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Abstract 
Farah, H.O., 2000. Estimation of regional evaporation under different weather conditions from 
satellite and standard weather data: A case study of the Naivasha Basin, Kenya. Ph.D. thesis, 
Wageningen University, The Netherlands 

The operational use of optical and thermal remote sensing methods for the monitoring of evaporation 
has been limited because of existing cloud cover problems as well as the need for field data by the 
remote sensing algorithms. The focus of this thesis is the development of methods to map the spatial 
patterns and temporal evolution of evaporation on both clear and cloudy days. The Naivasha basin in 
Kenya is used as a case study. 

Existing remote sensing algorithms used to estimate evaporation from remotely sensed data differ in 
the way they describe the spatial variations of input parameters. An evaluation of the impact of 
spatially varying input parameters on distributed surface fluxes showed that the vertical near surface 
air temperature difference and frictional velocity were the most critical parameters. Most remote 
sensing algorithms treat air temperature as spatially constant indicating that they are less suitable for 
the calculation of distributed evaporation in heterogeneous catchments. 

The temporal variability of the evaporative fraction A (Eq. 5.1) at the daily and seasonal time frames 
was investigated with field data obtained at two experimental sites. For general weather conditions 
the values of the midday (12.00 to 13.00 hrs) evaporative fraction AmUI compared well with the 
averaged day time evaporative fraction A^y. A good relationship was obtained between daytime 
evaporation estimated from Amid and evaporation measured by the Bowen ratio surface energy 
balance method. Less satisfactory evaporation results were obtained using morning (9.00 to 10.00 hrs) 
evaporation fraction Amor. The seasonal evolution of A^ was observed to be gradual. To capture the 
seasonal evolution of A^. it would be sufficient to measure A^y approximately every 10 days. 
Moreover, it was shown that the inter-annual variability of the 10-day average A could be reliably 
estimated from standard weather data. 

To monitor the temporal evolution of daily evaporation over a season, evaporation has to be estimated 
between consecutive clear days with satellite images being available. Two methods to predict daily 
evaporation on days without satellite images due to cloud cover are presented. Field data acquired at 
two sites were used to test these methods. The first method consists of the application of the Penman-
Monteith equation and Jarvis-Stewart model with standard weather data and the assumption of 
gradual soil moisture changes between consecutive clear days. With this method evaporation could be 
accurately predicted for up-to 5 continuous days with no satellite images. The second method is a 
simplified approach involving the use of a constant A between cloud free days with measured 
evaporation. This approach did not give satisfactory results in predicting evaporation on individual 
days. However, the total evaporation of a 7-day time span was equally good for both methods. 

Five NOAA AVHRR satellite images were used to produce daily evaporation maps of the Naivasha 
basin for 15 continuous days with intermittent cloud cover by using the Penman-Monteith equation 
coupled with the Jarvis-Stewart model as well as the evaporative fraction method. The evaporation 
maps were validated with field data and overall good agreement was obtained. This demonstrated 
that remote sensing methods can be extended for practical use under all weather conditions to map 
both the spatial patterns as well as the temporal evolution of evaporation in catchments and river 
basins. The methods of predicting evaporation can be applied at different time scales. Users can select 
the appropriate time scales depending on their needs. The implementation of the Penman-Monteith 
equation and Jarvis-Stewart model requires a land cover classification of the catchment to assign land 
cover dependent coefficients in the Jarvis-Stewart model. At each land cover type standard weather 
data has to be measured. 

Key words: evaporation, evaporative fraction, thermal infrared remote sensing, spatio-temporal 
variations of evaporation, Naivasha basin, Kenya 



PROPOSITIONS 

1. The application of the hypothesis of quasi-constant evaporative fraction to 
estimate daily evaporation is valid under general weather conditions 
provided evaporative fraction from the central hours of the day is used. 
(This thesis) 

2. Satellite overpass times in the early morning or late afternoon may be useful 
for visual interpretation of surface features but not for evaporation 
estimation. Measurements from Landsat and Terra satellites have therefore 
to be treated carefully. (This thesis) 

3. The combination of Surface Energy Balance Algorithm for Land (SEBAL) 
with the Penman-Monteith and Jarvis-Stewart models can be used to 
temporally integrate regional evaporation under different weather 
conditions. (This thesis) 

4. Remote sensing evaporation algorithms that do not account for the spatial 
variability of near-surface temperature gradients and surface roughness 
length for heat transport will give erroneous distributed evaporation values 
in a heterogeneous area. (This thesis) 

5. In developing countries, the development of tools to improve water 
resources management is frequently hampered by lack of information on 
meteorology, hydrology, soil and land use. (This thesis; Decurtins, S. 1992. 
Hydrogeographical investigations into Mount Kenya subcatchments of 
Ewaso-Ngiro river. African Studies Series No. A10. University of Bern, 
Switzerland) 

6. Remote sensing applications have focussed too much on land use mapping 
and little on its water use surveying capabilities. Satellite information on 
evaporation and biological production can provide rapid appraisal and 
reliable assessment of water accounts and return on investment. (Molden, 
D.J. 1997. Accounting for water use and productivity, SWIM Paper 1. 
International Water Management Institute, Colombo, Sri Lanka) 

7. Look for Knowledge even if it is as far as China. (Arabic saying) 

8. Smooth seas do not make a skilful sailor. (Ethiopian Proverb) 



9. War on nations change maps. War on poverty maps change. (Muhammad 
Ali) 

10. It is clear that most children suffer too much mother and too little father. 
(Gloria Steinem) 

H.O.Farah 
Estimation of regional evaporation under different weather conditions from 
satellite and meteorological data: A case study in the Naivasha Basin, Kenya. 
Ph.D. Thesis Wageningen University (19 January 2001) 
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Chapter 1 

Introduction 

1.1 General background 

Kenya is among those countries, that will face economic water scarcity in the next 
20 years (Cosgrove and Rijsberman, 2000). With a population growth estimated at 
an annual rate of 3%, increasing pressure is being exerted on the available land and 
water resources (Kohler, 1987). Scarcity of water is already being experienced as 
hereto perennial rivers have now ceased to flow during certain periods of the year 
due to water diversions in the upper catchments of these rivers (Decurtins, 1992). 
The focus today is to conserve and better manage the available water resources in a 
rational and efficient manner. Evaporation E is the loss of water in the form of 
vapour from the earth's surface to the atmosphere. Evaporation consumes about 
60% of precipitation when averaged over all continents (Brutsaert, 1982). In 
tropical regions, up to 90% of water flowing through a river basin may be used in 
the E process (Jensen, 1990). Knowledge of the spatio-temporal variations of E is 
therefore important for the planning and management of water resources. 

1.2 Problem identification 

Evaporation varies spatially owing to the heterogeneous nature of vegetation cover, 
soil properties and differences in water availability caused by hydrological 
processes. In heterogeneous catchments, there is a stratum of surfaces such as bare 
soils, water bodies and vegetation to which different E rates apply. In hydrological 
studies, the quantities of water evaporated at the macro-scale such as field, 
catchment or river basin are of interest. The evaporation from each element at micro 
scale in the landscape has to be aggregated to the macro-scale in order obtain the 
required macro scale estimate of EA at time t. This may be achieved by spatially 
integrating the micro-scale E(cij) at time t: 

EA(t)=-JE(aitt)da (1.1) 

1 



where E(at, t) is the micro-scale evaporation for element i and A is the size of the 
whole study area. Evaporation also displays large diurnal and seasonal variations. 
These variations are due to the changes in the amount of precipitation and radiant 
energy at the surface caused by changes in the solar elevation. Temporally the 
fluxes may be described in time frames ranging from minutes to years. The 
determination of the accumulated E at the micro as well as the macro-scale requires 
the temporal integration of £(a,, t) and EA (t) 

i 

Eml =^E(a,,t)dt (1.2) 

EAl = JEA(t)dt (1.3) 

where t is the duration of time for which E is to be determined. 

Determining of £(a, , t) in a heterogeneous landscape is a difficult task. 
Conventional measurement techniques of E give point values. It is not possible to 
have an adequate number of point measurements in order to capture all the spatial 
variations in the landscape and obtain reliable estimates of EA. This is because of 
the practical limitations of the economic resources and expert manpower required to 
implement such a measurement network. Pelgrum and Bastiaanssen (1996) have 
demonstrated that E(at) from 21 different field stations is far from sufficient to 
predict EA in a 5000 km study area. 

Satellite remote sensing is a powerful tool to provide measurements at a wide range 
of spatial scales ranging from an individual pixel to an entire raster image that may 
cover a whole river basin. Estimation of E(a{, t) has been investigated since the 
operation of earth resource satellites in the 1970s. Many remote sensing based E 
estimation techniques have been developed since then (e.g. Jackson et al., 1977; 
Moran and Jackson, 1991). In the context of regional hydrology, Sellers et al., 
(1995) and Kustas et al., (1994) investigated methods to determine EAl. Whereas 
remote sensing techniques have assisted in the solution of Eq.1.1, little attention has 
been given to the determination of Eq. 1.3 by remote sensing methods. This limits 
the operational application of these methods considerably. 



Fig. 1.1 illustrates schematically the problem of determining Eat and EM- A remote 
sensing algorithm uses spatially distributed input variables p,(x,y) from satellite 
data on clear days and spatially constant input variables p,f from field data to 
calculate evaporation. On cloudy days optical satellite data are of no use and one 
has to rely on field data. As illustrated in Fig. 1.1, the practical use of remote 
sensing to solve Eq. 1.3 in heterogeneous landscapes is thus hampered by two major 
limitations: 

• cloud cover 
• lack of spatially variable field data 

In many parts of the world, cloud cover is a prominent phenomenon. In the humid 
tropics, mean cloud cover per day may exceed 60% (Bussieres and Goita, 1997). 
Fig. 1.2 shows the average monthly cloud cover for a grassland area in the Naivasha 
basin in Kenya. It can be seen that during 9 months of the year cloud cover is more 
than 40%. Only satellite data with less than 20% cloud cover of the area of interest 
are considered usable for E studies (Petehercych et al., 1983). The chances of 
getting cloud free conditions are therefore limited. 

Although microwave remote sensing data could be used to overcome this problem, 
apart from the difficulties encountered in their algorithm formulation, their temporal 
frequencies are not suitable for E determination. Moreover, there is a cost issue. 
Radar images are very expensive to use on an operational basis. 

Because of cloud cover problems the use of remote sensing methods has been 
restricted to short time frames such as a few days. To monitor E over a season an 
extension of the remote sensing methods is required. Between two consecutive 
cloud-free days when satellite imagery is available, E has then to be estimated by 
other means. Little work exists in the literature on methods of dealing with this 
problem and obtain a solution for Eq. 1.3. 

The Penman-Monteith equation is the most widely tested physically based model to 
predict evaporation under different climatic conditions and has been shown to be 
suitable for the calculation of actual E (Parlange, 1995; Choudhury, 1997a), 
reference E (Allen et al., 1998) and potential E (Choudhury, 1997b). The 
application of the Penman-Monteith model is usually hindered by the difficulty of 
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Fig. 1.1. Schematic illustration of the problems encountered in determining 
the time integration of spatially distributed evaporation, with satellite data 
being available on clear days only. 
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Fig.1.2 Average monthly cloud cover for the period 1961-1968 at the Kedong 
meteorological station (0°55'S 36°30'E) in the Naivasha basin, Kenya 

estimating surface resistance rs and boundary layer resistance r„/, to vapour 

transport. Surface resistance of partially vegetated surfaces consists of the sum of 

individual leaf resistances and the resistance to soil evaporation. The description of 

rs involves interaction between the physiology of leaves and the environment (Tan 

and Black, 1976; Shuttleworth and Wallace, 1985). The most common approach to 

model the effect of rs on environmental factors is the so-called Jarvis-Stewart type 

models (Jarvis, 1976; Stewart, 1988). In the present study the potential of linking the 

Penman-Monteith equation to remote sensing information in order to obtain 

continuous E data over a season will be investigated. 

Even when cloud free images are acquired during clear moments of the day, cloud 

covers during other parts of the day can affect the accuracy of the estimated daily 

totals of E. Remote sensing measurements are instantaneous measurements and it is 

necessary to convert these measurements to daily totals. A number of methods are 

available for extrapolating the instantaneous values into daily totals. The most 

widely used technique is based on the similarity of the diurnal courses of E and one 

of the other terms of the energy balance, such as sensible heat flux (Bastiaanssen et 

al.,1996), available energy at the surface (Shuttleworth et al., 1989) and solar 

radiation (Jackson et al., 1983). Zhang and Lemeur (1996) evaluated these 

techniques and concluded that under clear sky conditions daily E can be estimated 

accurately from instantaneous values. These authors cautioned however, the use of 

these techniques under cloudy conditions because the assumptions underlying the 
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integration methods may not be satisfied under cloudy conditions. An investigation 

is required on the suitability of the diurnal temporal integration methods for the 

weather conditions prevailing in the tropics. 

To estimate spatially distributed E (see Fig. 1.1) remote sensing algorithms use both 

spatially variable and spatially constant input variables. Table 1.1 presents the type 

of field data typically used in remote sensing based E algorithms. Apart from 

routine weather data, information on vegetation and soil physical properties is 

needed by some of these algorithms. Because of the absence of complete datasets, 

the field data are usually obtained from a few points and assumed to be spatially 

constant across the area of study. The required spatial variability of the input 

variables needed to obtain reliable E results is therefore often ignored. The 

consequence of handling the spatial variability of input variables by remote sensing 

algorithms on surface fluxes has received little attention in the literature. 

Table 1.1: Required field information for some selected remote sensing evaporation 
algorithms 

Algorithm Plant 

height 

properties 

1 • 

2 

3 

4 • 

5 

6 • 

7 • 

8 • 

Wind 

speed 

S 

V 

S 

Air 

temperature 

• 

• 

S 

S 

• / 

•/ 

V 

/ 

Air 

humidity 

• 

• 

• / 

• 

• 

• 

V 

V 

Solar 

radiation 

• 

• 

S 

•/ 

Soil 

• 

• 

1. Nieuwenhuis et al., 1985 2.Taconet et al., 1986 3.Abdellaoui et al., 1986 4.Hall et 
al., 1992 5. Hurdato et al., 1994 6. Kustas et al., 1994 7. Hatfield et al., 1984 
8. Granger, 1997 



1.3 Objectives 

The focus of this research is the monitoring of regional evaporation in the Naivasha 
basin in Kenya by using remote sensing techniques. The specific objectives are as 
follows: 

1. Investigate the limitations of the handling of spatial variability of input 
variables in remote sensing algorithms and their impact on the estimation of 
surface fluxes 

2. Investigate methods to temporally integrate the evaporate rate for intermittent 
cloud conditions found in Kenya 

3. Develop an operational method to monitor micro and macro-scale evaporation 
by remote sensing over a season 

1.4 Outline of thesis 

The theoretical basis of the E process and the parameterization of remote sensing 
algorithms are discussed in Chapter 2. First, the water balance approach is 
presented. Next the energy balance and the aerodynamic transport processes 
governing water vapour, heat and momentum fluxes are discussed. It is explained 
how the complex E process equations can be conceptualized in simple resistance 
schemes and how the Penman-Monteith equation is derived from that. A brief 
overview of remote sensing flux algorithms is given and some of their limitations 
are highlighted. 

In Chapter 3 the physical setting of the Naivasha basin and the fieldwork performed 
at two experimental sites are presented. The location, topography and climatic 
conditions of the basin are described. Details of the micro-meteorological 
measurements and the Bowen ratio towers set up at two sites are given. These data 
sets are used in the validation of E calculation procedures developed in the 
subsequent chapters. 

Chapter 4 addresses the importance of considering the spatial variability of input 
parameters in remote sensing algorithms on the estimation of surface fluxes. The 
delineation of the study area into 15 homogenous units using Landsat TM derived 

7 



surface temperature, surface albedo and NDVI, is described. Surface fluxes are 
estimated for each of the 15 units. The input parameters are aggregated and the 
impact of using aggregated parameters on calculated distributed surface fluxes is 
analyzed. The parameters are identified that should be described in spatial detail in 
order to obtain reliable E estimates. 

In Chapter 5 the validity of methods to temporally integrate instantaneous fluxes to 
daily values is tested with field data from the two experimental sites described in 
Chapter 3. The diurnal stability of the evaporation fraction (Eq. 5.1) is analyzed and 
related to the variations in air temperature, humidity and the atmospheric 
transmission of solar radiation. An analysis of the performance of the evaporation 
fraction, obtained at midday and midmorning, to temporally integrate E to daily 
values is carried out. The implications of the gradual changes in the average daily 
evaporation fraction, for the estimation of 10-day average and longer E estimates 
are discussed. 

The question of scarcity of cloud free images is addressed in Chapter 6. A 
framework consisting of the use of the Penman-Monteith and Jarvis-Stewart models 
is proposed for predicting E during periods of cloudy conditions. The result of the 
method is tested with field data. A simpler method to predict E, by assuming a 
constant evaporation fraction over several days, is also used and tested. 

Chapter 7 deals with the applications of the methods developed in Chapters 4, 5 and 
6 in a practical remote sensing E monitoring approach of the Naivasha basin. An 
operational E monitoring procedure is presented. NOAA AVHRR satellite data in 
conjunction with the extrapolation methods developed are used to derive E. The 
results are compared with field data. 

Finally, a summary and conclusions of the study are given in Chapter 8. 



Chapter 2 

Theory and parameterization of evaporation 

2.1 Soil water balance 

Evaporation E is the process by which water is evaporated from wet surfaces and 
transpired by plants. The rate of E depends on the availability of water and amount 
of energy at the evaporating surface and the ease with which water vapour can 
diffuse into the atmosphere. The ease of diffusion is controlled by the aerodynamic 
properties of the surface and by the moisture and turbulence conditions of the 
atmosphere. The process of E can be described by means of the soil water balance, 
the energy balance at the earth's surface, turbulent transport mechanisms and the 
moisture balance of the atmosphere (Menenti, 1993). 

The soil water balance is based on the conservation of mass and accounts for the 
incoming and outgoing moisture fluxes of a soil layer. When soils are sufficiently 
moist to maintain maximum E rates, the radiation balance controls the E process. 
However, under conditions of persistent soil moisture deficit the sub-surface soil 
water transport controls the E process. The soil water balance processes in a flat 
terrain are mostly vertical moisture movements and may be described in one 
dimension. Change in water storage (m) of a soil column over a particular soil depth 
z and time interval t, is defined as: 

AW = -j j-^-dzdt (2.1) 
0 0 °" 

where 0is the volumetric soil water content (m3 m"3). The soil water balance relates 

E and the change in soil water storage AW. Defining the change in soil water 

storage AW as an "in- out" term, the soil water balance can be written as: 

AW = (P + Ir+Q-E-R)At (2.2) 



where P (m s"1) is the precipitation rate, Ir (m s"1) is the irrigation water input rate, 
Q (m s"1) is the net subsurface flow rate, being positive upwards, and R(ms ' ) is the 
lateral runoff rate over the soil surface. According to the definition given in Eq. 2.1, 
AW and Q relate to a certain soil depth z- It is common practice in hydrology to 
obtain £ as a residual term after determining first the other terms. The magnitude of 
the soil water balance terms depends on the hydrological and atmospheric 
conditions. The terms AW and Q are however difficult to measure reliably in natural 
catchments, especially over periods less than a month. Accurate area average 
estimates of precipitation are also difficult to determine because of the spatial 
variability of precipitation. The calculation of E as the water balance residual, 
results in substantial errors especially when E estimates on daily time scales are 
required. Hence other methods have to be resorted to. Evaporation is the common 
term between the water balance and the energy balance at the earth's surface. The 
energy balance may therefore be used in hydrological studies to determine E. 

2.2 Surface radiation and energy balance 

The surface energy balance is the main boundary condition to be satisfied in the 
estimation of E. The energy budget is defined for a unit horizontal area: 

Rn=G0+H+AE (2.3) 

where R„ (W m"2) is the net incoming radiation flux density, H (W m"2) is the 

sensible heat flux density, Go (W m"2) is the ground heat flux density and AE (W m* 

) is the latent heat flux density. The parameter A is the latent heat of vapourization 
1 2 1 

of water (J kg" ) and E is the vapour flux density (kg m" s" ). Evaporation E can 
also be expressed in equivalent of water depth over a period of time. The energy 
stored in vegetation and the energy used in biochemical processes in plants are 
often negligible and usually ignored in hydrological studies. The main challenge in 
the energy balance is to determine the partitioning of the available energy (/?„ - G0) 
into AE and H. If the fraction of available energy used to evaporate water can be 
isolated from that used in heating the atmosphere, AE can be easily calculated from 
the available energy. This energy partitioning is classically established through the 
Bowen ratio /? where the Bowen ratio is defined as HIAE (Bowen, 1932). The 
energy partitioning can also be achieved by means of the evaporative fraction A, 
defined as A = AE/(R„ - G0) (Shuttleworth et al., 1989) 
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The net radiation Rn is the difference between all incoming and outgoing radiative 
fluxes. Radiation is divided into shortwave and longwave. The amount of incoming 
shortwave radiation varies with the positions on the earth's surface (i.e. latitude) in 
relation to the sun. The fraction of reflected shortwave radiation from the earth's 
surface is a function of the surface type and land wetness condition. Incoming and 
outgoing longwave radiation are radiation emitted by the atmosphere and earth's 
surface respectively. Emittance of longwave radiation is described by the Stefan 
Boltzmann law. The radiation balance at the earth's surface is given by: 

Rn= (l-ro)Kj. +e'&Ta
4 - £boT0

4 - (1- % )e'aT* (2.4) 

where r0 (-) is the surface reflectance or albedo, KJ- (W m"2) is the incoming 
shortwave radiation, T0 (K) is the surface temperature, T„ (K) is the air temperature, 
e' (-) is the atmospheric emissivity, £0 is the surface emissivity and a (-) is the 
Stefan-Boltzmann constant (cr = 5.67 x 10"8 W m"2 K"4). 

2.3 Transport processes of water vapour, heat and momentum 

Diffusion is the process by which the properties of a fluid (e.g. heat, momentum, 
concentration of its molecules) are transferred from one part of the fluid to another. 
Diffusion can take place in two physically different ways: molecular or turbulent 
diffusion. Molecular diffusion is caused by the difference in concentration of the 
property of the fluid. The molecules making up a fluid are in random motion and 
exchange of molecules in neighboring positions takes place. This exchange occurs 
in the thin laminar layer between the evaporating surface and the atmospheric 
boundary layer. 

Turbulence above the land surface occurs when air moving over the earth's surface 
is retarded by a surface feature, causing irregular vertical movement of pockets of 
air and with it transferring the atmospheric properties. Turbulence is more effective 
in the transfer of mass, momentum and heat than molecular diffusion and it is the 
dominant transport mechanism. Turbulence can also be produced by vertical 
temperature gradients. This type of turbulence is called free convection, while 
frictional turbulence is referred to as forced convection. If free convection is 
present, a combination of free and forced convection arises, leading to mixed 
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convection. Forced convection is usually determined first and then corrected for the 
effects of free convection. 

The rate of transport by turbulence diffusion is governed by the wind speed and the 
concentration gradient of the transported entity in the air. The gradient of wind 
speed u (m s"1) with height z (m) above a surface follows a logarithmic profile 
relation described by: 

dw M« 
— = (2.5) 
dz k(z-d) 

where k (-) is von Karman's constant, d (m) is the zero plane displacement and u* 
(m s"1) is the frictional velocity. The zero plane displacement d depends on the 
characteristics of the surface cover and is negligible at low values of specific leaf 
area density (Inoue, 1963). Furthermore, if z is much greater than d, the need to 
describe d may be ignored. The wind velocity can be described by integrating Eq. 
2.5 from the roughness length for momentum zom (m) to the reference height z: 

M« 7 — d 
«(z) = - ^ ln ( - ) (2.6) 

The roughness length zom is defined physically as the height above the surface 
where the logarithmic wind speed profile decreases to zero. The roughness length 
for momentum, zom, depend on the height and spacing of the surface cover. The 
frictional velocity, u*, describes all the turbulence together and is defined in terms 
of shearing stress and momentum flux: 

T = paut
2 (2.7) 

where r (N m"2) is the momentum flux density and pa (kg m" ) is the density of air. 
The transfer of momentum can also be described according to the K- theory: 

x ^ P a K m Y z (2'8) 

where Km (m2s_1) is the eddy diffusivity which can be specified as: 
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Km = kujz-d) (2.9) 

The transport mechanism for water vapour and sensible heat transfer are similar to 
momentum transfer: 

E = -paKv^- (2.10) 
az 

dT_ 

dz 
H = -PacPKH— (2-11) 

where cp (J kg'K" ) is the specific heat of air, q (kg kg"1) is the specific humidity 
and T is the potential temperature. Kv and Kh are eddy diffusion coefficients for 
water vapour and heat respectively and they are formulated similar to Km under 
neutral conditions. 

The turbulent transfer of all the three entities can be considered equal provided 
there is no temperature gradient. However, during daytime air heats up. Warm air is 
moved upwards by free convection and is more buoyant than the cooler air at the 
height to which it has been moved to. The upward ascent of air will therefore be 
enhanced by temperature differences. This atmospheric flow condition is referred to 
as an unstable atmosphere. When air temperature increases with height, as is 
prevalent during the night, the opposite happens. The buoyant forces dampen the 
upward ascent of air from the surface and such a condition is known as stable 
atmosphere. 

