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Propositions 

Khaemba, W. M. (2000). Development and Application of Spatial and Temporal Statistical 
Methods for Improved Sampling of Wildlife. PhD Thesis, Wageningen University and ITC. 

1. 
Sampling of wildlife populations is improved by using appropriate sampling schemes and 

analysis methods, as well as modelling of space-time dependence. 
This Thesis 

2. 
Full understanding of factors that influence wildlife abundance and distribution requires an 

interdisciplinary approach involving ecologists, statisticians and social scientists. 
This Thesis 

3. 
Extension of current spatial statistical techniques is necessary for a full and thorough 

analysis of data collected through aerial surveys of wildlife populations. 
This Thesis 

4. 
Consistent procedures to obtain wildlife population parameter estimates are preferable to 

accurate but expensive alternatives. 
This Thesis 

5. 
Low precision and accuracy associated with parameter estimates from wildlife data can be 

improved by considering spatial dependence in observations. 
This Thesis 

6. 
Statistics does not provide explanation for what has been observed, but rather induces 

clarity in the numerical reasoning leading to conclusions. 
This Thesis 

7. 
Data are not just numbers, but numbers that carry information about a specific setting. 

This Thesis 



The concept of superior sampling designs is a fallacy often propagated by inappropriate 
application of perfectly good designs. 

9. 
Discoveries are often made by not following instructions. 

10. 
Many researchers erroneously place more importance on statistical significance, leaving 

almost no room for fair reporting or what was truly observed. 

11. 
If one is a master of one thing and understands one thing well, one has at the same time, 

insight and understanding of many things. 
Vincent Van Gogh 

12. 
He who has a why to live can bear almost any how. 

Fredrick Nietzsche 

13. 
Blessed is he who never forgets where he comes from, for the world is round and however 

much you travel, just when you think you have reached, you find little difference with 
where you came from. 

An African saying 



This is for you mum... For all your faith, love and guidance. 
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Symbols and notations 

The following is a list of symbols and notations used in more than one chapter in the thesis. 

N 
n 
A 
a, 
w 
D 

D 

Y 

Y 

y, 

y 

c 
So 

s 
A 

k 

z 

Za 

Pr 

EM 
Var[>>] 

E[x\y] 

Var[;t | y] 

PC 

total number of sampling units in study region 
number of sampling units (sample size) 

size of the study area 
size of sampling unit i (i: 1,2,..-, n) 
width of area sampled on either side of the aircraft 
Population density (number per unit size) 

Estimate of D 

Population total (total number in study area) 

Estimate of Y 

number of observed animals in unit i 

Inclusion probability of the rth sampling unit 

mean density per sampled unit 

Condition {y: y>c] for a constant c needed to expand the sample 

sequence of labels and 

set of samples 

parameter corresponding to the./th variable 

Mean population value 

estimate of the total number of networks in the population 

A matrix of eigen vectors 

the standard normal variate 

the 100a per cent upper tail values for z such that Pr[z > z„] = a 

probability 

the mean of a random variable y. 

the variance of a random variable y 

the mean of* conditional on fixed y, for random variables x and y 

the variance of x conditional on fixed y, for random variables x and y 

principal component 

X1H 
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General Introduction 

1.1. Statistics and Wildlife Management 
Studies of biological populations often require estimates of population density (D) or 

total size (10- These parameters vary in space, over time as well as by species, often in 
response to changes in environmental factors. Although ecology deals with living 
organisms, their habitats, modes of life and relations to the environment, it can greatly 
benefit from new developments in statistical procedures, particularly those used in 
estimation of population parameters and their precision. 

The world is generally becoming more quantitative, with many professions depending 
more on data and numerical reasoning. As the use of data grows, so does demand for 
innovative statistical techniques that yield clarity in the data and help draw practical 
conclusions. Data are not just numbers, but numbers that carry information about a specific 
setting. They need to be interpreted in that particular setting. 

This seemingly ecological thesis is written by a statistician in an attempt to combine 
statistical theory and ecological principles to provide tools for better management of 
wildlife populations. Although ecological principles exist to explain observed abundance 
and distribution of wildlife, only appropriate application of sound statistical procedures 
allows quantification, separation and understanding of the different processes at play in the 
ecosystem. Further, the modelling of variables influencing abundance and distribution of 
wildlife is possible only after a clarification of interactions between and within variables. 
This is only achieved by means of proper application of suitable statistical techniques. But 
why study wildlife? 

Wildlife forms the backbone on which Kenya's tourism industries is based (Ottichilo, 
2000). This industry has been a leading foreign exchange earner for the country for a long 
time, being second only to agriculture (GOK, 1994). In the recent past, the country's 
human population growth has far outpaced its economic growth, which has led to more 
people turning to subsistence agricultural production to meet an increasing demand for food 
(GOK, 1998). To fulfil this demand, more land traditionally reserved for wildlife and 
livestock grazing is being converted into agricultural land (Amuyunzu, 1984; Lamprey, 
1984; Lusigi, 1986, Ottichilo, 2000). Combined with changing environmental conditions 
that have adversely influenced wildlife abundance and distribution, there are serious long-
term implications on the survival of wildlife resources in Kenya (De Leeuw et al., 1999). 

A possible solution to this problem lies in formulating and implementing sustainable 
wildlife conservation strategies. These strategies, however, require proper understanding of 
factors that influence abundance and distribution of wildlife populations and how these 
factors interact with one another. In general, wildlife sampling is necessary for resource 
monitoring, conservation and proper management. It also provides useful input in policy 
planning. Wildlife managers require accurate, timely and up to date information on 
abundance and distribution of animals in their parks. Obtaining such information from 
wildlife surveys requires efficient sampling strategies and appropriate statistical analysis 
procedures. All these provide the basis and aim of this thesis. 
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1.2. Motivation of the study 
Abundance of wildlife populations in the tropics is obtained by means of data 

collected by two basic counting procedures: complete enumeration or total counts (TC) and 
partial enumeration or sample counts (SC) (Caughley, 1977; Norton-Griffiths, 1978; 
Steffens, 1993). By means of TC, the whole study area is searched and all observed wildlife 
is counted to yield abundance. With SC, a representative sample of the whole study area is 
searched and all wildlife observations are recorded. Abundance is generally estimated by 
the following procedure: 

Consider an area of known size A (km2, say) partitioned into N non-overlapping 
sampling units. Select a sample of n units out of the N and count the number of animals in 
each unit. If Y is the total number of animals in the whole area (which is unknown) and y, is 
observed in unit / of area a, (i= 1,2, ..., AO, the mean density per sampled unit is defined for 
equally sized units as: 

n 

y = ^—, ( l . i) 
n 

and an estimate of Y is given by: 
Y = Ny. (1.2) 

It is highly unlikely that study areas will be regularly shaped to yield equally sized 

sampling units. A different estimation procedure must, therefore, be employed to yield Y . 

One common approach is to estimate animal density in the sample and extrapolate this to 

the whole study area. The density D of animals in an area of known size A is estimated by: 
n 

D=——, (1-3) 

which is a ratio of total sample counts to total sampled areas (Jolly, 1969a; Cochran, 1977; 
Thompson, 1992). An estimate of Y is then given by: 

Y=DA. (1.4) 

This procedure yields correct estimates for unequally sized sampling units under the 
following key assumptions. 

• All sampling units in the population (study area) have an equal chance of being 
included in the sample, which implies random sampling. 

• All units in the sample are carefully searched and all animals in them are located and 
accurately counted. 
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The first assumption can be assured through application of random sampling schemes. 
On the other hand, the behaviour and dynamics of wildlife populations, as well as 
deficiencies in survey procedures, contribute to invalidation of the second assumption. This 
is particularly pertinent to SCs conducted through elaborate survey procedures. 

Another difficulty associated with sampling wildlife populations is the definition of 
suitable sampling platforms. Light aircraft provide the only practical platform of sampling 
wildlife and are commonly employed in the tropics (Caughley, 1977; Seber, 1982; Steffens, 
1993). For reasons of safety and security, such airborne platforms force observers to be 
separated by some distance from the sampled items. Moreover, sampling units are not 
physically defined, but are arbitrary regions demarcated on the ground by means of markers 
placed on the sampling platform (Smith, 1981; Seber, 1982; Thompson and Seber, 1996; 
Wint, 1998). All these introduce errors in the sampling procedure, which hamper accurate 
analysis of wildlife survey data. 

Unlike in fields like forestry, soil science, geology, or even plant ecology, where 
items to be sampled are generally stationary, at least for a fixed period of time, wildlife 
populations are highly dynamic. A proper analysis of these dynamics must start by 
investigating the stochastic processes yielding observed spatial patterns. For example, 
failure to model the covariance structure in spatially dependent observations leads to 
inaccurate (biased) and imprecise (inefficient) parameter estimates (Isaaks and Shrivastava, 
1989; Cressie, 1993; Legendre and Legendre, 1998). The same goes for wildlife 
populations, where analysis must take into account the existing spatial dependencies 
between observed patterns in relation to important restrictive conditions like presence of 
human settlements, distance to water points, distance to forests and other vegetation types, 
as well as other variables that affect wildlife distribution. Generally, natural plant or animal 
populations are rarely distributed at random but are usually clustered together (Seber, 1982; 
Buckland and Elston, 1993; Augustin et al., 1996). 

