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Stellingen 

Het principe om de sapstroom in een plantenstengel te kwantificeren door het NMR signaal 

daarvan als functie van stromingscoderende stappen in de magnetische veldgradienten te fitten 

aan een modelfunctie is onjuist. 

Dit proefsen rift, hoofdstuk 4. 

Het gebruik van een PFG stimulated echo sequentie vergemakkelijkt aanzienlijk het 

onderscheiden van de verplaatsing van watermoleculen t.g.v. extreem langzame stroming en 

t.g.v. diffusie. 

Dit proefschrift, hoofdstuk 3. 

Geen van de gangbare theorieen over het verdwijnen van embolieen in xyleemvaten geeft een 

bevredigende verklaring voor het achterliggend mechanisme. 

Dit proefschrift, hoofdstuk 6. 

De aan een laag magneetveld inherente lage NMR signaal/ruis verhouding onmiddellijk na 

excitatie kan gecompenseerd worden door het opnemen van veel echo's. 

Dit proefschrift, hoofdstuk 7. 

Omdat voor ieder pixel meerdere NMR parameters toegankelijk zijn is het streven naar een zo 

hoog mogelijke ruimtelijke resolutie in een NMRi experiment niet alleen vaak onnodig, maar 

introduceert ook een extra signaalafname. 

Dit proefschrift, hoofdstuk 7. 

Capillaire elektrochromatografie is superieur aan drukgedreven capillaire chromatografie voor het 

scheiden van complexe mengsels, zeker indien de zeta-potentiaal van de capillairwand is 

afgestemd op die van het kolommateriaal. 

Als de drugsbestrijding in Nederland onder de vlag van de binnenlandse veiligheidsdienst zou 

opereren, zou zij daadkrachtiger op kunnen treden. 

Veel oudere werknemers verdienen meer dan dat zij op grand van prestatie en behoefte van de 

arbeidsmarkt behoren te krijgen. 

Om de belangen van de consument te beschermen, zou de Nederlandse staat als aanbieder op 

moeten kunnen treden van primaire, utilitaire levensbehoeften, waaronder energie, water en 

telecommunicatie. 
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Introduction 

General introduction 

Water is the only substance on planet earth that occurs naturally in all three 

physical states: solid, liquid and gas. The liquid state of water is the most common 

and most important fluid in the world. Every organism needs water to live, and every 

organism contains at least some water. In plants for example water is used as the 

major cell content and serves as a solvent for biologically relevant solutes, it 

transports these solutes from roots to shoot or vice versa, it is the medium in which 

many biological reactions take place, it is a hydrogen donor in the carbon 

assimilation, et cetera. Water molecules are always in motion: continuous tumbles 

and collisions with each other cause the 'random walk' or self-diffusion of water. 

Although all individual molecules move, invisible for the human eye, the larger 

ensemble of molecules can be stationary or flowing from one region to another. The 

central theme of this Thesis is the movement of water within a certain time window, 

either by diffusion or by flow as measured by nuclear magnetic resonance imaging 

(NMRi or MRI). The ultimate strength of NMRi is the fact that it is non-invasive and 

therefore particularly useful for in vivo studies of the water status and/or water 

motion in biological objects. 

In this Thesis the emphasis of the NMRi applications will be on plants. Recently, 

many papers have been published about the mechanisms of long-distance water 

transport in plants {1-5) after the introduction of the xylem pressure probe and cryo-

scanning electron microscopy in plant physiology. The century-old Cohesion-

Tension theory (6), which predicts large negative pressures in continuous water 

channels (long xylem vessels in the plant stem), has been questioned, but no 

satisfying alternative has been presented yet. In this debate another issue is not 

understood. Under extreme conditions (e.g. high transpiration of water from the 
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leaves and reduced water uptake by the roots, sub-zero temperatures of trunks) the 

continuous water column in a xylem vessel disrupts and the vessel fills with water 

vapor and air, blocking further water transport. Plants can refill these 'embolisms' 

(7-9) and new techniques and studies are required (9,70) to unravel the 

mechanisms controlling this refilling. In this Thesis it is shown that NMRi is a key 

tool in water transport and xylem refilling studies, creating the possibility to localize 

water flow non-invasively in intact plants, at the vascular tissue level or even at the 

individual vessel level. 

Water in motion and NMR 

In an NMR experiment two pulsed magnetic field gradients (PFGs) temporarily 

change the resonance frequency of the observed protons and thereby affect the 

amplitude and phase of the complex NMR signal (a short introduction in the 

principles of NMR can be found in Chapter 4 of this thesis, a thorough background 

can be found in references 11 and 12). Self-diffusion of protons between two PFGs 

results in an attenuation of the amplitude of the NMR signal, as Stejskal and Tanner 

reported in 1965 (13). If, in addition to self-diffusion (which is always present), the 

observed protons move uni-directionally in the direction of the PFGs, the phase of 

the NMR signal will shift as a result of the two PFGs (Fig. 1.1). If the amplitude g of 

the two PFGs is stepped, the NMR signal is modulated as a function of these steps. 

A Fourier Transformation of the modulated signal returns the distribution of 

displacements of the observed protons within A, also called a propagator (14). In 

Chapter 2 of this Thesis the signal modulation and propagator representation is 

described in more detail. A propagator can be obtained for every pixel of an NMR 

image (15) and can have many different shapes, depending on the amount of 

flowing protons and the size and nature of the displacements of the protons in the 

pixel concerned. 
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Figure 1 .1: The modulation of the NMR signal by two pulsed field gradients with amplitude g, 

duration 8 and spacing A. The two top lines represent the basic pulse sequence. The arrows in the 

circles in the bottom two lines schematically represent the complex signal of diffusing and flowing 

water during the different manipulations of the radiofrequency and gradient pulses. After signal 

excitation the signal resides along the real axis, where it gets dephased with the first PFG. With the 

180° pulse all magnetization is inverted and with the second PFG the signal is rephased again. 

Protons that move along the PFG direction within A do not rephase exactly. If this movement is 

random (self-diffusion) the amplitude of the signal is attenuated. If, in addition to diffusion, the protons 

also move uni-directionally along the PFG direction (flow) the phase of the signal is also shifted. 

NMR imaging of plants 

NMR imaging of plants demands a special approach, as distinguished from other 

biological objects. Generally, the signal-to-noise ratio (SNR) of an NMR experiment 

depends on S0
7/4 (with B0 being the magnetic field strength) (16). This is the reason 

why many groups performing NMR microscopy move towards higher magnetic field 

strengths in a quest for a high spatial resolution of the image. Apart from the 

question whether this pursuit of the highest possible resolution is meaningful, plants 

impose a specific problem in high magnetic fields. Plants or plant tissues often have 

many intercellular spaces filled with air. Since air and water have different magnetic 
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susceptibilities, the density of magnetic field lines in air is different from the one in 

water, producing magnetic field inhomogeneities around every air-water interface; 

the higher the magnetic field strength, the stronger the field inhomogeneities. 

The numerous local magnetic field inhomogeneities in many plant tissues can 

cause several image artifacts (17). The NMR signal after excitation is dephased 

rapidly because of the magnetic field inhomogeneities but can be refocused with an 

inversion pulse (180° pulse in Fig.1.1) in a spin echo. After the first 180° pulse and 

spin echo, a series or train of 180° pulses can refocus the signal over and over 

again. The amplitudes of the multiple spin echoes decay with a characteristic time 

constant: the spin-spin relaxation time T2. However, displacements of protons (due 

to self-diffusion) in the susceptibility-related field inhomogeneities can cause extra 

signal amplitude attenuation (as in the previous section: proton movements 

combined with magnetic field gradients attenuate the NMR signal). If the field 

inhomogeneities are large (at high B0) the extra signal attenuation can also be 

dramatic and even the first spin echo image may already suffer from severe signal 

loss (18). Quantitative imaging of proton density and T2 by fitting an exponential 

decay curve to the signal decay in the echo train now leads to erroneous T2 and 

proton density images (18). Other imaging procedures in which the amplitude of the 

first echo image is modulated with e.g. PFGs also incorporate the signal losses due 

to the field inhomogeneities. 

At lower magnetic field strength (0.47 and 0.7 T for all studies in this Thesis) the 

local magnetic field inhomogeneities are smaller. With large imaging gradients 

(compared to the field inhomogeneities), by using large spectral widths (-50 kHz), 

and short echo times the susceptibility problems can be overcome (18, 19) and the 

NMR signal can be recalled in as many as 1000 echoes (20). The disadvantage of 

a low magnetic field is of course the intrinsic low SNR. Much effort has to be put in 

obtaining a sufficiently high SNR by recording multiple spin echoes instead of a 

single echo, by signal averaging and by using a high filling factor of the radio-

frequency coil. 
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Outline of this Thesis 

Chapter 2 of this Thesis describes an NMR pulse sequence that combines fast 

NMR imaging with quantitative displacement studies using PFGs (the Pulsed Field 

Gradient Turbo Spin Echo sequence). After a detailed description of dynamic NMR 

microscopy (15), in which the NMR signal is modulated in both 'k-space' (for spatial 

localization) and 'q-space' (for displacement encoding), the combination with turbo 

spin echo (TSE) imaging is introduced. An elaborate description of the pulse 

sequence and of the processing of the forthcoming data is followed by several tests 

of the sequence with two artificial samples and a tomato plant. 

In Chapter 3 of the Thesis a stimulated echo (STE) variant to the PFG TSE 

sequence in Chapter 2 is presented. The decay of the NMR signal in the labeling 

time between the PFGs in a spin echo sequence is controlled by T2. Proton 

displacements, originating from self-diffusion can only be distinguished from 

displacements originating from extremely slow flow (below -0.3 mm/s) by using 

long labeling times. Long labeling times are also required to study effects of 

obstructions of the free diffusional pathway (restricted diffusion) of protons. If the 

observed protons have a short T2, relative to the required labeling time, the NMR-

signal has vanished by the time the second PFG is applied. In these cases, it is 

advantageous to use a STE sequence instead of a spin echo pulse sequence, 

because the NMR-signal is then stored along the z-axis during most of the labeling 

time, where its decay is controlled by T1, and not by T2. Since T1 is (often 

substantially) longer than T2 the signal amplitude of a stimulated echo at a certain 

time can be significantly larger than the amplitude of a spin echo at that time, 

despite the inherent loss of half the signal in a STE sequence. The combination of 

a stimulated echo with PFG TSE in Chapter 3 is applied to extremely slow flowing 

water in a phantom, diffusion in a maize plant as a function of labeling time and flow 

localization in a tomato pedicel. In the addendum to Chapter 3 a pulse sequence is 

presented, in which the echo train after magnetization preparation with the PFGs is 

not used to fasten imaging time, but to record an echo decay for every pixel and 

every PFG step. 
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Chapter 4 deals with the analysis of the propagators, measured with the two pulse 

sequences. A propagator often represents both flowing and stationary water. If the 

(symmetrical) stationary part of the propagator is subtracted from the total 

propagator, the flowing part remains and can be quantified. The flow characteristics 

can be calculated by relating intensities of the flowing part of the propagator to the 

total intensity of pixel-propagators of water in a reference tube (100% water 

calibration). For a stem segment of a chrysanthemum flower the total volume flow, 

calculated from NMR experiments, is compared to the water uptake of that stem 

segment, simultaneously measured with a precision balance. 

Chapter 5 focuses on functional imaging of plants by a combination of imaging T2, 

amplitude (or proton/water density) and flow characteristics in an extensive study of 

an intact cucumber plant. A high imaging resolution can be used to discriminate 

between different tissues on the basis of T2, water density or flow characteristics; 

the signal of the pixels in the different tissues can then be added (to increase the 

SNR) and analyzed for a second time. In this way bi-exponential decay curves can 

be observed in different tissues of a transverse image of the stem of the cucumber 

plant, and flow characteristics of different vascular bundles can be studied in time. 

In Chapter 6 the possibility of studying transients in flow characteristics in the 

cucumber plant is applied to a specific phenomenon of the plant, related to water 

transport. If the roots of a cucumber plant are cooled, water uptake by the roots is 

severely inhibited: in a short time the plant loses more water than it takes up and 

wilts. After rewarming the roots to the original temperature, the plant recovers from 

its water loss within hours leaving no visual trace of the cooling event. Imaging the 

flow characteristics for every pixel in the stem of a cucumber plant revealed 

interesting transients in the xylem of the plant during and after the environmental 

changes, which raises new issues in the continuous debate about water transport in 

plants. 

In the final Chapter a strategy is discussed of imaging plants at low magnetic field 

strength and the optimal use of the two pulse sequences and the analysis of the 

propagators. Difficulties with a large spectrum of displacements within the labeling 
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time (from diffusion to high flow velocities) are addressed, together with the 

question if a high spatial resolution is always desirable. 
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Microscopic displacement imaging with pulsed field 

gradient turbo spin echo NMR 

T.W.J. Scheenen, D. van Dusschoten, P.A. de Jager and H. Van As 

We present a pulse sequence that enables the accurate and spatially resolved 

measurements of the displacements of spins in a variety of (biological) systems. 

The pulse sequence combines Pulsed Field Gradient (PFG) NMR with Turbo Spin 

Echo (TSE) imaging. It is shown here that by ensuring that the phase of the echoes 

within a normal spin echo train is constant, displacement propagators can be 

generated on a pixel by pixel basis. These propagators accurately describe the 

distribution of displacements, while imaging time is decreased by using separate 

phase encoding for every echo in a TSE train. Measurements at 0.47 T on two 

phantoms and the stem of an intact tomato plant demonstrate the capability of the 

sequence to measure complete and accurate propagators, encoded with 16 PFG-

steps, for each pixel in a 128 x 128 image (resolution 117 x 117 x 3000 urn) within 

17 minutes. Dynamic displacement studies on a physiologically relevant time-

resolution for plants are now within reach. 

Also published in Journal of Magnetic Resonance 142: 207-215 (2000) 

Parts of this work have been presented at the Fourth International Conference on Magnetic Resonance 

Microscopy and Macroscopy in Albuquerque, New Mexico, USA on Sept. 20-24, 1997 (1). 
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Microscopic Displacement Imaging 

Introduction 

Diffusion and transport processes of water in objects like tissues, soils, model 

systems, plants, food, separation columns, bioreactors, biofilms, etc. are of interest 

for researchers in many different fields. Some problems can arise when complex 

porous systems like vegetable or animal tissues are monitored: the water status of 

the studied system can change fast; water flow profiles and diffusional properties 

(e.g. restrictions) are generally unknown. Dynamic NMR-microscopy (2) provided 

the means to study the distribution of water displacements microscopically and non

invasive^ in a wide variety of systems. This method combines NMR imaging with 

quantitative displacement studies using Pulsed Field Gradients (PFGs). 

Since the water status of a plant can change within half an hour, dynamic studies of 

that status should be at a physiologically relevant time-scale of less than twenty 

minutes. Because the flow profile and diffusive behavior of the plant tissue are not 

known a complete distribution of displacements within a certain time has to be 

constructed for every pixel of an image and the SNR of the properties of interest 

must be sufficiently high to produce results with acceptable accuracy. The standard 

dynamic NMR-experiment, in which an image with n x n picture elements is 

recorded, combined with m gradient steps to encode for displacement takes n x m 

acquisitions to complete. Consequently, the total acquisition time may exceed 

several hours (3, 4), and changes within the measurement time will be averaged 

out over the experiment. Therefore, a faster way of performing the dynamic NMR-

experiment is needed in plants. 

The time resolution of a PFG NMR imaging experiment can be increased by 

reducing the number of phase and flow encoding steps (5, 6). Reducing the number 

of phase encoding steps directly reduces the spatial resolution in one direction of 

the images, which is not desirable in plants where the small tissue dimensions 

require an in-plane resolution in the order of 100 x 100 urn. Rokitta ef a/, assumed a 

certain flow-profile for the observed spins and fitted the signal, attenuated by a 

reduced number of flow encoding steps, to a model function. Another approach to 

decrease measurement time is the use of an echo train. Echo Planar Imaging (EPI, 

(7, 8)) is not applicable in plants, because intercellular spaces in plant tissues 

10 
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cause magnetic field gradients in the sample and shorten the T2* drastically (e.g. 

<40 ms). In a 180° pulse train with normal spin-echoes the signal decays under the 

influence of the longer T2. The multiple spin-echoes can be used to step rapidly 

through k-space by phase-encoding the echoes separately (Turbo Spin Echo, TSE 

or RARE, (9)). TSE is used here with the new feature that all echoes in the train can 

be acquired with constant and coherent amplitude and phase, which is a 

prerequisite for combining dynamic NMR-microscopy with TSE. Thus not only the 

signal amplitude attenuation can be measured as a function of the PFGs (10) but 

also the phase-development, containing flow information. 

Theory 

The displacement of an ensemble of spins in a magnetic field can directly be 

measured by the use of two gradient pulses g of duration 8 and spacing A (see Fig. 

2.1). A uniform displacement R of the spins results in a phase shift § of the NMR 

signal: 

* = j i%.R [2.1] 

in which y is the gyromagnetic ratio of the spins observed. If the displacement of the 

spins within the observation time A is not uniform but completely random, e.g. 

diffusion in a non-flowing liquid with a self-diffusion constant D, there will be no 

phase shift but only an attenuation of the NMR-signal amplitude S(g) vs. g 

normalized to the signal amplitude S(0) at g = 0 (11): 

S{g)/S(0) = exp(- fg2S2D{A - S/3)) [2.2]. 

If the displacement-behavior of the ensemble of spins under observation is known a 

priori, e.g. for pure uniform diffusion or plug flow, an experiment with two g-values (g 

= 0 and g = x) would be enough to determine the flow velocity and the diffusion 

constant of the spins. Quantification problems emerge if the displacement-behavior 

11 
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of individual spins in the ensemble is not known. Experiments with two g-values can 

only result in one weighted mean flow velocity or diffusion coefficient (12-17). 

As soon as a biological system is studied, multiple spin ensembles that differ in 

diffusion constants and flow-velocities contribute to the NMR-signal in both spatially 

unresolved measurements and even in individual pixels of a high-resolution image. 

To correctly quantify the unknown displacement-behavior of the observed ensemble 

of spins one has to measure the NMR-signal S(g) as a function of g (18). In that 

case the NMR-signal is a superposition of phase terms e\p(iySg • (r'-r)) derived 

from Eq. [2.1] weighted with the spin density p(r) at a position r multiplied by the 

probability P(r | r',A) that a spin moves from position r to position r' in time A: 

S{g) = jp(r)jP(r | r',A)exP0y<% • (r'-r))dr'dr [2.3]. 

By defining a reciprocal space q = ydg/lK and a dynamic displacement R = r '-r, 

independent from the initial spin position and density, Eq. [2.3] can be rewritten as: 

S(q) = J>(R,A)exp(/2;rq.RyR [2.4a] 

F(R,A) = js(q)exp(-i2wq • R)dq [2.4b]. 

This demonstrates the Fourier relationship between S(q) and F(R,A). So by 

monitoring S(q), the NMR-signal as a function of q, a Fourier Transform of S(q) 

results in the averaged probability distribution of displacements of all spins 

observed: the averaged propagator, P(R,A). 

The mean square displacement a2 due to (unrestricted) diffusion is proportional to 

the corrected observation time (A-5/3) and results in a Gaussian propagator 

positioned at the mean displacement/? of the observed water molecules: 

P(R) = Aexp 
( r \2 /' 

[2.5]. 

12 
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For stationary water the mean displacement is zero resulting in a Gaussian 

distribution of P(R) with amplitude A and center position p = 0. The mean square 

displacement a2 can be used to calculate the diffusion coefficient of the water 

through: 

a2=2D(A-%) [2.6]. 

The probability distribution function for water flowing laminarly through a tube is the 

unit step function: 

P(R) = C forO<R<Rmax 

P(R) = 0 for R < 0 and R > Rmax [2.7] 

where C is a constant and R max is the maximum displacement of the water in the 

tube within A. Since flowing water also exhibits diffusion the unit step function is 

broadened and the borders at R = 0 and R = Rmax appear as half Gaussians 

instead of sharp edges of the propagator. 

When q-space imaging is combined with normal NMR imaging one can perform so-

called dynamic microscopy experiments, a term which was first named by 

Callaghan (2). In conventional imaging the signal in time t evolves under the 

influence of a gradient G encoding for position (in two dimensions). Diffusion and 

flow in the direction of the imaging gradients might introduce extra signal 

attenuation, if the imaging gradients are of significant size compared to the PFGs. 

However, this extra signal attenuation, if any, will not vary as a function of the PFGs 

but will be equal for every step in q-space. Therefore the imaging gradients will not 

effect the shape of the propagator. So incorporating the well-known k-space 

description for imaging 

5(k) = Jp(r )exp(-/2flk • r)dr [2.8] 

with k = y<5G/2;nn Eq. [2.4] the total signal as a function of k- and q-space is 

13 
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S(k,q)= jp(r)exp(i2^»r)jP(R,A)exp(i2mi»R)dRdr [2.9]. 

The result of such a microscopic displacement measurement is a series of 

conventional images, obtained after a two dimensional Fourier Transform with 

respect to k, which contains the propagator of the spins after Fourier Transform 

with respect to q in the third dimension. 

Materials and Methods 

The pulse sequence 

Figure 2.1 shows an outline of the Pulsed Field Gradient Turbo Spin Echo (PFG 

TSE) pulse sequence. This sequence is a combination of two techniques: the 

Pulsed Field Gradient Carr Purcell (PFG CP) sequence (19) and the Turbo Spin 

Echo technique, also known as RARE (9), originating from the idea to use multiple 

echoes to phase-encode the NMR-signal (7). The improvement of this sequence 

compared to previous reports on PFG TSE (10) involves the ability to maintain a 

constant amplitude and phase throughout the echo train. This is the property that 

enables the combination of encoding for flow with PFGs and decreasing the 

acquisition time with the TSE technique. Below a short description of the sequence 

follows. 

In the first part of the sequence a selective 90° pulse induces magnetization 

perpendicular to the static magnetic field in a selected slice. This magnetization is 

encoded for displacement by two ramped PFGs in the slice direction. The 

amplitude of g is varied from - gmax via zero to + gmax-i in m steps. In calculating the 

effective duration 8 of a PFG, one ramp is included. A Can be varied by changing 

the first echo time U1 and additional 180° pulses with variable spacing tau (20) can 

be inserted between the two PFGs. The signal is not stored along the z-axis during 

A-8 as in a Stimulated Echo (STE) sequence (21, 22), but remains in the xy-plane. 

In the xy-plane the additional 180° pulses are used to overcome susceptibility 

problems by refocusing the signal. The XY-8 phase scheme (xyxyyxyx)n is used to 
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avoid losing the phase dispersion imposed by the first PFG in the time between the 

two PFGs due to r.f. pulse imperfections (19, 20). 
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Figure 2 . 1 : The Pulsed Field Gradient Turbo Spin Echo pulse sequence. All directions show a pair 

of crusher gradients around the first (train of) 180° pulse(s). In the direction of the displacement 

encoding PFGs (the slice direction) the crushers are negligible compared to the PFGs. 

In the second part of the sequence the displacement encoded complex NMR-signal 

is phase-sensitively recorded in a train of spin-echoes. The cumulative error of 

imperfect 180° pulses is now overcome by using an MLEV-4 (x -x -x x)n phase 

pattern in the pulse train, which performed best with the used instrumental set-up 

(23). The use of spin-echoes compared to gradient-echoes has the advantage that 

the decay in signal amplitude of the echoes in the train is governed by T2 instead of 

T2*, which is the case in an EPI-experiment (12, 15). This advantage turns into an 

absolute necessity if samples with very short T2*s are studied. The susceptibility 

problems in plants can only be overcome by using a spin-echo train. The 

combination of short hard 180° pulses (24 u\s) and strong, fast switching gradients 

(100 [is ramps) enables short echo times (4.60 ms) at a spectral width of 50 kHz 

and 128 sample points. The receiver acquires data with a high duty cycle (2.56 ms 

acquisition in every 4.60 ms echo). The signal attenuation due to the short T2* is 

negligible compared to the controlled signal attenuation resulting from the high read 

out gradient to ensure that the observed resolution of the image is the same as the 

calculated resolution (24, 25). 
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Microscopic Displacement Imaging 

The number of echoes in the r.f. pulse train used for phase encoding the NMR-

signal (the turbo-factor tf) is variable and is determined largely by the T2 of the 

sample. Figure 2.2 shows the k-space raster for an experiment in which 8 scans 

with 32 echoes form two images. The center of k-space, around ky = 0, is sampled 

with the first two echoes of the 8 scans. All subsequent echoes are placed 

symmetrically around ky = 0. This way, the T2 relaxation in the echo train leads to a 

stepped decrease of the signal amplitude in k-space from ky = 0 to the borders of 

ky. The choice in the number of echoes is a compromise between measurement 

time and resolution. If too many echoes are used, the signal of those pixels with 

short T2S decays too much resulting in a heavy filtering in the ky-direction: the 

intensity of the pixel containing water with the short T2s is distributed over 

neighboring pixels in the phase encoding direction. Different trajectories through the 

ky-direction should minimize this artificial spreading (26). Furthermore, to reduce 

unwanted recombination of phase encoding gradients every echo is phase encoded 

differently from its neighboring echoes. This is possible by rewinding the phase 

gradient after each echo (27). 
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Figure 2.2: The k-space raster for a 128 x 128 image obtained in 8 scans. The first echoes of the 

eight scans form the center of k-space for the odd echoes image (a), the second echoes of the eight 

scans form the center of k-space for the even echoes image (b). The third and all other odd echoes 

are placed symmetrical around the center of the k-space raster for the odd echo image, just like the 

fourth and further even echoes are placed symmetrical around the center of the k-space raster for 

the even echo image. 
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It should be noted that the phase of the odd and even echoes is not exactly the 

same but remains constant for both types of echoes throughout the echo train. 

Therefore the odd and even echoes are separately phase-encoded to form two 

completely separate images (see k-space trajectory in Fig. 2.2). Using e.g. a tf of 

32 means that for images of n2 pixels 2n/tf scans are acquired in which 16 odd and 

16 even echoes are used for phase encoding the signal, resulting in two n2 complex 

images: one from the even and one from the odd echoes. After phase correction, 

the two complex images are summed to increase the SNR. 

