
Promotor: Dr. C. Heyting, hoogleraar in de moleculaire en celgenetica 

Co-promotor: Dr. J.H. de Jong, universitair hoofddocent bij het Departement Biomoleculaire 
Wetenschappen. 



Homologous chromosome pairing and 
recombination during meiosis in wild type and 

synaptic mutants of tomato 



Francis WJ. Havekes 

Homologous chromosome pairing and 
recombination during meiosis in wild type and 

synaptic mutants of tomato 

Homologe chromosoomparing en recombinatie 
tijdens de meiose van wild type en synaptische 

mutanten van de tomaat 

Proefschrift 
ter verkrijging van de graad van doctor 

op gezag van de rector magnificus 

van de Landbouwuniversiteit Wageningen, 
Dr. CM. Karssen, 

in het openbaar te verdedigen 
op vrijdag 8 januari 1999 

des namiddags te vier uur in de Aula 

l / ) ^ C\3'lr~ 
j 



Havekes, Francis W.J. 

Homologous chromosome pairing and recombination during meiosis in wild type and synaptic 

mutants of tomato / Francis W.J. Havekes - [S.l.: s.n.] 
Thesis Wageningen. - With summary in Dutch 

ISBN 90-5485-955-5-
Subject headings: meiotic mutants/tomato 

The investigation described in this thesis was carried out in the Department of Biomolecular 
Sciences, Laboratory of Genetics of the Wageningen University and Research Centre, Wageningen, 
The Netherlands. The research project was financially supported by a grant from the Dutch Organisa
tion for Scientific Research (NWO-ALW, project number 805-20-201). 

BIBLIOTHEEK 
LANDBOUWUNIVERSITEIT 

WAGENINGEN 



^NoV20\ a ssy 

Stellingen 

1 Initiatie van synapsis wordt bevorderd door crossing-over. (Dit proefschrift) 

2 In de review van Dawe (1998) wordt het interferentie model van Storlazzi et al. (1996) op het 
belangrijkste punt (de rol van het SC) volledig verkeerd gei'nterpreteerd. 

Dawe Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 371-395 
Storlazzi etal. Proc. Natl. Acad. Sci. USA 93: 9043-9048 

3 Wetenschap zal nooit de rol van (bij)geloof overnemen. 

4 Het gebrek aan diplomatic van Nederlandse politici maakt de nietige plaats van Nederland op de 

wereldbol nog kleiner. 

5 Stadsmensen verwarren tolerantie vaak met stedelijke arrogantie. 

6 Het gezamenlijk schrijven van een artikel is te vergelijken met een autorit: men koestert een ijdel 
genoegen in de eigen stijl, voorziet elkaar daarom graag van commentaar en vergeet ondertussen 
op de weg te letten. 

7 De "spijspot" (cadeau voor alle personeelsleden ter gelegenheid van het 75-jarig jubileum van de 
LUW) is een treffend symbool voor de manier waarop de Wageningse universiteit haar zittend 
personeel schijnbaar onvoorwaardelijk onderhoudt en symboliseert tevens de dood-in-de-pot 
uitwerking van dit beleid op jonge onderzoekers. 

8 Gezondheidsfanatisme is schadelijker voor het welzijn dan genotzucht. 

9 Innerlijke rijkdom c.q. armoede weerspiegelen bewustzijnstoestanden van respectievelijk geloof 

en ongeloof in de eigen waarde. 

10 Het verschil tussen menselijke en kunstmatige inteUigentie is dat mensen in tegenstelling tot com
puters de vrijheid hebben in te gaan tegen hun 'programmering'. 

Stellingen behorende bij het proefschrift 'Homologous chromosome pairing and recombination 
during meiosis in wild type and synaptic mutants of tomato'. 
Francis Havekes, Wageningen, 8 januari 1999. 
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1 
General introduction 

DNA (deoxyribonucleic acid) molecules represent the biological blueprints for the hereditary pro
cesses by which cells produce their proteins and reproduce themselves. DNA molecules are coiled and 
folded, together with histones and non-histone proteins into complex, well organised packages, the 
chromosomes. The number and morphology of chromosomes are constant in each undifferentiated 
somatic cell of an individual, and are unique for each species. In a diploid organism there are two cop
ies of each chromosome, the two homologues, one of maternal and one of paternal origin. The chro
mosomal complement remains unchanged after each mitotic cycle. The DNA molecule in each 
chromosome is reproduced during the S-phase of the mitotic interphase by semi-conservative repli
cation, so that daughter cells get identical DNA-copies as their mothers. At the chromosomal level, 
the two identical sister-chromatids, which remain attached to each other, become apparent at late 
prophase. At metaphase, when chromosomes are highly condensed, the chromosomes orient in the 
equatorial plane of the spindle with the sister-centromeres facing opposite poles. This ensures proper 
equational division of chromosomes at anaphase (Figure 1). 

In the sexual life cycle, haploid and diploid generations of cells alternate. The transition from the 
diploid to the haploid phase takes place during meiosis. Meiosis consists of two successive divisions 
(meiosis I and II) without an intermediate round of DNA replication (Figure 1). The homologous 
chromosomes disjoin during meiosis I (reductional division), whereas the sister chromatids are sepa
rated during meiosis II (equational division). The diploid phase is restored shortly after fertilisation 
when two haploid gametes fuse. 

The products of meiosis not only have a reduced, haploid, chromosome complement, they also 
carry new combinations of parental alleles. Both effects are the consequence of specific events during 
the unique first meiotic division. During prophase I, homologous chromosomes pair along their 
entire length, and non-sister chromatids of homologues cross-over. These crossovers provide 
physical links between the homologous chromosomes (chiasmata), which enable the homologues to 
orient towards opposite poles at metaphase I. When the chiasmata are released at anaphase I, the 
recombined homologues move to opposite poles, and thus disjoin (Figure 1). 

The fertility of sexually reproducing higher eukaryotes depends on their ability to correctly reduce 
the chromosome number during the two meiotic divisions. This can be accomplished only when pa
rental chromosomes are capable of pairing and recombining at meiotic prophase I. These 
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inter-homologue processes are almost always accompanied by the formation of a meiosis-specific 
structure, the synaptonemal complex (SC) along the axes of the chromosomes. For long, the SC was 
thought to be a prerequisite for crossing-over (von Wettstein et al. 1984), but more recently, the op
posite has also been proposed (Kleckner 1996). 

This PhD project aims at obtaining further insight in the relation between synapsis and 
recombination. We chose tomato for reasons mentioned below, and compared chromosome pairing 
and recombination in normal wild type tomato with the same processes in meiotic mutants that were 
disturbed in chromosome pairing or recombination. Electron microscopy was used for the 
ultrastructural analysis of the SCs at meiotic prophase I, whereas light microscopic studies were 
helpful in elucidating chromosome behaviour in later stages of male and female meiosis. First I will 
describe the general aspects of synapsis and recombination, and then will focus on more specific 
aspects of meiosis in tomato. 

Synapsis 

The synaptonemal complex (SC) is a tripartite proteinaceous structure which is formed between ho
mologous chromosomes as they pair during meiotic prophase I. The SC was first described by Moses 
(1956) and Fawcett (1956). Moses described the SC in an ultrastructural study on sections of meiotic 
prophase spermatocytes of crayfish and correctly interpreted its relation with chromosome pairing. 
Since then the structure was described for numerous species and was soon considered as a universal 
phenomenon of meiotic prophase I (reviewed in Westergaard and von Wettstein 1972, von Wettstein 
etal. 1984). Especiallythe development ofvariousSC spreading techniques (Counce and Meyer 1973, 
Moses 1977, Gillies 1981, Stack 1982) advanced our knowledge on SC formation, and the synaptic 
process is now well documented for many organisms (review: Gillies 1984). 

Figure 2 shows a schematic representation of the morphological changes of the SC through 
prophase I of meiosis. At the onset of prophase I, shortly after DNA replication during premeiotic 
interphase, chromosomes begin to condense. During this leptotene stage, a core structure known as 
axial core is deposited along the fused sister chromatids of each chromosome. Homologous axial ele
ments move to each other by a still unknown mechanism and when they are at a distance of about 100 
nm, a third longitudinal element is assembled between them. This is the central element, which, to
gether with the axes of the homologues makes up the tripartite structure of the SC. Thus, SCs consist 
of two relatively thick lateral elements (called axial elements when unsynapsed) with a thinner central 
element between them, in the so called central region (the region between the lateral elements). In 
some organisms transverse filaments, crossing the central region, have been observed (Schmekel et al. 

1995). 

SC formation continues in a zipper-like fashion along the chromosomes until they are synapsed 
from telomere to telomere, at the end of zygotene. In several organisms, synapsis is preceded by 
presynaptic alignment, which is a rough, parallel alignment of homologous axial elements at a larger 
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Figure 1 :The course of meiosis compared to that of mitosis. Only one set of homologous chromosomes is 
shown.The pairing of the replicated homologous chromosomes is unique to meiosis. Because meiosis con
sists of two successive nuclear divisions, each diploid cell entering meiosis produces four haploid cells (from 
Alberts eta/. 1989). 
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Figure 2: A schematic figure showing the successive stages of meiotic prophase as defined on the basis of 
morphological changes of the SC: leptotene (proteinaceous axes start to form along the chromosomes), 
zygotene (start of synapsis of the homologues), pachytene (synapsis is completed and the SC extends from 
telomere to telomere), diplotene (SC disassembles) and diakinesis (SCs are completely disassembled) (from 
Alberts et al. 1989). 

distance than the width of the tripartite SC-structure (review in Loidl 1990). Presynaptic alignment is 
probably a common feature of meiosis, although it can not normally be observed in species in which 
the assembly and alignment of axial elements is rapidly followed by synapsis (see Loidl 1994). 
Presynaptic alignment and synapsis are distinct events; the former occurs only between homologous 
axes, whereas the latter may occur between non-homologous axes as well. The presynaptic associa
tion sites probably provide or maintain homologous contacts from which SC initiation may (but 
does not have to) ensue. The preference for homologous chromosome synapsis would thus be en
sured by homologous alignment (Loidl and Jones 1986). Mechanisms that have been suggested to 
enhance homologous encounters are non-random premeiotic chromosome disposition, attachment 
and clustering of telomeres to the inner nuclear membrane (bouquet configuration), and 
aggregation of (heterochromatic) chromosome segments in small areas of the nucleus (synizetic 
knot, Loidl 1990). 

Possible roles of the SC, apart from its putative function in holding homologues together (von 
Wettstein 1984), include the direction and maintenance recombinational interactions. There is evi
dence that the SC directs initiated recombination events towards the homologue rather than the sis-
ter-chromatid (Schwacha and Kleckner 1994). Intact SCs may also be required for crossover 
interference (the repression of crossing-over in the vicinity of a crossover), because (1) the fungi 
Schizosaccharomyces pombe (Kohli and Bahler 1994) and Aspergillus nidulans (Egel-Mitani et al. 

1982), which lack crossover interference, have no SC and (2) the zipl mutation in yeast abolishes 
interference and lacks SC (Sym and Roeder 1994). A third suggested role for the SC concerns chiasma 
maintenance, because pieces of SC persist at chiasma sites in some organisms (Westergaard and von 
Wettstein 1972). 
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Chiasma formation 

Chiasmata, the physical connections between homologous chromosomes that mark the sites of cross
ing-over during late diplotene-metaphase I, are necessary for proper reductional division. Only 
homologues that are connected by at least one chiasma are able to orient to opposite poles in the 
metaphase I plate. The bivalent attains stable bipolar attachment because of tension resulting from 
spindle forces from the two poles counteracted by attachment of the homologues to each other 
(review: Miyazaki and Orr-Weaver 1994). 

Crossovers are by themselves inadequate for persistent chiasmate association, so that additional 
functions are required to maintain the connections until anaphase I (Maguire 1995). Darlington 
(1932) first considered that chiasmata can be stabilised by the association of segments of the sister 
chromatids that lie distal of the crossover site. Two possible mechanisms that can be envisaged to ex
plain this cohesion of sister-chromatids are: (1) sister chromatids may be linked (catenated) through 
virtue of DNA structure or chromatin topology, or (2) cohesion may be directly conferred by 
chromatid-linking proteins (Miyazaki and Orr-Weaver 1994). An alternative model for chiasma 
maintenance is that chiasmata are stabilized by a binder substance which is positioned only at cross
over locations and which may be a product or a remnant of the SC (reviewed in Carpenter 1994a,b 
and Maguire 1995). The release of chiasmata at anaphase I would be triggered by the sudden loss of 
either or both of these bonds. 

Chiasmata have been studied in many species since the earliest investigations in meiosis. They 
provide a direct, rapid and technically straightforward approach to the analysis of recombination 
events. In few organisms, generally with long chromosomes, they give detailed information on the to
tal amount of recombination and on distribution of recombination events throughout the genome 
(Jones 1986). However, there are also drawbacks to chiasma studies: in species with small chromo
somes, chiasmata are imprecise indicators of crossover position. Chiasma frequencies maybe under
estimated in such species because adjacent crossovers can not be resolved by light microscopy 
(Sybenga 1996). In addition, chiasmata represent only the reciprocal recombination events, not the 
non-reciprocal gene conversion events (Jones 1986). A welcome alternative to the analysis of recom
bination by the study of chiasmata came in the 1970s when specific structures involved in recombina
tion were found along pachytene SCs: the recombination nodules (see Carpenter 1994 for overview). 

Recombination nodules 

Recombination nodules (RNs) where first described in sectioned pachytene cells of female 
Drosophila (Carpenter 1975). The roughly spherical and densely staining nodules were located adja
cent to the central element and spanned the width of the SC. Their number and distribution showed a 
strikingly good agreement with the distribution of exchange events as determined from conventional 
recombination analysis (Carpenter 1975). Shordy after their discovery, RNs were also described in 
many other organisms, where they were studied in relation to chiasmata (Zickler 1977; 
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Bernelot-Moens and Moens 1986; Albini and Jones 1988; Stack et al 1989). In all these organisms the 
frequency and distribution of RNs in mid-late pachytene corresponded well to chiasma frequency 
and distribution, so it is now generally accepted that RNs in mid to late pachytene SCs (late RNs) are 
structures that mark the sites of crossing-over. In several species, nodules were also found in earlier 
stages of meiosis. Such early recombination nodules, however, occurred in far larger numbers than 
late RNs and differed from late RNs by their distribution along the chromosomes and their morphol
ogy. It was suggested that the early RNs might mark the sites of gene conversion, the non-crossover 
recombination event (Carpenter 1987). Recently the RecA-like proteins Rad51 and/or DMC1, 
which are known to play a role in early steps of meiotic recombination, were localised 
immunocytochemically in early meiotic nodules (Anderson et al. 1997). This indicates that these 
early nodules are indeed involved in recombinational activities. 

Molecular aspects of recombination 

The molecular aspects of recombination have been studied mainly in budding yeast {Saccharomyces 

cerevisiae). The double strand break (DSB) repair model of meiotic recombination (Szostak et al. 

1983) is generally accepted, at least for yeast. According to this model, meiotic recombination is initi
ated by double-strand DNA-scission. The ends of the broken molecule are resected by 5' to 3' 
exonucleolytic activity. The single stranded tails invade into an uncut homologous DNA duplex 
where they promote repair synthesis and branch migration to produce a double Holliday junction. 
Depending on the direction in which these junctions are resolved, the result will be either a 
non-crossover (gene conversion) or a reciprocal crossover. 

In timing studies it was found that DSB formation precedes initiation of synapsis, SCs are formed 
approximately concomitantly with double Holliday junctions, and crossovers and non- crossovers 
appear at the end of pachytene, immediately before or concomitant with (but not dependent upon) 
SC disappearance (Schwacha and Kleckner 1994). Invasion of a single stranded DNA tail into an in
tact DNA duplex would provide a way of testing for homology between two DNA molecules. It seems 
unlikely however, that homology is tested in this way, because yeast mutants that lack invasion of sin
gle stranded tails nevertheless display a significant level of meiotic chromosome pairing as detected 
by chromosome painting (reviews in Loidl et al. 1994; Weiner and Kleckner 1994; Nag et al. 1995). 

Figure 3. Meiotic stages in wild type tomato as observed by light microscopy in spread preparations. A and 
B. Leptotene - early zygotene nuclei with long, thin, almost exclusively unpaired chromosomes. The 
heterochromatic regions are darkly stained, the euchromatic regions are lightly stained. C. Zygotene nu
cleus with paired euchromatic regions at the periphery (arrows) and unpaired heterochromatic regions in 
the centre (arrow head). D. Pachytene nucleus: complete chromosome pairing. E. Early diplotene nucleus. 
Chromosomes have desynapsed over most of their lengths (arrows), but remain associated at the telomeres 
and at some distal euchromatic regions. F. Diffuse diplotene: chromosome structure has completely disap
peared. Only blocks of heterochromatin can be seen. 
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General Introduction 

Homology search interactions would rather be guided by direct DNA-DNA contacts between intact 
duplexes, with searching facilitated by appropriate proteins (discussed in Weiner and Kleckner 
1994). 

The principles of meiosis 

One major effect of meiosis is the reduction of the chromosome complement, usually from the dip
loid to the haploid number. How to achieve this? By separating the homologous (parental) chromo
somes in advance of the normal (mitotic) separation of the two chromatids of replicated 
chromosomes. Meiosis is usually regarded as a two-step process with the division of homologues as 
step one and the separation of sister chromatids as step two. In my opinion, it is just as appropriate to 
consider the following two phases. In the first phase homologous chromosomes undergo the elabo
rate processes of pairing and recombination, culminating in at least one crossover between non-sister 
chromatids of homologues. This phase begins at early leptotene and ends at diplotene. The second 
phase in which the chromosomes undergo the two meiotic divisions rather quickly, begins at 
diakinesis and ends at telophase II. At the transition between these two phases, in some organisms de
fined as the diffuse diplotene stage, chromatin is reorganised in preparation of the two divisions. The 
main subject of this thesis is the analysis of processes of the first phase, involving homology search, 
homologue pairing and recombination, and their effect on chromosome behaviour in the second 
phase. 

Meiosis in tomato 

The tomato (Lycopersicon esculentum, 2n=24) was the research object in this study. As will become 
clear in the following sections, all the characteristics of normal meiotic chromosome behaviour such 
as presynaptic alignment, synapsis, formation of two types of recombination nodules and chiasmate 
bivalent formation can be observed in tomato. In addition, there are several mutants with abnormal 
pairing or crossing-over, as well as numerous structural (deletions, translocations) and numerical 
variants (haploids, polyploids, trisomies) of tomato, which allow the analysis of meiotic processes un
der certain restraints. I will first give a view of tomato meiosis as observed by light microscopy, and 
then outline the electron microscopic studies of synapsis and recombination nodules. 

Figure 3 (continue). G. Diakinesis: twelve bivalents. An interpretation drawing with centromeres and 
chiasmata is shown. H. Metaphase I with twelve bivalents lined up in the equator. The drawing shows the 
positions of centromeres and chiasmata. I. Anaphase I: separation of homologous chromosomes. J. 
Metaphase II with two spindles each with twelve chromosomes.K. Anaphase ll:simultaneous equational di
vision of chromosomes in both spindles. L. Telophase II: Four (haploid) sets of twelve chromosomes (each 
consisting of one chromatid). 
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Figure 4: Ideogram of the twelve tomato chromosomes. The diagrams represent SC lengths according to 
Sherman and Stack (1991,1992).Thick gray lines represent the euchromatic regions;thin lines are hetero-
chromatic regions. The solid spheres are the kinetochores. 

Because tomato chromosomes are rather small, most cytogenetic studies focus on the pachytene 
chromosomes. At this meiotic prophase stage, chromosomes are on average fifteen times longer than 
their counterparts at mitotic metaphase and depict a well differentiated pattern of heterochromatic 
segments, which makes them particularly appropriate for cytogenetic analysis. Pachytene chromo
somes have been used for identification of the 12 tomato chromosomes (Ramanna and Prakken 
1967), for mapping of morphological markers in deletion studies (Khush and Rick (1968), and for 
physical mapping of repetitive and unique sequences by means of FISH (Zhong 1998, and references 
therein). 

The meiotic stages of tomato as observed by light microscopy in spread preparations are shown in 
Figure 3. Leptotene (Figure 3A+B) and zygotene (Figure 3C) stages are difficult to analyse because the 
chromosomes are tightly bunched in a so-called synizetic knot and resist flattening (Moens 1964, 
Cawood and Jones 1980). The maximum contraction of the synizetic knot is reached at or just before 
the time of complete pairing (Cawood and Jones 1980). 

At pachytene (Figure 3D), pairing is complete, the knot begins to loosen, the bivalents become 
dispersed, and chromosome morphology is now at its clearest (Cawood and Jones 1980). Ramanna 
and Prakken (1967) were able to identify all 12 pachytene bivalents of tomato by differences in total 
chromosome length, arm ratio, proportion of heterochromatin on both arms, characteristic 
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chromomeres in euchromatic regions and characteristic gaps in heterochromatic regions. A sche
matic representation of the 12 tomato chromosomes based on SC lengths is shown in Figure 4. 

Diplotene begins when homologues start to separate along their arms (Figure 3E). At this time, 
the centromeres and telomeres frequently remain paired (Moens 1964). The nucleus becomes filled 
with a network of fine threads as separation progresses (diffuse diplotene). The chromatin then 
rapidly contracts and individual bivalents become discernible again. The homologous centromere re
gions appear to repel each other, whereas distal (euchromatic) chromosome arms are still connected 
by chiasmata. Bivalents condense further until diakinesis (Figure 3G) and congress to the centre of 
the cell where they become oriented in the equatorial plane of the spindle at metaphase I (Figure 3 H). 
The chiasmate bonds between the homologous pairs are released and the forces of the microtubule 
apparatus pull the homologues towards opposite poles at anaphase I (Figure 31). The second meiotic 
division quickly follows the first one; chromosomes orient at metaphase II (Figure 3J), and the sister 
chromatids are now pulled towards opposite poles (Figure 3K). This results in four sets of twelve 
chromosomes (each consisting of one chromatid) at telophase II (Figure 3L). 

Tomato LM studies are useful for the analysis of chiasma formation and of the two meiotic 
divisions. LM studies are less practical for detailed analysis of homologous chromosome pairing in 
early prophase I. For this purpose, EM analyses of synaptonemal complex formation are more 
appropriate. 

Tomato SCs 

Tomato SCs were first analysed and described by Menzel and Price (1966) in EM sections. Stack 
(1982) developed a technique for hypotonically bursting primary microsporocytes of tomato, which 
allowed the analysis of SCs in two-dimensional spreads. Stack and Anderson (1986a) described the 
synaptic process in tomato: in nuclei at leptotene axial elements are formed along each chromosome. 
Images of spread cells at this stage are difficult to obtain and in no case completely interpretable. Pic
tures of zygotene through diplotene cells are more easily obtained. At zygotene, axial elements show 
presynaptic alignment and start to synapse. Synapsis can be initiated at multiple sites along the 
chromosomes, but usually it starts at or near the ends of chromosomes and it always proceeds to 
completion through centromeres and most heterochromatin. Synapsis proceeds rather synchro
nously along the bivalents of a cell. The heterochromatin around the nucleolus organiser near the end 
of the short arm of chromosome 2 behaves differendy: the axial elements remain unsynapsed and in 
spreads they are often interrupted or broken. Kinetochores are not visible on zygotene and early 
pachytene SCs but become increasingly prominent as pachytene proceeds. Kinetochore staining is 
therefore a reliable indicator of the stage. The length of SCs does not change significantly between 
early to late pachytene. The end of pachytene is marked by the initiation of desynapsis, which usually 
occurs near the ends of SCs or adjacent to kinetochores; progression of desynapsis is retarded by 
telomeres, kinetochores and RNs. During diplotene, SCs often become irregularly coated by associ-
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ated material, at least in spreads, and then fragment until SC remnants are no longer visible in spread 
cells. 

