
Stellingen 

1. Een zuiver economische doelfunctie stelt hoge eisen aan het model van het proces 
en is daardoor vaak onpraktisch. (Dit proefschrift). 

2. Bij voorbaat een Gompertz curve inbrengen in een dynamisch groeimodel is een 
principieel onjuiste manier van modelleren. 

3. Toestands beschrijving van het menselijk gedrag: 
x = f(x,u,d) 

y = h(x,u,d) 
Hierin zijn de functies/en h erfelijk bepaald, x is het karakter, u de persoonlijke 
beslissingen, d de omstandigheden en y het menselijk gedrag. Dit systeem is 
regelbaar en waarneembaar. 

4. Wetenschap functioned! in onze maatschappij als het moderne orakel van Delphi. 

5. Door de beschikbaarheid van snellere computers is de neiging groot om minder te 
denken en meer te proberen, waardoor de effectiviteit omlaag gaat. 

6. Geloof in de goedheid van de mens geeft blijk van een gebrek aan zelfkennis. 

7. Vertrouwen op God in je dagelijks leven is als het uitbreiden van een korte termijn 
doelfunctie met de resultaten van een lange termijn optimalisatie (Spreuken 3:5-6). 

Stellingen behorend bij het proefschrift "Economics-based Optimal Control of 
Greenhouse Tomato Crop Production' van Frank Tap, Wageningen, 26 September 2000. 
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1 Introduction 

1.1 Greenhouse horticulture in the Netherlands 
In the Netherlands greenhouse horticulture is of great economic and social importance. Its annual 
returns are seven billion guilders of which 75 till 80% is exported. Moreover about 40,000 people 
work in this industry (Anonymous, 1998). Also from an environmental point of view it is very 
important as it uses 5 percent of the total Dutch fossil fuel consumption and the area of greenhouse 
horticulture adds up to over 10,000 ha. In 1997 an official agreement with the Dutch government, 
the covenant "Greenhouse Horticulture and Environment", has been signed by Dutch greenhouse 
horticulture to reduce its environmental load. The main goals of the covenant are (a) an energy-
efficiency improvement of 65% in 2010 compared to 1980, (b) a 72 till 88% reduction of the crop 
protection chemicals compared to the average in the period 1984-1988, and (c) a reduction of the 
emission of fertilisers like phosphate and nitrogen with 75% in 2000 and 95% in 2010 compared to 
1980. 

1.2 The present greenhouse climate control 
The greenhouse climate computers that have become very common in large parts of Dutch 
horticulture, do not only control the climate, but also function as programming memory, in which 
desired and realised climate patterns can be recorded. The software for climate control has been 
developed in a heuristic way. The main control devices in a greenhouse - i.e. the heating system 
and the ventilation windows - are used for both temperature and humidity control. For that reason 
the algorithms contain many if-then rules, partly combined with simple proportional control. In the 
course of time a number of other functions were added, like the control of irrigation, energy 
screens, heating buffers and C02 supply. Based on experience, a number of adaptation mechanisms 
relevant to growing crops were included, like a temperature increase at high global radiation levels. 
Moreover the software takes care of security and protection against extreme conditions. 

A result of this development is that the control software contains several hundreds of settings. The 
settings can be divided into three main categories: those concerned with the setpoint trajectories, 
those concerned with modifications of the setpoint trajectories as a reaction to the actual 
circumstances, and those concerned with the parameters of the underlying controllers. When the 
control equipment is installed the manufacturer has to tune many of these settings. Once in 
operation most growers manipulate about 5 to 20 settings among these to control the greenhouse 
climate. Different growers may use different settings. 

This approach, although a major improvement over manual control, has important drawbacks: (a) 
the setpoint tracking in practice is far from ideal, among other things because of interactions 
between control loops and because of restrictions in the control devices, (b) the setpoint trajectories, 
and especially their adaptations are not linked in a scientific way to the crop behaviour, due to 
which energy inefficient adaptations can occur, (c) the number of settings is that large that the 
system is not transparent, and consequences of the settings, for instance to crop yield or energy 
consumption, are unclear. 
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1.3 The greenhouse crop production optimal control problem 
During the last decades much scientific knowledge has been gathered with respect to greenhouses 
and crops in the form of mathematical models (merely a selection from the Netherlands: Bakker 
1991, Bot 1983, Heuvelink 1996, de Koning 1994, Marcelis 1994, Miguel 1998, Nederhoff 1994, 
Stanghellini 1987, de Zwart 1996). These mathematical models reflect scientific knowledge in a 
quantitative form, thus paving the way towards application of economically optimal control. Such a 
strategy furthermore requires the formulation of a criterion that reflects the desired objectives, to be 
met by the control system, in terms of the behaviour of the greenhouse crop system. Given the 
model and the criterion optimal control comes up with the best possible solution. Other approaches 
to the control of greenhouse climate such as neural nets (e.g. Seginer, 1997) and fuzzy control (e.g. 
Ehrlig et al 1996) use models which hardly rely on scientific knowledge but mainly on data and 
experience and in which the desired objectives are not stated explicitly. Since, in the case of optimal 
control, the model and the criterion are susceptible to interpretation they can be modified relatively 
easy. Therefore the judgement and improvement of the quality of the optimal control system is 
relatively easy and clear whereas both are much more difficult and unclear in the other approaches. 
An additional advantage is that the theory can be applied straightforwardly to non-linear systems. 
Finally many numerical algorithms have been developed to really compute the optimal controls. 

The greenhouse crop production optimal control problem is very complex. First, it contains several 
time-scales: 1 to 2 months at the crop level, 1 to 2 days at the level of soil and some processes in the 
crop and 10 to 20 minutes at the level of the greenhouse climate. Second, its fast dynamics are 
exitated by strongly influencing and fast fluctuating external inputs (the weather), especially the 
global radiation. Moreover, accurate long-term weather predictions are not available. A final 
problem is the absence of on-line crop measurements. To properly control the greenhouse crop 
production all these difficulties must be considered and resolved. 

Past research has dealt with parts of the optimal greenhouse crop production control problem. The 
total problem can be divided into a slow sub-problem, dealing with the crop, and a fast sub-problem 
dealing with the greenhouse. Seginer et al (1998) for instance considered only the slow sub-
problem, whereas Hwang (1993) focussed on the fast sub-problem. Chalabi et al (1996), Ioslovich 
et al (1996) optimise a part of the greenhouse crop system. Among the first who tackles the overall 
control problem is van Henten (1994). He presents a methodology to decompose the system into 
two time-scales despite the presence of strongly influencing and fast fluctuating external inputs. 
According to this methodology first the long-term problem must be solved, then using the results of 
the long-term problem, the short term problem can be tackled. Van Henten applies this 
methodology to lettuce. 

To apply the methodology proposed by van Henten in practice, two additional problems have to be 
solved. The first one relates to the exogenous inputs, i.e. the weather, which for optimal control 
computations must be known over the full optimisation horizon. Secondly, since optimal control is 
essentially open loop, feedback is required to deal with initial state and modelling errors and errors 
due to imperfect weather predictions. In this thesis the two time-scale decomposition of van Henten 
is combined with two types of weather predictions and receding horizon optimal control, and is 
applied to a tomato crop. The combination of these approaches, to the best knowledge of the 
authors, is new and results in a so called Two Time-scale Receding horizon Optimal Control 
(TTROC) algorithm. TTROC is applied to tomato instead of lettuce, because it is a much more 



Economics-based Optimal Control of Greenhouse Tomato Crop Production 3 

important crop and its behaviour resembles that of other important greenhouse crops like sweet 
pepper and cucumber. 

1.4 Goal 
The goal of this research is to develop and test a real-time implementable multivariable optimal 
control algorithm for greenhouse tomato crop production and to compare its performance with that 
of a conventional controller especially with respect to its energy efficiency, its profitability and its 
transparency. 

1.5 Outline of this thesis 
To maximally benefit from optimal control an accurate dynamic model with not too many state 
variables is needed to describe both the crop and greenhouse behaviour. Most crop models from 
literature are either too complicated for control purposes (e.g. Heuvelink 1996, de Koning 1994, 
Jones et al 1991) or they are not accurate enough on a seasonal scale, because they do not describe 
the long-term crop growth dynamics (e.g. Tchamitchian et al, 1992). Moreover crop and 
greenhouse behaviour are mostly described separately. As these models are calibrated separately, 
their mutual influence is not taken into account in the calibration. This separation may very well 
lead to inaccuracies. Therefore chapter two describes the development of a combined greenhouse 
tomato crop production model, consisting of a tomato crop model and a greenhouse model. The 
tomato crop model is derived from the model of de Koning (1994) by reasoned aggregation. The 
greenhouse model is an extended version of the model of Udink ten Cate (1985). First the tomato 
model will be calibrated, and subsequently the greenhouse model, using the model output from the 
tomato model. In chapter three, the calibration and validation of the complete model is presented. In 
chapter four the importance of the fast dynamics in generating the optimal controls in greenhouse 
crop production is shown. Normally, singular perturbation theory (Kokotovic et al. (1986)) is used 
to do this, but because of the strongly influencing fast fluctuating exogenous inputs (i.e. the global 
radiation) this theory can not be applied in this case. 

The method suggested by van Henten (1994) to separate the fast and slow dynamics in the presence 
of strongly influencing fast fluctuating exogenous inputs, is elaborated in this thesis. In chapter five 
a way to solve the fast sub-problem is presented, combining receding horizon optimal control with 
the lazy man weather prediction, resulting in a real time implementable feedback control algorithm 
(TTROC). In chapter six the overall problem is solved including both the fast and the slow sub-
problem. This chapter presents the total solution of the greenhouse tomato crop production control 
problem, combining the long-term solution with the result of chapter five. In chapter seven a 
comparison is made both experimentally and in simulation between the controller from chapter six 
and a conventional greenhouse climate control computer. In experiment the TTROC algorithm 
resulted in a slight increase of crop yield and much less violation of the temperature and humidity 
bounds. In simulation TTROC improves the energy efficiency by 8.5% compared to conventional 
control. Against a 5% drop of crop yield the energy consumption reduces by 12.5%. Extrapolation 
with the assumption that investments in biomass on the plants will finally pay off, suggests an 
average achievable gain in profit of 60%. Also the experiment suggests that the algorithm is robust 
with respect to modelling errors. One of the most important conclusions, presented in chapter eight 
is that the technical feasibility of TTROC of a greenhouse tomato crop production system has been 
demonstrated. The use of scientific models and the explicit economic goal function, has led to many 
insights, which can be presented orderly to the grower. These insights can also be utilised to 
improve conventional control. 
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2 A dynamic model for the optimal control of greenhouse 
tomato crop production 

R.F. Tap, G. van Straten, L.G. van Willigenburg 

abstract: 

Real-time economically optimal control of greenhouse crop production requires the simultaneous 
consideration of temperature, CO2 and humidity inside the greenhouse, and their effects upon the 
crop. A comprehensive dynamic model of low order is presented that is suitable to this end. It 
describes air temperature, heating pipe temperature, virtual soil temperature, CO2 concentration, and 
relative humidity as functions of the control inputs heating valve opening, windward and lee side 
window opening and CCVdosage. In addition, a continuous time big-leaf-big-fruit reduced model 
for tomato growth is developed and incorporated, with fruit development stage, assimilate buffer, 
leaf weight and fruit weight as state variables. This reduced model is obtained by 'reasoned 
aggregation' of an existing large size tomato model. The interaction between crop and physical 
environment by transpiration and CO2 assimilation is taken into account. The main contribution of 
this paper lies in selecting, combining, adjusting and translating significant components of plant and 
greenhouse models into one comprehensive and transparent set of differential equations of the order 
9, which is suitable for optimal control. This paper presents the derivation of the model equations, 
including default parameters. In chapter 3, the calibration of the model will be discussed. The 
model has been used in an actual on-line optimal tomato crop cultivation experiment. 

keywords: greenhouse model, model reduction, optimal control, tomato model, Lycopersicon 
esculentum Mill. 

2.1 Introduction 
At present, greenhouse climate control computers use individual Pi-like or heuristic controllers to 
control greenhouse temperature, humidity and CO2 concentration. The time evolution of the 
setpoints of the individual controllers, and the way in which the setpoints are adapted under 
measured changing weather conditions, are usually, in some form, specified by the grower. These 
specifications are based on his experience. In this way the grower tries to realise favourable crop 
growth conditions throughout the cultivation period. 

Although the climate may be favourable from a plant perspective it may be unfavourable from a 
financial perspective. For instance, the optimal growing temperature for tomatoes is about 21 °C. 
However, on a cold and windy winter day, the heating costs may not counterbalance the revenues 
obtained from maintaining this optimal growing temperature. Maximisation of profit implies 
balancing of costs and revenues. This can be done using an optimal control approach. 

In optimal control, control input trajectories are determined that maximise (minimise) a criterion 
function, subject to a dynamic model of the controlled system. The criterion function is chosen to 
reflect the growers profit, i.e. both the revenues of crop production and the costs associated with 
climate control are taken into account. The dynamic model, which must be represented as a set of 
first-order differential equations, must reflect the dynamics of the greenhouse and the crop in 
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Controls: 
Window opening 
Heating valve opening 
C02 dosage flux 

Disturbances: 
Radiation 
Temperature 
Windspeed 
C02 concentration 
Relative humidity 

Greenhouse climate: 
Temperature 
C02 concentration 
Relative humidity 

I* Crop: 
Fruit weight 
Leaf weight 

Cash flows: 
Revenues 
Energy costs 
C02 costs 

FIG. 1. The greenhouse-crop system. 

relation to the outside weather conditions and control actions (figure 1). 

The physical climate system and the crop system are interconnected. In particular, the CO2 
concentration and the air humidity exert an influence on the crop, but are also actively influenced 
by the crop itself. In view of the time scale differences between the greenhouse dynamics and the 
crop dynamics, these systems are often seen as detached from each other, where the environment of 
the plant - assumed to be controlled in an ideal way by manipulating the control inputs - is seen as 
the input for the crop model. Because the CO2 consumption and evaporation of the crop influence 
the greenhouse climate, for optimal control purposes, the greenhouse and crop growth model cannot 
be separated and must be considered as one. 

The purpose of this paper is to present an integrated dynamic model to describe the growth of 
tomatoes in a greenhouse as a function of the control inputs - window opening, heating valve 
position and CO2 dosage -, and of the external inputs - solar radiation and outside air conditions -, 
such that this model is suitable for on-line optimal control of tomato cultivation. Tomato is chosen, 
because it is a fruit bearing crop, and it is plausible that the results can be transferred to other fruit 
bearing crops such as sweet pepper and cucumber. An important requirement for optimal control is 
that the model should be of sufficiently low order. The model is based on physical knowledge about 
the greenhouse and physiological knowledge about tomato plant growth and behaviour. Mechanistic 
models are chosen, since they offer the possibility to examine and interpret the sub processes of the 
system. The 9th-order model developed in this paper incorporates results from Bakker (1983), 
Hwang (1993), van Henten (1994), de Jong (1985), de Koning (1994), Nederhoff and de Graaf 
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(1993), Nederhoff and Vegter (1994) and Tchamitchian, van Willigenburg and van Straten (1992). 

2.2 Goal function 
In order to study the requirements posed upon the models to be used for optimal control, it is 
instructive to look at the ultimate goal function to be used. In the context of this study, the criterion 
function is given by 

>=\ 
dWH 

PF —£- ~ Pc%nj ~ PHHU -PC-PV~PT \it (1) 

dWH 
where t0 and tf are the begin and end time of the growing season, - is the fruit harvest rate, 

<pinj is the CO2 injection flux, Hu is the heat uptake by the heating system, pF, pc, and pH are the 
prices of fruits, C02 injection and of the heating and finally Pc is the CO2 penalty function, Pv is 
the humidity penalty function and PT is the temperature penalty function. The fruit harvest rate 
depends upon the fruit weight and the temperature. Where the increase of fruit weight on its turn 
depends on light, CO2 and temperature. While light is given by the external radiation, CO2 and 
temperature need to be computed by the model. These quantities are also required for the penalty 
functions of CO2 and temperature, which are included to avoid extreme situations outside the 
validity range of the model. The humidity penalty function is included because there is no way at 
present to explicitly express the effects of air humidity on the crop, and on risks of pests and 
diseases. In practice, the humidity is used as an important tool for the grower to prevent these risks. 
The inclusion of a penalty function requires that humidity levels can be computed by the model. 
Finally, the model should provide entries in order to compute the costs of resource inputs. 

2.3 Greenhouse model 
In the literature many greenhouse models have been presented. Some are first principle models, for 
instance the models by Bot (1983) and more recently by de Zwart (1996), others are transfer 
function models like the models of Udink ten Cate (1983 and 1985) or black box models. Models 
based on first principles often give a detailed description and therefore are of high order. Black box 
models are often relatively simple and of low order. By nature they do not incorporate any direct 
knowledge of the system. As a result they are not suitable for interpretation and adaptation to other 
greenhouse configurations. Furthermore, their range of validity is often very limited, whereas in 
optimal greenhouse climate control extreme circumstances might occur. 

2.4 The greenhouse model of Tchamitchian et al. (1992) 
Vennegoor op Nijhuis (1986) compares the model of Udink ten Cate (1985) and Bot (1983) with 
each other and with measurements. Both models turn out to be equally reliable, whereas the model 
of Udink ten Cate needs much less computing time. Tchamitchian et al. (1992) prefer the model of 
Udink ten Cate, because the number of states is less and because Bot's model needs the effective 
sky temperature as an input, which, most of the time, is not measured. The model of Tchamitchian 
et. al., used for optimal control purposes, is an adapted version of the model by Udink ten Cate. The 
model of Udink ten Cate is obtained by linearising the climate process in the vicinity of a working 
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point and by assuming mainly first-order responses. Tchamitchian et al. neglected the dead times in 
the model of Udink ten Cate and changed the heat input by assuming the changes of the pipe 
temperature are fast enough to consider the pipes to be in a pseudo-equilibrium state. They end up 
with a three state model described by three first order differential equations. The first one is for the 
greenhouse air temperature ( Tg): 

Ct^- = K{L-Tg)+H + kr{T0-Tg)+ks{Ts-Tg)+r1G (2) 

where T0 the outside air temperature, H the heat input (a control), Ts the greenhouse soil 

temperature, G the incoming short-wave radiation, Cg the greenhouse heat capacity, kv the 

ventilation heat transfer coefficient, kr the roof heat transfer coefficient, ks the soil heat transfer 

coefficient and t] the radiation conversion factor. The ventilation heat transfer coefficient kv is not 

a constant but it is a function of the ventilation rate 4>v: 

K=Maircp^ (3) 

where Mair is the air density and cp is the air specific heat. Ov itself is a function of the outside 

wind speed (w) and the window opening rw which is a control variable. 

4>v =K + 6w + vwrw (4) 

Here K, 8 and v are ventilation rate parameters. The soil temperature (Ts) is described by: 

Cs^ = -kXT,-Tg)+kd{Td-Ts) (5) 

Here Cs is the greenhouse soil heat capacity and kd is the soil to soil heat transfer coefficient. The 

model considers two soil layers, the deepest of which has a constant temperature Td. The 

greenhouse air CO2 concentration (C,) is described by the third differential equation: 

V riC 
-^-?h. = <t,v(C0-Ci)+<piaj + R-»P (6) 
Ag dt 

Vg/Ag is equal to the average greenhouse height, C0 is the outside C02 concentration, (pinj is the 
C02 injection flux which is a control variable, R is the respiration of the crop, P is the crop 
photosynthesis and fi is the fraction of the molar weight of CO2 and CH2O. The values of R and 
P result from the crop model. The units of all symbols and the values of all parameters are given in 
the start of this thesis in the Nomenclature. 

2.5 The augmented greenhouse model 
The model of Tchamitchian et al. (Equations 2 till 6) lacks some essential processes and quantities 
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and it does not give a good description of some other processes. For instance it does not describe 
the greenhouse air humidity, whereas this is an important quantity. Firstly it strongly influences the 
greenhouse heat balance, and secondly keeping the humidity within certain bounds prevents pests 
and diseases. So below, those missing processes and quantities will be described. First a more 
accurate description of the ventilation will be given, then the greenhouse air heat balance is 
extended with the transpiration and condensation energy and also the pipe temperature is added to 
describe the heat input from the heating system. Next the added terms are described separately and 
finally the humidity balance is given. 

2.5.1 Ventilation 
The relation for the natural ventilation flux through the windows (equation 3) does not discriminate 
between the windward r^ and lee side window opening rwl, whereas in reality they have very 
different influence upon the ventilation (de Jong, 1990). Therefore equation 3 is replaced by: 

$ „ = 
1 + Xrw, 

w+y/ (7) 

where c , %, C, , | and y/ are parameters determining the ventilation rate. This relation is 
developed by van Henten (1994), and is based on the work of de Jong (1990). The contribution to 
the ventilation due to the temperature difference between inside and outside air is neglected, since it 
is only significant at very low wind speeds. 

2.5.2 Greenhouse air heat balance 
The assumption that the heating system is in pseudo-equilibrium state does not hold and results in 
very rapid changes of the optimal heating. To describe the heat input in a more realistic way a 
differential equation for the heating pipe temperature has been added. Consequently the heating 
term in equation 2 is changed. Furthermore equation 2 is extended with two latent heat terms, to 
describe the influence of transpiration and condensation on the greenhouse temperature: 

Cg^ = K{To-Tg)+a{Tp-Tg)+kr{T0-Tg)+ks{Ts-Tg)+r1G-XE + -^-iMc (8) 

a(Tp -T ) is the heat input from the heating pipes, Tp being the heating pipe temperature and a 

the pipe air heat transfer coefficient. A£ describes the energy needed for the transpiration of the 
crop, where E is the rate of transpiration of the crop and A is the vaporisation energy of water. 
According to the ASHRAE handbook (1993) A is a linear function of the temperature (°C): 

X = l{-l2T (9) 

A 
where I and L are vaporisation energy coefficients. M describes the energy released to the 

e + 1 
greenhouse air by condensation of water vapour at the greenhouse cover, where Mc is the water 
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mass flow as a result of condensation at the greenhouse cover. is the fraction of the 
6 e + 1 

condensation heat transported to the inside air. The introduction of the heating pipe temperature, 
transpiration and condensation, requires that additional relations are derived. 

2.5.3 Transpiration 
The transpiration E is computed by an adapted version of the transpiration model of Penman-
Monteith (Nederhoff and de Graaf., 1993). The model of Penman-Monteith is chosen because it 
does not need the leaf temperature as an input, in contrast to the models of Stanghellini (1987) and 
Jolliet (1992). In this way it saves one state variable, while still being reasonably accurate (Jolliet 
and Bailey, 1992). 

E = —f Ha " «*» (10) 

A 5 + 7(1 + % 
8 

The Penman-Monteith model assumes the leaf area index (LAI) to be one. Basically, the 
evaporation is built up by a contribution from the net absorbed shortwave radiation nr]G and a 
contribution due to the air vapour pressure deficit Dg. s is the slope of the saturated water vapour 

pressure curve, approximated by the polynomial: 

•s = syTg
2 + s2Tg + s3 (11) 

where sl, s2 and s3 are polynomial parameters. pacp is the volumetric heat capacity of air, gb is 
the boundary layer conductance, y is the apparent psychometric constant and g is the leaf 
conductance. All these quantities are assumed to be constants. The vapour pressure deficit of the air 
Dg follows from the difference between the saturated vapour pressure p*g at Tg (Murray, 1967): 

Pg=axe
a*T> (12) 

and the vapour pressure of the air at the prevailing water content pg: 

p g = A ( ? ; + r 0 ^ d3) 

where A is a constant that can be derived from the ideal gas law, T0 is used to convert Tg from °C 

to Kelvin and Vt is the air water vapour concentration. So: 

Dg=pg-Pg (14) 

Nederhoff relates the leaf conductance to the short-wave radiation and the C02 concentration by the 
regression equation: 
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g = g&-g*t*sV*p' (15) 
where g, through g4 are regression coefficients. Because the leaf area index (LAI) in equation 10 
is assumed to be 1, it must be modified to be valid for other values of the LAI. 

qsnnG + rpc„Deh 
E = WL~- H p g6* (16) 

{ * ) 
Since LAI is not part of the model, equation 10 has been augmented with qWL and rWL, where WL 

is the leaf dry weight, q and r represent the different sensitivities of the radiation and the vapour 
pressure deficit to a change in leaf dry weight. This augmentation is a linearisation of the true 
behaviour which will be saturated for large WL. 

2.5.4 Condensation at the greenhouse cover 
Detailed modelling of the vapour transport from and to the cover would require a dynamic 
description of the cover temperature, the humidity inside the greenhouse, the possible reevaporation 
of condensate and the present amount of condensate against the cover. To calculate condensation, 
the humidity inside the greenhouse (V )̂ and the cover temperature (Tc) are needed. The humidity 

concentration is a state variable that will be described by a differential equation (equation 27). In 
order to keep the model as simple as possible, the cover temperature is calculated as an algebraic 
average between outside temperature and inside temperature (Bakker, 1983): 

m E T0+-T (17) 
e + 1 

In this way the influence of the heat capacity of the cover and the long wave radiation from the sky 
are ignored. This approximation is allowed, since Bakker shows that, although instantaneously the 
condensation may be wrong, on average the condensation is correct on a daily scale. Condensation 
at the greenhouse cover takes place when the cover temperature (Tc) is below the dewpoint of the 
greenhouse air. Introducing the humidity ratio as the mass of water vapour per unit mass of moist 
air, condensation takes place when the humidity ratio at saturated vapour pressure at the cover (W*) 
is less than the humidity ratio of the greenhouse air (W ) . The superscript * indicates that the 
considered quantity is at saturated vapour pressure. To compute W*, first the saturated vapour 
pressure (p*c) at Tc is computed according to equation 12 (replacing T by Tc). The vapour 
pressure in the greenhouse air (pg) is calculated according to equation 13. When we know the 
vapour pressure the humidity ratio can be calculated as follows: 

W=^E- (18) 
Pom - P 

where a) is the humidity ratio parameter and palm is the atmospheric air pressure. Substituting p*c or 
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pg for p, W* respectively Wg can be computed. Using W* and Wg the condensation rate (Mc) is 

calculated as: 

\MC = mx\rg - r c[
2 (ws - W') if Wg > W' 

\M=O if Wg<W* 
(19) 

where mATg -Tc\ is the mass transfer coefficient, and w, and m2 are the mass transfer coefficient 

parameters (Kimball, 1986; Monteith and Unsworth, 1990). In the condensation process 
simultaneously water and energy are transported. At the moment the water condensates, the 
condensation energy is released to the surrounding. That is why the condensation is part of both the 
temperature equation (equation 8) and the humidity equation (equation 27). 