In the first and second part of the sequence hard 180° pulses are used, since they 

are short. Residual magnetization of the hard pulses in the xy plane is suppressed 

with gradients: crusher pairs are applied in three directions. In the direction of the 

displacement encoding PFGs the crushers are of negligible size compared to the 

PFGs. The dephasing read out gradient is applied before the first 180° pulse, so 

refocusing of initial magnetization of the soft 90° pulse will not occur at the same 

time as any residual magnetization from the hard pulses in the read out direction. A 

disadvantage of using hard 180° pulses instead of soft pulses in combination with 

slice gradients is that the time between scans cannot be used to measure a 

different slice, because the whole sample is excited with the pulses. A multislice 

experiment is still possible but requires different measurement conditions (longer 

echo times or larger spectral width) as a single slice experiment (28). 

If averaging is necessary to increase the SNR of the images DC artifacts are 

subtracted by taking an even number of averages in which the phase of the soft 

90° pulse is shifted by n for every scan. If averaging is not performed a DC-

correction is made by subtracting the mean level where no signals are present from 

the echoes. 

Measurement objects and spectrometer 

Three objects were used to test and illustrate the possibilities of the pulse 

sequence: two phantoms and a tomato plant. The first phantom consisted of six 

small test tubes filled with water, doped with different concentrations of MnCI2 to 

vary the T2. This was done in order to study the effect of the different T2S on the 

quality of the TSE images and the effect on the single pixel propagators. The 
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second phantom, used to evaluate the accuracy of measuring flow with the PFG 

TSE imaging sequence, was a test tube (i.d. 3.0 cm) filled with doped water (tap 

water with CUSO4). Inside the test tube with stationary water was a second, empty 

test tube and a third, flexible, looped tube with water passing through the r.f. coil 

two times: flowing up and down. The flow rate through the flexible tube was 

controlled with a Waters 4000 HPLC pump (Waters Corporation, Milford, 

Massachusetts, USA). The final object was a 60-cm tall, ten weeks old, tomato 

plant. The plant, including pot, was put in the instrumental set-up (light intensity 

approx. 150 Lux, relative humidity 65% and air temperature 26°C) two days before 

measurements and was flowering during the measurement. 

The spectrometer was an SMIS console (SMIS Ltd., Guildford, Surrey, UK), 

operating at 20.35 MHz, equipped with an electromagnet (Bruker, Karlsruhe, 

Germany), which generates the 0.47 T field over a 14 cm air gap and is stabilized 

by the use of an external 19F lock unit (SMIS). The phantoms and the tomato plant 

were measured in a custom-engineered gradient and r.f. probe (Doty Scientific Inc., 

Columbia, South Carolina, USA) with a 45 mm (i.d.) cylindrical central bore, 

accessible from both ends. The 48 mm solenoid r.f. coil is surrounded by a set of 

actively shielded gradients (maximum strengths are 0.60, 0.51 and 0.60 T/m for the 

x, y and z-direction, respectively). For the measurements on the tomato plant the 

probe's r.f. coil was detuned and an extra solenoid r.f. coil with an i.d. of 15 mm, 

directly wrapped around the plant stem, was inserted in the 45 mm bore gap of the 

gradient probe, increasing the SNR by a factor of approx. 48/15 = 3 (29). 

Signal processing 

A dataset of m images with n2 pixels obtained with the PFG TSE pulse sequence 

contains three dimensions of complex data. The first dimension contains n sample 

points in which one echo is read out. The second dimension is composed of a 

number of views (2n/tf) and echoes (tf), which are necessary to form the total of n 

phase encoding steps for two images. The third dimension holds the m PFG steps. 

The primary data handling involves reshuffling the different views and echoes into n 

phase encoding steps for two images in the correct order with respect to ky. The 

complex k-space data is Fourier Transformed and here the main reason for 

obtaining two complete complex images emerges: the image constructed from the 
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odd echoes is shifted slightly in the phase encoding direction (less then one pixel) 

with respect to the image of the even echoes. A first order phase correction in the 

phase encoding direction before the Fourier Transform minimizes the difference in 

position of the sample in the two images. 

Subsequently, zero and first order phase corrections of the even and odd echo 

images at g = 0 are performed in both image directions and used to correct the 

displacement encoded images. Furthermore, a linear phase shift of the total images 

with respect to g is caused by a PFG-dependent B0 field shift and is corrected by 

zeroing the phase of stationary water either in a reference tube or in the studied 

object. Finally, the PFG-direction or q-space data is zerofilled once and Fourier 

Transformed to form a complex propagator for every pixel in the even and odd 

images. The propagators of the odd images are mirrored and shifted by one point 

to enable the addition of the odd and even images to one final image set (so-called 

propagator images). The real part of this set contains the propagators whereas the 

imaginary part only contains noise. The width of the displacement axis of the 

propagator is determined by \jygs,ep8. In the 3D FT no filtering is applied. All data 

handling is performed in IDL (RSI, Boulder, Colorado, USA). 

Results 

The phantoms 

The T2 values of the six test tubes in the first phantom varied over a range of three 

decades. To measure these T2s we used a multi-echo experiment with a train of 48 

echoes (echo time n*4.6 ms) to obtain a series of images with decreasing intensity. 

For every pixel in the images the real part of the complex signal attenuation (after 

phase correction) in the echo train was fitted to a mono-exponential decay to 

calculate values for T2 and the initial signal amplitude (23). Table 2.1 contains the 

calculated values of mean T2 and initial signal amplitude and standard deviations 

for every tube: T2 values range from 5.4 msec to 1.5 sec. The mean signal 

amplitude for every tube was calculated from only those pixels (around 45 for every 

tube) that were completely filled with water: we did not use pixels near edges to 
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exclude partial volume effects. Since partial volume effects do not significantly 

influence signal attenuation we did use partially filled pixels to calculate T2 values; 

for the mean T2 values around 80 pixels were used for calculations. In the 

calculated mean amplitudes the amplitudes of tubes II up to VI are comparable. 

Table 2 . 1 : Mean values and standard deviations (SD) of the following calculated parameters for the 

six different tubes in the first phantom: the T2, the signal amplitude at the moment of excitation (amp), 

the self-diffusion constant in the propagator (D,) and the self-diffusion constant in the Stejskal-Tanner 

plot (D2). 

tube 

I 

II 

III 

IV 

V 

VI 

[MnCIJ 

mmol/l 

0.0 

0.2 

0.4 

0.8 

2.5 

5.0 

T2 

ms 

1.5 x103 

118 

59.8 

29.2 

8.3 

5.4 

SD 

ms 

4.5 x103 

3 

2.1 

1.3 

1.7 

0.5 

Amp 

a.u. 

10.2 

25.8 

26.1 

24.6 

22.7 

23.8 

SD 

a.u. 

0.6 

1.1 

1.1 

1.4 

1.8 

3.4 

D1 

1ffW/s 

2.20 

2.19 

2.18 

2.23 

2.18 

2.08 

SD 

1ffW/s 

0.16 

0.13 

0.18 

0.13 

0.16 

0.29 

D2 

KTW/s 

2.20 

2.24 

2.27 

2.37 

2.30 

1.97 

SD 

W9m2/s 

0.19 

0.13 

0.17 

0.22 

0.30 

0.40 

Only tube I shows a lower amplitude, because of partial saturation: the low signal 

intensity and the long T2 (and therefore long T1) compared to tr result in an 

inaccurate estimation of T2 and an underestimated calculated amplitude (see Table 

2.1). 

Figure 2.3a shows an image of the same six tubes filled with doped water, acquired 

with the PFG-TSE sequence at g = 0. Although the first echo in the experiment is at 

13.0 ms after excitation, one can still observe tube VI with a T2 of 5.4 ms. The effect 

of smearing of these short T2s in the vertical, phase encoding direction of the 

images is clear in tube V and VI and some vertical ghosting is present around tube 

IV and V (maximum intensity around 7% of maximum intensity in the tube). 

Subsequently, we obtained propagator images for the six tubes phantom and 

subjected all propagators to a non-linear least-squares fit to a Gaussian function 

(Eq. [2.5]) using the Levenberg-Marquardt method (30). To calculate the diffusion 
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constant D from crwe used Eq. [2.6]. These results are presented in Fig. 2.3b. The 

data from the PFG-TSE experiment was also analyzed in the same manner as 

proposed by Stejskal and Tanner (Eq. [2.2], {11)): a weighted least-squares linear 

fit of ln(s(g)/S(o)) to y1g2S2(A-S/3) for every pixel resulted in a D map. The mean 

D and its standard deviation (SD) for each tube in the images is summarized in 

Table 2.1. We take 2.20 x 10~9 m2/s to be the self-diffusion constant D for free 

water. 

Figure 2.3: Images of six tubes with doped water, (a) The real part of the complex signal at g = 0 of 

a PFG-TSE experiment, (b) D for every pixel, calculated through Eq. [2.5], with a derived from the fit 

to the propagator. Parameters: Image size 128 x 128 pixels, field of view (FOV) 55 mm, t«,1 13.0 ms, 

U2 4.6 ms, A 6.26 ms, 8 3.5 ms, tr 480 ms, slice thickness 3 mm, 16 PFG steps, PFGma)( 0.457 T/m, 

tf 16, measurement time 4 min 23 s, T 24°C. 

Propagator images of the second phantom (Fig. 2.4a) were fitted to Eq. [2.5]. The 

propagators of three pixels (solid lines), one pixel with stationary water, one pixel in 

the middle of the tube with water flowing up and one pixel in the middle of the tube 

with water flowing down, with their fits (dashed lines) to the Gaussian function are 

displayed in Fig. 2.4b. Since displacement caused by coherent flow is proportional 

to A, the position p of the fit to the Gaussian function corresponds to the mean 

displacement of the water in the observed pixel within A. Figure 2.4c displays p for 

every individual pixel of the slice through the phantom. The maximum displacement 

of the water flowing up and down through the slice was measured at 60.8 and 58.9 

urn within A, respectively. These values correspond to linear flow velocities of 4.76 

and 4.62 mm/s. The forced water volume flow of the pump was set to 16.7 mm3/s, 

which, assuming a laminar, parabolic flow profile exists within the tube (i.d. 3.0 

mm), results in a maximum linear velocity of 4.72 mm/s. 
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Figure 2.4: Summary of data of the phantom with stationary and flowing water, (a) An image at g = 

0, perpendicular to the axes of the tubes, (b) The propagators of three individual pixels (solid lines) 

and their fits to the Gaussian function (dashed line). One pixel contains stationary water, one pixel 

with maximum flow up and one with maximum flow down through the slice, (c) Mesh plot of the 

spatial distribution of displacements. The countercurrent flow of water results in two anti-symmetrical 

parabolic profiles in the tube with flowing water. Parameters: FOV 40 mm, t«,1 20.2 ms, te2 4.8 ms, A 

12.76 ms, 8 4.5 ms, tr 1700 ms, slice thickness 3 mm, 32 PFG steps, PFGmax 0.385 T/m, tf 32, 

measurement time 16 min 30 s, T24°C, volume flow 1.00 ml/min. 

Additionally Eq. [2.1] predicts a linear relation between the phase of the NMR-signal 

and the displacement of the spins in time A. When the phase of the signal of the 

center of the tubes was fitted to Eq.[2.1] we found a maximum linear velocity of 

4.81 mm/s (flowing up) and 4.52 mm/s (flowing down). The correct value should be 

4.72 mm/s, as reported earlier. 

The Tomato Plant 

The most demanding object in terms of time resolution and spatial resolution, but 

also the most interesting object in terms of dynamics presented here is the stem of 

a tomato plant. Figures 2.5a and 2.5b show single parameter images of the 

amplitude and T2 of the stem of the tomato plant, acquired in the same manner as 

described for the first phantom. The TSE image at g = 0 is shown in Fig. 2.5c. One 
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can observe that the stem mainly consists of spongy parenchyma with large cells, 

which results in high values for T2. In the center of the stem a cavity is visible where 

no signal is detected. The outer rings of the stem, from the ring with lower intensity 

near the middle and three broadened regions visible in the amplitude image, up to 

the surface of the stem contain transport vessels with supporting tissues and fibers. 

T2 values in the outer rings show more diversity because of the different cell 

structures and sizes (37), which occur there. The dot on the lower right side of the 

images is a reference tube with doped water. The reference tube axis is not exactly 

perpendicular to the image plane so its image is somewhat elliptical. 

The pixel size of this image-set containing the single pixel propagators is 117 x 117 

x 3000 \im. From microscopic studies we know that the internal diameters of the 

xylem vessels in the stem range from approximately 10 to 160 |im (32). Distances 

between individual xylem vessels are in the same order of magnitude. 

2500 0 750 

Oum 11.4 urn 22.8 |im 34.2 nm 

Figure 2.5: Images of a transverse slice through the stem of the tomato plant, (a) A calculated 

amplitude image, (b) A calculated T2 image, (c) A TSE image at g = 0 of the real signal amplitude 

after phase-correction, (d) Images of the real signal amplitude at calculated displacements of 0, 11.4, 

22.8, 34.2 and 45.6 urn. The shown signal intensities are in arbitrary units. Parameters a+b: FOV 14 

mm, te1 8.6 ms, t.,2 5.2 ms, tr 1500 ms, slice thickness 3 mm, acquisition time 32 min, T 26°C. Extra 

parameters c+d: FOV 15 mm, U 17.2 ms, A 9.56 ms, 8 4.5 ms, tr 800 ms, 16 PFG steps, PFGmax 

0.457 T/m, tf 32, measurement time 17 min 8 s. 
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Since most xylem vessel radii are smaller than the pixel size there will probably be 

no pixels in the images that contain only flowing water. Using the information 

contained in the propagator images,, images can be constructed representing the 

propagator intensity for a certain displacement. A series of such images (Fig. 2.5d) 

gives an overview of the water displacement in the slice. In this way one can detect 

three areas with pixels with low amplitudes at 0 urn displacement but high intensity 

at larger displacement. The pixels in these areas resemble volume-elements in 

which water is transported upwards in the plant and they coincide with the regions 

with active xylem vessels of the tomato plant (32). 

The propagator of one pixel in the active xylem area is displayed in Fig. 2.6, 

together with the propagator of a pixel in the reference tube. The propagator of the 

pixel in the xylem area shows displacements within A up to 30 (j,m, which 

corresponds to a flow velocity of 3.1 mm/s. The shape of the 'flowing' part of this 

propagator is not simply a Gaussian broadened step function, which would be the 

case for laminar flow in a single xylem vessel only (Eq. [2.7]). Apparently the 

volume element corresponding to the pixel with the propagator shown in Fig. 2.6 

contains more than one vessel with flowing water. It might hold a part of a second 

vessel with flowing water that causes more signal than expected in the lower 

displacements (10 to 20 urn) of the propagator. 

P(R,A) 
(a.u.) 

0 20 40 
Displacement (nm) 

Figure 2.6: The propagator of a pixel in the reference tube (dashed line) and a pixel in one of the 

three areas of the tomato plant that show flow (solid line). 

24 



Chapter 2 

Discussion and Conclusions 

The amplitude images (Figs. 2.3a, 2.4a and 2.5c) of the different objects show that 

the TSE part of the sequence produces real images without unexpected artifacts. 

This means that the amplitude and phase of the NMR-signal throughout the echo 

train is constant which is a prerequisite for calculating real images and for 

monitoring flow-induced phase shifts within the echo train. 

The calculation of D of the stationary water in the six tubes of the first phantom by 

the fit of the propagator to a Gaussian function resulted in values around the value 

of D for free water at 24°C (Table 2.1). The error in D, which is 8% or smaller for 

tubes 1 to 5, remains well within a standard deviation (SD) of 10%. Since D is 

proportional to g2 (Eq. [2.2]) and the gradient noise can be up to 3%, deviations in D 

up to 6% are the result of gradient noise. 

The calculation of D by the Stejskal Tanner (ST) analysis should result in 

approximately the same values for D as obtained with the propagator analysis, 

because the same data is used for both calculations. In the measurements reported 

here the ST analysis gives less accurate results. In the propagator analysis three 

parameters are fitted to the data, which is one parameter more than in the ST 

analysis. This third parameter p, the position of the Gaussian-shaped propagator, is 

not always zero as can be seen in Fig. 2.4c. The ST analysis doesn't have a 

parameter to correct for this error which of course is also present in the data before 

the FT and this error results in a higher SD in D, despite the fact that introducing 

extra fit parameters normally results in higher SD's. 

From the results in Fig. 2.3a one can see that the very short T2s cause a smearing 

of the signal intensities in the vertical, phase encoding direction. The shape of the 

propagator of that volume-element, however, remains the same as the propagator 

originating from the pixels with a longer T2, though its total amplitude is smeared 

over the neighboring pixels. Tube VI of the first phantom is an example of a sample 

with volume-elements with very short T2s (5.4 ms). The calculation of D by 

propagator analysis is still rather accurate, albeit with a higher SD. In homogeneous 
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samples, this poses no problem. Problems can emerge if two neighboring volume-

elements both have a short T2 and a different displacement-behavior: in adjoining 

pixels of a TSE-image the shape of the propagator is mainly defined by the 

displacement-behavior of the corresponding volume-element, but in this special 

case both pixels will experience substantial interference from each other. One might 

consider lowering the spatial resolution to merge pixels with water with large and 

small T2s together. This could also be a strategy in quantifying the propagators of 

all pixels in a slice to calculate the total volume flow through the slice (33). 

The second phantom shows that besides diffusion also flow information is well 

preserved in the echo train. An unstable amplitude and phase in the echo train 

would obscure any displacement correlated phase shift, enforced by the PFGs. The 

measured maximum flow velocities (4.62 and 4.76 mm/s) are accurate within 2%, to 

the actual maximum flow velocities in the tube, as driven by the pump (4.72 mm/s). 

The areas with water transport in the xylem of a tomato plant emerge after 

constructing images at different positions on the displacement axis (Fig. 2.5d). 

These three areas can also be recognized in the T2 image. In the T2 image (Fig. 

2.5b) the areas show a high T2-variance, which may be caused by large differences 

in T2 of the water in a xylem vessel and water of supporting or accompanying cells. 

One pixel can contain more vessels with varying diameters than another, resulting 

in different T2s. 

The shape of a propagator from a volume-element in the xylem area is not a 

summation of a symmetrical Gaussian shaped peak at zero displacement and one 

step function, broadened by diffusion. At the obtained resolution one pixel 

represents one or more xylem vessels and/or a part of one or more xylem vessels 

with accompanying tissue. This can result in a range of propagator shapes that are 

not known in advance and thus obstructs the possibility to fit the propagator to a 

model function for quantification. The possibility to obtain propagators with high 

spatial resolution, acceptable accuracy and a realistic measurement time demands 

the need for a model-free quantification of the propagator formalism (33). 
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The pixel size and the amount of time spent on acquisition of the images of the 

tomato plant were small enough to justifiably entitle the PFG TSE technique as a 

fast microscopic displacement imaging technique. If averaging is not necessary, 

and one would use 16 g steps, tr 1 s, tf 32 and image size 128 x 128, the 

acquisition of a complete set of propagator images would take 2 min. and 8 sec. At 

0.47 T an accurate map of water displacements in a tomato plant stem with a 

resolution of 117 x 117 x 3000 urn could be obtained in 17 min. and 8 sec. 
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Microscopic imaging of slow flow and diffusion: a pulsed 

field gradient stimulated echo sequence combined with 

turbo spin echo imaging 

T.W.J. Scheenen, F.J. Vergeldt, C.W. Windt, P.A. de Jager and H. Van As 

In this paper we present a pulse sequence that combines a displacement-encoded 

stimulated echo with rapid sampling of k-space by means of turbo spin echo 

imaging. The stimulated echo enables the use of long observation times between 

the two pulsed field gradients that sample q-space completely. Propagators, 

constructed with long observation times, could discriminate slowly flowing protons 

from diffusing protons, as shown in a phantom in which a plug flow with linear 

velocity of 50 |xm/s could clearly be distinguished from stationary water. As a 

biological application the apparent diffusion constant in longitudinal direction of a 

transverse image of a maize plant stem had been measured as a function of 

observation time. Increasing contrast in the apparent diffusion constant image with 

increasing observation times were caused by differences in plant tissue: although 

the plant stem did not take up any water, the vascular bundles, concentrated in the 

outer ring of the stem, could still be discerned because of their longer unrestricted 

diffusional pathways for water in the longitudinal direction compared to cells in the 

parenchymal tissue. In the xylem region of a tomato pedicel flowing water could be 

distinguished from a large amount of stationary water. Linear flow velocities up to 

0.67 mm/s were measured with an observation time of 180 ms. 

Also published in Journal of Magnetic Resonance 151 : 94-100 (2001) 
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Introduction 

Already in 1965 Stejskal and Tanner demonstrated that pulsed magnetic field 

gradients (PFGs) could be used in nuclear magnetic resonance (NMR) to probe the 

displacement of protons in a sample (7). Their well-known equation describes the 

attenuation of the normalized NMR-signal S(g) of diffusing protons as a function of 

amplitude (g), spacing (A) and duration (8) of the two PFGs, and as a function of the 

diffusion constant D of the protons: 

S(g)/S(0) = exp(- fg2S2D(A - S/3)) [3.1] 

where y is the gyromagnetic ratio of protons. Apart from the NMR-signal amplitude 

attenuation as a result of diffusion, the phase of the NMR-signal shifts when the 

protons move in the direction of the PFGs during A. Karger and Heink measured 

the NMR signal as a function of the intensity m of the PFGs in one direction (m = 

ySg, also known as q-space with q=y8g/2rc (2)), and Fourier Transformed the 

complex NMR-signal as a function of m into the averaged propagator P(R,A) (3). An 

averaged propagator is a spectrum representing the distribution of spin 

displacements (R) in the direction of the PFGs within A. 

Probing displacements with PFGs can be combined with imaging to construct 

propagators for every pixel in an image (2,4-6). Pixel-propagators can represent 

different proton pools. In transverse images of plant stems for instance, pixels in the 

xylem tissue that transports water from roots to shoot and leaves can contain 

flowing water in a xylem vessel surrounded by stationary water outside the vessel 

(6,7). The pixel-propagator will show stationary water as a symmetrical part of the 

displacement distribution centered at zero displacement and flowing water as a part 

of the displacement distribution with a net displacement (cf. Fig. 3.1c). Recently a 

method has been presented to quantify the flowing part of the propagator of every 

pixel in an NMR-image without assuming any model for the flow profile of the 

flowing water (7), in contrast to fitting a model function to the NMR-signal 

modulation by a number of q-steps, assuming the occurrence of one complete 

laminar flow profile in one pixel (8-10). 

30 



Chapter 3 

With both quantification methods problems arise when one wants to study slow 

flow: one needs long observation times (A) to distinguish between displacements 

originating from slow flow and displacements originating from free diffusion. This 

will be evident from the following discussion. The root mean square (rms) 

displacement a due to diffusion, observed by NMR, is proportional to the square 

root of the corrected observation time A-8/3: 

cr = ^2D{A-S/3) [3.2], 

whereas the mean displacement r of flowing protons is proportional to A itself: 

r = vA [3.3], 

in which v is the mean flow velocity of the flowing protons. Suppose one wants to 

distinguish water, flowing with a laminar flow profile at a mean velocity of 200 |j.m/s, 

from stationary water at 20°C (D of free water at 20°C is 2.20 x 10"9 m2/s, no 

exchange between flowing and stationary water, volume fraction flowing water 0.25, 

8«A). With A of 15 ms f would be 3.0 urn, whereas a would be 8.1 um, which 

makes a distinction between flow and diffusion hardly possible (Fig. 3.1a) on the 

basis of displacements. Going up to 100 ms observation time r and ex would be 20 

and 21 |xm resp. (Fig. 3.1b) and at a value of A of 1 second f and crbecome 200 

P(R,A) „ P(R,A) P(R,A) 

a R(^rn) b R(Rm) c R(l-im) 

Figure 3 . 1 : Three simulated propagators of 75% stationary water and 25% flowing water. The 

diffusion constant of the stationary and flowing water is 2.0 x 10"9 m2/s, the mean linear flow velocity 

of the flowing water is 200 |a.m/s. No exchange between stationary and flowing water and no radial 

diffusion over the laminar flow profile has been assumed. A-values for (a), (b) and (c) are 15,100 and 

1000 ms resp. The solid lines are the calculated propagators, the marks indicate the sampling of the 

propagator with a hypothetical experiment with 32 PFG-steps. 

31 



Microscopic Imaging of Slow Flow and Diffusion 

and 66 |xm. In this last case the flowing part of the propagator becomes clearly 

visible (Fig. 3.1c). Transversal diffusion of the water is accounted for in these 

theoretical examples but radial diffusion, perpendicular to the flow direction, is 

neglected. Incorporating radial diffusion would mean that water molecules move 

across the laminar, parabolic flow profile, changing the shape of the propagator and 

decreasing the already small maximum displacement of the flowing water, although 

f would remain unaffected (11). 

If long observation times are used in PFG experiments, the time from signal 

excitation to detection of the first echo will also be long. In this case the need for a 

stimulated echo (STE) sequence, instead of a spin echo (SE) sequence emerges. 

Already in 1985 the STE had been used in an imaging sequence (12) and was 

soon combined with PFGs to measure diffusion (13) and flow (14). Since the Ti is 

always (often substantially) longer than the T2, it is advantageous or even 

necessary during long observation times to store the magnetization along the z-

axis, where magnetization can evolve according to Ti: despite the inherent loss of a 

factor of 2 in signal to noise ratio (SNR) in a STE amplitude, this amplitude can still 

be larger than a SE amplitude. Recording a complete set of pixelpropagators with 

only one echo per scan is very time-consuming (4,5). In order to decrease the total 

acquisition time, we combined the STE with a turbo spin echo (TSE) train. The 

displacement-encoded STE is modulated in the TSE train to obtain a TSE image 

for every displacement-encoding step. Since an STE pulse sequence also 

generates spin echoes (SE of first and second 90° pulses, SE of second and third 

90° pulses (15), SE of first and third 90° pulses, and SE of first SE and third 90° 

pulse) a 180° pulse train behind a STE can also refocus these spin echoes 

producing unwanted spurious echoes in the echo train resulting in image ghosting. 