Analyses of data from wildlife surveys generally ignore the presence of this 
spatial dependence (Augustin, et al., 1996; Grunblatt et al, 1996). Use of conventional 
sampling designs such as simple random and systematic sampling, in which selection 
probabilities do not account for such clustering, results in inefficient estimates (Buckland, 
et al., 1993; Augustin, et al, 1996). 

Recent advances in sampling and statistical analysis techniques provide 
opportunities to improve sampling of wildlife populations (Buckland, et al., 1993; 
Thompson and Seber, 1996; Legendre and Legendre, 1998). In particular, the use of prior 
and expert/indigenous knowledge to improve analyses of survey data is highly desirable. 
This study is fortunate to have had access to data collected over a 20-year period, providing 
lots of prior information for future surveys. This has made it possible to apply computer 
intensive techniques like MCMC methods to improve estimation of population parameters 
(Gilksefa/., 1996; Brooks, 1998). 
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1.3. Objectives of the study 
The main objective of this study is to develop appropriate statistical procedures to 

improve sampling for purposes of gaining greater insight in the abundance and distribution 
of wildlife populations. This leads to the following minor objectives: 

• To investigate current wildlife sampling procedures and propose an improvement. 

• To model wildlife abundance and distribution using statistical techniques and 

geographical information system (GIS). 

• To use spatio-temporal procedures to model changes in wildlife populations in space 

and time. 

• To model wildlife distribution using spatial point patterns 

• To compare performance of proposed sampling procedures to established sampling 

strategies. 

1.4. Scope of the study 
This thesis deals exclusively with large herbivores (body weight > 20 kg) found in an 

African savannah and the case studies presented here focus on these. Most of the data used 
have been collected through aerial surveys and the proposed sampling design assumes an 
airborne platform. The term sampling design is used here to indicate a method of selecting 
sampling locations to be observed as opposed to the actual removal of sampling locations in 
the population. 

A strong emphasis is placed on estimation of abundance and distribution throughout 
the thesis because this is the main objective of many wildlife surveys in the tropics. 
However, an explanation of observed distribution patterns, especially in relation to 
environmental factors is relevant and is also treated here. This should not be viewed as a 
narrow utilisation of data obtained from wildlife surveys but rather as a focus on 
appropriate information requirements for wildlife managers. 

Since the main objective of this study is the development and application of sampling 
methods and other procedures, illustrations have been selected from differing case studies 
and species. For most illustrations, different social behaviour is distinguished and 
represented by three types of wildlife species. Kongoni (Alcelaphus buselaphus) are 
considered solitary, the elephant (Loxodonta africana), are found in small to medium herds 
of up to 50 animals while the wildebeest (Connochaetes taurimus) are mainly found in 
large herds of several hundred animals. 

Although this may appear to limit a full discussion of results, generalisation to other 
species and ecosystems requires only slight modifications in most cases. Further, two of the 
above species are considered key species because of their influence on the ecosystem. For 
example, through its migration process, the wildebeest facilitates the survival of other 
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species in the Masai Mara ecosystem (Vasey-Fitzgerald, 1960; Bell, 1970; Prins and Olf, 
1998). 

1.5. Outline of the Thesis 
This thesis essentially presents a collection of research papers that have been accepted 

for publication in or submitted to international peer-reviewed journals. Each paper has been 
presented as a chapter, making a partial but distinct contribution to solving the overall 
research problem. I have tried as much as possible, to maintain the content of each paper to 
reflect what was presented to the journal, however, some standardisation in the layout and 
symbols is necessary for consistency of the thesis. In this respect, each chapter is 
introduced separately, stating its contribution to the overall research. This approach is likely 
to lead to some gaps and overlaps, affecting the continuous flow of the thesis. It is my 
hope, however, that the advantages gained through a critical review process has raised these 
chapters to a level that renders this drawback insignificant. The following is an outline of 
the main chapters. 

Chapter 2 looks at different sampling designs used in aerial surveys of wildlife 
populations. It proposes an improved sampling design based on adaptive sampling and 
applicable to clustered populations. Univariate and multi-variate treatments of the improved 
design are developed. The thesis begins with a chapter on sampling because it is my belief 
that estimation of wildlife population parameters will only improve with an improvement in 
wildlife sampling procedures. 

Chapters 3 and 4 integrate the concept of spatial statistics in modelling wildlife 
populations. In particular, chapter 3 illustrates how generalised linear modelling combines 
with GIS to model the distribution of wildlife species. The chapter also introduces a 
distance measure that models spatial dependence and characterises clustering of wildlife 
species. 

Chapter 4 extents the use of statistical techniques in modelling abundance and 
distribution of wildlife by introducing MCMC methods and space-time analysis. The 
chapter also explores diversity measures and develops a diversity index suitable for aerial 
surveys of large herbivores. 

Chapters 3 and 4 work with data obtained by means of strip transects, which is a 
common sampling unit in wildlife sampling. 

More detailed data, in which exact geographical locations of groups of animal have 
been recorded, are available from a second study area. These are used in chapter 5 to model 
the spatial point patterns of six ungulates in the area. Differences in the six wildlife species 
are demonstrated by relating observed patterns to environmental factors like vegetation 
type. Nearest neighbour distance measures like the G-statistic and the ^-function are also 
used to classify observed patterns as clustered, regular or completely random. 
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Chapter 6 uses the same detailed data as in chapter 5 to compare performance of the 
proposed adaptive design to the conventional random and systematic designs. The chapter 
combines statistics with GIS in a simulation study that validates the proposed sampling 
design. 

Chapter 7 gives a brief outline of how spatio-temporal techniques and other 
statistical methods introduced in earlier chapters are used in the decision making process 
for better wildlife management. The chapter describes different scenarios encountered when 
making a decision for example, to adopt one statistical sampling technique instead of 
another. It should be noted that treatment of decision theory in this chapter may be 
inadequate because that would go beyond the scope of the thesis. 

Finally, chapter 8 summarises the findings of the research and concludes with 
recommendations for further research. A combined reference list is given at the end of 
thesis. 

1.6. Location of study areas 
Concepts and procedures introduced in the thesis are illustrated by data from two 

ecosystems in Kenya. Transect data is mainly obtained from the Masai Mara ecosystem in 
Narok district, lying between 0° 45' and 2°00' South, and 34° 45' and 36°00' East and 
covering an area of approximately 6,650 km2. The ecosystem straddles the international 
border of northern Tanzania and southern Kenya and is part of the larger Serengeti-Mara 
ecosystem. The detailed dataset comes from Laikipia district, most of which lies to the 
north of the Equator between latitudes 0° 17'S and 0° 45'N and longitudes 36° 15'E and 37° 
20'E, covering an area of approximately 9,700 km2. More details of the study areas and 
descriptions of the data sets used are provided in each chapter. 
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CHAPTER 2 * 

Designs for sampling wildlife populations 

This chapter is based on Khaemba, W. M. and Stein, A. (submitted). Improved airborne 
Survey Sampling and Estimation of Parameters for African 
Wildlife Species. Wildlife Research. 



.Designs for sampling wildlife populations 

Abstract 
Parameter estimates, obtained from airborne surveys of wildlife populations, often have 

large bias and contain large standard errors. Sampling error is one of the major causes of 

these imprecision and occurrence of several wildlife populations in herds violates common 

assumptions in traditional sampling designs like systematic or stratified random sampling. 

In this chapter, we present an adaptive sampling design that uses criteria on observed animal 

counts to maximise sample information, and is independent of the usual assumption of a 

uniform distribution for animal populations. The design is applied to data derived from a 

survey carried out in Masai Mara Ecosystem (Mara) in Kenya, with focus on three animal 

species: elephant (Loxodonta africana), kongoni (Alcelaphus buselaphus) and wildebeest 

(Connochaetes taurimus). Its more efficient estimates show an improvement to those from 

the conventional systematic design with a more than 10 times reduction in estimated bias 

and a 37% lowering of the standard error. The adaptive design, however, underestimates 

population totals for species in large herds, while a multivariate extension only gives 

marginal improvements. 

KEY WORDS: Adaptive sampling; Jolly II procedure; Wildlife Survey; Bias; Population 
total. 

10 



Chapter 2 

2.1. Introduction 
Sampling for characterising African wildlife populations is important for various 

reasons. First, there is an obvious ecological need to obtain information about the ecological 

state of the reserve. Second, an increasing economic interest exists because wildlife, through 

tourism, contributes to national incomes of many African countries. Third, knowledge of 

year-to-year variation helps to identify and explain environmental aspects influencing 

population sizes of various animal species. 

African wildlife populations are mainly sampled by means of periodic airborne 

surveys (Norton-Griffiths, 1978). For example, Systematic Reconnaissance Flights (SRF) 

(Norton-Griffiths, 1978) are used by the Department of Resource Surveys and Remote 

Sensing (DRSRS) to sample all wildlife populations in the Kenyan range-lands (Grunblatt et 

al, 1996). 

While estimates of population totals constitute the most important information 

obtained from wildlife surveys for most managers, reported estimates are often biased and 

have large standard errors (Caughley, 1974; Pollock and Kendall, 1987). Bias may be 

caused by departures from basic design assumptions, different animal behaviour at different 

times of day or adverse weather conditions like cloud cover that lead to poor visibility. On 

the other hand, large standard errors are mainly a result of using invalid sampling designs, 

inefficient sampling or poor choice of estimators. 

