopes, rapid quantitative biochemical studies and determination of 

metabolic-control coefficients (Kacser and Burns, 1973) (For a recent review on the 

role of Metabolic Control Analysis for rational bioengineering see Westerhoff and 

Kell (1996)) will benefit from such a breakthrough as well. In addition, it would be 
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possible to control fermentation processes on the level of intracellular reactions by 

calculating the metabolic fluxes from on-line measurement data of only a few key 

metabolites. The experimental validation of theoretical constraints will extend our 

knowledge of the metabolic strategy of various cell lines. Likewise, such 

constraints can be used as a link between genetics and physiology (Palsson, 1997), 

and thus help to predict phenotypes from genome data banks. 
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ABSTRACT 

The determination of the respiration quotient (RQ = CER/OUR) has so far not 

been used as a tool for understanding animal cell metabolism. This is due to 

problems in measuring the carbon dioxide evolution rate (CER) rather than the 

oxygen uptake rate (OUR). The determination of the CER is complicated by the 

use of bicarbonate in the medium. Using liquid and gas balances we have de­

rived an equation for continuous culture to quantify the amount of C0 2 that 

comes from the bicarbonate in the feed. Under cell-free conditions values pre­

dicted by this equation agree within 4 % with the experimental results. In con­

tinuous culture using hybridoma cells the C0 2 from the feed as determined by 

an IR-gasanalyzer was found to represent a significant amount of the total 

measured C0 2 in the off-gas (50 % in a suboptimal and 30 % in a high-growth 

medium). Further, the problem of C0 2 loss from the medium during medium 

preparation and storage was solved using both a theoretical and an experimen­

tal approach. 



Respiration Quotient in Mammalian-Cell Culture 

For two different growth media RQ values in continuous culture were evaluated. 
Small but significant differences in RQ were measured, which were matched by 
differences in specific antibody rates and other metabolic quotients. In a me­
dium with Primatone RL, an enzymatic hydrolysate of animal tissue that causes 
a more than two-fold increase in cell density, the RQ was found to be 1.05, 
whereas in medium without Primatone RL (but containing amino acids equiva­
lent in composition and concentration to Primatone RL) the RQ was found to be 
0.97. We suggest the RQ to be a useful parameter for estimating the physi­
ological state of cells. Its determination could be a suitable tool for both the on­
line control of animal cell cultivations and the understanding of cell metabolism. 

INTRODUCTION 

Organisms in aerobic fermentations consume oxygen and produce carbon dioxide 

with rates called the oxygen uptake rate (OUR) and the carbon dioxide evolution rate 

(CER), the ratio of which (CER/OUR) is called the respiration quotient (RQ). In 

yeast fermentations RQ's have a value around unity during oxidative growth and cor­

relate with ethanol formation (Wang et al., 1977) as well as nucleic acid and protein 

content (Nyiri et al., 1975). The RQ value is a key metabolic parameter, that is inde­

pendent of cell number and can be measured on-line. It reflects the physiological 

state of cells and varies inevitably with the nature of substrates and products. By 

means of RQ measurements it has been possible to close mass balances and to deter­

mine metabolic flux distributions for prokaryotes and yeast (De Kok and Roels, 

1980; Papoutsakis and Meyer, 1985; Roels, 1983; Vallino and Stephanopoulos, 

1993). RQ data can also be used for on-line bioreactor control, for example to mini­

mize glucose effects (Wang et al., 1979) or to optimize substrate consumption in 

yeast (Wu and Wang, 1993). 

To our knowledge the respiration quotient has never been determined in bicarbonate 

buffered animal cell cultures. The reason for this lies in difficulties in measuring the 

CER rather than the OUR; the use of a bicarbonate buffer system in cell culture me­

dia complicates the measurement of the CER. By measuring C02 in the culture or in 
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the outlet gas of the bioreactor a substantial amount of C02 from the buffer 
system will be measured, and not only the C02 that is produced by cells. 

Basically, there are two ways to solve this problem. The first option is to adapt 
cells to a bicarbonate-free medium. When replacing bicarbonate by other buffer 
systems like HEPES and additional NaCl (Schmid et al., 1990), it should be 
possible to determine the CER simply by measuring the C02 concentrations in 
the inlet and outlet gases (Heinzle, 1992; Royce, 1992), when liquid phase 
accumulation and relatively high solubility of C02 is taken into account. Howe­
ver, not all cell lines adapt to other buffer systems and high inoculation levels and 
also high cell densities throughout the cultivation are required to cultivate cells in 
bicarbonate-free medium. Recently we were able to grow cells in a commercially 
available bicarbonate-free organic buffer system. This was only possible at high 
cell densities (Bonarius et al., 1995b). Under similar conditions at low cell 
densities pC02 levels are not sufficient for further proliferation. Either C02 has to 
be added or kp, values have to be reduced to maintain required pC02 levels. A 
different buffer system (which causes differences in pC02) also influences cell 
metabolism. For example, it was found that fibroblasts grown in HEPES buffered 
medium took up a five-fold amount of glucose, when 50 raM bicarbonate was 
added to the medium (Amos et al., 1976). It has been shown that bicarbonate is 
required for intracellular pH regulation via two HC03" transporters (Ganz et al., 
1989). Therefore, cultivation in bicarbonate-free media can cause experimental 
bias. 

We have chosen an other approach to determine the CER under commonly used 
(i.e. bicarbonate buffered) culture conditions. The total amount of C02 (the sum 
of C02 from the medium and from the cells) in the outlet gas is measured and the 
amount of C02 that is coming from the medium is calculated. To validate this 
calculation the C02 in the outlet gas in continuous culture under cell-free 
conditions is measured. Furthermore, due to C02 evaporation from the medium 
during medium preparation and storage the amount of C02 and bicarbonate in the 
ingoing medium was not constant. It is also shown how this problem can be 
solved both theoretically and experimentally. 
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THEORY 

The respiration quotient can be defined as the carbon dioxide evolution rate divided 

by the oxygen uptake rate: 

CER 

Oxygen Uptake Rate 

At steady state conditions (p02 constant) the OUR of a continuous culture can be cal­

culated from the mass transfer coefficient for oxygen k,02a and the fraction of oxygen 

in the inlet gas under the assumption that the gas and the liquid phase are ideally 

mixed and that the gasflow is high so that x02' = x02° (Van 't Riet and Tramper, 1991). 

At reasonable cell densities, the dissolved oxygen in the inlet and outlet liquid phase 

can be neglected. 

OUR = k?'a(C0,(t)- CoM) (2) 

Carbon dioxide Evolution Rate 

In contrast to the determination of the OUR, CER measurements are hindered by sev­

eral causes. Carbon dioxide that is produced by the cells will be hydrated and subse­

quently dissociated into bicarbonate and carbonate. Hence, the solubility of carbon 

dioxide will be much higher than the solubility of oxygen and it will accumulate to a 

significant extent in the liquid phase. Also, the solubility will change as a function of 

pH. Therefore, either accumulation kinetics have to be included or the experimental 

set-up has to exclude (liquid phase) accumulation. Typically, a continuous culture 

can be applied to require steady state pC02 levels. However, three problems con­

cerning CER measurements will remain in continuous mammalian cell culture. First, 

the concentration of C02 (species) in the liquid phase has to be determined accurately 

to complete the C02 balance. Second, as discussed above, the bicarbonate in the in­

going medium will potentially be released into the gas phase. This other source of 
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C02 has to be quantified separately in order to determine the carbon dioxide that is 

produced by the cells. When we carried out continuous culture experiments we en­

countered a third obstacle. Carbon dioxide evaporates during medium preparation 

and storage from the medium tank into the surrounding atmosphere. Therefore, the 

contribution of the bicarbonate buffer from the medium to the carbon dioxide in the 

outlet gas will not be constant. The problem of C02 loss from the medium occurs be­

yond the bioreactor system and will be discussed separately below. 

Bicarbonate controls the pH as result of the following equilibria: 

C02 + H20 o H2CO3 <=> /T + HCOS <a> 2H+ + COi 

It should be noted that only C02 can be exchanged with the gas phase. Under stan­

dard cell culture conditions this reaction scheme can be simplified. Because the re­

actor pH has a value of 7.0 - 7.2, the amount of H2C03 and C03
2" in the liquid phase 

is less than 1% of the number of moles of HC03" and C02 (Bailey and Ollis, 1986): 

C02 +H20 <=> HCO) + /T 

This simplified equilibrium is used for deriving all necessary balances for the bicar­

bonate system in a continuous culture as is depicted in Figure 1. 

In our further analysis for the liquid phase the concentrations of C02 and HC03" will 

be combined to define the lumped parameter CA as the sum of CC02 and CHC03 (CA = 

Cco2 + CHC03). For the gas phase only C02 will be used in the mass balance. This ap­

proach is pivotal for the theoretical correction for bicarbonate in the measurement of 

the CER. 

When the pH is kept constant, C02 and HC03" are in equilibrium (equilibrium con­

stant K, = (CHC03CH)/CC02 = 4.21 * 10"7 mol l"1) according to: 

CA(t) 

1 + 
Cco,(t) = -f^ (3) 

10 pH 
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Figure 1 

Schematic representation of bicarbonate buffer system in a continu­
ous mammalian-cell culture system. The gas liquid interface is 
shown by the bold line. The marked arror (*) indicates the carbon di­
oxide loss from the medium. 

For the liquid phase the A (=C02+HC03") balance for a continuous culture (F,1 = Ff 

= F/) becomes: 

vdJC£)l = a + 
at 

kT'a(-
CA(t) CA(0 

K, 
(1+-^R) 0+J^) 

Jfi—)Vi + nvqCOlV, (4) 

The gas phase balance for COz can be written as: 

R1 dt n+ ' ) n+-^-) 
V IQ-PH' < i T J0PH 
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Assuming that accumulation in the liquid phase and in the gas phase is negligible at 

steady state conditions {dxC02°(t)/dt = dCA(t)/dt = 0), equations 3,4 and 5 give: 

nvqC0!V, = -Fl(CA-(l + -^iS)Cah<t)) - tfco,Fg-x"COl(0F°g) (6) 

CC02 can not be calculated by assuming equilibrium between gas and liquid phase 

(Cco2 » Qx>/) (Heinzle, 1992), since a partial gradient for desorption is required 

(Royce and Thornhill, 1991). Royce and Thornhill (1991) calculate the maximum 

possible CC02 by assuming that oxygen and carbon dioxide transfer rates are equal. 

This is not the case for continuous mammalian cell culture due to the use of bicar­

bonate buffered medium. Recently, Oeggerli and Heinzle (1994) showed that a gas 

phase balance can be used to calculate the liquid phase concentration of volatile com­

pounds in bioreactors. Similarly, CCQ2 can be determined using the C02 gas phase 

balance. Under the conditions described here there is no accumulation in the gas 

phase and xC02 = 0. This results in the following C02 gas phase balance: 

0 = x°co,(t)Fg - kf°'a(Cco,(t) - CC02(t))V, (7) 

The concentration of C02 in the gas liquid interface equilibrium (Cco2*) can be cal­

culated according to Henry's law: 

P 
Cco,(t) = *co,(t) jjco; (8) 

The mass transfer coefficient for C02 is difficult to determine by the dynamic 

method. pC02 Electrodes suffer from poor response times and gas backmixing has to 

be taken into account (Royce and Thornhill, 1991). Further, Cc02 changes with pH 

and transfer kinetics will be influenced by pH control (Royce, 1992). However, the 

ratio of kp values for C02 and 0 2 is proportional to the ratio of their liquid-phase dif-

fusivities. From this relation it follows that kf°2a = 0.89 k°2a (Royce and Thornhill, 

1991). Using this equality Equation 7 and 8 yield: 

P F-
cm!(t) = xcoAO (^ H- a89 ^ v) (9) 
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Under the assumption that the volume of C02 originating from the medium and the 

cells is negligible with respect to the total gas flow (F° = Fj) and when xC02' = 0, 

Equations 6 and 9 give: 

nvqcoy^xi0l(t)F\ - Fl[cA-xiOl(t)0+~a)(-^r! + ()89
 F

kia V)J (10) 

Finally, it is possible to determine the specific CER (i.e., the CER per cell or the qc02) 

by only measuring the fraction of C02 in the off-gas xC02°, the inlet gas flow Fg', and 

the viable cell number nv in a bicarbonate buffered continuous culture (other pa­

rameters are kept constant or are physical constants): 

^(t)[F^Fl(^i + ()89 % g v)0^)] - F,CA 

qco> V,nv
 ( J 

The above equation (11) is derived assuming that the ingoing concentration of A 

(CA'(t)) is constant. However, as discussed above and as shown by the marked arrow 

(*) in Figure 1, the medium tank is an open system that causes loss of C02. There­

fore, CA changes with time. 

Carbon dioxide loss from the medium 

For a complete C02 balance the loss of C02 from the bicarbonate buffered medium 

during medium preparation and during medium storage has to be taken into account. 

This C0 2 loss causes a significant drop in the concentration of C02 and HC03" in the 

feed with time. From now on the term CA' will therefore be referred to as CA(t). There 

are two different approaches to solve this problem, a practical and a theoretical one: 

(i) The feed can be equilibrated with an appropriate N2/C02-gas mixture just before it 

enters the bioreactor so as to maintain a constant bicarbonate level in the feed and (if) 

the amount of C02 loss can be determined by measuring the pH of the medium. 
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i. Correcting for C02 loss by remixing C02 in the feed. 

The experimental approach to adjust for C02 loss with time is to remix C02 in the 

feed just before it enters the bioreactor. In a mixing chamber a N2/C02 gas mixture 

with a defined fraction of C02 gas is continuously remixed with the medium. This 

fraction is in equilibrium with the original amount of C02 in the medium containing 

sodium bicarbonate. In our case (2.73 g.l"1 NaHC03 and 25 °C) this corresponds to a 

fraction of 11.43 % (see Appendix A). Thus by constantly equilibrating a l l .43% 

COz/N2 gas mixture with the medium CA'(t) will be maintained constant at 2.73 g.l"1. 

ii. Correcting for C02 loss by measuring the pH ofthe ingoing medium. 

Due to the C02 loss the pH of the ingoing medium (pFf(t)) will increase with time. 

Because a bicarbonate buffer system is concerned, this increase in pFf(t) can be used 

to calculate the amount of C02 that has been evaporated from the medium and subse­

quently to estimate the residual amount of HC03" and C02. However, two points have 

to be taken into account before it is possible to calculate the residual amount of CA' 

from the pH only. First, when the pFf(t) is > 7.6, contrary to reactor conditions the 

amount of C03
2" in the medium tank can not be neglected anymore. CA' has to be ex­

tended to CA' = CC02' + CHC03' + CC03' and the equilibrium constant K2 for the conver­

sion of HC03" into C03
2" has to be included also to calculate the CA'(t). Secondly, in 

these calculations it can not be assumed that the medium is buffered by bicarbonate 

only. The buffer capacity is also the result of other components in the medium rather 

than by bicarbonate alone. By knowing the buffer capacity of both the bicarbonate 

and the (bicarbonate containing) medium, it is possible to recalculate the pIT(t) and to 

determine the C02 loss from the medium. The theoretical value that the pFT(t) would 

reach if the medium were to be buffered by bicarbonate only and not also by other 

components will be referred to as pFrE(t). This pFf,E(t) is calculated from the meas­

ured pH'(t) by using the ratio of the buffer capacities of the medium and the bicar­

bonate. This ratio symbolized by e is determined as described in Appendix B. The 

value for pHie(t) can be calculated by pHie(t) = pHj(0) + s (pIT(t) - pFf(O) ). 

If C02 evaporates from the medium tank the pTf will increase due to the conversion 

of protons according to two chemical equilibria: 
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CO2 + H20 <» HCO) + H* (I) 

HCO; <» co2; + if (ii) 

For a certain amount of C02 loss it is possible to calculate the amount of protons that 

have been converted through both equilibrium reactions. However, to calculate this 

amount of protons the changed equilibrium concentrations of COz species have to be 

known. These concentrations are a function of the pFf, i.e the amount of protons. 

Therefore, an iterative procedure is required to determine the C02 loss as a function 

of pFF. First it is assumed that L mol C02/1 evaporates from the medium. The residual 

concentration of A (C02 + HC03" + C03
2-) at t=t will be: 

C'A(t) = CA(0) - L (12) 

The residual CC02'(t) can be calculated using the equilibrium constants K, and K2: 

CA(t) 
Cco,(t) = K K K OV 

IQ-Pf(0 JQ-2'pIT(l) 

Where K2 = (CCOiC^/CHCOi = 5.62* 10"u mol/1 and K, as defined before. The residual 

concentration of the other C02 species, HC03" + C03
2", can be calculated by using 

Equation 13 and 14: 

CHcascoi-W = C'A(t) - Cco/t) (14) 

The number of moles of HC03"+C03
2" that has been converted to C02 equals the 

number of moles of H+ that has been converted in equilibrium I, and can be calcu­

lated by: 

&C,rj(t) = C'HCaj+C02-(t) - C'HCO-1+CO!-(0) (15) 
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Also, the protons that have been converted in equilibrium II have to be taken into ac­

count. Similarly to Equation 13 the HC03" is in equilibrium with HC03" + C03
2" ac­

cording to: 

CHCO/O - Y,— < ' 
7H — 

IQ-PfO) 

And similarly to Equation 14, the residual concentration of C03
2" equals 

Ccoi-O) ~ C'Hcaj+C02.(t) - CHCffi(t) (17) 

The amount of protons that have been converted through reaction II can be calculated 
by 

AC„.M(t) = Ccoi-(t) - Cco}.(0) (18) 

For each L the sum of ACHJ + ACHJI' and the resulting change in pH1 (that will 

change the equilibria as described by Equation 13 and 16) have to be in agreement. 

The resulting increase in pH* can be found by iteration for each L. Finally, for a range 

of different L's this gives the fraction y? that is defined by 

p=Wf)=f(pH,(t)) (l9) 

Figure 2 gives^ as a function of pIT(t). As mentioned before the buffer capacity of 

other components than bicarbonate in the medium has to be taken into account as 

well. A method to correct for this extra buffer capacity is given in Appendix B. In 

Figure 2 the fractiony? is given for bicarbonate as a function of pH"(t) and for DHI 

medium (containing bicarbonate) as a function of pFF'^t). 

The steady state assumption in a continuous culture is violated because the CA'(t) can 

not be regarded constant anymore. However, the major C02 loss and change in CA'(t) 

will occur during medium preparation, sterilization and storage. Therefore, during 

cultivation a pseudo steady state can be assumed since the pH'(t) (and the CA'(t)) will 

not change significantly in time intervals of several hours (approximately 0.2 % per 

day). Rewriting Equation 11 and introducing^ and CA'(0) gives: 

27 



Respiration Quotient in Mammalian-Cell Culture 

x°co,(0 
nAC02V> + PF,CA(0) 

F' 
1 e 

K, 
Fg + F'(Hco' + 0.89k?'aV,)(1 + 10"H 

(20) 

Figure 2 

10,0 10,4 10,8 

pH'(t) 

The residual amount of A in the ingoing medium expressed as a fraction 
of its original value (/3), as a function of pH'(t). The function for a bicar­
bonate solution (closed symbols) and for a DHI medium (corrected by s, 
Appendix A) (open symbols) are given. 

Which demonstrates that the fraction of C02 that is measured in the outlet gas comes 

from two sources, the cells {n^qC02V) and the ingoing bicarbonate (JiF^^O)). The 

specific CER (qC02) can be calculated by measuring this C02 fraction in the off-gas 

(xC02°), the cell density («v), the pH of the ingoing medium (pIT) and the culture (pH) 

and the inlet gas flow (Fg'), using: 

^MF^Fl(^ + ll8^)(l + ̂ pH)J - pFlCA(0) 

"<»>- v^ (21) 
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MATERIALS AND METHODS 

Cell line and culture medium 

A murine hybridoma cell line that produces an IgG2A antibody directed against hu­

man ferritin was grown in serum-free low-protein lipid-free medium. A mixture of 

Dulbecco's, Ham's F12 and Iscove's powdered media (DFfl; 1:1:2) (Gibco, Grand Is­

land, NY, USA) was used as the basal medium and was supplemented with 5 mg/ml 

insulin (Sigma, StLouis, MO, USA), 6 mg/ml transferrin (Boehringer Mannheim, 

Mannheim, FRG), and 0.35 % (w/v) Synperonic F68 (Serva, Heidelberg, FRG). The 

medium contained 5 g/1 glucose, 5 mM glutamine and 2.73 g/1 sodium bicarbonate. 

Four steady states were examined, two with and two without using 1 % (w/v) Prima-

tone RL (Sheffield Products, NY, USA), an enzymatic hydrolysate of animal tissue. 

In the medium without Primatone RL amino acids equivalent in composition and 

concentration to those in Primatone RL are added to the medium (Ajinomoto Co., 

Tokyo, J). The amino acid composition of Primatone RL and amino acid consump­

tion rates were determined by HPLC. 

Cell culture bioreactor 

A bench-scale Biostat MD bioreactor with a 1 1 working volume (B.Braun Diessel 

Biotech, Melsungen, FRG) was operated in a continuous mode. Temperature, stirrer 

speed and pH value were maintained at 37 °C, 150 rpm, and 7.20, respectively. The 

pH during the continuous experiments with and without cells was controlled by 0.5 

M NaOH and 0.5 M HC1, respectively. Oxygen transport was via surface aeration 

only and the medium dissolved oxygen concentration was controlled at 40 % air satu­

ration by changing the oxygen fraction in a nitrogen/oxygen gas mixture. This frac­

tion was measured by mass flow meters and used to calculate the OUR (see Equation 

2). The total gasflow was kept constant at 1.0 1 min."1. The dilution rate was con­

trolled at a value of 0.70 d"1 using an appropriate balance and a Sartorius dosing sys­

tem (Sartorius GmbH, Gottingen, FRG). In the continuous experiment without cells 

different gas flow and dilution rates were applied (Figure 3). The 200 ml remixing 
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chamber was made of glass, aerated with a C02/N2 gas mixture (11.43 % C02) 

(Garbagas, Bern, CH) and stirred at 800 rpm with a magnetic stirrer for ideal mixing. 

Analysis 

Viable cell concentrations and viabilities were determined by the trypan blue exclu­

sion method using a haemacytometer. Antibody levels were quantified by a standard 

ELISA. C02 in the outlet gas was measured by an infrared gasanalyzer (Rosemount, 

Baar, CH). Values for k°2a were determined in both fresh medium and medium con­

taining dead cells using the dynamic method (Van 't Riet and Tramper, 1991). No 

significant differences were found and kf2a was determined to be 63.35 d"1 at a stirrer 

speed of 150 rpm and a gas-flow rate of 1.0 1 min"1. 

RESULTS 

Control experiments without cells 

It is desirable to determine the respiration quotient (RQ) in animal cell culture. How­

ever, accurate C02 balancing is difficult to do due to the bicarbonate buffer com­

monly used in cell culture media. It has to be taken into account that the C02 in the 

outlet gas is coming from two sources: the cells and the bicarbonate in the medium. 

In the numerator of Equation 20, which is derived in the theory section, these are ex­

pressed by the terms n}jqC02V, and F,CA\ respectively. Further, in continuous culture 

the sum of C02, HC03" and C03
2" (= A) entering the bioreactor will not be constant 

due to C02 loss from the medium tank. By measuring the pH of the ingoing medium, 

however, it is possible to calculate the residual amount of C02, HC03" and C03
2~ 

(Equations 12-19). To indicate that A in the ingoing medium is not constant and can 

be calculated by the method described in the theory section, the second term in the 

numerator of Equation 20 is changed mtofiF,CA'(0). 

To verify the assumptions described in the theory section the bioreactor was operated 

as a CSTR without cells under different gas flow rates and dilution rates. In this par-
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ticular case without cells nv = 0 in Equation 20 and only the second term in the 
numerator (fiFtC^(0)) has to be considered. 

Figure 3 

40 

~~1 

-+-
60 80 

Time (hrs) 

-«wi=qtift 

100 120 140 

Fraction of C02 in the outlet gas at four different steady states (without 
cells in the bioreactor). The measured values are indicated by black 
diamonds. The theoretical values are calculated using Equation 20 without 
(black squares) and with (open squares) using the correction term /?for C02 

loss from the ingoing medium. The gas flow and feed rates at the four 
steady states are Fg = 28,3 mold1, F, = 0,70 L.d'1 (1 and 2), Fg = 28,3 
mol.d1, F, = 0,49 L.d'1 (3), Fs = 32,3 mold1, F, = 0,49 L.d"1 (4). Medium 
with (1) and without (2, 3, 4) Primatone RL. 

Figure 3 shows the measured and two calculated values for the fraction of C02 in 
the outlet gas under four different conditions. The two calculated values represent 
Equation 20 (nv = 0) with and without using the correction term/? for C02 

(Equation 19). The use of/? calculated by measuring the pH'(t) of the feed, gives a 
substantial reduction in the difference between measured and calculated values. 
The average difference between predicted and measured values without and with 
using the correction for C02 loss in the medium tank are 48.5 % and 4.6 %, 
respectively. The theoretical values appear to agree well with the measured values 
provided the correction for C02 loss ifi) is applied. 
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It has to be emphasized that the pFf(t) has to be determined already at the moment of 

bicarbonate addition and not at the start of the cultivation. Typically, pH values at t=0 

are 6.80, increasing after pH adjustment to 7.20 and after filtration to 7.35-7.40, after 

medium storage to 7.55-7.60 and during long term cultivation to 7.65 (also see Ap­

pendix B). As the main C02 loss occurs before the start of the continuous cultivation, 

within time intervals of several hours a pseudo-steady state assumption for the pFf(t) 

is justified. 

To test whether Primatone RL contains bicarbonate or influences the fraction of C02 

in the outlet gas the medium is changed from DHI with to DHI without Primatone RL 

after 35 hours as indicated by arrow nr. 2 in Figure 3. Since no difference in xC02° is 

observed this medium switch can be carried out in continuous culture without influ­

encing CER analysis. 

Continuous culture with theoretical correction for C0 2 loss 

From the above it is clear that it is possible to correct for the portion of C02 that is 

coming from the bicarbonate in the medium at an error of less than 5 %. Therefore 

the specific CER (qC02) can be calculated from Equation 21 by measuring the fraction 

of C02 in the outlet gas and subtracting the theoretical amount that is coming from 

the bicarbonate medium (J3F/CA'(0)). 

In Figure 4A the concentration of viable and dead cells is given for different media. 

During two steady states in DHI medium with Primatone RL and with the amino acid 

composition and concentration equivalent to Primatone RL, the viable cell concentra­

tion is 3.10 and 1.35 *106 cells.mr1, respectively, and the viability > 80 %. Not only 

the cell density and the specific Mab production is significantly higher (Table I) in 

the medium with Primatone RL, other metabolic quotients also indicate a more ef­

fective metabolism induced by unknown components in Primatone RL (see below). 
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Chapter 2 
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(A) Viable (closed symbols) and dead (open symbols) cell concentrations of 
hybridomas in continuous culture at constant gas flow and feed rates (Fg = 
28,29 mold"1, F / = 0,70 L.d"1), medium without (Day 0-12) and with (Day 12-
21) Primatone RL. (B) The measured fraction of C02 (open symbols) in the 
outlet gas and the calculated fraction of C02 only coming form the medium 
(closed symbols). The latter was calculated using Equation 20 with nv = 0. The 
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difference between both curves indicates how much C02 is produced by the 
cells. (C) The specific CER (open symbols) and specific OUR (closed symbols) 
from the same experiment. Only the last eight and nine data points of the first 
and second steady state, respectively, are used for the calculation of the specific 
metabolic rates, because in the used equations liquid phase accumulation is not 
taken into account. 

Figure 4B shows the measured fraction of C02 in the outlet gas and the theoretical 

fraction coming only from the medium. This theoretical fraction was calculated from 

Equation 20. The two sources of C02 in an animal cell culture can be seen very 

clearly. A significant amount of the measured xC02 is coming from the medium, 30 % 

and 50 % for steady states with and without Primatone RL, respectively. The differ­

ence between both lines visualizes the C02 in the off-gas that is produced by the 

cells. Figure 4C gives the CER and OUR per cell. For the specific CER only the 

steady state values are valid, since the calculations assume no accumulation in the 

liquid and gas phase. Therefore, only the last 8 and 9 datapoints of the first and the 

second steady state, respectively, are used for the mean values as presented in Table 

I. By adding Primatone RL to the medium the viable cell density, the specific Mab 

production rate and the RQ values increased. Student's t analysis for a two-group ex­

periment (Youmans, 1973) was applied to test whether RQ data of the two steady 

states belong to the same population. A f-value of 3.62 (6 degrees of freedom) was 

found indicating that at a (probability of > 0.95) RQ values in medium with Prima­

tone RL are significantly higher. Although the differences are small, this suggests 

that the determination of the RQ might be a useful indicator for the physiological 

state of the cells. 
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Continuous culture with experimental correction for C02 loss 

C02 loss from the medium tank was corrected for experimentally by remixing 
C02 in the feed as described above. In this pertinent experiment there is no need 
for a (theoretical) correction for C02 loss, since the concentration of A (C02 + 
HC03" + C03

2") in the ingoing medium was held constant. Figure 5B shows the 
calculated fraction of C02 from the medium and the measured C02 in a 
continuous culture at D = 0.70 d"1 for different media. The fraction of C02 in the 
off-gas before inoculation remains constant because the ingoing medium was 
equilibrated with a 11.43 % C02 gas mixture. 

To verify the theoretically corrected specific CER values as given in Figure 5C, 
the bioreactor was inoculated at day 5. The concentration of bicarbonate in the 
feed is still being kept constant by mixing it with the C02/N2 gas mixture. As 
shown in Figure 5A the viable and dead cell concentrations in both DHI media 
are similar to the previous experiment (Figure 4A). Again a significant fraction of 
the measured xC02 is coming from the medium: 45 % and 67 % for steady state 
with and without Primatone RL, respectively (Figure 5B). Both values are higher 
than in the previous experiment shown in Figure 4B because the C02 loss during 
medium preparation and storage and the resulting decrease in CA' is experimen­
tally compensated for. This results in different values in CC02 that can be 
calculated using Equation 9 (Table I). 

Figure 5C shows the corresponding specific OUR and CER for the two steady 
states calculated from Equations 2 and 11. In this particular case F/CJ = 0 and the 
measured (constant) fraction of C02 before inoculation (0.0915 %) is subtracted 
from the xC02° values after inoculation. Table I gives the mean values of the 
specific CER in medium with and without Primatone RL that are calculated using 
the last 6 and 5 data points, respectively. Similar to the RQ determinations with 
theoretical correction for C02 loss a student t-value of 4.18 (5 degrees of 
freedom) was found indicating that RQ values in medium with Primatone RL are 
significantly higher than in medium without Primatone RL. 
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Respiration Quotient in Mammalian-Cell Culture 
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(C) 
(A) Viable (closed symbols) and dead (open symbols) cell concentrations at con­
stant dilution rate of 0,70 L.d"1 (Fi

g= 28,29 mol.d"1) with and without cells. [(Day 
0-5) Cell-free steady state, (Day 0-14) medium with Primatone RL, (Day 14-22) 
medium without Primatone RL.] (B) The fraction of C02 in the outlet gas (open 
symbols) before and after inoculation (Day 5). The amount of C02 which comes 
from the medium alone (horizintal line) is kept constant by equilibration of the in-
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going medium with a C02/N2 gas mixture. (C) The specific CER (open symbols) 
and OUR (closed symbols) in the same experiment. 

The results in Table 1 demonstrate that the RQ, the specific OUR and CER and the 

CIMAB values as well as the effect of Primatone RL on these metabolic rates agree well 

between both methods. Because of the high correlation we suggest that the method in 

which the C02 loss from the medium is calculated by measuring the pH"(t) can be ap­

plied for continuous cell culture. Using this method it is possible to determine the RQ 

in bicarbonate buffered systems without extra devices for controlling the bicarbonate 

level in the feed. 

Table 1 

Viable cell numbers, the viabilities, the specific CER and OUR, the RQ and the qMAB values are pre­
sented. Mean values for two steady states are given. The numbers in parentheses indicate standard 
deviations. 

Steady state nv Viability CQO2 spec.CER spec.OUR RQ qmB 

(lO'cells.r1) (%) (mM) (pmol.cell'.d1) (pmol.cell'.d1) (-) (pg. 
ceir'd'1) 

Theoretically corrected for C02 loss using pH1 measurements (Figure 4). 

DHI + Primatone RL 3.10 85.6 0.78 11.1 (±0.40) 10.7 (±0.21) 1.04 (±0.02) 12.6 
DHI + amino acids 1.35 83.3 0.43 9.92 (±0.67) 10.1 (±0.13) 0.98 (±0.04) 8.7 

Experimentally corrected for C02 loss by equilibrating with a gas mixture (Figure 5). 

DHI + Primatone RL 3.23 84.8 1.02 11.0 (±0.56) 10.2 (±0.25) 1.07 (±0.03) 12.1 
DHI + amino acids 1.68 82.7 0.65 9.90 (±0.21) 10.2 (±0.15) 0.97 (±0.02) 9.1 
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DISCUSSION 

Respiration quotients and primary metabolism 

Differences in RQ between the steady states in medium with and without Primatone 

RL are matched by differences of other metabolic quotients. The specific glutamine 

and glucose uptake rates in medium with Primatone RL are 45 and 38 % lower and 

the specific production rates of alanine, lactate and ammonia are 73, 55 and 58 % 

lower, respectively. The apparent yield of lactate from glucose decreases from 0.72 to 

0.49 mol.mol"1 after addition of Primatone RL. As will be discussed below, the in­

crease of RQ is mainly a result of the increase in specific CER whereas the OUR re­

mains unchanged. Therefore, the found differences are probably due to higher meta­

bolic conversion rates through reactions catalyzed by decarboxylating enzymes that 

are not stoichiometrically linked to NADH production and oxidative phosphoryla­

tion. 

In medium with Primatone RL the RQ is found to be slightly higher than unity. In 

contrast to yeast fermentation, where ethanol formation causes higher RQ values than 

unity (Wang et al., 1977), the reason for this is not clear. In mammalian cells all ma­

jor metabolic pathways where C02 is produced (citric acid cycle, pentose phosphate 

cycle) are proportionally, directly or indirectly linked to NADH production. In these 

pathways the production of 1 mole COz is accompanied by the production of 2 moles 

NADH. A surplus of NADH will be oxidized by 0.5 moles of 0 2 per mole NADH. 

The specific OUR will therefore increase proportionally to the specific CER. Higher 

activities in these metabolic routes can therefore not result in higher RQ values. 

Maybe higher specific fatty acid synthesis rates could explain RQ values above unity. 

For example, when 1 mol palmitate is synthesized out of 4 moles glucose 8 moles 

C02 and 16 moles NADH are produced. This should result in an equal specific CER 

and OUR because NADH oxidation requires 0.5 moles of 02 . However, 8 moles of 

NADH are required to transport the fatty acid precursor Acetyl-CoA into the cytosol. 

Under these circumstances synthesis of 1 mole palmitate would require 4 moles of 0 2 

and co-produce 8 moles of C02 (Stryer, 1988). Therefore, enhanced specific fatty 
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acid biosynthesis could cause higher RQ values than unity. Further investigation into 

the overall metabolism is needed to elucidate the causes for the differences between 

the found RQ values and for the fact that RQ values above unity occur. 

Volumetric oxygen uptake rates and respiration quotients as on-line measurable 
parameters 

By using two different methods to correct for bicarbonate in the culture medium we 

determined that the RQ was around 10 % higher after addition of Primatone RL, a 

medium additive that improves growth and antibody production rates. This increase 

in RQ is mainly caused by a higher specific CER, whereas the specific OUR re­

mained almost constant. Hu and Oberg (1990) also measured a linear increase in 

volumetric OUR with increasing cell concentrations. At different steady states the 

specific OUR will only increase at very low levels of glucose and is independent 

from glutamine concentrations (Hu and Oberg, 1990; Miller et al., 1989). 

In our case we found a linear relationship between cell density and (volumetric) OUR 

at a high correlation (r2 = 0.9264, n = 11) in continuous culture with residual glucose 

concentrations > 0.6 mM. We suggest that, under certain well-defined conditions, the 

volumetric OUR and the RQ might be useful parameters as an indication of both the 

cell density (volumetric OUR) and the physiological state of the cells (RQ). As on­

line measurable parameters independent of cell number a combination of volumetric 

OUR and RQ data might prove useful in medium optimization for continuous culture 

and potentially also for the development of rational feeding strategies in batch cul­

tures. Likewise, CER data are necessary for closing mass balances when attempting 

to model cell metabolism. 
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APPENDIX A 

Determination of the C0 2 fraction in the correction gas 

The C02 concentration of the correction gas that is used for the equilibration of the 

feed just before it enters the bioreactor has to be determined accurately. It depends on 

the original bicarbonate concentration (CA'(0)\ the temperature, and the medium 

composition. 

The temperature correction for the Henry's coefficient is carried out according to 

Royce (1991), who derived from Schumpe et al. (1982): 

395 9 
Hffjurc = exp(7i.25- 7 j = 3.016* 10" Pa.lmoV1 (22) 

At T= 298.15 K 

log— = 1.74* W2 = log Hl"° (23) 
do HDHImediitm 

The influence of the medium composition can be calculated using the Bunsen coeffi­

cient (Schumpe et al., 1982): It follows for lf°2
Dm2yc = 2.897* 106 Pa.l.mol-1 

Therefore the C02/N2 gas mixture used for the equilibration of the feed contains 

11.43 % C02, according to 

xe(l!uiMra«o„gas = DHUS-C M_l = Q U 4 3 ^4) 

P ^W 

Where CA'(0) = 2.73 gr.l"1 NaHC03 = 3.250* 10"2 M and pH* = 7.20. 
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APPENDIX B 

Determination of the buffer capacity ratio (s) 

Figure 6 shows the increase of the pFf in bicarbonate containing medium and in bi­

carbonate only. The titration curves are assumed to be linear within the pH range of 

6.8 to 8.2. The correction factor e is determined by dividing the slope of the bicar­

bonate line by the slope of the medium line. The corrected pFF(t), e.g., the pH that the 

medium would have if it were to be buffered by bicarbonate only, is calculated by 

prf'^t) = pR(0) + e (pFT(t) - pFT(O)). For DHI medium with Primatone RL and DHI 

medium with only the Primatone amino acids e is 3.32 and 3.29, respectively. 

Figure 6 

pH *(t) 

0,4 0,6 0,8 1 

ml added NaOH(1N) 

1,4 

Titration curves of bicarbonate (2.73 g.l"1) (black squares), DHI medium + amino 
acids (black diamonds) and DHI medium + Primatone RL (open squares). When the 
pH^O) in DHI medium equals 6.80 and the pH1© = 7.00, the corrected pHu(t) = 
7.76. 
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Error Analysis of Metabolic-Rate Measurements in 
Mammalian-Cell Culture by Carbon and Nitrogen 
Balances 

Hendrik PJ. Bonarius, Jose H.M. Houtman, 

Georg Schmid, Cornells D. De Gooijer, 

and Johannes Tramper. 

ABSTRACT 

The analysis of metabolic fluxes of large stoichiometric systems is sensitive to 

measurement errors in metabolic uptake and production rates. It is therefore 

desirable to independently test the consistency of measurement data, which is 

possible if at least two elemental balances can be closed. For mammalian-cell 

culture, closing the C balance has been hampered by problems in measuring the 

carbon-dioxide produc-tion rate. Here, it is shown for various sets of 

measurement data that the C balance can be closed by applying a method to 

correct for the bicarbonate buffer in the culture medium. 

The measurement data are subsequently subject to measurement-error analysis 

on the basis of the C and N balances. It is shown at 90 % reliability that no 

gross measurement errors are present, neither in the measured production- and 

consumption rates, nor in the estimated in- and outgoing metabolic rates of the 
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subnetwork, that only contains the glycolysis, the pentose-phosphate, and the 
glutaminolysis pathways. 

INTRODUCTION 

Intracellular metabolic fluxes can be determined from extracellular uptake and 

secretion rates of relevant metabolites using mass-balancing techniques (Vallino and 

Stephanopoulos, 1990; Varma and Palsson, 1994). A major problem of this method 

which applies particularly for large, complex networks is that the estimated fluxes 

are sensitive to errors in the measured extracellular rates. It is therefore desirable to 

test measurement data on possible errors independent of the flux-balance equations 

(Noorman et al., 1991). Alternative conservation equations that are independent from 

flux balances can be derived from heat or elemental balances. 

Elemental balances have been used to test fermentation data for prokaryotes and 

yeast (Roels, 1983; Ferrer and Erickson, 1980; Wang and Stephanopoulos, 1983; 

Noorman et al., 1991). For mammalian-cell culture however, an error analysis based 

on elemental balances is hampered by the fact that relatively few balances can be 

closed. In contrast to fermentations of yeast or prokaryotes (Von Stockar et al., 

1997), the heat balance cannot be used because mammalian cells generate only a 

fraction of the energy that is required to control the cell-culture bioreactor at the 

desired temperature. The elemental balances for hydrogen and oxygen can not be 

closed, since (mammalian) cells secrete or take up water at negligible rates compared 

to the water balance of the bioreactor system. In addition, it is not possible to 

quantify the H+-production rate at sufficient accuracy for error analysis due to the 

presence of buffer systems. Therefore, only the nitrogen and carbon mass balance 

may be suitable tools for tracing measurement errors in mammalian-cell culture. 

A prerequisite to close the carbon balance is the correct measurement of the carbon-

dioxide evolution rate. In mammalian-cell culture this is hampered by the use of a 

bicarbonate-based buffer system in the culture medium. Methods to determine the 

carbon-dioxide production rate of mammalian cells cultured in bicarbonate-buffered 
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media have recently been described for continuous (Bonarius et al., 1995a) and batch 

(Zupke and Stephanopoulos, 1995a) cultures. Here, it is shown that when such 

methods are used the carbon balance of mammalian-cell culture can be closed within 

an acceptable probability range. Together with the nitrogen balance, the two 

constraints that are determined by these elemental balances theoretically allow the 

detection of gross measurement errors within the set of measured uptake and 

production rates. The method to detect gross measurement errors, described by Ripps 

(1965) and developed by Wang and Stephanopoulos (1983) for data from microbial 

metabolism, is applied for mammalian-cell culture under 7 different culture conditi­

ons. Various sets of measurements that are used to estimate the intracellular fluxes 

are subjected to this particular test. 

MATERIALS AND METHODS 

Culture conditions and analyses 

A detailed description of the various experimental procedures was published before 

(Bonarius et al., 1996). Briefly, hybridoma cells were cultured in a lab-scale 

bioreactor (B. Braun Diessel Biotech, Melsungen, Germany) in a continuous mode at 

a dilution rate of 0.7 d'1. The fraction of C02 in the outlet gas was measured using an 

infrared gasanalyzer (Rosemount, Baar, Switzerland). Glucose and lactate were 

determined with automated enzymatic assays, ammonia using an ion-selective 

electrode, and amino acids by HPLC (Amino Quant 1090, Hewlett-Packard, Palo 

Alto, CA). 