With appropriate phase schemes and spoiler gradients all spurious echoes are 

suppressed and acceptable TSE images can be obtained. As challenging 

applications of the STE TSE sequence we measured slow flow in a pedicel of a 

tomato and we constructed images of the apparent diffusion constant of a 

transverse slice of a maize plant stem as a function of observation time A. 
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The pulse sequence 

Figure 3.2 shows an outline of the Pulsed Field Gradient STimulated Echo Turbo 

Spin Echo (PFG STE TSE) pulse sequence. Alike its SE variant (6) this sequence 

uses PFGs to encode for displacement and the Turbo Spin Echo technique, also 

known as fast SE or RARE (16), to shorten imaging time. The difference is the use 

of a STE to store magnetization along the z-axis during A. As in the SE version we 

were able to maintain a coherent amplitude and phase throughout the echo train, 

so amplitude and phase-information, encoded with the PFGs, could be recorded 

throughout the TSE train. 

•4 
g»poii 

9 crush Qcrush 

a 
V 

signal 

VI to, 'Ate, 

Figure 3.2: An outline of the STimulated Echo Pulsed Field Gradient Turbo Spin Echo pulse 

sequence. A large spoiling gradient during Ud crushes magnetization in the xy-plane after the first 

two 90° pulses, whereas the crushers (gcrush) and the second PFG within the second Vz te1 period 

crush the free induction decay of the third 90° pulse. 

After the first slice-selective 90°x pulse the magnetization in the xy-plane is 

displacement-encoded with the first PFG. All spins in the coil experience the 

second, hard, 90°x pulse that stores half the magnetization of those spins, which 

experienced the first r.f. pulse, along the z-axis for a time tmid- All residual 

magnetization in the xy-plane (FID of hard pulse) is crushed with the spoiling 

gradient gsp0ii. After the third, hard, 90°x pulse that will induce the STE, 

displacement encoding is completed with the second PFG. The FID of the third 90°x 

pulse is crushed with the crusher pairs in the phase encode and readout direction 
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and with the second PFG. All gradient pulses in the sequence are ramped, in 

calculating the effective duration 5 of the stepped PFGs (amplitudes from -gm a x to 

zero to +gmax-i)> one ramp of 100 us is included. Possible extra signal attenuation 

due to diffusion between read-out gradients or crushers and differences in Ti and 

T2 in the sample will not vary as a function of PFGs, so the shape of the 

constructed propagators will only be determined by displacements of the spins 

involved. The TSE train after the STE phase-encodes every echo between the hard 

180° pulses individually, unwrapping the phase encode gradient after every echo. 

Since the magnetization in the xy-plane is encoded for displacement with the PFGs, 

the phase of the signal can have any value between minus and plus n, depending 

on y§g and the displacement of the observed spins within the labeling time. Alsop 

(17) described the problems of refocusing prepared magnetization in a multiple spin 

echo train and pointed out that it is crucial to either use pulses in the pulse train 

with flip angles as close to 180 degrees as possible or to modify the TSE part of the 

sequence in gradient and r.f. pulse amplitudes to prevent rapid signal amplitude 

decay and oscillations. Edzes et al (18) reported accuracy of observed T2 values in 

images of plant tissues (magnetization preparation with phase encode gradient) 

within 3% of its proper values as long as the 180° pulses were accurate within ±5°. 

By interactively adjusting the r.f. pulse amplitude, observing the pulse profile in the 

solenoid r.f. coil we were able to set and keep the refocusing pulses in the center of 

the coil at their correct value. The TSE part of the sequence, including the MLEV-4 

phase scheme of the 180° r.f. pulses and the k-space trajectories of the echoes is 

described elsewhere, including the signal processing of the data into pixel-

propagators for every pixel in an image (6). 

Phantom study 

To check whether this technique to construct pixel-propagators with long 

observation times is able to distinguish very slow flow from self-diffusion we 

measured the propagators of a phantom with stationary and slowly flowing water. 

Inside a glass tube with doped (0.1 mM MnCI2) water was another tube through 

which a capillary, filled with doped water, was pulled upwards with a syringe pump 
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(model YA-12, Yale Apparatus, Wantagh NY, USA). This created a perfect plug 

flow with a controlled and well-defined flow velocity (50.0 ± 0.2 um/s) surrounded by 

stationary water. The phantom was fixed in a dedicated solenoid r.f. coil (-19 mm 

inner diameter) inside a custom-engineered gradient probe (Doty Scientific Inc., 

Columbia, South Carolina, USA), controlled with an SMIS console (Surrey Medical 

Imaging Systems Ltd., Guildford, Surrey, UK). The 0.7 T magnetic field was 

generated with an electromagnet (Bruker, Karlsruhe, Germany), stabilized by the 

use of an external 19F lock unit (SMIS). 

Figure 3.3a shows an image of the water density of the phantom. This image is 

constructed by fitting a mono-exponential decay curve to the NMR-signal of every 

pixel in an echo train to calculate the NMR signal intensity at the moment of 

excitation (18). From a PFG STE TSE experiment we also constructed the 

propagator in the direction of the plug flow for every pixel of the image of the 

phantom. Because displacements of protons in the phantom in the direction of the 

PFGs are unrestricted, all pixel-propagators (including pixels inside the moving 

capillary) were subject to a non-linear least-squares fit to a Gaussian function with 

amplitude^: 

P(R,A)=Aexp R-f? I2 [3.4] 

using the Levenberg-Marquardt method (19). Figure 3.3b and c reflect the results of 

the Gaussian fit: an image of the position of the maximum of the fitted Gaussian 

(Fig. 3.3b), representing the mean displacement f of the water of the 

corresponding pixel and the diffusion constant D (Fig. 3.3c), calculated from a by 

Eq. 3.2. Using Eq. 3.3, r can be used to calculate v. In Fig. 3.3a two groups of 

pixels are indicated: 16 pixels in the center of the capillary and 49 pixels in the large 

tube. The mean values for v and D are 51 ± 8 um/s and 2.6 ± 0.1 x 10"9 m2/s for 

the pixels indicated inside the capillary. For the indicated pixels in the large tube v 

and D are 0 ± 7 um/s and 2.6 ± 0.1 x 10~9 m2/s respectively (given errors are 

standard deviations). The linear flow velocity of the water in the capillary (51 ± 8 

um/s) coincides with the velocity with which the capillary was pulled upwards with 
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the syringe pump (50.0 ± 0.2 um/s), although the standard deviation of the velocity 

is large (16%) due to a low signal-to-noise ratio of the experiment. The diffusion 

constant of the water inside the capillary is equal to that of the water in the tube: the 

D-values correspond to a sample temperature of 31 °C. 

49 pixels in tube 

16 pixels inside 
capillary 

0 1 a.u. -10 0 20|im 0 

Figure 3.3: Images of a phantom with stationary water and water in a capillary which is pulled 

through an empty tube at a velocity of 50.0 um/s. (a) Calculated image of the initial signal amplitude, 

(b) The position of the maximum of the Gaussian fit to the propagator of every pixel: the mean 

displacement r of the water, (c) The diffusion constant D, calculated from the characteristic width a 

of the Gaussian fit (Eq. 3.2). The grayscale bar in every image represents the indicated quantitative 

values for the different variables. Since the calculated initial NMR-signal amplitude is in arbitrary 

units, no values are indicated in image (a). In image (a) is pointed out which pixels are used to 

calculate the mean values and standard deviations of pixels in the capillary and pixels in the large 

tube containing stationary water. Mean T2 inside capillary 143 ± 5 ms, mean T2 in large tube 143 ± 2 

ms. Experimental parameters: 128 x 128 matrix, field of view 20 mm, slice thickness 3.0 mm, 

repetition time 2 s. Extra parameters (a): echo time in train 4.8 ms, 64 echoes, measurement time 17 

minutes. Extra parameters (b) and (c): 32 PFG steps, A 150.1 ms, 8 1.5 ms, PFGmax 0.217 T/m, echo 

time in train 4.4 ms, 32 echoes in TSE train, measurement time 19 minutes. 

Maize plant stem 

To test the pulse sequence with a biological sample a water-cultured maize plant 

stem was cut off its roots and put in the instrumental setup. Because of air inlet 

during cutting the maize plant did not take up any water. The strength of the 

technique is the possibility to use long displacement encoding times. So to study 

the longitudinal diffusion constant for every pixel in an image of the stem 

propagators in the direction along the plant stem were constructed with the 

following series of A-values: 15.1, 30.1, 50.1, 100.1, 175.1, 250.1, and 400.1 ms. 

Since the diffusional pathways of the water in the cells are restricted by the 
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boundaries or membranes from the different cell compartments the measured D 

depends on A and is now defined as the Apparent Diffusion Constant (ADC). In Fig. 

3.4d to j images of the calculated ADCs as a function of A are presented, next to 

images of the calculated water density (Fig. 3.4a) and the T2 (Fig. 3.4b) of the 

maize plant stem. Figure 3.4c is an optical micrograph of a different maize plant 

stem as an anatomical reference (after (20), page 418). The stem, below the apex, 

consists of homogeneous tissue of large parenchymal cells and scattered vascular 

bundles, visible in the water density image as high intensity dots, and in the T2 

image as dots with T2-values, smaller than those of parenchymal tissue. The 

majority of the vascular bundles are concentrated in the outer ring of the stem, 

clearly visible as a ring with smaller T2-values, in comparison with parenchymal 

tissue. In the NMR images two leaves embrace the stem. A reference capillary with 

doped water is clearly visible in the calculated water content image, but with a 

mean J2 of 21 ±2 ms (22 pixels in capillary) it is almost invisible in the T2 image. In 

Figure 3.4: Cross-sectional images of the maize plant stem, measured below the apex in the 

regions where the stem tissue consists of homogenous parenchymal tissue and scattered vascular 

bundles, (a) Calculated water content image, (b) Calculated T2 image, (c) Microscopic picture of a 

transverse coupe of a maize plant stem without stem embracing leaves (after (20), page 418). (d) to 

(j) Images of the calculated (Eq. 3.2) Apparent Diffusion Constant (in longitudinal direction, along the 

plant stem) as a function of the following A-values: 15.1, 30.1, 50.1, 100.1, 175.1, 250.1, and 400.1 

ms. The grayscale bar in image (b) reflects the indicated T2-values quantitatively, the bars in images 

(d) to (j) indicate ADC-values from 0 to 4.0 x 10"9 m2/s. Parameters (a)+(b) as in Fig. 3.3a and b. 

Parameters (d) to (j) as in Fig. 3.3c and d, but for every A-value 8, PFGmax and measurement time 

(averaging) have been adjusted to sample q-space correctly with a sufficient signal-to-noise ratio. 

Measurement time ranges from 34 to 102 minutes for A is 15.1 to 400.1 ms respectively. 
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the series of ADC images the reference capillary can be discerned up to a A-value 

of 100.1 ms, which is about 5 times the T2-value. The mean value for the ADC in 

the reference capillary does not change as a function of A although the standard 

deviation of the ADC increases because of the decreasing signal-to-noise ratio as 

the time from the first r.f.-pulse to the STE increases (see Table 3.1): because 

diffusion is unrestricted the ADC will resemble the intrinsic D of the water in the 

capillary. 

Table 3 . 1 : Mean value and standard deviation of the Apparent Diffusion Constant of 22 pixels in 

the reference capillary next to the maize plant stem as a function of the observation time A. 

A = 15.1ms A = 30.1ms A = 50.1ms A = 100.1ms 

D(10"9m2/s) 2.8 ±0.2 2.8 ±0.7 3.0 ± 0.4 3.0 ± 0.5 

In the plant stem hardly any contrast in ADCs can be seen at small A-values (image 

d and e), but as A increases, some contrast between the center of the stem and the 

peripheral ring, which is also visible in the T2 image, becomes clear. Actually, ADC-

values of all pixels in the stem decrease, which is even more evident in the 

histogram in Fig. 3.5, in which the amount of pixels that have a certain ADC are 

plotted versus the ADC itself for three A-values. The ADC-distribution becomes 

broader with a decreasing mean value: when A is small, water molecules will not 

meet restrictions in their vicinity so the ADC resembles the intrinsic D of the 

corresponding molecules. When A is larger, the chance that a water molecule will 

be restricted in its diffusional pathway gets larger and the ADC decreases. Tissue 

with small cells or cell compartments will impose more restrictions to the diffusing 

water molecules than larger cells or cell compartments, which is an origin of 

contrast in the ADC. Differences in cell size and cell size compartments in the 

maize stem are a reason why the ADC-histogram broadens with increasing A. The 

ADC of the pixels in the peripheral ring with mainly vascular bundles and pixels 

containing scattered vascular bundles in the parenchymal tissue does not decrease 

as much as the ADC of pixels in the parenchymal tissue itself: vascular bundles 

have longer unrestricted diffusional pathways in the longitudinal direction than cells 

in the parenchymal tissue have. T2-values of the peripheral ring and the scattered 
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vascular bundles are smaller than T2-values in parenchymal tissue (cf. T2 image in 

Fig. 3.4b) but, as mentioned earlier, differences in T2 of different tissues in the stem 

are not reflected in the ADCs of the corresponding tissues. Relaxation times have 

been linked to diffusion constants in a (time-consuming) PFG experiment in which 

the echo train is not used for fast imaging, but for calculating T2-values (21). 

Combining an echo train for calculating T2-values with measuring the propagator for 

every pixel would also take a lot of acquisition time, but it could link different "re

values to different displacements (either due to flow or diffusion) of the water for 

every pixel. 
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Figure 3.5: The distribution of the ADCs of the images presented in Fig. 3.4 for three different A-

values: three histograms of the amount of pixels of the image of the maize plant stem belonging to an 

ADC-value indicated on the x-axis. 

Pedicel of a tomato 

The final application presented here is the measurement of a small pedicel of a 

tomato. We cut off a pedicel (21 mm length, 4 mm diameter) from a tomato, 

attached a silicone tube to the pedicel on the plant stem side and installed it in a 

test tube with water in the instrumental setup. A small pressure was applied to the 

pedicel with a water column in the silicone tube of 1.8 m (1.8 m water pressure 

corresponds to 17.6 kPa) to induce flow through the xylem vessels. The inset in Fig. 

3.6 shows two images of the pedicel: the top image is the total integral of the 
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images from displacements -121 |im to 41 |j.m from the pixel-propagators, whereas 

the bottom image is the signal intensity at a displacement of -121 \im only (the 

scale of bottom image is 15 times smaller than the scale of the top image). The 

contrast in the top image is caused by TV apart from Ti-weight in the time from the 

second to the third 90° pulse, tissue with long Ti-values will be partially saturated 

with the used repetition time of 1 s. In the top image different tissues in the pedicel 

can be distinguished: the outer ring with a low intensity is the cortex, the first bright 

ring is the phloem, the second ring with low intensity is the xylem and in the center 

the pith is located. The bottom image only has intensity in a few bundles in the 

xylem: the normalized averaged pixel-propagator from the corresponding pixels is 

the propagator in Fig. 3.6. Apart from the large amount of stationary water, the 

shoulder with negative displacements is clear: flowing water in the xylem of this 

pedicel has linear flow velocities up to 121 |j.m in 180 ms (approx. 0.67 mm/s). 

P(R,A) 

-GOO -400 -ZOO 200 400 600 

Rfcim) 

Figure 3.6: The normalized averaged propagator from pixels in the xylem region of a pedicel of a 

tomato. The shoulder with negative displacements corresponds to water that flows with maximum 

linear flow velocities of 0.67 mm/s (the sign of the displacements merely indicates the direction of 

flow). The top image in the inset is the integral image of all displacements between -121 en +41 urn: 

a reference capillary is attached to the silicon tube (the large ring with no intensity around the pedicel) 

and placed in a test tube with water. The bottom image is the image at a displacement of -121 urn, 

showing bundles with flowing water in the xylem. Experimental parameters: 128 x 128 matrix, field of 

view 15.0 mm, slice thickness 4.0 mm, repetition time 1.0 s, 32 echoes in TSE train, echo time in 

train 4.4 ms, 32 PFG steps, A 180 ms, 8 2.0 ms, PFGmax 0.144 T/m, 32 echoes, measurement time 

17 minutes. 
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Conclusions 

The successful implementation of a stimulated echo in a PFG TSE imaging pulse 

sequence creates the possibility to construct propagators with observation times of 

several hundreds of milliseconds between the two displacement-encoding PFGs. 

These observation times are much longer than those that can generally be reached 

by PFG SE because Ti in biological tissues is usually much longer than T2, so 

sufficient signal is left for the stimulated echo and turbo spin echo train. Unwanted 

spurious echoes from the first three 90° pulses are successfully suppressed before 

the TSE part of the sequence by spoiler gradients. The use of accurate 180° pulses 

and an appropriate phase scheme of the 180° pulse train preserve a coherent 

phase in the echo train so amplitude and phase attenuation of the PFGs is retained 

throughout the TSE part of the sequence. In this way a fast imaging method is 

combined with a quantitative measurement of the displacement distribution of water 

in a pixel within long observation times. 

In the phantom study the long A-values enable a clear distinction between 

stationary water and water flowing with a plug flow profile at a velocity as low as 50 

(im/s. In a cut-off maize plant the use of a series of observation times ranging from 

15 to 400 ms revealed an increasing contrast in the ADCs of different tissues: mean 

values of the ADC-distributions decreased and ADC-distribution widths increased 

with increasing A. The averaged propagator of pixels with flowing water in the xylem 

region of a small tomato pedicel revealed an asymmetric shape: apart from a large 

amount of stationary water also flowing water with linear flow velocities up to 0.67 

mm/s could be discerned with an observation time of 180 ms. Tracking the 

development of ADCs of different tissues as a function of A (e.g. in different PFG 

directions for diffusion tensor measurements), together with the possibility to 

observe very slow flow can make the PFG STE TSE pulse sequence a useful tool 

in displacement studies in different scientific disciplines. 
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Addendum to Chapter 3 

The combination of a pulsed field gradient spin echo 

sequence with multiple spin echo imaging 

For micro-imaging of displacements of water in a packed capillary chromatography 

column we implemented a pulse sequence which combines motion-encoding 

pulsed field gradients with a multiple spin-echo imaging module (21). It is the 

unique feature of this approach that not only an amplitude attenuation but also 

phase-information is maintained over the whole echo-train at each value of q. 

Figure 3.7 illustrates the information of the multi-echo PFG-NMR experiment after 

Fourier transformation (FT) of S(k,q) with respect to k (see also Eq. 2.9). 

Horizontally shown in Fig. 3.7a is the modulation of the real part of the NMR images 

(after FT with respect to k) as a function of q, whereas the signals decay in the 

echo-train is displayed vertically. After FT with respect to q (zero-filling of the data is 

possible here) we obtain pixelpropagators Pav(R,A) for every echo in Fig. 3.7b. The 

signals decay in the echo-train is usually characterized by T2, but with a used 

nominal in-plane resolution of 40 x 40 urn the imaging gradients become large 

enough that this decay is also affected by the dispersive motion of the fluid 

molecules (18). In principle, such a multi-echo PFG-NMR imaging experiment can 

relate an initial signal amplitude and a characteristic decay time to any pixel and 

any displacement R. We used an additional multi-echo imaging experiment (i.e., q = 

0) with increased signal-to-noise ratio (40 averages and 20 echoes) to examine the 

characteristic decay time for each pixel in the column. No systematic differences in 

decay times could be retrieved and we used the mean value (32 ms) to filter signals 

in the echo-train for each pixel in order to add filtered signals when needed and 

increase the signal-to-noise ratio of the final pixel-propagators. 

Adapted from UI rich Tallarek, Tom W. J. Scheenen and Henk Van As; Macroscopic Heterogeneities in 

Electroosmotic and Pressure-Driven Flow through Fixed Beds at Low Column-to-Particle Diameter Ratio, 

Journal of Physical Chemistry B (2001), accepted 
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echo 4 
number 

echo 
number 

-160 -80 0 80 

Displacement 

Figure 3.7: Multi-echo PFG-NMR imaging experiment after Fourier transformation of the data with 

respect to k. a) 24 by 12 images of the packed capillary (24 q-steps and 12 echoes) demonstrating 

the modulation of the complex signals real part depending on q (horizontally) and echo number 

(vertically), b) 24 images after zerofilling in q-space from 24 to 72 steps and Fourier transformation 

with respect to q. The horizontal axis represents displacement space. 

Experimental parameters: 20 x 20 x 12 x 24 matrix, 0.8 mm field of view, slice thickness: 6.0 mm, 0.8 

s repetition time, gmax: 0.31 T/m, 5 = 2.3 ms, A = 17.5 ms and echo time in train: 5.2 ms. 

With this experiment we tried to spatially resolve flow heterogeneities in the 

capillary column with an in-plane resolution of 40 \im. The slice thickness was set to 

6 mm because we expect the effects to be systematic along the column axis and 

consequently do not require a high spatial resolution in this third dimension. Thus, a 

reasonable signal-to-noise ratio and a sufficiently high resolution over the column 

cross-section (compared to the particle diameter, dp = 50 |i.m) could be achieved. 
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Figure 3.8: Added propagators comparing the fluid dynamics in wall and center positions of the 

capillary, a) A = 17.5 ms and b) A = 35 ms. Displacement distributions have been normalized by their 

surface area. Mobile phase: 103 M sodium tetraborate buffer (pH 9.13). 

The propagators from four added pixels representative for wall and center positions 

in the capillary are shown in Fig. 3.8. Data were collected from opposite edges of 

the capillary cross-section (wall region 1 and 2), and were zerofilled before FT with 

respect to q and normalized. The distributions show pronounced shoulders or even 

separate local maxima for fluid molecules in pixels closer to the column wall than 

pixels in the center of the capillary and the effects scale with observation time, but a 

lateral exchange of molecules between velocity extremes is also promoted. 
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Quantification of water transport in plants 

with NMR imaging. 

T.W.J. Scheenen, D. van Dusschoten, P.A. de Jager and H. Van As 

A new nuclear magnetic resonance imaging (NMRi) method is described to 

calculate the characteristics of water transport in plant stems. Here, dynamic NMRi 

is used as a non-invasive technique to record the distribution of displacements of 

protons for each pixel in the NMR image. Using the NMR-signal of the stationary 

water in a reference tube for calibration, the following characteristics can be 

calculated per pixel without advance knowledge of the flow-profile in that pixel: the 

amount of stationary water, the amount of flowing water, the cross-sectional area of 

flow, the average linear flow velocity of the flowing water and the volume flow. The 

accuracy of the method is demonstrated with a stem segment of a Chrysanthemum 

flower by comparing the volume-flow, measured with NMR, with the actual 

volumetric uptake, measured with a balance. NMR measurements corresponded to 

the balance uptake measurements with a rms error of 0.11 mg/s in a range of 0 to 

1.8 mg/s. Local changes in flow characteristics of individual voxels of a sample (e.g. 

intact plant) can be studied as a function of time and of any conceivable changes 

the sample experiences on a time-scale, longer than the measurement time of a 

complete set of pixel-propagators (17 min.). 

Also published in Journal of Experimental Botany 51: 1751-1759 (2000) 
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Quantifying water transport in plants 

Introduction 

One of the key-tools in the continuing debate about mechanisms of long-distance 

water transport in plants (1-5) is the ability to measure the water transport directly, 

non-invasively and spatially resolved. To validate recent theories (6, 7) in 

fundamental issues about the occurrence and refilling of embolized xylem vessels 

one needs a technique to measure the volume flow, the linear flow velocity and the 

cross-sectional area of flow in the xylem vessels of an intact plant. 

The heat pulse velocity technique (8) and derived techniques, that use heat as a 

tracer, can be useful in measuring water uptake by trees or plants non-destructively, 

although heater probes and temperature sensors have to be inserted into the stem. 

Moreover, no information about the exact positions of flow within the measured stem 

can be obtained and heterogeneities in the stem tissues cause problems in 

calibrating the technique (9). Other techniques to assess sap flow in stems include 

the injection of radioactive tracers into the xylem and the use of porometers to 

measure leaf transpiration of a representative part of a plant to estimate the total 

transpiration, resembling total water uptake. 

In the last ten years or so, Nuclear Magnetic Resonance (NMR) has proven to be a 

useful non-invasive technique to measure flow in plants in vivo (10-14). One of the 

NMR imaging techniques - dynamic NMR microscopy (15) - provides direct 

information on the distribution of all spin displacements within a pixel of an NMR 

image using predefined labeling times. To accomplish this, dynamic NMR 

microscopy combines standard imaging with Pulsed Field Gradient (PFG) NMR. 

Since flow in xylem vessels can change rapidly, methods to visualize flow and 

measure changes in flow should be faster than the time it takes for these changes to 

occur. Dynamic NMR experiments normally are time-consuming (15, 16), but 

recently, new methods have been developed to decrease the measurement time 

drastically (14, 17, 18). 

The measurement time can be decreased by not recording the complete distribution 

of displacements of spins (the so-called propagator) for every pixel (17, 19). This 

approach can be used if the displacement distribution of the spins is known in 
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advance. If so, the need to record the complete propagator disappears, less flow 

encoding steps are required and the NMR-signal as a function of the flow encoding 

steps can be fitted to a model function. However, in plant tissue, and probably in any 

non-artificial sample, the distribution of displacements of spins in a pixel is unknown 

and can vary with time. 

The reason why in (plant) tissue the use of a model function is essentially wrong is 

threefold. Firstly, it is not possible to choose the pixel size (e.g. 100 x 100 x 2500 

urn) and position of an image in such a way that one pixel always contains no more 

than one complete vessel. Vessels differ in size and are often grouped, so pixels will 

generally contain more than one vessel (at low spatial resolution) or only part of one 

vessel (at high spatial resolution or with large vessels). Secondly, it is assumed that 

on the timescale of flow encoding (A) spins do not move perpendicular to the flow 

direction. Diffusion of spins from one position on the flow profile to the other within 

the flow encoding time changes the shape of the displacement distribution 

drastically (20). The third reason is that vessels in biological tissues are often not 

perfectly circular and have a rough surface, which can influence the displacement 

distribution. 