Stratified Random Sampling (SRS) and Systematic Sampling (SS) are commonly 

applied sampling designs for wildlife surveys (Seber, 1982), with estimation of population 

parameters commonly being via the Jolly II procedure (Jolly, 1969a). If accurate or "true" 

counts exist, Jolly (1969b) has shown how correction factors reduce bias in estimates of 

population parameters. Similarly, sampling error is decreased through the use of larger 

samples, rigid standardisation of survey methods and introduction of efficient sampling 

procedures (Cochran, 1977; Thompson, 1992). 

Recent developments have yielded modern sampling strategies like distance 

sampling (Buckland, et al., 1993) and adaptive sampling (Thompson and Seber, 1996). 

Further, Van Groenigen and Stein (1998) illustrated how prior information improves 

sampling for environmental variables. 

This study aims to improve precision of wildlife population estimates derived from 

airborne survey data by extending the Jolly II estimator with an adaptive procedure. A 

modified sampling strategy, based on strip transects, is formulated and its performance 

compared using a simulation of observed data. Throughout the paper, we focus on three 

herbivore species having different social behaviour: elephant, kongoni (a type of antelope) 

and wildebeest. The elephant lives in small herds of not more than 50 animals, kongoni is 

generally solitary, while the wildebeest occurs in large herds of hundreds of animals. 

Procedures developed here, however, are well suited to other wildlife species and habitats. 

11 
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2.2. Materials and Methods 
2.2.7. Sampling wildlife 

Sampling of wildlife populations through airborne surveys is subject to two basic 

assumptions: Representativeness of the population by the sample and a uniform distribution 

of wildlife within the study region. The first assumption is questionable as animals may hide 

at the sound of approaching aircraft, or may be indistinguishable from background patterns 

due to camouflage. Further, dynamic animals may be observed twice. Quite often, therefore, 

sample numbers either underestimate or overestimate population totals. The second 

assumption also fails because many animals occur in herds of varying sizes due to 

influences of local conditions like vegetation, water availability and human settlement. For 

such animals, the probability of observing a single member depends upon the probability of 

the whole herd being observed. Sampling designs that ignore such dependence introduce 

imprecision in the estimation procedure that can not be quantified. Moreover, 

straightforward application of SRS or SS leads to high sampling errors. 

Most survey procedures generally partition study regions into N windows, with the 

ith window W, of area a, having y, animals (i = 1, 2, ..., N). Sampling observes the 

population through a reduced number of windows (sample) of size n (n < N). In this study 

we let our windows be represented by strip transects, which are of primary interest in 

airborne surveys of wildlife because of the ease of navigation (Caughley, 1977). Transects 

are defined on the ground by markers fixed on the windows and wing-struts of an aircraft. 

Animal counts are recorded through observations made on one or both sides of the aircraft, 

which flies in a straight line from one end of a study region to the other at fixed speed and 

height above ground. Each transect is divided into 5 km subunits to yield distributional data. 

2.2.2. Sampling Designs 

Both stratified random sampling (SRS) and systematic sampling (SS) provide a 

basis for development of sampling designs. With SRS, n out of N transects are selected 

without replacement to yield an inclusion probability of n = nIN for each transect, making 

them all equally likely to be selected into the sample. For SS, the N transects are numbered 

from I to N and an integer r is chosen such that N = rn. The initial transect is randomly 

chosen from the first r transects in the population and thereafter, every rth transect is 

selected. Since N is generally not an integral multiple of r, systematic samples obtained 

from the same finite population may vary in size. An improvement treats the N transects as 

being arranged round a circle and takes r as the nearest integer to N/n (see Cochran, 1977, 

p. 206). The first transect is randomly identified from integers between 1 and N, after which 

every rth transect is included in the sample until the required sample size n is obtained. This 

results in an equal inclusion probability for all transects in the population. 

12 
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N 

Both the total area for the study region |w| = ^ a , = A as well as the sampled area 

n 

\w\ = ^ a , must be known to estimate the population total Y. The density D in W for 
1=1 

uniformly distributed populations, is estimated as 

n 

l y , 
D = Jf-r. (2.1) 

M 
Therefore, an estimate of Y is given by 

Y=DA, (2.2) 

with a variance given by Jolly (1969a) and Thompson (1992, p. 60) as: 

W ^ X ^ - ^ , ) 1 , (2-3) 
n(N-l) ti 

which is estimated by: 

Var(Y)=^i^i(yi-D.ai)\ (2.4) 
n(n-l) i=i 

Rasch et al., (1999, p. 44) derive similar results for sampling without replacement from 

finite populations. 

2.2.3. Jolly II procedure 

Let correlated random variables Y and Z have measurements yf and z, for the ith 

sampling unit (i = 1, 2, ..., n), and sample means y and z , respectively, and let Z be 

known. The ratio estimator YR for the population total Y equals: 

YR=~Z. (2.5) 
z 

If the relationship between Y and Z is linear through the origin and variance of Y around this 

line is proportional to that of Z, then YR is the best among a wide class of other estimators 

(Cochran, 1977, p. 158). For wildlife surveys, Y and Z represent observed animals and area 

respectively. If y, and a, are observed animals and area of the rth transect, an estimate of 

density D is given by equation (2.1), leading to an estimated Jolly II population total 

Yj = D- A and has variance given by: 

13 
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N(N-n)(s-

n(n-l) 
2 

a 2 > , 2 + 0 2 2 X 2 - 2 D 2 > , - « , (2.6) 

This procedure is applied for wildlife surveys regardless of whether SRS or SS is used 

(Smith, 1981). Although Norton-Griffiths (1981) suggests that SS estimates have 

conservative variances compared to SRS, a choice between the two is not entirely clear for 

wildlife surveys (Jolly, 1981). 

2.2.4. An adaptive sampling strategy 

2.2.4.1. The univariate case 

Both SRS and SS are characterised by the selection of sampling units (transects) 

prior to the carrying out of surveys. This leads to a selection procedure that is independent 

of subsequent observations during surveys. In practice, this yields transect with many zero 

counts for sparsely or highly clumped populations, thereby resulting in imprecise estimates. 

We formulate an adaptive sampling procedure that improves precision. 

An adaptive sampling design is a function i|/(S | y) assigning conditional probability 

to every possible sample S in the population given observations y (Thompson, 1992). For 

each Wh we define a neighbourhood //, as a collection of windows adjacent to and including 

Wh i.e. for sequentially numbered transects, Ht ={ W,.;, Wh Wi+i}. This procedure requires a 

condition to be fulfilled on W, before it extends S to S uH,-. For example, yt could belong to 

a set C, e.g. an interval C={y: y > c] for a constant c. Since transect lengths are highly 

variable, we let c equal <5, the number of animals observed per unit area but projected on 

each subunit. This is equivalent to the number of animals observed per subunit and is 

calculated individually for each species based on data from previous surveys in the same 

region. Thus, if yt > 8, then W;_; and Wi+i are included in S and observed. 

Following Thompson (1990), we call the collection of transects observed as a 

result of initial selection of W, a cluster. Within a cluster, a subset of transects forms a 

network if selection of any transect leads to inclusion of the whole subset. This implies that 

all transects in a network satisfy condition C. Edge units do not satisfy C but are in the 

neighbourhood of those that do. They are only included in the sample estimator if they are 

part of the initial sample. By classifying transects for which yt < 8 as networks of size one, 

given y-values and condition C, the population is uniquely partitioned into K networks. K is 

unknown and is estimated from the data. 

For surveys of single species, sampling proceeds as follows: We select an initial 

sample of size n using SRS (without replacement) from N transects. The total area A of the 

study region and that of each transect at(i= 1,2, ...,N) must be known. We define C based 

on 8 for each species, yielding k0 observed networks, where k0<n since the sample consists 

of distinct transects. The ith transect in the fcth network (i = 1, 2, ..., tk) contains yik animals 
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and has an area equal to aik. We estimate the density of animals per unit area in network k 

(Dk) by 

tk 

Dk=^ . (2.7) 

Using (7) would overestimate D since the sampling design deliberately selects transects 

with high abundance. We, therefore, correct Dk by multiply it by a weight wk equal to the 

proportion contributed by the kth network to the total sample area, i.e. 

(2.8) 
" 0 

I>, 
where a,k is the area of all transects covering network k and £ wk = 1. 

An improved estimate of D is obtained by averaging over all k0 networks as follows 

T'k • nk 

D = &— , (2.9) 

which we use to estimate Y through Y = D • A . 

An approximate variance of the estimate is given by 

Var(Y)=K{f-k^{y,-b.a^ (2.10) 

where y,k equals the number of animals observed in network k (k = 1,2, ..., k0) and K is an 

estimate of the total number of networks in the population, obtained for example as — k0, 

where n is the probability of hitting a network, estimated as the minimum of 1 and the ratio 

of the average projection of observed networks on the flight baseline (pn) with the distance 

between initial transects (dt), i.e. IT = min 
dt ' 

2.2.4.2. The multivariate case 

Since most Africa airborne surveys are multi-species, we extend the adaptive 

sampling procedure in a multivariate way by associating the tth window Wt with ytj animals 
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of the 7th species (('= 1,2, ..., Nemdj= 1,2, ...,p). By letting rows and columns represent 

windows and species, respectively, we denote the data in matrix form as 

Y = 

yu yi2 

yn 
y^ 

yiv 

• yNPJ 

(2.11) 

For a sample S of size n, we consider the design as a function \\f(S I Y) that assigns 

conditional probabilities of selecting every possible sample 5 given Y, with an objective of 
N 

estimating a vector of population totals Y = (Yl,Y2,...,Y ) ' , where K. = ̂ yy , j = 1,2, ..., 
i=i 

p. Each transect has to satisfy a condition C, which is a p-dimensional region corresponding 

to p animal species i.e. W, satisfies the condition if j>, e C, where j , = (yu, y^, • ••, y,p) is a 

row vector of values from matrix (2.11). 

