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STELLWGEN 

1. Verandering van huisvestingscondities kan de timing van de pre-ovulatiore 

Luteiniserend Hormoon (LH) piek bij het varken bdnvloeden. (Dit proefschxift) 

2. Endogene Opioiide Peptiden (EOP) zijn betrokken bij de regulatie van de timing van 

de pre-ovulatoire LH piek. (Dit proefschrift) 

3. Bij studies met naltrexon dient men er rekening mee te houden dat de gevoeligheid 

van varkens voor deze opiaat-receptor antagonist een aanzienlijk individuele variatie 

vertoont. (Dit proefschrift) 

4. Bij het plaatsen van een intracerebroventriculaire canule in dieren die een 

voorhoofdsholte ontwikkelen kan men zich het beste orienteren op het neurocranium 

in plaats van op de externe schedelbeenderen. (Dit proefschrift) 

5. Met transrectale echografie kan naast het moment van ovulatie (Soede et al, 1992) 

ook de folliculaire ontwikkeling nauwkeurig worden bepaald, waarmee deze methode 

een belangrijke bijdrage kan leveren aan onderzoek naar factoren die invloed hebben 

op deze processen bij varkens. (Soede NM, Noordhuizen JPTM, and Kemp B 1992 

The duration of ovulation in pigs, studied by transrectal ultrasonography, is not 

retelated to early embryonic diversity Theriogenology 38 653-666) 

6. The dissociation of peptides with the modified and, more generally, subobtimal 

anchor residue side chains, may explain the presence of empty Major 

Histocompatibility Complex (MHC) class I molecules and free MHC class I heavy 

chains at the cell surface. (Neefjes et al., 1993 European Journal of Immunology 23(4) 

840-845) 

7. Een perfecte beheersing van taal is nog geen garantie voor een goede communicatie 

8. Het eerste axioma van Watzlawick "Men kan met niet be'invloeden", geeft aan dat bij 

proefdierkundig onderzoek het onmogelijk is de proefdieren naief te houden. 



9. Bij de interpretatie van onderzoek is de waarde van "het gemiddelde" weliswaar 

belangrijk doch relatief nietszeggend zonder de waarde van de afzonderlijke 

samenstellende componenten te weten. 

10. Het inkoppen van een voorzet is vaak moeilijker dan op het eerste oog lijkt en hangt 

niet alleen af van de inkopper maar ook van de voorzetter. 

11. Het bezuinigen op onderwijs en gezondheidszorg getuigt van een evengrote 

intelligentie als het afzagen van de tak waar men op zit. In beide gevallen hangt de 

afloop af van de ondergrond waarop men denkt terecht te komen. 

12. Het geven van kleuren aan een kabinet wekt ten onrechte de indruk dat politiek 

kinderspel is. 

13. Men wordt groot door klein te blij ven. 

14. Het begeleiden van studenten is als bakken in Croma : Je moet er even bij blij ven 

door het beste resultaat. 

15. De ironie van het leven: De belangrijkste levenslessen worden gedoceerd door hen die 

zijn overleden. 

16. Met de invoering van het basisonderwijs is de negatieve spiraal van de kwaliteit van 

het totale onderwijsstelsel ingezet. 
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GENERAL INTRODUCTION 

Sexual reproduction is one of the most conserved features during evolution and it is one of 

the most important activities for the survival of animal species. When organisms of a certain 

species don't reproduce, this species will soon be extinct. In general, reproduction appears to 

be as normal and essential as eating and both processes are postponed when survival of the 

organism is threatened e.g. by predators or catastrophes of nature. In reproduction in 

vertebrates it usually takes two to tango, meaning that the eventual production of offspring is 

the result of a complicated interplay between two organisms of different sexes. Since in the 

present thesis attention will be focused on neuro-endocrine processes in reproduction in the 

female gender, this introduction will be restricted to this side of the interplay. 

The Reproductive Axis 

The ability to reproduce depends on the presence of the organs that constitute the 

reproductive axis or hypothalamo-pituitary-gonadal (HPG) axis. The neurones containing the 

decapeptide gonadotropin releasing hormone (GnRH), also known as luteinizing hormone 

releasing hormone (LHRH), are dispersed throughout the ventral forebrain with a majority 

located in the medial preoptic area (MPOA) and mediobasal hypothalamus (MBH) in a 

variety of species (Halasz et ai, 1989; Kraeling and Barb, 1990; Levine et ai, 1991; 

Herbison et ai, 1993; Jarry et al, 1995). Most of these neurones project to the median 

eminence (ME), where GnRH is secreted directly in the pituitary portal circulation (Lehman 

and Karsch, 1993). Subsequently, GnRH selectively stimulates the gonadotrophic cells in the 

anterior pituitary gland to secrete and synthesise the gonadotropins luteinizing hormone (LH) 

and follicle stimulating hormone (FSH)(Clayton and Catt, 1981). Both FSH and LH are 

glycoproteins, that share the same a unit but have a different 13 subunit accounting for the 

biologic difference in hormonal action (Franz, 1988). These gonadotropins affect the gonads 

by promoting cell proliferation, synthesis and secretion of gonadal steroids (oestrogens, 

progesterone and testosterone), gametogenesis and eventually trigger ovulation. The gonadal 

steroids, in turn, exert a feedback at the level of the pituitary and hypothalamus, direct or 

indirect on the gonadotrophic cells and GnRH neurones respectively (Figure 1). 

Oestrus cycle 

The hormonal profiles show periodic changes that are repeated over and over again during 

reproductive life. These menstrual (in humans and non-human primates) or oestrous cycles 

(other mammals), refer to the shedding of uterine endometrium and the accompanying 

bleeding or to the cyclic occurrence of increased activity (oestrum is Greek for "gadfly") 

shown by the female during the period of increased receptivity to the sexual advances of the 
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male (Fink, 1988). These reproductive cycles can be devided in a luteal and follicular phase 

(Figure 2). Roughly, the phase of the cycle from ovulation of the oocyte(s) until menstrual 

bleeding or breakdown of the corpus luteum (remainder of ovarian follicle(s)) is termed the 

luteal or secretory phase. The phase from cessation of menstrual bleeding or breakdown of 

corpus luteum ending with the ovulation of the matured oocyte(s), is termed the follicular or 

proliferative phase (Franz, 1988). 

External 
influences 

| _ P ; **":•;>& LH/FSH 

Figure 1: Schematic representation of the reproductive axis in the female. GnRH(f) is secreted from the 
hypothalamus into the portal blood vessels and stimulates the secretion of the gonadotropic hormones (LH and FSH; 
*) from the pituitary. LHand FSHincrease synthesis and secretion of ovarian steroids (E2J1 and P), which, together 
with several internal and external influences, exert a direct or indirect "positive" and negative feedback on the 
secretion of GnRH, GnRH-receptors ( h4) and/or gonadotropins. 

Pulsatillty of GnRH and Gonadotropin Release 

It is now well established that GnRH is released in rhythmic secretory bursts and that this 

pulsatile pattern of secretion functions as the primary neuro-endocrine determinant of 

pituitary pulsatile LH secretion (Yen et al, 1972; Carmel et al, 1976; Levine et al, 1982). 

Temporal association between GnRH and gonadotropin pulses has been confirmed in a 

variety of species (Levine et al, 1985; Pau et al, 1986; Karsch et al, 1987; Urbanski et al, 

1988), though less compelling for FSH than for LH. The physiological mechanism of the 

pulsatile pattern of gonadotropin secretion was discovered by Yen et al. and his group (1972). 
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They have reported data indicating that the pulsatile release of endogenous GnRH must be a 

consequence of a synchronous discharge of GnRH containing neurones effected by some 

neural signal generator or oscillator, referred to as the "GnRH pulse generator" (Yen et al, 

1972). Furthermore, the physiological importance of the pulsatile GnRH secretion has been 

shown by several groups (Yen et al, 1972; Santoro et al, 1988; Levine et al, 1991; 

Rossmanith, 1991; Kotsuji et al, 1992). They have reported that qualitative and quantitative 

differences in the pulsatile pattern, as observed between different phases of the cycle and 

between subjects with and without ovarian function, are essential for an accurate regulation of 

all kinds of events determining female fertility. For example, the number of GnRH receptors 

on and the LH secretion from pituitary gonadotropic cells are decreased after continuous 

infusion of GnRH, but increased after intermittent administration of GnRH (Pickering and 

Fink, 1976; De Koning et al, 1978). Thus, pulsatile secretion of GnRH can lead to a "self-

priming" effect of GnRH, which appears to be necessary for induction of the preovulatory LH 

surge. 

The pulsatile pattern of GnRH and LH secretion, reflected by frequency and amplitude of 

pulses, changes during the oestrous and the menstrual cycle. During the luteal phase, pulses are 

of low frequency and high amplitude. This pattern changes to one of high frequency and low 

amplitude pulses at the start of the follicular phase. At the end of the follicular phase, pulses of 

high frequency and high amplitude preceed and constitute the preovulatory LH surge, that induces 

ovulation (Genazzani et al., 1992). These dynamics of LH secretion are mainly determined by the 

hypothalamic GnRH pulse generator (Knobil, 1990; Veldhuis, 1990). However, there is some 

evidence that the pituitary LH response to GnRH changes during the oestrous and the menstrual 

cycle (Apfelbaum, 1981; Rossmanith, 1991). 

Gonadal Steroids in Regulating Pulsatile GnRH and LH Secretion 

The changes in the pulsatile GnRH and LH secretion during the oestrous cycle are, amongst 

others, regulated by the gonadal steroids progesterone (P) and 1713-oestradiol (E2B) through a 

feedback mechanism. During the luteal phase, P is produced in large amounts by the corpus 

luteum, with very low production of E2I3 and androgens (Franz, 1988). The major effect of P 

is decreasing the LH pulse frequency by decreasing the GnRH pulse frequency (Bouchard et 

al, 1988; Couzinet and Schaison, 1993). The high LH pulse amplitude during the luteal 

phase is thought to be related to the low GnRH pulse frequency at the level of the 

hypothalamus. However, Couzinet and Schaison(1993) speculate that P might also increase 

LH release at the pituitary level. The significance of the very low concentration of E2I3 and 

androgens under these conditions are not understood. The decrease of P from luteal tissue at 

the end of the luteal phase leading to the start of the follicular phase coincided with an 
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Figure 2 Profiles of the concentrations (mean ± SEM) of the pituitary hormones LH, FSH, PRL and the ovarian 

steroids E2fi and P during the follicular and luteal phase of the oestrus cycles of 19 female pigs (modified after 

Helmond, FA., unpublished observations) 
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increase in pituitary FSH secretion which induces the development of ovarian follicles for the 

next cycle and stimulates the biosynthesis of E213 in the steroid-producing cells of the ovarian 

follicles (Franz, 1985; Bouchard et ai, 1988). E2B is reported to have both stimulatory and 

inhibitory actions on the GnRH and gonadotropin secretion, with FSH having a higher 

sensitivity for E2B than LH (Couzinet and Schaison, 1993). In early and mid follicular phase, 

E2B exerts a negative feedback by inhibiting the LH pulse frequency, reducing multi-unit 

activity in the mediobasal hypothalamus, which is thought to be part of the "GnRH pulse 

generator" (Kesner et ai, 1987; Tanaka et ai, 1992; O' Byrne et ai, 1993). However, other 

studies also suggest a pituitary site of action for the negative feedback of oestradiol by 

blocking LH and FSH secretion (March et ai, 1981; Knobil and Hotchkiss, 1988). 

During late follicular phase, E2B switches to a "positive feedback" which is mainly exerted at 

the level of the pituitary as demonstrated by Knobil and Hotchkiss (1988) in ovariectomized 

monkeys with hypothalamic lesions. In vitro studies of rat pituitary cells in culture 

demonstrate an increase in the response of the pituitary to GnRH administration following 

administration of E2B (Drouin et al., 1976; Kamel and Krey, 1982). Furthermore, the number 

of GnRH receptors on gonadotropic cells, and transcription and storage of gonadotrophin 

subunits is increased by E2B (March et al., 1981; Bouchard et al., 1988). 

The follicular phase ends with the preovulatory LH surge, which occurs within hours after 

peak levels of E2B have been reached. Studies in a variety of species have shown that a 

preovulatory LH surge can be triggered if plasma levels of E26 are maintained high enough 

for a certain amount of time (dependent on the species) and as long as GnRH is present 

(Knobil et al., 1980; Fink, 1988; Karsch et al., 1992). Other studies have demonstrated that 

plasma P and 170H-P start to increase 12 h before a detectable rise in LH in women, and 6-

12 h before a mid-cycle rise in LH in monkeys, which might suggest that progesterone is 

required to establish a preovulatory surge to its full magnitude (Bouchard et al., 1988; 

Mahesh et al., 1996). Such a synergy between the "positive feedback" of P and E2B has also 

been described in vitro (Karsch, 1987). 

The mechanism by which gonadal steroids exert their feedback on the level of the 

hypothalamus is still subject of many studies. Both P and E2B do not seem to affect the 

GnRH secretion by directly inhibiting the GnRH neurones in the hypothalamic nuclei, since 

these GnRH neurones do not posses receptors for P and E2B (Shivers et al., 1983; Herbison 

and Theodosis, 1992). Although, recently functional receptors for E2B have been found in 

immortalised mouse GnRH neurones (GT1-7 cells; Shen et ai, 1998), it is likely that gonadal 

steroid signals are relayed to GnRH cells by other neurones. Indeed, steroid receptors have 

been found on a variety of neurones, ranging from gamma amino-butyric acid (GABA; 

Fliigge et ai, 1986) and neurotensin neurones (Axelson et ai, 1992; Herbison and Theodosis, 

1992) in the preoptic area, to neuropeptide Y and B-endorphin containing neurones in the 
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arcuate and periarcuate region (Sar et al, 1990; Lloyd et al, 1991; Leshin et al, 1992), the 

norepinephrin-containing systems originating in the brainstem (Heritage et al, 1977; Zhen 

and Gallo, 1995) and the tubero-infundibular dopaminergic neurones (Merchenthaler et al, 

1995). In addition, changes in norepinephrine, dopamine and 13-endorphin secretion have 

been shown to be related to stage of the oestrous cycle (Di Paolo et al, 1988; Levesque et al, 

1989; Lloyd et al, 1991, ThyagaRajan et al, 1995). In particular 13-endorphin, an 

endogenous opioid peptide, is of interest because besides its direct inhibitory action on GnRH 

secreting cells in the periarcuate region (Blank et al, 1985; Horton et al, 1987; Rodriguez 

and Wise, 1989), it may inhibit GnRH secretion through direct actions on norepinephrenic 

neurones in the preoptic area (Mallory et al, 1989; Chang et al, 1993). 

Endogenous Opioid Peptides 

Endogenous opioid peptides (EOP) have long been implicated in the control of female 

reproduction, based on the clinical observation of profound disturbances in the menstrual 

regularity of morphine addicted women. Since Hughes et al. (1975) first described 

endogenous peptides with opiate-like actions, numerous investigations have provided 

evidence for the pivotal role of EOP's in the neuro-endocrine control of gonadotropin 

secretion in a variety of animals (Barb et al, 1985; Nanda et al, 1991; Currie et al, 1992; 

Aurich et al, 1995) and humans (Genazzani et al, 1993). Before going into the role of EOP's 

in the regulation of LH and GnRH secretion, the nature and origin of these peptides will be 

described. 

As yet, three major groups of opioid peptides have been identified (Lord et al, 1977; 

Guillemin, 1980; Akil et al, 1984; Yen, 1991): the endorphins (B-endorphin and related 

peptides), the enkephalins (met- and leu-enkephalin and related peptides) and the dynorphins 

(dynorphin A and B and related peptides). B-Endorphin as a 31-amino acid sequence derived 

from the proopiomelanocortin (POMC) precursor (Eipper and Mains, 1980) is considered the 

most important opioid peptide for the neuro-endocrine regulation of reproduction 

(Rossmanith, 1992). The pentapeptides Met- and Leu-enkephalin, originate from 

proenkephalin A (Lazarus et al, 1976; Lowry et al, 1980; Akil et al, 1984), and the 

prodynorphin precursor peptide is cleaved into dynorphin A, dynorphin B (also known as 

rimorphin) and a- and B-neo-endorphin (Akil et al, 1984; Rossier, 1988). All three types of 

EOP's are widespread in the brain, mainly localised in hypothalamic areas. In addition, 

enkephalins and B-endorphin are found in the anterior pituitary and other organs. 

Pharmacological investigations have permitted identification of at least five distinguishable 

opioid receptor types: the u-, e-, 5-, K- and o-receptors (Paterson et al, 1983; Akil et al, 

1984; Ferin et al, 1984; Yen et al, 1991). All EOP's share similar peptide sequences, and 

they may therefore be functionally active at more than one of the distinct receptor types 
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(Rossmanith, 1992). In neuroendocrine processes, opioids thus may operate as 

neurotransmitters or neuromodulators. Since EOP's are locally secreted within the anterior 

pituitary, they may also exert paracrine effects locally (Barkin et al, 1983; Rossmanith, 

1992). 

High densities of opioid receptors are found in a wide variety of nuclei throughout the brain 

(Pfeiffer et al, 1982), and EOP's play a role in the regulation of various vegetative and 

behavioural functions and the neuroendocrine control of hormone release. Opioids have been 

implicated in functions such as pain, temperature perception, hunger and thirst control, sexual 

behaviour and adaptation to different environmental inputs (Guillemin, 1980; Akil et al, 

1984; Grossman, 1988; Rossmanith and Lauritzen, 1991; Armeanu, 1991). In addition, it has 

been observed that endorphins are activated during the response to stress (Akil et al, 1984; 

Bloom, 1980; Grossman et al, 1982; Rivier and Rivest, 1991; Dobson and Smith, 1995), 

defined by Selye (1973) as "a non-specific response of the body to any demand (usually 

noxious) or to any stimulus causing an alteration in homeostatic processes". For example, in 

pigs, it has been shown that tethered housing -a chronic stressor- increases adrenocortical 

sensitivity to ACTH, its steroidogenic capacity and plasma concentrations of Cortisol and 

prolactin (PRL; Janssens, 1994; Janssens et al, 1994; Janssens et al, 1995a). Furthermore, 

tethered housing increases endogenous opioid activity (Janssens et al, 1995b) and the number 

of u-opioid receptors in the brain (Zanella et al, 1996). In addition, tethered housing leads to 

opioid dependent stereotyped behaviour (Cronin, 1985; Schouten en Wiepkema, 1991), with 

a negative correlation between both u and K receptor densities and duration of stereotypies 

(Zanella et al, 1996). 

Opioidergic Control of Gonadotropin Release During The Oestrus Cycle 

Numerous studies have shown that the expression of endogenous opioid activity plays a 

pivotal role for gonadal steroids feedback during the oestrous cycle in a variety of species 

(Haynes et al, 1989; Weiland and Wise, 1990; Schwarz and Pohl, 1994; Simpkins, 1994). As 

ovarian steroid concentration changes during the transition from the follicular to the luteal 

phase, opioid tone is subsequently altered (Lloyd et al, 1991, Thorn et al, 1996). During the 

P dominated luteal phase, EOP's exert a tonic inhibition on LH pulse frequency resulting in 

decreased plasma LH concentration as has been shown in rat (Higuchi and Kawakami, 1982), 

sheep (Montgomery et al. 1985), pig (Barb et al, 1988) and humans (Rossmanith et al, 1989). 

Treatment with the opioid receptor antagonist naloxone or naltrexone during the luteal phase, 

increases plasma LH concentration. The involvement of EOP's in regulating pulsatile LH release 

during the E2B dominated follicular phase is not clear. It seems that EOP's are not involved in the 

negative feedback of E2I3 on the pulse amplitude and mean plasma concentration of LH during the 

early follicular phase. However, during the late follicular phase and the presumed positive 
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feedback of E2/3 increases of these parameters of LH release were found after treatment with 

opioid receptor antagonists in humans (Rossmanith et al, 1989), rats (Piva et al, 1985) and pigs 

(Okrasa et al, 1992). Prolonged opioidergic blockade elicits a markedly enhanced LH pulse 

amplitude but not pulse frequency (Rossmanith et al, 1989). In addition, there is increasing 

evidence that EOP's might play a role in the generation and timing of the preovulatory LH surge 

and oestrus (Massotto et al, 1990; Kraeling et al, 1992; Walsh and Clarke, 1996; Smith and 

Gallo, 1997). Armstrong et al. (1988) reported that chronic administration of morphine (sc) to 

sows for 5 days after weaning delayed the onset of oestrus, and other studies (Ziecik et al, 

1994; Kraeling et al, 1992) reported a delayed preovulatory LH surge in E2C primed OVX 

gilts after iv and ICV morphine treatment with no effect on the height of the surge. 

Aims And Outline Of The Thesis 

LH secretion during the oestrous or menstrual cycle, and the luteal phase in particular, has been 

studied in a variety of species as sheep (Whisnant et al, 1991), human (Fillicori et al, 1986, 

Rossmanith et al, 1990), pig (Okrasa and Tilton, 1992) and primate (Norman et al, 1994). During 

the luteal phase, plasma LH concentration has been shown to be decreased by endogenous opioid 

peptides (EOP's), mediating the negative feedback of progesterone (P; Yang et al, 1988, Barb, et 

al, 1992; Kaynard et al, 1992). However, relatively few data are available on the pattern of 

pulsatile LH release during the E2B dominated follicular phase, in particular with regard to pulse 

frequency, pulse amplitude and timing of the preovulatory LH surge, events that participate in, and 

possibly determine, the timing of ovulation and therefore fertility and success of fertilisation. In 

addition, stressful conditions have been shown to have adverse effects on LH secretion 

(Brann and Mahesh, 1991; Dobson and Smith, 1995) and hormones of the hypothalamus-

pituitary-adrenal (HPA)-axis and EOP's released during stress have been shown to inhibit the 

hypothalamus-pituitary-gonadal (HPG) axis. 

The aim of the present thesis was to gain insight in the neuroendocrine regulation of the LH 

secretion during the follicular phase, and in particular to determine whether EOP's also play a role 

in the pulsatile LH release and the timing of events leading to the preovulatory LH surge and 

oestrus. The female pig was used as experimental animal for a number of reasons. In modern 

intensive pig breeding where tethered housing is common practice, a large percentage of the sow 

population shows reduced fertility and has to be replaced. Insight in the mechanisms underlying 

reduced fertility could contribute to effective pig breeding. Furthermore, in pigs, like in primates 

and humans, opioid modulation of the LH secretion is dependent on the gonadal steroid 

environment which is, although predominantly at the hypothalamic level, also regulated at the 

level of the pituitary (Knobil, 1980). Thus the tethered pig would render an excellent animal 

model for studying the effects of chronic stress, and possible increased opioid activity, on LH 
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secretion during the oestrous cycle at the hypothalamic and pituitary level (Cronin, 1985; 

Schouten en Wiepkema, 1991; Janssens, 1994; Zanella et al, 1996). 