Tomato SCs can be identified by their length, arm ratio and heterochromatin/euchromatin distri
bution. The tomato SC ideogram as described in Sherman and Stack (1992) is shown in Figure 4. It is 
similar to the ideogram of Ramanna and Prakken (1967), which was based on light microscopic ob
servations of carmine stained pachytene chromosomes. 

Tomato RNs 

Stack and Anderson (1986b) analysed RN formation in tomato. During early and mid-zygotene, nu
merous ellipsoidal to spherical RNs associate with the axial elements and central element of the SC as 
it forms. Relatively few RNs associate with SC in the pericentric heterochromatin. During pachytene 
the number of RNs drops 4—fold. Stack and Anderson (1986b) propose that the numerous early nod
ules represent sites of recombinational interaction; only those nodules that persist into late pachytene 
would resolve recombination intermediates as crossover. It is possible that positive crossover interfer
ence is caused by the loss of RNs during early pachytene, because the first successful reciprocal recom
bination event transmits a signal in either direction down the SC which would result in the loss of 
nearby RNs. Such a mechanism would guarantee at least one, but not too many crossovers per SC 
(Mortimer and Fogel 1974). 

Silver staining experiments indicate that there exist two types of nodules during zygotene and 
early pachytene (Sherman et al. 1992), one type that is stainable under silver nitrate at 50 °C and 
another that is less stainable under these conditions. Sherman et al. (1992) suggest that early nodules 
that are stainable at 50° C are normally retained into mid-pachytene through early diplotene as late 
nodules, whereas the less stainable type is normally lost during early pachytene. An extensive and as 
yet unequalled analysis of the distribution of late pachytene RNs was undertaken in tomato by 
Sherman and Stack (1995). This study revealed that; (1) every SC has at least one RN, (2) there are no 
RNs at the ends of SCs, (3) there are no RNs in kinetochores, (4) single RNs are found in the long 
arms more often than would be expected on the basis of arm length, (5) patterns of multiple RNs on 
SCs indicate crossover interference, (6) RNs may occur anywhere along SCs in euchromatin if 
telomeres and euchromatin/heterochromatin borders are not considered. Sherman and Stack (1995) 
were able to construct an RN map for all twelve tomato SCs. 

Correspondence between RNs, chiasmata and genetic 
recombination 

Sherman and Stack (1995) compared the frequency of RNs with the frequency of chiasmata at 
diakinesis-metaphase I. Chiasmata were counted by interpreting rod bivalents as having one chiasma 
and ring bivalents as having two chiasmata. The average number of RNs was not in close agreement 
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with the average number of chiasmata; 21 or 22 versus 17. But because the method used to count 
chiasmata ignores the possibility of more than one chiasma per chromosome arm, they also com
pared the predicted frequency of rod and ring bivalents if each RN would form a chiasma with the 
observed frequency or rods and rings. Rod bivalents would then result from one or more RNs in one 
arm, ring bivalents from one or more RNs in both arms. The differences between the observed and 
predicted frequencies were not significant, and it appears that a chiasma forms at the site of each RN 
(Sherman and Stack 1995). 

Sherman and Stack (1995) also compared the (male meiosis derived) RN map with the tomato 
linkage maps (based on female and male meiosis). Tomato has one of the best linkage maps available 
(Tanksley et al. 1992), with many morphological markers, isozyme markers and molecular (RFLP, 
RAPD) markers. The molecular map (1275.9 map units) must be near saturation with 1030 molecu
lar markers, whereas the classical map (1063 map units) is probably not (Tanksley et al. 1992). 

Sherman and Stack (1995) interpreted the average of 21.89 RNs per complement to be equal to a 
map length of 1094.5 map units (21.89 RNs x 50 map units/RN), which is less than the molecular 
map. The shorter RN map length was probably not caused by loss of RNs during preparation, but 
rather, it might be due to higher recombination rates in female than in male meiosis, inaccuracies in 
RFLP mapping or differences in crossover rate between the materials studied (Sherman and Stack 
1995). 

Outline of this thesis 

The aim of this thesis was to analyse the relationship between chromosome pairing (synapsis), re
combination and chiasma formation in wild type tomato and in tomato meiotic mutants and hap-
loid tomato. 

The following questions were addressed: 

1. How are synapsis and chiasma formation related to each other in synaptic mutants of tomato? 
Several meiotic mutants of tomato are available and some have already been studied light mi
croscopically (Soost 1951, Moens 1969). These light microscopic analyses have not given satis
factory answers as to whether these mutants are asynaptic (reduced or abolished chromosome 
pairing) or desynaptic (complete chromosome pairing but reduced chiasma frequencies). 
Chapter 2 describes the synaptic pattern in four meiotic mutants of tomato, and relates this 
pattern to chiasma formation. 

2. Are there differences in chromosome behaviour between female and male meiosis? 
Genetic studies indicate higher female-derived recombination frequencies (de Vicente and 
Tanksley 1991). This could not be related to cytological data because female meiosis had not 
yet been studied in tomato. Chapter 3 describes the analysis of female meiosis in wild type and 
in three meiotic mutants of tomato. 
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3. How is synapsis initiated in wild type and mutant tomato. In Chapter 4, the initiation of 
presynaptic alignment and synapsis are analysed in different bivalent classes of tomato. 

4. How are synapsis and recombination related in mutants with reduced synapsis? The work of 
Moens (1969) shows that recombination frequencies maybe higher in meiotic mutants than 
in wild type. Chapter 5 shows data on synapsis and recombination nodules in an asynaptic and 
a desynaptic mutant, and gives possible explanations for the higher crossover frequencies 
found by Moens. 

5. How do synapsis and recombination proceed in the absence of homologous chromosomes? 
Humphrey (1933) found no evidence for chromosome pairing in haploid tomato but Eco-
chard et al. (1969) observed some chromosome pairing and occasional chiasmata in their hap
loid tomato material. Menzel and Price (1966) studied sections of haploid tomato anthers in 
the electron microscope and found occasional nonhomologous synapsis. Chapter 6 shows the 
results of an EM search for synapsis and RNs in spread nuclei of haploid tomato. 
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Synapsis and chiasma formation were studied in pollen mother cells of four meiotic mutants of 
tomato. The four mutants displayed defects in the assembly of the synaptonemal complex (SC) cov
ering the whole range from almost complete absence of synapsis to complete synapsis at pachytene. 
In three mutants, we found a good correlation between the number of bivalents connected by at 
least one tripartite SC segment at pachytene and the number of chiasmatic bivalents at metaphase I. 
We suggest that in tomato functional chiasmata are only formed in the context of the tripartite SC. 
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Introduction 

Meiotic chromosome pairing, recombination and segregation are accompanied by the assembly and 
disassembly of the synaptonemal complex (SC) (review: von Wettstein etal. 1984). During leptotene, 
axial elements are formed along each homologue; subsequendy, at zygotene, the axial elements of 
homologous chromosomes are connected by transverse filaments, and a third longitudinal element, 
the central element is formed on the transverse filaments. The axial elements together with the central 
element make up the tripartite structure of the SC. Within the tripartite structure, axial elements are 
called lateral elements. At pachytene, the homologous chromosomes are connected (synapsed) by the 
tripartite structure along their entire length. At diplotene, the SCs are disassembled, and chromo
somes condense further in preparation of metaphase I. During zygotene and pachytene, elec
tron-dense structures, called recombination nodules (RNs), associate with the axial elements or with 
the tripartite structure (Carpenter 1975). In several species, two types of RNs (early and late) can be 
distinguished by differences in morphology, number, distribution and time of appearance (Carpen
ter 1979, Stack & Anderson 1986a,b, Albini & Jones 1987,1988, Bojko 1989). Early RNs occur in large 
numbers at zygotene and early pachytene, and decrease in number at late pachytene. Late RNs appear 
somewhat later than early RNs; at late pachytene their number and localization correlates with the 
number and localization of crossover events (Carpenter 1987). Late RNs are therefore assumed to 
have a function in the formation of crossovers. The function of early RNs is still a matter of debate: it 
is possible that they have a function in detecting homologies, and that they leave conversion events as 
'footprints' of their activity (Carpenter 1987). 

The functions fulfilled by SCs and the regulation of their assembly and disassembly are still enig
matic. An important source of information about the regulation of SC assembly is the analysis of 
meiotic mutants. Several meiotic mutants of yeast have been identified which do not assemble a nor
mal SC (Alani et al. 1990, Rockmill & Roeder 1990, Engebrecht & Roeder 1990, Hollingsworth et al. 

1990, Bishop et al. 1992). From the analysis of these mutants it appears that synapsis and recombina
tion are intimately related (Alani et al. 1990, Kleckner et al. 1991), but also that an intact SC is not 
absolutely required for meiotic levels of recombination (Rockmill & Roeder 1990, Engebrecht et al. 

1990, Sym et al. 1993). However, an important limitation of yeast as an object for the analysis of SC 
assembly is its poor cytology. The substructures of yeast SCs are ill-defined, RNs cannot be observed 
in spread preparations of meiotic prophase nuclei (Dresser & Giroux 1988, Loidl et al. 1991) and 
chiasmata cannot be observed directly. In contrast, tomato presents several advantages for detailed 
analysis of synapsis. The morphology of the SCs of this species is excellent, so that defects in SC 
assembly have a better chance of being detected and can be well defined. Furthermore, all 12 tomato 
SCs can be identified (Sherman & Stack 1992), early and late RNs can be distinguished (Sherman et 

al. 1992) and chiasmata can be visualized. 

In this paper we describe the ultrastructural analysis of SC assembly in four meiotic mutants of 
the tomato that displayed defects in SC assembly covering the whole spectrum from (almost) com-
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plete absence of synapsis to complete synapsis at pachytene. In three mutants, we found a good corre

lation between the number of bivalents connected by at least one tripartite SC segment at pachytene 

and the number of chiasmatic bivalents at metaphase I. 

Materials and methods 

Plant material 

The three meiotic mutants of tomato, asb, asl and as5, were obtained from Dr P. B. Moens, Depart
ment of Biology, York University, Toronto, Canada. They are described in Soost (1951) and Moens 
(1969). A fourth synaptic mutant of tomato, as6, was isolated by one of us (M. S. Ramanna, manu
script in preparation). All four mutations are monogenic recessive and cause the formation of vari
able numbers of univalents at metaphase I, and high levels of pollen and ovule sterility (Soost 1951, 
Ramanna, manuscript in preparation). 

Plants were grown under greenhouse conditions. We collected flower buds from 10-20 plants of 
each mutant for microscopical and ultrastructural analysis. 

Cytological analysis 

SCs were spread by means of the hypotonic bursting technique and stained with silver or uranyl ace
tate-lead citrate as described by Stack (1982) and Sherman etal. (1992). Because synapsis is disturbed 
in three of the mutants that are studied in this paper, we identified pollen mother cells (PMCs) at a 
stage comparable to pachytene by the following criteria: 1) PMCs had to be released from the. pollen 
sac and 2) chromosomes had to be resolved from their synizetic knot and distributed all over the 
nucleus after squashing in 1% aceto-carmine. Because of the high level of synchronization between 
anthers of the same bud (Stack & Anderson 1986a), we used one anther for monitoring the stage of 
development, and the remaining anthers for EM preparations of spread SCs. Spread nuclei were 
examined and photographed in a transmission electron microscope at a magnification of 
1000-2000x. Axial elements and SCs were measured on prints by means of a digitizer, and total cell 
complement length values (TCC: the summed length of all axial and lateral elements in a PMC) were 
determined. The percentage synapsis was calculated as the total length of all tripartite SC segments 
divided by half the value of TCC x 100. 

Flower buds containing anthers with PMCs at metaphase I were fixed and stored at room temper
ature in a solution of 1 part propionic acid saturated with iron acetate and 3 parts 96% ethanol. When 
anthers had become black (after about 1 week) they were cut into four or five small pieces. Each seg
ment was squashed in a drop of 1% aceto-carmine. Slides were heated before squashing to allow 
better spreading of the chromosomes (Ramanna & Prakken 1967). 
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Figure 1. Electron micrographs of hypotonically burst PMCs of as6. A. Completely asynaptic nucleus with 
only axial elements. Stained with uranyl acetate-lead citrate (UP). B. Detail of axial element with early RNs 
(arrows) attached to it.UP stained.C. Detail of UP stained stacked SC material (arrow). D. Detail of an interca
lary tripartite segment in a silver stained nucleus. Bars = 1 urn. 

Results 

In this study synapsis and chiasma formation were analysed in four meiotic mutants of tomato. The 

light microscopic and genetic analysis of three of these mutants, asb, asl and as5 have been described 
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earlier (Soost 1951, Moens 1969). The mutant as6 was recently isolated by one of us (Ramanna, 
manuscript in preparation). 

The 056 mutation is not allelic to either asb, as lor as5, since crosses of homozygous recessive ash, 

asl and as5 plants with heterozygous As6as6 plants yielded only progeny with wild-type phenotype 
(13,15 and 13 plants checked respectively). 

as6 mutant 

The 32 spread nuclei of as6 that were analysed showed normal development of axial elements. Chro
mosome complements were completely asynaptic in 29 nuclei (Figure 1A). In each of the remaining 
three nuclei we found a single short intercalary tripartite segment, 2.8-4.5 um long (Figure ID). We 
could not determine whether these segments involved homologous or non-homologous chromo
somes. Synapsis ranged from 0 to 1.3%, with an average of 0.1%. Numerous round (early) RNs were 
associated with the axial elements (Figure IB), but these did not connect two axial elements as is often 
seen in early prophase of wild type and of the other three mutants (Figure 2B). TCC values were mea
sured in 11 nuclei and averaged 658 urn (Table 1). In about 30% of the nuclei, most of the axial ele
ments were running parallel to other axial elements at distances of 50-650 nm, and in some nuclei the 
telomeres were arranged in a bouquet (Figure 1 A). We suppose that this type of rough alignment was 
nonhomologous, because one axial element was often running parallel to several other axial elements 
and other segments of the same axial element. The typical presynaptic alignment of homologous seg
ments that is observed during early prophase of wild type tomato and of the other mutants (Figure 2) 
was not observed in as6. In most of the as6 nuclei however, the bouquet arrangement and alignment 
of axial elements were not obvious. In four nuclei we observed stacks of presumed SC material (Fig
ure 1C). These stacks contained alternating thin and slightly thicker layers; it is possible that they con
tain transverse filament and/or central element material. The distance between two thin or two 
thicker layers was approximately 120 nm, which corresponds well to the distance between lateral ele
ments in normal SCs from tomato. 

In all four mutants, we compared the number of bivalents connected by at least one tripartite SC 
segment at pachytene, to the number of bivalents observed at metaphase I. In as6, an average of 0.1 
bivalent was formed per cell at pachytene (Table 2). Analysis of bivalent frequencies at metaphase I 
was not straightforward in as6 because bivalents could not always be discriminated from bivalent-like 
structures that consisted of two closely associated univalents, and because the orientation of struc
tures in the equatorial plate could not be used as a criterion for a bivalent since, in most cases, not 
more than one such structure was present in a PMC. We therefore classified the bivalents into two 
groups. Group 1 contained bivalents with a clear chromatin thread that connected the two chromo
somes; these threads may represent the terminalizing chiasmata (Figure 3A, B). We interpret these 
bivalents as chiasmatic bivalents. Group 2 contained paired structures without stretched chromatin 
connections; these structures are probably non-chiasmatic associations. The average frequency of 
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Figure 2. Electron micrographs of hypotonically burst PMCs of asb. A. Partially asynaptic nucleus with 4% 
synapsis. Aligned axial elements are connected by RNs. Silver stained. B. Detail of aligned axial elements 
with RNs connecting both axial elements. Bars = 1 urn. 

group 1 bivalents was 0.2 ± 0.4 per cell, and the average frequency of group 1 and group 2 bivalents 
was 0.9 ± 0.9 per cell (Table 2). 

asb mutant 

We analysed 17 pachytene nuclei of asb. Three of these had no tripartite segments, although some 
axial elements showed presynaptic alignment at a distance of approximately 300 nm. In the other 
nuclei we observed both presynaptic alignment of axial elements and synapsis, predominantly at or 
near the telomeres (Figure 2). Synapsis was probably homologous, since chromosome axes of about 
the same length were involved. The aligned axial elements were connected by RNs (Figure 2B). The 
percentage synapsis ranged from 0 to 17% (average of 6.1%; Table 1). The TCC, measured in eight 
nuclei, was on average 620 um, compared with 486 urn in wild type nuclei. In the other nine nuclei 
only the SC segments could be measured. The average TCC of 620 um was used to calculate the per
centage synapsis in these nine nuclei (Table 1). The mean number of tripartite SC segments per 
nucleus was 4.7; their length ranged from 0.3 um to 16.0 um (average 4.0 um; Table 1). 
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Table 1. Average total cell complement (TCC), % synapsis, number of SC segments and length of SC seg
ments in pachytene nuclei of four meiotic mutants. 

Mutant 

as6 

asb 

asl 

as5 

Wild-type 

number 

of nuclei 

32 

17 

19 

12 

7 

Average TCC 

(urn) 

658±98a 

620±59b 

703±129c 

549±63 

486±71 

Average 

% synapsis 

0.1 ±0.3 

6.1 ±5.8 

25.0118.9 

100 

100 

Average no. SC 

segments 

0.1 ±0.3 

4.7±3.5 

9.8±5.8 

12 

12 

Average length 

SC segments 

(um) 

3.4±1.0 

4.0±3.4 

8.7±8.2 

22.9 

20.3 

a) 11 nuclei measured;") 8 nuclei measured;') 17 nuclei measured. 

Table 2. Bivalent frequencies at pachytene 

Mutant 

as6 

asb 

asl 

as5 

Wild-type 

a and metaphase 1 in 

pachytene 

number of nuclei 

32 

16 

18 

12 

7 

Average number 

of bivalents 

0.1 ±0.3 

3.2±2.4 

6.4±3.4 

12.0±0 

12.0±0 

nuclei o f four meiot ic mutants. 

metaphase I 

number of nuclei 

250 

258 

120 

111 

100 

Average number 

of bivalents 

0.2±0.4b 

0.9±0.9C 

3.2±1.4 

7.3±1.7 

7.7±1.5 

12.0±0 

a) A pachytene bivalent is a pair of homologous chromosomes, connected by at least one tripartite SC seg
ment;b) Minimum number of metaphase I bivalents (group 1);c) Maximum number of metaphase I bivalents 
(group 1 and 2). 

At pachytene we found an average of 3.2 bivalents with at least one tripartite segment per cell (Ta
ble 2). At metaphase I, we could easily distinguish chiasmatic bivalents from non-chiasmatic associa
tions by their clear orientation in the equatorial plate (Figure 3C). We found an average of 3.2 
chiasmatic bivalents per cell (n = 258), which corresponds well to the average of 3.2 bivalents per cell 
(n = 16) observed at pachytene (Table 2). 

asl mutant 

The nineteen pachytene nuclei of asl that were analysed showed presynaptic alignment and synapsis 
(Figure 4A). RNs were found between the aligned axial elements and on the tripartite SC segments 
(Figure 4A). The percentage synapsis ranged from 4 to 70% (mean 25.0%; Table 1). The TCC was 
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Figure 3. Squash preparations of aceto carmine stained PMCs at metaphase 1. A, B. Metaphase 1 in as6. 
Chiasmatic bivalents are indicated by arrow. C. Metaphase 1 in asb with three bivalents oriented in the 
equatorial plate (small arrows) and two nonchiasmatic associations of univalent pairs (big arrows). D. 
Metaphase I in as 1 with eight bivalents oriented in the equatorial plate. Bivalents indicated with 1 are sup
posed to have chiasmata in only one chromosome arm. Bivalents indicated with 2 and 3 are supposed to 
have chiasmata in both chromosome arms. E. Metaphase 1 in as5 with ten bivalents and four univalents. F. 
Metaphase 1 in wild type: twelve bivalents. Bars = 1 urn. 

measured in 17 cells and averaged 703 um. The average number of SC segments per nucleus was 9.8. 
The length of the SC segments ranged from 0.3 urn to 36.9 um (average 8.7 um; Table 2). 

At pachytene, the average number of bivalents with at least one tripartite segment was 6.5. At 
metaphase I, a mean of 7.3 chiasmatic bivalents per cell was found (Table 2). Soost (1951) reported 
averages of 5.19-8.40 bivalents per cell at metaphase I of asl mutants. 

The spread nuclei of asl had a better SC morphology than the asb nuclei. A larger fraction of the 
axial elements remained intact after spreading, and less chromatin was connected to the lateral/ axial 
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Table 3. Configurations of pachytene3 bivalents in ten as 1 nuclei. 

Nucleus 

2883.1.1 

2883.1.2 

2883.1.3 

2883.5.1 

2883.6.1 

2883.7.1 

2883.10.1 

2928.3.3 

3016.1.1 

3016.2.1 

Average 

number of 

bivalents 

7 

9 

12 

12 

2 

9 

6 

6 

5 

4 

7.2 

Configuration 

(1) 

0 

1 

4 

5 

0 

2 

0 

0 

0 

0 

1.2 

\ \ 

(2) 

2 

3 

3 

4 

0 

3 

2 

1 

3 

0 

2.1 

1 

3 

5 

5 

5 

3 

2 

4 

4 

5 

5 

4 

3.9 

J l 

(4) 

0 

2 

0 

0 

4 

0 

1 

0 

1 

0 

0.8 

(5) 

5 

1 

0 

0 

6 

3 

5 

6 

6 

8 

4.0 

a) Pachytene bivalent is a pair of homologous chromosome condensation by at least one tripartite SC seg
mental ) completely synapsed bivalent; (2) bivalent with synapsis in both arms; (3) bivalent with synapsis in 
one arm; (4) bivalent with alignment; (5) two univalents. 

elements. Synapsis could therefore be studied in more detail in asl. In a nucleus with 1.4% synapsis, 
we found stacked SC material, similar to that seen in as6 (Figure 4B). In a nucleus with 33.8% 
synapsis, we observed stacked material of a different type (Figure 4C, D), consisting of several layers 
of central element-like material, which ran parallel to one or two lateral/axial element-like layers. In 
ten asl nuclei, we classified the configurations of all bivalents into five groups (Table 3): group 1 biva
lents had synapsed completely, group 2 bivalents had synapsed segments in both arms, group 3 biva
lents had synapsed segments in only one arm, group 4 contained univalent pairs with alignment of 
axial elements and group 5 contained univalent pairs without alignment of axial elements. In these 
ten nuclei, 3.3 bivalents showed synapsis in both arms, 3.9 showed synapsis in one arm and 4.8 pairs 
of univalents were formed on average. An average of 0.8 of the univalent pairs showed presynaptic 
alignment in one or both arms. The average number of bivalents was 7.2. 

At metaphase 1 we analysed the frequencies of different bivalent configurations in 55 cells of asl 

(Table 4). The different configurations are shown in Figure 3D. Bivalents with the chromosomes con
nected by a thin stretched chromatin thread (type 1) were interpreted as having one or more 
chiasmata in only one arm (rod bivalents). Bivalents with a thickening in the middle (type 2) and 
bivalents that were evenly thick over their entire length (type 3) were interpreted as having at least one 
chiasma in each arm (ring bivalents). The average number of bivalents interpreted as ring bivalents 
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Table 4. Absolute frequencies and frequencies per cell of six different configurations in 55 as) nuclei at 
metaphase I. 