The cellular composition was measured as follows (Xie and Wang, 1994b): the total 

lipid fraction was determined by weight after chloroform/methanol extraction, total 

carbohydrates were analyzed by the phenol-reaction method, and total cellular 

protein was estimated using the Biuret assay. Cell size and number were determined 

using a Casy 1 instrument (Scharfe System, Reutlingen, Germany) and dry-cell 

weight was determined after dehydration under vacuum. Antibody titers were 

measured by a standard ELISA. Free intracellular amino-acid pools were extracted 
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by perchloric acid as described by Schmid and Keller (1992). After neutralization 

and lyophylization, the fraction of free amino acids of the intracellular pools were 

quantified by HPLC. The values for intracellular protein-bound amino acids were 

taken from measurements of hydrolyzed protein (1 N HC1, 125 °C, overnight) of the 

same cell line, grown under the same medium conditions (Bonarius et al., 1996). The 

used elemental compositions for C and N of the measured macro-metabolites is 

shown in Table 1. 

Table 1 

Elemental composition of measured macromolecules. 

N Source 
Protein 

Measured composition' 

Composition literature 
Composition Mabs literature 

RNA/DNA 

Lipids3 

4.879 

4.743 
4.840 
9.50 

18.45 

2.475 
2.411 

2.378 
3.75 
0 

Bonarius et al., 
Creighton et al 

Edelman et al., 
Stryer, 1988 
Bonarius et al., 

1996 
,1984 
1964 

1996 

a) Refers to measured amino acids in cellular total protein from cells cultured with Primatone RL in 

the medium. 

Statistical analyses 

From the law of mass conservation it follows that when all (produced and consumed) 

metabolites that significantly contribute to the total mass of an element are determi­

ned, the residual value of the elemental balance (s) can be used as the estimated 

measurement error for the elemental balance. Wang and Stephanopoulos (1983) used 

a statistical test function to judge whether the residual values deviate significantly 

away from their expected distribution of zero means. In this function, h£, the residu­

als are weighted according to their accuracy (or standard deviation of the measured 

production and consumption rates). In the case of two elemental balances (here, car­

bon and nitrogen), a lower value of hE than 4.61 indicates with a confidence level of 
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90 % that no gross measurement errors are present. The value of 4.61 for h£has been 

justified by Wang and Stephanopoulos (1983) for all microbiological systems: If the 

residuals (e) are assumed to have identical and independent {<f>, the variance-

covariance matix for s, is diagonal) normal distributions around 0, then the test 

function hs (= t? $' s) follows a ̂ -distribution with m degrees of freedom, where m 

is the number of constraint equations. 

In this work, each data point is an average of a double measurement at three time 

points during each steady state (the last three days of each condition). Here, a 'steady 

state' is obtained when the difference in viable cell density from the average value is 

smaller than 10 %. Variances are estimated from these six experimental data points. 

Both the extra- and intracellular free amino-acids pools were measured. The total-

lipid assay was only carried out once for each set of measurements. This assays 

requires relatively large amounts of cells because is a weight measurements. The 

sampling of large volumes disturbs the steady-state conditions, and samples for the 

total-lipid assay were therefore only taken at the end of each steady state. The 

variance of this measurement is therefore not determined experimentally, but 

assumed to be 10 % of the measured value. Further, due to lack of material from the 

second, third, and fourth steady state, the average value of the lipid and the DNA 

measurement of the first and fifth steady state was used for the first five steady states 

(Table Ala, Appendix A). 

Similarly to Wang and Stephanopoulos (1983), it is assumed that the errors are 

uncorrelated. In reality some correlation in measurements are unavoidable. For 

instance, the amino-acid measurements may be correlated because all amino-acid 

concentrations are determined simultaneously by HPLC. Errors that occur in dilution 

of samples for HPLC or calibration errors are correlated. However, when (non-

negative) co-variances are taken into account the test function h£ will decrease. So, 

when it is assumed that the measurements are not correlated, the upper limit of h£ is 

determined, which implies that for a value of 4.61 the confidence level is equal or 

greater than 90 %. 
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Certain fluxes, in particular fluxes in cyclic pathways, cannot be determined by 
mass-balancing techniques alone, because their reaction stoichiometry is linear 
dependent (Vallino and Stephanopoulos, 1990; Bonarius et al., 1997). In the 
metabolic network that describes mammalian-cell metabolism, a subsystem remains 
therefore underdetermined (See also Figure 1). 

Figure 1 

Fluxes that can be quantified by mass balances alone are indicated as dashed 
lines. To measure the remaining fluxes (solid lines) additional constraints are 
required. The two networks of which the measured in- and out-going metabolic 
rates are subject to error analysis, are shown: (i) the entire metabolic network 
(dotted line) and (ii) the underdetermined sub-network (L-shaped box). 
Abbreviations: ACoA acetyl-CoA, AKG oc-ketoglutarate, CHOL cholesterol, CIT 
citrate, E4P erythrose-4-phosphate, GAP glyceraldehyde 3-phosphate, GLC 
glucose, G6P glucose-6-phosphate, 3PG 3-Phosphoglycerate, LAC lactate, MAL 
malate, OAA oxaloactetate, PEP phosphoenolpyruvate, PYR pyruvate, R5P 
ribose-5-phosphate, Ru5P ribulose-5-phosphate, S7P sedoheptulose-7-phosphate, 
TC total carbohydrates, TP total protein, X5P xylulose-5-phosphate. 

The fluxes in this subnetwork need to be quantified by isotopic-tracer experiments. If 
this is not possible, which is for example the case for large-scale cell culture, the 
fluxes of this smaller network can only be estimated using additional assumptions. In 
order to prevent that such assumptions affect the determinable fluxes (dashed lines in 
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Figure 1), the non-determinable fluxes (solid lines in Figure 1) are estimated 

separately as described elsewhere (Bonarius et al., 1998a, 1998b). Here both 

metabolic systems are subject to gross measurement error analysis: 

(i) the entire metabolic network, and 

(ii) the underdetermined network. 

By the determination of hs for the smaller network, both the measurement data (Table 

A2) and the stoichiometric equations required for the calculation of the in- and out­

going flows of the underdetermined network are tested for gross errors. 

RESULTS AND DISCUSSION 

Hybridoma cells were cultivated in a continuous stirred-tank reactor under different 

conditions. The p02 was varied and in another experiment PMS was added to the 

culture medium. Viable-cell density, viability, and dilution rate are shown in Figures 

2a and 2b. 

Figure 2a 

a 

o 
>, 
a 

I 5 
HI 

30 

Time (days) 

Viable-cell numbers (closed circles), viability (open diamonds), and dilution rate (—) are 
shown for 60 days continuous culture. The 2-digital numbers indicate set points for dissolved 
oxygen (% of air saturation). Samples for metabolite analyses were taken during the last three 
days of each steady state. 
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The extracellular production and consumption rates of amino acids, glucose, 

ammonia, lactate, carbon dioxide and monoclonal antibody were determined. Also, 

the intracellular concentrations of amino acids, lactate, total cell protein, DNA, 

RNA, and the total lipid and carbohydrate contents were measured. After changing 

to new parameter settings at least four days of continuous culture were used to dilute 

remaining metabolites produced during the previous steady state and to allow the 

viable cell density to stabilize. Steady-state conditions were obtained in all 

experiments, except during the oxygen limitation experiment ("00" in Figure 2a) in 

which 'pseudo steady-state' conditions were obtained. 

Figure 2b 
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PMS experiment. Symbols as in legend Figure 2a. PMS was con­
tinuously added after day 10. Samples for metabolite analyses were 
taken at day 14,15 and 16. 

Table Al and A2 (Appendix) show the average measured metabolic rates and their 

standard deviations for the entire network (i) and the smaller, underdetermined 

network (ii), respectively. The average viable-cell numbers and implications of these 

results for the cell physiology and metabolism of hybridoma cells are reported 

elsewhere (Bonarius et al., 1998d). 
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In Table 2 the residual values for carbon and nitrogen are given for the various sets 

of measured uptake and production rates (in 10'12 C-mol.ceir'.day"1 and 10"12 N-

mol.cell"1. day"1, respectively.) A positive value indicates either an overestimation of 

the produced carbon or nitrogen, or an underestimation of the consumed carbon or 

Table 2 

Residual values (estimated errors) of measured carbon (ec) and nitrogen (%) metabolized in 

hybridoma cells. The total carbon {Ctot) an<^ nitrogen (Ntot) turn-over, the relative residual 

values (Crel, Nref) and the test function he, are also shown. In addition, the test function is 

determined for the same measurements, without taken the bicarbonate buffer into account for 

the determination of the C02 production rates. The erroneous rco2s (1012 mol.ceir'.day"1) are 

given as well. 

pO230 pO250 P 0 2 l 

2a. Values for the entire metabolic network. 

EC -2.59 
EN -0.25 
C t o t 122.40 
Ntot 14-86 
Crei -2-12 
Nrel -1-71 
hE 2.96 

-1.99 
0.20 

101.99 
12.28 
-1.96 
1.60 
0.66 

-3.10 
0.45 

125.26 
10.82 
-2.47 
4.12 

15.25 

pO20 

-6.52 
-0.39 

179.98 
12.38 
-3.62 
-3.18 
1.87 

p0 2 

-1.60 
-0.22 

111.92 
18.30 
-1.43 
-1.18 
1.45 

pO230 

-0.94 
0.50 

99.73 
13.65 
-0.94 
3.67 
0.55 

PMS 

0.35 
0.20 

102.97 
16.98 
0.34 
1.20 
0.31 

2b. Values for entire metabolic network, in the case that the bicarbonate buffer in the 
culture medium has been neglected for the determination of the C02 production rate. 

rco2 
Crel 
h£ 

2c. Values for the underdetermined subnetwork. 

21.81 
5,67 
7.47 

19.68 
5,35 
2.54 

14.89 
2,18 

13.96 

13.30 
0,86 
4.87 

19.45 
5,33 

13.10 

18.35 
6,16 
8.44 

20.71 
7,78 
4.93 

EC 
EM 

Ctot 
Ntot 
Crel 
N rel 
he 

2.30 
-1.33 

106.11 
6.82 
2.16 

19.53 
4.58 

1.78 
-0.96 
87.92 
4.61 
2.01 

20.71 
1.16 

3.91 
-0.45 

110.25 
4.31 
3.55 

10.49 
1.14 

-4.11 
-1.12 

171.60 
6.12 
2.40 

18.28 
0.82 

2.94 
-1.20 
97.78 
5.58 
3.00 

21.57 
3.66 

2.54 
-0.17 
82.04 
4.98 
3.10 

2.937 
0.20 

0.98 
-1.34 
78.91 
6.08 
1.24 

23.00 
2.30 
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nitrogen. The total turnover rate (the sum of all produced and consumed metabolites) 

is shown for comparison. In addition, the relative residual value for carbon (Cre/) and 

nitrogen (Nrel) is given as percentage of the turnover rate. 

Carbon balance and carbon-dioxide production rate 

In Table 2a is shown that the carbon balance can be closed for all steady states. In all 

cases, the relative error for carbon (Cre;) is less than 5 % of the total carbon turnover. 

In order to close the C balance, it is critical to take the bicarbonate in the culture 

medium into account. If this factor is neglected in the determination of the carbon-

dioxide production rate, Crel increases to more than 5 % in most cases. Further, the 

test function h£ (in the determination of which the N balance is also included) 

increases significantly in all cases (except for the set for the steady state at p0 2 = 1 

%, which will be discussed below), and to values above 4.61 in 5 out of 6 cases. This 

gives independent support for the fact that the method that was developed to 

determine the carbon-dioxide production rate in bicarbonate-containing medium 

(Bonarius et al., 1995) is sound and can be used for the analysis of cellular 

physiology and flux analysis of mammalian-cell culture. 

Test for gross measurement errors 

For 6 sets of measurement data the test function hE is lower than 4.61, which shows 

that with more than 90 % confidence these data are consistent with respect to both 

the carbon and the nitrogen balance. Only in one case (p02 = 1 %, Table 2a), the 

performance index hE is higher than 4.61, indicating that there is a significant 

measurement error in this set of measured metabolic rates. The relative residual 

values implies that the measurement of one or more N-containing metabolites are 

erroneous (Table 2a). The fact that % is positive indicates that either the 

consumption rate of a (N-containing) metabolite is underestimated or the production 

rate of a metabolite is overestimated. Comparison of metabolic rates of N-containing 

metabolites between the different steady states shown in Table Ala, suggests for 

example that it is unlikely that the measurement of the total protein (TP) at p0 2 of 1 
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%, is overestimated. It is more probable that either the glutamine-consumption rate is 
underestimated, or the NH3-production rate is overestimated, or a combination of 
both. 

Location and identification of measurement errors 

In some cases, gross measurement errors can be located by the serial elimination 
method (Ripps, 1965; Wang and Stephanopoulos, 1983). With this method it is 
attempted to locate the source of an error by the recalculation of h£ for a set of 
measurement data that has been reduced by the removal of data that are suspected to 
be unsound or erroneous. The removal of the TP, GLN, and NH3 measurement from 
the data set shown in the third column of Table 2a (p02 = 1%) yields a hs of 1.67, 
1.34, and 0.72, respectively, which indicates that the probability that the ammonia 
measurement is erroneous is relatively high compared to the likelihood that the total-
protein or glutamine determination is incorrect. However, the differences between 
these h£ values are relatively small, and combinations of measurement errors cannot 
be ruled out as simultaneous deletion of two measurements is not possible due to the 
limited number of constraint equations (elemental balances) available. 

Van der Heijden and co-workers (1994) recently classified error types in biochemical 
reaction systems into three categories. When an error is detected by analysis of 
conservation equations it can either be a measurement error (i), an incorrect system 
definition (ii), or a result of a too sensitive x2-test due to too small variances (iii). It 
is not likely in that the error in the third set of data (p02 = 1 %, Table 4a) is an error 
in system definition. At a probability of at least 90 %, six different measurement sets 
(and other data sets (Bonarius et al., 1996, Bonarius et al. 1998a)) do not contain 
gross errors. This suggests that -at the same probability- the system definition is 
sound for the metabolites that are relevant for the carbon and nitrogen balance. 
Another possibility is that the variances of the data set for p02 = 1% are too small. 
Compared to the other steady states shown in Table Alb (Appendix A), the standard 
deviation of the NH3 measurement in the data set for p02 = 1% is relatively small. 
When the standard deviation is increased to 0,202* 10"12 mole cell"1 day"1 (which 
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corresponds to the highest estimated standard deviation for the NH3 measurement in 

Table Alb) the test function hEdecreases from 15,25 to a mere 4,68, which suggests 

that it cannot be ruled out that the present error in the data for p0 2 = 1% is an error of 

the third kind. In conclusion, the production and uptake rates of mammalian cells 

shown here can be tested for the presence of gross errors at a probability of at least 

90 %, but it is neither possible to locate nor to identify the error(s). 

Error analysis of metabolic rates for subnetwork 

Table 2c shows the (relative) residual values for carbon and nitrogen and hE for the 

smaller, underdetermined network. The set of metabolite flows (Table A2a) 

calculated from the reaction stoichiometry and the measured production and 

consumption rate are consistent with respect to the carbon and nitrogen balance. The 

fact that the test function for each steady state are all below the value of x2(0.9) = 

4.61 supports that not only the measurements, but also the stoichiometric equations 

that have been used for the determination of the in- and outgoing flows of the 

subnetwork are free of gross system errors (at a probability of at least 90 %), and can 

be used for flux analysis. 

It is further noteworthy that in contrast to the sN values corresponding to the entire 

network (Table 2a), all % values associated with the underdetermined subnetwork 

(Table 2c) are negative. In other words, according to the N balance some of the N-

producing fluxes in the other reactions in cell metabolism than those of the 

subnetwork are overestimated (or N-consuming reactions are underestimated). 

Because this seems not to be the case for C-containing metabolites, a possible 

explanation for this small though systematic difference is either that a reaction in 

which NH3 is consumed has incorrectly been neglected, or that a NH3-producing 

pathway has incorrectly been added to the network. Examples of the latter could be 

the degradation pathways of amino acids such as cysteine and threonine (Figure 1), 

which both yield NH3. 
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CONCLUSIONS 

The carbon balance can be closed in continuous mammalian-cell culture, provided 

that the bicarbonate buffer in the culture medium is taken into account for the 

determination of the C02 production rate. Together with the nitrogen balance, this 

allows to test the measurement data of metabolites that are relevant for flux analysis 

on the presence of gross errors. 

The carbon and nitrogen balances over the metabolic subnetwork that consists of the 

glycolysis, the TCA cycle, the pentose phosphate pathway, and the glutaminolysis, 

can be closed within the 90 % confidence interval. 
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APPENDIX A 

Table Ala 
Average measured metabolic rates of metabolites of entire metabolic network for seven steady 
states (Values in 10"12 mol. cell"1 .day"1). Abbreviations as in Figure 1. Amino acids are given 
with the standard three-letter codes. 

ASP 
GLU 
ASN 
SER 
GLN 
HIS 
GLY 
THR 
ARG 
TYR 
CYS 
VAL 
MET 
TRP 
PHE 
ILE 
LEU 
LYS 
PRO 
HYP 
ALA 
GLC 
LAC 
NH3 
C02 
RNA 
DNA 
TP 
TC 
LIP 
MAB 

PO230 

-0.088 
-0.071 
-0.061 
0.041 

-2.102 
-0.072 
-0.094 
-0.148 
-0.119 
-0.082 
-0.122 
-0.221 
-0.124 
-0.02 

-0.073 
-0.360 
-0.595 
-0.201 
0.120 
0.322 
1.230 

-6.341 
7.480 
1.220 
13.12 
0.062 
0.012 
2.421 
0.056 
0.151 
0.138 

pO250 

-0.06 
-0.027 
-0.068 
-0.025 
-1.618 
-0.058 
-0.108 
-0.121 
-0.096 
-0.070 
-0.091 
-0.184 
-0.101 
-0.021 
-0.068 
-0.313 
-0.501 
-0.164 
0.154 
0.244 
0.976 

-5.374 
5.279 
0.717 
11.79 
0.058 
0.012 
2.494 
0.068 

n.d. 
0.112 

P 0 2 l 

-0.044 
-0.054 
-0.055 
-0.113 
-1.442 
-0.047 
-0.103 
-0.102 
-0.084 
-0.065 
-0.090 
-0.14 

-0.088 
-0.019 
-0.061 
-0.221 
-0.347 
-0.137 
0.204 
0.212 
0.773 

-18.53 
10.69 
0.748 
8.920 
0.063 
0.012 
2.002 
0.053 

n.d. 
0.109 

pO20 

-0.002 
0.011 

-0.037 
-0.097 
-2.025 
-0.054 
-0.094 
-0.102 
-0.085 
-0.070 
-0.133 
-0.123 
-0.107 
-0.014 
-0.061 
-0.210 
-0.328 
-0.149 
0.237 
0.304 
1.151 

-12.31 
19.08 
0.878 
7.382 
0.057 
0.012 
2.243 
0.079 

n.d. 
0.116 

p0 2 100 

-0.078 
-0.029 
-0.047 
0.023 

-1.941 
-0.068 
-0.106 
-0.137 
-0.112 
-0.077 
-0.099 
-0.209 
-0.112 
-0.009 
-0.067 
-0.313 
-0.524 
-0.19 
0.162 
0.254 

1.13 
-5.825 
7.031 
1.072 
11.71 
0.058 
0.012 
2.275 
0.062 
0.174 
0.115 

pO230 

-0.173 
-0.208 
-0.013 
-0.023 
-1.823 
-0.054 
-0.115 
-0.134 
-0.158 
-0.075 
-0.101 
-0.198 
-0.101 
-0.029 
-0.066 
-0.377 
-0.596 
-0.189 
0.103 
0.253 
1.232 

-4.685 
4.784 
1.141 
10.83 
0.052 
0.029 
2.543 
0.079 
0.155 
0.121 

PMS 

-0.078 
-0.074 
-0.093 
0.080 

-2.140 
-0.059 
-0.135 
-0.161 
-0.198 
-0.088 
-0.118 
-0.226 
-0.135 
-0.038 
-0.102 
-0.427 
-0.691 
-0.233 
0.078 
0.345 
1.360 

-4.025 
3.432 
1.423 
12.41 
0.062 
0.042 
2.769 
0.081 
0.139 
0.176 
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Table Alb 
Standard deviations of measured metabolic rates of metabolites of entire metabolic network 
(Values in 1012 mol. cell'.day1). 

ASP 
GLU 
ASN 
SER 
GLN 
HIS 
GLY 
THR 
ARG 
TYR 
CYS 
VAL 
MET 
TRP 
PHE 
ILE 
LEU 
LYS 
PRO 
HYP 
ALA 
GLC 
LAC 
NH3 
C02 
RNA 
DNA 
TP 
TC 
LIP 
MAB 

pO230 

0.0014 
0.0035 
0.0020 
0.0012 
0.0492 
0.0022 
0.0063 
0.0024 
0.0011 
0.0007 
0.0078 
0.0043 
0.0104 
0.0041 
0.0028 
0.0139 
0.0221 
0.0075 
0.0202 
0.0148 
0.0436 
0.345 
0.640 
0.110 
0.299 
0.006 
0.001 
0.019 
0.003 
0.016 
0.004 

pO250 

0.0067 
0.0019 
0.0063 
0.0035 
0.2145 
0.0060 
0.0110 
0.0123 
0.0090 
0.0083 
0.0012 
0.0217 
0.0121 
0.0028 
0.0083 
0.0414 
0.0654 
0.0168 
0.0404 
0.0323 
0.1518 
0.216 
1.000 
0.142 
1.090 
0.017 
0.001 
0.007 
0.003 
0.016 
0.005 

P 0 2 l 

0.0034 
0.0069 
0.0079 
0.0062 
0.0524 
0.0034 
0.0071 
0.0073 
0.0034 
0.0017 
0.0103 
0.0037 
0.0033 
0.0017 
0.0033 
0.0053 
0.0094 
0.0025 
0.0246 
0.0098 
0.0223 
0.435 
0.824 
0.051 
0.167 
0.014 
0.001 
0.066 
0.002 
0.016 
0.005 

pO20 

0.0114 
0.0147 
0.0186 
0.0237 
0.2030 
0.0070 
0.0222 
0.0192 
0.0202 
0.0115 
0.0061 
0.0213 
0.0117 
0.0087 
0.0153 
0.0363 
0.0595 
0.0310 
0.0340 
0.0199 
0.0556 
0.133 
1.610 
0.131 
0.596 
0.025 
0.001 
0.102 
0.001 
0.016 
0.010 

p0 2100 

0.0015 
0.0034 
0.0015 
0.0031 
0.0779 
0.0021 
0.0049 
0.0040 
0.0032 
0.0023 
0.0041 
0.0051 
0.0041 
0.0009 
0.0019 
0.0086 
0.0131 
0.0054 
0.0311 
0.0089 
0.0377 
0.172 
0.449 
0.121 
0.643 
0.012 
0.001 
0.030 
0.001 
0.016 
0.001 

pO230 

0.0176 
0.0160 
0.0597 
0.0136 
0.2180 
0.0088 
0.0135 
0.0179 
0.0200 
0.0094 
0.0127 
0.0249 
0.0116 
0.0004 
0.0073 
0.0431 
0.0688 
0.0188 
0.0069 
0.0404 
0.1780 
0.284 
0.499 
0.202 
1.220 
0.063 
0.001 
0.012 
0.001 
0.016 
0.011 

PMS 

0.0047 
0.0012 
0.0077 
0.0093 
0.1470 
0.0028 
0.0074 
0.0095 
0.0119 
0.0060 
0.0075 
0.0102 
0.0109 
0.0030 
0.0095 
0.0391 
0.0657 
0.0231 
0.0109 
0.0323 
0.0839 
0.605 
0.208 
0.099 
0.367 
0.004 
0.001 
0.071 
0.002 
0.014 
0.017 
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Table A2a and A2b 

2a. Average measured metabolic rates of metabolites in underdetermined network. Values (in 
10"12 mol. cell"1 .day"1) are calculated as described elsewhere (Bonarius et al., 1996). The 
standard deviations associated with these rates (Table 3b) are linear combinations of the 
standard deviations of the cellular uptake and production rates, and are calculated accordingly 
(Box et al., 1978). Abbreviations as in Figure 1. 

G6P 

R5P 

GAP 

G3P 

PYR 

ACo 

CIT 

AKG 

MAL 
C 0 2 

ASP 

ASN 

GLU 

GLN 

NH3 

p O 2 3 0 

-6.28 

0.62 

0.17 

0.41 

8.07 

-0.77 

1.46 

-0.65 
0.41 

12.02 

0.13 

0.03 

1.01 

-1.87 

1.20 

p O 2 5 0 

-5.30 

0.60 

0.17 

0.33 

5.58 

-0.58 

1.46 

-0.62 

0.42 

10.72 

0.16 

0.02 

0.93 

-1.39 

0.67 

P 0 2 l 

-7.21 

0.59 

0.17 

0.21 

10.77 

-0.35 

1.46 

-0.64 

0.42 

7.48 

0.16 
0.03 

1.00 

-1.19 

0.70 

p O 2 0 

-12.22 

0.55 

0.17 

0.19 

19.54 

-0.37 

1.46 

-0.94 

0.36 

6.31 

0.20 

0.03 

1.36 

-1.80 

0.84 

p 0 2 100 

-5.758 

0.628 

0.172 

0.350 
7.474 

-0.673 

1.467 

-0.610 

0.423 

10.605 

0.135 

0.040 
0.914 

-1.696 

1.059 

p O 2 3 0 

-4.75 

0.55 

0.14 

0.34 

5.14 

-0.76 

1.25 

-0.65 

0.37 

9.52 

0.06 

0.10 

1.02 

-1.28 

1.10 

PMS 

-4.09 

0.65 

0.14 

0.48 

3.96 

-0.93 

1.25 

-0.63 

0.40 

11.10 

0.20 
0.01 

0.71 

-1.87 

1.39 

2b. Standard deviations of metabolic rates of metabolites in underdetermined network (Values 

in 1012 mol. cell"1 .day"1). 

G6P 

R5P 

GAP 

G3P 

PYR 

ACoA 

CIT 

AKG 

MAL 

C02 

ASP 

ASN 

GLU 

GLN 

NH3 

p O 2 3 0 

0.347 

0.007 

0.035 

0.012 

0.892 

0.050 

0.147 

0.109 

0.020 

0.514 

0.003 

0.003 

0.153 

0.055 

0.114 

p O 2 5 0 

0.218 

0.018 

0.035 

0.017 

1.019 

0.134 

0.147 

0.309 

0.036 

1.305 

0.008 

0.007 

0.395 

0.225 

0.155 

P 0 2 l 

0.437 

0.018 

0.035 

0.025 

1.053 

0.033 

0.147 

0.074 

0.024 

0.382 

0.008 

0.010 

0.128 

0.065 

0.063 

p O 2 0 

0.134 

0.026 

0.035 

0.065 

1.863 

0.162 

0.147 

0.268 

0.053 

0.811 

0.018 

0.023 

0.371 

0.230 

0.157 

p 0 2 100 

0.172 

0.014 

0.035 

0.014 

0.734 

0.034 

0.147 

0.124 

0.018 

0.858 

0.004 

0.003 

0.176 

0.083 

0.127 

p O 2 3 0 

0.301 

0.063 

0.030 

0.034 

0.954 

0.142 

0.125 

0.355 

0.083 

1.481 

0.027 

0.061 

0.452 

0.238 

0.222 

P M S 

0.790 

0.001 

0.030 

0.031 

0.497 

0.153 

0.125 

0.199 

0.024 

0.628 

0.009 

0.011 

0.265 

0.162 

0.114 
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Metabolic-Flux Analysis of Hybridoma Cells in Different 
Culture Media Using Mass Balances 

Hendrik P.J. Bonarius, Vassily Hatzimanikatis, 

Koen P.H. Meesters, Cornells D. De Gooijer, 

Georg Schmid, and Johannes Tramper. 

ABSTRACT 

The intracellular fluxes in the primary metabolism of hybridoma cells in continu­

ous culture have been calculated using mass balances over relevant metabolites. 

The uptake and production rates of amino acids, C02 , glucose, lactate, NH4, Mab, 

and the intracellular amino acid pools have been determined for two different 

steady states. The cellular composition (total protein and protein composition, to­

tal lipids and fatty acid distribution, total carbohydrates, DNA and RNA) has 

been measured to calculate the requirements for biosynthesis. 

Fluxes of linear metabolic pathways have been determined by measuring the sub­

strate concentrations or the accumulated end products. For the analysis of cyclic 

metabolic pathways it is shown to be essential to determine the carbon dioxide 

and ammonia production rates. In mammalian cells both carbon dioxide and 

ammonia are waste-products of cyclic metabolic pathways. Only by measuring 
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their accumulation, the fluxes of such pathways can be determined. Other co-
metabolites in cyclic pathways, like NAD(P)H, and ATP are not used to estimate 
the fluxes of primary metabolism. Their mass balances can not be closed because 
these metabolites are involved in biochemical processes (transhydrogenase, main­
tenance and oxidative phosphorylation) that are not measurable. However, with­
out these mass balances the set of linear equations that is used to calculate the 
fluxes is underdetermined. A solution to this problem is the introduction of an 
additional constraint. 

The metabolic fluxes in hybridoma cells in continuous culture at a specific growth 
rate of 0.83 day'1 are estimated for a medium with (optimal medium) and without 
(sub-optimal medium) Primatone RL, an enzymatic hydrolysate of animal tissue 
that causes a more than two-fold increase in cell density. It is concluded that: 

1. In rapidly proliferating cells, such as investigated here, the majority of glucose 
(> 90 %) is channeled through the pentose-phosphate pathway, probably to pro­
vide NADPH for biosynthesis. 
2. Pyruvate oxidation and TCA cycle activity are relatively low, i.e. 9 %, of the 
glucose uptake in sub-optimal and 17 % in optimal medium, respectively. Under 
both conditions, only a small fraction of pyruvate is further oxidized to C02 due 
to the small flux from citrate to ot-ketoglutarate. 

3. Higher carbon dioxide evolution rates in optimal medium are concomitant with 
increased lipid synthesis rates and with high glucose/glutamine oxidation ratios. 
4. The flux from glutamate to a-ketoglutarate (catalyzed by glutamate dehydro­
genase) is almost zero in medium with and even slightly reversed in medium 
without Primatone RL. Almost all glutamine enters the TCA cycle due to the ac­
tion of transaminases. 
5. Proline synthesis does not occur to enable nucleotide synthesis by providing a 
means to reoxidize NADPH, as has been suggested before. It is more likely that 
the energy-wasting proline synthesis in hybridoma cells is a redundant pathway, 
originating from the intercellular proline cycle in mammalian organisms. 
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INTRODUCTION 

Mammalian cells are used for the production of vaccines, recombinant proteins and 

antibodies. The maximum amount of (recombinant) protein being secreted is relatively 

low; about 10-20 % of the total cellular protein (Reff, 1993). To increase the capacity 

of cells to secrete more product and improve space/time yields a better quantitative 

understanding of cell metabolism is needed. Several studies have already been carried 

out to proceed in this direction (Mancuso et al., 1994; Sharfstein et al., 1994; Petch and 

Butler, 1994; Zupke and Stephanopoulos, 1995). By quantifying the intracellular 

fluxes it might be possible to (i) analyze the nutrient requirements for both anabolic 

and catabolic processes, and subsequently redesign the culture medium, (ii) tracing 

metabolic pathways that limit growth, production, or product quality, or pathways that 

are redundant and energy-consuming and, most important, (iii) understand the bio­

chemistry of the cell at a quantitative level, so that the relation and control between 

different metabolic pathways within the cell can be understood. 

The kinetics of animal cell metabolism and the response of animal cells to changes in 

medium composition and to inhibiting compounds have already been studied exten­

sively (Glacken et al., 1988; Levering et al., 1992; Miller et al., 1989; Miller et al., 

1989b; Ozturk and Palsson, 1991; Ozturk et al., 1992). All these studies only concern 

the extracellular uptake or production rates of primary metabolites, like oxygen, glu­

cose, ammonia, lactate and amino acids. The analysis of these rates can not be used to 

quantify and understand metabolism at a level of (intracellular) metabolic fluxes. More 

data are required to calculate the flux distribution in a complex metabolic network like 

that of mammalian cells (Savinell and Palsson, 1992). These data have in the past been 

obtained from scintillation counting of the end products of radiolabeled substrates 

(Fitzpatrick et al., 1993, Katz and Wood, 1993; Petch and Butler, 1994; Reitzer et al., 

1980) or from in vivo ,3C-NMR analysis (Jeffrey et a l , 1991; Mancuso et al., 1987; 

Portais et al., 1993; Sharfstein et al., 1994). Both methods can provide the missing in­

formation for the determination of intracellular fluxes because the concentrations of 

enriched (end)products can be determined. 
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Due to a practical limit on the number of measurements that can be made by scintilla­

tion counting, the information on metabolic activity provided by carbon isotope stu­

dies is limited. For example, the citric acid cycle activity is often assessed by simple 

measurement of 14C02 release ( Fitzpatrick et al., 1993), without accounting for the ef­

fect of competing pathways (Jeffrey et al., 1991). In contrast, by in vivo 13C-NMR 

analysis different metabolites can be quantified from a single spectrum. Not only dif­

ferent labeled species but also different labeled sites in a molecule can be distin­

guished. The prevailing metabolic routes that lead to certain end products can therefore 

be traced (Jeffrey et al., 1991). Moreover, experimental artifacts that might occur dur­

ing extraction procedures to analyze intracellular metabolites can be avoided ( Man-

cuso et al., 1994; Sharfstein et al., 1994). However, the use of in vivo 13C-NMR spec­

troscopy has some shortcomings as well. Only labeled substrates, intermediates and 

products can be measured by 13C-NMR analysis. Further, the unsolved concept of 

metabolic channeling in mitochondria by enzyme complexes might mislead inter­

pretation of 13C-NMR spectrograms for rotationally superimposable intermediates, like 

succinate and fumarate (Srere, 1990; Portais et al., 1993). 

More important, 14C scintillation counting and 13C-NMR analysis require an experi­

mental set-up that causes different culture conditions than standard homogeneous 

bioreactors. Only in inhomogeneous systems, like hollow fiber reactors, sufficient cell 

densities can be attained to obtain quantifiable signals for a NMR spectrometer 

(Mancuso et al., 1994). Studies with 14C labeling techniques or in vivo 13C-NMR spec­

trometry have only been carried out in bioreactors with cells having a very low biosyn­

thesis/maintenance ratio. In hollow-fiber reactors, perfusion chambers or T-flasks 

where cells are confluent, cells grow at low (specific) rates (//) close to zero. This is 

not the case in homogeneous bioreactors, like chemostats, where the cell growth rate 

and, consequently, the requirement for NADPH is much higher (Stryer, 1988). As will 

be shown here, this can have a dramatic influence on the metabolic flux distribution. 

The experimental set-up required for studies with labeled substrates might change the 

metabolism to such an extent, that another method is needed to determine metabolic 

flux distributions of mammalian cells in the bioreactors that are widely applied in in-
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dustry. This can either be done by the use of labeled substrates in similar (homogene­

ous) systems or by "metabolic flux balancing" (Varma and Palsson, 1994). 

In this paper the metabolic flux distribution of animal cells in continuous culture as 

determined by the latter method is described. By applying the known cell stoi-

chiometry and by measuring the relevant metabolites the intracellular fluxes can be 

estimated by linear regression (Papoutsakis and Meyer, 1985; Vallino and Stepha-

nopoulos, 1993; Jorgensen et al., 1995). In comparison to earlier studies on the pri­

mary metabolism of hybridomas (Glacken et al., 1988; Hiller et al., 1991; Levering et 

al., 1992; Miller et al., 1989; Miller et al., 1989b; Ozturk et al., 1992), an additional set 

of metabolic rates needs to be measured to be able to determine the intracellular fluxes. 

Recently, Zupke and Stephanopoulos (1995) showed by I3C in vitro NMR that meta­

bolic fluxes can be calculated using mass balances. Here, three additional considerati­

ons are taken into account to determine metabolic fluxes in mammalian cells. 

Figure 1 

(A) (B) 

Fluxes within cyclic pathways can only be determined when measurable and 
balanceable cometabolites are produced or consumed. The fluxes in network 
A cannot be calculated by using the measured uptake and production rates 
rA, rB and rc. There are infinitely many possible combinations for x„ x2 and 
x3 for each set of metabolic quotients. Only when measurable cometabo­
lites are produced or consumed, as is the case in stiochiometric network B, 
there is one unique solution for each r. 

First, the (high-molecular) end products of primary anabolism, i.e., (total) protein, nu­

cleic acids, sterols, lipids, and total intracellular carbohydrates, need to be quantified to 
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determine the metabolic flux distribution of animal cells. Since a significant amount of 

the consumed metabolites is converted into biomass, these end products have to be 

determined accurately for different cell lines and for the same cell line under different 

conditions. 

Second, as will be shown later, the mass balances of co-metabolites (like ATP, 

NAD(P)H, 02 , C02 and NH3) are necessary to calculate fluxes within cyclic pathways. 

The fluxes in such pathways are by definition linear dependent, as a consequence of 

which the individual fluxes cannot be calculated (See Theory section and Figure 1). 

Only by including mass balances of metabolites that are co-produced or co-consumed 

in these metabolic reactions, the fluxes in cyclic metabolic pathways can be calculated. 

However, some metabolites can not be used for flux analysis since their mass balances 

can not be closed. The mass balances of NADPH, NADH, and ATP can not be closed 

since some biochemical processes, in which these metabolites are involved, are not 

measurable, e.g. the requirement for ATP in cell maintenance, the activity of transhy-

drogenase and the P/O-ratio. Therefore, including these mass balances will obviously 

give biased results and this approach should not be used for the determination of meta­

bolic fluxes. In the metabolic network that is used in our approach, the only co-metab­

olites of which the mass balances can be regarded as closed, are C02 and NH3. The 

mass balances of NAD(P)H, 0 2 and ATP can only be applied to quantify the men­

tioned biochemical processes, once the fluxes of primary metabolism (glycolysis, glu-

taminolysis, pentose phosphate pathway, citric acid cycle and biomass synthesis) are 

known. The accurate measurement of the C02 evolution and the NH3 production rate is 

of critical importance. 

Third, the carbon dioxide evolution rate (CER) was not measurable in mammalian cell 

culture due to bicarbonate in the medium. However, we recently developed a method 

to determine the CER in bicarbonate-buffered cell culture, by applying gas and liquid 

phase mass balances for carbon dioxide and bicarbonate, respectively (Bonarius et al., 

1995a). 
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Here, the metabolic flux distribution of hybridoma cells for two different culture con­

ditions is determined by the use of mass balances, taking into account the above con­

siderations. 

THEORY 

The principle of quantifying the intracellular fluxes of biological systems by applying 

mass balances has been used for almost a decade (Roels, 1980; Papoutsakis and 

Meyer, 1985; Noorman et al., 1991; Roels, 1983; Vallino and Stephanopoulos, 1993; 

Varma and Palsson, 1994). For each relevant metabolite a mass balance can be derived 

in which both the transport rates over the cell membrane and the intracellular reaction 

rates are included. This results in a set of linear equations (i.e., mass balances for each 

of the metabolites) with a certain number of unknowns (i.e., fluxes). The set of linear 

equations that describes the metabolism of mammalian cells is underdetermined; the 

number of mass balances is smaller than the number of fluxes. To solve such an under-

determined network either some fluxes have to be determined experimentally (Savinell 

and Palsson, 1992) or extra constraints have to be added. In this article a method is 

proposed applying this latter strategy. 

Equations 

The intracellular accumulation of metabolites has to be included in the mass balance of 

metabolites over a CSTR, as cells that contain a certain amount of a metabolite leave 

the bioreactor via the outgoing medium. For metabolite A the mass balance thus reads: 

dC,,A(t)(nv + nd) , dCE.A(t) d 

+ — ~ = DC7A - DCE.A(0 - DCi,A(t)(nv + nd) + r,„,,Anv (1) 
at at 

where n represents the (viable or dead) cell number (cell.l"1), D the dilution rate (day"1) 

and r the production rate (mol.ceH'.day"1). The indices I and E represent intracellular 

and extracellular concentrations, respectively. It should be noted that the dimension of 

CEA(t) and CEJ"ed is mol.l"1, whereas the dimension of CIA(t) is mol.cell"1. 
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From the total cell balance (Miller et al., 1987) it can be derived that: 

D (nv + nd) = ju «v (2) 

Under steady state conditions Equations 1 and 2 give: 

D(CE.A(t)- C$) ... 
rtol,A = MCi,A(t) + (3) 

rtotA is redefined to discriminate between intracellular production rate and 

extracellular production rate: 

rtot.A = r/iA + rE,A (4) 

The above equations, that are used the calculate rtot, consider the pertinent mass 

balances over the bioreactor. The cells are regarded as a black box system. In 

contrast, to calculate the metabolic fluxes, mass balances are derived over the cell, 

and the intracellular reaction conversion rates are included. 

The conversion rate of a metabolite A in a biological system is given by the 

stoichiometry and by the metabolic flux through the concerned reactions: 

r,ot.A(t) = Y.jaj,AXj(t) (5) 

where ajA is the stoichiometric coefficient of A in reaction^ (dimensionless), andx; 

the metabolic flux through reactiony (in mole reaction product.ceir'.day"1). A 

negative value of ajA indicates that metabolite A is a substrate in reaction^', whereas 

a positive value indicates that metabolite A is produced. 

The set of linear equations obtained from mass balances over each relevant 

metabolite in the cell is represented in matrix notation by 

r(t) = Ax(t) (6) 

where A is an n x m matrix of stoichiometric coefficients, x(t) an m-dimensional 

flux vector and rtot(t) an ^-dimensional production rate vector. 
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The flux vector x(t) can be estimated by the least-squares method, where x(t) is that 

value of x(t) which minimizes the sum of squared deviations of fitted values from the 

observed values. The least-squares solution, which is denoted by x(t), can be found by 

(pseudo)inverting the stoichiometric matrix A. Depending on the dimensions and the 

rank of the matrix, different algorithms can be applied to (pseudo)invert A. 

Least-squares solution and directly calculable fluxes 

In principle, there are two approaches to estimate the fluxes in a metabolic network. 

Either all fluxes are estimated by the least-squares method (Zupke and Stephanopou-

los, 1995) or the fluxes are calculated directly by deriving equations for each flux 

(Ferrance et al, 1983). This second approach is not possible in rank deficient networks. 

Here, a combination of both approaches is applied: Only those fluxes that are not di­

rectly calculable - because they are part of a sub-network that contains less constraints 

than fluxes or a sub-network that contains linear dependent fluxes - are estimated by 

the least-squares method in combination with an additional constraint. The fluxes that 

are directly calculable are determined by measuring the rlot belonging to them. For ex­

ample, the alanine transaminase flux (x26) (Table Al in Appendix A) is determined by 

the measured alanine production rate and the measured alanine requirement for bio-

mass. After determination of all calculable fluxes a smaller network remains that is 

rank deficient and is solved by the least-squares method as described above. Figure 2 

gives the network that is used to calculate the flux distribution in mammalian cells. 