2.5.5 The heating system 
By taking the heat input as one of the control variables the dynamics of the heating system are 
neglected. Since measurements show that the time constant of the heating system is of the same 
order of magnitude as that of the greenhouse air, the greenhouse system dynamics will be 
influenced noticeably by the heating system dynamics. Therefore the model is augmented by an 
equation for the heating pipe temperature Tp (see figure 2): 

PCPVP^=PcMTpi-Tj+ApPG-APa{Tp-Tg) (20) 

which is an approximation, since the real heating pipe is a distributed parameter system. The water 
in the heating pipe is assumed to be a perfectly mixed volume with temperature Tp: 

« <Ph .Th 

V 
1 T„ t 

<P>Tpi 

3& 

<Ph.Tpo <P.Tt po 

' .T B 

1 T A 
K 

FIG. 2. Water flows and temperatures in the heating system. 
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T -+T 
T = - £ f— (21) 
" 2 

where Tpi is the incoming and T is the outgoing water temperature. Both Tpi and Tpo are 
dependent variables that will be expressed as a function of the state variables of the system (e.g. Tg) 
and the independent inputs (e.g. the boiler water temperature Th). In equation 20 p is the water 
density, Cp is the specific heat of water at constant pressure and V is the heating pipe volume. The 
second term on the right in equation 20 is the heat supplied to the heating system by the boiler, 
where*/) [m3 s"1] is the water flow that is pumped through the heating system. The last term 
represents the radiant heat input from the sun, where /? is the heat absorption efficiency and G is 
the outside short-wave solar radiation. This term is included since measurements showed that the 
pipe temperature was always higher than the greenhouse temperature, also when the heating valve 
was closed and the sun was shining. Moreover, in calibrating the model only a good fit was 
obtained when this term was included in the model (Chapter 3). The control variable in this model 
is the mixing valve opening. It is assumed that the flow ((ph) of water from the boiler through the 

mixing valve is proportional to the relative mixing valve opening (rh): 

<PH = W (22) 

where the incoming flow of water in the mixing valve (<p' [m3 s"1]) is supposed to be independent of 

rh. Figure 2 shows that Tpi is a result of the mixing of two flows of water, respectively with 

temperatures Tpo and Th (boiler water temperature). Using the law of conservation of heat the 

following expressions are obtained to express the unknown Tpi and T into known model or input 

values: 

T _Tpo(<p-rh<p')+(Thrh<p') 
lpi - ^ Vi) 

Combining equations 21 and 23 results in: 

2 
Tpi-Tpo=-^—{Th-Tp) (24) 

2-2--1 

Using equation 20 and 24 the heating energy input to the system, a major cost quantity for the 
optimal control of the system, can be described in one of the following ways: 

Epin=pCp\cp{Tpi-Tpo)dt 

In the third term of equation 20 Ap is the outer surface area of the heating pipes and a is the heat 
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transfer coefficient between the heating pipe and the greenhouse air, so AP(X\Tp —Tg) is the heat 

flow from the heating pipes to the greenhouse air. As the mechanism of heat transfer between the 
pipes and the air is by convection, a itself also depends on the temperature difference between the 
heating pipe and the air (derived from de Jong, 1985): 

«=u)/*+#r T.\ (26) 
p 

The values of v and T depend on the geometry of the heating system and the rest of the 
greenhouse. 

2.5.6 Humidity mass balance 
The greenhouse air vapour content is needed to describe the condensation and transpiration, that are 
part of the greenhouse air heat balance (equation 8). Moreover the vapour concentration is of 
interest in its own right, because it is an important variable to control the risk of pests and diseases. 
Therefore the last state is the greenhouse air vapour content. Because it is assumed that the ground 
area is covered with plastic and reevaporation of condensate from the greenhouse cover is 
neglected, the only source of vapour in the vapour balance is the crop transpiration. Vapour removal 
takes place through both condensation and ventilation, therefore the following balance equation is 
used: 

^ = ^L(E-*v(Vt-V0)-Mc) (27) 
dt Vg 

with Vj and V0 representing, respectively the inside and outside absolute humidity concentration. 

The condensation term Mc only considers condensation on the greenhouse cover, not the 
condensation on the plant, since during normal operation condensation on the plant will not occur. 
Elimination of this restriction would require the explicit modelling of the temperature of the plant 
parts. This is not done, since it would result in a significant increase of the model order. 

The differential equations for Tg (equation 8) , Ts (equation 5), Tp (equations 20 and 24), C, 

(equation 6) and Vt (equation 27) along with the accompanying algebraic equations constitute the 

complete physical greenhouse climate model. 

2.6 Tomato model 
The essential processes in a crop, needed to describe the fruit harvest rate, are photosynthesis, 
distribution of assimilates and growth and maintenance respiration. Photosynthesis describes the 
production of assimilates and is a function of radiation, leaf temperature, CCVconcentration, 
humidity and LAI. The assimilate distribution describes the distribution of the assimilates among 
the different plant parts, like roots, stem, leafs and fruits. It is assumed to be controlled by the 
instantaneous and average temperature of the different plant parts, the average radiation and the 
amount of fruits and vegetative units. Growth respiration is proportional to growth, that in turn 
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depends on the amount of available assimilates and the temperature. Maintenance respiration is the 
combustion of assimilates needed to maintain the plant. It is a function of the root, stem, leaf and 
fruit dry weight and the temperature. Radiation, temperature, (^-concentration and humidity can 
be seen as input for the plant. Consequently the remaining quantities must be calculated by the 
model i.e. the dry weight and temperature of the roots, stem, leafs and fruits, the LAI, the average 
temperatures and the average radiation. 

In the literature there are several tomato models available that describe the relationship between the 
yield and the greenhouse climate. A major drawback is their size. TOMGRO (Jones et al., 1991) for 
instance contains 69 states and the model of de Koning (1994) more than 300 states for a full grown 
plant, which is far too many for control purposes. Another major drawback of the existing models is 
the fact that they are discrete time models with a time step of one day. Therefore it is hard to use 
them in the on-line implementation of an optimal control scheme with a horizon shorter than a day. 
What is needed is a sufficiently low order continuous time model or a discrete time model with a 
sufficiently small sample time. 

In order to construct such a model from existing knowledge the model of de Koning (1994) is taken 
as starting point, since it gives a comprehensive description of the distribution of assimilates over 
the various plant parts. The model reduction is done by 'reasoned aggregation', in order to maintain 
as much of the mechanistic description as possible. Another interesting option to arrive at reduced 
models is to generate time-series models by applying system identification techniques on data 
generated by simulating sophisticated tomato models (Young and Lees,. 1994), like TOMGRO, or 
the models of de Koning or Heuvelink (1996). The drawback of such a model is that its state 
variables are no longer directly related to the processes in the plant. Therefore such a model is 
harder to interpret and extrapolate. 

Based on these considerations a so called 'big leaf, big fruit' model is constructed, which means that 
separate fruits or leafs will not be considered. The plant is assumed to consist of only one fruit and 
one leaf. Doing so, the model states will still have a physical meaning and can be judged 
qualitatively and simulation results can be evaluated and compared with measurements performed 
on parts of the system. 

2.7 The tomato model of de Koning 
The model of de Koning describes both the distribution of assimilates among the different plant 
parts and the organogenesis and development. The model consists of a set of difference equations 
with a time step of one day. The assimilate production, along with temperature sums and radiation 
sums are used as an input to the model. The model gives a good quantitative description of tomato 
growth, but it does not adequately describe fruit abortion. The model describes the plant growth 
since anthesis of the first fruit. The initial condition for the vegetative dry weight is required as an 
input. The tomato plant consists of fruits and vegetative units. The tomato fruits are organised in 
trusses and to every truss belongs one vegetative unit, where a vegetative unit consists of the stem 
and leafs between two trusses. On average a vegetative unit contains 3 leafs. Every truss is 
described by 2 states namely the truss number and the percentage of fruit-set. Every fruit is 
described by 6 states namely: the average temperature since anthesis of the fruit , the number of 
days after anthesis of the fruit , the solar irradiance received by the crop averaged over the first 
three weeks after anthesis of the fruit, the fruit developmental stage, the fruit dry weight and a state 
indicating the existence of the fruit. Every vegetative unit is described by 4 states: the vegetative 
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developmental stage, the vegetative dry weight, the average temperature since the origination of the 
vegetative unit and a state indicating the existence of the vegetative unit. There are 4 overall plant 
states: the 24-h mean air temperature, the cumulative adaptation factor to the availability of dry 
matter, the dry matter available for growth and the plant's physiological age. For a full-grown 
tomato plant the total easily adds up to over 300 states. For a tomato plant with 6 trusses, with 8 
fruits on every truss, the number of states would be: 6x (4+ 2 + 6* 8)+ 4 = 328 states. 

To determine the vegetative and fruit growth rates, de Koning computes the total absolute sink 
strength SA of the whole plant and compares this with the available amount of assimilates A at the 
end of every day. When SA < A the plant parts get what they ask for and the rest of A is stored in 
the assimilate buffer. When SA > A, A is distributed among the different plant parts according to 
their relative sink strengths. The total absolute sink strength is the sum of the absolute sink strengths 
of every fruit and vegetative plant part. The absolute fruit sink strength is calculated for every single 
tomato and depends on the truss number, the fruit position within the truss, the fruit developmental 
stage, the solar radiation received by the crop averaged over the first three weeks after anthesis of 
the fruit, the average solar radiation received by the crop over the first three weeks after anthesis of 
the first flower of the first truss, the 24-h mean air temperature, the average temperature since 
anthesis and an adaptation factor to the plant's amount of dry matter available for growth. The 
function used for this calculation is the first derivative of a Gompertz growth curve. So the 
vegetative and fruit growth rates do not depend on the fruit or vegetative weight. 

2.8 Model order reduction 
The modification of the model by de Koning into a big-leaf-big-fruit model that can be used for 
cultivation control requires two major steps. First, the leafs, trusses and fruits have to be aggregated 
into single leaf and fruit units. Second, since the model only describes the distribution of assimilates 
over the various plant parts, the model has to be enhanced by a photosynthetic production equation 
in order to generate the amounts of assimilates available for fruit and leaf growth. 

The basic conceptual scheme of the reduced model is shown in Figure 3. Assimilates are produced 
by photosynthesis (Pg) and are stored in an assimilate buffer (B) . From the buffer the assimilates 

are distributed among the different plant parts: the fruits (WF), the stem, the leafs (WL) and the 
roots. The partitioning terms are derived from the model of De Koning, by aggregating and 
simplifying so that they only contain states and inputs of the aggregated reduced model. 

On first sight only two states remain in the reduced order tomato model, namely the fruit dry weight 
and the leaf dry weight. However, to describe the assimilate distribution a third state is needed, the 
assimilate buffer. Finally to describe the harvest of fruits the average developmental stage is needed 
as a fourth state as will be shown. 

The model describes the flow of assimilates in a tomato plant (Figure 3). gFWF is the fruit growth 
rate and the total vegetative growth rate is defined by: 

8vWv=-gLWL (28) 
z 
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where Wv is the sum of the leaf weight and the stem weight, while gLWL is the leaf growth rate and 

1-z 
8IWL is m e s t e m growth rate, where z expresses the fraction of the leaf weight relative to the 

z 
total vegetative weight (z < 1). It is assumed that the overall vegetative growth rate is equal to the 
leaf growth rate (gv= gL). In this way, stem and roots do not appear as separate state variables, 
without discarding the resources needed for them. This is acceptable, because stem and roots only 
have a minor influence on photosynthesis and on the distribution of assimilates. The conversion of 
assimilates to fruits and leafs costs some assimilates, the growth respiration, reflected by / and v, 
the fruit and vegetative assimilate requirement quotients ( / and v> l ) . It is assumed that 
respiration (R ) proceeds at the expense of the assimilate buffer except when the buffer is empty. At 
that moment structural matter from the leafs and the fruits will be respired. This is different from 
the model of de Koning, where the assimilate buffer respires, never the fruits or leafs themselves. 
At the end of every day de Koning first calculates the respiration, then the remaining assimilates in 
the buffer are distributed among the fruits and the leafs. Also the harvest is described differently: 
the fruit harvest rate (hFWF) and the leaf harvest rate (hLWL) are described by a separate harvest 
model. Here the harvest rates are assumed to be proportional to the fruit dry weight and the leaf dry 
weight. The harvest coefficients hF and hL depend on the greenhouse air temperature (equations 47 
and 48). To simplify the model it is assumed that the temperature of the various plant parts equals 
the air temperature. Most of the time this will hold, but during times of high transpiration or high 
radiation considerable deviations can occur. Therefore in the calculation of the transpiration 
(equation 16) implicitly an analytic relation for the leaf temperature has been used, that takes the 
radiation into account. 
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FIG. 3 Block diagram of the reduced order tomato model 
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The model of de Koning uses the so called relative sink strength to model the partitioning of the 
assimilates. The available assimilates are distributed among the different plant parts at the end of 
every day. In optimal greenhouse climate control it is convenient to know the fruit dry weight and 
leaf dry weight at every moment, therefore a continuous distribution model is needed. To do this, at 
every moment the available amount of assimilates must be known, along with the demand for 
assimilates from the different plant parts. When the buffer B is empty the assimilate flux generated 
by photosynthesis Pg is distributed according to the relative sink strength among the different plant 

parts. When B is bigger than zero or when P is bigger than or equal to the total potential growth 

rate of the plant, every plant part grows at its potential growth rate. The assimilate surplus is stored 
in the assimilate buffer. When possible, the relations for the discrete distribution model are also 
used for the continuous distribution model. Often the instantaneous behaviour is not known, 
therefore it is assumed that the relations that hold for the average temperatures also hold for the 
instantaneous temperatures. In the following the differential equations of the tomato model are 
presented. 

2.8.1 The assimilate buffer 
The mass balance for the assimilate buffer B is: 

dB 
dt g 

wA 
fgFWF+vgL 

z 

( w \ 
-b 

W, 
rFWF+rL-^ 

V Z J 
(29) '_L_ 

J 

where P is the gross photosynthesis, b is a buffer switching function to be discussed below, / is 

the fruit assimilate requirement quotient, gF is the relative fruit growth rate, rF is the relative fruit 
respiration rate, v is the vegetative assimilate requirement quotient, gL is the relative leaf growth 
rate, rL is the relative leaf respiration rate and z is the leaf fraction of vegetative dry weight. So 

W 
fgFWF is the amount of assimilates needed for the growth of the fruits and vgL —Ms the amount of 

z 
assimilates needed for the growth of the vegetative plant parts. The assimilate buffer is filled by the 

W 
photosynthesis and emptied by the total plant growth rate fgFWF + vgL — and by the plant 

z 
W 

respiration rate rFWF + rL —-. The total plant growth rate consists of the fruit growth rate fgFWF 
z 

W 
and the vegetative growth rate vgL —-. The plant respiration rate consists of the fruit respiration 

z 
W 

rate rFWF and the vegetative respiration rate rL —-. By the introduction of z it is assumed that there 
z 

are constant ratios between leaf dry weight, stem dry weight and root dry weight. The reasoning 
behind this is that a plant is a self regulating system, that tries to keep these ratios constant 
(Heuvelink, 1996). 



Economics-based Optimal Control of Greenhouse Tomato Crop Production 21_ 

2.8.2 Photosynthesis 
In the literature many detailed models are available to describe photosynthesis (e.g. Farquhar, 
Caemmerer and von Berry. (1980), Gijzen (1992)). To keep the model as simple as possible, a very 
simple model, namely the empirical net-photosynthesis model of Nederhoff (1994), is chosen as a 
starting point: 

Pn = Pl + P2 * ^ r + PsL (3°) 
p3 + I Pt+C 

where p{ to ps are regression parameters, / is the incident PAR (photosynthetic active radiation), 
C is the C02 concentration expressed in ppm (C, (equation 6) is expressed in g/m3) and L is the 
LAI. This photosynthesis model may be wrong for high CO2 concentrations, since the 
measurements on which it is based did not contain any high C02 concentrations. Moreover it is only 
valid for L -values greater than 1. For the translation of G to / the following relation is used: 

I=r)tnppGG (31) 

where rj represents the radiation loss at the cover, mp converts the units from Watt to jimol and 
pG is the PAR to global radiation ratio. The conversion of C, to C is done by: 

106ff, 
c = ——'—(Tg + T0)c, (32) 

MC02Pa,m 

where Rg is the gas constant, Mco is the molar weight of CO2 and T0 is the absolute zero 

temperature. Equation 30 depicts the net photosynthesis Pn, i.e. the difference between the gross 

photosynthesis P and the maintenance respiration R: 

P„ = Pg-R (33) 

where R can be deduced from Pn by taking / = 0. So by subtracting R (equation 37) from Pn in 

equation 30, Pg can be calculated. This results in: 

/ C 
P,=P2 — (34) 
' F2p3 + Ip4 + C 

However, in doing so, the correction factor for leaf area contained as an empirical additive term in 
equation 30 is lost. Therefore equation 34 must be modified to hold for all L. Since the leaf area 
index is not a state variable of the reduced model it can not be used to modify equation 34, so leaf 
weight is used instead. An empirical multiplication factor is formulated, which saturates at high leaf 
weights, and which makes the photosynthesis almost proportional to leaf weight at low leaf area 
indices: 
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rwL^ 

l = -

1 + 

(35) 

where m and wR are the LAI-correction function parameters. / is a monotonously rising function 
of WL, with a minimum of 0 and a maximum asymptote of 1. I is made a function of WL and not 
of L, since L is not explicitly modelled. 

Combining the previous results in a modified P : 

P„=PJ— — (36) 
p3 + I p4 + C 

where p3 and pt keep their original values and Pm (the maximum gross photosynthesis) is 

modified compared to p2. 

2.8.3 Respiration 

When / is taken 0 in equation 30, Pn is equal to minus the maintenance respiration. 

R = -pi-p5L (37) 

As can be seen equation 30 seemingly leads to a respiration loss which is independent of 
temperature and which decreases when leaf area increases. In reality the maintenance respiration 
will increase when plant weight increases and it will also increase with temperature. Therefore, the 
respiration is described by more realistic Qio relationships (de Koning, 1994): 

rF = mFQR io (38) 

T —T 
rL = ™LQiT™~ (39) 

where mF is the fruit maintenance respiration coefficient and mL is the leaf maintenance 
respiration coefficient, both at reference temperature TR. QR is the Q10-value for the temperature 
effect on the maintenance respiration at reference temperature 7^. The total respiration (R ) is the 

W, 
sum of the fruit respiration (rFWF) and the vegetative respiration (/}, — ). For the vegetative 

z 
respiration it is assumed that rL also holds for the stem and the roots. 

2.8.4 Buffer switching function 
Physically, when B = 0, the buffer cannot be emptied any further. Consequently, at that point, plant 
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growth plus growth and maintenance respiration will become equal to the photosynthesis. When the 
buffer is empty and the photosynthesis is zero, plant growth will come to a halt, and respiration 
energy is assumed to be drawn from the various plant parts (cf. Equations 41 and 42). In order to 
obtain this behaviour in the model, the buffer switching function b is introduced. A straight
forward idea is to choose the variable b to be 0 when 5 = 0, and 1 otherwise. This behaviour is 
depicted in Figure 4. A severe disadvantage of this choice is that the function is discontinuous, 
which will cause numerical problems in the simulation. Moreover, it is not very likely that a real 
plant will truly show this kind of on/off behaviour. Therefore, a continuous function is used instead 
(Figure 5): 

b = l- -ft,B (40) 

where bi is the buffer switching coefficient. Its value can be chosen such that equation 40 rapidly 
approaches the asymptotic value of 1. 

2.8.5 Fruit and leaf weight 
Because there is a strong correlation between LAI and leaf dry weight, LAI and leaf dry weight are 
not both state variables. On the other hand there is no simple analytic relation relating leaf dry 
weight and LAI. Since the model describes the mass flow of assimilates and because some essential 
processes depend on the leaf dry weight, leaf dry weight is chosen to be a state variable. Based on 
the same argument also the fruit dry weight is a state variable of the model. Therefore the second 
and third differential equation give a description of the dynamic behaviour of the fruit dry weight 
WF and the leaf dry weight WL: 

dWF 

dt 
= bgFWF-(l-b)rFWF •hFWF (41) 

dWL 

dt 
= bgLWL-(\-b)rLWL-hLWL (42) 

where bgFWF is the fruit growth rate and bgLWL is the leaf growth rate, (l-b)rFWF and (\.-b)rLWL 

represents the loss of fruits and vegetative parts by maintenance respiration in the case of lack of 
assimilate reserves. Finally hFWF is the fruit harvest rate mdhLWL the leaf harvest rate. 

b[-
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FIG. 4. Switching function 
FIG. 5 Continuised switching function 
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When all fruits or vegetative units are considered as a whole, only an average sink strength of every 
fruit or vegetative unit can be distinguished. The total fruit and vegetative sink strength is then 
obtained through multiplication by the number of vegetative units or fruits. Consequently when we 
assume an average vegetative unit and fruit weight, the vegetative growth and fruit growth are 
proportional to the vegetative weight and fruit weight, divided by these average weights. Therefore 

W 
the vegetative growth rate and fruit growth rate in equation 29 are represented by gL —- and 

z 
gFWF . In case of a full-grown tomato plant these assumptions are not unrealistic. 

Simulations show that in the reduced order model the actual values of gL and gF must be chosen 
such that (most of the time) the assimilate buffer is empty at the end of the night and (most of the 
time) it is not empty at the beginning of the night. This way the values of gL and gF determine the 
length of the (night) period during which assimilates are available for distribution over leafs and 
fruits. The growth rate used by de Koning is relatively large for small and almost full-grown fruits, 
whereas it is relatively small in between. On a young plant only small fruits grow, and therefore gF 

has to be bigger for small plants. On a mature plant, fruits of all different ages grow and therefore 
gF must be smaller. Furthermore the growth rate gF increases with temperature. Equation 43 is the 
most simple equation that exhibits this behaviour: 

8F=(fl-f2DP)QG^ (43) 

Here / , and f2 are fruit growth rate coefficients and DP (equation 46) is the plant developmental 
stage. QG is the Qio-factor for the temperature effect on the fruit growth rate, T0 is the reference 
temperature for the temperature effect on growth. The ratio between gL and gF is the same as used 
by de Koning and is determined by the temperature (as opposed to Heuvelink (1996)): 

^ = v,ev'(7'-v>) (44) 
8F 

vl, v2 and v3 are the vegetative fruit growth ratio parameters. 

2.8.6 Harvest model 
To determine the revenues information is needed about the harvested amount of fruits. Since fruit 
harvesting regulates the total fruit dry weight and leaf picking regulates the total leaf dry weight, 
harvesting and picking are essential processes and should therefore be incorporated. No forcing 
function is used to describe the harvest of fruits and picking of leafs, since the harvest and picking 
time and the weight of the fruits and leafs that will be harvested and picked depend on the past 
climate and the state of the plant and, as a consequence, they may vary. Therefore the following 
harvest model has been developed, which is a modification of the harvest model by de Koning. 

In practice fruits are harvested when they start to turn red, which in the model of de Koning, is 
indicated by the fruit developmental stage of every individual fruit (DFj). Since the reduced order 
model is a so called 'big fruit' model, the information on the separate fruits is lost. Only a mean fruit 
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developmental stage for all fruits (Dm) can be defined. This Dm can be deduced from the original 
individual fruit developmental stages in the following way: 

Dm=^~N (45) 

Here i is the number of the fruit, WFi is the fruit dry weight of fruit i and N is the total number of 
fruits. Simulations show that Dm has a minimum of 0 and a maximum of about 0.7. Instead of Dm 

the plant developmental stage (Dp) is introduced, defined as the normalised version of Dm, such 
that its minimum is 0 and its maximum is 1. Dp is called plant developmental stage since it is 
assumed to describe both the fruits and the leafs. Simulations show that the behaviour of DP and 
DFi is almost the same. Therefore the same function is used to describe the plant development rate 
as de Koning used for a single fruit. A difference with the developmental stage for a single fruit is 
that, Dm is reduced by the harvesting of fruits which reached a DFi = 1. From equations 41 and 45 
it can be deduced that the reduction rate equals hF. Combining this with the plant development rate 
from de Koning gives, after normalisation, the fourth differential equation of the tomato model: 

^ = d1 + d2\n\ — \-d4t-h (46) 
dt ^ 3 J 

where h is the harvest rate coefficient and d,, d2, d3 and d4 are plant development rate 
parameters. The values of these parameters are deduced from de Koning. As an example the 
deduction of the nominal value of d4 is discussed in the Appendix of this chapter. 

As mentioned before fruit harvesting starts when the first fruits start to turn red, or to put it 
differently, when the first DFI becomes one. Simulation of equation 45 shows that Dm starts at 
zero, then rises to about 0.7 and later stays constant at the same level. At the moment Dm reaches 
its threshold value of 0.7 the first fruits are harvested. Correspondingly when Dp becomes one, it 
does not mean that all fruits are ripe, but that there are some fruits that can be harvested. From that 

moment on, Dp will be kept constant, or to put it differently —— will be kept equal to zero. So the 
dt 

harvest coefficient (h) becomes: 

h = 0 i fO<D P <l 

f T \ i - * n i ( 4 7 ) 

-d4t if Dp =1 

The fruit an leaf harvest rate coefficients are both proportional to h: 

h = <i, + d2 In 
V 3 y 
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F yF (48) 
K = yLh 

where yL and yF are the leaf and fruit harvest rate coefficient parameters. In doing this, the fact is 
neglected that the leafs of a vegetative plant part are often harvested about one week before the 
fruits of the corresponding truss. So it would be more accurate to use a different development stage 
threshold value for the harvest of fruits and the picking of leafs. Furthermore the harvest model of 
equations 47 and 48 assumes the harvest to be a continuous process, that takes place 24 hours a day, 
whereas in fact it is a discrete process, that will happen during certain periods of time. In practice, 
daily the ripe fruits are harvested and about once a week three leafs are picked from every plant. 
Because picking and harvesting takes place that often the continuous model exhibits almost the 
same behaviour. Finally it follows from equations 41, 42, 47 and 48 that the total weight of 
harvested fruits (WH ) and the total weight of picked leafs (WH ) can be described by: 

'i 
KF=fhFWFdr (49) 

'I 
WHl=)hLWLdT (50) 

2.9 Discussion 
By nature a greenhouse is a distributed parameter system, i.e. with infinitely many states. Dynamic 
models describing tomato crop growth have been presented in the literature, with over 300 states. 
Based on several mechanistic high-order models, in this paper a 9-th order model, suitable for 
optimal control purposes, was presented, which describes the main behaviours observed in tomato 
crop growth in greenhouses. The nominal parameter values were deduced from the high-order 
models. 