Since it is extremely difficult to determine the transition from the luteal into the follicular phase, 

the oestrous cycles of all animals that were studied during the follicular phase, were synchronised 

using the progesterone agonist altrenogest. 

Before studying the possible effects of EOP's during the follicular phase in detail, it was 

investigated whether a change in housing condition, from life long tethered housing to a loose 

housing system in individual pens, affects the LH pulse characteristics during altrenogest 

treatment, the timing of the preovulatory LH surge and the LH secretion during the following 

oestrous cycle (Chapter II). The change in housing condition appeared to advance the 

preovulatory LH surge and to decrease mean plasma LH concentration, which could not be 

explained with differences in activation of the HPA system. The question arose whether these 

effects could be ascribed to a change in the reactivity of the EOP-system, which has been 

shown to occur in tethered housing (Janssens et al, 1995b; Zanella et al, 1996; Loyens, 

Schouten and Wiegant, unplublished observations). To address this question, we decided to 

use the potent and long acting opioid receptor antagonist naltrexone. This drug had not been 

used in pig before, and therefore we first designed a study with the objective to investigate 

the possible individual variability in the response of the reproductive axis by determining the 

increase in mean plasma LH concentration after intravenous administration of saline or 5 

doses of naltrexone (Chapter III). 

Subsequently, we determined the pulsatile pattern of LH release, and the possible role of EOP's in 

modulating this pattern, during 4 days of the follicular phase in Chapter IV. Furthermore, the 

effect of EOP's on the occurrence of the first day of oestrus was investigated. The results from this 

experiment suggested that EOP's do not inhibit the pulsatile LH secretion as such, but might affect 

the events leading to the timing of oestrus and possibly the preovulatory LH surge. 

A pilot study, described in Chapter V, was designed to investigate changes in the responsivity 

of the pituitary gonadotrophs in vitro to GnRH changes during the follicular phase. In 

addition, the possible role of EOP's therein was studied. 

A novel intracerebroventricular (ICV) cannulation technique for pigs was developed (Chapter 

VI). This technique, was used to treat freely moving intact gilts (nulliparous pigs) with repeated 

ICV injections of naltrexone on multiple days during the follicular phase of the oestrous cycle 

(Chapter VII) to determine whether the shift of oestrus (as found in Chapter IV) or the 

preovulatory LH surge (as found in Chapter II) was a consequence of changing opioid 

activity in the brain. 

In Chapter VIII, the results of the present thesis are summarised and discussed. 
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Abstract 

The effect of housing conditions on the pulsatile LH secretion during the oestrous cycle were 

investigated in stress-adapted sows. Multiparous sows with a history of long term tethered 

housing either remained tethered housed (N=10; TETHER pigs) or were individually loose 

housed (N=12; LOOSE pigs). The oestrous cycles of the pigs were synchronized by 

altrenogest treatment during 21 days (first day following treatment: Day 0). Blood samples 

for hormone determinations were collected with 12 minutes intervals on Days -3, 2, 4 and 19, 

and every 4 hours from Day 4 until the preovulatory LH surge had occurred. 

During Day -3, Day 19 (luteal phase), mean plasma LHwas lower in LOOSE than in 

TETHER animals, but LH pulse frequency and amplitude were not different between housing 

conditions. The preovulatory LH surge and oestrus occurred later in LOOSE than in 

TETHER animals (116 ± 5 vs 91 ± 3 h, respectively 6.7±0.4 vs 5.3 ±0.2 days after 

terminating altrenogest treatment). LH surge height and duration of oestrus were not 

different between housing conditions. During the follicular phase, the LH pulse frequency was 

lower, and pulse amplitude and mean plasma LH were higher on Day 2 than on Day 4. 

Housing condition had no effect on these parameters. 

The present data suggest that a change in housing condition affects LH secretion in pigs with 

a history of tethered housing. Conversely, this suggests that chronic stress leads to alterations 

in the mechanisms regulating LH secretion. 

Introduction 

Reproductive processes, like LH secretion, follicle development and ovulatory activity, are 

influenced by stressful conditions (Dobson and Smith, 1988; Brann and Mahesh, 1991). As 

reviewed by Brann and Mahesh (1991), the effects of stress on the reproductive axis seem to 

depend on whether the stressor is acute or chronic. Acute stress can stimulate LH release and 

enhance ovulatory activity (Higuchi et al, 1986; Armario et al, 1987; Briski and Sylvester, 

1988), whereas chronic stress can inhibit LH secretion, cyclicity and follicle development 

(Gray et al, 1978; Tache et al, 1978; Rasmussen and Malven, 1983; Moberg, 1987). It is 

thought that the effects of stress on reproductive processes are brought about by altered 

activity of mediators of the stress response. Indeed, hormones of the hypothalamus-pituitary-

adrenal (HPA)-axis and endogenous opioid peptides (EOP's) can inhibit the hypothalamus-

pituitary-gonadal (HPG)-axis (Naylor et al, 1990; Norman et al, 1994; Akema et al, 1995). 

In pigs, it has been shown that long term tethered housing induces symptoms typical of 

chronic stress that are generally thought to relate to adverse effects on physiological 
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functions, welfare and health of the animals. Thus, tethered housed pigs show increased 

adrenocortical steroidogenic capacity and sensitivity to adrenocorticotropin (ACTH), elevated 

plasma Cortisol and prolactin concentrations and a flattened diurnal rhythm of Cortisol 

(Janssens et al., 1994, 1995a). Interestingly, there is evidence for stress-adaptive changes in 

long-term tethered housed pigs. These include an increase in the endogenous opioid activity 

that mitigates hormonal and autonomic responses to acute challenges (Janssens et al., 1995b, 

Zanella et al., 1996; Loyens, Schouten and Wiegant unpublished observations). Increased 

activity of endogenous opioids also underlies the behavioural stereotypies that are frequently 

observed in tethered pigs, particularly when the animals are aroused and that are associated 

with de-arousal and diminished autonomic and pituitary-adrenocortical responsivity (Cronin, 

1985; Schouten en Wiepkema, 1991). Adaptive changes in regulation of behaviour and 

physiology become most evident under conditions of environmental demand. In commercial 

breeding farms, tethered housing is frequent practice, but there is no evidence sofar for 

impaired reproductive performance of the animals, suggesting that adaptive mechanisms 

counteract the detrimental effects of stress on reproductive regulation. 

The present study is designed to investigate whether chronic tethered housing of sows affects 

the LH pulse characteristics during the oestrous cycle and the timing of the preovulatory LH 

surge after oestrus synchronisation with the progesterone analogue altrenogest. 

Materials and methods 

Animals and housing 

Twenty six commercial, muciparous (parity 2-7), crossbred sows (Fl, Great Yorkshire x 

Dutch Landrace) were obtained from a Dutch breeding company and had a history of long 

term tethered housing. On arrival, they were randomly assigned to tethered housing with a 

neckchain, or loose housing in individual pens of 6 m2 with a concrete floor covered with 

woodshavings, except for a slatted dunging area at the rear of the pen. Lights were on from 

7.30 h to 19.30 h and ambient room temperature ranged from 15 °C to 25 °C. At 800 hours 

and 1600 hours the animals were fed 1.25 kg of dry sow feed (12.2 MJ of metabolizable 

energy per kilogram containing 15.4% crude protein) by hand. Water was available ad 

libitum through a nipple drinker. 

Surgery 

In order to collect frequent bloodsamples, the sows were surgically fitted with a permanent 

jugular vein catheter (Silastic® medical grade tubing, 0.040 in. id., 0.085 in. o.d.; Dow 

Corning, Michigan U.S.A.) under sterile conditions and under general anaesthesia with 
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inhalation of 02/N20, enflurane Ethrane®, Abott B.V., The Netherlands) as described 

previously (Janssens et al, 1994). The animals were equipped with a harness to protect the 

cannula, which was externalized between the scapulae. The harness (23 cm x 20cm; polyvinyl 

chloride with nylon; Bizon Chemie, The Netherlands) was fixed at the back of the animals 

with a belt around the chest during the week before surgery in order to habituate to the 

harness. All animals were treated with antibiotics (12 ml of T.S. Sol®, containing 

trimethorprim and sulfamethoxazol, orally; Dopharma, The Netherlands) once daily from 3 

days prior to 3 days after surgery. To prevent obstruction by bloodclots, the catheters were 

flushed with saline once weekly and filled with heparinized saline (25 IU heparin/ml of 0.9% 

saline; Leo Pharmaceutical Products, The Netherlands) when not in use. When catheter 

patency was reduced, obstructions were removed as described by Leuvenink and Dierx 

(1997). In short, the catheter was filled with a solution of 25000 IU kabikinase (Kabi 

Pharmacia, Sweden), 2500 IU heparin and 0.2 ml Ticarpen® (Beecham, England) to 25 ml 

sterile 25% polyvinylpyrrolidone/saline (Merck, Germany), and after 1 week, flushed with a 

2% heparine/saline solution. 

Experimental design 

On arrival at the facilities of the Wageningen Agricultural University, 13 animals were 

housed tethered (TETHER) with a neck chain and 13 animals were housed loose (LOOSE) in 

individual pens. After 1 week, surgery was performed and the animals were allowed 

approximately 1 week for recovery during which they were frequently handled and habituated 

to the bloodsampling procedure. Then, the oestrous cycles of all animals were synchronized 

by daily oral administration of 20 mg of the progesterone agonist altrenogest (Regumate^ for 

21 days (day 0). The day of altrenogest withdrawal was designated Day 0. On Day -3 (the 

19th day of the altrenogest treatment) and at Day 2, 4 (both follicular phase) and 19 (luteal 

phase) after altrenogest withdrawal, frequent bloodsamples were taken (every 12 minutes 

during 12 hours) from 8.30 h until 20.30 h. After Day 4, bloodsamples were taken every 4 

hours until the preovulatory LH surge had occurred as determined by a fast LH 

radioimmunoassay. Of all 22 animals the peak value of preovulatory LH surge was detected. 

Bloodsampling 

Blood samples were taken according to the procedure as described previously (Janssens et al, 

1994). Immediately after collection, the blood samples (approximately 5 ml) were transferred 

to ice-cooled polypropylene tubes containing 50 ul EDTA solution (144 mg EDTA/ml of 

saline; Triplex®III, Merck Nederland BV.The Netherlands). The tubes were shaken, kept on 

ice and subsequently centrifuged at 3000xg for 15 minutes at 4 °C. Plasma was collected and 

stored at -20 °C until hormone analysis. 
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Hormone analysis 

LH. Plasma samples were analysed for LH using a double anti-body radioimmunoassay 

(RIA) as described by Niswender et al. (1970), using porcine LH (pLH iodination grade 

batch 004/3; potency, 0.85 x NIH LH-S19; UCB bioproducts, Brussels, Belgium) as a 

standard and for radioiodination (specific activity, 38 uCi/ug). Anti-porcine LH batch 004 

(UCB bioproducts, Brussels, Belgium) was used at a final dilution of 1:360 000, which gave 

an initial binding of the labeled hormone of approximately 39%. The main cross reacting 

peptides were pFSH (2.7%), pLHa (1.1%), pTSH (0.5%) and pTSHa, pTSHB and pLHB 

(all<0.1%). Sac-Cel was used as the second antibody, (donkey anti-rabbit; Wellcome Reagents, 

Beckenham). The minimal detectable concentration at the 90% B:B0 was 0.1 ng/ml. The 

interassay coefficient of variation was 14.4 % and the intra-assay coefficient of variation was 7.2 

%. The fast LH RIA was performed according to the same method but with slight modifications of 

incubation time and temperature (2 hours at 37 °C). 

Cortisol. Hourly samples on Day -3 and 19, were analysed for Cortisol. After extraction of plasma 

with dichloromethane (DCM, Merck, Darmstadt, Germany), Cortisol concentration was 

determined using a single anti-body radioimmunoassay. For estimation of procedural losses, 500 

cpm of [l,2,6,7-3H]cortisol (TRK407, specific activity 80.5 Ci/mmol, Amersham Int., 

Amersham U.K.) was added to 1 ml plasma sample and mixed with 3 ml DCM. The organic 

phase of the mixture was evaporated under a stream of nitrogen and redissolved in 500 jtl 

phosphate buffer with 1% BSA. An aliquot of 150 n\ was taken to determine the recovery of 

[ HJcortisol. Cortisol concentrations were measured in duplicate (2 aliquots of 50 fil) using a 

single-antibody radioimmunoassay (RIA) technique, previously described by Janssens et al. 

(1994). The main crossreacting steroids were 21-desoxycortisol (72%), cortisone (59%), 

prednisolone (53%), 11 desoxycortisol (43%), corticosterone (10%), progesterone (2.3%), 

estradiol-176, dexamethasone, and triamcinolone acetonide (all <0.1%). The sensitivity of the 

assay was 0.5 ng.ml"1 at the 90% B/B0 level. The intra- and inter-assay coefficients of variation 

were 8.2 % and 14.7 % respectively. The amount of Cortisol was expressed in ng.ml"1 after 

correction for procedural losses. 

Detection of oestrus 

Oestrus detection was performed by a back-pressure test in the presence of a vasectomized 

boar once daily in the morning on all days until 1 month after withdrawal of altrenogest 

treatment. The time of oestrus was defined as the first day the sow showed a standing 

response. When animals had not shown oestrus before day 7, ultrasound was performed as 

described by Soede et al. (1991) to determine whether ovulation had occurred. 
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LH Pulse detection 

The profiles of the pulsatile LH release were analysed using the pulse analysis program of 

Maxima/Chromcard (Fisons Instruments,Interscience, Breda, Holland) with baseline calculated 

according to an allgorithm taking into account the total LH profile. A pulse was defined by a 

baseline-peak ratio of 0.5 or higher and a minimal area under the pulse of 6.0 x 10 ng.ml" min. 

Data analysis and statistics 

Data of pulse frequency, pulse amplitude and mean plasma LH concentration of LH during 

and after altrenogest withdrawal, time and height of the preovulatory LH surge and the first 

day of oestrous, obtained after altrenogest withdrawal, were analysed using SAS statistical 

analysis system (1990). In addition, to determine whether effects found in pulse frequency, 

pulse amplitude and mean plasma LH were due to differences in the timing of the 

preovulatory LH surge, data were analysed relative to the day of preovulatory LH surge. By 

synchronising the data, the number of animals per housing condition is reduced. On Day -2 

and -3, most animals had data on pulse frequency, pulse amplitude and mean plasma LH, and 

were used to analyse possible effects of housing conditions on pulsatile LH release relative to 

the preovulatory LH surge. The effect of tethering on these parameters, and on hourly 

samples of Cortisol and on the daily mean plasma level of Cortisol on Day -3 and Day 19, was 

tested using the GLM procedure using the model: Y{j =u + T i + e ^ Dj +(TXD);J H-e ;̂ Where 

Yjj = value of parameter in a sow (n=22) receiving treatment i on sampling day j ; u = overall 

mean; T;= fixed effect of treatment i (1,2); e ^ error term 1, which represents the random 

effect of sow within treatment i; Dj= fixed effect of sampling day j (1,..,4); e2ij= error term 2, 

which represents the random effect of treatment i between sampling days j . The effect of 

tethering treatment was tested against error term 1. The other effects were tested against error 

term 2. Differences were considered significant when P<0.05. Pulse amplitude and mean 

plasma LH did not have a normal distribution and were therefore subjected to non-parametric 

analysis using the Kruskal-Wallis test from the NPAR1WAY procedure of the SAS 

programme. 

Results 

General 

Of the 13 TETHER and 13 LOOSE sows, 3 TETHER animals and 1 LOOSE animal did not 

show oestrous behaviour after altrenogest treatment was terminated. Ultrasound with the sows 

that did not show oestrous behaviour showed that 1 TETHER and 1 LOOSE animal had 

developed cystic ovaries. The other 2 TETHER sows had corpora lutea and were therefore 
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classified as having displayed silent oestrus. Data of all 4 animals were excluded from 

statistical analysis and, as a consequence, 12 LOOSE and 10 TETHER sows were used to 

assess LH pulse characteristics. 

Plasma LH and Cortisol concentration during the luteal phase with and without altrenogest 

No differences were found in number of LH pulses (p=0.50) and LH pulse amplitude 

(p=0.61) between endogenous (Day 19) and exogenous (altrenogest period; Day -3) 

progesterone dominance (Table 1), or between LOOSE and TETHER sows (p=0.40 and 

p=0.83 respectively). Furthermore, no interaction between housing conditions and altrenogest 

treatment was found (p=0.60 and p=0.50 respectively). 

Mean plasma LH was not different between Day -3 and Day 19 (p=0.57). However, a 

significantly higher mean plasma LH was found in TETHER than in LOOSE animals 

(p=0.005), with no interaction between housing condition and altrenogest treatment (p=0.80). 

In plasma Cortisol, no differences were found (p=0.24) between LOOSE and TETHER sows, 

nor between Day -3 and Day 19 (p=0.09). Furthermore, no significant interaction between 

housing and day was found(p=0.99). In addition, there was no indication for the presence of a 

diurnal rhythm in Cortisol in of both LOOSE and TETHER sows. The daily mean plasma 

concentration of Cortisol of LOOSE respectively TETHER animals on these days was: 15.2 ± 

2.0 ng/ml versus 20.2 ± 2.6 ng/ml (mean ± SEM; n=12 versus n=10) on Day -3 and 25.1 ± 

6.5 ng/ml versus 29.1 ±5.0 ng/ml (mean ± SEM; n=12 versus n=9) Day 19. 

Table 1: Pulsatile LH release during progesterone dominance in the luteal phase and under 
altrenogest treatment in LOOSE and TETHER sows. 

Day-3 Day 19 

LOOSE TETHER LOOSE TETHER 

(n=12) (n=10) (n=12) (n=9) 

number of pulses (#/12h) 6.08 ±0.41 6.10 ±0.61 6.17 ±0.53 6.78 ±0.74 

pulse amplitude (ng. ml"1) 8.54±1.60 14.1 ±5.60 10.5 ±1.78 12.6±4.13 

mean plasma LH (ng.ml1) 9.44 ±2.05 15.9 ±2.68* 7.55 ±0.74 15.4 ±3.76* 

Data of animals during altrenogest treatment (Day -3) and the luteal phase of the oestrous cycle (Day 19) are 
presented as means ± SEM. 
* = significantly different from loose housed (p<0.05). 

Oestrus 

LOOSE sows came in oestrus on average at 6.7 ± 0.4 days after termination of altrenogest 

treatment, which was significantly (p=0.002) later than TETHER sows that came in oestrus 

after on average at 5.3 ± 0.2 days. The duration of oestrus was not different (p=0.47) in 

LOOSE compared to TETHER sows (2.2 ± 0.2 days and 2.2 ± 0.4 days respectively). 
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Preovulatory LH surge 

The peak value of the preovulatory LH surge in the TETHER animals (n=10) occurred on 

average at 91 ± 3 (mean ± SEM) hours after altrenogest withdrawal (see Figure 1). This is 

significantly (p=0.001) earlier than in the LOOSE animals (n=12), in which the preovulatory 

LH surge peaked at 116 ± 5 hours after altrenogest withdrawal. There was no significant 

difference in the height of the preovulatory LH surge between LOOSE and TETHER sows 

(36.7 ± 5.3 ng/ml versus 49.5 ± 6.3 ng/ml; mean ± SEM; p=0.16). 

Day of Preovulatory LH Surge 

loose (n=12) 1 I tethered (n=10) 

s 

o 

day after altrenogest withdrawal 
Figure 1: Time of the preovulatory LH surge (days after altrenogest withdrawal) in LOOSE and TETHER 
sows. Distribution of number of LOOSE (closed bars, total n=l2) and TETHER (open bars: total n=I0) 
animals, that have their preovulatory LH surge, over the period after altrenogest withdrawal. 

Pulsatile LH release on Day 2 and 4 after altrenogest withdrawal 

In pulse frequency a significant day effect (p=0.007; Table 2) was found. Pulse frequency on 

Day 2 after altrenogest withdrawal was significantly higher compared to Day 4. No housing 

effect (p=0.40) was found, and no significant interaction between housing and day was found 

in pulse frequency (p=0.39). 

A significant day effect (p=0.01) was found for LH pulse amplitude, with the amplitude on 

Day 4 being significantly higher than on Day 2 (table 2). Yet, no differences in pulse 

amplitude were found between LOOSE and TETHER housing (p=0.35), and there was no 

significant interaction between housing and day in pulse amplitude (p=0.13). 

In mean plasma LH, a significant day effect (p=0.02) was found. Mean plasma LH on Day 4 

was significantly higher than on Day 2. No housing effect (p=0.34) nor a significant 

interaction between day and housing (p=0.08) was found. 
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Table 2: Pulsatile LH release on Day 2 and 4 after altrenogest withdrawal in LOOSE and 

TETHER sows. 

Day 2 after altrenogest Day 4 after altrenogest 

LOOSE 

(n=12) 

TETHER 

(n=10) 

LOOSE 

(n=12) 

TETHER 

(n=10) 

pulse frequency (#/12h) 8.17±0.37 8.10±0.31 6.67±0.40 7.30±0.54 

pulse amplitude (ng. ml"1) 5.23±0.51 8.88±2.89 7.58± 1.35 24.3±5.62 

mean plasma LH (ng.ml"1) 8.25 ±1.62 14.5 ±2.64 10.0 ±2.00 26.4±5.04 

Data are presented as mean ± SEM. A day effect was found with LOOSE and TETHER animals having 
significantly higher pulse frequency but lower pulse amplitude and mean plasma LH on Day 2 than on Day 4 
(p<0.05). 