Absolute frequency 

Freq7cell (mean±SD) 

Bivalent configurations 

( la) (1b) (2a) (2b) (3a) (3b) 

161 22 

2.9±1.2 0.4±0.7 

82 

1.5±1.1 

19 

0.3±0.6 

19 

0.3±0.6 

68 

1.2±1.1 

sum 

type 

1 

183 

3.3±1.2 

sum 

type 

2+3 

188 

3.4±1.6 

sum 

type 

1+2+3 

371 

6.7±1.7 

(1) bivalent with thin thread in the middle; (2) bivalent with a thickening in the middle; (3) evenly thick biva-
lents. Configuration 1 is interpreted to have a chiasma in only one arm; configurations 2 and 3 are inter
preted to have chiasmata in both arms. 

was 3.4, compared to an average of 3.3 bivalents interpreted as rod bivalents. The number of rod 
bivalents may be underestimated, because some of the bivalents of configuration 2a (Table 4) may 
actually represent rod bivalents rather than ring bivalents. The average number of bivalents per cell 
was 6.7 in this sample of 55 metaphase I cells of asl. 

The average number of ring bivalents versus rod bivalents at metaphase 1 (3.4:3.3, Table 4) corre
lates well with the average number of bivalents with synapsis in both arms versus bivalents with 
synapsis in only one arm at pachytene (3.3: 3.9, Table 3). This suggests that the 10 pachytene nuclei 
represent end-points of SC development. 

«55 mutants 

In all 12 pachytene nuclei analysed of as5,12 completely synapsed sets were observed (Table 1 and 
Figure 5A). The average length of a complete set of 12 SCs was 274.5 urn (TCC = 549 urn) compared 
with 243 urn (TCC = 486 um) in wild-type plants (Table 1). RNs were associated with the SCs (Figure 
5B). Between pachytene and metaphase 1, many bivalents separated precociously, resulting in the 
appearance of univalents at metaphase 1 (Figure 3E). An average of 7.7 bivalents per PMC was main
tained until metaphase I (Table 2). 

Discussion 

Synapsis and chiasma formation 

The four tomato mutants studied here displayed different degrees of synapsis at pachytene, namely 
0.1%, 6.1%, 25.0% and 100%, in as6, asb, asl and as5 respectively. In as6, asb and asl we found a close 
correlation between the number of (partially) synapsed bivalents per nucleus at pachytene and the 
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Figure 4. Electron micrographs of hypotonically burst PMCs of ash A. Partially asynaptic nucleus with 33% 
synapsis. RNs can be observed on aligned and synapsed segments (arrows). Silver stained. B. Detail of 
stacked SC material (arrow) in a UP stained nucleus. C, D. Details of central element like layers (arrows), 
formed parallel to one or between two lateral elements. UP stained. Bars= 1 urn. 
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Figure 5. Electron micrographs of hypotonically burst PMCs of as5. A. Late pachytene nucleus with twelve 
completely synapsed sets of SCs. Centromere structures are indicated by big arrows, and each of the twelve 
SCs is identified (numbers). Late RNs are indicated by small arrows. UP stained. B. Detail of UP stained SC with 
late RN. Bar =1 urn. 

number of bivalents per nucleus at metaphase 1. In one of the mutants, asl, we could even establish 
that the pattern of synapsis in pachytene bivalents corresponds with the pattern of chiasma forma
tion in metaphase I cells. This suggests that synapsis and chiasma formation are intimately related. 

The relationship between synapsis, recombination and chiasma formation has been the subject of 
a large number of studies (reviewed in Stack et al. 1989). Good correlations between synapsis and 
chiasma formation were observed in meiotic mutants of Sordaria macrospora (Zickler et al. 1992), 
and in a variety of research objects with structural chromosomal rearrangements (Maguire 1977, 
Stack & Soullierre 1984, Herickhoff et al. 1993). However, there are also various examples where 
synapsis and chiasma formation do not correlate. In female Bombyx mori (Sturtevant 1915, Rasmus-
sen 1976), haploid organisms (de Jong et al. 1991, Menzel & Price 1966), interspecific hybrids 
(reviewed in Von Wettstein et al. 1984), certain meiotic mutants in yeast (Engebrecht et al. 1990) and 
the as5 mutant of tomato (this study), synapsis is not always followed by the formation of chiasmata. 
Furthermore, at least two species, Aspergillus nidulans (Egel-Mitani et al. 1982) and Schizosaccharo-

myces pombe (Olson et al. 1978) display a high frequency of meiotic recombination in the total 
absence of a detectable tripartite SC. Although chiasmata cannot be observed in these species, we 
consider the meiotic recombination events functionally equivalent to chiasmata. Thus, in some spe-
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Figure 6. Schematic representation of SC assembly and chiasma formation in wild type pollen mother cells. 

The position of the meiotic arrest of the mutants is indicated. 

cies the tripartite SC is not required for chiasma formation. However, on the basis of studies in other 
species, particularly in Sordaria macrospora (Zickler et al. 1992), maize (Maguire 1977) and tomato 
(this study), we propose that in most eukaryotes functional chiasmata are only formed in the context 
of a tripartite SC. 

Possible nature of the defects in the analysed mutants 

For discussion of the nature of the meiotic defect in the analysed mutants we refer to Figure 6, which 
represents the successive steps in SC assembly and chiasma formation in wild type pollen mother 
cells. 

The phenotypic effect of the as6 mutation becomes apparent at the transition from random 
alignment to homologous (presynaptic) alignment. As far as we could tell, the as6mutant did not dis
play the typical presynaptic alignment observed during zygotene in wild-type tomato. Non- homolo
gous alignment of axial elements was extensive in some as6 nuclei. These observations suggest that 
the homologues are unable to find their counterpart in this mutant. Several models have been pro
posed with respect to homology recognition during early prophase I (reviewed by Loidl 1990). 
According to most models, homology is tested by DNA-DNA interactions (Smithies & Powers 1986, 
Stern & Hotta 1987, Carpenter 1987, Kleckner etal. 1991). Smithies & Powers (1986) and Carpenter 
(1987) propose that most simple gene conversion events result from searches for homology. Carpen
ter (1987) also proposed that these searches are mediated by early RNs. In several as6 nuclei we found 
numerous early RNs all along the axial elements (Figure 1): the synaptic defect is therefore not caused 
by a total absence of early RNs. It is possible, however, that the early RNs in as6 have a defect that is not 
morphologically recognizable. Another possible cause for the synaptic defect in as6 is a defect in the 
assembly of the central region. There are two (non-conclusive) arguments against this explanation, 
however: (1) the defect in alignment of axial elements is not explained, and (2) the occurrence of 
stacks of central element-like material suggests that the components of the central region are synthe-
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sized and can assemble. Yeast mutants rad50 and meil04 have a similar meiotic phenotype (Alani et 

al. 1990, Menees et al. 1992), and the defect in the alignment of axial elements is also accompanied by 
defects in meiotic recombination and chromosome synapsis. 

In asb and asl nuclei synapsis is initiated but not completed, and chiasma formation is reduced. 
Nuclei of asb have fewer and shorter SC segments than asl nuclei (Table 1). Some nuclei showa rela
tively large amount of presynaptic alignment (Figure 2). It seems as if, after recognition of homology, 
SC initiation is delayed in these nuclei. Mutants with a similar meiotic phenotype have been found in 
yeast (rad50S and dmcl mutants; Alani et al. 1990, Bishop et al. 1993). These mutants accumulate sup
posed recombination intermediates, i.e. molecules with DNA double-strand breaks. It is not known 
how this defect in meiotic DNA metabolism is related to the defect in SC assembly. 

Mutant 055 displays complete synapsis at pachytene, but at metaphase I the number of chiasmata 
and chiasmatic bivalents is reduced. Similar mutants have been described in maize (mutant dy, 

Maguire et al. 1991), potato (mutant ds-1, Jongedijk & Ramanna 1988), and Sordaria (mutant 
asy2-17, Zickler etal. 1992). A defect in the SC is suggested to cause the loss of chiasma maintenance 
in the dy mutant of maize (Maguire et al. 1991). The ds-1 mutant of potato shows a reduction in 
chiasma frequency and recombination frequency, whereas in the asy2-17 mutant of Sordaria the 
number of late RNs is reduced. In as5, recombination frequencies have not yet been determined, and 
it is not known whether the number of late RNs is reduced. 
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Female meiosis was analysed in squash preparations of ovules from three meiotic mutants and 
wild-type plants of tomato. In the completely asynaptic mutant as6, chromosome pairing and 
chiasma formation were virtually absent in both sexes. In the partially asynaptic mutant asb, with 
intermediate levels of chromosome pairing at pachytene, there were a higher number of chiasmate 
chromosome arms in female meiosis than in male meiosis, whereas in the desynaptic mutant as5 

there were normal levels of chromosome pairing at pachytene and a similar reduction in chiasma 
frequency in the two sexes. In wildtype tomato, we found slightly higher numbers of chiasmate 
chromosome arms in female meiosis than in male meiosis. We propose that the higher female 
chiasma frequencies in mutant asb and wild-type tomato result from a longer duration of female 
meiotic prophase. This would allow chromosomes more time to pair and recombine. It is possible 
that a longer duration of prophase I does not affect mutants as5 and as6, either because the meiotic 
defect acts before the pairing process begins (in as6) or because it acts at a later stage and involves 
chiasma maintenance (in as5). 
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Introduction 

Cytogenetic studies of female meiosis have long been neglected in plants. The main reasons have been 
the technical difficulty of locating and handling the solitary embryo sac mother cell (EMC) and the 
small chance of finding an EMC at the correct meiotic stage. Chromosomes were studied mostly in 
the easily accessible pollen mother cells (PMCs), and their behaviour in EMCs and PMCs was gener
ally assumed to be the same. Some authors recognised the need for additional analyses of female mei
osis. Darlington and La Cour (1940) and Fogwill (1958) studied female meiosis in Lilium and 
Fritillaria. Fogwill (1958) found a higher chiasma frequency in female meiosis in both species and, in 
Fritillaria, apparently larger bivalents in EMCs than in PMCs. The higher female chiasma frequencies 
were explained by the larger female nucleus, which might facilitate chromosome pairing, and by dif
ferences in two variables of meiosis mentioned earlier by Darlington (1940): time limit and torsion. 
Fogwill (1958) proposed that a longer period of time is allowed for pairing in EMCs. Furthermore, 
she suggested that chromosome coiling proceeds further and lasts longer in EMCs and that this con
tributes to higher crossover frequencies. Similar results and conclusions were reported in studies of 
four Tulbaghia species (Vosa 1972) and Allium (Ved Brat 1966). Gohil and Kaul (1980), however, 
obtained contrary results in their study of four Allium species, which exhibited higher chiasma fre
quencies in male meiosis. 

Bennett etal. (1973) were the first to report on the duration of female and male meioses, and they 
also studied the relationship between meiotic duration and chiasma frequency. In the cereals 
Hordeum vulgare (barley) and Triticum aestivum (wheat), the duration of female and male meioses 
was very similar (Bennett et al. 1973). Chiasma frequencies were studied only in H. vulgare and 
turned out to be similar in female and male meioses. Bennett etal. (1973) concluded that this result 
was not proof of a relationship between meiotic duration and chiasma frequency, but that it might be 
interpreted as lending support to such a relationship. To test Fogwill's (1958) assertion that in Lilium 

meiosis lasts longer in EMCs than in PMCs, Bennett and Stern (1975) estimated the duration of mei
osis in plants of two Lilium hybrids. Their results clearly showed that this assertion was correct. 

Mogensen (1977) described the first, and so far the only, analysis of synaptonemal complexes 
(SCs) in female meiosis of a plant, maize. He found that the short arm of chromosome 9 was shorter 
in female meiosis than in male meiosis, which correlates well with the reduced female crossing-over 
value in the short arm of chromosome 9 (Rhoades 1978). Mogensen concluded that in maize, sex dif
ferences in recombination may reflect differences in SC length. 

Davies and Jones (1974) stressed the importance of studying both female and male meioses in a 
range of genetically different types, such as meiotic mutants or inbred lines. In their analysis of five 
distinct inbred lines of rye, they found similar chiasma frequencies in female and male meioses. They 
concluded that, in rye, chiasma formation in female and male meioses is governed by a single control 
mechanism. 
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The effects of meiotic mutations on female meiosis have been analysed in only very few plant spe
cies. A synaptic mutant of potato showed the same severe reduction in chiasma frequency in both 
sexes (JongedijkandRamanna 1989). In maize, Golubovskayaef al. (1992) reported the effects of five 
meiotic mutations on megasporogenesis, but this study did not include data on chiasma frequency in 
female meiosis. 

As a cytogenetic model, tomato would be an outstanding plant in which to study female meiosis; 
chromosome behaviour has been studied in detail in male meiosis (Stack and Anderson 1986a, 
1986b) and sexual differences in genetic recombination have been reported (de Vicente and Tanksley 
1991; van Ooijen et al. 1994). Meiotic mutants are available and have been extensively analysed in 
tomato (Soost 1951; Moens 1969; Havekes et al. 1994), and electron microscope studies have pro
vided information on the extent of SC formation (synapsis) in male meiosis of these mutants 
(Havekes et al. 1994). 

Synaptonemal complex spreading is practically impossible in female meiosis of tomato, but light 
microscope studies on chromosome pairing and chiasma formation are feasible in EMCs. We have 
undertaken such a light microscope study in EMCs of three meiotic mutants of tomato. As SC forma
tion was not studied in female meiosis, we refer to the association of homologous chromosomes at 
pachytene as chromosome pairing. Herein, synapsis is used exclusively to indicate the formation of a 
SC. 

In this paper we describe the effect of three different meiotic mutations on chiasma frequencies in 
female and male meioses of tomato. Since female meiosis has not been studied before in tomato, we 
included a comparison of meiotic chromosome behaviour in female and male meioses of wild-type 
tomato. Here we report sex differences in chiasma frequency in meiosis for one of the mutants and for 
wild-type tomato. Possible explanations for these differences are discussed. 

Materials and methods 

Plant material 

The mutants asb and as5 were obtained from Dr. P.B. Moens, Department of Biology, York University, 
Toronto, Canada. They were described by Soost (1951) and Moens (1969). A third mutant, as6, was 
obtained from Dr. M.S. Ramanna, Laboratory of Plant Breeding, Wageningen Agricultural Univer
sity, The Netherlands. All mutations are monogenic recessive and cause high levels of pollen and 
ovule sterility. Male meiosis in these mutants was analysed in a previous study (Havekes etal. 1994). 

Methods 

Squash technique for EMCs 

The squashing technique developed by Jongedijk (1987) for potato EMCs was slightly modified for 
our preparations of tomato ovules. Flower buds with style lengths of approximately 1.5 mm were 
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fixed in a mixture of 1 part propionic acid and 3 parts ethanol at room temperature for about 1 week. 
Ovary walls were peeled off with needles under a dissecting microscope. After a ten minutes hydroly
sis in 1 N HC1 at room temperature, the two placentas were divided and squashed separately in a drop 
of 1 % aceto-carmine. The cover glass was sealed with nail polish and the preparations were screened 
under a phase contrast microscope. Each preparation yielded 5-20 EMCs at various stages of meiosis 
I. Cell complements at late diplotene-diakinesis were drawn, chiasma numbers were established, and 
representative examples of all stages of prophase I were photographed. 
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Spreading technique for PMCs 

Flower buds fixed in Carnoy's fluid (1 part 
acetic acid and 3 parts ethanol) and stored at 
4° C were digested for 1 h at 37° C in an 
enzyme solution consisting of 0.1 % cellulase, 
0.1 % pectolyase, and 0.1 % cytohelicase in 10 
mM citrate buffer (pH 4.5), and anthers were 
then spread as follows. One anther was placed 
on a slide and divided into little pieces. First a 
drop of 60% acetic acid was added, and after 
this had mixed with the anther material, a 
drop of Carnoy's fluid was added. Excessive 
fixative was drained off, the slide was dipped in 
ethanol, and finally, air-dried. Slides were 
Giemsa stained. PMCs at diakinesis and meta-
phase I were used for chiasma counts. 

Results 

Female meiosis in wild-type tomato 

Female meiosis was analysed in stained squash 
preparations of 37 wild-type tomato ovaries. 
Each ovary had two placentas, both covered 

Figure 1. EMCs of tomato. A. A single EMC in a 

squash preparation of tomato ovules. The EMC 

(indicated by an arrow) can be recognised by its 

large and elongated shape.B. An example of two 

"twin" EMCs of the same meiotic stage: early 

diplotene. Scale bars = 10 urn. 
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Figure 2. Female meiotic stages of wild-type tomato. A. Pachytene. The twelve tomato chromosomes have 
paired along their entire length. Darkly staining regions represent the pericentric heterochromatin and 
lightly staining regions represent distal euchromatic arm segments.B. An EMC at diakinesis with ten ring bi-
valents and two rod bivalents. The dark centromeric regions and light euchromatic (chiasmate) arms are 
clearly visible. Chromosome 2, the nucleolar chromosome, is indicated by an arrow. C. Metaphase I with 
twelve bivalents oriented in the equator. D. Anaphase I. E. Telophase I. A membrane (phragmoplast) is 
formed between the two daughter cells (arrow). F. Metaphase ll.The daughter cells have separated as a re
sult of the squashing technique. Scale bars = 10 um. 

39 



Chapter 3 

ro 

*-,*.-»*i 

: ^ " : » W i 

L«& 

fc 

W p ?:•:*• • • '• .-• — 
« - " • • • . • . . * • 

#?-'•;••••>: 

V > , - t ^ . •••-«.• •• •:••• * - . V— 

F 

&?m 

...--At./»*%> . / V . 

40 



Female and male meiosis in three mutants 

with 50-70 ovules. Ovules normally contained only one EMC, recognisable in the preparations as 
single cells of large and elongated shape compared with the cells of the surrounding ovule tissue (Fig. 
1A). On average, an EMC measured 35 um wide and 96 um long. We sometimes observed two adja
cent "twin" EMCs instead of a single one (Fig. IB). EMCs from one placenta did not develop syn
chronously (except for the "twin" EMCs), revealing cells at prophase I through to anaphase I in the 
same preparation. Owing to the assembly of a phragmoplast immediately upon onset of anaphase I 
(Fig. 2E), cells at meiosis II could not be identified, and the two daughter cells easily separated during 
the squash procedure (Fig. 2F) and were lost between the ovule tissue cells. 

Since we were primarily interested in chromosome pairing and chiasma formation, our study on 
EMCs in pachytene, diakinesis, and metaphase I. At pachytene, the 12 tomato chromosomes were 
paired along their entire length and showed the differential staining of proximal heterochromatin and 
distal euchromatin (Fig. 2A). Homologues disjoined at late diplotene-diakinesis and remained con
nected by chiasmata in the euchromatic segments (Fig. 2B). The lighter euchromatic parts of the 
bivalents could be traced very well in EMCs at diakinesis, much better than in PMCs at the same mei-
otic stage. Ring bivalents (chiasmata in both chromosome arms) were more frequent than rod biva
lents (chiasmata in only one arm) in the female diakinesis cells that we studied. The 12 tomato 
chromosomes could not be distinguished individually at diakinesis, except for chromosome 2, the 
nucleolar chromosome, which was often visibly attached to the nucleolus. Chromosome 2 always 
appeared as a rod bivalent, owing to failure of recombination in its completely heterochromatic short 
arm. At metaphase I, the condensed bivalents were oriented in the equator (Fig. 2C). Rod and ring 
bivalents could not be distinguished unambiguously at metaphase I, because the bivalents often over
lapped and had lost their differentiated morphology. 

Female meiosis in meiotic mutants 

We analysed female meiosis in preparations from 28 ovaries of mutant as6,43 ovaries of mutant asb, 

and 57 ovaries of mutant as5. In all three homozygous mutants, EMCs had the same long and elon
gated shape as in the wild type, and were also single, with exceptional cases of double ("twin") EMCs. 

Figure 3 shows examples of EMCs at pachytene, diakinesis, and metaphase I. At pachytene, the 
extent of chromosome pairing could not be determined as exacdy as in electron micrographs of SC 
spreads. In as6, the homologues appeared not to pair at all (Fig. 3A), and 24 univalents were observed 
in most diakinesis and metaphase I cells (Figs. 3B-3C). Only eight bivalents (all rods) were found in a 

Figure 3. Stage of female meiosis in mutants of tomato. A-C. Mutant as6. A. Unpaired chromosomes at a 
stage comparable to pachytene.B. Diakinesis with twenty-four univalents.C. Metaphase I with twenty-four 
univalents not oriented in the equator. D-F. Mutant asb. D. Incomplete pairing at a stage comparable to 
pachytene. E. Diakinesis with mostly univalents. F. Metaphase I with five bivalents in the equator.G-l. Mutant 
as5. G. Normal chromosome pairing at pachytene. H. Diakinesis with parallel arrangement of identical 
univalents (indicated by arrows). Chiasmate bonds are sometimes very thin (arrowheads). I. Metaphase I 
with bivalents in the equator and some univalents elsewhere in the cell. Scale bars = 10 um. 
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Table 1 .Average number of chiasmate chromosome arms per cell in female and male meioses of three mei-
otic mutants of tomato and the wild type. 

Mutant 

as6 

asb 

as5 

Wild type 

Number of cells 

Female 

31 

34 

29 

28 

Male 

50 

73 

33 

40 

Average number of chiasmate 

number arms per cell 

Female 

0.3±0.5 

9.5±4.3 

9.9±5.2 

20.5±2.2 

Male 

0.1 ±0.3 

3.6±1.9 

10.8±3.0 

19.0±1.6 

Significance* 

P« 0.001 

0.001<P<0.01 

a) The numbers of chiasmate chromosome arms per cell were compared in female and male meioses by 
Welch's approximate f test of equality of two sample means with unequal variances. 

total of 34 as6 cells. Of these, three could be identified as chromosome 2 (nucleolar chromosome), 
one was certainly not chromosome 2, and of the remaining four, we could not determine whether 
they concerned chromosome 2. 

In female meiosis of mutant asb, we found incomplete chromosome pairing at a stage morpho
logically comparable to pachytene (Fig. 3D). Although the extent of chromosome pairing could not 
be determined accurately at the light-microscope level, it was likely more than 10% on the average. At 
diakinesis, EMCs of asb showed varying mixtures of univalents, rod bivalents, and ring bivalents (Fig. 
3E). The bivalents were oriented in the equatorial plane and the univalents were scattered over the cell 
at metaphase I (Fig. 3F). 

In mutant as5, chromosome pairing at pachytene was complete (Fig. 3G), but both univalents and 
bivalents were observed at diakinesis and metaphase 1 (Figs. 3H-3I). The connections between the 
homologues could be very thin in as5 (Fig. 3H). The univalents of this mutant showed pairwise paral
lel alignment (Fig. 3H, arrows), and the pattern of staining (heterochromatin-euchromatin) was 
similar within each observed pair. This type of arrangement was unique to as5 and did not occur in 
the other two mutants. 

Chiasma formation compared in female and male meioses 

Chiasma formation was compared in the two sexes by means of numbers of chiasmate chromosome 
arms, because we could not discriminate between one or more chiasmata within chromosome arms 
in male tomato. In each mutant and in wild-type tomato, the numbers of univalents, rod bivalents, 
and ring bivalents were counted in samples of approximately 30 EMCs at diakinesis. For each cell, we 
calculated the number of chiasmate arms and compared the sample average with the equivalent aver
age in male meiosis (Table 1). In mutant asb, the average number of chiasmate arms was 2.6 times 
higher in female meiosis than in male meiosis. Also, the higher number of chiasmate arms in female 
meiosis was correlated with a 2.6 times higher number of bivalents per cell, whereas the average num-
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ber of chiasmate arms per bivalent was the same in both sexes. In as6 and as5, the number of 
chiasmate arms in female and male meioses did not differ significandy (Table 1). In wild type, how
ever, the slightly higher number of chiasmate arms in female meiosis was significantly different from 
the number of chiasmate arms in male meiosis. In all mutants and in wild type, the variance of the 
number of chiasmate arms was higher in female than in male meioses (Table 1). 