The greenhouse model is an augmented version of the model of Tchamitchian et al. (1992). The 
greenhouse model describes the air temperature, CO2 concentration, humidity, heating pipe 
temperature and soil temperature of a greenhouse. The control variables are the windward and lees 
side window opening, the heating water mixing valve position and the CO2 injection flux. It is 
assumed that the greenhouse is heated by one single pipe system and sheer CO2 is injected. The 
greenhouse air is assumed to be a perfectly mixed fluid and the ground to be covered with plastic. 
There are no screens inside the greenhouse neither are there any heating tanks. Furthermore the 
dynamics of the cover temperature are ignored, describing them by an analytical equation, 
neglecting the long wave radiation. Also condensation on the cover is described by a simple 
analytic relation. The model is only valid under normal operating conditions, so for extreme 
temperatures or wind speeds, it may become less reliable. 

The tomato model is a simplification of the model of de Koning derived by reasoned aggregation. It 
gives a description of the overall behaviour of the plant. It describes the total leaf and fruit dry 
weight, and the weight of picked leafs and harvested fruits, but it does not describe which fruits are 
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picked or how much a particular fruit weighs. Neither does it describe the number of fruits, nor the 
formation of fruits, trusses or leafs. Condensation on the plant parts is not described either, as the 
fruit and leaf temperature are not explicitly modelled. So implicitly it is assumed that hardly ever 
condensation on the plant will occur. Finally the fruit quality is not part of the model. The model 
has only a limited range of validity since the model is based on the model of de Koning (1994), that 
is only valid in a temperature range of 17 to 23 °C and with an electrical conductivity in the root 
environment between 0.3 and 0.9 S.m"1. Moreover it is assumed that the grower takes proper care of 
the plants and that watering and nutrition of the plants is adequately. 

In developing the reduced-order model from high-order models the vital issues are the selection, 
translation and combination of information, and compromising between accuracy and the model-
order. The steps taken to arrive at the reduced-order model have been motivated carefully, where 
possible. Of course they are still susceptible to criticism and further investigation. Especially the 
assimilate buffer and the different plant growth rates, which are important processes in terms of 
optimal control, we believe, need further investigation. Also neglecting condensation on different 
plant parts may result in unrealistic optimal control patterns in some cases. Still, compared to some 
previous models developed for optimal control purposes, this model guarantees a much more 
accurate description. 

To actually apply the model in optimal control experiments it needs to be calibrated. The 
calibration, based on a sensitivity analyses, is presented in a companion paper. In yet another paper 
results of optimal control experiments with the calibrated model will be reported (Chapter 6). 
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2.11 Appendix: An example of parameter deduction 
Equation 46 is deduced from equation 3.4.8. of de Koning: 

FDRf(TxFDS).t = 0.0165 + 0.0012xlnRADFDR - 0.00005xTRUSS + 
ln(Tt/20)x(0.03923 - 0.2127XFDSM + 0.4505xFDSt.i

2 - 0.2400xFDS,.i3) (A.l) 

where FDRf(TxFDS) is the fruit development rate (d"1) calculated with 'temperature x FDS' 
interaction, index t represents the number of days after anthesis, RADFDR is the average solar 
irradiance received by the crop (MJ m"2 d"1) averaged over three weeks after anthesis of the fruit 
considered, TRUSS is the truss position (truss number), Tt is the 24-h mean temperature (17-27 °C) 
and FDSt is the fruit development stage (0<FDSt<l) with FDS, = FDSn + FDRt. d4 is deduced 
from the term: 

-0.00005XTRUSS (A.2) 
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To compute TRUSS two other equations are used. First the equation describing the flowering rate 
(equation 3.2.3. de Koning): 

FRt = are + 0.1454xln(Tt) - O.OOIOXAM (A.3) 

where FR, is the flowering rate (trusses d"1) at t days after anthesis of the first truss, OFR is a cultivar 
dependent parameter and At is the plant's physiological age expressed as the number of the 
flowering truss. Secondly an equation is needed that describes the evolution of the plants 
physiological age (equation 3.2.3 de Koning): 

A, = At., + FRt (A.4) 

Assuming that: 

At = FR„xday (A.5) 

where FRa is the average flowering rate and assuming that the temperature is on average 21 °C and 
the effective season length is 275 days, it follows from equation A.3, A.4 and A.5 that FRa = 0.13 
day "'. So the average growing period of a truss is l/FRa=7.72 days. Using this TRUSS can be 
approximated: 

TRUSS = = r i A £\ 
7.72 6.67-105 (A-6) 

where t is the time in seconds. The value of d4 follows from equation A.2 and A.6. 



30 A dynamic model for the optimal control of greenhouse tomato crop production 



Economics-based Optimal Control of Greenhouse Tomato Crop Production 31 

3 Calibration and validation of a dynamic model for the 
optimal control of greenhouse tomato crop production 

R.F. Tap, G. van Straten, L.G. van Willigenburg 

Abstract 
This paper describes the calibration and validation of a greenhouse tomato crop production model 
developed for optimal control purposes. The calibration of the greenhouse and crop model has been 
performed sequentially, first the tomato model is calibrated, then the greenhouse model is calibrated 
using the outputs of the tomato model as inputs. This way the mutual influence of the different sub
models is partly taken into account in the calibration process, resulting in a more accurate 
description of the overall system behaviour. The calibration parameters are chosen, based on insight 
in the model and a sensitivity analysis of the model outputs to a parameter change. The calibration 
results are evaluated using the parameter covariance matrices and their eigenvalue decomposition. 
The different sub-models are validated using independent experimental data. The calibration and 
validation results show that the heating pipe model performs well, the performance of the 
greenhouse model and of the tomato model is reasonable. The overall model gives a reasonable 
description of the continuous time behaviour of greenhouse tomato crop production for the use in 
on-line optimal control. 

keywords: greenhouse model, Lycopersicon esculentum Mill., tomato model, calibration, validation 

3.1 Introduction 
In this paper the greenhouse tomato crop production model presented in a companion paper 
(Chapter 2), will be calibrated and validated. The overall model can be divided into three interacting 
sub-models. The first sub-model is the greenhouse model, describing the greenhouse climate, i.e. 
the greenhouse air temperature, soil temperature, CO2 concentration and humidity concentration. 
Within this model a separate sub-model is distinguished to describe the heating pipe temperature. 
The controls influencing the greenhouse climate are the CO2 injection flux, the windward and lee-
side window opening and the heating water mixing valve position. The exogenous inputs are the 
outside global radiation, the temperature, the CO2 concentration, the humidity and the wind-speed. 
The third sub-model is the tomato crop model describing the growth of a tomato crop and the 
harvest of tomatoes as influenced by the radiation and the greenhouse climate. 

Usually the calibration of the greenhouse climate model and of the crop model are distinct 
activities. However, in calibrating a greenhouse climate model, the evaporation flux and the CO2 
consumption and production of the crop need to be known. As these quantities are difficult to assess 
experimentally, model-based relationships can be used to estimate these fluxes, but the result is that 
the calibration of the greenhouse climate depends upon the parameters of the crop model. Hence, in 
this paper, greenhouse climate and crop model are calibrated and validated in conjunction. First the 
crop model is calibrated using global radiation and measured greenhouse climate as inputs. Next the 
combined greenhouse-crop model is calibrated for the greenhouse climate parameters, thus giving 
account to the interactive nature of the greenhouse-crop system. 
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The model in this paper is obtained through combining different, mostly scientific, models form the 
literature. As a consequence of this procedure the meaning of the parameters in the original models 
and also the model structure may change. Therefore the model obtained in this way needs to be 
calibrated. E.g. the heat transfer coefficient in the model of Tchamitchian et al.(\992), which is the 
starting point for the present greenhouse model, also accounted for the latent heat influence. In our 
model the latent heat is modelled explicitly so the neat transfer coefficient will be different. The 
tomato model is a continuous-time model which is a reduced version of a complex discrete-time 
model. During the reduction process the model structure and the meaning of existing parameters are 
changed and new parameters have been introduced. 

To out knowledge, this is the first time a greenhouse and a tomato crop model are calibrated 
simultaneously resulting in a joint greenhouse tomato crop production model. In this paper, first the 
relevant theory on calibration and validation will be presented. Then the theory will be applied to 
the tomato crop model and the greenhouse climate model. The results and the encountered problems 
will be discussed. As the results rely heavily upon the measurement data, many problems are related 
to data problems (e.g. sensor failure or lack of crop measurement data). In Appendix 1 the list of 
symbols used is given and in Appendix 2 the model equations are stated. For a further description of 
the model and the symbols one is referred to the companion paper (Chapter 2). 

3.2 Calibration and validation 
Calibration of a model is the process of altering model parameters to get a better fit between 
simulated and measured data. The parameters chosen for calibration are those, (i) that are uncertain, 
(ii) that effect the model behaviour most (sensitivity) and (iii) that effect the model behaviour in the 
way that is needed to obtain a better fit between measured and simulated data. 

3.2.1 Calibration parameter selection 
The calibration parameters can be selected in a formal way, or by reasoning, i.e. by looking at the 
role of the parameters in the model. Formally the extent to which every parameter influences the 
process behaviour and in what way it effects the process behaviour, can be examined using a 
sensitivity analysis. The time evolution of the model sensitivity (S(t)) of all states with respect to 
all parameters is defined as: 

5 ( 0 - ^ (1) 
dp 

where x(t) e 1R" is the time evolution of the state vector, p e JRm is the parameter vector and t 
denotes time. From this it follows that S(t) is an nxm dimensional sensitivity matrix, where every 
element represents the time evolution of the derivative of one state to one parameter. Frank (1976) 
derives the following first order differential equation as an approximation for the time evolution of 
S(t): 

at ox dp 

with 
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S(ta) = 0 (3) 

where the right-hand side of the output equation is defined by / : 

— = f{x,u,p) (4) 
dt 

where u are the controls which do not depend on p. Often it is more convenient to look at the 
sensitivity of the outputs, rather than the states. If the outputs are calculated from the states by 

y = g(x,u,p) (5) 
then the output sensitivities are linked algebraically to the state sensitivities by 

s =dy_=dg_s + dg_ ( 6 ) 
y dp dp dp 

To be able to make a good comparison between different sensitivities the relative sensitivity Srel is 
calculated: 

*«-*!>-JJLE. (7) 
y dp y 

A drawback is that this can yield numerical problems when y is very small or equal to zero. 

Parameter ranking is done on the basis of 
'/ 

J = JK,\dt (8) 

were t0 is the initial time and tf the final time. 

To make the final selection also the course in time of the sensitivities and knowledge about the 
certainty of the nominal parameter value is used. 

3.2.2 Calibration 
Once the calibration parameters are selected they are optimised in a least squares sense (Bard, 
1974). The actual calibration is done in MATLAB using the multivariable, non linear, optimisation 
function fmins (MATLAB, 1992) to minimise the weighted sum of squared errors (J): 

J = HtwXu^P)-yhM)J 
/?* = argmin/(p) 

where wh is the relative weight of each output, y^t^p) is the simulated output yh at time U and 

yhj{tj) is the jth replicate of measurement yh at time r„ L is the number of outputs, M is the 

number observation instants (times), and Af is the number of replicates at each observation instant 
(time), p is the set of calibration parameters and p* are the parameters minimising J(p). The 
different weights wh determine the relative importance of the various outputs in (9) with respect to 
each other. 
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3.2.3 Evaluation 

To judge the result of the fitting procedure the covariance matrix Vp of the estimates is of interest 

(Bard, 1974): 
Vp=E(8p*8p*T) (10) 

where p* is the parameter vector that minimises equation 9. 8p* indicates a shift in p* due to a 
change in measured values. So Vp is the expectation value of (dp*)2 over all possible measured 
values. Equation 10 can be approximated by (Bard 1974): 

( M V" 

p 2 e ^YitfYit,) (11) 

Here H * is the Hessian and the right hand term is the first order approximation, where a\ is the 
residual error variance defined by: 

1 
a]=-

LMN-k EXXnfoa,^*)-^^))2 (12) 
A-l ,'=l j=\ 

LMN is the number of measurements and k is the number of estimated parameters. Y(tt) is a 
matrix composed of first order derivatives of the model output with respect to the calibration 
parameters: 

'dyM <?y,(p dyW 
dPi dPi dpP 

dhih) dy2(t.) dy2{tt) 
Y{tt)- dp1 dp2 dp, (13) 

dyLih) dyM dyL(tt) 
dp} dp2 dpp 

In order to facilitate the comparison of the relative accuracy of the parameters, V is normalised for 

the size of the calibration parameters: 

V„ = CM *"' Cl == CnN-lCT
n = -a2

FC„ p p p p p 2 p 2Y(ti)
TY(ti) Cl (14) 

where C is a diagonal matrix with the reciprocal of the nominal parameter values on the diagonal: 

C. 

1 
0 

1 

0 

0 — '•. : 
Pi 

: '•. '•. 0 

• 0 J-
Pn 

0 

(15) 
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The correlation matrix R is obtained by normalising V with respect to its diagonal elements: 

R„(iJ)= h
 Vpil'j) f (16) 

^P(U)VPUJ)\ 

where ;' and j run from 1 to the number of calibration parameters. When Rp(i,j) is close to one or 

minus one, parameters i andy are strongly correlated and it is hard to estimate them separately. 

Dominant directions of parameter uncertainty can be found from an eigenvalue decomposition of 
Vp defined by: 

VpV=VA (17) 

where A is a diagonal matrix of eigenvalues and the columns of matrix V are the corresponding 
eigenvectors. The columns of V represent an orthogonal set of linear combinations of the calibration 
parameters. When a diagonal element of A has a relatively large value, it means that the 
corresponding eigenvector, that is the corresponding column of V, has a relatively large 
uncertainty. Moreover when one element of this eigenvector is relatively large it means that the 
corresponding parameter is relatively uncertain and only big variations in this parameter will 
significantly influence the sum of squared errors. 

Even when it is possible to obtain a good fit when calibrating a model on a given data set this does 
not guarantee that the model is satisfactory, especially when the number of calibrated parameters is 
large compared to the data-set. The ultimate evaluation of the calibration, is validation, that is the 
comparison of simulation results with measurements that have not been used to calibrate the model. 

3.2.4 Greenhouse crop production model 
Due to their interaction, ideally, all sub-models of the greenhouse crop production model should be 
calibrated simultaneously. However, this is not possible, since there are no data-sets available that 
include measurements of all states, controls and exogenous inputs over a sufficiently long period of 
time. And even if these data-sets would be available it is practically impossible to carry out the 
calibration, because of the large number of calibration parameters. Yet there are data-sets available 
for tomato crops and data-sets for the greenhouse. Using these data-sets it is possible to calibrate the 
separate sub-models sequentially partly taking into account their interaction. As the greenhouse 
model needs input from the tomato crop model, first the tomato model, and after that the 
greenhouse model must be calibrated. Since the time constants of the tomato model are much larger 
than those of the greenhouse model the tomato model can be simulated with a considerably larger 
time step than the overall model while the simulation period of the greenhouse model can be much 
smaller than that of the overall model. Doing so much less data is needed and with respect to the 
tomato model, different data-sets can be used, not necessarily restricted to the same greenhouse. So 
also data collected by others can be used. This is a benefit as greenhouse tomato crop growth 
experiments are very costly and time consuming. Since the tomato model is a non linear model, 
which behaves differently in different stages of the crop development, a complete growing season 
of about 300 days is needed to cover the whole validity range of the model. As for the greenhouse 
model, the data-sets have to be from the considered greenhouse. 



36 Calibration and validation of a dynamic model for the optimal control of greenhouse 
tomato crop production 

To calibrate the tomato model, two data sets collected by Heuvelink (1996), are used. Both sets 
contain greenhouse climate data and the accompanying plant data regarding the same cultivar 
Counter. These data sets are not suitable for calibration of the greenhouse model, because they are 
not from the same greenhouse compartment that will be used for the optimal control experiment and 
because they do not include the outside climate and controls. To calibrate the greenhouse model a 
data set with data from the outside weather, the controls and the inside climate regarding that 
greenhouse are used. The crop processes which influence the greenhouse model, are simulated by 
the tomato model. 

The greenhouse model is divided into two sub-models, one describing the heating pipe temperature 
and one describing the remaining greenhouse states. First the heating pipe model is calibrated using 
the measured greenhouse air temperature as an input. This subdivision is introduced for two 
reasons. In the first place to keep the calibration simple. Secondly to obtain a better heating pipe 
model, as in this way the heating pipe model is not influenced by possible weaknesses of the 
greenhouse climate model. 

The greenhouse model has 42 parameters, the heating pipe model 6 and the tomato model 23. 
Sensitivity analysis has been used to select the calibration parameters for the tomato crop model. To 
save time a combination of reasoning and trial and error was used to select the calibration 
parameters for the climate and heating pipe model. 

In the calibration it is assumed that the models are standard reduced models, which means that the 
independent variable, in this case the time, is assumed to be measured precisely. 

3.3 Tomato crop production model 
In the calibration of the tomato crop production model a comparison is made between the model 
outputs and the measured plant outputs, i.e. the fruit dry weight, the leaf dry weight, the fruit 
harvest dry weight and the leaf harvest dry weight (WF, WL, WH and WH ). 

3.3.1 Sensitivity analysis 
The calibration parameters are selected by performing a sensitivity analysis using real greenhouse 
climate data. Several data sets from different parts of the year are available. Simulations show that 
when the model is calibrated for one data set it does not accurately describe tomato crop growth for 
other data sets. Probably this is caused by the small number of data-points. Every data-set consists 
namely of ten to fifteen measurement instants of four crop outputs, so every data set contains only 
about forty data points. Compared to the number of calibration parameters, this is very few. To 
increase the number of data points two data sets are used. Since the model will be used in an 
optimal control experiment during summer and autumn, two data-sets from Heuvelink (1996) 
covering this period (experiment 7 and 8) are chosen for calibration. 
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FIG. 1 Relative sensitivities of WF, WL, WH and WH to a change in Pm, using the weather data from 
experiment number 10 from Heuvelink (1996). 

In the sensitivity analysis the data from experiment number 10 from Heuvelink (1996) have been 
used. As an example figure 1 shows the time evolution of the relative sensitivities of the fruit and 
leaf dry weight and of the cumulative harvested weight of fruits and leaves to a change in parameter 
Pm. As can be seen Pm 's biggest influence is on the fruit weight. This is because the main part of 

the assimilates goes to the fruits. The influence of Pm has a maximum at about t = 40 days. At that 

time a one percent increase of Pm results in a six percent increase of WF. There are two reasons for 
this: (i) when the photosynthesis is higher, more leaves will be produced and consequently the 
photosynthesis will get even higher. As a result more assimilates are available for fruit growth, (ii) 
Fruit growth is proportional to the present fruit weight, so when more fruits are produced in the 
past, consequently also more fruits will be produced in the future. Similar arguments apply to the 
leaves, but as a result of different values for the specific fruit and leaf growth rate coefficients 
(equation A.37), and the difference in initial fruit and leaf weight and the difference in fruit and leaf 
harvest, Sp" (t), the relative sensitivity of state WF with respect to parameter p, is both larger and 

shaped differently than S^L(t). The sensitivities of WHf and WH are equal to zero up to the 
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outputs 

WF 

wL 
DP 

W
H, 
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2.19-103 

6.92-102 
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8.01102 

2.73 -102 

3.96-103 
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6.91102 

6.57-102 
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3.79-103 

3.81103 

8.95103 

Vi 

1.80-104 

1.12-104 
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1.02-104 

6.53103 

4.59-104 

m 

1.98-104 

1.25104 
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8.45-103 

5.16103 

4.59-104 

WR 

2.23-104 

1.62-104 

0 

6.27-103 

4.71-103 

4.96-104 
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5.09-103 

3.53-103 

5.53-103 

4.07-104 

4.19104 

9.68-104 

d3 

5.89103 

4.08-103 

6.39-103 

4.71-104 

4.84-104 

1.12105 

V3 

5.75-104 

3.58-104 

0 

3.24-104 

2.09-104 

1.47-105 

Table 1 Integral absolute sensitivities of five tomato output variables (fruit dry weight WF, leaf dry weight 

WL, plant developmental state Dp , harvested fruit dry weight WH and harvested leaf dry weight 

WH ) to eight tomato model parameters and their total value per parameter. 

moment that the harvest starts at t = 55 days. Since the harvest of fruits and leaves is proportional to 

the weight of fruit and leaves, S^ (55) = S]T' (55) and S^"1 (55) = SjT' (55). Since WHf and W„L 

are the cumulative harvest weights, and the harvest rate is proportional to WF and WL, SP"F (t) and 

SP"L (t) behave like the average value of the Sp" (t) and SpL (t) after t = 55days. This appears from 

the graphs in figure l.c and l.d. They are much smoother, and change slower than the graphs in 
figure La and l.b. 

Table 1 shows the five parameters chosen for calibration together with three additional parameters 
with their sensitivity according to equation 8. It turns out that the vegetative fruit growth parameter 
v3 (equation A.37, determining the temperature dependence of the assimilate distribution) and the 
plant development rate parameter di (equation A.25 and A.38 determining the temperature 
dependence of the harvest rate and of the plant development rate) are very sensitive parameters, but 
since they are chosen reference values (de Koning, 1994), their value is exactly known, so they will 
not be used for calibration. WH and WH are very sensitive to a change in the plant development 

rate parameter dx, since dx not only determines the harvest rate but also the moment harvesting 
starts (equation A.38 through A.40, the harvest rate equations). This results in extremely high 
relative sensitivities around that moment, but not afterwards. The sensitivities to the LAI-correction 
function parameters m (not shown in table 1) and wR (equation A. 30, LAI-correction function) 
yield similar time evolutions, so using both of them for calibration is superfluous. As equation A.30 
is completely new compared to de Koning (1994), at least one of them needs to be calibrated, and 

since wR is the most sensitive one, 
wR is chosen. Disregarding their 
signs, the time evolutions of the 
relative sensitivities to a change in 
maximum photosynthesis Pm and wR 

are very similar, only for t> 80 days 

Table 2 Nominal and calibrated values of the tomato model ^ **•• 
calibration parameters 

parameter 

yF 

yL 

*« 
P„ 

v, 

nominal value 
0.5983 [-] 
0.5983 [-] 
32.23 [g.m"2] 
194.7 [g.s'.m"2] 
1.725 [-] 

calibrated value 
1.636 [-] 
0.4805 [-] 
17.80 [g.m"2] 
118.7 [g.s-'.m"2] 
1.377 [-] 
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change in wR, Sw"L{t), is almost zero, whereas SP"L(t) is almost one. Because of this different 
influence both Pm and wR are chosen as calibration parameters. Furthermore, compared to 
Nederhoff (1994), the photosynthesis function has been adapted and consequently the 
photosynthesis parameters probably need to be changed. Pm is also chosen because it is the 
maximum photosynthesis (equation A.31), which is an important quantity. Moreover the 
corresponding parameter p2 from Nederhoff (1994) shows considerable variation between different 
experiments. The vegetative fruit growth ratio parameter v{ directly influences the distribution ratio 
between fruits and leaves (equation A.37), as can be seen from the opposite signs of S*L(t) and 
S*F(t) and furthermore the tomato output variables are quite sensitive to a change in v: (Table 1). 

This combination makes it a suitable calibration parameter. 
Finally the fruit and leaf harvest coefficient parameters yF and yL (equation A.39 and A.40) are 
chosen as calibration parameters, since they determine the fruit and leaf harvest, that are modelled 
in a completely different way than in the model of de Koning (1994). 

The zeros in table 1 represent the fact that Dp does not depend upon any state of the plant model, 

but only on the greenhouse temperature. 

3.3.2 Calibration 

The weights wh in equation 9 are all set equal to one since every yh represents the weight of a part 
of the plant or a harvested part of the plant. Dp is not used because there are no measurements 
available. Table 2 shows the calibration results. It shows that unlike the a priori assumption yF and 
yL are unequal. Apparently a larger fraction of the fruits is harvested than of the leaves. This can be 
explained by the fact that the absolute fruit growth rate (gFWF) is bigger than the absolute leaf 
growth rate (gLWL). So to regulate the amount of fruits yF must be bigger than yL (equation A.23 
and A.24). The nominal values of Pm and wR are determined using only a two week period of the 
1994 experiment and are therefore not very certain. Still the order of magnitude of the nominal and 
calibrated values is the same. The nominal value of v{ is directly derived from de Koning. The 
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0 
0 
0 
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0.0147 
0.8529 
-0.5184 
-0.0500 
0.0340 

0 
2.8393 

0 
0 
0 

0.9951 
-0.0280 
-0.0167 
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-0.0716 

0 
0 

0.2406 
0 
0 

-0.0833 
0.0549 
0.1378 
-0.8522 
-0.4947 

0 
0 
0 

0.0765 
0 

0.0331 
-0.0186 
0.0075 
-0.4945 
0.8651 

0 
0 
0 
0 

0.0166 

Table 3 The covariance matrix, its eigenvalue decomposition and the correlation matrix of the tomato 
model for the parameters yF, yL, wR, Pm and vt for experiment 7 and 8 
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calibrated value is 20% lower than the nominal value. This may be caused by the change from a 
discrete-time model to a continuous-time model. The model of de Koning used the average 
temperature over one day as an input to compute the ratio between the potential fruit and vegetative 
growth rate, whereas the reduced model uses the instantaneous temperature. As most of the time the 
buffer is only filled during day time, the reduced model uses a higher effective temperature. To 
compensate for this, the calibrated value of v, is lower than the nominal value. 