The dotted lines represent the fluxes that are directly calculable from the measured 

rtot(t) and the measured requirements for biomass and product. The solid lines repre­

sent the fluxes that are estimated by the least-squares method. 

The input vector r,ot(t) for the remaining network (Appendix B) is calculated using the 

net catabolic rate vector rnc(t) for each metabolite. The net catabolic rate for metabolite 

A is the production rate of A corrected for its biomass synthesis rate (See also Appen­

dix C). The use of the net catabolic rates substantially reduces the complexicity of the 

equations in Appendix B. 
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Rank deficiency in metabolic networks 

When the (remaining) stoichiometric matrix A is rank deficient (rank(A) < m and/or n 

< m), the least-squares problem has infinitely many solutions. From a biochemical 

point of view there are two possible causes for a network that is not full rank. In a 

complex biochemical system, like that of mammalian cells, fluxes within sub-networks 

can be linearly dependent. Particularly, fluxes that form part of cyclic pathways make 

up rank-deficient sub-networks (rank(A) < m). Second, rank deficiency occurs when 

the number of mass balances is smaller than the number of fluxes (n < m). In both 

cases an infinite number of solutions can be found for the flux vector x(t) for each set 

of measurements r(t). 

The measurement ofbalanceable co-metabolites, like C02 andNH3, is essential for 

estimating fluxes in cyclic pathways. 

Some metabolic pathways are cyclic, as a consequence of which the fluxes within 

these pathways can not be estimated by measuring the uptake and production rates of 

the main metabolites only. The metabolites A, B and C in Figure la could circulate 

through the pathway without any accumulation of one of the metabolites. However, 

when (measurable) co-metabolites are involved that accumulate, the activity of the cy­

clic pathway is known. In Figure lb a simple example of a cyclic pathway is given, 

which shows that without co-metabolites the individual fluxes within the cyclic net­

work can not be calculated. Provided that the metabolite is measurable and its mass 

balance can be closed, the pertinent co-metabolite is suited to quantify the individual 

fluxes within the cyclic pathway. This will be discussed in more detail below. 

Table 1 gives four examples of cyclic pathways that occur in animal cell metabolism. 

In contrast to C02 and NH3, the mass balances of NAD(P)H, and ATP can not be 

closed. They contribute to other biochemical processes that can not be measured. The 

P/O ratio, the ATP and NADH requirement for maintenance processes are not quanti­

fiable. Also the activity of transhydrogenase, that catalyzes the reversible conversion 

of NADH into NADPH, is not known. Therefore, these co-metabolites can not be used 

for estimation of fluxes within cyclic pathways. Although the mass balance of 0 2 can 
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be closed, the determination of the 0 2 uptake rate (OUR) cannot be used to estimate 

metabolic fluxes, because 0 2 is stoichiometrically connected to other metabolic path­

ways via NADH. Only when the fluxes within the mentioned cyclic pathways are 

known, the mass balances of ATP, 02 , NADH and NADPH can be used to estimate 

these biochemical processes i.e., P/O ratio, ATP and NADH requirement for mainte­

nance, and transhydrogenase activity. 

Table 1 

Some cyclic pathways in mammalian cell metabolism. 

Metabolic pathway 

Pentose Phosphate Pathway 
Glutaminolysis 
TCA Cycle 
Pyruvate carboxylase-Malic 
enzyme-Pyruvate kinase 

Balanceable Unbalanceable 
Co-metabolites Co-metabolites 

C02 

NH3 

C02 

co2 

NAD(P)H, ATP, H20 
NAD(P)H, ATP 
NAD(P)H, ATP, FADH2, H20 
NADPH, ATP 

Rank deficiency can be avoided by adding extra constraints 

When a (sub)network is still rank deficient (i) either the number of fluxes has to be re­

duced or (ii) extra constraints have to be added to the system. 

(i) The number of fluxes can be reduced by lumping reactions. However, this is 

only allowed when the lumped fluxes are independent from the overall network, oth­

erwise the output vector x will be affected. 

(ii) Another option is the addition of an objective function by which one 

unique solution is found out of the infinitely many solutions of the least-squares 

method in rank deficient networks. Different numerical computations are available to 

find unique solutions in rank deficient linear systems (Thisted, 1989). In a theoretical 

study, Savinell and Palsson (1992a; 1992b) used the simplex algorithm to calculate 

metabolic fluxes in hybridoma cells using different "biochemically meaningful" ob­

jective functions. An alternative objective function is the miminum-norm constraint. 

The (Euclidian) norm of a vector is the square of its length, and is found by applying 

the Moore-Penrose pseudo-inverse of A (Golub and Van Loan, 1989). This pseudo-
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inverse can be calculated by Singular Value Decomposition (SVD) (Thisted, 1989). 

Out of the infinitely many solutions of the least-squares method, there is only one 

vector x for each set of measured rtot's, that has the smallest Euclidian norm. The 

Moore-Penrose pseudo-inverse gives this solution for each rtot (Golub and Van Loan, 

1989; Thisted, 1989). (It is outside the scope of this article to describe the SVD algo­

rithm. For a detailed description of this numerical procedure the reader is referred to 

Thisted (1989).) Here, the minimum-norm constraint is used to calculate the fluxes of 

a rank deficient (m - 22, n = 21, rank(A) =19) network. 

Stoichiometric matrix 

A metabolic network with the significant metabolic pathways for proliferating animal 

cells is constructed (Savinell and Palsson, 1992a; Stryer, 1988). Figure 2 shows the 

metabolic model that is used here for flux analysis. The assumptions that were used to 

obtain the network are given below. 

Since catabolism of high-molecular end products (for instance fatty acid oxidation) 

does not occur to a significant extent in rapidly growing cells when sufficient nutrients 

for energy production are available, only pathways that are involved in the catabolism 

of low-molecular metabolites (amino acids and glucose) and in the biosynthesis of 

macromolecules are considered. 

To reduce the complexity and the number of metabolic equations, reactions in con­

verging pathways that occur in fixed proportions and in complex unbranched biosyn­

thesis pathways with negligible intermediate concentrations are lumped. An example 

of the first is DNA synthesis and of the latter cholesterol synthesis. 

For the metabolic flux analysis all lipids are lumped into one fraction of fatty acids and 

one fraction of sterols. The fraction of fatty acids is assumed to consist only of oleic 

acid (CI8:1). As will be shown later, this is allowed because CI8:1 is the largest frac­

tion and the fractions of fatty acids shorter and longer than C18 are approximately 

equal. The measured distribution of fatty acids of hybridoma cells is given in the re­

sults section. The sterols cholesterol and desmosterol are separated from the fatty acids 
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into one different fraction (CHOL) because the stoichiometry for their biosynthesis is 

different (see also Appendix A). 

Figure 2 
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Network used for the determination of metabolic fluxes in hybridoma cells. The dotted 

lines represent fluxes that are determinable by measuring the end products or substrates. 

The remaining fluxes (1-21) are solved by the least-squares analysis of the mass-balnce 

equations complemented with the minimum-norm constraint. The elements of the pro­

duction rate vector r ^ t ) (Eq. 5) are calculated according to the equations in Table 6. 

The citric acid cycle intermediates are lumped into citrate (CIT), oc-ketoglutarate 

(AKG), and oxaloacetate and malate (OMA). These are the metabolites at the key 

branch points of the cycle (Sharfstein et al., 1994). Oxaloacetate and malate are 

lumped together because the conversion into oxaloacetate does not yield a balanceable 

co-metabolite (like C02). Neglecting this flux (oxaloacetate to malate) can therefore 

not influence the estimated values of other fluxes. 

The nucleotide synthesis pathway is lumped into two pathways: DNA and RNA syn­

thesis. These have to be regarded as two different fluxes because the stoichiometrics 

for DNA and RNA synthesis are different, and also because of the fact that RNA is de-
71 



Metabolic Fluxes: Optimal vs Suboptimal Conditions 

graded constantly, whereas DNA is stable. The actual rate of RNA synthesis is higher 

than its measured intracellular production rate (juCIRNA), due to the high RNA turnover. 

This turnover rate is estimated on the basis of literature values for rRNA and mRNA 

half-life, as described by Savinell and Palsson (Savinell and Palsson 1992a). By meas­

uring the intracellular RNA concentration, the r1RNA can be corrected for by the RNA 

turnover rate. 

The fractions of nucleotides in DNA and RNA are given by Zubay (1983): dATP 28.9 

%, dGTP 21.7 %, dCTP 20.7 %, dTTP 28.7 % for DNA; and ATP 29.4 %, GTP 19.8 

%, CTP 21.4 % and UTP 29.3 % for RNA, respectively. 

We found that the measurement of total carbohydrates is of critical importance to close 

the C balance in hybridoma cells (Bonarius et al., 1998e). It is assumed that the major­

ity of this biomass fraction consists of carbohydrate chains in glycoproteins. Since 

these are mainly formed from G6P (Stryer, 1988) the "total carbohydrate flux" is G6P 

+ 3.46 ATP -> TC (Savinell and Palsson, 1992a). 

Mammalian tissue is ureotelic, which means that the excess NH3 is converted into urea 

and then excreted (Stryer, 1988). However, in tumor cells the urea cycle is often not 

active (Coleman and Lavietes, 1981). Indeed, as will be shown later, we could not de­

tect urea in the culture medium for the cell line under investigation. Therefore, the urea 

cycle is not considered in the metabolic flux analysis. 

MATERIALS AND METHODS 

Cell line and culture medium 

A murine hybridoma cell line that produces an IgG2A antibody directed against human 

ferritin was grown in serum-free low-protein lipid-free medium. A mixture of Dul-

becco's, Ham's F12 and Iscove's powdered media (D:H:I =1:1:2; Gibco, Grand Island, 

NY, USA) was used as the basal medium, which was supplemented with 5 mg/ml in­

sulin (Sigma, StXouis, MO, USA), 6 mg/ml transferrin (Boehringer Mannheim, 
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Mannheim, FRG) and 0.35 % (w/v) Synperonic F68 (Serva, Heidelberg, FRG). The 

medium contained 5 g/1 glucose, 5 mM glutamine and 2.73 g/1 sodium bicarbonate. 

Two steady states were examined, one with and one without using 0.3 % (w/v) Pri-

matone RL (Quest Int., Erftstadt-Lechenich, FRG), an enzymatic hydrolysate of ani­

mal tissue. In the medium without Primatone RL amino acids equivalent in composi­

tion and concentration to those in Primatone RL were added to the medium (Ajino-

moto Co., Tokyo, J). 

Cell culture bioreactor 

A bench-scale Biostat MD bioreactor with a 1 L working volume (B.Braun Diessel 

Biotech, Melsungen, FRG) was operated in continuous mode. Temperature, stirrer 

speed and pH were maintained at 37 °C, 150 rpm and 7.20, respectively. The pH was 

controlled by 0.5 M NaOH. Oxygen supply was via surface aeration only and the me­

dium dissolved oxygen concentration was controlled at 40 % air saturation by adjust­

ing the oxygen fraction in a nitrogen/oxygen gas mixture. This fraction was measured 

by mass flow meters and used to calculate the OUR. The total gas flow was kept con­

stant at 0.50 L min."1. Mass flow meters were calibrated using an ADM 1000 Intelli­

gent Flowmeter (J & W Scientific, Koeniz, CH). The dilution rate was controlled at a 

value of 0.70 d"1 using an appropriate balance and a Sartorius dosing system (Sartorius 

GmbH, Gottingen, FRG). 

Cell density, size and viability 

Viable cell concentrations and viabilities were determined by the trypan blue exclusion 

method using a haemacytometer. The total cell concentration and the cell size distri­

bution was determined using a Casy 1 instrument (Scharfe System, Reutlingen, FRG) 

that is based on the Coulter counter principle. 

Carbon dioxide evolution and oxygen uptake rates 

Since the medium contains bicarbonate, the measured C02 in the outlet gas comes 

from two sources: the medium and the C02 producing cells. Also, the accumulation in 
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the liquid phase has to be taken into account. The liquid phase concentration can not 

be calculated by only applying Henry's law, as a partial gradient for desorption is re­

quired (Royce and Thornhill, 1991). Moreover, during medium preparation and stor­

age carbon dioxide evaporates from the bicarbonate-buffered medium. A method was 

developed to determine the carbon dioxide evolution rate under these conditions, by 

applying appropriate mass balances (Bonarius et al., 1995). It has been shown previ­

ously that the COz evolution rate (CER) can be determined by 

CER =xlo1(F
l
g + Fl(^2+^p^)(l + -^))-PF,CA(0) (8) 

where xC02° is the measured C02 fraction in the outlet gas. The other parameters are 

defined in the Nomenclature Section. The C02 in the outlet gas was measured by an 

infrared gasanalyzer (Rosemount, Baar, CH). 

The Oz uptake rates were calculated from the mass transfer coefficient k°2a and the 

fraction of oxygen in the inlet gas, as described before1. Values for k°2a were deter­

mined in both fresh medium and medium containing dead cells using the dynamic 

method (Van 't Riet and Tramper, 1991). No significant differences were found and 

k°2a was determined to be 63.4 d"1 at a stirrer speed of 150 rpm and a gas flow of 0.50 

Lmin"1. 

Analysis of metabolites 

Acid extraction of intracellular metabolites was done as described elsewhere (Schmid 

and Keller, 1992). Cells were cooled, washed in cold phosphate buffered saline solu­

tion (PBS), collected by centrifugation and extracted on ice using perchloric acid 

(Merck, Darmstadt, FRG). After neutralization with KOH solution, the supernatant 

was lyophilized and the freeze dried samples were taken up in 1 ml PBS for subse­

quent analysis of metabolites. 

Glucose and lactate concentrations were determined with a YSI analyzer (YSI, Yellow 

Springs, OH, USA). Ammonia was measured with an ion-selective electrode (Orion, 
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Boston, MA, USA). Primary and secondary amino acids were determined by HPLC as 

described elsewhere (Schmid and Keller, 1992). Samples were treated with or-

thophthal-aldehyde and 9-fluorenylmethyl chloroformate, and the resulting amino acid 

derivatives separated by HPLC on a RP-18 column (Amino Quant 1090, Hewlett-

Packard, Palo Alto, CA). 

Fatty acids and sterols (cholesterol and desmosterol) were determined by gas chro­

matography (GC). Cells were harvested at 1.0-1.5 x 10E6 viable cells/mL, washed 

twice with ice-cold phophate-buffered saline (PBS) and the biomass stored at -70°C 

under N2 atmosphere. Frozen cell samples were taken up in 0.25 M sucrose and ho-

mogenated by sonication. 1 mL of the homogenate was lyophilized. To the residue 0.1 

mL of methanol containing 10 |ig pentadecanoic acid (standard) and 1 mL 1 N sodium 

methylate were added and heated for 45 min to 70°C. After cooling, the solution was 

neutralized by 1 N hydrochloric acid and extracted with 2 mL hexane (Uvasol, E. 

Merck, Darmstadt, FRG). The hexane phase was evaporated to 50-100 uL. A solution 

of diazomethane was then added and concentrated again to ~ 50 uL. The concentrated 

solutions containing fatty acid methyl esters and sterols were analyzed by GC using a 

15 m fused-silica capillary (DB-1) coated with a methyl silicon. 

The total lipid fraction was determined by weight after chloroform/methanol extrac­

tion as described by Xie and Wang (1994b). RNA and DNA were purified according to 

Chomczynski (1993) using Trizol Reagent (Gibco, Paisley, Scotland, UK). DNA was 

quantified at A260 using a quartz cuvette (1 cm pathlength) and an A260 of 1.0 indicated 

50 mg/ml DNA. Total RNA was quantified by measuring the absorbance at 260 nm 

with yeast tRNA (Fluka, Buchs, CH) being used as a standard. The intracellular glyco­

gen was measured after enzymatic breakdown using amyloglucosidase (Fluka, Buchs, 

CH) as described by Lust et al (1975). Total carbohydrates were analyzed by the phe­

nol (Gibco, Paisley, Scotland, UK) reaction using glucose as standard as described by 

Xie and Wang (1994b). Total cellular protein content was quantified using the Biuret 

assay. Briefly, after cell disruption in lysis buffer (1 mM ethylenediaminetetraacetic 

acid (EDTA), 0.2 mM phenylmethanesulfonyl fluoride (PMSF) and 0.5 % Triton) cell 

75 



Metabolic Fluxes: Optimal vs Suboptimal Conditions 

fractions were incubated in Biuret reagent and the absorption at 595 nm was determi­

ned using a bovine serum albumin (BSA) standard curve. 

The amino acid composition of total cell protein was determined by HPLC after acid 

hydrolysis under non-oxidative conditions in a Pierce ReactiTherm Heater (Pierce 

Europe, Oud-Beijerland, NL). During acid hydrolysis glutamine and asparagine are 

converted to glutamate and aspartate, respectively. Therefore, only the total amount of 

glutamate and asparate was used to calculate the amino acid composition. The glu-

tamine/glutamate and asparagine/aspartate ratios as reported in the literature 

(Creighton, 1984; Savinell and Palsson, 1992a) were used to correct for this deamidati-

on. The value of the cysteine fraction in total cellular protein was obtained from the 

literature, because of cysteine degradation during acid hydrolysis. 

Antibody titers were quantified by a standard ELISA. Urea was quantitated by the in-

dophenol color reaction using a detedtion assay of Sigma Diagnostics (Kit nr. 640, 

Sigma Diagnostics, St.Louis, MO). Dry cell weight was measured after centrifugation 

of 50 ml culture volume and drying the cell pellet at 60 °C under vacuum overnight. 

RESULTS AND DISCUSSION 

Three conditions need to be fulfilled to determine metabolic fluxes in mammalian cells 

by flux balance analysis: (i) In the metabolic network all the relevant fluxes should be 

included and the non-balanceable metabolites should be excluded, (ii) To estimate 

fluxes in underdetermined networks, additional constraints are required apart from the 

constraints that are determined by the mass-balance equations. Here, the minimum-

norm constraint is used, (iii) The cellular composition has to be determined independ­

ently for at least each different cell line, and as will be shown here, also for the same 

cell line under different (medium) conditions. 
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Cell densities 

By cultivating cells in medium with and without semi-defined components like yeast 

extract or meat hydrolysates it is possible to create different conditions for an efficient 

and a non-efficient cell metabolism. By adding Primatone RL, a protein free enzymatic 

meat hydrolysate, to the medium, cell densities increased more than two-fold in a con­

tinuous culture at D = 0.70 d"1 compared to a culture without Primatone RL (but con­

taining amino acids equivalent in composition and concentration to Primatone RL) 

(Bonarius et al., 1995a). In Table 2 mean viable cell densities are given for three dif­

ferent experiments, each performed using DHI medium with and without Primatone 

RL, respectively. Samples for flux analysis were taken from Experiment 1. 

Table 2 

Mean viable cell densities (106 cells-ml"1) and respiration quotients 
(dimensionless) for six steady states. Experiments 1 and 2 were described be­
fore (Bonarius et al., 1995a). 

Exp.l 
Exp.2 
Exp.3 

DHI + standard 
amino acids of 
Primatone RL 
"v 

1.35 
1.68 
1.48 

RQ 

0.98 
0.97 
0.95 

DHI + 
Primatone RL 

nv 

3.10 
3.23 
3.51 

RQ 

1.04 
1.07 
1.02 

Cell size 

Cells in medium containing Primatone RL had a significant (14 %) larger volume than 

cells in medium without Primatone RL according to Coulter Counter analysis (Table 

3). Apart from the initial response to osmotic changes that can be described by the 

Boyle-Van't Hoff equation, hybridoma and CHO cells attain in steady state larger vol­

umes at high osmolalities (Cohen et al., 1989; Ozturk et al., 1991). The osmolality in 

the culture medium with Primatone RL was in fact, though only a fraction, smaller. 
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Therefore, the changes in cell size can not be caused by a difference in osmolarity. It 
also seems unlikely that the increase in cell size is caused by differences in cell cycle 

Table 3 

Cellular composition. Values are given in 10"5 mg/cell and as % of dry cell weight 
(DCW). Values for cell size are given in fLcell"1 (1015 l.cell'1). Numbers between paren­
theses indicate the number of datapoints used per steady state. RNA values are corrected 
for degradation rates as described in by Savinell and Palsson (1992). The values for the 
hybridoma cell line that was investigated by Xie and Wang (1994b) are given in com­
parison. 

w/o Primatone RL. 

Absolute Fraction 
value ofDCW 

10"5 mg/cell % 

w/ Primatone RL. 

Absolute Fraction 
value of DCW 

10"5 mg/cell % 

Xie and Wang 
(1994b) 

Absolute Fraction 
value of DCW 

10"5 mg/cell % 

TC 
TP 
Lipids 
RNA 
DNA 

DCW 
Cell 
size 

3.32 
33.2 
4.60 
2.70 
0.67 

47.0 
1760 

(3) 
(2) 
(1) 
(3) 
(2) 

(1) 
(3) 

7.1 
70.6 
9.7 
5.8 
1.4 

3.56 
34.2 
5.05 
3.01 
0.74 

50.5 
2005 

(3) 
(2) 
(1) 
(2) 
(2) 

0) 
(3) 

7.0 
67.1 
10.0 
5.3 
1.5 

0.88 
18.2 
3.38 
0.95 
0.35 

25.0 
-

3.5 
72.9 
13.5 
3.8 
1.4 

distribution (Martens et al., 1993), since at both steady states cells were growing at 

virtually the same specific growth rate. Probably differences in energy metabolism in­

fluenced cell size for the following reasons. It was found by others that starved cells 

increased their volume after nutrient repletion. This was ascribed to an energy-

dependent response that supports cellular osmotic activity (Cohen et al., 1989) and 

subsequently leads to an enhanced capacity to regulate cell volume (Hoffmann, 1983). 

The same might occur after the addition of Primatone RL in that unknown components 

of the meat hydrolysate enhance the availibility of energy, resulting in a higher os-

78 



Chapter 4 

motic activity. In any event, to compare the metabolic flux distribution at both steady 

states, a correction for differences in cell volume has to be applied. 

Cellular composition 

In Table 3 the cellular composition of cells for the two different conditions are given 

as determined by the assays described in the Materials and Methods section. The rela­

tive fractions are significantly different from other cell lines (Kirkman and Allfrey, 

1972; Xie and Wang, 1994b; Zupke and Stephanopoulos, 1995). Also under the two 

different culture conditions investigated, the total cell mass, and the relative fractions 

vary. More research is needed to determine whether the cellular composition has to be 

determined not only for each cell line but also under each different culture condition. If 

the cellular composition remains equal upon changes in culture conditions, and the cell 

size varies, only one parameter (for instance total protein content, dry cell weight or 

cell size) will be sufficient for the determination of metabolic fluxes. The cellular 

composition of the used hybridoma cell line under a variety of (medium) conditions is 

currently under investigation. 

Since background glucose concentrations were equal to glucose concentrations after 

treatment with amyloglucosidase, it can be concluded that the hybridoma cells under 

the conditions described here do not contain any glycogen. 

Lipids 

Figure 3 shows the distribution of fatty acids and sterols as determined by gas chro­

matography. For flux analysis the fatty acids are lumped into one fraction of oleic acid 

(CI 8:1), which is more than 55 % of total lipids. The amounts of fatty acids with 

shorter and longer chain lengths than CI8 are approximately equal. Therefore, we can 

assume that the overall stoichiometry for fatty acid synthesis is 8 ATP + 9 ACOA +16 

NADPH -» FA. The distribution of fatty acids as determined by gas chromatography 

is similar for both culture conditions, but the total amount of lipids as determined by 

weight after extraction is significantly different on a per cell basis. 
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Figure 3 
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Distribution of fatty acids and sterols of hybridoma cells cultured in medium without 

(black columns) and with (open columns) Primatone RL as determined by gas chromatog­

raphy. Values are given as a percentage of the total fatty acids and sterols. 

Extra- and intracellular metabolic rates 

In Table 4 the sum of extracellular and intracellular production rates (rto,) of hybri­

doma cells cultured in a sub-optimal and in an optimal medium are shown. The intra­

cellular production rates are calculated from the intracellular pools. The net catabolic 

rates, that are calculated using the cellular (Table 3) and amino acid (Table 5) compo­

sition, the net catabolic rates (Equation 9, Appendix C) are shown as well. 

A positive value for the net catabolic rate of an amino acid indicates that the pertinent 

amino acid is produced in the primary metabolism. Theoretically, the net catabolic 

rates of essential amino acids (indicated by an asterix in Table 4) can not be positive, 

because they can not be synthesized in mammalian cells. This is indeed the case for all 

essential amino acids within the range of their error intervals (the standard deviations 

of the uptake rates of HIS and VAL for the medium with Primatone RL are 0.0049 and 

0.0154 * 10"12 mol.cell"1.day"1, respectively). Only the net catabolic rate of THR in the 

medium with 
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Table 4 

Total production rates foot) and net catabolic rates (rnc). The net catabolic rates for amino 

acids (in order of chromatographic separation) and glucose are calculated by Equation 8. The 

stoichiometric coefficients 6>are determined from the cellular composition (Table 3), the de­

termined amino acid composition in cellular protein (Table 5) and the known amino acid 

composition of Mab (Table 5) (Edelman et al., 1969). A positive net catabolic rate indicates 

that the pertinent metabolite is produced in primary metabolism. Mean values of three data 

points in each steady state (each data point in duplo) are given in 10"12 mol.ceir'.day"1. Essen­

tial amino acids are indicated with an asterix (*). Metabolites that are not integrated in bio-

mass are denoted rnc=rtot-

Metabolite Total production Net catabolic 

rate (rtot). rate (rnc) 

w/oPrim. w/Prim. w/oPrim. wPrim. 

GLC 
NH3 
C02 
LAC 

ASP 
GLU 
ASN 
SER 
GLN 

HIS* 
GLY 
THR* 
ALA 
ARG 

TYR 
CYS 
VAL* 
MET* 
TRP* 

PHE* 
ILE* 
LEU* 
LYS* 
PRO 
HYP 

-6.874 
1.216 
9.924 
8.849 

-0.066 
-0.079 
-0.018 
-0.080 
-1.809 

-0.049 
-0.089 
-0.134 
0.680 
-0.133 

-0.063 
-0.085 
-0.180 
-0.066 
-0.028 

-0.058 
-0.168 
-0.226 
-0.148 
0.198 
0.177 

-4.716 
0.505 
11.06 
4.873 

-0.103 
-0.159 
-0.057 
-0.132 
-0.997 

-0.022 
-0.087 
-0.089 
0.390 
-0.089 

-0.059 
-0.050 
-0.145 
-0.057 
-0.027 

-0.073 
-0.160 
-0.303 
-0.174 
0.095 
0.095 

rnc~rtot 
rnc=rtot 
8.184 

rnc=rtot 

0.184 
-0.200 
0.053 
0.089 
-1.525 

-0.025 
0.124 
-0.013 
0.928 
-0.079 

-0.026 
-0.064 
-0.039 
-0.039 
-0.015 

-0.007 
-0.084 
-0.089 
-0.077 
0.294 

rnc=rtot 

rnc~rtot 
rnc=rtot 
9.090 
rnc=rtot 

0.159 
-0.287 
0.016 
0.044 
-0.699 

0.004 
0.137 
0.038 
0.640 
-0.068 

-0.020 
-0.027 
0.003 
-0.013 
-0.013 

-0.020 
-0.071 
-0.159 
-0.100 
0.196 
rnc=rtot 
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Table 5 

Amino acid composition. The amino acid distribution as determined by HPLC after hy­

drolysis of total cell protein. For both steady states mean values of three datapoints are 

given in % mol/mol. Literature values for cell protein and (Savinell and Palsson, 1992a) 

MAB (Edelman et al., 1969) are given as well. Values for ARG and GLN are corrected 

as described in the Material and Methods section. The measured values for CYS are 

given here, but are not used to calculate the net catabolic rates. 

Amino acid 

ASP 
GLU 
ASN 
SER 
GLN 

HIS 
GLY 
THR 
ALA 
ARG 

TYR 
CYS 
VAL 
MET 
TRP 

PHE 
ILE 
LEU 
LYS 
PRO 
HYP 

W/O Prim. 

5.3 
5.8 
4.2 
5.9 
4.9 

1.9 
8.1 
4.7 
7.6 
5.4 

2.4 
0.7 
5.3 
2.3 
0.2 

3.9 
4.3 
8.2 
8.9 
6.2 
4.1 

WPrim. 

5.3 
5.9 
4.2 
5.9 
5.0 

1.7 
8.1 
4.7 
7.7 
5.5 

2.3 
0.6 
5.5 
2.6 
0.3 

3.9 
4.4 
8.4 
8.2 
6.8 
3.0 

Savinell and 

Palsson 
(1992a) 

5.5 
4.6 
4.4 
7.1 
3.9 

2.1 
7.5 
6.0 
9.0 
4.7 

3.5 
2.8 
6.9 
1.7 
1.1 

3.5 
4.6 
7.5 
7.0 
4.6 
-

Mab 

(Edelman 
etal., 1969) 

4.0 
5.0 
3.4 
5.3 
5.5 

1.5 
6.8 
7.9 
6.5 
4.4 

4.1 
2.4 
8.6 
1.4 
1.5 

3.6 
4.5 
6.9 
7.0 
6.5 
-

Primatone RL is slightly positive. Although no gross measurement errors could be de­

tected, this might be due to a small underestimation of the protein content of cells 

during the steady state with Primatone RL. 

Urea could not be detected by the colorimetric urease assay. Therefore, the overall re­

action of the urea cycle is not considered here. 
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Respiration quotients 

It was already suggested that fatty acid biosynthesis can cause a respiration quotient 

(RQ) above unity (Bonarius et al., 1995a). For the biosynthesis of 1 mole of oleic acid 

9 moles of C02 are co-produced but only 4.5 moles of 0 2 are required. In the choleste­

rol and desmosterol biosynthesis pathway the C02 production is also higher than 0 2 

consumption (Zubay, 1983). Using the stoichiometry in Table A2 (Appendix A) for 

fatty acid and sterol synthesis (reaction 29 and 30), the intracellular lipid fraction 

(Table 2), a molar weight of 282 and 386 for oleic acid and cholesterol respectively, 

the C02 produced during biosynthesis of total lipids is 1.74 *10"12 and 1.97 *10"12 

mol.ceir'.day'1 for medium without and with Primatone RL, respectively. The differ­

ences in RQ values as determined in both media, could thus (partially) be a result of 

different lipid synthesis rates. The net catabolic rates for C02, i.e., the C02 produced in 

metabolic pathways other than the biosynthesis of fatty and nucleic acids, are 8.17 * 10" 
12 and 9.07 * 10"12 mol.cell'.day"1 for medium without and with Primatone RL, respecti­

vely (Appendix B). This indicates that the differences in experimentally determined 

RQ are therefore also a result of changes in catabolism. Complete oxidation of glu-

tamine and glucose results in a RQ of 0.833 and 1.00, respectively. In medium without 

Primatone RL a relatively high fraction of glutamine is catabolized compared to the 

amount of oxidized glucose. Assuming that only the oxidation of these substrates de­

termines the RQ, the RQ values for medium without and with Primatone RL would be 

0.936 and 0.961, respectively. This reflects the difference between the measured RQ 

values as well (Table 2). Therefore, it seems that the differences in RQ, as reported be­

fore (Bonarius et al., 1995a), are partially a result of lipid anabolism and partially of 

differences in the ratio of glucose/glutamine oxidation. 

Flux Analysis 

Before flux analysis was carried out, the data were analyzed for the presence of meas­

urement errors using elemental balances. A statistical method to detect gross meas­

urement errors in fermentation data (Wang and Stephanopoulos, 1983; Bonarius et a l , 

1998e) was applied to the carbon and nitrogen balances for the data shown here. The 
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used test function, he, that has a value of 4.61 at a 90 % confidence level, was 0.58 and 

0.10 for the measurement data of the experiment without and with Primatone RL, res­

pectively. This indicates that at a confidence of more than 90 % no gross measurement 

errors were present according to the elemental balances for C and N. 

In Appendix A (Table Al) the fluxes of hybridoma cells in continuous culture are 

given for medium without and with Primatone RL (10"'2 mol produced metabolite. 

cell"1.day"1). Figure 4 shows the relative values of the estimated fluxes normalized with 

respect to the glucose uptake rate. The values are expressed as C-mol produced me­

tabolite. For example, flux 4, which has an absolute value of 3.26* 10"12 mol XSP.cell"1. 

day"1 in medium with Primatone RL (Table Al), is relative to the glucose uptake 

(Table 4), 5/6* 3.26* 10"12 /4.72*10"12 * 100 % = 58 %. The factor 5/6 is used to express 

the fluxes in Cmol. By expressing the fluxes on a combined glucose uptake rate and 

Cmol basis, the relative magnitude of the different fluxes can be compared. 

Glycolysis 

In the optimal medium (supplemented with Primatone RL) glycolytic fluxes (x, and 

x10 in Table 2a) are significantly lower. The low glycolytic activity in this medium is 

probably the result of the lower residual glucose concentration. Because the cell den­

sity is more than two-fold higher the residual glucose concentrations in the culture 

medium are lower (1.7 and 9.9 mmol/1 for optimal and sub-optimal medium, respec­

tively). Tumor cells, in contrast to normal cells, do not show the Pasteur effect to a 

significant extent and use almost all glycolytic capacity regardless of intracellular 

ATP/ADP ratio and the need for energy (Eigenbrodt et al., 1985). Because tumor cells 

have lost the control over glucose uptake, the extracellular concentration mainly de­

termines the glycolytic flux. The high glycolytic activity and concomittant high lactate 

production rates in medium without Primatone RL are therefore probably a result of 

higher residual glucose concentrations. 
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Figure 4 
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Glutaminolysis 

To glutaminolysis the same applies as to glycolysis. Residual glutamine concentrati­
ons are higher in the medium with lower cell density. This results in a higher 
glutamine uptake rate and more waste products from glutaminolysis. Not only 
alanine is produced to prevent ammonia accumulation (Glacken et al., 1988), other 
amino acids can serve as an ammonia sink as well. It appears that the flux through 
glutamate dehydrogenase (x21) is close to zero (in medium with Primatone RL) or 
even slightly reversed (sub-optimal medium). These results are in agreement with 
Jenkins et al. (1992) who found very low glutamate dehydrogenase activity in 
hybridoma cells during batch culture, as measured by enzyme assay. Thus, under 
certain conditions a-ketoglutarate is even partly reconverted into glutamate. This 
might be influenced by relatively high ammonia levels. 

The chemical equilibrium of the reaction catalyzed by glutamate dehydrogenase 
strongly favors glutamate production in the presence of ammonia and a-ketoglutarate 
(Satlach and Fahien, 1969). In normal proliferating cells these products are rapidly 
metabolized by carbamyl-phosphate synthetase and a-ketoglutarate dehydrogenase, 
respectively. Therefore it is very unlikely that in normal cells the glutamate 
dehydrogenase flux is reversed. Tumor cells, however, are deficient in carbamyl-
phosphate synthetase as a consequence of which they form no urea (Coleman and 
Lavietes, 1981). This is consistent with our results since we could not detect urea in 
the culture medium. Therefore, it is plausible that glutamate is produced by glutamate 
dehydrogenase due to ammonia accumulation. Indeed, Ozturk et al. (1992) found 
higher glutamate production rates under higher initial ammonia concentration in 
batch cultures of hybridoma cells. This shows that the mechanism for phenomena 
such as high glutamate production rates, can be elucidated by metabolic flux 
analysis. 

(Hydroxy)Proline synthesis 

Another feature of high glutaminolytic activitity is proline and hydroxyproline synthe­
sis. The synthesis of proline is energy dependent; it costs 1 mole of ATP and 2 moles 
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of NADPH. Eigenbrodt et al. hypothesized that tumor cells produce proline to regen­

erate NADP from NADPH that is generated in the pentose phosphate pathway 

(Eigenbrodt et al., 1985). This would allow cells to produce ribose-5-phosphate for nu­

cleotide synthesis. However, according to flux analysis the extent of nucleotide syn­

thesis is too low to explain the energy wasting proline generation. In the most unfa­

vourable case, for the inefficient medium, only 0.22 * 10"12 mol.ceir'.day"1 NADPH 

would be produced to provide ribose-5-phosphate as a precursor for nucleotides. Fatty 

acid synthesis, in contrast, requires much more NADPH, i.e., 16 * 0.15 *10"12 = 

2.4* 10"12 mol.ceir'.day"1. Therefore, it seems to be more likely that proline synthesis is 

a result of either (i) a high intracellular glutamate concentration or (ii) a high NADPH-

/NADP+ ratio that is a result of other pathways than nucleotide synthesis. Indeed, in 

our laboratory it was found for the same hybridoma cell line that at higher glutamine 

concentrations the intracellular glutamate concentration was highly correlated to in­

creased proline production rates (Schmid and Keller, 1992). In the light of the reversed 

glutamate dehydrogenase flux, as discussed above, the proline synthesis might be an­

other mechanism to prevent high ammonia levels. 

Another explanation for proline synthesis in hybridoma cells is the following. The 

proline synthesis machinery might be a rudimentary enzyme system that originates 

from the intercellular proline cycle (Phang et al., 1981). The principle of this intercel­

lular biochemical interaction is shown in Figure 5. The intercellular proline cycle, a 

cyclic pathway that was observed for the first time in erythrocytes and hepatocytes, is 

present in different mammalian tissues. Proline is originally produced by erythrocytes. 

It is then oxidized by proline oxidase by hepatocytes into pyrroline-5-carboxylate. 

Erythrocytes, that lack proline oxidase, re-reduce pyrroline-5-carboxylate into proline. 

Although the advantage of this cycle for hepatocytes (and cells in other tissues, like 

kidney, heart and brain) is obvious, i.e., NADH-independent ATP generation, the ad­

vantage for erythrocytes or other plasma cells remains unclear. However, we speculate 

that lymphocytes are also involved in the intercellular proline cycle. Consequently hy­

bridoma cells, that originate from these blood cells, possess pyrroline-5-carboxylate 

reductase and produce proline whenever glutamate, NADPH and ATP are available. 

87 



Metabolic Fluxes: Optimal vs Suboptimal Conditions 

Figure 5 
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Intercellular proline cycle (Phang et al., 1981). P5C = pyrroline-5-carboxylate. 

It is currently under investigation to determine whether (hydroxy)proline synthesis is 

meaningful for cell metabolism (for the generation of NADPH or as an ammonia sink) 

or only a redundant and energy wasting metabolic pathway. Hybridoma cell metabo­

lism, like the metabolism of other tumor cells, might be disturbed by the high glu-

tamine uptake rates. Consequently (tumor) cells waste energy without any 'metabolic 

policy'. If this is indeed the case this pathway might be of interest to inhibit or re-

engineer for higher NADPH and ATP availability. 

Citric Acid Cycle 

The pyruvate oxidation rate in tumor cells is, in contrast to normal cells, independent 

of cell proliferation. In both fast and slow proliferating tumor cells the amount of py­

ruvate that is oxidized to C02 is small. Eigenbrodt et al. (1985) hypothesized that low 

pyruvate oxidation rates are a metabolic strategy for survival under extreme (low and 

high) oxygen conditions or under glucose limitation and for conserving acetyl-CoA for 

lipid synthesis. This is consistent with our data. The net pyruvate oxidation rate is ap­

proximately equal in both media and independent of biomass synthesis and residual 

glucose concentration (See flux 13 in Table Al). Although a significant fraction of py­

ruvate is converted into acetyl-CoA and subsequently into citrate, further oxidation in 

the TCA cycle hardly occurs. The majority of citrate is converted into fatty acids and 
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sterols with concomitant production of pyruvate (See reaction 29 and 30 in 
Appendix A, Table A2). To further study this hypothesis in depth for hybridoma 
cells, the effect of oxygen and glucose levels and the addition of fatty acid pre­
cursors on the metabolic flux distribution is currently under investigation. 

This concept of the 'truncated citric acid cycle' in tumor cells in relation to lipids 

biosynthesis has been reviewed by Coleman and Lavietes (1981). In tumor cells the 

flux from citrate to a-ketoglutarate is found to be much lower than the other citric 

acid cycle fluxes due to the efflux from citrate to lipid biosynthesis. By anaplerotic 

reactions, like the transformation of glutamate into a-ketoglutarate, citric acid cycle 

intermediates are replenished. Using in vivo 13C NMR Sharfstein et al. and Mancuso 

et al. found that the flux from citrate to a-ketoglutarate was only 10 % of the citrate 

synthase flux (x/4) in hybridoma cells cultivated in a hollow fiber system (Mancuso 

et al., 1994; Sharfstein et al., 1994). Here, the flux from citrate to a-ketoglutarate as 

determined by mass balancing was indeed low in the sub-optimal medium (3 %), 

but the difference was smaller in the case with Primatone RL (15 %). 

Pentose-Phosphate Pathway 

It was found in different cell lines that the percentage of pyruvate formed by the 
pentose-phosphate pathway is relatively small, i.e., between 0.7 and 11 % from the 
total glycolytic flux (Katz and Wood, 1963; Reitzer, et al. 1980; Loreck et al., 1987; 
Portais et al., 1993; Mancuso et al., 1994; Petch and Butler, 1994). Using mass 
balances to determine the flux distribution of hybridoma cells in continuous culture 
we found a much higher activity in the pentose phosphate pathway than was found 
by others: more than 95 % of the glucose is channeled towards pyruvate via flux 3 
under both culture conditions (Figures 4a and 4b). The difference between the 
activity of the pentose phosphate pathway as determined here and measured by 
labeling techniques as described by others (Katz and Wood, 1963; Reitzer, et al. 
1980; Loreck et al., 1987; Portais et al., 1993; Mancuso et al., 1994; Petch and 
Butler, 1994), is either a result of the use of metabolite-balancing techniques in 
combination with the minimum-norm constraint, or a result of differences in 
cultivation methods. In all earlier studies cells were cultured adherently, as 
monolayers in T-flasks (Katz and Wood, 1963; Rietzer, 1980; Petch and Butler, 
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1994), in the abdominal cavity of young adult Swiss mice (Loreck et al., 1987) or 
in hollow fiber bioreactors (Mancuso et al., 1994; Sharfstein et al., 1994). In all 
these studies cells grew at low specific growth rates. The energy metabolism of 
these cells is therefore focused on maintenance rather than growth. However, the 
requirement for NADPH, which is consumed in biosynthetic reactions, is much 
higher in rapidly proliferating cells than in confluent cells. In continuous culture at 
a//of 0.83 d'1, as investigated here, the pentose-phosphate pathway operates very 
similar to what we observe: when much more NADPH than ribose-phosphate is 
required, the lion's share of glucose-6-phosphate is converted into pyruvate via the 
oxidative branch of the pentose-phosphate pathway. The flux from glucose-6-
phosphate to fructose-6-phosphate is almost zero or reversed. This 'fourth mode' of 
the pentose-phosphate pathway is described by Stryer (1988). This is consistent 
with the fluxes found using mass balances. In medium with Primatone RL, the flux 
through the pentose-phosphate shunt is higher than in sub-optimal medium, because 
more NADPH is required for biomass synthesis. 