Eqs. 2.8, 2.10 and 2.11 are valid only in the case of a neutral atmospheric condition 
(no buoyancy). The effect of the modification of forced convection by temperature 
gradient on momentum transfer can be corrected for by dimensionless parameters. 
One of the widely used dimensional parameter is known as the Monin-Obukhov 
correction factor. The wind profile under non-neutral flow conditions is modified 
to: 

-r = TT~T^) (2-12) 

dz k(z-d) 
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where <pm (-) is the correction factor and £ is the ratio of z and the so-called Monin-
Obukhov length, L (m). The Monin-Obukhov length is defined as the ratio of the 
mechanical production of kinetic energy divided by free convective production of 
turbulent kinetic energy. Physically, the Monin-Obukhov length represents the 
height in the boundary layer where frictional forces equal the buoyancy forces: 

0 C U. 1 
L = - ° " " (2.13) 

kgH 

where g (rn ) is the acceleration due to gravity and Ta is the mean air temperature 
of the flow region under consideration. The Monin-Obukhov length is negative 
under unstable conditions and positive in the case of stable conditions. The most 
frequently used <j>- functions for unstable conditions are (Dyer and Hicks, 1970): 

^ m = ( i - i 6 | r 0 2 5 (2.i4) 

and for stable conditions: 

*-=1 + 5f (2-15> 

The eddy diffusion coefficient for momentum without the zero-plane displacement 
can now be described as: 

„ kzu, 
Km=— (2.16) 

The application of the similarity hypothesis of wind, temperature and humidity 
profiles in the surface layer to temperature and water vapour profiles yields the 
following expressions for the eddy diffusion coefficients for heat and water vapour 
transport (Brutsaert, 1982): 

few* 
Kh=—- (2.17) 

0A 
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kzut Kv=—- (2.18) 
0v 

In a stable atmosphere, fa is considered to be equal to fa whereas in an unstable 
atmosphere fa = fa applies. The Monin-Obukhov function for water vapour, fa, is 
treated as equal to fa under all conditions (Monin and Yaglom, 1971). Substituting 
for u* in Eq. 2.12, the water vapour and heat transfers become: 

E = -pak\z-d)2%-%-Mmr (2.19) 
oz az 

2 . ,.2du dT 
dzdz 

H =-pacpk
2(z-d)2——(0h0my1 (2.20) 

2.4 Combina t ion equat ion for evaporat ion 

The calculation of E and H from equation 2.19 and 2.20 is difficult because 
measurement of derivatives is problematic in practice. The surface fluxes H and AE 
are therefore often parameterized. The most common simplification to represent 
differential diffusion equations for vapour and heat transport is analogous to Ohm's 
law for electric current: 

f=El—C-L (2.21) 

The flux densitiy F are analogous to current and the potential difference is 
analogous to difference in entity c (e.g. water vapour, temperature and wind), 
between two representative locations. The resistance takes into account the flow 
obstruction of the flux densities between the reference locations. Thus, for the 
sensible heat flux density one can write: 

15 



T -T 
(2.22) 

'ah 

where rah (s m"1) is the aerodynamic resistance to heat transfer. The temperatures T\ 

and T2 apply to the reference levels z = Z\ and z = Zn (see Fig.2.1). The aerodynamic 

resistance follows from the height integration of Kh: 

Z? 1 A(z,L) 
'ah f J_ d z = f f^L id d z 

J K„ { ku*z 
(2.23) 

The fa function is integrated from 0 to £ to get a stability correction i/rh: 

Mf)=Jt-'LM>U4 (2.24) 

By further using the expression of <ph and neglecting the zero-plane displacement d, 

the integrated stability function y/h can also be described analytically (Paulson, 

1970): 

for unstable conditions: \ffh (£) = 2 In 

with;t = ( l - 1 6 - ) 0 2 5 

L 

\ + x2 

(2.25) 

7 

and for stable conditions: y/h (£) = —5— (2.26) 

The integrated resistance to heat transfer, after inserting the stability correction 

equation, becomes: 

1 
'ah 

kut 
W^-Vhty + Vhi^-) 'h 

L 
(2.27) 
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Figure 2.1. The logarithmic profile of air temperature Ta in relation to integration limits 
£i> ̂ 2» Zom and ZOA for the definition of the aerodynamic resistance rah. The heat source 
temperature T$h, aerodynamic temperature T$m and temperature taken at arbitrary 
levels z\ and z-i as T\ and Ti respectively are shown 
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The soil heat flux depends on the soil thermal properties and the temperature 
gradient of the top soil. In a similar diffusivity-resistance method applied to H, Go 
can be expressed as (Menenti, 1984; Choudhury and Monteith, 1988): 

G0=pscs^^- (2.28) 

where ps is the density of the soil, cs is the specific heat of the soil, T0 is the surface 
temperature, Ts is the soil temperature at some reference depth near to the surface to 
minimize storage effects and r,/, is the soil resistance. The soil heat resistance is 
obtained by integrating the soil thermal diffusivity between the reference depth in 
the soil and the surface. 

The transport of latent heat can be similarly expressed as: 

x.e&hzhL (2.29) 

where e 0 (hPa) is the saturated vapour pressure at the evaporating surface, y (hPa 
K"1) is the psychrometric constant, e2 is the actual vapour pressure at height z, rav (s 
m" ) is the resistances to water vapour transfer in the atmosphere and rs is the 
surface resistance to vapour transfer. Usually, rav is considered to be equal to r„h 

because y/v = y/h. 

Monteith (1965) used the formulation of the transport equations (Eqs. 2.22 and 
2.29) in conjunction with the surface energy balance (Eq. 2.3) and a Taylor 
expansion of e 0 = e*(Ta) + s(T0-Ta) to derive a surface energy balance combination 
equation for canopy evaporation, where e* is the saturated vapour pressure at air 
temperature Ta at height z- Earlier, Penman (1948) derived this combination 
equation for open water surfaces and hence the energy balance combination 
equation for canopy evaporation is referred to as the Penman-Monteith equation: 

^ # ^ V A ^ (23o) 

18 



where rc is the canopy resistance. In leaves, the rate of vapour transport is 
controlled by the opening and closing of stomata, referred to as stomatal resistance. 
The stomatal resistance, at the leaf and canopy scales, has been correlated to 
environmental conditions and plant factors. However so far no mechanistic model is 
available to describe the stomatal behavior. 

The most common approach to parameterize the effect of environmental conditions 
on stomatal behaviour is the so-called Jarvis-Stewart type models. Jarvis (1976) 
related stomatal conductance (reciprocal of stomatal resistance), to incoming solar 
radiation, leaf water potential, air temperature, vapour pressure deficit and carbon 
dioxide concentration in the atmosphere. The relationship between these 
environmental variables and stomatal conductance is reduced by stress functions 
interacting without synergy. The Jarvis-Stewart model for canopy resistance is 
given by: 

r r = : ^22 (2.3i) 
LAI Fx (K I) F2(Ta) F3(Ae)F4 Q¥) 

where Ae is the vapour pressure deficit, LAI is the leaf area index and Vis the leaf 
water potential. Each stress function varies from zero to unity. The coefficients of 
the functions are determined from statistical analysis obtained from dedicated field 
experiments or under controlled laboratory environments. The functions have been 
expressed in slightly different ways, depending on vegetation or biome types such 
as forests (Stewart, 1988), agricultural crops (Dolman, 1993) and grasslands 
(Stewart and Gay, 1989; Hanan and Prince, 1997). The influence of K-l can be 
expressed as a hyperbolic function: 

F , ( / r i ) = (2.32) 
dK •!• 

where <i=l+c/1000. The value of c is empirically determined. The effect of 
temperature may be represented as a power function: 

F2(T) = ^T" T™»^T™* T " \ , b = T™* °3 (2.33) 
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where Tmin is the minimum air temperature, Tmax is the maximum air temperature for 
stomatal conductance and a3 is a coefficient representing the optimum air 
temperature for stomatal conductance. 

The vapour pressure deficit function is given as follows: 

F3(D)= l (2.34) 
1 + a4Ae 

where Ae is the vapour pressure deficit (hPa) and a4 is an empirical coefficient. 

Leaf water potential is usually not available and is replaced by soil water potential 
(Choudhury and Idso,1985; Hanan and Prince, 1997) or soil moisture deficit 
(Dolman et al., 1991). Slightly different functions have been used for the influence 
of soil water potential but they are in the general form: 

F4ep-) = a - ^ r (2.35) 

where *FL is the soil water potential and *FC is the soil water potential at the wilting 
point. 

Many of the Jarvis-Stewart type of models do not take into account all the four 
functions as the influence of some of environmental factors under given conditions 
is minimal. For example, when soil moisture deficit is very small throughout the 
year, F4can be omitted as it becomes equal to 1. Dolman et al. (1988) showed in the 
study of a forest in the United Kingdom, that models without soil moisture or 
humidity components will give considerable errors if applied over a season where 
variation in climate and soil conditions occur. Stewart (1988), also emphasized the 
importance of accounting for the effects of soil moisture in order to get reliable E 
estimates. 

In the case of evaporation from bare soils, an explicit soil resistance has to be 
parameterized in terms of known soil variables. The evaporation of soil is 
composed of the transport of water to the soil surface by both liquid and vapour 
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phases. The transport of liquid water to the surface can be described in terms of a 
physical resistance to liquid flow: 

9. -0O 

EL = Pw - 2 (2.36) 

where, 6Z\ and QQ are soil moisture contents at depths z\ and at the surface. The 
resistance to liquid transport rst is given by: 

-w dz 

, W) 
(2.37) 

where D(6) is the diffusivity for liquid water. Diffusivity is a function of hydraulic 
conductivity and depends on the soil physical characteristics. Dry soils exhalate 
vapour through air-filled pores. Transport of vapour flow to the soil surface from 
the evaporation front at depth -ze can be represented as: 

r PT(TZ)-POV 

Ev= - (2.38) 

where rsv is resistance to vapour transport, p*"'(Tz ) is the saturated vapour 

density (kg m" ) at the soil temperature at the evaporating front, /Cbv is the vapour 
density at the soil surface. The resistance to vapour transport is determined by 
integrating the effective vapour diffusivity vertically from the evaporation front to 
the soil surface: 

0 i 

= f-L 
J Deff 

dz (2.39) 

where Def is the effective vapour diffusivity, which is related to the diffusivity of 

water vapour in the air. In most conditions, EL is much larger than Ev (except in 
desert conditions) and evaporation is consequently schematized to occur from the 
soil surface with temperature T0 (Bastiaanssen, 1995): 
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E„-EL+E.-f™-''*-=P-i'''-°>) <2.40, 

The description of the energy and water diffusion from a combination of plants and 
soils into the atmosphere requires a network of resistances rather than a single 
surface resistance in the parameterization scheme. These parameterization schemes 
calculate available energy at different heights and then use the resistance chain to 
determine the profiles of temperature, wind speed and humidity (e.g. Shuttleworth 
and Wallace, 1985; Choudhoury, 1989; Dolman, 1993). The flux densities above 
the vegetation and soils can be combined by weighing coefficients, which may be 
based on fractional soil coverage or leaf area index. 

The resistances networks in the multi layer schemes can be combined by assuming 
they are in parallel at a single level in the canopy. The single-layer schemes assume 
either complete vegetation or complete soil cover. The single-layer is simple and is 
less data demanding. They require for example half the parameters as a two-layer 
scheme. Previous studies have shown that single-layer schemes can realistically 
predict the surface fluxes and are therefore suitable for applications in regional 
studies (e.g. Beljaars and Holtslag, 1991; Bouglet et al., 1991). The Penman-
Monteith equation is a single layer scheme. The surface resistance rs is the overall 
resistance of water transfer from the roots through the canopy and from the soil into 
the atmosphere. The surface in these resistance formulations is parameterized as 
one big leaf. Stewart (1988) extended the Jarvis-Stewart model (Eq. 2.31) to 
describe surface conductance (reciprocal of surface resistance). Stewart derived the 
surface conductance from AE measured above a forest by inverting the Penman-
Monteith equation. Because measured total evaporation over a canopy is used, the 
Jarvis-Stewart model implicitly accounts for soil resistance through the optimized 
coefficients. 

2.5 Remote sensing evaporation algorithms 

Steps in the retrieval of E from remote sensing data 

Remote sensing methods use surface reflectances and radiometric surface 
temperature from satellite spectral data in combination with ground based 
meteorological data to solve the energy balance equation and estimate evaporation 
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from local to regional scales. Extensive reviews of remote sensing flux 
determination methods have been presented by Choudhury, (1989), Moran and 
Jackson, (1991), Menenti, (1993) and Kustas and Norman, (1996). 

Fig.2.1 shows the steps involved in retrieving evaporation from satellite data. 
Satellite radiances are related to evaporation in two steps. First, the surface 
parameters such as surface reflectance or albedo, surface temperature and 
vegetation indices are derived. These surface parameters together with field data, 
are then used to solve the energy balance and evaporation is taken as a residual 
term. The required field data is measured, estimated, modelled or ignored. Since 
satellite data are obtained at the top of the atmosphere, corrections for atmospheric 
interference have to be made. The corrections are based on information on the 
atmospheric properties(e.g. temperature, humidity and wind speed) at the time of 
satellite overpass and the use of radiative transfer models. However atmospheric 
information is usually not available and hence simpler correction procedures have 
to be resorted to. For example surface parameters could be measured at a few 
locations for calibrating the satellite derived surface parameters. 

Type of remote sensing algorithms 

Remote sensing methods vary in complexity due to the amount of physics they 
describe. They can be grouped into three major classes according to their 
complexity (Kustas and Norman, 1996): 

- Statistical/semi-empirical methods 
- Physically based analytical approaches 
- Numerical simulation models. 

The statistical methods directly relate the difference between satellite observed 
surface temperature and air temperature to E (e.g. Jackson et al., 1977; Seguin and 
Itier, 1983). The statistical methods are simple and require few input data, however, 
apart from surface temperature all the other in put variables are assumed spatially 
constant. This limits the application of the statistical methods to homogeneous 
fields or regions only. 

In the physically based methods Rn, Go and H are evaluated separately and AE is 
determined as a residual in Eq. 2.3 ( e.g. Carlson and Buffum, 1989; Diak and 
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Fig. 2.2. The Steps followed in the retrieval of evaporation from spectrally reflected and 
emitted satellite radiances 
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Whipple, 1993). The net radiation, Rn is estimated from remotely sensed surface 
albedo, surface temperature and solar radiation calculated from standard 
astronomical formulae (Iqbal, 1983). The ground heat flux, Go is determined 
through semi-empirical relationships with /?„, surface albedo, surface temperature 
and vegetation index. 

The sensible heat flux density as given by Eq. 2.22 is solved and this is the most 
critical factor in the remote sensing algorithms. The main challenge is to quantify 
the spatial and temporal variations of T\ rah and T\ as they are not directly 
observable from remotely sensed data. In many models, T\ is taken as equal to 
remotely sensed T0 (Kalma and Jupp, 1990; Lhomme et al., 1994). However, 
although for uniform canopies the difference between T\ and T0 is less than 2°C, the 
differences are larger for partial canopies (Choudhury et al., 1986; Kustas 1990; 
Troufleau et al., 1997). In order to account for the discrepancy between T\ and T0 

some investigators have adjusted rah or used an additional resistance term (e.g. 
Sugita and Brutsaert, 1990; Stewart et al., 1994). This is achieved by defining the 
roughness length for heat transport, ZQH as equal to the height at which T0 = 7 ^ , 
through a factor kB'1 which relates zoh to the roughness length for momentum 
transport, z0m-

fcfl-'^ln-^- (2.41) 
Zoh 

However, different studies have shown that there is a wide range of kB from 1 to 
12 for different surfaces (Beljaars and Holstlag, 1991; Brutsaert et al., 1993). This 
indicates that it may not be feasible to determine the spatial variations kB in 
heterogeneous landscapes. In fact, Verhoef et al., (1997) questioned whether the 
concept of kB'1 itself is correct. They argue that the definition of zoh is based on 
extrapolating a theoretical profile through a region where this theoretical profile 
does not hold, towards a surface temperature that is difficult to locate, especially in 
sparse vegetation. 

To avoid the problems associated with the concept of kB1 and circumvent its use in 
the calculation of H, other methods have been proposed. Quails et al., (1993) in a 
study of the fore Alps of Switzerland, used a near-surface air temperature (T\) 
instead of T^h to derive H in a procedure developed from the standard Monin-
Obukhov flux-profile relationship for the atmospheric surface layer (see Fig. 2.2). 
Through calibration, they found a surface transport parameter z\h to correspond to 
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T\. Quails et al., (1993) report obtaining good estimates of H by using this 
procedure and recommend its use to calculate regional E by means of the energy 
budget from the profile derived H. Chehbouni et al., (1997) and Troufleau et al., 
(1997) used a relationship that links T^h and T0. They formulated H as follows: 

H=paCpTJ^-^ (2.42) 

where, TJ is the ratio of (T0-T^h) and (To-Ta). The factor TJ is a function of the 
fraction of vegetation cover on the surface. It can be considered to be a constant for 
a given day but decreases with increasing LAI over a season. A formula was 
developed to determine TJ: 

1 
TJ = (2.43) 

e x p ( D / ( D - L A / ) ) - l 

where D is an empirical factor that depends on the vegetation type. Equation 2.42 
was tested and found valid for the HAPEX-Sahel sites. The simplicity of this 
method and the possibility to use remote sensing to determine LAI and T0, makes it 
an attractive method to determine surface fluxes from remote sensing in semi-arid 
regions. 

Another approach to overcome the problem of inferring T /̂, from T0 is to directly 
estimate ATa, the temperature difference between T\ and T2 taken at two arbitrary 
levels z\ and zi without explicitly solving the absolute temperature at a given height 
(see Fig 2.2). The latter can be achieved from the inversion of the sensible heat 
transfer equation (Bastiaanssen et al., 1998b): 

T,-T2= AT = -^-2*_ (2.44) 
P c 
r a p 

where H= Rn-G0 for dry surfaces. Furthermore, it has been experimentally proven 
that land surfaces with high AT„ are associated with high thermally emitted 
radiances and those with low AT„ are coincide with low thermally emitting surfaces. 
The temperature difference, ATa, may therefore be obtained across an image by 
relating it linearly to To: 
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ATa=ClT0-c2 (2.45) 

where C\ and c2 are regression coefficients valid for one particular moment and 
region. The linearity of Eq. 2.45 has been shown to be correct in field experiments 
carried out in Egypt and Niger (Bastiaanssen et al., 1998a), China (Wang et al., 
1998), USA (Frank and Beven 1997) and Kenya (Farah and Bastiaanssen, 2000). 

The sensible heat flux is apart from vertical temperature differences also a function 
of u*. Many algorithms therefore take a few field measurements of M.and treat them 
as spatially constant (e.g. Hall et al, 1992; Kalman and Jupp, 1990; Rosema, 1990). 
This assumption is only valid for uniform homogeneous surfaces. One way of 
overcoming this problem is to consider u* at 50 or 100m above ground level rather 
than the usual 2m level (Mason, 1988). The reasoning is that at these heights, called 
blending height, w» is not affected by local surface heterogeneity and is therefore 
spatially constant. Bastiaanssen (2000) made u* spatially variable by using a 
spatially constant wind speed at the blending height and spatially variable 
roughness length for momentum transport Zam(x,y) together with local stability 
correction functions Wm(x,y). 

Finally Numerical models simulate continuously the surface energy flux exchanges 
by solving numerical equations of the energy and mass flow processes in the soil-
vegetation-atmosphere system (e.g. Sellers et al., 1992; Carlson et al., 1995). Many 
input parameters describing soil-vegetation-atmosphere system properties are 
required which are seldom available in tropical watersheds. Numerical models are 
therefore less suitable for satellite remote sensing-hydrology studies in data-scarce 
environments. 
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Chapter 3 

Description of the study area 

3.1 Geographical setting 

Location and climate 

The Naivasha basin is located in the central rift valley of Kenya. It lies 

approximately between latitudes 0° 10'S to 1°00'S and longitudes 36° 10'E to 36° 

45'E and covers an area of about 3500 km . The location of the basin is shown in 

Fig. 3.1. The altitude of the basin varies from about 1900 m at the bottom of the 

valley to 3200 m in the Nyadarua mountains found on the eastern boundary of the 

basin. Due to the altitudinal differences, there are diverse climatic conditions found 

in the basin. The climate varies from semi-arid to humid tropical. 

20 km 

j Naivasha 1 
) Basin V 

\j?uC 

~-. 200 km 

\ Kenya 
I 4m Study area 1 

^ •s . Nairobi f 

^\J° t» 

Fig. 3.1. Location of study area showing the Ndabibi (1) and Eburu (2) experimental 
sites and the meteorological stations Naivasha town (3) and North Kinangop (4) 

Rainfall varies from about 600 mm to 1200 mm annually. Despite being located on 

the equator, the area experiences relatively cool conditions. Average monthly 

temperature ranges from 15 °C to 18 °C, with the average maximum and minimum 

in the ranges 24 °C to 29 °C and 6° C to 8 °C respectively. Fig. 3.2 shows the 

monthly trend of rainfall and temperature at two points located at 1930 m and 2630 
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m. There are two rainfall peaks which occur in April to May and September to 
October. The driest months are January, February and December. The lowest 
temperatures are experienced in July, while the highest temperatures occur in 
March. The potential evaporation is about twice the annual rainfall in the semi-arid 
area, while in the humid zones rainfall exceeds potential evaporation in most parts 
of the year. 

I Rainfall 
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Month 
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Month 

Fig.3.2. Monthly average rainfall, average daily temperature (1931-1983) and average 
daily reference evaporation (E0-Penman-Monteith) (1974-1983) at two stations: (A) 
Naivasha town at altitude 1906 m and (B) North Kinangop at altitude 2620 m. The 
location of the stations is shown in Fig. 3.1 
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Topography and soils 

The topography of the plateaus on the eastern side of the basin and the plains inside 

the rift valley is gently undulating. These areas are found at altitudes between 1900 

m and 2400 m. The plateaus and plains, together with Lake Naivasha, cover about 

90% of the basin. The rest is mountainous with rough terrain (see Fig. 3.3). The 

soils in the higher plateaus consist of clay loam to clay. These soils are deep (80 cm 

to 120 cm) and have good water holding capacity. In the lower plains, the soils are 

mainly sandy clay loam to sandy clay, and are deep and well drained. On the 

mountains, the soils are shallow (< 50 cm) to moderately deep and consist of a 

complex of loam, clay loam and clay. 

Land use and land cover 

In the humid highland zones, forests, woodlands and croplands are found. 

Agriculture is also practiced in the semi-humid to sub-humid regions. The main 

crops are maize, potatoes, coffee and wheat. The semi-arid regions are found inside 

the rift valley. They have extensive grasslands and bushlands, which are used for 

livestock grazing. Around Lake Naivasha intensive horticultural farming under 

irrigation is common. The main products are flowers, vegetables and fruits. About 

80% of the national horticultural production in Kenya comes from this area. To the 

south of Lake Naivasha, there is a geothermal power plant that produces about 18% 

of the total power in the country. There are two national wildlife reserves that 

attract numerous tourists. Declared a Ramsar site in 1995, Lake Naivasha is 

considered a wetland of international importance. There has been an increasing 

demand for water in the basin in the last 30 years due to settlement of the plateaus 

by small-scale farmers and the introduction of intensive irrigated horticulture 

around Lake Naivasha. 
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Fig. 3.3. Illustration of the topography and vegetation of the Naivasha catchment prepared 
from Landsat TM false color composite image overlaid on a digital elevation model of the 
area. The dark red areas are forests on mountains, light red tones indicate cropland and 
woodlands on the plateaus. The purple whitish tones represent grassland and bushland in 
the valley plains (see color version in Appendix B). 
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3.2 Field experiments 

The field experiments consisted of the measurement of actual E(aht) at two sites by 
means of the Bowen ratio energy balance method. The two sites are located at 
Ndabibi and Eburu (see Fig. 3.1). The measurements were performed from 14 May 
1998 to 24 April 1999 at Ndabibi and from 27 September 1998 to 24 April 1999 at 
Eburu. Two field campaigns were also carried out in October 1998 and March 1999 
at three other sites with different surface cover conditions from Ndabibi and Eburu. 
Actual E was measured for two days at each of the other sites during the field 
campaigns. 

Ndabibi site 

Ndabibi is situated in the semi-arid plains west of Lake Naivasha at an altitude of 
2010 m (see Fig. 3.4). It is a flat area with extensive grassland, surrounded by wheat 
and maize farms. The soils are sandy clay to clay loam and are classified as deep. 
This site was selected so that the measurements made would be representative of a 
larger area and match the pixel size of satellite images used in this study (30 m to 1 
km). 

Fig. 3.4 Land surface conditions at the Ndabibi site showing the extensive flat 
grasslands 
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A Bowen ratio tower was erected at the site. Air temperature Ta and Relative 

humidity RH were measured at two levels (0.3m and 2m) with temperature and 

humidity sensors having an accuracy of +/- 0.2° C and 1% relative humidity. 

Incoming solar radiation Ki was measured with a pyranometer with a sensitivity of 

1.5%. Rainfall was measured with a tipping bucket rain gauge. These measurements 

were collected automatically by data loggers and recorded as 20-minute averages. 

In addition, surface reflectance r0 and surface temperature 7o were measured one 

day per month at one-hour intervals. Table 3.1 shows the details of the 

measurements. There is a period of 36 days in February and March 1999 with 

missing data due to malfunctioning of the data logger. 

Table 3.1: Measured meteorological parameters at the Ndabibi and Eburu experimental 
sites 
Measured Height above Measurement Instrument Type Accuracy 
Parameter surface level (m) interval 

Air Temperature Ta 0.3, 2.0 20 minutes Thermocouple Eijkelkamp 0.2 °C 

Relative humidity RH 0.3, 2.0 20 minutes Thermocouple Eijkelkamp 1% 

Shortwave radiation 4.0 

incoming Ki 

20 minutes Pyranometer Kippand 1.5% 

Zonnen 

Shortwave reflected 0.5 

radiation Kf 

1 hour Pyranometer Kipp and 1.5% 

Zonnen 

Rainfall 0.3 

Surface temperature T0 0.3 

1 hour Tipping bucket Eijkelkamp 1% 

1 hour Thermal infrared Eijkelkamp 0.1 °C 
radiometer 

Fig.3.5 shows a typical diurnal course of Ta, RH, Ki , net available energy R„ - Go 

and latent heat flux AE. It can be seen that the amount of incoming solar radiation is 

large. However, the air temperature does not rise above 30 °C because of the 

altitude of the site. 
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Eburu site 

The Eburu site has a sub-humid climate and is located in hilly terrain at an altitude 
of about 2500 m. The vegetation is composed of woodland with scattered trees and 
bushes (see Fig. 3.6). The soils here are deep and mainly clay loam. A Bowen ratio 
tower was put up and data similar to those at Ndabibi were collected (see Table 
3.1). 