Figure 2 and 3 show the calibration results. The circles are the measurements and the lines are the 
simulation results. Every circle represents one replicate of a measurement, i.e. measurement of one 
plant. In figure 2, until the moment the harvest starts (day 50) the WF and WL are a little too high, 
after that they are too low. Until day 80 the simulation of WH gives a good fit, after that it is too 

low. Finally the fit of WH is not very good. In Figure 3, especially until the harvest starts, the 

simulation results of WF and WL are too high, later they give a good fit. WH gives a good fit, 

whereas WH is too low. In both figures, at the start of the simulation, B is too big compared to WL, 

later the value of B is more realistic. Furthermore both figures show that Dp gives a good 
description of the moment the harvest starts. 

Table 3 shows Vp, V , A and Rp for experiment 7 and 8. In A the first two diagonal element are 

relatively big so the corresponding eigenvectors of V (the first two columns of V) are relatively 

uncertain. Since in both eigenvectors the second and third element are relatively big, the second and 
third parameter, yL and wR, are relatively uncertain. Because, in the experimental data, the leaves 
are picked about once every four weeks (figure 2 and 3), it is impossible to obtain a good fit for the 
leaf harvesting model which assumes continuous leaf harvesting. In reality the leaf harvest is 
approximately continuous, as the leaves are picked at least once a week. Furthermore, the moment 
the first leaves are picked is assumed to be equal to the moment the first fruits are harvested. In 
reality the picking of leaves starts about one or two weeks earlier. Since the model gives a good 
prediction of the moment the fruit harvest starts, the prediction of the moment the leaf harvest starts 
is one or two weeks late. Consequently the estimated value of yL (equation A.40) is relatively 
uncertain. wR determines the WL dependence of the photosynthesis (equation A.30). This 
dependence only manifests when WL is small, not when WL is big. Because most of the time the 
plant is full grown, wR is hard to determine, therefore also wR is relatively uncertain. 

The third diagonal element of A is more than ten times smaller than the first two, so compared to 
the first two, the third eigenvector is relatively certain. Hence yF is relatively certain, as the third 
eigenvector is almost completely determined by yF. This means that the assumption of continuous 
harvest is better for the fruits than for the leaves. This is to be expected, since in the experimental 
data the fruits are harvested three times a week and the leaves are picked once every four weeks, 
whereas in the model both are described by a monotonously rising function. Furthermore there is no 
time lag as in the case of the picking of leaves. The last two diagonal elements of A are another 
three and fourteen times smaller. Accordingly Pm and V[ are relatively certain. Like wR, Pm 

determines the photosynthesis, but unlike wR, the influence of Pm manifests for all WL. As a result 
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Pm is relatively certain, v, is the most certain parameter, indicating that equation A.37 gives a good 
description of the ratio between the relative fruit growth rate and the relative leaf growth rate. 

3.3.3 Validation 
The tomato model is calibrated using two summer data sets (set 1: 5-7-'88 till 13-10-'88, set 2: 5-7-
'90 till 27-9-'90). This is the same period of the year that the optimal control experiment is carried 
out. The validation data are from almost the same period of the year (3-8-'88 till 23-11-'88). 

Figure 4 shows the validation results. Figure 4.b clearly shows that the model gives a good 
description of the fruit growth. After day 50 the fruit weight is a little high. This may be due to the 
fact that the predicted fruit harvest starts about one week late (figure 4.e). Apart from this shift in 
time, the fruit harvest prediction is reasonable. During the whole simulation period the predicted 
leaf weight is a little too high (figure 4.c). The larger difference between day 43 and 64 is partly 
caused by the discrete picking of leafs at day 43, while the model is continuous and the predicted 
leaf picking starts only at day 56 (figure 4.f). Overall the validation results for this data set are quite 
good. Using a different data-set with autumn/winter measurements the results are less good, 
suggesting that the temperature dependence of the assimilate distribution needs further attention. 
Maybe not only Vj but also v2 and v3 need to be calibrated. Probably the results can be improved 
further by simultaneous calibration on data sets from all seasons. 

3.4 Greenhouse model 
As already explained, first the heating system model has been calibrated and secondly the 
greenhouse climate model (i.e. greenhouse temperature, soil temperature, CO2 concentration and 
humidity concentration). The heating system can be calibrated separately, since it is a subsystem, 
whose inputs and outputs and state are measured. Once the heating system model is calibrated, the 
outputs of the heating system model and of the tomato model will function as inputs in calibrating 
the greenhouse model. Then the heat balance, the C02 mass balance and the vapour mass balance 
will be calibrated simultaneously. 

3.4.1 Heating pipe model 
First of all the parameters that will be calibrated must be chosen. Because there are only six 
parameters in the heating pipe model no formal sensitivity analysis is performed for the heating 
pipes. Combining trial and error with prior knowledge about the uncertainty of the parameters, the 
calibration parameters are selected. It turns out that a good fit can be obtained by calibrating the 

following three uncertain 
parameter I nominal value I calibrated value parameters. Firstly the air-

v 
P 
T. 

0.7478 [W.m-VC1] 
MO"4 [-] 
2.0 [°C] 

1.524 [W.m'VC"1] pipe heat transfer coefficient 
6.323-10"5[-] parameter v from equation 
5.733 [°C] A. 19, the exact value of 

Table 4 Nominal and calibrated values of the heating pipe calibration P 
parameters v, p and T for the data of March 30th and geometry of the heating pipe 
»_ i_Ti.mr.-i construction. Secondly the 
March 31st 1994. , . . . . . 

heating pipe radiation 

http://i_Ti.mr.-i
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absorption efficiency coefficient j8 defined in equation A.3, because it is a new parameter 
compared to the model of Tchamitchian et al., whose value is unknown. The third calibration 
parameter is introduced to correct for sensor failure. When the heating is turned off, the incoming 
temperature, Tpu and the outgoing temperature, Tpo, of the heating system water should be almost 
equal after about one hour. However, the measurements show a difference of about 4 °C , that lasts 
for several hours. As a correction the temperature difference Tg -T in equation A. 19 has been 

augmented with a correction temperature Tc, so a(7g -T ) becomes: 

" T M ? Tp+Tc\{Tg-Tp+Tc) (18) 

The third calibration parameter is this correction temperature Tc. 

The data used for calibration of the model come from the experiment in 1994 growing the same 
cultivar of tomatoes in the same compartment of the same greenhouse (Tap, van Willigenburg and 
van Straten, 1996) as in the 1995 greenhouse optimal control experiment (Chapter 7). In the 1994 
experiment the greenhouse climate was measured every minute and every seven days destructive 
plant measurements were performed. Every minute new controls were applied to the greenhouse, 
that were computed by an optimal control algorithm. The controls were not measured but for the 
calibration it is assumed that the realised controls equal the computed ones. The longest period from 
the 1994 experiment that the control was working consecutively, is used for calibration. This is a 
period of one and a half day from March 30 till March 31 1994. Table 4 shows the calibration 
results. The calibrated value of v is more than two times the nominal value and Tc is almost three 
times its nominal value of 2.0 °C (equation A.20). These two may be correlated, because when Tc 

is bigger the heat transfer from pipe to air is smaller and when v is bigger the heat transfer is 
bigger. This can also be concluded from Rp in table 5. The nominal value for /? is a rough 

estimate. Therefore the difference between the nominal and calibrated value of /3 is not alarming. 

Table 5 shows the covariance matrix V of the calibration of the pipe temperature. The third 

diagonal element of the eigenvalue matrix A is relatively big. So the corresponding eigenvector of 
V , i.e. the third column of V , is relatively uncertain. Since this eigenvector is mainly determined 

by fS, this means that P is relatively uncertain, indicating that the radiation influence on the pipe 

-0.7583 -0.6475 -0.0751 
-0.0678 0.1929 -0.9789 
-0.6483 -0.7372 0.1901 

104 xVn p 

0.6175 0.4817 0.2392 
0.4817 6.0397 -1.1043 
0.2392 -1.1043 0.7007 

0 4xA: 
0.8650 

0 
0 

0 
0.2017 

0 

0 
0 

6.2911 

RP-

1 
0.2495 
0.3636 

0.2495 
1 

-0.5368 

0.3636 
-0.5368 

1 

Table 5 The covariance matrix, its eigenvalue decomposition and the correlation matrix of the heating 
pipe model calibration parameters v , ;8 and Tc for data of March 30th and March 31st 1994. 
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temperature is not described very well by this model. The first two diagonal elements of A are 
small compared to the third element. Since both corresponding eigenvectors are mainly determined 
by the first and third parameter, it means that v and Tc are relatively certain. The non-diagonal 
elements of Rp are quite small, indicating that it is possible to estimate every parameter separately. 

In figure 5 the dashed line is the value of T derived from the measurements according to equation 

A.20 and the solid line is the simulation of Tp after calibration. As one can see the calibration yields 

good results. Especially the slow changes are well described, the high frequencies are described less 
accurately. The deviation between calibration and measurement at f = 1300 is due to unmodelled 
non-linearity's in the valve characteristics. Comparing Tp with Tg, it shows that Tp is always 

higher than T, even when the heating valve is closed, indicating that the term Ap@G in equation 

A.3 can not be left out. The heating pipe model is validated together with the greenhouse climate 
model. The results will be discussed in the next section. 
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3.4.2 The greenhouse climate model 
The greenhouse climate model is calibrated the same way as the heating system model. Firstly the 
states used for calibration are chosen. Secondly the calibration parameters are chosen. Thirdly an 
optimisation criterion is selected and finally the actual calibration is performed. 

The heat exchange between greenhouse air and soil is determined by the greenhouse air temperature 
and the top soil temperature. This is described by the first order model equation A.2. In reality the 
soil system is a distributed system. The graphs of Tg and Ts in figure 6 show that the measurements 

of Tg and Ts are almost in counter-phase. The maximum phase shift of equation A.2 is only 90 

degrees however, instead of the observed 180 degrees. As the observed soil temperature can not be 
described by equation A.2, Ts is not used for calibration, only the remaining model states, i.e. Tg, 

C, and //, are used for calibration. Ts does not describe the soil temperature at the sensor position, 

Ts serves to describe the heat flow between greenhouse air and soil. 
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The inputs of the greenhouse model are the plant states that influence the greenhouse climate, 
namely the fruit dry weight and the leaf dry weight, furthermore the outside weather and the 
controls. Here the controls are the window opening, the relative heating valve opening and the CO2 
injection flux. During the calibration T is simulated, so the measured Tp is not an input. By 

simulating T, all model interactions are taken into account. 

3.4.3 Processing of the measurements 

The dry bulb temperature, Tg, and the wet bulb temperature, Tw, are both measured by a 
thermocouple inside a ventilated measurement box in the middle of the greenhouse compartment. 
From these the inside relative humidity is calculated. First the saturated vapour pressure at T, p*g, 

according to equation A. 10 and the humidity ratio at saturated vapour pressure at Tg, W*, 

according to equation A. 16, must be calculated. W* is used to compute the humidity ratio for dry 

bulb temperature T and wet bulb temperature^ (ASHRAE, 1993): 

15 
time [h] 

FIG. 7. Greenhouse temperature calibration results. — measurements, -

30 

simulations. 
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IV = 
" gw 

(w,-(w4-w3XK-w2(rg-rw) 
(19) 

Where wl through vv4 are humidity ratio parameters. The inverse relation of equation A. 16 yields 
the vapour pressure p : 

v W 
PgW~a> + Wgw 

g" 

the relative humidity of the greenhouse air VgR is the percentage ratio between p*g and p : 

VgR = \W^ 

(20) 

(21) 

The absolute humidity is the product of the relative humidity and the absolute saturation humidity at 
Tg, p*g. Combining this with equation A.l 1 yields: 

Vs*Pg V = 
l04A{Tg+T0) 

(22) 

where A is an absolute saturation humidity parameter. Since wet bulb measurements do not work 
when it is freezing, the outside relative humidity is not determined by wet bulb temperature 
measurements. So a Vaisala capacitive humidity sensor is used. For calibration purposes the 
measured relative humidity is adapted to 0.93xHR, since the measured values of the outside 
relative humidity exceed the 100 %, which is physically impossible. The value of 0.93 is chosen 
such that the maximum value of the adapted relative humidity is about 98 %. Based on this 
corrected outside relative humidity the outside absolute humidity is calculated. So the exact 
absolute value of the outside absolute humidity is unsure, but qualitatively its time evolution will be 
correct. 

The C02-concentration inside and outside are both measured with an Uras3G infra red absorption 
CCVmeter, which is a quite accurate device. Because there is only one instrument available for the 
whole greenhouse, it measures all compartments one at a time. Consequently every 10-12 minutes 
one measurement is available for every compartment. Also a Siemens non dispersive infrared C02 

analyser is available for the inside measurement. This device has a bias, that slowly changes in 
time, but it gives continuous measurement results. Since the time interval during which has been 

measured is quite short (1796 min.), it is assumed that the 
bias is a constant. This bias has been determined, by 
comparing the URAS and Siemens measurements. The by 
this offset corrected Siemens C02 measurements, are used 
for the calibration. There are no minute by minute plant 
measurements available, so the interpolated plant 
measurements are used as the value of the fruit dry weight 
and the leaf dry weight. 
The weighting parameters wh (equation 9) are taken 

quantity 

T, 
C, 
v, 

wh 

7.64-10"3 [°C2] 

8.29 [pprn2] 

4.72-103 [kg"2.m6] 
Table 6 Greenhouse model calibration 
weights. 
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proportional to the reciprocal of the variance of y/,. It is assumed that the variance of v/, is 
proportional to y/,2. This yields: 

w, = 
['yldt 

(23) 

Table 6 shows the resulting values of Wh. 

The yh, with h running from 1 to 3, denote respectively T , C, and V̂ . t0 and tf are the starting 

and end time of the calibration period. 

3.4.4 Calibration 

To save time, the choice of the parameters that will be calibrated is based on the function of the 
parameters in the model, prior knowledge about the uncertainty of the parameters and on trying 
different combinations of parameters. When the greenhouse volume, Vg, is chosen as a calibration 

parameter, the calibration yields an unrealistically big volume of 20 times the true volume. The 
result is a very smooth time evolution of C, and H,, with only very small fast fluctuations, whereas 
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the data set shows fast changing signals as a result of strongly fluctuating window openings. When 
the greenhouse volume is set on its true value the time evolution of the simulation includes the fast 
fluctuations, but the sum of squared errors has a much bigger value. In the simulation it is namely 
assumed that the computed window openings equal the real ones, but in reality there are some 
dynamics and a time lag between computations and the actual control action. Also the greenhouse 
air dynamics are ignored by the static ventilation model. The original value of the greenhouse 
volume yields the right dynamic behaviour and a relatively high sum of squared errors. So despite a 
low wsse, a large V yields a very bad fit. Therefore V. is not used for calibration. 

The problem in choosing the right calibration parameters is to find a combination of parameters that 
yields a good fit for both the CO2 concentration and the humidity. It is easy to get a good fit for both 
greenhouse temperature and CO2 concentration or both greenhouse temperature and the humidity 

15 20 25 30 
time [h] 

FIG. 9. Simulation results of the heating pipe temperature, using the simulated greenhouse climate as an input 
instead of the measured greenhouse climate. measurements, simulations 
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parameter 

r 

nominal value 
0.01 [m'.g1] 
0.01 [mlg1] 
0.7 [-] 

0.0021 [g.s1] 

calibrated value 
4.69M0"3 [m2.g'] 

0.2216 [mlg1] 
0.5213 [-] 

1.18M0"3 [g.s1] 

Table 7 Nominal and calibrated values of the greenhouse 
calibration parameters. 

concentration, but it is hard to fit all 
three simultaneously. 
In calibrating the greenhouse 
temperature, the CO2 concentration and 
the humidity, 4 parameters have been 
calibrated. Firstly two parameters 
concerning the transpiration, namely q 
and r from equation A. 14 and 

furthermore the radiation conversion factor t] from equation A.l and finally the C02 injection flux 
(pinj from equation A.4. Since the Penman-Monteith equation has been modified, q and r need to 
be calibrated. Since the model of Tchamitchian does not incorporate separate latent heat terms, the 
original value of r\ is quite big. Now that the latent heat is included, r) needs modification. The 
expectation is that 77 will become smaller now. The best fit for the CO2 concentration and the 
humidity can be obtained by adapting the photosynthesis and the respiration, however this would 
require a recalibration of the tomato model. Measurements show that the CO2 injection flux differs 
from day to day. Probably this has to do with the degree of fullness of the CO2 cylinders and the 
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CO2 demand of the other greenhouse compartments. As its exact value is unknown then, the CO2 
injection flux has been calibrated. 

Table 7 shows the nominal and calibrated values of the parameters used for greenhouse calibration. 
Matrix V from table 8 shows that every eigenvector is almost entirely determined by one parameter 
and every eigenvector by a different parameter. Combining V and A shows that r is the most 
uncertain parameter and q is relatively uncertain as well. This indicates that the moisture balance 
(equation A.5) is relatively uncertain. This can be caused by all terms, the evapotranspiration 
(equation A. 14) the ventilation (equation A.7) and the condensation (equation A. 17) The correlation 
matrix shows a considerable correlation between q and r, which is logical since q and r are both 
parameters of the numerator of the transpiration function (equation A. 14). Furthermore V and A 
show that 77 and especially q>inj are relatively certain, indicating that the model can give a good 

description of the CO2 concentration and the greenhouse air temperature. 

3.4.5 Validation 
The validation and calibration data were all measured at the same greenhouse compartment. The 
controls are generated by the receding horizon optimal control algorithm tested in the 95 experiment 
at the Horticultural department in Wageningen. 

In the validation the simulated (predicted) values for the greenhouse climate, including the heating 
pipe temperature, will be compared to the measurements. To calculate the simulation, the measured 
controls, outside climate and initial values are used as inputs to the model. The plant measurements 
are used to compute the photosynthesis and transpiration of the crop. Since the plant measurements 
were taken every 10 days, the intermediate values are linearly interpolated. 

As the simulated soil temperature Ts is an artificial quantity, its value is not equal to the soil 
temperature measurements. Therefore the initial value for Ts can not be taken from the 
measurements. To remove the effect of this choice of the initial value of Ts, three extra days are 
simulated before the start of the validation period, to get a good initial value for Ts, assuming that 
the influence of the initial value is negligible after three days. This has been tested by starting with 

-0.3000 
0.9539 
0.0008 
-0.0001 

A: 
0.3889 

0 
0 
0 

0.9452 
0.2972 
0.1350 
0.0063 

0 
0.0347 

0 
0 

-0.1287 
0.0413 
-0.9903 
-0.0327 

0 
0 

0.0035 
0 

0.0017 
0.0004 
0.0333 
0.9995 

0 
0 
0 

0.0073 

R 

p • 

0.0660 
-0.1015 
0.0039 
0.0002 

1 
-0.6614 
0.2360 
0.0087 

-0.1015 
0.3570 
0.0015 
0.0000 

-0.6614 
1 

0.0405 
0.0004 

0.0039 
0.0015 
0.0041 
-0.0001 

0.2360 
0.0405 

1 
-0.0180 

0.0002 
0.0000 
-0.0001 
-0.0073 

0.0087 
0.0004 
-0.0180 

1 

Table 8 The covariance matrix, its eigenvalue decomposition and the correlation matrix of the greenhouse 
model for the parameters q , r , TJ and (plnj for the data of March 30th and March 31st 1994. 



54 Calibration and validation of a dynamic model for the optimal control of greenhouse 
tomato crop production 

3 different Ts(0): 14, 15 and 16 °C. After three days Ts was almost the same for all three situations 
with a mutual difference less than 10"6 °C, which is satisfactory, since Ts has an average value of 
about 15 °C with an amplitude of 2 °C. 

The outside relative humidity (RH0) is measured using a capacitive sensor. The RH0 

measurements, as can be seen in figure 11a, have a maximum value higher than 100 % (115 %) , 
which is physically impossible. Therefore in the validation, RH0 measurements for the same time 

period from IMAG (figure lib) will be used instead. IMAG is at the opposite side of Wageningen 
compared to the Horticultural department, at a distance of about 3 km. Figure l ib shows that the 
RH0 of IMAG stays under 100 %. Comparing the accompanying absolute humidity (figure lid) 

with the rain detection measurements in figure 13a shows that at the moment it starts raining, a 
sudden upward change of the absolute outside humidity occurs. Comparing the absolute humidity 
measurements of IMAG (figure lid) and the absolute humidity measurements inside the 
greenhouse (figure 1 lc), shows that sudden changes in the outside humidity concentration can be 
seen in the inside concentration. This is to be expected, as the outside humidity concentration is part 
of the inside humidity balance when the windows are open (equation A.5). Moreover the 
simulations based on the IMAG measurements look much more like the inside relative humidity 
(RHj) measurements than those using the original measurements. 
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FIG. 11. Inside and outside humidity measurements of 2-9-95 till 4-9-95. 
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Figure 12a shows that during day time, when the sun is shining (figure 13d), the model gives a good 
prediction of the measured greenhouse temperature. During the night however, the greenhouse air 
temperature is about 2 °C too low. This can be caused by a too large air soil heat transfer coefficient 
resulting in a too big heat flux to the soil. It may also be caused by a too small pipe-air heat transfer 
coefficient. Furthermore the heat exchange with the outside air through the cover can be too big in 
the model. The ventilation itself does not seem to be too large since exactly between 40 and 48 h, 
when Tg is too low, the simulated humidity concentration is too high. From 0-8 h and from 20-28 h, 
the model predicts a too high pipe temperature. This may be caused by non-linearity's in the heating 
water mixing valve characteristics. Because during both periods the valve is often opened till about 
30 %, while in the other periods it is often opened 100 %. 

Figure 13f shows the outside CO2 measurements. The peaks in the signal are not realistic. They may 
be measurement errors (e.g. the wrong channel of the CO2 multiplexer), or perhaps, depending on 
the wind direction, the exhaust fumes of the heating system influence the measurements. Figure 12c 
and l ie, both show the inside CO2 concentration. Most of the time the model description is very 
good except for some peaks. Comparing figure 14c and 12d shows that the peaks are caused by the 
CO2 injection. Since the CO2 dosage sometimes did not work, the peaks may be caused by the fact 
that in reality no CO2 is dosed, while the simulation is based on the assumption that CO2 is being 
dosed. The deviation from 48 till 56 h can be caused by a too low ventilation in the model during 
this period, it also might be caused by the too high outside CO2 measurements, which appear 
especially during this period. 

Figure 12d shows the absolute inside humidity. Figure 12f shows the relative inside humidity of the 
greenhouse air RHt. Since the RH, -value depends on both Tg and V), the relative error of RH, 

depends on the relative errors of the simulated Tg and Vj. In the period from 20 - 28 h both errors 

compensate each other, in the period from 0 - 8 h. the error in RHt comes from Tg and in the 

period from 42 - 56 h. both errors intensify each other. Furthermore during the day time the 
amplitude of the fluctuations of the simulated RH{ are much bigger than the measured RHi. 

Possible causes are a too large amplitude of E, Ov , or Mc (equation A.5). 

The erratic behaviour of Vj can also be caused by the assumption that the ventilation is a static 
function, while in reality dynamics are involved. Because the wind-speed varies rapidly, the 
simulated ventilation varies rapidly, causing fast changes in RHt in the model. 

3.5 Discussion 
It is clear that the calibration and validation of the greenhouse tomato crop production model can be 
further improved. Suggestions how to do this are presented in the text. Keeping in mind the large 
variance in the crop measurements, it is to be expected that the models will never become highly 
accurate,. Therefore the models that are presented here will be used for the development of optimal 
control of greenhouse tomato crop production. 
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The heating pipe model gives good calibration results. Compared to the other heating pipe 
calibration parameters, the heating pipe radiation absorption efficiency coefficient {S is the most 
uncertain. In the validation the results are less good, since the model is influenced by the errors in 
the greenhouse climate model. The covariance matrix of the greenhouse climate calibration 
parameters shows that the evaporation radiation parameter q and the evaporation vapour pressure 
deficit parameter r (equation A. 14) are the most uncertain parameters. The validation shows that the 
simulated relative humidity sometimes displays considerable deviations from the measurements. 
Therefore the humidity model needs further attention. 

Overall the calibration and validation results of the greenhouse model are satisfactory. There are 
several reasons for the remaining deviations between the greenhouse model and measurements, for 
this. First there are sensor problems (the humidity sensor, the CO2 sensor and the pipe temperature 
sensor). Secondly it is assumed that the realised controls equal the computed ones, whereas this is 
not always the case. Furthermore the model assumes the greenhouse to be a perfectly stirred tank, 
whereas in reality there is a spatial distribution. Improving the measurements and measuring the 
controls will probably improve the calibration results, just like the use of more advanced models for 
photosynthesis (e.g. Nederhoff, 1994), ventilation, condensation or evapotranspiration (e.g. 
Stanghellini, 1987). Doing this a trade off has to be made between the complexity and the accuracy 
of the model, in order to be able to use it for the on-line optimal control of tomato crop production. 

The calibration and validation results of the tomato model are reasonable. Validation results for a 
similar period of the year as used for the calibration are quite good, validation results for a different 
period are less good. This may be overcome by calibrating the tomato model simultaneously on 
different data-sets from different seasons. However the quality of calibration is determined by both 
the model and the measurement data. As the number of crop measurements is small, the variation in 
the calibrated parameters is large. The plant measurements themselves are quite accurate, but there 
is a large variation between individual plants, and there are even large variations between crops 
when they are grown under equal conditions. Consequently an increase of the number of crop 
measurements, preferably continuous crop measurements, would greatly improve the calibration 
possibilities. 

The change from a complex discrete-time model to a reduced order continuous-time model, 
possibly causes many of the encountered tomato crop calibration problems. Jones et al. (1999) 
chose a similar approach in reducing a complicated tomato model (in their case TOMGRO v3.0). 
Yet their reduced model is still a discrete-time model, as the partitioning of assimilates takes place 
once a day. This way no assimilate buffer is needed, so they can stay much closer to the original 
tomato model. Therefore it is easier to obtain a good correspondence between model and 
measurements. However, their reduced model is not continuous in time, so it can not be used for the 
on-line control of greenhouse tomato crop production. As our reduced tomato model is continuous 
in time, its calibration would benefit greatly when online plant measurements would be available. 
Especially so, when they would concern a whole growing season. This way much more information 
is available and consequently the plant dynamics can be calibrated much better. 