We base C on individual species or on a function of some or all species. Following 

Thompson and Seber (1996, p. 202-203), we define the following conditions: 

• Cj= {ytf yu > c) - based on observations of one representative species only; 

• Cz - {y,/- yij > CjV j } — based on observations of all species simultaneously 
(AND); 

• C3 - {ytf ytj > Cj for some j} - based on observations of any one species (OR); 
p 

• C4 = {ytj : ^ ytj >c} - based on the sum of observations of all species. 
j=i 

In actual surveys, C/ is most often used. 

After choosing C, the population is partitioned into unique networks given Y, 

thereby allowing for the estimation of population parameters for each individual species as 

in section 2.3.1. We let yijk represent the number of animals in transect i of network k for 

species j and estimate the population total Yj for the yth species of density D ; 

by Yj = Dj A. Its variance is estimated by 

Vdr(Yj) 
K(K-k0)^ 

l(y»-brak)
2 (2.12) 

k0(k0-l) k=i 

The covariance between estimates of population totals Yj and Yy for species j and j ' , 

respectively, is given by: 
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CMYj,Yf)= \ °. l(y,t-Dj-a,)(y,, -D,-a.t). (2.13) 

This represents the off-diagonal elements of a p by /? variance-covariance matrix for the p • 

species, formed by combining (2.12) and (2.13). 

2.3. Case Study: The Masai Mara Ecosystem of Kenya 
2.3.1. Site description 

Mara, which is part of the Serengeti-Mara Ecosystem, is situated in Narok district 

in southern Kenya and lies between 0° 45' South, 34° 45' East and 2°00\ 36°00' East 

(Figure 2.1). It consists of the Masai Mara National reserve (MMNR), the Loita, Siana and 

Mara plains and covers an area of approximately 6,600 km2. It is home to high wildlife 

diversity and is also an important dry season refuge for migratory wildlife species like the 

wildebeest (Broten and Said, 1995). This species, together with the elephant and kongoni, 

are among the keystone species in this ecosystem (Sinclair, 1995a). 

Data for this study come from a survey conducted in May 1997 (survey Id 9703, 

i.e. the third survey of 1997), in which eighteen transects were flown with a strip width of 

0.282 km, giving a sampling fraction of 5.14%. The spatial distribution of species shows the 

elephant to be found mostly in MMNR and on the Mara plains, while the kongoni occupy 

the middle section of the ecosystem, along boundaries of MMNR and the Siana and Mara 

plains (Figure 2.2). Wildebeest, the most abundant species, mainly occur in Loita plains but 

are also found in Mara and Siana plains. The kongoni is observed only in eight of the 18 

transects surveyed (Table 2.1) indicating a sparse distribution for this species. The other 

two species appear evenly spread, although they too have several transects with zero counts. 

Jolly II estimates of the population totals for the three animal species confirm the high 

abundance of the wildebeest (Table 2.1). 

2.3.2. Simulation 

We base a simulation study on the observed data to evaluate the quality of results 

from the adaptive sampling design. We let animal counts resemble Poisson clusters (Diggle, 

1983) and reproduce spatial patterns similar to the original data. We start by creating a 

rectangular frame that fully encompasses Mara and generate finite population values to 

represent _y, animals in transect i as point objects in a two-step procedure. We uniformly 

distribute mj parent locations in the frame and generate m2 points at each location, 

following a Poisson distribution with species specific mean values obtained from the 1997 

survey. Within the frame, we generate a maximum number (N = 350) of transects using the 

actual strip width and overlay them on a map of Mara to yield transects of unequal lengths. 
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We then generate a systematic sample of n = 18 transects by first selecting one transect at 

random among the first 20 transects and then selecting every 20rt row. 

N 

Map of Kenya 

Figure 2.1. Location map showing the composition of the Mara ecosystem, which lies in Narok 
District of Kenya. 

We use the Jolly II procedure to estimate population totals and standard errors. We 

estimate bias as the difference between the true and estimated population total. Similarly, 

we calculate population totals, standard errors and biases for adaptive samples generated 

with a random initial sample of size 10. For both designs, we calculate relative efficiencies 

as the ratio of the variance of the estimated population total obtained using a SRS design, to 

the variance of the same estimate obtained by either design at equivalent sample sizes. 

Sample sizes are standardised to the effective sample size of the adaptive design, which is 

defined as the number of transects in all networks. Mimicking the original observed patterns 

preserves correlation between species thereby allowing calculation of covariance in the 

multivariate case. The simulations are repeated 100 times, yielding 100 simulated 

populations for each species. 

2.3.3. Simulated distributions 

In the simulation of animal populations, each transect is checked for condition 

C=[y: y > 8} based on subunit density. Values of S, expressed as animals per subunit, are 

equal to 1 for the elephant, 9 for wildebeest and 0.5 for kongoni, yielding mean effective 
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sample sizes of 20, 36 and 15, respectively. The estimated bias for the adaptive estimate of 

the elephant population total is much less in absolute terms than that obtained with the SS 

design, whereas the standard error reduces by 37% (Table 2.2). Less marked reductions are 

also observed for the other two species. Further, the adaptive design tends to give positive 

bias for solitary animals and small to medium herds like kongoni and elephant respectively, 

whereas abundance is underestimated by both methods for animals in large herds like the 

wildebeest. The adaptive design appears to be significantly more efficient in cases where 

effective sample size exceeds the 18 transects used by the SS design in this survey. 

4 
o 

40000 60000 80000 

X - UTM Coordinates 

Figure 2.2. Point map, showing occurrence of elephant, kongoni and wildebeest in the study 
region. 

19 



t _ 

XJ 

* X 
CA 

O 

c o 
is 3 
D . 
O 
O . 
CA 

i O 

x: CM 

<U 

X l 
ca 
E-

CA 

tu 
' o 
tu 

CA 

ca 
£ 
'5 
ca 
tu 
tu 
XJ 
tu 

X 

I -

^4-1 

c 
.SP 'CA 
I ) •o 
o 

ca 

E 
tu 
CA 

en 

13 
c 
o 
c u > c o 
o 
tu 

XJ 

o 

e 
op 

'CA 

•8 
u 

> 'I 
•a 
**-
o c 
o 
CA i 
E 
o 
U 
r4 
r* 
tU 

60 
C 

"E. 
E ca 
CA 

<*) 

T3 
C 
ca 

o. ca 
T3 
ca 

E 
o 
<e 
• a 
tu 
c 

'ca 
xt o 

CO 

• a 

Q 

<3 
CA 

.52 
o e 
tu 

' u 

tu 
<u 

> 
ta 

T3 

§ 

ta 
en 

T3 
§ 

CO 

CA 
1 M 

o 
t 
tu 1 

T3 

i V ) 

* • 

-o 
5 

oa 
CA 

3 
15 

^ 
T3 

<5C 
CA 

C3 

6 
to 

ca 

X 

•a 
B 
B 
CA 
tU 

<X 
t * « 

o 
tu 
u 

§ 
•c ca 

> 
tu 
XJ 
t * « 

o 

eu 
XJ 

CA 

ca 
T3 

CU 

c 
I S 
tu 

CA 

O 
c 
o 
v 

s 
CA e o 

D. 

8. 
"CA 
U 

' o 
tu a. 
CA 

13 
6 

'1 
tu 

1 
t + -

o 
CA 

c o 
fa 

1 
CA 

E 
<§ tss 

u > 

8. 
(A 

CA 

f CA 
tU 

•a 

eu 
N 

'CA 

E 
ca 
CA 

C 
«U 

"ca > 
'3 
tu 

§ 

t S 
C 
op 

' C A 

tu 
T3 

«3 
E 

CA 

o 

> 1 
•a 
X 

"1 
•a tU 
c 

• a 
X 

o 
ca 

XJ 

o 
c 
so 

'35 
tu 

0 0 
c 
"5, 

i 
CA B o -o 
3 
J - l 

T3 
U 

5 

CA 

tu 
- a 

on 

^ s? 

03 

a 

"O o 
x: 

tu _> 
"•»—» 

s-
< 

a 
CO 

r - so 
—i o 

oo ©\ oo 
r~- I N o 

T f 
VO 
i o 

r~ 
ON 

• 

m 
r o 

O 

—i _ i \o 
rn O ON 
VD <rj_ t s 
•rl-" <N O* 

o oo 

tN O <ri 
• * O (N 
r - vo (M 

—I Tfr 
-<t oo 

\ o cs r -
rn oo oo 
<N • * —i 

IN 

Tt 

o\ » - H 

>n 

*̂  c 
c3 
x; 
o, 
tu 

oo 

o\ 
m 
( N 

• w* 
S 
o 
so 
c 

tO\ 
I N 

m 

CA 

X I 

W W 

20 



o 
fc 

• o 
t -

03 
• a 
c 3 

^̂  8 

T3 

§ 
* 

03 

S 

C/3 

cd 

,fi 
/—v 

*1 
•o 
c cs 

1? 

iL V3 

'rt 
O 

-o 
<U 
cd 
E 

a> 

o 
x «5 

2 
Is 
H 
60 
c 

1 
a 
U 

> 
a. cT 

111 

> 
o 
o. f/i 

at 
i -

U 

. O 
ID 

2 

is 
TJ 

§ 
'S 
o 
c 
o a 

J 3 
a 

JJ 
T> 
u-
o 
cfl 
e o 

JS 
3 
Q. 
O 
O-

T3 
o 
I d 

"3 
E 

E 

T3 

C 
'3 

O 

,—̂  g 
^ «? 
•a 
S 03 

^ V 

_ 
6? 

ci 
r i 
0 

H 

fi 
</5 
03 

• 0 

C 
I S 
(U 

- 0 
t / 3 

'"" 
c 
32 

t C 
C. 
u 
.-* 0 
- 0 c 

.52 O 

S <J 

.S •£ :i 
B 
O 

^ 4> 

OS 

3 
H 

T3 ~3 

u 

•a 

J3 

a. 