Fig. 3.6. Land surface condition around the Eburu experimental site showing the 
scattered trees and bushes and hilly terrain 

Fig. 3.7 shows the diurnal course of T„, RH and Ki. It can be observed that 
temperatures are lower than at the Ndabibi site because of the higher elevation of 
Eburu. The average daily solar radiation is slightly higher than at Ndabibi due to 
lower atmospheric turbidity on this particular day. 
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Chapter 4 

The impact of spatial variations of surface 
parameters on regional evaporation: A case 
study with remote sensing data* 

4.1 Introduction 

Sensible H and latent heat fluxes AE vary spatially because of the heterogeneity of 

soil physical properties, terrain slope, land cover, and water influx through 

precipitation, irrigation and groundwater. The parameters of the Soil-Vegetation-

Atmosphere-Transfer continuum exhibit a distinct spatial variation in watersheds. 

The spatial scale may vary from less than a meter to the size of watersheds. Time 

variations in terms of hours may be significant. Ground measurements of land 

surface fluxes are representative of a relatively small area. Land surface fluxes at 

the regional scale are therefore difficult to deduce from a limited number of in situ 

field stations equipped with advanced measurement devices. Satellite remote 

sensing methods have been used in the last 20 years to overcome these 

discrepancies in scale. 

Remotely sensed multi-spectral measurements have been used to estimate 

parameters of Soil-Vegetation-Atmosphere-Transfer models (i.e. SVAT 

parameters). Surface temperature TQ, is the most common SVAT parameter used to 

interpret spatial variation in evaporation E (e.g. Jackson et al., 1977). However, 

attempts have been made with many other SVAT parameters to explain variability 

in E: soil moisture (Chen et al., 1997), fractional vegetation cover vr (Choudhury et 

al., 1994), leaf area index (Baret and Guyot, 1991), surface albedo ro (Jackson, 

1984; Menenti et al., 1989b), surface thermal infrared emissivity e$, (Valor and 

Caselles, 1996), air temperature Ta (Prihodko and Goward, 1997), crop height 

To be published in Hydrological processes, vol. 15, No. 3 as Farah, H. O. and 
W.G.M. Bastiaanssen, 2000. The impact of spatial variations of surface parameters on 
regional evaporation: A case study with remote sensing data. 
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(Moran et al., 1995) and surface roughness length for momentum transport zom 

(Moran and Jackson, 1991). 

The sensible heat and latent heat fluxes can be parameterized as a simple linear 
function of T0, or the difference between T0 and Ta. For instance, Seguin and Itier 
(1983) explained variation in E to variation in T0. This concept may correctly 
describe the fluxes emerging from homogeneous landscapes, e.g. agricultural 
systems with uniform crop stands and other biophysical properties. However, for 
heterogeneous watersheds with distinct variation in SVAT parameters and fluxes, 
the assumption of linearity between T0 and fluxes does not hold, and the 
involvement of other SVAT parameters becomes essential. The relationship 
between fluxes and T0 portrayed in Figure 4.1A for simultaneously measured T0 and 
AE fluxes at 12 stations in the catchment of the Guadiana River (central Spain) 
indicates that the variance of fluxes cannot be explained by variations in 7o alone. 
The scatter can only be explained by other scale variant SVAT parameters. Figure 
4. IB shows the achievements of an integrated SVAT-Boundary Layer model study 
executed by Blyth (1994) which reveals, on the basis of general physics, that AE 
variations are not ascribed to variations in T0 only. 

Furthermore, surface energy balance models using remote sensing are mostly based 
on a one dimensional representation of the momentum and heat exchanges between 
the land and atmosphere (see Fig. 2.2). The selection of vertical length scale z2 has 
impacts for the quantification and spatial variability of, for example, Ta and 
aerodynamic resistance, rah (and hence roughness length for heat transport zo/,, 
factional velocity M», and stability correction factor %). If z2 is taken to be at some 
height, usually referred to as blending height, in the planetary boundary layer where 
fluxes are independent of surface features, then Ta and rah become spatially 
constant. However, since the spatial variation of T„ at the blending height for heat is 
eliminated by advection, the sensible heat flux between the land surface and the 
blending height is not strictly one-dimensional. If the purpose of study is to 
determine near-surface spatial variations of fluxes, zi has to be kept small and 
advection may be ignored (Bastiaanssen et al., 1996). At near-surface level (2 to 
10m), there are differences in Ta and r„h in the horizontal domain. These horizontal 
gradients are caused by the underlying local hydro-meteorological processes and 
have consequences for the way the spatial variations of SVAT parameters are 
schematized in the remote sensing algorithms, if correct fluxes have to be obtained. 
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Fig. 4.1: Latent heat flux AE as a function of surface temperature T0. (A): field 

measurements in central Spain (Pelgrum and Bastiaanssen, 1997); (B): model simulation 

(Blyth, 1994) 

Table 4.1 shows how different categories of remote sensing algorithms treat spatial 

variations of Ta and rah (zoh, u* and Wh). It is evident that most algorithms take Ta, 

either at z2 ~ 2m or at greater height zi - 100m, as spatially constant. Table 4.1 also 

shows that w»(i.e. momentum flux) is considered spatially constant by all algorithms 
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except Class 5. It is therefore prudent to investigate the influence of the spatial 

variability of SVAT parameters on surface fluxes for heterogeneous landscapes, so 

as to identify the parameters that should be treated minimally as spatially variable 

and those that can be taken as spatially constant. 

Table 4 .1: Application studies using conceptually different solutions for Ta and rah (c = 

spatially constant, v = spatially variable, n = not considered) (Modified from 

Bastiaanssen et al, 1996) 

Classes of Ta Ta ZOH 
H-schematization z\~2m z2~100m 

Vh References 

Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

Jackson et al., 1977; 
Seguin and Itier, 1983 
Kustaset. al.,1994; 

Kalma and Jupp, 1990 
Rosema, 1990; 
Brutsaertetal.,1993 

Meneti and Choudhury, 
1994; Diake and 
Whipple 1993 
Carlson and Buffum, 
1989; Bastiaanssen et 
al.,1998a 

The modeling of spatial heterogeneity is usually achieved by delineating the surface 

into units of homogeneous hydrological characteristics and deriving SVAT 

parameters for each unit from which fluxes can be determined. The first objective 

of this Chapter is to demonstrate how, with the help of satellite remote sensing, a 

complex watershed can be delineated into hydrological units or partial areas. 

Watersheds with little data availability are the norm in both developing and 

developed countries and remotely sensed information is very useful for describing 

heterogeneous landscapes and related land surface processes. The second objective 

is the assessment of SVAT parameters and the accompanying surface fluxes of each 

hydrological unit discerned from the remote sensing measurements. The third 

objective is to study the consequences of using spatially constant SVAT parameters 

or watershed-distributed SVAT parameters on E. 
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4.2 Estimation of basic surface radiometric parameters 

Landsat Thematic Mapper (TM) measures the spectral radiances in the visible, near, 
middle and thermal infrared spectrum at the top of the atmosphere. A TM scene of 
21 January 1995, covering the Lake Naivasha watershed in Kenya, has been used in 
the current analysis. TM has 3 bands in the visible, 3 bands in the near- and middle-
infrared and 1 band in the thermal infrared spectral region (see Appendix A). The 
digital values of each pixel are converted first to spectral radiance at the top of the 
atmosphere by using a radiometric calibration procedure (Markham and Barker, 
1987). The broad band planetary albedo at the top of the atmosphere rp is calculated 
with a weighing scheme of the six visible and near-infrared bands (TM 1,2,3,4,5 
and 7) and spectral radiation incident at the top of the atmosphere. The broad band 
planetary albedo rp is related to the broad band surface albedo r0 through a simple 
linear relationship (e.g. Zhong and Li, 1988): 

r —r 

sw 

where ra (-) is the lowest planetary albedo of all pixels (i.e. rp
mm), being usually an 

area with a small negligible surface albedo and Tsw" (-) is the two-way transmittance 
for broad band solar radiation (0.3 to 3.0 nm). This simple atmospheric correction 
for broad band short wave radiation takes into account the atmospheric 
transmittance and the path radiance (see also Koepke et al., 1985). Choudhury 
(1991) and Pinty and Ramond (1987) report a relative error of 10% using simple 
corrections like Eq. 4.1. The correction is valid for an albedo range from 0.05 to 
0.43, as reported by Menenti et al. (1989a). In this case study, the two-way-
transmittance was estimated by taking the surface albedo of Lake Naivasha to be r0 

= 0.06. This is the generally accepted value for albedo for shallow water bodies (de 
Bruin and Keijman, 1979) and is also confirmed by our own field measurements 
conducted over Lake Naivasha (see Fig. 4.6b). This yields a calibration of Tsw" = 
0.35 at ra = 0.01. 

The thermal channel, TM6, measures the spectrally emitted radiance between 10.6 

to 12.4 Jim at the top of the atmosphere, Lj0A, wh 

raw digital numbers (DN6) in band 6 (Clark, 1986): 
to 12.4 Jim at the top of the atmosphere, Lj0A, which can be interpreted from the 
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L6
T0A = /0.1238 + (1.560 - 0.1238; * DNf/255} *n*B*\Q (4.2) 

where B (jim) is the band width of the thermal channel (12.4-10.6 = 1.8 Mm) and 
DN6 is the digital number of TM band 6. The spectral radiances at the top of the 
atmosphere measured by the satellite are related to the spectrally emitted radiances 
at the land surface L6

surf (e.g. Schmugge et al., 1998): 

r TOA _ j surf T atm ,A ^ N 

L 6 = L 6 T6+ Lf, (4.3) 

where L^""1 is the long wave radiation emitted from the atmosphere upwards (i.e. 
thermal path radiance) and T6 (-) is the atmospheric transmittance in the region A = 
10.6 to 12.4 \im. Usually, L£'m and r^ are determined by atmospheric radiation 
transfer models (e.g. Tanre et al., 1990) or from a limited number of T0 field 
measurements acquired at the same moment of the satellite overpass. Since these 
instantaneous field measurements were not available for the Lake Naivasha area, a 
trial and error procedure has been applied (Ashfaque, personal communication). 
The spectral radiances at surface level were after atmospheric correction converted 
into radiometric surface temperature through the inversion of Planck's law: 

T = 
14388 

o 
11.51n 

£0fl * 3.7427 *lfjM , 
— +1 

14"^* 11.5s 

6 J • 

(4.4) 

where 8Q{-) is the thermal infrared surface emissivity in the spectral range of TM 

band 6 and T0 (K) is the radiometric surface temperature corrected for gray body 

effects. Results indicate that T0 ranges at pixel scale from 22.2 °C to 44.0 °C. For 

Lake Naivasha, an average value of 24.8 °C was obtained. The day time water 

temperature of Lake Naivasha in the month of January is known to vary between 22 

and 26 °C (Donia, 1998) and the To values seem to therefore to be reasonable. 

The thermal infrared surface emissivity SQ is estimated on the basis of NDVI (van 
de Griend and Owe, 1993): 
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£b = 1.009 + 0.047 In (NDVI) (4.5) 

A theoretical justification of the relationship between So and NDVI is given by 

Valor and Caselles, (1996). They report an error of 0.6% in estimating £Q from 

Eq.4.5 for mid-latitudes and tropical regions. The relationship between £b and 

NDVI is valid for the NDVI values in the range 0.16 to 0.74. This equation is hence 

not valid for water bodies with a negative NDVI. Therefore, the water bodies were 

masked and forced with EQ = 1.0. The NDVI can give information on vegetation 

density, color of the surface and cultivation practices. This is due to the property of 

chlorophyll, which strongly absorbs radiation in the red parts of the electromagnetic 

spectrum and reflects it in the near-infrared part (Tucker, 1979). It is determined as 

follows; 

r „ (4 ) - r „ (3) 
NDVI= pK ' A ) (4.6) 

r , (4) + r,(3) 

where rp(4) and rp(3) are the spectral planetary reflectances for TM bands 4 and 3 
respectively. 

4.3 Hydrological delineation of the Kenyan central rift valley 

Segmentation of landscapes is traditionally done by using land use/land cover maps, 
topographic maps, soil maps etc. The purpose of partial area hydrology is to handle 
the large amount of hydrological variability in watersheds with a few units. 
Hydrological units simplify the characterization of a watershed into a small finite 
number of sub-areas having less internal variability, but together describe the 
overall hydrological response to rainfall and irrigation. Through mass conservation, 
E is indirectly related to rainfall, runoff, irrigation and groundwater movement. Past 
studies have shown that a scatter plot of 7̂  versus NDVI reflects spatial variations 
in fractional vegetation cover vc, soil water content 0 and surface resistance to 
evaporation rs (e.g. Nemani and Running, 1989). The T0 (r0) relationship has also 
been proven to be valuable for determining dry and wet land surface types (Menenti 
et al., 1989b). 
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Figure 4.2 shows the relationships between T0 , NDVI and r0, reflecting different 
land wetness conditions and vegetation cover. The NDVI, r0 and T0 values of all the 
pixels in the image are plotted in a three-dimensional space given by the X-Y-Z 
axis. First, a regularly spaced array of Z (T0) values from the irregularly spaced X-
Y-Z data is produced by interpolation methods. Next, a surface is fitted to the 
regularly spaced T0 values by a least squares fit approach. Qualitative interpretation 
of the hydrological and vegetation status of sub-areas can be made: low T0, low 
NDVI and low r0 indicate bare wet soils, whereas high T0, low NDVI and high r0 

represent the warm dry bare soil pockets. Low T0, high NDVI and low r0 indicate 
healthy vegetation in good condition with unstressed transpiration, whereas high T0, 
high NDVI and high r0 point to vegetation under water stress. As T0, NDVI and r0 

can, according to Eqs. 4.1 to 4.6, be retrieved from Landsat TM, and they reveal 
hydrological conditions, the watershed can be delineated from T0, r0 and NDVI. 

Figure 4.2: The relationship between surface temperature T0, NDVI and surface albedo 
r0 reflecting the different land wetness conditions and vegetation cover 

A cluster analysis based on T0, NDVI and r0 was therefore performed which divided 
the study area into 15 clusters (Fig. 4.3). There are about 50,000 pixels in the 19km 
x 25km study area. Clustering was done to reduce this large number of pixels and 
group them into 15 units. This number of units was chosen from prior knowledge of 
the area 
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in which 15 different land use and land cover types were identified from ground 
survey and aerial photography (Hamududu, 1998). The clustering algorithm groups 
the pixels on basis of their statistical properties. A generalized form of the Heckbert 
quantization algorithm (Heckbert, 1982) is used. First, a multidimensional histogram 
of T0, r0 and NDVI pixel values is created. This multidimensional space of "cloud 
of points" is divided into the 15 clusters. The algorithm starts with the whole space 
as one cluster and finds the axis with the largest variations in pixel values. The 
cluster is divided into two along the calculated axis. Similarly, the new clusters are 
further divided until the desired 15 clusters are achieved. 

• Unit 1 
I I Unit 2 
• Unit 3 
• Unit 4 
• Unit 5 
1111 Unit 6 
I I Unit 7 
• Unit 8 
• Unit 10 
• Unit 9 
• Unit 11 
• Unit 12 
• Unit 13 
• Unit 14 
i l l Unit 15 

Fig.4.3: Hydrological delineation of a 19 km by 25 km area of Lake Naivasha watershed 
into 15 hydrological units (see color version in Appendix B). 

The To, NDVI and r0 values for the clusters discerned are presented in Table 4.2. 

The 15 units represent areas with different wetness conditions, not variations in 

land use/land cover per se. The wettest and driest units are units 2 and 14 

respectively. Unit 2 represents open water (T0 = 24.8°C; NDVI = -0.3; r0 = 0.06), 

while unit 14 consists of sparse vegetation and bare land, and has a high radiometric 

surface temperature, implying that E is minimum (T0 = 36.7°C; NDVI = 0.37; r0 = 
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0.25). These areas correspond to rock out-crops and bare lava flows identified on 
topographic maps of the area. Between these two hydrological extremes are the 
forested Eburu hills in the western part of the watershed and also swamp and river 
embankment vegetation (units 6, 9 and 15). Hydrological unit 9 must transpire more 
than units 6 and 15 due to the lower T0 and higher NDVI value. This can be 
concluded even without having access to ground data. The irrigated areas are found 
in the direct vicinity of Lake Navaisha (unit 3) and they may comprise several 
horticultural activities. The drier areas with low vegetation cover are represented by 
rangelands with high T0, low NDVI and high r0. These units 4, 5 and 7 are found in 
the central parts of the study area, being part of the natural ecosystems. 

Table 4.2: Values of radiometric surface temperature 7"0 , Normalized Difference 
Vegetation Index NDVI and surface albedo r0 for the 15 hydrological units 
Hydrological unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

15 

Total 

% area 

7.81 
22.20 
1.40 
1.05 
12.85 
2.36 
9.75 
3.84 
1.34 
6.20 
11.45 
4.06 
6.17 
8.84 

0.68 
100.0 

To 

(°C) 

33.9 
24.8 
26.6 
38.1 
38.4 
28.0 
37.3 
35.8 
25.3 
35.5 
34.1 
36.7 
36.4 

36.7 
28.0 

NDVI 

(-) 

0.40 
-0.30 
0.66 
0.30 
0.29 
0.59 
0.32 
0.35 
0.70 
0.33 
0.37 
0.30 
0.34 
0.37 
0.67 

ro 

(-) 

0.19 
0.06 
0.12 
0.20 
0.22 
0.14 
0.21 
0.21 
0.12 
0.20 
0.25 
0.18 
0.19 
0.25 
0.15 
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4.4 Estimation of SVAT parameters and surface fluxes 

Net available energy (R„, Go) 

Under non-advective conditions and neglecting heat storage in canopies, surface 
fluxes have to satisfy the preservation of energy: 

R„ + G0 + H + AE = 0 (4.7) 

where R„ is the net radiation, Go the soil heat flux, H the sensible heat flux and AE 
the latent heat flux required for evaporation. The energy balance equation can be 
further decomposed into its constituent parameters. Net radiation is calculated as 
the sum of incoming and outgoing short wave and long wave radiation components: 

R„ = (l- r0) K
l + e'cfT„4 - eoCTTo* -(l-£o) s'cfTa

4 (4.8) 

where KX (W m") is the incoming short wave solar radiation, £'oTa (W m" ) is the 

incoming long wave radiation emitted by the atmosphere, with e' (-) being the 

apparent emissivity of the atmosphere, a (W m' K"4) is the Stefan Boltzmann 

constant, and SQCT T0* (W m"2) is the outgoing long wave radiation emitted by the 

surface. K-l is determined on the basis of standard astronomical equations (e.g. 

Iqbal, 1983) which leads to an instantaneous value of 1180 W m"2 incident to the 

top of the atmosphere at the center of the watershed during Landsat overpass at 9.45 

hrs. From Eq. 4.1, a value for the two-way transmittance of rsw" = 0.35 was 

obtained, which implies that the single-way transmittance is TSW = 0.59. Hence, a 

portion of 1180*0.59 = 696 W m"2, after atmospheric absorption, scatter and 

transfer, will reach the land surface. A small, relatively flat area of 19km x 25km 

was studied, hence the effect of topography on the radiation balance was not 

considered. The apparent emissivity of the atmosphere, e' = 0.91, is obtained from 

empirical relationship between f'and Ta (Brutsaert, 1975) Incoming long wave 

radiation is estimated by using Ta and the apparent emissivity of the atmosphere 

yielding a value of E'cfTa = L = 407 W m" . The screen height Ta during satellite 

overpass was Ta = 24.8°C being tentatively estimated from T0 of Lake Naivasha (T0 

= 24.8 °C, unit 2 see Table 4.2) assuming that Ta ~ T0 above water. A similar 

condition for wet surface E was observed by Prihodko and Goward (1997), who 

concluded that the surface temperature of an infinitely thick vegetation canopy is 
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close to ambient T„. The outgoing long wave radiation is derived from T0 and £b and 
varies for each hydrological unit. 

The soil heat flux Go cannot be determined from satellite spectral measurements. 
However, previous studies have shown that the GQ/R„ fraction can be estimated 
from NDVI (Daughtry et al., 1990), T0 (Menenti, 1984) or a combination of NDVI, 
T0 and r0 (Bastiaanssen and Roebeling, 1993). Daughtry et al. (1990) obtained an 
absolute relative error of 13% between measured Go and estimated G0 using the 
NDVI relationship. They observe that this is better than estimating Go simply as 10 
or 20% of Rn in which case absolute relative errors of 58 and 25% respectively 
occurred. The following expression was used for the relationship between Go and 
/?„,, validated for the HAPEX experiments in Spain and Niger (Bastiaanssen et al, 
1998a): 

^ L = Zo_ ( 0 0 0 3 2 ^ +0.0Q62 r0
2
avg) (1-0.978 NDVI4) (4.9) 

where T0
C (°C) is the instantaneous radiometric surface temperature expressed in 

degrees centigrade and rQavg (-) is the average value of r0 during daylight hours 
when heat is stored in the top soil. For Landsat overpass in mid-morning, r0

ovg can 
be estimated as l.lro'(Menenti et al, 1989a). 

Table 4.3 shows the resulting Rn and G0 values for the 15 hydrological units 

discerned. Unit 2 (open water) seems to have 608 W m"2 available energy (7?„ - Go) 

for sensible and latent heat fluxes whereas unit 5 with 355 W m"2 absorbs 

significantly less energy due to high reflected (KT = 153 W m~2) and emitted 

radiation (LT = 508 W m"2). These distinct spatial variations in R„ - Go will affect 

the SVAT parameters, surface energy balance and related hydrological processes. 
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Table 4.3: Estimation of instantaneous radiation balance and net available energy 

Rn - Go 

Hydrological 

unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Kl 
Wm"2 

696 
696 
696 
696 
696 
696 
696 
696 
696 
696 
696 
696 
696 
696 
696 

KT 
Wm"2 

132 
42 
84 
139 
153 
97 
146 
146 
84 
139 
174 
125 
132 
174 
104 

Li 
Wm"2 

407 
407 
407 
407 
407 
407 
407 
407 
407 
407 
407 
407 
407 
407 
407 

LT 

W m " 2 

487 
448 
453 
507 
508 
460 
504 
495 
446 
493 
487 
498 
500 
503 
463 

Rn 
W m " 2 

484 
614 
566 
457 
442 
546 
453 
462 
573 
471 
442 
480 
All 

426 
536 

S> 
-

0.966 

1.000 

0.989 

0.952 

0.951 

0.984 

0.955 

0.960 

0.992 

0.957 

0.962 

0.952 

0.958 

0.962 

0.990 

Go 
W m " 2 

79 
6 
55 
87 
87 
62 
85 
82 
50 
83 
80 
85 
84 
82 
57 

Rn' GQ 

Wm"2 

405 
608 
511 
370 
355 
484 
368 
380 
523 
388 
362 
395 
387 
344 
479 

Partitioning of available energy into sensible and latent heat fluxes (H, AE) 

The sensible heat flux, H, is classically expressed as: 

H=^^AT (4.10) 

where pa (kg m"3) is the moist air density, cp (J kg"1 K"1) is the air specific heat at 

constant pressure, rah (s m"1) is the aerodynamic resistance to heat transport and ATa 

is the temperature difference between layers z\ and z2 (see Eq. 2.44). Figure 2.2 

depicts the logarithmic temperature profile between a particular land surface type 

and the lower part of the atmospheric boundary layer. The sensible heat flux H of 
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Eq. 4.10 applies to the region between the lower (z\) and upper (z2) integration 
limits for the eddy diffusivity for heat transport, Kh: 

rah = ] -jp dz = ( -Llnt i l ) -^) (4.11) 

where M* (m s"1) is the friction velocity, k (-) is von Karman's constant and % (-) is 
the stability correction of the temperature profile due to buoyancy (Brutsaert, 1982). 
Most often, the surface roughness for heat transport, zo/» is taken as the lower 
integration limit to comply with the aerodynamic surface temperature, T^h. The 
major obstacle in practically using thermal infrared images for the estimation of 
sensible heat flux from radiometric surface temperatures T0, is that T0 * T^h 

(Carlson et al., 1995). Figure 2.1 shows that the quantification of z\ modifies rah, 
ATa and, following Eq. 4.10, also H. Most thermal infrared studies are based on the 
hypothesis that T0 = TzQh and zoh is adjusted to match H (Kalma and Jupp, 1990; 
Lhomme et al., 1994). This can only be done if in situ measurements of H are 
available, which is not a straightforward situation. Although this solution gives 
satisfactory results for specific land cover classes for which zoh can be calibrated, it 
does not permit applications of the calibrated zo/. values to other hydrological units 
with varying vegetation heights and bio-physical conditions. Hence, an alternative 
solution has been worked out to apply Eqs. 4.10 and 4.11 in composite terrain. 
Bastiaanssen et al. (1998b) suggested to basically assume T^ * T0 and take an 
arbitrary value of z\- The temperature difference ATa between zi and z\ can then be 
established from rah and H without the involvement of T0 or Ta: 

Hr 
A T = «*_ ( 4 1 2 ) 

PaCp 

Eq. 4.12 is more a matching of H by calibrating ATa rather than by adjusting zoh-

This, at the same time, evades the necessity to have accurate and instantaneous Ta 

data from all over the watershed. It also eliminates problems induced by improper 

quantification of T0 from remote sensing data by using Eq. 4.3. Figure 2.1 shows 

that ATa can be theoretically calculated for any height zi, however, a small value for 

Z\ (z\ ~ Zoh) is preferred in order to comply better with the theory of 

thermodynamics. As in situ H fluxes for the Navaisha catchment were not available, 
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H is estimated from the spatial variation of energy partitioning in the watershed. 

The solution of the sensible heat flux can be made by approximating water bodies 

to have a negligible sensible heat flux (// = 0; R„ ~ GQ+AE). Experimental evidence 

that H ~ 0 W m"2 for water bodies was obtained, for instance, by de Bruin and 

Keijman (1979) for a 460 km2 inland lake of 3 m depth and by Ashfaque, (1999) for 

Lake Naivasha. On the other hand, extremely dry areas can be approximated to 

have a zero latent heat flux {AE ~ 0; H = R„ - Go). The T0 (r0) relationship (see Fig. 

4.4) is used to correctly identify the wettest and driest units. The wettest areas have 

the lowest T0 and r0 whereas the driest have the highest r0 and high T0. Units 2 

and 14 were identified as the wettest and driest units respectively. The above 

described arguments can be used to estimate the energy balance of unit 2 as Rn = 

614 W m"2, G0 = 6 W m"2, H = 0, AE = 608 W m'2 and ATa = 0 K. Unit 14 is 
1 1 

characterized by a surface energy balance of R„ = 426 W m" , Go = 82 W m" , H = 

344 W m"2 and AE = 0W m2. These two extremes in sensible heat flux are used to 

solve ATa in Eq. 4.12 if rah is known. This means that thermal infra red data are not 

used for estimating the thermal gradient. 