There were also striking differences in chromatin morphology between male and female meiotic 
prophase nuclei. In EMCs at diakinesis, the euchromatic chromosome regions were clearly visible 
(Figs. 2 and 3); in contrast, PMCs at a comparable stage depicted mainly the proximal heterochroma-
tic regions of the chromosomes. In female meiosis, differences in the size and shape of the euchro
matic regions gave additional information on the number of chiasmata in such a region: we could 
observe the difference between bound chromosome arms with only one chiasma and arms with more 
than one chiasma. Assuming a maximum of two chiasmata per arm, we could distinguish rod biva-
lents with one chiasma from rod bivalents with two chiasmata, and ring bivalents with two chiasmata 
from ring bivalents with three or with four chiasmata. The average number of chiasmata per EMC 
was 0.4 ± 0.8 for as6,11.8 + 5.2 for asb, 11.2 ± 5.5 for as5, and 23.6 ± 3.0 for the wild type. In male mei
osis, we could not carry out such an analysis of chiasma frequency. But if we assume the ratio between 
the average number of chiasmate arms (data in Table 1) and the average number of chiasmata to be 
the same in both sexes, average chiasma frequencies in PMCs would be approximately 0.1 (1.33 x 0.1) 
in 056,4.5 (1.24 x 3.6) in asb, 12.2 (1.13 x 10.8) in as5, and 21.9 (1.15 x 19.0) in the wild type. 

Discussion 

In mutant asb and wild-type tomato, we found a higher number of chiasmate arms in female meiosis 
than in male meiosis. This difference was evident for asb and less obvious, but also significant, for the 
wild-type. 

Wild-type tomato 

The number of chiasmate arms in female meiosis of wild-type tomato was slightly but significantly 
higher than in male meiosis. The variance of the number of chiasmata per cell was also higher in 
female meiosis than in male meiosis. Chiasmate bonds were scored in EMCs at diakinesis and in 
PMCs at both diakinesis and metaphase I. That chiasmata were scored at different meiotic stages may 
explain the slight difference found in the number of chiasmate arms in the two sexes of the wild type. 
The greater variation in the number of chiasmate chromosome arms in female meiosis may have 
been caused by the higher number of flower buds used in the analysis of female meiosis. Although the 
differences in meiotic stage and in number of flowers used may have influenced the averages given in 
Table 1, the higher number of chiasmata in female meiosis is in agreement with genetic recombina
tion studies of tomato. In a cross between Lycopersicon esculentum and Lycopersicon pennellii, a 
genome-wide reduction in recombination was found in the male-derived progeny compared with 
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the female derived progeny (de Vicente and Tanksley 1991). The same result was found in a cross of 
L. esculentum with Lycopersicon peruvianum (van Ooijen et al. 1994). Possible explanations for higher 
female chiasma frequencies are discussed below, in the section on meiotic mutants. 

In female meiosis, we estimated the average number of chiasmata to be 23.6±3.0 per EMC. In 
male meiosis, we could not establish exact chiasma counts, but extrapolation from female data sug
gests a frequency of 21.9 chiasmata per PMC. This frequency corresponds well to the number of 
recombination nodules (RNs) reported for PMCs of tomato. An average number of 21.25 RNs was 
counted in 278 complete sets of mid- to late-pachytene SCs; if SCs from incomplete cells were 
included in the calculation, an even higher frequency was found, namely 21.89 (Sherman and Stack 
1995). These results support our view that chiasma frequencies in tomato anthers are underestimated 
when rod bivalents are supposed to have one chiasma and ring bivalents to have two. 

Meiotic mutants 

Although pachytene pairing could not be studied in detail in EMCs and a quantitative analysis of SC 
formation in female cells is practically impossible, we were able to confirm that all three mutants fit
ted their classification on the basis of synapsis in male meiosis (Havekes et al. 1994). Female meiosis 
was completely asynaptic in as6, partially asynaptic in asb, and desynaptic in as5. In mutant asb, we 
could not determine whether the intermediate extent of pachytene pairing in female meiosis was 
comparable to the extent of synapsis in male meiosis. In asb, 6% of the complement was synapsed in 
male meiosis on the average (Havekes et al. 1994), whereas in female meiosis this may have been more 
than 6%. 

One striking result of this study was the signifkandy higher number of chiasmate chromosome 
arms found in female meiosis compared with male meioses in mutant asb; in the other two mutants, 
similar numbers of chiasmate arms were found in the two sexes. The higher female chiasma fre
quency in asb reflected an increased number of bivalents per cell, not an increased number of 
chiasmate arms per bivalent. We wondered why the sex difference, already present to a certain degree 
in wild-type tomato, is so pronounced in this mutant specifically. A possible explanation is that 
prophase I in tomato lasts longer in female meiosis, providing chromosomes with more time for pair
ing, a situation that will be most effective in mutants with impaired chromosome pairing. Unfortu
nately, we do not have any data on the duration of female meiosis compared with male meiosis in 
tomato. Bennett et al. (1973) tested Darlington's (1940) theory that meiotic duration and chiasma 
frequency are related. Although they did not find direct proof, they interpreted their results in H. 

vulgare as support for such a relationship. Bennett and Stern (1975) showed that in Lilium, where the 
chiasma frequency is higher in EMCs than in PMCs, meiosis took longer in EMCs than in PMCs. 
They stressed that such a correlation does not necessarily indicate the existence of a causal relation 
between time in meiotic stages and chiasma frequency, but that they might both be controlled by 
some other nuclear character. 
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Another explanation for sex differences in chiasma formation may be a larger female meiotic 
nucleus, which could facilitate the pairing process (Fogwill 1958). The tomato EMC is about three 
times larger than the PMC, and pachytene chromosomes may occupy more space in female meiosis. 
However, in a mutant with disturbed pairing, a larger nucleus might hamper pairing just as well as 
facilitate it. 

Mogensen (1977) and Fogwill (1958) mentioned that difference in chromosome lengths might be 
correlated with differences in crossing-over or chiasma frequency. Mogensen's (1977) study referred 
to the length of pachytene chromosomes, the SCs, whereas Fogwill (1958) referred to metaphase I 
chromosomes. We do not have data on the length of pachytene chromosomes in female meiosis so we 
cannot judge its validity for tomato. 

In EMCs at diakinesis, euchromatic chromosome regions are clearly visible, which is not the case 
in PMCs, where bivalents seem smaller and more condensed. Recent fluorescence in situ hybridiza
tion experiments with telomere and telomere-associated repeats as probes revealed highly decon-
densed euchromatic areas at diakinesis in male tomato (Zhong et al. 1998). These findings suggest 
that in female cells at diakinesis, chromosome condensation progresses further than in male cells at a 
comparable stage. If such increased condensation results in higher chiasma frequencies, as proposed 
by Fogwill (1958), then higher within-bivalent chiasma frequencies might be expected in EMCs. We 
did not find higher numbers of chiasmate arms per bivalent in female meiosis of mutant asb however. 

In meiotic mutants, chiasma distribution is sometimes affected (Jones 1967; Jongedijk and 
Ramanna 1989). In our study, we concentrated on differences in the number of chiasmate chromo
some arms between female and male meioses. The higher number of chiasmate arms found in 
mutant asb was correlated with a higher number of bivalents per cell, whereas the overall number of 
chiasmate arms per bivalent was the same. 

In the mutants as5 and as6, there was no significant sex difference in the number of chiasmate 
arms. Mutant as6 is likely defective in homology recognition and apparendy the defect is equally 
expressed in both sexes. In female meiosis, we found that a relatively high number of the bivalents 
involved chromosome 2. Soost (1951) also reported higher chiasma frequencies for the nucleolar 
chromosome in male meiosis of meiotic mutants and wild-type tomato. The two homologues of 
chromosome 2 are associated with the nucleolus and therefore they always occupy a small nuclear 
domain. This may facilitate chromosome pairing and recombination in chromosome 2 compared 
with the other chromosomes, especially in a mutant defective in homology recognition like as6. 

Scherthan et al. (1992) also reported that, in yeast, NOR chromosomes are not representative of the 
pairing behaviour of other chromosomes. 

In mutant as5, the homologous univalents were still arranged in pairs at diakinesis, probably as a 
result of synapsis at earlier stages of meiosis. Desynaptic mutants are supposed to be disturbed in 
making crossovers or in maintaining the resulting chiasmata. In the desynaptic (dy) mutant of maize, 
Maguire (1978) showed that crossing-over between the centromere and a distal knob was normal. 
The loss of chiasmata was caused by a failure in chiasma maintenance rather than by reduced recom-
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bination levels. In the potato desynaptic mutant ds-1 however, crossing-over was severely reduced for 
two genetic loci but slighdy increased for a third (Jongedijk et al. 1991). The reduction in overall 
chiasma frequency of this mutant (Jongedijk and Ramanna 1989) was explained by reduced overall 
recombination frequencies and a differentially altered chiasma distribution along individual chro
mosomes. 

The desynaptic mutant as5 of tomato is probably disturbed in chiasma maintenance. Preliminary 
results on RNs indicate that in mutant as5, every SC has at least one RN in male meiosis. The observa
tion that chiasmate connections are sometimes very thin in EMCs at late diplotene-diakinesis also 
suggests that chiasmata are initially present but that part of them are lost at some time before the 
diakinesis stage. 

To summarise, we analysed chiasma formation in female meiosis of wild-type and mutant 
tomato. Chiasma frequencies were slighdy higher in female meiosis than in male meiosis of the wild 
type and considerably higher in female meiosis than in male meiosis of the asynaptic mutant asb. As a 
possible explanation, we propose a longer duration of prophase I, the stage in which homologous 
chromosomes pair, in EMCs than in PMCs of tomato. This would explain the slightly higher female 
chiasma frequencies in wild-type tomato, but particularly the much higher number of chiasmate 
arms in the mutant with pairing problems, asb. We furthermore propose that the completely 
asynaptic mutant as6 and the desynaptic mutant as5 show no sexual differences because the first is 
probably disturbed before pairing, in homology recognition, and the second possibly has a defect that 
acts after pairing, in chiasma maintenance. 
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4 
Chromosome pairing in wild type and synaptic mutants 
of tomato {Lycopersicon esculentum) 
I. Initiation of synapsis 

F.WJ. Havekes, J.H. de Jong and C. Heyting 

Initiation of meiotic chromosome pairing was studied in wild type and mutant tomato (Lyco

persicon esculentum). We performed a detailed electron microscopic analysis of synaptonemal com
plex (SC) formation in pollen mother cells, which were spread by a hypotonic bursting technique. 
General features of pairing initiation in wild type meiosis were successively: (1) a complex network 
of axial cores with telomeres at the periphery (bouquet); (2) loosening of the AC network as homo-
logues become involved in presynaptic alignment and synapsis; (3) up to four pairing initiation 
sites along a homologous pair; (4) predominantly distal SC initiation and extension; (5) fairly syn
chronous synapsis in bivalents of all lengths. 

The asynaptic mutant asb differed from wild type in that synapsis was almost exclusive to 
longer acrocentric bivalents, whereas short, especially metacentric, chromosomes often failed to 
synapse. In addition, SC formation was mostly confined to the long arm of (sub)telocentric chro
mosomes. These observations suggest regulation of synapsis at the bivalent level. Our data also 
suggest the existence of some minimum requirement for synapsis, which in the mutant is hard to 
fulfil in the small metacentric chromosomes. The possible relation of synaptic initiation with 
aspects of very early meiotic chromosome behaviour (telomere clustering, distant alignment 
and presynaptic alignment) and with recombination are discussed. 

47 



Chapter 4 

Introduction 

Prophase I of the first meiotic division is featured by unique nuclear processes including homology 
search, chromosome pairing and crossing over. The communication between DNA strands involved 
in homology search is believed to commence at leptotene and early zygotene, though recent studies 
claim associations between homologues at pre-meiotic interphase (Schwarzacher 1997, Ara-
gon-Alcaide et al. 1997, Mikhailova et al. 1998). 

The cytology of leptotene / early zygotene stages is difficult to interpret, if possible at all. In most 
species, nuclei at these stages appear in light microscopic preparations as highly condensed, amor
phous structures. Electron microscopic images of very early prophase I nuclei reveal the onset of the 
formation of proteinaceous axial cores (ACs), but because the long ACs are often entangled, broken 
or discontinuous, reliable interpretation of early interactions between homologues is hampered 
(Albini & Jones 1987, Holm 1986, Gillies 1985). Most studies on synaptic initiation present informa
tion from zygotene nuclei with considerable extents of synapsis. However, synapsis is not the initial 
step in chromosome pairing. 

When two homologous ACs come into close contact at early zygotene, they become connected to 
a third longitudinal structure (the central element), which forms between them. The tripartite struc
ture that is thus generated, the synaptonemal complex (SC), extends as a zipper along the ACs until 
they become completely connected (synapsed) by the end of zygotene. In several species, synapsis is 
preceded by presynaptic alignment of homologous AC regions (Stack & Anderson 1986a, Albini 8c 
Jones 1987, Anderson & Stack 1988). Presynaptic alignment and synapsis are distinct pairing mecha
nisms, because the former normally occurs between homologues only whereas the latter may occur 
between non-homologous cores as well (Loidl 1990). 

Tomato (Lycopersicon esculentum, 2n=2x=24) belongs to one of the best model species in plant 
cytogenetics and is in several respects appropriate for detailed analyses of early prophase I. Its chro
mosomes are sufficiently small so that they can be traced at pachytene, and well-differentiated pat
terns of proximal heterochromatin and diagnostic chromomeres on most chromosome arms allow 
identification of individual pachytene chromosomes in light microscopic preparations. In 
ultrastructural preparations, SCs display an excellent morphology and their lateral elements show 
obvious density differences in heterochromatic and euchromatic segments. The twelve different 
chromosomes or the twelve SCs can thus be identified in LM and EM preparation on the basis of 
length, centromere position and heterochromatin pattern (Ramanna & Prakken 1967, Sherman 8c 
Stack 1992). In addition, presynaptic alignment and early and late recombination nodules can be un
equivocally demonstrated (Stack 8c Anderson 1986a+b). Meiotic mutants of tomato, with defects in 
different phases of chromosome pairing and chiasma formation have been described by Soost (1951) 
and Moens (1969). Havekes era/. (1994) assessed their phenotypes with respect to SC-formation, and 
identified a completely asynaptic mutant (as6), two partially asynaptic (asb, asl), and a desynaptic 
mutant (as5). 
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Initiation of synapsis in wild type and synaptic mutants 

This report describes presynaptic alignment and synaptic initiation in early prophase I nuclei in 
wild type tomato and in two partially asynaptic mutants, asb and asl. In these mutants, early 
prophase I nuclei can be more easily spread and their ACs can be better traced than in wild type to
mato. Moreover, kinetochores can sometimes be stained, which allows the identification of individual 
chromosome pairs in mutant nuclei. 

One other synaptic mutant was considered for this analysis as well. The completely asynaptic as6 

(Havekes et al. 1994), in which pairing is arrested at a stage preceding presynaptic alignment, is poten
tially interesting for determining whether homologous ACs are already in a rough parallel arrange
ment before presynaptic alignment and synapsis take place. It was impossible though, to trace 
individual ACs and discern putative sites of alignment in the network of unpaired ACs in this mutant. 

Material and methods 

The asynaptic mutants asb and asl of tomato (Lycopersicon esculentum) were obtained from Dr P.B. 
Moens, Department of Biology, York University, Toronto, Canada. However, the wt plants 
heterozyogous for the asb or asl mutation had a completely regular meiosis and were used as wild 
type control plants. 

Synaptonemal complex preparations were made by spreading microsporocytes by the hypotonic 
bursting technique of Stack (1982), with slight modifications as described by Havekes et al. (1994). 
Preparations were stained with either silver nitrate at 40° C, or uranyl acetate-lead citrate at room 
temperature (Sherman etal. 1992). 

Results 

Synaptic initiation in wild type tomato 

Six nuclei, covering the whole range from 0% synapsis (transition from leptotene to zygotene) to 92% 
synapsis (late zygotene) were selected. Table 1 shows the main features of these nuclei with respect to 
presynaptic alignment, as characterised by close parallel alignment of axial cores at a distance of 
approx. 300 nm, and true synapsis (SC), as denned by the presence of a tripartite synaptonemal com
plex. We will use the term chromosome pairing if we consider both presynaptic alignment and 
synapsis. The distal part was recorded as a distal 1.5 um end of the SC and the other parts were re
corded as intercalary segments. 

Nuclei with little or no synapsis, like wtl, were hard to spread and showed a dense mass of 
chromatin. The long stretches of ACs in wtl had numerous discontinuities. Presynaptic alignment 
was observed in five chromosome arms and comprised 17.4 um together. There was one short SC seg
ment. In nucleus wt2, most ACs were close together in a similar dense mass of chromatin as shown in 
Figure 1. At the periphery of the dense mass, ACs appeared more loosened and could be traced. Most 
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Initiation of synapsis in wild type and synaptic mutants 
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Figure 1: Uranyl acetate stained nucleus at early zygotene from wild type tomato (wt2).Most unpaired axial 
cores did not spread out well and were still in the dense chromatin mass. Most distal regions were released 
from the chromatin cluster showing telomere association (t), presynaptic alignment (pa), synapsis (SC), 
curved ACs (cu) and rough parallel arrangement ACs (rpa). The nucleolus (nu) is degenerating. The bar 
equals 2 um. 

telomeric regions were found here, and several of these appeared in close two-by-two associations: 
four were associated by (sub)telomeric synapsis, five by distal presynaptic alignment and three by as
sociation only at the telomeres. Some peripheral AC regions were curved and folded, whereas other 
AC regions were more straight and ran roughly in parallel to other cores (Figure 1). In the remaining 
nuclei (wt3-6), ACs were well- spread so that all chromosomes in the complement could be traced. 
In wt3 with 6% alignment and 10% synapsis, 11 of the 12 chromosome pairs had started SC forma
tion. The ACs showed several discontinuities. 

Figure 2 shows an electron photomicrograph of nucleus wt4, with 2% alignment and 53% 
synapsis. Extensive synapsis occurred in most distal chromosome segments. In addition, short inter
calary SC segments were found in several bivalents. One such segment, flanked at both sides by dis
similar ACs, was considered non-homologous. Only two short segments of presynaptic alignment 
were observed; a distal and an interstitial one. In the longest bivalent (#1), unpaired homologous ACs 
were running distantly in parallel. In another chromosome, which presumably was the nucleolar 
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Figure 2: Silver stained zygotene nucleus (wt 4) from wild type tomato with 53% synapsis. The SCs of chro
mosome 1 and chromosome 2 could be discerned. Examples of presynaptic alignments are given (pa). The 
double arrow head indicates intrachromosomal foldback association. The single arrowhead shows a 
non-homologous intercalary SC segment. The bar equals 5 um. 

chromosome (#2), unpaired arms were involved in non-homologous foldback association. In the 
nuclei wt5 and wt6 with 67 and 92% synapsis respectively, only one or two chromosome ends and 
several intercalary regions were still unsynapsed. 

Schematic representations of presynaptic alignment and synapsis in the bivalents of wt3-6 are 
shown in Figure 3A. As kinetochores were not visible, we could not distinguish long and short chro
mosome arms. Therefore we could only identify chromosome #1, which is by far the longest in the 
complement, and chromosome #2 which can be recognised because the short arm with the nucleolar 
organiser region remains unsynapsed at late zygotene. Paired segments were common at or near the 
telomeres and most of them involved synapsis. Aligned segments were obvious in nucleus wt3, but 
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Initiation of synapsis in wild type and synaptic mutants 
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Figure 3: Schematic representations of synapsis and alignment in four wild type nuclei and in nucleus asb-8 
of the synaptic mutant asb of tomato. 3A. The chromosome complements in the zygotene nuclei wt3,wt4, 
wt5 and wt6. Chromosomes were arranged in sequence of decreasing length. Kinetochores were not visi
ble. The solid blocks represent synaptic segments; the gray blocks represent presynaptic alignment, 
whereas the white blocks represent unpaired regions. 3B. Ideogram of the pachytene complement of to
mato according to Sherman and Stack (1992).Chromosomes are arranged according to number (chromo
some 1 left to chromosome 12 right) with their kinetochores (bars) in one line. Blocks with the horizontally 
striped textures represent euchromatin and the white blocks are heterochromatin regions. 3C. Schematic 
representation of nucleus asb-8.Chromosomes were ordered into five different classes according to length 
and kinetochore position.The black, gray and white blocks are as in fig.3A. 
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' • c« 

4^ 
Figure 4: Uranyl acetate stained early prophase nucleus (~ early zygotene) from mutant asl (as1-1) with 
mostly unpaired ACs. Examples of presynaptic alignment (pa), AC curving (cu) and rough parallel arrange
ment (rpa) of ACs are indicated.Two short distal SC segments are indicated by arrowheads. Most telomeres 
occur in a small regions at the periphery.The double arrowheads indicate intra- chromosomal foldback as
sociations. Three putative homologous AC pairs are highlighted.The a-a' and c-c' AC pairs were considered 
as putative homologues on the basis of most similar length and similarities in the bending patterns of the 
two ACs. The bar equals 5 urn. 

disappeared almost entirely in wt4. The small number of SC segments in nucleus wt6 is likely due to 
zipping up of unsynapsed segments (Table 1). 

In the wt3-6 nuclei we compared bivalent core lengths (ACs or lateral elements) with the percent
age synapsis within the bivalent. In wt3 and wt4, we also analysed the relation of bivalent length with 
the percentage of presynaptic alignment. Computation of the Pearson product- moment correlation 
coefficient revealed that in none of the nuclei these correlations were significant at the 5% level (Table 
2), which indicates that chromosome length does not contribute significantly to the variation in pair
ing extent. This means that within these nuclei bivalents of all lengths paired fairly synchronously. 
However, when all bivalents of the four wt nuclei were pooled, a slight negative correlation between 
bivalent length and percentage synapsis was found (Table 2). 
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Initiation of synapsis in wild type and synaptic mutants 

Table 2:Correlation between bivalent length and percentage synapsis, presynaptic alignment and pairing 
in wild type and mutant tomato. NA = no data available. *, **, significant at a=0.05 or 0.01, respectively. 

nucleus 

wt3 

wt4 

wt5 

wt6 

a l lwt 

wt3+4 

as1-1 

as 1-2 

as1-3 

as l -4 

as 1-5 

al ias; 

asb-1 

asb-2 

asb-3 

asb-4 

asb-5 

asb-6 

asb-7 

asb-8 

all asb 

number of 
bivalants 

12 

12 

12 

12 

48 

24 

11 

10 

7 

10 

12 

50 

8 

7 

8 

4 

5 

6 

9 

12 

59 

correlation between bivalent length and: 

%SC 

-0.45 

-0.23 

-0.13 

-0.16 

-0 .35* 

NA 

-0.14 

+0.45 

-0.09 

-0.06 

-0.59 

-0.24 

+0.67 

+0.77* 

+0.77* 

+0.84 

+0.60 

+0.71 

+0.74* 

+0.85** 

+0.55** 

% alignment 

+0.43 

+0.21 

NA 

NA 

NA 

+0.30 

-0.05 

-0.22 

-0.08 

+0.51 

-0.04 

+0.04 

+0.51 

-0.02 

+0.01 

+0.95 

-0.36 

-0.48 

-0.54 

-0.31 

-0.02 

% pairing 

-0.30 

-0.21 

0.13 

-0.16 

-0 .33* 

NA 

-0.11 

+0.16 

-0.11 

+0.01 

-0 .62* 

-0.25 

+0.83* 

+0.44 

+0.48 

+0.95 

+0.39 

+0.75 

+0.62 

+0.58* 

+0.53* 

Synaptic initiation in asl 

Nuclei of the asynaptic mutant asl were more easily spread than wild type nuclei with comparable ex
tents of synapsis, and showed few discontinuities of ACs. Five asl nuclei, with synapsis ranging from 4 
to 33%, were selected. The data on pairing are summarised in Table 1. 