Since the occurrence of the preovulatory LH surge on Day 4 in 8 out of 22 animals could 

have interfered with data on LH pulse frequency, pulse amplitude and mean plasma LH, data 

were synchronized on the day of the preovulatory LH surge (Day 0) and analysed on Day -2 

and -3. As a consequence, the number of animals per treatment group decreased. No 

differences were found in LH pulse amplitude between Day -2 and -3 (p=0.64), nor between 

TETHER and LOOSE animals (p=0.91), nor an interaction between day and housing 

(p=0.92). However, LH pulse frequency tended to be higher on Day -3 than on Day -2 

(p=0.08), with no effect between housing conditions (p=0.75), nor an interaction between day 

and housing conditions (p=0.96). Mean plasma LH was lower on Day -3 compared to Day -2 

(p=0.03) relative to the preovulatory LH surge. No effect of housing nor an interaction 

between day and housing was found in mean plasma LH on these days (p=0.78; p=0.14). 

Table 3: Pulsatile release of LH on Day -2 and -3 relative to the preovulatory LH surge in 

LOOSE and TETHER sows 

Day -3 relative to LH surge Day -2 relative to LH surge 

LOOSE 

(n=6) 

TETHER 

(n=3) 

LOOSE 

(n=6) 

TETHER 

(n=7) 

pulse frequency (#/12h) 8.00 ±0.58 9.00±0.00 6.83 ±0.75 7.71 ±0.36 

pulse amplitude (ng. ml'1) 4.88 ±0.75 5.15 ±1.56 6.86 ±2.35 10.5 ±4.01 

mean plasma LH (ng.ml"1) 6.91 ±0.73 7.79±2.22 10.6±4.02 17.4±3.10 
Data are presented as mean ± SEM. No day or housing effects are found in LH pulse frequency and pulse 
amplitude. Mean plasma LH in LOOSE and TETHER animals is significantly lower (p<0.05)on Day -3 than on 
Day -2 relative to the preovulatory LH surge 
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Discussion 

Long-term tethered housing induces chronic stress in pigs, and leads to stress-adaptive 

changes in physiological regulation that may become apparent upon environmental challenge. 

In the present study, we have investigated the effect of a change in housing conditions on the 

hypothalamus-pituitary-gonadal (HPG) axis in multiparous stress-adapted female pigs. 

During the luteal phase, the LOOSE group of animals showed lower mean plasma LH levels 

than the THETHER animals, whereas LH pulse frequency and amplitude were not affected 

by housing condition. Sofar, no overt effects of chronic tethered housing on plasma LH 

concentration in females have been reported. Studies in rats and rhesus monkeys showed 

decreased plasma LH concentrations after restraint stress (Tache, et al, 1978; Goncharov et 

al, 1984; Lopez-Calderon et al, 1987), however, they used male subjects and chronic 

intermittent immobilisation stress. 

Both groups of sows used in the present study had a history of long term tethered housing 

during which adaptational processes in the regulation of the hypothalamus-pituitary-adrenal 

(HPA) axis, autonomic nervous system and behaviour occur, rendering the pigs more reactive 

to changes in environmental conditions (Schouten et al, 1991; Janssens et al, 1994; Janssens 

et al, 1995a; Clark et al, 1997). The change in housing conditions of the LOOSE sows, that 

were able to move freely from approximately 6 weeks before the start of the experiment 

onwards, likely was a challenge for the animals, inducing changes in mean LH concentration . 

In a study by Rampacek et al. (1984), a change from confined to non-confined housing also 

resulted in a change in LH plasma concentration. The fact that they found an increase in 

plasma LH concentrations in the non-confined group, whereas our results show decreased LH 

levels in the LOOSE animals may be explained by the fact that, apart from methodological 

differences, they used prepubertal pigs, that is animals in which the regulation of LH differs 

considerably from that in multiparous sows as used in the present study. 

LOOSE pigs showed a significant delay of the preovulatory LH surge with 25 hours. It could 

be argued that this was caused by a difference in activation of the HPA-axis. Janssens et al. 

(1995a) reported a flattened diurnal rhythmicity of Cortisol and a hypercortisolemia during 

long-term tethering. These changes, however appeared to be of a transient nature, indicating 

development of adaptational changes in the HPA system at least in part of the animals. In the 

present study, plasma Cortisol concentrations were not different between housing conditions, 

but, relatively high when compared to those of the loose housed controls in studies by 

Janssens et al. (1994; 1995a). In addition, there was no indication of a diurnal Cortisol rhythm 

in both the LOOSE and the TETHER animals. Therefore, the shift in the preovulatory LH 

surge cannot be explained by a difference in activation of the HPA axis. Furthermore, from 

the present data together with those from the literature, it might be suggested that LOOSE 
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animals are in a transitional state, during which changes in the HPG- but not the HPA-system, 

induced by previous long term tethered housing, are reversed towards pretethering levels. 

Pulse frequency decreased while pulse amplitude and mean plasma LH increased from the 

early (Day 2 after altrenogest withdrawal) towards the late follicular phase (Day 4 after 

altrenogest withdrawal) irrespective of housing condition. When data were lined up to the day 

of the preovulatory LH surge, this pattern was still largely present with a significant time 

effect in mean plasma LH concentration and a trend in pulse frequency. These findings are in 

line with other studies showing higher pulse frequency with low amplitude in early follicular 

phase compared to mid- and late follicular phase (Kesner et ai, 1989; Messinis et ai, 1992; 

Matt et ai, 1993) depending on the presence of gonadal steroids. 

In summary, the present study shows that a change in housing conditions delays the 

preovulatory LH surge and decreases the mean LH concentration during the luteal phase, but 

has no effect on LH pulse frequency and pulse amplitude under progesterone dominance with 

altrenogest and during both phases of the oestrus cycle after termination of altrenogest 

treatment. 
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Abstract 

The response of the reproductive axis to endogenous opioid peptides (EOP) was investigated 

by determining the increase in mean plasma LH concentration after intravenous 

administration of 5 doses of the opioid antagonist naltrexone using PRL as a positive control-

Cyclic gilts received iv treatment with saline or 0.125, 0.25, 0.5, 1 or 2 mg/kg naltrexone 

during the luteal phase of the oestrous cycle and frequent bloodsamples were taken. On 

average, plasma LH and PRL concentrations increased with increasing dose of naltrexone in 

the first hour postinjection. Plasma LH concentration was increased (P<0.05) after 0.25 and 

2 mg/kg naltrexone compared to control, whereas plasma PRL concentration was increased 

after all doses used. However, a considerable variation between animals was found in the 

response of both hormones with 2 animals showing no response to the doses used, 2 animals 

responding to 0.25 mg/kg and higher, and 3 animals responding to all doses. The 5 

"responders" showed increased plasma LH concentrations during the first hour postinjection 

after 0.25, 0.5 and 2 mg/kg naltrexone. Over the total postinjection period 2 mg/kg naltrexone 

increased plasma LH concentration compared to all other doses (P<0.05) except 0.5 mg/kg. 

During the first hour postinjection, the 5 "responders " showed increased (P<0.05) plasma 

PRL concentration after all doses used 

In conclusion, naltrexone dose dependently increased the mean plasma LH and PRL 

concentration with a considerable variation between animals. Furthermore, it is suggested 

that the LH and PRL response differ in sensitivity to inhibition by EOP's. 

Introduction 

Endogenous opioid peptides (EOP's) are involved in the regulation and the pulsatile secretion 

of luteinizing hormone (LH). Intravenous treatment with opioid receptor antagonists has been 

shown to increase plasma LH concentration in primates (Mello et at., 1988), sheep (Whisnant 

et al., 1991), humans (Gindoff et la., 1988, Remorgida et al, 1990), rat (Babu et al, 1988) 

and pig (Barb et al., 1985). In the pig, intravenous infusion with a met-enkephalin analog 

decreased mean LH concentration (Okrasa and Tilton, 1992). Furthermore, B-endorphin and 

leu-enkephalin have been reported to inhibit the LH release from rat pituitaries in vitro (Leiva 

and Croxatto,1994). Studies by Barb et al. (1986) in pigs and by Stumpf et al. (1993) in 

ovariectomised beef cattle have shown that the reduction of plasma LH concentration by 

progesterone was counteracted by the administration of the opioid receptor antagonist 

naloxone. This strongly suggests that the inhibition of plasma LH concentration by 

progesterone is mediated by an opioidergic mechanism. 
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A technical problem in studying effects of EOP's on the plasma LH concentrations is the 

pulsatile pattern which might obscure the response to opioid antagonists. The concentration of 

PRL in plasma, like that of LH, is under inhibitory control of EOP and has been reported to 

increase after naloxone treatment (Snowden et al, 1984; Barb et al., 1986). This together 

with the fact that PRL release does not follow pulsatile kinetics, makes the plasma PRL 

concentration suitable as a positive control for the effect of drugs that interfere with the 

opioid regulation of LH secretion system. 

A considerable variation between individual animals in the response to opioid receptor 

agonists and antagonists appears to exist. Deroche et al. (1993) showed differences in 

locomotor response to morphine treatment between individual rats. Martin del Campo et al. 

(1992) reported large individual differences in naloxone induced rise in plasma Cortisol in 

humans, and Raevskaia, (1992) has shown in rabbits that the naloxone induced hyperalgesic 

effect depended on individual properties of the animals. Therefore, it might be useful to 

check whether individual variability in response to opioid agonist and antagonists is related to 

the plasma concentrations of the drugs used. 

The aim of the present study was to investigate the response of the reproductive axis to EOP's 

by determining the increase in mean plasma LH concentration after intravenous 

administration of saline or 5 doses of naltrexone in gilts. Mean plasma PRL concentration is 

used as a positive control and plasma concentrations of naltrexone were determined to check 

adequacy of treatment. 

Materials and methods 

Animals 

Seven crossbred cyclic gilts (Great Yorkshire X British Landrace; Pig Improvement 

Company, Oxfordshire, United Kingdom) which had shown two or more normal oestrous 

cycles were used in this study. At the start of the experiment, mean body weight of the 

animals was 192.6 ±6.1 kg (mean ± SD). All animals were housed loose in individual pens 

with a concrete floor that was covered with woodshavings, except for a slatted dunging area 

at the rear of the pens. Lights were on from 7.30 h to 19.30 h and ambient room temperature 

ranged from 15°C to 25 °C. At 8.00 h and 16.00 h the gilts were fed 1 kg of a pelleted, dry 

sow feed (12.2 MJ of metabolizable energy per kilogram containing 15.4% crude protein) by 

hand. Water was available ad libitum through a drinking nipple. 
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Surgery 

In order to collect frequent blood samples, the gilts were surgically fitted with a permanent 

jugular vein catheter (Silastic® medical grade tubing, 0.040 in. i.d., 0.085 in. o.d.; Dow 

Corning, Michigan U.S.A.) under sterile conditions, and under general anaesthesia with 

inhalation of 02/N20, enflurane Ethrane®, Abott B.V., The Netherlands) as described 

previously (Janssens et al., 1994) with slight modification in the attachment of the catheter to 

the jugular vein. The animals were equipped with a harness to protect the cannula, which was 

externalized between the scapulae. The harness (23 cm x 20 cm, polyvinyl chloride with 

nylon; Bizon Chemie, The Netherlands) was fixed at the back of the animals with a belt 

around the chest during the week before surgery in order to habituate to the harness. All 

animals were treated with antibiotics (12 ml of T.S. Sol®, containing trimethorprim and 

sulfamethoxazol, orally; Dopharma, The Netherlands) once daily from 3 days before surgery 

until 3 days after surgery. The animals were allowed to recover from surgery and anaesthesia 

for at least 10 days. 

To prevent obstruction by bloodclots, the catheters were flushed with saline once weekly and 

filled with heparinized saline (25 IU heparin/ml of 0.9% saline; Leo Pharmaceutical Products, 

The Netherlands) when not in use. When catheter patency was reduced, obstructions were 

removed as described by Leuvenink and Dierx (1997). In short, a solution of 25000 IU 

kabikinase (Kabi Pharmacia, Sweden), 2500 IU heparin and 0.2 ml Ticarpen® (Beecham, 

England) was added to 25 ml sterile 25% PVP/saline (Merck, Germany) solution. After 1 

week, the catheter was flushed with a 2% heparine/saline solution. 

Experimental procedure 

In all 7 gilts, the effect of 5 doses of naltrexone (0.125 mg/kg, 0.25 mg/kg, 0.5 mg/kg, 1 

mg/kg and 2 mg/kg) on the plasma concentration of LH was tested and compared to 5 ml 

saline (control) with a washout period of 7 days. Each animal received all doses in a random 

order over a total period of 4 oestrus cycles (2 doses/ cycle) and each animal served as its 

own control. The first day of oestrus was designated as Day 0. On Days 7 and 14 (luteal 

phase), blood samples were collected every 12 minutes for 8 hours (from 9.00 h until 17.00 

h) according to the procedure described previously (Janssens et al, 1994). The samples of the 

first two hours (9.00 h - 11.00 h) were used to determine the basal LH release and at 11.00 h, 

saline or one of the doses naltrexone (Sigma Chemicals, St Louis, U.S.A.) was injected given 

as an iv. bolus via the catheter. 

Blood sampling procedure 

Before the experiment, the animals were frequently handled and habituated to the blood 

sampling procedure. Immediately after collection, the blood samples (approximately 5 ml) 
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were transferred to ice-cooled polypropylene tubes containing 50 ml EDTA solution (144 mg 

EDTA/ml of saline; Triplex®III, Merck Nederland BV, The Netherlands). The tubes were 

mixed, placed on ice, and subsequently centrifuged at 3000xg for 15 min at 4°C. Plasma was 

collected and stored at -20°C until hormone analysis. 

Plasma analysis 

Plasma samples were analysed using validated immunoassays for LH (Niswender et ai, 

1970), PRL (Van Landeghem and Van der Wiel, 1978) and progesterone (Helmond et al, 

1980). All samples were analysed for LH, whereas PRL was determined in plasma samples of 

9.24 h, 10.00 h, 10.36 h and every 12 minutes from 11.00 until 12.00 (first hour after 

injection). Plasma levels of progesterone were determined in 10.00 h, 12.00 h, 14.00 h and 

16.00 h samples. The intra- and inter-assay coefficient of variation was 7.2 and 14.4%, 6.9 

and 12.3% and was 5.5% and 12.2%, respectively, for LH, PRL and progesterone. 

Plasma concentration of naltrexone was determined by a HPLC method used for detection of 

morphine described previously by Joel et al. (1988), which has been modified by using 100 

mg Varian C8 extraction cartridges, and the use of an ASPEC automated sample preparation 

device. The samples were eluted with 15% acetonitrile instead of 10% acetonitrile to improve 

extraction efficiency up to 75%. 

Animals that showed an increase in plasma LH and PRL concentrations of at least 150% of 

baseline concentration within the first hour after iv treatment with naltrexone, were qualified 

as responders. Animals that did not meet this criterion even at a dose of 2 mg/kg naltrexone, 

were qualified as non-responders. 

Detection ofoestrous 

Detection of oestrous was performed once daily in the morning on all days of the cycle by a 

back-pressure test in the presence of a vasectomized boar. The time of oestrous was defined 

as the day the gilt showed a standing response to the back-pressure test in the presence of the 

boar. 

Statistical analysis 

LH concentration of all samples was expressed as a percentage of the average basal release. 

In order to describe the time course of the mean plasma LH concentration after treatment with 

saline or the several doses of naltrexone, the experiment days were divided in 8 Time Periods 

(TP's) of 1 hour. Data of mean plasma concentration of LH, PRL and progesterone were 

analysed using SAS statistical analysis system (1990). The effect of the several doses of 

naltrexone was tested by means of a F-test, using the procedure GLM and the following linear 

model: Y^ = m + Aj + N; + TP^ + (NxTP)^ + IT\ + e ^ ; Where Yyy= value of hormone 
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parameter in gilt i treated with dosis j at injection time k in an oestrous cycle; m = overall 

mean; Aj = fixed effect in animal i (i = 1,..,7); N; = fixed effect of dosis j (j = 1,...,6); TP^ = 

fixed effect of time period k (k = 1,...,8); ITj = fixed effect of first or second injection k (k = 

1,2) within an oestrous cycle; ej.-y = error term, which represents the random effect of dosis j 

in animal i at and first or second injection 1 within an oestrous cycle. Differences were 

considered significant when P<0.05. Values are expressed as means and standard error of the 

means. 

Results 

Plasma hormone concentrations 

In none of the parameters studied, namely plasma LH, PRL and progesterone concentration, 

interactions were found between iv treatment and injection time (day 7 or day 14 after first day 

of oestrus). Furthermore, sequence of administration of the doses naltrexone or saline had no 

effect on these parameters. 

•a 
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time to injection (h) 

Figure 1: Illustrative profiles of the average LH levels of 7 gilts. Profiles of pulsatile LH release of 5 gilts 
(average ± SEM) treated with (A) saline, (B) 0.5 mg/kg and (C) 2 mglkg naltrexone. Data are presented as % 
of basal release and relative to time of injection (t=0). 
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The high level of progesterone in bloodplasma of all animals (53.6 ± 1.0 ng/ml; n=7), 

indicated that all the experimental days were during the luteal phase. There were no differences 

between plasma levels of progesterone before and after treatment with naltrexone (50.6 ± 2.5 

ng/ml vs 53.2 ± 2.6 ng/ml) or saline (54.5 ± 8.5 ng/ml vs 53.9 ± 6.3 ng/ml). 

Plasma concentrations of both LH and PRL during the first hour after injection increased with 

increasing dose of naltrexone (Figure 2), returning to preinjection levels within the sampling 

period except for LH after administration of the highest naltrexone dose (as illustrated in 

Figure 1). The peak concentrations of LH and PRL after treatment with naltrexone were found 

within the first hour (on average after 24 ± 12 minutes; mean ± SEM) post injection of the 

opioid antagonist as is illustrated by Figure 1. The doses of 0.25 mg/kg and 2 mg/kg increased 

plasma LH concentrations significantly (p=0.05 and p=0.001 respectively) compared to 

control, whereas plasma PRL concentrations were significantly (p<0.05) increased by all doses, 

except 0.125 mg/kg (figure 2). 

A considerable variation between animals was found in the LH and PRL response to the 

several doses of naltrexone. Out of 7 animals, 2 showed neither a LH, nor a PRL response at 

any of the doses used and were therefore qualified as non-responders. Furthermore, 2 animals 

showed significant LH and PRL responses to doses of 0.25 mg/kg and higher, and 3 animals 

responded to all doses and might be qualified as "low responders" and "high responders" 

respectively. 

Plasma naltrexone 

Plasma concentrations of naltrexone increased proportional to the dose in all animals (Figure 

2). Plasma concentrations of naltrexone after the doses of 0.5 mg/kg and 1.0 mg/kg were two 

respectively four times the plasma concentrations after the dose of 0.25 mg/kg naltrexone. The 

absence of response in 2 animals could not be attributed to the absence of naltrexone in the 

blood, indicating they were not responding to naltrexone. Data of the other 5 animals that did 

show a response in LH and PRL were subjected to further analysis. 

Plasma hormone concentrations of responders 

A treatment effect in mean plasma LH during the first hour post injection was found (P<0.002; 

Table 1). Compared to saline, mean plasma LH was significantly increased after treatment with 

the doses 0.25 mg/kg, 0.5 mg/kg and 2.0 mg/kg (P<0.05). Furthermore, the dose of 2.0 

mg/kg, significantly increased mean plasma LH (P<0.05) compared to the other doses used 

except 0.25 mg/kg and 0.5 mg/kg (Table 1). 

During the second and third hour post injection, when plasma levels were decreasing towards 

preinjection levels, the effect of naltrexone on LH levels was still found, but not statistically 

significant. During the fourth hour post injection, saline treated animals showed significantly 
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Figure 2: Hormone and naltrexone concentrations in plasma of 7 gilts. Data are presented as mean ± SEM. 
Concentration of LH (ng/ml; upper panel), PRL (ng/ml; middle panel) and naltrexone (ng/ml; bottom panel) 
during the first hour after iv treatment with saline or several doses of naltrexone. 
* =p<0.05from saline (P<0.05) 

higher mean plasma LH (257 ± 124 ng/ml; mean ± SEM) than animals treated with 0.125 

mg/kg (77.8 ± 5.56 ng/ml), 0.25 mg/kg (104 ± 26 ng/ml), 0.5 mg/kg (147 ± 29.6 ng/ml) and 1 

mg/kg (126 ± 88.7 ng/ml) naltrexone except for the highest dose (210 ± 52.5 ng/ml). During 

the fifth hour PI, this pattern was similar, but the differences were not significant. 

When the total post injection period (6 hours) was analysed, mean LH plasma concentration 

over this period showed a significant treatment effect (Table 1; P=0.01). Treatment with the 

2.0 mg/kg dose of naltrexone resulted in significantly higher mean plasma LH concentration 

than all other doses (P<0.05) except 0.5 mg/kg. 
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A significant treatment effect (P=0.0001) was found in plasma PRL levels (Table 1). Plasma 

PRL levels were significantly (P<0.05) increased by naltrexone in all doses in the first hour 

post injection. 

Table 1: LH release in responders following iv. administration of several doses of naltrexone. 

dose 

saline 

0.125 mg.kg"1 

O^Smg.kg-1 

0.5 mg.kg"! 

l.Omg.kg"1 

2.0 mg.kg"1 

Mean plasma LH 

first hour PI' 

(%basal, n=5) 

104 ±22" 

167±34"b 

302 ± 96bc 

317±91 b c 

220 ± 89"b 

470 ± 99c 

Mean plasma 

PRL first hour 

PI1 (%basal, n=5) 

101 ±3.49" 

177 ± 17.4b 

174±13.3b 

197±19.1 b 

188 ± 20.3 b 

201±20 .2 b 

Number of 

responders 

(n out of 5) 

0 

3 

5 

5 

5 

5 

Mean plasma 

LH 

total period PI 

(%basal, n=5) 

162 ±35" 

119± 15' 

191 ±53" 

199±44"b 

152 ±52" 

290 ± 63b 

Data are presented as means ± SEM. Numbers in columns with the same superscript letter (a,b,c) are not 
significantly different (P>0.05). lMean plasma levels ofLH and PRL during the first hour postinfection 
period (% of basal); Number of animals that responded to treatment with saline or the several doses 
naltrexone during the first hour postinfection; Mean plasma LH concentration during the 6 hours postinjection 
period (% of basal). 