Fig.4.4. The relationship between surface temperature T0 and surface albedo r0 which is 
used to select the wet and dry units 

Two turbulent structure parameters are essential for the computation of rah- friction 
velocity u* and the Monin Obukhov length, L. Menenti et al. (1989b) published first 
indications that rah can be obtained from the slope between remotely sensed r0 and 
T0. Bastiaanssen et al. (1998b), describe an iterative procedure to determine w» and 
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L, together with an estimate of zo/i, from the negative slope between TQ and r0. 
Following Moran and Jackson (1991), the surface roughness for momentum 
transport zom, can be estimated from NDVI. In this study, estimates of zom were 
made on the basis of experimental findings in Niger (Taylor et al., 1997). The 
values of ZOH were taken as a factor 10 lower (kB" = 2.3), which opened the 
opportunity to estimate zoh for each hydrological unit (see Table 4.4). The results of 
the iterative procedure indicate an area-effective friction velocity, u* , of 0.341 m s" 
. This value was converted into area-effective wind speed at 100 m height by 

considering an area-effective roughness length zom and u* and using the flux-
profile relationship for momentum transfer (Brutsaert, 1982). This gave a value of 
"IOO = 3.9 m s"1. Local u* values could thereafter be derived using hydrological unit-
wise zoh and stability conditions %. 

The near-surface vertical T„ can be solved for unit 14 as AT„ = 12.1 K after having 

determined rah = 40.2 s m"1 and H = 344 W m"2. Note that ATa is obtained from Eq. 

4.12 and not deduced from T0 - Ta. It is further known that low ATa values coincide 

with low thermal emission (T0 = 24.8 °C) and that a high value of ATa coincides 

with high thermal emission (T0 = 36.7 °C). A function between radiometric surface 

temperature T0 and AT„ was therefore established. Experimental work in HEIFE-

China (Wang et al., 1995), FIFE-USA (Franks and Beven, 1997), HAPEX-Niger 

(Troufleau et al., 1997) and Egypt (Bastiaanssen et al., 1998b) has indicated that the 

radiometric surface temperature is a linear function of ATa. This relationship is the 

same for both land and water surfaces and applies to the space domain only and not 

to time. The relationship is therefore valid only for the time of satellite image 

acquisition and for a given region with a specific solar radiation and wind speed. 

For this study, AT& has been computed for each hydrological unit using the self-

calibration of units 2 (T0 = 24.8; ATa = 0 °C) and 14 (T0 = 36.7; ATa = 12.1 °C): 

ATa= 1.02 To -25.3 (4.13) 

where T0 (°C) is expressed in degrees centigrade. The iterative procedure for u*, L, 

y/h, rah and H was applied to each hydrological unit separately, leading to the rah and 

H values presented in Table 4.4. 

The transport equation for latent heat flux is given generally by: 
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P„cn{el -e7) 
AE= p — (4.14) 

where e0 (hPa) is the saturated vapor pressure at surface temperature To (inside 

stomata or soil cavities or at water-air interface for open water bodies), e2 (hPa) is 

the actual vapor pressure at screen height, y (hPa K" ) is the psychrometric constant, 

rav (s m"1) is the aerodynamic resistance to water vapour transport and rs (s m"1) is 

the bulk surface resistance to E. The surface resistance rsy controls AE and hence the 

partitioning between H and AE. Unfortunately, rs is difficult to quantify and varies 

besides soil moisture with solar radiation, vapour pressure deficit and Ta (Jarvis, 

1976; Stewart 1988). Since rs is difficult to model, it is easier to express AE as a 

residual of the surface energy balance residual than to calculate it according to Eq. 

4.14: 

AE = Rn-G0-H (4.15) 

From Table 4.4, it can be seen that unit 9 (forest) consumes more water (AE = 482 

W m"2) than unit 3 (AE = 389 W m"2) due to the difference in the available energy 

R„ - Go- Unit 15 evaporates 50% less than open water E from Lake Navaisha (AE = 

237 W m"2). Unit 5 indicates a strongly reduced E (AE = 36 W m"2). To verify the 

physical consistency of the generally accepted micro-meteorological Eq. 4.15, the 

surface resistance was obtained by the inversion of Eq. 4.14 after having 

determined AE from Eq. 4.15 and assuming that rah = rm. The saturated vapour 

pressure was computed as: 

e0(^o) = 6- l l e xP 

r i 7 . i7r 0 

. T0 + 273.3 , 
V ° J 

(4.16) 

The actual vapour pressure was set at e2 - 10 hPa and obtained from unit 2, taking 

AE = 554 W m"2, rav = 65.5 s m"1, eo = 31.3 hPa and rs = 0 s m"1. The lowest surface 

resistance next to open water with rs = 0 s m"1, is unit 9 with rs = 64 s m"1 followed 
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by unit 3 with rs = 91 s m"1 (see Table 4.4). Resistances of this magnitude reveal that 
forest and irrigated crops are transpiring at potential level. The Food and 
Agricultural Organization (FAO) has defined rs = 70 s m"1 as the resistance for an 
unstressed grass field (Allen et al., 1998) which is in agreement with the values 
obtained. Dolman (1993) gave values for tropical forests in the range of minimally 
rs = 50 s m"1. Taylor et al. (1997) gave a minimum resistance for dense bush land of 
80 s m" . This shows that the estimations of the heat fluxes are in agreement with 
expectations. 

The evaporative fraction A was calculated from AE, R„ and Go: 

AE 
A = (4.17) 

Rn ~G0 

Table 4.4: Estimation of instantaneous SVAT parameters and heat fluxes for the 15 
Hydrological units 

unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

15 

Zoh 

m 

0.0055 

0.0031 

0.0500 

0.0024 

0.0021 

0.0276 

0.0028 

0.0036 

0.0705 

0.0030 

0.0043 

0.0024 

0.0033 

0.0043 

0.0546 

u, 

ms"1 

0.36 

0.27 

0.63 

0.31 

0.31 

0.52 

0.32 

0.33 

0.72 

0.32 

0.34 

0.31 

0.33 

0.35 

0.68 

L 
m 

-14.8 

oo 

-176.7 

-8.3 

-7.9 

-73 
-9.2 

-11.2 

-784.5 

-10.8 

-13.5 

-9.2 

-10.3 

-10.8 

-108.7 

¥h 
-

1.1 
0.0 
0.2 
1.5 
1.5 
0.4 
1.4 
1.3 
0.0 
1.3 
1.2 
1.4 
1.4 
1.3 

0.3 

ATa 

K 

9.3 
0.0 

1.8 
13.6 

13.9 

3.3 
12.8 

11.0 

0.5 
10.9 

9.5 
12.1 

11.8 

12.1 

3.3 

rah 

s m"' 

38.4 

65.8 

17.0 

48.2 

49.4 

22.5 

46.1 

43.4 

14.2 

46.1 

42.0 

49.2 

44.2 

40.2 

15.2 

rs 

s m"1 

518 
0 

91 
1840 

2646 

125 
1637 

848 
64 

631 
652 
714 
985 

oo 

184 

H 
Wm"2 

274 
0 

122 
319 
318 
164 
314 
288 
40 

268 
256 
280 
304 
343 

243 

LE 

Wm"2 

131 
608 

389 
51 
36 

320 
54 
91 

482 
120 
106 
115 
84 
0 

237 

A 
-

0.32 

1.00 

0.76 

0.14 

0.10 

0.66 

0.15 

0.24 

0.92 

0.31 

0.29 

0.29 

0.22 

0.00 

0.49 
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The evaporative fraction A is a fairly constant indicator of the energy partitioning 

during day light hours and can be used to temporally integrate the energy balance 

from instantaneous values to 24-hour values. Studies by Sugita and Brutsaert (1990) 

and Crago (1996b), among others, have extensively indicated that the fraction as 

defined in Eq. 4.17 is temporally constant. Because of forcing unit 2 with H = 0 and 

unit 14 with AE = 0, the evaporative fraction varies between 0 and 1 (see Table 4.4). 

The 24-hour actual AE is computed according to the net radiation in 24 hours Rn24 

and A using: 

AEu = A Rn24 (4.18) 

R„24 is obtained as follows: 

Rnu = (1 - r0
avg) Klu + L*24 (4.19) 

where Ki-u is the solar radiation integrated over 24 hours, calculated from the solar 
hour angle and the sun zenith angle at the time of over pass of the satellite (Iqbal, 
1983). L*24is the net longwave radiation for 24 hours and is calculated by the semi-
empirical function presented by Allen et al., (1998). The results of Eq.4.18 are 
presented in Table 4.5 and displayed in Fig. 4.5. The estimated lake E on January 
21 is 6.5 mm d"1. Unit 9(forest) has 5.5 mm d"1, while units 3 (cropland) and 4 and 7 
(grasslands/rangelands) have an E of 4.5 mm d"1 and 0.7 mm d"1 respectively. The 
reference E for grass computed with the Penman-Monteith equation as precisely 
described in Allen et al. (1998), gives 5.8 mm d"1. This reference E of unstressed 
grass compares with the actual E of unit 9 (5.5 mm d"1) and is more than unit 3 (4.5 
mmd"1). 

4.5 Validation 

The validation of remote sensing determined surface parameters and fluxes is a 
difficult task. In the ideal situation, fluxes should be measured simultaneously in all 
the hydrological units at the time of overpass of the satellite. However, this is 
usually not possible due to the limited the technical and financial resources 
available for obtaining field data from a heterogeneous landscape. Furthermore, the 
fluxes obtained from ground measurements are limited in areal extent and are 

57 



Table 4.5: The estimated 24-hour time integrated estimated evaporation £24 for the 15 
hydrological units 

Hydrological unit 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 

A 

-

0.32 

1.00 

0.76 

0.14 

0.10 

0.66 

0.15 

0.24 

0.92 

0.31 

0.29 

0.29 
0.22 

0.00 

0.49 

^«24 

Wm"2 

149 

184 

168 

146 

141 

163 

144 

144 

168 

147 

133 

152 

149 

133 

160 

£24 

mmd"1 

1.7 

6.5 

4.5 

0.7 

0.5 

3.8 

0.7 

1.2 

5.5 

1.6 

1.4 

1.6 

1.2 

0.0 

2.8 

Fig. 4.5: Spatial patterns of actual evaporation of a 19 km by 25 km area of Lake 

Naivasha watershed on 21 January 1995 (see color version in Appendix B) 
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representative of a relatively small area, compared with those obtained from remote 
sensing algorithms. Hence validation of regional scale Eis not straightforward. 

Field data obtained from two field campaigns conducted in October, 1998 and 
January, 1999 were used for validation. Data from a meteorological station were 
also available for the period 1961-1968. During Octoberl998, Ta, air humidity RH 
and wind velocity u were measured at two levels. Incoming and outgoing radiation 
were measured separately. In January, 1999, Ta and RH at 3 levels (0.1 m, 2 m and 
3 m), rainfall and incoming solar radiation were measured at 20-minute intervals by 
an automatic weather station placed in a dry grassland area 5 km west of Lake 
Naivasha. 

Table 4.6 shows Ta at 2 m height, shortwave atmospheric transmittance and 
evaporative fraction at 9.40 hrs local time from 18 to 31 January 1999 determined 
from the field measurements. Daily E from the grassland site and from open water 
(Lake Naivasha) was also computed from the field data. The Bowen ratio energy 
balance method was used to calculate E from the two sites. Table 4.6 also shows the 
results from remote sensing for comparison. The automatic weather station in the 
grassland site was located in unit 7. The average field measured A and E were 0.23 
and 0.61 mm d"1 respectively. This compares well with the values of 0.21 and 0.70 
mm d"1 obtained from remote sensing. For open water E, an average value of 6.3 
mm d"1 was obtained from field measurement as opposed to 6.5 mm d" from remote 
sensing. The two sites selected for validation represent the two extremes of wetness 
conditions. It is therefore expected that the results from the other hydrological units 
are also in the correct range. At 9.40 hrs, when Landsat satellite passes over, there 
was little variation of r during the fourteen days of observations. The highest was 
0.62 and the lowest 0.58, with an average of 0.60. It is evident that the value of 0.59 
obtained from the simple expression used to estimate r(Eq. 4.1) is valid. The T„ is 
between 22.6 and 24.7 °C, with an average of 23.4 °C. A value of 24.8 °C was used 
in this remote sensing study, being determined from the average surface 
temperature of Lake Naivasha assuming zero heat flux and this also seems 
reasonable. 
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Table 4.7 shows daily solar radiation, daily atmospheric transmissivity and Zs(open 

water) extracted for the month of January of records(1961-1968) from the Kedong 

meteorological station situated in the study area. The mean value of lake E from the 

long term data is 6.4 mm d"1. This reveals that lake E depicted in Table 4.5 is 

reliable. Figures 4.6a, b, and c show graphs of T0 and Ta , r0 and surface fluxes 

against time measured over Lake Naivasha on 8 October 1998. Figure 4.6a, 

supports the assumptions that Ta over moist surfaces such as water is approximately 

equal to the surface temperature. The average difference is 1 °C, with the minimum 

and maximum differences being 0 °C and 2.1 °C respectively. Figure 4.6b indicates 

that r0 is about 0.06 between 10.00 and 11.00 hrs. However, r0 varies during the day 

with the lowest, 0.03, observed between 13.00 and 14.00hrs. The surface fluxes in 

Fig. 4.6c indicate that R„ is very close and almost equal to AE, showing that A is 

approximately equal to l(Ashfaque,1999). Both H and Go over water are close to 

zero. This agrees with the estimations presented in Table 4.4. 

Table 4.7 : Long term data of solar radiation, atmospheric transmissivity and open-

water evaporation for the month of January (1961-1968) 

Meteorological parameter Minimum Mean Maximum 

Daily solar radiation K.I (Wm2) 244 266 282 

Daily transmissivity r(-) 0.58 0.64 0.67 

Evaporation (open-water) E0 (mm d"1) 5.8 6.4 6.8 

The validation of results from similar studies in Egypt, Spain, China and Niger 

(Bastiaanssen et al., 1998a; Wang et al., 1998; Kustas et al., 1994), which had 

extensive data from large scale field experiments, indicate that reliable estimates of 

E can be obtained from remotely sensed data. Root mean square error (RMSE) of 

between 0.05 to 0.14 are reported for A, while differences between ground based 

measurements and estimated E from remote sensing are between 5% and 20%. 

Sensitivity analysis indicated that a 25% change in the parameters caused less than 

20% change in the fluxes and A. K-l, r0 and T0 were the most sensitive parameters 

in estimating the fluxes. 
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Fig.4.6a: Diurnal variations of surface temperature Tw (diamonds) and air temperature 7*a 
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Fig.4.6b: Diurnal course of surface albedo r0 over Lake Naivasha on 9 October 98 
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Fig. 4.6c: Latent heat flux AE (triangles) and net radiation R„ (lines) over Lake 
Naivasha on 9 October 98 
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4.6 Aggregation of SVAT parameter and fluxes 

Aggregation rules of SVAT parameters have been used to calculate the area-
representative SVAT parameters for the Navaisha watershed. Aggregated 
parameters are usually applied as input in land surface parameterization schemes for 
the simulation of large-scale energy balances and exchange processes between land 
and atmosphere (e.g. Noilhan et al., 1997). In this study, however, area-
representative parameters will be employed to analyze the effect of spatial 
variations of the SVAT parameters on E. A comparison will be made between 
fluxes of each hydrological unit calculated from local SVAT parameters vis-a-vis 
fluxes obtained using area-aggregated SVAT parameters. 

Many different aggregation rules have been published in recent years (e.g. 
McNaughton, 1994; Shuttleworth et al., 1998). In the current study, r0, £& zom, «*, 
y/h and AT„ SVAT parameters have been areally aggregated. The regionally 
representative surface albedo is calculated as the weighted mean of the values of the 
individual hydrological units, because variations in cloud cover did not exist on the 
cloud free image of 21 January and the area is sufficiently small and flat to allow 
extra-terrestrial radiation to be constant: 

r0
eff = Iairoi (4.20) 

where, ro is the area-effective albedo and a, and r0, are the fractional area coverage 
and surface albedo respectively for a particular class i. Data on fractional area a, are 
presented in Table 4.2. The results show r^ = 0.177. The aggregated surface 
thermal infrared emissivity was determined from a weighing scheme, using both the 
fractional area a, as well as the emitted black body radiation: 

e
eff = ^ ' °' 2L (4 2i) 

Following Wang et al. (1998), Eq. 4.21 assigns more weight to the areas having a 

higher thermal radiation. The results show &£s = 0.968. Regional surface 

temperature is determined by using area-effective emissivity obtained from Eq.. 

4.21 and up-welling radiation: 
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The results show T0
eff= 33.2°C. The surface roughness length for heat transport was 

aggregated according to the procedure Mason (1988) developed for the aggregation 
of the surface roughness length for momentum transport: 

1 

In 
( z ^ 

*-B 
eff 

\Z°h J 

•=s 
In *-B 

\Zm J 

- i2 
(4.23) 

The above expression is based on the idea that the factor [In (zfl / zoh)] is linearly 
related to friction velocity and that the area-representative sensible heat flux appears 
at some height above the land surface where all fluxes from individual surface 
elements are blended out due to turbulent mixing. This blending height, ZB, was 
taken as 100 m elevation. The results show zohff= 0.0041 m. The friction velocity 
u* was aggregated according to the momentum flux weighted for fractional area a,: 

,ejf 

Pa 

0.25 

(4.24) 

The result shows u*ff = 0.341 m s" , which agrees with u* obtained from the 

iterative procedure. This implies that the dis-aggregation/aggregation procedure for 

u* is consistent. The stability correction factor % is an integral part of the 

aerodynamic resistance rah (see Eq. 4.11). Values for y/h were aggregated by using 

the standard expression of the Monin-Obukhov length, using u* , TQ
eff and ff . 

Vs = -
PaCAuf) To' 

kgH eff 
(4.25) 
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where g (m s"2) is the acceleration due to gravity and If is the weighted average of 

all //j-fluxes (LaiH,). The results show y/h= 1.11. The area-effective value for AT„ 

= 8.5 K was obtained from a weighted average: 

ATa
eff=IaiATa.i (4.26) 

4.7 Parameter variability and impact on surface fluxes 

Watershed average surface fluxes 

A parameter variability study was performed to provide an indication of the 

importance of schematizing the spatial variability of SVAT parameters. First the 

effect on total watershed H and AE fluxes will be discussed, followed in section 7.2 

by the effect on spatially distributed H and AE fluxes. 

The Lake Naivasha watershed surface energy balance is calculated from the 
aggregated SVAT parameters using Eq. 4.8 for Rn

eff, Eq. 4.9 for Goeff (taking 
NDVI^ = 0.28) and Eq. 4.10 for Heff. The results are presented in Table 4.8. It 
appears that W^has a 2.3% deviation from Za, //, and AE?ff a 4.0% deviation from 
Za, AEt. These differences are within the error of estimation of the fluxes. It can 
therefore be concluded that the aggregation rules yield satisfactory results to assess 
area-effective surface fluxes. Hence, total watershed E can be satisfactorily 
obtained from area-aggregated SVAT parameters and there is no need to solve the 
E from sub-catchments explicitly. It is, however necessary to accurately describe 
the spatial variation of SVAT parameters and sound aggregation rules should be 
applied rather than arithmetic mean values of SVAT parameters. As parameter 
values in Table 4.4 differ considerably from the values of the aggregated SVAT 
parameters, it may be concluded that the incorporation of a locally measured SVAT 
parameters for calculating watershed fluxes can lead to erroneous results. 
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Table 4.8: Total watershed energy balance as a weighted average of energy balances 

from the 15 hydrological units and from area-aggregated SVAT parameters 

Flux (W m") Weighted average Area-aggregated SVAT 

of hydrological units parameters 

Net radiation R„ 497 4% 

Soil heat flux G0 77 79 

Sensible heat flux H 221 226 

Latent heat flux XE 199 191 

Watershed distributed surface fluxes 

Two different treatments of the parameter domains on watershed distributed surface 

fluxes were tested: locally estimated SVAT parameters of Table 4.4 versus spatially 

constant SVAT parameters. The watershed-aggregated values of SVAT parameters 

were used as spatially constant over the whole watershed. The fluxes of each unit 

were calculated by taking each of the parameters (shown in Tables 4.9 and 4.10) 

alternatively as equal to the watershed aggregated parameter. The deviation of these 

fluxes from the fluxes calculated using distributed parameters (Table 4.4) is 

represented as % fractional difference: 

100 (4.27) 

where K, represents the sensible or latent heat flux of unit number i and x are the 

SVAT parameters. Tables 4.9 and 4.10 summarize how fluxes of the hydrological 

units vary when spatially constant SVAT parameters are considered instead of local 

distributed values. Generally, the units can be divided into three groups on the basis 

of their sensitivity. The wet units 2 and 9 are relatively less sensitive to XE but most 

sensitive to H. The wet units have large values for XE for example 554 W m" for 

unit 2. Absolute XE deviations due to changes in the SVAT parameters yield small 

fractional differences. The dry units 13 and 14 are very sensitive to XE but less 

sensitive for H estimations. The third group (e.g. units 1 and 8) are insensitive in the 
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estimations of both H and XE because local parameter values are similar to the 

spatially constant values selected i.e the aggregated values. The aggregated regional 

values of the parameters are u*ff = 0.341 m s"1, z%hS = 0.0041 m, y/hff = 1.11 and 

ATa
eff = 8.5 K while the values at unit 1 are w* = 0.36 m s"1, zoh = 0.0056 m, y/h = 

1.14 and ATa= 9.3 K. 

The estimation of E from individual hydrological units is most sensitive to AT„ 

(mean root square fractional difference 147.7%). The surface roughness length for 

heat transport is the second most sensitive parameter in the estimation of XE (root 

mean square fractional difference 43.8%). Unit 14 is the most sensitive to zoh in the 

estimation of XE, with a % fractional difference of -5160% while unit 2 is the least 

sensitive with a value of 0.0%. It is important to note that use of u*eff, y/h
eff and rQ

eff 

also considerably affects the calculation of local E with root mean square fractional 

differences varying between 26.8% and 31.5%. Only usage of 6off seems to be 

acceptable. More caution is thus required when using areal constant SVAT 

parameters for the calculation of distributed fluxes in watersheds. This issue has so 

far not been properly addressed in the scientific community of remote sensing based 

surface energy balances. 

4.8 Conclusions 

A new method has been presented to quickly delineate a heterogeneous watershed 
into hydrological units, without having access to ground data, by using remotely 
sensed data. The difference in hydrology is based on only the remote sensing 
determined surface temperature, NDVI and r0. This remote sensing method does 
not describe land use or land cover and can therefore be applied even without 
identifying training areas. A watershed delineation is necessary to describe 
variations in Soil-Vegetation-Atmosphere-Transfer parameters and the related 
fluxes. The schematization into a limited number of hydrological units allows the 
computation of the energy balance in a spread-sheet. The spatial variation of SVAT 
parameters is difficult to measure in the field. Therefore, literature has been cited 
and used to estimate the areal patterns of SVAT parameters from spectral Landsat 
TM data. Field data obtained in two field campaigns held in October, 1998 and 
January, 1999 and long-term meteorological data were used to verify the results. 
The actual E of water and dry grassland agreed with those calculated from data 
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collected in January 1999. The E of water obtained was also within the range of 
those calculated from long-term data (1961-1968) for the month of January. The 
resulting surface resistance for wet surfaces varied from 0 to 91 s m"\ which is very 
likely and agrees with published figures. The method proposed can be applied, 
under cloud-free conditions, at any watershed, river basin or irrigation scheme 
having heterogeneity in land surface. 

The results of the parameter variability analysis and the effect on fluxes show that 
ATa is the most sensitive parameter followed in importance by zon, u*, y/h and r0. 
This implies that Ta variability needs to be described properly. The total E from a 
catchment can be accurately estimated from area-aggregated SVAT parameters, 
provided that these area-representative values are obtained through the aggregation 
rules given in Eq. 4.19 to 4.25 and are based on distributed SVAT parameters over 
the entire watershed. The consequence of this finding is that the spatial variation of 
SVAT parameters has to be described under all circumstances, even for calculating 
area-averaged watershed surface fluxes. Existing energy balance models using 
remotely sensed input data for distributed watershed E should therefore be re
examined on their suitability of parameterizing spatial variability in SVAT 
parameters. Most published algorithms in the literature appear not to be suitable for 
calculating watershed distributed E (e.g. algorithms in classes 1, 2, 3 and 4 in Table 
4.1). 
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Chapter 5 

Evaluation of the temporal variability of the 
evaporative fraction in a tropical watershed 

5.1 Introduction 

Evaporation E is required on a daily basis as well as longer time scales for 

applications in hydrology, agriculture, forestry and environmental studies in 

general. However, in practice, continuous daily E measurements are rarely available 

at the regional scale. Traditionally daily reference E was estimated from mean daily 

values of available meteorological variables such as air temperature, solar radiation, 

humidity and wind speed. More recently, one or more instantaneous measurements 

of E have been used to estimate daily total E (e.g. Brutsaert and Sugita, 1992). 

There has been a growing interest in this approach because of its attractiveness for 

remote sensing applications. Remote sensing offers a means of estimating actual E 

at a large spatial scale, which is not possible with the traditional point methods. 

Many techniques have been proposed to solve the surface energy balance from 

remotely sensed surface temperature, surface reflectance and vegetation indices 

(Moran and Jackson, 1991; Kustas and Norman, 1996). Remote sensing data are, 

however, instantaneous measurements and a method is required to temporally 

integrate instantaneous estimates of E. 

Latent heat flux AE and other components of the energy balance display 

considerable diurnal variation over land surfaces. However, several ratios of the 

fluxes have been shown to be relatively constant during daylight hours (Jackson et 

al., 1983, Shuttleworth et al., 1989 Bastiaanssen et al., 1996). The classical energy 

partitioning indicator is the Bowen ratio /?, which is the ratio of the sensible heat 

flux H and AE. The pitfall in applying f3 for time integration is that it shows distinct 

diurnal variation features. More recently, the evaporative fraction A has been found 

Based on H.O. Farah, W.G.M. Bastiaanssen and R.A. Feddes. 2000. Evaluation of 
temporal variability of the evaporative fraction in a tropical watershed. Hydrology and 
Earths System Sciences (submitted) 
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to have little variations during daytime, although it is directly related to /? (Crago 
and Brutsaert, 1996). The evaporative fraction is defined as: 

AE AE 1 
A = = = (5.1) 

R„-G0 AE + H 1 + 0 

where Rn (W m"2) is the net radiation and Go (W m'2) is the soil heat flux density. 