Figure 4 shows the photomicrograph of nucleus asl-1, with 5% alignment and 4% synapsis. All 
ACs were together in a complex mass, though less tight and less obscured by chromatin than in wild 
type nuclei. In this figure we highlighted the positions of three putative homologous AC pairs. The 
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*N** • 

ki s. 

ki 

Figure 5. Part of the nucleus asb-8. Characteristic features of this mutant are the clear kinetochores (indi
cated by ki in the figure) and the transition of presynaptic alignment into true synapsis (arrow heads).The 
bar equals 5 |jm. 

bending patterns of these homologous AC pairs was roughly similar. The few segments of 
presynaptic alignment and SCs were found at the periphery of the nucleus. 

In the five asl nuclei we detected 50 homologous AC pairs, which were either aligned, synapsed, or 
still unpaired. Completely unpaired ACs were considered homologous when they had similar lengths 
and centromere positions (if visible), and these often showed the rough parallel orientation as 
indicated in Figure 4. Most of the distal chromosome segments were present in a small area in the 
periphery of the nucleus (bouquet, see upper left corner of Figure 4). We did not find a clear relation 
between chromosome length and percentage pairing (Table 2). Only in nucleus asl-5 we found a 
significant negative correlation between bivalent length and percentage of pairing, which means that 
in this nucleus pairing had progressed further in the shorter chromosomes. 
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Initiation of synapsis in wild type and synaptic mutants 

Table 3. Synapsis and presynaptic alignment in the bivalent groups of early prophase I cells ofosb.The ob
served values were tested against: 1) Expected values, based on total chromosome lengths; 2) Expected val
ues, based on lengths of euchromatin; 3) Expected values, based on lengths euchromatin segments in 
longest chromosome arm. 

class 

I 

II 

III 

IV 

V 

total 

2 

X 

Pdfa< 

|jm synapsis 

Obs. 

67 

17 

38 

23 

5 

150 

Exp' 

19.6 

13.9 

28.7 

57.4 

30.3 

149.9 

160.1 

<.001 

Exp2 

22.1 

16.8 

29.1 

55.3 

26.9 

150.2 

130.6 

-c.001 

Exp3 

23.6 

22.6 

30.7 

54.4 

18.7 

150 

111.1 

<.001 

pm alignment 

Obs. 

18 

22 

26 

64 

19 

149 

Exp' 

19.5 

13.8 

28.5 

57.1 

30.1 

150 

10.1 

<.038 

Exp2 

21.9 

16.7 

28.9 

54.8 

26.7 

149 

6.4 

<.169 

Exp3 

23.4 

22.5 

30.5 

54.1 

18.5 

149 

3.8 

<.441 

|jm pairing 

Obs. 

85 

39 

64 

87 

24 

299 

Exp1 

39.1 

27.7 

57.2 

114.5 

60.4 

299 

87.8 

<.001 

Exp2 

44.0 

33.5 

58.0 

110.0 

53.5 

299 

60.8 

<.001 

Exp3 

47.0 

45.1 

61.2 

108.5 

37.2 

299 

40.6 

<.001 

Synaptic initiation in asb 

We selected eight cells of the asynaptic mutant asb, with percentages synapsis ranging from about 7% 
in nucleus asb-1 to 24% in nucleus asb-8 (Table 1). The zygotene nuclei of this mutant were denser 
and more difficult to spread than those of asl and apart from nucleus asb-8 no complements could 
be fully analysed. Figure 5 shows the electron photomicrograph of part of nucleus asb-8, and Figure 
3C presents the schematic drawing of the full complement of this nucleus. In all bivalents the 
pericentromeric region was not paired. The bivalents in nucleus asb-8 were shorter than those in wild 
type zygotene nuclei. Most bivalents contained paired segments with adjacent aligned and synapsed 
stretches (Figure 3C+5). Such transitions between presynaptic alignment and synapsis occurred far 
more frequently in the nuclei of asb than in those of asl and wild type (cf. nucleus wt4, Figure 2). The 
aligned and synapsed parts of such segments were registered separately. The data on number and ex
tent of paired segments in the eight cells of asb are summarised in Table 1. 

The correlations between chromosome length and percentages synapsis, presynaptic alignment 
and pairing in the eight nuclei of asb are shown in Table 2. In mutant asb, chromosome length and 
percentage synapsis were positively correlated (significant for four of the eight analysed nuclei), 
whereas this was not found in wild type and mutant asl. Thus in mutant asb longer chromosomes 
synapse more extensively than shorter chromosomes. We found no correlation between chromosome 
length and the percentage of presynaptic alignment. 
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Figure 6: Schematic representations of the chromosome 1 SCs of the five asl nuclei and seven asb nuclei. 
The solid blocks represent synaptic segments; the gray blocks represent presynaptic alignment, whereas 
the white blocks represent unpaired regions. Bars are the kinetochores. 

Kinetochores were generally clearly detectable in asb (Figure 5); in the asb—1, asb—3, asb—5 and 
asb-8 nuclei, all twelve kinetochores could be discerned. Kinetochores allowed us to distinguish chro
mosome arms, which is helpful for the identification of individual bivalents. We measured arm 
lengths in these four nuclei and classified the bivalents (nomenclature according to Levan et al. 

(1966): i) Class I, the largest submetacentric SC 1; class II, the nucleolar chromosome SC 2; class III, 
two large submetacentric SCs 3 and 4; class IV the five smaller subtelocentric SCs 6-10 and class V the 
three small metacentric SCs 5,11 and 12. The SCs were identified on the basis of total SC length and 
centromere position (Figure 3B). In table 3 we analyse more in detail the relation between the length 
of chromosomes or chromosome arms and the extent of synapsis or presynaptic alignment. We 
tested the following possible relations: 1) the extent of pairing is proportional to total chromosome 
length, 2) the extent of pairing is proportional to chromosome length in euchromatin, and 3) the ex
tent of pairing is proportional to the length of the longest chromosome arm in euchromatin. The rel
ative lengths of euchromatin and total SC length per chromosome class were estimated according to 
Sherman and Stack (1995; see their Tables 5 and 7). The observed extents in synapsis and in pairing 
differed significantly from all theoretical values (Table 3). This was mainly due to an excess of synapsis 
in class I bivalents and a lack of synapsis in class IV and V bivalents. However, the extents of 
presynaptic alignment fitted most expected values; Table 3 suggests that in mutant asb presynaptic 
alignment is proportional to total euchromatin length, or to the length of euchromatin in the long 
chromosome arms whereas synapsis is not. 
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Table 4. Numbers of bivalents in four early and four late prophase nuclei of mutant asb. The observed values 
were tested against expected numbers by the potest. The expected numbers were based on the following 
assumptions: Exp':Chromosomes in all classes have an equal chance of bivalent association; Exp2: Probabil
ity of bivalent association is proportional to total chromosome length; Exp3: Probability of bivalent associa
tion is proportional to length in euchromatin; Exp": Probability of bivalent association is proportional to 
long arm length in euchromatin; Exp5: Number of chromosome pairs with synaptic associations in early nu
clei are comparable to the number of bivalents in late nuclei; Exp6: Number of chromosome pairs with pair
ing (alignment or SC) associations in early nuclei are comparable to the number of bivalents in late nuclei. 

four early nuclei: 

paired bivalents 

(alignment or SC) 

synapsed bivalents 

(only SC) 

four late nuclei: 

synapsed bivalents 

Observed numbers o f bivalents 

total 

30 

20 

21 

1 

4 

4 

3 

II 

3 

3 

4 

III 

5 

5 

5 

IV 

12 

7 

8 

V 

6 

1 

1 

Rva lues for several expectat ions 

Exp1 

1.32 

8.58 

7.93 

Exp2 

0.14 

4.15 

4.91 

Exp3 

0.35 

2.85 

3.41 

Exp" 

2.33 

1.33 

1.37 

Exp5 

0.64 

Exp6 

4.83 

None of the %l values were significant 

Our next question was: Are the different percentages of synapsis in chromosomes of different 
classes accompanied by non-random bivalent formation in mutant asb7. We analysed the number of 
bivalents per class in the same four (early prophase I) nuclei as mentioned above, and in another four 
nuclei, which were probably in a later stage of meiotic prophase because they lacked presynaptic 
alignment and had strongly reduced numbers of recombination nodules. (For further analysis of re
combination nodules, see Chapter 5 of this thesis). 

In Table 4, we compared the observed distribution of bivalents over the five chromosome classes 
with the distribution expected on the basis of various assumptions (indicated by Exp.' to Exp.6). In 
the first model (Exp1) we assume that each chromosome pair has an equal probability of initiating 
pairing, so the five classes are expected to contain 1/12,1/12,2/12,5/12, and 3/12 of the bivalents re
spectively. In the remaining three models, we assume that pairing initiation is proportional to total 
chromosome length, to length in euchromatin or to length in euchromatin of the longest arm. In ad
dition, we compared the bivalent distribution in the late nuclei with both the paired (Exp6) and the 
synapsed (Exp5) bivalent distributions of the early nuclei. Table 4 shows that in the early nuclei, half of 
the bivalents in class IV and the majority of the bivalents in class V are connected by alignment only, 
and thereby account for the difference between the paired bivalent distribution and synapsed bivalent 
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distribution. The paired bivalent distribution fits rather well with all proposed models, whereas the 
synapsed bivalent distribution does less so, because bivalents of class IV and class V chromosomes are 
underrepresented. The bivalent distribution of the late nuclei fits best with the synapsed bivalent dis
tribution in the early nuclei. However, non of these differences is significant. 

Pairing behaviour of chromosome 1 

Chromosome 1 was the only chromosome that we could always recognise in the complements, even 
in wild type and asl nuclei in which other chromosomes could not be identified because the 
kinetochores could not be stained. In the four fully analysable early asb nuclei chromosome 1 (class I) 
was overrepresented among the bivalents. In the remaining four asb nuclei and in four out of the five 
05 J nuclei, the chromosomes 1 formed a bivalent as well. Figure 6 shows a compilation of the thirteen 
chromosome 1 SCs of asl and asb. We could establish centromere positions in one asl bivalent and in 
six of the eight asb bivalents, and in these bivalents synapsis was confined to the long arms. The 
(short) unsynapsed arms were far apart in seven bivalents, had distal presynaptic alignment in two bi
valents, and showed distant parallel arrangement in two bivalents (similar to the wt-^ chromosome 1 
in Figure 2). The eight bivalents 1 of asb were on average shorter than those of asl and wild type to
mato (40.4±2.9 urn, 47.0±4.7 um and 46.9±2.6 um in asb, asl and wild type, respectively), which was 
significant at P < 0.05. 

Discussion 

Chromosome pairing in tomato essentially follows the same pattern as described for several other 
plant species like maize (Gillies 1975), Lilium (Holm 1977), Tradescantia (Hasenkampf 1984), rye 
(Gillies 1985), wheat (Holm 1986) and Allium (Albini & Jones 1987). In short, synapsis predomi-
nandy initiates in distal regions (with telomeres clustered in a bouquet), extends into proximal re
gions, and overtakes the intercalary initiations. 

Tomato was more appropriate for the analysis of entire zygotene nuclei than the plant species 
mentioned above. First, tomato chromosomes are far shorter than those of wheat, rye, Lilium, Trades

cantia and Allium, and therefore tomato complements at early prophase are more simply to unravel. 
Second, the unique partially asynaptic mutants of tomato allow pairing studies in nuclei with only lit
tle synapsis. In these mutants, ACs remained intact during spreading so that entire chromosome 
complements could be traced, whereas visible kinetochores allowed identification of individual biva
lents in part of the nuclei. 

Chromosome pairing in tomato 

In early prophase I of tomato, ACs are in a tight chromatin mass (knot). In spreads, the ACs are 
curved and bended at this stage, and two or more axial cores can be observed to run roughly in paral
lel at a considerable distance, generally more than 300 nm. In mutant asl, we found that homologues 
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may have similar bending patterns. Rough parallel arrangements was not only apparent between pu
tative homologous AC regions but occurred between non-homologous regions as well. Extensive 
non-homologous parallel arrangement of ACs has been found in the completely asynaptic mutant 
as6 of tomato (Havekes et al. 1994). Possibly, this type of distant alignment reflects weak reversible 
contacts between the peripheral chromatin loops. Such contacts could precede the typical 
presynaptic alignment. In contrast to rough parallel arrangement, presynaptic alignment only in
volved homologous ACs in our meterial. This is in agreement with observations in other species 
(review: Loidl 1990). Presynaptic alignment therefore seems to be the first cytological sign of rela
tively stable homologous contacts. 

Presynaptic alignment 

It is possible that presynaptic alignment is common in early prophase I nuclei of wild type tomato, 
but the tight associations of ACs in the chromatin knot do not allow reliable observations. In wild 
type tomato we observed that shortly after this synizetic association, when the chromosomes release 
from the knot and individual AC pairs become easily traceable, synapsis had progressed considerably 
and had presumably covered most of the original stretches of presynaptic alignment. It was therefore 
difficult to determine whether there was a certain pattern in the initiation and progression of 
presynaptic alignment in the wild type. In contrast, the partially asynaptic mutants in our study dis
played large-scale presynaptic alignment. The data from these mutants (Table 2 + 3) suggest that 
presynaptic alignment is an overall nuclear process in which all euchromatic chromosome regions 
participate equally. The limited data on presynaptic alignment in wild type tomato are in agreement 
with this. 

Synapsis 

In wild type tomato and in mutant asl, bivalents of different lengths synapsed rather synchronously 
(Table 2), although shorter chromosomes appeared to be slightly ahead. In contrast, in mutant asb we 
found a clear positive correlation between chromosome length and the percentage of synapsis. The 
long chromosomes, especially #1 and #2, displayed a higher percentage of synapsis than the shorter 
ones, in particular the short metacentric chromosomes #5, #11 and #12, which often failed to initiate 
synapsis at all. Thus, unlike presynaptic alignment, synapsis is influenced somehow by the size of in
dividual chromosomes or chromosome arms in asb. We think that mechanical factors may have con
tributed to this effect in asb. For instance, it is possible that (extension of) synapsis is hampered by 
aberrant chromosome condensation in this mutant, and that aberrant condensation has more effect 
on synapsis in short chromosome arms than in long chromosomes or chromosome arms. The rela
tively short chromosome complement lengths and the intense kinetochore staining in mutant asb 

suggest that chromosome condensation may not be normal in the mutant. 

Another aspect of synapsis that was not random in mutants asb and asl (and possibly also in the 
wild type) is the distribution of synapsis over long and short arms. In none of the chromosomes 1 that 
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we have analysed we found initiation of synapsis in the short arms (Figure 6), although presynaptic 
alignment has been found in the short arm of one chromosome 1. Apparently the length of a chro
mosome arm influences synapsis or synaptic initiation. 

A related observation has been made by Sherman and Stack (1995), who remarked that in wild 
type tomato single late RNs never occur in the short arms of chromosome 1. If sites of crossing over 
are normally the sites of synaptic initiation, then the preferential positioning of the first RN on the 
long chromosome 1 arm could reflect the same mechanism as the preferential synaptic initiation in 
the long arm. One possibility is that this mechanism is torsion or tension. Darlington (1940) pro
posed that torsion is an important factor for establishment of a crossover. Kleckner (1996) suggested 
that tension along the chromosome influences the resolution of recombination intermediates in 
crossovers. She postulated that tension is built up at the chromosome - axial core border by chromo
some condensation. It is possible that short chromosome (arms) have difficulties in building up suffi
cient torsion/tension for generating a crossover. If chromosome condensation is abnormal (as we 
suspect for mutant asb), then it may not be possible at all for the mutant to form crossovers in short 
chromosome arms. 
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5 
Chromosome pairing in wild type and synaptic mutants 
of tomato {Lycopersicon esculentum) 
II. Recombination nodules in mutant tomato 

Francis WJ. Havekes, J. Hans de Jong, Christa Heyting 

This report describes the manifestation of early and late recombination nodules (RNs) in meiotic 
prophase I, as observed in electron micrographs of hypotonically burst pollen mother cells of the 
partially asynaptic mutant asb and the desynaptic mutant as5 of tomato. In asb, early RNs were 
numerous in segments of presynaptic alignment and SC during early prophase I. Their number 
dropped sharply in stages comparable to early zygotene and early pachytene, and only few RNs 
remained on the SCs until mid prophase I. In chromosome regions with presynapticaUy aligned 
segments most if not all early RNs disappeared. At a stage comparable to pachytene in wild type 
tomato, we observed that bivalents with two or more SC segments do not have late RNs in all seg
ments. The genetic analyses of asb (Moens 1969), which demonstrated increased crossover frequen
cies in chromosome 2, is discussed. 

The desynaptic mutant as5 with normal synapsis and reduced chiasma formation had mor
phologically normal SCs, which each carried at least one late RN. The reduced chiasma frequen
cies in the mutant therefore probably result from a defect in the formation of maintenance of 
chiasmata rather than a defect in homology recognition or synapsis. 
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Introduction 

A prerequisite for the successful orientation and segregation of parental chromosomes at metaphase I 
/ anaphase I of meiosis is the presence of at least one chiasma, which connects the two homologues in 
a bivalent. This assures that bivalents properly congress to and orient in the equatorial plane of the 
metaphase I spindle, with the still undivided centromeres of the two homologues facing opposite 
poles. The distribution of chiasmata along the chromosomes is not random. First, all bivalents, in
cluding the smallest ones, always have at least one chiasma; second, chiasmata on the same bivalent 
are not randomly positioned, because the presence of a chiasma decreases the chance of another 
chiasma nearby on the same bivalent, a phenomenon called chiasma interference (reviewed by Jones 
1984). Third, in many organisms, chiasmata are preferentially formed in certain regions within biva
lents, most often in distal euchromatic regions (Jones 1967). 

Chiasmata represent reciprocal recombination events (crossing-over) between homologous 
chromosomes. The non-random distribution of chiasmata reflects a non-random distribution of re
ciprocal recombination events along the bivalent. Recombination takes place during the lengthy 
prophase I of meiosis and is closely related to homologous chromosome synapsis: the formation of 
the synaptonemal complex (SC) between homologues (von Wettstein etal. 1984). Specific structures 
called recombination nodules (RNs), have been found along SCs of several species (reviewed in Car
penter 1994). The numbers and distribution of RNs along the bivalents during mid-late pachytene 
correspond well to the frequencies and distributions of crossing-over and chiasmata (Carpenter 
1975, Zickler 1977, Bernelot-Moens and Moens 1986, Albini and Jones 1988, Stack et al. 1989, 
Sherman and Stack 1995). Therefore, these mid- or late pachytene RNs are supposed to mark the sites 
of crossing-over. Like crossovers and chiasmata, late RNs display in most cases positive interference 
with respect to their position along the bivalents. 

In most species, including tomato, RNs are also present during earlier stages of meiosis (Stack and 
Anderson 1986b, Albini and Jones 1987, Anderson and Stack 1988). These so-called early RNs occur 
along axial cores (ACs) and between lateral elements (LEs) of SCs in leptotene - zygotene - early 
pachytene. They are more numerous than late RNs, and in contrast to late RNs, they are randomly 
distributed along SCs. Their shape can be (slightly) different from late RNs. In tomato, they are 
smaller and more spherical than late RNs. It has been proposed that early RNs mark the sites of all 
recombinational interactions, the gene conversions and crossovers (Carpenter 1987). During 
pachytene, early RNs are gradually lost, whereas late RNs persist until the end of pachytene. This loss 
of early RNs during early pachytene renewed the attention for existing models for crossover interfer
ence (Mather 1937, Stam 1979) and lead to the formulation of new models (King and Mortimer 1990, 
Foss et al. 1993). King and Mortimer (1990) proposed that the assembly of a hypothetical polymer 
along the central element of the SC was nucleated at the sites of crossing over. Extension of the poly
mer from this site would prevent the establishment of additional crossovers nearby, and would thus 
cause positive chiasma interference. The fact that the zipl mutation in yeast abolishes both interfer-
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ence and synapsis also indicates that SCs have a role in interference (Sym and Roeder 1994). Further
more, at least two organisms, namely Aspergillus nidulans (a filamentous fungus) and 
Schizosaccharomyces pombe (fission yeast) lack both interference and SCs (Egel-Mitani et al. 1982, 
Kohli and Bahler 1994, Munz et al. 1994). 

Moens (1969) reported a strong reduction of genetic interference in the meiotic mutants asl and 
asb of tomato; these mutants have reduced levels of synapsis (Havekes et al. 1994, chapter 2). In this 
paper we describe early and late RNs in one of these partially asynaptic mutants, asb, and consider the 
relation between synapsis and loss of RNs. In addition, we analyse late RNs in the desynaptic mutant 
as5, which has wild type levels of synapsis, but forms reduced numbers of chiasmata (Havekes et al. 

1994). 

Materials and Methods 

Plant material 
The partially asynaptic mutant asb and the desynaptic mutant as5 were obtained from Dr P.B. Moens, 
Department of Biology, York University, Toronto, Canada. They were described by Soost (1951), 
Moens (1969), Havekes et al. (1994) and chapter 4 of this thesis. The sib plants in backcross families 
had a completely regular meiosis and were used as wild type control plants. 

Methods 

Synaptonemal complexes were spread according to Stack (1982), with slight modifications as de

scribed by Havekes etal. (1994). Late pachytene cells were stained either with 33% silver nitrate at 40° 

C or with uranyl acetate-lead citrate (UP); both methods stain late RNs in tomato (Sherman et al. 

1992). 

Results 

Mutant asb 
In asb, the wild type criteria for sub-staging prophase I (extents of synapsis and kinetochore staining) 
did not apply, because synapsis never reaches completion and kinetochores can be prominent in nu
clei with otherwise early prophase characteristics such as presynaptic alignment and the occurrence 
of many early nodules. We use the terms early and late nuclei to refer to stages comparable to early and 
late pachytene nuclei in wild type tomato. Discrimination between these stages is based on the pres
ence of presynaptic alignment (only in early nuclei) and by the number of RNs, which is far higher in 
early nuclei than in late nuclei. 
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Figure 1: Uranyl acetate stained mid-prophase nucleus asb-8.The large arrowheads indicate kinetochores. 
The double arrowhead shows the position of four fused (non-homologous) kinetochores. Different mani
festations of early recombination nodules are shown by numbered arrows: 1. Single spherical RNs at 
unsynapsed ACs; 2. Aggregates of several RNs at ACs; 3. Pairs of RNs between converging ACs in a 
presynaptic aligned regions; 4. Merging RNs between ACs in presynaptic aligned segment. 5. (Early?) RN on 
SC segments; 6. (late?) RN on SC segment.The bar equals 5 urn. 
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Table 1. Correlation between the numbers of early RNs per urn SC, per urn presynaptic alignment and per 
urn single AC, and the length of chromosome 1, the percentage of SC and the percentage alignment in 
eight early prophase I nuclei of mutant asb. Bold figures are significant at the 0.05 level (critical value is 0.70). 

Length chr. 1 

%SC 

%pres. align. 