Recently, it has been shown for the same cell line and the same medium (with 
Primatone RL) using l-13C-glucose and detection of 13C02 by on-line mass 
spectrometry for exponentially growing cells that a large fraction of glucose is 
channeled through the pentose-phosphate pathway (A. Oezemre and E. Heinzle, 
personal recommendation). It is therefore suggested that the minimum-norm 
constraint is an appropriate constraint that can be used to calculate fluxes in rank 
deficient networks like that of mammalian cells. It is stressed that if only one flux in 
the glucose metabolism is validated, the values of the other fluxes in glucose 
metabolism will be predicted correctly as well, provided that the network is 
complete. It is hypothesized that the minimum-norm constraint correctly assumes 
that the total flux activity is minimized in order to fulfill the cells' strive for an 
efficient flux distribution. A more detailed study of the activity of the pentose-
phosphate pathway and the TCA cycle, using different 13C-labeled glucose isotopes 
is currently in progress. Experimental validation of the values of the fluxes 
estimated here will show whether the (i) theoretical approach and (ii) the assumed 
stoichiometry are appropriate tools for the calculation of metabolic fluxes in 
mammalian cells. 

90 



Chapter 4 

CONCLUSIONS 

1. The metabolic fluxes in hybridoma cells can be calculated using mass balances 
when the metabolic rates of the amino acids, glucose, lactate, ammonia and 
carbon dioxide are measured and when the cellular composition (fatty acids, 
sterols, nucleotides, and total protein and carbohydrates) is known. The 
determination of the NH3 and C02 production rates is essential to estimate fluxes 
in cyclic pathways. Further, an additional constraint is necessary to estimate the 
fluxes by the least-squares method. 

2. For each different cell line the different fractions of biomass (protein, lipids, 
nucleotides and carbohydrates) have to be determined in order to estimate the 
intracellular fluxes of rapidly proliferating cells. More experiments are needed to 
determine whether these fractions have to be measured also for the same cell line 
under different culture conditions. 

3. In non-efficient medium overflow metabolism of both glucose and amino acids is 
higher: the net catabolic rates of amino acids are higher, resulting in the synthesis 
of alanine, lactate, (hydroxy)proline, higher activity of aminotransferases and 
higher degradation rates of leucine, isoleucine, valine, lysine, and methionine. 

4. Pyruvate oxidation is low in both media. Entry of pyruvate in the TCA cycle via 
pyruvate dehydrogenase in medium with and without Primatone RL is 9 % and 
17 % of the glucose uptake rate, respectively. Only a small fraction of pyruvate is 
further oxidized to C02 due to the small flux from citrate to a-ketoglutarate. This 
flux is smaller in medium without Primatone RL (3 % of the glucose uptake rate) 
than in the medium with Primatone (15 %). 

5. Higher respiration quotients in medium with Primatone RL are concomittant with 
increased lipid synthesis rates and with high ratios of glucose/glutamine 
oxidation. 

6. The flux from glutamate to a-ketoglutarate, catalyzed by glutamate 
dehydrogenase is almost zero and even slightly reversed in medium with and 
without Primatone RL, respectively. Almost all glutamine enters the TCA cycle 
due to the action of transaminases. 

7. In hybridoma cells (hydroxy)proline synthesis does not occur to enable 
nucleotide biosynthesis (by regenerating NADPH into NADP). The amount of 
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NADPH that is co-produced in the nucleotide biosynthesis is too small to explain 
the energy-wasting proline biosynthesis. 
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APPENDIX A 

Table Al 

Stoichiometry of the reactions in the underdetermined network that are estimated by the least-
squares method and the minimum-norm constarint. Although NAD(P)H and ATP are shown 
here in the stoichiometric equations, they are not used in the calculation of the metabolic 
fluxes. The flux values for two steady states are given in 10"12 mol product.cell'.day"1. 

l .G6P->F6P 
2. F6P + ATP -» 2 GAP 
3. G6P -> Ru5P + C02 + 2 NADPH 
4. Ru5P -> X5P 
5. Ru5P -> R5P 
6. X5P + R5P -> S7P + GAP 
7. X5P + E4P -» F6P + GAP 
8. S7P + GAP -» F6P + E4P 
9. GAP -> G3P/SER + NADH + ATP 
10. G3P/SER -> PEP 
11. PEP-> PYR + ATP 
12. PEP + C02 -> OMA + ATP 
13. PYR -> ACoA + NADH + C02 
14. OMA -> PYR + NADPH + C02 
15. ACoA + OMA -> CIT 
16. CIT -> AKG + NADH + C02 
17. AKG -> OMA + 2NADH + FADH + ATP + C02 
18. GLU + OMA -> ASP + AKG 
19. GLN + ASP + 2 ATP -> ASN + GLU 
20. ASN -> ASP + ATP + NH3 
21. GLU -> AKG + NADPH + NH3 
22. G L N -> G L U + ATP + NH3 

w/oPrim. 

0.37 
3.97 
6.39 
4.02 
2.27 
2.06 
1.86 
1.93 
9.78 
9.51 
5.87 
3.60 
1.81 
2.26 
2.03 
0.22 
1.08 
0.45 
0.52 
0.35 
-0.06 
0.87 

with Prim 

-0.27 
2.92 
5.00 
3.26 
1.74 
1.63 
1.64 
1.64 
7.36 
7.18 
4.31 
2.87 
2.33 
1,44 
2.68 
0.82 
1.39 
0.30 
0.24 
0.13 
0.01 
0.37 
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Table A2 

Directly calculable fluxes. Reactions 23 to 44 can be determined by mass-balancing 
techniques alone. 

23. GLC + ATP -> G6P 
24. F6P + 3.46 ATP -> TC 
25. PYR + NADH -» LAC 
26. PYR + GLU -> ALA + AKG 
27. R5P + 1.3 ASP + 1.9 GLN + 0.49 GLY + 8.9 ATP -> 0.79 OMA + 1.7 

GLU + RNA + 0.71 NADH + 0.015 C02 
28. R5P + 1.3 ASP + 0.3 SER + 1.9 GLN + 0.2 GLY + 1.2 NADPH + 8.9 

ATP - • 0.8 OMA + 1.7 GLU + DNA + 0.7 NADH 
29. 9 CIT + 9 NADH + 8 ATP + 7 NADPH ->• FA + 9 PYR + 9 C02 
30. 18 CIT + 16 NADH + 11 NADPH + 11 02 + 18 ATP -> 

CHOL + 27 C02 + 18 PYR 
31. GAP + 6 ATP + NADH + FA -> PL 
32. MET + AKG -> OMA + GLU + NADH + ATP 
33. AKG + LEU -> GLU + ACCOA + 2NADH 
34. AKG + ILE -> GLU + ACCOA + 2NADH 
35. AKG + LYS -> GLU + ACCOA + 2NADH 
36. PHE + GLU -> ACoA + OMA + GLN 
37. ARG + AKG -> 2 GLU 
38. GLU + ATP + 2 NADPH -> PRO 
39. PRO -> HYP 
40. G3P/SER -> GLY 
41.CYS-»PYR + NH3 
42. THR -> PYR + NH3 
43. Am.Acids + 4.15 ATP - • PROT 
44. Am.Acids + 4.15 ATP -> MAB 

The stoichiometrics of reactions 29 and 30 are derived by adding up the stoichiometry 
of the conversion of citrate into Acetyl-CoA (CIT + NADH -> ACCOA + PYR + 
NADPH + C02) to the net stoichiometry of fatty acids synthesis (29a) and cholesterol 
synthesis (30a): 

29a. 8 ATP + 9 ACCOA + 16 NADPH -> FA. 
30a. 18 ACCOA + 29 NADPH + 11 02 + 18 ATP -> CHOL + 9 C02 + 2 NADH 
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Table A3 

List of metabolites. 

Metabolites in the small network (Table Al), which is solved by least squares analysis 
in combination with the minimum-norm constraint. 

1.G6P 
2.F6P 
3. GAP 
4. Ru5P 
5.X5P 
6.R5P 

7.G7P 
8.E4P 
9. G3P/SER 
10. PEP 
ll.PYR 
12.0MA 

13. CIT 
14. ACCOA 
15.AKG 
16. GLU 
17. GLN 
18. ASP 

19. ASN 
20. C02 
21.NH3 

Metabolites in the extended network (Table A2). 

22. GLC 
23. HIS 
24. GLY 
25.THR 
26. ALA 
27.ARG 

28.ARG 
29.TYR 
30.TYR 
31.CYS 
32.VAL 
33. MET 

34.TRP 
35.PHE 
36. ILE 
37. LEU 
38. LYS 
39. PRO 

40. PRO 
41. HYP 
42. PROT 
43.MAB 
44. DNA 
45.RNA 

46. FA 
47. CHOL 
48. PL 
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APPENDIX B 

Table Bl 

Equations for the remaining smaller network. These mass balances finally give the input 
vector r ^ t ) (1 x n, where n = 20) for the small matrix (m x n, where m = 21 and n = 22). The 
metabolites corresponding to the numbers are given between parentheses. The input values 
for medium without and with Primatone RL are given as well. A negative value indicates that 
a metabolite flows into the network. 

- Prim. + Prim. 

l.r(G6P) = -X23(GLC) 
2. r(F6P) = x^CTC) 
3. r(GAP) = x31(PL) 
4. r(Ru5P) = 0 
5. r(X5P) = 0 

6. r(R5P) = x27(RNA) + XjgPNA) 
7. r(S7P) = 0 
8. r(E4P) = 0 
9. r(G3P/SER) = r . ^ + r ^ y 
10. r(PEP) = 0 

11. r(PYR) = X25(LAC) + rKALA + rxjm + tnejcn 

- 9*x29(FA) - 18*X3o(CHOL) 
12. r(ACoA) = r„.LEU + r^.^ + r„.Lys + r^p^ 
13. r(OMA) = 0.8*x27(RNA) + 0.8*X28(DNA) + rKiPHE + r , ^ 
14. r(CIT) = 9*x29(FA) + 18*X3o(CHOL) 
15. r(AKG) = rxPHE - r^^u - r„,.ILE - r^ys - rKARG 

" rnc,ALA "rnc,MET 

16. r(GLU) = r«iGLU + r ^ ^ + rxlLE + rxLYS + 2*^^ 

+ rnc,MET ~*~ rnc,ALA " rnc,PHE + rnc,HYP + rnc,PRO 

17. r(GLN) = rBBtGLH + r , , ^ 
18. r(ASP) = rnc,ASP 

19. r(ASN) = rnC]ASN 

20. r(C02) = rC02 - (9*x29(FA) + 27*X3o(CHOL) + 0.015*x27(RNA)) 
21. r(NH3) = rNH3 + rKjm + r^^ 

-6.874 
0.078 
0.187 

0 
0 

0.116 

0 
0 

0.213 
0 

6.249 
-0.258 
0.046 
1.686 

-0.552 

0.871 

-1.532 

0.184 
0.053 
8.166 
1.142 

^.716 
0.088 
0.207 

0 
0 

0.122 
0 
0 

0.181 
0 

3.420 
-0.350 
0.049 
1.864 

-0.237 

0.253 

-0.699 

0.159 
0.016 
9.067 

0.480 
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APPENDIX C 

Net catabolic rates 

The input vector rtot(t) for the smaller remaining network is calculated using the net 
catabolic rate vector rnc

 M) for each metabolite. The net catabolic rate of metabolite A 
(rncA) gives the amount of A per cell per unit of time that is converted into metabolites 
other than biomass end products. Similar to Xie and Wang (1994a), who used the stoi­
chiometric coefficients of amino acids for biomass and product to rationally redesign 
the culture medium, we use the stoichiometric requirements for biomass and product 
to calculate the net catabolic rates. The net catabolic rate for metabolite A (mol.cell" 
'.day'1) is the production rate of metabolite A corrected for its biomass synthesis rate 
and can be calculated by 

fnc.A — riol.A-(0TP,ArTP + &DNA,ArDNA + 0RNA.ArRNA + dMAb,A>"Mab + &TC,AfTC + OFA.A^FA) (9) 

where ©BA denotes the number of moles of metabolite A that is needed for the bio­
synthesis of one mole biomass. For the sake of simplicity Equation 9 is rewritten into 

1"IK,A = flol.A ~ fbiom.A (10) 

where rbiomA is the sum of all biomass requirements rates for metabolite A. Table Bl 

gives the equations that are used for the calculation of the input vector r(t) for the cal­

culation of the 20 remaining fluxes. 

'1) Note: The net catabolic rates give a first indication for optimizing the medium composition. 
A negative rnc indicates that a fraction of the pertinent metabolite is converted without being 
used for biosynthesis. When such a metabolite does not have a function in the primary me­
tabolism, like ATP or co-factor (re)generation, it is considered as redundant. This can be in­
vestigated by metabolic flux analysis. When rnc is negligible compared to the uptake rate, the 
metabolite is regarded as "balanced" (Ferrance et al., 1993) and its medium concentration is 
considered to be optimal. These metabolites will not be used further in the flux analysis of 
the remaining primary metabolism. When rnc is positive its medium concentration might be 
lowered. In this case the pertinent metabolite is not produced from other metabolites. Thus, 
by metabolic flux analysis it is possible to investigate the medium requirements for the cell 
catabolism. As shown by Xie and Wang (1994a, 1994b) the medium requirements for 
anabolism, that probably dominates the final medium composition, can be determined by 
analyzing the biomass composition. 
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Metabolic-Flux Analysis of Continuously Cultured 
Hybridoma Cells using 13C02 Mass Spectrometry in 
Combination with NMR Spectroscopy and Metabolite 
Balancing 

Hendrik P.J. Bonarius, Achmet Ozemre, 
Bram Timmerarends, Peter Skrabal, 

Elmar Heinzle, Georg Schmid, and Johannes Tramper. 

ABSTRACT 

The estimation of intracellular fluxes of mammalian cells using only mass 
balances is not possible because the set of linear equations defined by these mass 
balances is underdetermined. Either additional theoretical constraints or 
additional experimental flux data, which can be obtained by isotopic-tracer 
studies, are required to quantify fluxes in particular in cyclic metabolic 
pathways. Here, metabolic flux analysis is carried out using isotopic tracers. 
Hybridoma cells are grown in medium containing either 1-13C-, 2-13C- or 6-13C-
glucose. The fractional labeling of lactate and C02 is determined using 'H-NMR 
spectroscopy and mass spectrometry, respectively. Data from five different 
steady states are evaluated to determine metabolic fluxes of carbon metabolism. 
Various evaluation methods, in which bi-directional reactions are assumed to be 
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negligible, are used for to determine net fluxes in continuously cultured 
hybridoma cells. 

It is concluded for continuously cultured hybrodoma cells, that 
(i) l-13C-glucose (and 6-13C-glucose) experiments reveal that at least 17 to 23 % 
of glucose is channeled through the pentose shunt. 
(ii) On average 17 % of the consumed glucose is metabolized in the TCA cycle, 
according to 6-13C-glucose experiments. 
(iii) Pyruvate-carboxylase activity is insignificant under the condition 
investigated here. 
(iv) Although the NAD(P)H balance can theoretically be used to quantify the 
metabolic fluxes at the gIucose-6-phosphate branchpoint, the resulting values 
are substantially different from flux values determined using isotopic-tracer 
studies. 
(v) The pentose-shunt flux determines how much glucose is minimally required. 
The cells investigated here require 1.5 mole glucose ceir'.day"1. Higher amounts 
of glucose will unnecessarily result in higher lactate production rates. 

INTRODUCTION 

In the last 3 to 4 years, intracellular-flux analysis of industrially relevant 

mammalian-cell lines has received considerable interest in an attempt to investigate 

bottlenecks in cellular physiology. Metabolic-flux analysis has already been proven a 

useful tool to analyze the requirements for energy and biomass synthesis. Using 

linear optimization techniques to analyze data of hybridoma-cell metabolism, 

Savinell and Palsson (1992a) showed that neither the maintenance demand for ATP 

nor the antibody production rate limit the growth rate of these cells. They also 

showed that a cell uses its nutrients for growth with only 57-78 % efficiency. In 

order to improve this low efficiency, Xie and Wang successfully redesigned the 

culture medium, first on the basis of cellular stoichiometry (1994a) and later on the 

basis of intracellular-flux estimations (1994b). Doing so, they were able to 
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significantly decrease production of waste metabolites and increase Mab titers with 

more than one order of magnitude. 

Intracellular-flux analysis has also successfully been applied to evaluate metabolic 

mechanisms and environmental effects on mammalian-cell metabolism. Zupke and 

co-authors analyzed the effect of dissolved oxygen on hybridoma cells, giving a 

fundamental basis for controlling physiological processes through manipulation of 

the oxygen supply (Zupke et al., 1995). We analyzed the effect of Primatone RL, a 

semi-defined medium component that promotes both growth and production, on the 

intracellular-flux distribution in hybridoma cells, in order to investigate metabolic 

differences between optimal and sub-optimal conditions (Bonarius et al., 1996). 

Recently, we used metabolic-flux analysis to show how hybridoma cells reduce 

ammonia accumulation by increasing their glutamate dehydrogenase activity 

(Bonarius et al., 1998a). 

In all of the above-mentioned studies, far-going assumptions with respect to certain 

metabolic pathways had to be made in order to quantify the intracellular fluxes. The 

linear network, that is a product of stoichiometric equations and uptake and 

production rates of the relevant metabolites, is underdetermined without such 

assumptions. This problem in the science of "metabolic-flux balancing" is an 

inherent consequence of the presence of cyclic metabolic pathways (Vallino and 

Stephanopoulos, 1990; Bonarius et al., 1997). Only by adding theoretical 

assumptions or by carrying out isotopic-tracer experiments, the fluxes in cyclic 

pathways can be determined. 

There is a need for experimental evidence to verify the various assumptions or 

theoretical constraints (Fell and Small, 1986; Savinell and Palsson, 1992; Bonarius et 

al., 1996), in particular with respect to fluxes in cyclic metabolic pathways. Several 

studies have already been carried out to proceed in this direction. Jenkins and co­

workers (1992) examined glutamine metabolism of hybridoma cells by following the 

metabolic fate of 15N-glutamine and showed the relative importance of glutaminase. 

Zupke and Stephanopoulos (1994) used l-13C-glucose as isotopic tracer to determine 
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the malic-shunt flux in hybridoma cells. Mancuso et al. (1994) and Sharfstein et al. 

(1994) used in vivo NMR to measure metabolic fluxes of hybridoma cells in hollow-

fiber bioreactors. This technique however, is relatively insensitive as a result of 

which it can not be used to study the metabolism of mammalian cells in 

homogeneous cultures, which are widely applied for the production of monoclonals, 

vaccins and recombinant glycoproteins. Cells growing in perfusion systems, such as 

hollow-fiber bioreactors, typically grow at low specific rates, resulting in low 

biosynthesis to maintenance ratios. This difference in cultivation method may 

significantly influence the metabolic-flux distribution. 

Here, intracellular flows of glucose metabolism in continuously cultured, suspended 

hybridoma cells, growing at almost maximum specific growth rates, are investigated 

using both experimental and computational methods. Various methodologies are 

applied and compared. 13C02 yields from 1-13C- and 6-13C-glucose, measured on-line 

by mass spectrometry, are determined to evaluate the pentose-shunt activity (Katz 

and Wood, 1963; Larrabee, 1989). The fractional labeling of extracellular lactate 

secreted by 1-13C-, 2-13C- and 6-13C-glucose-fed cells is determined in order to 

quantify the pentose- and the malic-shunt activity (Mancuso et al., 1994; Kingsley-

Hickman et al., 1990; Willis et al., 1986). A numerical method to determine 

metabolic-flux distributions from both isotopic-tracer data and metabolite balances, 

based on atom-mapping matrices (Zupke and Stephanopoulos, 1994), is used to 

supplement the underdetermined metabolic network. An advantage of this method, in 

which both mass balances and isotopic-tracer data are combined, is that a large 

number of metabolic fluxes in one single experiment can be determined, as a result 

of which errors due to interexperiment variability become irrelevant. In addition, 

both extraction of intracellular pools and the separation of metabolites for NMR 

analysis are not required. This can only be achieved when I3C02- and C02-

production rates are determined in addition to measurement of the fractional labeling 

of lactate. Measurement of 13C02 and C02 yields are essential for the determination 

of the pentose-shunt activity, when l-13C-glucose is used as isotopic source. Here, it 

is shown that, under the assumption that bi-directional fluxes do not influence 

scrambling of labeling in pentose-shunt intermediates, the net fluxes of the pentose 
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shunt, the glycolysis, the pyruvate carboxylase, the TCA cycle and the malate shunt 

can be determined in one single l-13C-glucose experiment. 

A comparison of the experimentally obtained metabolic-flux data with flux analysis 

estimated using mass balances and various theoretical constraints, is described 

elsewhere (Bonarius et al., 1998b). 

THEORY 

Metabolic network 

Figure 1 

_ OAA AKC /^ - 2 . 2 . . ni„ ** Gin 
V^ Glu^r-

14y w*' »'"•. 37\ 3«-.. 
Pip 'Art 

Hyp 
*-FA,Ckol 

Figure 1. Network of mammalian-cell metabolism. Fluxes that can be quanti­
fied by mass balances alone are indicated as dashed lines. To measure the re­
maining fluxes (solid lines) additional constraints are required. These can ei­
ther be obtained by isotopic tracer experiments, or as theoretical assumptions. 

Figure 1 shows the metabolic network that is used to estimate intracellular metabolic 

flows with mass-balance equations. The majority of the intracellular fluxes in 
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mammalian cells can be determined without isotopic tracers, i.e. using the measured 

extracellular metabolic rates and the cellular composition only. These fluxes are 

indicated by dashed arrows. To experimentally determine the remaining fluxes of 

thenetwork, indicated by the solid lines (fluxes 1-18 and 23-24), isotopic-tracer 

studies are required. The metabolic network in Figure 1 contains three sets of linear-

dependent fluxes. These are: 

1. The pentose shunt, glycolysis and TCA cycle (Flux 1 to 16) 

2. The malate/pyruvate/oxaloacetate cycle (Flux 16, 17 and 18) 

3. Glutaminolysis (Flux 23, 24, 25) 

In order to quantify these fluxes at least one flux out of each of these three cycles has 

to be measured independently. Here, particular effort is made to measure the pentose 

shunt (flux 2) using several isotopic-tracer methods. In addition, all fluxes of the 

TCA cycle, glycolysis, pentose and malate shunt are determined simultaneously by 

combining metabolite-balance equations and 13C-lactate and 13C02 measurements. 

The singularity that is caused by cycling in glutaminolysis (fluxes 23 to 25) is 

removed by assuming that the flow through asparagine synthetase (flux 23) is 

negligible, for reasons described elsewhere (Bonarius et al., 1998a). It is stressed that 

this assumption to estimate the fluxes 24 and 25 does not influence the calculations 

of fluxes that feed from glutaminolysis into the TCA cycle (fluxes 20, 21 and 22): 

the fluxes through the reactions catalyzed by glutamate dehydrogenase (flux 22) and 

alanine and aspartate aminotransferase (flux 20 and 21) can be determined 

independently. Table Al (Appendix A) shows the equations required to determine 

the in- and outgoing metabolic flows of the 'underdetermined' subnetwork with 

fluxes 1-19. 

Pentose-Phosphate Shunt 

The pentose-shunt activity in mammalian cells or tissue can be determined by 

analyzing the production of labeled C02 (Katz and Wood, 1963; Larrabee, 1989) or 

lactate (Kingsley-Hickman et al., 1990; Willis et al., 1986; Mancuso et al., 1994) 

after incubation of carbon-labeled glucose. Different interpretations of how to 
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evaluate isotopic-tracer measurement data to quantify the pentose-shunt flux 

(Larrabee, 1989; Kingsley-Hickman et al., 1990) will be discussed below and 

compared in the Results Section. 

Recently, it was shown that the labeling state of intermediates in the glycolysis and 

pentose-phosphate pathway are influenced by reversible reactions catalyzed by 

transaldolase (flux 7) and transketolases (flux 5 and 6) (Wiechert et al., 1997). In the 

methods applied here, fluxes in the pentose shunt are assumed to be unidirectional, 

as the labeling in intermediates of the pentose-phosphate pathway has not been 

measured. All fluxes are therefore given as net values. 

The net flux through the oxidative branch of the pentose shunt (flux 2) is 

underestimated when the reversed reaction catalyzed by phosphoglucose isomerase 

(reaction 1) is neglected. Here, the amount of flructose-6-phosphate (F6P) that 

recycles in flux 2 is estimated by a method proposed by Larrabee (1989). From the 

sedoheptulose-7-phosphate (S7P)- and erythrose-4-phosphate (E4P)-mass balance it 

follows that the pentose shunt produces 2/3 mole of F6P for each mole of glucose-6-

phosphate (G6P) entering it. If a fraction, R, of this F6P is recycled into the pentose 

shunt, the total hexose-phosphate (the sum of G6P and F6P) that enters the cycle is 

given by (Larrabee, 1989) 

x2 (l + fif + (fi{)2+(f/?)3+ ) = * 2 ( ^ ^ ) (1) 

where x2 is the flux through the oxidative branch of the pentose shunt of G6P that 

enters the shunt immediately after conversion from glucose, i.e., the amount 

determined under the assumption that all fluxes are unidirectional. 

13COz yields from 1-13C- and 6-13C-glucose experiments 

As shown in Figure 2, the carbon at the 1-C-position of glucose is released as C02 by 

the 6-phosphogluconate dehydrogenase reaction (flux 2) in the oxidative branch of 

the pentose shunt. Measurement of 13C02 derived from l-13C-glucose-incubated cells 
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Figure 2 
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The metabolic fate of l-l3C-glucose. Glycolytic labeling (circles), malate shunt labeling 
(stars), malate/pyruvate shuttle labeling (squares) are shown. Reductions (of 25 or 50 %) in 
filling of symbols indicate (25 or 50 %) reductions in labeling associated with reaction 
stoichiometry. Dashed line indicates mitochondrial membrane. Grey symbols indicate label 
transfer associated with interconnected pathways. Only labeling as a result of uni­
directional fluxes are shown (Adapted from Mancuso et al. (1994).) 

Capitals indicate C atoms of metabolites (except for the capital P which indicates phos­
phate groups and FA which denotes fatty acids). A acetyl-CoA, C carbon dioxide or citrate, 
D dihydroxyacetonephosphate, E erythrose-4-phosphate, F fructose-6-phophate or fructose 
1,6-biphosphate, G glucose, glucose-6-phosphate, or glyceraldehyde 3-phosphate, L lactate, 
M malate, O oxaloactetate, P pyruvate (or phosphate group), R ribose-5-phosphate or ribu-
lose-5-phosphate, S S7P sedoheptulose-7-phosphate, X xylulose-5-phosphate. 
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(or 14C02 derived from l-14C-glucose-incubated cells) can therefore be used to 

measure the pentose-shunt activity. This is however troubled by another fraction of 

the 13COz from cells grown in l-13C-glucose-containing medium that is released by 

other decarboxylation reactions: When l-13C-glucose is not channeled through the 

pentose-phosphate pathway, but metabolized by the glycolysis and further oxidized 

in the TCA cycle and in the pyruvate/malate and malic shunt (see also Figure 2), 
I3C02 is released as well. It has been suggested that the 14C02 from 6-14C-glucose can 

be used to correct for this fraction (Katz and Wood, 1963). In order to calculate the 

pentose-shunt flux Katz and Wood assumed that 3 moles of C02 were produced from 

each mole glucose-6-phosphate that entered the pentose cycle. Later, Larrabee 

(1989) argued that such an overall stoichiometry cannot be assumed. Instead, by 

applying a mass balance over 14C02, he showed that only a lower limit of the 

pentose-shunt flux can be attained from 14C02 (or 13C02) measurements. In this 

approach no assumptions with respect to a fixed overall stoichiometry of the 

pentose-phosphate pathway were made. For steady-state conditions it can be shown 

that (Larrabee, 1989) 

x2 > *C02(1)-*C02(6) (2) 

where *C02(1) and *C02(6) are the measured 13C02 production rates from 1-13C-

and 6-13C-glucose experiments, respectively. This expression does not set a unique 

value, but only provides lower limits for the pentose shunt, as it recognizes the fact 

that more C02 than the 13C02 from l-,3C-glucose is generated by the pentose shunt 

due to recycling of F6P. The extra amount of F6P that enters the shunt due to the 

reversed phosphoglucose-isomerase flux (jt;) is estimated by Equation 1. 

Another possible source of errors in the evaluation of 13C02 yields for the calculation 

of the pentose shunt, as discussed by Larrabee (1989), is the difference in time 

course of *C02(1) and *C02(6) during incubation of cells in medium containing 1-
13C- or 6-13C-glucose. Here, such time-dependent errors are negligible because cells 

are grown in continuous culture. 
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Fractional labeling in lactate from 1-13C, 2-13C- and 6-13C-glucose experiments 

The determination of the fractional labeling of carbon in lactate by NMR 

spectroscopy has been proposed as an alternative to the measurement of the 13C02 or 
14C02 production rate for the quantitation of the pentose-shunt activity (Willis et al., 

1986; Kingsley-Hickman et al., 1990). In Figure 3 the fractional labeling of pyruvate 

(which is equal to the fractional labeling of lactate) is shown for both 100 % 

glycolytic and 100 % pentose-shunt labeling for the different types of glucose that 

are used in this work. 

Figure 3 

Label glucose 

• 
G-G-G-G-G-G 

• 
G-G-G-G-G-G 

• 
G-G-G-G-G-G 

Glycolytic 
labeling 

e 
P-P-P 

P-P-P 

o 
P-P-P 

Pentose 
shunt 
labeling 

P-P-P 

a a 
P-P-P 

B 
P-P-P 

Label transfer from 1-13C-, 2-13C- and 6-13C-glucose to pyruvate, 

shown for 100 % glycolytic and for 100 % pentose-phosphate shunt 

activity (assuming that all reactions are unidirectional). Capitals 

denote C atoms in glucose (G) and pyruvate (P). 

Willis and co-authors (1986) derived the following equation to determine the shunt 

activity from the fractional labeling of 3-C-lactate after l-13C-glucose (100 % 

fractional enrichment) incubation: 

where r is the ratio of the sum of the 13C satellite proton-resonance intensities to the 

non-coupled proton resonance intensity (3-13C-lactate/3-12C-lactate). This expression 

108 



Chapter 5 

applies only if there are no unlabeled lactate precursors (for example as a result of 

reactions 17, 19, and 41 in Figure 1). To correct for other, non-labeled carbon 

sources that dilute the label at 3-C-lactate, Kingsley-Hickman and coworkers (1990) 

suggested to use parallel 6-,3C-glucose experiments. The fraction of glucose that 

enters the pentose shunt is calculated as 

*3-C-Lac(l) 
PPS 1 ' *3-C-Lac(6) (4) 

where *3-C-Lac(l) and *3-C-Lac(6) denote fractional labeling of the methyl carbon 

of lactate from a l-13C-glucose and a 6-13C-glucose (100% fractional enrichment) 

experiment, respectively. Equation 4 neglects the fact that 3-C-lactate is not only 

diluted but also labeled via the malic enzyme (Figure 2). As can be seen in Figures 2 

and 3, decarboxylation in the oxidative branch of the pentose pathway causes loss of 

label in *3-C-Lac(l). Correction for dilution of label by non-labeled carbon sources 

by applying Equation 4 is therefore dependent on the pentose-shunt flux. The higher 

x2, the more *3-C-Lac(l) will be diluted via reactions 17 and 19. In contrast, this is 

not the case for *3-C-Lac(6). 

Mancuso and co-authors (94) showed that the relative rates of glycolysis and pentose 
shunt can be derived from the fractional labeling in 1-C and 2-C-lactate from a 2-
13C-glucose experiment. Because the fractional labeling of 1-C-lactate can not be 
determined by 'H-NMR, which is used here, and because the use of Equation 4 may 
result in overcorrecting of the dilution effect of endogenous carbon at high pentose-
shunt activities (see also Results Section), an alternative calculation method is given. 
It can be shown that the label in 2-C-lactate from 2-13C-glucose is diluted by the 
malic shunt (JC/7), the pyruvate/malate shuttle (x]9), degradation of certain amino 
acids (x4I) and the pentose shunt. In contrast, the label of 3-C-lactate from 6-,3C-
glucose is diluted by reactions 17, 19 and 41, but not by the pentose shunt. The 
relative pentose-shunt activity can therefore be calculated as follows: 

= *3-C-Lac(6)obs *2-C-Lac(2)ohs 

*3-C-Lac(6)mMX ' *2-C-Lac(2)mtx ' ' 
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In Equation 5 subscripts obs and max indicate observed and maximum fractional 
labeling, respectively. The maximum fractional labeling of 2-C- and 3-C-lactate is 
50 % of the fractional labeling of 2-13C- and 6-13C-glucose, respectively, as a result 
of the splitting of hexose into two triose units (This is indicated by the half filled 
circles in Figures 2 and 3). Similar to Equation 4, numbers between parentheses 
indicate which C-atom in glucose has been labeled. 

Modeling of isotope distributions using atom-mapping matrices 

The calculation methods described above only provide upper and/or lower limits of 

the fluxes to be determined. Further, two parallel experiments with different isotopic 

tracers have to be carried out, by which errors due to interexperiment variability are 

introduced. By combining isotopic-tracer experiments with mass-balance techniques 

absolute flux values can be calculated (Blum and Stein, 1982; Portais et al., 1993). 

Recently, Zupke and Stephanopoulos (1994) and Marx and co-authors (1996), 

developed non-invasive numerical algorithms for this purpose. In contrast to other 

methods, in which mass-balance equations for each single atom have to be derived 

(Blum and Stein, 1982), this approach only requires atom-mapping matrices 

(AMMs), in which the reaction stoichiometry is encapsulated. The resulting network 

is conveniently arranged, easier to understand, requires less algebraic manipulation, 

and modifications do not require new derivations of atom balances (Zupke and 

Stephanopoulos, 1994). Here, a slightly different algorithm is used that is described 

in Appendix B. 

NAD(P)H mass balance 

As an alternative to isotopic-tracer methods as described above, the NAD(P)H 

balance provides information on the split ratio of fluxes at the branchpoint at 

glucose-6-phosphate. By adding the NAD(P)H balance to the set of mass balances 

one singularity is removed (Bonarius et al., 1996). In theory, it should be possible to 

estimate the total shunt rate (including recycling of fructose-6-phosphate) using 
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metabolite balancing, provided that the NAD(P)H balance can be closed with 

sufficient accuracy. 

MATERIAL AND METHODS 

Cell line and culture medium 

A murine hybridoma cell line that produces an IgG2A antibody directed against 

human ferritin was grown in serum-free medium. A mixture of Dulbecco's, Ham's 

F12 and Iscove's powdered media (D:H:I =1:1:2; Gibco, Grand Island, NY, USA) 

was used as the basal medium, which was supplemented with 5 mg/ml insulin 

(Sigma, St.Louis, MO, USA), 6 mg/ml transferrin (Boehringer Mannheim, 

Mannheim, FRG) and 0.35 % (w/v) Synperonic F68 (Serva, Heidelberg, FRG). The 

standard medium contained 5 mM glutamine and 2.73 g/1 sodium bicarbonate. For 

each different steady state a different mixture of unlabeled glucose and 1-13C-, 2-13C, 

or 6-13C-glucose (Cambridge Isotope Laboratories, Andover, MA, USA) was added. 

Cell-culture bioreactor 

A major practical drawback of using continuous cultures for labeling experiments is 

the requirement of large volumes of medium, making it expensive due to substantial 

requirements of 13C-labeled substrates. To reduce costs, a small bioreactor made of 

polycarbonate (only 100 ml working volume) that can be operated in a continuous 

mode was designed and constructed (Figure 4). Despite its small size, temperature, 

pH and dissolved oxygen could be controlled and maintained at desired levels. The 

pH was maintained at 7.20 using 0.5 M NaOH. The dissolved-oxygen concentration 

was measured using a p02-electrode (Mettler-Toledo, Buchs, CH) and controlled at 

30 % air saturation by adjusting the oxygen fraction in a nitrogen/oxygen gas 

mixture. pH, temperature and p02 were controlled using a process-control unit 

(Bioengineering, Wald, CH). Oxygen supply was via surface aeration only. The total 

gas flow was kept constant at 100 ml min"1 using mass-flow controllers (Brooks, 

Veenendaal, NL). The dilution rate was set at a value of 0.9 d"1 and measured four 
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times a day using a balance and adjusted manually when necessary. Despite the 

internal diameter of the silicone tube used for medium supply was small (0.5 mm), 

the dilution rate could only be kept constant with a maximum accuracy of ±10 %. A 

5 ml sample was taken daily using the sampling device that is shown in Figure 4. 

Figure 4 

Bioreactor for isotopic-tracer experiments of mammalian-cell suspension culture. 

Although the polycarbonate bioreactor has a working volume of only 100 ml, 

temperature, pH, and p02 can be measured and controlled. From the left to the right: 

Pt-100 probe, pH electrode, oxygen electrode, bioreactor and lid, stirrer, and sampling 

unit. 

This amount was used for cell counting and analysis of glucose, lactate, ammonia 

and amino acids. At the end of each steady state a 50 ml sample was taken for NMR. 

analysis. Aliquots of 10 ml were freeze-dried and redissolved in D20 in order to 

allow field stabilization on Deuterium and to increase sample concentrations for 

higher sensitivity in NMR spectrometry. Directly after taking the 50 ml samples, the 

112 



Chapter 5 

reactor volume was readjusted to 100 ml using culture medium without labeled 

substrates allowing the cell density to increase to its original steady-state value. After 

this "batch period", which took 36-48 hours, the continuous feeding, now using 

medium with a different type of labeled glucose was started again. After monitoring 

the cell density for three days, the analysis of the next steady-state period was 

initiated. During 2 to 3 days the in- and outgoing gas composition was analyzed, 5 

ml samples were taken daily, and at the end a 50 ml sample was taken. 

Oxygen uptake and carbon-dioxide evolution rates 

Because the total gas flow is kept constant, and oxygen concentrations of the in- and 

out-going gas flow determined at high precision (ppm), the oxygen uptake rate 
(OUR) can be calculated according to (Eyer et al., 1995) 

OUR = F'g ( x'orx'o, ) (6) 

In contrast to the determination of the OUR, the determination of the carbon-
dioxide evolution rate (CER) of a bicarbonate-buffered mammalian-cell culture is 

complex because of several reasons. Since the medium contains bicarbonate, the 

measured carbon dioxide in the outlet gas comes from two sources: the medium and 

the respirating cells. Also, the accumulation in the liquid phase has to be taken into 

account. The liquid phase concentration can not be calculated by using Henry's law 

only, as a partial gradient for desorption is required (Royce and Thornhill, 1991). 

Moreover, during medium preparation and storage carbon dioxide evaporates from 

the bicarbonate-buffered medium. To account for these complications a method was 

developed to determine the CER under bicarbonate-buffered conditions (Bonarius et 

al., 1995a). It was shown that the CER can be determined by 

V,CER = x°co, F'«+Fl ' if0' + k?>'aV,) V + 10pH •PF,CA(0) (7) 

where xC02° is the measured C02 fraction in the outlet gas. For the calculation of 
13C02 rates, the term fiF,C'A(0) in Equation 7 is neglected, because the natural 
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abundance in bicarbonate is insignificant. (C'A(0) denotes the concentration of 

bicarbonate in the culture medium directly after medium preparation.) 

Values for k,c°2a were determined as follows. The k,°2a in cell-free medium was 

measured as described above. As the diffusion constants for C02 and 02 are 

proportional to the square roots of their molecular weights, the kf°2a can 

subsequently be calculated, using 

kf°'a JMco, 
k?'a JM^2 

The gas composition of the in- and outgoing gas flow was determined using a 

quadropole mass spectrometer (PGM 407, Balzers AG, FL). Data acquisition was 

carried out as described by Eyer et al. (1995). 

Analysis of cells and metabolites 

Viable-cell concentrations were determined by the trypan-blue exclusion method 

using a haemacytometer. Glucose and lactate concentrations were determined with a 

YSI analyzer (YSI Incorp., Yellow Springs, OH, USA). Ammonia was measured 

with an ion-selective electrode (Orion, Boston, MA, USA). Primary and secondary 

amino acids were determined by HPLC (Amino Quant 1090, Hewlett-Packard, Palo 

Alto, CA) as described elsewhere (Schmid and Keller, 1992). 

Since the bioreactor has only a 100 ml working volume, there was insufficient 

biomass available to determine its composition during each steady state. The 

biomass composition was therefore obtained as follows. It was found before that the 

average dry cell weight of the hybridoma cell line varies under different culture 

conditions. In contrast, the fractions of the different biomass components are 

assumed to remain constant (Xie and Wang, 1994; Bonarius et al., 1996). Therefore, 

the determination of the total cellular protein fraction was used to estimate the total 

biomass composition. The total protein fraction is the largest fraction of the total cell 
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biomass and its measurement requires relatively small amounts of material. Total 
cellular protein content was quantified using the Biuret method. 

NMR analysis 

'H- and 13C-NMR spectra were obtained on a Bruker AMX 500 spectrometer at 

500.14 and 125.77 MHz, respectively. Typically 128 ('H) and 512 (,3C) scans were 

accumulated. The relaxation delay Dl was 0.5s ('H, long enough for 13C satellite 

evaluation) and 1 or 15s (13C). Resonance assignments are based on standard 

chemical shift ('H, 13C) and multiplicity ('H) considerations as well as on DEPT-135 

spectra (,3C). 13C satellite evaluations in 'H spectra were done by standard 

integration or when necessary by deconvolution (WIN-NMR,b-Vers. 5.1, Bruker-

Franzen Analytik GmbH, Bremen, FRG). Quantitative evaluation of 13C spectra (Dl 

15 s, inverse gated sequence) was discarded because of insufficient signal/noise ratio 

(CO, 13C satellites of 2-C lactate). 

RESULTS AND DISCUSSION 

Cell density, metabolic quotients and respiration quotient 

Five steady states with various types of labeled 13C-glucose in the culture medium 

were obtained. Table 1 shows the average values and standard deviations of viable-

cell densities and the respiration parameters. The first two steady states were carried 

out without interruption. After finishing the two runs and inoculating again, the latter 

three steady state experiments were carried out. Therefore, steady states 1 and 2, and 

steady-states 3, 4 and 5 will be treated as two different experimental groups during 

the remainder of this section. These will be indicated as Group I and Group II. The 

measured extracellular metabolic rates and the calculated metabolic rates are shown 

in Table CI and C2 (Appendix C), respectively. 
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Table 1 

Viable cell densities (106 cells ml'1), carbon-dioxide evolution and oxygen uptake rates (1012 mol. 
cell'1 .day"1), and respiration quotients (-). Numbers between square brackets refer to the fractional 
labeling of the (indicated) C atom in glucose. Numbers between parentheses indicate standard 
deviations. 