Shuttleworth et al., (1989) were the first to notice the constancy of A during 

daylight hours. They analyzed 4 clear sky days' data from the First ISLSCP Field 

Experiment (FIFE) over relatively homogeneous grasslands and found that midday 

A is nearly equal to the average daylight value of A. Nichols and Cuenca (1993), 

used 72 days data from the Hydrologic Atmospheric Pilot Experiment-Modelisation 

du Bilan Hydrique (HAPEX-MOBILHY) experiment and showed that the midday 

A is highly correlated with average daytime, A but that these quantities are not 

statistically equal. Crago (1996a), evaluated 77 days data from the FIFE. He used 

the data irrespective of weather conditions on a particular day and concluded that 

midday A is significantly different from the average daytime value. The difference 

was ascribed to the concave-up shape of the diurnal progression of A. 

The central question is whether an instantaneous value of A can be used to estimate 
actual daily evaporation E, here expressed as latent heat flux: 

AEd = Ains(Rn-G0)d (5.2) 

where the subscript d indicates total daytime and ins instantaneous values 

respectively. This way of expressing £ is a simple approach to integrate £ on a daily 

basis and across a season, if at least the temporal variations of A are known. 

However, Eq.5.2 may not be valid under non-clear sky conditions because the 

diurnal constancy of A may not be satisfied under cloudy conditions (Zhang and 

Lemeur, 1995). For areas with persistent cloud cover, such as in the humid tropics, 

it is important to test the validity of Eq. 5.2. In order to assess the performance of 

the A approach, a long-term data series of measurements are required so that a wide 

range of different conditions are encountered. Most of the previously published 

studies have used data from relatively short time periods as reported above. In this 

study, field data collected over a period of about one year in the Lake Naivasha 

basin in Kenya are used to investigate the applicability of the A method to estimate 
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£ on a daily scale and for a season. Continuous daily E measurements at two sites 

were compared with daily E estimates from using Eq. 5.2. 

The objective of this Chapter is to demonstrate the capability of instantaneous 

measurements of A to estimate the average day A and E throughout a season in 

tropical watersheds with data scarcity problems. Although only field data were 

used in this study, the results are expected to establish a sound basis for the 

estimation of E from instantaneous remote sensing data and routine daily weather 

data. The theoretical background of A and reasons for its stable diurnal behavior are 

discussed in section 5.2. The results of estimating time integrated E is presented in 

section 5.3. In section 5.4, the diurnal stability of A is discussed and in section 5.6 

the results of the comparison between instantaneous and average day A are 

presented. Finally the seasonal variations of A are described in section 5.6. 

5.2. Theoretical background 

Theoretical relationships describing the diurnal stability of A 

The diurnal behavior of A can be understood from its relationship with atmospheric 

conditions and surface characteristics. The Penman-Monteith equation of AE 

combines these conditions and is expressed as: 

s(Rn-G0) + pcp[e*(z)-e(z)]/rah 
At, = (5.3) 

s + y(l + rs/rah) 

where s (Pa K) is the slope of the saturation vapor pressure curve, e* (hPa) and e 

(hPa) are respectively the saturation vapor pressure and actual vapor pressure at 

height z (m), cp (J kg'1 K" ) is the specific heat of air at constant pressure, p (kg m"3) 

is the air density, y (hPa K" ) is the psychrometric coefficient, rs is the surface 

resistance to water vapor transport and rah is the aerodynamic resistance to vapor 

transport. In Eq.5.3, AE represents the total evaporation from surface and hence the 

use of r, in the equation. This compares to Eq.2.30 in which AE reflects evaporation 

from a canopy only and rc is used. Evaporative fraction A can be obtained by 

dividing both sides of Eq.5.3 by R„ - Go, giving the following expression: 
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1 
s + y(l + rs/rah) 

pc (e*(z)-e(z))/rah 
[s + —p-

R„-Gn 
(5.4) 

Eq. 5.4 shows that, besides available energy Rn - G0, A is a function of vapor 

pressure deficit (Ae= e*(z) - e(z)), rah and rs. 

The transfer equations for heat and water vapor between the surface and the 

atmosphere can also be used to express A without the explicit involvement of Rn -

G0: 

H = 
pac(T0-Ta) 

rah 
(5.5) 

AE = 
pacp(e*(To)-e(Ta) 

y(rs + rah) 
(5.6) 

where T0 is the surface temperature. By further expressing A as AE/(AE + H) (Eq. 

5.1), an alternative expression for A becomes: 

A = • 
AE 

AE + H 
= 1 

1 
rah[e*(To)-e(Ta)] 

y (rah + rs)(To-Ta) 

(5.7) 

For ideal conditions, with no cloud obstructions and no heat or moisture advection, 

R„ - Go, rs, and Ae follow a regular diurnal cycle. Rowntree (1991), showed that A 

is more sensitive to Rn - Go when Rn - Go is small. Fig. 5.1a shows A as a function 

of R„ - Go- It can be seen that up to a value of 200 W m" , A decreases rapidly with 

increasing Rn - Go- Evaporative fraction A then remains almost constant with further 

increase in R„ - Go- Available energy greater than 200 W m"2, usually occurs 

between 9.00 and 16.00 hours. This means that variations in A are largest in the 

mornings and the evenings when Rn - Go is small (<200 W m"2). Rowntree (1991) 
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also demonstrated that variations of A due to rs are larger for small values of rs (wet 

conditions) than for larger rs values (dry conditions). Fig.5.1b illustrates A as a 

function of rs. Evaporative fraction A decreases rapidly when rs increases from 20 s 

m"1 to approximately 150 s m"1, but decreases at a much smaller rate at higher 

resistances. Because Rn - G0 often exceeds 200 W m" during midday conditions, A 

can be expected to behave temporally stable especially for moderately wet to dry 

surface conditions with rs larger than 150 s m*1. 
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Fig. 5.1 Evaporation fraction as a function of available energy, Rn-Go, surface resistance, 

rs from Eq 5.4 and surface and air temperature difference, T0 - Ta and vapour pressure 

deficit Ae from Eq. 5.7 with the following midday conditions prevailing on 28 October 

1998 at a grassland site, (a) rs = 300 s m"1, rah = 70 s m"1, Ae =15 hPa (b) Rn- G0= 300 

W m"2, rah = 70 s m"1, Ae = 15 hPa (c) rs = 300 s m"1, rah = 70 s m"1, Ae = 15 hPa (d) rs = 

300 s m"1, rah= 70 s m"1, T0-Ta= 2 °C 
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Eq. 5.7 introduces (70 - Ta) as an important variable in the determination of A. The 

diurnal trend of T0 - Ta follows closely that of Kl. Crago (1996b) illustrated the 

dependence of A on T0 - T„ for different surface conditions when Rn - Go is greater 

than 200 W m"2. He used the formulation of Eq. 5.7 for A to show that A is most 

sensitive to T0 - Ta when T0 - Ta is small (<2 °C). Fig. 5.1c shows the variation of A 

with T0 - Ta. Evaporative fraction A remains fairly stable for To - Ta larger than 3 °C. 

Such values of T0 - Ta occur in the middle of the day under clear sky conditions. 

Fig. 5. Id presents the relationship between A and Ae using Eq. 5.7. Evaporative 

fraction A increases with increasing Ae, however, A increases at a lower rate for Ae 

values larger than 10 hPa. Values of Ae larger than 10 hPa only prevail during 

daylight hours when the air mass above the land surface is warm. 

Computation of A and E 

In this study A is derived from /3 measurements. The Bowen ratio /? is determined 
from the difference in vapor pressure and temperature between the two 
observational levels: 

AE ae e\ — ei 

where the subscripts 1 and 2 indicate the lower and upper levels respectively. The 

evaporative fraction A under field conditions is then computed: 

A-^b <5-9) 
Daytime XE is calculated as: 

AE=['2A(Rn-G0)dt (5.10) 

where the time difference t2 - ti represents the time from 8.00 to 17.00 hrs in the 

present study. Daytime AE can in a simplified manner, be estimated from midday A 

(Amirj) or morning A (Amor). The equation when Amid is used as follows: 
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AE=A.J'\Rn-G0)dt (5.11) 

For Amid and /lmor, measurements conducted between 12.00 to 13.00 hrs and 9.00 to 
10.00 hrs respectively have been used. The daily net radiation is given by: 

Rn = (l-r0)Kl + Ln (5.12) 

where ro is the surface reflectance, KX is the solar radiation reaching the earth's 
surface obtained from direct measurements of solar radiation and L„ is the net 
longwave radiation. U, was evaluated from Ta and RH by using empirical functions 
(e.g. Holstlag and van Ulden, 1983). Go is estimated as 10% of R„ during daytime 
hours (e.g. de Bruin and Holtslag, 1982) and ignored on a daily basis. 

The degree of cloudiness is more accurately expressed as a shortwave 
transmittance: 

T = —- (5.13) 
A 4- TO A 

where K-1TOA is the solar radiation flux density incident on the top of the 
atmosphere, which can be calculated on the basis of standard astronomical 
equations (e.g. Iqbal, 1983). 

The study area comprises the Lake Naivasha basin located in central Kenya (see 
Fig. 3.2). Two sites, namely Ndabibi and Eburu, with different canopy cover and at 
different altitudes were selected for in situ measurements. Two Bowen ratio towers 
were erected at the experimental sites. Table 3.1 shows the details of the 
measurements. Malfunctioning instruments caused a period of 36 days in February 
and March 1999 with missing data for the grassland site. Fig.5.2 shows the long 
term annual rainfall and potential evaporation at the Ndabibi site. 
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Fig.5.2. Long term average monthly rainfall and potential evaporation computed 
according to the Penman equation at the grassland site 

5.3 Seasonal variations of actual evaporation 

The progression of accumulated E, as calculated from Eq. 5.10 and measured 
rainfall are presented in Fig. 5.3. During the dry season, the two sites show marked 
differences. At the grassland site, E stops almost immediately after rainfall. At the 
woodland site, E continuous during the two-month dry period and stops only for a 
few days at the end of the dry season. These differences are caused by differences 
in the rooting depth of the vegetation at the two sites, besides that the forest 
receives more rainfall annually. At the grassland site, vegetation can only get 
moisture from the top soil surface and as soon as the soil surface dries, vegetation 
stress emerges. Furthermore, the grasses at this site begin to senesce just before the 
dry season. Evaporation from soils is the dominant component of E at this time. 
Evaporation therefore stops a day or two after a certain rainfall event. The 
woodland site has vegetation with deeper roots, which can extract moisture from 
deeper soil layers. The vegetation continues to transpire even after the surface soils 
have dried up two months after the last rainfall event. March is the first month of 
rainfall and the difference between cumulative rainfall and cumulative E is 
approximately 80 mm at both sites. The hydrological implication of this, is that soil 
moisture storage, groundwater recharge and surface runoff must be significant 
processes at the woodland site. 
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Fig. 5.3. Comparison of cumulative evaporation and rainfall measured at the grassland 
and woodland sites for the period 27 September 1998 to 14 April 1999 

Daytime E estimated from Ami(1 and Amor simulates the results of E obtainable from 
the satellite data with morning (e.g. Landsat) or afternoon (e.g. NOAA AVHRR) 
over passes at the equator. Fig. 5.4 shows the comparison of measured E and 
estimated E from Amid for the two sites. The coefficient of determination r2 and the 
root mean square error RMSE are also presented in Fig. 5.4 and Table 5.1 
respectively. The values of measured and estimated E compare very well at both 
sites. The RMSE for daily values are 0.17 mm at the grassland and 0.14 mm at the 
woodland site. These results apply to the entire study period, however, on an 
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individual monthly basis the largest RMSE for daily values obtained are 0.21 mm 
and 0.18 mm for the month of April for the grassland and woodland site 
respectively. With respect to r , the lowest values are 0.77 for the month of January 
at the grassland site and 0.66 for the month of February at the woodland site. The 
months of January and February are the driest months in the year and therefore E is 
very small during this period. Although the comparison between measured and 
estimated E may appear poorer for the drier months, the RMSE are comparable to 
the other months. Table 5.1 shows the RMSE of estimated E on daily, 10 day and 
monthly scales. It can be seen that the RMSE reduces with longer time scales. This 
indicates that accumulated E is more accurate than daily E if estimated from 
instantaneous E. 
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Fig. 5.4. Comparison of measured evaporation E and estimated E by midday evaporative 
fraction at the grassland site for the period May 1998 to April 1999 and the woodland 
site for the period October 1998 to April 1999 
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Table 5.1. Root mean square error RMSE of estimated evaporation E from midday 
evaporative fraction on daily, 10-day and 20-day time scales for the period May 1998 to 
April 1999 at the grassland site and October 1998 to April 1999 at the woodland site 

Time scale 

Daily 

10-day 

20-day 

Grassland 

RMSE £(mm) 

0.17 

0.12 

0.05 

Woodland 

RMSE £(mm) 

0.14 

0.06 

0.04 

The daytime E estimated by Amor gave poorer results than when estimated by Amid. 
The RMSE values are 0.37 mm and 0.29 mm at the woodland and grassland sites 
respectively. These values are about twice as large as those obtained when Amirl was 
used. The r obtained are 0.33 and 0.65 for the grassland and woodland sites 
respectively. This implies that in remote sensing studies, data from satellites with 
afternoon overpass will give a better estimate of E compared with those with 
morning overpass. 

5.4 Diurnal stability of the evaporative fraction 

The standard deviation of measured A (SDA) between 8.00 and 17.00 hrs was 

calculated and used as an indicator of the diurnal stability of A. The mean SDA for 

the grassland site is 0.071 at an average A of 0.40 yielding a coefficient of variation 

of 0.18. SDA varies considerably during the study period. The months of March, 

April, May and June, have the largest diurnal variations with a mean standard 

deviation of 0.082 and with minimum 0.02 and maximum 0.17 values occurring on 

individual days. The remaining period has a mean standard deviation of 0.060, with 

a minimum of 0.01 and a maximum of 0.15. For the woodland site, the mean SDA 

is 0.045 at an average A of 0.33, hence a coefficient of variation of 0.14 arises. The 

months of March and April have the highest SDA of 0.060. At both sites, the 

periods of largest SDA coincide with the rainy season. During the rainy days, Rn -

Go > Tal - Ta2 and Ae are small. Fig. 5.1 demonstrated on a theoretical basis that A is 

most sensitive to variations in Rn - Go, Tal - Ta2 and Ae when these variables are 

small values. These affect the diurnal cycle of the surface energy fluxes and the 
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numerical stability of A. In comparison, the SDA of the woodland site is much 

lower than that of the grassland site. This indicates that the diurnal stability is site-

dependent. 

An analysis of the relationship between SDA and To, RH and r was undertaken to 

see if routinely collected weather data could be used to understand the diurnal 

stability of A. Table 5.2 shows the r of the relationships. The relationships were 

modeled by polynomial curves having an order 2. The daily SDA has a very weak 

relationship with Ta, RH and r. The relationship between 10-day average SDA and 

10-day average Ta, RH and T is also weak (Table 5.2). To examine the effect of 

cloudiness on the stability of A, the days were stratified according to the daily 

average x values and put into three groups. The groups were defined as cloudy (T< 

0.5), partly cloudy (0.5 > r < 0.65) and clear ( r > 0.65). Table 5.3 shows that the 

average SDA for the three groups is almost the same, thus indicating that cloudiness 

is not related to the stability of A. Hence, the stability of the diurnal cycle of A can 

not be adequately explained by micrometeorological state variables only. 

Table 5.2. Relationship between daily and 10-day average standard deviation of the 

evaporative fraction SDA and meteorological variables used to explain the diurnal 

stability of A. 

Meteorological 
Variables 

r 

RH 

T 
1 a 

r2-

Grassland 

0.05 
0.11 

0.10 

lday 
Woodland 

0.07 

0.10 

0.09 

r2-10 day 

Grassland 

0.27 

0.31 
0.34 

average 

Woodland 

0.33 

0.21 

0.18 
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Table 5.3. Average daytime standard deviation of evaporative fraction SDA grouped 

according to the atmospheric transmission r to solar radiation , in order to understand 

the relationship between cloudiness and diurnal stability of A 

No. 

Grassland 

114 

91 

99 

of days 

Woodland 

40 

61 

103 

T 

<0.5 

>=0.5 and <= 

>0.65 

0.65 

Mean standard deviation of 

evaporative 

Grassland 

0.075 

0.078 

0.068 

fraction, A 

Woodland 

0.049 

0.045 

0.041 

There is no consensus in the literature on the effects of clouds on the diurnal cycle 

of A. While Hall et al., (1992) conclude that variations in Rn due to cloudiness 

should not affect A significantly, Sugita and Brutseart (1991) attribute daytime 

changes in A to changes in cloudiness. They attribute increase in A to decrease in 

R„ as clouds pass over. Crago (1996b) observes that cloud fields tend to change R„ -

Go and surface temperature erratically and thereby cause changes in A. He 

concludes however, that the effect on A may not be observed in practice as it may 

be masked by coincident changes in RH and wind speeds. This implies that diurnal 

variability of A is a complex phenomenon and other factors influencing the 

variations of A in Eqs. 5.3 and 5.7 need to be considered more carefully. The other 

variables that control A, are rs and rah (see Eq. 5.4), of which rs is the dominant 

surface variable, that regulates A. Surface resistance rs depends on 

micrometeorological variables, soil moisture and plant physiology (Jarvis, 1976; 

Stewart, 1988). Surface resistance rs has a diurnal trend. Modeling of surface 

resistance is therefore required in order to understand better the diurnal dynamics 

of A. 
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5.5 Comparison of midday and morning evaporative fraction 
and average daytime evaporative fraction 

The relationships between Amid and average daytime A for the grassland and 

woodland sites are presented in Fig. 5.5. All days were used irrespective of weather 

conditions. There is a strong relationship between Amid and daily A. The r for the 

regression lines through the origin are 0.71 and 0.75 while the RMSE are 0.095 mm 

and 0.070 mm for the grassland and woodland site respectively. The 1:1 line (Fig. 

5.5 grassland) shows that Amid values larger than 0.65 are higher than corresponding 

daytime values while Amili values smaller than 0.30 are less than the daytime values, 

which reveals a slightly concave type of relationship. Evaporative fraction A values 

larger than 0.65 occur in the rainy months of May, June and April. During these wet 

periods, when there is no moisture deficit, E is highest at midday. Evaporative 

fraction A is expected to be higher at midday as compared with the rest of the day. 

In contrast, A values less than 0.3 occur mostly in the dry months of January, 

February and December. Evaporation is significantly reduced for the whole day 

however available energy, (/?„ - G0) is highest at midday. Evaporative fraction A 

values will therefore tend to be lower at midday, as compared with the rest of the 

day and under estimate the daytime A. It can also be seen from Fig. 5.4 that the 

relationship between measured and estimated E is better than the relationship 

between average day A and Amid. This is because more weight is given to the 

midday period in the calculation of daytime E, when Rn - Go is large and A is more 

stable. 

The relationships between average Amor between 9.00 and 10.00 hrs and average 

daytime A were determined to study the potential of using satellite remote sensing 

based data acquired during the morning hours. Compared with midday conditions, 

the r2 for the period 9.00 to 10.00 hrs is lower, with 0.64 and 0.65 for the grassland 

and woodland sites respectively. Poorer RMSE of 0.112 mm and 0.106 mm were 

also obtained at the grassland and woodland site respectively. The implication of 

the results for remote sensing studies is that midday satellite passes (e.g. NOAA 

AVHRR) will give better average daily A than the morning passes (e.g. Landsat). 
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Fig. 5.5. Relationship between midday and daytime evaporative fraction A fraction at 
the grassland site for the period May 1998 to April 1999 and the woodland site for the 
period October 1998 to April 1999 

5.6 Seasonal variations of evaporative fraction 

The pattern of the seasonal variation of A is presented in Fig. 5.6. Each of the points 

represents the average A between 8.00 and 17.00 hrs. The seasonal variation of A is 

a reflection of the climate of the area, in particular of rainfall and soil moisture 

behaviour. Superimposed on this trend are fluctuations of A from day to day caused 
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by variations in the micrometeorological conditions as elucidated in the previous 

section. 

15-Apr-98 24-Jul-98 1-Nov-98 

Date 

-Woodland 

-Grassland 

9-Feb-99 20-May-99 

Fig. 5.6. Seasonal progression of the daytime (8 - 17.00 hrs) evaporative fraction at the 
grassland site for the period May 1998 to April 1999 and the at the woodland site for the 
period October 1998 to April 1999 

For the grassland site, A drops quickly from 0.7 at the end of May to 0.3 in 

approximately 60 days. The reduction in A may be attributed to the reduction of soil 

moisture availability in the root zone due to sharply reduced rainfall rates. 

Evaporative fraction A fluctuates around 0.3 for about 100 days between the end of 

July and the beginning of November. This is followed by a sharp decline in A, 

reaching virtually zero within 45 days. This indicates that A responds to soil 

moisture conditions when a certain critical level of moisture and soil water potential 

is reached and plant stress is triggered. Periods when A = 0 imply that all of the 

available energy is partitioned into sensible heat flux. There is an increase in A in 

the month of January from zero to 0.4 in response to a rainfall event (see Fig. 5.6). 

However A declines to zero in a few days. Evaporative fraction A finally increases 

from zero at the end of January to 0.8 by April in response to the rainy period 

starting at the end of March. Although no A data are available in the month of 

February and the beginning of March, rainfall data were available. During this 
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period only 0.5 mm of rainfall was recorded. It is therefore expected that A remains 

in the range from 0 to 0.1 between February and March. 

For the woodland site, A remains fairly constant at about 0.4 from the end of 

September for about 80 days. Evaporative fraction A then begins to decline steadily 

to reach zero in about 70 days. Compared with the grassland site, here the decline in 

A takes a longer period. This is related to the differences in total water storage in 

the root zone and vegetation at the two sites. The value of A finally increases in 

response to rainfall and soil moisture replenishment in early March. However, A 

increases to a maximum of 0.5 by the end of April as compared with 0.8 in the 

grassland site. This could be ascribed to the lower Ae prevailing in the woodland 

site, which causes lower degrees of partitioning Rn - Go into AE and hence limits E. 

Other reasons could be the more hilly terrain at the woodland site resulting in more 

runoff and less infiltration. The woodland has relatively higher interception losses 

as well. These factors culminate in lower soil water content and hence lower A, as 

compared with the grassland site. 

The seasonal progression of A is gradual at both sites. The implication of this for 

the monitoring of A is that it would be sufficient to measure A say, every 10 to 20 

days to capture the seasonal evolution of A Interpolation between the 

measurements can be done to estimate A on days when no A measurements are 

available. This means that for remote sensing programs, the processing of daily 

images is not necessary to estimate the seasonal variations of A for large 

watersheds, albeit daily acquisition might be required to select the best cloud-free 

image for a given period. 

Estimation of A by standard weather data 

Soil moisture dynamics and thus indirectly the rainfall events, control the long-term 

seasonal variations of A. The seasonal trends of micro-meteorological variables 

such as Ta, RH and r follow the annual rainfall regime. Rather than the daily 

processing of satellite images, these variables obtained from standard weather 

stations could be used to estimate the seasonal variations of A. A regression 

analysis between A and T„, RH and r was performed on the basis of 1-day and 10-

day average values. Multiple linear regression between A and all the three micro-

meteorological variables was performed as well. The relationships between A and 

87 



the variables at the grassland site at the seasonal scale are presented in Fig. 5.7, 

while Table 5.4 shows the coefficient of determination r2 of the relationships at the 

two sites. 

Table 5.4: The relationship between daily and 10-day average evaporative fraction A 

and meteorological variables for the period May 1998 to April 1999 at grassland site 

and October 1998 to April 1999 at the woodland site 

Meteorological 
variables 

T 

RH 
T 
1 a 
RH&Ta 

% RH&Ta 

r2 l 
Grassland 

0.25 
0.62 
0.57 
0.64 

0.67 

-day 
Woodland 

0.23 
0.63 
0.49 
0.62 

0.64 

r2 10-day 
Grassland 

0.45 
0.74 
0.74 
0.82 

0.87 

averages 
Woodland 

0.31 
0.83 
0.81 

0.83 

0.86 

The maximum value of A coincides with Ta of 25 °C (see Fig. 5.7). The optimum 

RH for both sites is 50%. These agree with the optimum meteorological conditions 

for E for vegetated surfaces found by Stewart, (1988). RH best explains the average 

day A with an r of 0.69. As expected, there is an improvement in the relationships 

if 10-day average values are considered, due to smoothing effects (see Table 5.4). 

In the multiple linear regression an r2 of 0.67 for daily averages and 0.87 for the 10-

day average values were obtained for the grassland site. It is worthwhile to note that 

in the 10-day average values standard weather data can explain 87% of the 

variations of A. This has important implications for hydrological applications 

requiring 10-day average A. Once the site-specific relationships have been 

established, routine weather data could be used to estimate A empirically. 
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5. 8 Conclusions 

The objective of this study was to investigate the use of the diurnal constant 

behavior of A to estimate daytime average A and daytime total of E throughout a 

complete season. The results presented show that the diurnal stability of A varies 

significantly during the study period. The daily standard deviation of A varies from 

as low as 0.01 to as high as 0.16. The results also show that on the daily time scale, 

the variations of A cannot be well explained by meteorological variables and 

cloudiness alone. The variations could be due to other causes, such as the diurnal 

variation of surface resistance and energy and moisture advection. The evaporative 

fraction is more unstable during the cloudy and rainy period (April, May and June) 

than in the other months due to low Rn - Go, Ae and Ta\ - Ta2values. The evaporative 

fraction is more temporally stable at the woodland site than at the grassland site. 

The data presented showed that there is a strong relationship between Amid and 

daytime A with the average r of the regression lines through the origin at both sites 

being 0.74. The changes in A over an annual period are gradual. It can be 

concluded that for remote sensing programs, an acquisition of images, say, every 10 

to 20 days may be able to capture the seasonal evolution of Afar large watersheds. 