In conclusion, the best way to quantify flow is to avoid any model for flow within a 

pixel. This can be done by recording the propagator, which is the distribution of 

displacements within a certain flow encoding time, and by extracting flow-

characterizing parameters from these propagators that are essentially independent 

of any flow-profile. The flow-sensitive PFG Turbo Spin Echo (TSE) technique (21) 

produces these propagators for every pixel in an image in a physiologically relevant 

measurement time. Here a method is presented to extract several important 

variables from the pixel-propagators without reverting to any model or assumption 

for the flow profile. These variables include the volume flow, the linear flow velocity 

and the cross-sectional area of the flowing fluid of the pixel. Using a reference tube 

to calibrate the NMR-signal we can calculate absolute values for the volume flow 

and the cross-sectional area of the flowing fluid, rather than normalizing the volume 

flow to the maximum volume flow observed (22). In principle, the method can be 

used for any set of pixel-propagators of any sample. In this work stem segments of 

Chrysanthemum (Dendranthema x grandiflorum Tzvelev cv. Cassa) were used 
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because the volume flow through the stem segment could easily be controlled, and 

did not depend on environmental conditions as relative humidity, light intensity and 

temperature. 

Theory 

Principles of NMR imaging 
1H-nuclei possess a quantum mechanical property called spin, which, when placed 

in a magnetic field, precesses around the magnetic field vector at a frequency (the 

Larmor frequency) that depends on the magnetic field strength (3). The small, 

thermally equilibrated difference between spins preceding along the magnetic field 

vector (spin up) and spins preceding opposite to the magnetic field vector (spin 

down) causes a net magnetization vector of the spins along the magnetic field axis. 

This net magnetization vector can be manipulated by disturbing the equilibrium of 

the nuclear spin system with radio frequency (rf) pulses, produced with an rf coil 

around the protons in the magnetic field. Any magnetization in the plane 

perpendicular to the magnetic field after an rf pulse induces an rf signal in the coil 

around the sample. The magnetization vector will return to its initial size and 

direction with two typical time constants: the spin-spin relaxation time (T2) 

characterizes the loss of magnetization in the plane perpendicular to the magnetic 

field (which is the loss of the NMR-signal), whereas the return of magnetization 

along the magnetic field is characterized by the spin-lattice relaxation time (Ti). 

Since the NMR-signal represents the magnetization in the plane perpendicular to 

the magnetic field axis, it is also a vector with an amplitude and phase, precessing 

at the Larmor frequency. Linear magnetic field gradients, superimposed on the static 

magnetic field, generate a position-dependent Larmor frequency: different 

frequencies of the NMR-signal can be processed (by a Fourier transform) into an 

NMR image, which is a map of the proton (usually water) density or an NMR-

specific parameter for every position in a sample. 

Probing movement of protons 

The NMR-signal for every position in a sample can be made sensitive for the 

displacement of the protons in a certain direction by use of two pulsed magnetic 
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field gradients (PFGs) with spacing A. Here we explain the influence of two kinds of 

displacements - diffusion and laminar flow - of spins on the NMR-signal and the 

shape of the distribution of displacements (propagator) deduced from the signal as a 

function of PFG amplitude. The theory concerning the propagator formalism (15) 

and the fast acquisition of complete pixel-propagators (27) has already been 

extensively described elsewhere. 

If an ensemble of molecules exhibits self-diffusion due to the Brownian motion, the 

PFGs will attenuate the amplitude of the NMR-signal of the protons of the 

molecules, while the phase of the NMR-signal will remain unaffected. A Fourier 

transform of the signal into P(R,A), the probability distribution of displacements R in 

the direction of the PFGs within the labeling time A, results in a Gaussian shape 

(Fig. 4.1) as described by: 

.2 

P(R,A)=Aexp R-p [4.1] 

with A as amplitude and p as mean displacement (p = 0 for stationary water) of the 

water protons. The characteristic width of the Gaussian a can be used to calculate 

the self-diffusion coefficient D of the molecules: 

D-
2{A-S/3) 

where 8 is the duration of each of the two PFGs. 

[4.2] 

0 50 100 

Displacement R (urn) 

Figure 4 . 1 : Normalized theoretical displacement distribution of stationary water. The propagator of 

stationary, self-diffusing water is a Gaussian peak with position p = 0, characterizing width a and 

amplitude A. The displacement axis is sampled with 200 data points. 
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As an example of displacements of molecules due to flow, let us observe slowly 

flowing water inside a cylinder. The water in the cylinder can be divided into thin 

circular layers that glide past one another. The water adjacent to the wall of the 

cylinder is essentially stationary. As one moves away from the wall to the center of 

the cylinder the flow velocity increases to a maximum in the center. If viscous drag 

forces dominate the inertial forces of the fluid the flow profile through the cylinder 

has a parabolic shape and is called a laminar flow profile. In the hypothetical case 

that the fluid does not exhibit a Brownian motion only the phase of the NMR-signal 

of these circular layers is shifted without modulation of the signal amplitude as a 

function of PFG amplitude. Fig. 4.2a depicts a laminar flow profile through a cylinder 

and its propagator in the direction of flow, in absence of self-diffusion. The 

propagator consists of a distribution of displacements R from zero to maximum 

displacement Rmax within A and is a boxcar function: 

P(R,A) = C forO<R<Rnax 

P(R,A) = 0 forR<OandR>R„ [4.3] 

where C is a constant and the integral "^P^R, A) = 1. Different layers in the cylinder 

coincide with different parts of the propagator, as is shown by the arrows in Fig. 

4.2a. If the circular layers in the cylinder are thought to be infinitesimally thin, the 

corresponding part in the propagator will be a spike at the correct displacement. 

P(R,A) P(R,A) 
0.040 

0.030 

0.020 

0.010 

0.000 

•; 

i 

i 

f \ = J. V 
a Displacement R (|xm) b Displacement R (|xm) 

Figure 4 .2 : Normalized displacement distributions of flowing water sampled with 200 points, a. The 

hypothetical propagator of a laminar flow profile in absence of self-diffusion, b. As a with self-diffusion 

present. 
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Usually, the fluid in the cylinder also exhibits self-diffusion, which combines the 

phase-shift of the NMR-signal due to flow, with the amplitude attenuation of the 

signal due to diffusion. The shape of the corresponding propagator changes: every 

thin circular layer in the cylinder now has a Gaussian shape instead of a spike (cf. 

Fig. 4.1). All these layers together form a propagator as shown in Fig. 4.2b: the 

boxcar function is broadened by a Gaussian. If an observed ensemble of spins 

contains more than one cylinder with flowing water, the propagator will be the sum 

of several boxcar functions, broadened by diffusion. If only a part of one cylinder 

with flowing water is observed, the propagator will be only a part of this broadened 

boxcar function. 

Materials and Methods 

NMR Image analysis 

The PFG-TSE (turbo spin echo) pulse sequence (Fig. 4.3) has been described 

elsewhere (21). The amplitude and phase modulation of the NMR signal as a 

function of the displacement encoding steps can be Fourier Transformed to obtain 

the propagator. Generally, the pixel-propagator within a slice through a plant stem 

has a Gaussian shape, since it contains only stationary, diffusing water (cf. Fig. 4.1). 

However, some of the pixels in the stem are in regions where active xylem or 

phloem vessels are present, so the corresponding propagators will show 

displacements originating from flowing sap. 

excitation 
A 90° 

T _ 
PFG | p 

signal ! 

= | A 

tel 

180° 

g i 

i 
„ A S A „ 

TSE-train 

Figure 4 .3: Pulsed field gradient turbo spin echo pulse sequence. The two large pulsed field 

gradients in the flow direction with duration 8 and spacing A are stepped to acquire flow information. 
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Propagators representing both stationary and flowing water can be analyzed in the 

following way. The half, which doesn't display flow, is fitted to a half-Gaussian. 

Subsequently the complete Gaussian (including the other half) is subtracted from 

the propagator. The remaining part of the propagator PF(R,A) represents the flowing 

water. This propagator is calibrated into Pc(R,A) by dividing it with the integral Iref of 

a propagator of a pixel in a reference tube that is filled with doped water: 

PC(*,A) = ̂ 1 [4.4]. 
*ref 

Relating the calibrated propagator PC(R,A) to the experimentally known surface Aref 

of one pixel the cross sectional area of flow A of the flowing water can be calculated 

for every pixel: 

A = R^PC(R,A)-Aref [4.5]. 

The first moment of the calibrated propagator represents the volume flow Q of the 

corresponding pixel and can be calculated by adding the propagator intensities 

multiplied by the displacement values and relating it to Aref and A: 

e = * I>c (* ,A) - i ? ) . ^ [4.6]. 
£t> A 

The average linear flow velocity v is the volume flow divided by the cross-sectional 

area of flow (strictly the calibration is not necessary for v): 

%PC(R,A)R) 

2>C(*,A)-A 
R=0 

A few assumptions are made here: within one pixel water does not flow in two 

directions and the loss of NMR-signal within the time between excitation and 

detection of the first echo (te1, Fig. 4.3) is comparable for the reference tube and 

the water in the xylem. 

The spectrometer 

The NMR spectrometer consists of an SMIS console (SMIS Ltd., Guildford, Surrey, 

UK), operating at 30.7 MHz, an electromagnet with a 10 cm air gap (Bruker, 

Karlsruhe, Germany) generating the magnetic field of 0.72 T and an external 19F 

lock unit (SMIS) stabilizing the magnetic field. The magnet is equipped with a 
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custom-engineered gradient probe (Doty Scientific Inc., Columbia, South Carolina, 

USA) with a 45 mm (i.d.) cylindrical central bore, accessible from both ends. The 

stem segments of cut flowers were measured in a custom made vase (Fig. 4.4) that 

can be inserted in the gradient probe. A solenoid radio frequency (r.f.) coil (12 mm 

inner diameter), wrapped around the shallow part of the vase, transmits the NMR-

pulses and receives the signal. 

Plant material 

Chrysanthemum (Dendranthema x grandiflorum Tzvelev cv. Cassa) plants were 

grown in a greenhouse at Wageningen University, in plastic pots (14 cm diameter) 

with a commercial potting soil. The average temperature in the greenhouse was 18° 

C. The plant had a photoperiod of 16 hours until the plant had formed 15-17 leaves 

longer than 0.5 cm (3-4 weeks), followed by an eight hours photoperiod until 

harvest. The photoperiods were lengthened by high-pressure sodium lamps or 

shortened by black screens when necessary. Flowering stems at commercial 

maturity and stem segments were cut off underwater with razor blades to ensure 

that no air entered the xylem vessels of the stem. 

Setup to control water uptake of stem segments 

Van leperen et al. (24) described a method to control the water uptake of stem 

segments. This method is used here, since it enables a very precise control of the 

water flow level through a stem segment, it measures water uptake directly (not by 

way of transpiration) and it is straightforward to implement. The method will briefly 

be summarized here. The water level in the vase is controlled with a communicating 

vessel on a precision balance: the uptake of water by a cut flower or stem segment 

is measured with the balance (LC3201D, Sartorius AG, Gottingen, Germany) by 

sampling the weight decrease every 20 seconds. The uptake of water of a stem 

segment is controlled with underpressure: the top of the stem segment is connected 

with water-filled silica tubing to a vessel of which the underpressure is controlled 

with a pump (Fig. 4.4). The pump (505DI Watson-Marlow Limited, Falmouth, UK), 

the vacuum sensor (DVR5, Vacuubrand, Gmbh & Co, Wertheim, Germany) and the 

balance were connected to a computer to automate underpressure control and 

uptake measurements. 
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Stem 
segment 

Vase 

Water level 

Pump 

Balance 
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Figure 4 .4 : Draft of the set-up to control the water uptake of stem segments (after Van leperen ef 

a/., 2000). 

Results 

The stem segment of a Chrysanthemum flower in the set-up was 25 cm long, 

measured at 40 cm from the roots, 10 cm above the cut surface. The NMR 

measurements show a distribution of displacements of all protons for every pixel in 

an image (Fig. 4.5). Fig. 4.5a displays a transverse image of the stem segment at 

g=0: this is a standard TSE image that displays the proton density for every pixel 

(21). The striking feature of the image is that it displays only a single, relatively thin, 

ring. As a reference, Fig. 4.5b is a photograph of a transversal section through a 

Chrysanthemum stem: the spongy tissue with large dead parenchymatic cells in the 

middle of the stem hardly contains any water, so it does not give a detectable NMR-

signal. The outer ring of the stem contains all functional tissue, including xylem, 

cambium, phloem, supporting tissues and epidermis. Pixels in the xylem region of 

the stem segment can display stationary and flowing water. The propagator of a 

particular pixel (100 x 100 x 2500 n,m) in that region (Fig. 4.5c) reveals a peak, 

centered at a displacement of 0 urn, representing stationary water, with a large 

asymmetrical shoulder with positive displacements, representing flowing water. The 
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0 100 200 
Displacement R (|xm) 

Figure 4.5: a. A TSE image of a Chrysanthemum stem segment, perpendicular to the stem axis. b. 

A photograph of a transverse section through a Chrysanthemum stem. c. The calibrated propagator 

of a pixel in the xylem region of the stem (solid line) with the Gaussian fit to the left half of the 

propagator (dotted line). The bottom panel shows the difference between the original calibrated 

propagator and the fit on the same scale. The crosses in the solid lines indicate the individual data 

points. Parameters: resolution 100 x 100 x 2500 urn, te1 25.0 ms, 32 PFG steps, A 19.4 ms, 8 2.5 

ms, PFGmax 0.36 T/m, repetition time 1 s, number of averages 4, total measurement time 17 min. 

propagator was calibrated with the averaged intensity of nine pixels in the reference 

tube (Eq. 4.4). The dotted line in Fig. 4.5c is the result of a fit to the left half of the 

calibrated propagator using a Gaussian function. After subtraction of this Gaussian 

from the propagator the asymmetrical flowing part of the propagator remains. This 

part is plotted in Fig. 4.5c below the complete propagator. The integral of the flowing 

part of the calibrated propagator represents the fraction of the corresponding pixel 

through which water flows, relative to a pixel in the reference tube. This fraction can 

be recalculated into the cross sectional area of flow within the pixel in mm2 (Eq. 4.5), 

knowing the surface Aref of a pixel inside the reference tube, and assuming that the 

anatomy of a stem segment does not change along the axis of the stem within the 

slice thickness (2500 urn). Apart from the cross sectional area of flow the volume 

flow and linear flow velocity can be calculated for every pixel with equations 4.6 and 

4.7. Knowing these flow characteristics for each pixel one can construct images with 

the characteristics: total amount of water, total amount of stationary water, cross 

sectional area of flow, linear flow velocity and volume flow (Fig. 4.6a to e 

respectively). Fig. 4.6f indicates the regions of flow (cf. Fig. 4.6e) superimposed on 

the image of the water content of the stem segment (cf. Fig. 4.6a). 
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Figure 4 .6: Images of the calculated flow characteristics of the stem segment, a to e. respectively 

water content, amount of stationary water, cross sectional area of flow, linear flow velocity and 

volume flow. The grayscale bar relates intensities to quantitative values. Water content and the 

amount of stationary water are expressed as fractions, relative to the mean water content of a pixel in 

the reference tube (= 1 unit) and can easily be recalculated into a volume or a surface, f. The areas 

that show flow superimposed on an enlarged image of the water content (cf. a.). 

The total volume flow through the stem segment was monitored with the precision 

balance and could easily be changed by varying the underpressure of the vessel 

that was connected to the top of the stem segment. Stepwise decreasing the 

pressure differences over the stem segment in a range of 47 to 0 kPa resulted in 

uptake values from 1.8 to 0 mg/s: a physiologically sensible range for 

Chrysanthemum (Fig. 4.7). Small negative uptake values were the result of a small 

overpressure of remaining water in the silica tubing on top of the stem segment, 

pushing water backwards through the xylem. After about two hours the uptake, 

which was constant in the first three pressure steps, decreased with (maximum) 

seven percent during one pressure step: the hydraulic resistance of the stem 

segment increased slowly with time. This effect is even more evident when pressure 

steps 1 and 5 or 2 and 6 are compared: at the same pressure difference the uptake 

in the measurements later in time has decreased. However, the increase in 

hydraulic resistance of the stem segment is of little importance for a comparison of 

two ways to measure water transport in a single stem and the measurement time 

(17 min.) for the dynamic NMR imaging experiment is short enough to have a 

constant uptake during one measurement. 

58 



Chapter 4 

ok 
S 

AP= 40 30 22 47 40 30 IS 0 0 kPa 

- Balance 
ANMR 

0.4 

: A 
" ^ ' " 

' ^ 

0 1 2 3 4 5 
Time (h) 

Figure 4.7: A comparison of the actual water uptake of a stem segment, measured with a precision 

balance, and the total uptake measured with NMR, by adding the volume flow of every pixel that 

shows flow. The marks indicating the uptake, measured with the balance, are running averages of 10 

points (200 s). The row of values for AP indicates the pressure difference over the stem segment for 

every pressure step in kPa. 

The NMR measurements are represented by triangular markers in Fig. 4.7 and were 

calculated by adding all pixels of the NMR image of the volume flow that had 

intensities larger than a manually set threshold value (~2/3 of peak noise level) with 

at least one neighboring pixel that also exceeded the threshold value. Except for the 

first two pressure steps, the NMR flow values correspond within an error of 0.10 

mg/s with the actual flow that was measured with the balance. In the first two steps, 

the difference is 0.16 and 0.20 mg/s respectively. The overall rms error of all points 

is 0.11 mg/s. For negative uptake values, the positive halves of the propagators 

were used for the Gaussian fit and the negative halves were used to calculate the 

volume flow. 

Discussion and Conclusions 

A pixel-propagator from the xylem region of a Chrysanthemum stem is not simply 

the sum of a Gaussian peak at zero displacement and a broadened boxcar function. 

This becomes especially clear when the Gaussian fit is subtracted from the 
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propagator. Due to the large pixel size (100 x 100 x 2500 urn) a propagator from a 

pixel in the xylem region will always represent multiple xylem vessels and 

accompanying cells, since xylem vessels in Dendranthema x grandiflorum Tzvelev 

cv. Cassa have diameters in a range from 10 to 40 |im (25). Therefore, the shape of 

a single pixel propagator is not known a priori and the use of a model function for 

the modulated NMR signal to calculate flow data is clearly not correct. However, one 

can accurately calculate the volume flow, as Tsai et al described (26), by way of the 

first moment of the propagator by differentiating the modulated NMR-signal at g=0 

(first moment theorem of Fourier transforms (27)). If not just the volume flow, but 

also the linear flow velocity and the cross-sectional area of flow are of interest the 

only accurate solution, i.e. not assuming any flow-profile, as far as we know is the 

method described above (see Materials and Methods). The fit of the stationary 

water to the half-Gaussian function is in principle only validated if the stationary 

water can diffuse without restrictions. This means that on the time-scale (A) of 

labeling the bulk of the molecules should not reach any walls or membranes. In 

practice, the bulk of the water-molecules resides in vacuoles and moves 9 urn (rms 

value erfrom Eq. 4.2) with the instrumental settings we used (A-5/3 = 18.6 ms) and D 

= 2.0 x 10~9 m2/s (free water at 20°C). Even if displacements of 9 jxm were already 

restricted by the membrane of the vacuoles of the cells, surrounding the vessels, the 

effect on the shape of the stationary water part of the propagator would be small: 

the Gaussian fit would still remove the stationary water part quite effectively. 

One other issue to be mentioned here is the fact that flowing water has intensity at 

zero displacement in the propagator (cf. Fig. 4.2). This intensity originates from 

water near the walls of the vessel or tube in which it is flowing. In the presented 

method no intensity is left at zero displacement after subtraction of the Gaussian fit 

from the propagator (Fig. 4.5c). This is not a problem in calculating the volume flow 

of such a propagator, since any intensity at zero displacement is multiplied with the 

zero value of the displacement axis (Eq. 4.6). However, loss of intensity at zero 

displacement increases the linear flow velocity and decreases the cross sectional 

area of flow (Eq. 4.7 and Eq. 4.5): water at the walls of vessels, which does not 

appear as flowing water, is indeed part of flowing water. Regions at the vessel walls 

are in fact part of the cross sectional area of flow of that vessel. As a solution to this 

problem the instrumental settings of an experiment can be chosen in such a way 
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that within A water can diffuse from the vessel walls into the regions where flow is 

present. Recently, the shape of a propagator of a laminar flow profile as a function 

of A has been published (20) showing a decreasing intensity at zero displacement 

with increasing A. The rms displacement due to diffusion within A combined with the 

velocity gradient of the flowing water near the vessel wall (depending on the vessel 

diameter and the volume flow through the vessel) determine the actual intensity of 

the propagator at zero displacement. 

The comparison between the results obtained with the balance and with NMR, as 

presented in Fig. 4.7, show the accuracy of the quantification method. We found an 

agreement between both uptake measurements with a rms error of 0.11 mg/s, not 

by using an unclear constant to correlate NMR results to the actual ('balance') 

volume flow or by normalizing the volume flow to the maximum volume flow 

observed (22), but by calibrating NMR signal intensities to the averaged signal 

intensity of a reference tube. If, for certain studies, the labeling time A between the 

two PFGs is increased (increasing also te1), problems may arise from using a 

reference tube with water for calibration. The decay of the NMR signal, 

characterized by the relaxation time T2, varies in different tissues of the sample. 

Suppose the T2 of the water in the reference tube ('doped' with paramagnetic ions to 

decrease T2) differs substantially from the T2 of the water in the xylem vessels and 

the time from signal excitation to first detection (te1 in Fig. 4.3) is of considerable 

size compared to the T2 values of the water in the tube and/or in the xylem vessels. 

The signal intensity of the water in the tube and in the xylem at the moment of 

detection will now be weighted with their different T2 values and in the calibration 

this extra T2 weight has to be considered. In our results the T2 values of the water in 

the reference tube and in the xylem vessels were comparable (around 100 ms) and 

large compared to the first echo time (maximum 27 ms), so we did not experience 

these difficulties. If need be, it is possible to record pixel-propagators in combination 

with a T2 experiment to link a T2 value to every point of a pixel-propagator, though 

imaging time will be longer. 

For in vivo applications of the described method in intact plants one assumption 

stated earlier has to be evaluated carefully: there should be no bi-directional flow 

within one pixel. In other words, the resolution of the NMR image has to be high 
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enough to discriminate between xylem and phloem tissue. In a pixel-propagator one 

can immediately see if both xylem and phloem flow are present: the propagator will 

show intensities at positive and negative displacements beyond the rms 

displacement of diffusing stationary water. Flow quantification is only hampered if 

the linear flow velocities in the two directions in the same pixel are of comparable 

size. In that case, one might consider using the rms displacement from stationary 

water of neighboring pixels to get rid of the stationary water in the pixel with bi

directional flow, after which positive and negative displacements can be evaluated 

separately. For full-grown intact plants active xylem and phloem areas are usually 

more than 100 urn apart, which means the resolution used here would be high 

enough to avoid bi-directional flow within one pixel. Increasing the spatial resolution 

of the images would increase measurement time drastically, a problem that might be 

solved by measuring at a larger magnetic field strength although examples of 

decreasing image quality with increasing magnetic field strength have been reported 

(28) for biological tissues (especially plant tissues). 

In summary, it can be stated that relevant and accurate information about water 

transport can be acquired non-invasively with the presented method. The 

information is relevant in the debate about long distance transport in plants, and 

accurate since it does not need a model for flow to calculate flow characteristics. 

The method is demonstrated with Chrysanthemum stem segments, but can easily 

be used on intact plants (21) or any other system that fits within the NMR-imager. 

Since the overall uptake of NMR and balance measurements match, the local 

information of every pixel can be studied individually: the setup for the 

Chrysanthemum stem segments is being used as a model to investigate the 

restoration of original flow profiles and of hydraulic conductance for Chrysanthemum 

flowers after cutting. 
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Functional imaging of plants: a Nuclear Magnetic 

Resonance study of a cucumber plant. 

T.W.J. Scheenen, A.M. Heemskerk, P.A. de Jager, F.J. Vergeldt and H. Van As 

Functional magnetic resonance imaging was used to study transients of biophysical 

parameters in a cucumber plant in response to environmental changes. Detailed 

flow imaging experiments showed the location of xylem and phloem in the stem and 

the response of the following flow characteristics to the imposed environmental 

changes: the total amount of water, the amount of stationary and flowing water, the 

linear velocity of the flowing water and the volume flow. The total measured volume 

flow through the plant stem resembled the independently measured water uptake 

by the roots. A separate analysis of the flow characteristics for two vascular bundles 

revealed that changes in volume flow of the xylem sap were accounted for by a 

change in linear flow velocities in the xylem vessels. Multiple spin echo experiments 

revealed two water fractions for different tissues in the plant stem: the spin-spin 

relaxation time of the larger fraction of parenchyma tissue in the center of the stem 

and the vascular tissue was down by 17% in the period after cooling the roots of the 

plant. This could point to an increased water permeability of the tonoplast 

membrane of the observed cells in this period of quick recovery from severe water 

loss. 

Submitted to the Biophysical Journal 
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Introduction 

Plant water relations deal with the distribution, movement and function of water in 

plant cells, tissues and organs, the development of internal water deficits and their 

significance to physiological processes, and how these phenomena are placed in 

an ecological context (1). With the development of new technologies (direct 

quantification of xylem tension with the xylem pressure probe and detection of air in 

xylem vessels by cryo scanning electron microscopy) plant water relations are 

currently one of the most controversial areas in plant physiology (reviewed in (2-5)): 

what are the driving forces behind water transport in plants? A number of groups 

have taken efforts in visualizing water transport in plants with nuclear magnetic 

resonance (NMR). Van As and Schaafsma (6) and Reinders et al (7, 8) used a 

portable NMR spectrometer (9) to measure spatially unresolved xylem water flow in 

a cucumber plant in situ and qualitatively examined the water flow through cut 

sections of a celery stem with NMR imaging (10). Meanwhile, Callaghan introduced 

the combination of static and dynamic NMR microscopy (11) and used it to 

investigate the origins of contrast in NMR images of biological tissues (12). Bentrup 

(13) indicated the importance of NMR-microscopy to botanists and Chudek and 

Hunter (14) and MacFall and Van As (15) reviewed NMR microscopy as a possibly 

useful tool in studying plants. After a study of phloem and xylem flow in castor bean 

seedlings (16) it was demonstrated that water transport can be measured localized, 

and even quantified, in larger plants (17), as well as in combination with fast 

imaging techniques to shorten measurement times (18, 19). A recent overview of 

many papers about NMR microscopy - both flow/diffusion and anatomy or water 

density and relaxational behavior applications - in plant science was written by 

Ishida et al. (20). 