Nr. Type of 

glucose 

l.l-13C-glc[0.60] 

2. 6-13c-glc [0.60] 

3. 2-13C-glc [0.60] 

4. l-13c-glc [0.35] 
5. 6-13C-glc [0.60] 

Viable cell 

density 

2.40 (0.12) 

2.25 (0.15) 

2.11 (0.13) 

1.92 (0.10) 

1.88 (0.10) 

CER 

11.3(0.65) 

9.6(1.01) 

12.3 (0.56) 

11.9(1.77) 

13.1 (2.32) 

13CER 

0.82 (0.08) 

0.22 (0.05) 

0.64 (0.02) 

0.66 (0.04) 

0.45 (0.04) 

OUR 

16.9 (3.21) 

13.7 (6.02) 

18.1 (3.23) 

19.1 (2.98) 

19.5 (3.08) 

RQ 

0.73 

0.71 

0.72 

0.67 

0.70 

Pentose-Phosphate Pathway 

In the Theory Section various methods to determine the pentose-shunt flux are 

discussed. These rely either on isotopic-tracer studies, on mass balance equations or 

on both. In addition, different methods have been proposed to evaluate data from 

isotopic- tracer experiments (Katz and Wood, 1963; Larrabee, 1989; Willis et al., 

1986; Kingsley-Hickman et al., 1990) or from metabolite balances (Zupke et al., 

1995; Bonarius et al., 1996) to determine the pentose shunt in mammalian cells or 

tissue. In Table 2 pentose-shunt flux data determined using seven different methods 

are shown. 

Estimating the pentose shunt from13 CO2 yields 

According to the evaluation method of 13C02 yields from 1-13C- and 6-13C-glucose 

experiments (Table 1) as proposed by Larrabee (Larrabee, 1989), at least 17 and 24 

% of the glucose-6-phosphate pool in Group I and II, respectively, is channeled into 

the oxidative branch of the pentose cycle (Table 2). This is in agreement with flux 

values determined by other methods to calculate the pentose-cycle flux from 13C data 

(Equations 3 and 5, and Appendix B) as will be shown below. 
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Table 2 

Pentose-shunt activity calculated using different methods. Values are given as percentage of 

glucose uptake rate. Values between parentheses are absolute values in 10"12 mol G6P.ceH"1.day'1. 

Experimental Method Group I Group II 

(1) 13C02 yields from 1-13C- and 6-13C-glucose experiments 
Larrabee (1989) (Eq. 2) 15.3% (1.08) 20.8% (1.41) 

incl. 3/(3-2 PPS) 17.0% (1.20) 24.1% (1.63) 

(2) Fractional labeling of 3-C- and 2-C-lactate from 1-13C-, 2-l3C- and 6-13C-glucose experiment 
Willis etal. (1986) (Eq. 3) 15.0% (1.06) 20.4% (1.38) 
inch 3/(3-2 PPS) 16.7% (1.18) 23.6% (1.60) 

Kingsley-Hickmanetal. (1990)(Eq.4) 12.1% (0.85) 10.0% (0.68) 
incl. 3/(3 - 2 PPS) 13.2% (0.92) 10.7% (0.73) 

This work (Eq. 5) n.d. 19.3% (1.29) 
inch 3/(3-2 PPS) n.d. 22.2% (1.48) 

(3) Using mass balances and atomic mapping of isotopes (l-13C-glucose) 
Run 1 Run 4 

Zupke and Stephanopoulos (1994) 17.3% (1.22) 23.0% (1.55) 
incl. 3/(3 - 2 PPS) 19.6% (1.38) 27.2% (1.83) 

(4) Using mass balances only 

a. NAD(P)H balance 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

75.4% (5.26) 59.0% (3.57) 84.0% (4.97) 98.3% (6.58) 139% (9.47) 

b. Minimum-norm constraint 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 
89.9%(6.34) 65.1% (3.96) 106% (6.28) 104% (7.08) 118% (8.29) 

Estimating the pentose shunt from ,3C-lactate data 

A typical example of the relevant regions in a 'H-NMR spectrum from the culture 

medium from a l-13C-glucose experiment is shown in Figure 5. Both labeling on 3-

C-lactate and 2-C-lactate protons give rise to satellites in the CH3- and the CrY(OH)-
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region, respectively. The satellite peaks in the C77(OH)-region are relatively small 

and difficult to quantify (Figure 5, Bottom). Errors in the estimation of such low 
,3C/(13C+12C) ratios may exceed 10 %. Therefore, in all methods to evaluate *C-

Figure 5 

'H-NMR spectrogram of a typical steady-state from a l-"C-glucose 
experiment. (Top) C//,-region with 13C satellites. (Bottom) CZf(OH)-region 
with mainly overlapped 13C satellites. 
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Lac(i) data to determine intracellular fluxes only higher measured 13C/(13C+12C) 

ratios than 0.10 will be used. In Table 3 the fractional labeling of lactate and alanine 

as calculated from the relevant 'H-NMR spectra of 5 different steady states are 

given. 

Table 3 

Fractional labeling of 3-C-lactate, 2-C-lactate and 3-C-alanine as determined using 'H-
proton NMR. Evaluations of the NMR spectograms have been done by integrations and 
when necessary by deconvolutions. Errors in evaluations are ca. 5 % for large values 
(>0.10) and minimal 10 % for small values (< 0.10). Values between parentheses indicate 
the fractional labeling of glucose. (b.a.= below accuracy required for flux analysis.) 

Nr. 

1. 

2. 

3. 

4. 

5. 

Type of 
glucose 

l-13C-glc(0.60) 
l-l3C-glc(0.60) 

6-13C-glc (0.60) 

2-13C-glc (0.60) 
2-BC-glc (0.60) 

l-13C-glc(0.35) 
l-13C-glc (0.35) 

6-13C-glc (0.60) 

CH3 lactate 

0.217 
0.219 

0.248 

0.04ba 

0.04ba 

0.144 
0.139 

0.262 

CH(OH) lactate 

0.073 ba 

0.050ba 

0.067ba 

0.205 
0.204 

0.050ba 

0.060ba 

0.062ba 

CH3 alanine 

0.219 
0.216 

0.210 

n.d. 
n.d. 

0.144 
0.138 

0.248 

As discussed in the Theory Section, various methods have been proposed to evaluate 

such NMR data for quantifying the pentose-shunt flux. Willis et al. (1986) derived a 

formulation to assess the pentose shunt in tissue culture from 3-13C-lactate 

measurements after l-l3C-glucose infusion (Equation 3). In this formulation the feed 

of other (unlabeled) metabolites into the pyruvate pool is neglected. To correct for 

other carbon sources than glucose, Kingsley-Hickman and co-authors (1990) 

suggested to use 6-13C-glucose in parallel (Equation 4). However, this approach 
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neglects the fact that label on 3-C-lactate, that is transferred via the malate shunt 

(flux 17) and malate/pyruvate shuttle (flux 19), is always higher when 6-13C-glucose 

is used compared to when l-13C-glucose is used. This is a result of 13C loss in the 

oxidative branch of the pentose shunt (See Figure 2). Particularly at high pentose-

shunt activities this can cause an overestimation of the correction for endogenous 

carbon sources (here, 'endogenous sources' refers to amino acids). In Table 2 it is 

shown that the pentose-shunt flux, when calculated by Equation 4, is significantly 

lower than the lower limits of the shunt obtained from 13C02 yields. This maybe a 

consequence of the relatively high pentose-shunt activity. In contrast, when a 

correction for dilution of label by endogenous carbon is not used (Equation 3), a 

better agreement is obtained. 

In the Theory Section, an alternative approach to correct for endogenous carbon is 

proposed using 6-13C-glucose in parallel to 2-13C-glucose (Equation 6). In Figure 3 it 

is shown that at equal glycolytic/pentose-shunt ratios, 2-C-lactate from 2-13C-glucose 

will be equally labeled as 3-C-lactate from 6-13C-glucose experiment. Correction for 

the dilution of label from endogenous carbon will therefore not be influenced by 13C 

loss in the pentose shunt. This suggests that particularly at relatively high pentose-

shunt fluxes (PPS > 0.15) a correction for endogenous carbon in lactate should be 

carried out as according to Equation 5. A disadvantage of this method is that 

interference of label transfer via the reactions 17 and 19 is smaller in the case of 2-
13C-glucose, because the carbon at the second position of pyruvate, to which the 

majority of label will be transferred to (because flux 2 is smaller than flux 1), is 

decarboxylated by a-ketoglurate dehydrogenase (flux 15) before it reacts into 

malate. The values obtained by Equation 5, are in better agreement with pentose-flux 

values obtained from 13C02 measurements. 

Estimating the pentose shunt using only mass balances 

It has been suggested that the pentose-cycle activity can be estimated by adding 

theoretical constraints such as the minimum-norm constraint (Bonarius et al., 1996) 

or constraints determined by the NAD(P)H material balance (Zupke et al., 1995). In 

Table 2 it is shown that the use of either of these constraints results in different 

120 



Chapter 5 

values of the pentose flux as compared to the experimentally-determined values. 
Moreover, fluxes estimated using the NAD(P)H balance vary substantially, even 
under the same culture conditions. These observations can be a result of both 
measurement errors in the OUR, and of the fact that flux x2 is very sensitive to small 
changes in the NADPH balance. Recently, it was shown that small deviations in the 
OUR do result in relatively large differences in the estimated pentose flux (Bonarius 
et al., 1998b). This is a consequence of the fact that the rNAD(P)H is large in 
comparison to other values in the vector r, and it has a relatively high weight in the 
least-squares solution. In mammalian-cell culture, the NAD(P)H balance should 
therefore not be used to estimate the split ratio of fluxes at the glucose-6-phosphate 
branchpoint. 

Flux analysis by modeling isotope distributions 

By combining the mass-balance equations of 18 metabolites, and the *C02(1) and 
*3-C-Lac(l) data, 18 fluxes in the central carbon metabolism of mammalian cells 
can be determined using the algorithm described in Appendix B. In Table 4 and 
Figure 6 the fluxes in hybridoma cells of both l-13C-glucose experiments are given 
in 10"12 mole produced metabolite.cell'.day"1 (Table 4) and as a fraction of the 
glucose uptake (Figure 6). 

The pyruvate-decarboxylase flux is negligible 

In both experiments, the pyruvate-carboxylase flux is negligible (< 1 % on a Cmol 
basis) with respect to the glucose uptake rate. This implicates that under conditions 
such as investigated here, in contrast to what was suggested in the Theory Section, 
the singularity that is a result of flux 16, 17 and 18 does not necessarily have to 
affect flux analysis of mammalian cells based on metabolite balances. Also when 
hybridoma cells are grown in hollow-fiber bioreactors, it was shown using in vivo 
NMR that the pyruvate-carboxylase activity was negligible in hybridoma cells 
(Mancuso et al, 1994). This suggests that in theory, i.e. provided that the NAD(P)H 
balance can be closed at sufficient accuracy, the intracellular fluxes of the primary 
metabolism in mammalian cells can be quantified without using isotopic tracers. 
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Malic enzyme 

The malic enzyme is both active in the pyruvate/malate shuttle (xl9) and in the malate 

shunt (x17), i.e. 8 and 4 % on a Cmol basis of the glucose uptake rate, respectively 

(Table 4). 

Table 4 

Metabolic fluxes determined using modeling of isotope distributions using atomic 
mapping matrices and experiemental data from l-13C-glucose experiments. Values 
for two steady states are given in 10"12 mol product cell"1 .day'1. 

Exp. 1 Exp. 4 

l .G6P->F6P 

2. G6P -> Ru5P + C02 + 2 NADPH 

3. Ru5P -> X5P 
4. Ru5P - • R5P 
5. X5P + R5P ->• S7P + GAP 

6. X5P + E4P -> F6P + GAP 
7. S7P + GAP -> F6P + E4P 

8. F6P + ATP - • 2 GAP 

9. GAP -> G3P/SER + NADH + ATP 

10. G3P/SER->PEP 
l l .PEP->PYR + ATP 
12. PYR - • ACoA + NADH + C02 
13.ACoA + OMA->CIT 

14. CIT -> AKG + NADH + C02 
15. AKG -> MAL + 2 NADH + ATP + C02 

16. MAL -> OAA + NADH 
17. MAL -> PYR + C02 + NADPH 
18. PYR + ATP + C02 -> OAA 

19. 9 CIT + 9 N A D H + 8 ATP + 7 N A D P H -> 
FA/CHOL + 9 PYR + 9 C02 

20. PYR + GLU -> AKG + ALA 
27. PYR + NADH -> LAC 

Flux through the pentose-phosphate pathway 

The flow through the pentose-phosphate pathway relative to the glucose uptake rate 
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5.76 
1.22 

0.70 
0.49 

0.31 
0.36 

0.33 

12.62 

12.68 

12.68 
12.67 
3.11 

3.64 

2.55 
4.02 

4.00 

0.28 
0.02 
1.07 

0.98 

9.21 

5.18 
1.55 

1.10 
0.54 

0.68 

0.50 
0.62 

13.14 

13.50 

13.31 
13.36 
3.72 

4.45 

3.45 

4.45 
4.73 

0.21 
0.13 

1.01 

1.08 

10.73 
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varies between 17 to 27 % in rapidly growing (p = 0.9 d"1), homogeneously-cultured 

hybridoma cells (Method 1 and 3, Table 2). This is considerably higher than results 

obtained with surface-attached-cultured hybridoma cells, as investigated by Mancuso 

and co-authors (1994), who found that only 4 % of the consumed glucose in 

hybridoma cells grown in hollow-fiber bioreactors was channeled to pyruvate via the 

pentose shunt. Apart from differences in methodology to determine the metabolic 

flux, the relatively high pentose-shunt flux observed here may be a result of mode of 

cultivation. At higher growth rates the requirements for NADPH are higher, and as a 

consequence the pentose-shunt activity increases (Stryer, 1988). Using Equation 2 

Figure 6 

DHAP 

LAC 

-MAL-*-OAA-
malate/pyruvate shunt 

AcCOA-

Fluxes of central carbon metabolism in continuously cultured hybridoma cells 
determined by mass-balance techniques combined with l3C02 mass spectrometry, 'H-
NMR spectro-metry. l-13C-glucose is used as isotopic source (steady state 4). Values 
are given in reaction product as fraction of glucose uptake (CmoLCmol"1). 
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and off-line short-term radioactive assays, Jan et al. (1997) found pentose-shunt flux 

values of 10 % at a dilution rate of 1 d"1. 

TCA cycle 

Only a relatively small amount of the pyruvate pool (23 % in both experiment 1 and 

4) is oxidized in the TCA cycle. The majority (almost 77 %) is secreted as lactate 

and alanine in the culture medium. A significant fraction of carbon units in TCA-

cycle intermediates has an endogenous source: approximately 40 % of the carbon 

that enters the cycle is derived from amino acids. The fraction of glucose that enters 

the TCA cycle can be estimated by the 13C02 produced by cells grown in 6-13C-

glucose-containing medium (Petch and Butler, 1994). Taking into account that the 

label on 3-C-pyruvate is diluted with a factor 2 due to the interconversion of triose 

phosphates (Figure 2), 12 and 22 % of the glucose is oxidized by a-ketoglutarate 

dehydrogenase (xl5) in experiment 1 and 4, respectively. Thus, on average 17 % of 

the consumed glucose is metabolized by the TCA cycle. 

The TCA-cycle flux (the flux from isocitrate to a-ketoglutarate, x14) in continuously 

cultured hybridoma cells is at least 40 % relative to the glucose uptake rate, which is 

relatively high compared to 25 % in the case of hybridoma cells cultured in a 

hollow-fiber bioreactor (Mancuso et al., 1994). Practically all of the glucose-derived 

carbon enters the TCA cycle through pyruvate dehydrogenase (xl2). 

Implications for medium design 

In contrast to non-tumorgenic mammalian cells, cancer cells such as hybridomas 

consume glucose independent of their requirement for energy or for building blocks 

for anabolic processes (Eigenbrodt, 1985). The surplus of the consumed glucose is 

secreted as lactate or alanine. Therefore, only by the accurate determination of the 

contribution of cyclic pathways, such as the pentose shunt and the TCA cycle, the 

minimum amount of glucose that cells require to produce NADPH and NADH (and 

in a lesser extent, precursors for nucleic acids and fatty acids), can be assessed. 
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A large amount of the NADH that is produced in the TCA cycle is "spilled" by 

lactate dehydrogenase (x27). Of the 17.7 and 20.8 *10"12 mol NADH.cell-'.day'1 

generated in the TCA cycle (the sum of fluxes 12, 14, 2*15 and 16, Table 4) 9.2 and 

10.7 mol NADH.cell'.day"1, in experiment 1 and 4, respectively (ruc in Table CI, 

Appendix C), is used for the reduction of pyruvate by lactate dehydrogenase. Only 

8.5 and 10.1* 10"12 mol NADH.cell"1.day"1, in experiment 1 and 4, respectively, is 

required for other processes. This corresponds to 48 and 49 % of the actual TCA-

cycle flow. Taking into account that 40 % of the carbon in TCA-cycle intermediates 

derives from endogenous metabolism, these data suggest that only 8 to 9 % of the 

carbon derived from glucose is actually required for NADH generation. In contrast, 

the amount of glucose that is channeled through the pentose-shunt flux is much 

higher (20 %). 

In both normal (Stryer, 1988) and tumorgenic (Eigenbrodt, 1985) cells, the key 

regulatory factor for glucose-6-phosphate dehydrogenase (x2) is the NADPVNADPH 

ratio in order to ensure a tight coupling of the rate through the oxidative branch and 

reductive biosynthesis. Together with the flux data shown here this shows that the 

pentose-phosphate pathway, rather than the TCA cycle, determines the minimum 

requirement of glucose. The cells studied here require only an average of 23 % of the 

glucose consumption rate which equals to 1.5*10"12 mol glucose.ceir'.day"1. This is 

in very good agreement with the glucose uptake rate of cells cultured in optimal 

conditions with respect to glucose economy, as reported by Xie and Wang (1994b). 

By stoichiometric feeding a very efficient ratio of lactate to glucose of only 0.10 

mol.mol"1 was obtained. The avarage glucose uptake rate in this study was 1.2* 10'12 

mol.cell'.day"1. (The total protein per cell in the mentioned report is almost equal to 

the values measured here.) These data suggest that glucose uptake in the fed-batch 

culture as described by Xie and Wang (1994b) is close to the theoretical optimum. 

125 



Isotopic-Tracer Experiments 

Implications for metabolic engineering 

From the above it is clear that the production of no lactate at all, by further 

decreasing the glucose consumption, is sub-optimal at pentose-shunt rates such as 

measured here. Assuming that hybridoma cells need all the NADPH produced in the 

pentose-phosphate pathway in amounts such as determined here, more pyruvate than 

necessary for NADH generation in the TCA cycle will be produced even at an 

optimal rGLC of 1.3* 10"12 mol ceir'.day"1. Lower availability of glucose will therefore 

result in glucose limitation. Instead of decreasing glucose concentrations to further 

reduce the ratio of lactate to glucose, the amount of fructose-6-phosphate that is 

recycled in the pentose-phosphate pathway should be increased, which results in 

higher NADPH yields per consumed glucose. Another possibility to decrease 

lactate/glucose yields, is the stimulation of the pyruvate-dehydrogenase reaction, of 

which the activity is negligibly small (Figure 6). A higher pyruvate-dehydrogenase 

flux could cause more pyruvate oxidation in the TCA cycle and therefore a reduction 

of lactate synthesis. 

CONCLUSIONS 

For continuously cultured hybridoma cells growing at high rates (//=0.9 d"1) the 

following can be concluded: 

(i) The cells channel ~ 23 % of the consumed glucose through the pentose shunt, 

(ii) Pyruvate-carboxylase activity is insignificant under the condition investigated 

here, 

(iii) The malate-shunt flux and the flow through the TCA cycle is only 3 % and 40 % 

of the glucose uptake rate, respectively. 

For medium design it has been shown that the pentose-shunt flux determines how 

much glucose is minimally required, which is ca.l.5*10'12 mol glucose.ceir'.day"1 for 

the conditions investigated here. 
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APPENDIX A 

Table Al 

Equations for the network that describes mammalian-cell glucose metabolism. These mass balances 

give the input vector r (1 x n, where « = 20) for the algorithm shown in Appendix A. 

l.r(G6P) = -x45(GLC) 
2.r(F6P) = x26(TC) 
3.r(Ru5P) = 0 

4. r(X5P) = 0 
5. r(R5P) = x28(RNA) + x„(DNA) 
6. r(S7P) = 0 

7. r(E4P) = 0 

8. r(GAP) = x30(PL) 
9.r(G3P) = rnc>SER + rncGLY 

10.r(PEP) = 0 
11. r(PYR) = x27(LAC) + rnBpALA + rnc>raR + rncCYS - 9*xl9(FA) 
12. r(ACoA) = rncLEU + rncILE + rncLYS + r„cPHE 

13.r(CIT) = 9*x„(FA) 

14 . r ( A K G ) = rncPHE - rncLEU - rncILE - r n c L Y s " rnc,ARG " rnc,ALA "rnc,MET " X21 " X22 

15. r(MAL) = 0.8*x28(RNA) + 0.8*x29(DNA) + rnc>PHE + rnc>MET 

16.r(OAA) = x2I 

17. r(C02) = rC02 - (9*x19(FA) + 0.015*x28(RNA)) 
18.r(FA)= xl9(FA) 
19.r(ALA) = rnc,ALA 

Note: x21 and x22are determined by mass-balancing techniques. 
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APPENDIX B 

Numerical algorithm to calculate fluxes from isotopic tracers 

For a detailed description of the numerical algorithm to determine metabolic fluxes using atom 
mapping matrices, as developed by Zupke and Stephanopoulos (1994), we refer to their work. In 
this appendix, the iteration process is briefly described and the different elements, terms and 
parameters are introduced. 

The algorithm calculates the metabolic flux distribution as follows. First, a random solution x(0), 
which satisfies the constraints of the underdetermined set of equations Ax = r, is calculated. From 
this arbitrary flux distribution x(0), together with the fractional labeling of glucose, the fractional 
labeling of all metabolites is computed (using "atom-mapping matrices, AMM"). Out of the 
fractional labeling of all metabolites, a submatrix (the "specific activity matrix, SAM") is selected, 
which contains the fractional labeling (specific activity) of those C atoms that produce one of the C 
atoms of which the fractional labeling is actually measured (in this work, C02 and 3-C-lactate). 

Together with the measured fractional labeling of C02 and 3-C-lactate, the SAM gives two mass 
balances, i.e. SAM x = rSA . These two mass balances are added to the other mass balances, Ax = r, 
resulting in a determined system (Equation A8). The least-squares solution of this determined 
system, x(l), has unacceptably high residual values, as x(0) has been chosen randomly. 
Subsequently, x(l) is used as input for the next iteration. The algorithm is repeated until the least-
squares solution is stable. 

The atom-mapping matrix (AMM) of a certain enzymatic reaction contains the carbon 
stoichiometry. The net stoichiometry of flux 8 which converts fructose-6-phosphate into 
glyceraldehyde-3-phosphate (by the action of phosphofructokinase, aldolase and triose-phosphate 

isomerase) is 

c 
H-C-OH x 

H O - C - H , , ' , 
H-C-OH 
H-C-OH 

CH2OP03
2 

F6P 

C 
H-C-OH 

CH2OP03
2 

GAP 

For example, due to reaction 8,100 % label on l-C-fructose-6-phosphate will be transferred to 3-C-
glyceraldehyde-3-phosphate and diluted to 50 %. In the AMM associated with reaction 8 this 
results in one element with the value lA (" ViA " in Equation Al). In contrast, none of the 100 % 
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label on l-C-fructose-6-phosphate will be transferred to l-C-glyceraldehyde-3-phosphate by 
reaction 8, resulting in a 0 in AMM, (" 0* " in Equation Al). The AMM that describes the label 
transfer of all C atoms of fructose-6-phosphate to all C atoms of glyceraldehyde-3-phosphate by 
flux X8 is 

[F6P>GAP]S = 

0* 0 Y2
 lA 0 0 

o 'A oo v2 o 
'/2A 0 0 0 0 Vi 

(A1) 

In Figure Al the fluxes and metabolites that are used in the numerical process are shown. 

Figure A l 

G6P-

I 2 ! 
Ru5P 

3 

X5P 

4 
1 

R5P 

AKG 

ALA 

AcCOA-»-FA 

Metabolic network used for the calculation intracellular fluxes by modeling of isotopic 
distributions. The network contains 20 fluxes, 19 metabolite balances (Table Al) and 2 
isotope balances (C02 and 3-C-lactate). Although flux 19 and 20 can be determined using 
mass balances alone (see also Figure 1), they have to be included in the algorithm because 
these reactions transfer label within the underdetermined network. 
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The specific-activity vectors (SAVs) represent the fractional labeling of the different carbon atoms. 
Some of the SAVs are known (glucose) or measured (lactate, C02 and alanine). The SAVs of other 
intermediates are calculated. For instance, when glucose is labeled for 50 % on the first carbon, the 
fractional labeling of C02 is 4 % and the specific activity of lactate is 22 %, 5 % and 1 % for 1-C-, 
2-C- and 3-C-lactate respectively, the SAVs of these metabolites yield (neglecting natural 
abundance) 

GLC = 

0.50 

0 

0 

0 

0 

0. 

, C02 = [0.04], LAC = 

0.22 

0.05 

0.01 

(A2) 

The SAV of a produced metabolite A is the product of the AMM that describes the reaction in 
which A is produced and the SAV of the substrate. For example, the oxidative branch of the pentose 
shunt (flux 2) yields two metabolites, ribulose-5-phosphate and C02. When l-C-glucose-6-
phosphate has a specific activity of 50 %, and the other C-atoms of glucose-6-phosphate do not 
have any activity, the transfer of label to ribulose-5-phosphate and C02 via flux 2 is calculated as 

[G6P>R5P]2» SAVG6P = SAVR 

0 10 0 0 0' 

0 0 10 0 0 

0 0 0 10 0 

0 0 0 0 10 

0 0 0 0 0 1. 

• 

0.50 

0 

0 

0 

0 

0. 

— 

'0 

0 

0 

0 

0 

(A3) 

and 

[G6P>C02]2» SAVatp = SAVco: <=> [1 0 0 0 0 0] • 

0.50 

0 

0 

0 

0 

0. 

= [0.50] (A4) 
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respectively. 

The examples above (Equations A3 and A4) suggest that the label of a produced metabolite is the 
result of one reaction. In reality, various reactions dilute label of or transfer label to a particular 
metabolite. To calculate the net label transfer of more than one flux to a particular metabolite, the 
fluxes have to be expressed as 'flux fractions'. For instance, the flux fraction of the malic enzyme 
to pyruvate,//7 = x\j/(xi ]+xj7+xjg+x4]), is the fraction of pyruvate that is derived from the 
malic shunt. (This formulation recognizes the fact that only ingoing fluxes to the pool of metabolite 
Y determine the label distribution of Y.) 

From the estimated SAVs and the flux fractions, the specific activity of those C-atoms that are 
determined experimentally is calculated. The output of this calculation is the so-called Specific 
Activity Matrix. The SAM contains m columns and o rows, where m refers to the number of fluxes 
and o to the number of measured specific activities. In this work o = 2, as only the fractional 
labeling of C02 and 3-C-lactate is used in the algorithm. After 3 iterations, the SAM yields for 
instance: 

SAM{3) --
0 0.04 0 0 0 0 0 0 0 0 0 0.03 0 0.03 0.05 0 0.02 -0.02 0.02 0 

0 0 0 0 0 0 0 0 0 0 024 -024 0 0 0 0 022 -0.20 022 -020 
(A5) 

Note that in this numerical example the iterative process is not stable yet. Typically, after 20 
iterations the process will be stable and SAM(3) becomes: 

SAM(20) = 
0 0.04 0 0 0 0 0 0 0 0 0 0.04 0 0.04 0.04 0 0.04 -0.04 0.04 0 

0 0 0 0 0 0 0 0 0 0 022 -022 0 0 0 0 022 -0.22 0.22 -022 
(A6) 

The (1,2) element of the specific activity matrix (numerical value 0.04 in Equations A5 and A6) 

represents the label distribution of C02 and is calculated by 

SAMf,.2) = [G6P>C02]2 • SAVC6P (A7) 

The elements of the SAM are dimensionless numbers. By multiplying the SAM elements with the 
measured production rates of the atoms of which the fractional labeling has been determined, their 
units can be adjusted to those of the final network, yielding: 

A 

SAM. 
• \x M 

r 

XSA. 
(A8) 
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where rSA represents an 1 x o vector with the measured production rates of the atoms of which the 
specific activity has been determined experimentally. In the example here rSA = [rC02; r , ^ ] *n. 
Matrix A is the m x n stoichiometric matrix of the material balance equations and is rank deficient. 
Supplemented with the o x n AMR submatrix, the metabolic network finally becomes determined 
and x can be estimated by the least-squares method. 

*1) This particular element of the final full rank network shows that it is of key importance to be 
able to measure both the CER and the 13CER. Without these measurements, for which a method 
was developed earlier (Bonarius, et al. 1995), it is not possible to determine all fluxes of glucose 
metabolism in one independent experiment. The only alternative to this method is the 
measurement of the fractional labeling of intracellularly accumulated metabolites by in vivo NMR 
or by ex situ NMR of extracted metabolites. 
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APPENDIX C 

Table CI 

Metabolic rates. Values are given in 10'12 mol.cell'.day"1 and calculated using the mass balance 

equations given in ref. (Bonarius et al., 1996). Negative values indicate uptake rates. Total 

protein (TP) is given in 10"4 mg.cell'1. (n.d. = not determined.) 

Exp.nr. 

ASP 

GLU 

ASN 

SER 

GLN 

HIS 

GLY 

THR 

ALA 

ARG 
TYR 

CYS 

VAL 

MET 

TRP 

PHE 

ILE 

LEU 

LYS 

HYP 

PRO 

GLC 

LAC 

NH3 

TP 

1. 
1-"C-GLC 

-0.049 

0.176 

-0.086 

-0.266 

-1.220 

-0.054 

0.137 

-0.097 

0.938 

-0.115 

-0.053 

-0.075 
-0.069 

-0.084 

-0.035 

-0.063 

-0.255 

-0.373 

-0.349 

0.235 
0.314 

-7.055 

9.212 

0.951 

2.73 

2. 

6-,3C-GLC 

-0.040 

0.146 

-0.070 

-0.670 

-1.141 

-0.019 

0.087 

-0.090 

0.863 

-0.153 

-0.037 

-0.084 

-0.046 

-0.099 

-0.029 

-0.086 

-0.276 

-0.442 

-0.155 

0.350 

0.262 
-6.124 

9.455 

0.730 

3.12 

3. 

2-,3C-GLC 

-0.143 

-0.113 

-0.097 

-0.184 

-1.551 

-0.110 

-0.150 

-0.161 

0.691 

-0.172 

-0.093 

-0.096 

-0.233 

-0.144 

-0.044 

-0.126 

-0.353 

-0.543 

-0.116 

0.210 

0.652 

-5.771 

9.632 

1.091 

n.d. 

4. 

1-I]C-GLC 

-0.132 

-0.111 

-0.087 

-0.876 

-1.501 

-0.133 

-0.112 

-0.121 

0.842 

-0.130 

-0.077 

-0.108 
-0.165 

-0.115 

-0.040 

-0.094 

-0.311 

-0.529 

-0.123 

0.250 
0.782 

-6.692 

10.73 

1.049 

2.60 

5. 
6-13C-GLC 

-0.109 

-0.042 

-0.094 

-0.143 

-1.639 

-0.108 

-0.115 

-0.131 

0.896 

-0.138 

-0.874 

-0.093 

-0.206 

-0.116 

-0.024 

-0.094 

-0.334 

-0.556 

-0.115 

0.252 

0.868 

-6.936 

10.41 

1.145 

n.d. 
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Table C2 

Metabolic rates calculated using the balance equations in Table Al. The values of Experiment 1 

and 4 (l-13C-glucose) are used as input data for the numerical algorithm described in Appendix 

B. (n.d.=not determined) 

Exp.nr. 

G6P 

F6P 

Ru5P 

X5P 

R5P 

S7P 

E4P 

GAP 

G3P 

PEP 

PYR 

ACOA 

MAL 

CIT 

AKG 

OAA 

C02 

FA 

ALA 

1. 

1-,3C-GLC 

-7.01 

0.073 
0.0 

0.0 

0.107 

0.0 

0.0 

0.115 

0.136 

0.0 

9.715 

-0.545 

-0.085 

1.056 

-1.312 

0.349 

11.00 

0.117 

1.041 

2. 

6-13C-GLC 

-6.08 

0.089 

0.0 

0.0 

0.129 

0.0 

0.0 

0.139 

0.219 

0.0 

9.880 

-0.226 

-0.104 

1.285 

-1.212 

0.342 

8.53 

0.143 

0.990 

3. 

2-,3C-GLC 

-5.725 

0.082 

0.0 

0.0 

0.120 

0.0 

0.0 

0.133 
0.119 

0.0 

9.295 

-0.761 

-0.094 

1.191 

-0.943 

0.475 

11.75 

0.132 

0.924 

4. 

1-13C-GLC 

-6.647 

0.081 

0.0 

0.0 

0.117 

0.0 

0.0 

0.126 

0.241 

0.0 

10.56 

-0.693 

-0.089 

1.159 

-0.891 

0.361 

11.40 

0.129 

1.070 

5. 

6-,3C-GLC 

-6.888 

0.078 

0.0 

0.0 

0.135 

0.0 

0.0 

0.122 

0.168 

0.0 

10.39 

-0.747 

-0.091 

1.124 

-0.929 

0.408 

12.43 

0.125 

1.117 
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Metabolite-Balancing Techniques versus 13C-tracer 
Experiments to Determine Metabolic Fluxes in 
Hybridoma Cells 

Hendrik P.J. Bonarius, Bram Timmerarends, 

Cornells D. De Gooijer, and Johannes Tramper 

ABSTRACT 

The estimation of intracellular fluxes of mammalian cells using only mass 

balances of the relevant metabolites is not possible because the set of linear 

equations defined by these mass balances is underdetermined. In order to 

quantify fluxes in cyclic pathways the mass-balance equations can be 

complemented with several constraints: (1) the mass balances of co-metabolites, 

such as ATP or NAD(P)H, (2) linear objective functions, (3) flux data obtained 

by isotopic-tracer experiments. Here, these three methods are compared for the 

analysis of fluxes in the primary metabolism of continuously cultured 

hybridoma cells. The significance of different theoretical constraints and 

different objective functions is discussed after comparing their resulting flux 

distributions to the fluxes determined using 13C02 and 13C-lactate measurements 

of l-13C-glucose-fed hybridoma cells. Metabolic fluxes estimated using the 

objective functions "maximize ATP" and "maximize NADH" are relatively 

similar to the experimentally determined fluxes. This is consistent with the 
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observation that cancer cells, such as hybridomas, are metabolically 
hyperactive, and produce ATP and NADH regardless of the need for these 
cofactors. 

INTRODUCTION 

A fundamental problem of the analysis of intracellular fluxes is caused by the 

presence of cyclic metabolic pathways in cell metabolism. Fluxes in these pathways 

cannot be quantitated solely by the measurement of the extracellular metabolic rates 

and the biomass composition, because their reaction stoichiometry is linearly 

dependent and thus generates singular (underdetermined) metabolic networks 

(Vallino and Stephanopoulos, 1990). 

Fluxes in cyclic pathways are therefore determined by isotopic-tracer techniques. As 

the (carbon) stoichiometry of the reactions is known, it is possible to determine 

fluxes in cyclic pathways by tracing the metabolic fate of (carbon-)labeled 

substrates. Although isotopic-tracer techniques are well established and have been 

significantly improved, particularly since the application of NMR technology to 

biological systems (Shulman et al., 1979), they are laborious and expensive to 

conduct, and are not feasible at an industrial scale. 

Metabolic-flux balancing techniques offer a possible alternative to isotopic-tracer 

studies. However, as mentioned above, a solution to the metabolite-balance 

equations generally does not exist because stoichiometric equations that describe 

cyclic metabolic pathways, contain linearly dependent reactions (Vallino and 

Stephanopoulos, 1990). Additional constaints are required to solve the linear set of 

equations determined by the mass-balance equations (Bonarius et al., 1997). This is 

explained in Figure 1 A. The mass balances of metabolites A and B yield the same 

information, as a result fluxes 1 and 2 cannot be determined. Here, the solution space 

that contains all permissible solutions for both fluxes can be represented as a single 

line. In contrast, when a co-metabolite is produced or consumed in either flux 1 or 2 

the three mass balances A, B, and C yield one unique solution (Figure IB). 
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mass balances 
over A and B 

No unique 
solution 

Mass balances 
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overC: r c = 2= x. 

A 

mass balance 
fT overC 

. jnass balances 
C over A and B 

Unique solution 

(A) (B) 

Fluxes in cyclic pathways without (A) and with (B) a co-metabolite. (Numerical values are 

chosen arbitrarily.) 

In reality however, addition of the mass balance(s) of co-metabolites is generally not 

sufficient to generate an (over)determined system. In complex networks, co-

metabolites are either produced in more than one cyclic pathway, or are not 

balanceable. For example, in mammalian cells carbon dioxide is co-produced in the 

pentose cycle, the TCA cycle and in the malate shunt (Figure 2). The addition of the 

carbon-dioxide balance to the metabolic network will therefore not remove the 

singularities that are a result of these cycles. (However, useful information can be 

obtained from the carbon-dioxide evolution rate as it provides additional information 

on the total flow in the three cycles mentioned above.) In contrast, the constraint that 

is imposed by the ATP balance theoretically can improve the observability of a 

metabolic network such as shown in Figure 2. However, the observability of the 

network can only theoretically be improved, because both ATP requirements for 

maintenance processes and the P/O ratio can only be approximately estimated (Pirt, 

1965; Stouthamer, 1973). 

In this article, various computational methods that were reported before (Fell and 

Small, 1986; Savinell and Palsson, 1992; Van Gulik and Heijnen, 1995; Bonarius et 

al., 1996) to estimate fluxes of underdetermined metabolic networks are compared 

and applied to measurement data of the primary metabolism of continuously cultured 

hybridoma cells. In addition, the flux values that are determined using these methods 

are compared to fluxes that are measured by I3C-tracer experiments. 
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Figure 2 
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Metabolic fluxes of hybridoma cells. In this figure two combinations of reactions 
(Fluxes 1-16 and fluxes 16-18) are linearly dependent. In order to quantify these 
fluxes additional constraints are required. The fluxes indicated by dotted arrows 
can be determined soleley by mass-balance techniques. 

MATERIALS AND METHODS 

A detailed description of the experimental methods is published elsewhere (Bonarius 

et al., 1998d). Briefly, hybridoma cells were cultured in a continuous mode (D = 0.9 

d"1) on a 100 ml scale in defined serum-free, low-protein medium. Dissolved oxygen 

(30%), temperature (37°C) and pH (7.2) were controlled and kept constant during 

cultivation. Glucose and lactate were determined with automated enzymatic assays 

(YSI, Yellow Springs, OH), ammonia using an ion-selective electrode, and amino 

acids by HPLC (Amino Quant 1090, Hewlett-Packard, Palo Alto, CA). The cellular 

composition that was determined earlier was used to calculate the requirements for 

biosynthesis (Bonarius et al., 1996). l-13C-glucose (CIL, Inc. Andover, MA) was 

used as isotopic-tracer source and the fractional labeling of lactate was determined 
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by 'H-NMR spectroscopy (Bruker AMX 500, Bruker-Franzen Analytik GmbH, 

Bremen, FRG). C02,
13C02 and 02 in both the in- and outgoing gas flow were 

measured by mass spectrometry (Balzers Ag, FL) as described elsewhere (Eyer et al., 

1995). The C02- and 13C02-production rate was determined using a method that was 

especially developed for mammalian-cell culture in bicarbonate-containing media 

(Bonarius et al., 1995a). The 02 uptake rate was calculated from the 02 

concentrations in the in- and outgoing gas phase (Eyer et al., 1995). The intracellular 

metabolic fluxes were calculated by combining the mass-balance equations of the 

relevant metabolites (Figure 2) and the measured fractional labeling of C02 and 

lactate, based on the principles of the computational method described by Zupke and 

Stephanopoulos (1994). 

RESULTS AND DISCUSSION 

The minimum number of fluxes that must be measured using labeling techniques to 

determine the intracellular fluxes is equal to the number of fluxes minus the number 

of independent mass-balance equations. In Figure 2 metabolic pathways of the 

primary metabolism of mammalian cells are shown. The dotted arrows represent the 

fluxes that can be uniquely determined by the use of mass balances of the indicated 

metabolites only. The uninterrupted arrows indicate the fluxes that are linearly 

dependent. The network contains two combinations of linearly dependent reactions, 

i.e the coupled TCA cycle and the pentose shunt (one singularity) and the malate 

shunt. To determine all the fluxes in this network two fluxes, one flux out of each 

combination, must be determined independently using isotopic tracers. 

Visual representation of the solution space 

The solution space of the two mass balance equations in Figure 1A has one degree of 
freedom {one singularity) and can be represented by a line. Similarly, the solution 
space of the 18 fluxes in the metabolic network shown in Figure 2 {two singularities) 
can be visualized by a fwo-dimensional/7/a«e. For this purpose, the 18-dimensional 

141 



Linear Optimization vs Isotopic-Tracer Experiments 

Figure 4 

r«o(F)H <10-«mol.cell-'.day-') 

(A) (B) 

Flux 2 (in % of glucose uptake rate) as a function of the P/O ratio (A) and the rmD(P)H 

(B). Both sensitivity analyses were carried out using a metabolic network containing 17 

fluxes (the pyruvate-carboxylase flux was assumed to be negligible) and 18 mass 

balances, including either the ATP (A) or NAD(P)H (B) mass balance. In both cases the 

network is nonsingular (Rank = 17). (In these calculations, flux 2 is assumed to be 

reversible.) 

The flux distribution that is estimated using the NAD(P)H mass balance is 

considerably different from the one found using l-13C-glucose (See also Table 2). In 

continuously-cultured hybridoma cells, more than 75 % of NAD(P)H that is 

produced by the reactions shown in Table 2 is consumed during oxidative 

phosphorylation (Bonarius et al., 1996). The rNAD(P)H (Table 1) depends therefore 

largely on the oxygen uptake rate (OUR) measurement. Relatively small errors in 

this measurement may cause significant changes in the estimated flux distribution. In 

Figure 4B the estimated fraction of G6P that enters the pentose shunt is given as a 

function of rNAD(P)H. In contrast to yeast or bacteria, for which the NAD(P)H balance 

can be used to determine the intracellular fluxes (Van Gulik and Heijnen, 1995), the 

accuracy with which the OUR can be measured is relatively small in low-density 
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mammalian-cell culture (Eyer et al., 1995) and under the conditions examined here, 
apperently not sufficient to estimate the metabolic fluxes. 

(ii) Linear-optimization techniques 

Instead of using the estimated NAD(P)H and ATP requirements as fixed values, the 

mass balances of these co-factors can be used to formulate objective functions for 

mammalian-cell metabolism (Fell and Small, 1986; Savinell and Palsson,1992). 