Discussion 

There appeared to be a considerable individual variation in the response to naltrexone, as is 

reflected by the "non-responding" and "responding" animals, although all animals clearly 

showed increasing plasma concentrations of naltrexone with increasing dose. Within the 

group of "responders", there were three animals that showed an increased plasma LH 

concentration the first hour already after injection of the lowest dose of naltrexone (0.125 

mg/kg), whereas the two other pigs showed the first increase at 0.25 mg/kg of the opioid 

receptor antagonist. In line with this, studies in rats (Deroche et ai, 1993; Morgan and Picker, 

1996), humans (Martin del Campo et al., 1992) and rabbits (Raevskaia, 1992), have reported 

a considerable individual variation in behavioural responses after treatment with the opiate 

drug morphine, or the opioid receptor antagonist naloxone. These and the present findings 

show that, when using opioid receptor anta- or agonists, data of the individual animal should 

be considered with the interpretation of group data. 

In the responders, a dose-dependent effect of naltrexone on mean plasma LH during the first 

hour post injection was found. However, the dose of 1 mg/kg showed a (not significant) 

lower response compared to 0.25 mg/kg and 0.5 mg/kg. A similar phenomenon was reported 
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by Taylor et al. (1991), who found less attenuation of self-injurious behaviour in humans 

after treatment with 1 mg/kg naltrexone compared to treatment with 0.5 mg/kg. This "dip" in 

the dose-response could not be attributed to the dosage or the bioavailability of naltrexone 

since plasma concentration increased with increasing dose. At present, we were not able to 

find a gratifying explanation for this phenomenon. 

Naltrexone increased plasma PRL levels during the luteal phase of the oestrous cycle. These 

results are in agreement with studies by Gold et al. (1979), Snowden et al. (1984) and Barb et 

al. (1985) that have shown increased PRL release during the luteal phase of the oestrous cycle 

after iv. treatment with naloxone in primates, humans and pigs respectively. The effectiveness 

of naltrexone to increase PRL levels over the complete dose range used, and the absence of a 

clear dose-response relationship for this effect, validate the use of the PRL-response as a 

positive control for the effectiveness of the treatment. Yet different mechanisms may underlie 

the naltrexone effect on PRL and LH. 

Mean plasma LH concentration over the total 6 hour postinjection period increased with 

increasing dose of naltrexone, showing a similar pattern as during the first hour post injection 

period. Saline treatment, however, showed relatively high mean plasma LH concentration 

during this period. This was caused by an endogenous LH pulse that occurred in the third 

hour post injection in 6 out of 7 animals. This phenomenon was not observed after treatment 

with naltrexone (data not shown). It might be suggested that the administration of naltrexone 

increased LH release directly after injection, thereby reducing the GnRH and/or LH 

releasable pool and the ability of the hypothalamus and/or pituitary to respond to the 

endogenous rhythm of pulsatile LH release. 

In summary, iv. administration of naltrexone increases the plasma concentrations of LH and 

PRL with PRL responding to a lower dose than LH. In addition, a considerable variation 

between animals in the LH and PRL response to naltrexone was observed. 
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Abstract 

The role of endogenous opioid peptides (EOP) in modulating the pulsatile LH release during the 

follicular phase was investigated in 5 chronically tethered and 8 loose housed gilts. Oestrous 

cycles of all animals were synchronised with altrenogest for 21 days. Subsequently, 3 tethered and 

4 loose housed gilts were treated per os with opioid receptor antagonist naltrexone for 6 days with 

the remaining animals serving as controls. Frequent bloodsamples were taken on Days 2, 4, 5 and 

6 after termination of altrenogest treatment. No effects of housing condition on the pulsatile LH 

release were found. LH pulse frequency did not differ between days in the naltrexone treated 

animals but was decreased (P<0.05) on Day 4 and 5 compared to Day 2 and 6 in control animals. 

LH pulse amplitude and area under the pulse (AUP) were higher (P<0.05) on Day 6 than on all 

other days in control animals. In naltrexone treated animals, LH pulse amplitude and AUP were 

higher on Day 5 but only significant compared to Day 4 (P<0.05). No effects of naltrexone 

treatment were found on all parameters when data were lined up to the first day of oestrus. 

Oestradiol concentration was lower on Day 2 compared to Day 5 and higher in control compared 

to naltrexone treated animals (P<0.05). In addition, oestradiol concentration was negatively 

correlated with LH pulse frequency. 

In summary, after pulses of high frequency and low amplitude during early follicular phase, pulse 

frequency decreases until the day of the preovulatory LH surge. This pattern does not seem to be 

modulated by EOP's. 

Introduction 

LH secretion during the oestrous cycle has been studied in a variety of species as sheep (Whisnant 

et al, 1991), human (Fillicori et al, 1986; Rossmanith et al, 1990), pig (Okrasa and Tilton, 1992) 

and primate (Norman et al, 1994). Relatively few data are available, however, on the pattern of 

pulsatile LH release during the follicular phase, particularly with regard to pulse frequency and 

pulse amplitude. Reame et al. (1994) and Rossmanith et al. (1990) showed an increased pulse 

frequency in the late compared to the early follicular phase in humans, whereas Cagnacci et al. 

(1995) did not find significant differences in pulse frequency between these phases of the follicular 

phase in women. 

Plasma LH release has been shown to be decreased by endogenous opioid peptides (EOP's) in a 

variety of species. EOP's are reported to mediate the negative feedback of progesterone during the 

luteal phase (Yang et al., 1988; Barb, et al, 1992; Kaynard et al., 1992). The stimulatory effect of 

opioid receptor antagonists, like naloxone and naltrexone on plasma LH concentration during this 

phase of the oestrous cycle has been reported in numerous studies (Whisnant and Goodman, 1988; 
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Kaynard et al, 1992; Chang et al, 1993; Heisler et al, 1993). However, whether EOP's play also 

an inhibitory role in LH secretion and/or the timing of events leading to the preovulatory LH surge 

and oestrus during the oestradiol dominated follicular phase, still remains to be elucidated. 

Several studies have shown that the LH release is decreased by stress, suggesting an inhibitory role 

of EOP's, which have been shown to be activated during stress (Rivier and Rivest, 1991; Heisler et 

al, 1993; Norman et al, 1994). Furthermore, in pigs, it has been shown that tethered housing 

induces chronic stress. Thus, it increases adrenocortical sensitivity to ACTH, its steroidogenic 

capacity and plasma concentrations of Cortisol and PRL (Janssens et al, 1995a). Furthermore, 

tethering increases endogenous opioid activity (Janssens et al, 1994; Schouten and 

Wiepkema, 1991), the number of u-opioid receptors in the brain (Zanella et al, 1996), and it 

leads to opioid dependent stereotyped behaviour (Cronin, 1985; Schouten and Wiepkema, 

1991). However, the effects of tethered housing on the plasma LH concentration and 

pulsatile LH release during the oestrous cycle, and the follicular phase in particular is, are not 

known. 

The purpose of the present study was to determine the pulsatile pattern of LH release during the 

follicular phase of the oestrous cycle, and to investigate the role of EOP's in modulating this 

pattern by treating loose or tethered housed gilts orally with the opioid receptor antagonist 

naltrexone. 

Materials and Methods 

A nimals and Housing 

Thirteen healthy cyclic cross-bred gilts (118-145 kg body weight; Great Yorkshire x British 

Landrace, Pig Improvement Company, UK) were used in this study. Five pigs were housed 

tethered by a 50 cm heavy-gauge neck-chain in individual tether stalls, each 65 cm wide for 5 

months prior to and during the experiment. During the same time, eight gilts were housed loose in 

individual pens of 5 to 6 m with a concrete floor that was covered with wood shavings, except for 

a slatted dunging area of 2.5 m at the rear of the pens. In all housing conditions lights were on 

between 7.30 h and 19.00 h and ambient temperature ranged from 15 to 25 °C. At 8.00 h and 

15.00 h the gilts were fed 1 kg of a pelleted, dry sow feed (12,2 MJ of metabolizable energy per 

kilogram containing 15.4% crude protein) by hand. A bell signal was given each time just before 

feeding in order to prevent the gilts from associating the presence of people with feeding. Water 

was available ad libitum through a nipple drinker. 
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Surgery 

In order to collect frequent blood samples, the gilts were fitted surgically with a permanent jugular 

vein catheter (silastic® medical grade tubing, 0.040 in. i.d., 0.085 in. o.d.; Dow Coming, 

Michigan, U.S.A.) under sterile conditions and under general anaesthesia with inhalation of 

02/N20, enflurane (Ethrane®, Abort BV, The Netherlands) as described previously (Janssens et 

al, 1994). The animals were equipped with a harness to protect the catheter, which was 

externalized between the scapulae. The harness (23 cm x 20 cm, polyvinyl chloride with nylon; 

Bizon Chemie, The Netherlands) was fixed at the back of the pigs with a belt around the chest 

during the week before surgery in order to habituate the animals to the harness. All animals were 

treated with antibiotics (12 ml of T.S. Sol®, containing trimethoprim and sulfamethoxazol, orally; 

Dopharma, The Netherlands) once daily from 3 days before surgery until 3 days after surgery. The 

gilts were allowed to recover from surgery and anaesthesia for at least 10 days before 

experimentation was started. 

To prevent obstruction by bloodclots, the catheters were flushed with saline once weekly and filled 

with heparinized saline (25 IU heparin/ml in 0.9% saline; Leo Pharmaceutical Products, The 

Netherlands) when not in use. 

Treatment 

The oestrous cycle of all gilts was synchronized by daily oral administration of 20 mg altrenogest 

(Regumate®, Hoechst Holland, The Netherlands), a progesterone agonist, during 21 days. The day 

after altrenogest treatment 4 loose housed and 3 tethered animals were treated for 6 days with the 

opioid receptor antagonist naltrexone.HC1 (Sigma Chemicals, St. Louis, U.S.A.) to investigate the 

involvement of EOP's in the regulation of the pulsatile LH release during the follicular phase. 

Naltrexone was given p.o. mixed with the feed. On day 1, 50 mg was given in the morning feed 

and in the afternoon feed as a loading dose. As a maintenance dose, 25 mg was given in the 

morning feed and 50 mg in the afternoon feed from day 2 to day 6. These doses of naltrexone 

were similar to those used by others in humans, to study the role of EOP's in amenorrhea induced 

by hyperprolactinemia and weight loss (Kremer et al, 1991; de Wit et al, 1991; Genazzani et al, 

1995). The control group of 4 loose housed and 2 tethered animals received no naltrexone 

treatment. 

The experiments were approved by the committee on animal care and the use of the Agricultural 

University, Wageningen, The Netherlands. 

Blood sampling 

Before the experiment, the animals were frequently handled and habituated to the blood sampling 

procedure. Blood samples (approximately 5 ml) were collected every 12 minutes during 12 hours 

(from 8.36 h to 20.36 h) on Day 2, 4, 5 and 6 after termination of altrenogest according to the 
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procedure as described previously (Janssens et al, 1994) and immediately transferred to icecooled 

polypropylene tubes containing 50 ml EDTA solution (144 mg EDTA/ml of saline; Triplex®IH, 

Merck Nederland BV, The Netherlands). The tubes were mixed, placed on ice, and subsequently 

centrifuged at 3000g for 15 minutes at 4°C. Plasma was collected and stored at -20°C until 

hormone analysis. 

Plasma analysis 

LH. Plasma samples were analysed for LH using a double-anti body radioimmunoassay as 

described by Niswender et al. (1970), using porcine LH (pLH iodination grade batch 004/3; 

potency, 0.85 x NIH LH-S19; UCB bioproducts, Brussels, Belgium) as a standard and for radio-

iodination (specific activity, 38 mCi/mg 125I-pLH). Anti-porcine LH batch 004 (UCB bioproducts, 

Brussels, Belgium) was used at a final dilution of 1:360,000, which gave an initial binding of the 

labelled hormone of approximately 39%. Sac-Cel® was used as the second antibody, (donkey anti-

rabbit; Wellcome Reagents, Beckenham). The main crossreacting peptides were pFSH (2.7%), 

pLHa (1.1%), pTSH (0.5%)and pTSHa, pTSHB and pLHB (all <0.1%). The minimal detectable 

dose at the 90% B/B0 concentration was 0.1 ng/ml. The inter-assay coefficient of variation was 

25.7% and the intra-assay coefficient of variation was 3.6%. 

Oestradiol. Plasma oestradiol concentration was measured in samples collected at 10.00 h, 12.00 

h, 14.00 h and 16.00 h. After extraction with dichloromethane (DCM, Merck, Darmstadt, 

Germany), using a single-antibody radioimmunoassay, 50 ml [2,4,6,7-3H]oestradiol (NEN 

Chemicals, 's Hertogenbosch, The Netherlands), was added to 650 ml plasma sample prior to 

extraction with 3 ml DCM to estimate procedural losses. The extracts were evaporated under a 

stream of nitrogen and the residues were redissolved in 500 ml ethanol 96%. An aliquot of 150 ml 

was taken to determine the recovery of [ HJoestradiol. Oestradiol concentrations were measured in 

150 ml aliquots by radioimmunoassay using a specific Rabbit antiserum raised against 6-keto-

oestrone 6-CMO-BSA. Oestradiol (Sigma Chemical Co., St. Louis, MO, U.S.A.) was used as a 

standard and [2,4,6,7-3H]oestradiol (specific activity, 95.4 Ci/mmol; NEN Chemicals) as a tracer. 

The main crossreacting steroids were oestrone (1.49%) and oestriol (0.21%). The antiserum was 

used at a final concentration of 1:125,000. The minimal detectable dose at the 90% B/B0 level was 

8 pg/ml. The interassay coefficient of variation was 17.4% and the intra-assay coefficient of 

variation was 12.4%. The concentration of oestradiol was expressed in pg/ml after correction for 

the procedural losses. 

Naltrexone. Plasma concentration of naltrexone was determined in samples collected at 8.36 h 

(30 minute after morning feeding), 15.36 h and 16.48 h (36 and 108 minutes after afternoon 

feeding respectively) by a HPLC method used for detection of morphine described previously 

by Joel et al. (1988), which has been modified by using 100 mg Varian C8 extraction 

cartridges, and the use of an ASPEC automated sample preparation device. The samples were 
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eluted with 15% acetonitrile instead of 10% acetonitrile to improve extraction efficiency up 

to 75%. 

Detection of oestrus 

Detection of oestrus was performed once daily in the morning on all days of the cycle by a back

pressure test in the presence of a vasectomized boar. The time of oestrus was defined as the day 

the gilt showed a standing response to the back-pressure test in the presence of the boar. 

Pulse detection 

The profiles of LH release were analysed using the pulse analysis program of Maxima/Chromcard 

(Fisons Instruments.Interscience, Breda, Holland) with baseline calculated according to an 

algorithm taken into account the total profile. A pulse was defined by a baseline-peak ratio of 0.5 

or lower and a minimal area under the pulse of 6.0 x 106ng.ml'1.min. The highest value of a pulse 

above baseline was taken as pulse amplitude. 

Statistical analysis 

Data were analysed using SAS statistical analysis system (1990). The procedure GLM was used to 

analyse the linear model. Values are expressed as means ± standard error of the mean. The effects 

of naltrexone treatment, housing system, time (day after altrenogest withdrawal) and their 

interactions on the measured hormonal parameters were tested by means of an F-test using the 

following model with time data within gilts taken as repeated measurements. Yp = m + N; + Hj + 

(HxN)|j+ eUjk+ Ti+ (TxN)a+ (TxH)jj+ (TXNXH);JI+ 62^, where YjjW: value of hormone parameter 

at naltrexone treatment i, housing system j , for gilt k at sampling day 1; m = overall mean; N; = 

fixed effect of naltrexone treatment i (i = 1,2); Hj = fixed effect of housing system j (j = 1,2); eUjk = 

error term 1, which represents the random effect of gilt k within naltrexone treatment i and 

housing system j ; Tl = fixed effect of sampling day (1 = 1,...,4); 62^ = error term 2 which 

represents the random effect within gilts between sampling days. The effects of naltrexone 

treatment, housing system and their interactions were tested against error term 1. The other effects 

were tested against error term 2. Differences were considered significant when P<0.05, corrected 

for number of observations in the cases of interactions. The procedure CORK, was used to 

calculate Pearson's correlation coefficients. 
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Results 

General 

Of all 13 animals included in the experiment, 7 gilts showed a preovulatory LH surge within 

the period of sampling, with 4 out of 6 control animals on Day 6, and 2 out of the 7 

naltrexone treated animals on Day 5, and 1 animal on Day 6. On average the 13 gilts came 

into oestrus 6.8 ± 0.3 days after termination of altrenogest treatment. In the naltrexone treated 

group, there was a considerable variation among gilts in this respect (range: Day 5 to Day 9; 

Figure 1). With regard to the time of oestrus, no differences were found between loose and 

tethered housed animals. 
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Figure 1: First day of oestrus in control (upper panel) and naltrexone (lower panel) treated pubertal gilts, 
tethered (filled bars) or loose housed (open bars), after discontinuation of treatment with altrenogest. 

All animals gained weight during the experimental period of 5 months, with weight gain 

being significantly higher in loose housed (24 ± 1.7 kg) than in tethered gilts (16 ± 2.4 kg) 

(p=0.03). 

In all animals treated with naltrexone, plasma levels of the opioid receptor antagonist were 

readily detectable on Day 2 yielding a concentration of 9.6 ± 2.3 ng/ml (mean ± SEM) at 30 

minutes after the morning feeding, 11.6 ± 2.1 ng/ml and 9.9 ± 2.7 ng/ml at 36 minutes 

respectively 108 minutes after the afternoon feeding. In most of the samples taken at 

comparable timepoints on Day 6, the plasma concentration of naltrexone remained below 

detection (<2 ng/ml). Only 2 animals showed detectable but very low naltrexone 

concentrations, even after the high dose of 50 mg. 
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Figure 2: Illustrative profiles of pulsatile LH secretion and plasmalevels ofoestradiol of control (left) and 
naltrexone (right) treated pubertal gilts on day 2, 4, 5 and 6 after synchronisation of the oestrous cycle with 
altrenogest. 

Plasma LH 

Tethered housing did not affect pulse frequency (p=0.84), pulse height (p=0.71) and area 

under the pulse (AUP), nor was there an interaction effect between naltrexone treatment and 

housing (p=0.93; p=0.71 and p=0.40 respectively). For further analysis of the effect of 

naltrexone on LH pulse frequency and pulse amplitude during the follicular phase, the data of 

loose and tethered animals were pooled. Profiles of the pulsatile LH release are shown in 

Figure 2. Group data on pulse frequency and pulse amplitude are presented in Figure 3. 

A significant treatment x time interaction effect was found for pulse frequency (p=0.04). LH 

pulse frequency on Day 4 and 5 was significantly decreased compared to Day 2 and Day 6 

(the average day that the preovulatory LH surge occurred) in control animals (Figure 2 and 

3), whereas in naltrexone treated animals no differences were found between Days 2, 4, 5 and 
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6. Furthermore, pulse frequency in the naltrexone treated group was significantly lower 

compared to the control group on Day 2 after termination of altrenogest treatment (p<0.02). 

For pulse amplitude and AUP, a treatment x time interaction effect was found (p=0.0001; 

Figure 2 and 3). 
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Figure 3: Data represent mean ± SEM ofLHpulse frequency (A; number per 12 h), pulse amplitude (B; 
ng/ml) and area under pulse (C; ng.ml .min) in control (closed bars) and naltrexone treated animals (open 
bars) during the follicular phase of the oestrous cycle. 
Time effect: 

* = significantly different from all others days within treatment group (P<0.05). 
** = significantly different from naltrexone treatment on Day 4 (P<0.05). 
*** = significantly different from control on Day 4 and 5 (P<0.05). 

Treatment effect: 
f = significantly different between treatment on the same day (P<0.05). 

In control animals, on Day 6 (the average day of preovulatory LH surge) pulse amplitude and 

AUP were significantly (both p=0.0001) higher compared to Day 2, 4 and 5. In naltrexone 

treated animals, pulse amplitude and AUP on Day 5 were significantly higher (both p=0.04) 

than on Day 4. In addition, compared to control animals, LH pulse amplitude and AUP in 
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naltrexone treated animals were significantly higher (both p=0.03) on Day 5 but significantly 

lower (both p=0.0001) on Day 6. 

To exclude the possibility that the effect of naltrexone was due to the occurrence of the 

preovulatory LH surge, data were lined up to the first day of oestrus. The effects of 

naltrexone found, when determined relative to altrenogest withdrawal, were not found when 

lined up to the first day of oestrus. LH pulse frequency (p=0.51), pulse amplitude (p=0.18) 

and AUP (p=0.23) in naltrexone treated animals were not different from control animals. 

Plasma oestradiol 

No difference was found in the plasma level of oestradiol between tethered and loose housed 

gilts (p=0.21), and therefore the data from tethered and loose housed animals were pooled for 

further statistical analysis. A clear-cut time-effect (p=0.0009) was found with significantly 

lower plasma levels of oestradiol on Day 2 (3.5 ± 1.1 pg/ml) compared to Day 4 (9.4 ± 1.7 

pg/ml; p=0.02), 5 (14.3 ± 2.2 pg/ml; p=0.0001) and 6 (11 ± 2.4 pg/ml; p=0.003) after 

termination of altrenogest treatment (see also profiles in Figure 1). In addition, on Day 4, 

oestradiol levels were significantly lower than on Day 5 (p=0.05). A treatment effect (p=0.03) 

was found, with naltrexone treated animals showing lower plasma levels of oestradiol (mean 

over Day 2 to 6: 7.4 ± 1.2 pg/ml) than control animals (12.3 ±1.8 pg/ml). 

Discussion 

The characteristics of the release of LH during the follicular phase of the oestrous cycle and the 

putative role of endogenous opioid peptides (EOP) in this respect, were investigated in loose and 

tethered housed gilts treated with the opioid receptor antagonist naltrexone. The follicular phase 

was characterised by highly frequent, low amplitude LH pulses on Day 2, followed by a decrease 

in pulse frequency on Day 4 and 5. The preovulatory LH surge occurred within 5-9 days after 

termination of altrenogest treatment, and was constituted of pulses of high frequency and high 

amplitude. The oestradiol concentration increased during the follicular phase with peak value on 

average on Day 5, the day before most of the control animals display the preovulatory LH surge. 