In this paper, we present a quantitative evaluation of temporal changes in different 

NMR imaging parameters (water fractions, spin-spin relaxation times and flow 

characteristics, of individual pixels and of multiple, added pixels from the same 

tissue) over a period of several days in a ten-week-old, growing cucumber plant. 

Water fractions and spin-spin relaxation times (T2) are calculated by the use of a 

multiple spin echo (MSE) train (21). Water fractions and T2-values of different 
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tissues are interpreted without referring to any 'bound' or 'free' water, but with a 

central role for cellular compartment dimensions and the parameter H indicating the 

loss of magnetization at or near the boundaries of the compartments due to 

exchange over these boundaries into compartments with shorter relaxation times. 

Non-imaging studies (22-24) already indicated that the T2 could be used to examine 

membrane permeabilities, which define the exchange rates of water over the cell or 

tonoplast membrane. 

For every pixel, the displacement distribution of water within a certain time is also 

measured using a Pulsed Field Gradient Turbo Spin Echo (PFG TSE) pulse 

sequence (79) and from this displacement distribution the flow characteristics are 

calculated as described by Scheenen et al. (25). The total calculated volume flow 

through the plant stem is compared with the actual uptake of the plant, measured 

with a precision balance. Changes in water uptake are induced by the normal 

day/night cycle and a period of cooling the roots of the plant, which has a well-

known effect of decreasing root permeability and therefore water uptake (1,7). 

Flow sensitive and T2-imaging can relate local changes in biophysical parameters 

such as flow characteristics (directly) and membrane permeability (indirectly) to 

controlled changes in environmental conditions. In this way functional information is 

available with spatial resolution, which justifies the title 'functional imaging' for the 

combination of both imaging techniques. 

Materials and methods 

Plant material 

Two-week-old Cucumber seedlings (Cucumis Sativus L.) were grown in a 

constantly aerated half-Hoagland solution (26) in a greenhouse of Unifarm, 

Wageningen, The Netherlands. The upper ten cm of the root system grew in an 

open, cylindrical pod to restrict root-branching within the dimensions of the NMR 

gradient probe, so later insertion in the gradient probe would not damage the roots. 

The temperature in the greenhouse was at least 25°C during the day, falling to 

values no lower than 21 °C at night. During the photoperiod of 16 hours the plants 
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received direct sunlight and additional light from high-pressure sodium lamps. 

Under these conditions the plants grew to two meters in length in about ten weeks. 

Flowers were pinched out and occasionally the bottom leaf of the stem was 

removed with a razor blade to clear the lower 50 cm of the stem before moving the 

plant from the greenhouse to the NMR imager (removal of the last leaf was at least 

four days before installing the plant). 

The instrumental setup 

The NMR spectrometer consisted of an SMIS console (SMIS Ltd., Guildford, 

Surrey, UK), an electromagnet with a 14 cm air gap (Bruker, Karlsruhe, Germany) 

generating the magnetic field of 0.47 T and an external 19F lock unit (SMIS) 

stabilizing the magnetic field. A custom-made shielded gradient probe (Doty 

Scientific Inc., Columbia, South Carolina, USA) with a 45 mm (i.d.) cylindrical bore, 

accessible from both ends was used. A solenoid radio frequency (rf) coil (diameter 

15 mm), which induced and detected the NMR signal, was wrapped around an 

openable mould, placed around the plant stem. In less then two minutes the roots 

were taken out of the growth solution and put through the 45 mm bore of the 

gradient probe into an aerated container with identical growing medium. A cooling 

element inside the container could provide quick cooling of the roots (from 22°C to 

3°C in five minutes) and the container itself was placed on a precision balance 

(LC3201D, Sartorius AG, Goettingen, Germany) below the magnet to monitor water 

uptake of the plant (see Fig. 5.1). The water uptake, as measured by the balance, 

was a moving average of 340 seconds: a single measurement was the mean 

uptake value in 20 seconds, every displayed point was the average of 17 

measurements. The plant stem and coil mould were fixed inside the gradient probe 

to fix the position of the plant stem throughout all experiments. The climate 

chamber above the magnet held the stem and the leaves of the plant at 25 ± 2°C 

during the photoperiod (from 6.00 a.m. to 9.00 p.m., r.h. 65 ± 5%, illumination 

about 2 x 102 nmol/m2s (PAR), depending on position of the leaves) and at 22 ± 

2°C at night. After four days in the instrumental setup (growing several cm each 

day) the roots of the plant in the container were cooled to approx. 3°C for three 

hours, followed by another observation period of two days in the setup. 
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Figure 5 . 1 : Schematic overview of the instrumental setup with the upper part of the cucumber plant 

in the climate chamber above the electromagnet and the roots in a container with a heat exchanger 

on the precision balance. The inset shows an enlarged view of the rf coil, wrapped around the stem, 

in the center of the gradient probe. 

NMR imaging pulse sequences 

Two different NMR imaging pulse sequences were used to monitor the plant water 

status and transport: a multiple spin echo (MSE) experiment (21) to evaluate the 

echo decay of the NMR signal per pixel and a PFG TSE sequence (19) to calculate 

the flow characteristics per pixel (25). Following the initial slice-selective 90°-pulse, 

both sequences used hard 180°-pulses in the spin echo trains to keep inter echo 

intervals short and sample as much of the signal as possible during its decay. The 

use of spin echoes, combined with large read out gradients (receiver bandwidth 50 

kHz), was necessary to overcome magnetic field inhomogeneities, caused by 

numerous small air spaces in the plant tissues (27). Within half the acquisition time 

of one echo (1.28 ms) the signal decay per pixel due to T2* was negligible and the 

in-plane resolution was not affected by extra signal attenuation. 

69 



Functional imaging of plants 

In the MSE experiment an echo train was acquired for every step of the phase 

encode gradient, so one could reconstruct an image for every echo in the train. The 

real part of the phased complex NMR signal S(t) of every pixel in the images in time 

could be characterized by an «- exponential decay curve: 

s(t) = YiA^p(-R2it) [1] 

in which At is the signal amplitude of fraction / at the moment of excitation (t=0) and 

R2i is the corresponding characterizing relaxation rate ( = MT2). We used mono and 

bi-exponential fits to extract the biophysical parameters amplitude and relaxation 

time from different tissues in the cucumber plant stem. 

In the PFG TSE experiment (19) the echo train was used to shorten imaging time. 

Every individual echo was phase-encoded separately, which decreased the 

measurement time for one image with a factor equal to the number of echoes used 

in the TSE train. The displacement of water molecules in the pixels was monitored 

with two stepped pulsed field gradients in the longitudinal direction (i.e. along the 

plant stem) with amplitude g, duration 8 and spacing A (8<A), which modulated the 

complex NMR-signal in amplitude and phase. A Fourier transformation of this signal 

(28) gave the displacement propagator: the distribution of displacements of the 

water molecules within A for every pixel in the TSE image. The propagator of 

stationary water is symmetric around zero displacement (with a Gaussian shape, if 

the water can diffuse unrestricted), whereas flowing water has a net displacement 

within the time A. The flow characteristics were extracted from the flowing part of 

every pixel-propagator without assuming any model for the flow-profile within the 

corresponding pixel, using the NMR signal intensity of a reference tube for 

calibration (25). 

In the PFG TSE experiment two different parameter sets were used to obtain either 

high time or high spatial resolution: a 64 x 64 image matrix with a field of view of 

11.0 mm was measured in 21 minutes (repetition time 2.5 s), whereas a 128 x 128 

image matrix with a field of view of 12.8 mm took 42 minutes of measuring time. 

The displacement encoding parameters were changed with changing water uptake 

caused by the day/night cycle (day: 32 g-steps from -gmax to +gmax-i, 8 2.5 ms, A 7.0 
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or 10.0 ms, gmax 0.457 to 0.385 T/m, night: 5 2.5 ms, A 15.0 ms, gmax 0.337 T/m). 

The matrix size of the MSE experiment was always 128 x 128 pixels with a field of 

view of 12.8 mm and took 26 minutes of total acquisition time (repetition time 3 s). 

All data processing was performed with IDL (RSI, Boulder, Colorado, USA). 

Results 

MSE imaging 

Four images were constructed from a mono-exponential fit to the NMR-signal decay 

in the echo train of the MSE experiments (Fig. 5.2): (b) an amplitude image, 

representing the fitted amount of water of every pixel in the image, (c) an R2 image, 

characterizing the signal decay rate, (d) a T2 image, revealing better contrast in long 

T2-values, and (e) a %2 image displaying the quality of the fit 

(%2 =^=l(S,-frf/iN-I) in which N is the number of echoes and St and ft the 

value of the /th data point and its fitted value). The %2 image does not show any 

intensity related to the anatomy of the stem, which means that there were no 

detectable systematic deviations of the data from the mono-exponential fit. Figure 

5.2a is a schematic overview of a transverse slice through a cucumber plant stem. 

The pixels in the center of the stem with no intensity in the amplitude image 

correspond with the pith cavity in the stem. The parenchyma in the central cylinder 

can be divided into inner and outer parenchyma on the basis of a small difference 

in amplitude (water density), visualized in Fig. 5.2f+g. The central cylinder of the 

stem generally contains four big and five smaller vascular bundles, which can 

clearly be distinguished in the R2 image: images h and i in Fig. 5.2 show T2 images 

of the four innerbundels and five outerbundles without xylem vessels. The tissue in 

the vascular bundles has T2-values in the order of 130 ms: large xylem vessels in 

the bundles are visible with long T2-values (Fig. 5.2j; 300 ms). A thin ring, small in 

amplitude and short in T2, separates the central cylinder from the cortex. The thin 

epidermis is visible with high intensity in the R2 image (T2 90 ms). The dot above 

the plant stem is a reference tube filled with an aqueous MnCI2 solution to shorten 

the T2 of the water to 150 ms ('doped' water). 
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innerparenchyma outerparenchyma innerbundels outerbundels vessels allmasks 

Figure 5.2: NMR images, calculated from one MSE experiment of a cucumber plant. The different 

tissues in the schematic overview (a) of a slice through a cucumber plant stem can clearly be 

recognized in the R2 image (c) and T2 image (d). The amplitude or water density image (b) is 

normalized to the mean intensity of nine pixels in the reference tube. The scale of the color table is 

somewhat larger than 1.0 since some points in the image may be greater than 1.0 because of noise. 

Image (e) reflects the %2 of the mono-exponential fit to the decay curve of every pixel. Images (f) to (j) 

are T2 images of areas, selected with a mask based on amplitude and T2 value. In image (k) all 

selected areas are combined leaving some pixels that could not be clearly assigned to a certain 

tissue. Also the cortex and the reference tube are not selected in any of the shown masks. 

Parameters of the NMR experiment: 128 x 128 matrix, field of view 12.8 mm, slice thickness 3 mm, 

repetition time 3 s, first echo at 6.4 ms, echo time in echo train 4.6 ms, 64 echoes. 

As was mentioned earlier, we found no systematic deviations of the data from the 

mono-exponential fit related to the stem anatomy. This implies that the signal-to-

noise ratio (SNR) of the decay curve of an individual pixel was too low for a 

meaningful multi exponential fit, although even for an individual pixel a multi 

exponential decay is expected, because of the different proton pools present in a 

pixel (water in different cells and/or different cell organelles). Averaging the decays 

from the pixels of the masks in Fig. 5.2 f to j greatly improved the SNR and enabled 

bi-exponential fits to the decaying NMR-signal. Fig. 5.3a displays the added NMR-

signal decay curve of the pixels in the reference tube and a mono-exponential fit to 

the curve (no partially filled pixels included). A plot of the residuals of the fit shows 

only noise (Fig. 5.3b). Since pixels within the reference tube were completely filled 

with doped water the calculated amplitude could serve as a 100% water density 

standard for normalization of the amplitudes. The systematic deviation from zero of 
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Figure 5.3: Added NMR signal decay curve of pixels in the reference tube and a mono exponential 

fit to the curve (a), the plot of the residuals of the fit to the curve (b) and the residuals of a mono-

exponential (c) and a bi-exponential (d) fit to the added signal of all pixels in the innerparenchyma 

(Fig. 5.2f). The residuals of the mono exponential fit to the innerparenchyma signal decay is not a 

straight noisy line, which is the case in the residuals of the bi-exponential fit. Notice the difference in 

noise level between (b) and (d): more pixels could be used in the innerparenchyma signal decay 

curve, which improves the SNR. Experimental details as in Fig. 5.2. 

the plot of the residuals (Fig. 5.3c) of a mono-exponential fit to the averaged decay 

curves of one of the selected areas in the image (the innerparenchyma Fig.2f) 

implies that there is signal left in the residuals. However, the plot of the residuals of 

a bi-exponential fit to the same data displays only noise (Fig. 5.3d): two 

exponentials describe the data well. The mean water density of the 

innerparenchyma is 75% ± 2 (total amplitude of the fit compared to the reference 

tube amplitude), of which - ascribing the two exponentials to two water fractions - a 

fraction of 9% ± 1 has a T2-value of 24 ± 5 ms and 91 % ± 1 has a T2-value of 264 + 

4 ms (errors are standard deviations). The tissues in Fig. 5.2f to j can be analyzed 

in the same way, revealing the time course of the water density and corresponding 

T2-values of the two water fractions during three days, as will be shown later. 

Dynamic PFG TSE imaging 

Contrary to MSE-imaging, in which multiple echoes are used to calculate 

amplitudes and relaxation times, TSE imaging uses echoes from different 
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refocusing times after excitation to construct an amplitude image. A certain amount 

of T2 weighing is incorporated in the image, as was already mentioned with the 

introduction of the technique (29). If relaxation times are long, compared to the time 

from excitation to the first echo that determines the integral of the image in the 

phase encode direction (19), signal attenuation due to T2 is small and the TSE 

image will hardly show any T2 contrast. With the used time from excitation to the 

first echo (21 ms) the TSE image of Fig. 5.4a has only minor deviations from the 

calculated amplitude image in Fig. 5.2b; the low amplitude ring between the central 

cylinder and the cortex with short T2 has lost some intensity in the TSE image 

compared to the calculated amplitude image. In both the TSE and MSE image the 

innerparenchyma has also lost some intensity because of saturation. The repetition 

time of the TSE experiment was 2.5 s (3.0 s in MSE) which was not long enough for 

the protons in the innerparenchyma to return to equilibrium completely (Trvalues 

might have exceeded 1 s). 

Analyzing a PFG TSE experiment as described elsewhere (25), we calculated the 

amount of stationary water (Fig. 5.4b), the amount of flowing water (Fig. 5.4c), the 

mean linear velocity of the flowing water (Fig. 5.4d) and the volume flow (Fig. 5.4e) 

for every pixel in the TSE image. Using the reference tube for calibration, the 

intensities of Fig. 5.4a to c represent an amount of water between 0 and 1.0, where 

1.0 is the averaged intensity of nine pixels in the reference tube, representing 100% 

water density. The mean linear flow velocities of the flowing water in the xylem 

vessels reached levels up to 8 mm/s, where maximum velocities could exceed 15 

mm/s in the center of a vessel. Vessels in eight out of the nine vascular bundles are 

visible in Fig. 5.4c. With the highest linear flow velocities in the vessels of three 

vascular bundles in the center of the stem, the majority of the water transport in the 

shown slice of the cucumber plant stem occurred in those three vascular bundles. 

We set a positive threshold value (~2 x r.m.s. noise level) in the volume flow image 

to calculate the total water transport through the slice in the plant stem. The total 

volume flow was a summation of values of those pixels that exceeded the threshold 

and had at least one neighboring pixel, also with a value above this threshold. The 

calculated total volume flow through the slice in the plant stem will be compared 

with water uptake values from the balance measurements (see below). The 

calculation of the flow characteristics can also be performed with a summation of all 

74 



Chapter 5 

propagators of one vascular bundle. For two representative vascular bundles B1 

and B2, indicated in the mask of all pixels with flowing water for every bundle in Fig. 

5.4f, the changes in flow characteristics in time will be considered in more detail. 

Total amount 
water (TSE) 

Amount 
stationary water 

Amount 
flowing water 

Mean linear 
flow velocity Volume flow Mask 

1.25 0 1.25 0 0.63 0 

Figure 5.4: NMR images, calculated from a PFG TSE experiment. The total amount of water in the 

TSE image (a) closely resembles the calculated water density image in Fig. 5.2b. Images (a), (b) and 

(c) are normalized to the mean intensity of nine pixels in the reference tube (=1.0). The amount of 

flowing water can be recalculated in the cross sectional area of flow for every pixel, assuming that a 

vessel is homogenous along the direction of the plant stem over the thickness of the slice (3 mm). 

Apart from the cross sectional area of flow, also the linear flow velocity of the flowing water (d) and 

the volume flow (e) can be calculated. Image (f) indicates the individual vascular bundles as eight 

gray areas, representing all pixels with flowing water for every bundle. For bundles B1 and B2 the 

flow characteristics were recalculated with added propagators and studied in more detail. Parameters 

of the NMR experiment: 128 x 128 matrix with field of view 12.8 mm, repetition time 2.5 s, 32 echoes 

in TSE train, A 14.5 ms, 8 2.5 ms, gmalt 0.330 T/m. 

The parameters for the PFG TSE experiments were set to measure the xylem flow: 

the flow-encoding time A between the two pulsed field gradients was short (7 to 15 

ms), since linear flow velocities in the xylem were high (locally >15 mm/s). With 

short A-values it is difficult to distinguish displacements of water molecules 

originating from self-diffusion from displacements of water molecules that flow 

slowly in e.g. phloem sieve tubes. This so-called dynamic range problem is 

illustrated in Fig. 5.5: the sum of all propagators that show xylem flow has a large 

shoulder from displacements 0 to 190 urn, whereas the sum of all propagators in 

phloem regions reveals only a small asymmetry of a Gaussian shape. Merely a 

qualitative evaluation of phloem flow is possible by subtracting the image 

representing a displacement of +14 |i.m from the image representing a 

displacement of -14 |xm, as indicated by l-ll in Fig. 5.5b. This procedure unveils the 
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regions of phloem flow for the measured plant in Fig. 5.5b: adding all intensities in 

the phloem regions gives a rough indication of the phloem flow through the slice. 

Amplitude 
(a.u.) 

0.6 

Amplitude 
(a.u.) 

1.0-

0.5 

0.0 -i 

100 200 300 400 
Displacement (|xm) 

100 200 300 400 
Displacement (urn) 

-100 0 
2 i^isjj iraci i ic iu VH '̂V b 

Figure 5.5: The added propagator of all pixels of the image in Fig. 5.4 that show xylem flow (a) and 

the added propagator of pixels in phloem tissue (b). In the inset in (a) the images of the calculated 

water density and volume flow are shown. Subtracting point II from I for every pixel propagator gives 

an indication of phloem flow as shown in the images in the inset in (b). Phloem flow is visible at the 

periphery of the vascular bundles with a radial symmetry, as can be expected from the bicollatoral 

anatomy of the vascular bundles. 

Functional imaging during day/night cycle and root cooling 

After four days of acclimatization and growth in the experimental setup the roots of 

the cucumber plant were cooled rapidly for three hours with the heat exchanger in 

the container with growth medium. Cooling the roots severely inhibited the uptake 

of water by the plant, decreasing to levels around nocturnal uptake values before 

warming up the roots again. An outline of the uptake of the plant from the night 

before root cooling to two days after cooling is presented in the upper part of Fig. 

5.6. The transient response of the plant to turning lights on and off is evident, alike 

the reaction to root cooling. Water uptake by the roots was inhibited when the roots 

were cooled but transpiration of water from the leaves continued, resulting in a net 

water loss of the plant. The prolonged period of root cooling caused the leaves to 

wilt and the stomata of the leaves to close (1), as shown before in a previous NMR 

study of a cucumber plant (7). After warming up the roots, the uptake restored only 
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partially, but with closed stomata of the wilted leaves water uptake exceeded 

transpiration and the plant recovered. Within four hours after warming up the roots 

again (before the lights were turned off), the plant did not show any sign of water 

deficit anymore. The increase in water uptake in the first four days (data not shown) 

reflected the increase of leaf surface of the growing plants. The day after root 

cooling the uptake was lower than before root cooling. On the last day, shown in 

Fig. 5.6, water uptake was almost back to the level before root cooling. 

The total volume flow through the imaged slice of the plant, measured with NMR 

and calculated as indicated earlier, is also plotted in Fig. 5.6. Again, the response to 

the day/night cycle and the steep decrease in volume flow as a reaction to root 

cooling are evident. Moreover, from the start of root cooling to the end of the shown 

experiment the calculated NMR data comes close to the balance uptake values, so 

nearly all water that actually flows through the xylem has been localized. Early on 

the day of root cooling the calculated NMR flow does not coincide with the high 
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Figure 5.6: The water uptake by the cucumber plant measured with the balance (small dots) and 

with PFG TSE NMR (black diamonds). The ground level of evaporation out of the aerated container, 

visible at the end of the experiment (83 hours) when the plant was taken out of the setup, is set to 

zero. In the lower part of the figure an indication for phloem flow in arbitrary units is plotted (open 

triangles). The gray lines in the top of the figure indicate the light on periods. The period of root 

cooling is indicated with two vertical lines. Parameters of the NMR experiments: 128 x 128 matrix 

with field of view 12.8 mm or 64 x 64 matrix with field of view 11.0 mm, repetition time 2.5 s, 32 

echoes in TSE train, A, 8 and g were varied with expected flow velocities. 
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uptake values, measured with the balance. Although the balance measurements in 

that region are quite noisy or even absent because of too fierce aeration, one can 

still observe a difference between the balance measurement (-6.5 to 7.0 mg/s) and 

the calculated NMR flow (-4.5 mg/s) (the reason for this difference will be 

discussed below). A qualitative evaluation of phloem flow, made as described in 

Fig. 5.5b is displayed in the lower part of Fig. 5.6. The intensity of the phloem flow 

is in arbitrary units and shows only a reaction to root cooling: any response to the 

day/night cycle is not clear from the data. 

The course of the flow characteristics, calculated for two complete vascular bundles 

(indicated in Fig. 5.4f), is shown in Fig. 5.7. The volume flow of the bundles in Fig. 

5.7c resembles the overall uptake of the plant. Bundle B2 (see Fig. 5.4f), indicated 

with triangles in Fig. 5.7, transports more than twice the amount of water (0.94 ± 

0.02 s.e. (standard error) mg/s over the first day after root cooling) than bundle B1, 

indicated with diamonds in Fig. 5.7 (0.41 ± 0.02 s.e. mg/s). Transients in volume 

flow are a result of changing linear flow velocities in both vascular bundles. 

Significant changes in the cross-sectional area of flow are not visible (Fig. 5.7a), 

because of a low signal-to-noise ratio (mean cross-sectional area of flow of bundle 

B1 is 0.16 ± 0.02 s.d. (standard deviation) mm2 over the whole experiment, 0.18 ± 

0.03 s.d. mm2 for bundle B2). The flow characteristics for the other vascular 

bundles are comparable to the two shown in Fig. 5.7: the strong reaction of the 

mean linear flow velocity to the day/night cycle and to root cooling is responsible for 

the transients in the volume flow; the signal-to-noise ratio of the cross-sectional 

area of flow is not high enough to discern a significant change. 

For two of the five selected tissues in Fig. 5.2, the innerparenchyma and the 

outerparenchyma, the results of the bi-exponential fits over the three days are 

shown in Fig. 5.8. The water fractions of the two components are normalized to the 

mean intensity of 9 pixels in the reference tube. The total water density of the 

outerparenchyma tissue (the sum of the two water fractions) comes close to 1, 

which can also be seen in the amplitude image, calculated with one exponent in 

Fig. 5.2b, where the intensity of the outerparenchyma is as large as the intensity in 

the reference tube. The total water density of the innerparenchyma tissue is around 

0.75 to 0.80 (A,+A2), possibly influenced by partial saturation because of a long Ti, 
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Figure 5.7: The flow characteristics for two vascular bundles, calculated with the summation of all 

propagators that show flow within one bundle. The cross-sectional area of flow of a bundle in mm2 (a) 

multiplied with the mean linear flow velocity of the same bundle in mm/s (b) equals the volume flow in 

mm3/s or mg/s (c). Again, the gray lines in the top of the figure indicate the light on periods and root 

cooling is indicated with two vertical lines. The diamonds indicate a peripheral vascular bundle (area 

B1 in Fig. 5.4f), whereas the triangles indicate one of the four vascular bundles in the center of the 

stem (area B2 in Fig. 5.4f). 
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as was mentioned before. The two water fractions of the outerparenchyma tissue 

remain constant throughout the experiment: no influence of the day/night cycle or 

root cooling can be discerned either in water fraction (Fig. 5.8a) or in T2 (Fig. 5.8b). 

The amplitude of the large fraction of the innerparenchyma tissue increases about 

5% in the last hour of root cooling and the period with the lights on thereafter, which 

might be due to a decrease in T1 that cancels the possible partial saturation. The T2 

of this fraction shows a relation with the day/night cycle and with root cooling: with 

lights off the T2 of the fraction is around 0.26 s, dropping to around 0.23 s with the 

lights turned on with a steep decrease to around 0.19 s just after the period of root 

cooling. The T2 of the smaller fraction of the innerparenchyma tissue does not show 

a significant dependence on day/night cycle or root cooling. Although the data of 
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Figure 5.8: The water density (a) and corresponding relaxation time T2 (b) for two fractions of the 

innerparenchyma tissue (closed diamonds and triangles) and the outerparenchyma tissue (open 

diamonds and triangles), calculated with a bi-exponential fit to the averaged NMR-signal decay of all 

pixels from the regions indicated in Fig. 5.2f and g. 
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the inner and outer vascular bundles (Fig. 5.2h and i) are noisier because of the 

smaller amount of pixels in that tissue, both tissues show similar reactions to root 

cooling: a decrease in T2 of 15 to 20% of the large water fraction just after the 

period of root cooling (data not shown). 