Flux distributions that are optimal with respect to these objective functions can 

subsequently be calculated by linear-optimization techniques. Table 1 shows some 

objective functions that reflect certain metabolic strategies with respect to energy 

metabolism. These objective functions are used here to estimate the fluxes 1-18. It is 

found in all cases that when a particular function (for example, maximize ATP) gives 

a feasible flux distribution, its opposite equivalent (minimize ATP) gives infinitely 

large fluxes. This is consistent with the solution plane shown in Figure 3 which is 

only finite on one particular side. 

Table 1 

Objective functions used to estimate fluxes 1-18. Each maximization 

problem has a "minimization counter-part" which is used as well. 

Maximize ATP: max {-x8 + x, + xM + x15- x18} 

Maximize NADH: max {x, + x12 + x14 + 2*x15 + x16} 
Maximize NADPH: max {2*x2 + x17} 
Maximize reducing equivalents: max {2*x2+x9 + x12 + xl4 + 2*x15 + x16+ x17} 
Minimize norm min {Z Xj2} 

The following fluxes were assumed to be irreversible (> 0): x2, x,„ x12, x,3, x17, and x18. 

Fluxes estimated using the minimum-norm constraint are considerably different from 

experimentally determined fluxes (Table 2). The suggestion that hybridoma cells 

have an efficient metabolism, and accordingly minimize the total flow of metabolites 
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(Bonarius et al., 1995a), seems therefore to be unlikely. In contrast, the flux 

distributions found using two other objective functions, i.e. maximize ATP and 

maximize NADH, are relatively similar to the distribution determined using 1-13C-

glucose (See also Table 2). This is consistent with the results obtained by Savinell 

Table 2 

Input vector r (metabolic rates) and various output vectors x (flux distribution). All values in 

10"12 mol.ceir'.day"1. Metabolic rates are calculated as described elsewhere (Bonarius et al., 

1998d). The same input vector (first column) is used to determine the bounds of the solution 

space (Figure 3) and to estimate the flux distribution using different constraints. 

Input 
vector: 

Output vectors: Isotopic Min. Max. 
tracer norm NADH 

constr. 

1.G6P 
2.F6P 
3. Ru5P 
4.X5P 
5.R5P 
6. S7P 
7.E4P 
8. GAP 
9.G3P 
10. PEP 
l l .PYR 
12. ACOA 
13.MAL 
14. CIT 
15.AKG* 
16.0AA 
17. C02 
18.NAD(P)H 
19. ATP 

-6.647 
0.081 
0.0 
0.0 
0.117 
0.0 
0.0 
0.126 
0.241 
0.0 
10.56 
-0.693 
-0.089 
-1.159 
-0.891 
0.361 
11.40 
30.54 
21.50 

l .G6P->F6P 
2. G6P -> Ru5P + C02 + 2 NADPH 
3.Ru5P->X5P 
4. Ru5P -> R5P 
5. X5P + R5P -> S7P + GAP 
6. X5P + E4P -> F6P + GAP 
7. S7P + GAP -> F6P + E4P 
8. F6P + ATP -> 2 GAP 
9. GAP -> G3P/SER + NADH + ATP 
10.G3P/SER->PEP 
l l .PEP->PYR + ATP 
12. PYR -> ACoA + NADH + C02 
13.ACoA + OMA->CIT 
14. CIT -> AKG + NADH + C02 
15. AKG -> MAL + 2 NADH + ATP + C02 
16. MAL -> OAA + NADH 
17. MAL -> PYR + C02 + NADPH 
18.PYR + ATP + C02 -» OAA 

5.18 
1.55 
1.10 
0.54 
0.68 
0.50 
0.62 
13.14 
13.50 
13.31 
13.36 
3.72 
4.45 
3.45 
4.45 
4.73 
0.30 
0.13 

-1.25 
8.04 
5.50 
2.66 
2.96 
2.67 
2.85 
12.00 
12.00 
11.83 
11.91 
1.38 
2.12 
2.37 
1.33 
2.38 
0.54 
0.0 

6.64 
0.0 
0.55 
0.39 
0.28 
0.28 
0.28 
14.22 
14.37 
14.13 
14.13 
3.03 
5.79 
5.88 
4.73 
5.61 
0.54 
0.0 

(a) Glutamate feeds into the TCA cycle via a-ketoglutarate. The r^KG is independent from 

the linear dependent reactions in glutaminolysis, and can be calculated without other 

constraints than the mass-balance equations, (b) r^rp is determined using a P/O ratio of 2.0 

and a m of 14.4* 10"12 mol.ceir'.day"1 (Martens et al., 1995, and references therein). 
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and Palsson (1992), who showed that hybridoma cells produce more ATP and 

NADH than the cells actually need. It appears that, similar to other cancer cells, 

hybridoma cells are metabolically hyperactive and consume nutrients regardless of 

energy requirements (Eigenbrodt et al., 1985). The biochemical strategy to maximize 

the ATP and NADH production, even in the case when these co-factors are 

sufficiently available, seems to be a realistic objective, which can be used to estimate 

metabolic fluxes in underdetermined networks describing hybridoma-cell 

metabolism. 
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ABSTRACT 

Hybridoma cells were grown at steady state under both reductive and oxi­

dative stress and the intracellular fluxes were determined by mass-

balancing techniques. By decreasing the dissolved oxygen pressure (p02) in 

the bioreactor, the reduced form of nicotinamide adenine nucleotide 

(NADH) was enhanced relative to the oxidized form (NAD+). Oxidative 

stress, as a result of which the NAD(P)+/NAD(P)H-ratio increases, was gen­

erated by both the enhancement of the p0 2 to 100 % air saturation and by 

the addition of the artificial electron acceptor phenazine methosulphate 

(PMS) to the culture medium. It was found that fluxes of dehydrogenase 

reactions by which NAD(P)H is produced decreased under hypoxic condi­

tions, most likely to restore the disturbed NAD(P)+/NAD(P)H balance. For 

example, the degradation rates of arginine, isoleucine, leucine, lysine and 
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the glutamate dehydrogenase flux were significantly lower at oxygen limi­

tation, and increased at higher p0 2 levels and when PMS was added to the 

culture medium. In contrast, the proline synthesis reaction, which requires 

NADPH, decreased under PMS stress. The flux of the NADH-requiring lac­

tate dehydrogenase reaction also strongly decreased from 19 to 3,4 

pmol/cell/day, under oxygen limitation and under PMS stress, respectively. 

Metabolic fluxes in cyclic pathways, such as the TCA cycle, the pentose and 

malate shunt were subsequently estimated by linear optimization tech­

niques with appropriate objective functions, such as 'minimize NADH-

producing reactions' or 'maximize NAD(P)H-producing reactions'. Al­

though the estimated values were not in agreement with flux data deter­

mined by isotopic-tracer experiments, it is shown that various well-

established physiological effects can be qualitatively estimated with this 

technique. 

INTRODUCTION 

The intracellular fluxes of microorganisms, animal cells or tissue culture can be 

determined if the extracellular production and uptake rates of the relevant 

metabolites and the reaction stoichiometry of fluxes are known (Vallino and 

Stephanopoulos, 1990). This methodology, referred to as 'metabolic-flux 

balancing' (Varma and Palsson, 1994) has been proposed as an alternative (or 

supplement) to isotopic-tracer studies for metabolic-flux analysis. 

Although mass-balancing can be used to determine a large fraction of fluxes in 

metabolic networks, a number of pathways cannot be quantified due to the fact 

that the required set of linear mass-balance equations is underdetermined 

(Vallino and Stephanopoulos, 1990; Bonarius et al., 1997). This accounts in 

particular for linearly dependent reactions associated with cyclic metabolic 

pathways. Fluxes in cyclic pathways such as the TCA cycle, the pentose-

phosphate shunt, or the malate shunt cannot be determined by measurement of 

the extracellular production and uptake rates of the relevant metabolites alone. 
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Additional constraints, usually obtained by isotopic-tracer experiments are 

required to solve underdetermined metabolic networks, and thus to quantify 

fluxes in cyclic pathways. 

As an alternative to isotopic-tracer studies, which have practical limitations and 

are laborious to conduct, various 'theoretical constraints' have been proposed to 

supplement underdetermined metabolic networks. This approach has already 

been shown useful for many applications. For example, it was shown by linear-

optimization techniques how fat synthesis constraints other metabolic pathways 

in adipose tissue (Fell and Small, 1986), and that the growth rate of hybridoma 

cells is neither limited by the ATP-maintenance demand nor by the antibody 

production rate (Savinell and Palsson, 1992). Metabolic-flux balances and 

linear optimization have also been used to determine capabilities of Escherichia 

coli for the biosynthesis of precursors (Varma and Palsson, 1993) and amino 

acids (Varma et al., 1993). 

Metabolic-flux balancing has been used to analyse changes in intracellular flux 

distributions as a function of different culture conditions or differences in 

genotypes. Jorgensen and co-workers (1995) showed that the pentose-shunt 

activity in Penicillium chrysogenum decreases after addition of cysteine to the 

culture medium. Zupke and co-workers (1995) demonstrated using metabolite 

balances that the pyruvate-dehydrogenase flux decreases and the glutamate-

dehydrogenase flux reverses in hybridoma cells cultured at low oxygen tension. 

We showed that the pentose-shunt activity in hybridoma cells increases after 

addition of a growth-stimulating hydrolysate (Bonarius et al., 1996), and that 

under ammonia stress hybridoma cells increase their glutamate-dehydrogenase 

flux, thus identifying glutamate dehydrogenase as a potential site for 

engineering ammonia-tolerant mammalian cells (Bonarius et al., 1998a). Sauer 

and co-workers (1996) estimated the pentose-shunt and TCA-cycle activity in 

both wild-type and riboflavin-producing Bacillus subtilis revealing an increase 

in the flux through the pentose-phosphate pathway in the strain engineered for 

riboflavin biosynthesis. 
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In all of the above-mentioned studies assumptions had to be made to estimate 

fluxes in linearly dependent (cyclic) subnetworks. Apart from some exceptions, 

many of the constraints used to estimate fluxes in metabolic pathways are a 

consequence of lack of information on the physiology of the organism under 

investigation. Only in some cases it is has been attempted to specify certain 

physiologically meaningful objectives. For example, the linear objective 

functions 'maximize the production of a certain metabolite' and 'maximize 

biomass synthesis' have been shown useful for analysis of metabolic 

capabilities and for the estimation of optimal growth patterns in Escherichia 

coli, respectively (Varma and Palsson, 1993). In contrast to constraints that are 

based on the principle of natural strive for optimality, such as optimal growth, 

other limitations imposed by culture conditions may also constrain the entire 

cellular physiology. For example, Fell and Small (1986) recognized the fact that 

adipose cells require relatively large amounts of NADPH for fatty acid 

synthesis and used the objective function 'maximize NADPH-producing 

reactions' as an additional constraint to estimate fluxes in these cells. Here, we 

apply this principle to continuously cultured hybridoma cells under different 

types of stress. Hybridoma cells are cultured under conditions that effect the 

availability of the electron carriers NAD and NADP. It shown for those 

metabolic fluxes that can be determined by mass-balancing techniques alone 

(that is, without additional constraints or assumptions), that NAD(P)H-

producing reactions are activated under oxidative stress, and that the opposite 

occurs under reductive stress. These results suggest that physiologically 

meaningful constraints, such as 'minimize or maximize NAD(P)H-producing 

reactions' can be used to complement the underdetermined networks associated 

with cyclic pathways for the determination of the remaining metabolic fluxes of 

stressed hybridoma cells. Fluxes in cyclic pathways of stressed hybridomas are 

estimated by this technique and subsequently compared to data that have been 

obtained by isotopic-tracer techniques. 
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MATERIALS AND METHODS 

Culture conditions and analyses 

A detailed description of the various experimental procedures was published 

before (Bonarius et al., 1996). Briefly, hybridoma cells were cultured in a lab-

scale bioreactor (Biostat MD, Braun, Melsungen, D) in a continuous mode at a 

dilution rate of 0.7 d"1. A mixture of Dulbecco's, Ham's F12 and Iscove's 

powdered medium (Gibco, Grand Island, NY, USA) was supplemented with 5 

ug/ml insulin (Sigma, St. Louis, MO, USA), 6 îg/ml transferrin (Boehringer 

Mannheim, Mannheim, D), 0.35 % (w/v) Syperonic F68 (Serva, Heidelberg, 

FRG) and 1 % (w/v) Primatone RL (Sheffield Products, NY, USA). The 

medium contained 5.0 g/1 glucose and 2.73 g/1 sodium bicarbonate. PMS 

(Phenazine methosulphate, Sigma, St. Louis, MO, USA) was added at a 

concentration of 2*10"6 M. 

A method developed to correct for the bicarbonate buffer in the culture medium 

(Bonarius et al., 1995) was applied for the determination of the C02 production 

rate (CER). The C02 in the outlet gas was measured by an infrared gas analyzer 

(Rosemount, Baar, CH). The 02 uptake rate (OUR) was determined by the mass 

transfer coefficient k°2a and the fraction of oxygen in the inlet gas, as described 

before. Values for k°2a were determined by the dynamic method (Van't Riet 

andTramper, 1991). 

Glucose and lactate were determined with automated enzymatic assays (YSI, 

Yellow Springs, OH), ammonia using an ion-selective electrode, and amino 

acids by HPLC (Amino Quant 1090, Hewlett-Packard, Paola Alto, CA, USA). 

Intracellular amino-acid pools were extracted by perchloric acid as described 

elsewhere (Schmid and Keller, 1992). The cellular composition was measured 

as described by Xie and Wang (1994): the total lipid fraction was determined by 

weight after chloroform/methanol extraction, total carbohydrates were analyzed 

by the phenol-reaction method, total cellular protein was estimated using the 

Biuret assay, and nucleic acids were quantitated by absorbance at 260 nm after 
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purification according to Chomczynski (1993). Cell size and number were 

determined using a Casy 1 instrument (Scharfe System, Reutlingen, D) and dry-

cell weight was determined after dehydration under vacuum. Antibody titers 

were measured by a standard ELISA. 

Metabolic-Flux Analysis 

A model of the relevant pathways of hybridoma-cell metabolism is shown in 

Figure 1. Most of the fluxes in this model can be determined by mass-balancing 

techniques alone. Additional information is required for the quantification of 

fluxes in cyclic pathways. In Figure 1, these fluxes are indicated by solid 

arrows. It was previously shown that this 'underdetermined' metabolic 

subnetwork contains three sets of linearly dependent fluxes (Bonarius, et al. 

1998b): 

(i) the malate/pyruvate/oxaloacetate cycle (fluxes 16, 17 and 18), 

(ii) glutamine degradation (fluxes 23, 24, and 25), and 

(iii) the pentose shunt, glycolysis and TCA cycle (fluxes 1 to 16). 

Therefore, three additional constraints are required to determine all fluxes by 

mass-balancing techniques alone: 

(i) It was found by 13C-NMR experiments that the flow through 

pyruvate carboxylase (flux 18) is negligible in hybridoma cells cultured in a 

hollow-fiber bioreactor (Mancuso et al., 1994). This was recently confirmed for 

the same hybridoma cell line, the same medium, and the same mode of 

cultivation as investigated here, by 'H-NMR spectrometry analysis of 3-C-

lactate (Bonarius et al., 1998c). 

(ii) Although no direct evidence for hybridoma cells exists, it is assumed 

that the flow through asparagine synthetase (flux 23) is negligible. Street et al. 

(1993) could not detect labeled asparagine in the medium supernatant of 5-15N-

glutamine-fed HeLa and CHO cells, indicating that asparagine synthetase is not 

active. In cultured mammalian cells, the proposed pathway of glutamine 

degradation is via glutaminase, rather than via asparagine synthetase (For 

example: Reitzer et al., 1979, Ardawi and Newsholme, 1984, Mancuso et al., 
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1994). Only when asparagine becomes limiting, asparagine synthetase may 

become active in mammalian cells (Kilberg et al., 1994). 

(iii) Recently, we determined the pentose-phosphate shunt flux of 

continuously cultured hybridoma cells from 13C02 yields measured by mass 

spectrometry (Bonarius et al., 1998c). In contrast to the data of Mancuso and 

co-workers (1994), who showed that hybridoma cells cultured in hollow-fiber 

bioreactors direct only 5 % of the consumed glucose into the pentose shunt, up 

to 23 % of the glucose was channeled into the pentose shunt in rapidly growing 

cells (ji = 0.9 day"1) in continuous culture. Here, dependent on the particular 

culture conditions, different techniques are used to estimate the (linear 

Figure 1 
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Network of mammalian-cell metabolism. Fluxes that can be quantified by 
mass balances alone are indicated as dashed lines. To measure the remaining 
fluxes (solid lines) additional constraints are required. 

dependent) set of fluxes of the glycolytic and pentose-phosphate pathway 

(fluxes 1-16): 

(A) For standard conditions, the flux ratio at the glucose-6-phosphate 

branchpoint is fitted to the flux distribution measured using isotopic-tracer 

techniques under the same standard conditions (Bonarius et al., 1998c). The 
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flux through the oxidative branch of the pentose shunt (flux 2) is assumed to 

be linearly dependent on the biomass requirements. 

(B) For hybridoma cells it has been shown that both the mitochondrial and the 

cytosolic NAD+/NADH ratios are relatively low under oxygen-limited 

conditions (Zupke et al., 1995). It is hypothesized here that under these 

conditions there will be less carbon channeled through fluxes catalyzed by 

NADH-producing dehydrogenases to restore the perturbed NAD7NADH 

balance. This metabolic strategy is simulated by applying the objective 

function 'minimize NADH-producing reactions'. 

(C) In contrast to inhibiting NAD(P)H-producing reactions, these reactions can 

specifically be activated by using the oxidizing agent phenazine 

methosulfate (PMS) (Dickens and Mcllwain, 1938). It has been established 

that the pentose- (fluxes 2-7) and the malic-shunt (flux 17) activity increase 

strongly by incubating cells or tissue with an artificial electron acceptor, 

such as PMS, (Greenbaum et al., 1971, Hothershall et al., 1979, Lin et al., 

1993). The metabolic fluxes of hybridoma cells in PMS-containing medium 

are estimated using the linear objective function 'maximize NADH- and 

NADPH-producing reactions'. 

(D) The fraction of the consumed glucose that enters the pentose-phosphate 

pathway is also compared to values obtained by isotopic-tracer methods. The 

pentose-shunt flux has been determined experimentally for lymphoblasts 

under PMS stress (Lin et al., 1993), and for hybridoma cells under different 

p02 levels (Jan et al., 1997; Bonarius et al., 1998c). Because these 

experimental data were obtained for different cell lines and different culture 

conditions, they are used for a qualitative comparison. Only the flux data 

from Bonarius et al. (1998c) have been measured for the same cell line and 

culture medium, however at a 100 ml-scale instead of a 1-L scale such as 

described here. 
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RESULTS AND DISCUSSION 

Cell density 

Hybridoma cells were cultivated in a continuous stirred-tank reactor at different 

oxygen concentrations. In addition, one experiment was conducted with the 

artificial electron acceptor PMS in the culture medium. Each time after 

changing to new culture conditions at least four days of continuous culture were 

used to dilute metabolites produced during the previous steady state and to 

Table 1 

Average viable-cell density (106 cells/ml) and average uptake and production rates of 
indicated metabolites (1012 mol.ceir'.day"1) under different conditions. Values 
between parentheses indicate standard deviations. 

Po2 

Viable cell 
density 

Glucose 
uptake 

Lactate 
production 

*LAC/GLC 

Glutamine 
uptake 

Alanine 
production 

Ammonia 
production 

Specific Mab 
production 
(pg.ceir'.day"1' 

0.1 % 

1.16 
(0.14) 

12.3 
(0.13) 

19.1 
(1.61) 

1.56 

2.02 
(0.20) 

1.15 
(0.06) 

0.88 
(0.13) 

14.3 
(1.25) 

1.0% 

1.78 
(0.05) 

7.27 
(0.43) 

10.7 
(0.82) 

1.48 

1.40 
(0.05) 

0.77 
(0.02) 

0.75 
(0.05) 

13.5 
(0.59) 

30% 

1.46 
(0.03) 

6.34 
(0.35) 

7.48 
(0.64) 

1.18 

1.52 
(0.05) 

1.23 
(0.04) 

1.22 
(0.11) 

17.0 
(0.49) 

50% 

1.58 
(0.06) 

5.37 
(0.22) 

5.27 
(0.67) 

0.98 

1.62 
(0.21) 

0.98 
(0.15) 

0.72 
(0.14) 

13.8 
(0.61) 

100 % 

1.47 
(0.08) 

5.82 
(0.17) 

7.03 
(0.45) 

1.21 

1.90 
(0.08) 

1.23 
(0.04) 

1.07 
(0.12) 

14.2 
(0.13) 

30 %/PMS 

1.30 
(0.10) 

4.02 
(0.61) 

3.43 
(0.21) 

0.86 

1.03 
(0.15) 

1.36 
(0.01) 

1.42 
(0.09) 

21.7 
(2.05) 
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allow the viable-cell density to stabilize. Unless stated otherwise, each value 

presented below is an average of three data points, obtained by daily sampling 

during three days at steady-state conditions. The viable-cell and viability 

numbers of the entire experiment are shown in Figure 2 in an accompanying 

paper (Bonarius et al., 1998e). 

Table 1 shows the average viable-cell densities, the average glucose and 

glutamine uptake rates and the average lactate, alanine, ammonia, and 

monoclonal antibody (Mab) production rates. Only at p02 of « 0.1 %, the 

culture is oxygen limited and the cell density is significantly lower than cell 

densities at other oxygen tensions. Similar to data reported by Zupke et al. 

(1995), at low, albeit non-limiting oxygen tension (p02 =1.0 %), the cell 

density is higher than at higher oxygen tensions. The reason for this is not clear. 

PMS, an artificial electron acceptor which diffuses passively through cellular 

membranes (Hothershall et al., 1979) is toxic for mammalian cells. Sub-lethal 

concentrations have been found in the order of 10"4 M for fibroblasts (Lin et al., 

1993) and in the 10"6 M range for glioma cells (Mitchell et al., 1989). In order to 

determine an effective but sub-lethal PMS concentration for hybridoma cells, T-

flask experiments were conducted. Figure 2 shows that PMS is toxic above 

Figure 2 

1 -r 

II 
U M 
o o 0,5 • • 
3 o 

> m 

0.E+00 1.E-07 5.E-07 1.E-06 5.E-06 1.E-05 5.E-05 

PMS (M) 

Viable-cell densities at different concentrations of PMS after two days 

of cultivation. Averages for two T-flask experiments are shown. 
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5* 10'6 M for hybridoma cells. Continuous-culture experiments are therefore 

conducted at a concentration of 2*10"6 M PMS. In Table 1 it is shown that the 

viable cell density is slightly lower at this concentration during this steady state 

(1.30* 106 vs 1.46*106 cells/ml, respectively). 

Metabolic production and consumption rates 

The extracellular production and consumption rates of amino acids, glucose, 

ammonia, lactate, oxygen, carbon dioxide and monoclonal antibody were 

determined. Also, the intracellular concentrations of amino acids, lactate, total 

cell protein, DNA, RNA, and the total lipid and carbohydrate contents were 

measured. Only a limited amount of the measured data are shown here in Tables 

1-3 and in Figures 3-5. Complete tables with raw data are published in an 

Table 2 

Estimated fluxes (1012 mol.ceir'.day"1) using metabolite balances and different theoretical 
constraints; pentose shunt fitted to biomass-synthesis rate (A), minimize NADH production (B), 
and maximize NAD(P)H production (C). 

p02 0 .1% 1.0% 30% 50% 100% PMS 

Constraint B A A A A C 

Oxidative branch pentose shunt (x2) 
Glycoclysis (x8) 

Pyruvate dehydrogenase (xl2) 
a-Ketoglutarate dehydrogenase (x15) 

Isocitrate dehydrogenase (x16) 
Malic enzyme (x17) 
Glutamate dehydrogenase (x22)

a 

Lactate dehydrogenase (x27)
a 

7.11 
18.1 
0.0 
0.21 

0.30 
0.11 
-0.53 

19.1 

1.63 
12.6 
0.76 

0.17 
1.43 
-0.04 

-0.31 
10.7 

1.76 
10.6 
1.54 
1.37 

2.85 
0.06 
-0.11 
7.48 

1.81 
8.59 
1.90 
1.54 
2.94 
0.05 
-0.17 

5.27 

1.65 
9.58 
1.12 
0.85 
2.29 

0.10 
-0.11 

7.03 

5.61 
5.98 
1.28 
2.76 
2.25 
0.14 

0.03 
3.43 

a) The value of the glutamate-dehydrogenase and the lactate-dehydrogenase flux is not influenced 
by any of the constraints A, B, or C, as it can determined by strictly using metabolite balances 
(See also Figure 1). 
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accompanying paper (Bonarius et al., 1998e), where it is demonstrated that the 

carbon and nitrogen balance over all metabolic rates are closed. 

Glucose consumption and lactate production 

It has been established that the specific glucose consumption and lactate 

production increase at low p02 levels (below ca. 10 % of air saturation) (Miller 

et al., 1987; Ozturk and Palsson, 1990; Zupke, et al., 1995). The data shown in 

Table 1 and Figure 3a are in agreement with these observations. In particular at 

oxygen-limiting conditions (p02 « 0.1 %) the glucose uptake and lactate 

production rate increase strikingly, as animal cells change from 'complete' 

oxidation of glucose to C02 to anaerobic glycolysis. The addition of PMS has 

an opposite effect on glucose metabolism: the glucose uptake decreases. In 

addition, the lactate yield per glucose decreases due to the artificial electron 

acceptor (Table 1), which is the consequence of competition between lactate 

dehydrogenase and PMS for NADH. Together, these two effects cause a 

decrease in the specific lactate production rate of more than 50 % compared to 

the control culture (p02 =30 %). This suggests that addition of PMS can be used 

to decrease lactate formation in mammalian-cell culture without affecting cell 

density, which may become significant for high-cell density cultures, where 

lactate inhibition constraints further cell growth. An additional beneficial effect 

of PMS is the increase in specific monoclonal-antibody production. Table 1 

shows that the Mab production increases 27 % compared to the control culture. 

In contrast to normal proliferating cells, which regulate glycolysis dependent on 

the requirement for ATP according to the Pasteur effect (Eigenbrodt et al., 

1985), the glycolysis activity of tumor cells is insensitive to high concentrations 

of oxygen (Caroll et al., 1978; Simon et al., 1981). In Figure 3a it is shown that 

this also accounts for hybridoma cells. 

160 



Chapter 7 

Figure 3 

15 

•g 10 

I 5 
a. 

50 

p02 (%) 

(A) 

100 100 

(B) 

Specific glucose (A) and glutamine (B) uptake rate (pmol.ceH'.day"1) of continuously cultured 
hybridoma cells as a function oxygen tension (% of air saturation). At oxygen limitation (p02 

« 0.1 %) the glutamine uptake increases to 2.02 pmol/cell/day (not shown in Figure B). 

Oxidative degradation of amino acids 

In mammalian-cell metabolism, a number of amino acids are not only used as 

building blocks for biomass, but also as fuel (Stryer, 1988). Other amino acids, 

such as glycine, proline, or alanine are produced by most continuous 

mammalian cell lines (Lanks and Li, 1988). Fluxes of amino-acid degradation 

and production pathways are determinable by mass-balancing techniques (Xie 

and Wang, 1996; Bonarius et al., 1996; Vriezen, 1998). Flux analysis of amino-

acid metabolism is therefore an appropriate tool to test the hypothesis that under 

hypoxic conditions, when the NAD(P)+/NAD(P)H-ratio is low (Zupke et al., 

1995), steady state fluxes by which NAD(P)H are produced, decrease to restore 

NAD(P)+ levels. At high p02 levels or during PMS-stress, the opposite may 

occur; steady state fluxes of reactions in which NAD(P)H is produced increase 

to regenerate NAD(P)H. The "net-catabolic rate of amino acid A" (rncA) 

(Bonarius et al., 1996) is a measure for the conversion rate of amino acids 

corrected for biosynthesis requirements, and is used here to test this hypothesis. 

The rncA is determined from the consumption rate, the biomass synthesis rate 

(including Mab synthesis) and the fraction of each amino acid in biomass. A 
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negative value for rncA indicates that A is degraded, while a positive value 

indicates that A is produced. 

In Table 3 the net catabolic rates of amino acids are shown for 6 different 
culture conditions. It appears that arginine, leucine, lysine, isoleucine, 
methionine, and cysteine are degraded at relatively high rates (~ 10"13mol.ceH' 
'.day"1). The net stoichiometric equations of the oxidative degradation of these 
amino acids are given in Table 4. During oxidation of arginine, (iso)leucine and 

Table 3 

Net catabolic rates of amino acids of continuous-cultured hybridoma cells at different 
dissolved oxygen concentration. p02 in % of air saturation, net catabolic rates in mol.ceH"'. 
day"1. PMS indicates steady state with Phenazine Methosulfate (2*10"* M) in the culture me­
dium. A negative value indicates that the amino acid is degraded. Amino acids are given in 
order of chromatographic separation. 

P02 

ASP 
GLU 
ASN 
SER 
GLN 
HIS 
GLY 
THR 

ALA 
ARG 
TYR 
CYS 
VAL 
MET 
TRP 
PHE 
ILE 
LEU 
LYS 
PRO 
HYP 

0,1 % 
2,04E-13 
1.97E-13 
3,93E-14 
8,29E-14 
-1.80E-12 
-2.73E-14 
1.16E-13 
2,96E-14 

1,41E-12 
-2.64E-14 
-2,90E-14 
-U0E-13 
3,13E-14 
-6,71E-14 
5,86E-16 
-6,08E-15 
-1,18E-13 
-1/79E-13 
-5.28E-14 
3,41E-13 
3,04E-13 

1% 
1,65E-13 
1.54E-13 
3.06E-14 
8.66E-14 
-1.19E-12 
-1,79E-14 
1.23E-13 
4.46E-14 

1.07E-12 
-1.87E-14 
-1.96E-14 
-6.43E-14 
3.12E-14 
-5,45E-14 
-3.29E-15 
1,17E-16 
-1.19E-13 
-1,81E-13 
-5.23E-14 
3,20E-13 
2,12E-13 

30% 
6,80E-14 
3,23E-14 
1.09E-13 
2.08E-13 
-1,28E-12 
-2.05E-14 
1,38E-13 
3,17E-14 
1,56E-12 
-8,46E-14 
-2,39E-14 
-7,16E-14 
-4,20E-15 
-6,35E-14 
-1.10E-14 
3,48E-15 
-2.62E-13 
-4,08E-13 
-9,30E-14 
2.34E-13 
2.53E-13 

50% 
1.65E-13 
1.94E-13 
2.61E-14 
1.97E-13 
-1.39E-12 
-2.59E-14 

1.41E-13 
4.12E-14 

1.30E-12 
-2,37E-14 
-2.04E-14 
-6.17E-14 
5.42E-15 
-6.44E-14 

-3.13E-15 
7,08E-16 
-2.00E-13 
-3,17E-13 
-7,04E-14 
2,83E-13 
2,44E-13 

100 % 
1,35E-13 
1.83E-13 
4.01E-14 
2,26E-13 
-1.69E-12 
-3,82E-14 

1.23E-13 
1,15E-14 

1.40E-12 
-4.67E-14 
-3.16E-14 
-7,30E-14 
-3.50E-14 
-7,79E-14 
6,84E-15 

-4.24E-15 
-2.10E-13 
-3.56E-13 

-1.04E-13 
2,80E-13 
2,54E-13 

PMS 
2,07E-13 
2.16E-13 
1,33E-14 
3,39E-13 
-1,85E-12 
-2.23E-14 
1.49E-13 
2,22E-14 

1,73E-12 
-1.17E-13 
-3.14E-14 
-8.55E-14 
-1J7E-14 
-9.36E-14 
-1.86E-14 
-2.49E-14 
-2.99E-13 
-4.83E-13 
-1,27E-13 
6/71E-14 
3,45E-13 
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methionine, NAD(P)+ is reduced to NAD(P)H. This is not the case for 

degradation of cysteine. Figure 4a shows the average values of the measured 

degradation rates of these amino acids, together with their standard deviations. 

At oxygen limitation ("0") and low p02 ("1") the steady state flux at which 

leucine, lysine, and isoleucine are catabolized are significantly lower than under 

standard conditions (30% or 50 % of air saturation). When the artificial electron 

acceptor PMS is added to the culture medium, the fluxes increase, which is 

particularly the case for lysine and arginine degradation. Methionine and 

arginine degradation increase slightly at higher p02 levels, but the differences 

are not as significant as for (iso)leucine and lysine. This may be a consequence 

of the fact that more oxidative power, that is more moles of NAD+ per mole 

amino acid, is required for the degradation of (iso)leucine and lysine than for 

the degradation of methionine and arginine (See also Appendix A). In contrast 

to (iso)leucine, lysine, arginine and methionine, the degradation of cysteine 

does not require NAD+. Figure 4a shows that the cysteine degradation rate does 

not increase at higher p02 and only slightly under PMS-stress. 

Biosynthesis of proline, glycine, and serine 

The "net catabolic rates" of proline, glycine, and serine are non-negative (Table 

3), which indicates that these metabolites are produced from other amino acids 

in hybridoma cells. Figure 4b shows the average values of the measured 

production rates of these amino acids together with their standard deviations for 

6 steady states. The serine production, which is dependent on the availability of 

NAD+, is relatively low under oxygen limitation and low p02, which is 

consistent with the low NAD7NADH ratios under these conditions (Zupke and 

co-workers (1995)). It appears that the steady state proline-synthesis flux is 

independent of p02. This may be explained by the fact that in the proline 

synthesis pathway no NAD7NADH is co-metabolized. Instead, proline 

synthesis requires two moles of NADPH per one mole produced proline. When 

hybridoma cells are grown in medium supplemented with PMS, which oxidizes 

NADPH, the proline production decreases more than 3-fold. 
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Figure 4b 

PRO 

SER 

2.0E-13 

1.5E-13 

1.0E-13 

5.0E-14 

0.0E+00 

GLY 

IIIIII 
30 50 100 PMS 

Net production rates of proline, serine, and glycine for 6 different 
steady states. Values are given as in mol.ceir'.day"1 and are averages 
from 3 data points during each steady states. Standard deviations are 
shown as T-bars. 

Glutamate dehydrogenase 

Glutamate dehydrogenase (flux 22, Figure 1) catalyses the following oxidative 

deamination reaction: 

glutamate + NAD+ + H20 <=> oc-ketoglutarate + NH4
++ NADH + H+ 

(orNADP+) (orNADPH) 

In contrast to fluxes in linearly dependent subnetworks, which require 

additional constraints for their quantification, flux 22 can be determined on the 

basis of mass-balance equations alone. Its value is therefore not influenced by 

any of the constraints A, B, or C mentioned in the Materials and Methods 

Section. Recently, we showed that glutamate dehydrogenase is activated in the 
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direction of a-ketoglutarate to glutamate in ammonia-stressed hybridoma cells 

(Bonarius et al., 1998a). Here it is shown that, in agreement with data reported 

by Zupke et al. (1995), also at lower oxygen tensions the glutamate-

dehydrogenase flux reverses into the glutamate-producing direction (Table 2). 

The opposite is the case in PMS-stressed hybridoma cells: the glutamate-

dehydrogenase flux increases towards the direction of a-ketoglutarate and 

NAD(P)H. This observation is similar to the stimulating effect of PMS on other 

NAD(P)H-producing fluxes such as the pentose- and malate-shunt flux 

(Greenbaum et al., 1971), the serine synthesis flux (Figure 4b) and the 

(iso)leucine degradation flux (Figure 4a). 

Glutaminolysis and pyruvate oxidation 

Similar to data reported by Miller et al. (1987) and Jan et al. (1997), the 

glutamine uptake decreases at lower oxygen levels (Figure 3b), probably 

because there is not sufficient oxygen available for complete glutamine 

oxidation. At oxygen-limiting conditions (p02 « 0.1 %) however, the glutamine 

uptake increases (Table 1). This may be explained by the fact that oxygen-

limited hybridoma cells have to rely on glutaminolysis for energy production. 

Hornsby and Gill (1981) showed that when cells suffer a block in pyruvate 

oxidation, which was selectively achieved by Cortisol treatment, the 

glutaminolysis activity increased (Eigenbrodt et al, 1985). This is in agreement 

with flux data shown in Table 2, and with flux data reported by Zupke et al. 

(1995). Both these results show that the pyruvate dehydrogenase is significantly 

smaller during oxygen limitation. Investigations with adrenocortical cells 

showed that the decrease in pyruvate oxidation and the simultaneous increase in 

glutamine respiration is not only associated with inhibition of pyruvate 

dehydrogenase, but also with a lower isocitrate-dehydrogenase flux (Hornsby 

and Gill, 1981). The same trend is found here for oxygen-limited hybridoma 

cells (Table 2). Other support for the low pyruvate- and isocitrate-

dehydrogenase activity at low oxygen tension comes from the analysis of 

intracellular isocitrate and pyruvate pools, which were found to be significantly 

lower at low p02 (Zupke et al., 1995). 
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Pentose-phosphate pathway 

Table 2 shows the estimated values of fluxes through NAD(P)H producing and 

consuming reactions. It has been shown before that the pentose-shunt flux 

(Flux 2, Figure 1) is sensitive to differences in the used theoretical constraint 

(Sauer et al., 1996; Bonarius et al., 1998b; Schmidt et al., 1998). Figure 5 

shows the pentose-phosphate-shunt flux values (PPS) estimated by three 

different theoretical constraints for all investigated conditions. In addition, 

values obtained by isotopic-tracer experiments are shown. In all cases the 

relative PPS activity is estimated to be smaller at low oxygen tensions (p02 = 0 

% and 1 %) and higher in PMS-containing culture medium compared to 

standard conditions (p02 = 30 % or 50 %). When the pentose-shunt flux is 

directly related to the rate of biomass synthesis (Constraint A) the estimated 

values using mass balances are relatively similar to fluxes determined by 

isotopic-tracer experiments. This is not surprising, as this constraint is a fit of 

Figure 5 

250. 

200. 

5" 150. 

100. 

50. 

0. 

(O 
0 . 
0 . 

0,1 
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• B 
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• D 

30 50 100 

p02 (% of air saturation) 

The flux through the oxidative branch of the pentose-phosphate shunt given as 
percentage of the glucose consumption. Values are estimated using different 
constraints: (A) linearized to biomass synthesis; (B) minimize NADH production; 
(C) maximize NAD(P)H production; (D, value added as label) determined by 
isotopic-tracer experiments. The experimentally-determined values (D) have been 
obtained from Bonarius et al., 1998d (p02 = 30 %); Jan et al., 1997 (p02 50 % and 
100 %) and Lin et al., 1993 (PMS). 
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the experimentally obtained value to the biomass synthesis rate. It is 

noteworthy however, that the value for PMS-stressed cells is relatively high 

compared to the estimated values for the other culture conditions. This suggests 

that the well-established effect of PMS on the pentose-shunt activity is 

qualitatively measurable using mass-balancing techniques, even if the set of 

mass-balance equations is underdetermined. 

The estimations of the pentose-shunt flux on the basis of linear objective 

functions (Constraints B and C) show overestimated values compared to the 

experimentally-determined fluxes (Figure 5). The objective function 'maximize 

NAD(P)H production' results in a particularly high value for the pentose-shunt 

flux of PMS-stressed cells. The trend is in agreement with the known effect of 

PMS (Hothershall et al. 1979), but the absolute value of flux 2 is significantly 

higher than the experiments of Lin and co-workers (1993) demonstrate. The 

overestimation is most likely a consequence of the fact that the linear 

optimization problem is not sufficiently constrained. There are only minimum 

values for a number of fluxes in the linear optimization problem (fluxes 2,11, 

12, 13, 17, and 18 in Figure 1). It has been shown before that the maximum 

value of the pentose-shunt flux in the linear-optimization problem is 

constrained by the irreversibility of pyruvate decarboxylase (flux 12) (Bonarius 

et al., 1998b). The solution suggests that the pentose-shunt flux is larger than 

the hexokinase flux (flux 45 in Figure 1). Indeed, when more NADPH is 

required than ribose-5-phosphate, glucose-6-phsophate is completely oxidized 

to C02 (Stryer, 1988), which means that flux 2 is larger than flux 45. Such 

conditions are artificially created with PMS in the culture medium. The cells 

have to regenerate therefore relatively large amounts of NADPH. However, 

according to Lin et al. (1993), this seems not be to the extent as estimated by 

linear programming techniques. For quantitative pentose-shunt flux data, 

isotopic-tracer experiments remain therefore indispensable. 
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CONCLUSIONS 

The (steady-state) degradation rates of lysine, leucine, isoleucine, methionine, 

and arginine of hybridoma cells increase at higher p02 levels and under PMS 

stress. The proline synthesis flux decreases 3-fold in PMS-containing medium, 

and the serine production rate increases under oxidative stress. 

Sub-lethal levels of the artificial electron acceptor PMS give 50 % lower 

lactate-production rates and 27 % higher Mab-production rates compared to the 

control in hybridoma-cell culture. 

Under oxidative stress, the glutamate-dehydrogenase flux into the direction of 

a-ketoglutarate, and NH4
+ increases. In contrast, under oxygen-limiting 

conditions the glutamate-dehydrogenase flux reverses into the direction of 

glutamate. 

Physiologically meaningful objective functions can be added to 

underdetermined metabolic networks in order to estimate fluxes in cyclic 

pathways. Relative changes in metabolic fluxes, such as the decrease of the 

TCA flux under oxygen limitation or the increase of the pentose-shunt flux 

under PMS stress, can be detected with this technique. However, for 

quantitative values of fluxes in cyclic pathways, isotopic-tracer experiments 

remain indispensable. 
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APPENDIX A 

Table Al 

Net stoichiometric equations of amino acid metabolism (Only the reactions of amino acids 

that are discussed in the text are shown). 