%SC 

-0.86 

% presynaptic 

alignment 

+0.60 

-0.47 

The number of early RNs per urn SC 

SC 

+0.66 

-0.77 

+0.49 

presynaptic 

alignment 

-0.41 

-0.07 

+0.49 

unpaired 

ACs 

+0.44 

-0.70 

+0.63 

Early RNs in mutant asb 

Early RNs in wild type tomato are small spherical bodies and occur in large numbers along the axial 
cores and lateral elements of the synaptonemal complex (An extensive description of their morphol
ogy is given by Stack and Anderson 1986a, 1986b and Sherman et al. 1992).The same type ofRNswas 
detected in mutant asb. Figure 1 shows a detail of one of the early cells of asb. Details of the different 
RN types are also shown in Figure 4. Nodules were located between presynaptically aligned ACs (Fig
ures 1 and 4a), in the central region of Scs and along single unpaired ACs. Nodules associated with 
ACs were spherical and nodules on SCs were spherical to ellipsoid. Figure 1 also shows examples of 
twin nodules located between converging ACs, and aggregates of more than two nodules associated 
with ACs. Nodule-pairs were rather common and occurred three, two, five, and five times, respec
tively, in the four asb nuclei that we studied in detail. Merging nodules with a shape intermediate to a 
pair and a single one were also observed. 

We determined the numbers of early RNs in eight early prophase I nuclei of asb, with synapsis 
ranging from 7 to 24 percent. We found 1.36±0.38 RNs per um SC, 1.42±0.27 RNs per um 
presynaptic aligned ACs, and 0.16±0.12 RNs per um of single AC. Within the eight nuclei, we com
pared the number of early RNs per um SC, per urn presynaptic alignment and per |im unpaired AC, 
with the length of chromosome 1 (the chromosome that could be identified in all nuclei), the per
centage of synapsis and presynaptic alignment. The data are given in Table 1 and show that the length 
of chromosome 1 is negatively correlated with the percentage of synapsis. We found a significant neg
ative correlation between the percentage of the complement involved in synapsis (SCs) and the num
ber of RNs per um SC and per um unpaired AC. The numbers of RNs in presynaptic alignment were 
not negatively correlated with the percentage of synapsis. 

In four of the nuclei with prominent kinetochores we were able to identify bivalents, and thus to 
analyse the numbers of nodules per bivalent class as denned in Chapter 4 (Table 2). We did not find a 
clear chromosome-specific pattern in RN frequency in this small sample of bivalents. 
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Table 2. Number of nodules per urn synapsis, presynaptic alignment and axial element in the different biva
lent groups in four early prophase I cells of mutant asb. 

Bivalent group 

1 

II 

III 

IV 

V 

Numbers of 

bivalents 

4 

3 

5 

12 

6 

Numbers of RNs (early + late) per urn SC 

SC 

1.57±0.39 

1.75±0.71 

1.56±0.81 

1.30±0.27 

1.06±0.23 

Presynaptic 

alignment 

1.93±0.50 

1.41 ±0.14 

1.36±0.78 

1.84±0.87 

1.28±0.54 

unpaired AC 

0.16±0.19 

0.06±0.06 

0.17+0.10 

0.22±0.16 

0.19±0.21 

Late RNs in mutant asb 

Late RNs were analysed in sixteen late nuclei. Identification was based on the ellipsoid morphology as 
was described for wild type tomato (Stack and Anderson 1968a, 1968b, Sherman et al. 1992). Exam
ples of late nuclei of asb are shown in the Figures 2,4b and 4c. Fig. 3 shows diagrams of synapsis with 
late RNs from four asb nuclei in which the kinetochores were visible and bivalents could be classified 
(see Chapter 4). Twenty-eight RNs were stained intensely in the late nuclei and were interpreted as 
late RNs, whereas only eight nodules, which were relatively small and/or more faintly stained, were 
considered as early RNs. 

In tomato, late RNs occur almost exclusively in euchromatic regions (Sherman and Stack 1995). 
We therefore compared the number of late RNs per um SC in euchromatin (Table 3), right column) 
in the two mutants and in wild type. Mutant as5 and wild type tomato had about the same number of 
late RNs per um SC in euchromatin, but in mutant asb the number of late RNs per um SC in 
euchromatin was two-fold higher than in wild type. 

The four late nuclei of asb represented in Figure 3, illustrate the following aspects of SC formation 
and late RNs in asb: 1) most bivalents have only one SC segment, which often extends from a chromo
some end; 2) all bivalents with one SC segment have at least one RN in this segment; 3) bivalents with 
more than one SC segment have an RN in at least one of the segments; 4) almost all late RNs are lo
cated in the middle of an SC segment; they are rarely seen at the pairing fork and never at the 
telomeres; 5) long SC segments have more RNs per um SC than short SC segments. 

These aspects of SC formation and distribution of late RNs also applied to the bivalents that we 
studied in twelve other late prophase I cells of asb. These cells were analysed in addition to the four 

Figure 2. An example of a UP stained late nucleus (comparable to late pachytene in wild type tomato) of the 
partially asynaptic mutant asb. Arrow heads indicate the positions of the kinetochores; small arrows show 
examples of late RNs. A large arrow indicate a small RN.The NOR chromosome 2 with three late RNs is shown 
in the figure.The bar equals 5 um. 
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Table 3. Comparison of numbers of bivalents and numbers of late RNs of nuclei at (comparable to) 

pachytene of the mutants asb and as5 and in wild type tomato. 

mutant 

asb 

as5 

wild type 

number of 

cells 

16 

10 

6 

number of 

bivalent 

68 

116 

59 

Mm SC 

625 

2532 

1367 

#RNs 

86 

152 

75 

# RNs/SC 

1.26 

1.31 

1.27 

number of 

RNs/um SC 

0.165±0.101 

0.061 ±0.010 

0.055±0.005 

number of 

RNs/ umSC 

euchrom.3 

0.165±0.101 

0.092±0.03 

0.083±0.002 

a) Number of RNs per urn SC in euchromatin. We assume that 2/3 of the total SC-length in wt and as5 in 
euchromatic regions; in asb, SC formation is virtually restricted to euchromatin. 

cells represented in Figure 3. Out of 68 bivalents studied, 58 had only one SC segment, seven had two 
SC segments and three had three SC segments. All 58 bivalents with a single SC segment had one or 
more RNs in this segment. In six of these bivalents, only small/faint RNs were found. These small and 
faint RNs were unique for asb and were not found in the wild type. Of the seven bivalents with two SC 
segments, three had RNs in both segments, two had RNs in one segment and two other bivalents had 
only one small/faint RN in one segment. The three bivalents with three SC segments all had RNs on 
two of the segments and a small RN in the third segment. The thirteen SC segments without an RN 
(or in some cases with a small RN) were all short segments, namely between 0.93 and 5.92 urn long, 
and with an average of 2.90±1.43 urn, whereas the overall average SC segment length in mutant asb 

was 7.35±4.87 urn. 

Thus, the SC segment length was positively correlated with the number of late RNs (r=0.69, 
P<0.01). 

Late RNs in mutant as5 

In mutant as5, the number of late RNs per um SC, or per urn SC in euchromatin did not differ signifi
cantly from from the corresponding numbers of RNs in wild type (Table 3). All 116 analysed SCs in 
mutant as5 carried at least one RN. We did not observe any morphological difference between RNs in 
as5 and wild type tomato. 

Figure 3. Diagrammatic representation of axial cores, SC segments and RNs in four late asb nuclei (compara
ble to late pachytene in wild type tomato). Early and late RNs are represented by the small and large black 
spots on the central element, respectively. Kinetochores are the large gray spherical structures. 
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Figure 4: Details of recombination nodules in the partially asynaptic mutant asb, the desynaptic mutant as5 
and wild type tomato. A. Presynaptic aligned segment in asb. Early RNs are formed between the two axial 
cores. B. SC of a late asb nucleus with a large bar-like RN (arrow head) and a small RN (arrow). C. Double 
synapsis (polycomplex) of a late nucleus of asb.D.SC of a late pachytene as5 nucleus with a late RN at a twist 
of the lateral elements. E. Late RN in a late pachytene SC of the wild type tomato.The dark particles outside 
the SCs are likely staining artefacts.The bars equal 2 um. 

Discussion 

Distribution and morphology of RNs in the partially asynaptic mutant asb 

Mutant asb was capable of assembling both early and late RNs. Early RNs had a similar frequency and 
distribution along SC segments, and aligned and unpaired ACs as in wild type tomato. With respect 
to the late RNs, however, there were some differences: 1) there were twice as many late RNs per urn SC 
(in euchromatic region) in asb than in wild type, and 2) part of the late RNs were abnormally small or 
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faintly stained in asb. The average value of 1.27 RNs/SC for wild type in our study was significantly 
lower than the 1.79 RNs/SC as observed by Sherman and Stack 1992). This discrepancy may be at
tributable to differences in wild type genotypes and staining conditions. 

The larger number of late RNs per urn SC in asb is of interest, because Moens (1969) found higher 
crossover frequencies between linked genes on chromosome 2 in asb. He also found a lower crossover 
interference for the markers than in wild type. It is possible that the same mechanism underlies these 
various observations in asb: positive crossover interference may not extend beyond the boundaries of 
an SC segment, so that interruptions in the SC (as they are found in asb) will result in a decreased 
crossover interference. 

However, two observations do fit nicely with this proposal, firstly the absence of late RNs in sev
eral short SC segments in asb. If short SC segments carried RNs, they were small and/or faint. One 
possible explanation is, that a minimum SC length is required for the assembly or maintenance of late 
RNs, or, alternatively, that non-crossover events are not capable of initiating extensive synapsis. Sec
ond, the relatively high number of RNs in long SC segments suggests that interference has decreased 
with the SC. If interference would act, in contrast to what we suggested before, beyond interruptions 
in SCs the virtual absence of late RNs on short SC fragments adjacent to longer SC segments would be 
explained, but not the increased frequency of late RNs in the longer SC segments. 

In short, we cannot explain the number and distribution of late RNs in mutant asb on the basis of 
a simple model according to which crossover interference cannot extend beyond the boundaries of an 
SC segment. For the interpretation of the asb phenotype more information is required about the rela
tion between late RNs, synapsis and crossover formation formation in this mutant. 

The RNs in mutant asb displayed a few intriguing features. We observed twin nodules, and even 
aggregates of three and more early RNs in asb nuclei comparable to early pachytene in wild type. Sim
ilar appearances of such RNs can be seen in other reports on plant RNs (e.g. Albini and Jones 1987: 
Figures 10-12, Sherman etal. 1992: Figure 1, Stack and Roelofs 1996: Figure 10), but none of these 
papers gave a clear explanantion for that phenomenon. It is tempting to believe that twin and merg
ing early RNs are intermediate structures that may give rise to late RNs, but more observations and 
experimental evidence will be necessary for find a relation between aberrant morphology and func
tion of these groups of early RNs. 

The desynaptic mutant as5 

We observed RNs with normal morphology in all SCs of as5. We concluded therefore that this mutant 
has probably a defect in the maintenance of chiasmata, rather than in crossing-over. Maguire (1978) 
described a similar desynaptic mutant in maize. 
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Synapsis, recombination nodules, chiasmata and 
chromosome disjunction in meiosis of a haploid tomato 

Francis W.J. Havekes, J. Hans de Jong, Christa Heyting 

An ultrastructural analysis of meiotic prophase I in haploid tomato revealed low levels of 
synaptonemal complex (SC) formation, despite the lack of homologous chromosomes. All fourteen 
analysed pollen mother cells had axial cores, and ten of them contained tripartite SC segments. We 
found faint, spherical "clouds" associated with axial cores. These structures possibly represent mor
phologically abnormal early RNs. In addition, part of the SC segments carried one or two recombi
nation nodules (RNs), which, on the basis of their morphology, were classified as late RNs. Light 
microscopic analysis of (pro)metaphase pollen mother cells revealed few examples of bivalents and 
trivalents, which indicates that chiasmata were occasionally formed. The number of tripartite SC 
segments per nucleus was more than ten times higher than the number of chiasmata per nucleus. 
Apparently, SC-formation in the haploid does not necessarily have to contain a crossover event 
(RN/chiasma) in the synapsed segments. 

Chromosome transmission was established in pollen mother cells at stages from diakinesis to 
telophase II. In most cells at (pro)metaphase I only univalents were found, whereas only a minor
ity of the haploid PMCs underwent both meiotic divisions. At the tetrad stage we observed both 
dyads (53%), triads (23%), tetrads (13%), monads (8%) andfewpolyads (3%). In the few embryo-
sac mother cells, which we studied, we observed that equational division of all chromosomes was 
synchronised and took place only after all chromosomes had oriented in the equatorial plane, 
which had one or more spindles. 
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Introduction 

The main processes of the first meiotic division are pairing and crossover between homologues at 
prophase I, and orientation and segregation of bivalents at metaphase and anaphase I. In a regular 
meiosis in a diploid organism, these processes enable the proper disjunction of homologous chromo
somes. Our knowledge on the cytology and molecular genetics of the meiotic processes is largely 
based on the analysis of meiotic mutants. Numerous meiotic mutants have been described for yeast 
(Roeder et al. 1995), Drosophila (Orr-Weaver 1995, and references therein) and several other genetic 
model species. These mutants displayed defective chromosome synapsis (asynaptic mutants), lack of 
chiasma formation (desynaptic mutants), abnormal chromosome morphology and unbalanced 
transmission. A second source of information on meiotic processes is provided by numerical chro
mosome variants, including haploids and polyploids. 

Haploids - plant geneticists prefer the term mono(ha)ploid - contain only one set of chromo
somes in each undifferentiated somatic cell. At meiotic prophase I chromosomes lack their homolo
gous partners for proper pairing and recombination. Haploids are therefore ideal for studying pairing 
and recombination between non-homologous chromosome segments and establishing the conse
quences of the lack of homology for orientation and segregation of chromosomes at metaphase I. 

Haploids have been described for most crop species. They can easily be isolated and are in general 
viable. In spite of the absence of homologues, extensive pairing and synaptonemal complex (SC) for
mation was reported in haploids of several species (Gillies 1974, Wang 1988, de Jong et al. 1991, Loidl 
1991). However, crossing-over is strongly reduced in haploids; chiasma frequencies were found to be 
low in haploid wheat (Wang 1988) and rye (de Jong et al. 1991), and exchanged chromosomes were 
rare in the products of haploid meiosis in yeast (Loidl et al. 1997). 

Tomato (2n=2x=24) is most appropriate for the cytological studies of meiotic processes (Moens 
1964, Cawood and Jones 1980, Stack and Anderson 1986a, 1986b). The chromosomes are well- diffe
rentiated at pachytene, and show a unique pattern of heterochromatin blocks in the pericentromeric 
and telomeric regions. All twelve chromosomes can thus be identified on the basis of arm lengths and 
diagnostic heterochromatic regions. In addition, the SCs of hypotonically burst pollen mother cells 
exhibit a comparable distinctive morphology, with clear kinetochores and an obvious difference in 
staining intensity between heterochromatin and euchromatin SC segments (Sherman and Stack 
1992). Tomato also shows early and late recombination nodules (Sherman and Stack 1995). 

In this paper, we present a light and electron microscopic study of meiosis in a haploid of tomato. 
Emphasis is put on the occurrence and morphology of non-homologous SC segments and the pres
ence of early and late recombination nodules. We also estimate chiasma frequencies in diakinesis / 
metaphase I and compare chromosome behaviour between microsporocytes and megasporocytes. 
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Meiosis in a haploid tomato 

Materials and Methods 

Material 

The haploid tomato plant analysed in this study was found among the seedlings from a cross between 
Lycopersicon esculentum genotype LA 291 and L. esculentum Moneymaker by Koornneef et al. (1989). 
LA 291 is homozygous recessive for the genes a (anthocyaninless), hi (hairless) and tns-2 

(male-sterile). The haploid seedling had the recessive phenotype and was therefore named LA 291-H 
(Koornneef etal. 1989). 

Methods 

We used for our electron microscopic analysis Stack's hypotonic bursting technique for meiotic 
prophase pollen mother cells (Stack 1982). One anther per bud was squashed in acetocarmine to as
sess the meiotic stage of the pollen mother cells in that flower bud (PMCs). Anthers containing PMCs 
in a stage comparable to pachytene (i.e. PMCs easily released from the pollen sac and mid-prophase 
chromosomes released from the synizetic knot) were used for the SC spreading technique. Prepara
tions were stained either by silver nitrate at 40° C (Ag) or by uranyl acetate/lead citrate (UP). Silver ni
trate staining at 40° C and 33% w/v (Sherman etal. 1992) was favourite for distinct axial cores and SC, 
and revealed part of the RNs. UP gave a weaker contrast of the axial cores and SCs than Ag, but it is a 
reliable stain for RNs. LM preparations of haploid tomato anthers and ovules were made as described 
in Havekes et al. (1997). 

Results 

The morphology of axial cores, synaptonemal complexes and recombination nodules were analysed 
in microsporocytes only. For the light microscopic characterisation of meiotic processes and the 
comparison of male and female meiosis we studied spread preparations of both microsporocytes and 
megasporocytes. 

EM observations 
In the SC preparations of prophase I nuclei, the morphology of SCs and RNs was less distinct than in 
diploid tomato, and the chromosome axes were often covered with faintly staining material. Most nu
clei were incomplete and contained broken or interrupted axial cores or SC segments. We selected ten 
silverstained and four UP-stained nuclei at a stage comparable to pachytene. 

Axial core formation 

All nuclei formed axial cores. It was not possible to trace the full complement with the twelve ACs, as 

most of them were broken, interrupted or entangled. In seven of the Ag-stained nuclei we found 
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Figure 1: Electron micrographs of hypotonically burst PMCs of haploid tomato. A. Part of a Ag-stained nu

cleus. Arrowheads indicate parallel arrangement of ACs, large arrows indicate split or thickened AC seg

ments, and small arrows indicate cloud-like structures along ACs. B. Part of an Ag-stained nucleus with 

extensive AC splitting (arrows) and some thickened AC segments. C. Part of a UP stained nucleus with 

synapsis and RNs (arrows). D.SC with two non-homologous chromosomes of different lengths: telomeres 

do not match at one end (arrow) and one core bulges slightly (small arrow). An RN is indicated by the small 

arrow. Ag-stained. E. Detail of loop with intrachromosomal non-homologous synapsis. UP stained. F. Detail 

of a foldback SC segment with a RN at a twist (large arrow).The lateral elements are unevenly stained,only thin 

threads are visible at the left side (small arrows). UP stained. Bar represents 5 urn. 
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short segments of thickened or longitudinally split ACs (Figure 1A+B), both on distal and intercalary 
positions. Within the split AC segments, we always observed two substructures, which remained 
aligned at less than 50 nm. The diameter of the individual substructures was similar to that of an in
tact AC. We also observed AC thickenings, which were on average shorter than the split AC segments 
(Table 1) and had a diameter of 100 to 200 nm. The thickenings were either solid or showed longitu
dinal striations (Figure IB). None of the UP-stained nuclei revealed split AC segments or AC thick
enings. 

Alignment and synapsis of non-homologous core segments 

Typical presynaptic alignment of ACs, which often precedes synapsis in diploid tomato (Stack and 
Anderson 1986a, Havekes et al. 1994), was not found in the haploid tomato, although AC regions 
sometimes ran parallel at distances of 50 to 250 nm (Figure 1A+B). This parallel arrangement of ACs 
in the haploid differed from presynaptic alignment in a normal diploid in the following respects: (i) 
the distance between the parallel ACs of the haploid was often less than the 300 nm that is usually seen 
between presynaptically aligned ACs (Havekes et al. 1994); (2) there were no clear early RNs between 
the parallel ACs in the haploid, whereas in diploid tomato, early RNs normally connect 
presynaptically aligned ACs (Stack and Anderson 1986a, Havekes et al. 1994). 

Segments of synaptonemal complex were found in only ten of the fourteen nuclei (Table 1; Figure 
1C). Their morphology, though essentially similar to that of diploid tomato, appeared more fragile in 
the haploid: the lateral elements appeared irregularly shaped and thin (Figure 1E,F). 
Non-homologous synapsis was less than 20% and measured 5-10 |im in most cases. We also ob
served intrachromosomal foldback synapsis (Figure IF) and other aberrant configurations (Figure 
IE). Some SC segments show buckles with a wide central region and with two layers of central ele
ment (Figure ID). Of the synapsed segments (n=46), 18% occurred distally with matched telomeres 
and another 18% occurred as intrachromosomal foldback loops. 

Table 1 .Ultrastructural features often Ag-stained and four UP-stained prophase I nuclei in haploid tomato. 

Ag 

UP 

total 

average 

range 

average 

range 

average 

range 

split AC segments 

nr./cell 

2.8 

0-11 

-

2.8 

0-11 

length 

(|jm) 

0.88 

0.18-3.51 

-

0.88 

0.18-3.51 

AC thickenings 

nrVcell 

1.4 

0-7 

-

1.4 

0-7 

length 

(Mm) 

0.58 

0.33-0.76 

-

0.58 

0.33-0.76 

SC segments 

nr./cell 

2.9 

0-8 

4.25 

1-9 

3.29 

0-9 

length 

(|jm) 

5.18 

0.39-14.08 

5.11 

0.66-11.93 

5.16 

0.39-14.08 

late RNs 

nr./cell 

0.4 

0-2 

1.5 

0-3 

0.7 

0-3 
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Recombination nodules 

In UP stained nuclei, we observed recombination nodules (Figure 1C) in six of the seventeen SC seg
ments: five of these SC segments contained a single RN (see Figure ID), and only one SC segment 
contained two RNs. The RNs were about 150 nm long and 100 nm wide, which is similar to the di
mensions of late RNs that in normal diploid nuclei. In the silver stained nuclei, RNs were not as obvi
ous as in the UP stained nuclei, and faint RNs showed up in only four of the twentynine SC segments. 
Late RNs occurred both in interchromosomal and intrachromosomal synapsed segments, mosdy in 
the middle of these segments. The average number of SC segments per cell was 3.3 (Table 1) and there 
were 0.7 late RNs per cell. We also observed faint "spherical" clouds associated with unsynapsed ACs 
(Fig. 1A); possibly, they represent abnormal, early RNs. 

LM observations 

Male haploid meiosis 

Pachytene pairing 

The light microscopic preparations of spread pollen mother cells at pachytene revealed low levels of 
chromosome pairing, both between and within chromosomes (Figure 2), which is in agreement with 
the electron microscopic observations, heterochromatic regions could be detected in the centromere 
regions and at few chromosome ends (Figure 2B, C) as was observed in the diploid pachytene nuclei. 
Chromosome pairing occurred mostly between two heterochromatic or between two euchromatic 
regions, but we also found some examples of pairing between a heterochromatic and a euchromatic 
region. 

Chiasma formation 

We analysed chiasma formation in 200 pollen mother cells at (pro)metaphase I. These cells were 
characterised by randomly positioned univalents and few bivalents or trivalents, which were posi
tioned in the equatorial plane. In 79% of the nuclei, we observed twelve small highly condensed 
univalents (Figure 3A). In 17.5% of the nuclei, one rod bivalent was found in the equatorial plane, to
gether with ten scattered univalents (Figure 3B). Most bivalents were stretched, and in some bivalents 
the two non-homologous chromosomes were only connected by a thin, presumably, chiasmate con
nection. In the remaining 3.5% of the nuclei, we found a trivalent, two or three bivalents or combina
tions of bivalents and/or trivalents (Figure 3C). The average chiasma frequency was 0.255 per 
nucleus, which is significantly (0.01 level) lower than the 0.7 RNs per cell (see above, and Table 1). 