Furthermore oestradiol was negatively correlated with pulse frequency, which might reflect a 

negative feedback on the level of the hypothalamus. This would be in line with findings of Tanaka 

et al. (1992) and O'Byrne et al. (1993), showing decreased multi-unit activity in the mediobasal 

hypothalamus of oestradiol treated ovariectomized goats and monkeys, respectively. Thus, it 

might be suggested that oestradiol exerts its negative feedback, at least in part, by reducing GnRH 

pulse frequency at the level of the hypothalamus, and consequently the number of LH pulse 

secreted from the pituitary. 
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Abundant evidence exists reporting that stress can affect LH secretion and disrupt oestrous 

cyclicity (Fonda et al. 1984; Brann and Mahesh 1991; Rivier and Rivest, 1991). In our study, long 

term tethered housing did not influence LH pulse frequency, pulse amplitude and mean LH 

plasma concentrations in gilts during the follicular phase. In accord with the notion that tethered 

housing represents a chronic stressor, however, it did reduce body weight gain as compared to the 

loose housed condition. Thus, LH secretion in gilts may be relatively resistant to this form of 

housing stress. Alternatively, it could be that adaptive processes had occurred that maintained 

normal LH secretion under these conditions. Indeed, Janssens et al. (1995a) have shown that 

tethered housed gilts initially develop hypercortisolaemia and hyperprolactinaemia, but that these 

stress symptoms are temporary, and disappear after 3 months of tethering in at least part of the 

animals. In addition, they found evidence for adaptive changes in opioid mechanisms that could be 

instrumental in this respect. Furthermore, in Chapter II using multiparous sows, tethered housing 

as such did not change the frequency and amplitude of LH pulses but increased mean plasma LH 

concentration and advanced the preovulatory LH surge. Therefore, it might be suggested that 

tethered housing is not disrupting the pulse pattern of LH during the follicular phase, but, as 

suggested in a previous study (Chapter II), it might affect other processes like the timing of the 

preovulatory LH surge. 

In animals treated with the opioid receptor antagonist naltrexone, the timing of oestrus seemed to 

be shifted and possibly also the timing of the preovulatory LH surge. This is reflected by the lower 

pulse frequency and pulse amplitude in naltrexone treated pigs on Day 6, that is the day when the 

majority of the control animals displayed the preovulatory LH surge. This would be in support of a 

study by Faigon et al. (1987), who showed that in rats the "positive feedback" of the ovarian 

hormones on LH secretion is advanced by naloxone. In addition, Armstrong et al. (1988) 

reported that administration of morphine (sc) to sows for 5 days after weaning delayed the 

onset of oestrus, and other studies (Yearwood et al, 1991; Kraeling et al, 1992a) reported a 

delayed preovulatory LH surge in E2J3 primed OVX gilts after iv and ICV morphine 

treatment with no effect on the height of the surge. The present findings, together with data 

from the literature, might indicate that EOP activity is necessary for proper timing of events 

leading to the preovulatory LH surge. 

On Day 5, we found higher LH pulse amplitude and AUP in naltrexone treated animals 

compared to control animals. To determine whether this was caused by naltrexone treatment 

on this day or might have been due to the fact that 2 naltrexone treated animals showed the 

preovulatory LH surge on this day, data were lined up to the first day of oestrus. It appeared 

that naltrexone treatment had no effect on LH pulse amplitude and AUP, when data were lined 

up on the first day of oestrus. Therefore it might be suggested that naltrexone had no effect on LH 

pulse frequency, pulse amplitude and AUP but disrupted the timing of events leading to the 

preovulatory LH surge. 
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In the present study, repeated naltrexone administration did not result in a plateau level of 

naltrexone in plasma concentrations. Plasma concentrations of naltrexone decreased from 

detectable levels on Day 2 in all animals to concentrations below detection on Day 6 in most 

animals. This could not be attributed to the schedule of administration, since a plasma 

concentration of 3.2 ng/ml naltrexone would be expected on Day 6, using a mathematical 

approach. It could be suggested that plasma clearance of naltrexone is increased possibly by 

increased metabolic and/or renal clearance. From a study in humans by Vereby et al (1976) and 

Meyer et al, (1984), this was not expected since they reported a steady state equilibrium ranging 

approximately 2.5 ng/ml from the first day of administration until 18 days after a daily oral dose of 

100 mg. This might indicate a species difference in pharmacokinetics of naltrexone between pigs 

and humans. Furthermore it should be mentioned that, although plasma concentrations of 

naltrexone rapidly decrease to undetectable levels (i.e. <2 ng/ml), the opioid receptor antagonist is 

able to disrupt the timing of the preovulatory LH surge. 

In summary, after high frequency and low amplitude pulsatile LH release in the early follicular 

phase, pulsatility decreases until the day of the preovulatory LH surge. Oestradiol might modulate 

this pulse pattern of LH through EOP's on hypothalamic level since only LH pulse frequency is 

negatively correlated with plasma levels of oestradiol and naltrexone treatment disturbs the normal 

pulse pattern. 
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Abstract 

The aim of the study was to probe whether the responsivity of the pituitary to GnRH changes 

during the follicular phase, and whether this might be mediated by endogenous opioid peptides 

(EOP's). Oestrus cycles of 16 loose housed gilts were synchronized with altrenogestfor 21 days. 

Subsequently, 8 animals were treated per os with opioid receptor antagonist naltrexone for 6 days 

and 8 animals served as controls. On Days 2, 4, 5 and 6 after termination of altrenogest treatment, 

2 control and 2 naltrexone treated animals were killed. Trunk blood, ovaries and pituitaries were 

collected. Surge like levels ofLH were generally found on Day 6, but in 1 naltrexone animal on 

Day 5. Oestradiol concentration was highest on Day 4 and 5 and lowest on Day 6. Hemipituitaries 

were superfused and challenged with GnRH (10' M during 20 seconds) in vitro. In control 

animals, the LH response of hemipituitaries to GnRH was lowest on Day 4. In naltrexone treated 

animals, the LH response of hemipituitaries to GnRH was lowest on Day 2 and highest on Day 6. 

Furthermore, the LH response on Day 4 and 6 seemed to be higher in hemipituitaries of 

naltrexone treated than in control animals. Plasma LH concentrations showed a positive 

correlation with the hemipituitary LH response to GnRH in vitro and both parameters were 

negatively correlated with plasma oestradiol. It is suggested that pituitary responsivity to GnRH 

changes during the follicular phase and that EOP's modulate the timing of events that eventually 

lead to the preovulatory LH surge at the suprapituitary level. 

Introduction 

LH secretion during the oestrous cycle has been studied in a variety of species (Fillicori et al, 

1986; Whisnant et al., 1991, Okrasa and Tilton, 1992; Norman et al., 1994). During the luteal 

phase, LH pulses are of low frequency and high amplitude. This pattern changes to one of high 

frequency, low amplitude pulses during the early follicular phase, and then to high frequency, high 

amplitude pulses that constitute the preovulatory LH surge. These dynamics are thought to be 

determined mainly by a GnRH pulse generator at the hypothalamic level (Knobil, 1990; Veldhuis, 

1990). However, there is some evidence that the responsivity of the pituitary to GnRH changes 

throughout the oestrous cycle in the rat (Apfelbaum, 1981), and the menstrual cycle in humans 

(Rossmanith, 1991). Whether such changes in the responsivity of the pituitary for GnRH occur in 

the pig and contribute to the dynamics of plasma LH during the oestrous cycle, particularly during 

the follicular phase and the preovulatory LH surge, is unclear. 

Endogenous opioid peptides (EOP) have been implicated in the regulation of the pulsatile LH 

release, but their activity depends on the stage of the oestrous cycle (Kaynard et al., 1992; Chang 

et al., 1993; Heisler et al., 1993). There is considerable evidence for a tonic inhibition of LH 
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secretion by EOP's during the progesterone dominated luteal phase in sheep (Yang et al, 1988), 

pig (Barb, et al, 1992) and rat (Kaynard et al, 1992). Thus, it has been indicated that EOP's 

mediate negative feedback actions of progesterone. They do not seem to mediate, however, the 

negative feedback actions of oestradiol on LH release during the follicular phase (Barb et al. 1986; 

Seifer et al, 1990; Okrasa and Tilton, 1992). From recent studies, using rats and gilts treated with 

opioid receptor antagonists (ICV; per os), it was suggested that EOP's, rather than exerting a direct 

inhibition of LH release throughout the follicular phase, play a permissive role: termination of 

EOP-activity allows the preovulatory LH surge to be generated (Roozendaal et al, 1997; Chapter 

VII). A direct effect of naltrexone at the level of the pituitary, however, could not be excluded 

since it has been shown that opioid antagonists can increase LH release in pituitary cell cultures 

from pig, rat and cattle (Cacicedo and Franco, 1985; Blank et al, 1986; Barb et al, 1990). 

The present study was designed as a pilot study to probe whether the responsivity of the pig 

pituitary to GnRH changes during the follicular phase, and whether this might be mediated by 

EOP's. 

Materials and Methods 

Animals and housing 

The experiment was conducted with 16 crossbred gilts (Great Yorkshire x British Landrace; 

Pig Improvement Company, Oxfordshire, UK), weighing approximately 150 kg, which had 

shown 2 or more oestrous cycles of 19 to 21 days,. All animals were housed loose in 

individual pens (approximately 6 m2) with a concrete floor that was covered with wood 

shavings, except for a slatted dunging area at the rear of the pens. They were housed under a 

12:12 light:dark rhythm and ambient room temperature ranged from 15°C to 25°C. Pigs were 

fed 1 kg of a pelleted, dry sow feed (12.2 MJ of metabolizable energy per kilogram 

containing 15.4% crude protein) daily at 8:00 h and 16:00 h, and water was available ad 

libitum. 

Experimental design 

The oestrous cycles of all animals were synchronized by daily oral administration of 20 mg of 

the progesterone agonist altrenogest (Regumate®, Hoechst Holland, The Netherlands), added to 

the morning feeding for 21 days. Starting the day after last altrenogest treatment, 8 animals were 

treated twice daily for 6 days with the opioid receptor antagonist naltrexone.HCl (Sigma 

Chemicals, St. Louis, U.S.A.). Naltrexone was given p.o. mixed with the feed. On Day 1, 50 mg 

was given in the morning (8.00 h) and evening feed (16.00 h). From Day 2 to Day 6,25 mg was 

given in the morning feed and 50 mg in the evening feed. The control group of 8 animals received 
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no naltrexone treatment. On Day 2, 4, 5 and 6 after altrenogest withdrawal, 2 control and 2 

naltrexone treated animals were killed and pituitaries were quickly removed and kept on ice 

in culture medium. At slaughter, trunk blood was collected in cooled heparinized tubes, 

centrifuged at 3000xg for 15 minutes at 4 °C, and plasma was stored at -20 °C until 

radioimmunoassay of LH and E2fi (detection of the preovulatory LH surge and E2J3 peak). 

The ovaries were removed for follicle counts. The experiments were approved by the 

Committee on Animal Care and Use of the Agricultural University, Wageningen, The 

Netherlands. 

Superfusion 

Superfusion was performed using the method described previously by Verburg-van 

Kemenade et al. (1987b) with slight modifications. After removal of the posterior lobe, 

anterior pituitary glands were hemisected and each half was put in an air- and water-tight 

superfusion chamber (452 ul volume). The superfusion chambers were placed in a 

temperature controlled (38 °C) container. Culture medium consisted of Dulbeco's Modified 

Eagles Medium Nutrient Mix F12 (1:1) containing 0.356 %o L-Glutamine (w/v) and 15 mM 

HEPES with added per liter: 3.439 g TES, 35 mg Penicillin-G, 1 g NaHC03, 200 ul 0.25x10" 

%o gentamycin-sulfate, 500 ul ethanol, 50 ul catalase, 30.4 ul 0.1% (v/v) ethanolamine, 100 

ul 250 uM sodiumselenite, 100 ul 500 nM Tri-iodothyronin , 898,3 mg D-glucose, 5.0 g 

bovine serum albumin. In order to mimic in vivo conditions during the follicular phase, 

oestradiol-1713 (E2B) was added to the superfusion medium in concentrations matching those 

found in blood plasma on Day 2, 4, 5 and 6 respectively in a previous experiment with 

animals of the same breed, weight and treatment. Furthermore, superfusion medium of 

pituitaries from naltrexone treated animals, was supplemented with naltrexone in a 

concentration of 10"6 M. Medium was pumped at a speed of 80 ul/minute and superfusate was 

collected using a fraction collector (LKB type 3401B, Sweden). The first 100 minutes of 

superfusion were used to allow hormone release reach baseline values, and fractions of 10 

minutes collected during the following 100 minutes were used to determine basal LH release. 

Then hemipituitaries were superfused with culture medium containing 10' M GnRH during 

20 seconds (GnRH pulse), and 8 fractions of 2.5 minutes were collected. Thereafter, 10 

minute sampling was resumed and continued for another 140 minutes. Collected fractions 

were stored at -20 °C until hormone analysis. Basal LH release was determined by calculating 

the average LH concentration of the 10 fractions during the second 100 minutes of 

superfusion. The highest value measured during the 2.5 minute fractions following the GnRH 

pulse was used to calculate the LH response that was computed as % of basal. The procedure 

was validated for pig tissue by conducting a GnRH dose response curve and exposing the 

tissue to 60 mM KC1 to assess residual LH releasability (Dierx et al, unpublished results). In 
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the dose-response curve a maximal LH response was found at a GnRH concentration of 3.10"5 

M GnRH. In the present study a submaximal dose of 10" M was used to asses pituitary 

sensitivity for GnRH. 

Hormone analysis 

LH. Superfusion samples and trunk blood plasma were analysed for LH with a double anti

body radioimmunoassay (RIA) as described by Niswender et al. (1970), using porcine LH 

(pLH iodination grade batch 004/3; potency, 0.85 x NIH LH-S19; UCB bioproducts, 

Brussels, Belgium) as a standard and for radioiodination (specific activity, 38 uCi/ug). Anti-

porcine LH batch 004 (UCB bioproducts, Brussels, Belgium) was used at a final dilution of 

1:360,000 yielding an initial binding (B0) of the labeled hormone of approximately 39%. 

Sac-Cel was used as the second antibody, (donkey anti-rabbit; Wellcome Reagents, Beckenham). 

The minimal detectable concentration at the 90% B/B0 level was 0.1 ng/ml. The interassay 

coefficient of variation was 14.4 % and the intra-assay coefficient of variation was 7.2 %. 

Oestradiol. Concentrations of E2B in trunk blood plasma were measured after extraction with 

dichloromethane (DCM, Merck, Darmstadt, Germany) using a single anti body 

radioimmunoassay. For estimation of procedural losses, 500 cpm of [2,4,6,7-3H]E2l3 (NEN 

Chemicals, 's Hertogenbosch, The Netherlands) was added to 1 ml plasma sample and mixed with 

3 ml DCM. The organic phase of the mixture was evaporated under a stream of nitrogen and the 

residue redissolved in 500 ul phosphate buffer with 1% BSA. An aliquot of 150 ul was taken to 

determine the recovery of [3H]E2B (57.7 ± 2.2%; mean ± SEM). Aliquots of 150 ul were used to 

measure E2B concentrations in duplicate by RIA using a specific rabbit antiserum against 6-keto-

estrone (6-CMO-BSA, UCB bioproducts, Brussels, Belgium) in a final dilution of 1:125,000. 

The mean crossreacting steriods were oestrone (1.49%) and oestriol (0.21%). E2-1713 (Sigma 

Chemical Co., St. Louis, MO, U.S.A.) was used as a standard and [2,4,6,7-3H]E2 (specific activity 

95.4 Ci/mmol", NEN Chemicals, 's Hertogenbosch, The Netherlands) as a tracer. The minimal 

detectable dose at the 90% B/B0 level was 8 pg.ml'1. The intra- and the inter-assay coefficient of 

variation 12.4 % and 17.4 % respectively. The concentration of E213 was expressed in pg.ml"1 after 

correction for procedural losses. 

Detection ofoestrous 

Oestrus detection was performed once daily in the morning after withdrawal of altrenogest 

treatment by a back-pressure test in the presence of a vasectomized boar. The time of oestrous 

was defined as the first day the sow showed a standing response. 
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Statistics 

The procedure CORR of the SAS statistical analyis system (1990) was used to calculate Pearson's 

correlation coefficients. 

Results 

General 

All 4 animals that were killed on Day 6 (2 control and 2 naltrexone treated animals) had 

shown oestrous behaviour on day 5. The ovaries of animals of the control group (N=8) were 

not different in weight (9.8 ± 2.7 g; P=0.67) or number of follicles (20 ± 1.4; P=0.46) 

compared to animals of the naltrexone treated group (N=8; 8.9 ± 0.69 g and 22 ± 1.4 

respectively). 
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Figure 1. Pituitary LH response to a GnRH pulse in superfused hemipituitaries. Data are presented as the 

mean value (% basal release/mg tissue) of 2 hemipituitaries from control (left panels) or 2 hemipituitaries 

from naltrexone (right panels) treated animals on Day 2, 4, 5 and 6 after termination of altrenogest treatment. 
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Plasma hormone concentrations in vivo 

The plasma E2J3 concentration, determined in trunk blood, in general reached the highest 

levels on Day 4 or 5 and were lowest on Day 6 (Table 1). On Day 2, 1 naltrexone treated 

animal had a relatively high plasma oestradiol concentration (89.9 pg/ml) and had follicles 

that were in developmental stage of Day 4. 

The LH concentration, determined in trunk blood, on average was higher in animals on Day 6 

than on Day 2, 4 and 5 (Table 1). One naltrexone treated animal already showed preovulatory 

surge-like LH concentrations on Day 5 (25.7 ng/ml). On Day 6 plasma concentrations of LH 

seemed to be lower in gilts of the naltrexone group compared to gilts in the control group. 

Table 1: Hormone parameters in vivo and in vitro in control and naltrexone treated animals 

Day after altrenogest treatment plasma LH plasma E2B LH response 

2 C 7~8 21 129 

C 1.6 <8 227 

N 2.7 90 85 

N 4.8 32 128 

4 C 23 44 109 

C 1.5 95 100 

N 2.5 41 121.0 

N 5.1 92 271 

5 C 2~2 85 139 

C 3.2 81 190 

N 4.3 118 122 

N 25.7 13 169 

6 C 15 l <8 248 

C 19.9 <8 161 

N 11.5 <8 204 

N 6.6 <8 324 

Data represent plasma LH concentration (ng/ml) in vivo, plasma E2fi concentration (pg/ml) in vivo, and 
pituitary LH response (% basal) to a GnRHpulse in vitro in individual control (C) and naltrexone (N) treated 
animals on Days 2, 4, 5 and 6 after termination of altrenogest treatment. 

LH response to GnRH pulse in vitro 

Data of the LH response of superfused hemipituitaries to GnRH are presented in Table 1 and 

illustrated by Figure 1. In control gilts the LH response seemed to be lowest on Day 4. In 

naltrexone treated gilts, the LH response seemed to be lowest on Day 2 and highest on Day 6. 

Furthermore, the LH response of hemipituitaries on Day 2 seemed to be lower in naltrexone 
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treated animals than in control animals. On Day 4 and 6, the LH response of hemipituitaries 

from naltrexone treated animals seemed to be higher compared to those from control animals. 

Correlations between in vivo and in vitro data 

The plasma LH concentrations showed a positive correlation with the pituitary LH response 

to GnRH (P=0.06, r2=0.48), and both parameters showed a negative correlation with the 

plasma E213 concentrations (P=0.04; r2=-0.52 and P=0.02; r2=-0.57 respectively). No 

correlations were found between the basal LH secretion in vitro and the plasma concentration 

of LH (P=0.56; r2=-0.16), the plasma concentration of E2B (P=0.79; r2=0.073), or the GnRH-

induced LH response in vitro (P=0.27; r =-0.29). 

Discussion 

The present study was designed as a pilot study to assess whether the LH response to a pulse 

of GnRH changes during the follicular phase and whether this is mediated by EOP's. The 

response of pituitaries of control animals seemed lowest on Day 4, and highest on Day 6, the 

day of the preovulatory LH surge as indicated by the high plasma LH concentration. 

Pituitaries of naltrexone treated animals showed an increase in LH response from Day 2 

reaching the highest response on Day 6. In view of the submaximal concentration of GnRH 

used, it is therefore suggested that, independent of the treatment with naltrexone, the 

responsivity of the pituitary increases from the follicular phase onwards reaching a maximum 

at the day of the preovulatory LH surge. This is in accord with studies from others that 

reported increased pituitary sensitivity to GnRH around the preovulatory LH surge in rats 

(Clayton et al, 1980; Apfelbaum, 1981) and humans (Rosemberg et al, 1974) and with data 

from the literature showing that E2B enhances the sensitivity of the pituitary for GnRH 

(Drouva et al, 1983; Koiter et al, 1987; Gregg et al, 1990), but inhibiting the LH secretion 

from the pituitary gonadotrophs (March et al, 1981; Knobil and Hotchkiss, 1988). Indeed, 

the negative correlations between the plasma E2B concentration and on the one hand plasma 

LH concentration and on the other hand the pituitary LH response in vitro in both treatment 

groups correspond with the presumed negative feedback by E2B reported in a variety of 

species in vivo (Helmond et al, 1986; Kesner et al, 1989; Messinis et al, 1992; Matt et al, 

1993). 

Naltrexone treatment seemed to affect the pituitary LH response to GnRH during the 

follicular phase of the oestrus cycle. The lowest GnRH induced LH response was found on 

Day 4 in control animals, but already on Day 2 in naltrexone treated animals. Together with 

the data on follicle maturation on Day 2 and surge like LH levels on Day 5 of 2 other 
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naltrexone treated gilts also suggests that the naltrexone treatment had advanced the timing of 

events during the follicular phase. The inhibitory actions of EOP's could be directly on the 

pituitary or indirectly through the GnRH pulse generator. Chao et al, (1986) found no effect 

of naloxone (added in vitro) on GnRH stimulated LH secretion from bovine pituitary cells, 

suggesting that EOP's do not modulate LH secretion at the level of the pituitary. In a previous 

study, we reported an advanced termination of the preovulatory LH surge after repeated ICV 

treatment with naltrexone during the follicular phase (Chapter VII), supporting a central site 

of action. This notion is in line with the results of studies in intact or E2B primed mature 

OVX gilts (Armstrong et al, 1988; Yearwood et al, 1991; Kraeling et al., 1992) and intact 

sheep (Currie et al, 1991), showing a delayed preovulatory LH surge after iv or ICV 

treatment with the opiate agonist morphine. Thus, one could speculate that EOP's exert an 

inhibitory action on the sequence of processes that lead to the preovulatory LH surge and that 

interruption of EOP activity permits generation of the surge. 