Figure 5.9 recapitulates the results of one MSE and one PFG TSE experiment with 

a T2 image and an image with water density and flow information in two directions. 

The regions of xylem and phloem flow do not overlap, so the spatial in-plane 

resolution of 100 x 100 um is high enough to distinguish between the two. Not 

surprisingly, the vascular bundles with the largest xylem vessels, visible as dots with 

long relaxation times, show the largest amounts of water flowing from roots to 

shoot. Phloem flow is only visible on the exterior side of those bundles that show 

the larger quantities of xylem flow. 

T2 

Stationary and 
flowing water 

Figure 5.9: Two images summarizing an MSE and a PFG TSE experiment. The image in (a) is the 

T2-image from Fig. 5.2d. The image in (b) is an image of the water density (cf. Fig. 5.4a), overlaid 

with an image of the amount of water flowing upwards in the xylem (cf. Fig. 5.4c) and an image with a 

qualitative indication of phloem flow (inset in Fig. 5.5b). The green color scale in (b) represents the 

total amount of water, whereas the blue color scale represents the amount of flowing water, both 

relative to the average intensity of nine pixels in the reference tube (= 1). The red color scale 

indicates phloem flow intensity qualitatively, in arbitrary units. 

Discussion 

In general, care must be taken in interpreting multi-exponential NMR decay curves 

of plant tissue, since multi-exponential relaxation can be caused by cellular 
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inhomogeneity, subcellular compartmentation (30) and the presence of relaxation 

sinks at the boundaries of (both homogenous and inhomogeneous) cells or cell 

compartments (23, 31). However, if an amplitude and T2 image, although calculated 

with a mono-exponential fit, is used to differentiate between structural tissues, the 

NMR-signal decay curve of a number of pixels within these tissues can be averaged 

to increase the SNR, without introducing large cellular inhomogeneities. If this curve 

would be analyzed with a three-exponential fit three water fractions could be 

assigned to different cellular compartments (22, 23, 32): the vacuole (large fraction 

with long T2), the cytoplasm (small fraction with intermediate T2) and the cell wall 

and extracellular water (small fraction with short T2) (23, 32). In this study we fitted 

the decay curve with a bi-exponential function because the signal-to-noise ratio was 

too low to extract a third component with acceptable accuracy (other reasons were 

that the decay curve was cut off before the signal decayed to zero and the first part 

of the decay curve (time before first echo) was not available). The larger fraction of 

the two, with the long T2, can still be assigned to vacuolar water, whereas the small 

fraction with short T2 represents water from the cytoplasm and maybe contributions 

of water inside the cell wall and extracellular water. The T2 of the large water 

fraction is a weighted mean average value of the T2 of the water in the individual 

vacuoles, which differ slightly in size and in T2. Changes in the calculated T2 can be 

explained with a model, that describes a relation between the observed T2 of the 

vacuolar water fraction and the average intrinsic bulk T2 of the water in the 

vacuoles, the average surface sink strength density H and the average dimensions 

of the vacuoles (23, 33): 

yT2,obs = H{\/rx + l/ry + l/r2)+ l/T2bulk [2]. 

The dimensions of the vacuoles can be expressed in the average radii rx, ry and rz in 

three directions. H indicates the rate of magnetization loss at the vacuolar 

membrane, either due to wall relaxation or to exchange of water with the shor ty 

cytoplasm, or even exchange between extracellular water and water in the vacuole 

(passing through the cytoplasm). The validity of the relation between \/T2,ob, and cell 

dimensions for vacuolized cells has recently been demonstrated for cells in different 
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intemodes in the apical zone of maize and pearl millet plants (van der Weerd et al., 

Journal of Experimental Botany, accepted). 

How can this model be used to interpret the dramatic changes in time in the T2 of 

the vacuolar water fraction of the innerparenchyma tissue as shown in Fig. 5.8? 

The largest change in T2 is the 17% drop (from 0.23 to 0.19 s) in the 4.5-hour 

period just after root cooling. The time and period in which the T2 is shorter rules 

out a temperature effect: the temperature of the roots had already been set back to 

normal when T2-values had just dropped. A decrease in stem diameter, as reported 

by Reinders et al. (7), can not be the cause of the drop either, since the stem 

diameter is back to the original value within 15 minutes after cooling. The water 

density of the vacuolar water fraction increased only about 5% in the period of 

smaller T2-values, indicating that the amount of water inside the vacuoles hardly 

changes, and moreover, that the volume of the vacuoles (rx, ry and rz) remains 

constant within 5%. The vacuoles are not likely to accumulate large amounts of 

paramagnetic ions, which would lower the value for l2,buik, simply because these 

ions are not present in substantial amounts. The only variable that can be 

responsible for the 17% decrease in T2 is H. 

The increase in H, the rate of magnetization loss over the vacuolar membrane, 

might indicate an increase in exchange speed of water between the cytoplasm and 

the vacuole: an increase in the tonoplast permeability for water. More protons from 

water, crossing the vacuolar membrane, lose their magnetization in the cytoplasm 

or, if the distance from tonoplast membrane to cellular membrane is small (in the 

order of 1 |j.m), in the cell wall. In this way, even a change in plasmalemma 

membrane permeability could affect / /and thereby also MT2j)b,. 

The two water fractions in the outerparenchyma tissue do not show any changes in 

water density and T2 over the studied period of time, contrary to the 

innerparenchyma tissue and the tissue in the inner and outerbundels that all clearly 

show a decrease in T2 of the large (vacuolar) water fraction. In the period after root 

cooling, in which the plant recovered from severe water loss, the decrease in T2 in 

tissue around xylem vessels and tissue in the innerparenchyma indicates an 

increase in H, which in turn could mean an increase in tonoplast and/or cell 
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membrane permeability, important for restoring the water balance of the plant. Of 

course this hypothesis needs to be tested further. 

Generally the total water uptake in Fig. 5.6, calculated from the PFG-TSE data, 

comes close to the water uptake values, measured with the precision balance, 

although before cooling the roots the NMR-values are too low. A reason for 

calculating systematically deviating volume flow values can be found in the 

presence of vessels with too high linear flow velocities, which results in large 

maximum displacements within A. The surface of the flowing part of the pixel-

propagator represents the amount of flowing water (25, cf. Fig. 5.5a). A large 

maximum displacement at a given amount of flowing water stretches the pixel-

propagator all over the displacement axis, lowering the amplitude into the noise, 

where it cannot be quantified anymore. 

The flow characteristics of the complete individual vascular bundles in the 

experiment as shown by two representative bundles in Fig. 5.7 reveal the 

development of the cross-sectional area of flow, the mean linear flow velocity and 

the volume flow in absolute quantities. The difference in cross-sectional area of flow 

for the two bundles is small (0.18 ± 0.03 s.d. - 0.16 ± 0.02 s.d. mm2), whereas the 

difference in volume flow (and mean linear flow velocity) is more than a factor of 2 

(0.94 ± 0.02 s.e. to 0.41 ± 0.02 s.e. mg/s). Assuming an equal pressure difference 

over the two bundles, the volume flow through a circular tube or vessel is related to 

the fourth power of the vessel radius (the Hagen-Poiseuille law (34)). Therefore the 

bundle with the higher flow rates must have more vessels with larger diameters and 

less vessels with smaller diameters than the other bundle to keep the cross-

sectional areas (almost) equal. From Fig. 5.7a one cannot conclude that the period 

of root cooling had a structural effect on the cross-sectional area of flow: changes in 

the volume flow rate are accounted for by the linear flow velocities. 

It is difficult to discern extremely slow flow from stationary water when using short 

A-values. Although phloem flow has been visualized qualitatively, a quantitative 

evaluation requires long A-values. With these long observation times severe signal 

loss between excitation and detection of the first echo needs to be avoided. For this 

purpose it is more appropriate to use a stimulated echo version of the PFG TSE 
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technique (35), or another flow-sensitive NMR imaging pulse sequence that uses a 

stimulated echo (36). 

The overlay image in Fig. 5.9b suggests that xylem flow and phloem flow are 

correlated: those vascular bundles that are most active in xylem transport, also take 

care for the majority of phloem transport. Munch (37) already proposed that the 

surplus of water from arriving phloem sap that had originally transported solutes 

could be released in the xylem to be transported back towards the leaves. Whether 

this implies a positive correlation between xylem and phloem flow has to be 

investigated further. 

The presented study describes the results of one cucumber plant. Three other 

investigated plants (data not shown), differing slightly in size and age, displayed 

similar reactions to root cooling and the day/night cycle concerning water loss of the 

plant, changes in xylem flow and T2. In larger plants with larger water uptake again 

problems with high linear flow velocities occurred, but the calculated NMR flow 

indicated very clearly the trend in water uptake (again, with volume flow values 

calculated from the NMR measurements being smaller than the uptake, measured 

with the balance). In one larger plant phloem flow could be discerned on the interior 

and exterior sides of three large vascular bundles and in four other bundles 

(exterior). In this plant phloem flow was clearly more intense at night than during 

daytime, again being the smallest while the roots were cooled. 

Functional MRI in plants, as demonstrated here, is a unique tool to study plant 

responses to different water-availability conditions, cold treatment or other biotic 

and abiotic stressors. Post-genomic studies of (genetically modified or wild type) 

plants with functional MRI could reveal the functionality of gene expression at cell, 

organ and whole plant level in water-related processes which are crucial for plant 

function. Another application could be the induction and refilling of air embolisms in 

plants to study possible mechanisms behind refilling. Changes in total amount of 

water, amount of flowing water, amount of stationary water, volume flow and T2 can 

be studied on tissue or even single vessel or pixel level. If functional MRI is 

combined with other techniques, e.g. the xylem pressure probe, one could study 
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xylem pressure and xylem flow at the same time to validate or disaffirm current 

hypotheses in plant water relations. 

Conclusions 

The combination of T2 and detailed flow imaging experiments reveals the 

functioning of plants in response to environmental changes by tracing water 

transport in xylem and phloem and the spin-spin relaxation time T2. The analysis of 

the MSE experiments, aided by image guided tissue differentiation, with a bi-

exponential decay curve reproducibly revealed two water fractions for several 

tissues. The T2 of the large fraction can be assigned to vacuolar water. A decrease 

of the T2 of the vacuolar water fraction of the innerparenchyma tissue and the 

vascular tissue surrounding the xylem vessels after a period of cooling the roots 

can be attributed to an increase in the surface sink strength density. This increase 

in H, in the period in which the cucumber plant recovers from severe water loss, 

may indicate an increased permeability for water of the tonoplast and plasmalemma 

membrane. 

Water transport through the xylem vessels is localized and quantified with the flow 

imaging experiments, indicating, apart from a normal day/night cycle, a large drop 

in water uptake of the cucumber plant when the roots are cooled. Since the NMR 

quantification of flow in the xylem vessels matched uptake values, measured with a 

balance, it is now possible to study water transport separately in every vascular 

bundle, and for large xylem vessels even individually. Although the presented flow 

imaging experiments were optimal to measure the xylem flow, phloem flow could 

also be discerned. A day/night cycle in phloem flow was not found, but the reaction 

to root cooling was unambiguously: phloem flow dropped during and just after the 

period of root cooling. The utilization of the two imaging techniques in other plants 

and the study of individual xylem vessels and surrounding tissues in the cucumber 

plants are two promising aspects for the near future. 
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Embolism induction and repair in xylem vessels 

of Cucumis Sativus L. 

T.W.J. Scheenen, F.J. Vergeldt, A.M. Heemskerk, P.A. de Jager and H. Van As 

The flow characteristics of the water in a virtual slice through a cucumber plant 

stem (Cucumis Sativus L.) have been studied with dynamic nuclear magnetic 

resonance imaging. Cooling the roots of the plant severely inhibited water uptake 

by the roots and increased the hydraulic resistance of the plant stem. This increase 

is (at least partially) due to the formation of embolisms in the xylem vessels of the 

plant. Four large vessels (diameters of two vessels 0.13 and 0.18 mm) in the 

depicted slice embolized and started to get refilled in the night after root cooling. 

The timescale of refilling ranged from five to fourteen hours for a three-mm part of 

the vessel. Extrapolating these times linearly would mean that vessel refilling in 

cucumber is a very lengthy process. Refilling occurred while neighboring vessels at 

a distance not more than 0.4 mm were under tension, transporting an equal amount 

of water before and a day after root cooling. Relative differences in volume flow in 

different vascular bundles suggest differences in xylem tension for different 

vascular bundles. 
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Introduction 

The phenomenon of rapid wilting of various plants (for instance cucurbits) when the 

roots of these plants are cooled and the quick recovery after root temperature has 

returned to normal levels has been described already in 1860 (1). Berndt et al. (2) 

gave an overview of many papers on the subject through the years, concluding that 

the primary effect of root cooling was a reduced water uptake caused by a (quickly 

reversible) fall in radial conductance of the roots. A strong reduction in water uptake 

can cause the formation of xylem embolisms: due to a strongly negative water 

potential the water column in a xylem vessel is disrupted and the vessel fills with 

water vapor and air blocking further water transport. Embolisms in xylem vessels in 

roots and leaves, frozen while still attached to the plant, have been studied with 

cryo-scanning electron microscopy (2-9). These studies suggest that embolism 

formation and repair in the xylem is a continuous process occurring within one day 

and that partially filled vessels and water droplets in the lumen of vessels are proof 

of the refilling of the vessels. The mechanism behind this embolism repair is still 

unknown and some questions have been raised about the observations with the 

cryo-scanning electron microscopy technique itself (10). 

Searching for a mechanism for embolism repair, one almost automatically enters 

the debate about the mechanism of xylem sap ascent in general. Recently, three 

reviews on this subject have been published (11-13) showing several different 

views on how water is transported from roots to leaves. The Cohesion-Tension 

theory (14) poses that xylem sap flows through continuous water columns in the 

xylem, driven by evaporation of water from the leaves, involving pressures in the 

xylem vessels more negative than the vapor pressure of water, making it vulnerable 

to cavitation. The water potential of the xylem vessels (the difference between the 

sap osmotic pressure and the xylem pressure) must be in balance with the water 

potential of adjoining tissues and cells in order for those tissues and cells not to 

lose water. If embolism formation and repair is a continuous process during the 

day, how can a vessel be refilled while tissue remains under tension? To answer 

this question Canny (4, 12) proposed the compensating pressure theory, which 

received severe criticism ((15-18) among others). Tyree et al. (17) concluded that 

none of the existing ideas could explain their results of embolism refilling in young 
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stems of Laurel. However, very recently it has been argued that xylem tension and 

embolism repair is not mutually exclusive (19), which would mean that the 

Cohesion-Tension theory still holds. In the refilling model, presented by Holbrook 

and Zwieniecki (19), a central role is played by the structure of the bordered pits 

and the surface properties of the xylem vessel walls, defining the contact angle of 

xylem sap with the vessel wall. It is the surface tension of the convex meniscus in 

the pit chambers between a refilling vessel and a vessel under tension that 

prevents xylem sap in the refilling vessel to connect with water from the vessel 

under tension (20). In this way the refilling vessel (with a slightly positive pressure to 

dissolve the gas) is hydraulically isolated from the vessel under tension until the 

embolized vessel is completely refilled. For both the driving force for refilling the 

embolized vessel by adjoining living cells and the details of re-establishing hydraulic 

continuity, new techniques and investigations are asked for (17, 19). 

Several groups have shown that nuclear magnetic resonance imaging (NMRi or 

MRI) is suitable for plant studies at single vessel level (21-24). In this paper we 

present the first spatially resolved, non-invasive, in vivo measurements of embolism 

induction and refilling in a mature, intact cucumber plant (Cucumis Sativus L.) and 

its effect on flow behavior in individual xylem vessels. By using MRI methods as 

described by Scheenen et al. (25, 26) we studied changes in water transport in an 

individual plant in time as a function of environmental changes. We investigated 

whether xylem embolisms in the stem of the cucumber plant are involved in the 

phenomenon of rapid wilting and recovery during and after root cooling and are now 

able to answer a few pressing questions in the field of xylem vessel cavitation and 

restoration. 

Methods 

Plant material and NMR imaging setup 

24-day-old commercially grown cucumberplants (Cucumis sativus L, cv Hurona), 

were transferred from rock wool to an aerated, half-Hoagland solution and grown 

for five weeks in a greenhouse at Wageningen University. A cylindrical jacket 

around the upper ten cm of the roots maintained horizontal root expansion within 
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4.5 cm diameter to facilitate insertion into the gradient probe of the instrumental 

setup. Flowers were pinched out and occasionally the bottom leaves of the plants 

were cut off to clear the lower 50 cm of the stems from leaves. Three days before 

the start of the measurements, one of these plants (~1.6 m tall) was moved from 

the greenhouse to the laboratory. A plastic mould was placed around the plant stem 

(-35 cm from the roots) and a radiofrequency (RF) coil (diameter 15 mm) was 

wound round the mould. The roots of the plant were put through the 4.5 cm 

cylindrical bore of a gradient probe (Doty Scientific Inc., Columbia, South Carolina, 

USA) and the plant with the RF coil and a support for capacitors inside the gradient 

probe was positioned in a 0.7 T electromagnet (Bruker, Karlsruhe, Germany) (Fig. 

6.1). 

IR filter 

R.F. control 

Gradient 
probe 

Gradient control 

Growth 
medium 

exchanger 

' Cooling 
unit 

Balance control 

Balance 

Figure 6 . 1 : Overview of the plant in the instrumental setup. The dotted lines are connections to the 

RF amplifier and receiver, the gradient amplifiers and to a computer that monitors the weight of the 

container with growth medium. 

92 



Chapter 6 

The experiments were performed with an SMIS console (SMIS Ltd., Guildford, 

Surrey, UK). Water uptake by the roots of the plant was measured with a precision 

balance (LC3201D, Sartorius AG, Gottingen, Germany), sampling the average 

differential weight of the container with growth medium every 30 seconds. A heat 

exchanger in the container was able to cool and reheat the roots from 22°C to 3°C 

or vice versa in five minutes. The temperature in the climate chamber above the 

magnet was 25 ± 2°C during the photoperiod (from 6.00 a.m. to 9.00 p.m., relative 

humidity 65 ± 5%, illumination about 2 x 102 |a.mol/m2s (PAR), depending on 

position of the leaves) and 22 ± 2°C at night. 

NMR imaging pulse sequence and analysis 

The diameter of the xylem vessels in the vascular bundles of a cucumber plant can 

range between 0.02 and 0.35 mm (27). With an in plane spatial resolution of 120 x 

120 (xm the flow profile of water flowing in each volume-element (or pixel) of an 

image cannot be predicted, since a pixel of a transverse image of a cucumber plant 

stem can contain a few small vessels, one or two larger vessels or only a part of 

one of the larger vessels. Therefore the complete distribution of displacements in 

the direction of flow of the water within a certain labeling time (called a propagator) 

was acquired for every pixel. A pulsed field gradient turbo spin echo pulse 

sequence (26) was used to construct the propagators for every pixel within a 

physiologically relevant time. The following flow characteristics were extracted from 

the propagators for every pixel as described by Scheenen et al. (25): the total 

amount of water, the amount of stationary water, the amount of flowing water, the 

mean linear velocity of the flowing water, and the volume flow. On the basis of the 

flow characteristics per pixel several individual vessels could be discerned and the 

flow characteristics were recalculated for the summation of pixels containing 

individual vessels. In this way the flow characteristics of single pixels, individual 

xylem vessels and complete vascular bundles could be monitored in time. 
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Results 

Overall reaction of the plant to the day/night cycle and root cooling 

Figure 6.2 shows the water uptake and MRI flow results for the complete period of 

time that the plant was in the instrumental setup (cf. Fig. 6.1), starting at 20.00 

hours on the first day. During the day (lights on) transpiration of the plant clearly 

elevated water uptake by the roots. The light intensity on the second day was low to 

allow the plant to recover from transportation and insertion in the setup. From the 

third day on illumination was kept constant at about 2 x 102 umol/m2s (PAR), 

depending on the position of the leaves. From the third to sixth day the plant grew 

about 20 cm in length, which is visible in a steady increase in water uptake values 

of the plant in this time. The roots of the plant were cooled on day six from 12.20 h 

to 16.20 h. Water uptake decreased in this period to values below those measured 

at night. During root cooling, transpiration exceeded water uptake, resulting in a net 

20 40 60 80 100 120 140 160 
Time (h) 

180 

Figure 6.2: The water uptake by the roots of the cucumber plant in the instrumental setup. The 

black dots represent the values measured with the precision balance: every point is a moving average 

of 10 points, which is effectively five minutes. The open diamonds and triangles represent the total 

volume flow rate in the stem, calculated from respectively conventional NMR experiments (with linear 

motion-encoding gradient steps) and from experiments with non-linearly stepped gradients. The 

day/night cycle is indicated at the top of the graph and the period of root cooling on the fifth day is 

indicated with the two vertical lines. The roman numbers indicate the day number of the experiment. 
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water loss that caused severe wilting of all leaves and the top of the stem. After 

warming the roots to room temperature water uptake recovered only partially, but 

the plant recovered completely within 2.5 hours (except for the upper three small 

leaves that got damaged by the light in absence of transpiration). However, the 

decreased water uptake values in the days after root cooling reflected decreased 

transpiration levels. With unchanged conditions in the climate chamber this could 

point to an increased hydraulic resistance in the vascular system of the plant, if the 

decreased radial conductance of the roots quickly recovered after warming the 

roots (2). 

NMR imaging of the plant stem 

Results from four MRI measurements are shown in Fig. 6.3, together with light 

microscopic pictures of a thin, hand-cut slice of the stem through the imaging plane 

(made after the MRI study). The different tissues, indicated in the microscopic 

picture of a part of the plant stem (Fig. 6.3a) can be recognized in an image of the 

NMR spin-spin relaxation time T2 (Fig. 6.3b), and an image of the water content of 

the slice (Fig. 6.3c). The NMR images in Fig. 6.3b+c are fitted results of a multi-

echo imaging experiment {28). The large voids in the center of both images 

represent the empty pith cavity of the stem. The stele of the stem with large 

parenchymal cells contains four large and five smaller bicollateral vascular bundles, 

in which individual xylem vessels can be discerned. The large parenchymal cells 

have relatively long T2-values, whereas the vascular bundles, with smaller cells, 

have shorter T2-values. The individual xylem vessels can be seen as high intensity 

dots in the water content image and long T2-values inside the vascular bundles. 

The two circles on both sides of the stem in the NMR images are reference tubes 

filled with water. 

Although only one small transverse slice of the stem (at 35 cm from the roots) with 

a thickness of 3 mm was visualized in the NMR images the cause of an increased 

hydraulic resistance could immediately be found. Figure 6.3c, d and e are three 

images representing the water content at different points in time revealing cavitated 

vessels due to root cooling. The red arrows in Fig. 6.3d indicate four vessels (two 

cavitating vessels at arrow I) that were filled with water before root cooling (t=130 h, 

Fig. 6.3b), empty 3.7 hours after the period of root cooling (t=140 h, Fig. 6.3c) and 
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refilled again in the last night of the experiment (t=170 h, Fig. 6.3d). Figure 6.3f is 

an enlarged view (light microscopy) of the embolized vessel indicated with arrow II 

in Fig. 6.3d. The time course of cavitation and refilling of these vessels will be 

examined in detail later. 

Figure 6.3:Cross-sections through the stem of the cucumber plant, a) Light microscopy of the 

bottom right vascular bundle, b) NMR image of the spin-spin relaxation time at t=170 hours, 

calculated from a multi-echo imaging experiment (28). c+d+e) NMR images of the water content of 

the slice at three different points in time: at t=130, 140 and 170 hours respectively. In d) the red 

arrows indicate cavitated vessels. The blue arrow indicates a vessel in which flow is restored, f) 

Enlarged view of the bottom right vascular bundle. The xylem vessel, indicated with the red arrow, is 

an embolizing vessel and is monitored in time in Fig. 6.4, together with vessels v1 and v2. g+h+i) 

NMR Images of some of the flow characteristics extracted from the propagators of every pixel: the 

total amount of water, the amount of stationary water and the volume flow respectively. The colored 

scales in g) and h) indicate an amount of water, relative to the reference tube (=1), the scale in i) 

indicates the volume flow per pixel in mg/s. j) An overlay image of the volume flow and the total 

amount of water. Experimental parameters: field of view 15.4 mm, resolution 120 x 120 x 3000 urn, 

measurement time 21 min. Abbreviations in a): ep, epidermis; co, cortex; scl, sclerenchyma; ste, 

stele; vb, bicollateral vascular bundle; x, xylem; phi, phloem; pi, pith. 

Figure 6.3g to j summarize the results of one flow-imaging experiment: the total 

amount of water per pixel (Fig. 6.3g), the amount of stationary water per pixel (Fig. 

6.3h), the volume flow per pixel (Fig. 6.3i) and an overlay image of the volume flow 

and the total amount of water (Fig. 6.3j). In addition, images representing the 

amount of flowing water and the linear flow velocity of the flowing water are 

available (data not shown). It is clear from Fig. 6.3i that only a few large xylem 

vessels take care for the majority of the total volume flow through the slice. The 
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added volume flow of the pixels with flowing water represents the total volumetric 

water uptake through the slice, which should correspond with water uptake by the 

roots, measured with the precision balance. In Fig. 6.2 the values for the total 

volume flow, calculated from the MRI measurements, are indicated as open 

diamonds and open triangles. The open diamonds represent values from 

'conventional' measurements, in which motion-encoding gradients are stepped 

equidistantly before Fourier Transformation into a propagator (26). These values 

were systematically too small for higher linear flow velocities. This problem was 

circumvented by stepping the motion-encoding gradients non-linearly, thereby 

probing higher linear velocities more accurately (Scheenen et al., in preparation). 