Jones found that some tomato parameters depend upon the cultivar. Probably the same will hold for 
he tomato model presented in this paper. As every greenhouse and its heating system is situated and 
constructed differently, the greenhouse and heating system parameters will depend on the situation. 
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Therefore on-line parameter estimation is needed, to apply this model to the optimal control of an 
arbitrary greenhouse tomato crop production system. 
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3.8 Appendix 1: List of used symbols 
symboldescription value units 
h absolute saturation humidity parameter 2.16675.10"2 g . Pa ' .m^C 1 

w, humidity ratio parameter 2501 J.g"1 

w2 humidity ratio parameter 1.006 J.g'^C"1 

w3 humidity ratio parameter 1.805 J.g~l.°C~l 

w4 humidity ratio parameter 4.186 J.g"1."(J1 

3.9 Appendix 2: Model equations 

Symbols see Nomenclature 

3.9.1 Greenhouse model 

Cs^ = K{T0-Tg)+a(Tp-Tg)+kr{T0-Tg)+ks{Ts-Tg)+r1G-AE + -^-iMc (A.l) 

C,^- = -ks{Ts-Tg)+kd(Td-Ts) (A.2) 

PCPVP^ = ̂ ^(Th-Tp)+ApPG-AATp-Tg) (A.3) 
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3.9.2 Tomato model 
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Optimal control of greenhouse climate: computation of the 
influence of fast and slow dynamics1 

R.F. Tap, L.G. van Willigenburg, G. van Straten, E.J. van Henten 

Abstract. In case of optimal greenhouse climate control the fast greenhouse dynamics are generally 
ignored. Only the slow dynamics that describe the crop behaviour are considered. Through the 
computation of optimal climate controls for growing lettuce in greenhouses, subjected to actual 
weather, it is demonstrated that the neglect of the greenhouse dynamics seriously affects the result 
(net profit). 

Key Words. Agriculture; greenhouse climate; multivariable control systems; optimal control; 
optimisation 

Introduction 

The profit obtained from lettuce crop production in greenhouses is mainly determined by the produc
tion rate, the price of lettuce, and the costs associated with maintaining a favourable climate in the 
greenhouse. The control of the temperature, the C02-concentration and the relative humidity, the 
main climate variables in the greenhouse, results in conflicting interests concerning heating, ventila
tion and C02 supply, the main control variables. At present hierarchical rules based on experience 
guide the choice of setpoints for temperature, C02-concentration and relative humidity. In reality 
the market gardener does not want to realize setpoints but he wants to maximise profit. 

Optimal control of greenhouse climate entails the operation of the control variables such that the 
economic profit of the grower is maximised. The basis of this approach is a crop model that 
describes the crop behaviour under influence of the indoor climate conditions which in turn are 
determined by the outside weather conditions and the exerted control actions. This system is 
characterised by both fast and slow dynamics, the first associated with the greenhouse climate and 
the second with crop growth. The computation of optimal controls for such systems raises numerical 
difficulties (Kalman, 1964). In the literature solutions for the seasonal optimisation problem have 
been presented assuming slowly changing weather (e.g. Seginer, 1992; van Henten and Bontsema, 
1991). As the dynamics describing cropbehaviour are much slower than the physical greenhouse 
dynamics, the latter can be ignored in this case and seasonal optimization can treat the physical 
climate as immediately realizable through the control. It can be shown that the error by assuming 
the greenhouse dynamics to be infinitely fast in these type of calculations is small (van Henten and 
Bontsema, 1992). However, because the weather in reality changes fast and is a dominant disturb
ance, it is no longer obvious that the greenhouse dynamics can still be ignored. To compute optimal 
controls the weather should be completely known over the time interval over which the optimisation 
takes place. Since long term weather predictions are unreliable we are confronted with a trade off 
concerning the choice of this time interval. If for instance we take it small the weather predictions 

'published in Proceedings 12th IFAC World Congress, Sydney, Australia, 10: 321-324 
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used will be good and we have no numerical difficulties, however the system behaviour in the long 
run is not taken into account. 

Our aim is to determine the effects of neglecting the influence of the fast changing weather and the 
fast greenhouse dynamics on the calculated optimal control. To do this we will consider the 
optimisation over a short period of time (compared to the growing period) for the situation with and 
without greenhouse dynamics and by using either measured weather data or a smoothed version of 
it. It is assumed to be known in advance what the weather will be like every minute (perfect 
weather prediction). The criterion of comparison will be the profits made when the optimal controls 
resulting from each of these four combinations are applied to the system modeled by fast greenhouse 
dynamics subjected to the measured weather data. 

Optimal control problems 

The crop model describes the crop behaviour under influence of the indoor climate conditions, 
which in turn are determined by the outside weather conditions and the exerted control actions. This 
can be formalised as 

dx 
j •/ ^ c' p1 e' c' 

(1) 

dxB (2) 

in which xc are state variables that represent the indoor climate, 

* , = 

Xcl 

Xc2 

Xc3 

?<*. 

I1"'! 
T. 

c, w 
(3) 

where Tg is the greenhouse temperature, Ts is the greenhouse soil temperature, C, is the greenhouse 
C02 concentration and Vf is the greenhouse water vapour density. The variable xp represents state 
variables associated with crop development, 

/v \ (nr\ 
(4) 

x \ 

V P2I W. 
"I 

where Wn is the non-structural dry weight and Ws is the structural dry weight of the crop. The 
external inputs ue are given by 
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where T0 is the outside air temperature, G is the incoming shortwave radiation, w is the wind speed, 
C0 is the outside air C02 concentration and R0 is the outside relative humidity. Finally the control 
uc is defined by 

FT 

(6) 
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where H is the heat input, rw is the relative window aperture and <|), is the C02 injection flux. Given 
the model (1)..(5) the goal is to maximise the criterion, 

J = ®(xp(tf)) - fL(xc,xp,ue,uc)dt (7) 

which represents the profit made within [0,tf]. The function <J> represents the benefits obtained from 
marketing the product at the final time tf. The function L represents the cost made at any instant in 
time related to C02 injection and heating. 

The problem simplifies when the indoor climate is considered so fast, that it is practically memory-
less compared to crop growth. In that case / is considered to be zero and then xc algebraically 
depends on ue, u and xp and the model can be formalised as 

(8) 

To investigate the importance of considering the greenhouse dynamics results obtained with the 
model (1), (2) are compared with those of (8). The functions/(van Henten, 1993), g (Tchamitchian 
et al, 1993) and J are described explicitly in the appendix. The function h can be derived from/ 
andg. 

For lettuce the function O equals the weight of the heads of lettuce times the price of the product 
per kilo. When an optimisation is carried out for one season the price is the auction price, which 
we consider to be known. The growth of the crop at different times during the season has different 
meaning for the final weight of the product. In order to perform an optimisation for a part of the 
season, the price must reflect the relative importance of that part of the season. Van Henten has 
shown that the course in time of this importance is almost independent of the weather. So the price 
used in short term optimisations can be determined on the basis of long term considerations. 
Because this has not been done yet, the price used here is only an estimation. Since our goal is to 
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compare optimal solutions this is not a serious drawback. 

Computation of optimal controls and comparison 

The relative humidity is not part of the crop growth model. It is believed however that the humidity 
should stay within certain borders. To enforce this we have introduced in L a penalty function P 
which punishes exceedings of those borders. 

The optimal control is obtained by solving the associated two point boundary value problem 
(TPBVP) with a first order gradient algorithm. To discover the influence of the greenhouse 
dynamics this is done for both greenhouse model (1), (2) and greenhouse model (8). The influence 
of fast varying weather on the optimal control is determined by calculating the optimal control for 
both measured weather and a smoothed version of it. This provides four situations: dynamic 
greenhouse model (1), (2) and measured weather (dm), dynamic greenhouse model (1), (2) and 
smoothed weather (ds), static greenhouse model (8) and measured weather (sm) and static 
greenhouse model (8) and smoothed weather (ss). 
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Fig. 1. Measured global radiation 
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The smoothed version of the weather is obtained by 
applying a moving average filter over a two hours period 
to the measured weather data, where the result is assigned 
to the middlemost point of that period. 

To make a relevant comparison we simulated the behav
iour of the greenhouse model (1), (2) influenced by the 
measured weather and the optimal controls generated by 
the four different options. In table 1 the results are given. 
The criterion value is divided into the net profit without 

considering the humidity bounds and the "penalty" costs associated with violating the humidity 
bounds. The penalty function is such that the associated costs are small compared to the real costs 
while keeping the humidity reasonably within its bounds. So a trade off exists between exceedings 
of the humidity bounds and the profit made by doing so. The window opening and the heat input 
are largely determined by the humidity bounds. Without humidity bounds the heating is turned off 
while the windows are closed during daytime and opened at night to cool the greenhouse. With the 
humidity bounds the heat input and the window opening are completely different. 

Table 1 Optimisation results (//m ) 
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The influence of the fast greenhouse dynamics emerges from the comparison of Fig. 1 and 2. Both 
sm and dm try to provide a high C02-concentration when there is a lot of radiation, but only dm 
is successful. Because dm considers the greenhouse dynamics it starts to dose C02 about 20 min. 
before there is a radiation peak. Because sm does not consider the greenhouse dynamics it doses 
C02 at the moment there is a radiation peak. Table 1 shows the consequences on the profit of this. 
Because ss is based on smoothed weather the controls are slowly varying and ss yields a better 
result than sm. Ds does not consider the fast weather variations. That's why ds yields a poorer result 
than dm. 

Discussion 

Optimal control yields the best results when the system behaviour is completely known in advance. 
This implies perfect knowledge of the state equations and of the disturbances. The optimality of the 
controls is heavily influenced by the accuracy of the greenhouse dynamics, the crop dynamics, and 
the weather predictions. This calls for an accurate dynamic model and good weather forecasts. In 
case of the crop dynamics for example a better knowledge of the influence of humidity on crop 
growth would improve the control and make the penalty function redundant. 

From the differences between ds and ss it is evident that the greenhouse dynamics have a consider
able influence on the optimal control and corresponding profit. This influence is bigger when the 
weather is less smooth (dm versus sm), because this causes a non smooth control which together 
with the fast changing weather activates the fast dynamics which can then no longer be ignored. 
Therefore if, in the optimization, the fast dynamics are considered short term weather predictions, 
which are hard to obtain at present, are also needed. This need may open a new direction of 
research. In practice the possibility to obtain reliable short term weather predictions will determine 
if we will actually gain by taking into account the greenhouse dynamics. 
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Appendix 

Indoor Climate And Crop Model 

The temperature dependence of gx given by van Henten (1993), which is only valid for temperatures 
between 5 °C and 40 °C, has been modified to enlarge its domain of validity. 
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0 70 < Rt< 90 (A-21) 

10"7(/?,-90) /?( * 90 

-n.4 r, 

tf, = i ^ K , ( 7 ^ 2 7 3 . 1 5 ) * ^ (A-22) 

The Criterion 
'/ 

J = o , ( l-x)(W;+W,)-/(o2«|»< +o3ff+P)* (A23> 
0 

Model Parameters 

Cg = 32-103 J .K'.m^ 
Tl = 0 . 7 
ks = 5.75 W.m-lK-1 

Td = 10.0 °C 
Ma = 1.29 kg.m"3 

K = 5.03-10-5m.s-' 
Y = 3.68-10"5 
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p = 0.45 
P = 0.8 
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co= 1.83-10"3 g.mlppm-1 

gs = 0.005 s.m"1 

gxl = 0.3 s.Klm1 

& = 75 K2 

Qg = 1.6 
Qr = 2.0 
rr = 1.16-10"7 s1 

Cpa = 3.53 10"3 m.s1 

a, = 0.02 /.g-1 

a3 = 7.3-W9 f.W1 

CO, Conversion Factor 
8314(7+273 

44.UT3xl.l0~6xl.01.105 
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x = 
En 

Rb 

8x2 
r 

r0 
r,= 
Qr 
« v : 

oc2 

= 30/44 
= 0.9 
0.07 

= 17-106 g.J'2 

= 0.007 s.m-1 

= -24K 
= 5.8-10"6 s"1 

= 40 ppm 
= 3.47-10"7 s"1 

= 2.0 
= 1.32 kg.m"3 

= 1.2-10"4 / . g 1 
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5 Receding horizon optimal control of greenhouse climate 
based on the lazy man weather prediction1 

R.F. Tap, L.G. van Willigenburg, G. van Straten 

Abstract: In greenhouse climate control a long term control strategy can be computed based on a 
model describing plant behaviour in relation to indoor climate and outdoor weather and a criterion 
reflecting maximum profit. In these computations the greenhouse climate dynamics, which are fast 
compared to those of the plant, are usually ignored. Recently it has been demonstrated that 
ingnoring these dynamics results in a serious loss of performance due to the fast changing weather 
which acts as external inputs. To maximally benefit from the weather a two time seal 
decomposition of the optimal control problem is needed, together with reliable short term weather 
predictions. In this paper we demonstrate that the so calle 'lazy man' weather prdeiction in 
combination with a receding horizon controller, allows for proper exploitation of the fast chnaging 
weather and results in a real-time implementable feedback control law, that solves the optimal 
control problem related to the smallest time-seal. It is shown that in our application, which concerns 
lettuce cultivation, the best choice for the horizon length of the receding horizon controller is one 
hour. 

Keywords: Dynamic optimization, receding horizon optimal control, greenhouse climate control, 
disturbance exploitation. 

5.1 Introduction 

At present climate control in greenhouses is performed by climate computers that use setpoint 
controllers to control temperature, humidity and C02 concentration. A setpoint controller tries to 
follow the course of the setpoint of an individual climate variable. The setpoints generated by the 
computer are based on "experience" of the individual grower and the computer manufacturer. This 
"experience" is reflected in many (in the order of 300) climate computer settings which have to be 
tuned individually for every single application. The "experience" is largely based on rules of thumb. 
This approach to greenhouse climate control has many drawbacks. Setpoint controllers do not 
properly account for interactions and also the influence of the outside weather and the costs 
associated to maintaining a favourable greenhouse climate are not properly accounted for. The 
"experience" of growers and manufacturers turns out to be very diverse and usually is not based on 
scientific knowledge of plant and greenhouse climate behaviour. Therefore one can state that at 
present greenhouse climate control is not performed in the most predictable, scientific and 
economic manner. This is unsatisfactory, both from the point of view of the growers, who seek 
maximal profitability, as well as from the point of view of the government, which desires to reduce 
environmental pollution and energy consumption through legislation. 

Optimal control is based on a dynamic model describing the system behaviour and a criterion which 
is maximised (minimised) (Bryson and Ho 1975, Lewis 1986). The scientific knowledge on plant 
and greenhouse behaviour can be implemented directly through proper construction of a dynamic 
model. This model accounts for all types of interaction within the system, as well as the influence of 

1 published in Proceedings 13th IFAC World Congress, San Francisco, USA, 4a-01 3, 387-392 
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the weather as major external disturbance. The growers' overall goal to obtain maximum profit can 
be implemented directly through a proper choice of the criterion (Seginer 1992). Given a choice of 
the model and the criterion there are, in theory, no computer settings that have to be tuned while the 
control, which is computed directly, is performed in a known, scientific and economic manner. 

A major problem in the development of numerical algorithms for optimal greenhouse climate 
control is the fact that the system contains both fast dynamics representing the greenhouse climate 
behaviour and slow dynamics describing the plant behaviour (stiff system). It has been 
demonstrated that ignoring the fast dynamics results in serious loss of performance in case of fast 
changing weather (Chapter 4) . One could state that in order to be able to exploit the effect of the 
external disturbances - something rather unusual in regulator or tracking problems, but highly 
relevant here - the fast dynamics should be taken into account. The fast changing weather 
disturbances prevent the application of "standard" singular perturbation methods for optimal control 
of stiff systems (Van Henten 1994a). However, in the context of greenhouse climate control, Van 
Henten's work suggests that it is still possible to decompose the optimal control problem and 
algorithm into two parts (Van Straten, 1994). The first part deals with the slow dynamics and 
disturbances, the second with the fast dynamics and disturbances. This paper focuses on the second 
part. To benefit most from the incorporation of the greenhouse dynamics in this framework, it 
should be accompanied by proper short term weather predictions (cf. Ioslovich et al., 1995). In this 
paper we demonstrate that the lazy man weather prediction, which simply assumes the weather to 
stay equal to the last measurement, is a proper short term weather prediction when used in 
conjunction with a receding horizon optimal controller. The choice of the horizon length of the 
controller is based on an analysis of the loss of performance compared to the situation where we 
have perfect weather predictions. In our examples, which concern different days in the development 
of lettuce in a greenhouse without a heat storage tank, the best horizon length is shown to be 1 hour. 
Also we show that the use of commercially available short term weather predictions leads to very 
poor results because these regional predictions turn out to be very inaccurate locally. 

The paper is organised as follows. In section 2 we state the optimal control problem given an 
arbitrary fixed horizon length. In section 3 we describe the receding horizon optimal controller and 
the numerical algorithm to solve the successive optimal control problems involved in it. Results 
obtained with the receding horizon optimal controller for several horizon lengths and three types of 
weather predictions are also presented. Perfect weather predictions, the lazy man weather 
predictions and commercially available short term weather predictions are considered. In section 4 
the results as well as possibilities for future research are discussed. 

5.2 The optimal greenhouse climate control problem 
A general optimal control problem is formulated as follows. Given a (non-linear) system described 
by n first order differential equations, 

x = f(x,u,t),x€R",u€Rm (1) 

where u is a vector of m control variables and given the initial state of this system, 

x(t0) = x0 (2) 
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maximise (minimise) the criterion, 
'/ 

j(u(t),x( u ),t.,t,)= W tf)) + j Ux(t),u(t),t)dt (3) 

The optimal greenhouse climate control problem consists of a dynamic model describing both the 
greenhouse climate behaviour, i.e. the fast part of the dynamics, and the plant behaviour i.e. the 
slow part of the dynamics and a criterion representing maximum profit over the control horizon 
[to.tf]. The model equations are given in the appendix. For a list of symbols and the list of 
parameter values one is referred to Chapter 2 and 4. The model is almost the same as presented in 
Chapter 4 except for an additional equation describing the dynamics of the heating tube temperature 
(Eqn. A.3). Altogether there are seven state variables. 

Equations (A.1-A.2, A.4) describe the dynamics of the greenhouse temperature and CO2 
concentration and have been taken from Tchamitchian et. al. (1992). They are mainly based on the 
model of Udink ten Cate (1985). Equation (A.7) which describes the dynamics of the water vapour 
concentration is based on Van Henten (1994b). Finally, equations (A.5,A.6) which describe the 
lettuce crop growth are taken from Van Henten (1994b). 

Given the decomposition of the control problem based proposed by van Henten, the criterion 
needed to compute the short term control action would be given by 

J = jUnWn+?LsWs-CC2<t>i-a3Hu- PR)dt (4) 
to 

where <pj is the CO2 injection rate, with an associated price CC2, Hu the heat input to the pipe 
system, with price 0:3, PR a penalty function on humidity constraints, to be explained below. The 
variables Xn and As represent the marginal value of the rate of increase of non-structural dry weight 
Wn and structural dry weight Ws, resp. These variables are co-states that should be computed from 
the solution of a seasonal optimization, assuming average seasonal weather and a static greenhouse 
assumption. The co-states act as a marginal price. Note that the price is a time variable part of the 
criterion and is different from the price of lettuce received at the end of the growing season (van 
Henten 1994a). Since both structural and non-structural dry weight are sold on the market, the 
difference vanishes at the end of the crop growth period (Van Henten, 1994a). We have assumed 
the crop to be 40 days old. Therefore, in this study, the distinction between the two variables was 
dropped. Moreover, for the time being, it has been assumed that the costates do not vary 
significantly within the horizon of the short term optimization, which is a couple of hours here as 
will be shown later. So An and \s are assumed to be equal to the price of lettuce at the end of the 
growing season. With these assumptions the criterion reduces to 

'/ 
J = cci(l-T)(&W„ + &Ws)-l(cc2<l>l + cc3Hu + PR)dt (5) 

to 

where, 
5«l(T7(70-fl,) Rt <70 

(6) PR = \ 

5«l(T7(70-fl,) Rt <70 

0 70<fl, <90. 

5«10"7(/?,-90) /?, >90 
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The first term on the right of equation (5) represents the money obtained from growing lettuce from 
t=to until t=tf. The first term of the integrand represents the costs associated with C02 dosage, 
where we assumed a fixed price for C02- The second term of the integrand represents costs 
associated with heating. The remaining term of the integrand represents penalties associated with 
the violation of humidity constraints. These constraints provide a means to prevent the system from 
moving into regions where effects occur that have not been incorporated into the model. The 
humidity, for instance, influences the vulnerability to diseases, which is not described in our 
relatively simple model. In effect, a grower can use the humidity constraints to express his 
willingness to take risks. 

The criterion, representing a mix of direct profit and a 'risk insurance premium', is maximized by 
searching for optimal control sequences of C02 dosage q>i(t), and of heating input rh(t), hidden in 
the term Hu> and window opening rw(t). 

(7) 

The initial state of the system is, 

*('„) = ( W Ut0) T,(t0) C,(f0) V,(f0) W„(t0) Wc(t0)f 

=(13 14 15 0.65 0.0085 16 74) r 

The controls are bounded, 
0 < rh < 100 %,0 <rw< 100%,0 < % < 5 • 10"3 gs'7 m"2 (8) 

5.3 Receding horizon optimal control algorithm and results 

After each sampling instant sj, i=0,l,2,... at which all measurements and controls are updated a 
receding horizon optimal controller computes the solution to a new optimal control problem. The 
initial time to of each problem equals the next sampling instant i.e., 

t0 = sM4 = 0,1,2,... (9) 
The initial state x(si+]), i=0,l,2,... of each problem is adjusted using the measurements at sj and the 
model. The final time tf of each problem is adjusted according to, 

' ,=',•.+'* do) 

where th is the fixed horizon length of the receding horizon optimal controller. Our controller uses a 
fixed sampling period of 1 minute i.e., 

sM-si=T = 6Qsj = 0,l,2,... (11) 

so measurements and controls are updated every one minute. This implies that every one minute an 
optimal control problem has to be solved on-line. To compute numerical solutions to optimal 
control problems a discretization in time has to be performed. In our case the discrete time step in 
the computation was also one minute i.e., 

At = T = 60s. (12) 

So each numerical solution consists of controls for every one minute within [si+i,sj+i+th], 
i=0,l,2,... i.e. 
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u(sM + kAt), k = 0,1,2,..,— -1, i = 0,1,2,. 
At 

(13) 

These controls, which have to be computed on-line, become available only at the next sampling 
instant si+j=si+T=si+At. So from each optimal control sequence (13) only the value for which k=0 
is actually applied to the system. The algorithm used to compute the optimal control sequences (13) 
was of the first order gradient type (Bryson and Ho 1975 pp.221) where the successive 
improvements of each optimal control sequence Su(sM+kAt),k = 0,1,2,..,th/At-l are computed 
according to, 

8u(t0 + kAt) = i? 
du ,0+kAt 

k = 0,1,2,...,— -1 
At 

where H is the hamiltonian, defined by 
H = (octf, + a3Hu +PR)+ XTf 

(14) 
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with X a vector of co-states, and f the right hand side of Eqn. (1), and where •& is chosen to 
minimize the criterion which constitutes a line search. All controls are bounded from above and 
below so equation (14) only holds for each control variable if its bounds (8) are not violated. 

The receding horizon optimal controller just described was simulated during 24 hours using 
weather data of several selected days out of a season in which lettuce was grown in a greenhouse. 
In these optimization calculations the non differentiable nature of the penalty function (6) did not 
cause any numerical problems. Figure 1 shows the performance using three different types of 
weather predictions for different values of the fixed control horizon th- The line at the top 
represents the outcome of the receding horizon optimization using perfect weather predictions. The 
middle line is obtained when the assumption is made that the actually observed weather remains the 
same over the specified horizon. Since the control is updated every minute, also this 'lazy man 
weather forecast' is updated every minute. The lower line is obtained by using commercially 
available hourly weather predictions over the next 24 hours, which become available at 7 am and 11 
am. These forecasts were used without looking at the actual weather. 

From Figure 1 a number of things can be concluded. All results can be compared to the theoretical 
best solution which is obtained by computing the optimization over the complete day using perfect 
weather predictions, i.e. when in Eqn. (5) to=0 h and tf=24 h. In this situation a criterion value is 
found of 1.405-10"2. By comparing this with the value obtained with the receding horizon controller 
using perfect weather forecasts it can be seen that the loss due to the use of a receding horizon 
controller in stead of the open loop solution is only 1% if a two hour horizon is taken. One could 
say that the control action needed at time t is hardly influenced by the weather at time t+2 hours or 
more. The converse is also true: the loss increases as shorter control horizons are used, indicating 
the significance of anticipating the weather in view of the dynamics of the system. 

Both the optimal (open loop) solution and the perfect weather receding horizon solution represent a 
theoretical condition not achievable in practice because the weather cannot be known in advance. 
Therefore it is interesting to look at the loss in performance when the lazy man prediction is used. 
When the control horizon is relatively long, apparently the deviations from the actual weather 
become so large that they have a marked effect upon the computed control action. The criterion 
value drops from 1.4-102 to 0.84-10"2. There is, however, an optimum choice for the control horizon 
in this case. Using a receding horizon controller with a control horizon of 1 hour in combination 
with the lazy man weather prediction results in a loss of performance of about 15% with respect to 
the unachievable optimal solution, and of only 6 % with respect to the receding horizon solution 
using perfect weather. A control horizon of 1 hour is the best choice in case the lazy man weather 
prediction is used. Furthermore a control horizon of 1 hour results in real-time implementable 
control algorithms on a PC Pentium/60 if the sampling interval T is 1 minute. 

Using just commercially available weather predictions without looking at the actual weather results 
in serious loss of performance which increases with an increasing control horizon. Of course, it can 
be expected that improvements will be possible if such forecasts are combined with actual 
measurements, for instance by modifying the lazy man prediction on the basis of the trend in the 
forecasts. However, the results of the lazy man optimization show that the maximum gain in 
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performance that can be achieved when the lazy man weather prediction is replaced by other types 
of weather prediction and/or measurements is in the order of 10% only. 