W 

4 v 

SQ 

^ V 

=Q 

a 
o 

•3 
e 
o 
U 

o 
CN 

CN 

00 

ON 
CN 

CN 
T 
00 

CN 
co 
CN 

o 

00 

CN 

NO 

co 
O 

co 
ON 
0O 

ON 
NO 
CN 

NO 
00 

0 
NO 

NO 

CN 

NO 
co 

00 
co 

O 
NO 
O 
O 

O 

U5 

fl> 54—i 

—« T3 
772 

£ 

c 
0 
0 0 
c 
0 

ts 
^ •o 

Tg 

OQ 

,-* k-> 

fi 
*£ V 

0 0 
• * 

r-

co 
1 

>o 
0 0 
co 
CN 

r-
( N 

•-̂  

^ H 

O 
VD 

r-
0 0 

! 
•—H 

ro 
<N 

0 0 
O 
- H 

CO 
CM 
OO 

CN 
Os 

O 
ON 
i n 

cs 

>o 
ro 
» - H 

SO 
VO 
0 0 

ON 

( N 

t~-
m 
NO^ 

CN 

t 
CN 
^ H 

^O 
m 

_ 
m 
CN 

V~l 

r-
CM 
NO 

~ 

CO 
—H 

r-
"~̂  

0 0 
0 
ON 

NO 

O 
<N 
CO 

CM 

OO 
OO 
• * 

CN 

CO 
0 0 
NO 

r-

NO 
>T1 
CN 

CN 

0 0 
• * 

CN 

NO 
r-
NO 

r-

21 



Table 2.1. Observed numbers per transect for three animal species based on census 9703 conducted 
in Mara in 1997. Table shows transect area, distribution and Jolly II estimates of population totals for 
the elephant, kongoni and wildebeest. 

Transect 

1 

2 

3 
4 

5 

6 

7 
8 

9 
10 
11 
12 

13 
14 
15 

16 
17 

18 

Area (km2) 

2.784 

8.212 

11.101 

12.758 

14.097 

14.485 
14.661 

21.923 
25.092 

26.857 
29.712 
33.975 
31.882 

31.996 
22.766 

20.106 
13.87 
6.156 

Total observed numbers 
Estimated population total 
Standard error (s.e.) 

Elephant 

0 

0 
0 

0 

37 
7 

4 
2 

7 
2 

33 
73 
3 

22 
12 

3 

31 
0 

236 

4,587 
1,391 

Kongoni 

0 
0 

0 

0 
0 

21 

20 

3 
23 
9 

6 
11 

0 
4 

0 
0 

0 
0 

97 

1,886 
632 

Wildebeest 

0 

72 

3 

0 

0 
18 

20 
0 

29 
20 
79 
17 

293 
684 

296 
495 

108 
0 

2,134 

41,478 
14,332 

Multivariate sampling results in mean effective sample sizes of 20,16, 43 and 28 

transects for conditions C/, Ci, C3, and C4, respectively. Mean results indicate elephant 

abundance to be well estimated under C/, which is based on the elephant's density (Table 

2.3). Estimated bias for kongoni remains small under all conditions, while that of the 

wildebeest is highly overestimated under conditions Ci, and C2. Covariances between 

species are large and generally negative. 
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2.4. Discussion 
This study shows how precision of estimates can be improved by using more 

information from observed populations. Though the method appears to underestimate 

population totals for animals in large herds, its results are better than those obtained from 

the conventional systematic sampling design. It could be a point for further research 

whether this underestimation is due to herd size or to species abundance. If the regression-

through-the-origin model assumption is correct, more precision could be realised by 

deliberately choosing longer transects (Thompson, 1992). To provide robustness against 

such departures, initial samples should be randomly selected. 

The conventional SS design may give better estimates than the adaptive design for 

uniformly distributed animal populations because such populations do not violate basic 

design assumptions. Such distributions, however, are unlikely to occur for wildlife 

populations in large areas, due to substantial spatial variation in factors affecting their 

distribution. Further, stochastic processes influencing this distribution are as yet poorly 

understood and are likely to differ between species (Maddock, 1979). The adaptive 

sampling design, therefore, becomes more efficient in such situations by capturing more 

information. It also responds better to underlying processes by depending on observed 

wildlife distributional patterns. For example, it is better suited to deal with a gradient in the 

data by sampling more intensively in areas with large densities. 

The definition of relative efficiency in this study makes the adaptive design appear 

more efficient for abundant but clustered species like the wildebeest. Although an increase 

in sample size appears to favour the SS design, this is invalidated by the corresponding 

increase in transect variation. Defining condition C by using the number of observed 

animals for each subunit is superior to the mean number of animals per transect, as it takes 

variation in transect length into account. 

Data quality often influences results obtained from airborne sampling of animal 

populations. For example, wildlife species like the wildebeest migrate each year from 

Serengeti in Tanzania to Mara during dry seasons (July - October) and return in wet 

seasons (December - June) (Maddock, 1979). Therefore, surveys carried out in Mara 

during these wet seasons would result in many zero counts for migratory species. If such 

prior information exists, it is reasonable to use an adaptive sampling design with a low 

initial sample size, most probably saving cost, particularly for clustered populations that are 

either sparse or abundant. 

A multivariate extension of adaptive sampling strategies requires further research. 

The four conditions needed to add neighbouring transects to the sample indicate subjectivity 

in the adaptive procedure. The choice of a suitable condition must be based on prior 

information like individual species dynamics. In the absence of such knowledge, a pilot 

survey at a limited scale may be useful. If interest focuses on a single species, this study 

suggests that basing the formulation of C on values of the species may help in obtaining a 
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suitable condition. Even if an improved multivariate treatment was possible, implementation 

difficulty will increase with an increasing number of species. 

2.5. Conclusions 
We conclude from this study that an adaptive sampling design, using information 

from observed transects, can improve estimates of population parameters from airborne 

wildlife surveys. The method appears to perform better for clustered and highly abundant 

species as well as sparse populations. Extension to a multivariate setting does not 

substantially improve estimates but leads to more efficient data use. Modern ways of 

sampling, therefore, clearly improve airborne wildlife estimates, and more specific 

contributions may be anticipated in the near future. 
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.Modelling Wildlife population using GIS_ 

Abstract 
This chapter applies generalised linear statistical techniques in a GIS to analyse wildlife 
data from a Kenyan wildlife reserve and its surrounding areas. Attention focuses on the 
spatial distribution of elephant during nine successive surveys, analysing their temporal and 
spatial relationship and relating them to 12 explanatory variables. A principal component 
analysis identifies five major determining factors, thereby reducing dimensionality in the 
data, while a simple spatial analysis procedure, suitable for wildlife data obtained from 
airborne surveys, quantifies clustering for different animal species. The number of 
explanatory variables appearing in abundance models is found to be subject to large 
variations during successive surveys with a minimum and maximum of four and eight 
variables, respectively. Species from highly clustered populations are found to have over 20 
times more observations within short distances compared to the rest. The study concludes 
that a combination of generalised linear modelling and GIS gives deeper insight into the 
dynamics of wildlife species in and around well-defined nature reserves. 
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3.1. Introduction 
A lot of data on wildlife populations are routinely collected through airborne 

surveys. In most cases, these data are geographically referenced and therefore spatial in 
nature. Quite often too, the surveys are replicated over time, resulting in large amounts of 
spatial and temporal data that need to be translated into useful information. The advent of 
computer technology, particularly Geographical Information Systems (GIS), has led to 
better methods of data storage, retrieval and manipulation (Burrough and McDonnel, 1998). 
For example, wildlife surveys can now be carried out using sampling procedures that are 
optimised through consideration of landscape features and environmental factors stored in a 
GIS. Also, relationships between animal population dynamics and environmental factors 
can now be studied simultaneously. Suitable analysis techniques, which are capable of 
handling spatial and temporal variability, are however, indispensable in yielding useful and 
reliable information. 

In most modelling situations, high correlation between and within variables 
directly affects the precision of estimated model parameters. Buckland and Elston (1993) 
use Principal Component Analysis (PCA) to reduce dimensionality and eliminate 
correlation between explanatory variables, while Augustin et al. (1996) model spatial 
autocorrelation in the distribution of wildlife. Both studies, however, do not simultaneously 
model spatial autocorrelation and correlation in the explanatory variables. 