The calculated volume flow values of these measurements, indicated with the open 

triangles in Fig. 6.2, clearly fit the uptake values, measured with the balance. 

The induction and refilling of an embolism 

The flow characteristics in time of one of four embolisms that were visible in the 

measured slice are examined in detail here. The signal from five pixels, containing 

the embolizing vessel, indicated with the bottom red arrow (arrow II) in Fig. 6.3d and 

6.3f, was added and re-analyzed as described by Scheenen et al (25). The signal 

from an area of nine pixels, adjoining the five-pixel area that contained the 

embolizing vessel, was also analyzed separately (vessels v1 and v2 from Fig. 6.3f). 

In Fig. 6.4 the flow characteristics are presented for both areas from the night 

before root cooling until the end of the experiment. The formation of an embolism is 

clearly visible: in the center of the period of root cooling the volume flow (squares in 

Fig. 6.4a) and the amount of flowing water (triangles in Fig. 6.4c) abruptly fell to 

zero. The total amount of water in the area with the embolizing vessel dropped to 

10.4 x 10"2 mm3 and remained at this value for twelve hours until about 4.30 a.m. 

that night. Then, it took 13 hours for the selected area in the slice to be refilled with 

7.7 x 10"2 mm3 water (= 0.64 x 10~2 mm3/h): the cross-sectional area of flow of the 

embolized vessel was 7.7 x 10"2 / 3.0 (slice thickness) = 2.6 x 10"2 mm2. The cross-

sectional area of flow, calculated from the light-microscopic picture was 3.0 x 10~2 

mm2. Water transport in this vessel was not restored within the total experimental 

time. 
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Figure 6.4: The flow characteristics of two small neighboring areas, of which one contains an 

embolizing vessel (area of five pixels) and the other contains at least one vessel unaffected by root 

cooling (area of nine pixels). The areas are indicated as highlighted pixels in two enlarged parts of the 

image in the inset of Fig. 6.4a. a) Volume flow of both vessels in time: the squares represent the 

embolizing vessel, the diamonds indicate the unaffected vessel, b) The total amount of water (closed 

diamonds), the amount of stationary water (squares) and the amount of flowing water (triangles) of 

the unaffected vessel, c) The total amount of water (closed diamonds), the amount of stationary 

water (squares) and the amount of flowing water (triangles) of the embolizing vessel. The second y-

axis on the right side of graphs b and c represent the averaged water amounts for one pixel in the 

selected area. The crosses through some specific points indicate the results obtained by the non-

linearly motion-encoded measurements (cf. the triangles in Fig. 6.2). 
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Surprisingly, the flow characteristics of the area of nine pixels immediately adjoining 

the refilling vessel (with vessels v1 and v2, Fig. 6.3f) were not affected by the 

formation and refilling of the embolism. According to the Hagen-Poiseuille law for 

laminar flow {29) the volume flow through a circular tube or vessel is related to the 

vessel radius to the power of four. This relation clarifies why the volume flow of the 

unaffected nine-pixel area with two smaller vessels v1 and v2 was smaller than the 

volume flow of the embolizing vessel (Fig. 6.4a), whereas the amount of flowing 

water of v1 and v2 was larger (compare Fig. 6.4b with Fig. 6.4c). The cross-

sectional area of flow for v1 and v2, calculated from the light-microscopic picture 

was 2.2 x 10"2 mm2 and 1.4 x 10"2 mm2. Although the vessels are not perfectly 

circular, the Hagen-Poiseulle law can be used to estimate the xylem pressure 

difference APX over the vessels, which was assumed to be equal for v1, v2 and the 

embolizing vessel. APX of the embolizing vessel before root cooling, needed to drive 

0.49 mg water per second through a 0.2 mm diameter vessel (estimated from a 

cross-sectional area of flow of 3.0 x 10"2 mm2), is 14 Pa/mm. Table 6.1 summarizes 

the kinetics of refilling for all vessels indicated with the red arrows in Fig. 6.3d. The 

flow characteristics of the embolizing vessel in Fig. 6.4, which were calculated from 

the alternative flow-measurements (triangles in Fig. 6.2), corresponded with those 

calculated from the 'conventional' flow-measurements (squares in Fig. 6.2), so the 

values from both measurements could be considered here (cf the ordinary symbols 

in Fig. 6.4 with the symbols in which a cross is drawn). 

Table 6.1: Details of refilling of four xylem vessels that embolized during root cooling. 

Vessel 

number 

Fig. 6.3d 

I* 

II 

III 

Dia

meter 

(mm) 

-

0.18 

0.13 

Cross-

sectional 

area (mm2) 

5.1 x 10~2 

2.6 x10"2 

1.3 x10"2 

Volume 

flow* 

(mg/s) 

0.36 ± 0.06 

0.49 ± 0.02 

0.17 ±0.05 

Start of 

refilling* 

(hours) 

4.00 a.m. 

4.30 a.m. 

0.00 a.m. 

Refilling 

time 

(hours) 

14 

13 

5 

Refilling 

speed 

(mm3/h) 

1.1 x10"2 

0.64 x10"2 

0.75 x10"2 

APX 

(Pa/mm) 

-

14 

11 

*Mean volume flow ± standard deviation in the hours before root cooling 
fNight after root cooling 

*Data in this row originates from two embolized vessels 
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Restoration of flow in a xylem vessel 

Apart from embolizing vessels, also a vessel that restored flow could be found in 

the slice (indicated with the blue arrow in Fig. 6.3d). Figure 6.5 reveals the flow 

characteristics of a selected area containing this vessel (5 pixels), together with 

those of a neighboring area (six pixels), transporting water throughout the complete 

experiment. Even around t=67 hours (day III) no water was transported in the 

selected area (data not shown). At t=152 hours (8.00 a.m. at day VII, two hours 

after the lights had been turned on, indicated with a vertical line in Fig. 6.5a + c) 

water transport in the vessel started and increased to 0.2 mg/s in six hours. The 

total amount of water in the area with the restoring vessel remains constant 

throughout the experiment: before t=152 hours all water was stationary; when the 

vessel starts transporting water about one-third of the water starts flowing (Fig. 

6.5c). The cross-sectional area of flow of this vessel was 8.2 x 10~2/ 3.0 = 2.7 x 10"2 

mm2, calculated from the NMR measurements, and 3.0 x 10~2 mm2, calculated from 

Fig. 6.3f, corresponding with a circular vessel diameter of 0.2 mm. For a volume 

flow of 0.2 mg/s a APX of 6 Pa/mm is needed (again, assuming a circular vessel 

geometry). The amount of stationary and flowing water of the area next to the 

restoring vessel (at a distance of 0.5 to 0.6 mm) were not influenced by the 

restoration of flow or root cooling (Fig. 6.5b). However, the volume flow of this area 

on the day after root cooling was larger compared to the transpiring period before 

root cooling and the hours just after root cooling on day VI. APX over one unit length 

of the xylem vessel in this area was larger on day VII than on the day of root cooling 

(day VI). 

Discussion 

The development of the overall water uptake by the cucumber plant in the 

instrumental setup before root cooling indicates that the plant is healthy and 

growing (Fig. 6.2). The difference in water uptake between just before and one day 

after root cooling suggests a reduction in hydraulic conductivity of the xylem, as the 

decrease in radial conductance of the roots (caused by root cooling) is rapidly 

reversed on rewarming (2). The cause of the reduction in hydraulic conductivity is 

the formation of embolisms, blocking water transport. In the 3-mm thick slice that 
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Figure 6.5: The flow characteristics of two small neighboring areas, of which one contains a vessel 

in which flow is restored (area of five pixels) and the other contains at least one vessel, unaffected by 

root cooling (area of six pixels). As in Fig. 6.4, the areas are indicated as highlighted pixels in two 

enlarged parts of the image in the inset of Fig. 6.5a; a) represents the volume flow of both vessels in 

time: the squares represent the restoring vessel, the diamonds indicate the unaffected vessel, b) and 

c) represent the total amount of water (closed diamonds), the amount of stationary water (squares) 

and the amount of flowing water (triangles) of the unaffected vessel and the restoring vessel, 

respectively. Again, the second y-axis on the right side of graphs b and c represent the averaged 

water amounts of one pixel in the selected area and the crosses through points indicate deviant 

measurements (cf. the triangles in Fig. 6.2). 
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was studied here, four embolizing vessels were found (Fig. 6.3). How many other 

vessels had been embolized at different positions in the stem (or in the roots) is 

unknown. However, the difference in water uptake between the hours before root 

cooling and one day after root cooling (> 7 mg/s) could not be caused by the loss of 

transport capacity in the four embolizing vessels in the slice alone (total volume flow 

of these vessels before root cooling 1.0 mg/s, cf. Table 6.1). Where some vessels 

were not affected by root cooling (Fig. 6.4b) and others even showed an increase in 

volume flow after root cooling (Fig. 6.5a) the total volume flow decreased drastically 

due to vessels in which water transport was completely stopped or reduced, 

probably because of embolisms outside the slice, but inside the conduits 

concerned. 

Investigating the temporal dynamics of embolizing vessels in more detail in Fig. 6.4 

revealed a few interesting phenomena. Firstly, large embolized xylem vessels in the 

stem of the plant were refilled, and the time scale of refilling is long. It took five, 

thirteen and fourteen hours to refill a length of only three mm (the observed slice) of 

the embolized vessels. The speed of refilling was in the order of 0.6 x 10'2 mm3/h. 

With comparable refilling speeds, the smaller embolized vessel refilled faster (in the 

observed slice). Extrapolated linearly it would take 17 to 47 hours for every cm of a 

vessel to be refilled with water. Although it is not possible to resolve whether the 

speed of refilling is constant over a complete vessel from the presented data, it is 

clear that refilling of an embolized vessel in the stem of a cucumber plant is a slow 

process, contrary to what has been concluded for petioles of sunflower (3, 4), the 

primary root of squash plants (2) or young stems of laurel (17). This is a plausible 

reason why we did not observe restoration of flow in embolized vessels in our 

experiment: the time scale of complete refilling is simply too long. Vessels, 

embolized because of root cooling on day VI, were not completely refilled by the 

end of the experiment. The vessel in which flow was restored on day VII had not 

been transporting water for at least four days. An embolism below or above the 

slice in this conduit might have been induced while moving the plant from the 

greenhouse to the lab or in the first days in the setup. 

Secondly, refilling occurred while nearby tissue and vessels were under tension. 

The area adjoining an embolizing vessel at a distance not more than 0.4 mm was 
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unaffected by embolism formation and refilling of the neighboring vessel (Fig. 6.4b). 

Therefore, the water in the refilling vessel must be completely isolated from water in 

surrounding cells or vessels, as was hypothesized and investigated by Holbrook 

and Zwieniecki (19, 20). 

The pressure difference per unit length of a xylem vessel (APX, the driving force for 

flow) is in the order of 10 Pa/mm (assuming cylindrical vessel geometry) and not 

equal for all vascular bundles in the slice. Water close to the walls in vessels is 

effectively stationary in a laminar flow profile and therefore difficult to distinguish 

from surrounding stationary water in accompanying cells. Therefore, the cross-

sectional area of flow, calculated from the NMR measurements, was systematically 

smaller than the cross-sectional area of flow, calculated from the light-microscopic 

pictures. The volume flow of vessels v1 and v2 (Fig. 6.3f) was constant in the hours 

with lights on before root cooling on day VI, throughout day VII and VIM (Fig. 6.4a). 

However, the volume flow of vessels near the vessel in which flow was restored 

was around 50% larger on day VII and VIM than on day VI before root cooling (lights 

on periods, Fig. 6.5a). These relative differences in volume flow (and therefore also 

in APX) suggest differences in xylem tension between different vascular bundles in a 

slice. 

If the water in a refilling vessel needs to be hydraulically isolated (with bordered pits 

(19, 20)) from surrounding cells or tissues under tension, then what is the source of 

the incoming water and what is the driving force for water to enter the embolized 

vessel? Perhaps a combination of MRI with a xylem or tissue pressure probe and a 

detailed study of vessel and air bubble anatomy (especially in the longitudinal 

direction) can give the answer to this emerged question. 
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Quantitative imaging of plant water status and transport 

with Nuclear Magnetic Resonance: a strategy. 

T.W.J. Scheenen, P.A. de Jager, F.J. Vergeldt and H. Van As 

The possibilities of quantitative NMR imaging of plants at a low magnetic field 

strength are discussed. An advantage of a low magnetic field strength for plant 

studies is the absence of susceptibility related image artifacts. The electromagnet 

used in the current studies has an open setup, which facilitates vertical positioning 

of the plant. The inherent low signal to noise ratio is partly compensated by the use 

of a solenoid radiofrequency coil and the possibility to record many signal-

containing spin echoes. The multiple spin echoes can be used for quantitative T2 

imaging or for decreasing the acquisition time of one image with turbo spin echo 

imaging, enabling quantitative displacement imaging with a physiologically relevant 

time resolution. Due to the unpredictable flow profile in a single pixel it is necessary 

to record the complete distribution of displacements for every pixel of an image. 

Both fast flow and diffusion can be imaged quantitatively by sampling q-space with 

non-equidistant steps. Possible problems when quantifying flow are discussed. 

Quantitative T2 imaging and displacement imaging relate more than one parameter 

to every pixel of an image, which can take away the need for a high spatial 

resolution. 
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Introduction 

The debate on the mechanisms behind water transport in plants is livelier than ever, 

as a result of the introduction of the xylem pressure probe and cryo-scanning 

electron microscopy into the scientific area of plant water relations. Questions have 

been raised around the century-old Cohesion Tension theory (7), which poses that 

xylem sap flows through continuous water columns from roots to shoot, driven by 

evaporation of water from the leaves. Obviously, with trees exceeding heights of ten 

meters this would leave water in the xylem at pressures more negative than the 

vapor pressure of water. Other forces, like root pressure and capillary forces, are 

also involved in long distance water transport. Although Nuclear Magnetic 

Resonance imaging (NMRi or MRI) has been applied to plants or plant tissue in 

many studies (for an overview, see Ishida et al.(2)), it is a relatively new technique 

in plant physiology. Kockenberger reviewed MRI for plant cell metabolism studies 

together with an introduction in the fundamental principles of NMR (3). Only 

recently MRI has been used as a tool to unravel water transport and its 

mechanisms in large intact plants by quantifying flow characteristics and relaxation 

times for every pixel in an NMR image (4). 

Why is MRI in plant science still far from being a routine tool? Some reasons could 

be the high costs of NMRi equipment, the difficult theoretical fundamentals on 

which the technique is based, the horizontal orientation of standard imaging setups, 

the limited accessibility (for large plants) of the magnetic fields' iso-center of most 

setups, and the specific requirements which have to be met when measuring 

plants. In this paper we would like to address some of these issues and set out a 

strategy on how to deal with plant-specific problems in quantitative NMRi of plants 

at relatively low magnetic field strengths. 

Magnetic field strength and signal-to-noise ratio 

A high signal-to-noise ratio (SNR) is crucial in an NMR experiment for a high 

accuracy of the calculated or fitted parameters and a high resolution in space and 

time. The SNR of the NMR signal, immediately after excitation, is proportional to the 
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magnetic field strength B0 to the power of 7/4 (SNR ~ B0
7M) (5). This has been the 

main reason for the development of high field imaging spectrometers using 

superconducting magnets. However, plants have many air-filled intercellular spaces 

in their tissues. Since air and water have different magnetic susceptibilities, the 

density of the magnetic field lines in air is different from that in water, producing 

magnetic field inhomogeneities around every air-water interface. The strength of 

these field inhomogeneities is linearly proportional to Bo and cause artifacts in NMR 

images (6). Apart from positional displacements of signal intensity in the image, the 

intensity is also reduced, and image resolution is degraded because of self-

diffusion or flow of protons within the random field inhomogeneities (7). Loss of 

image intensity can already be dramatic (50% and more) in the first echo of an 

NMR experiment (8). Moreover, if multiple echoes are recorded and the signal is 

not only lost because of transverse relaxation (characterized by the spin-spin 

relaxation time T2), the presence of field inhomogeneities severely hampers 

quantitative T2 and proton density imaging. Additional signal loss affects the NMR 

signal decay in an echo train for every pixel in an image, to which an exponential 

decay curve is fitted (with decay time T2 and the proton density as the initial signal 

amplitude, (9)). In other experiments in which the magnetization needs to evolve for 

some time (e.g. because of flow-encoding) (a part of) the signal can simply not be 

recalled if it is lost due to the field inhomogeneities caused by susceptibility 

differences. 

At relatively low magnetic field strengths the field inhomogeneities in plants, due to 

susceptibility differences, are small compared to the imaging gradients: 

displacements of self-diffusing protons in these field inhomogeneities on the 

timescale of a single scan are too little to cause additional attenuation of the signal. 

In quantitative T2 and proton density studies at B0 = 0.47 T Edzes et al. (9) found 

T2-values in the stem of Giant Hogweed approaching the value of pure water (>1.5 

s). With such long T2-values many spin-echoes can be recorded (up to 1000 in a 

cherry tomato (9)), increasing the total SNR. The optimal field strength, obtaining 

the highest SNR with minor susceptibility artifacts, depends on the size, the shape, 

the concentration and distribution of air spaces in the sample. 
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An advantage of the 0.7 T low-field electromagnet (Bruker, Karlsruhe, Germany), of 

which some results are presented here, is its easy accessibility. The magnet is 

stripped from its shim coils, in the iso-center is only a custom-made gradient probe 

with an open 4.5-cm cylindrical bore (Doty Scientific Inc., Columbia, South Carolina, 

USA) and a small lock to stabilize the main magnetic field. Plants can quite easily 

be put into the gradient probe and the roots are placed inside a vessel containing 

the medium, placed on top of a precision balance (LC3201, Sartorius AG, 

Gottingen, Germany) to measure the water uptake (4). The field lines of B0 are in 

the horizontal direction, which enables the use of solenoid radiofrequency (rf) coils 

around plant stems (perpendicular to the direction of Bo) to excite and detect the 

NMR signal. The performance of solenoid coils exceeds the performance of e.g. 

saddle coils (often used in superconducting magnets) by a factor of 3 (5), which is 

an advantage in coping with the low SNR at low B0. Apart from the coil geometry, 

also the coil diameter d influences the SNR (SNR ~ \ld) (5). Homemade openable 

moulds around the plant stem give support when a new solenoid is wound around a 

stem to keep d minimal for every new plant. The choice of not using a Faraday cage 

in the setup forces us to take special care in grounding the plants and shielding the 

rf coil: grounding connections from a copper tape around the plant stem and of the 

coil shielding are as short as possible. The specialized field of using cooled 

(superconducting) coils and pre-amplifiers to increase the SNR is an aspect that is 

not dealt with here (10), although the accessibility of the electromagnet would 

certainly allow applying them. 

Imaging water transport in plants: unpredictable flow profiles 

Although the flow profile of water in a xylem vessel of a plant is generally assumed 

to be laminar, the flow profile of flowing water in one pixel of an image of a plant 

stem or root depends on the size and position of the pixel relative to the xylem 

vessel. If the pixel is large compared to the vessel diameter, multiple vessels are 

captured in one pixel and the flow profile of that pixel is the sum of several 

individual laminar flow profiles. If the pixel is small compared to the vessel diameter 

it can contain only a part of a laminar flow profile. In both cases, the flow profile of 

the flowing water in the pixel is unknown. With dynamic NMR microscopy (11) one 
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can obtain the complete distribution of proton displacements within a certain 

observation time for every pixel, which can be translated into the flow profile of the 

water in that pixel. An additional complication is the fact that the distribution of 

proton displacements in a vessel or tube varies with the observation time because 

of radial diffusion of protons over the flow profile (12, 13). 

In a dynamic NMR imaging experiment the displacement of protons is probed with 

two pulsed magnetic field gradients (PFG) with amplitude g, duration 8 and spacing 

A (cf Fig. 7.1). The modulation of the amplitude and phase of the complex NMR 

signal as a function of PFG amplitude (also known as q-space with 

q=Y6g/2ji, y being the proton gyromagnetic ratio) can be Fourier Transformed into 

the displacement distribution of the protons within A: a so-called propagator P(R,A) 

(11, 14). Measuring propagators for every pixel in an image in plant tissue has been 

done in seedlings (15, 16), although the time resolution of these experiments was 

low (4.5 hours). Since only a single echo was recorded in every scan it took n scans 

to record an image with n2 pixels for every step (or image) in q-space. 

The possibility to record many spin echoes in an echo train to characterize 

relaxation times and proton density, as mentioned previously, can now be used in a 

different way. Propagators can be measured with a much higher time resolution if 

the two motion-encoding PFGs are combined with turbo spin echo (TSE) imaging, 

also called Rapid Acquisition Relaxation Enhanced imaging (RARE) (17). The 

measurement time of a single image can be shortened by a factor equal to the 

amount of measured echoes. The signal in this TSE image can be modulated with 

the two PFGs in a spin echo (SE) sequence (18) or a stimulated echo (STE) 

sequence (19) (Fig. 7.1). With the PFG spin echo TSE sequence, propagators in 

large plants have been measured (4) and quantified by extracting the following flow 

parameters from it (20): the total amount of water, the amount of stationary water, 

the amount of flowing water, the linear flow velocity of the flowing water and the 

volume flow. The propagator intensity of nine pixels in a reference tube filled with 

water has been used for calibration. 
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Figure 7 . 1 : The PFG spin echo TSE pulse sequence (top) and the PFG stimulated echo TSE pulse 

sequence (bottom). 

Measuring water displacements in plants: 

slow flow and diffusion, fast flow and diffusion 

The vast majority of water in a plant is stationary; water in xylem and phloem tissue 

can flow at different velocities, depending on vessel size and pressure difference 

over the vessels. The root mean square displacement <rof stationary, self-diffusing 

protons, observed by NMR, is proportional to the square root of the corrected 

labeling time A-8/3 and the diffusion constant D of the observed protons: 

a = pD{A-S/3) [1], 

whereas the mean displacement f of flowing protons is proportional to A itself: 

r = vA [2], 

in which v is the mean flow velocity of the flowing protons. The labeling time 

between the two PFGs has to be long (in the order of 150 ms) to discriminate 

110 



Chapter 7 

between slow flow (50 (im/s) and diffusion (19). The choice between using a SE or 

STE version of the pulse sequence (Fig. 7.1) depends on the time from excitation to 

the first echo (containing A), the spin-lattice relaxation time Ti and spin-spin 

relaxation time T2 of the observed protons. In a SE experiment the NMR signal is in 

the xy-plane throughout the time from excitation to detection, where it decays 

according to the T2. In a STE experiment, the signal is stored along the z-axis 

during most of the labeling time, where it decays according to the spin-lattice 

relaxation time, which is longer (often substantially) than T2. The maximum 

amplitude of the stimulated echo is intrinsically half the initial signal amplitude, but 

can still be larger than the spin echo amplitude at the same time after excitation. 

Propagators of slowly flowing water (maximum linear velocity 0.67 mm/s) in a cut

off pedicel of a tomato have been measured with the stimulated echo version of the 

PFG TSE pulse sequence (19). If linear flow velocities are high, short labeling times 

can be used for which the spin echo version of the sequence is more suitable. 

At high flow rates other issues are of importance. In larger plants the linear flow 

velocities of the xylem sap can reach velocities of several cm/s, which can cause a 

dynamic range problem in the propagator. This is illustrated in Fig. 7.2 with four 

simulated propagators of a certain amount of stationary water and an equal amount 

of flowing water. Stationary self-diffusing water has a Gaussian shape at zero 

displacement. The water, flowing with a laminar flow profile, has a boxcar shape 

with rounded edges from zero to the maximum displacement within the observation 

time. All shown propagators are the real part of a complex signal: the imaginary part 

of the signal has zero intensity (data not shown). The maximum velocity of the 

flowing water, which is twice the mean velocity for laminar flow, increases from (a) 

to (d). With all displacements R occurring between zero and the maximum 

displacement within the labeling time A between the two PFGs, the boxcar shape 

stretches out over the displacement axis. If the maximum displacement exceeds 

the edge of the axis (defined by the smallest q-step) the propagator intensity 

emerges at negative displacements (aliasing, Fig. 7.2c). With even higher 

displacements the boxcar stretches out all over the displacement axis (Fig. 7.2d). 

Note in this figure that the maximum displacement of 400 |im is visible at 80 urn. 

The simulated propagators do not contain any noise, in contrast with experimental 
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data, in which the noise can overwhelm a broad distribution of displacements as in 

Fig. 7.2c and 7.2d. 

Figure 7.2: Simulated propagators of two water fractions: 50% stationary water and 50% water 

flowing with a laminar flow profile. In (a) to (d) the simulated mean linear flow velocities in the laminar 

profile are 2.5, 5.0, 10.0, and 20.0 mm/s, respectively. Radial diffusion over the parabolic flow profile 

is not accounted for, the diffusion constant in the direction of the PFGs is set to 2.2 x 10"9 m2/s, A is 

10 ms. In (a) and (b) the rectangular displacement profile of the flowing water stretches over the 

displacement axis to 50 and 100 urn. In (c) the displacement profile exceeds the positive part of the 

axis and emerges at negative displacements (the signal is aliased). In (d) the displacement profile 

stretches all over the axis, which effectively gives the propagator an offset. 

A solution for this dynamic range problem (within a nearly equal total measurement 

time) is the use of an alternative way of sampling the signal as a function of q-

steps, proposed in non-imaging studies (21). In Fig. 7.3a the real and imaginary 

part of the signal as a function of q-steps associated with the simulated propagator 

in Fig. 7.2d is plotted twice with a solid line. The imaginary part of the signal 

originates from flowing water only, whereas the real part of the signal is composed 

of signals from stationary as well as flowing water. The top signal in Fig. 7.3a is 

sampled with equidistant q-steps, the bottom signal is sampled with non-equidistant 

steps that gradually increase in size at larger q-values. From Fig. 7.3a it is evident 

that the step size of the linear sampling is too large to probe the signal correctly. If 

the complete signal would be sampled linearly with the smallest step, 128 steps 
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would be needed to probe the shown signal, instead of the 32 or 36 steps in the top 

and bottom sampling, increasing the measurement time with a factor of 

approximately 4. Before Fourier transformation (FT) into the propagator, the non-

linearly sampled data must be interpolated because this mathematical operation 

needs equidistant data. The range of the displacement axis of the corresponding 

propagators in Fig. 7.3b and 7.3c (after FT) is inversely proportional to the smallest 

q-step. 