Amino acids that are degraded in hybridoma cells 

Arginine ARG + 2 H20 + AKG + NAD+ -» 2 GLU + Urea + NADH 

Lysine LYS + H20 + 3 NAD+ + 2 FAD + 2 AKG -> 

ACoA + NH3 + 2 FADH2 + 3 NADH + 2 GLU + 2 C02 

Leucine LEU + AKG + 2H20 + ATP + CoASH + NAD+ + FAD -> 

GLU + ADP + POH + ACoA + NADH + FADH + AAA 

Isoleucine ILE + AKG + 2H20 + ATP + 2 CoASH + 2 NAD+ + FAD -> 

GLU + SuCoA + ADP + POH + ACoA + 2 NADH + FADH 

Methionine MET + SER + CoASH + H20 + NAD+ + ATP + THF -+ 

CYS + SuCoA + methylene-THF + NH3 + NADH + ADP + POH 

Cysteine CYS + AKG -> GLU + S + PYR 

Amino acids that are produced by hybridoma cells 

Proline GLU + ATP + 2 NADPH -)• PRO + H20 + ADP + POH + 2 NADP+ 

Glycine SER + THF - • GLY + methyl-THF + H20 

Serine GLU + H20 + 3PG + NAD+ -> SER + AKG + POH + NADH 
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The Activity of Glutamate Dehydrogenase is 
Increased in Ammonia-Stressed Hybridoma Cells 

Hendrik PJ. Bonarius, Jose H.M. Houtman, 
Cornells D. De Gooijer, Johannes Tramper, 

and Georg Schmid 

ABSTRACT 

The effect of added ammonia on the intracellular fluxes in hybridoma cells 
was investigated by metabolic-flux balancing techniques. It was found that 
in ammonia-stressed hybridoma cells, the glutamate-dehydrogenase flux is 
in the reverse direction compared to control cells. This demonstrates that 
hybridoma cells are able to prevent the accumulation of ammonia by 
converting ammonia and ot-ketoglutarate into glutamate. The additional 
glutamate that is produced by this flux, as compared to the control culture, 
is converted by the reactions catalyzed by alanine aminotransferase (45 % 
of the extra glutamate) and aspartate aminotransferase (37 %)., and small 
amount is used for the biosynthesis of proline (6 %) . The remaining 12 % 
of the extra glutamate is secreted into the culture medium. The data 
suggest that glutamate dehydrogenase is a potential target for metabolic 
engineering to prevent ammonia accumulation in high-cell-density culture. 
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INTRODUCTION 

Amino acids, and glutamine in particular, are both used for biomass synthesis 
and energy generation in cultured mammalian cells (Reitzer et al., 1979). In 
contrast to normal proliferating tissue, that secretes its waste products from 
nitrogen metabolism in the form of urea, many tumor cell lines lack carbamyl 
phosphate synthase as a result of which they cannot synthesize urea (Eigenbrodt 
et al., 1985). Most of the cultured mammalian cells produce other nitrogen-
sinks, such as alanine, aspartate, proline, glutamate and ammonia. These end 
products accumulate both intracellularly and in the culture medium (Lanks and 
Li, 1988). 

Ammonia, the sum of non-ionized NH3 and ionized NH4
+, has various adverse 

effects on cultured mammalian cells as it inhibits cell growth and glycoprotein 
production (Glacken et al., 1986). It has been shown in many studies that 
ammonia inhibits cell growth (reviewed by Schneider, et al. 1996) and as a 
consequence, it can be the limiting factor for growth in high-cell-density 
cultures. In addition, ammonia influences glycosylation of (heterologuous) 
proteins (Anderson and Goochee, 1995), as a result of increased intracellular 
UDP aminohexoses (Ryll et al., 1994). Therefore, ammonia production and the 
metabolism of amino acids, in particular of glutamine, have received 
considerable attention in order to improve conditions for mammalian-cell 
culture used for the production of glycoproteins (Schneider et al., 1996). 
Several strategies have been proposed to overcome ammonia accumulation by 
manipulating mammalian-cell metabolism. These include substitution of 
glutamine by other nutrients such as glutamate (Darnell and Eagle, 1958), 
asparagine (Kurano et al., 1990) or a-ketoglutarate (Hassell and Butler, 1990), 
controlled addition of glutamine (Glacken et al., 1986; Ljunggren and 
Haggstrom, 1984), adaptation of cells to high ammonia concentrations 
(Schumpp and Schlaegger, 1992), reduction of glutamine in the cultured 
medium based on the exact requirements for biosynthesis (Xie and Wang, 
1995), and transfection of a glutamine-synthetase gene to allow cells to grow in 
glutamine-free culture medium (Bell et al., 1995). 
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A better understanding of the metabolic mechanisms of adaptation to high 
ammonia concentrations may help to further modify cellular metabolism in 
order to enhance cell yields. In particular in high-cell-density cultures, where 
ammonia accumulation may become a limiting factor, a further reduction of the 
intracellular ammonia-producing reactions is desirable. By measuring the 
metabolic flows of the various pathways by which glutamine is degraded, 
bottle-necks in metabolic routes leading to other N-sinks than ammonia might 
be traced. Street and co-authors (1993) showed by 'H/^N-NMR that most of the 
glutamate is transaminated, rather than deaminated by glutamate dehydrogenase 
in HeLa and CHO cells. This was recently confirmed for hybridoma cells by 
metabolic-flux balancing techniques (Zupke et al. 95; Bonarius et al., 1996). In 
continuously cultured hybridoma cells 55, 25 and 15 % of the produced 
glutamate was metabolized by alanine transaminase, aspartate transaminase and 
pyrroline-5-carboxylate reductase, respectively (Bonarius et al., 1996). 

In this study, metabolic-flux balancing techniques are applied to further 
elucidate the metabolic strategy of hybridomas to avoid ammonia accumulation. 
By stressing continuously-cultured hybridoma cells with high ammonia 
concentrations (lOmM), culture conditions with respect to N-metabolism that 
may occur in high-cell density cultures are simulated. Metabolic fluxes of both 
glutamine and glucose metabolism are determined using mass balances and are 
compared with intracellular fluxes of a control culture. The data show that at 
toxic levels, hybridoma cells reduce ammonia accumulation by converting 
ammonia and a-ketoglutarate into glutamate, which is subsequently 
metabolized by aminotranferases. These results suggest that glutamate 
dehydrogenase is a potential metabolic engineering site: not to inhibit its 
activity, as suggested before (Glacken, 1988), but in contrast, to increase its 
activity. 

173 



How Mammalian Cells Detoxify Ammonia 

MATERIALS AND METHODS 

Culture conditions and analyses 

A detailed description of the various experimental procedures was published 

before (Bonarius et al., 1996). Briefly, hybridoma cells were cultured in a lab-

scale bioreactor (1 L working volume, Biostat MD, Braun, Melsungen, FRG) in 

a continuous mode at a dilution rate of 0.7 d"1. A mixture of Dulbecco's, Ham's 

F12 and Iscove's powdered media (DFfl; 1:1:2) (Gibco, Grand Island, NY, USA) 

was used as the basal medium and was supplemented with 5 mg/ml insulin 

(Sigma, StLouis, MO, USA), 6 mg/ml transferrin (Boehringer Mannheim, 

Mannheim, FRG), and 0.35 % (w/v) Synperonic F68 (Serva, Heidelberg, FRG). 

The medium contained 5 g/1 glucose, 5 mM glutamine and 2.73 g/1 sodium 

bicarbonate. After four days of continuous cultivation pseudo steady-state 

conditions were assumed. Samples for metabolite analyses were taken daily. At 

the end of each experiment, after three days of (pseudo) steady-state continuous 

culture, a large sample was taken for the analysis of the biomass composition. 

A method developed to correct for the bicarbonate buffer in the culture medium 

(Bonarius et al., 1995) was applied for the determination of the C02 

production rate (CER). The C02 in the outlet gas was measured by an infrared 

gas analyzer (Rosemount, Baar, CH). The Oz uptake rate (OUR) was 

determined by the mass transfer coefficient k|02a and the fraction of oxygen in 

the inlet gas, as described before. Values for k,°2a were by the dynamic method 

(Van't Riet and Tramper, 1991). 

Glucose and lactate were determined with automated enzymatic assays (YSI, 

Yellow Springs, OH), ammonia using an ion-selective electrode, and amino 

acids by HPLC (Amino Quant 1090, Hewlett-Packard, Paola Alto, CA). 

Intracellular amino-acid pools were extracted by perchloric acid as described 

elsewhere (Schmid and Keller, 1992). The cellular composition was measured 

as described by Xie and Wang (1994): the total lipid fraction was determined 

by weight after chloroform/methanol extraction, total carbohydrates were 
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analyzed by the phenol reaction method, total cellular protein was estimated 

using the Biuret assay, and nucleic acids were quantitated by absorbance at 260 

nm after purification according to Chomczynski (1993). Cell size and number 
were determined using a Casy 1 instrument (Scharfe System, Reutlingen, FRG) 

and dry cell weight was determined after dehydration under vacuum. Antibody 
titers were measured by a standard ELISA. 

Metabolic-Flux Analysis 

Figure 1 
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Network of mammalian-cell metabolism. Fluxes that can be quantified solely by mass-
balancing techniques are indicated as dashed lines. To measure the remaining fluxes 
(solid lines) additional constraints are required. 

ACoA acetyl-CoA, AKG a-ketoglutarate, ATP adenosine triphosphate, CHOL choleste­
rol, CIT citrate, DESM desmosterol, E4P erythrose-4-phosphate, GAP glyceraldehyde 3-
phosphate, GLC glucose, GTP guanosine triphosphate, G6P glucose-6-phosphate, G3P 3-
Phosphoglycerate, LAC lactate, MAB monoclonal antibody, MAL malate, OAA 
oxaloactetate, PEP phospho-enolpyruvate, PYR pyruvate, R5P ribose-5-phosphate, Ru5P 
ribulose-5-phosphate, S7P sedoheptulose-7-phosphate, TC total carbohydrates, TP total 
protein, X5P xylulose-5-phosphate. 
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The majority of the metabolic fluxes in mammalian cells, as depicted in Figure 

1, can be determined by mass-balancing techniques without additional 

assumptions or isotopic-tracer experiments. In contrast, metabolic fluxes in 

cyclic pathways cannot be determined using the mass balances over the relevant 

metabolites (Vallino and Stephanopoulos, 1990; Bonarius et al., 1997). 

Reactions of the remaining underdetermined network are indicated by the solid 

lines in Figure 1. In this work, constraints based on experimental evidence 

(Street et al., 1993; Mancuso et al.,1994; Bonarius et al., 1998c) that was 

obtained by isotopic-tracer studies are used to estimate the flows through these 

reactions. 

The metabolic network in Figure 1 contains three sets of linearly-dependent 

fluxes: 

(i) the malate/pyruvate/oxaloacetate cycle (fluxes 16, 17 and 18), 

(ii) glutamine degradation (fluxes 23, 24, and 25), and 

(iii) the pentose shunt, glycolysis and TCA cycle (fluxes 1 to 16). 

Therefore, three additional constraints are required to determine all fluxes by 

mass-balancing techniques alone. 

(i) It was found by 13C-NMR experiments that the flow through 

pyruvate carboxylase (flux 18) is negligible in hybridoma cells cultured in a 

hollow-fiber bioreactor (Mancuso, et al. 1994). This was recently confirmed for 

the same hybridoma cell line, the same medium, and the same mode of 

cultivation as investigated here, by 'H-NMR techniques (Bonarius et al., 

1998c). 

(ii) Although no direct evidence for hybridoma cells exists, it is assumed 

that the flow through aspargine synthetase (flux 23) is negligible. Street et al. 

(1993) could not detect labeled asparagine in the medium supernatant of 5-15N-

glutamine-fed HeLa and CHO cells, indicating that asparagine synthetase is not 

active. In cultured mammalian cells, the proposed pathway of glutamine 

degradation is via glutaminase, rather than via asparagine synthetase (For 

example: Ardawi and Newsholme, 1984; Reitzer et al., 1979; Glacken, 1988; 

Mancuso et al., 1994). Only when asparagine becomes limiting, asparagine 

synthetase may become active in mammalian cells (Kilberg et al., 1994). 
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(iii) Recently, we showed by measuring 13C02 yields using mass 

spectrometry that the pentose-phosphate shunt is not negligible in hybridoma 

cells and dependent on the mode of cultivation (Bonarius et al., 1998c). In 

contrast to the data of Mancuso and co-workers (1994), showing that hybridoma 

cells cultured in hollow-fiber bioreactors direct only 5 % of the consumed 

glucose into the pentose shunt, up to 23 % of the glucose was channeled into 

the pentose shunt in rapidly growing cells (|x = 0.9 day"1) in continuous culture. 

In addition, we showed that both the constraint determined by the NAD(P)H 

mass balance and the minimum-norm constraint could not be used to estimate 

the pentose-shunt activity in hybridoma cells (Bonarius et al., 1998b). Although 

the NAD(P)H mass balance cannot be closed with sufficient accuracy to 

quantify the flow through reaction 2, the pentose-shunt activity is proportional 

to the NADPH requirements (Stryer, 1988). Therefore, we suggest that the best 

possible estimate for flux 2 is a linear fit to the pentose-shunt activity rate as 

determined earlier (Bonarius, et al. 1998c) to the measured biomass synthesis 

rate. For the cell line investigated here this assumption gives 

xj_ = fiDCW 

x2o M0DCW„ 

where n is the measured growth rate, and DCW the dry cell weight. The 

subscript o denotes measured parameters of a standard culture to which x2 is 

fitted (Bonarius et al., 1998c). 

In addition to the three constraints mentioned above, directionality of 

irreversible fluxes is taken into account. In conclusion, this leads to the 

following set of constraints, which is solved using the least-squares method: 

A x = r (2) 

_ nDCW _ 
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It is stressed that the quantification of the reactions catalysed by alanine 

transaminase (flux 20), aspartate transaminase (flux 21) and glutamate 

dehydrogenase (flux 22) is not influenced by any of the above assumptions. 

RESULTS AND DISCUSSION 

Hybridoma cells appear to be more tolerant to ammonia than other cultured 

mammalian cells (Ozturk et al., 1992). To assess at which ammonia 

concentrations growth inhibition occurs for the cell line that was investigated in 

this study, experiments in T-flasks with various ammonia levels in the culture 

medium were done. It was found that growth inhibition occurred at 

concentrations of 5 mM ammonia (data not shown). In order to ensure 

significant effects on the intracellular metabolic fluxes, a continuous-culture 

experiment was carried out with 10 mM ammonia in the culture medium. 

Table 1 

Cell density, viability, respiration parameters for two steady states. Values are averages of 
three data points of samples taken daily from a continuous culture. Values between 
parentheses indicate standard deviations. 

Cellnr. Viab. CER OUR RQ rGLC ruc rNH3 

(106ml-') (-) (lO^mol.cell'.day-1) (-) (1012mol.cell'.day1) 

0.69 -4.681 4.775 1.143 

0.66 -5.330 5.156 0.318 

In Table 1 average cell densities, the viability, the respiration data, the 

metabolic qoutients of ammonia, glucose, and lactate of ammonia-stressed and 

control cells in continuous culture are shown. Under both conditions, lower 

values of the respiration qoutient (RQ) are found than reported before (Bonarius 

et al., 1995). This seems to be a result of a difference in OUR data, because the 

CER values are similar to those reported earlier. The reason for this discrepancy 
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is not evident, but it should be noted that OUR measurements on the basis of 

the liquid-phase Oz balance have to be interpreted carefully due to possible 

inaccuracies associated with the determination of the k,°2a. 

After ammonia addition the cell density decreases 21 %, the glucose uptake rate 

accelerates, and the specific Mab-production rate (Table 2) remains unaffected, 

which is similar as described elsewhere (Schneider et al., 1996), although the 

influence on the cell density is not as substantial as for instance reported by 

Glacken et al. (1986), Ozturk et al. (1992), and others. 

In Table 2, the cellular composition for both (pseudo) steady states is given. 

Uptake and production rates of amino acids are shown in Table 3. It has been 

shown before that alanine production rates increase at elevated extracellular 

ammonia concentrations (Ozturk et al., 1992, Hansen and Emborg, 1994). In 

addition, similar to data reported by Ozturk et al. (1992), glutamine uptake rates 

increase at elevated ammonia. Most likely, the uptake rates of glucose and 

glutamine are higher under ammonia stress because of the increased 

Table 2 

Cellular composition. Values are given in 10'5 mg/cell and as a fraction of dry cell weight 
(DCW). Specific antibody production (rmab) is given in 10'12 g.cell'.day"1 and as a fraction of 
the specific DCW production rate. 

Total carbohydrates 
Total protein 
Lipids 
RNA 
DNA 

DCW 

Control 

Absolute 
value 
(lO5 mg/cell) 

1.72 
37.7 
4.72 
2.14 
1.19 

47.5 

14.9 

Fraction 
of DCW 
(%) 

3.6 
79.4 
9.9 
4.5 
2.5 

3.7 

lOmMNH/ 

Absolute Fraction 
value of DCW 
(lO"5 mg/cell) (%) 

1.86 
37.5 
n.d. 
2.34 
1.53 

49.5 

13.5 

3.8 
76.0 

4.7 
3.1 

3.3 
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requirement for pyruvate. Both glucose and glutamine are carbon sources for 
pyruvate via the glycolysis and the malate enzyme, respectively (Rietzer et 
al.,1979). 

Table 3 

Total production rates {rtot) and n e t catabolic rates (rnc) of amino acids. The net catabolic 
rates are calculated as described before (Bonarius et al. 1996). The stoichiometric coefficients 
are calculated using the cellular composition (Table 2), the measured amino-acid composition 
in cellular protein (Table 5 in Bonarius et al., 1996) and the known amino-acid composition of 
Mab (Edelman et al., 69) A positive net catabolic rate indicates that the pertinent metabolite is 
produced in primary metabolism. Average values of three data points in each steady state 
(each data point in duplo) are given in 10"12 mol.ceH'.day"1. 

ASP 
GLU 
ASN 
SER 
GLN 
HIS 
GLY 
THR 
ALA 
ARG 
TYR 
CYS 
VAL 
MET 
TRP 
PHE 
ILE 
LEU 
LYS 
PRO 
HYP 

Production rates 
(lO^mol.cell'.day1) 

Control 

-0.173 
-0.208 

0.013 
-0.023 
-1.524 
-0.054 
-0.115 
-0.134 
1.227 
-0.158 

-0.075 
-0.101 
-0.198 
-0.101 
-0.028 
-0.067 
-0.377 
-0.596 
-0.189 
0.078 
0.253 

10 mM NH4
+ 

-0.053 
-0.057 
-0.503 
0.065 

-2.005 
-0.065 
-0.121 
-0.152 
1.814 

-0.204 
-0.095 
-0.113 
-0.216 
-0.129 
-0.022 
-0.096 
-0.392 
-0.594 
-0.202 
0.185 
0.195 

Net catabolic rates 
(lO^mol.cell'.day1) 

Control 

0.068 
0.032 
0.109 
0.208 

-1.285 
-0.021 
0.138 
0.032 
1.555 

-0.085 
-0.024 
-0.072 
-0.004 
-0.064 
-0.011 
0.004 
-0.262 
-0.408 
-0.093 
0.234 
0.253 

10 mM NH4
+ 

0.204 
0.205 
0.045 
0.292 

-1.742 
-0.032 
0.134 
0.012 
2.140 
-0.131 
-0.044 
-0.084 
-0.024 
-0.092 
-0.004 
-0.027 
-0.278 
-0.408 
-0.107 
0.315 
0.195 

Intracellular pools 
(mM) 

Control 10 mM NH4
+ 

7.57 
8.38 
1.04 
3.62 
1.33 
0.25 
3.41 
2.21 
14.6 
2.46 
0.81 
2.42 
1.18 
1.22 
1.37 
0.93 
0.91 
1.85 
0.61 
0.86 
2.66 

7.67 
7.10 
1.23 
5.91 
3.48 
0.60 
5.04 
3.41 
24.3 
2.18 
1.00 
3.72 
1.61 
1.51 
1.47 
1.23 
1.66 
3.05 
0.55 
2.18 
2.89 

Table 3 shows some other significant effects on amino-acid metabolism. The 

net catabolic rates, i.e. the production rates after correction for biosynthesis 
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requirements (Bonarius, et al. 1996), of aspartate, proline and glutamate are 

higher under ammonia stress, demonstrating that these amino acids are used as 

alternative N-sinks. This already indicates that at elevated ammonia levels 

certain metabolic fluxes, which are not associated with biosynthesis, produce 

more aspartate, proline and glutamate than under normal conditions. The 

intracellular pools of several amino acids increase at high-ammonia conditions. 

In particular, the glutamine, alanine, serine, glycine, histidine, leucine, and 

proline pools are elevated. The most profound effect is on the ammonia-

production rate, which decreases 72 %. (Table 1). In order to elucidate the 

mechanism by which hybridoma cells achieve this reduction, the intracellar 

fluxes are estimated. 

Carbon and Nitrogen balances 

The elemental balances of nitrogen and carbon provide a test for consistency of 

measured metabolic rates (Tables 1 and 3) and the measured cellular 

composition (Table 2) with respect to the law of mass conservation. Table 4 

shows the total produced and consumed nitrogen and carbon of continuously 

cultured hybridoma cells. It is shown that both balances can be closed at an 

accuracy of less than 6 % of the net produced and consumed metabolites. 

Table 4 

Carbon and nitrogen balances. Values are in 10"12 Cmol.ceH'.day"1 and 10"12 

Nmol.ceir'.day"1 for the total carbon and nitrogen production/consumption, 
respectively. The error is given both as an absolute value and as a percentage of the 
sum of produced and consumed carbon and nitrogen. 

Total produced 

Total consumed 

Estimated error 

Estimated error (%) 

Control 

C 

59,91 
62,50 

2,59 
2,11 

N 

7,30 
7,56 

0,25 
1,68 

lOmMl 

C 

50,26 
56,34 

6,08 

5,70 

^H4
+ 

N 

7,00 

7,59 

0,59 
4,04 
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Intracellular fluxes 

The intracellular fluxes of the two experiments are calculated as described in 

the Theory Section, and given in Table 5. Although it seems that fluxes 1-18 in 

control cells and ammonia-stressed cells are relatively similar, these values 

should be interpreted with care as they are calculated under the assumptions of 

the same stringent constraints with respect to flux 2 and 18 (Equation 2). The 

possibility that actual differences are masked due to these constraints can 

therefore not be ruled out. 

Anaplerotic reactions 

The malic-enzyme flux (xl7) appears to be negative in ammonia-stressed cells. 

Both the pyruvate-carboxylase (xl8) and the malic-enzyme reaction are 

important for the replenishment of TCA-cycle intermediates (Lehninger, 1977). 

The data shown in Table 5 suggest that at least one of these anaplerotic 

reactions is activated under ammonia stress. It is however not clear which of 

these two reactions is stimulated. Chauvin and co-workers (1994) showed by 
13C-NMR that the pyruvate-carboxylase flux increases in NH4

+-stimulated 

kidney cells. If the same mechanism holds for the cell line investigated here, 

this suggests that the assumption that pyruvate carboxylase is inactive in 

hybridoma cells, is not valid for cells cultured under ammonia stress. 

Glutamate-dehydrogenase flux is reversed 

In contrast to fluxes 1-18, fluxes 19 to 22 are linearly independent and can be 

determined solely by mass-balancing techniques. It appears that the direction of 

the glutamate-dehydrogenase flux (reaction 22) reverses from an a-

ketoglutarate-producing into a glutamate-producing reaction, i.e. from +0.02 to 

-0.73 *10'12mol.cell.day"1, when the ammonia concentration is increased (Table 

5). Glutamate dehydrogenase catalyzes the interconversion of L-glutamate and 

a-ketoglutarate: 
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L-Glutamate + NAD(P)+ o a-Ketoglutarate + NAD(P)H + H+ + NH4
+ 

At high levels, ammonia is consumed by this particular reaction, which results 

in a lower net ammonia production rate. Indeed, the chemical equilibrium of the 

Table 5 

Metabolic fluxes determined using the constraints given in Equation 2 and the 
measurement data of Tables 1, 2 and 3. Values are given in 10"12 mol product 
cell"'.day"1. (Co-factors, ATP and NAD(P)H, are not shown in stoichiometric 
equations.) 

l .G6P->-F6P 
2. G6P - • Ru5P + C02 
3.Ru5P->X5P 
4. Ru5P -> R5P 
5. X5P + R5P -> S7P + GAP 
6. X5P + E4P -> F6P + GAP 
7. S7P + GAP -> F6P + E4P 
8. F6P + ATP -> 2 GAP 
9. GAP -> G3P/SER 
10. G3P/SER - • PEP 
11. PEP-> PYR 
12. PYR -> ACoA + C02 
13. ACoA + OAA -> CIT 
14. CIT -> AKG + C02 
15. AKG -> MAL + C02 
16. MAL -> OAA 
17. MAL -> PYR + C02 
18. PYR + C02 -> OAA 
19. CIT -> 1/9 FA/CHOL + PYR + C02 
20. PYR + GLU -» AKG + ALA 
21. GLU + OAA -> ASP + AKG 
22. GLU -> AKG + NH3 
23.GLN + ASP -> GLU + ASN 
24.GLN -> GLU + NH3 
25. ASN -* ASP + NH3 
26. PYR -> LAC 

Control 

2.95 
1.85 
0.92 
0.96 
0.52 
0.44 
0.49 
4.00 
8.32 
8.00 
8.02 
2.50 
3.28 
2.37 
3.30 
3.46 
0.08 
0.0 
1.04 
1.56 
0.21 
0.02 
0.0 
1.29 
-0.14 
9.21 

lOmMNH 

3.66 
1.84 
0.94 
0.96 
0.57 
0.43 
0.52 
4.83 
10.0 
9.61 
9.65 
2.30 
3.14 
2.28 
3.53 
3.77 

-0.55 
0.0 
1.04 
2.14 
0.70 

-0.73 
0.0 
1.74 

-0.32 
10.7 
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reaction catalyzed by glutamate dehydrogenase strongly favors glutamate 

production. The overall equilibrium constant (K) of the reaction, 

K= [NAD(P)H][NH;][CC-KG][H+] 

[NAD(Py][GLU] (3) 

ranges from 1*1014 to 1*1015 M2 (Fahien et al., 1965; Satlach and Fahien, 

1969), yielding a AG0 of ca. 20 kcal/mol at physiological conditions (Smith et 

al., 1976). In liver cells, this reaction may never reach equilibrium because the 

three products NAD(P)H, NH4
+ and a-ketoglutarate can be rapidly metabolized 

(Satlach and Fahien, 1969). In hybridoma cells, certain conditions may drive the 

glutamate dehydrogenase reaction closer to equilibrium, favoring glutamate 

synthesis. Zupke et al. (1995) found by mass balancing techniques that the 

glutamate dehydrogenase flux reversed at low p02 in cultured hybridoma cells, 

as a result of the build-up of mitochondrial NAD(P)H at low oxygen levels. 

Figure 3 

TCA-cycl* TCA-cycle 

(A) (B) 

Proposed mechanism of ammonia detoxification by cultured mammalian cells as 

analyzed by mass-balancing techniques. (A) Under normal conditions, the flux 

through glutamate dehydrogenase is insignificant relative to aminotransferases. 

(B) Under ammonia-stress, ammonia levels are reduced by converting it and oc-

ketoglurate into glutamate, which is subsequently channeled back into the TCA 

cycle by aminotransferases. Intensity of solid lines qualitatively represent 

magnitude of fluxes. 
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Here, it is shown that accumulated NH4
+ drives the reaction into the direction of 

glutamate production. In contrast to liver cells, hybridoma cells lack the 

machinery to synthesize urea from NH4
+ and C02. Glutamate dehydrogenase 

provides an alternative for the detoxification of NH4
+(See also Figure 2). The 

Michaelis constant for NH4
+ as a substrate for glutamate dehydrogenase is in the 

order of 0,5 to 3,2 mM (Satlach and Fahien, 1965), which is well below the 

(extracellular) concentrations of cultured hybridoma cells under ammonia stress 

such as measured here (>10mM). 

The produced glutamate, as compared to the control culture, is subsequently 

converted by alanine aminotransferase (45 % of the extra glutamate, flux 20), 

by aspartate aminotransferase (37 %, flux 21), and by pyrroline-5-carboxylate 

reductase (6 %, flux 37). The remaining 12 % of the extra glutamate that is 

produced by glumate dehydrogenase is secreted into the culture medium. This 

shows that under ammonia stress, more than 80 % of the a-ketoglutarate that is 

required for the detoxification of NH4
+ is replenished into the TCA cycle by 

aminotransferases. 

Implications for mammalian-cell culture 

Setting the maximization of moles ATP produced per mole ammonia as an 

objective to improve bioreactor performance of mammalian cells, Glacken 

(1988) suggested to reduce ammonia formation by adding inhibitors of 

glutamate dehydrogenase to the medium, such as fumarate and pyroxidal 

phosphate. In the light of the data presented above, glutamate dehydrogenase 

should be stimulated rather than inhibited in order to reduce ammonia 

production rates. Apart from metabolic engineering techniques this can possibly 

be achieved by adding a-ketoglutarate in the culture medium (Hassel and 

Butler, 1990) and/or by lowering the glutamate concentrations. In addition, 

leucine concentrations should be kept low, as leucine stimulates the glutamate 

dehydrogenase reaction into the direction of a-ketoglutarate production 

(Glacken, 1988, referring to Smith et al., 1976). In particular at high-cell 
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density cultures, where ammonia accumulation may become a limiting factor, 

an increase of the glutamate-dehydrogenase flux may give higher cell yields. 
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ABSTRACT 

Cultured mammalian cells do not regulate their glucose and amino-acid 
metabolism adequately for optimal bioprocess performance. Metabolic-flux 
balancing may provide quantitative data that can be used to design more 
efficient cell-culture processes. However, the estimation of fluxes in 
particular in cyclic metabolic pathways cannot be determined by mass-
balancing techniques alone. Additional experimental flux data, which can 
be obtained by isotopic-tracer studies, are required to quantify these fluxes. 
Yet, flux-balance models have been shown useful for mammalian-cell 
culture. They have successfully been applied to estimate metabolite 
requirements for growth and energy, thus enabling to design significantly 
better media and feeding strategies. Further, metabolic-flux balances have 
been applied to assess various intracellular responses to changes in the 
extracellular environment. For example, it has been demonstrated how 
mammalian cells detoxify ammonia, thus providing guidance for the design 
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of ammonia-resistant cell lines. In the future, mass-balancing techniques 
may be used to analyze the synthesis of glycoproteins at a more detailed 
level. 

INTRODUCTION 

The metabolism of mammalian-cell lines that are used for the production of 

glycoproteins is inefficient and sub-optimal for industrial scale, because the 

nutrient uptake is not sufficiently tuned to the needs of biosynthesis. 

Mammalian cells take up more amino acids and glucose than they actually 

require for cellular processes. As a result waste products such as lactate, carbon 

dioxide and ammonia are secreted and their accumulation reduces process 

yields. 

Although this is known for more than a decade (for a review see Glacken, 

1988), it is surprising that only recently efforts have been undertaken to balance 

the medium composition to the actual growth and energy requirements of 

mammalian cells (Ljunggren and Haggstrom, 1990; Mather and Tsao, 1992; 

Messi, 1993; Xie and Wang, 1994; Adamson et al, 1995). Instead, mammalian 

cells have been cultivated since a long time in "minimal essential media" such 

as developed by Eagle (1959). 

Here studies on glucose and amino-acid metabolism of mammalian cells are 

reviewed. First a brief survey is given on the metabolism of malignant cells, 

because their metabolism shares many characterisitics with the metabolism of 

mammalian cells in culture. It will be shown that these charateristics (which 

among others result in the above-mentioned problems in mammalian-cell 

culture) have certain selective advantages for metastatic tumor cells. Second 

reports on the metabolism of industrial cell lines will be discussed and 

similarities with tumor-cell metabolism are shown. Then the analysis of 

intracellular fluxes of mammalian-cell culture is surveyed. In particular 

methods and applications of flux balances are discussed. It is shown that flux-

balancing techniques have successfully been applied to trace potential sites for 
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metabolic engineering, to determine metabolic capabilities, to study overflow 

metabolism and to design optimal medium compositions and feeding strategies. 

Finally an outlook is given on research that will lead to further improvement of 

low-cost, high-yield, cell-culture processes by the manipulation of cell 

metabolism. 

Metabolic fluxes in cultured mammalian cells: some lessons from tumor-

cell physiology 

Most of our knowledge of carbohydrate and amino-acid metabolism of 

mammalian cells stems from physiological studies on malignant cells. Both 

tumor cells and cultured mammalian cells share, apart from the ability to 

proliferate continuously and the lack of differentiation, various properties with 

respect to their metabolism (Leist et al., 1990). In contrast to normally 

proliferating mammalian tissue, both tumor cells and cultured cells do not 

regulate the uptake of nutrients strictly to the needs of biosynthesis and 

maintenance processes. For example, the glucose uptake is high and not tuned 

to the requirements for energy and growth, which causes the production of 

lactate. The high rate of glycolysis combined with elevated lactate production 

observed in tumor cells initially gave rise to the postulation of impaired 

respiratory capabilities as a specific property of malignant cells (Warburg, 

1956). Later, a number of observations led to the concept that the differences in 

carbohydrate metabolism in tumor cells compared to normal tissue were 

"selective" alterations that allowed tumor cells to proliferate under changing 

conditions with respect to glucose levels and oxygen tension and in the absence 

of sufficient metabolic control (For a review see Eigenbrodt et al., 1984). In 

Figure 1 several characteristics of the metabolism of tumor cells are shown and 

the proposed relevance for selection advantage is indicated. 

For example, the high glycolytic activity allows tumor cells to generate energy 

in hypoxic areas (Epner et al., 1993). Also when sufficient oxygen is available, 

the glycolytic activity and lactate production rate in tumor cells remain high: 
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Figure 1 
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Selective advantages of tumor-cells metabolism. The regulation of glucose and 
amino-acid uptake in tumor cells is relatively poor compared to cells in normal 
tissue. Although this results in the secretion of toxic waste-products such as 
lactate and ammonia, several selective advantages are associated with the low 
level of metabolic control. 

The high glycolytic rate enables tumor cells to proliferate in hypoxic areas (1). 
As a result, intracellular concentrations of the glycolytic intermediates between 
hexokinase and pyruvate kinase (2) remain high, and the availability of 
precursors for nucleic acid (3) and triglyceride synthesis (4) is ensured. 

Tumor cells synthesize relatively high amounts of cholesterol (5), as a result of 
which the isocitrate-dehydrogenase flux (6) is low. This is an advantage for cells 
proliferating in areas with low concentrations of anti-oxidants, because isocitrate 
dehydrogenase is particularly sensitive to oxidative stress. TCA-cycle 
intermediates are replenished via glutamine degradation (7). If glucose levels are 
low, glutamine can be the major energy source. In that case, a relatively large 
amount of lactate will be derived from the malate shunt (8). (See also the main 
text for further details.) 

The dotted line represents the mitochondrial membrane. 
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There is no feedback inhibition by ATP on phosphofructokinase (reaction 3, 

Figure 2a), as is the case in normal, non-malignant cells (Pasteur effect). 

Although this seems inefficient with respect to energy metabolism, it has been 

suggested that the high glycolytic rate ensures the availibity of precursors for 

biosynthesis: the intracellular pools of glycolytic intermediates between 

glucose-6-phosphate (G6P, Figure 1) and pyruvate (PYR) increase, thus 

supplying phosphometabolites for the biosynthesis of nucleotides, triglycerides 

and glycoproteins. This mechanism allows tumor cells to both proliferate (as 

precursors for biosynthesis are available) and generate energy (as pyruvate 

kinase and pyruvate oxidation remain active) at a relatively high rate 

independetn of the oxygen tension (Eigenbrodt et al., 1992). 

It has been established that lactate is not only generated by glycolysis, but also 

to a large extent from glutamine in malignant-cell lines (Reitzer et al, 1979). It 

is likely that in tumor cells not only the carbon of glutamine, but also that of 

other amino acids emerges in TCA-cyle intermediates and provides a significant 

amount of energy. Although this is both inefficient with respect to energy 

generation compared to the complete oxidation of glucose, and results in the 

secretion of ammonia, this allows tumor cells to proliferate in the absence of 

glucose (Wice et al., 1981). 

In addition to enhanced glycolysis and glutaminolysis, tumor cells show little 

sensitivity to variation in oxygen concentrations, a lower requirement for anti­

oxidants (Hornsby and Gill, 1981), a reduced (iso)citrate decarboxylation (x,4 in 

Figure 2A) (Coleman and Lavietes, 1981), and enhanced nucleic acid (x28, x29) 

(Jackson et al., 1980) and lipid synthesis (x19) (Engeser, 1982). The relevance of 

these characteristics for the metabolism of rapidly proliferating cells is outlined 

in Figure 1. The low isocitrate-dehydrogenase activity maybe an advantage for 

tumor cells, as isocitrate dehydrogenase is relatively sensitive to oxidative 

stress. Another possible advantage for a low isocitrate-dehydrogenase flux has 

been suggested by Coleman and Lavietes (1981). They hypothesized that the 

high lipid-synthesis rates 'truncate' the TCA cycle. In order to fuel lipid 

synthesis with carbon sources, the citrate-synthase reaction (x13) is supplied 
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with oxaloacetate from TCA-cycle intermediates that are replenished by 

products from amino-acid degradation. 

Metabolism of industrially relevant cell lines 

From the early 80ies mammalian cells have been used for the production of 

heterologous glycoproteins. It appeared that their metabolism was similar to 

that of tumor cells: cultured mammalian cells do not adequately regulate the 

uptake of glucose and amino acids to the actual metabolic requirements for 

growth and energy. Therefore, cultured hybridoma, BHK and CHO cells 

produce large amounts of lactate, even if sufficient oxygen is available. At low 

oxygen concentrations glucose uptake rates increase to offset the reduced 

energy production from glutamine oxidation (Miller et al., 1987), resulting in 

more lactate production. At low glucose concentrations glutamine uptake rates 

and ammonia production rates increase (Miller et al., 1989; Meijer and Van 

Dijken, 1995). When adequate amounts of glucose are available, glutamine 

consumption is abundant, which results in the accumulation of various 

glutamate-derived amino acids (Ljunggren and Haggstrom, 1992; Schmid and 

Keller, 1992). 

Because of the lack of metabolic regulation, the process engineer has to adjust 

the culture conditions in order to control nutrient uptake and to reduce waste-

product formation. In the last Years, flux-balancing techniques have been 

applied to determine the actual nutrient requirements for energy, growth, and 

glycoprotein production, and to better understand the physiology of cultured 

mammalian cells. In the following sections different methods of flux-balance 

techniques are discussed, and applications to mammalian-cell culture are 

reviewed. 

FLUX-BALANCE MODELS: METHODS 

Metabolism is a large network of reaction pathways which enables 

(micro)organisms to convert substrates into biomass, energy and, in selected 
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cases, certain valuable products. The metabolic network of industrial 

microorganisms contains in the order of 103 enzymatic reactions for the 

degradation and synthesis of carbohydrates, fatty acids, lipids, amino acids, 

proteins and nucleic acids. 

(i) Reduction of complexity 

The first step in the formulation of a flux-balance model is to reduce the 

metabolic network to a manageable set of stoichiometric equations by selecting 

relevant pathways and by lumping complex subnetworks. For example, 

mammalian cells lack the pathway for synthesis of essential amino acids, and 

most cultured mammalian cells do neither generate glucogen nor urea, although 

the original species do possess the enzymes for glycogen and urea synthesis. 

These synthesis pathways are therefore omitted in a flux-balance model for 

cultured mammalian cells. 

Lumping of linear reaction pathways is based on the assumption that the 

intracellular accumulation rate of intermediate metabolites is negligible with 

respect to the uptake rate of substrates and the accumulation of (end) products. 

For example, the complete fatty-acid synthesis machinery can be lumped into 

one reaction if the fractions of different fatty acids in triglycerides in 

mammalian cells are known. Figure 2a shows a flux model describing the 

metabolism of hybridoma cells after the above-mentioned reductions. 

A problem in the estimation of biomass requirements is caused by the fact that 

most macromolecules can be synthesized via two different pathways, often 

designated as de novo and salvage pathways. De novo pathways refer to the 

biosynthesis of macromolecules via the complete biochemical pathways from 

basic nutrients, such as essential amino acids or (derivatives of) glucose to the 

end products. Salvage reactions are simpler and much less costly, and only 

include the assembly of pre-formed building blocks which accumulate as a 

result of turn-over of macromolecules. Implementation of both pathways in 

flux-balance models renders underdetermined networks: the different fluxes 
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cannot be determined by the measurement of the end product alone, because the 

reactions are linear dependent (See also below under Section if). When the need 

for new biomass material is high, for example at high growth rates, de novo 

synthesis is most likely prevalent. Salvage pathways are therefore often 

neglected in metabolic-flux analysis of industrial microorganisms and 

mammalian cells (Xie and Wang, 1994b; Zupke and Stephanopoulos, 1995a; 

Bonarius et al., 1996; Vriezen, 1998). An exception is the metabolic model 

described by Savinell and Palsson (1992), in which the turn-over rate of RNA in 

hybridoma cells is estimated from mRNA and rRNA degradation rate constants. 

The re-use of the produced free bases can be can be calculated from these 

values. Preferably, the substrate requirements for macromolecules are 

determined experimentally. For example, Mancuso et al. (1994) determined the 

de novo synthesis of fatty acids by 13C incorporation into triglycerides of 

cultured hybridoma cells. 

Figure 2 
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Flux-balance models. The first step in the design of a flux-balance model is reduction, which 
leads from a complex to a simple network (2a). In the second step, linearly dependent fluxes 
are identified, which leads to a network such as shown in Figure 2b. 
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(ii) Identification of linear-dependent reactions 

The second step in the formulation of flux-balance models involves the 

identification of determined and underdetermined subnetworks. Many fluxes 

can be estimated solely by metabolite-balancing techniques. For example, the 

alanine-aminotransferase flux (x20 in Figure 2a) is calculated from the 

extracellular alanine production rate and the (intracellular) alanine requirements 

for biomass. In contrast, most fluxes in cyclic pathways (for instance xl4 and x,5 

in Figure 2a) cannot be determined independently by mass-balancing 

techniques alone. In the set of mass balance equations such fluxes cause linearly 

dependent relations (Vallino and Stephanopoulo, 1990). 

In order to reduce the number of linearly dependent reactions, futile cycles are 

often neglected. The result of futile cycling is the dissipation of energy, while 

the net flux remains unchanged. For example, when flux-balance models are 

used to determine the requirement for carbon and nitrogen sources for anabolic 

processes, it is not necessary to include certain futile cycles. However, many 

cyclic pathways cannot be neglected for applications such as described here. 

Other constraints than the metabolite balances are required to estimate fluxes in 

a remaining underdetermined network, such as shown in Figure 2b. Examples 

of constraints that have been applied for flux analysis in mammalian-cell 

culture are reviewed in the following section. 

(iii) Making the underdetermined determined 

The minimal number of extra constraints that are necesarry to solve an 

underdetermind set of mass-balance equations, depends on how many sets of 

linear-dependent reactions are present. The metabolic network shown in Figure 

2b contains three sets of linear-dependent reactions, for each of which an 

additional constraint is required. In this example these three sets are fluxes 1-

16, fluxes 16-18, and fluxes 23-25. The determination of one flux out of each 

set is sufficient to solve the mass-balance equations. Preferably, these are 

derived from isotope balances (Mancuso et al, 1994; Sharfstein et al., 1994; Jan 
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et al. 1997; Bonarius et al., 1998c). If isotopic-tracer data are not available, 

other constraints which have been proposed for the estimation of fluxes in 

mammalian cells can be used instead (Fell and Small, 1986; Savinell and 

Palsson, 1992; Bonarius, et al. 1996). In Table 1 methods that have been 

applied for flux analysis in mammalian-cell culture are outlined. 

Table 1 

Determination of metabolic fluxes in mammalian-cell culture. 