5.4 Discussion and future research 

Several remarks and questions as to the results presented in section 3 arise. Results have been 
presented for one selected day, where fair variations in weather occurred. Repetition of the 
computation for other days showed about the same or smaller loss in performance. It can be 
expected that the differences are smaller when the weather behaves in a more predictable way. This 
underlines the feasibility of the receding horizon optimal control. 
In the computations we assumed a constant price for lettuce during the day. As said before, this 
price should follow from an optimization of the slow problem resulting from the decomposition 
according to van Henten (1994a). He reports co-state patterns of lettuce over the season suggesting 
that the variations within a day are small, as compared to variations over the season. So, the 
assumption of a constant price over 24 hours is not unreasonable. The final implementation of the 
receding horizon controller requires that first the seasonal optimization is solved. This can be done 
beforehand, using average weather data. 

All our results are based on simulation and optimization using the model (A.1-A.7). The results are 
therefore conditional on the assumption that the model is a reasonable approximation of the real 
system. The crop model is validated in a field experiment (Van Henten, 1994b). Yet future work 
should include a series of comparative tests between the proposed controller, and the best available 
commercial control systems, over a whole growing season. Another subject of future research will 
be to investigate to what extent the optimal control is affected by uncertainties in model parameters 
and structure. Because the model had to be used in a control context, the order was kept as low as 
possible. The choice of model order should be guided by its computational complexity and 
accuracy. The advantage of an economic criterion is that this decision can be made in direct 
economic terms. Furthermore the robustness of this controller is a subject that needs more attention. 

Several aspects such as the occurrence and influence of plant diseases are not described by the 
model. In particular, condensation on the leaves, which is most likely to occur in the early morning 
hours, is known to increase the vulnerability to diseases. Therefore the violation of bounds on 
humidity are punished in the criterion (5). The optimization will then naturally be constrained. The 
stricter the bounds are specified, the less room there is for economic optimization. The choice of 
these bounds is up to the grower, but in a practical implementation the effect of these choices could 
be presented to the grower as a means of influencing the control by weighing of risk against profit. 

The modelling of lettuce growth is relatively easy as compared to other crops. The economic 
importance of lettuce in our region, however, is limited in contrast to, for instance, tomatoes. 
Therefore, further research is directed to the growth of tomatoes in greenhouses. Yet, the adopted 
approach to optimal control using a decomposition into a slow seasonal problem and a fast short 
term problem in combination with feed-back by a receding horizon optimal controller remains the 
same. We expect that also in case of tomatoes and other products the lazy man weather prediction 
will serve as an easy and appropriate short term weather prediction. It has to be noted that the 
assumption was made that C02 was freely available. In cases where CO2 is generated by gas 
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burning combined with heat storage, there is an additional constraint due to the restricted capacity 
of the heat storage. 

Finally the real-time implementable numerical algorithm to compute successive optimal controls 
can be improved. Many algorithms for solving optimal control problems are known (Bryson and Ho 
1975, Sage and White 1977) so there are possibilities for improvement of the numerical efficiency 
of the algorithm. This allows for the use of smaller sampling intervals or slower computers. The 
accuracy of the time discretization performed within the numerical algorithm can be improved 
which also allows for application of more general sampling schemes (Van Willigenburg 1994) and 
larger sampling intervals. The optimal control algorithm usually computes a local minimum where 
we actually desire a global minimum. In practice, this may be less serious than it seems, because 
performance in any case improves as compared to setpoint control. 
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5.6 Appendix. 

^L=—[(kv + kr)(To-Tg) + ks(Ts-Tg) + Hs + riG] (A.l) 
dt Cg 

^L = —lUTs-Ts) + kATd-Ts)l (A.2) 
dt Cs 
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6 Two Time-scale Receding Horizon Optimal Control of 
Greenhouse Tomato Crop Production 

R.F. Tap, L.G. van Willigenburg, G. van Straten 

Abstract: A systematic approach to greenhouse climate control is presented based on scientific 
knowledge about the greenhouse and crop dynamics and the growers goal to maximise profit. To 
maximise profit both a long and a short-term weather prediction method are incorporated. The 
approach is designed to benefit from, and deal properly with, the different time scales characterising 
the dynamics of the problem. The approach results in a real-time implementable Two Time-scale 
Receding horizon Optimal Control (TTROC) algorithm. For the first time a solution of the long 
term optimal control problem for greenhouse tomato crop production is presented. The slow co-
states show that the leaves and fruits while on the plant have a value. This value shows a distinct 
seasonal pattern. Experimental results obtained with the TTROC in a real greenhouse growing 
tomatoes as well as simulation results with the TTROC are presented. The experimental results of 
the application of the TTROC control algorithm show proper performance. The small difference 
between the experimental and simulation results despite model discrepancies, using the same co-
states, indicates the robustness of the algorithm. 

Keywords: Dynamic optimisation, receding horizon optimal control, greenhouse climate control, 
disturbance exploitation. 

6.1 Introduction 
At present climate control in greenhouses is performed by climate computers that use setpoint 
controllers to control temperature, humidity and C02 concentration. A setpoint controller tries to 
follow the trajectory of the setpoint of an individual climate variable. The setpoints generated by the 
computer are based on "experience" of the individual grower and the computer manufacturer. This 
"experience" is reflected in many climate computer settings (in the order of 300) which have to be 
tuned individually for every single application. The "experience" is largely based on rules of thumb. 
This approach to greenhouse climate control has many drawbacks. Setpoint controllers do not 
properly account for interactions and also the influence of the outside weather and the costs 
associated to maintaining a favourable greenhouse climate are not properly accounted for. The 
"experience" of growers and manufacturers turns out to be very diverse and usually is not based on 
scientific knowledge of plant and greenhouse climate behaviour. Therefore, one can state that at 
present, greenhouse climate control is not performed in the most predictable, scientific and 
economic manner. This is unsatisfactory, both from the point of view of the growers, who seek 
maximal profitability, as well as from the point of view of the government, which desires to reduce 
environmental pollution and energy consumption through legislation. 

Optimal control is based on a dynamic model describing the system behaviour and a criterion which 
is maximised (minimised) (Bryson and Ho 1975, Lewis 1986). The scientific knowledge on plant 
and greenhouse behaviour can be implemented directly through proper construction of a dynamic 
model. This model accounts for interactions within the system, as well as the influence of the 
weather which is the major exogenous input. The growers' overall goal to obtain maximum profit 
can be implemented directly through a proper choice of the criterion (Seginer 1992). Given a choice 
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of the model and the criterion there are, in theory, no computer settings that have to be tuned, while 
the control, which is computed directly, is performed in a known, scientific and economic manner. 

A major problem in the development of numerical algorithms for optimal greenhouse climate 
control is the fact that the system contains both fast dynamics, representing the greenhouse climate 
behaviour and slow dynamics, describing the plant behaviour (stiff system). It has been 
demonstrated that ignoring the fast dynamics results in serious loss of performance in case of fast 
changing weather (Chapter 4). One could state that in order to be able to exploit the effect of the 
exogenous inputs - something rather unusual in regulator or tracking problems, but highly relevant 
here - the fast dynamics should be taken into account. The fast changing weather prevents the 
application of "standard" singular perturbation methods for optimal control of stiff systems (van 
Henten 1994). However, in the context of greenhouse climate control, van Henten's work suggests 
that it is still possible to decompose the optimal control problem and algorithm into two parts. The 
first part deals with the slow dynamics (and exogenous inputs), the second with the fast dynamics 
(and exogenous inputs). 

To apply the optimal control approach in practice, two additional problems have to be solved. The 
first one relates to the exogenous inputs, i.e. the weather, which for optimal control computations 
must be known over the full optimisation horizon. Secondly, since optimal control is essentially 
open loop, feedback is required to deal with initial state and modelling errors and errors due to 
imperfect weather predictions. In this paper the two time-scale decomposition of van Henten is 
combined with two types of weather predictions and receding horizon optimal control. The 
combination of these approaches, to the best knowledge of the authors, is new and results in a so 
called Two Time-scale Receding horizon Optimal Control (TTROC) algorithm. This paper focuses 
mainly on practical considerations and on the implementation of the approach. Results obtained 
with TTROC in an experiment are presented. Several theoretical issues related to the TTROC 
approach will be discussed briefly. They will be the subject of future research. 

The paper is organised as follows. In section two we state the optimal control problem. In section 
three the two time-scale decomposition of van Henten is described. In section four the concept of 
receding horizon optimal control is introduced into the two time-scale environment. In section five 
the experimental results are presented and compared with simulations to investigate the influence of 
the difference between model predictions and measurements. Finally the results are discussed and 
conclusions are drawn in section six. 

6.2 The optimal control problem 
A general optimal control problem is formulated as follows. Given a (non-linear) dynamic system 
described by n first order differential equations, 

x = f(x,u,t), (1) 

with x eR" and « e R " , where u is a vector of m control variables, and given the initial state of 
this system, 

x(t0) = x0 (2) 
maximise (minimise) the criterion, 

j{u(t),x(to ),to,tf)= *W tf)) -\Ux(t)Mt),t)dt (3) 
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Exogenous inputs: 
Radiation 
Temperature 
Windspeed 
C02 concentration 
Relative humidity 

Controls: 
Window opening 
Heating valve opening 
C02 dosage flux 

/ / 1/ 
Greenhouse climate: 
Temperature 
C02 concentration 
Relative humidity 

it 
T 1 

Crop: 
Fruit weight 
Leaf weight 

Cash flows: 
Revenues 
Energy costs 
C02 costs 

Figure 1 Simplified representation of the greenhouse-crop system. 

where <X> represents the value (or costs) of the end states and L represents the net income (or net 
costs) at every moment. In the remainder of this paper the choice is made to define J as the net 
costs. Consequently, a negative value of J means net profit, and the optimisation problem becomes 
a minimisation problem. 

The dynamic model describes both the greenhouse climate behaviour, i.e. the fast part of the 
dynamics, and the plant behaviour i.e. the slow part of the dynamics. Figure 1 shows the 
interactions. The criterion represents the negative profit over the growing season i.e. the control 
horizon [tat^. The complete model equations and the parameters are given in Chapter 2. Altogether 
there are nine state variables. 

Since tomatoes are harvested throughout the season and the final value of the crop is zero, there is 
no O part in the criterion. As the goal of the grower is profit maximisation, the goal function to be 
minimised was worked out as 

' - ; 
dW, 

PF-
HF 

dt 
+ Pc<Pinj + PHHu + PC + PV+PT dt (4) 

where pF is the auction price of the tomatoes per gram dry weight, WH is the harvested fruit 

dW 
weight, so — — is the fruit harvest rate, pc is the CO2 price, pH is the heating price and Hu is 

dt 
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the heat input. Pc, Pv, and PT are penalty functions. They are introduced to adhere costs to 
situations where the CO2, humidity and temperature reach values where adverse effects on crops 
appear, that are not described by the models. In the normal operating range the penalties are zero. In 
case of the temperature the penalty function is given by: 

\aT(T,-Tg) Tg<T, 

PT = 0 T,<Tg<Th (5) 

aT(Tg-Th) Tg>T, 

where 7) is the lower temperature boundary, Th is the upper temperature boundary and aj is the 
slope of the penalty function. The other penalty functions are similar. As a result the boundaries are 
soft and a trade-off can be made between crossing the boundaries and an increase of the profit. 
Crossing the boundaries must be seen as taking risk. As the boundaries are exceeded further and for 
a longer period of time, the risk of crop damage increases. Accordingly aT represents the risk 
expressed in money units of crossing the temperature boundary by 1 °C during 1 second. 

6.3 Two time-scale decomposition 
The greenhouse tomato crop production system is a stiff system. The time constants vary from 
about 20 minutes in case of the greenhouse temperature to several weeks in case of the fruit and leaf 
dry weight. Often, singular perturbation theory is applied for the optimal control of stiff systems. In 
singular perturbation theory it is assumed that the fast subsystem is in quasi steady state. Only 
during a short transient time after the initial and before the final time, the dynamics of the fast 
subsystem are taken into account, the so called boundary layer solutions. In case of the greenhouse 
tomato crop production system exposed to Dutch weather conditions however, most of the time the 
dynamics of the fast sub-system are excited by the strongly influencing and fast fluctuating 
exogenous inputs. Especially the solar radiation, which is the main influence and which changes 
very rapidly, causes the greenhouse climate to change repeatedly. 

To deal with this problem, as in standard singular perturbation theory, van Henten (1994) divides 
the system into a slow and a fast subsystem: 

x = f(x,z,u,v,t) (6) 
ez = g(x,z,u,v,t) (7) 

where z are the fast states, x the slow states, u the controls, v the exogenous inputs, t the time and e 
the time scaling parameter. The criterion is: 

</ 
J = ®(x(tf),tf)-JL(x,z,u,v,t)dt (8) 

to 

First the slow subproblem is solved, taking e-0. From this, z follows as a function of x, u, v, t: 
z = h(x,u,v,t) (9) 

The result is an optimal slow control trajectory for the whole season u*. From this the 
accompanying optimal seasonal state x* and co-state trajectory A* are calculated. According to 
van Henten the co-states represent the marginal value of the accompanying state: 

As(0 = ̂ - (10) 

These are then taken as part of the criterion function of the fast subproblem: 
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</ 
Jf = f(-L(x?,z,u,v,T)+ A*Tf(x*,z,u,v,r))dT (11) 

to 

where z is subject to: 
z = g(x*,z,u,v,t) (12) 

t0 and tf are the initial and final time of the growing season, the v are the long term weather 
predictions and x* is a result of the long term optimisation. 

6.4 Two Time-scale Receding Horizon Optimal Control 
There are three additional problems associated with the implementation of the approach of van 
Henten, described above. First the poor reliability of long term weather predictions, second the stiff 
nature of the fast subproblem, and associated to this, the large number of computations and data 
needed and finally the open loop character of the optimal control. These problems all can be 
overcome by shortening the horizon of the fast sub-problem and applying receding horizon optimal 
control to solve it. In addition, using the actual weather as prediction over this shortened prediction 
horizon and updating it at each control step is a practical first approximation to tackle the weather 
forecast problem. This approach is known as the 'lazy man' weather prediction. Moreover in 
equation 12 instead of x*, the actual x, as computed from equation 6 with the actual control, is 
used, thus compensating for deviations from the seasonal optimum due to the actual weather. 

The two time-scale decomposition proposed by van Henten as well as the modifications mentioned 
here, all result in loss of performance compared to the ideal situation where we have perfect 
knowledge of the weather and the stiff system. Through a numerical example van Henten illustrated 
the loss of performance due to his two time-scale decomposition to be modest. The results of 
Chapter 5 indicate also that the losses due to these modifications will be modest. Since the slow 
subproblem has large time-constants, it can be solved using historical statistical data not including 
fast changes. This reduces the number of computations and amount of data needed. 

6.4.1 The general receding horizon optimal control algorithm 
After each sampling instant si, i'=0,l,2,..., at which all measurements and controls are updated, a 
receding horizon optimal controller computes the solution to a new optimal control problem. The 
initial time f0 of each problem equals the next sampling instant i.e., 

t0 = sM,i = 0,1,2,... (13) 

The initial state x(t0) - x(sM), i=0,l,2,... where x(sM) is a state estimate computed from the model 
and the measurements at s, in case of the greenhouse climate, from the model and the measurements 
at so in case of the crop dry weights, from the model only in case of the soil temperature and the 
assimilate buffer. The final time tf of each problem is adjusted according to: 

t/=sM+th (14) 

where th is the fixed horizon length of the receding horizon optimal controller. Our controller uses a 
fixed sampling period of one minute i.e., 

sM-s, =T, i = 0,1,2,... (15) 
with T = 60 seconds, which implies that every one minute an optimal control problem has to be 
solved on-line. In order to solve this problem the continuous expressions were discretised with a 
discretisation step At, chosen to be 60 seconds as well i.e., 
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At = T (16) 
So each numerical solution consists of controls for every 60 seconds within [si+i,si+1+th], i'=0,l,2,... 
i.e. 

u(sM+kAt), k = 0,1,2,.. A -1, j = 0,1,2,... 
At 

(17) 

From these controls, which become available at the next sampling instant si+i=Si+T=Sj+At, only the 
value for which k=0 is actually applied to the system. The algorithm used to compute the optimal 
control sequences (16) was of the first order gradient type (Bryson and Ho 1975 pp.221) where the 
successive improvements of each optimal control sequence 8u(sM+kAt),k = 0,1,2,..,th/At-l are 
computed according to, 

8u(t0 + kAt) = & 
du lo+M/ 

* = 0,1,2,...,-^-1 
At 

where H is the hamiltonian defined by 
H = -L(x,z,u,v,T) + XTf 

(18) 

(19) 
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time [day] 
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Figure 2 The hourly averaged global radiation G and outside temperature TD for 1 March till 31 October 
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with A the vector of co-states and/the right hand side of Eqn. 6. # is obtained by performing a line 
search for each control sequence to find the J? -value that minimises the criterion. All controls are 
bounded from above and below so equation 18 only holds for each control variable if its bounds are 
not violated. Otherwise that control will be kept on its boundary value. 

6.4.2 Two time-scale receding horizon optimal control of greenhouse tomato crop 
production 

The receding horizon optimal control algorithm is applied to the fast sub-problem of the greenhouse 
tomato crop production control problem. Lazy man weather predictions v/ are used to replace the 
disturbance sequence v. In Chapter 5 in a numerical study for lettuce cultivation in a greenhouse 
without heat storage an optimal optimisation horizon th of one hour is found. As th is mainly 
determined by the time constants of the greenhouse, the crop and the exogenous inputs, th is also 
taken one hour in case of a tomato crop. To improve the controller performance, instead of the slow 
state trajectories generated by the slow subproblem, slow state trajectories which are simulated on
line are used as an input to the fast subproblem. The on-line simulated state-trajectories are more 
accurate since they are computed from the actual measured weather, while the state trajectories 
resulting from the slow subproblem are computed from the less accurate long term weather 
predictions. All together this results in the following optimal control problem. Find the optimal 
control sequence u*(t) that minimises the goal function J defined by: 

x(t0) = x(sM) (20) 
z(t0) = z(sM) (21) 

x = f(x,z,u,v,t) (22) 
z = g(x,z,u,v,t) (23) 

f t \ 
J= j \-L(x,z,u,vf,T) + kf f(x,z,u,vri))dx 

(24) 

where to is the initial time, th is the short term horizon and v/ are the short term weather predictions, 
x(sM), i = 0,1,2,... is computed from the model and the measurements at so and z(sl+1) i = 0,1,2,... 
is computed from the model and the measurements at s,. The accompanying short term hamiltonian 
is defined by: 

Hf=(-L(x,z,u,vf,T:)+ Xfflx,z,u,vrT))+XT
fg (25) 

with Xf the vector of fast co-states and g the right hand side of eqn. 7. Equation 24 is the short term 
version of equation 19. This problem is solved using the algorithm of section 4.1. 

6.5 Simulation and experimental results 

6.5.1 Slow subproblem 

lower boundary 
upper boundary 

slope 

T night T day CQ2 

15°C 
25°C 

-.-6 

17°C 
25°C 

5.10° 5.10 ,-6 
1000 ppm 

1.10"8 

Table 1 The penalty parameters 

RH 
65% 
90% 
1.17 

The slow subproblem has been solved 
using hourly averaged weather 
measurements (Figure 2), collected 
during the 1995 experiment (Chapter 
6). The penalty parameters are given in 
table 1. The ««//-value is taken from 
Tap et al. 1997. The start of the 



92 Two time-scale receding horizon optimal control of greenhouse tomato crop production 

growing season is skipped, so that the optimisation starts with a mature crop, that is the 
developmental stage D equals 1, and fruits and leaves are harvested throughout the simulation 
period. The crop states WF and WL, with time constants of weeks, are categorised as slow and the 
greenhouse states Tg, Tp, V, and C„ with time constants of about 20 minutes, as fast. The assimilate 
buffer B and the soil temperature Ts both have a time-scale with time-constants of about one day. 
This makes it more or less a three time-scale problem. To prevent the introduction of a third time-
scale B is categorised with the other crop states as slow and T„ with the other greenhouse states as 
fast. The function h from equation 9 has been determined numerically using a non-linear equation 
solver, since the climate model is too complicated to do this analytically. 

To solve the optimal control problem of the slow subproblem, initially the first order gradient 
algorithm from equation 18 has been used. This algorithm is not able to find satisfactory solutions 
for the slow subproblem, which is probably due to the penalty functions and the large number of 
controls (three per control instant, i.e. 3x245x24). Therefore using the outcome of the first order 
gradient algorithm as a first guess, subsequently sequential search (Seginer et al. 1993) has been 
used. This means that at every control instant the controls are determined that minimise J. At every 
control instant, starting with sj, each control is changed step by step until / reaches a minimum. The 
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Figure 3 A^ and XWL for 1 March till 31 October 1995 and pF=0.02 fl/g 
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Figure 4 Aflfor 1 March till 31 October 1995 and pF=0.02 fl/g 

step size is equal to the difference between the upper and lower boundary of every control divided 
by the number of steps in the control, i.e. Au = ( K ^ - umi„)/N. First the relative heating valve 
opening has been changed, then the window opening, then the CO2 dosage flux. This loop is 
iterated until no further improvement is found at s,. This is done for all control instants su i=0,l,2,... 
one after another, first with a small N for fast convergence later with larger values of N to obtain 
accurate results. This method is computationally more involved but comes up with much better 
criterion values. 

Figure 3 and 4 show the slow co-states. Comparing Xy and A„ it appears that \ , is almost 

proportional to the integral of \ , . As the assimilates are mainly stored in the fruits and the 

production of assimilates increases when WL increases this seems logical. When T0 is compared 
with k„ it shows that A„, looks very much like \(J0-Tjt)At (not shown), where TR is a reference 

temperature, indicating the temperature integrating behaviour of the plant. As co-states represent the 
marginal value of the accompanying state (equation 10), kj[t) represents the costs of producing an 
extra unit of plant material. Figure 3 shows that it is always favourable to produce fruits, especially 
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at the start of the season. X^ goes to zero because it has no use to produce fruits that are left 

unharvested. At the start of the season it is unfavourable to produce too many leaves (high A^, ), 

maybe because an increase of leaf area causes an increase of transpiration. In summer this will 
enlarge the humidity problems. Between day 80 and 160 leaf production is profitable, perhaps 
because leaf area is needed to guarantee enough assimilate production at the end of the season (as 
from day 160) when the global radiation is decreasing (figure 2). At the end of the season it is a 
waste to invest in leaves since there is not enough time to receive pay back. Both the fruit and leaf 
co-state change only slowly and do not display a clear day-night pattern. The buffer co-state on the 
other hand does display a clear day-night pattern (figure 4 and 5). This is caused by the fact that the 
buffer gets filled during day-time and becomes empty during the night. The differential equation of 
Bis: 

dt 
= Pg-b fgFWF+vgl 

W, 
-b 

f W A 

rFWF + rL-+ 
v z J Here Pg is the photosynthesis and b is the buffer switching function defined by: 

(26) 

4 5 
time [day] 

5 6 
time [day] 

Figure 5 The first 10 days of Afland B for 1 March till 10 March 1995 and pp=0.02 fl/g, using hourly 
averages as weather data 



Economics-based Optimal Control of Greenhouse Tomato Crop Production 95 

130 

0 50 100 150 
time [day] 

Figure 6 The calculated pattern of RH in time for 1 March till 31 October 1995. 

200 

b = \-e -b,B 

250 

(27) 
where bt is a positive constant. During the night Pg = 0, so B will decrease. As soon as the 
assimilate buffer changes from not-empty to empty, b becomes zero, so the differential equation for 
B suddenly changes to B = 0. This causes a sudden change in the second right-hand term of the co-
state equation: 

I dLjdf (28) 
dx 8x 

where/is defined by equation 6. At the start of the day period the inverse happens, also causing a 
sudden change in AB. During day time A depends on both WF and WL, during the night it only 
depends on WF. Therefore the night value of AB looks like AWF and its day value looks like a 
combination of AWF and Am. (figure 3 and 4). Together this explains the day-night pattern. 

Figure 6 shows the calculated course of the greenhouse relative humidity over the season as a by
product of the slow subproblem. The relative humidity values over 100% are probably due to 
inaccuracies in the modeldescription of the ventilation and condensation (Chapter 3). In spring the 
relative humidity inside the greenhouse stays well within its limits. By day RHg goes down to its 
lower boundary, at night RHg goes up to its upper boundary. During the summer RHg considerably 
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Figure 7 The calculated pattern of WF and WL in time for 1 March till 31 October 1995. 
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Figure 8 The course in time of the seasonal (or) long-term criterion function and its components for 1 
March till 31 October 1995. 

violates the upper boundary of 90%. This can be explained from the equation describing the 
transpiration E: 

qsnt]G + rpcpDggb 
E = W, (29) 

is+y(l+% 
I * , 

Here WL is the leaf dry weight, G the global radiation and Dg is the vapour pressure deficit, all other 
symbols can be assumed constant. During summer WL and G are high (figure 7 and 2), consequently 
E is high. As the ventilation capacity is only limited this causes humidity problems. 

Figure 7 shows WF and WL- Both first go up and later down again as a result of the increasing and 
decreasing amount of radiation. WF reaches its maximum value 36 days later than WL because the 
leaf area is an input to fruit growth. The maximum of WF (272 g/m2) is about 1.5 times higher than 
that of WL (178 g/m2). Comparing these values with measurements in a commercial greenhouse 



Economics-based Optimal Control of Greenhouse Tomato Crop Production _2Z 

«E _2 

x 1 ( T 

: : : ; : : : IN 

U_^J 

: 1/ 

0 3 6 9 12 15 18 21 24 
time [h] 

Figure 9 Co-states for 1 September 1995 

0 3 6 9 12 15 18 21 24 
time [h] 

0 3 6 9 12 15 18 21 24 
time [h] 

given by de Koning (1994) shows a similar course in time, indicating that the model and the control 
perform reasonably well. 

Figure 8 shows the long term criterion and its components. The optimal CO2 dosage cost (b) and the 
CO2 penalty contributions (d) are small. The true net costs (Jreai) (g) are determined by the 
difference between the heating costs (c) and the fruit income (a). Additionally the temperature (e) 
and humidity penalty (f) make a significant contribution to the long term criterion (i). During 
summer the temperature penalty is quite high, because during day time it is often physically 
impossible to keep the temperature below the upper temperature boundary. In summer also the 
relative humidity penalty has its highest values as explained before. So the grower pays an 
insurance premium to himself of about 13 fl/m2 for a too high temperature, and puts aside about 
6 fl/m2 for a too high humidity level. If nothing happens he kan add those amounts to (i), 4-
19 w fl/m2 real profit (g). The same result can be obtained by computing the net income as the 
difference between the fruit income (a) and costs (b and c) -28 + 13 «-15 fl/m2. In these 
computations the labor costs associated with an increase in production are not taken into account. 