After FT of the signal, sampled with 32 equidistant steps, the propagator in Fig. 

7.3c (open circles) has the offset-value as shown in Fig. 7.2d, including some 

truncation artifacts because the signal in Fig. 7.3a was not sampled completely to 

zero intensity at the largest q-values. The truncation artifacts can be prevented by 

sampling the signal using even larger q-values, which takes time, or they can be 

removed by filtering or extrapolating the signal to larger q-values. The displacement 

axis of the propagator after FT of the signal, sampled with 36 non-equidistant steps 

and interpolated from 36 to 128 steps, covers a four times larger range (from -600 

to +600 urn). In this propagator (Fig. 7.3b) the boxcar shape representing the 

laminar flow profile with maximum displacement of 400 um is evident. 

The signal S(q) can be filtered before FT to increase the SNR of the flowing part of 

the signal and to remove truncation artifacts. The filter in Fig. 7.3a has a 

transmission of 1 in the center of q-space, where the signal intensity from flowing 

water is high. At larger q-values the transmission is zero. The signal of stationary 

water is severely affected by the filter, resulting in broadening of the stationary 

water peak in the propagator (the asterisks in Fig. 7.3b). Because the maximum 

displacement of the flowing water is large, the flowing part of the propagator is 

hardly affected by the filter. 

The experimental data are shown in the images in Fig. 7.4a and the propagators in 

Fig. 7.4b. The images represent the calculated flow characteristics of a non-linearly 

sampled spin echo PFG TSE experiment of a transverse slice through the stem of a 

1.5-m tall intact cucumber plant in the 0.7 T electromagnet setup. The flowing parts 
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Figure 7.3: Simulated data of 50% stationary and 50% flowing water (with maximum linear velocity 

20.0 mm/s) before (a) and after (b+c) Fourier Transformation. In (a) the simulated signal is indicated 

with solid lines, diamonds and circles represent the experimental sampling. S(q) can be sampled 

linearly with equidistant steps (upper chart in (a)) or non-linearly with an emphasis on small q-values 

(lower chart in (a)). The solid line in (b) interconnects the data points of the propagator after 

interpolation and FT of the non-linearly sampled signal. In (c) the aliased propagator after FT of the 

linearly sampled signal is shown (cf. Fig. 7.2d). Applying a filter to the data before FT results in 

severe broadening of the stationary water peak, but hardly affects the flowing part of the propagator 

(asterisks in (b)). 

of the averaged propagators of all the pixels of the indicated vascular bundle are 

shown in Fig. 7.4b: the propagator after FT of the signal of linearly sampled q-

space (represented by diamonds) is interconnected by a dashed line, and the 

propagator after FT of the interpolated and filtered signal of non-linearly sampled q-

114 



Chapter 7 

space (represented by plusses) is shown with a solid line. Using linear q-steps, an 

equal amount of time is spent on small and large q-values, whereas with non-linear 

steps, the smaller q-values, where signal intensities are higher, take up a larger part 

of the total experimental time. The SNR of the flowing part of the non-linear 

-200 -100 100 200 300 

R(H.m) 

400 

Figure 7.4: Experimental data from a cucumber plant stem. The images in (a) represent the flow 

characteristics of an experiment with non-linear q-space sampling. These are respectively the total 

amount of water, the amount of stationary water, the amount of flowing water, all three relative to the 

averaged amount of water of a pixel in the reference tube (normalized to 1), and the volume flow in 

mg/s. The propagator in (b) is a summation of the propagators of all pixels in one vascular bundle, 

indicated in the inset. The experimental data, represented by diamonds (interconnected by the 

dashed line) are the result of linear q-space sampling before FT. The plusses (interconnected by a 

solid line) indicate the propagator of non-linearly sampled q-space using interpolation and filtering 

before FT. Experimental parameters: 50 kHz bandwidth, 32 echoes in TSE train, 128 x 128 matrix, 

field of view 15.4 mm, slice thickness 3.0 mm, repetition time 2.5 s, A 9.13 ms, 6 3.0 ms, gmax 0.409 

T/m, total measurement time 24 minutes for 36 non-equidistant steps and 21 minutes for 32 

equidistant steps. 
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experiment is therefore higher, especially after applying the filter. Since rapid, 

abrupt jumps or changes in the flowing part of a propagator are not to be expected, 

the smoother shape of the propagator from non-linear sampling and filtering is 

preferred above the noisy, truncated shape of the propagator using linear steps as 

in Fig. 7.4b. The total volume flow values from all pixels with flowing water in non-

linearly sampled experiments correspond to water uptake values of the cucumber 

plant, measured with a precision balance (Chapter 6). The total volume flow values, 

calculated from linearly sampled experiments, systematically deviated from the 

water uptake values, measured using the precision balance (Chapter 6). 

Resolution, relaxation and quantification 

The SNR of a pixel in an NMR image depends on the amount of water in that pixel, 

which is the product of tissue water content and pixel volume: the larger a pixel, the 

lower the spatial resolution of the image, and the higher the SNR of the pixel. In 

plant stems the thickness of the imaged slice, representing a cross-section of the 

stem, can be set to a much larger value than the in-plane resolution of the image, 

because of a large tissue symmetry along the plant stem direction. Signal averaging 

over a number of scans also increases the SNR, but immediately lengthens the 

total measurement time (SNR ~ j'number_of _averaging_scans ). Since both a high 

spatial resolution and a high SNR per pixel are desirable, preferably within an 

acceptable measurement time, every experiment is a compromise between spatial 

resolution, SNR and measurement time. The main consideration in this 

compromise should be the question what information needs to be extracted from 

the experiment. This information needs to be acquired as accurate as possible 

within the available measurement time, which is the reason why a high spatial 

resolution is not always needed. In quantitative T2 and proton density imaging and 

dynamic NMR imaging information can be retrieved from several parameters for 

every pixel, providing a kind of sub-pixel resolution. 

Quantitative T2 and proton density imaging can even be severely hampered by a 

high spatial resolution. Movement of protons by self-diffusion in the time between 
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the large read-out imaging gradients, needed for a high resolution, can attenuate 

the NMR signal (9). Then, the NMR signal decays not only because of spin-spin 

relaxation, but also because of diffusion. Generally, an exponential decay curve is 

fitted to the NMR signal decay of every pixel to acquire the T2 and the initial signal 

amplitude at the moment of excitation, reflecting the proton density (or water 

density). The additional signal attenuation because of diffusion decreases the 

signal decay time, whereas the initial signal amplitude will remain largely 

unaffected. Figure 7.5 shows the difference in T2 contrast between two experiments 

of a geranium petiole with different spatial resolution. At a resolution of 39 x 39 x 

2500 (j.m T2-values of large parenchyma cells in the central cylinder clearly differ 

from T2-values in the cortex, and also the vascular bundles are visible. At a higher 

resolution of 31 x 31 x 2500 n,m all T2-values have decreased, and almost all 

contrast is gone. The water density images are hardly effected by the additional 

signal attenuation. 

Figure 7.5: Single parameter images of a geranium petiole. The images are calculated from two 

multi-echo imaging experiments (9) with different resolutions. Images (a) to (c) are the calculated 

water density image, a 1/T2 and a T2 image with a field of view of 5 mm (nominal resolution 39 x 39 x 

2500 um). Images (d) to (f) are images of the same parameters with a field of view of 4 mm (nominal 

resolution 31 x 31 x 2500 |xm). Although the T2-values are probably already affected by diffusion for 

both field of views, the decrease of T2-values for higher resolution clearly illustrates the effect of 

increasingly larger gradients in combination with diffusion. Experimental parameters: 25 kHz 

bandwidth, echo time 6.6 ms, 64 echoes, 128 x 128 matrix, 6 averages, repetition time 2.5 s, total 

measurement time 32 minutes. 
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At lower resolution (in the order of 0.5 x 0.5 x 3 mm), the SNR of one pixel can be 

sufficiently high for a meaningful multi-exponential fit (i.e. with acceptable standard 

deviations of the fitted parameters). This results in two or more water fractions and 

corresponding relaxation times, which can be assigned to the water within one 

pixel, creating sub-pixel resolution. In the stem of an intact cucumber plant a 

relatively high spatial resolution has been used to distinguish different tissues on 

the basis of water density and T2 of a mono-exponential fit, after which the signal 

decay curves of a single tissue type were averaged to increase the SNR (4). The 

averaged decay curves were fitted to a two-exponential function of which the two 

water fractions were ascribed to vacuolar water on one hand and water in the 

cytoplasm and extracellular water on the other hand. Transient changes in T2-

values of the fractions in the tissues may give information about exchange of water 

over the membranes separating the fractions (the vacuolar and plasmalemma 

membrane) (Van der Weerd et a/., Journal of Experimental Botany, accepted). 

Not only in quantitative T2 imaging, but also in a dynamic NMR imaging experiment, 

high resolution is not always necessary. The acquisition of propagators enables 

discrimination between stationary and flowing water at pixel level (20). Even if one 

or more xylem vessels are captured within one pixel, the signal of the flowing water 

can still be separated from stationary water. Then, another compromise has to be 

made between spatial resolution and the number of q-steps encoding for flow. The 

choice depends on the question: what information is more important: an exact 

localization of flow or an accurate flow profile? Xylem vessels in cucumber plant 

stems can have diameters up to 350 \im (22), which can be localized much easier 

(cf. Fig. 7.4a) than xylem vessels in e.g. a Chrysanthemum stem with diameters up 

to 50 nm (23). For large vessels the amount of flowing water in a pixel is often also 

large, corresponding to a large integral of the flowing fraction in a pixel-propagator. 

In this case quantification of the propagators is accurate (the total volume flow of all 

pixels with flow corresponds to the water uptake of the plant, measured with a 

balance (4)). With smaller vessels, the amount of flowing water within a pixel is 

small, which is one of the problems with flow quantification, discussed in the next 

section. 
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Flow quantification problems 

In Chrysanthemum stem segments, the total volume flow of all pixels with flowing 

water does not always correspond with uptake values measured with a balance. 

This is illustrated using the results of an air-inlet experiment of a Chrysanthemum 

flower (cv. Cassa) in Fig. 7.6. A 22-cm stem segment was cut out of a 

Chrysanthemum flower under water to avoid air entrance in the xylem vessels. The 

segment was placed in the NMR setup and the top of the segment was connected 

with silicone tubing to a setup controlling water uptake, {20, 24). After some time of 

stable water uptake due to the applied underpressure at the top of the stem 

segment, the water level was lowered below the bottom of the segment for 10 

minutes, admitting air to the xylem vessels. After reapplying water to the cut surface 

of the stem segment, the restoration of water uptake of the segment was monitored 

1.25 

0.5 1.5 2.5 3 

Time (h) 
3.5 

Figure 7.6: Water flow rate pattern before and after air inlet of a stem segment of a 

Chrysanthemum flower, cut off under water. The interrupted curve represents water uptake, 

measured using a precision balance; the triangles represent the total volume flow calculated from 

NMR measurements. Inset: two images from a transverse slice through the stem segment 

representing the total amount of water, relative to the amount of water in a pixel in the reference tube 

(=1, average of nine pixels), and the volume flow per pixel. Experimental parameters: 50 kHz 

bandwidth, 32 echoes in TSE train, echo time in train 4.26 ms, 128 x 128 matrix, field of view 12.8 

mm, slice thickness 2.5 mm, repetition time 1.0 s, 32 PFG steps, A 15.6 ms, 8 2.5 ms, gmax 0.375 

T/m, total measurement time 17 minutes, pressure difference over the stem segment was maintained 

at 38.8 kPa. 
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in time. The water uptake measurements, measured with the balance (dots in Fig. 

7.6), clearly show an initial water uptake of 1.12 mg/s. After air inlet, an initial quick 

recovery is followed by a slower restoration to a plateau value of about 0.70 mg/s, 

but the initial uptake values before air inlet are not reached anymore. The 

mechanism behind the removal of air from the stem segment and the time course 

of restoration of the original flow profiles have been studied in detail elsewhere (25). 

Primary concern here is the development of the total volume flow values, calculated 

from the NMR measurements. These values do not coincide with the uptake 

values, measured with the balance, for which possible reasons are discussed in the 

next section. In the inset in Fig. 7.6 an image of the total amount of water and an 

image with the volume flow are shown (the large void in the center of the stem in 

the image consists of dry spongy matter that does not contain water). The visible 

ring contains the epidermis, supporting fibers, phloem tissue, xylem tissue and 

parenchymal cells. Flow is visible in small groups of pixels in the xylem tissue, in 

the larger xylem vessels of the primary and early secondary xylem. 

How do we calculate the total volume flow through the stem segment? As is 

described in the introduction of the quantification method (20), the intensity of every 

point of a propagator P(R,A) (cf. Fig. 7.3 and 7.4) can be related to an amount of 

water by using the signal intensity /,./ of a reference tube filled with water for 

calibration. After subtraction of stationary water from a propagator, the volume flow 

Q through a pixel is a summation of the propagator intensities of flowing water, 

multiplied by their corresponding displacement values R within the labeling time 

(20): 

0 = *£>(*, A)*)^f [3]. 

For accurate volume flow values, the SNR needs to be as high as possible: this is 

the reason why not every displacement value is incorporated in the addition of 

intensities, but only those from zero to the maximum displacement R^ of the water 

in that pixel. Rm the point at which the signal has vanished and only noise is left, is 

chosen at the displacement value just before the first point in the flowing part of a 

propagator with negative intensity. To calculate the total volume flow through the 

stem segment we performed another operation to decrease noise. The total volume 
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flow is a summation of only those pixels with a volume flow above a threshold value 

(-2/3 of peak noise level), which have at least one neighboring pixel with intensity 

also above this threshold value. The reason for this selection criterion is the fact 

that the numerous xylem vessels in the stem segment are small compared to the in-

plane pixel resolution of 100 x 100 x 2500 |j.m, but all the vessels are localized in 

the primary and secondary xylem of the stem, which covers multiple adjoining 

pixels. The disadvantage of this criterion is that the volume flow of individual pixels 

(if any) without neighboring pixels with intensity above the threshold are discarded 

as noise. 

Before air inlet, all flow has been localized: uptake values from NMR measurements 

coincide with the uptake measured with the balance. After air inlet however, only 

32% of the actual uptake is measured by NMR (considering the same pixels as 

before air inlet), and this percentage increases in time up to 73% by the final 

measurement. The surprisingly low and increasing percentage of flow that can be 

localized by the NMR measurements can have different reasons. Firstly it is the 

SNR of the volume flow image. Many xylem vessels (especially with relatively large 

diameters, in the order of 40 nm (26)) which originally transported water are 

blocked just after air inlet (27). Vessels that remain active probably have small 

diameters (in the order of 10 \im (26)), resulting in a small amount of flowing water 

per pixel, and therefore a low intensity in the flowing part of the propagator. Signal 

intensity of the flowing part can become negative because of the small SNR: Rma is 

estimated systematically too low and Q of the pixel decreases more than it should 

(cf. the linear sampling of the cucumber vascular bundle in Fig. 7.4b, in which the 

flowing part of the propagator exceeds far beyond the first negative propagator 

intensity at R = 130 urn). In time, the air in some vessels dissolves and the vessel 

functions again, increasing the amount of flowing water in a pixel, elevating the 

flowing part of the corresponding pixel-propagator, which now adds to the total 

volume flow together with small, continuously active vessels, previously 

unaccounted for. Changing the way Rmax is determined, by choosing Rmax just before 

the second point of the flowing part of the propagator with negative intensity, 

introduces more noise in the volume flow values per pixel, causing scatter in the 

time-course of the total volume flow values. 
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The second reason for a change in the percentage of recovered volume flow can 

be found in the use of the reference tube for calibration. In the presented TSE 

experiments the signal intensity of the first echo determines the total integral of the 

TSE image (18). In the time t from excitation to the first echo the NMR signal S(t) 

decays according to the spin-spin relaxation time T2: 

S(t)=A0e^ [4], 

in which A0 is the initial signal amplitude. If the spin-spin relaxation time of the water 

in the reference tube differs largely from the T2 of the water in the xylem vessel 

(relative to the time from excitation to the first echo), the signal intensity in the TSE 

image of the water in the reference tube is attenuated with a different factor than 

the intensity of the water in the vessel. If the first echo time is at 17.5 ms after 

excitation and the relaxation times of the reference tube and the xylem sap are 

approximately 150 and 400 ms respectively (as is the case in the cucumber plant 

stem), the difference in signal intensity in the corresponding integral of the 

propagators is 7.5%. However, if T2-values of the xylem sap are in the order of 50 

ms and the first echo is at 23.2 ms after excitation, the difference in the integral of 

the propagators is 36%. If the exchange of water into and out of the xylem vessels 

in the stem segment changes, because of changes in permeability for water when 

restoring original flow-profiles, the T2-values of the xylem vessels could change in 

time. This would change the signal attenuation factor and thereby the calculated 

volume flow. 

A decrease of the T2 of water in the vessels in time can also introduce a blurring 

effect on the TSE images (18). This effect will spread the propagator intensity of a 

pixel in the phase encode direction lowering the SNR of the flowing part of the 

propagator of that pixel, of which the consequences were described in the previous 

section. In this complicated matter, it might be worth giving up time resolution by not 

using the TSE sequence, but evaluate the signal decay for every q-step with a 

multiple spin echo train. In that case a signal decay curve is available for every 

point of the propagator, so different relaxation times can be ascribed to flowing and 

stationary water within one pixel. A propagator of the initial signal amplitudes can 

then be constructed for accurate quantification as described in the addendum of 

Chapter 3. 
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Conclusions 

NMR imaging studies of large plants do not necessarily have to be performed at 

high magnetic field strength. The accessibility of the iso-center of the magnetic field 

and the possibility to position the plant vertically are two advantages of using an 

electromagnet or a wide-bore vertical superconducting magnet. Electromagnets 

usually have lower magnetic field strengths and therefore a low SNR. The use of 

dedicated solenoid rf coils overcome part of the low SNR problem. The possibility of 

acquiring many signal-containing echoes of plant tissue at low magnetic field 

strength also increases the SNR and creates great opportunities for plant studies. 

This long echo train can be used either for quantitative water density and T2 

measurements, or to shorten the measurement time with a TSE train, enabling a 

faster acquisition of any magnetization-prepared image. 

The flow profile of water, flowing in a pixel of an image of a plant stem, depends on 

the size of the xylem vessels relative to the size of one pixel and the observation 

time that is used to monitor flow in a PFG experiment. Therefore it is necessary to 

record the complete distribution of displacements within the observation time. The 

dynamic range problem of probing high linear velocities in a propagator can be 

circumvented by stepping the PFGs in a non-equidistant way. Sampling small q-

values in more detail and interpolating larger q-values increases the SNR of the 

flowing part of the corresponding propagator and enlarges the displacement axis. 

A high spatial resolution is not always necessary but always a trade-off with time 

resolution, accuracy and detail in the displacement distribution. In quantitative T2 

imaging a high resolution can even severely distort the T2-contrast, because of 

additional signal attenuation due to self-diffusion in large read-out gradients. One 

can obtain a kind of sub-pixel resolution by fitting or calculating more than one 

parameter for every pixel of an image. In a multi echo experiment one can 

distinguish different water fractions within one pixel or within the same type of tissue 

(by fitting multi-exponential decay curves), and in a dynamic NMR experiment (PFG 

TSE imaging) one can discriminate stationary from flowing water. 
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If the amount of flowing water within a pixel becomes too small, problems with 

extracting the flow characteristics can occur. Some of the possible reasons can be 

a low SNR or differences in T2 between the flowing water and the water used for 

calibration (in a reference tube). With complicated quantification problems an 

experiment probing both the propagator and the signal decay curve for every pixel 

can be considered. 
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Summary 

This Thesis treats one of the new techniques in plant science i.e. nuclear magnetic 

resonance imaging (NMRi) applied to water motion in plants. It is a challenge to 

measure this motion in intact plants quantitatively, because plants impose specific 

problems when studied using NMRi. At high magnetic field strength air-filled 

intercellular spaces in the plant tissue cause susceptibility-related local magnetic 

field inhomogeneities, which are much smaller at low magnetic field strength. The 

inherently low signal-to-noise ratio at low magnetic fields is compensated by the 

possibility to record a long train of spin-echoes, since generally the spin-spin 

relaxation time T2 at low magnetic field is longer than at high magnetic field. 

In this Thesis the spin echo train is used to shorten the time to produce an NMR 

image. As a result, time-dependent flow phenomena can be followed at a 

physiologically relevant time scale using dynamic NMRi employing either a pulsed 

field gradient (PFG) spin echo sequence (for fast flow, Chapter 2) or a PFG 

stimulated echo motion-encoding sequence (for slow flow, Chapter 3). Using the 

quantification method presented in this Thesis (Chapter 4) a number of flow 

characteristics can be determined for every pixel in an image of a plant stem: 

• the total amount of water, 

• the amount of stationary water, 

• the amount of flowing water, 

• the mean linear flow velocity of the flowing water and 

• the volumetric flow rate. 

These flow characteristics, together with the water density (or total amount of water) 

and the T2 value per pixel (measured with quantitative T2 imaging), were studied in 

the stem of a cucumber plant as a function of the day-night cycle and cooling of the 

root system. Root cooling results in inhibition of the water uptake and xylem- and 

phloem transport, and causes severe wilting of the plant leaves. Following root 

cooling, during recovery of the plant from its wilted state, the T2-values of tissue 

around the vascular bundles strongly decrease, which may indicate an increased 

membrane permeability for water of the tissue cells in this period (Chapter 5). 

During root cooling, large negative pressures in the plant xylem cause cavitations in 

the vessels, blocking further water transport. In this Thesis the first direct in vivo 

127 



observations of refilling of cavitated xylem vessels are presented (Chapter 6). This 

refilling takes many hours and occurs while nearby vessels are under tension and 

are transporting water. This finding has important implications for the mechanism 

underlying the refilling process: water entering the refilling vessel must be 

hydraulically isolated from flowing water in nearby vessels. 

The strategy (Chapter 7) and methodology of quantitative flow and T2 NMR 

imaging, discussed in this Thesis have opened new ways to find answers to 

longstanding questions in plant science. 
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Samenvatting 

Dit proefschrift behandelt een voor plantenwetenschappen nieuwe techniek, te 

weten NMR imaging (ruimtelijk opgeloste kernspinresonantie) toegepast op 

beweging van water in planten. Het is een uitdaging deze bewegingen in levende 

planten te meten omdat planten specifieke problemen met zich meebrengen 

wanneer deze kwantitatief met NMR imaging bestudeerd worden. In sterke 

magnetische velden veroorzaken met lucht gevulde intercellulaire holtes in 

plantaardig weefsel lokale magneetveld inhomogeniteiten, die veroorzaakt worden 

door verschillen in susceptibiliteit, en die bij lage magneetveldsterktes veel zwakker 

zijn. De aan lage veldsterkte inherente lage NMR signaal/ruis verhouding wordt 

gecompenseerd door de mogelijkheid tot het opnemen van een lange spin echo 

trein, omdat in het algemeen de spin-spin relaxatie tijd T2 bij lage 

magneetveldsterkte langer is dan bij hogere magneetveldsterkte. 

In dit proefschrift wordt de spin echo trein gebruikt om de opnametijd van een 

image te verkorten. Hierdoor kunnen tijdsafhankelijke stromings-processen op een 

fysiologisch relevante tijdschaal bestudeerd worden met een gepulste veld gradient 

spin echo sequentie (voor snelle stroming, Hoofdstuk 2) of een gepulste veld 

gradient gestimuleerde echo sequentie (voor langzame stroming, Hoofdstuk 3). Met 

de kwantificeringsmethode, gepresenteerd in dit proefschrift (Hoofdstuk 4), kunnen 

de volgende stromingskarakteristieken worden bepaald voor elk pixel in een NMR 

image van de Stengel van een plant: 

• de totale hoeveelheid water, 

• de hoeveelheid stilstaand water, 

• de hoeveelheid stromend water, 

• de gemiddelde lineaire stroomsnelheid van het stromend water en 

• de volumetrische stroomsnelheid. 

Het verloop van deze stromingskarakteristieken samen met de totale hoeveelheid 

water en de T2 per pixel (gemeten met kwantitatieve T2 metingen) is bestudeerd in 

de Stengel van een komkommerplant als functie van het dag-nacht ritme en het 

koelen van de wortels van de plant. Wortelkoeling remde de wateropname, het 

xyleem- en het floeem transport en Net de bladeren van de plant sterk verwelken. 

Na wortelkoeling, in de tijd waarin de verwelkte bladeren van de plant zich weer 

herstellen, zijn de T2 waarden van het weefsel random vaatbundels veel lager dan 
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ervoor, wat zou kunnen duiden op een verhoogde permeabiliteit voor water van de 

membranen van de cellen in het betreffende weefsel gedurende deze periode 

(Hoofdstuk 5). 

Grote onderdrukken in het xyleem van de plant tijdens wortelkoeling veroorzaakte 

cavitaties in de vaten, waardoor water transport geblokkeerd werd. In dit 

proefschrift worden de eerste, directe in vivo waarnemingen van het opvullen van 

gecaviteerde xyleemvaten beschreven (Hoofdstuk 6). Dit vullen van gecaviteerde 

vaten neemt vele uren tijd in beslag en gebeurt terwijl bijna aangrenzende 

xyleemvaten nog gewoon water transporteren en dus een onderdruk ervaren. Dit 

gegeven heeft belangrijke consequenties voor het mechanisme van het opvullen 

van gecaviteerde vaten: water dat het gecaviteerde vat binnenkomt mag niet in 

hydraulisch contact staan met water in de omringende vaten. 

De onderzoeksstrategie (Hoofdstuk 7) en het gebruik van de kwantitatieve 

stromings- en T2 metingen in dit proefschrift hebben nieuwe mogelijkheden 

gecreeerd om antwoorden te vinden op al lang bestaande vragen in de 

plantenwetenschappen. 
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