In six of the 200 analysed (pro)metaphase I cells, we detected small fragments, which were either 
connected to one chromosome by a thin thread (Figure 3C) or were lying apart. Most fragments were 
less densely stained than the intact chromosomes. Fragments are likely the result of recombination in 
inverted chromosome regions or inverted loops. 
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Chromosome behaviour at later meiotic stages 

In haploid meiosis, chromosome orientation and segregation is less synchronous than the diploid, 
where homologues disjoin simultaneously at anaphase I, and chromatids at anaphase II. In the ma
jority of the haploid (pro)metaphase cells, we found twelve randomly distributed chromosomes. We 
also found some anaphase I / telophase I like configurations (Figure 3D), which probably originated 
from a pseudo-reductional division, in which univalents moved individually to one of the two poles. 
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Figure 2. Light micrographs of spread 'pachytene' PMCs of haploid tomato. Dark regions represent 

heterochromatin, light regions are euchromatic. A. Nucleus without visible chromosome pairing. Intra-

chromosomal parallel association is indicated by the arrow. B. Nucleus with distal chromosome pairing 

with matched telomeres (arrow) and pairing between proximal heterochromatin (large arrows).C. Nucleus 

with extensive pairing between two non-homologous chromosomes with ends, which do not match 

(arrow). The large arrow indicate pairing between two or three heterochromatic regions. D. Nucleus with 

pairing in heterochromatic regions (arrows). 
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We assume that bivalents would divide reductionally in such divisions because bivalents were always 
oriented in the metaphase I plate (Figure 3B+C). 

The asynchrony of chromosome movement in haploid meiosis I was obvious in several nuclei 
with lagging chromosomes. These laggards often oriented equationally while the other chromosomes 
moved to one of the poles (Figure 3E). Even though the laggards stretched considerably, the two sister 
chromatids did not separate precociously at this stage. Chromatids intermingled with chromosomes 
were only occasionally observed in telophase I. In nuclei undergoing equational division, all chromo
somes divided synchronously. In those cells that had previously undergone pseudo-reductional 
chromosome segregation, two spindles were formed (Figure 3F). In many equational divisions, how
ever, all twelve chromosomes were arranged in one spindle (Figure 3G) and divided together (Figure 
3H). 

Pollen fertility could not be determined, because the haploid tomato line contained the ms-2 
gene, which causes complete male sterility (Koornneef et al. 1989). The tetrad stage was the last stage 
that we could study before ms-2 induced degeneration. In the tetrad cells that we analysed we ob
served 53% dyads, 23% triads, 13% tetrads, 8% monads and 3% polyads. As to the dyads, the two 
microspores usually were of equal size, but we also found dyads with differently sized microspores. In 
the tetrads, the microspores were either similarly sized or they had one pair of bigger and one pair of 
smaller microspores. We also observed very small microspores, which indicates that even one or two 
individual chromosomes can become encapsulated into a spore. The variety in meiotic products sug
gests that many different combinations of reductional and equational division can occur in haploid 
meiosis. 

Female haploid meiosis 

The timing of equational division was determined in female haploid meiosis. Embryo sac mother 
cells (EMCs) in haploid tomato had roughly the same appearance as those described for the diploid 
tomato (Havekes et al. 1997). EMCs were easily identified in the spread preparations of female organs 
by their large and elongated shape. Because EMCs form a phragmoplast immediately after the first 
meiotic division, the two daughter cells of meiosis I easily separate during the squash procedure, and 
cannot be recovered together. Figure 4 shows examples of nuclei at different stages of female meiosis. 
Like in male meiosis, pachytene chromosomes were mostly unpaired (Figure 4A) but some paired 

Figure 3. Light micrographs of spread PMCs from metaphase I to telophase II in haploid tomato. A. Twelve 

univalents spread over the nucleus. B. Nucleus with one centrally located bivalent and ten univalents. C. 

Nucleus with a bivalent (small arrow) and a trivalent (large arrow). A chromosomal fragment is associated to 

one of the univalents (arrowhead). D. Anaphase with pseudo-reductionally segregating univalents. E. 

Nucleus in which some univalents have moved to a pole while the rest is equationally oriented in the 

metaphase plate. F.Telophase II resulting from a pseudo-reductional division (7-5 distribution) followed by 

equational division at anaphase II. G. 12 equationally oriented univalents. H. Anaphase with twelve 

equationally divided chromosomes. 
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chromosome regions were also observed. A quantitative comparison of pairing in the male and fe
male cells was impossible due to the indistinct morphology of the chromosomes in light microscopic 
preparations of female haploid meiosis. 

In nine of the ten analysed diakinesis-metaphase I cells we found twelve univalents, which were 
randomly distributed through the cell (Figure 4B+C). In only one nucleus we detected a bivalent. By 
the time the phragmoplast was about to be formed, the chromosomes had either been distributed 
over the two poles (Figure 4D), or they were all located at one side of the nucleus (Figure 4E). 
Equational orientations and divisions were observed in the few metaphase II - anaphase II EMCs that 
we could find. Figure 4F shows an example of metaphase II orientation in a daughter cell that has cap
tured all twelve chromosomes. Our observations indicate that equational division does not or rarely 
take place in female haploid meiocytes at metaphase I, but rather occurs at a stage past phragmoplast 
formation {i.e., in meiosis II). 

Discussion 

During meiosis, the chromosomes in haploid tomato, although lacking a homologous partner, can 
nevertheless (1) be involved in synapsis, (2) have early and late RNs along the SC, and (3) form occa
sional chiasmata. However, synapsis and RNs were abnormal in various respects. In contrast to dip
loid tomato, haploid tomato did not display typical presynaptic alignment (see chapter 4). 
Furthermore, the axial cores and the lateral elements of the SCs showed morphological abnormalities 
like short stretches that were split into two substructures and local thickenings with a dense or striated 
structure, whereas SCs were often irregular without any difference between euchromatin and 
heterochromatic regions. 

Presynaptic alignment 

Although ACs showed some parallel arrangement in the haploid, they did not display the typical 
presynaptic alignment that normally occurs at leptotene / zygotene in the diploid tomato (Stack and 
Anderson 1986a) and that accumulates in some partially asynaptic mutants of tomato (Havekes et al. 

1994, and the Chapters 2+4). In the haploid, parallel ACs were often closer than the 300 nm that is 
typical for presynaptic alignment, and in some instances even closer than the 100 nm that is specific 
for SCs. In contrast to the numerous early RNs between presynaptically aligned ACs in the normal 
diploid zygotene nuclei, we did not detect early RNs between the parallel arranged ACs in the haploid. 
We assume, therefore, that presynaptic alignment is confined to true homologous chromosome re
gions only. 

Synapsis 

We found low levels of synapsis (about 17 um SC per cell) both between and within chromosomes in 
haploid tomato. Menzel and Price (1966) also observed occasional formation of non-homologous 
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Figure 4: Light micrographs of squashed EMCs from haploid tomato. A. Pachytene nucleus with no visible 
chromosome pairing.B. Nucleus at diakinesis:twelve univalents.C.Metaphase I EMC with random distribu
tion of univalents. D.Telophase I with a 7-5 distribution.E.Telophase I with all twelve univalents captured in 
one daughter nucleus. Arrow indicates phragmoplast. F. Equational orientation of all univalents in a daugh
ter cell of an EMC at metaphase II. 

SC in thin sections of haploid tomato. Synapsis has also been observed in haploids from several other 
plant species (barley: Gillies 1974, rye: de Jong etal. 1991, wheat: Wang 1988) and in yeast (Loidl etal. 

1991). 

The question is as to whether synaptic initiation in these haploids is related to recombinational 
activity at sites with regional ectopic homology or small duplicated segments, or whether synapsis oc
curs independently of the recombination pathway. Our data are in favour of the hypothesis that syn
aptic initiation is not necessarily related to crossover events. First, most of the SC segments did not 
contain RNs. Second, the average number of SC segments found in the fourteen prophase I nuclei 
was thirteen times higher than the average number of chiasmata found in our sample of 200 
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(pro)metaphase I nuclei. Comparable discrepancies have been found between synapsis and chiasma 
formation in haploid cereals (Gillies 1974, Wang 1988, de Jong etal. 1991), and between synapsis and 
chromosome exchange in haploid yeast (Loidl and Nairz 1997). That synapsis can extend across long 
non-homologous segments without crossovers is also documented by observations of Moses (1982) 
on synaptic adjustment of paracentric loops in mouse. 

In diploid yeast the initiation of recombination takes place by the formation of double strand 
DNA breaks (DSBs). In haploid yeast, DSBs have similar distributions and occur at similar frequen
cies as in diploid meiosis, which indicated that initiation of recombination is not dependent on the 
presence of a homologue (de Massy et al. 1994, Gilbertson and Stahl 1994). Is synaptic initiation in 
haploids then related to gene conversion events? Generally, early RNs which are supposed to be in
volved in gene conversion (Carpenter 1987), were not abundant in SCs of haploid tomato. It is also 
questionable if gene conversion would occur relatively frequently between non-homologous chro
mosomal regions in haploids. The meiotic DSBs in haploid yeast are thought to be repaired by using 
the sister chromatid instead of the homologue as a template (Gilbertson and Stahl 1994). The timing 
of such repair is probably delayed compared to interhomologue recombination in diploid yeast (de 
Massy etal. 1994). 

We postulate that in haploid tomato initiation of synapsis depends on incidental contacts be
tween chromosome segments rather than on homology and recombination. Distal synapsis might 
then result from intimate associations of chromosome ends brought together by the clustering of 
telomeres in the bouquet at early prophase, whereas it is possible that interstitial and proximal 
synapsis result from association of heterochromatic regions in the synizetic knot. Although we have 
not found a bouquet in haploid tomato, the presence of telomere associations could be unequivocally 
demonstrated for haploid wheat (Wang 1988) and rye (de Jong etal. 1991). In light microscopic prep
arations, pairing was mainly found between two (proximal) heterochromatic regions or between two 
(distal) euchromatic regions, which could be the direct effect of the clustering of telomeres or 
heterochromatic centromere regions. Heterochromatic regions are known to be persistency con
nected when euchromatic regions are separate (Dernberg et al. 1996, Loidl 1987). In the haploid, the 
absence of primary homology might allow initiation of synapsis at chromosome regions held to
gether by association of heterochromatic regions. This synapsis is probably delayed compared to 
synapsis in diploid tomato. 

Recombination nodules 

We found RNs in part of the synapsed regions in haploid tomato. To our knowledge this is the first re
port of RNs in a haploid plant. Only in one haploid nucleus of the fungus Physarum polycephalum, 

Lie and Laane (1982) show a possible example of a RN. Although the low frequency of RNs per SC 
segment and the ellipsoidal shape of RNs suggest that the RNs in the haploid are comparable to late 
RNs in diploid meiosis (cf. Stack and Anderson 1986a, 1986b, Sherman and Stack 1995), the average 
of 1.5 RNs per UP-stained nucleus is much higher than the average of 0.255 chiasma per metaphase I 
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cell. This difference may be explained by the fact that RNs in foldbacks will not result in chiasmate bi-
valents. Furthermore, the frequent occurrence of presumed early RNs with aberrant morphology 
("clouds") along the ACs suggests that not all RNs in the haploid were entirely normal and func
tional. It is possible that some abnormal late RNs in the haploid are not stained with silver. That 
would explain the relatively low number of Ag-stained RNs in the haploid. 

Meiotic divisions in haploid tomato 

A normal reductional division, which depends on chiasmate connections between pairs of homolo
gous chromosomes, could not take place in the haploid tomato. In the majority of cells, only 
univalents were present at (pro)metaphase. As a consequence, most nuclei went through only one di
vision (53% of the meiotic products were dyads): an equational division of all twelve chromosomes 
in one spindle. Haploid nuclei seemed to be temporarily stalled at prometaphase I, and then continue 
with an equational division, skipping division I. The nuclei consisting of partly pseudo- reductionally 
separating chromosomes, and pardy equationally orienting laggards, may very well have contributed 
to the 23% triads resulting from haploid meiosis. Laggards with equational orientation stretched con
siderably, more than is observed in a normal metaphase II, but seemed unable to separate the sister 
chromatids in spite of the apparently strong pulling forces. In female haploid meiosis, the equational 
division occurred after phragmoplast formation, i.e. at about the same time as the equational division 
(Meiosis II) in the diploid, and thus later than metaphase I would have occurred. 

A minority of the male haploid nuclei underwent both meiotic divisions and are represented by 
the 13% of tetrads in the meiotic products. It is likely that these tetrads resulted from a 
pseudo-reductional, random segregation of chromosomes, followed by a synchronous separation of 
sister chromatids in an equational division. 

Abnormalities ofSCs in haploid tomato 

The ACs in haploid tomato showed split and thickened segments, whereas these abnormalities have 
never been observed in wild type tomato (Havekes et al. 1994, Stack and Anderson 1986a). AC thick
enings have been found in diploid maize (Gillies 1981), rye (Fedotova et al. 1989) and Tradescantia 
(Hasenkampf 1984). The shape and size of the thickenings is very similar in all reports, and they oc
cur in cores involved in synapsis and in unpaired ACs. The origin of the thickenings is not known. Oc
casional examples of split AC segments were also observed in haploid rye (de Jong et al. 1991) and in 
haploid wheat (Wang 1988). The split segments in haploid rye resemble those found in the tomato 
haploid, i.e. they occur in unpaired ACs and the two substructures remain closely parallel. In contrast, 
the split segments in wheat are different because they occur in synapsed regions and the substruc
tures, which are far apart, are uneven in length and thickness. 

Although the split and thickened AC segments could be a characteristic of the haploid tomato line 
(the diploid line from which it was derived was not studied), it is also possible that these abnormali
ties reflect chromosome behaviour that under normal diploid conditions would not take place. ACs 
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assembly may be aberrant in the haploid and cause defective sister chromatid cohesion (splitting of 
AC segments into sister cores). 

The occasional chromosomal fragments that we observed in metaphase I nuclei of the haploid to
mato are probably caused by crossovers between two different inverted non-homologous chromo
some segments or a crossover in an inversion loop. This phenomenon has also been reported in 
haploid maize (McClintock 1933). 
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7 
General discussion: A walk through meiosis 

The previous chapters of this thesis provide the results of a research project performed by the author 
at the Laboratory of Genetics, Wageningen University and Research Centre. The text furnishes you, 
the reader, with a bulk of information on chromosome morphology and behaviour at different mei-
otic stages in four synaptic mutants, a haploid and wild type tomato. More facts and details are added 
to the already extensive knowledge on meiotic chromosomes. But does it all fit, is there a pattern, are 
we able to perceive the rationale of the meiotic processes? 

In this final chapter, I will guide you through the different steps of meiosis, incorporating parts of 
my own research of tomato into known theories of meiotic pairing, recombination and segregation. 
For clarity, I will first give a rough description of all stages, a sort of general overview of meiosis. Mei
otic chromosomes consist of chromatin (folded DNA plus associated histones and non-histones), 
which, at some stages, is organised in loops that are attached to a proteinaceous core (reviews in 
Rattner et al. 1981, Moens and Pearlman 1988). Based on the appearance of chromatin of higher 
eukaryotes in the light microscope, two general classes can be distinguished: 1) heterochromatin, per
manently condensed chromatin and 2) euchromatin, chromatin that is only condensed during 
prophase-telophase and decondense during interphase. In most organisms, including tomato, 
heterochromatic regions is mainly located around the centromeres. 

Prophase and metaphase chromosomes can also display different types of cores along their axes. 
One of them is the chromosome scaffold as seen in histone depleted metaphase chromosomes 
(Earnshaw and Laemmli, 1984). The second type is observed only in chromosomes that are involved 
in meiotic pairing. At leptotene, proteinaceous structures are assembled along the chromosome axes. 
These structures, which connect the sister chromatids, are called axial cores (ACs). Once the chromo
somes start pairing, the cores become closely aligned at a distance of c. 100 nm and contribute to the 
formation of the synaptonemal complex (SC). Within this tripartite complex, the cores are called lat

eral elements (LE), separated by a third central element between them. A third type of cores, the 
chromatid cores, has been found in chromosomes at diplotene to anaphase II of some species (Stack 
1991, Rufas et al. 1992) and during the mitotic division (Gimenez-Abian et al. 1995). 

Figure 1 illustrates the characteristics of chromatin and cores during meiosis. As I have mentioned 
in the General Introduction, meiosis can be divided in two phases. A first phase with ongoing 
inter-homologue processes culminating in the establishment of at least one crossover per bivalent, 
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and a second phase in which the two meiotic divisions take place. At the transition of the two phases 

is the diffuse diplotene stage. I will use Figure 1 as a guide during my walk through meiosis. 

The establishment of homologous contacts (Figure 1: interval 
1-3) 

In this section I will discuss the following electron microscopic observations in wild type, mutant and 
haploid tomato: 

1. In early prophase I ACs are tightly held in a cluster that will not spread after hypotonic bursting 
of nuclei (Chapter 4). 

2. This tight 'knot' loosens as homologous ACs undergo presynaptic alignment and synapsis 
(Chapter 4). 

3. The spreading area, which is a rough measure for the compactness of the nuclear volume, 
increases from leptotene to pachytene in wild type tomato, but not in asynaptic mutants or 
haploid tomato (Table 1). 

The AC clusters 

Within the complex dense mass of long chromosomes typical of early prophase I, ACs keep a certain 
distance from one another (Chapter 2, Figure 1 and 2; Chapter 4, Figure 1 and 4). It is conceivable, 
though, that the peripheral parts of chromatin loops from different chromosomes, which emanate 
radially from the core (von Wettstein et al. 1984), may already have encountered. Von Wettstain and 
colleagues supposed that the chromatin of the two sister-chromatids is arranged in two separate, op
posite domains along the axial core. Here, I assume that the resistance of ACs against spreading is 
caused by association of peripheral chromatin loops, possibly with the aid of certain proteins. Such an 
association can occur between regions of different chromosomes or between intrachromosomal re
gions in folded chromosomes. Interstitial and proximal (heterochromatin) regions are predomi
nantly captured in the cluster, whereas distal regions often spread out from the dense chromatin mass 
into the periphery of the nucleus. 

AC clustering disappears concurrently with the progression of presynaptic alignment, the first 
phase in chromosome pairing. Is the release of paired ACs from the chromatin mass induced at the 
bivalent level by changes in AC/chromatin organisation during pairing, or is it a regulated at the cell 
level, independent of pairing? The comparison of areas of spread prophase I nuclei in the mutants 
and wild type tomato (Table 1) revealed that in nuclei that cannot complete pairing, the tight associa
tion of cores (small surface spreading) is maintained. This indicates that the release of ACs from the 
chromatic mass is probably regulated at the bivalent level and that only completely synapsed 

Figure 1. Characteristics of chromatin and cores during meiosis. 1-3. Leptotene - zygotene; 4. Pachytene; 
5-7. Diplotene; 8. Diakinesis - Metaphase I; 9. Anaphase I - Telophase I; 10. Anaphase II - Telophase II. 
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chromosomes allow full spreading. However, it is not known yet, as to whether the chemical and 
physical conditions in our spreading technique change the in vivo interaction between the chromatin 
domains. 

Towards homologous DNA contacts 

How are chromosome associations directed from the rather non-specific associations postulated 
above towards homologous ones? Possibly, homologous chromosomes have similar folding patterns 
(see Chapter 4), which favour coalignment of a chromosome with its homologue over coalignment 
with others. Furthermore, chromosome movement should allow homologues to meet (Dawe et al. 

1994). One way in which such movements are accomplished is the clustering of telomeres at very 
early prophase I (Bass et al. 1997). This phenomenon, known as bouquet stage, is directed by contrac
tile elements in the cytoskeleton, which pull the telomeres together along their nuclear attachments 
sites (Sheldon et al. 1988). Once the meeting of chromosomes is established, homology should be 
sensed, and the homologous sites should become more stably associated. The first obvious manifesta
tion of stable homologous connections is when ACs start to converge and align at approximately 300 
nm. As the homologous AC regions come into closer contact, RNs and/or other bridging materials 
become visible between them (Albini and Jones 1987, Anderson and Stack 1988). Possibly, the pro
teins that form these structures are able to contract and pull the ACs towards each other (see review: 
Dawe 1998). Such movement of ACs towards one another changes their location from centrally in the 
chromatin to a lateral position (Westergaard and von Wettstein 1972). The sites of primary homolo
gous contact and the associated RNs are now in the vicinity of the cores. The bulk of chromatin, how
ever, has to be reorganised along the ACs, which may be accomplished by rotation of the two sister 
chromatids relative to the single AC (Westergaard and von Wettstein 1972). In maize, such a phase of 
chromatin reorganisation preceding chromosome synapsis has been observed, and sister chromatids 

Table 1: Average spreading area of hypotonically burst nuclei of wild type, mutant and haploid tomato.Mu-
tant as6 is completely asynaptic,asb and as 1 are partially asynaptic and as5 is desynaptic.The number of nu
clei is indicated between brackets. 

material 

haploid 

as6 

asb 

as! 

as5 

wild type 

average spreading area of nuclei 

early zygotene 

298+111 |jm 

665±256 urn 

658±272 |jm 

651 ±205 Mm 

570±131 Mm 

late zygotene 

481 ±119 Mm 

787±230 Mm 

2004±484 Mm 

pachytene 

1245±525Mm 

2139±284Mm 
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are temporarily visible during this procedure (Dawe et al. 1994). It is still unknown, if such a reor
ganisation of chromatin relative to the core has any affect on other processes. For example, it might 
induce the release of any remaining non-homologous associations from the reorganised region. 
Thus, a bivalent could gradually be released from the network as it pairs and the cluster would 
unravel co-ordinately with homologous pairing. Table 1 shows the spreading areas of meiotic 
prophase I nuclei of the synaptic mutants, the haploid and the wild type tomato. It demonstrates 
clear differences in spreading ability of the clustered ACs between the mutants, haploid and diploid 
tomato. 

The aforementioned hypothesis of unravelling tight chromatin clusters, does not agree with the 
light microscopic observations of early prophase clustering of (proximal) heterochromatin, a phe
nomenon that is known as synizetic knot. In tomato, this knot is most discrete at the end of zygotene, 
which suggests that chromosomes cluster more tightly with ongoing synapsis (Cawood and Jones 
1980). A direct comparison between light and electron microscopic images is difficult to make, be
cause chromosomes preparations made according to a squash and cell spreading technique, in which 
the acetic acid treatment for cell fixation and spreading will have a completely different effect on 
chromatin conformation and interactions than the hypotonic bursting technique for EM prepara
tions, which includes an alkaline formaldehyde fixation of air-dried chromatin. 

Synapsis and crossover control (Figure 1: interval 4-5) 

In wild type tomato, presynaptic alignment is probably rapidly followed by synapsis in all bivalents. 
However, in Chapter 4 we found evidence for bivalent specific potentials for synapsis in mutant asb, 

which indicates that requirements other than presynaptic alignment must be fulfilled before synapsis 
can take place. 

Synapsis requires additional steps before it can ensue between cores that are already homol-
ogously associated. In this section I will discuss the relation between synaptic initiation and cross
ing-over, with special reference to the following pairs of observations: 
la) In tomato mutant asb, smaller chromosomes synapse poorly, whereas longer ones have less 

difficulty in doing so (Chapter 4). 
lb) Chiasma frequencies are much higher in female than in male meiosis of mutant asb (Chapter 

3). 
2a) Chromosome 1 synapses easily in the long, but hardly in the short arm in mutant asb (Chapter 

4). 
2b) Single RNs are never found only in the short arm of long subacrocentric chromosomes of wild 

type tomato (Sherman and Stack 1995). 
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Adla+b 

In mutant asb, chiasma frequencies are 2.6-fold higher in female than in male meiosis (Chapter 3). 
The higher chiasma frequency in the female meiosis was due to participation of more chromosome 
pairs in crossing over, rather than to higher crossover frequencies within bivalents. Other studies 
comparing chiasma / recombination frequencies in male and female meiosis have revealed that chro
mosome length plays a role. In a study of synapsis in female meiocytes of maize, Mogensen (1977) es
tablished a relation between SC length and crossing over. Fogwill (1958) established a similar relation 
between metaphase chromosome length and crossing-over in Fritillaria. The fact that asb is the mu
tant with the largest difference in recombination between male and female meiosis corresponds well 
to the fact that synaptic initiation is strongly influenced by chromosome length in male meiosis of this 
mutant. 