In summary, the results from the present pilot study suggest that responsivity of the pituitary 

to GnRH changes during the follicular phase, and that EOP's modulate the timing of events 

that eventually lead to the preovulatory LH surge by an inhibitory action at the suprapituitary 

level. 
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Abstract 

Intracerebroventricular (ICV) cannulation in adolescent and adult pigs has some unique 

problems. Placement of the cannula is very difficult due to large individual variability in size 

and structure of the skull and frontal sinus. Furthermore, the rough behaviour of the animals 

makes it necessary to restrain the animal for ICV treatment, which is disadvantageous when 

studying responses to stress. In the present study, we developed and employed a cannulation 

system for pig brain, based on landmarks on the neurocranium, that enabled us to perform 

ICV treatment in freely moving post pubertal animals for a long period of time. Furthermore, 

plasma Cortisol concentrations have been determined in freely moving pigs treated ICV with 

a-CSF or naltrexone to validate the present ICV method for effectivity and stressfulness. 

Introduction 

Intracerebroventricular (ICV) cannulation has facilitated investigation of the role of 

neuropeptides in modulating pituitary function and measuring concentrations of 

neuropeptides and/or neurotransmitters in the cerebrospinal fluid (CSF) in the rat (Rivest et 

al, 1993; Bonavera et al, 1994), sheep (Conover et al, 1993) and primate (Meyers, 1977). A 

method for cannulation of the lateral ventricles in prepubertal pigs has been described by 

Poceta et al. (1981) and has been used with some modifications by Barb and co-workers in a 

number of studies (Barb et al, 1989; Estienne et al, 1990; Barb et al, 1991; Barb et al, 

1993). However, as reported by Poceta et al. (1981), ICV cannulation in the pig has some 

unique problems due to individual variability in skull structure and the absence of a detailed 

atlas of the brain with stereotactic co-ordinates. Furthermore, the development of the frontal 

sinus, the rough behaviour of pigs, including investigative activity, that could dislodge or 

damage the anchoring system, the difficulty of CSF-sampling or drug-injection in freely 

moving animals and the potentially dirtiness of the pig house, makes it very difficult to design 

a reliable and reproducible method of ICV-treatment in growing and freely moving pigs. 

The main purpose of this paper is to report a novel ICV cannulation technique for pigs which 

was developed utilising a stereotaxic apparatus affixed to the head and the injection device 

inserted into the frontal sinus. In addition, a pilot experiment was conducted to determine 

whether the injection method was stressful to the animal by measuring plasma Cortisol. 

Furthermore, plasma Cortisol response to ICV treatment with the opioid receptor antagonist 

naltrexone was used to validate the technique, since the opioid receptor antagonist naloxone 

has been shown to increase the plasma Cortisol concentration (Voklavka et al, 1979; Barb et 

al, 1986). 
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Materials and Methods 

Stereotactic Apparatus 

A stereotaxic apparatus (Figure 1, panel I, II, III) was developed that was attached to the head 

by means of a mouth piece at the front and two bone screws at the back of the skull. The 

apparatus was adjustable to every (adult) headsize. The base consists of two metal bars 

orientated in a medial-lateral direction (A) containing the attachment points to the head, 

connected by two parallel anterior-posterior sliding bars (B). By means of a tube-sliding 

mechanism over the two anterior-posterior bars, a micromanipulator unit (C) with a medial-

lateral orientation is attached to the base by two metal stands. Lateral movement of the 

micromanipulator can be made by a tube-sliding mechanism over two parallel bars, that can 

also be rotated 60°in total (30° to either side) in the vertical anterior-posterior plane. The 

micromanipulator unit itself was attached to the apparatus by means of an aluminium disc 

(Figure 1, panel II D and III D), that could be rotated 50° in total in the vertical medial-lateral 

plane. In both the anterior-posterior and medial-lateral direction, scales in millimetre were 

attached for measurement of cannula placement. 

ICV Injection Device 

The injection device (Figure 2 panel I, II, III) consisted of a stainless steel cup (A) with a luer 

lock cavity (B) of stainless steel ending in a stainless steel tube on the outside of the cup. The 

cup was closed by a Teflon® (PTFE=polytetrafluorethene) lid (C) that was locked with a 

bayonet catch. By fastening the socket cap screw (D), containing a Teflon lid, the orifice of 

the luer-lock cavity is closed and the bayonet catch is ultimately secured. This construction 

was wrapped in a Teflon hull (E) to reduce the noise when unlocking and to prevent an 

inflammatory reaction and skin overgrowth. 

A sterile flexible PVC tubing (Figure 3G) (PVC Perfusor® tubing, B. Braun Melsungen AG., 

Melsungen, Germany) was attached to the tip of the stainless steel luer-lock canula tube that 

connected the injection device to a stainless steel cannula designed for placement within the 

lateral ventricle (Figure 3 H). This cannula was kept in place by a perforated stainless steel 

collar that was fixed together with the cannula to the neurocranium using dental cement 

(Simplex Rapid®, Kendent Works, Purton Swindon, U.K.). 

Using this construction, growth and the further development of the frontal sinus does not 

affect the co-ordinates of the ICV cannula since the distance between neurocranium and the 

lateral ventricle remains constant (Table 1) during development around and after puberty, as 

was found in pigs of several crossbreeds and ages. An increase in the distance between the 

skull bone and neurocranium is compensated for by the flexible tubing. 
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Determination of cannula-placement and point of entry 

The exact caudal-ventral and lateral co-ordinates of the site of cannula-placement on the 

neurocranium were determined empirically in 17 saggitally and coronally cut heads of female 

pigs of the different crossbreeds and age from an abattoir. To determine caudal-ventral co

ordinates, the distance between the neurocranium and the lateral ventricle in a perpendicular 

line on the neurocranium were measured (Table 1). In addition, the distance between the 

caudal bone rim and most frontal dip in the neurocranium (Table 1, A), i.e. the most frontal 

part of the brain, and the distance from the dip in the neurocranium to the lateral ventricle 

(Table 1, B) were determined using a sliding calliper, to calculate a multiplication factor (f = 

B/A; f = 0.55), which was used to determine the rostral-caudal co-ordinates (Figure 4 panel I 

and II). These co-ordinates were then measured from the anterior calliper point, i.e. the dip in 

the neurocranium. The point of entry was then determined at 5 mm lateral to the medial bone 

septum from this point; the drill was angled at 5° caudally. 

Accuracy of the calculated co-ordinates and the technique of cannulation was verified using 8 

heads of sows of different crossbreeds and age obtained from the abattoir by verification of 

placement with methylene blue. After injection of the dye, brains were removed and site of 

injection was determined. 

Intracerebroventricular cannulation of the lateral ventricle 

From three days before until three days after surgery, gilts (great Yorkshire x British 

Landrace; weight range 100-150 kg) were given 12 ml of the antibiotic Methoxasol-T® (20 

mg Trimethorprim/ml, 100 mg sulfamethoxasol/ml, AUV, Cuijk, The Netherlands) orally 

once a day. Animals were fasted overnight and approximately 45 minutes prior to surgery 

they were premedicated by i.m. administration of 6 mg azaperone kg'1 body weight 

(Stresnil ; Janssen Pharmaceutica BV, Tilburg, The Netherlands). During general 

anaesthesia, which was induced and maintained using a mixture of 02/N20, enflurane 

(Ethrane®, Abort, B.V., The Netherlands), heart rate and respiration were monitored. Surgery 

was carried out under standard sterile conditions and the animals underwent surgical 

procedures in the ventral recumbency. A circular piece of skin tissue, subcutis and underlying 

periosteum, 50 mm in diameter centered on the midline of the head, was excised. A piece of 

frontal-parietal bone 40 mm in diameter was excised using a circular sawblade (Figure 3 A) 

and the frontal sinus was exposed. The circular bone tissue and the remaining spongeous bone 

within the 40 mm perimeter were removed from the neurocranium using a chisel. The exact 

caudal-ventral and lateral co-ordinates of the site of cannula-placement on the neurocranium 

were determined as described earlier, using the dip in the neurocranium and the most caudal 

bone rim as landmarks (Figure 4 panel I and II). The stereotaxic apparatus was affixed to the 
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Figure 1. Stereotaxic apparatus. Frontal lateral side (I), caudal (II) view and illustrative drawing (III) of the 
stereotaxic apparatus with the base consisting of two medial-lateral bars (A) and two parallel anterior-
posterior bars (B). The micromanipulator is attached to a disk (D) that is mounted on a block (C) for medial-
lateral movement. 
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III 

Figure 2: The ICV injection device. The intact (I), the separate parts (II) and a schematic drawing of the 
device (III). The stainless steel cup (A) with the Liter lock mouthpiece (B). This is protected from the external 
environment by a Teflon9 lid (C), closed by a bayonet catch and secured by a socket cap screw (D). Inside the 
Teflon lid (C), a piece of rubber is mounted to securely close the Luer lock mouthpiece (B). The total 
construction is wrapped in a Teflon® hull (E). 

skull by means of a bit in the mouth and 2 bone screws at the back of the head (Figure 1 panel 

I, II, III).Three 2 mm diameter holes were drilled (Figure 3 B) in the neurocranium near the 

site of cannula placement, 2 mm in depth for placement of screws. A hole, 2 mm in diameter 

was drilled that penetrated the neurocranium at the chosen site for placement of the cannula. 

The dura mater was punctured carefully before lowering the cannula. The injection cannula 

was attached to a 250 mm long tube (Figure 3G; PVC Perfusor® tubing, B. Braun Melsungen 

AG., Melsungen, Germany) filled with 0.9% saline and vertically held above the guide tube. 

The cannula and PVC tube were led through a guide tube (Figure 3 C) and fixed with a screw 
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at the cannula-tube connection to assure rigidity between guide tube and injection cannula. 

This unit was attached to the stereotaxic apparatus. When the cannula, equipped with a 

perforated collar, was placed on the dura, the syringe with 0.9% saline was detached from the 

PVC tubing with the meniscus at the top of the tubing, approximately 150 mm above the 

guide tube. Subsequently, the cannula was slowly lowered stereotaxically by means of the 

guide tube until an influx of fluid was observed indicating entrance into ventricular space 

(Buxton, 1988). The perforated collar was fixed with dental cement (Simplex Rapid®, 

Kendent Works, Purton Swindon, U.K.) around the cannula on the neurocranium. The tube 

connected to the cannula was cut to a length of approximately 50 mm and connected to the 

tube connector (Figure 2 panel III and Figure 3 D) on the bottom of the cup, which fitted 

precisely in the 40 mm hole of the outer skull. Before attachment of the injection device to 

the skull with three vitallium screws (diameter 2.7 mm, length 20 mm, Instruvet, Amerongen, 

The Netherlands), 10 ml of the antibiotic Ritriprim® (per 9.5 g gel, 300 mg rifamycine and 

200 mg trimethoprim, Dopharma, Raamsdonksveer, The Netherlands) was injected into the 

frontal sinus in order to prevent infection. A silicone layer was placed between the skin and 

injection device. 

Cannulation of the jugular vein 

Gilts were fitted with a jugular vein catheter immediately after the ICV cannulation, as 

described by Janssens et al. (1994). An indwelling catheter (Silastic® Medical Grade Tubing, 

0.040 in. i.d., 0.085 in. o.d.; Dow Corning, Michigan U.S.A.) was implanted into the external 

jugular vein pointing towards the cranial vena cava. The catheter was passed s.c. and 

externalized between the scapulae. A one-way luer-lock stopcock (Vygon BV, Veenendaal, 

The Netherlands) was secured to the end of the catheter. The catheter was covered in a 

harness of 23 cm x 20 cm PVC/Nylon (Bizon Chemie, Goes, The Netherlands) that was fixed 

on the back of the animal by means of chest belts. 

The catheter was flushed with saline once a week and filled with heparinized saline (25 IU 

heparin/ml of 0.9% saline; Leo Pharmaceutical Products, The Netherlands) when not in use. 

When catheter patency was reduced, obstructions were removed as described by Leuvenink 

and Dierx (1997). In short, a solution of 25000 IU Kabikinase® (Kabi Pharmacia, Sweden), 

2500 IU heparin and 0.2 ml Ticarpen® (Beecham, England) was added to 25 ml sterile 25% 

polyvinylpropylene (PVP)/saline (Merck, Germany) solution. After 1 week the catheter was 

flushed with a 2% heparine/saline solution. 

ICV Injection Procedure 

Before injection, the lid was removed using an Allan wrench (Figure 3 E) to loosen the socket 

cap screw (Figure 2D) followed by the use of a bipointed wrench (Figure 3 F) inserted into 
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Figure 3: ICV surgery tools. Bone from the skull is excised with the circular sawblade (A) and the holes for 
the screws and cannula are drilled using a manual drill (B). With the guide tube (C), the cannula and 
perforated collar (H) are positioned and attached to a PVC tube (G), filled with 0.9% saline. After fixing the 
cannula, the tube is cut and attached to the tube connector (D) of the ICV injection device. The wrench (E) 
and bipointed wrench (F) are used to loosen the screw and the lid respectively. 

Figure 4: Positioning of the cannula. Skull model (I) and schematic drawing (II) of cannula positioning. The 
cannula was placed at the point 5 mm lateral to the medial bone septum. Dorsal-ventral position was 
determined by multiplying the distance from the front of the neurocranium to the most caudal bone rim by a 
factor of 0.55, which was then measured off from the anterior calliper point angling at 5° caudally. 
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semicircular grooves in the lid (Figure 2 III) to unlock the bayonet catch and extract the lid. 

This lid was kept in a 70% alcohol solution during the injection procedure. A piece of 1 meter 

long PVC tube (Perfusor® tubing, B. Braun Melsungen, Melsungen, Germany) with a luer 

lock stopcock two-way valve (Vygon BV, Veenendaal) containing a 1 mg naltrexone (Sigma 

Chemicals, St. Louis, U.S.A.) in 500 ul artificial cerebrospinal fluid (a-CSF, per liter 

solution: 166 mg CaCl2, 240 mg MgS04, 134 mg KC1, 170 mg KH2P04, 2,184 mg NaHC03 

and 7,247 mg NaCl, pH=7.6) was connected to the injection device with the luer-lock 

stopcock and the solution was injected followed by 500 ul of a-CSF to overcome the dead 

volume in the system. After injection, the lid was replaced and locked. 

Experimental Procedures 

As a pilot experiment, 7 crossbred gilts (Great Yorkshire x British Landrace; Pig 

Improvement Company, Oxfordshire, U.K.; weight range 100-150 kg) which had shown 2 or 

more oestrous cycles of 19 to 21 days were used to determine the effect of the ICV injection 

procedure on plasma Cortisol concentrations by ICV treatment with a-CSF or the EOP 

antagonist naltrexone. The gilts were housed in individual pens (approximately 6 m2) with a 

concrete floor that was covered with wood shavings, except for a slatted dunging area at the 

rear of the pens. Gilts were exposed to 12:12 light: dark cycle and ambient room temperature 

ranged from 15 °C to 25 °C. Pigs were fed at 8.00 h and 16.00 h 1 kg of a pelleted, dry sow 

feed (12.2 MJ of metabolizable energy per kilogram containing 15.4 % crude protein) and 

water was available ad libitum. Cannulation of the lateral ventricle and the jugular vein was 

performed, as described earlier. After a recovery period of 7 days, pigs were treated ICV with 

500 ul of a 2 mg/ml naltrexone solution (N=2) or 500 ul a-CSF (control; N=5). From 

naltrexone treated animals, blood samples were taken every 12 minutes for 1 hour before, 3, 

8, 14, 20 and 26 minutes after ICV treatment and every 12 minutes for 2 additional hours. 

From control animals, blood samples were taken every 12 minutes during 8 hours. Blood 

samples (approximately 5 ml) were collected in tubes containing 50 ul EDTA solution (144 

mg/ml of saline; Triplex®III, Merck Nederland, The Netherlands) to prevent clotting. 

Contents of the tubes were mixed and placed on ice, subsequently centrifuged at 3000 x g for 

15 minutes at 4 °C and stored at -20 °C until analysis for Cortisol using a specific 

radioimmunoassays (RIA's) as described by Janssens et al. (14). After 6 weeks, the naltrexone 

treated animals were killed to check cannula placement by cutting the heads saggitally and 

coronally. The experiments were approved by the Committee on Animal Care and Use of the 

Agricultural University, Wageningen, The Netherlands 
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Statistical Analysis 

For statistical analysis, the means of Cortisol concentration at 9:00 h (the hour before 

treatment) were compared to means of the Cortisol concentration of 13:00 h (the first hour 

after treatment). The effect of ICV treatment with naltrexone or a-CSF on plasma Cortisol 

concentrations was analysed using a two tailed student T-Test. 

Table 1: Data of distances between anatomical structures in pig skull 

Mean ± SEM 

Range 

Distances (in mm) between: 

NC - LV BR - DNC (A) DNC - LV (B) 

20.1 ±0.4 87 ±1.9 47 ±0.9 

18-22 70-102 41-56 

factor 

(f=B/A) 

0.55 ± 0.008 

0.51-0.62 

Data are presented as mean ± SEM and the range. Data were determined in 17 sows of 

different crossbreeds and age that were obtained from an abattoir. NC = neurocranium, LV : 

lateral ventricle, BR = most caudal bone rim, DNC = dip in neurocranium. 

Results 

Recovery 

Animals exhibited normal eating behaviour, which reappeared within 24 hours after surgery. 

The skin healed within 3-4 days with minor inflammation. One animal exhibited temporary 

paralysis of the left hindleg after surgery, due to the positioning of the leg during surgery. 

However, this had healed by 24 hours post surgery. Post mortem examination revealed that 

all animals had a fungal infection in the frontal sinus. However, none of the animals showed 

any behavioural or physical signs of discomfort. 

Solidity of the ICV injection device and cannula patency 

Although, the pigs frequently rubbed their heads during the first days post surgery, none of 

the ICV injection devices were dislodged or damaged by their rough behaviour. In addition, 

the ICV injection devices were not damaged or dislodged by the biting behaviour of 

neighbouring pigs. Furthermore, in the 5 animals that were not killed to check cannula 

placement, patency of ICV cannulae remained at least up to 6 months, as checked by 

flushing with a-CSF. 
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ICV naltrexone on plasma Cortisol 
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Figure 5. Plasma Cortisol concentrations in animals treated ICV with a-CSF or naltrexone. Top panel shows 
the profiles of the Cortisol concentrations of gilts (N=2) treated with ICV naltrexone injection relative to time 
of injection (t=0). Bottom panel presents data of plasma Cortisol concentrations at 9:00 h and 13:00 h of 
animals treated ICV with a-CSF (N=5) or naltrexone (N=2) at 11:00 h. 
* = significantly different (p<0.05) 

Cannula-placement 

The data obtained from the 17 sows showed that the distance from the dip in the 

neurocranium, i.e. the most rostral part of the brain, to the most caudal bone rim, respectively 

the lateral ventricle, showed no considerable individual variation (Table 1). In addition, no 

considerable individual variation was found in the distance from the neurocranium to the 

lateral ventricle when measured in a perpendicular line to the neurocranium (Table 1). 

The position and orientation of the cannula in the skull and cavity of the brain is shown in 

Figure 4 (panel I, II). After injection of the dye, methylene blue was found in the lateral 

ventricle of the brains of all 8 sows, with the point of entry of the cannula in the body of the 

lateral ventricle dorsally from the body of the caudate nucleus. In all animals of the pilot 

experiment it was found that, when entering ventricular space, an influx of a-CSF from the 

PVC tubing was observed and CSF could be aspirated. Post mortem check of cannula 
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placement in 2 gilts from the pilot experiment, showed the same point of entry as the sows 

that were injected with dye. In these pigs, it was found that the tip of the cannula had 

penetrated the corpus callosum, protruding in the ventricle over a length of 2 mm. 

Plasma Cortisol 

Pre-treatment Cortisol concentration was not different between a-CSF and naltrexone 

treatment (Figure 5 bottom panel). ICV treatment with a-CSF had no significant effect on 

plasma Cortisol concentration. ICV treatment with naltrexone increased plasma Cortisol 

concentration significantly compared to preferment Cortisol concentrations (Figure 5). Plasma 

Cortisol concentrations remained increased and were significantly higher (p<0.05) in 

naltrexone compared to control pigs at 3 hours post treatment (Figure 5 bottom panel). 

Discussion 

The ICV cannulation as described in the present study differs from the method used by 

others. First, in the method as presented in this study, the stereotaxic apparatus is placed on 

the skull without the use of ear bars. Therefore, there is no risk of damage to the eardrums. 

The use of ear bars has shown some adverse effects on the eardrums (Barb, personal 

communication). 

Second, the orientation for cannula placement takes place on the neurocranium instead of the 

frontal-parietal bone together with the interaural axis. There is considerable variation in skull 

structure between breeds of pig and individual pigs. As shown in the present study, the 

neurocranium has considerable variation with regard to rostral-caudal position and distance 

relative to the lateral ventricle. By computing factor f, this individual variation between 

animals and thereby variability in cannula placement is minimised. 

Third, in the present method, the cannula that is fixed on the neurocranium (inner table of the 

frontal-parietal bone) is connected by means of flexible PVC tubing to the injection device on 

the frontal-parietal bone, in contrast to methods used by others (Poceta et al, 1981; Barb et 

al, 1993), where the cannula is fixed directly on outer table of the frontal-parietal bone of the 

skull. When studying central mechanisms, during development, a problem may arise, since 

theouter table of the frontal-parietal bone shifts in a rostra-dorsal direction due to the 

development of the frontal sinus. This shift might pull the cannula out of the ventricle as has 

been reported by Poceta et al. (1981). By attaching the cannula to the neurocranium and 

connecting it to an injection device at the frontal-parietal bone with a flexible PVC tube, the 

outgrowth of the frontal sinus during growth of the animal does not affect the position of the 
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cannula. The present method opens the possibility to study maturation processes in the brains 

from the age of puberty until adulthood. 

Fourth, another difficulty in other methods for ICV cannulation and injection in pigs is the 

anchoring system. Due to the rough explorative behaviour of pigs it is difficult to maintain 

external cannulas in place. Furthermore, it is very difficult to maintain a sterile environment. 

By internalizing the site of injection in an injection device that is located in the frontal sinus, 

as described in this paper, the site is protected against dislodgement and damage. None of the 

implanted ICV injection devices were damaged or dislodged by the animal itself or 

neighbouring animals. In addition, by cleaning the injection site with alcohol prior to 

covering it with an alcohol sterilised Teflon lid, sterility is maintained. Although, all animals 

were treated with anti biotics, we could not prevent a fungal infection in the frontal sinus. 