6.5.2 Fast subproblem 
Having obtained the solution of the slow subproblem the fast subproblem (equation 20 through 24) 
can be solved. This has been done in simulation and on-line by the TTROC controller in a real 
greenhouse. Comparing the experimental and simulation results reveals the sensitivity of the 
algorithm to modelling and measurement errors. 

6.5.2.1 Experimental results 
The optimal control experiment lasted 90 days (3 August till 31 October 1995) and was carried out 
in the same greenhouse the model is calibrated on (Chapter 3). Figure 10 presents a one day sample 
of the experimental (subscript exp) and simulation results (subscript sim). In simulation the 
measured weather data from the experiment are used as inputs. The first row of figure 10 shows the 
measured outside climate, the second row shows the measured greenhouse climate data and the fifth 
row the controls applied to the greenhouse. The upper temperature boundary used in the control 
algorithm is 25°C, the lower one is 15°C during the night and 17°C during day time. The upper 
relative humidity boundary is 95% and the lower one is 65%. At the time the experiment was done, 
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the slow subproblem was not solved yet. As the plant co-states were unknown, an assumption has 
been made about their value: 

XB= 0 = O.OOfllg 

KF=~PF =-0-02/1/ g (30) 

*Wl=-pF=-0.02fl/g 
Figure 3 shows that between day 156 and 245 this is a reasonable assumption with respect to W^but 
not for WL which is closer to 0.02 than to -0.02 fl/g. Figure 4 shows that kB is close to zero, so the 
assumption of equation 30 is quite realistic, except for X^ . Figure 10 (d,e,f and m,n,o) shows the 

behaviour of the controller. For this day during night time the heating (rh,exp) is turned on (m) to 
satisfy the temperature constraint (d). During day time the heating is turned off, as the temperature 
stays above its lower boundary and the relative humidity (f) stays beneath its upper boundary. 
During the night, when the humidity is expected to be no problem the windows (o) are closed to 
save energy. During day time the windows are opened to keep the temperature as low as possible. 
This is advantageous because it minimises the respiration losses, and because fruits, leaves and 
harvested fruits have the same value it maximises the income. Till about 8 a.m. the windows are 
closed as much as possible to benefit from the high CO2 concentration (e) at the end of the night. 
CO2 dosage (n) takes place from 8.30 till 8.45 a.m., because at that time the windows can be kept 
closed while the sun is shining. 

6.5.2.2 Effect of model errors 

To investigate the influence of the difference between model predictions and measurements, the 
controller is simulated as if on-line for the same day as discussed in the previous section. Whereas 
during the experiment the actual measurements are used to update the states to serve as initial 
conditions for the coming horizon, in the simulation the simulated values are used. Hence 
differences between experiment and simulation are due to modelling errors. 

The third row of figure 10 (g,h,and i) shows the simulated greenhouse climate and the sixth row 
(p,q and r) shows the simulated controls (subscript sim, PF). Comparing the experimental and 
simulation results reveals that during the night in simulation the controller can keep the temperature 
much closer to its lower boundary value (d and g). Looking at the heating valve (m and p) and 
window controls (o and r) it shows that the overall pattern is the same in both cases, but in 
simulation the controls behave more quietly, especially the window opening. This is a result of 
model inaccuracies, probably mainly in the part describing ventilation. The ventilation part of the 
model does not include any temperature effects, thus implicitly it assumes that for wind-speed w=0 
there is no ventilation. Errors in the ventilation part explain the fact that during the night the 
simulated CO2 concentration (h) is considerably higher than the measured one (e). They can also 
explain the difference in the simulated (i) and measured (f) relative humidity, given the similarity of 
the controls. Despite these inaccuracies it can be seen that the RHOC algorithm is still able to 
control the real greenhouse satisfactorily. 
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Figure 10 The outside weather - i.e. the global radiation G, outside temperature T0 and wind-speed w - and 
the experimental (subscript exp) and simulated (subscript sim) greenhouse climate - i.e. the inside 
temperature Tg, C02 concentration Q and the relative humidity RHi - and controls - i.e. the 
relative heating valve opening rh, relative window opening rw, and the CO2 dosage flux - for 
1 September 1995. The simulations are performed for XB=0, A.WF=PF, ^WL=PF (subscript pF)and for 
•̂B= ŝ,B > A\VF=AS]WF. AwL= ŝ,WL (subscript As). 
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6.5.2.3 Effect of slow co-states 

To investigate the influence of the co-state the simulation is repeated for the A-values for this day 
resulting from the long term optimisation (figure 9) instead of the constant values of equation 30. 
During the night XB is bigger than during day time. Thus, during day time the photosynthesis is 
stimulated and during the night the growth of the plant. X# is almost constant at Xw = -0.02 fl/g, 

which is the same as assumed in the experiment and which is also equal to the value of the 
harvested fruits. As 1 September is close to the end of the growing season X^ has a positive value, 

which is in clear contrast to the assumption made during the experiment. During the day it is almost 
constant at X# =0.027 fl/g decreasing only a little. The positive value indicates that it is 

unfavourable to produce extra leaves at this moment. The results of the simulation using these X-
values are shown in row four and seven of figure 10 (subscript sim, Xs). 

The differences between the two simulations can all be explained by the difference in X^ -values 

(Xs is positive, PF negative). As Xs is positive, it is profitable if WL decreases. During the night when 
the assimilate buffer is empty, the only process taking place is respiration. When the temperature 
increases, the respiration increases and consequently WL decreases. Consequently the night 
temperature will be higher using Xs instead of PF- AS the allocation of assimilates depends on 
temperature, during day time the temperature must be as high as possible to produce less leaves and 
more fruits. This can be achieved by closing the windows more, however the window opening must 
be large enough to carry away the vapour production. When the windows are closed, or almost 
closed, the optimal control algorithm immediately tries to take advantage of this situation and starts 
to dose CO2. Because of the very changeable global radiation however, the window opening is also 
very changeable and so the advantage of dosing CO2 is rather small. 

6.6 Discussion 

The TTROC approach needs only a few climate computer settings (in the order of ten), as opposed 
to the current climate computers (in the order of 300). Most of the process knowledge is part of the 
program in the form of mathematical models. On-line tuning of the models (adaptive control) may 
offer possibilities to improve the performance. 

The computation of the long term strategy is very involved, which may be due to the stiffness of the 
long term problem. The assimilate buffer B and the soil temperature Ts both have intermediate time-
constants of about one day. This may make the overall problem a three time-scale problem. A 
solution to this problem starts with an off-line seasonal optimisation. Then every day an 
optimisation over the coming day is performed off-line, based on commercially available weather 
predictions and the long-term criterion augmented by the seasonal crop co-states. Finally, every 
minute an optimal control problem with an optimisation horizon of one hour is solved on-line, using 
lazy man weather predictions and the long-term criterion augmented by the seasonal and daily co-
states. 

From the long term co-state the seasonal strategy can be obtained. The exact dates when to invest in 
fruits or leaves, may differ from year to year. A further improvement would be to use a statistical 
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average weather pattern instead of the weather of 1995. However, both van Henten and Seginer 
(1998) found only little difference between the co-state patterns computed for different years. The 
initial positive value of X^ may depend on the initial condition of the crop, possibly too many 

leaves are produced in the previous period. Therefore the computation of the he long term co-state 
start at the start of the season. 

6.7 Conclusions 

For the first time a solution of the long term optimal control problem for greenhouse tomato crop 
production was presented. The slow co-states show that the leaves and fruits while on the plant have 
a value. This value shows a distinct seasonal pattern. From the computed long term co-states it 
shows that it is always favourable to invest in fruits, especially at the start of the season. Investing 
in leaves is only profitable in the middle of the season. At the end of the season it is a waste to 
invest in leaves since there is not enough time for the investment to pay back. 

On-line control can be achieved by solving the slow sub-problem first. Secondly the short term 
criterion must be modified with the long term co-states. Combined with lazy man weather 
predictions and the receding horizon control approach to solve the short term problem, this results 
in a real time implementable control algorithm. 

The experimental results of the application of the TTROC control algorithm show proper 
performance. The small difference between the experimental and simulation results despite model 
discrepancies, using the same co-states, indicates the robustness of the algorithm. Simulations show 
that the values of the slow co-state in the short term criterion considerably influence the control 
behaviour, hence it is very important to obtain the right values. 
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7 Comparison of conventional and optimal control 
of greenhouse tomato crop production. 

R.F. Tap, L.G. van Willigenburg, G. van Straten 

Abstract 
This paper describes a comparison of conventional and optimal control of greenhouse tomato crop 
production by experiment and in simulation. The experiments performed in a real greenhouse show 
differences in control variables and greenhouse climate, but similar crop behaviour. The simulations 
reveal that a considerable part of the energy consumption is used for dehumidification (11% for the 
selected days). Therefore, carefully choosing the humidity constraints is important. Moreover, 
simulation shows that optimal control can be expected to be more energy-efficient than 
conventional control, the^ difference being in the order of at least 8% in this case. Because the 
optimal controller explicitly takes the long term effects into account, its seasonal performance is 
much better than of the conventional controller. 

Keywords: 
Greenhouse cultivation, optimal control, receding horizon control, tomato crop, energy-efficiency 

7.1 Introduction 
Present greenhouse computer algorithms usually aim at maintaining set-points for temperature, 
humidity and CO2 concentration. These setpoints are based on knowledge and experience about 
what is beneficial for the plant, but the control costs are not explicitly taken into account. There is a 
considerable amount of scientific knowledge on greenhouse and crop behaviour. Using optimal 
control this knowledge can be employed to increase the profit obtained from crop production along 
with the energy efficiency of greenhouses. Up till now optimal greenhouse climate control concepts 
either did not include long term considerations (Hwang, 1993), or they assumed perfect long-term 
weather predictions (van Henten, 1994). Chalabi (1996) and Aikman (1997) did some experiments 
on optimal control of CO2 concentration and temperature, using a short term criterion. 

In contrast the two times-scale receding horizon optimal control (TTRHOC) developed in Chapter 6 
does include long-term considerations and in addition uses realistic weather predictions. Moreover, 
all three main greenhouse variables - temperature, CO2 concentration and humidity - are controlled 
This paper presents both an experimental and a simulated comparison of conventional and optimal 
control of greenhouse tomato crop production. To the best knowledge of the authors this is the first 
time that receding horizon optimal control is implemented in a real greenhouse simultaneously 
controlling the three greenhouse climate variables. In section two of this paper the optimal control 
problem, underlying the receding horizon optimal control, will be stated along with the solution 
algorithm. Section three describes the conventional greenhouse climate control. The results of the 
experimental comparison are presented in section four. Since it is difficult to judge all aspects of the 
comparison in an experiment, the two systems are also compared in simulation. The results are 
presented in section five , followed by discussion and conclusions (section six and seven). 
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7.2 Optimal control 
Optimal control is based on a model of the process and a goal function or optimisation criterion. 
The model describes the system behaviour as a function of the states, controls, external inputs and 
time. The criterion function is the design tool which may be a function of the states, controls, 
external inputs and time. Optimal control determines the controls that will minimise the criterion 
function. 

7.2.1 Model 
The model is described in detail elsewhere in Chapter 2. The model consists of two interacting 
parts: the physical greenhouse climate model and the crop model. The climate model is a 
modification of a model of Udink ten Cate (1985) and the tomato crop model is obtained from the 
model of de Koning (1994) by reasoned aggregation. The greenhouse climate model describes the 
behaviour of the greenhouse climate (i.e. air temperature, humidity and CO2 concentration) under 
the influence of the control actions (i.e. lee and windward side window opening, heating water 
mixing valve opening and the CO2 injection flux), the external inputs (i.e. the outside climate: 
global radiation, air temperature, humidity, CO2 concentration, wind speed and wind direction) and 
finally under influence of the plant. A separate sub-model describes the dynamics of the heating 
system. The crop model describes the production and distribution of assimilates in a tomato plant. 
For that purpose it contains four states, the assimilate buffer dry weight, the leaf dry weight, the 
fruit dry weight and the plant development stage. Summarising the complete joint model consists of 
nine states, four controls and five external inputs: 

x = f(x,d,u,t) (1) 
where x are the states, d are the external inputs, u are the controls and fis the time. 

7.2.2 Criterion 

It is assumed that the goal of the grower is to make as much profit as possible. Hence the negative 
profit or in other words the net costs, is chosen as the criterion function J to be minimised. 

J=](-pFWHf +PMn;+PHHu+Pc +PV +PT)dt (2) 
h 

where t0 is the beginning of the growing season and tf the end, pF is the auction price of the 

tomatoes per gram dry weight, WH is the fruit harvest rate, pc is the CO2 price, <pinj is the CO2 

injection flux, pH is the heating price and Hu is the heat input. Pc, Pv, and PT are penalty 
functions concerning CO2, humidity and temperature, that account for unmodelled effects. These 
functions represent soft constraints that discourage the optimal climate to violate certain boundaries. 
Form and effect will be discussed in more detail in section 7.5.2. 

7.2.3 Two time-scale decomposition 

The greenhouse model has time constants of about 20 minutes, whereas the crop model has time 
constants of several weeks, so the combined greenhouse-crop model is a stiff model. For this kind 
of models singular perturbation methods (Kokotovic et dl., 1986) are used to compute optimal 
controls. Because of fast fluctuating external inputs that strongly influence the system behaviour, 
the standard singular perturbation methods can not be used (van Henten, 1994). Therefore van 
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Henten suggests another way to solve this problem. First the long-term optimisation for the slow 
sub-problem is solved, then the resulting co-states of the slow sub-problem are used to adapt the 
short-term criterion function. Subsequently the short-term optimisation is solved using this adapted 
criterion function. 

The approach used in this paper differs in two ways from the one of van Henten. Firstly van Henten 
assumes perfect a priori weather knowledge both for the slow and fast sub-problem, whereas in this 
paper averaged weather is used for the slow sub-problem while a short-term weather prediction is 
used for the fast sub-problem. Secondly the fast sub-problem is solved using a receding horizon 
algorithm with a horizon shorter than the growing season. These modifications make the method 
applicable in practice. The short-term criterion function is a modification of the long-term criterion 
function (equation 3): 

'/ 
J = \\-PF% +PMni+PHHu+Pc+Pv+PT+W+KWF+\WL)dt (3) 

where AB, A^, and Xy, are the co-states derived from the slow sub-problem and B, WF and WL 

are the corresponding state derivatives. So the products XBB etc. convey the future cost or profit per 
time unit of the present investments in these states. Because of the fast fluctuating external inputs 
(the outside weather, notably the global radiation) and the unreliable long term weather predictions, 
receding horizon optimal control with lazy man weather predictions is used (Chapter 5). The lazy 
man prediction simply states that the weather over the next short term horizon will stay the same as 
the actually measured weather. The measurements and hence the predictions are updated every 
control step. The advantages of this method are threefold, (i) it is real time implementable, (ii) it 
introduces feedback and (iii) the application of the lazy man weather predictions combined with 
updates every control step yields higher profits than using fixed weather based on a commercially 
available forecast with an update twice a day (Chapter 5). 

7.3 Conventional control 

Conventional greenhouse climate controllers are rule based setpoint controllers for temperature, 
humidity and CO2 concentration. The setpoints are generated by the climate computer on the basis 
of settings supplied by the grower and the outside weather conditions. Essentially, the conventional 
controllers are simple P- or Pi-controllers together with combinatorial rules, to enforce setpoints or 
setpoint ranges, based on knowledge and experience about what is beneficial for the plant, without 
explicitly taking the control costs into account (Peterse and Steenvoorde, 1994). 

7.4 Experimental comparison 
The optimal control algorithm has been tested and compared with a conventional controller in two 
experiments in 1994 (Tap et al. 1994) and 1995. The experiments were done in two compartments 
of a real greenhouse with tomatoes. One compartment was controlled by a conventional climate 
computer, the other by the receding horizon optimal control algorithm. The first experiment from 
1994 is mainly used to overcome practical implementation problems. Because the greenhouse is 
controlled optimally only during short periods, this experiment can not be used to compare both 
control strategies, however it did indicate that the optimal control algorithm is able to control the 
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Figure 1 Measurements from May 17 till September 14 1995, of fruit and leaf dry weight and the harvested 
fruit dry weight per plant during the till day 214). 

greenhouse. From the second experiment in 1995, slightly over one month of continuous crop and 
climate measurements from both control strategies are available. 

Figure 1 shows the crop measurements in both compartments. In the optimally controlled 
compartment the climate is controlled by the conventional controller till day 214, from then on the 
optimal controller has taken over control. So the differences in growth and yield up to that day, are 
not caused by the control. After that day the optimal and conventional fruit weight and harvested 
fruit weight stay almost equal to each other. Only the optimal leaf weight (62 g) at the end was 
significantly larger than the conventional one (48 g). This can be explained by the lower greenhouse 
temperature obtained in the optimally controlled greenhouse, causing a more vegetative crop. 
Further it must be observed that the experiment has run simultaneously in both compartments only 
during the period of one month. Compared to the time-constants of the crop this is too short to 
expect any significant differences. Moreover the experiment is performed only once, so, 
considering the variability in plants, the results are not statistically reliable. Therefore, to 
demonstrate any differences by experiments, the experiments must last longer and several 
repetitions are needed. 

Figure 2 shows measurements of the optimal and conventional greenhouse climate for day 244 and 
245. One sees that the optimal greenhouse temperature is lower, the optimal pipe temperature is 
higher and the optimal window opening is larger than the conventional ones. Together this results in 
a relative humidity that is about 5-10% lower, while the conventional controller was given an upper 
relative humidity boundary setting of 90% and the optimal controller one of 95%. It shows that the 
optimal controller, with the present settings, values the maintaining of the upper relative humidity 
boundary more than the conventional controller, resulting in a lower optimal relative humidity at 
the expense of a higher heat input. Figure 2 displays two controls, the third control, the C02-dosage 
flux, is not shown, as it was not known in case of the conventional controller. From the measured 
peaks in the conventional CO2 concentration around t = 244.7 days, follows that CO2 has been 
dosed. The increase of the C02-concentration during the night is caused by the respiration of the 
crop. The bang-bang nature of the optimal controls is a result of the fact that there are no costs 
associated with the window control, and the presence of control limits. It could be avoided by 
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Figure 2 Measurements of state (greenhouse temperature Tg, pipe temperature Tp, greenhouse CO2 
concentration Q, greenhouse air relative humidity RHi) and control variables (the relative window 
opening rw and the relative heating valve opening rh) of the optimal ( ) and conventional 
( ) controlled greenhouse for two days (September 1 and 2 1995). 
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assigning costs to the opening and closing of the windows and the heating valve (wear costs). In 
reality opening the windows too widely can cause cold spots inside the greenhouse. As this is not 
described by the model, the possible negative effects are not reckoned with. Crop observations 
however did not show any negative effects, as the crop looked a little better in the optimally 
controlled greenhouse. Perhaps this is due to the lower relative humidity, which stimulates crop 
evaporation. 

The experiments indicate clearly that the control of the relative humidity strongly influences the 
overall behaviour of the controller. To stick to the upper relative humidity boundary the optimal 
pipe temperature is higher and the optimal windows are opened further than in the conventional 
case, resulting in a lower CO2 concentration and temperature. 

7.5 Simulated comparison 
In simulation it is much easier to perform a comparison than in practice, because simulation 
experiments take less time and the problem of the stochastical dispersion of the crop does not affect 
the simulation. Moreover, reliable energy computations are easier to perform in simulation than in 
pactice. Despite model inaccuracy, comparison by simulation is useful, as both controllers control 
the same greenhouse-crop model. The absolute value of the simulated harvest and energy 
consumption may differ from the true ones, but the relative performance of the different controllers 
is expected to be affected less. If one controller performs 10% better than the other in simulation, in 
reality the improvement is expected to be about the same orther of magnitude. 

7.5.1 Initial conditions 
Because the optimal controller computations are lengthy (about lA of real time), computation over a 
whole season is infeasible. As will be explained later on in more detail the optimisation is 
performed using the weather data of four characteristic days throughout the year 1995 (March 2, 
May 22, August 13 and October 31). To perform simulations initial conditions of the state variables 
have to be chosen for each of these days. The initial conditions in the optimal and conventional case 
are chosen to be the same. As initial crop states, the crop states at the start of the four days, resulting 
from the seasonal optimisation (Chapter 6) have been taken. It should be noted that these crop states 
are expected to be closer to optimality than can normally be achieved by conventional control. To 
obtain initial values for the greenhouse climate variables, one day preceding the day to be 
simulated, has been simulated using the conventional controller. The final values of the 
conventional greenhouse state variables of that day are used as initial values for the simulation of 
the next day, both in the conventional and optimal case. A lead time of one day is taken because 
after one day the influence of the initial value of that day is damped out. In this way realistic 
starting values are obtained. As the conventional controller behaves differently from the optimal 
one, the conventional climate may differ from the optimal climate. Therefore the conventional 
climate values are sub-optimal values for the optimal case. 

7.5.2 Matching the humidity constraint violation 
To compare the conventional and optimal controller it is important to grant them both the same 
optimisation space. As can be learned from the experimental results the conventional controller 
does not stay within the imposed bounds. So, in order to make the results comparable, the optimal 
controller must be allowed to violate those bounds to the same extent. Simulations show that the 
optimisation space is mainly determined by the humidity penalty. Therefore the humidity penalty 
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must be adapted such that it is the same in the conventional and optimal case. Since the 
conventional controller is widespread in practice, it has been assumed that the humidity trajectories 
it realizes are acceptable to the growers, despite the violation of the bounds. In addition, it has been 
assumed that it does not matter when exactly the constraint violations occur. So the optimal 
humidity penalty is adapted such that on average it equals the conventional one. 

The humidity penalty is defined by: 
Pv=a(RH-RHj if RH<RHnuri 

•Pv=0 if RH^KRHKRH^ (4) 

Pv=MRH-RHmJ ifRH^<RH 
where RH is the greenhouse air relative humidity expressed in percent. In equation 4 there are three 
parameters that can be adjusted, namely RHmin, RHmax and a. We have chosen to adapt the slope 

of the humidity penalty a, since the lower and upper relative humidity boundaries RH^ and 
RHmm can not be chosen freely, for they are more or less known quantities. The slope parametera 
represents the costs in guilders of exceeding these boundaries by one percent during one second. 
This is not a known quantity, but it is estimated by the following procedure. First the conventional 
climate is simulated for a certain period of time. Based on this climate the integral violation of the 
humidity boundary is calculated for the conventional control. Then a for the optimal case is found 
by an iterative line search to match the integrated constrained violation to the conventional one The 
corresponding a -value is denoted by a*. 

1 f 
Figure 3 shows the integral violation of the humidity boundaries — Pvdt as a function of a. In the 

aJ 

case of conventional control this is a constant, since the conventional control is not influenced by a. 

So the realised climate is fixed and— \Pvdt is constant. The value of the conventional integral 

violation only depends on the values of RHmin and RHmax. When RHmi„ and RHmax are close together, 
the violation will be large, when they are far apart the violation will be small. In the case of the 

\Pvdt 
» jo it-optimal control 

a 
is influenced by 

\Pvdt 

a. 
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\ ^ ^ ^ ^ o p t i m a l 
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Figure 3 Integral violation of the humidity boundary as a 
function of the slope parameter a. 

RHmin and RHmax and by a, because the 
optimal control is influenced by the 
humidity penalty. When a = 0 , the 
optimal control is tolerant to constraint 

violations so that — f Pvdt has its 
a3 

maximum value, when a = °°, if possible, 
RH will stay within its boundaries. 

In Tap et al (1997) a* is calculated for 
one characteristic autumn day (14-9-'95). 
a* is quite sensitive to the choice of the 
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period over which the optimisation is performed, as the exceeding of the boundaries by the 
conventional controller depends strongly upon which period of time is chosen. Simulations for 
March of the conventional controller show for many days a much larger exceeding of the 
boundaries than for this single day in September. To find the seasonal a* the procedure should be 
applied to the whole season. Because the optimal controller computations are lengthy (about lA of 
real time), computation over a whole season in this way is infeasible. Therefore, to get a better 
approximation of the seasonal a*, instead of using one day, as in Tap et al (1997), the optimisation 
is performed using the weather data of four characteristic days throughout the year 1995 (March 2, 
May 22, August 13 and October 31). To calculate the optimal control, the two time-scale receding 
horizon optimal control approach is used. In the short-term criterion the slow co-states based on the 
a* for 14-9-'95 (a* = 1.17-l(r7fl/%sm2) from Tap et al (1997) are used. To get the 'true a*-value\ 
the whole procedure based on a whole season, including the long-term optimisation, should be 
iterated. Fortunately simulations indicate that a* is not very sensitive to small changes in XB, XWf 
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Figure 4 Integral violation of the humidity boundary as function of the slope in the humidity penalty 
function (a) for March 2(1), May 22 (2), August 13 (3), October 31 (4) and for these four days 
together (total), both for the optimal controller ( ) and the conventional controller ( ). 
The numbers are at the intersection point of the optimal and conventionalcurves of one day. 
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Figure 5 The optimal relative window opening, C02 concentration and relative humidity for a = 4.8973-10 
fl.m"2.s"1.%RH~1. (upperthree graphs) and a = 4.9650" 10s fl.m'2.s"1.%nH'1 (lowerthree graphs) 

and Ay that would result from redoing the seasonal optimisation. The settings of the conventional 

controller do have a major influence on the value of a*. The settings used are common in practice. 
To get a fair comparison the lower temperature setpoints equal the lower temperature boundaries of 
the optimal controller (15 °C at night, and 17 °C during daytime). 

Figure 4 shows the results of the a-matching procedure. Each 'conventional' curve is the result of 
one simulation of the conventional controller for that particular day. Each 'optimal' curve 
represents the result of 32 computations of the optimal control for one day, each for a different a. 
The curves labelled total, represent the total integral violation of the relative humidity boundary 
over these four days. Comparing figure 3 and 4 one can see that the curves in figure 4 have the 
expected shape, except for the jump to be discussed below. The a-value at the jump is taken as a*. 
So a* = 4.9652-10"8 fl.m"2.s"1.%RH"1. It turns out that a different value of a* holds for each day. For 
day 1, 2 and 4 this is a smaller value and for day 3 a larger value. It also shows that day 1 and 4 
have a very small integral violation of the humidity boundary, whereas the integral violation of day 
2 and 3 is considerably (10 to 30 times) larger. 
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Figure 6 The integral heating costs as function of the slope in the humidity penalty function (a) for March 2 
(1), May 22 (2), August 13 (3), October 31 (4) and for these four days together (total). 