Ad2a+b 

Sherman and Stack (1995) analysed large numbers of RNs in spread pachytene nuclei of wild type to
mato. They never observed single RNs in the short arms of the subacrocentric SCs 1, 2, 3,4, and 6. 
Similarly, in the submetacentric SCs 7,8,9 and 10, fewer RNs occurred in short arms than would be 
predicted by their relative euchromatic lengths. Even in the metacentric SCs 5,11 and 12, which have 
little or no difference in the euchromatic length of their two arms, again a single RN occurred more 
often in one (not necessarily the slighdy longer) arm. Sherman and Stack concluded that crossing 
over may occur preferentially near the synaptic initiation sites, which then should always occur first in 
the long arms of the subacrocentric bivalents, usually occur first in the long arms of the submetcentric 
bivalents, and usually occur first in one specific arm of the metacentric bivalents. In the tomato mu
tants where synaptic initiation can be easily established, we noticed that such an order of synapses 
within bivalents may indeed exist (Chapter 4). Presynaptic alignment however, did not occur prefer
entially in long chromosomes or long chromosome arms. 

These observations suggest both a relation between synaptic initiation and crossing-over, and an 
effect of a chromosome-dependent factor, e.g. a structural feature of chromosomes or chromosome 
arms. But at which stage exacdy is the decision for a crossover or a non-crossover made? Among the 
following four possible sequences of events, I will try to point out the most likely one. 

1. presynaptic alignment > synaptic initiation > SC completion > crossover decision 
2. presynaptic alignment > synaptic initiation > crossover decision > SC completion 
3. presynaptic alignment > crossover decision > synaptic initiation > SC completion 
4. crossover decision > presynaptic alignment > synaptic initiation > SC completion 

Possibility 1 holds the classical view that synapsis has to be completed before the crossing-over 

decision is made. It is a tempting model because RNs show interference during the mid-late 
pachytene stage when synapsis is completed (Stack and Anderson 1986b). In yeast, however, the re
combination pathway is already far on its way before synapsis is complete (Padmore et al. 1991), and 
nodules may therefore reflect the maturation of events that have already been initiated earlier on. 
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However, this pathway still is the most favourable to explain the discrepancy between synaptic initia
tion and RN and chiasma localisation in Allium fistulosum (Albini and Jones 1987,1988). 

Both possibilities 2 and 3 are capable of explaining the obvious correspondence between synaptic 
initiation and RN or chiasma localisation (Zickler and Sage 1991, Maguire 1995), and may therefore 
be interesting to consider its validity in our material. Which of the two should be preferred? Sherman 
and Stack (1995) chose possibility 2, with presynaptic alignment > synaptic initiation > crossover de
cision > SC completion, whereas I am more inclined towards possibility 3 with presynaptic alignment 
> crossover decision > synaptic initiation > SC completion. In the tomato mutant asb it seems that a 
certain requirement has to be fulfilled before synapsis can be initiated between homologous ACs that 
are already in presynaptic alignment. Given the ease of the synaptic process in normal plants, where 
synapsis simply initiates at homologous regions in all chromosome pairs, mutant asb should also be 
able to do so in all chromosome pairs that are able to align, but this is not the case. If synapsis is re
duced in this mutant because of limiting amounts of central region proteins, synapsis should be ex
pected to occur according to length, but that does not occur either. 

If crossing-over were the step required for synapsis to initiate between homologous chromo
somes, the observed chromosomal differences in synaptic initiation might be explained. Some 
crossover models involve tension which may or may not be high (or low) enough to initiate 
crossing-over (reviews in Darlington 1940 and Kleckner 1996). Kleckner (1996) suggests that stress 
on the axial core-chromatin connection determines crossing over, that this stress is driven by 
compaction and acts at an early stage (prior to synapsis). If I make the third possibility my favourite, 
which means that the decision for the first crossover between homologues induces synaptic initiation, 
can this event be given a place in the process of unravelling of ACs that I postulated? Crossing-over 
may be necessary to drive synapsis into the condensed proximal heterochromatic region and thus al
low a chromosome pair to release from the clustered ACs (synizetic knot). 

The non-crossover recombination events in presynaptic alignment may have a comparable effect 
on releasing (distal) euchromatic regions, but will not be able to induce the release of ACs within the 
condensed heterochromatin, which then remain in the knot. If crossing over is necessary to initiate 
synapsis, it does so only in the diploid organism where chromosomes have their homologous coun
terparts. Chapter 6 on the synapsis and recombination in the haploid tomato made clear that synapsis 
can be initiated and extended without a visible proof of crossing over. 

The obscure diplotene stage (Figure 1: interval 6-7) 

Diplotene is a transition stage between early meiotic prophase I with ongoing homologous interac
tions that culminate in crossovers, and the diakinesis stage in which the crossovers become visible as 
chiasmata. In tomato and many other organisms, the diffuse diplotene marks a phase in which chro
mosomes decondense and probably reorganise in advance of the meiosis I division. At the same time 
the SC disassembles. The difference between pre- and post- diffuse diplotene is obvious when core 

95 



Chapter 7 

formation is taken as an example. During pre-diplotene chromosomes shed their lateral elements 
except for the sites with late RNs, which become converted into chiasmata. At post-diplotene 
chromatid-cores appear along the axes of all chromatids and these cores do cross-over at the sites of 
chiasmata (Stack 1991, Rufas etal. 1992). 

The first (reductional) division of meiosis (Figure 1: interval 8-9) 

In the first meiotic division, homologous chromosomes orient to opposite poles and separate 
reductionally. This is achieved only when the two homologues are connected by an exchange between 
non-sister chromatids (chiasma). Congression of bivalents to the metaphase I plate depends on ten
sion created by the pulling forces of microtubules from opposing poles, counteracted by the 
chiasmate connections between the homologues. When such tension is lacking, as is the case with 
univalents, unbalanced segregation or even chromosome loss may arise at metaphase I - anaphase I. 
For this reason meiotic mutants and haploids, lacking crossovers or the mechanism to stabilise them, 
fail to go through meiosis I properly. 

The most important requirements for reductional division are: (1) The exchanges between 
non-sister chromatids must be stabilised in order to be maintained until anaphase I; (2) Large parts 
of non-sister chromatids must be exchanged as the homologues divide at anaphase I; and (3) Sister 
centromeres must remain together when homologues separate. 

These three requirements are fulfilled by the formation of a core along each chromatid, and the 
connection of sister-chromatid cores. At diakinesis / metaphase I such cores are observed in grass
hoppers (Rufas et al. 1992) and in lily (Stack 1991). Sister cores are connected possibly because they 
are linked to catenated DNA. When these DNA regions are decatenated, the cores can separate. An 
important aspect is that the cores crossover, and are therefore (re)formed along crossed-over 
non-sister chromatids. Chiasmate bonds then depend on the cohesion of sister chromatids distal to 
such crossovers. As this cohesion is lost, homologues can separate, and the cores drag along the ex
changed parts of chromatids. In the meantime, cohesion between sister chromatids should not be lost 
entirely, because this would result in the separation of chromatids at metaphase I. The centromeric 
regions seem to be protected from decatenation, because the sister chromatids remain associated in 
these regions, so that precocious segregation of sister chromatids is avoided. The different localisation 
of the Corl core protein, which is localised to centromere regions but largely disappears from arm re
gions at diakinesis (Dobson et al. 1994, Moens and Spyropoulos 1995), suggest that Corl may have a 
function in sister-centromere cohesion. 

The second (equational) division of meiosis (Figure 1: interval 10) 

During the second meiotic division, the sisterchromatids of each chromosome orient their 
centromeres towards opposite poles and disjoin at anaphase II. This division is quickly performed in a 
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strikingly orderly fashion. Tomato meiotic mutants and haploids have various numbers of univalent 
chromosomes at meiosis I. Irrespective of the causes for their formation, univalents in tomato always 
seem capable of orienting equationally. Actual separation of sister chromatids however, is observed 
only in cells which have all chromosomes synchronously oriented as in metaphase II (Chapter 6). In 
cells in which only part of the chromosomes obtain the equational orientation, despite severe stretch
ing, sister chromatids will not let go (Chapter 6). Similar observations are reported in meiotic mu
tants of maize (Maguire 1990) and grasshopper (Gimenez-Abian etal. 1997). 
In the long chromosomes of lily, the connection between sister chromatids is at the sister centromeres 
while arms are widely separate from anaphase I on to metaphase II (Stack 1991). Gimenez-Abian et 

al. (1997) determined that the ultimate link that keeps sister centromeres together until the 
metaphase II / anaphase II transition is a silver-positive strand connecting the two kinetochores. 
Immunocytological experiments in mouse have revealed that the Cor 1 core protein accumulates at 
sister centromeres during metaphase I and dissociates from these regions as soon as sister 
centromeres separate at anaphase II (Dobson et al. 1994; Moens and Spyropoulos 1995). The signal 
for dissociation of this bond between sister centromeres is probably given only when all chromo
somes have oriented in the metaphase II plate. 
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9 
Summary 

This thesis presents the results of a cytogenetic investigation of meiotic prophase I stages in tomato 
{Lycopersicon esculentum). The aim of this study was to analyse the relationships between chromo
some pairing, and formation of recombination nudules and chiasmata. Tomato was chosen as study 
material for the following reasons: 1) the species features an extensive genetic map, a pachytene chro
mosome map and a recombination map based on the distribution of recombination nodules along 
late pachytene synaptonemal complexes. These three maps together allow a direct comparison 
between genetic data on the one hand and meiotic chromosome organisation and behaviour on the 
other; 2) both light and electron microscope observations of spread pachytene nuclei depict detailed 
chromosomal substructures including centromeres/kinetochores and heterochromatic blocks in the 
centromere regions, which enables identification of individual chromosomes; 3) a collection of four 
meiotic mutants, which are disturbed at different phases of chromosome pairing and crossing over 
(formation of RNs and chiasmata), and a haploid are the basis of this study on the relationship of 
chromosome pairing and crossing over. 

Chapters 2 and 4 deal with various ultrastructural aspects of homologous chromosome pairing in 
wild type and mutant tomato. In wild type tomato, the first unmistakable ultrastructural manifesta
tion of homologous chromosome associations was the alignment of homologous axial cores (ACs) at 
a distance of approximately 300 nm. Shortly later, the aligned ACs converged at several sites, often to 
centrally positioned recombination nodules (RNs). This phase of pairing initiation is known as 
presynaptic alignment. Subsequentiy, homologous ACs approached each other to within 100 nm dis
tance were then incorporated into the tripartite structure of the synaptonemal complex (SC), which 
was then assembled along each pair of homologous chromosomes. 

During the processes of pairing initiation and SC formation (letotene - late zygotene) numerous 
RNs appeared at and between the lateral elements of the SC. Most of these RNs disappeared during 
early pachytene, so that only one or a few RNs per SC persisted in late pachytene. 

Light and electron microscopic preparations of spread pollen mother cells from the meiotic 
mutants displayed the following characteristics (Chapter 2): mutant as6 was completely asynaptic, 
virtually without any presynaptic alignment or SC. Mutants asb and asl were partially asynaptic, with 
average values of 6.1% and 25 % synapsis, respectively. The desynaptic mutant as5 had normal, wild 
type levels of synapsis and about the same number of late pachytene RNs as wildtype, but showed 
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strongly reduced chiasma frequencies at metaphase I. This suggests that this mutant is disturbed in 
crossing-over and/or the formation of functional chiasmata. 

The three asynaptic mutants asb, as6 and asl showed a good correlation between the number of 
bivalents connected by at least one tripartite SC segment at pachytene and the number of chiasmate 
bivalents at metaphase I (Chapter 2). In mutant asb, morphologically normal late RNs were only 
observed on SCs, and not on presynaptically aligned segments (Chapter 5). This indicates that in 
tomato functional late RNs and chiasmata are only formed in the context of the tripartite SC. 

In mutant asb, long chromosomes participated more frequendy in synapsis, and displayed a 
higher percentage of synapsis than short chromosomes. Presynaptic alignment, however, occurred 
equally frequently in all chromosome pairs, and the length of synapsed segments was proportional to 
chomosome length (Chapter 4). This indicates that synaptic initiation, and probably crossing-over, 
are under constraints that act differentially on chromosomes of different length. 

Chapter 3 gives a comparative light microscopic analysis of male and female meiosis in wild type 
tomato and in the meiotic mutants as6, asb and as5. Only mutant asb showed significant differences 
between female and male meiosis. We found 2.6 fold more chiasmate bonds between chromosome 
arms in embryosac mother cells (EMCs) than in pollen mother cells (PMCs). In wild type tomato, the 
percentage of chromosome arms there was bound by a chiasma was only 7% higher in EMCs than in 
PMCs. We ascribe this sex effect on chiasmate bonds to the comparatively long duration of female 
prophase I, particularly of the substage when chromosomes synapse, rather than to higher cross-over 
frequencies in bivalents of EMCs. 

We also analysed how meiosis proceeds in haploid tomato, where chromosomes do not have 
homologous counterparts (Chapter 6). In the absence of a homologue, synapsis still occurred, 
though at the low average frequency of 3.3 SC segments per cell. Presynaptic alignment, though, was 
absent. Furthermore, the SCs in haploid tomato showed various aberrations. The ACs were locally 
split at several sites, and we found spherical cloud-like structures along the ACs, which we interpreted 
as morphologically abnormal early RNs. In the haploid, we also found thirteenfold more SC-seg-
ments in prophase I than chiasmata in metaphase I. Apparently, SC-formation in the haploid is not 
necessarily accompanied by the formation of a chiasma. 

no 



10 
Samenvatting 

Dit proefschrift geeft de resultaten weer van een cytogenetisch onderzoek van stadia van de meioti-
sche profase I in de tomaat (Lycopersicon esculentum). Het doel van deze studie was om de relaties tus-
sen chromosoomparing en de vorming van recombination nodules en chiasmata te analyseren. Wij 
kozen tomaat als studieobject om de volgende redenen: 1) de soort heeft een uitgebreide genetische 
kaart, een pachyteenchromosoomkaart, en een recombinatiekaart die gebaseerd is op de verspreiding 
van recombinatie nodules (RNs) langs synaptonemale complexen in laat-pachyteencellen. De drie 
kaarten tesamen staan een directe vergelijking toe tussen genetische data enerzijds, en de organisatie 
en het gedrag van meiotische chromosomen anderzijds; 2) zowel licht- als elektronenmicroscopische 
waarnemingen van gespreide pachyteenkernen laten gedetailleerde chromosomale substructuren 
zien, zoals centromeren/kinetochoren en heterochromatische blokken in de centromeergebieden, 
waarmee chromosoomgebieden kunnen worden geidentificeerd; 3) een collectie van vier meiotische 
mutanten, die in verschillende fases van de chromosoomparing en crossing over (vorming van RNs 
en chiasmata) zijn gestoord, en een haplo'id vormen de basis van deze studie naar de relatie tussen 
chromosoomparing en crossing over. 

De hoofdstukken 2 en 4 gaan over diverse ultrastructurele aspecten van de homologe chromo
soomparing in de wildtype en mutante tomaat. In de wildtype tomaat was de eerste onmiskenbare 
ultrastructurele manifestatie van homologe chromosoomassociaties de parallelle rangschikking van 
homologe axiale elementen (ACs) op een afstand van ongeveer 300 nm. Kort daarna naderen ACs 
elkaar op verschillende plaatsen, waar zich vaak vroege RNs tussen de ACs bevinden. Deze fase van 
paringsvoorbereiding staat bekend als presynaptic alignment. Vervolgens gaan de homologe ACs 
verder naar elkaar toe tot op een afstand van 100 nm, en worden vervolgens ge'incorporeerd in de tri-
partiete structuur van het synaptonemale complex, die aldus langs elk paar homologe chromosomen 
werd aangelegd. 

Gedurende de processen van paringsinitiatie en vorming van SCs (leptoteen en zygoteen) 
verschenen grote aantallen RNs in en bij de axiale elementen van het SC. De meeste ervan verdwijnen 
weer in de loop van laat-zygoteen - vroeg pachyteen tot er in het laat-pachyteen uiteindelijk nog 
maar een of enkele RNs per SC overblijven. 

De analyse van licht- en elektronenmicroscopische preparaten van gespreide pollenmoedercellen 
van de meiotische mutanten leverde de volgende informatie op (Hoofdstuk 2): mutant as6 was volle-
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dig asynaptisch, wat betekent dat er bijna geen presynaptic alignment of SC-vorming plaatsvond. De 
mutanten asb enasl waren partieel asynaptisch met gemiddeld respectievelijk 6,1 % en 25% synapsis. 
De desynaptische mutant as5 toonde weliswaar een normale, wildtype synapsis en normale aantallen 
RNs in het laat-pachyteen, maar toonde sterk verminderde aantallen chiasmata in de metafase I. We 
concludeerden hieruit dat deze mutant gestoord was in crossing over en/of de vorming van functio-
nele chiasmata. 

De drie asynaptische mutanten asb, asl and as6 lieten een goede correlatie zien tussen de aantallen 
bivalenten, die in het pachyteen met elkaar verbinden door ten minste een SC-segment, en de aantal
len (chiasmatische) bivalenten per eel tijdens de metafase I. In mutant asb werden morfologisch nor
male late RNs slechts waargenomen op de SCs, en niet op segmenten die presynaptic alignment 
vertoonden (Hoofdstuk 5). Dit duidt er op dat functionele late RNs en chiasmata slechts worden 
gevormd in de context van een tripartiete SC. 

In mutant asb vonden we dat lange chromosomen vaker dan korte chromosomen deelnamen aan 
synapsis, en tevens dat lange chromosomen een relatief hoger percentage synapsis lieten zien. Zo'n 
verschil vonden we echter niet in het geval van presynaptische alignement, waar alle chromosomen in 
gelijke mate aan deelnamen en waar de lengtes van de synaptische segmenten evenredig was met de 
chromosoomlengte (Hoofdstuk 4). Deze waarnemingen maken aannemelijk dat synaptische initia-
tie, en mogelijk crossing-over, onder controle staan van mechanismen die onderscheidend werken 
voor chromosomen van verschillende lengtes. 

Hoofdstuk 3 geeft een vergelijkende lichtmicroscopische analyse van de mannelijke en vrouwelij-
ke meiose voor zowel het wildtype als de meiotische mutanten as6, asb en as5. We vonden alleen voor 
mutant asb significante verschillen tussen de vrouwelijke en mannelijke meiose. Zo bleken er 2,6 keer 
zoveel chiasmatische bindingen tussen chromosoomarmen in embryozakmoedercellen (EMCs) op 
te treden als in pollenmoedercellen (PMCs). In de wildtype tomaat was het percentage chromosoom
armen dat door een chiasma was gebonden slechts 7% hoger in de EMCs dan in de PMCs. We zijn 
meer geneigd om dit effect op chiasmatische bindingen bij asb en de wildtype tomaat eerder toe te 
schrijven aan de relatief lange duur van de vrouwelijke meiotische profase I, met name van het stadi
um waarin chromosoomsynapsis optreedt, dan aan een hogere cross-over frequentie in bivalenten 
van EMCs. 

Ten slotte analyseerden we hoe de meiose zich voltrok in de haploide tomaat (Hoofdstuk 6). 
Ondanks de afwezigheid van een homologe paringspartner treedt er toch synapsis op, zij het met 
gemiddeld maar 3,3 SC segmenten per eel. Presynaptische alignement, zoals in detail beschreven voor 
de wildtype tomaat en de mutanten asb en as5, werd niet gevonden. Verder namen we in de SCs van 
de haploi'de tomaat verschillende afwijkingen waar. Zo vonden we op diverse plaatsen gespleten ACs 
en zagen we ronde wolkerige structuren langs de ACs, die we interpreteerden als morfologisch abnor-
male vroege RNs. Tevens vonden we in de haploid dertien keer zoveel SC segmenten in de profase I 
dan chiasmata in de metafase I. Kennelijk gaat SC-vorming in de haploid niet altijd gepaard met de 
vorming van chiasmata. 
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In dit nawoord wil ik iedereen bedanken die op welke wijze dan ook een bijdrage heeft geleverd aan de 
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onderzoeker kon ontwikkelen. Voor deze goede basis en ook voor al je hulp en ondersteuning bij de 
afronding van het proefschrift ben ik je zeer dankbaar. 

Jannie Wennekes: Het spreekt vanzelf, Jannie, dat ik jou wil bedanken voor alle gezellige momen-
ten, voor je altijd luisterende oor en hulpvaardige handen. Je zorgde voor het reilen en zeilen van ons 
groepje en richtte je daarbij steeds op de mogelijkheden, niet op de beperkingen. Een onontbeerlijke 
eigenschap voor een goede zaakwaarnemer! Ik doe graag nog een laatste beroep op je. 

Henny Verhaar: Henny, jij hebt onverdroten en met veel geduld talloze klussen voor me gedaan. 
De tevredenheid en goedwilligheid waarmee je te werk ging vind ik bewonderenswaardig en uniek. 
Prettig samenwerken is een gave die jij zeker bezit. Dank je wel! 

Drie studenten wijdden een afstudeervak aan de meiose-mutanten. Ronald Meylis, Wim Toon-
ders en Sandra Langeveld: bedankt voor jullie bijdragen. 

Christa Heyting: als promotor was je nauw betrokken bij het onderzoek en altijd bereid mee te 
denken. Ik wil je bedanken voor je stimulerende rol door de jaren heen en je inspanningen in de eind-
fase. 

Verder wil ik collega-cytogenetici Paul Fransz, Xiao-Bo Zhong, Jaap Sybenga, Peter de Boer, Frits 
van der Hoeven, Antoine Peters, Tesfaye Messele en Peter van Baarlen bedanken voor de plezierige 
werksfeer op het lab en voor nuttige discussies. A special word for Elena Mikhailova: Alona, we shared 
several good and a few less fortunate moments in our scientific "carreers". I am very happy that you 
can make it here, to accompany me on my last performance in Wageningen. 

I would also like to thank Dr. Ramanna, Maarten Koornneef, Peter Moens, Denise Zickler, Step
hen Stack, Lorinda Anderson and Karin Schmekel for exchanging experience and for fruitful discussi
ons. 

Ik ben veel dank verschuldigd aan alle ondersteunend personeel. Gerrit van IJmeren, Willem van 
Blijderveen, Jan Laurens en Henk Kuiper: dankzij jullie had ik geen omkijken naar m'n planten en 
waren mijn bezoekjes aan de kas een welkome afwisseling van het labwerk. Jan Maassen en Theo van 
Lent: bedankt voor jullie hulp bij technische problemen. Aafke van der Kooi en Elly van Liempt: 
bedankt voor jullie hulp bij beursaanvragen en andere administratieve zaken. Adriaan van Aelst en 
Sybout Massalt van de vakgroep Plantencytologie en -morfologie: dankzij jullie hulp heb ik veel 
mooie EM-foto's kunnen maken. 
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De vaste kern van het tussen de middag eetclubje Corrie Hanhart, Mirjam van Aalderen, Ton Pee-
ters, Karen Leon, Hetty Blankestijn en Ageeth van Tuinen: bedankt voor de gezelligheid en voor het 
delen van het wereldnieuws. 

Tenslotte het thuisfront; Pa, Ma, Antwan, Agnes en Harrie: jullie hebben alle zinnige en onzinnige 
verhalen uit Wageningen aangehoord en mij aangemoedigd wanneer dat nodig was (Ma: ik ben zeer 
benieuwd naar de lengte van de gebreide das!). Op jullie vragen (Wanneer ben je nou eindelijk klaar 
met onderzoeken? Wat ontdek je nu eigenlijk?) had ik vaak geen passend antwoord. Lees dit boekje 
gerust nog eens na. 

Diana, mijn grootste ontdekking dat was jij. Ik hoop dat we ons motto ("Together we're rich") nog 
lang in ere houden. 
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