On the other hand, several studies have confirmed strong association between 
animal species abundance and environmental factors (Osborne and Tigar, 1992; Buckland 
and Elston, 1993). Among the statistical techniques used to establish these relations, 
logistic and multivariate regression analyses have been predominant (Nichols, 1989; Li et 
al, 1997). A shortcoming of these linear models is the assumption of a normal distribution 
for the response variable. In situations where this assumption is not tenable, generalised 
linear models (GLMs) provide a useful alternative (McCullagh and Nelder, 1989; Dobson, 
1990; Pereira and Itami, 1991). Both linear models and GLMs rely on an assumption that 
data are independently and identically distributed. 

It is known, however, that factors influencing animal distribution i.e. vegetation 
cover, soil fertility, distance to water points etc., are spatial in nature. Therefore, there is 
need to combine GLM and GIS in modelling animal distribution so as to account for spatial 
dependence. 

In the past, Walker and Moore (1988) interfaced the software package SIMPLE 
with a GIS to model wildlife distribution. In a subsequent study to relate kangaroo 
distribution to climatic conditions, Walker (1990) combined the package with GLMs to 
obtain results that compared favourably with those from the rule-based CART algorithm 
(CART, 1984). This indicated the usefulness of GIS modelling as a strategy to analyse 
wildlife data. In both studies, however, abundance was re-expressed into presence and 
absence data to allow the use of logistic regression in the modelling. This led to some loss 
of information. 
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The objective of the current study is to analyse observed spatial and temporal 
patterns of four wildlife species, i.e. elephant (Loxodonta africana), kongoni (Alcelaphus 
buselaphus), wildebeest (Connochaetes taurimus) and zebra (Equus burchelli), found in a 
Kenyan wildlife ecosystem. We use GIS techniques to identify and relate environmental 
factors to observed counts. We carry out a spatial correlation analyses as well as 
generalised linear modelling and reduce dimensionality in the data by means of PCA. 
Finally, we outline the ecological implications of these analyses to management of the 
species. We often use data on the elephant to illustrate certain procedures. 

3.2. Study area 
The study area is the Masai Mara ecosystem (Mara), which is fully described in 

section 2.3.1 and illustrated in Figure 2.1. High rainfall, tall grassland and permanent water 
make Mara an important dry season refuge for the last great migrating herds of wildebeest 
and zebra (Delany, 1982; Murray, 1995; Fryxell, 1995; Broten and Said, 1995). These two 
species, together with the elephant and kongoni are among the most important large 
herbivores found in Mara. Mara is also important from an economical perspective because 
of attracting many tourists who bring in foreign earnings (GOK, 1984). All these have led 
to an increasing interest in analysing factors that influence abundance and distribution of 
wildlife over time (Sinclair, 1995b). 

3.3. Materials and Methods 
3.3.1. Data 

Data for this study are a subset of a comprehensive dataset of surveys conducted in 
Mara since 1977, by the Department of Resource Surveys and Remote Sensing (DRSRS), 
of the Ministry of Planning and National Development. We concentrated on post-1990 
surveys because those carried out previously may not have been sufficiently uniform and 
were, therefore, subject to unrealistic variation. Typical surveys simultaneously observe 
several animal species. A number of pre-determined strip transects (18-55) are 
systematically flown by a light aircraft at fixed height (typically 122 m) and fixed strip 
widths (282 m or 304 m). These are designed so as to cover a sampling fraction of between 
3.5% and 11.8% for the Mara (Grunblatt et al., 1995). Distances between transects may 
vary for successive surveys, but 2,500 m, 5,000 m and 10,000 m are typical values 
(Grunblatt et al, 1995). 

Transects are usually divided into sub-units of 5,000 m length for which x and y 
co-ordinates, as well as the number of observed animals of different species, are recorded. 
Based on these co-ordinates, remotely sensed environmental data such as vegetation cover, 
composition and greenness are associated with each sub-unit. Similarly, the shortest 
distance to permanent rivers, major roads and the boundary of MMNR are calculated. 
Legislative changes have placed MMNR under favourable protection and conservation 
status as compared to the surrounding areas. Effects of this protection are studied by 
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defining an explanatory variable that assigns 1 to areas within MMNR and 0 otherwise. 
Average soil fertility as well as the extent of agricultural and fallow land were also recorded 
for each subunit. Finally, the data were verified and formatted before being stored into a 
GIS. 

The three explanatory variables for distances to rivers, roads and MMNR were 
derived by rasterising and resampling digitised topographic maps of a 1:250,000 scale to 
pixels of size equal to 30 m. We obtained vegetation cover variables by a supervised 
classification of georeferenced Landsat TM images, which were complemented by ground-
truthing. Further, Normalised Difference Vegetation Index (NDVI) values were calculated 
from NOAA-AVHRR images that had a resolution of 1.1 km. These were georeferenced 
using the Landsat TM image and resampled to a 30 m pixel size. Finally, the soil fertility 
map of Mara (Jeatzold and Schmidt, 1983) was digitised, rasterised and resampled to a 30 
m pixel size. In all analyses, observed animal numbers were treated as response variables. 

3.3.2. GIS Modelling 

In most wildlife studies, modelling with GIS focuses on defining habitat suitability 
for various animal species (Tomlin et al., 1983; Walker, 1990; Pereira and Itami, 1991). 
However, for modelling wildlife populations, both permanent and dynamic data recorded 
during surveys are required. Functional GIS layers, mainly containing topographical data 
like vegetation cover, drainage and road networks, can store these data as observed or 
interpolated counts of individual animal species (Burrough and McDonnel, 1998). For this 
study, major roads, the MMNR boundary, and the drainage pattern of permanent rivers 
form three such data layers (Figure 3.2). 

Modelling was preceded by a descriptive and correlation analysis of all variables 
in this study. We restricted the analyses to survey 9703 of 1997 and only used data on the 
elephant to illustrate the procedure of modelling spatial and temporal distribution. The 
elephant are an important indicator species, being protected and subject to changing 
nutritional conditions (Delany, 1982; Dublin, 1995). They also possess solitary and 
clustering characteristics and are easily observable due to their large size. We hypothesised 
the elephant abundance to be related to several environmental factors. The exact form of 
this relation being unknown, but able to be modelled using a GLM. We used the 12 
explanatory variables to represent different GIS layers, whose combined overlay would 
have been too complex for interpretation (Table 3.1). We, therefore, started modelling by 
making bivariate comparisons. 

We followed a deductive modelling approach, although inductive modelling is 
also common in GIS studies (Walker, 1990; Pereira and Itami, 1991). Deductive models 
start from a general idea that is applied to specific observations, while inductive modelling 
derives general principles from observing many specific examples (Stoms et al., 1992). As 
a starting point, we utilised the knowledge that elephant generally prefer tall grassland and 
shrubby vegetation (Rosero, 1997). Similarly, past studies of Mara suggest that elephant are 

29 



.Modelling Wildlife population using GIS_ 

mainly found in MMNR (Broten and Said, 1995). We tested these ideas by successively 
overlaying observed elephant counts with data layers for tall grassland, shrubby grassland, 
boundary of MMNR, permanent rivers, major roads, average soil fertility and conservation 
status. A subset of layers that indicated high correlation with elephant abundance was 
identified and a combined overlay formed. We studied interaction between elephant and the 
other animal species by analysing spatial patterns observed during the same survey. We 
also modelled temporal changes in elephant abundance by analysing spatial patterns in the 
nine successive post-1990 surveys. 

Major roads 

Permanent rivers 

MMNR boundary 

0 30 60 Kilometers 

IN 

A 

Figure 3.2. Three GIS layers formed from three explanatory variables, major roads in Mara, 
permanent rivers and the boundary of the Masai Mara National Reserve. 
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Table 3.1. Explanatory variables used in the study, together with their definitions. Shortened names 
are in brackets. 

Explanatory variables used Definitions 
in the study 

Conservation Status Binary variable, 1 for areas in MMNR and 0 otherwise 
(CONSTAT) 

Distance to Reserve Continuos variable, measures distance to Reserve boundary 
(DISTRESERVE) (km) 
Distance to River Continuos variable, measures distance to permanent rivers 
(DISTRIVE) (km) 
Distance to Road Continuos variable, measures distance to major roads (km) 
(DISTROAD) 

Average Soil fertility Continuos variable, measures average fertility for the unit 
(AVFERTI) 
Agricultural or Fallow land Cover of land under agriculture or left fallow (%) 
(AGROFALL) 
Dwarf Shrubby Grassland Cover under dwarf shrubby grassland (%) 
(DWSHGRA) 
Forest (FOREST) Cover under forest (%) 
Short Grassland Cover under short grassland (%) 
(SHORTGR) 
Shrubby Grassland Cover under shrubby grassland (%) 
(SHRUBBYG) 
Tall Grassland (TALLGR) Cover under tall grassland (%) 

NDVI (NDVI) Normalised Difference Vegetation Index; Measure for 
vegetation greenness 

3.3.3. Distance measure of spatial correlation 

Landscape features and local conditions may govern the spatial variability 
observed in wildlife data and hence affect distribution of different species. Some species 
may cluster close to available nutrients but become increasingly sparse in drier sub-areas. 
Such variability can be quantified by spatial correlation measures dependent upon distances 
between neighbouring sub-units. A high occurrence of short distances implies clustered 
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populations. In this study we used Euclidean distances between sub-units, together with 
absolute differences in observed animal counts to calculate a measure of spatial correlation. 