However, none of the animals used in the pilot study, and only 1 out of 12 animals used in a 

following study (Chapter VII), showed an infection of the brain or meningitis. How fungal 

infection in the frontal sinus can be prevented in future studies, is currently under 

investigation and the use of an antiseptic drain or frequently flushing the frontal sinus with 

sterile saline and/or antibiotics could be considered. 

When studying mechanisms that are influenced by stress, it is important to minimise stress, 

such as restraining animals for ICV treatment. Using the injection device and an Infusor 

tubing as described in the present study, animals are not restrained for ICV treatment. Plasma 

Cortisol concentrations were not increased by ICV treatment with a-CSF, suggesting that 

animals are subjective to no or minimal stress using the present ICV technique. ICV treatment 

with 1 mg naltrexone increased plasma Cortisol concentrations. These findings support studies 

in pigs (Barb et al., 1986) and human (Voklavka et al., 1979), reporting increased plasma 

Cortisol concentrations preceded by increased ACTH release after treatment with naloxone. In 

view of the route of administration and the relatively low dose of naltrexone used (Barb et al, 

1989), it is likely that naltrexone exerted its action within the brain. Since the present study is 

only a preliminary experiment, further research is needed to substantiate this suggestion. 

In summary, the present study reports a modified ICV technique that enables ICV injection in 

freely moving, large, growing pigs. This technique should prove to be useful for studies 

during pubertal development, since this technique prevents dislodgement or damage of the 

anchoring system or the cannula growing out of the ventricle. Thus far we have been able to 

follow animals for a longer (6 month) period of time. 
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Abstract 

Endogenous opioid peptides (EOP's) have been shown to inhibit the pulsatile LH secretion 

during the luteal phase at the level of the hypothalamus. The involvement of EOP's in 

regulating pulsatile LH secretion during the E2fi dominated follicular phase was investigated 

by treating freely moving cyclic gilts intracerebroventricular twice daily for 6 days of with 1 

mg of the opioid receptor antagonist naltrexone (N=4) or a-CSF (N=5) after oestrus 

synchronisation with altrenogest. Blood samples were taken frequently (every 12 minutes 

during 8 hours) on Day 2, 4, 5 and 6, and every 6 hours on Days 1, 3 and from Day 6 

onwards. Pulse frequency, pulse amplitude and mean plasma concentration ofLH was lowest 

on Day 2 and 4 reaching highest values on Day 6 (the average day of the preovulatory LH 

surge and first day of oestrus). Mean LH concentration returned to baseline values after the 

preovulatory LH surge significantly sooner in naltrexone than control animals. Naltrexone 

had no effect on pulse frequency and mean LH concentration, whereas it increased pulse 

amplitude on Day 4. 

In summary, the results show that LH pulse frequency remains constant during the follicular 

phase, whereas LH pulse amplitude decreases from early to mid follicular phase, and increases 

from mid to late follicular phase. Both, LH pulse amplitude and pulse frequency, reach peak 

values at the day of the preovulatory LH surge. It is hypothesised that EOP's delay the timing of 

the preovulatory LH surge by decreasing pulse amplitude during the negative feedback phase 

ofE2fi in early and mid follicular phase. 

Introduction 

The role of endogenous opioid peptides (EOP) in the regulation of the pulsatile LH release has 

been investigated in a variety of species (Whisnant and Goodman, 1988, Kaynard et al., 1992; 

Chang et al., 1993; Heisler et al., 1993). Opioid receptor antagonists, like naloxone and 

naltrexone, are reported to increase the LH release (Muraki et al., 1979; Remorgida et al, 1990; 

Barb et al., 1992; Chang et al., 1993; Genazzani et al., 1993). The effect of these non selective 

opioid ligands, depends on the presence of gonadal steroids. During the progesterone dominated 

luteal phase, EOP's exert a tonic inhibition on plasma LH by decreasing LH pulse frequency and 

pulse amplitude as has been shown in rat (Higuchi and Kawakami, 1982), sheep (Montgomery et 

al. 1985), pig (Barb et al., 1988) and humans (Rossmanith et al., 1989). In the oestradiol (E2J3) 

dominated follicular phase, the involvement of EOP's in regulating pulsatile LH release is not 

clear. It seems that EOP's are not involved in the negative feedback of E2B on the pulse amplitude 

and mean plasma concentration of LH during the early follicular phase (Rossmanith et al., 1989; 
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Okrasa et al, 1992). However, during the late follicular phase and the presumed positive feedback 

of E213, increases of these parameters of LH release were found after systemic treatment with 

opioid receptor antagonists in humans (Rossmanith et al, 1989), rats (Piva et al, 1985) and pigs 

(Okrasa et al, 1992). In view of recent studies, the question arises whether EOP's act as an 

intermediate in the negative and/or positive feedback of oestradiol, or play a permissive role in the 

regulation of the pulsatile LH release in the generation and timing of the preovulatory LH surge 

(Massotto et al, 1990; Kraeling et al, 1992; Walsh and Clarke, 1996; Smith and Gallo, 1997). 

It is thought that opioids exert their possible inhibitory action on the pulsatile LH release mainly at 

the level of the hypothalamus. This opioidergic inhibition is highly associated with plasma 

concentration of progesterone during the luteal phase (Ferrer et al, 1997). Studies in sheep 

(Whisnant et al, 1991), rat (Kubo et al, 1983), primate (Pau et al, 1996), humans (Kawahara, 

1991) and pig (Asanovich et al, 1998) show that opioid receptor antagonists are able to increase 

pulse frequency, pulse amplitude and mean plasma concentration of LH by disinhibiting the 

GnRH pulse generator. However, whether EOP's play a role in the feedback effects of E2I3 during 

the follicular phase, and if so whether they have a central site of action, is still not known. 

The aim of the present study was to investigate whether EOP's in the brain are involved in the 

regulation of the pulsatile LH release on multiple days during the follicular phase of the oestrous 

cycle by treating freely moving intact gilts with repeated ICV injections of naltrexone. 

Materials and Methods 

Animals and housing 

The experiment was conducted with 12 crossbred gilts (Great Yorkshire x British Landrace; 

Pig improvement company, Oxfordshire, UK), which had shown 2 or more oestrous cycles of 

19 to 21 days. Upon arrival, the animals, weighing approximately 130 kg, were housed loose 

in individual pens (approximately 6 m ) with a concrete floor that was covered with wood 

shavings, except for a slatted dunging area at the rear end of the pens. The gilts were kept 

under 12:12 light: dark and ambient room temperature ranged from 15°C to 25°C, and fed 1 

kg of a pelleted, dry sow feed (12.2 MJ of metabolizable energy per kilogram containing 

15.4% crude protein) at 8:00 h and 16:00 h. Water was available ad libitum. 

Surgery 

All animals were fitted with an intracerebroventricular (ICV), and a jugular vein cannula as 

described by Dierx et al. (1998, submitted) and Janssens et al. (1994) respectively. In short, 

animals were given 12 ml of the antibiotic Methoxasol T® (20 mg Trimethorprim/ml, 100 mg 

sulfamethoxasol/ml, AUV, Cuijk, The Netherlands) orally once a day, from three days before 
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until three days after surgery. Animals were fasted overnight, and approximately 45 minutes 

prior to surgery they were premedicated by i.m. administration of 6 mg azaperone kg' body 

weight (Stresnil®; Janssen Pharmaceutica BV, Tilburg, The Netherlands). General anaesthesia 

was induced and maintained using enflurane (Ethrane , Abort BV, The Netherlands) and a 

mixture of 02/N20. The ICV cannula was implanted in the left lateral ventricle under 

guidance using a stereotactic apparatus that was attached to the head by means of a 

mouthpiece and a screw in the back of the head. The ICV cannula was connected, by means 

of a PVC tubing, to an injection device that was mounted in the skull. The luer-lock stopcock 

inside the device, the actual site of a-CSF or naltrexone injection, was covered by a lid. The 

jugular vein catheter (Silastic® Medical Grade Tubing, 0.040 in. i.d., 0.085 in. o.d.; Dow 

Corning, Michigan U.S.A.) was implanted into the external jugular vein with the tip pointing 

towards the superior vena cava. The catheter was passed s.c. and externalised between the 

scapulae. A one-way luer-lock stopcock (Vygon BV, Veenendaal, The Netherlands) was 

secured to the end of the catheter. The catheter was covered in a harness of 23 cm x 20 cm 

PVC/Nylon (Bizon Chemie, Goes, The Netherlands) that was fixed on the back of the animal 

by means of chest belts. The animals were allowed to recover from surgery for a minimum of 

7 days. Following surgery, animals were treated with the 10 cc of the analgesic finadyn twice 

daily for two days and with 10 cc of the antibiotic depocillin. 

The ICV cannula was flushed once during the recovery period with 500 ul sterile artificial 

cerebrospinal fluid (a-CSF, per liter solution: 166 mg CaCl2, 240 mg MgS04, 134 mg KC1, 

170 mg KH2P04, 2.15 g NaHC03 and 7.25 g NaCl, pH 7.6). The venous catheter was flushed 

once a week with sterile saline and filled with heparinized saline (25 IU heparin/ml of 0.9% 

saline; Leo Pharmaceutical Products, The Netherlands) when not in use. When catheter 

patency was reduced, obstructions were removed as described by Leuvenink and Dierx 

(1997). In short, a solution of 25000 IU Kabikinase® (Kabi Pharmacia, Sweden), 2500 IU 

heparin and 0.2 ml Ticarpen (Beecham, England) was added to 25 ml sterile 25% 

polyvinylpyrrolidone (PVP/saline, Merck, Germany) and injected in the catheter. After 24 

hours, the catheter was flushed with heparinized saline. 

Experimental design 

Before the experiment, the animals were handled daily for 3 weeks and habituated to the ICV 

injection and blood sampling procedures. After surgery and the recovery period, the oestrous 

cycles of all animals were synchronised by daily oral administration of 20 mg of the 

progesterone agonist altrenogest (Regumate^ in the morning feed for 21 days. The last day 

that animals received altrenogest treatment, was designated as Day 0. Starting on Day 1, 6 

animals received 1 mg naltrexone ICV twice a day at 8:00 h and 20:00 h for 6 days and 6 

animals received a-CSF (controls). On Day 2, 4, 5 and 6 after altrenogest withdrawal, 
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bloodsamples were taken every 12 minutes during 8 hours from 9.00 h until 17.00 h, 

according to the procedure described previously (Janssens et al, 1994). On Day 1, 3 and from 

Day 6 onwards, bloodsamples were taken every 6 hours until one day after first day of 

oestrus. Gilts that had not shown oestrous behaviour on Day 8, were scanned with ultrasound 

(Soede et al, 1990). Immediately after collection, the blood samples (approximately 5 ml) 

were transferred to ice cooled polypropylene tubes containing 50 ul EDTA solution (144 mg 

EDTA/ml of saline; Triplex®III, Merck Nederland BV,The Netherlands). The tubes were 

shaken and placed on ice and subsequently centrifuged at 3000 x g for 15 minutes at 4 °C. 

Plasma was collected and stored at -20 °C until hormone analysis. The experiments were 

approved by the Committee on Animals Care and Use of the Agricultural University, 

Wageningen, The Netherlands. 

Hormone analysis 

LH. Plasma samples were analysed for LH using a double antibody radioimmunoassay (RIA) 

as described by Niswender et al. (1970), using porcine LH (pLH iodination grade batch 

004/3; potency, 0.85 x NIH LH-S19; UCB bioproducts, Brussels, Belgium) as a standard and 

for radioiodination (specific activity, 38 uCi/ug). Anti-porcine LH batch 004 (UCB 

bioproducts, Brussels, Belgium) was used at a final dilution of 1:360,000, which gave an 

initial binding of the labeled hormone of approximately 39%. The minimal detectable 

concentration at the B/B0=0.9 was 0.1 ng/ml. The interassay coefficient of variation was 14.4 % 

and the intra-assay coefficient of variation was 7.2 %. 

Oestradiol. Plasma concentrations of oestradiol were measured in samples of 2.00 h, 8.00 h, 

14.00 h and 20.00 h on Day 1, 3 and 7, and in samples collected at 10.00 h, 12.00 h, 14.00 h and 

16.00 h on Day 2, 4, 5 and 6. After extraction of plasma with dichloromethane (DCM, Merck, 

Darmstadt, Germany), oestradiol concentration was determined using a single anti-body 

radioimmunoassay. For estimation of procedural losses, 500 cpm of [2,4,6,7-3H]E2 (NEN 

Chemicals, 's Hertogenbosch, The Netherlands) was added to 1 ml plasma sample and mixed with 

3 ml DCM. The organic phase of the mixture was evaporated under a stream of nitrogen and 

redissolved in 500 ul phosphate buffer with 1% BSA. An aliquot of 150 ul was taken to determine 

the recovery of [ HJEj . E2 concentrations were measured in duplicate (2 aliquots of 150 ul) using 

a specific rabbit antiserum against 6-keto-estrone (6-CMO-BSA). The antiserum was used in final 

dilution of 1:125,000. Oestradiol-1713 (Sigma Chemical Co., St. Louis, MO, U.S.A.) was used as a 

standard and [2,4,6,7-3H]E2 (specific activity 95.4 Ci/.mmol'1, NEN Chemicals, 's Hertogenbosch, 

The Netherlands) as a tracer. The main crossreacting steroids were oestrone (1.49%) and oestriol 

(0.21%). The minimal detectable dose at the 90% B/B0 level was 8 pg.ml"1. The intra- and inter

assay coefficients of variation were 12.4 % and 17.4 % respectively. The amount of E2 was 

expressed in pg.ml"1 after correction for procedural losses, and daily means were calculated. 
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Detection ofoestrous 

Oestrus detection was performed by a back-pressure test in the presence of a vasectomized 

boar once daily in the morning on all days after withdrawal of altrenogest treatment. The time 

of oestrous was defined as the first day the sow showed a standing response. 

Pulse detection 

The profiles of LH release were analysed using the pulse analysis program of Maxima/Chromcard 

(Fisons Instrumentsjnterscience, Breda, The Netherlands) with baseline calculated according to an 

algorithm taken into account the total profile. A pulse was defined by a baseline-peak ratio of 0.5 

or lower and a minimal area under the curve of 50ng.ml" .min. The highest value of a pulse above 

baseline was taken as pulse amplitude. 

Statistical analysis 

Data of pulse frequency, pulse amplitude and mean plasma LH concentration, time of return 

to baseline levels after the preovulatory LH surge and the time of oestrus, were analysed 

using SAS statistical analysis system (1990). The effect of naltrexone on these parameters 

was tested using the GLM procedure by means of a F-test to analyse the linear model: Y{j =u 

+ Tj +eu+ Dj +(TxD)jj +e2;j; Where Yy = value of parameter in a gilt (n=l 1) receiving 

treatment i on sampling day j ; u = overall mean; T~ fixed effect of treatment i (1,2); e ^ 

error term 1, which represents the random effect within treatment i; Dj= fixed effect of 

sampling day j (1,.,4); e2ij= error term 2, which represents the random effect of treatment i 

between sampling days j . The effect of naltrexone treatment was tested against error term 1. 

The other effects were tested against error term 2. Differences were considered significant 

when P<0.05. The parameters pulse amplitude, time of return to baseline levels after the 

preovulatory LH surge and the time of oestrus had no normal distribution and were therefore 

analysed with a Kruskal-Wallis test using the procedure Nparlway of the statistical analysis 

system SAS (1990). 

Results 

General 

During the experiment, 1 control and 1 naltrexone treated animal died of meningitis and of 

intestinal torsion respectively. In addition, 1 naltrexone treated animal showed neither 

oestrous behaviour nor a preovulatory LH surge. The data of this animal were excluded from 

analysis, since no ovarian follicles were detected when scanned with ultrasound. Furthermore, 

1 control animal had a silent oestrus, showing a preovulatory LH surge but no oestrous 
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behaviour. All other animals had the first day of oestrus on day 6 after termination of the 

altrenogest treatment. 

The preovulatory LH surge 

Five control and 4 naltrexone treated animals showed a preovulatory LH surge. In all cases, 

return of LH to baseline levels after the preovulatory surge could be accurately detected. In 

the naltrexone group LH returned to baseline values on average at 138 ± 4.9 h (N=4) after 

termination of the altrenogest treatment, which was significantly (P=0.01) sooner than in 

animals in the control group that reached baseline values on average at 166 ± 6.2 h (N=5) 

after altrenogest withdrawal. 
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Figure 1: Data represent mean ± SEM of LH pulse frequency (A; number per 8 h), pulse amplitude (B; ng/ml) 
and mean LH concentration (C; ng/ml) in control (closed bars; n=5) and naltrexone (open bars; n=4) treated 
animals during the follicular phase of the oestrous cycle. 
Time effects: 

* = significantly different from Day 4 (P<0.05). 
** = significantly different from Day 2 and 4 (P<0.05). 
***= significantly different from Day 2, 4 and 5 (P<0.05). 

Treatment effects: 
f = significantly different between a-CSF and naltrexone treatment (P<0.05). 
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Pulsatile LH release 

Data on plasma LH concentrations are presented in Table 1. No treatment effects were found 

in LH pulse frequency (P=0.08) and mean LH concentration (P=0.18) on Days 2, 4, 5 and 6 

after discontinuation of altrenogest treatment. LH pulse amplitude was significantly (P<0.05) 

higher in the naltrexone treated group compared to the control group on Day 4. 

An effect of time was found in LH pulse frequency (P=0.03), pulse amplitude (P=0.0004) and 

mean LH concentration (P=0.0025). LH pulse frequency was significantly higher on Day 6 

than on Day 2 and Day 4 (P<0.05). LH pulse amplitude was increased on Day 6 compared to 

Days 2, 4 and 5, and LH pulse amplitude was higher on Days 2 and 5 than on Day 4 

(PO.05). Mean LH concentration was significantly increased on Day 6 compared to Day 2,4 

and 5 (P<0.05) with a significantly higher mean LH concentration on Day 5 than on Day 4 

(P<0.05). 

Oestradiol 

Data on daily mean oestradiol concentrations are presented in Table 2. Plasma concentrations 

of oestradiol were not significantly affected by naltrexone treatment (P=0.33), but a time-

effect was found (P=0.0003). Mean oestradiol concentrations were higher on Day 5 than on 

Day 2, 4 and 6, with Day 4 showing higher mean oestradiol concentrations compared to Day 

2and6(P<0.05). 

Table 2: Mean oestradiol concentration on Day 2, 4, 5 and 6 after altrenogest withdrawal, 

day after altrenogest 

2s 

4b 

5C 

6a 

Data represent mean ± SEMofmean oestradiol concentration (pg/ml) in control (n-5) and naltrexone (n-4) 
treated groups of animals during the follicular phase of the oestrous cycle. Different superscript letters (a,b,c) 
in a column represent significant differences (P<0.05) in time. 

Discussion 

In the present study, repeated ICV treatment of pigs with the opioid receptor antagonist 

naltrexone was used to investigate the involvement of endogenous opioid activity in the brain 

in the regulation of LH release during the follicular phase in ovary-intact gilts. In naltrexone 

treated animals, plasma LH concentrations returned to basal significantly earlier after the 

preovulatory LH surge than in a-CSF treated controls. In view of the route of administration 

control (n=5) 

7.6 ± 3.5 
38 ± 8.6 
67 ± 5.8 
38 ±21 

naltrexone (n=4) 

13 ± 2.0 
46 ± 7.5 
64 ± 13 

6.6 ±4.5 
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and the relatively low dose of naltrexone used (Barb et al, 1989), it is likely that naltrexone 

exerted its action within the brain. Thus the data strongly suggest that activation of opioid 

receptors in the brain by EOP's participates in the regulation of the preovulatory LH surge in 

Pigs-

It remains unclear whether the premature cessation of the LH surge in the naltrexone treated 

gilts reflected a time-shift of the peak LH value or the complete surge (including onset), or 

was the result of an effect on the height of the surge or even on LH clearance kinetics, since 

the design of our study did not allow exact determination of these parameters. There is ample 

evidence from studies with rats (Allen and Kalra, 1986; Berglund et al, 1988), sheep (Currie 

et al, 1991) and humans (Snowden et al, 1984), however, indicating that tonic inhibitory 

activity of brain opioid systems precludes the occurrence of a LH surge during the late 

follicular phase, and that cessation of this inhibitory activity permits a surge to occur (Barkan 

et al, (1983; Okrasa et al, 1992; Roozendaal et al, 1997). A similar involvement of EOP's 

in the regulation of surge timing in pigs, is supported by data from Armstrong et al. (1988) 

who found that chronic administration of morphine (sc) to sows for 5 days after weaning 

delayed the onset of oestrus, and data from others (Yearwood et al., 1991; Kraeling et al., 

1992a) who reported a delayed preovulatory LH surge in E2B primed OVX gilts after IV or 

ICV morphine treatment with no effect on the height of the surge. 

The frequency and amplitude of LH pulses and mean LH concentration during the follicular 

phase showed significant time effects. LH pulse amplitude and mean LH concentration 

initially decreased to lowest values on Day 4 after termination of altrenogest treatment, and 

thereafter gradually increased during the late follicular phase. All LH parameters of study 

were highest on Day 6, which for most of the animals was the first day of oestrus and 

preovulatory LH surge. These dynamics of LH during the follicular phase may be explained 

from the plasma concentration of E2B. E213 increases during early follicular phase and exerts 

a "negative feedback" on pulse amplitude and therefore on mean LH plasma concentration. 

During the late follicular phase, E2B reaches peak values on the day before the preovulatory 

LH surge, positively influencing LH pulse amplitude and mean plasma LH concentration 

(Helmond et al, 1986; Kesner et al, 1989; Messinis et al, 1992; Matt et al, 1993). 

Naltrexone treatment in the present study had no effect on LH pulse frequency and mean LH 

concentration during the follicular phase of the oestrous cycle, but enhanced the pulse 

amplitude on Day 4 yielding values on that day that were comparable to those on Day 5 in 

control animals. It could thus be that the negative feedback of E2B influences the LH pulse 

amplitude, leaving pulse frequency unaffected. In line with this, studies in sheep (Whisnant 

and Goodman, 1988; Whisnant et al, 1991) reported that only pulse amplitude was increased 

by treatment with an opioid receptor antagonist during the high E2B levels of the follicular 

phase. From this, together with the abovementioned earlier return of LH to basal 
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concentrations after the preovulatory surge, we hypothesise that EOP's in the brain are 

involved in the timing of the preovulatory LH surge by decreasing LH pulse amplitude during 

the negative feedback of E2B. 