Furthermore, the interpolation of A, between remote sensing days, can be 

accomplished by routinely collected weather data. 

The estimated daytime E from Amid compare very well with the measured daytime E 

(RMSE = 0.17 mm, r2 = 0.88 for the grassland). For the whole study period the 

average daily difference between the estimated E and the observed E was within 

10%. The differences reduced even further if 10-day and monthly integrated E 

values were considered. Poor E results were obtained from Amor (RMSE = 0.37 mm, 

r = 0.33 for the grassland). This indicates that the use of data from satellites with 

morning overpass will give less accurate daily E values in the environmental 

conditions of Kenya. NOAA AVHRR satellite images with afternoon overpass are 

preferred although a loss of spatial scale accuracy should be accepted. The 

important conclusion from this study is that the hypothesis of quasi-constant A to 

estimate seasonal variations of E is valid for tropical watersheds under general 

weather conditions. This provides a basis for the use of remote sensing methods in 

applied regional hydrology in tropical watersheds with data scarcity problems. 
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Chapter 6 

Derivation of daily evaporation under all 
weather conditions from standard 
meteorological data and clear sky flux 
information* 

6.1 Introduction 

Bussieres and Goita (1997) presented a general discussion of the problems of 

cloudiness encountered in the determination of evaporation E from remote sensing 

studies in their study of the Mackenzie basin in western Canada. They defined a 

clear sky situation as when not more than 20% of the basin is covered by clouds. 

They observed that the chance of a clear sky is about 9% in the mountainous areas 

and about 30% in the low lying areas. They suggested the use of microwave data 

and compositing techniques as two possible ways to overcome this problem. 

Microwave data are difficult to use on a routine basis because of difficulties in their 

algorithm formulation and the high costs of data acquisition. In the compositing 

technique, 10 images, taken over consecutive days, were overlaid and the brightness 

temperature of the corresponding pixels compared. The pixels with the highest 

temperature from the 10 images were considered cloud-free and selected to form 

one image. Evaporation was then calculated for this resulting image. This 

compositing technique is simple to implement but has the disadvantage of not 

representing £ on a single day but the highest E within a 10-day period. 

Rosema (1993) used Meteosat satellite data to calculate 10-day average evaporation 

for Burkina Faso in West Africa. For cloud-covered pixels in an image, he used a 

soil moisture model to determine E so as to produce a continuous evaporation map. 

Evaporation was estimated from the relationship between soil moisture status 

parameterized in terms of the depth of the drying front in the soils and E. The depth 

Based on: H.O. Farah and W.G.M. Bastiaanssen. 2000. Derivation of daily 
evaporation under all weather conditions from standard weather data and clear sky flux 
information. Agriculture and Forest Meteorology (submitted) 
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of the drying front was determined for a clear day from remotely sensed E. If the 
next day a pixel was cloud-covered, this depth and the estimated diffusion 
resistance of the soils (from average surface temperature) were used to calculate E. 
The net radiation for cloud-covered pixels could not be calculated and was crudely 
estimated. Therefore the resulting estimated E might not be reliable. Moreover, the 
objective of Rosema (1993) was only to estimate E for the few pixels with cloud 
cover in an image. In the case of complete cloud cover or non-availability of images 
on a particular day, the values of E from the last available image were used. 

Sandholt and Anderson (1993) suggested using the relationship between E and root 
water potential to model the drying of the land surface and to estimate E during 
periods of missing satellite data. Since data on root water potential are usually not 
available, they used instead the difference between accumulated E and rainfall. 
However, this will give only approximate E because other soil water balance terms 
are neglected. Furthermore they determined E for only four pixels in the image. 

Courault et al. (1996) reported on the use of an agro-meteorological model to 
simulate continuously the energy and water balances to derive E. Airborne infra red 
data obtained on cloud free days were used to update the model. The method was 
implemented at the field scale. Extending it to the regional scale on an operational 
basis may be difficult because of the detailed soil and vegetation information 
required to run the simulation model, which are often not available. 

In this chapter, a framework is presented in which a combination of optical remote 
sensing and standard weather data are used to obtain continuous daily evaporation 
over a season is presented. This approach avoids the need for a soil moisture 
simulation model. The present study is based on in-situ data but can be executed by 
means of satellite estimates of E. Soil water pressure head hm is derived from E 
measurements on cloud free days by means of: 

- inversion of the Penman-Monteith equation to obtain surface resistance, rs and 
using rs and standard weather data to invert the Jarvis-Stewart type of model to 
obtain hm. 

Soil moisture fluctuations from day to day are in general gradual and an hm value 
on a certain day can be used, together with the standard weather data on 
neighboring days, to calculate rs on these neighboring days by using the Jarvis-
Stewart model in a forward manner. Evaporation can then be calculated for these 
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days from the estimated r5 and standard weather data using the Penman-Monteith 
equation. 

Evaporative fraction A, can alternatively be used to fill gaps of missing E data in 
remote sensing E monitoring studies. Evaporative fraction is defined as the ratio of 
evaporation and net available energy. It is a good indicator of the partitioning of the 
net available energy into sensible heat and latent heat energy (Shuttleworth et al., 
1989; Crago, 1996a) and has been shown to be a suitable soil moisture indicator 
with a gradual seasonal evolution (Gash et al., 1991; Farah et al., 2000). These 
characteristics of A could be fruitfully utilised to estimate E on cloudy days when 
satellite data are not available and should be considered as a simplified alternative 
to the approach which uses the Penman- Monteith and Jarvis-Stewart models. 

6.2 Material and Methods 

Use of Penman-Monteith and Jarvis-Stewart models 

A Jarvis-Stewart (75) type of model used by Hanan and Prince (1997) in the 
HAPEX-Sahel study area was adapted for this study for reasons of similarities in 
land surface characteristics. Despite their empirical nature, the JS models work 
quite well in predicting E in diverse climate conditions. Stewart (1988) and Dolman 
et al. (1991) demonstrated the robustness of these types of models. They calibrated 
a JS type model with 90 days data of E and weather data at a forest site in the 
United Kingdom. Evaporation E was measured by both the energy budget and 
Bowen ratio method. The JS model and weather data were used to predict daily E 
for a three-year period. To assess the potential of using the JS model for different 
forests they changed the model coefficients by 20% and calculated E over a 3-year 
period. They showed that none of the changes in the model coefficients produced a 
change greater than 5% in the model output and concluded that the JS model could 
be easily adapted for other forests. 

Stewart and Gay (1989) tested whether the JS type models established at one area 
could be used with the PM equation to successfully estimate E at other areas with 
some what different environmental conditions. They fitted the JS type model to 60 
days data obtained at a valley bottom site during the First International satellite land 
surface climatology project Field Experiment (FIFE) to estimate E at another site 
located on a plateau. They reported a 5% difference between estimated and 
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measured E at the plateau site. De Rooy and Holtslag (1999) also found good 
estimates of E by using a simplified JS type of model to model rs with only one 
function that relates to vapour pressure deficit. Their work was based on a grassland 
area in the Netherlands with no soil moisture deficit. 

Hanan and Prince (1997) determined the empirical coefficients for the four main 
vegetation types present in the Sahelian landscape of Niger during the international 
HAPEX-Sahel experiment: forbs, shrubs, grass and millet. A similar type of 
vegetation is predominant in the Kenyan study area. Their model estimates rs as: 

rs = ^ (6.1) 
LAI F2(Ta)Fi(Ae)Fi(hm) 

The function F2(Ta) represents the effect of air temperature Ta on rs and is described 
as: 

P /rp \ V a mill ' V max a ' L max 3 //: j \ 

( ^ - T m i n X T m a x - ^ ) « 3 " T, 3 min 

where Tmin is the minimum air temperature, Tmax the maximum air temperature for 
stomatal conductance and 03 is a coefficient representing the optimum air 
temperature for stomatal conductance. The temperatures Tmin and 7m(lt take the 
values of 5 °C and 55 °C respectively. The vapour pressure deficit function, F^Ae) 
is given as: 

F3(Ae) = (6.3) 
1 + a4Ae 

where Ae is the vapour pressure deficit (hPa) and a4 is an empirical coefficient. The 
function F4(hm) is described as: 

Ft(hm) = l-h™ h™ (6.4) 
lmax a5 

94 



where hm (cm) is the average root-weighted soil water pressure head, hmax is the soil 

water pressure head at field capacity and a5 is an empirical coefficient representing 

soil water pressure head at wilting point. The minimum surface resistance rsmin is 

modeled as a function of incident photosynthetically active radiation (PAR): 

r • 
j nun 

axPAR 

a2 + PAR 
(6.5) 

The photosynthetically active radiation is estimated from measured incoming solar 

radiation. The values of the coefficients used at the two sites are shown in Table 

6.1. The coefficients obtained for grasses and shrubs were used at the Ndabibi and 

Eburu sites respectively. 

Table 6.1: Values of the coefficients used in the Jarvis-Stewart type resistance model 
(Eqs. 6.1 to 6.4) to predict surface resistance rs at the Ndabibi and Eburu sites. 

Site 

Ndabibi 
Eburu 

ci\ (mm s"1) 

13.2 
28.4 

a2(Wm"2) 

3.5 
6.5 

«3(°Q 

28 
28 

a^hPa"1) 

0.017 
0.007 

a5 (cm) 

-2500 
-2011 

Figure 6.1 shows schematically how the PM and 75 models will be used to estimate 

E. For Day 1, on a clear day, E could be assessed from a satellite overpass and 

routine weather data. The surface resistance rs is obtained by inversion of the PM 

model. The FA(hm) function in the 75 model is then inverted to get the soil water 

pressure head, hm (Eq 6.4). The value of hm obtained is then used in the subsequent 

cloudy days (days 2,3,4,5) in which E measurements are not available but standard 

weather data are available. On these cloudy days the reverse process is followed to 

determine E. Weather data routinely gathered in days 2, 3, 4 and 5, together with 

hm from day 1, are used in the 75 model to calculate r,. Finally, E is derived from 

the PM equation for each of the cloudy days separately. 
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Clear Day: 1 

E measured by 
remote sensing 

Soil water pressure 
head - hrw 

Cloudy Days: 2, 3, 4, 5 

E predicted 

New surface 
resistance - r. 

W 
E 
A 
T 
H 
E 
R 

Fig. 6.1. Schematic diagram of the use of the Penman-Monteith (PM) and Jarvis-
Stewart type models in predicting evaporation E on cloudy days (2, 3, 4, 5) without 
satellite data being available. 
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In this study, hm has been determined at 20-minute intervals and an average has 
been taken between 9.00 and 16.00 hrs. This average hm was used to calculate rs 

and hence E every 20 minutes on the days with no E measurements being available. 
The 20-minute interval E is summed from 9.00 to 16.00 hrs and compared with E 
obtained from the Bowen ratio method. The period between 9.00 and 16.00 hrs was 
selected so as to avoid the use of unreliable E measurements, due to the numerical 
instability of the Bowen ratio method outside the selected period. 

Use of the evaporative fraction 

The average A between 12.00 and 13.00 hrs was calculated for a day with E 
measurements, here termed as day 1. This was to simulate the A obtained from 
satellite data, which has an overpass time of around midday. The evaporative 
fraction thus obtained was then used in the subsequent days to determine E, 
assuming constancy in energy partitioning during these days: 

E = (Rn- Go)avg,day<n+l) A%1 (6-6) 

In this study (Rn - GQ)avg is the average of 20-minute interval measurements 
between 9.00 and 16.00 hrs and n was not greater than 4. Measured or estimated R„ 
- Go is assumed to be available on all days. 

Field experiment 

The data from the field experiments carried out at the Ndabibi and Eburu sites and 
described in Chapter 3 and Chapter 5 were used. 

Monthly values of LAI for the study area were obtained from remotely sensed 
vegetation indices (Smith et al., 1997). Due to lack of wind speed measurements 
and the usual estimation of land surface aerodynamic characteristics, the 
aerodynamic resistance was retrieved from the sensible heat flux: 

H-JEfi^'K-V (6.7) 
rah 
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where T\ and T2 are the air temperature observed at the levels of 0.3 m and 2 m 
respectively. 

Field data were used to simulate remote sensing data for the experimental sites. 
This does not hinder the objectives of demonstrating the potential of the PM 
equation and 75 models in the estimation of E from standard weather data and 
complemented with rs. 

Three types of analyses were performed. First, the daily data were divided into two, 
the odd and even numbered dates. It was assumed that E was known on the odd 
dated days, but unknown on the even dated days. The second and third analyses 
considered that E was known every third or fifth day only, i.e. cloud-free condition 
once in 4 or 6 days respectively. For the unknown days, E was estimated by the PM 
and JS models and the A method, described above. The estimated E values were 
then compared with measured values from the Bowen ratio surface energy balance 
method. 

6.3 Results and discussion 

Diurnal evolution of surface resistance, rs 

Figure 6.2 shows the diurnal variations of rs obtained from the inversion of the PM 
equation, using E measured by the Bowen ratio method at the Ndabibi and Eburu 
sites for a typical dry and a typical wet day. During dry periods, the general trend is 
a rapid increase in rs from early morning to midday, followed by a decrease in the 
afternoon. For wet periods, rs is low and mostly less than 200 s m"1 in the morning 
but it increases in the after noon. The diurnal variation of r, during the wet day is 
smaller than that for the dry day. A comparison between the 20-minute interval 
predicted r5 by the JS model and the rs inverted from measured E by the Bowen 
ratio method, gave poor results. The predicted and measured rs were averaged 
between 9.00 and 16.00 hrs and compared. 
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Fig.6.2: Diurnal variations of surface resistance rs at the Eburu and Ndabibi sites on 

a wet day (5 October 1998) and a dry day (18 December 1998) 

Figures 6.3a and 6.3b show these comparisons for the 1-day extrapolation cases for 

the Ndabibi and Eburu sites respectively. It can be seen that good agreement is 

obtained with the regression coefficient r of the line through the origin being 0.51 

and 0.54 for Ndabibi and Eburu respectively. This indicates that errors in the 20-

minute interval rs are random rather than systematic as they considerably reduce 

when rs is averaged over a longer time period. It can be seen that the divergence 

between the predicted rs and the r, inverted from measured E increases with 

increasing value of rs. This means that prediction of rs is better during wetter 

conditions when rs is relatively small and less than 400 s m .It also demonstrates 

that the predicted rs is acceptable and could be used in the PM model to estimate E. 
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Fig.6.3. Comparison of surface resistance rs from measured evaporation E and predicted 
from the Jarvis-Stewart (JS) type of model for the 1-day extrapolation case for the period 
27 September 1998 to 24 April 1999: (A) Ndabibi site, (B) Eburu site 
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PM and JS models 

Tables 6.2 and 6.3 show the results of the comparison of estimated E, using the 

predicted rs and meteorological data, and measured E for the whole study period. 

The regression coefficient r2 and the slope of the regression line through the origin 

are given. The comparisons of average daily values for a monthly period are also 

given. Good agreement is obtained between the predicted E and measured E for the 

whole study period at both sites. As expected, the relationship between estimated 

and measured E is best for the 1-day extrapolation case and worst for the 5-day 

extrapolation as indicated by r2. The Root Mean Square (RMSE) error shows values 

of less than 0.25 mm in all three extrapolation cases. 

Table 6.2: Comparison of daily evaporation rate E measured by the Bowen ratio 
surface energy balance method and predicted by the Penman-Monteith and Jarvis-
Stewart type model and climate data at the Ndabibi site. The regression lines are 
through the origin. 

Period 

Sept-Oct 
Oct-Nov 
Nov-Dec 
Dec-Jan 
Mar-Apr 
Sept-Apr 

No. of days 

18 

35 
26 
45 
45 
169 

r2 

1-day 

0.71 
0.72 
0.64 
0.56 
0.69 
0.78 

Slope 
case 

0.93 
1.00 
1.01 
0.96 
1.04 
1.00 

r2 

3- day 

0.65 
0.43 
0.65 
0.30 
0.69 
0.73 

Slope 
case 

0.96 
0.96 
0.99 
0.95 
1.04 
0.99 

r2 

5-day 

0.27 
0.30 
0.49 
0.23 
0.72 

0.63 

Slope 
case 

0.87 
0.96 
0.93 
0.91 
1.04 
0.98 
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Table 6.3: Comparison of daily evaporation rate E measured by the Bowen ratio 
surface energy balance method and predicted by the Penman-Monteith and Jarvis-
Stewart type model and climate data at the Eburu site. The regression lines are through 
the origin. 

Period 

Sept-Oct 
Oct-Nov 

Nov-Dec 
Dec-Jan 

Mar-Apr 
Sept-Apr 

No. of days 

18 
35 
26 
45 
45 
169 

r2 

1-day 

0.45 
0.81 
0.65 
0.70 
0.77 
0.79 

Slope 

case 

1.05 
0.90 
1.00 
0.95 
0.97 
0.97 

r2 

3- day 

0.40 
0.69 
0.63 
0.31 
0.74 
0.72 

Slope 
case 

0.96 
0.96 
0.99 
0.95 
1.04 
1.00 

r2 slope 

5-day case 

0.47 0.87 
0.46 0.96 
0.48 0.93 
0.48 0.91 
0.70 1.04 
0.77 0.98 

2 

Comparison on a monthly basis shows that at the Ndabibi site, the lowest r = 0.23 
in the December-January months for the 5-day extrapolation case. At Eburu, the 
December-January period also gave the worst comparison with an r2 = 0.31 for the 
3-day extrapolation case. The reason for this is that January and December are 
relatively drier and there are periods of rapid changes in soil moisture. In the 
estimation of rs it is assumed that soil moisture is constant for 1, 3 or 5 days. It is 
therefore expected that during rapid changes of soil moisture there will be poorer 
estimates of E. 

The difference, in percentage, between predicted and measured accumulated E for 
the whole study period is presented in Table 6.4. Very good results are obtained for 
the all 3 case analyses. The largest difference is 2.9% for the 5-day case at the 
Eburu site. This shows that this method can be useful to give accurately E totals 
under all weather conditions for applications which require long-tem E totals. The 
percentage difference between predicted and measured monthly accumulated E are 
larger (not shown). The largest difference is 9.8% for the period of September-
October for the 5-day case at the Eburu site. 
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Evaporative fraction 

The results of the method using evaporative fraction A in estimating E, are shown 

in Tables 6.5 and 6.6 for the Ndabibi and Eburu sites respectively. The r2 and 

RMSE for the whole study period indicate good agreement between estimated E 

and measured E for all three extrapolation cases. The mean predicted daily E and 

mean measured daily E are less than 8% for all the extrapolation cases, as indicated 

by the slope of the regression lines through the origin. 

Table 6.5: Comparison of daily evaporation E measured by the Bowen ratio surface 
energy balance method and predicted by the evaporative fraction method at the Ndabibi 

site. The regression lines are through the origin. 

Period 

Sept-Oct 
Oct-Nov 
Nov-Dec 
Dec-Jan 
Mar-Apr 
Sept-Apr 

No. of days 

18 
35 
26 
45 
45 
169 

r2 

1-day 

0.58 
0.59 
0.48 
0.38 
0.75 
0.81 

Slope 
case 

0.92 
0.90 
0.85 
0.65 
1.04 
0.97 

r2 

3-day 

0.13 
0.46 
0.10 
0.15 
0.67 
0.75 

Slope 
case 

0.98 
0.92 
0.78 
0.55 
1.04 
0.96 

r2 Slope 
5-day case 

0.12 0.98 
0.18 0.86 
0.07 0.83 
0.35 0.55 
0.60 1.03 
0.63 0.98 
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Table 6.6: Comparison of daily evaporation E measured by the Bowen ratio surface 
energy balance method and predicted by the evaporative fraction method at the Eburu 

site. The regression lines are through the origin. 

Period 

Sept-Oct 
Oct-Nov 

Nov-Dec 
Dec-Jan 
Mar-Apr 
Sept-Apr 

No. of days 

18 
35 
26 
45 
45 
169 

r2 

1-day 

0.42 
0.82 
0.50 
0.51 
0.54 
0.71 

Slope 
case 

1.03 
1.07 
1.09 
1.14 
1.00 
1.06 

r2 

3- day 

0.31 
0.82 
0.15 
0.42 
0.60 
0.64 

Slope 
case 

1.00 
1.06 
1.10 
1.17 
1.08 
1.08 

r2 Slope 
5-day case 

0.54 1.08 
0.90 1.03 
0.12 1.02 
0.48 0.16 
0.50 0.95 
0.70 1.04 

Considering monthly periods, the RMSE varies from 0.14 mm to 0.41 mm. 

However the r are low for the 3 and 5-day extrapolation cases, especially at 

Ndabibi, for the months of November, December and January. This is illustrated in 

Fig. 6.4 where there is a lot of scatter in the plot of measured and estimated E for 

the 5-day extrapolation case at Ndabibi for the December-January period. The 

differences between the 

r^O.07 

0.4 0.6 0.8 1 

Measured E (mm d"1) 

Fig.6.4. Comparison of measured daily evaporation E and predicted from the evaporative fraction 
method for the 5-day extrapolation case at the Ndabibi site for the period November-December 1998 
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estimated and measured E for individual days can be more than 100 %. This 

indicates that the evaporative fraction method may not be suitable for the 3 and 5 

day extrapolation when daily E values are required. 

The daily E values were summed over a week to test whether better comparison 

could be obtained for the 3 and 5-day extrapolation cases. Figure 6.5 shows the 

comparison of 7-day totals of E at the Ndabibi site. It is clear that very good 

estimates of E can obtained if E is summed over a week. Similar results where 

obtained for the Eburu site. 

The difference between predicted and measured accumulated E for the whole study 

period is shown in Table 6.7. The best agreement is 1.1% for the 5-day 

extrapolation case at the Ndabibi site, while the largest difference is 8.8% for the 3-

day extrapolation case at Eburu. This implies that long-term E totals can be 

accurately obtained under all conditions by the evaporative fraction method. 

Discussions 

The extrapolation of E values by the PM equation and JS type of models, depends 

on how much the soil moisture varies from day to day. Figure 6.6 demonstrates that 

changes in / iw are mostly gradual. However there are a few periods when temporal 

changes are significant. For example in response to rainfall events, hm changes 

from -2300 cm to - 1000 cm between 29 and 30 January. Large errors would be 

expected if the value of hm on 29 January is used in the calculation of rs on the 

following days. Such errors due to step changes in moisture availability could be 

diminished if daily rainfall was available and, together with estimated E, a simple 

soil moisture balance could be made to give an approximate idea of the soil water 

moisture dynamics over a year and hence the times of expected large-step changes. 
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Fig.6.5. Comparison of 7-day accumulated evaporation E, predicted by the evaporative 
fraction method and 7-day E measured by the Bowen ratio method: (A) 1-day 
extrapolation case, (B) 3-day extrapolation case and (C) 5-day extrapolation case 
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Fig.6.6. Seasonal evolution of average daily soil water pressure head /iw and daily 
rainfall (bars) from 27th September 1998 to 24th April 1999 at the Ndabibi site 

The Jarvis-Stewart surface resistance models implicitly account for soil evaporation 
if the coefficients are optimized using measured total evaporation. In this study rs is 
obtained from the inversion of the PM equation by using total evaporation 
measured over the canopy, hence soil evaporation is accounted for. However, 
theoretically the rs models are limited to periods when canopies are dry. In the 
present study, all days were considered irrespective of canopy wetness conditions. It 
appears this did not affect the extrapolation of E very much, possibly due to the low 
interception of rain by the grass and bushes found in the study sites. The other 
reason could be the limitation of the analyzed data to between 9.00 and 16.00 hrs, 
during which time dry canopies are prevalent. Most of the rainfall occurs in the late 
afternoon. Other researchers have also obtained good results for E by using rs 

models with general data having no distinction in canopy wetness conditions (e.g. 
Dolman et al., 1991; De Rooy and Holtslag, 1999). However, in the forested areas 
interception losses may be significant. Wet canopies are expected more frequently 
due to higher rainfall and dew formation on the high grounds. This has to be 
accounted for if reliable E estimates for the forested areas on high grounds are to be 
obtained. 
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The basis of using A in the extrapolation of E depends on how much it varies from 

day to day over a season. Hall et al., (1992), in an extensive study of the 

evaporative fraction in a grassland area under the FIFE project, suggest that due to 

the gradual changes of A in as season, it can be monitored once every 5 to 10 days. 

Farah et al. (2000) demonstrated that the seasonal evolution of A at the Ndabibi and 

Eburu sites is gradual and that the daily average fluctuations are larger during dry 

periods than during wet periods. This is clearly shown in Tables 6.2 and 6.3 where 

the dry months of December and January give an r2 of 0.15 and 0.42 at Ndabibi and 

Eburu respectively for the 3-day extrapolation case. It can also be seen that there is 

an underestimation of E of 45% at Ndabibi (slope of regression line is 0.55) and an 

overestimation at Eburu of 16% (slope of regression line is 1.16). However, this 

may not have a serious effect on the accuracy of E estimation on a seasonal basis 

because during most of this period E is very low and close to zero. Farah et al. 

(2000) also observed that the seasonal variations of A are more stable in woodland 

areas than in grassland areas because the deeper rooted vegetation in the woodlands 

continues to transpire during the dry down period of the upper soil layers. This 

suggests that the evaporative fraction method could be used in the extrapolation of 

E in the forested areas where the rs model may not produce satisying results, as 

noted earlier. 

With regard to cloud cover, given the conditions in the study area in Kenya and the 

requirement of a satellite scene with less than 20% cloud cover for a study area, 5-

day extrapolation may be required if daily E values are needed. Although the daily 

values of E obtained from the 3 and 5-day extrapolation of A do not give reliable 

results especially at Ndabibi, it is encouraging that good results of 7-day 

accumulated E can be obtained by merely assuming that A is constant for up to 5 

days. This has important implications for applications that require 7 day or longer E 

values. The simplicity and suitability of applying the A in remote sensing methods 

are appealing for operational regional monitoring of E. Spatially distributed A can 

be obtained from cloud-free satellite images. Between 2 consecutive cloud-free 

images, A can be interpolated and used to determine E assuming that daily Rn is 

available. Furthermore, Farah et al. (2000) showed that routine weather data could 

be used to estimate 10-day or monthly average A over a season. Many applications 

in hydrology can benefit from these methods. While the present method can be used 

to predict accumulated E on shorter term (7 days), the method described by Farah et 

al (2000) could be used to predict accumulated E over longer seasonal periods. 
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The practical implementation of the procedures presented above for extrapolating E 
at a catchment or river basin will require the following strategies. The catchments 
should be first divided into homogeneous units. The delineation of a catchment into 
hydrologically similar units can be done with the aid of high resolution satellite data 
such as Landsat TM (e.g. Farah and Bastiaanssen, 2000). In each of the units, the JS 
model should be calibrated so as to obtain suitable coefficients for the functions in 
Eq. 6.2. Standard weather data (air temperature, humidity and wind speed) will 
have to be collected on a daily basis at each unit. The A method requires daily net 
available energy for each unit but this quantity can be estimated from the 
meteorological data (e.g. Holtslag and van Ulden, 1983). 