The neighbourhood configuration for each sub-unit includes neighbours along the 
transect as well as on adjacent transects. Therefore, distances from the centre of a sub-unit 
to its adjacent neighbours equals 5,000 m along the transect, 2,500 m and 5,590 m 
perpendicularly and diagonally to adjacent transects, respectively (Figure 3.3). We took the 
diagonal distance between two adjacent sub-units (longest separation) to represent a unit d 
and classified all distances into multiples of d. We considered clustering by counting the 
distances within intervals of d, 2d, 3d or Ad. We standardised the number of distances in 
each interval for comparison by determining proportions with respect to all pairs of sub-
units with non-zero counts per species. We also calculated absolute differences in 
abundance between pairs of sub-units having non-zero counts. We expected most 
observations of sub-units with non-zero counts from clustered populations to fall into 
intervals with the smallest distances (d or 2d). This is the same as expecting most observed 
animals to be found in adjacent sub-units leading to some similarity between this procedure 
and the ft-scatter plot (Isaaks and Shrivastava, 1989: p. 52) 

3.3.4. Generalised Linear Models 

Most wildlife modelling involves transformation of the response variable (animal 
counts) into a presence/absence outcome so as to allow use of the logit link (Buckland and 
Elston, 1993; Augustin et ai, 1996; Li et ai, 1997), which models the probability of an 
animal's presence without giving information on abundance. Further, for animals in herds, 
equal weights are assigned to sampling units having only one animal as to units with 
hundreds of animals. This is clearly undesirable when modelling animal abundance for a 
wildlife reserve. Therefore, an alternative link function is necessary to model wildlife 
abundance. 

GLMs allow fitting of models to data without the requirement of normality by 
letting the random component assume any distribution from the exponential family. The 
random component is then related to the systematic component through a monotonic 
differentiable function known as a link function (McCullagh and Nelder, 1989). Several 
link functions are available depending on the type of response variable. For normally 
distributed data the expected value of each datum y is given by: 

E(y) = n = £xjpJ. (3.1) 

Where Pi, p2, ...,PP is a set of unknown parameters corresponding to a set of p explanatory 

variables to be estimated, producing a linear predictor given by: 

ri = t*jPj- (3-2) 
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Figure 3.3. Distance calculation between neighbouring sub-units i, j , k and /, found on two adjacent 
transects / and f+1. The longest nearest neighbour distance is that between diagonal sub-units i and /, 

which is calculated using the Pythagorean theorem as shown above. 

In case of normality, rj equals fi and both can take any value on the real line 

leading to the identity link of classical linear models. For count data, however, pi must 

always be greater than zero, which invalidates the assumption of normality and the use of 

the identity link. We use a log link r\ = log n instead, leading to the inverse relationship /i = 

ev and ensuring that fi is always positive. This formulation assumes a Poisson distribution 

for the observed counts and modelling proceeds via log-linear models. Again we only use 

data on elephant abundance from the nine surveys for this modelling. 

3.3.4.1. Log - Linear Modelling 
Poisson-like processes are best modelled using log-linear models, which avoid the 

restriction imposed by equality of the Poisson mean to the variance. The log-linear models 
used in this study assumed the following relationship between the variance and mean: 

Var(Yi)=5E(Yi). (3.3) 

The dispersion parameter term 8 is constant over the data, with 5 > 1 implying over-

dispersion and S < 1 under-dispersion. Since most wildlife species exhibit clustering, we 

expect the variance to be higher than the mean (over-dispersion). We, therefore, assume a 

log-linear model of the form: 

J7,= log E(Yd = XT,)8, i = 1, 2 , . . . , n (3.4) 

implying that 
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A*,- = E{Y,) = exp(r/,) = exp(Xr,/3) = f [ e x p ( X r ^ y ) . (3.5) 
;=i 

This leads to a multiplicative relationship between /i, and the covariate vector X,. From 

(3.4), we regress log (^) on the set of explanatory variables to yield the regression 

equation: 
log (A) = Po + P,Xn + /32X2i +...+ P„Xpi. (3.6) 

We refer to this as log-linear regression, which is equivalent to generalised linear modelling 
with a log link. In common statistical software like S-plus, GLMs with the Poisson family 
imposes an over-dispersion parameter of one. This limitation is overcome by using the 
quasi family with a log link, which allows over-dispersion to vary from one model to 
another. We then estimate parameters via the quasi-likelihood estimating equations (qee) 
(McCullagh and Nelder, 1989: p. 327). This yields similar coefficients but with improved 
standard errors than those obtained via the usual maximum likelihood. 

3.3.4.2. Principal component analysis 
We use PCA to compose the original variables into linearly independent 

orthogonal principal components (PCs) and thereby reduce dimensionality in the data. 
Usually, there are as many PCs as there are variables, but with only the first few, which 
account for most of the variation in the data being considered in practice. For example, a 
PCA involving p variables decomposes into the following linear combination of original 
variables: 

PQ = SaXu + £i2X2l + ... + ̂  + ... + ̂ lpXpi, (3.7) 

where PCt is the ith PC and £,y is the coefficient corresponding to variable X,,. The 
coefficients ^ form a matrix £ composed of eigenvectors from the covariance matrix of 
explanatory variables. Eigenvalues derived from the covariance matrix represent the PCs' 
ability to reflect the original variables, with high eigenvalues implying high ability. Using 
data from survey 9703, new variables are derived from the PCs and used in a stepwise 
regression to determine which PCs best modelled the distribution of elephant in Mara for 
1997. 

In this study, we use the geographical information system software ARC/INFO 7.2 
and ArcView 3.0a (ESRI, 1996) for map-production and spatial data analysis, while 
generalised linear modelling and PCA are carried out using S-Plus 4.5 release 2 (Mathsoft, 
1997). 

3.4. Results 
3.4.1. GIS modelling 

From descriptive statistics (Table 3.2), short and shrubby grasslands collectively 
account for nearly 70% of the vegetation cover type, with shrubby grassland being nearly 
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10% more abundant than short grassland (39.05% and 30.12%, respectively). We observe 
the highest correlation (0.654) between wildebeest counts and the number of sub-units 
under agricultural or fallow land, implying a possible conflict between man and beast. The 
negative correlation between the number of sub-units under the most abundant vegetation 
cover (short and shrubby grassland) and sub-units under agricultural or fallow land indicate 
possible clearance of land for human encroachment. The zebra are positively correlated 
with wildebeest as expected since both are migratory species preferring similar habitats. 
The amount of tall grass appear to decrease as one moves away from MMNR, which has a 
high conservation status as indicated by a high negative correlation coefficient (-0.495) 
between Tallgr and Constat. The positive correlation between Distreserve and distance to 
the river (Distrive) may be explained by the fact that permanent rivers in Mara are mainly 
found within MMNR. The high correlation between distance to MMNR and land under 
agricultural or fallow suggests that more agricultural activities are taking place close to or 
even within MMNR. 

We observe a high occurrence of sub-units under tall grass cover in MMNR while 
modelling in GIS. This coincides with high elephant abundance in the same area (Figure 
3.4a) thus supporting results from the correlation analysis. The many sub-units with a high 
shrubby grassland cover and no elephant support a weak correlation between shrubby 
grassland and elephant abundance. Other bivariate overlays suggest occurrence of more 
elephant within or close to MMNR as well as within short distances of permanent rivers 
compared to similar distances from major roads. The combined overlay of observed 
elephant counts, major roads and permanent rivers in Mara, as well as the boundary of 
MMNR reinforce this observation (Figure 3.4b). Overlaying these counts on other factors 
like NDVI, sub-units under agriculture or fallow land and human population density does 
not reveal a strong relation (Figure 3.4c). A high observation of elephant in MMNR, 
however, is in apparent avoidance of land under agriculture mostly found outside the 
reserve, which suggests a negative relationship between elephant abundance and increased 
agricultural activity in this ecosystem (Figure 3.4c). 

Occurrence of elephant and kongoni interacts negatively with each other as well as 
with other species, as indicated by their occupation of spatially separate regions of the 
study area (Figure 3.5). We observe wildebeest and zebra in similar regions, again 
suggesting high interaction between their habitats. These two species were mainly 
concentrated in Loita plains, but were also observed in other areas of Mara. 

From the nine successive surveys, elephant were mainly observed within or near 
MMNR (Figure 3.6). This supports the significance of Distreserve in explaining abundance 
and distribution of the elephant. Their spatial patterns differ significantly over time, with 
surveys 9102 and 9103 both being carried out in the same year but giving very different 
patterns. Survey 9102 was carried out at the end of the dry season (April), while 9103 was 
carried out after the rainy season (August), a period when migratory species come to Mara 
from Serengeti (Murray, 1995). This might explain the higher elephant abundance for 9103 
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(181 animals) compared to 19 animals for 9102, and suggests that season may be an 
influencing factor on elephant abundance. This is, however, contradicted by observations in 
the following year (1992) where two surveys 9202 (March) and 9204 (August) show nearly 
four times more elephant during the dry season (498) compared to the wet season (127). 
Even surveys carried out during the same month but in different years show little relation in 
the spatial distribution of observed elephant. For example, surveys 9003, 9103, 9204 and 
9604, which were all carried out in August, show much year to year variation in their 
spatial distribution. These indicate the need to consider other factors in explaining elephant 
distribution. 