In summary, the results show that LH pulse frequency remains constant during the follicular 

phase, whereas LH pulse amplitude decreases when going from early to mid follicular phase and 

increase when going from mid to late follicular phase. Both, LH pulse amplitude and pulse 

frequency, reach peak values at the day of the preovulatory LH surge. Furthermore, the data 

suggest that EOP's delay the timing of the preovulatory LH surge possibly by decreasing LH pulse 

amplitude during the negative feedback phase of E2J3 in the early and mid follicular phase. 
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SUMMARY AND GENERAL DISCUSSION 

LH secretion during the oestrous or menstrual cycle, and the luteal phase in particular, has been 

studied in a variety of species as sheep (Whisnant et al, 1991), human (Fillicori et al, 1986; 

Rossmanith et al., 1990), pig (Okrasa and Tilton, 1992) and primate (Norman et al., 1994). During 

the luteal phase, plasma LH concentration has been shown to be decreased by endogenous opioid 

peptides (EOP's), mediating the negative feedback of progesterone (P; Yang et al., 1988; Barb, et 

al., 1992; Kaynard et al, 1992). Yet, relatively few data have been available on the pattern of 

pulsatile LH release during the oestradiol (E2B) dominated follicular phase of the oestrous or 

menstrual cycle, and whether EOP's also play an inhibitory role in LH secretion and/or the timing 

of events leading to the preovulatory LH surge and oestrus. 

In the present thesis, we have first described the pulse pattern of LH secretion during multiple days 

of the follicular phase of the oestrous cycle using the female tethered housed pig as a model. 

Second, we have demonstrated that EOP's seem to be involved in the timing of events leading to 

the preovulatory LH surge, but not in the regulation of the pulse pattern. Therefore, in this chapter, 

these processes will be described separately and possible functional implications of EOP's in the 

regulation of female reproduction are discussed. 

Stress and the Preovulatory LH Surge 

In Chapter II and IV, the tethered pig was used as an animal model to study the effects of 

chronic stress on the HPG-axis. This model was chosen because tethered housing leads to 

changes in neuroendocrine regulation and behaviour in which altered activity of endogenous 

opioids in the brain is an important feature (Cronin, 1985; Schouten and Wiepkema, 1991; 

Janssens et al., 1995b; Zanella et al, 1996; Loyens, Schouten and Wiegant, unpublished 

observations). It was found that the preovulatory LH surge and the expression of oestrus were 

delayed when long-term tethered pigs were released from their tether (Chapter II). This delay 

was likely not caused by loose or tethered housing per se, but rather by the change in housing 

condition that apparently represented a major challenge for the animals. One may speculate 

that such changes in reproductive parameters may occur independent of the exact nature of 

the stimulus and can be relevant for reproductive performance in pig breeding. Indeed, there 

is ample evidence that tethered housing renders the animals more reactive to environmental 

stimuli, although to a certain extend pigs can adapt to the chronic stress of tethered housing 

(Janssens et al, 1995b). In Chapter IV, no differences were found between long-term (6 

month) tethered housed pigs and loose housed controls regarding the onset of oestrus, 

possibly because animals had adapted to the tethered housing condition, which has been 

shown to occur within a few months after start of tethered housing (Janssens et al, 1995a). 

Previous reports indicate that in long-term tethered housed ("stress-adapted") pigs the activity 
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of EOP's is increased (Cronin, 1985; Schouten et al, 1991, Zanella et al, 1996). Although, 

oral treatment with the opioid receptor antagonist naltrexone led to a shift in the onset of 

oestrus, and possibly also of the preovulatory LH surge, we found no evidence for differential 

EOP activity in the regulation of reproductive processes between tethered and control pigs. It 

should be kept in mind, however, that our pigs had been tethered for more than 5 months, and 

the adaptive increase in EOP-activity may cease to be functional after several months 

(Janssens et al, 1995a). An interesting observation was the large variation in onset of oestrus 

in the naltrexone treated group of pigs. The individual variability in the response to 

naltrexone, described in Chapter III, may be relevant in this respect. 

Opioidergic Regulation of the Preovulatory LH Surge 

The data from Chapter II and IV suggested a possible role of stress and EOP's in the timing of 

the preovulatory LH surge and the onset of oestrus. Whether EOP's exert their actions at the 

level of the pituitary or the hypothalamus, or both, was investigated in Chapters V and VII. In 

a pilot study, described in Chapter V, we obtained data suggesting that the pituitary 

responsivity to GnRH, as assessed in vitro, changes during the follicular phase. Maximal 

responsivity was found around the day of the preovulatory LH surge. It was concluded that 

treatment with naltrexone seemed to advance the maximal pituitary responsivity and the 

preovulatory LH surge. To investigate whether EOP's might act at the level of the 

hypothalamus, a new intracerebroventricular (ICV) injection technique was developed as 

described in Chapter VI. Using this technique, we showed in Chapter VII that the 

preovulatory LH surge was terminated sooner after ICV treatment with naltrexone. Together 

with data on pulse amplitude, showing higher values after ICV naltrexone treatment on Day 4 

after termination of altrenogest treatment, this observation supports the hypothesis that EOP's 

delay the timing of events leading to the preovulatory LH surge, most likely at the 

hypothalamic level. This would be in line with studies by Armstrong et al. (1988), who 

reported that chronic administration of morphine (sc) to sows for 5 days after weaning 

delayed the onset of oestrus and studies by Yearwood et al. (1991) and Kraeling et al. (1992) 

showing a delay of the preovulatory LH surge in E2B primed OVX gilts after iv and ICV 

morphine treatment. 

The Role of EOP's in the Pulsatile LH Secretion during the Follicular Phase 

In Chapters IV and VII it is shown that the early follicular phase (approximately Days 1 and 2) is 

characterised by highly frequent, low amplitude LH pulses, followed by a decrease in pulse 

frequency during mid-follicular phase (approximately Days 3-5), and that the late follicular phase 

with the preovulatory LH surge (approximately Days 6-7) is constituted of pulses of high 

frequency and high amplitude. In addition, pituitary responsivity to GnRH appeared to change 
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during the follicular phase with maximal responsivity on the day of the preovulatory LH surge 

(Chapter V). These dynamics of LH during the follicular phase and pituitary responsivity are 

similar to those found in humans, primates and rats (Clayton et ah, 1980; Kesner et ah, 1989; 

Genazzani et ah, 1992; Rossmanith, 1995) and may largely be explained from the plasma 

concentration of E2I3. E213 starts to increases during early follicular phase, when it exerts a 

"negative feedback" on pulse amplitude and mean LH plasma concentration but enhances 

pituitary sensitivity for GnRH (Drouva et ah, 1983; Koiter et ah, 1987). Peak levels of E2B 

are reached at the end of the mid-follicular phase, when LH pulse amplitude and mean plasma 

concentration are positively influenced (Helmond et ah, 1986; Kesner et ah, 1989; Messinis et 

ah, 1992; Mattel ah, 1993). 

As found in Chapters IV and VII, the pulse pattern of LH during the follicular phase did not seem 

to be affected by EOP's, supporting other studies in humans (Genazzani and Petraglia, 1989; 

Genazzani et ah, 1993; Cagnacci et ah, 1995) and sheep (Currie et ah, 1992). Although naltrexone 

treated animals had higher LH pulse amplitudes than control animals on only 1 day of the 

follicular phase (Day 5 in Chapter IV and Day 4 in Chapter VII) this difference was no longer 

present when data were synchronised on the first day of oestrus (Chapter TV). Therefore, it was 

suggested that naltrexone did not change the dynamics of the LH secretion during the follicular 

phase but affects the timing of the preovulatory LH surge. The results from the pilot study in vitro 

(Chapter V) support this notion, as the pattern of pituitary responsivity to GnRH and plasma 

concentration of LH during the follicular phase seems to be shifted by naltrexone treatment. Thus, 

in contrast to the luteal phase where pulse frequency, pulse amplitude and mean plasma 

concentration of LH are inhibited by EOP's (Barb et ah, 1986; Genazzani et ah, 1993; 

Rossmanith, 1995), this is not the case during the follicular phase. 

Putative Mechanism for Opioid Modulation during the Follicular Phase 

The data presented indicate that EOP's do not only play an inhibitory role on the LH secretion 

during the luteal phase, but are also involved in the timing of the preovulatory LH surge in the pig. 

From Chapter II it might be suggested that, during the transition from the luteal to the follicular 

phase, P decreases rapidly, thus reducing EOP activity and leaving the GnRH pulse generator "free 

running". This results in an increased LH pulse frequency during the early follicular phase 

compared to the luteal phase as was found in humans by Rossmanith (1992) and Genazzani et ah 

(1993). Furthermore, P has been shown to exert a negative feedback on the LH secretion through 

EOP activation (Yang et ah, 1988; Barb, et ah, 1992; Kaynard et ah, 1992) by reducing pulse 

frequency of the GnRH pulse generator (Bouchard et ah, 1988; Couzinet and Schaison, 1993). 

Treatment with an opioid antagonist (Chapter IV and VII) pharmacologically accelerates the 

decline in EOP tone caused by decreasing plasma P concentrations, thus advancing the start of LH 

dynamics associated with the follicular phase. 
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During the mid-follicular phase, E2B secretion starts to increase (Chapter IV and VII; Bouchard et 

al, 1988; Genazzani et al, 1992) due to maturing follicles. The increase in circulating E2I3 

subsequently decreases LH pulse amplitude during the mid-follicular phase by inhibiting the 

GnRH pulse generator (Chapter IV, V, VII). Since E2B has been shown to stimulate EOP release 

in the hypothalamus (Frautschky and Sarkar, 1995) and to decrease electrical activity of the GnRH 

pulse generator (Kesner et al, 1987), it could be hypothesised that E2B acts through an opioid 

mechanism at the level of the hypothalamus. In addition, E2B increases the transcription of 

gonadotropin subunits but inhibits the secretion of LH (March et al, 1981; Knobil and Hotchkiss, 

1988), thus loading the pituitary with LH. Moreover, E2B has been reported to increase the 

number of GnRH receptors on pituitary gonadotrophs (Clayton and Catt, 1981; March et al, 1981; 

Bouchard et al, 1988), and thereby the responsivity of the pituitary to GnRH (Drouin et al, 1976; 

Kamel and Krey, 1982). When plasma concentrations of E2B start to decrease in the late follicular 

phase, EOP activity and thereby the "EOP-clamp" on the GnRH pulse generator and the "E2B-

block" of the LH release at the level of the pituitary might be reduced. Thereby, LH pulse 

frequency and pulse amplitude would be increased and the preovulatory LH surge would be 

permitted to occur. Indeed, blocking opioid receptors with an opioid antagonist advances the 

preovulatory LH surge (Chapter IV and VII). However, further research is needed to prove 

the validity of this model and to further elucidate the neuroendocrine processes that contribute 

to succesful reproduction. 
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Samenvatting 

Inleiding 

Het doel van dit proefschrift is meer inzicht te krijgen in de neuro-endocriene regulatie van 

het voortplantingshormoon luteiniserend hormoon uit de hypofyse tijdens de folliculaire fase 

van de oestrische cyclus van het vrouwelijk varken. In het bijzonder is bestudeerd of stress en 

endogene opioi'de peptiden dit systeem bei'nvloeden, en zo ja hoe deze factoren dat doen. 

Alvorens in te gaan op de experimenten en de resultaten, is het noodzakelijk om kennis te 

hebben van een aantal vaak terugkerende begrippen. 

De Hypothalamus-Hypofyse-Gonade As 

Het vermogen zich voort te planten wordt voor een belangrijk deel bepaald door de 

aanwezigheid van de voortplantingsorganen die de zogenaamde hypothalamus-hypofyse-

gonade (HHG) as vormen. De zenuwcellen ofneuronen in het hersengebied "de 

hypothalamus", geven het gonadotropine releasing hormoon (GnRH) af aan de portale 

bloedvaten die naar de hypofyse leiden. Dit GnRH stimuleert in de gonadotrope cellen van de 

hypofyse de vorming en afgifte van de gonadotrofines: het luteiniserend hormoon (LH) en het 

follikel stimulerend hormoon (FSH). Deze gonadotrofines stimuleren in de geslachtsklieren of 

gonaden de vorming en afgifte van de steroide hormonen testosteron, oestrogenen (E2B) en 

progesteron (P) respectievelijk in het mannelijk dier en vrouwelijk dier. Verder stimuleren ze 

de ontwikkeling van geslachtscellen en, in het vrouwelijk dier, de eisprong ofovulatie. De 

steroid hormonen koppelen op hun beurt direct of indirect terug (feedback) op de afgifte van 

GnRH in de hypothalamus en op de gonadotrope cellen van de hypofyse. In dit proefschrift is 

alleen aandacht besteed aan de hormonale regulatie in het vrouwelijk individu zodat de 

verdere beschrijving van de LH secretie alleen gericht is op het vrouwelijke individu. 

De Oestrische ofMenstruele Cyclus 

De hormonale profielen vertonen periodieke veranderingen, en worden de zogenaamde 

menstruele (in de mens en de niet-menselijke primaat) of oestrische cycli (andere zoogdieren) 

genoemd. Tijdens zo'n cyclus kunnen grofweg 2 fasen worden onderscheiden. De luteale of 

secretoire fase is de tijdsperiode die ligt tussen het moment van ovulatie en de menstruele 

bloeding. De tijdsperiode tussen het einde van de menstruele bloeding tot het moment van 

ovulatie wordt de folliculaire of proliferate fase genoemd. 

De hormonen GnRH, LH en FSH worden afgegeven in de vorm van regelmatige pulsen. Dit 

pulsatiel patroon is essentieel voor een goede regulatie van allerlei gebeurtenissen die de 

vrouwelijke vruchtbaarheid voor een groot deel bepalen. Tijdens de luteale fase zorgt een 

hoge P concentratie in het bloed voor een lage puis frequentie maar hogepuls amplitude van 
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LH door de GnRH-neuronen te remmen. Tijdens de vroeg-folliculaire fase daalt de P 

concentratie en neemt de LH puis frequentie toe terwijl de LH puis amplitude afneemt. 

Tijdens de folliculaire fase stijgt de E2J3 concentratie in het bloed die ervoor zorgt dat de puis 

frequentie van GnRH, en daardoor ook van LH, weer afneemt tijdens de mid-folliculaire fase 

("negatieve feedback"). Tijdens de laat folliculaire fase heeft E213 een "positieve feedback" 

die voor een kortstondig verhoogde afgifte van GnRH en vervolgens ook van LH zorgt. Door 

deze LH-piek wordt in het ovarium de ovulatie gestart, reden waarom deze hormoonpiek de 

preovulatoire LH piek wordt genoemd. 

Stress en Voortplanting 

Stress is een alomtegenwoordig verschijnsel in het leven en de reactie (respons) op stress 

wordt omschreven als "...een niet-specifieke reactie van het lichaam op een willekeurige 

stimulus (meestal schadelijk) die een verandering in het interne evenwicht veroorzaakt". 

Hoewel stress en de respons op stressvolle gebeurtenissen een belangrijke rol spelen bij de 

overleving van een individu, kan het ook een gevaar voor het welzijn en de gezondheid van 

het individu zijn. Ook de voortplanting wordt door stress beinvloed. Dit kan op meerdere 

manieren gebeuren. In het algemeen leidt stress tot een onderdrukking van de processen die 

bijdragen aan de voortplanting, vermoedelijk om energie te sparen voor processen die voor de 

overleving van het individu zorgen. In de moderne intensieve varkensfokkerij, waar de dieren 

veelal aangebonden in nauwe, individuele boxen worden gehuisvest en er daardoor sprake is 

van chronische stress, treedt er aanzienlijke uitval van dieren op mede door gereduceerde 

vruchtbaarheid en zelfs onvruchtbaarheid. Welke mechanismen hierbij een rol spelen is 

vooralsnog niet duidelijk. Gedacht wordt onder andere aan een langdurig verhoogde activiteit 

van endogene opioi'de peptiden, die betrokken zijn bij de respons op stress. 

Opioiderge Controle van de Gonadotrofine Afgifte tijdens de Oestrische Cyclus 

De expressie van endogene opioi'de peptiden (EOP) speelt een centrale rol in de negatieve 

feedback van steroid gonadale hormonen tijdens de oestrische cyclus. De opioi'de activiteit 

verandert met de veranderde concentratie van ovariele steroi'den tijdens de cyclus. Tijdens de 

P-gedomineerde luteale fase remmen EOP de LH puis frequentie continu waardoor de LH 

concentratie in het bloed laag blijft. Of EOP ook betrokken zijn bij de feedback door E2B 

tijdens de folliculaire fase is vooralsnog onduidelijk. Gegevens uit de literatuur wijzen erop 

dat EOP's niet betrokken zijn bij de negatieve feedback van E2I3 tijdens de vroeg- en mid-

folliculaire fase. Echter bij de "positieve feedback" tijdens de laat-folliculaire fase lijken 

EOP's een remmende invloed te hebben op de LH-afgifte. Verder lijken EOP's betrokken te 

zijn bij de timing en het optreden van de preovulatoire LH piek. 
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Dit Proefschrift 

In dit proefschrift is ten eerste het patroon van de pulsatiele LH afgifte tijdens meerdere 

dagen van de folliculaire fase van de oestrische cyclus beschreven, waarbij het aangebonden 

vrouwelijke varken als modelsysteem werd gebruikt. Ten tweede hebben we onderzocht of 

EOP's betrokken zijn bij de regulatie van het patroon van de pulsatiele LH afgifte en/of bij 

de timing en het optreden van de preovulatoire LH piek. Hoofdstuk I geeft een korte 

beschrijving van de reproductieve as, de betrokken organen, de hormonale regulatie en de 

interactie tussen de verschillende hormonen die leiden tot de oestrische of menstruele cyclus. 

Wanneer dieren die langduring aangebonden gehuisvest zijn geweest worden vrijgelaten, 

worden de preovulatoire LH piek en het moment van oestrus wordt vervroegd (Hoofdstuk II). 

Deze vervroeging wordt waarschijnlijk niet veroorzaakt door aangebonden of vrije 

huisvesting als zodanig maar meer door de verandering in huisvesting. Die verandering is 

waarschijnlijk een belangrijke prikkel. Immers, in Hoofdstuk IV werd er geen verschil 

gevonden in het moment van oestrus tussen langdurig (6 maanden) aangebonden varkens en 

vrij gehjuisveste controle varkens. Dat wijst erop, dat de aangebonden dieren waren 

geadapteerd aan hun huisvestingsconditie. Hoewel in dit Hoofdstuk de toediening van de 

opioid receptor antagonist naltrexon leidde tot een verschuiving van het moment van oestrus, 

en mogelijk ook de preovulatoire LH piek, hebben we geen bewijs gevonden voor een 

verschil tussen aangebonden en vrije dieren in de betrokkenheid van EOP bij de regulatie van 

de reproductieve processen. Een interessante waarneming was de grote variabiliteit in het 

moment van oestrus in de met naltrexon behandelde varkens. Die zou, gegeven de 

bevindingen in Hoofdstuk III, verklaard kunnen worden door een aanzienlijke individuele 

variabiliteit in de respons op naltrexon. 

Deze resultaten suggereren een mogelijke betrokkenheid van stress en EOP's bij de timing 

van de preovulatoire LH piek en het moment van oestrus. Of EOP aangrijpen op het niveau 

van de hypothalamus en/of de hypofyse is onderzocht in de Hoofdstukken V en VII. De 

maximale responsiviteit van de hypofyse voor GnRH wordt bereikt op de dag van de 

preovulatoire LH piek en dit moment van maximale responsiviteit lijkt, samen met de 

preovulatoire LH piek, door behandeling met naltrexon vervroegd te worden (Hoofdstuk V). 

Om de mogelijke effecten van naltrexon op het niveau van de hypothalamus in vivo te kunnen 

bestuderen, hebben we een nieuwe methode ontwikkeld die het mogelijk maakt om bij 

varkens farmaca direct in de laterale ventrikel van de hersenen te kunnen injiceren 

(Hoofdstuk VI). Met behulp van deze methode hebben we aangetoond dat injecties van 

naltrexon in de laterale ventrikel gedurende de folliculaire fase een vervroegd einde van de 

preovulatoire LH piek veroorzaakten. Samen met de hogere puis amplitude die tijdens de 

midfolliculaire fase (Dag 4) bij naltrexon behandelde dieren werd gevonden, ondersteunt dit 
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de hypothese dat EOP activiteit in de hersenen, waarschijnlijk op het niveau van de 

hypothalamus, het te vroeg optreden van de preovulatoire LH piek voorkomt. 

Het patroon van de pulsatiele afgifte van LH bestaat uit hoog-frequente pulsen met een lage 

amplitude tijdens de vroeg-folliculaire fase (ongeveer Dag 1 en 2). Tijdens de mid-folliculaire 

fase (ongeveer Dag 3-5) daalt de LH pulsfrequentie, terwijl de laat-folliculaire fase met de 

preovulatoire LH piek (ongeveer Dag 6-7) wordt gekenmerkt door hoog-frequente pulsen met 

een hoge amplitude (Hoofdstuk IV en VII). De responsiviteit van de hypofyse voor GnRH 

verandert gedurende de folliculaire fase met een maximale responsiviteit op de dag van de 

preovulatoire LH piek (Hoofdstuk V). Dit patroon wordt waarschijnlijk niet bei'nvloed door 

EOP's. Dieren die met naltrexon behandeld waren vertoonden weliswaar hogere LH puis 

amplitudes dan controle dieren op 1 dag tijdens de folliculaire fase (Dag 5 in Hoofdstuk IV en 

Dag 4 in Hoofdstuk VII), maar dit verschil was niet langer aanwezig als de data werden 

opgelijnd op het moment van oestrus, derhalve suggererend dat het pulspatroon van LH 

tijdens de folliculaire fase niet wordt bei'nvloed door naltrexon. 

Uit de experimenten van dit proefschrift blijkt dat langdurige aanbindstress leidt tot adaptieve 

veranderingen in de reproductieve as, en dat stress en EOP's tijdens de folliculaire fase, in 

tegenstelling tot de luteal fase, de pulsatiele afgifte van LH niet beinvloeden. Daarentegen 

zijn EOP's tijdens de folliculaire fase betrokken bij de timing van de preovulatoire LH piek en 

het moment van oestrus. 
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