6.4 Conclusions 

The objectives of this chapter was to investigate suitable methods of determining E 
during periods of non-availability of satellite data, ranging from a single day to a 
maximum of 5 days, in regional E monitoring studies. The following conclusions 
can be drawn from the present study. 

The JS models can provide reliable estimates of daily values of E when used for up 
to 5 continuous days with cloud cover, assuming constant soil water pressure head 
hr„. A simple correction for rainy periods is possible. The PM equation and JS 
models are therefore suitable for filling in missing daily E data in long-term 
monitoring of E. 

When the whole study period is considered, the A method of extrapolating E 
predicts average daily E to be within 8% of measured E. However, on individual 
days the predicted E may differ from measured E by more than 100% for the 3 and 
5-day extrapolation cases. This indicates that during continuous cloud cover of up 
to five days the evaporative fraction method may not give reliable daily E values. 
Good results are obtained if E is summed over 7-day periods. For applications that 
require 7-day E, the simple evaporative fraction method is recommended. 
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Chapter 7 

The temporal evolution of daily actual 
evaporation with NOAA AVHRR satellite 
and ground data in the Naivasha basin 

7.1 Introduction 

Knowledge of evaporation is required for several purposes in the Naivasha study 

basin and in Kenya in general. A number of river basin authorities have been set up 

in Kenya in the last decade which are now at different stages of making basin plans 

and water resources allocation. The planning and allocation of water resources 

require knowledge of water users in the basin and the setting up of hydrological 

models of the basin. Evaporation E is required over large areas with different land 

use and cover. Hydrological models need information on E at daily, monthly or 

annual time scales depending on the purpose of the modeling. Rainfall-runoff and 

groundwater modeling require daily estimates of E as input to the models. 

Evaporation estimates may also be required for the verification of the models. 

Monthly values of E are needed for water balance studies, while annual estimates of 

E are needed for water scarcity studies. In irrigation management, information 

about crop water requirements is required in advance for water schedule planning. 

Daily monitoring of crop stress through evaporation mapping can provide irrigation 

managers with water requirement information. 

The operational use of remote sensing for monitoring daily actual evaporation 

requires the temporal integration of E over a season or year. Satellite spectral 

measurements provide suitable estimates at the regional scale, but they are 

obstructed by clouds and hence not available on daily basis. Therefore a method is 

required to estimate E on cloudy days between intermittent clear days with satellite 

images. In this Chapter the Penman-Monteith and Jarvis-Stewart models will be 

tested with actual remote sensing data. The simplified method of evaporative 

fraction A to predict E will also be tested with remote sensing data to circumvent 

the need to solve the surface resistance rs and aerodynamic resistance rah. The 

Based on: H.O. Farah and R. A. Feddes. 2000. The temporal evolution of daily actual 
evaporation with NOAA AVHRR satellite and ground data (in preparation). 
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objective is to demonstrate the mapping from NOAA AVHRR satellite data of 
spatial variations and temporal evolution of £ in a heterogeneous landscape and 
under all weather conditions. 

7.2 Material and methods 

Satellite data 

Five satellite images of NOAA AVHRR on clear days were acquired from a public 
domain site on the internet (http://www.saa.noaa.gov). The characteristics of 
NOAA AVHRR data are shown in Appendix A. The dates of the images, which 
cover the entire Naivasha catchment, are 20, 25, 27, 30 January and 3 February 
1999, This period coincides with the in situ field data collection period. 

Radiometric calibration and geometric corrections were performed according to the 
NOAA AVHRR reference guide (Kidwell, 1998). A program developed at the 
International Institute for Aerospace Survey and Earth Sciences in the Netherlands 
was used for this purpose (Gieske, personal communication). The images were 
checked for cloud contaminated-pixels by using cloud detection algorithms 
(Saunders and Kriebel, 1988). The pixels with cloud contamination were not used 
for the calculation of E. Atmospheric correction of the planetary broad band albedo 
was performed using a simple linear relationship between broad surface and 
planetary albedo (see Eq. 4.1). The split windows procedure was used to correct the 
thermal bands for atmospheric effects (Varlor and Caselles, 1996). The temperature 
contrast between the thermal bands 4 and 5 is proportional to the amount of water 
vapour and this information is used to atmospherically correct the thermal bands. 
Thermal infrared remote sensing algorithms ascribe differences in surface 
temperature to variations in sensible heat flux. However, in mountainous areas 
differences in temperature are also due to differences in elevation. The thermal 
bands were therefore corrected for the influence of elevation by using a digital 
elevation model of the area and a lapse rate of 6.5 °C km"1. 

The Surface Energy Balance for Land (SEBAL) algorithm was selected to estimate 
E from the remote sensing images (Bastiaanssen et al., 1998a; Farah and 
Bastiaanssen, 2000). SEBAL is a one-layer resistance scheme which uses surface 
albedo r0, NDVI and surface temperature T0 to determine E. This algorithm meets 
the requirement of accounting for the spatial variability of the main input 
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parameters elaborated in Chapter 4 and is required to determine £ in a 
heterogeneous landscape. The steps followed in Chapter 4 in retrieving E from 
remotely sensed data were used with the NOAA AVHRR images and will not be 
repeated here. 

Determination of surface resistance and soil water pressure head 

The surface resistance, rs was obtained for each pixel in the image from inversion of 
the Penman-Monteith (PM) equation (see Fig. 6.1). 

r, — 
s(Rn-G0) + pcpAe/ra 

AE 
ly-l 

J 
•ah (7.1) 

The output of the SEBAL algorithm is instantaneous values of E, rah, Rn, H and Go 
for each NOAA AVHRR pixel. The inversion of the P-M equation requires 
information on the saturation vapour pressure deficit Ae and the slope of the 
saturation vapour pressure curve, s. This information was available only at the 
Ndabibi and Eburu field stations. Air temperature Ta and relative humidity RH from 
which Ae and s are calculated, vary with elevation. A digital elevation model of the 
Naivasha catchment was prepared from topographic maps of the area. The Ta and 
RH values from the two experimental stations were used to establish linear 
relationships between elevation and T„ and RH. These simplified relationships were 
used to estimate the Ta and RH for each NOAA AVHRR pixel, depending on its 
elevation. Thereafter Ae and s were calculated using standard expressions such as 
provided by Allen et al., 1998. 

The soil water pressure head hm, was obtained by inversion of the Hanan-Prince 
model Eq. 6.1: 

F,iK) = 
r5 LAI F2(Ta) F3(Ae) 

(7.2) 

and Eq. 6.4: 
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hm=(F4(h)-l)(ham-a5)+hnim (7.3) 

The Hanan-Prince model is a Jarvis-Stewart type of model and was found to be 

valid for the grassland and bushland experimental sites, which had similar 

conditions as the area for which it was originally calibrated during the HAPEX-

Sahel experiment in Niger. Since the objective here is to show the practical 

application of the Jarvis-Stewart type of models to satellite data, the Hanan-Prince 

model was applied to the whole catchment although other land use classes occur. 

Furthermore, it should be noted that the Hanan-Price model was used twice, i.e. in 

the inverse and forward modes, and therefore errors in h„, and E prediction due to 

empirical coefficients are expected to be minimized. The surface resistance and the 

meteorological parameters as obtained above were used to calculate hm for every 

pixel in the image. LAI is derived from NDVI obtained from the satellite images. 

Estimation of surface resistance under cloud covered conditions 

On cloudy days the surface resistance rs was determined from the Hanan-Prince 

model using hm calculated from the previous satellite image on a clear day and 

from Ae and T„ calculated for each pixel from the measurements at the Ndabibi and 

Eburu stations extrapolated across the basin using the digital elevation model. In 

this case however, daily average meteorological parameters were used. The net 

daily shortwave radiation flux density was obtained from r0 of the last image and 

the measured incoming shortwave radiation flux density K-l integrated over 24 

hours. 

Due to similarity in cloud duration conditions of areas with similar elevation, K-l at 

Eburu was assigned to pixels above an altitude of 2000 m and values at Ndabibi 

were used for pixels below 2000 m. The net longwave radiation flux density was 

evaluated from Ta and RH, using empirical functions (e.g. Allen et al., 1998). The 

aerodynamic resistance rah, depends on local wind speed and momentum fluxes and 

can be determined from wind speed measurements and land surface characteristics. 

Due to the absence of this information in the basin the rah values from the Ndabibi 

site were used for pixels with an elevation of less than 2000 m and the r„h values 

from the Eburu site were used for pixels with an elevation of more than 2000 m. 
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For comparison with alternative solutions for the time integration of E, evaporation 

was also predicted by the A method. To obtain daily evaporation £24, the A of each 

pixel from the last NOAA AVHRR image was multiplied by the estimated daily net 

radiation R„2t, for each pixel during cloudy periods without satellite data (£24 = Ana 

Rnid- This simplified and pragmatic approach is worth testing for use in operational 

applications. 

7.3 Results and discussion 

Evaporation for four land units during clear days with the satellite images 

On he basis of a land cover map obtained from high resolution Landsat image, the 

NOAA AVHRR images were classified into four broad units. Unit 1 coincides with 

forests on the high grounds with characteristically high NDVI, low r0 and low T0. 

Unit 2 represents open water bodies such as Lake Naivasha. The low-lying plains 

inside the rift valley mainly covered by grassland and bushlands are grouped into 

Unit 3. Cropland and woodland on the escarpments and plateaus on the eastern and 

western sides of the study area appear to be in Unit 4. 

Figure 7.1 shows the spatial variations of E on 27 January, 1999 in the Naivasha 

catchment and demonstrates the heterogeneity of the Naivasha catchment with large 

contrast in E. To gain more insight into the temporal evolution of E, the daily E at 

sample sites in the four units was monitored. The values of E at the four land cover 

units over the five clear days are presented in Fig. 7.2. The pattern of the variations 

of E is as expected. On all days, E from Unit 2 (open water) is highest, followed by 

Unit l(forests). The lowest E on these days occurs at Unit 3 (grassland). The high 

evaporation from Units 1 and 4 was not expected during the month of January, 

which coincides with the beginning of the dry season. The reason for this may be 

attributed to the extended rooting depth of the vegetation here, which enables root 

water uptake from deeper soil layers. The average total catchment EA during this 

period of the year is about 5.3xl03 m3 d"1. 

The validation of remotely sensed E, especially from low-resolution satellite data 

such as NOAA AVHRR, with field measurements is not a straightforward matter. 

The upper and lower limits of E as indicated by Unit 2 (open water) and Unit 3 

(grassland) are compared with E as calculated by the energy balance method at 

Lake Naivasha and field measured E at the Ndabibi site respectively (see Table 
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7.1). The Ndabibi site is located in an extensive flat homogeneous grassland (see 

Fig. 3.1) and is therefore suitable for validation purposes. The satellite pixels at the 

position of the Eburu station were composed of mixed woodland, cropland and 

forestland covers. It was technically difficult to install towers over the forest and 

moreover permission was not granted from the concerned authorities to work in the 

forest. The field measurements at the Eburu site could not therefore be used for 

comparison with the satellite measurements of heterogeneous pixels of 100 ha. 

The average of 4 pixels in the images of the area surrounding the position of 

Ndabibi station, was calculated. The average difference between measured and 

remotely sensed E is 27%. This percentage may appear to be large but the absolute 

difference is 0.58 mm and such order of deviations are within the uncertainties in E 

measured by the Bowen ratio. On most of the days, the E derived from NOAA 

AVHRR is higher than the field measured values of E. It should be noted that the 

values of E from the field measurements based on the Bowen ratio method are 

totals obtained between 9.00 and 16.00 hours while the satellite derived E are 24 

hour totals. Evaporation E from Lake Naivasha by remote sensing and E estimated 

from the energy balance method (Ashfaque,1999) compare well, the average 

difference being 8%. However on all days, the remotely sensed E is slightly higher 

than the values of E calculated by the energy balance method. There appears to be a 

slight bias towards over-estimation of E by the SEBAL algorithm. Note that 

SEBAL application on cloud free days is based on a temporal constancy of A. A 

possible explanation for this is that some images were taken later than 15.30 hrs. At 

this time, the evaporative fraction A is usually higher than the average for the day 

and therefore its use to integrate the daily E may lead to an overestimation of E 

values. 
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Fig.7.1 The spatial patterns of evaporation E (mm d"1) in the Naivasha catchment on 27 
January 1999. The white patches in the image are clouds (color version in Appendix B) 
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Fig.7.2: The temporal variations of evaporation E at four land units obtained during five 
clear days from NOAA AVHRR satellite images 

Table 7.1: Validation of evaporation (mm d"1) derived from NOAA AVHRR at Unit 3 
(grassland) and Unit 2 (water body) with evaporation from field measurements at 
Ndabibi station and calculated with energy balance method. 

Date/Unit Unit 3 
measurement 

Field measurement Unit 2 Field 

20-1-99 

25-1-99 

27-1-99 

31-1-99 

3-2-99 

1.2 

0.5 

0.8 

3.2 

0.8 

0.93 

0.86 

0.00 

1.20 

0.60 

7.6 

7.4 

7.6 

8.0 

8.5 

6.3 

7.4 

7.5 

7.4 

7.2 
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Surface resistance and soil water pressure head for clear days with satellite 

images 

Figure 7.3 illustrates the spatial variations of rs and hm on 27 January 1999. Table 

7.2 shows the values of rs and h^ for Units 1, 3 and 4 for the days with available 

images. The values of rs were compared with those reported in the literature. Kabat 

et al. (1997) reported rs values obtained during the HAPEX-Sahel experiment 

which was carried out in the rainy season. They reported rs to be between 40 and 

200 s m"1 for woodland areas. The values of 143 s m"1 obtained at Unit 4 after a 

rainfall event appear to be within the reported range. For grassland, Kabat et al. 

(1997) reported r5 values of between 100 and 500 s m"1. At Unit 3, a value of 202 s 

m" similarly occurring after rainfall seems to be reasonable. The average rs during 

the two-week period at Unit 1 is 140 s m"1, which compares with an average value 

of 166 s m'1 as reported by Dolman et al. (1993) for a tropical forest. The values of 

hm appear reasonable as the lowest values coincide with Unit 3 and the highest with 

Unit 1. 

Table 7.2: Surface resistance r, and soil water pressure head h^ obtained from the inversion of the 
Penman-Monteith and Jarvis-Stewart type models respectively at Unit 1 (forest), Unit 3 (grassland) and 
Unit 4 (crop/woodland) on clear days with NOAA AVHRR images available. 

Date 

20-1-99 

25-1-99 

27-1-99 

31-1-99 

3-2-99 

Unitl 

120 

171 

252 

57 

120 

r, (s rn ') 
Unit3 

260 

975 

1340 

202 

848 

Unit 4 

142 

690 

691 

143 

736 

Unitl 

-357 

-459 

-628 

-301 

-342 

h„, (cm) 
Unit 3 

-1500 

-1548 

-1651 

-865 

-1690 

Unit 4 

-367 

-1136 

-1203 

-447 

-1100 
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Fig. 7.3a. The spatial patterns of surface resistance rs (s m"1) in the Naivasha catchment on 27 
January 1999 (see color version in Appendix B) 
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Fig. 7.3b. The spatial patterns of soil water potential head hm (cm) in the Naivasha 
catchment on 27 January 
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Evaporation is controlled by atmospheric and land surface conditions. These 
environmental conditions are expressed by means of the functions F2(T„), F$(Ae) 
and F4hm) and the influence of rsmin by solar radiation. The influence of these 
functions on E in the Naivasha catchment was described by delineating areas being 
controlled by soil moisture 8, Ae and Ta. Such delineated maps reveal the types of 
stresses in the different parts of the catchment. Table 7.3 presents the values of the 
reduction functions, F2(Ta), F3(Ae) and F4hm) in the Hanan-Prince model for the 
forest and grassland units. 

The values of the functions indicate that at Unit 3 (grassland), 6 is the limiting 
factor for evaporation, whereas Ta is the most limiting at Unit 1 (forest). It appears 
that the effect of soil moisture in the forest areas was important on 27 January. The 
value of F^hrn) is 0.59, indicating that this function needs to be considered for all 
the units. There is little temporal variation in the Ta function at Unit 3. This shows 
that during this period the day-to-day variations of Ta at Unit 3 were small. 

Table 7.3: The values of the reduction functions F\(Ta), F2 (Ae) and F3 (hm) at Unit 
3 and Unit 1 during the clear days when satellite images were available 

Unit 3(grassland) Unit 1 (forest) 

Date F, (Ta) F2 (Ae) F3 (hm) F , (Ta) F2 (Ae) F3 

(hm) 

20-1-99 0.82 0.69 0.15 0.61 0.76 0.92 

25-1-99 0.85 0.62 0.08 0.72 0.78 0.76 

27-1-99 0.83 0.59 0.10 0.52 0.73 0.59 

31-1-99 0.84 0.62 0.49 0.72 0.74 1.00 

3-2-99 0.83 0.65 0.14 0.65 0.88 0.92 
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Evaporation from the Penman-Monteith equation and Jarvis-Stewart type model on 
cloudy days without satellite images 

Evaporation maps were produced for the entire Naivasha catchment at the NOAA 
AVHRR pixel scale for all the days in between the dates that satellite images were 
available. The temporal evolution of E for Units 1, 3 and 4 for the two weeks, from 
20 January to 3 February 1999 is presented in Fig. 7.4. This figure demonstrates 
the large variations of E both in space and in time in the Naivasha basin. The 
highest E of 8.5 mm d"1 occurred on 31 January at Lake Naivasha and the lowest 
was 0.40 mm on 30 January at the grassland areas (Unit 3). The largest difference in 
E within a given unit during the 2-week period is 3.7 mm at the cropland/woodland 
areas (Unit 4). The highest E in all the units occurred on 31 January in response to a 
rainfall event recorded at the two field stations. 

. Unit 1 (forest) 

. Unit 3(grassland) 

• Unit 4(crop/woodland) 

. Ndabibi site. 

20-1-99 1/2/99 

Fig.7.4: The temporal evolution of evaporation E estimated from NOAA AVHRR 
images on clear days and the Penman-Monteith equation and Jarvis-Stewart type 
models for 3 land units in the Naivasha catchment on cloudy days 
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It was observed that at all the Units, E on clear days with satellite images was 

generally higher than on the other days. For example, the average E for Unit 1 for 

the five days with satellite images was 5.8 mm, whereas the average E for the other 

10 days was 4.7 mm. This may be attributed to the fact that the days on which 

images are acquired are clearer, with a resulting higher net available energy for 

evaporation. This implies that basing the time integration ofE or the calculation of 

average daily E from few available satellite images may give erroneous results as 

only relatively high E are sampled. 

Evaporation from the evaporative fraction method 

Figure 7.5 illustrates the spatial variations of A in the Naivasha catchment on 27 

January 1999. The evaporative fraction A, varies from 0 to 1, indicating large 

differences in soil moisture conditions in the catchment. In the parameterization of 

the SEBAL algorithm, A of lake Naivasha was set to 1. On 27 January more than 

70% of the catchment had a value of A > 0.5. 

Figure 7.6 shows the average values of A for Units 1, 3 and 4 as derived from the 5 

satellite images. The day-to-day variations of A for Unit 1 is small compared with 

those for the other units, demonstrating little temporal changes in soil moisture in 

the forested high grounds. The evaporative fraction changes from 0.11 to 0.42 at 

Unit 3 during the two-week period, however, the evolution of A is gradual. 

126 



Fig. 7.5. The spatial patterns of the evaporative fraction A in the Naivasha catchment 
on 27 January 1999 (see color version in Appendix B) 
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Fig.7.6: The temporal changes of evaporative fraction A derived from the 5 NOAA 
AVHRR images on clear days for three land units 

The prediction of E by the A method for cloudy days without satellite data is 
presented in Fig. 7.7. Comparison of predicted E at Unit 3 with the measured E at 
the Ndabibi site reveals that the predicted values of E are mostly higher than the 
measured values, particularly after 31 January. The average daily difference was 
0.67 mm. Although the measured value of E is the total between 9.00 and 16.00 hrs, 
whereas the predicted E is the 24-hour total, the overestimation of E cannot be 
attributed to this difference only. It has already been observed that on most dates the 
NOAA-AVHRR overpass time was later than 15.30 hrs. The evaporative fraction in 
the late afternoon is usually higher than the average day A, as shown experimentally 
in Chapter 5. The use of A from the images to estimate E on other days will 
therefore over-estimate E. The other reason for the overestimation off especially in 
Unit 1, is the use of Ki at the Ndabibi and Eburu stations for the entire catchment. 
It is expected that the forest on the high ground will have smaller Ki due to more 
frequent cloud conditions. This means that the R„24 used in the prediction of E will 
result in a higher value off. 
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Fig7.7: The temporal evolution of evaporation E estimated from NOAA AVHRR 
images on clear days and the evaporative fraction method on cloudy days for the 
period of 20 January 1999 to 3 February 1999 

There is a satisfactory agreement between predicted E by the A method and the use 
of the PM/JS models. The deviation in daily E is between these two methods is 4%, 
10% and 12% for units 3, 1 and 4 respectively. Figure 7.8 shows the cumulative E 
obtained by the two methods at units 1, 3 and 4. The divergence between the two 
values begins on 27 January and increases especially, after 31 January. However, 
the percentage difference between accumulated E during the 15 days is only 11%, 
12% and 13% at the Units 4, 1 and 3 respectively. 
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Fig.7.8. Comparison of cumulative evaporation E obtained from the evaporative fraction 
A method and the Penman-Monteith equation and Jarvis-Stewart type model, (A) Unit 
3 (B) Unit 1 (C) Unit 4 
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7.4 Conclusions 

The objective of this chapter was to demonstrate the practical application of the 
methodology developed in Chapter 6 to estimate the temporal evolution of E from 
NOAA AVHRR satellite images taken on clear days. Evaporation was determined 
continuously for 15 days. The results show that it is possible to use the PM and JS 
type models and A in combination with remote sensing data to predict the temporal 
evolution of E on clear and cloudy days in a heterogeneous catchment. A land cover 
classification of the catchment and measured standard weather data for the major 
land cover types are necessary. The simplified method of A requires that A be 
obtained from satellite data acquired during the central hours of the day, otherwise 
E will be overestimated. 

The new procedure (PM equation and JS type models) allows the role of 
environmental parameters related to atmospheric and surface conditions to be 
described explicitly. Areas in the catchment in which E is controlled by soil 
moisture, vapour pressure deficit and air temperature could be delineated. The 
remote sensing estimates of E on days with satellite data agree with the Bowen 
ratio in-situ measurements. The procedure developed to predict E on cloudy days 
gave comparable results with ground measurements (average percent difference of 
11%). The simple procedure of A is easier to implement in an operational 
environment and appears to give results comparable to those of the more complex 
procedure involving the PM and JS type models. The A method is therefore 
recommended for operational use especially for applications requiring 7-day 
average or longer E values. 
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Chapter 8 

Summary and Conclusions 

Evaporation E is required for various applications of E in hydrology, agriculture 
and meteorology. Evaporation E in heterogeneous catchments displays large 
variations both spatially and temporally. Satellite remote sensing is a powerful tool 
to estimate E at a wide range of spatial scales ranging from an individual pixel to a 
raster image of an entire river basin. However, the practical use of optical satellite 
measurements has been limited by cloud cover and the availability of field data to 
support the remote sensing techniques. Satellite data are only available when cloud 
free conditions coincide with the time of satellite overpass. In many regions of the 
world, cloud cover is a predominant feature and the chances of getting cloud free 
satellite images are limited. The focus of this thesis is the development of methods 
to monitor E under a variety of cloud conditions in heterogeneous catchments. 

The Naivasha basin in Kenya is used as a case study. The elevation of the basin 
varies from about 1 900 m to 3 200 m above mean sea level. The elevation 
differences induce a variation in the areal patterns of precipitation. The basin has a 
diverse landscape ranging from forests in the mountains to dry rangelands in the 
valley. Rainfed crops, swamps and barren land composed of rock outcrops and non-
vegetated lava flows are present. Extensive irrigation is practiced on flowers and 
vegetables in the vicinity of Lake Naivasha, while pastures are also irrigated for 
cattle grazing. There are two national wildlife reserves that attract numerous 
tourists. Lake Naivasha is considered a wetland of international importance, as it 
was declared a Ramsar site in 1995. There has been an increasingly large demand 
for water in the basin during the last 30 years due to the high population increase of 
up to 70%. The fast population increase is attributed to immigration of people from 
other parts of the country to settle in what was formerly called the white highlands. 

In Chapter 2, the theoretical basis of the evaporation process and the 
parameterization of remote sensing algorithms are presented. The physical laws of 
water vapour, heat and momentum are incorporated in the Penman-Monteith 
equation. The Jarvis-Stewart surface resistance models are highlighted to describe 
the effects of the humidity of the Soil-Vegatation-Atmospheric-Transfer (SVAT) on 
the evaporation process. The characteristics of different groups of remote sensing 
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algorithms and their suitability for practical monitoring of surface fluxes are 
discussed. 

Segmentation of landscapes in partial area hydrology has traditional been done by 
using land use/cover maps, topographic maps, soil maps and the like. A quick 
method of delineating a catchment into hydrological units is presented. The surface 
parameters Normalized Vegetation Index NDVI, surface albedo r0 and surface 
temperature T0 derived from Landsat images have been related to fractional 
vegetation cover, soil water content and surface resistance. Qualitative 
interpretation of the hydrological and vegetation status of different areas in a 
catchment can therefore be made from a three-dimensional plot of NDVI, r0 and T0 

(Fig. 4.2). A cluster analysis based on NDVI, r0 and To was performed to divide the 
study area into 15 hydrological sub-units (Fig 4.3). The surface flux densities were 
calculated for each unit. This method of subdividing a catchment into hydrological 
sub-units simplifies the computation of E considerably. Comparison with field data 
and data from literature showed a satisfactory agreement. 