It is interesting to analyse the cause of the jump in somewhat greater detail. It appears that the jump 
in the total optimal curve is caused by the jump in the curve of day 2. This jump is caused by a 
sudden change in strategy, as shown in Figure 5 When a <a* (upper three graphs in figure 5) 
around t = 500 min the windows are closed and CO2 is being dosed. The humidity penalty is 
compensated by the extra photosynthesis. When a > a* (lower three graphs in figure 5) the extra 
photosynthesis does not compensate for the humidity penalty any more, so the windows are opened 
and no CO2 is being dosed. This strategy change causes a discontinuity in the integral violation of 
the humidity boundary. Therefore there exists no a such that the optimal and conventional integral 
humidity penalty are equal to each other. The a chosen to be a* is the one which approximates this 
condition most. With a* = 4.9652- 10s fl.m~2.s~1.%RH~1 the optimal integral violation is 8.995105 

S.%RH-

7.5.3 Sensitivity of the energy consumption with respect to a 
The slope of the humidity penalty function ( a ) determines to what extent the humidity boundaries 
are maintained. To satisfy the humidity boundaries the windows are opened and when necessary the 
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cashflow 
projected gain 

day 1 
opt. 

-581 

63 

973 

6 

0 

82 

-59 

-747 

51 

-213 
-455 
292 

conv. 

-433 

0 

738 

9 

0 

247 

-16 

-95 

891 

1341 
-305 
210 

da> 
opt. 

-1124 

47 

318 

233 

0 

76 

2 

-793 

-8 

-1248 
759 
1552 

'2 
conv. 

-1282 

0 

484 

317 

0 

705 

-57 

-714 

-12 

-559 
798 
1512 

day 3 
opt. 

-1463 

24 

0 

198 

0 

0 

-2 

845 

-103 

-501 
1439 
594 

conv. 

-1687 

0 

410 

94 

0 

0 

-2 

1089 

-173 

-270 
1277 
188 

day 
opt. 

-725 

0 

691 

8 

0 

0 

0 

3 

-1 

-24 
34 
31 

4 
conv. 

-699 

0 

636 

47 

0 

33 

0 

3 

-1 

18 
63 
60 

average 
opt. 

-973 

34 

496 

111 

0 

39 

-15 

-173 

-15 

-497 
443 
616 

conv. 

-1025 

0 

567 

117 

0 

246 

-19 

71 

176 

132 
458 
387 

Table 1 The optimal and conventional criterion and its components and the cash flow for a* = 4.9652-10" 
fl.m'2.s"1.%RH"

1 expressed in flha'-day"1 for March 2 (dayl), May 22 (day 2), August 13 (day 3), 
October 31 (day 4) of 1995 and the average over these four days (average). 

heating is turned on. The optimal control algorithm weighs the heating costs against the humidity 
penalty. Therefore the heat input will increase as a increases. Figure 6 shows the integral heating 
costs as a function of a. It turns out that the dependence of the heat input on a depends strongly on 
the weather of the considered day. On day 1 the humidity boundaries are hardly violated (figure 4), 
so the heat input is almost independent of a. On day 2 the violation is bigger and from figures 3 and 
6 it follows that the violation can easily be reduced by extra heating. On day 3 the violation has the 
same order of magnitude as on day 2, but the violation can not easily be reduced by extra heating, 
probably because it is a very hot day and extra heating will not only decrease the humidity penalty 
but also increase the temperature penalty. On day 4 the violation of the humidity penalty can be 
reduced to a certain level, but for higher a the heat input is independent of a. The total heat input 
for these four days shows an almost linear relation between a and the heat input for these a-values. 
The total heat input shows an 11% increase from a = 0 to a = a*. This indicates that 11% of the 
optimal energy consumption is related to dehumidification. The actual percentage for a specific day 
can be larger or smaller. This value is of the same order of magnitude as the annual values de 
Halleux and Gautier (1998) found in their simulation experiments under Quebec climatic conditions 
using different ventilation regimes (12.6% and 18.4%). 
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Figure 7 The simulated relative humidity for March 2 (day 1), May 22 (day 2), August 13 (day 3), October 31 
(day 4), both for the optimal controlled ) and the conventional controller ( ). 
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7.5.4 Results 

Table 1 shows the results of the comparison by simulation. It presents the final values of the 
criterion function and its components (equation 3) both for the optimal and the conventional 
controller for the four simulated days individually and averaged over these four days, at 
a* = 4.9652-10"8 fl.rn2.s-1.%RH"1. 

Fruit harvest and energy consumption 
During day 1 and 4 more fruits are harvested (row 1 in Table 1) and more energy (row 3) is used in 
the 'optimal' greenhouse than in the 'conventional' greenhouse, on day 2 and 3 it is just the 
opposite. On average less fruits are harvested (5%) in the optimal controlled greenhouse, while the 
heat demand is 13% lower. This results in a 8% lower energy consumption per harvested fruit 
weight, i.e. the optimally controlled greenhouse has an 8% higher energy efficiency than the 
conventional one. 

COi dosage 
On day 1, 2 and 3 the optimal controller doses CO2 (row 2) in contrast to the conventional 
controller It should be noted that this result is affected by the premise that pure CO2 is used for CO2 
enrichment. In greenhouses where flue gas can be used, its dosing would probably be more 
extensive. 

Penalties 
As a* is chosen such that the relative humidity penalties are almost equal, the difference in 
humidity penalties is small, as expected (row 4). Yet, as stated before, considerable differences 
can occur from day to day, since it is not possible to choose one fixed seasonally valid humidity 
constraint function that would equate the penalties between the conventional and optimal 
controllers over all days. The overall optimal relative humidity penalty is 5% lower, showing 
that the 'optimal' controller has taken more effort to stay within the desired humidity area, 
probably resulting in a higher heat input. Both controllers stay within the CO2 bounds (row 5). 
The optimal controller has a small temperature penalty (row 6), that is caused by the sudden 
change in lower temperature boundary at sunrise from 15 °C to 17 °C, which the optimal 
controller can not track. The conventional controller has a more substantial temperature penalty. 
This is because it does not take the temperature boundary as serious as the 'optimal' controller. 
During the night for instance the conventional greenhouse temperature fluctuates around the 
lower boundary, whereas the optimal temperature stays just above the lower boundary 
temperature. The higher temperature penalty represents a higher risk of damage to the crop due 
to too high or too low temperatures. If the 'optimal' temperature penalty was set equal to the 
conventional one, yielding both controllers the same temperature optimisation space, the 
comparison would be more fair. This could have been done by applying the procedure of section 
5.2 also to the slope of the temperature penalty. The expectation is the results will be in favour 
of the optimal controller. 

Long term investments 
The negative value of the last three terms of the goal function represents the expected future 
profit because of a change in buffer, fruit and leaf dry weight (rows 7, 8 and 9, respectively). As 
the buffer is emptied almost every night, the differences in the investments in the buffer are not 
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Figure 8 The course of the co-states in time for March 2 (day 1), May 22 (day 2), August 13 (day 3), 
October 31 (day 4). 

important. However, the differences in the investment in fruits and leafs are important. These 
investments represent the ability to harvest more fruits in the future. A negative co-state means a 
positive marginal contribution of an investments in the corresponding state to the seasonal 
profit. Figure 8 shows the values of the different co-states for the four days (note the scales). It 
shows that throughout the season the value of the co-states changes, thus the ability to harvest 
fruits in future changes with time. The optimal controller invests in leaf and fruit weight to raise 
the future production, whereas the conventional controller consumes them, to raise the present 
production. 

Short term cashflow and expected long term profit 
Together, the fruit harvest, the heating costs and the CO2 costs, constitute the cash flow over the 
day (row 1 minus row 2 and 3). In Table 1, row 11 this is expressed as a positive value in the 
case of net income. On day 1,2 and 4 the conventional controller has a higher cash flow. The 
average 'optimal' is three percent lower. Obviously the difference in cash flow depends on the 
ratios between the gas, CO2 and the tomato price. As the optimal controller uses less gas, the 
outcome would be different for a higher gas price. The conventional control has a higher cash 
flow, but meanwhile it violates the temperature boundary considerably more often and it invests 
less in future harvest. Both effects are included in /(equation 3). So J in row 10 equals the real 
cash flow, minus the risk of damage to the plant due to unfavourable climate conditions, plus the 
expected future profit. Considering J, table 1 shows that on average the conventional controller 
suffers a loss, whereas the optimal control gains a profit. Another way of evaluating the 
controllers is by taking the investment in future fruits into account, assuming that these fruits 
will sooner or later be harvested as well, and then generate a true cash flow. This number coined 
'projected gain' is presented in rowl2, computed as the negative value of the sum of rows 1, 2, 3 
and 8. 

Initial conditions 
It is assumed that on every simulation day the optimal and conventional controllers have equal 
initial crop conditions, taken from the long term optimisation in Chapter 6. Because of this, in the 
conventional case fruits are harvested that would not have been present if the initial crop conditions 
were determined by the conventional control. So the conventional control has an undeserved 
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advantage. To get a better comparison, the initial crop conditions in the conventional case must be 
taken from a seasonal simulation of the conventional controller. 

Relative humidity 
Figure 7 shows the optimal and conventional relative humidity for the four considered days. Both 
yield about the same total humidity penalty, but they are obtained in a different way. The optimal 
humidity is higher on day 3 but lower on the other days. By using the right penalty function, the 
optimal controller automatically shifts the heating to the moments it is most effective to dehumidify. 
Therefore the optimal controller saves energy. 

Temperature 
Despite the fact that the temperature setpoint of the conventional controller equals the lower 
temperature boundary of the optimal controller, the air temperature is lower in the optimally 
controlled greenhouse (not shown). This stems from the fact that in simulation the conventional 
controller uses a so-called minimum pipe temperature. This value depends on the circumstances but 
is somewhere between 40 and 50 °C. The optimal controller does not have a minimum pipe 
temperature. It turns out that the optimal pipe temperature is about 15 °C lower than the 
conventional one. The optimal controller closes the heating valve during daytime, to save energy, 
and only opens it at night to control the humidity. 

7.6 Discussion 

Penalty functions offer a clear way to tune the optimal controller. It is possible to both choose the 
boundary values and determine the degree of violation of those boundary values (the slope of the 
penalty function a), whereas it is much less obvious to tune a conventional controller. 

Experimentally it is hard to make a good comparison between the conventional and optimal 
controller. To proof statistically relevant differences, a large number of experiments needs to be 
done. As the greenhouse crop system is a non linear system with large time-constants it is best to 
perform experiments that last a whole growing season. In simulation a comparison is much easier to 
perform. When the simulation is based on validated models this will yield valuable results. 

The comparison of the conventional and optimal control of greenhouse crop production, based on 
simulation results of four days, shows that it is possible to considerably raise the energy efficiency 
of greenhouses (8 %). With the chosen prices this means 3 % decrease in profit over these days, but 
the future optimal result (497 fiha'day' profit) is expected to be considerably higher than the 
conventional one (132 fiha'day'1 loss). 

The comparison can be made more fair, and simultaneously the results can probably be improved 
further in favour of the optimal control, in two ways. First the initial values should not be equal for 
both the optimal and conventional controller, but should result from their past behaviour. This will 
favour the results of the optimal controller. Secondly the procedure described in this paper to match 
the humidity constraints, must be applied both to the relative humidity penalty and the temperature 
penalty. 
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Energy for dehumidification is an important part of the energy budget. Therefore the humidity 
constraints have a major influence on the heating costs and consequently on the controller 
behaviour. A fair comparison with a conventional controller is obtained by determining the value of 
the relative humidity penalty slope that gives both controllers the same optimisation 
space(a* = 4.9652-10-8 fl.m"2.s"1.%RH"1). 
In comparing whole seasons the use of one a* for a whole season might have undesired 
consequences. In Tap et al (1997) one could see a shift of the heating to the most efficient period in 
a day. In this paper we notice a shift between different days towards the day it is most easy to 
comply with the boundaries. For a whole season this might mean a shift between different seasons, 
thus causing one season to closely keep up with the boundaries, and another season to severely 
violate them for prolonged periods of time, which is unwanted. Therefore, instead of one fixed 
seasonal a*, a course in time of a* (a*(t)) might be desirable, or alternatively, a* could be made 
an (increasing) function of the duration of violation. From the point of view of energy saving 
potential, it is important that the physiological meaning of humidity constraints and their violation is 
investigated more thoroughly. 

Of course the results of the comparison depend on many choices, like the choice of the greenhouse 
tomato crop model, the settings chosen for the conventional controller, the choice of the penalty 
functions etc. Still this comparison clearly points out the advantages and the potential of optimal 
greenhouse climate control. 

7.7 Conclusions 
• Based on a limited survey over four days, optimal control can be expected to be more energy-

efficient than conventional control. The difference observed is in the order of 8%, and probably 
higher. 

• A considerable part of energy consumption is for dehumidification (11% for the selected days). 
Carefully choosing the humidity constraints is therefore important. More insight in the risks of 
stretching the bounds may lead to energy savings, even in a conventional controller setting. 

• Optimal control allows better control over constraints. 
• The advantages of optimal control are the result of simultaneously considering long and short-

term effects and 
• The optimal controller explicitly takes the long term effects into account. On the short term it 

pays in terms of short term profit. Therefore the benefit of the optimal controller over the 
conventional one will be much larger on a seasonal scale. 

• Optimal control using scientific knowledge results in easy to interpret control behaviour. 
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Conclusions 

1. The Two Time-scale Receding horizon Optimal Control (TTROC) algorithm developed in this 
thesis has successfully been implemented in a real greenhouse. This algorithm deals 
appropriately with the different time-scales characterising the greenhouse crop system. It 
requires the use of both long-term and short-term weather predictions. Both types of weather 
predictions significantly influence the control. Compared to conventional control, a single 
experiment with the TTROC algorithm resulted in a slight increase of crop yield and much less 
violation of the temperature and humidity bounds. Although experimental results can vary 
significantly, the experiment indicates the advantage of using the TTROC algorithm. 

2. The calibration and validation of the greenhouse crop model revealed that it is difficult to 
accurately model all the phenomena described by the model. Especially the accurate modelling 
of humidity and crop development is troublesome. Despite this result the controls computed by 
TTROC in the experiment and the controls computed by TTROC in a simulation with the same 
experimental weather data, were very similar. This suggests that the TTROC algorithm is robust 
with respect to modelling errors. 

3. In simulation TTROC improves the energy efficiency by 8.5% compared to conventional 
control. Against a 5% drop of crop yield the energy consumption reduces by 12.5%. The 
simulation was performed over four characteristic days. Extrapolation from these four days with 
the assumption that investments in bio-mass on the plants would finally pay off, suggests an 
average achievable gain in profit of 60%. Care was taken to ensure that optimal and 
conventional control did not differ in violating the humidity bounds, otherwise a fair 
comparison would be impossible. The greenhouse did not contain a heat storage, and 
autonomous availability of CO2 was assumed. 

4. A considerable part of energy consumption is for dehumidification (11% for four characteristic 
days). Carefully choosing the humidity constraints is therefore important. More insight in the 
risks of stretching the bounds may lead to energy savings, even in a conventional controller 
setting. 

5. The conventional control, with the usual settings, is not able to maintain the imposed humidity 
bounds. Because there is no mechanism to regulate the violation, in practice the humidity 
bounds are chosen tighter than necessary. This increases the energy consumption. 

6. In TTROC an adjustable penalty is associated to the violation of the bounds. The degree to 
which the imposed humidity bounds are obeyed can be set by adjusting the penalty parameters. 
Relaxing the penalty results in less energy consumption. 

7. In general the optimal control aims at lower temperatures than the conventional control. Given 
the experimental and simulation results, the present practice of using a minimum pipe 
temperature is questionable. Maintaining a minimum pipe temperature is less energy efficient 
and reduces the cash flow. 
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8. For the first time a solution of the long term optimal control problem for greenhouse tomato 
crop production was presented. The slow co-states, which are part of the solution show how 
leaves and fruits must be valued at each stage. These values show a distinct seasonal pattern. 
From these patterns it follows that investing in fruits is always favourable, especially at the start 
of the season. Investing in leaves is only profitable in the middle of the season. At the end of the 
season it is a waste to invest in leaves since there is not enough time for the investment to pay 
back. 

9. The statistical average weather pattern is the most suitable long term weather prediction for use 
in the TTROC algorithm 

10. Unlike the present conventional climate control computers, a climate computer performing 
optimal control, only has a very limited amount of settings (less than ten), which all have a clear 
meaning while their quantitative effect can be shown to the grower, before he decides to 
implement them. 

11. Simulation results clearly show that it is highly beneficial to use measurements of the weather at 
the greenhouse location, instead of commercially available weather predictions, obtained once 
or twice a day. Using a receding horizon controller with a control horizon of 1 hour in 
combination with the lazy man weather prediction results in a loss of performance of about 15% 
compared to optimal control with perfect a priori knowledge of the weather. The loss is only 6 
% with respect to receding horizon control assuming perfect a priori knowledge of the weather 
over the receding control horizon. A receding control horizon of 1 hour is the best compromise 
between uncertainty related to weather prediction and a loss of performance due to shortening 
the control horizon. 

12. The technical feasibility of the two time-scale receding horizon optimal control of a greenhouse 
tomato crop production system has been demonstrated. The use of scientific models and the 
explicit economic goal function, has led to many insights, which can be presented orderly to the 
grower. These insights can also be utilised to improve conventional control. 
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Summary 

The design and testing of an optimal control algorithm, based on scientific models of greenhouse 
and tomato crop and an economic criterion (goal function), to control greenhouse climate, is 
described. An important characteristic of this control is that it aims at maximising an economic 
criterion, determined by the heating and CO2 supply cost on the one side and the of tomato yield on 
the other side. Unlike conventional control, the economic criterion, e.g. when energy taxes are 
included in it, directly leads to predictable energy savings. Whereas growers, using the 
conventional control, are inclined to optimise the climate for the crop, the economic criterion makes 
a trade off between yield and costs. The costs are mainly energy costs. As a result the energy 
efficiency improves. 

In case of the greenhouse an existing model is modified and extended with a description of the air 
humidity and a heating pipe model. In case of the crop the number of states of the tomato model of 
de Koning has been reduced from several hundred to four based on 'reasoned aggregation', to make 
it suitable for control purposes. This results in a combined greenhouse crop model of nine states. 
The calibration of this model has been done sequentially. First the tomato model has been calibrated 
and then the greenhouse model using the output of the tomato model as an input. The different sub
models have been calibrated using independent data. The validation shows that the models predict 
the trend of the different states well. The value of the states displays a clear deviation, with the 
exception of the pipe temperature, which is accurately predicted. 

The time-scales of the greenhouse crop system are very different. Simulations show that neglecting 
the fast greenhouse dynamics results in a considerable loss of performance. To take these different 
time-scales and the poor predictability of the weather into account, a time-scale decomposition is 
used. First a long term optimisation over a growing season is carried out, based on a long term 
weather prediction, neglecting the greenhouse dynamics. For the first time a solution of the long-
term optimal greenhouse tomato crop production problem is presented. This solution is used to 
adapt the short-term criterion. In the short-term optimisation the greenhouse dynamics are taken 
into account. The computations are carried out using the 'receding horizon' principle combined with 
'lazy man' weather predictions, and an optimal horizon of one hour. This way feedback is 
introduced into the system and the control becomes real-time implementable. 

Economic results of experiments with the implemented optimal control algorithm show the 
applicability of the optimal control. The results were not inferior to the experimental results 
obtained with the conventional control in a second adjacent greenhouse compartment. The 
experiments seem unique because, to our best knowledge, never before the climate in a greenhouse 
has been completely determined by an optimal control algorithm designed on the basis of a 
greenhouse crop model and an economic criterion. The small difference between experimental and 
simulated results, despite model discrepancies, indicates the robustness of the algorithm. As an 
objective comparison of the optimal and conventional control is only possible based on a larger 
number of experiments, in this research the conventional and optimal control are compared by 
means of simulation. The simulations clearly show that a considerable amount of the energy 
consumption is needed for dehumidification (11%). Therefore it is important to choose the humidity 
bounds adequately. To be able to compare the results the penalty on crossing the 90% upper 
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humidity bound is tuned such that the cumulative crossing for the conventional and optimal 
controller are equal. 

The comparison shows that the optimal control of a greenhouse tomato crop production system 
without heat storage and autonomous availability of CO2, when simulated over four characteristic 
days, improves the energy efficiency by 8.5%. Against a 5% drop of crop yield the energy 
consumption reduces by 12.5%. The optimal controller explicitly takes into account long-term 
effects. This may reduce the short term profit. However, assuming that the investments in bio-mass 
on the plant will finally pay off, extrapolation of the results from these four days shows an average 
gain in profit of 60%. 
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Samenvatting 

Het ontwerp en de test van een optimaal regelalgoritme, gebaseerd op wetenschappelijke modellen 
van kas en tomaten gewas en een economisch criterium (doelfunctie), voor de regeling van het 
klimaat in kassen waarin tomaten worden geteeld, wordt beschreven. Belangrijk kenmerk van deze 
regeling is dat deze streeft naar maximalisatie van een economisch criterium, aan de ene kant 
bepaald door de kosten voor het verwarmen en CO2 doseren en aan de andere kant door de 
opbrengst van de geoogste tomaten. In tegenstelling tot conventionele regelingen leidt het 
economisch criterium, wanneer hier bijvoorbeeld energieheffingen in zijn opgenomen, rechtstreeks 
tot een voorspelbare hoeveelheid energiebesparing. Waar tuinders geneigd zijn, via de 
conventionele besturing, uitsluitend het klimaat voor het gewas te optimaliseren, weegt het 
economisch criterium opbrengsten af tegen kosten. welke voornamelijk bestaan uit energiekosten. 
Hierdoor neemt de energie efficientie toe. 

Voor de kas is een bestaand model aangepast en uitgebreid met een beschrijving van de 
vochthuishouding en een model voor de verwarmingsbuis. Voor het gewas is het aantal toestanden 
van het tomatenmodel van de Koning op basis van 'beredeneerde aggregatie' gereduceerd van 
enkele honderden tot vier, om het geschikt te maken voor regeldoeleinden. Dit resulteert in een 
gecombineerd kas- gewasmodel van negen toestanden. De kalibratie van dit model is sequentieel 
uitgevoerd. Eerst is het tomatenmodel gekalibreerd, daarna het kasmodel waarbij de uitvoer van het 
tomatenmodel als invoer is gebruikt. De verschillende sub-modellen zijn gekalibreerd met 
onafhankelijke data. De validatie laat zien dat de modellen de trend van de verschillende toestanden 
goed voorspellen. In de waarde van de toestanden zit wel een duidelijke afwijking, met uitzondering 
van de buistemperatuur, die zeer nauwkeurig wordt voorspeld. 

De tijdschalen van het kas- en gewassysteem zijn sterk verschillend. Simulaties tonen aan dat het 
verwaarlozen van de snelle kas dynamica leidt tot aanzienlijk mindere prestaties. Om deze 
verschillende tijdschalen en de slechte voorspelbaarheid van de weersinvloeden op te vangen, wordt 
gebruik gemaakt van een tijdschalen decompositie. Eerst wordt een lange termijn optimalisatie over 
een groeiseizoen uitgevoerd, op basis van een lange termijn weersvoorspelling, waarbij de kas 
dynamica wordt verwaarloosd. Voor de eerste keer wordt er een oplossing gepresenteerd van het 
lange termijn optimale besturings probleem van het produceren van tomaten in een kas. Deze 
oplossing wordt gebruikt om het korte termijn criterium aan te passen. Bij de korte termijn 
optimalisatie wordt de kas dynamica wel meegenomen. Bij de berekening wordt het 'receding 
horizon' principe gebruikt in combinatie met 'lazy man' weersvoorspellingen en een optimale 
horizon van een uur. Hierdoor is feedback in het systeem gei'ntroduceerd terwijl de regeling real
time implementeerbaar wordt. 

Economische resultaten van experimenten met het gei'mplementeerde optimale besturings-algoritme 
tonen de toepasbaarheid van de optimale regeling aan. De resultaten deden in het experiment niet 
onder voor resultaten behaald met een conventionele regeling, in een tweede aangelegen 
kascompartiment. De experimenten lijken uniek omdat, voor zover wij weten, nooit eerder in de 
wereld het klimaat in een kas volledig werd bepaald door een optimaal besturings-algoritme 
ontworpen op grond van een kas en gewas model en een economisch criterium. Het kleine verschil 
tussen experimentele en gesimuleerde resultaten, ondanks model afwijkingen, wijst op de 



126 Samenvattins 

robuustheid van het algoritme. Daar een objectieve vergelijking van de optimale en conventionele 
regeling alleen mogelijk is op basis van een groter aantal experimenten zijn de conventionele en 
optimale regeling in dit onderzoek vergeleken door middel van simulatie. De simulaties laten zien 
dat een aanzienlijk deel van het energieverbruik nodig is voor ontvochtiging (11%). Daarom is het 
belangrijk de vochtgrenzen goed te kiezen. Om de uitkomsten te kunnen vergelijken is de straf op 
de overschrijding van de 90% bovengrens van het vochtgehalte zo ingesteld dat de cumulatieve 
overschrijding voor de conventionele en de optimale regelaar gelijk zijn. 

De vergelijking laat zien dat de optimale regeling bij een tomatenteeltsysteem met een kas zonder 
warmteopslag en onafhankelijke beschikbaarheid van CO2 in simulatie voor vier kenmerkende 
dagen leidt tot een ca. 8.5% toename van de energie efficientie. Tegenover 5% afname van de 
gewasopbrengst staat een daling van het energieverbruik met 12.5%. De optimale regelaar houdt 
expliciet rekening met lange termijn effecten. Dit kan ten koste gaan van de korte termijn winst. 
Echter, onder de aanname dat de investeringen in de biomassa aan de plant zich uiteindelijk 
terugbetalen, volgt uit extrapolatie van deze resultaten over vier dagen een gemiddelde toename van 
de winst van 60%. 
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