Advantage 

1. Isotopic-tracer experiments 

Disadvantage When to use 

a. Radioactive 
isotopes 

b. Stable isotopes 
NMR spectroscopy 

c. Stable isotopes 
mass spectroscopy 

2. Flux-balancing techniq 

a. Addition of 
mass balances 
- NAD(P) balance 
- ATP balance 

b. Numerical methods 
- Linear 
optimization 

-sensitive 
-small amounts 
sufficient 

-in-situ possible 
-in vivo possible 
-no experimental bias 

-in-situ possible 
-sensitive 

ues 

-non-laborious 

-non-laborious 

-radioactive 
-possible experimental 
bias because 
cells are incubated 
in new medium 

-insensitive 
-metabolites/cells 
need to be 
concentrated 

-error-sensitive 

-error-sensitive 
-may give 
estimations 
when biochemical 
effects are 
well-established 

-relative 
changes 
are sufficient 

-absolute flux 
values are 
required 

-absolute flux 
values are 
required 

-estimation of 
relative 
changes is 
sufficient 

-estimation of 
relative 
changes is 
sufficient 
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Radio-active isotopes 

Katz and Wood (1963) and Bontemps et al. (1978) developed methods to 

determine metabolic fluxes of the pentose shunt, TCA cycle, and glycolysis in 

tumor-cell lines based on scintillation counting of labeled endproducts (C02 or 

H20). Recently, these methods were applied for the analysis of hybridoma-cell 

metabolism (Fitzpatricket al., 1993; Jan et al., 1997) and other industrially-

relevant cell lines (Neermann and Wagner, 1997). Methods that apply 

radiolabeled isotopes are sensitive and have been proven useful to provide 

experimental evidence for certain (relative) biochemical effects. For example, 

Jan and co-workers (1997) showed that the relative flux of glucose through the 

pentose phosphate pathway increased at higher oxygen level. Jenkins and co­

workers (1992) showed that a large fraction of glutamine (~ 36 %) was oxidized 

to C02 , which emphasizes the importance of glutamine as an energy source. A 

disadvantage of assays based on radio-isotopic tracers for the analysis of 

metabolic fluxes in bioprocesses, is the fact that cells are sampled from the 

bioreactor and incubated in a new metabolic environment (that contains the 14C-

or 3H-labeled substrate). Fluxes can thus not be assessed in situ with this 

method. When absolute flux values of cells cultured in bioreactors are required, 

data from scintillation experiments should therefore be interpreted carefully. 

Stable isotopes 

Stable isotopes that can be analyzed by NMR spectrometry or mass 

spectrometry (13C or 15N) have been applied to determine metabolic fluxes of 

cultured mammalian cells in situ in bioreactors. Zupke and Stephanopoulos 

(1994) used l-13C-glucose to assess the ratio of carbon entering the pyruvate 

branchpoint via the malate shunt by measuring the fractional labeling of lactate. 

Bonarius et al. (1998c) combined 'H-NMR analysis of the 13C-enrichment in 

secreted lactate and on-line 13C02-mass spectrometry to determine the pentose 

and malate shunt of continuously cultured hybridoma cells. These data were 

used to estimate the optimal glucose consumption rates, i.e., the minimum 

amount of glucose that should be consumed without limiting energy supplies. A 

step further to on-line flux analysis was taken by Sharfstein et al. (1994) and 

Mancuso et al. (1994), who exploited the fact that mammalian cells cultures in 

197 



Making the Underdetermined Determined 

hollow-fiber bioreactors are sufficiently dense to allow in vivo measurement of 

(labeled) metabolites by the relatively insensitive NMR spectroscopy. They 

showed for example that the high lipid-synthesis rates in hybridoma cells 

'truncates' the TCA cycle (see also Figure 1), and that the pentose shunt activity 

was only 4 % of the glucose uptake, which is low compared to the pentose-

shunt flux in cells grown in a CSTR (20 % of the glucose uptake, Bonarius et al. 

1998c). In addition, NMR-spectrograms of hollow-fiber cultures can be used to 

assess the kinetics of uptake and incorporation of nutrients. 

An alternative to the relative insensitive NMR spectrometry (Sharfstein et al. 

1994; Mancuso et al., 1994), or mass spectrometry of volatile metabolites 

(Bonarius et al., 1998c) is GC-MS, which also can be applied to metabolites 

that are strictly dissolved in the liquid phase (Lin et al., 1993). This powerful 

technique has not been applied yet to study the metabolism of industrially-

relevant cell lines. 

NAD(P)H balance in metabolic-flux analysis 

For industrial applications, it is desirable to determine intracellular fluxes by 

mass-balancing techniques alone. Various alternative constraints have been 

suggested to estimate fluxes without information from isotopic-tracer 

experiments. The NADH and NADPH balance has been used in flux-balance 

models for the determination of flux ratios at particular nodes in the metabolism 

of microorganisms (For example, Vallino and Stephanopoulos, 1990; Van 

Gulik and Heijnen, 1995; Jcrrgensen et al., 1995). The rank of stoichiometric 

networks increases after addition of the NAD(P)H balance, which allows the 

quantification of for example the flux ratio at the glucose-6-phosphate branch 

point (Goel et al., 1993; Bonarius et al., 1996; Fluxes 1 and 2 in Figure 2B). 

Although the requirements for NADPH for anabolic processes can be estimated 

and the amount of NADH that is oxidized can be approximated by measuring 

the oxygen uptake rate, certain fluxes appear to be overly sensitive to these 

mass balances. Even if the transhydrogenase activity -which generates a 

metabolic cycle in NADH and NADPH metabolism- is taken into account, 
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relatively small deviations in the NAD(P)H balance result in large differences 
in certain fluxes. For example, it has been shown for both Bacillus subtilis 
(Sauer et al., 1996) and hybridoma cells (Bonarius et al., 1998b) that the 
estimated pentose-shunt flux is very sensitive to changes in the NAD(P)H 
balance. 

Linear-optimization techniques 

Instead of assuming that the NAD(P)H balance can be closed, the NAD(P)H 
stoichiometry can be used to formulate biochemically meaningful objective 
functions (Fell and Small, 1986). In certain cases, the requirement for or surplus 
of one of these reduction equivalents may determine the metabolic-flux 
distribution of the cell. This is for instance the case for adipose tissue, which 
requires large amounts of NADPH for triglyceride synthesis (Fell and Small, 
1986), oxygen-limited mammalian cells, which have NADH in surplus (Zupke 
et al., 1995), or artificially, for mammalian cells that are incubated with non-
natural electron acceptors such as PMS, and as a result require large amounts of 
both NADH and NADPH (Bonarius et al., 1998d). Other objective functions 
were proposed by Savinell and Palsson (1992), who assumed that hybridoma 
cells maximize intracellular ATP levels, and by Bonarius et al (1996), who 
assumed that cell metabolism strives for the minimization of the net flow. 
Recently, a number of these objective functions were compared to flux values 
that were determined by isotopic-tracer experiments. The flux distributions 
found using two objective functions, i.e. maximize ATP and maximize NADH, 
were relatively similar to the distribution determined using l-13C-glucose 
(Bonarius et al., 1998c). This is consistent with the results obtained by Savinell 
and Palsson (1992), who estimated that hybridoma cells produce more ATP and 
NADH than the cells actually need. In addition, this suggests hybridoma cells 
are similar to other cancer cells, in being metabolically hyperactive and in the 
fact that they consume nutrients regardless of energy requirements. 
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FLUX-BALANCE MODELS: APPLICATIONS IN 
MAMMALIAN-CELL CULTURE 

1. Balancing medium composition to requirements for biosynthesis 

Metabolic-flux analysis has already been proven a useful tool to analyze the 

requirements for energy and biomass synthesis. Using linear optimization 

techniques to analyze data of hybridoma-cell metabolism, Savinell and Palsson 

(1992) calculated that neither the maintenance demand for ATP nor the 

antibody production rate limit the growth rate of these cells. They also 

estimated that hybridoma cells use their nutrients with only 57-78 % efficiency 

under normal conditions. Apart from this theoretical work, several experimental 

studies have been carried out to investigate 'overflow metabolism' of glucose 

and amino acids at an intracellular level. These will be discussed below. 

Flux-balances have been used to improve the medium composition of cell 

culture. Ferrance and co-workers (1993) examined amino-acid balances for the 

development of insect-cell culture media. They distinguished "balanced" versus 

"unbalanced" amino acids in a batch-culture of Sf9 cells. A certain amino acid 

was designated "balanced" when the total amount measured amino acid after 10 

days of cultivation (in the culture medium plus in the hydrolyzed cell extract) is 

less than 20 % different compared to the amount in the medium. In contrast, 

"unbalanced" amino acids are converted in catabolic processes for more than 20 

%. It was found that the unbalanced amino acids were alanine and serine 

(which were produced in catabolism) and arginine, asparagine, glutamate, 

glutamine, glycine, and threonine (which were consumed in catabolism). 

A similar concept is the determination of "net catabolic rates" (Bonarius et al., 

1996). The net catabolic rates of metabolite X is the production rate of X 

corrected for the incorporation in biomass. The fraction of amino acids required 

for biosynthesis was determined by measuring amino acids in (hydrolyzed) cell 

protein, and measurement of nucleic-acid content. In hybridoma cells, the 

amino acids aspartate, asparagine, alanine, (hydroxy)proline, and serine were 
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found to be produced in catabolic processes. Arginine, glutamate, glutamine, 

isoleucine, leucine, and lysine were consumed and used to generate carbon for 

TCA-cycle intermediates. In other words, alanine, aspartate, asparine, proline, 

and serine are waste-products of amino acid catabolism, and their formation can 

be reduced by balancing arginine, glutamate, glutamine, etc., to the requirement 

for anabolic processes. 

Sharfstein et al. (1994) used mass balances to complement 13C-NMR data from 

hybridoma cells cultured in hollow-fiber bioreactors. It was found that both at 

low and high glutamine concentrations a significant fraction of amino acids 

entered the TCA-cycle at acetyl-CoA (f.e., isoleucine, leucine, lysine) and 

succinyl-CoA (isoleucine, methionine, and valine). At low glutamine 

concentrations, only 24 % of the amino acids entered the TCA-cycle via a-

ketoglutarate (which is mainly glutamine). These data show that it is important 

not only to balance glutamine, but also other amino acids for optimal process 

conditions. 

A systematic and successful approach to reduce the production of lactate, 

ammonia, and amino acids, while avoiding substrate limitation for biomass 

synthesis and energy generation has been proposed by Xie and Wang (1994, 

1996). Based on stoichiometric analysis and mass-balancing techniques they 

designed a process-control strategy to meet the requirements for energy and 

growth of fed-batch-cultured hybridoma cells. The ratio of lactate to glucose 

and the ratio of ammonia to glutamine was only 0.067 and 0.15, respectively, 

compared to 1.33 and 0.40 in a conventional batch culture. As a result, the final 

antibody titer was 2.4 g/L, almost 50 times as high as in conventional batch 

cultivations (Xie and Wang 1996). It would be interesting to compare the 

efficiency of nutrient consumption of these optimized fed-batch cultures to the 

"non-balanced" cultures studied by Savinell and Palsson (1992), who reported 

that hybridomas metabolize nutrients with only 57-78 % efficiency. 
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2. Studying cellular physiology and finding sites for metabolic engineering 

In addition to studies such as described above, mass balances have been used to 

estimate intracellular fluxes in mammalian-cell culture. For example, it has 

been shown that almost all glutamate enters the TCA cycle via transaminases 

(x20 and x21) and not by the glutamate-dehydrogenase flux (JC22) in cultured 

hybridoma cells (Zupke et al., 1995; Bonarius et al., 1996), most likely to avoid 

production of additional ammonia. Indeed, when hybridoma cells are ammonia-

stressed, the transaminase activity is higher and the glutamate-dehydrogenase 

flux is in the direction of glutamate production, thereby detoxifying a fraction 

of ammonia (See also Figure 3, and Bonarius et al, 1998a). This suggests that 

ammonia-resistant cells can be engineered by the overexpression of glutamate 

dehydrogenase. 

Figure 3 
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Mechanism of ammonia detoxification by cultured mammalian cells as 

elucidated by flux-balancing techniques. (A) Under normal conditions, the flux 

through glutamate dehydrogenase is insignificant relative to aminotransferases. 

(B) Under ammonia-stress, ammonia levels are reduced by converting it and a-

ketoglurate into glutamate, which is subsequently channeled back into the TCA 

cycle by aminotransferases. Intensity of solid lines qualitatively represent 

magnitude of fluxes. 
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Another suggestion for a potential metabolic-engineering site to reduce the 

overflow metabolism of mammalian cells comes from the same above-

mentioned study: the flux from the pyruvate-phospho-enol-pyruvate pool to the 

oxaloacetate-malate pool increases under ammonia-stress (Bonarius et al., 

1998a). This is either due to an increased pyruvate-carboxylase flux (xl8), to a 

decreased malic-enzyme flux (x17), or to a combination of both. Chauvin and 

co-workers (1994) showed that the pyruvate-carboxylase flux increased in 

ammonia-stressed kidney tissue. Further, it appears that at low ammonia levels, 

the pyruvate-carboxylase flux is negligibly small in hybridoma cells (Mancuso 

et al., 1994; Bonarius et al., 1998c). These data suggest that pyruvate 

carboxylase may be important for ammonia-resistant cell lines. Another effect 

of high pyruvate-carboxylase levels could be the reduction of glucose overflow 

metabolism (and thus lactate production), as this pathway channels pyruvate 

into the TCA cycle (R. Wagner, personal recommendation). 

The effect of culture conditions on intracellular fluxes has been estimated with 

balancing techniques, even for underdetermined metabolic subnetworks. For 

instance, it has been shown that the TCA-cycle activity is low under oxygen-

limiting conditions (Zupke et al., 1995). This is in agreement with the low 

pyruvate-oxidation activity found in other cultured cell lines (Hornsby and Gill, 

1981). Recently, we demonstrated by metabolite-balancing techniques that the 

pentose-shunt flux (x2) in hybridoma cells increases after addition of a growth-

stimulating component (Bonarius et al., 1996), which is in agreement with the 

biochemical function of the oxidative branch of the shunt to supply NADPH for 

anabolic processes. These results suggest that mass-balancing techniques are 

useful for analyzing effects of toxic compounds on cellular physiology, even if 

the metabolic network under investigation is underdetermined. 

OUTLOOK 

In the near future, metabolite-balancing techniques may be used to study other 

areas of mammalian-cell metabolism than energy (Savinell and Palsson, 1992), 

glucose (Xie and Wang, 1994b; Zupke et al., 1995; Bonarius et al., 1996) or 
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amino-acid (Xie and Wang, 1994b; Bonarius et al., 1998a) metabolism. A few 

studies of those committed to the optimization of the production of 

glycoproteins by mammalian cells have already proceeded into this direction. 

Bibila and Flickinger (1992) used a structured model to study the pathway 

dynamics of antibody synthesis, and suggested that the antibody assembly in 

the ER may be rate-limiting in rapidly growing hybridoma cells. Recently, 

Umana and Bailey (1997) used mass-balance techniques to predict the fraction 

of bi-antennary glycoforms of a glycoprotein product produced by CHO cells, 

as a function of/S-N-acetyl glucosaminyl transferase III activity. Whiteley et al. 

(1997) described a model to quantify the effect of coexpression of the 

chaperone BiP on the secretion of IgG in insect cells. These studies consider 

only a fraction of the secretory pathway. When more quantitative in vivo data 

are available, it may be possible to determine rate-limiting steps in protein 

synthesis of mammalian cells by mass-balance techniques. 

CONCLUSION 

Flux-analysis techniques 

It has been demonstrated that an important fraction of fluxes of large metabolic 

networks such as mammalian-cell metabolism can be estimated with only mass-

balancing techniques. For the determination of fluxes in cyclic pathways 

isotopic-tracer experiments remain indispensable. However, relative trends in 

intracellular metabolic fluxes upon changes in extracellular conditions can be 

determined solely by mass-balancing techniques, even if the metabolic network 

is principally underdetermined. The combination of flux-balance models and 

isotopic-tracer studies will be the future tool of quantitative flux analysis of 

complex metabolic networks. 
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Chapter 9 

Flux analysis of mammalian-cell culture 

Stoichiometric and flux analyses have been shown crucial for the optimization 

of cell-culture processes and in particular for the rational design of culture 

media. Flux-balancing techniques have led to almost a 2-log improvement of 

space-time yields and a significant reduction of waste-product secretion of 

mammalian cells. In addition, metabolic-flux analysis has been used to suggest 

genetic-engineering sites for the reduction of overflow metabolism. In the near 

future it will become clear whether the metabolism of mammalian cells can 

indeed be engineered into an efficient network for glycoprotein production. 
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Symbol description 
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D 

DCW 

F/ 
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GC-MS 

H 

he 

Kj 

K2 

ifc 

k,a 

k,c°2a 

k,02a 

Concentration (mol.l"1) 

Initial concentration of A (in Chapter 2, A = C02 + HC03") 

of the ingoing medium (mol.l"1) 

Extracellular concentration of metabolite A (M) 

Concentration of A in the ingoing medium (M) 

Intracellular concentration of metabolite A (mol.cell"1) 
13C02 or 14C02 production rate from a z'-13C- or /-14C-glucose 

experiment, respectively. (mol.r'.d"1) 

Volumetric carbon dioxide evolution rate (mol.r'.d'1) 

Continuous stirred tank reactor (-) 

Fractional labeling of/'-C-lactate from a /-13C-glucose 

experiment 

Dilution rate 

Dry cell weight 

Medium feed rate (ingoing) 

Medium feed rate (outgoing) 

Gas flow rate (ingoing) 

Gas flow rate (outgoing) 

Gas chromatography mass spectrometry 

Henry's constant 

Test function 

Reaction constant for C02/HC03" equilibrium 

Reaction constant for the HC037C03
2" equilibrium 

Number of relevant elements 

Mass transfer coefficient 

Mass transfer coefficient for C02 

Mass transfer coefficient for 0 2 

Hypothetical amount of C02 that evaporates from the medium 

tank (mol.l"1) 

(-) 

(d-1) 

(g.cell-1) 

(Id"1) 

(Id"1) 

(mol.d-1) 

(mol.d-1) 

(-) 

(Pa-Lmol"1) 

(-) 

(mol.l1) 

(mol.l"1) 

(-) 

(1-d-1) 
(d-1) 

(d-1) 



List of Symbols 

M; Molecular weight of molecule i (g.mol"1) 

m Number of metabolic reactions = number of fluxes (-) 

n Number of metabolites (-) 

n,) Concentration of dead cells (cell.l"1) 

riy Concentration of viable cells (cell.l"1) 

OUR Volumetric oxygen uptake rate (mol.r'd"1) 

pH pH in the bioreactor (-) 

pH1 pH in the feed (ingoing medium) (-) 

pFP Theoretical pH of the feed corrected by e (-) 

PPS Fraction of consumed glucose that is channeled through the 

pentose phosphate pathway (-) 

P Pressure (Pa) 

q Metabolic quotient (mol/cells.d) 

R Molar gas constant (J/mol.K) 

RQ Respiration quotient (-) 

r Ratio of 13C-satellite proton-resonance intensities to the non-

coupled intensities in a 'H-NMR spectrum of 3-C-lactate (-) 

rncA Net catabolic rate of metabolite A (mol.ceir'.d"') 

rA Extracel lular p roduct ion rate of metaboli te A (mol.ceir ' .d"1) 

xx A Intracellular production rate of metabolite A (mol.ceir'.d'1) 

rE A Extracellular production rate o f metabolite A (mol.ceir ' .d"1) 

rtot)A Total production rate of metabolite A (mol.ceir ' .d"1) 

T Temperature (K) 

V) Liquid reactor volume (1) 

Vg Headspace volume (1) 

vm, vr Synthesis rate o fmRNA and rRNA, respectively (mol.ceir'.d"') 

x Molar fraction (-) 

XCOJ0 Fraction of C 0 2 in the off-gas (-) 

Xj Metabol ic flux i (mol (product).ceir'.d') 

Xj Metabolic flux through reaction7 (mol.ceir'.d"') 

oij Stoichiometric coefficient of metabolite in reaction/ (-) 

B Fraction of residual concentration of A (here C 0 2 + HC03") of 

the ingoing medium as determined by its pH (-) 
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List of Symbols 

E Ratio of buffer capacities (-) 

H Growth rate (d'1) 

0A3 Stoichiometric coefficient of metabolite B 

for the biosynthesis of metabolite A (mol.mol"1) 

Matrices and vectors 

A Stoichiometric matrix (m x n) (-) 

[A>B]j Atom mapping matrix that contains the carbon stoichiometry of 

reaction i from substrate A to product B (-) 

E (kxri) Elemental composition matrix (-) 

r Production rate vector (1 xw) (mol.ceir'.d"1) 

rE Extracellular production rate vector (1 x « ) (mol.ceir'.d'1) 

1-j Intracellular production rate vector ( l x n ) (mol.ceir'.d"1) 

r,ot Total production rate vector (1 x « ) (mol.ceir'.d"1) 

rSA Production rate vector (1 x o) of metabolites of which the 

fractional labeling has been determined (mol.ceir'.d'1) 

SAVA Specific activity vector of metabolite A (-) 

SAM Specific activity matrix (o x n) (-) 

x Metabolic flux vector (1 x m) (mol product.ceir'.d"1) 

e {k x 1) Residual vector (mol.ceir'.d"1) 

Metabolites 

AAA Acetoacetate, ACoA acetyl-CoA, AKG a-ketoglutarate, ATP adenosine 

triphosphate, CHOL cholesterol, CIT citrate, DESM desmosterol, E4P erythrose-

4-phosphate, FA Fatty acids, FAD flavin adenine dinucleotide, FAD+ oxidized 

form of FAD, FADH2 reduced form of FAD, GAP glyceraldehyde 3-phosphate, 

GLC glucose, GTP guanosine triphosphate, G6P glucose-6-phosphate, G3P 3-

Phospho-glycerate, LAC lactate, MAB monoclonal antibody, MAL malate, 

NAD(P) nicotinamide adenine nucleotide (phosphate), NAD(P)+ oxidized form of 
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List of Symbols 

NAD(P), NAD(P)H reduced form of NAD(P), OAA oxalo acetate, OMA malate 

plus oxaloactetate, PEP phosphoenolpyruvate, PMS phenazine methosulphate, 

PYR pyruvate, R5P ribose-5-phosphate, P5C pyrroline-5-carboxylate, Ru5P 

ribulose-5-phosphate, S7P sedoheptulose-7-phosphate, SuCoA Succinyl coen­

zyme A, TC total carbohydrates, THF tetrahydrofolate, TP total protein, X5P 

xylulose-5-phosphate. 
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Abstract 

In the biopharmaceutical industry mammalian cells are cultivated for the 
production of recombinant glycoproteins (for example EPO, tPA, and the blood 
factors FVII and FVIII) vaccines, and monoclonal antibodies. In contrast to 
other expression systems, such as prokaryotes or yeasts, mammalian cells are 
able to properly glycosylate and correctly fold therapeutic proteins. Therefore, 
in many cases, mammalian cells are the only possible production system for 
(recombinant) therapeutics. 

Cultivated mammalian cells are similar to tumor cells: in contrast to normal 
cells in mammalian tissue they can proliferate continuously and are not 
differentiated to fulfill tissue-specific tasks. Cultivated cells and tumor cells 
also share other characteristics, for example parts of their metabolism. In 
general the metabolism of continuously-proliferating cells is not or only poorly 
regulated and controlled, and therefore inefficient. Cultivated mammalian cells 
show a high metabolic activity, and waste large amounts of nutrients and 
energy. Instead of tuning the consumption of glucose and certain amino acids to 
the requirements for growth, these nutrients are taken up whenever they are 
available. As a result waste products such as lactic acid, carbon dioxide, and 
bicarbonate accumulate, acidify the culture medium, and inhibit cell growth and 
protein production. 

Another shared characteristic of tumor cells and cultured mammalian cells is 
the production of ammonia. Mammals normally produce urea, a waste product 
of the endogenous metabolism, in the liver. Mammalian cells cultivated for 
glycoprotein production, do not possess the machinery for the production of 
urea. Instead, they secrete ammonia into the culture medium, which 
accumulates at toxic levels. 

It is thus apparent that the metabolism of mammalian cells is suboptimal for an 
efficient energy- and nutrient supply. To quantify the exact nutrient 
requirements for growth and energy, and to investigate which metabolic 
pathways should be optimized to reduce waste-product synthesis to increase 
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production yields, the intracellular reaction rates, i.e. "the metabolic fluxes", 
have to be determined. Intracellular fluxes can be quantified by incubating cells 
with isotope-labeled nutrients and measurement of the isotope distributions of 
end products. This method however, (i) has practical limitations since it is 
limited to the analysis of single metabolic pathways for each tracer experiment, 
(ii) is expensive, and (iii) is not feasible at an industrial scale. An alternative 
method is based on solving the linear set of equations that is determined by the 
mass balances of the relevant metabolites. In this dissertation this novel method, 
which is referred to as "metabolic-flux balancing", is applied to mammalian-
cell culture. 

Metabolic-flux balancing techniques are based on relatively 
_ _$ t ^V^ simple linear algebra. If the stoichiometry of the relevant 

intracellular reactions and the cellular composition are known, 
and the uptake- and secretion rates of the relevant metabolites have been 
measured, the reaction rates can be determined using the appropriate mass-
balance equations. Together, the mass-balance equations form a set of linear 
equations that can be solved by linear regression. However, in the metabolism 
of the cell there are a number of cyclic pathways which are linearly dependent 
within the set of mass-balance equations, which causes the metabolic network 
to be underdetermined. This is the central problem in this dissertation and is 
explained in detail in Chapter 1. 

COi In most cyclic metabolic pathways certain co-metabolites are 
consumed or produced. For example, carbon dioxide, is a waste 

product of the TCA- and pentose cycle. The carbon-dioxide 

production rate is therefore an indication for the activity of the 
fluxes through these essential metabolic cycles. However, in mammalian-cell 
culture the measurement of the carbon-dioxide production rate is hampered by 
the use of bicarbonate as a buffer system and the accumulation carbon dioxide 
in the culture medium. In Chapter 2 a solution to this problem is given and a 
method is developed for the determination of the carbon-dioxide production 
rate in bicarbonate-buffered bioreactor systems. 
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In Chapter 3 it is shown that, if this method is used, it is 

possible to close the mass balance for total carbon in 

mammalian-cell culture. Together with the balance for 

nitrogen it is now possible to demonstrate statistically that there are no gross 

errors in the measurement data and there are not missing any relevant 

metabolites. Now, the metabolic-flux analysis can start 

-©* 
- & > 

Unfortunately, the intracellular fluxes cannot be determined 

solely by flux-balancing techniques even when the mass 

—J balances of co-metabolites such as carbon dioxide are 

included in the metabolic network. This is both a result of the fact that mass 

balances of particular co-metabolites cannot be closed (e.g. the mass balance of 

ATP), and of the fact that co-metabolites are produced or consumed in more 

than one cyclic pathway. Such cyclic pathways remain therefore linearly 

dependent, and additional information is required to quantify the flows through 

these cycles. A solution is proposed in Chapter 4. It is assumed that hybridoma 

cells are efficient with respect to their metabolism (while taking into account 

the "inefficient" production and uptake rates mentioned above), and minimize 

the flow through the metabolic network. Within the set of all admissible 

solutions, the flux distribution with the minimum sum of squares is chosen. 

This assumption is referred to as the "minimum-norm constraint". The method 

is applied to hybridoma cells under both optimal and suboptimal conditions. 

°C In Chapter 5 experiments are described that are conducted to 

„ */7*\+*C-C test the assumption mentioned above. The metabolic fluxes in 

^ - ^ the TCA cycle, the pentose-phosphate cycle, and the malate 

shunt are determined by 13C-tracer experiments. Hybridoma cells are cultured 

on a small scale and , 3C-labeled glucose is added to the culture medium. 

Subsequently, the isotopic distribution of lactate is determined by NMR 

spectrometry and the fraction of 13C in carbon dioxide is measured by mass 

spectrometry. It appears that the actual fluxes in the mentioned cycles are 

significantly different from the fluxes estimated using the minimum-norm 

constraint. 
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In addition, it appears that rapidly proliferating hybridoma cells have a higher 

pentose-shunt activity than previously assumed. The reason for this high 

activity is probably the high need for NADPH (which is required for biomass 

synthesis). This also means that a larger part of glucose is consumed more 

efficiently than previously assumed on the basis of the amount of produced 

lactate alone. This allows to estimate the optimal amount of glucose that cells 

should consume per gram produced biomass. 

Jf!l Kf"""'-̂  In Chapter 6 other theoretical methods to estimate metabolic 

—^vO/"*" 1 \ / fluxes in underdetermined networks are used to estimate 

NAM fluxes in cyclic pathways. Linear optimization techniques 

are applied to determine solutions that are optimal with respect to particular 

"metabolic objectives". Various metabolic strategies that may be relevant for 

hybridoma cells are translated into so-called "linear objective functions" and 

used to estimate the metabolic flux distribution. It appears that the biochemical 

objective "maximize NADH-producing fluxes" gives flux values that 

approximate the values determined experimentally by isotopic-tracer studies 

(Chapter 5). It is speculated that this objective is in agreement with the 

uncontrolled oxidation of any available nutrients by continuously-growing 

mammalian cells, regardless of the need for ATP or NADH. 

NADU 

Under certain (extreme) culture conditions cells have to 
adapt their metabolism to the stress to which they are 

NWDPH 

exposed. For example, cells in a bioreactor can be limited in 

oxygen supply, or certain toxic components can force the cell to redirect the 

fluxes into a particular direction. In Chapter 7 several experiments are described 

in which hybridoma cells are artificially stressed. It is shown that at oxygen 

limitation certain NAD(P)H-producing fluxes decrease, most likely to restore 

the disturbed NAD(P)+/NADPH balance. Under oxidative stress the opposite 

occurs: NAD(P)H-producing fluxes increase. Other fluxes which -strictly 

speaken- cannot be determined by balancing techniques alone are subsequently 

estimated with "physiologically meaningful" objective functions. These 

objectives are associated with the metabolic strategy to adapt to the relevant 
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stress. For example, at oxygen limitation the objective function "minimize 

NADH-producing fluxes" applies. 

^5 Ammonia is a waste product that is toxic for mammalian cells 

—*£jV-^ at relatively low concentrations and it limits the cell density in 

NHs bioreactors. In Chapter 8 it is shown by flux-balancing 

techniques that hybridoma cells can reduce ammonia levels by converting 

ammonia and a-ketoglutarate into glutamate (a reaction catalyzed by the 

enzyme glutamate dehydrogenase). This suggests that overexpression of this 

enzyme may allow mammalian cells to survive higher concentrations of 

ammonia, which potentially enables high-cell density cultures. 

•/P^\-^ It has been demonstrated that an important fraction of fluxes 

x.-oyx^-as of large metabolic networks such as mammalian-cell 

metabolism can be estimated with only mass-balancing 

techniques. For the determination of fluxes in cyclic pathways isotopic-tracer 

experiments remain indispensable. However, relative trends in intracellular 

metabolic fluxes upon changes in extracellular conditions can be determined 

solely by mass-balancing techniques even if the metabolic network is 

principally underdetermined. The combination of flux-balance models and 

isotopic-tracer studies, of which an example is given in Chapter 5, will be the 

future tool of quantitative flux analysis of complex metabolic networks. 
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In de biofarmaceutische industrie worden dierlijke cellen gekweekt als 
produktiesystemen voor recombinante eiwitten (zoals bijvoorbeeld EPO, tPA, 
en de bloedfactoren FVII and FVIII), vaccins, en monoclonale antilichamen. 
Dierlijke cellen zijn de enige cellen die geschikt zijn als expressiesysteem van 
veel therapeutische eiwitten, omdat ze in staat zijn deze correct te vouwen en te 
glycosileren. In tegenstelling tot normale cellen in dierlijk weefsel hebben 
gekweekte dierlijke cellen de eigenschap dat ze niet gedifferentieerd zijn en 
zich ongeremd kunnen vermenigvuldigen. Dit maakt ze sterk verwant aan 
tumorcellen. Ook wat betreft de stofwisseling komen gekweekte cellen en 
tumorcellen sterk overeen. In het algemeen kan worden gesteld dat de 
stofwisseling van continu groeiende cellen slecht gecontroleerd is: er is een 
hoge metabole activititeit en een grote verkwisting van energie en nutrienten. 
De opname van suiker en verschillende aminozuren is niet afgestemd op de 
behoefte voor groei en energie. Daardoor worden er onnodig afvalstoffen 
opgehoopt, zoals melkzuur, kooldioxide en koolzuur, die het kweekmedium 
verzuren. Bovendien zijn beide celtypen niet in staat om ureum (een 
afvalprodukt van het stikstofmetabolisme) te maken, een functie die in 
zoogdieren normaal door levercellen wordt vervuld. Gevolg is dat ze 
ammoniak uitscheiden, dat ophoopt tot toxische concentraties. 

Uit een en ander is duidelijk dat de stofwisseling van gecultiveerde dierlijke 
cellen verre van optimaal is om ze te gebruiken als efficient produktiesysteem 
van eiwitten. Optimalisatie van de stofwisseling van dierlijke cellen is daarom 
een interessante optie om de opbrengst te verhogen en de produktiekosten te 
verlagen. Het is daarvoor gewenst om de stofwisseling nader te analyseren en 
eventuele knelpunten op te sporen. Hiervoor dienen de relevante intracellulaire 
omzettingssnelheden, oftewel "de metabole fluxen", te worden bepaald. 
Intracellulaire metabole fluxen kunnen worden bepaald door cellen met isotoop-
gelabelde substraten te incuberen en de isotopenverdeling van eindprodukten te 
meten. Deze methode is echter (i) onpraktisch omdat slecht een metabolische 
route per tracerexperiment kan worden geanalyseerd, (ii) zeer duur en (iii) niet 
toepasbaar op industriele schaal. Een alternatieve methode is gebaseerd op het 
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oplossen van een set van lineaire vergelijkingen die de massabalansen van de 
verschillende metabolieten voorstellen. In dit proefschrift wordt deze nieuwe 
methode toegepast op dierlijke celkweek. 

/P^\ >. Intracellulaire metabole fluxen kunnen worden berekend als de 
vi^y extracellulaire produktie- en consumptie-snelheden van de 

relevante metabolieten en de reactiestoichiometrie (de molaire verhouding 
tussen de substraten en produkten bij stofwisselingsreacties) bekend zijn. 
Echter, in de stofwisseling van dierlijke cellen komt een aantal cyclische 
metabole routes voor waardoor het stelsel van vergelijkingen niet meer 
oplosbaar is; hoewel er evenveel 'vergelijkingen' (massabalansen voor de 
metabolieten) als 'onbekenden' (metabole fluxen) zijn, kunnen metabole fluxen 
in cyclische routes niet worden berekend omdat ze lineair afhankelijk zijn. Dit 
is de centrale probleemstelling van dit proefschrift en wordt nader uitgelegd in 
Hoofdstuk 1. Bovendien wordt opgemerkt dat, hoewel er geen unieke oplossing 
is voor de intracellulaire fluxen, er wel een oplossingsgebied is waarbinnen alle 
toegelaten oplossingen vallen. 

J ^ In alle cyclische stofwisselingsroutes worden co-metabolieten 
geproduceerd of opgenomen. Zo is bijvoorbeeld kooldioxide 

°i (en koolzuur) een afvalprodukt van de citroenzuur- en 
pentosephosphaatcyclus. Door de kooldioxideproduktiesnelheid te bepalen zou 
het daarom mogelijk kunnen zijn om de stroom door deze essentiele cyclische 
routes te schatten. Echter, het was tot voor kort niet mogelijk om de 
kooldioxideproduktie in dierlijke celkweek te bepalen, omdat in het 
kweekmedium kooldioxide en koolzuur worden gebruikt als buffersysteem om 
de zuurtegraad constant te houden. In hoofdstuk 2 wordt hiervoor een oplossing 
gegeven: door massabalansen op te stellen voor zowel kooldioxide (in de 
gasfase van bioreaktor) als kooldioxide en koolzuur (in de vloeistoffase) kon 
een methode worden ontwikkeld om de kooldioxide produktiesnelheid te 
bepalen. 
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In hoofdstuk 3 wordt vervolgens aangetoond dat deze methode 
f j(F^\-^ <y correct is: de totale koolstofbalans voor gekweekte dierlijke 
* cellen is sluitend als deze methode wordt toegepast. Tevens 
wordt in combinatie met de stikstofbalans een statische analyse toegepast 
waarmee wordt laten zien dat er geen grove meetfouten in de metabolieten-
analyse voorkomen, en dat alle relevante metabolieten zjin meegenomen. 
Nu kan de fluxanalyse beginnen.... 

y ^ Y » De intracellulaire fluxen kunnen echter nog niet worden 
^ " ^ / T N ^ . bepaald, ook als de kooldioxide-produktiesnelheid bekend is. 

\^y Dit komt omdat kooldioxide, net zoals andere co-
metabolieten, niet slechts in een maar in meerdere cyclische routes wordt 
geproduceerd. Fluxen in verschillende cyclische metabole routes die dezelfde 
co-metabolieten produceren, blijven daardoor lineair afhankelijk. Er is dus meer 
informatie nodig om de werkelijke metabole fluxverdeling te berekenen uit het 
toegelaten oplossingsgebied dat bepaald wordt door de massabalansen. In 
hoofdstuk 4 wordt een enigszins kunstmatige oplossing voorgesteld: de 
oplossing waarvoor geldt dat de som van het kwadraat van de fluxen het kleinst 
is, wordt geselecteerd. Deze methode gaat van de aanname uit dat fluxen in 
cyclische routes de meest efficiente weg (met de kleinste netto flux) kiezen. 
Deze methode wordt toegepast op hybridoma cellen onder zowel optimale als 
suboptimale kweekomstandigheden. 

raC De extra aanname uit hoofdstuk 4 blijkt voor de onder-

%GC -^tSY*''*^ z o c n t e hybridomacellen niet te kloppen. In hoofdstuk 5 
worden de fluxen in cyclische routes experimented 

gemeten met 13C-gelabelde substraten. Daar gelabelde substraten zeer kostbaar 
zijn, is om dit experiment uit te voeren een mini-reaktor ontworpen (met een 
volume van 100 ml) waarin de cellen onder condities die vergelijkbaar zijn met 
industriele omstandigheden kunnen worden gekweekt. De hoeveelheid 13C in 
koolzuurgas wordt gemeten met massa spectrometrie, en de 13C in melkzuur 
wordt geanalyseerd met NMR spectrometrie. Door middel van een algoritme is 
de informatie van massabalansen en van het isotopenexperiment 
samengevoegd, waardoor het mogelijk is om uit een enkel 13C-experiment 
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fluxen uit drie verschillende cyclische routes te bepalen. Dit maakt de 
onpraktische isotoop-experimenten eenvoudiger en minder foutgevoelig. De in 
hoofdstuk 2 ontwikkelde methode om de kooldioxideproduktiesnelheid te 
bepalen bleek overigens essentieel te zijn voor het correct berekenen van fluxen 
met behulp van het genoemde algoritme. 

Het blijkt dat snelgroeiende hybridoma cellen een hogere activiteit van de 
pentose-phosphate cyclus hebben dan algemeen verondersteld werd. 
Aangenomen dat deze activiteit als doel heeft de eel van NADPH te voorzien 
(een co-metaboliet noodzakelijk voor biosynthese van verschillende 
macromoleculen), betekent dit onder andere dat tenminste een deel van de 
suikeropname efficient gebruikt wordt, ookal wordt er uiteindelijk het 
afvalproduct melkzuur gemaakt. 

/ ^N. t"C™* """ Omdat met behulp van de theoretische methode, 
— K W / ^ I > / voorgesteld in hoofdstuk 4, de fluxen in cyclische routes 

MM niet correct geschat kunnen werden, worden enkele andere 
methoden beproefd. Deze zijn gebaseerd op lineaire programmeringstechnie-
ken, ook wel 'optimaleringstechnieken' genoemd. (Het principe van deze 
methode is gevisualiseerd in Figuur 3 van Hoofstuk 1). Hierbij wordt aan een 
onderbepaald stelsel vergelijkingen een bepaalde doelfunctie toegevoegd, 
waarmee uit het toegelaten oplossingsgebied de voor die doelfunctie optimale 
oplossing berekend wordt. Verschillende doelfuncties die biochemisch gezien 
relevant lijken voor hybridomacellen zijn vervolgens gebruikt om fluxen in 
cyclische routes te schatten. Het blijkt dat de doelfunctie "maximaliseer NADH-
producerende fluxen" het best de experimenteel gevonden fluxen (uit Hoofd­
stuk 5) benadert. Deze doelfunctie komt overeen met het feit dat continu-
groeiende dierlijke cellen op ongecontroleerde wijze metabolieten verbranden, 
ongeacht de behoefte voor energie. 

NflDH Soms veranderen kweekcondities zodanig dat de metabole 
strategie van de cellen aangepast moet worden. In de dierlijke 

•wwn 

NflDPH celkweek kan bijvoorbeeld zuurstoflimitatie optreden. Ook 
kunnen bepaalde toxische stoffen de eel ertoe dwingen de stofwisselings-
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strategic aan te passen. In hoofdstuk 7 worden verschillende kweken 
beschreven waarbij de cellen aan bepaalde vormen van stress worden 
blootgesteld. Het blijkt dat bij zuurstoflimitatie de NAD(P)H-producerende 
fluxen relatief hoog zijn, terwijl het omgekeerde gebeurt bij hoge zuurstof-
spanning. De fluxen die strikt genomen niet met behulp van massabalansen 
kunnen worden bepaald, worden vervolgens geschat met doelfuncties die 
overeenkomen met de strategie die de cellen nodig hebben om zich aan de 
opgelegde stress aan te passen. Zo past bij zuurstoflimitatie bijvoorbeeld de 
doelfunctie "minimaliseer NADH-producerende reacties". 

J*j» Ammonia is een afvalprodukt van de stofwisseling dat bij voor-

—\Cy~^ celkweek-gangbare concentraties giftig is, en verdere groei remt. 
NHa In hoofdstuk 8 wordt met behulp van de massabalansen aange-

toond dat hybridomacellen ammonia detoxificeren door het met a-ketoglutaraat 
te laten reageren tot glutamaat (een reactie die wordt gecatalyseerd door het 
enzym glutamaatdehydrogenase). Dit betekent dat het mogelijk zou zijn om 
dierlijke cellen in cultuurmedium met hogere concentraties ammonia te laten 
overleven, als glutamaatdehydrogenase tot over-expressie wordt gebracht. 
Hierdoor zijn theoretisch celkweken met een hogere celdichtheid mogelijk. 

-©* ^-5\_^. Dit proefschrift laat zien dat een groot deel van de metabole 
x,-o7fc~a5 fluxen in dierlijke celkweek kan worden geschat met behulp van 

massabalansen. Om fluxen in cyclische stofwisselingsroutes the 
bepalen blijven experimenten met isotopisch gelabelde substraten echter 
onontbeerlijk. Relatieve trends in intracellulaire fluxen kunnen wel worden 
aangetoond, zelfs als het netwerk in principe onderbepaald is. De combinatie 
van massabalansen en isotoopexperimenten, waarvan een voorbeeld is gegeven 
in hoofdstuk 5, is de methode van de toekomst om fluxen in complexe 
stofwisselingssytemen te kwantificeren. 
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