By absence of input data, remote sensing algorithms use various spatially constant 
input variables in the calculation of E. The impact on E of the handling of spatial 
variability of input parameters by remote sensing algorithms has been studied. 
Results of the analysis of the effect of spatial variability of input parameters on E 
and sensible heat flux density H showed that the near surface air temperatures ATa 

is the most sensitive parameter. A mean root square fractional difference of 148% 
in E occurs if ATa is assumed to be spatially constant. The surface roughness length 
of heat transport z0/i appears to be the second most sensitive parameter in the 
estimation of the areal patterns of the surface fluxes (root mean square fractional 
difference 44%). The impact of spatial variations of zoh was solved by choosing 
other integration limits for the eddy diffusivity of heat transport (see Eq 2.44). It 
was also observed that frictional velocity «*, stability correction for heat transport 
\//h and surface albedo r0 considerably affect the calculation of distributed surface 
fluxes. The implication of these results is that the existing remote sensing 
algorithms based on energy balance should be re-examined on their characteristics 
to parameterise the spatial variability of input parameters. Apparently, most 
published algorithms in the literature appear not to be suitable for the calculation of 
distributed surface fluxes (Table 4.1). Future work may focus on the development 
of a simple solution to solve regional scale frictional velocities and related 
momentum fluxes. 
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Chapter 5 describes the temporal variability of the evaporative fraction A of a 

grassland and a woodland site in the Naivasha basin. The validity of using 

instantaneous values of A to estimate average day A is tested. The diurnal stability 

of A varied significantly during the study period. A correlation analysis between 

routinely available meteorological variables and the diurnal stability of A showed 

that air temperature Ta, relative humidity RH and cloudiness r could not adequately 

explain the diurnal fluctuations of A. This demonstrated that the diurnal variation of 

A is a complex phenomenon and other factors influencing A, such as demonstrated 

in Eqs. 5.4 and 5.7, need to be considered. 

A good relationship between Amid values at midday (12.00 to 13.00 hrs) and the 
1 2 

average day A was obtained with r of 0.74 at the two experimental sites. Lower r 

values were obtained in the relationship between morning Amor (9.00 to 10.00 hrs) 

and the average day A. The estimated daytime E obtained from Amid compared very 

well with measured daytime E using the Bowen ratio energy balance technique at 

both experimental sites (RMSE = 0.17 mm, r2 = 0.88 at the Ndabibi site and RMSE 

= 0.14 mm, r2 = 0.93 at the Eburu site). When the whole study period was 

considered the average difference between measured daytime E and estimated E 

from Amid was less than 10%. The differences reduce even further if 10-day average 

E is considered. The main conclusion from Chapter 5 is that the application of the 

hypothesis of quasi-constant A to estimate daily average E is valid under general 

weather conditions provided Amid is used. Less satisfactory results were obtained 

with the use of Amor. This showed that the use of data from satellites with morning 

overpasses between 8.30 to 10.30 hours local time (e.g. Landsat and Terra) will 

give less accurate daily E values. Designers of satellite systems should be aware of 

these shortfalls. 

The temporal changes in daily average A over a year are apparently gradual (Fig. 

5.6). This implies that, in order to capture the seasonal evolution of A, it would be 

sufficient to measure A approximately every 10 days. Multiple regression between 

10-day average A and 10-day average T„, RH and r indicated that these 3 

meteorological variables could explain 87% of the variations of the 10-day average 

A. This has important implications for hydrological applications in data-scarce 

regions. Standard weather data, which are routinely available, could be used to 

estimate A once the empirical relationships between weather data and A from 

available satellite data acquired during cloud free conditions are established. 
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In Chapter 6, a framework is presented in which continuous daily E under all sky 

conditions can be obtained from a combination of satellite and standard weather 

data. Two methods were assessed. In the first method, the Penman-Monteith (PM) 

equation, in-conjunction with the Jarvis-Stewart (JS) type of model, is used to 

predict E on cloudy days when satellite data are not available (Fig.6.1). Three 

analyses were performed assuming that E is known from satellite images on clear 

days only every other day, every third day or every fifth day. Good comparison was 

found between predicted E values and measured E for all three analyses when a 

period of 169 days is considered. Comparison on monthly time scale revealed that 

the December-January period gave the poorest comparison with r2 of 0.23 and 0.31 

at the Ndabibi and Eburu sites respectively. This was attributed to rapid changes in 

soil moisture during this period (Fig. 6.6) which induces a dynamic behaviour of 

the evaporation resistance. The conclusion from the analysis of the presented 

framework is that for up to 5 continuous days with cloud cover and hence no 

satellite data available, daily E can be predicted fairly well. 

The second method is a simplified alternative based on A The evaporative fraction 

A has been shown to be a good indicator of soil moisture with a gradual seasonal 

evolution (Fig.5.6). These characteristics of A make it amenable for use in the 

prediction of E during cloudy periods when satellite data are not available. This 

method also avoids the need to use the complex surface resistance rs and 

aerodynamic resistance rah. When the whole study period of 169 days was 

considered satisfactory agreement between predicted E and measured E was 

obtained. The mean predicted daily E and the mean measured daily E were less than 

8.8% for all the three analyses of 1, 3 and 5-days with continuous cloud cover. For 

the November, December and January months, comparison of daily predicted E and 

measured E showed deviations of more than 100% in the 3-day and 5-day analyses 

cases especially at the Ndabibi site. This implies that when daily values of E are 

required, the A method is not suitable for the prediction of E. However, when 

daily E values based on A were summed over a week, satisfactory comparison was 

obtained with measured weekly totals of E. The simplicity and suitability of the use 

of A in remote sensing methods are appealing for operational monitoring of E. It is 

therefore recommended for use in applications that require 7-day totals or longer 

periods of E. 

In Chapter 7 the methods developed in Chapter 6 are applied to actual remote 

sensing data. Five NOAA AVHRR images were acquired from a public domain site 

on the internet. Evaporation E was calculated on a daily time scale, for the entire 
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Naivasha catchment at the NOAA AVHRR pixel scale between 20 January to 3 

February 1999. After radiometric calibration and geometric correction of the 

images, the SEBAL algorithm was used to derive E under clear sky conditions. The 

evaporation values derived from satellite images agree with the E obtained from the 

Bowen ratio method at the Ndabibi station and the E values calculated for Lake 

Naivasha using the energy balance residual method. It was noticed that satellite 

derived E was mostly higher than field measured E. A possible reason for this may 

be attributed to the fact the images were taken later than 15.30 hrs. At this time, A is 

usually higher than the average day A which may lead to overestimation of E. 

Daily E was also predicted for the Naivasha catchment for the two-week period by 

using the simplified /1-method. Although predicted and measured E had similar 

trends in temporal evolution, predicted E was found to be mostly larger than 

measured E for reasons similar to PM/JS model results. Evaporation predicted by 

the A method and the PM and JS type models was found with an average 

percentage difference of 12%. 

The main conclusion from Chapter 7 is that it is possible to use the PM and JS type 

models and A to predict the temporal evolution and spatial patterns of E under all 

weather conditions in a heterogeneous catchment. The implementation of the 

PM/JS method requires a land cover classification of the catchment to assign land 

cover dependent coefficients in the JS model. At each land cover type standard 

weather data has to be measured. The minimum requirement is a field weather 

station, which can collect daily average Ta, RH and ^L(or sunshine duration). 

Table 8.1 summarizes the methods developed to predict E under cloudy conditions. 

The table provides an overview of the time scale at which E can be predicted for 

cloud-free intervals with different lengths. It can be seen that the method of using 

the PM equation and the JS type model is the best for predicting daily E values. 

The accumulated E for periods of 7 days and longer can be predicted fairly well by 

the A method. It should also be noted that 10-day average E could be predicted 

from empirical relationships between A and standard weather data. 
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Table 8.1: The time scales at which evaporation E can be predicted for cloudy periods 

by applying the constant evaporation fraction A method and the Penman-Monteith 

equation complemented with the Jarvis-Stewart model 

Cloud free period 

2 days 

6 days 

> 10 days 

Amid 

E prediction 

1 day total 

7 day total 

10 day total 

PM/JS 

E prediction 

1 day total 

1 day total 

n.a. 
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Samenvatting en conclusies 

Verdamping is noodzakelijk voor verschillende toepassingen in de hydrologie, 
landbouw en meteorologie. De verdamping E van heterogene stroomgebieden 
vertoont een grote ruimtelijke en temporele variatie. Satelliet remote sensing is een 
goed hulpmiddel om E te schatten voor ruimtelijk schalen varierend tussen een 
individueel beeldelement en een rasterbeeld van een compleet rivier systeem. Het 
praktisch gebruik van optische satellietmetingen is echter beperkt door 
wolkenbedekking en de beschikbaarheid van veldgegevens om de remote sensing 
rekentechnieken te ondersteunen. Satellietgegevens zijn alleen bruikbaar als de 
satelliet bij onbewolkte condities overkomt. Wolkenbedekking is een dominant 
verschijnsel in verscheidene delen van de wereld, en de mogelijkheden voor het 
verkrijgen van wolkeloze satellietbeelden is daarom beperkt. Het accent van dit 
proefschrift ligt op het ontwikkelen van methodes om het monitoren van E onder 
variabele bewolkingscondities in heterogene stroomgebieden mogelijk te maken. 

Het riviersysteem van Naivasha in Kenia is gekozen als studiegebied. De 
hoogteligging van het terrein varieert van 1900 m tot 3200 m boven gemiddeld 
zeeniveau. De verschillen in terreinhoogte veroorzaken ruimtelijke patronen in 
neerslag. Het stroomgebied herbergt een divers landschap varierend van bossen in 
de bergen tot droge graslandgebieden in de valleien. Er wordt regenafhankelijke 
landbouw bedreven en er komen moerassen, kale grand, rotsen en niet-begroeide 
lavastromen voor. In de nabijheid van het Naivasha meer worden bloemen en 
groente op grote schaal gei'rrigeerd. Tevens worden er weidegebieden voor 
begrazing gei'rrigeerd. Er zijn een tweetal nationale wildparken aanwezig wat veel 
toeristen aantrekt. Het Naivasha meer wordt als een internationaal belangrijke 
wetland beschouwt en het is in 1995 tot een Ramsar gebied uitgeroepen. 
Tengevolge van bevolkingsgroei, is de waterbehoefte van het stroomgebied 
gedurende de afgelopen 30 jaar met 70% toegenomen. De snelle 
bevolkingstoename kan aan de immigratie van bewoners uit andere gedeeltes van 
het land worden toegeschreven, die zich vestigen in wat voorheen de 'white 
highlands' werd genoemd. 

De theoretische achtergrond over verdampingsprocessen en de remote sensing 
parameterizatie daarvan staat beschreven in hoofdstuk 2. De wetmatigheden van 
waterdamp, warmte en impuls zijn gei'ntegreerd in de Penman-Monteith 
vergelijking. Het Jarvis-Stewart model voor de verdampingsweerstand wordt 
gebruikt om de vochtigheid van het bodem-atmosfeer systeem op het 
verdampingsproces weer te geven. De eigenschappen van verschillende remote 
sensing rekenmodellen en hun geschiktheid voor het praktisch monitoren van 
oppervlakte-fluxdichtheden wordt besproken. 

Het segmenteren van landschappen in sub-stroomgebieden wordt traditioneel 
gedaan op basis van landgebruik, topografische kaarten, bodemkaarten etc. Een 

139 



snelle methode om een stroomgebied in hydrologische eenheden te verdelen is 
gepresenteerd. De oppervlakte parameters Normalized Difference Vegetation Index 
NDVI, oppervlakte albedo r0 en oppervlakte temperatuur T0 afgeleid uit Landsat 
beelden zijn gerelateerd aan vegetatiebedekking, bodemvochtgehalte en de 
verdampingsweerstand. Het kwalitatief interpreteren van de hydrologische condities 
en de status van de vegetatie voor sub-eenheden binnen een stroomgebied kan 
worden verkregen door het vervaardigen van een 3D-plot van NDVI, r0 en T0 (zie 
Fig. 4.2). Een cluster analyse gebaseerd op NDVI, r0 en T0 is uitgevoerd om het 
studiegebied in 15 hydrologische sub-eenheden op te delen (Fig. 4.3). De 
oppervlakte fluxdichtheden zijn uitgerekend voor elke klasse. Deze methode voor 
het opdelen van een stroomgebied in hydrologische sub-eenheden, vereenvoudigt 
het uitrekenen van de ruimtelijke variatie van E aanzienlijk. Een vergelijking van de 
resultaten met veldgegevens en gegevens verschenen in de literatuur, geeft een 
goede overeenkomst weer. 

Bij afwezigheid van invoergegevens gebruiken remote sensing rekenmodellen 
verschillende ruimtelijk constante invoervariabelen. Het effect van het beschouwen 
van de ruimtelijke variabiliteit van de invoervariabelen is bestudeerd. Het resultaat 
geeft aan dat het verticaal verschil in luchttemperatuur nabij het landoppervlak AT„ 
de meest essentiele parameter is om de ruimtelijke variatie in fluxdichtheden goed 
te beschrijven. Een fractioneel root mean square verschil van 148% op de 
verdamping komt voor als ATa ruimtelijk constant wordt verondersteld. De 
ruwheidslengte voor warmte transport zoh bleek de tweede meest gevoelige 
parameter voor het schatten van de ruimtelijke patronen van de oppervlakte-
fluxdichtheden te zijn (het fractionele root mean square verschil is 44%). De 
invloed van de ruimtelijke variatie van ZOH is opgelost door een andere integratie 
grens voor de eddie diffusiviteit voor warmtetransport te kiezen (zie vergl. 2.44). 
Het blijkt ook dat de wrijvingssnelheid u*, de stabiliteit correctie voor warmte 
transport y/h en de oppervlakte albedo r0 een aanzienlijk effect op de berekening van 
de ruimtelijke verdeling van de oppervlakte fluxdichtheden kan hebben. Het gevolg 
van deze resultaten is dat bestaande remote sensing rekenmodellen gebaseerd op de 
energiebalans moeten worden bekeken op hun kenmerken voor het beschrijven van 
de ruimtelijke variabiliteit van de invoervariabelen. Het is gebleken dat de meeste in 
de literatuur gepubliceerde remote sensing rekenmodellen niet aan deze voorwaarde 
voldoen (Tabel 4.1). Toekomstig remote sensing onderzoek zou zich kunnen richten 
op de ontwikkeling van een eenvoudige manier om wrijvingssnelheden en de 
daaraan gekoppelde impulsflux op regionale schaal te schatten. 

Hoofdstuk 5 beschrijft de temporele variabiliteit van de verdampingsfractie A van 
een grasland- en een bosgebied in Naivasha. De geldigheid van het gebruik van de 
moment opname van A als maat voor de dagwaarde van A is getest. Het dagelijks 
verloop van A varieerde aanzienlijk gedurende de studieperiode. Een 
correlatieanalyse tussen routinematig beschikbare meteorologische variabelen en 
het dagelijks verloop van A laat zien dat luchttemperatuur, relatieve 
luchtvochtigheid en bewolking niet het dagelijkse verloop van A kunnen verklaren. 
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Dit toont aan dat de dagelijkse variatie van A een complex verschijnsel is en dat 
andere factoren zoals weergegeven in vergl. 5.4 en 5.7 moeten worden 
meegenomen. 

Er is een goed verband gelegd tussen Amiri waardes (opgenomen tijdens 12.00 tot 
13.00 uur) en de dagelijks waarde van A voor de twee proefgebieden (r =0.74). 
Lagere r2 waardes zijn vastgesteld voor de relatie tussen de ochtend waarde van 
Amor (9.00 tot 10.00 uur) en de gemiddelde dagwaarde van A. De gemiddelde 
dagverdamping E geschat uit Amid vertoont voor beide proefgebieden een goede 
overeenkomst met de gemeten dagverdamping E volgens de Bowen verhouding 
energie balans methode (RMSE=0.17 mm d"1, r2=0.88 op het grasland van Ndabibi 
en RMSE=0.14 mm d'1, r2=0.93 in het bos van Eburu). Over de gehele 
studieperiode is het gemiddelde verschil tussen gemeten en geschatte dagwaarde 
van E minder dan 10%. De verschillen voor 10-daagse gesommeerde waardes van E 
zijn zelfs kleiner. De belangrijkste conclusie van hoofdstuk 5 is dat de toepassing 
van het uitgangspunt van een quasi-constante verdampingsfractie voor de schatting 
van de dagelijkse verdamping correct is, mits er van Ami(i gebruik gemaakt wordt. 
De resultaten door het gebruik van Amor zijn minder gunstig. Dit betekent dat het 
gebruik van satellietmetingen in banen met een overkomsttijd tussen 8.30 en 10.30 
uur locale tijd (b.v. Landsat en Terra) minder nauwkeurige dagwaardes van 
verdamping opleveren, als opnames gemaakt tijdens het middaguur. De ontwerpers 
van satellietsystemen dienen van deze bevinding op de hoogte te zijn. 

Het temporele gedrag van de dagelijkse gemiddelde A gedurende het jaar verloopt 
geleidelijk (Fig. 5.6). Dit impliceert dat voor de beschrijving van A gedurende het 
seizoen kan worden volstaan met het meten van A eenmaal per 10 dagen of langere 
periodes. Een meervoudige regressie tussen 10-daagse gemiddelde waardes van A 
en 10-daagse gemiddelden van luchttemperatuur, relatieve luchtvochtigheid en 
transmissiviteit toont aan dat deze 3 meteorologische variabelen 87% van de 
variatie in de 10-daagse gemiddelde A waarde kunnen verklaren. Dit heeft 
belangrijke gevolgen voor hydrologische toepassingen voor gebieden met weinig 
meetgegevens. Routinematig beschikbare weersgegevens kunnen worden gebruikt 
om A te schatten als het empirisch verband tussen weersgegevens en A is 
vastgesteld voor een aantal satelliet opnames onder onbewolkte condities in het 
groeiseizoen. 

Hoofdstuk 6 bevat een beschrijving hoe een continue serie van dagelijkse E kan 
worden verkregen onder omstandigheden met wisselende bewolking uit een 
combinatie van satelliet- en meteorologische data. Twee verschillende methodes 
zijn getest. De eerste methode is de Penman-Monteith (PM) vergelijking in 
combinatie met het Jarvis-Stewart (JS) model om E op bewolkte dagen te schatten 
als er geen satellietbeelden voorhanden zijn (Figuur 6.1). Drie analyses zijn 
gemaakt onder de aanname dat E uit satelliet beelden bekend is voor elke andere 
onbewolkte dag, elke derde dag en elke vijfde dag. Voor een totale periode van 169 
dagen is er een goede overeenkomst geconstateerd tussen geschatte en gemeten 
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dagwaardes van E voor alle drie analyses. Een vergelijking voor de proefgebieden 
Ndabibi en Eburu op een maandelijkse tijdschaal geeft aan dat de periode december 
t/m januari met r2=0.23 en 0.31 de laagste correlatie oplevert. Dit kan worden 
toegeschreven aan de snelle veranderingen in het bodemvocht gedurende deze 
periode (figuur 6.6) waardoor de verdampingsweerstand zich sterk dynamisch 
gedraagt. De conclusie is dat de dagelijkse verdamping voor een periode van 5 
doorlopende dagen met bewolking zonder satellietgegevens met het PM/JS model 
in het algemeen redelijk goed kan worden voorspeld. 

De tweede methode is een versimpeling en gebaseerd op de verdampingsfractie A. 
De verdampingsfractie blijkt een goede indicator van geleidelijke 
seizoensveranderingen van bodemvocht te zijn (Fig. 5.6). Deze eigenschap maakt A 
ook toepasbaar voor de voorspelling van korte termijn E variaties gedurende 
bewolkte periodes als satellietgegevens niet beschikbaar zijn. Deze methode 
vermijdt het gebruik van de soms lastige verdamping- en aerodynamische 
weerstanden in de PM vergelijking. De overeenkomst tussen voorspelde en gemeten 
E was goed voor de gehele studieperiode van 169 dagen. Het verschil tussen de 
gemiddelde geschatte waarde van E en de gemiddelde gemeten E was minder dan 
8.8 % voor alle drie analyses met 1, 3 en 5 dagen continue wolkenbedekking. De 
vergelijking tussen dagelijks voorspelde E en gemeten E vertoont afwijkingen van 
meer dan 100% voor de 3 en 5 dagen analyses. Dit geldt vooral voor de Ndabibi 
meetplaats. Dit betekent dat de /1-methode niet geschikt is om dagelijkse waardes 
van E te voorspellen. Een goede overeenkomst wordt echter bereikt als de 
dagelijkse E waardes worden gesommeerd voor een periode van een week. De 
eenvoud en geschiktheid van het gebruik van A in remote sensing methodes is 
aantrekkelijk voor het operationeel monitoren van E. De verdampingsfractie is 
daarom aanbevolen voor toepassingen van E gesommeerd over 7 dagen en langer. 

Hoofdstuk 7 past de theoretische methodes die in hoofdstuk 6 ontwikkeld zijn toe 
met actuele remote sensing data. Vijf NOAA AVHRR beelden zijn ontleend aan 
een publieke databestand op internet. De verdamping E is voor het gehele Naivasha 
stroomgebied uitgerekend op dagbasis tussen 20 januari en 3 februari 1999. Het 
SEBAL rekenmodel voor E is toegepast op onbewolkte dagen na radiometrische- en 
geometrische correcties van de beelden. De verdampingcijfers verkregen uit 
satellietbeelden vertonen een goede overeenkomst met E verkregen uit de Bowen 
verhouding methode (Ndabibi) en met de energie balans residu methode (Naivasha 
meer), maar is wel hoger dan de veldmetingen van E. Een mogelijke reden is het 
late opnametijdstip na 15.30 uur. De verdampingsfractie A is normaliter op dit 
tijdstip hoger dan het gemiddelde van de dag, hetgeen tot een overschatting van E 
leidt. 

De dagelijkse E is ook voorspeld voor het gehele Naivasha stroomgebied voor de 2-
wekelijkse periode door gebruik te maken van de simpele A methode. Ofschoon de 
voorspelde en gemeten E dezelfde temporele trend vertonen, is de geschatte E hoger 
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dan de gemeten E om dezelfde redenen als weergegeven voor het PM/JS model. De 
A methode en de PM/JS modellen vertonen een onderlinge afwijking van 12 %. 

De belangrijkste conclusie van hoofdstuk 7 is dat het PM/JS model en de A-
methode beiden het temporele en ruimtelijke gedrag van E onder alle 
weersomstandigheden in een heterogeen stroomgebied kunnen beschrijven. De 
implementatie van de PM/JS methode vereist een landgebruikclassificatie van het 
stroomgebied omdat de JS coefficienten landgebruikafhankelijk zijn. Elk vorm van 
landgebruik dient uitgerust te zijn met standaard meteorologische waamemingen. 
De minimum vereiste parameters zijn de dagelijks gemiddelde waardes van 
luchttemperatuur, relatieve luchtvochtigheid en globale straling (of 
zonneschijnduur). 

Tabel 8.1 be vat een samenvatting van de ontwikkelde methodes om E te schatten 
onder bewolkte condities. De tabel geeft een overzicht van de tijdschaal waarop E 
kan worden geschat voor periodes met wisselende bewolking. De methode voor het 
gebruik van de PM vergelijking en het JS model is het meest geschikt voor 
dagelijkse waardes van E met een wolkeloze periode van 6 dagen. The 
gesommeerde E voor periodes van 7 dagen en langer kan redelijk worden voorspeld 
met de A methode. Het dient te worden opgemerkt dat de gemiddelde E over 10 
dagen kan worden geschat uit een empirische relatie tussen A en routinematig 
verkregen weersgegevens. 

Tabel 8.1: De tijdschalen waarop E kan worden geschat voor bewolkte condities 
door het gebruik maken van de constante verdampingsfractie /1-methode en de 
Penman-Monteith vergelijking aangevuld met het Jarvis/Stewart model. 

Bewolkte periode 

2 dagen 

6 dagen 

>10 dagen 

Amid 

E voorspelling 

ldag 

7 gesommeerde dagen 

10 gesommeerde dagen 

PM/JS 

E voorspelling 

ldag 

ldag 

n.a. 
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Appendix A 

Appendix A. 1: Specifications of the seven Landsat TM bands 

Band Wavelength interval (um) 
1 
2 
3 
4 
5 
6 
7 

0.45-0.52 
0.52-0.62 
0.63-0.69 
0.76-0.90 
1.55-1.75 
10.4-12.5 
2.08-2.35 

Geometrical resolution 
Temporal resolution 

30 m, band 6: 120m 
16 days 

Appendix A.2: Characteristics of the five NOAA-14 AVHRR bands 

Band Wavelength interval (jim) 

1 
2 
3 
4 
5 

0.58-0.68 
0.72-1.10 
3.55-3.93 
10.5-11.5 
11.5-12.5 

Geometric resolution (at nadir) 1.1 km 
Temporal resolution Vi day 
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Appendix B: Color figures 

Fig. 3.3. Illustration of the topography and vegetation of the Naivasha catchment 
prepared from Landsat TM false color composite image overlaid on a digital elevation 
model of the area. The dark red areas are forests on mountains, light red tones indicate 
cropland and woodlands on the plateaus. The purple whitish tones represent grassland 
and bushland in the valley plains 
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Fig.4.3: Hydrological delineation of a 19 km by 25 km area of Lake Naivasha 
watershed into 15 hydrological units 

Fig. 4.5: Spatial patterns of actual evaporation of a 19 km by 25 km area of Lake 
Naivasha watershed on 21 January 1995 
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Fig.7.1 The spatial patterns of evaporation E (mm d"1) in the Naivasha 
catchment on 27 January 1999. The white patches in the image are clouds 
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Fig. 7.3a. The spatial patterns of surface resistance rs (s m"1) in the Naivasha 
catchment on 27 January 1999 
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Fig. 7.3b. The spatial patterns of soil water potential head /zw (cm) in the 
Naivasha catchment on 27 January 1999 
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Fig. 7.5. The spatial patterns of the evaporative fraction A in the Naivasha 
catchment on 27 January 1999 
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