Tall grassland /Elephant overlay 

LEGEND 
Observed elephant Percentage cover 

. Low 
A Medium 
A High 

Shrubby grassland/Elephant overlay 

Average Soil fertility/Elephant overlay 

60 Kilometers 

Figure 3.4a. Relating elephant abundance to several environmental factors using GIS modelling. 

Here elephant counts are overlaid singly on occurrence of tall grassland, shrubby grassland and 

average soil fertility at points of observation. 
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Figure 3.4b. Combined overlay of elephant abundance with major roads, permanent rivers in Mara 

and an area where some conservation is taking place (MMNR). 

3.4.2. Distance measure for spatial correlation 

We obtain measures of spatial correlation for the four animal species within 

distance intervals by computing proportions of distances between sub-units having non

zero counts (Table 3.3). We also calculate sums of absolute differences between all 

contributing pairs of sub-units. For example, survey 9703 yields 20 sub-units with non-zero 

elephant counts leading to 190 possible pairs. Three of these pairs are within distance d, 

representing a 1.6% proportion and a sum of absolute differences equal to 113. A similar 

approach is taken for all other distance intervals per species. 
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LEGEND 
Agriculture or fallow land (% cover) 

A Low 
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A High 

Human density (persons/km) 
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NDVI Values 
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# 11 - 20 
A 21-50 
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Figure 3.4c. Another combined overlay of elephant abundance with NDVI, places under agriculture 

or lying fallow and human population density. This is meant to show a simultaneous effect of these 

factors on the spatial distribution of the elephant. 
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Figure 3.5. Observed counts for four common animal species observed during survey 9703. This 

shows the spatial relation between species and that surveys are multi-species in nature. 
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9003 9102 9103 

9202 9204 9306 
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Figure 3.6. Elephant counts for nine surveys in Mara (1990-1997) to show temporal changes in 
abundance. 
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.Modelling Wildlife population using GIS_ 

The kongoni appear to be the least clustered of the four species by having a low 
number of pairs in the lower intervals compared to higher intervals (2, 3, 9 and 9 for d, 2d, 
3d and Ad, respectively). Elephant exhibit both solitary and clustered behaviour by having 
comparable sums of absolute differences in three of the first four distance intervals (113, 
120 and 156 for d, 2d and Ad units, respectively). The sum of absolute differences for both 
zebra and wildebeest are much higher than for kongoni and elephant in the first distance 
class (1,183 and 2,047 versus 19 and 113, respectively). We observe a similar situation in 
the other distance intervals indicating that zebra and wildebeest are highly clustered and 
spatially correlated. For the four animal species, this spatial correlation decreases with 
increasing distance as suggested by an increasing number of observations within higher 
distance intervals as well as large sums of absolute differences. 

3.4.3. Generalised linear modelling 

3.4.3.1. Log-linear modelling 

For each of the nine successive surveys, elephant abundance is modelled with 
respect to the 12 explanatory variables (Table 3.1). We consider significance at the 5 % 
level and present the results as a matrix showing only significant variables in each model 
representing observations in one survey. The variables Constat, Distreserve, distance to 
road (Distroad) and average soil fertility (Avferti), are significant in six out of nine models 
and hence, may be useful in explaining elephant abundance (Table 3.4). Other significant 
variables include Distrive, Tallgr and Agrofall, all appearing in four models each. Also, 
forest cover (Forest) and short grassland (Shotgr) are significant in three models. 

Coefficients for Distreserve have a negative sign in all models indicating a 
reduction in elephant counts with an increase in distance from MMNR. Similarly, the 
negative coefficients of Agrofall suggest that an increase in agriculture or fallow land lead 
to a decrease in elephant abundance. This is consistent with earlier results from the 
correlation analysis. The year to year variation in model composition may be attributed to 
differences in the numbers of observed elephant caused by other factors that were not 
studied here like periods of drought, seasonal changes, poaching etc. 

3.4.3.2. Principal component analysis 

From the 12 original explanatory variables, PCA yields five PCs, which 
collectively explain 94% of the total variance (Table 3.5). Based on loadings, contributions 
to each of the PCs are as follows: 

• PCi is related to both Agrofall and Distreserve with a negative sign. 

• PC2 is related, also with a negative sign, to Shrubbyg and Distreserve, suggesting a 
positive relation between these two variables. 

• PC3 is similar to Shortgr, which yields the only large loading. 
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• PC4 is related inversely to both Avferti and Tallgr. 

• Finally, PC5 is related to Distreserve and Avferti with a negative and positive sign, 
respectively, indicating an inverse relation between average fertility and distance to 
MMNR. 

Other variables do not significantly contribute to the first five PCs. 

Table 3.5. Five principal components derived from the 12 original explanatory variables and their 
corresponding scores. The largest scores for each principal component are highlighted in bold. 

Principal Components and the corresponding Scores 

V a r i a b l e PC] PC2 PC3 PC4 PC5 

Eigen Values (%) 
Constat 
Distreserve 
Distrive 
Distroad 
Avferti 
Agrofall 
Dwshgra 
Forest 
Shortgr 
Shrubbyg 
Tallgr 
NDVI 

35.515 
-0.0044 

-0.5065 
-0.0369 
-0.0054 
-0.1538 
-0.6736 
-0.0839 
0.0190 
0.3396 
0.3757 
0.0274 
0.0006 

56.806 
-0.0102 

-0.5735 
-0.1251 
-0.0443 
-0.3354 
0.1885 

-0.0135 
0.0515 

-0.0345 
-0.5886 
0.3936 
0.0006 

75.734 
-0.0043 
0.1511 
0.1066 
0.0263 
0.4455 

-0.1332 
-0.0832 
-0.0058 

0.7032 
-0.4971 
0.0166 

-0.0001 

86.619 
0.0039 
0.0544 

-0.0361 
-0.0074 

-0.6155 
0.2868 

-0.0546 
-0.0454 
0.4292 

-0.0229 
-0.5873 
0.0000 

93.897 
-0.0003 

-0.5583 
-0.2214 
-0.0415 
0.5133 
0.2781 
0.2275 

-0.0472 
-0.0387 
0.0575 

-0.4878 
0.0003 

A stepwise regression of the variables derived from the five PCs for survey 9703 
results in the following model that relates elephant abundance (F) to the PCs: 

Y = 4.755 + 0.016PC, + 0.053PC2 - 0.032PC4 - 0.064PC5. (3.8) 

This model is made up of PCs that are dominated by the variable Distreserve (PCb PC2, 
and PC5). The last two PCs (PC4, and PC5) are both influenced by Avferti, implying a 
possible effect of soil fertility on elephant abundance. The variables tall grassland, shrubby 
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grassland and agricultural or fallow land influence elephant abundance through PC4, PC2, 
and PC] in the model, respectively. 

3.5. Discussion 
From results of the log-linear modelling, the distance to MMNR turns out to be a 

strong variable in explaining elephant abundance. Its large, but negative contribution to PC] 
in the PCA reinforces the negative relation of elephant abundance to distance from MMNR. 
This relation is confirmed by PCi being significant in a stepwise modelling of abundance to 
derived variables (Table 3.5). A possible explanation of this relation lies in the fact that the 
three permanent rivers in the Mara ecosystem i.e. Mara, Talek and Sand rivers, all drain 
MMNR. Since elephant are water dependent, their distribution will be limited to areas close 
to permanent water sources like MMNR. 

Said (1993) and Rosero (1997) observed a similar inverse relation between 
elephant abundance and the distance to MMNR. Rosero (1997) further reported the African 
elephant to be intermediate bulk feeders that are not very selective. They prefer grass to 
browse and are generally found in areas with high precipitation. This may explain why in 
all models, the elephant were predominantly observed on the western part of Mara. This is a 
region of flat plains with open and woody grasslands, which provide suitable habitat for the 
elephant. 

The fluctuation of elephant abundance in Mara over the nine successive surveys 
may be related to poaching. In the 1980's severe poaching in Serengeti caused the elephant 
to migrate to Mara and seek refuge in the protected MMNR, thereby limiting their ranging 
patterns (Dublin and Douglas-Hamilton, 1987). This is supported by the consistent 
significance of Distreserve in the elephant abundance models. 

Although conservation status is a significant variable in several models of GLM, 
its effect is suspect as its coefficient keeps changing signs from model to model. The fact 
that it fails to contribute significantly to any of the PCs in the PCA also supports this lack 
of significance. We, therefore, can not establish a significant effect of conservation status 
on elephant abundance in this study. This is surprising because this variable is highly 
correlated with the distance to MMNR, a protected area where many elephant are found. 
On the other hand, Mara is composed of a gazetted wildlife protected area (MMNR) plus 
adjacent group ranches that act as wildlife dispersal areas. The size of MMNR has, 
however, changed several times over the last 20 years with more land being de-gazetted to 
pave way for agricultural expansion and human settlements (GOK, 1984). This has reduced 
the elephant habitat and may explain why agricultural or fallow land is significant in 
several models, as well as contributing the largest negative loading to PC] in the PCA. 

We do not observe a significant effect of the distance to road on elephant 
abundance in the PCA mainly because of the difficulty in detecting an effect at the coarse 
resolution of data collection (2.5 x 5 km). Similarly, although soil fertility in Mara ranges 
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from high to very low (Broten and Said, 1995), it has an insignificant effect on elephant 
abundance in this study. Its alternating signs in the log-linear models and its large loadings 
in the PC A only contribute to the less important fourth and fifth PCs. 

The four animal species in this study have diverse ecological characteristics and 
social behaviour. The wildebeest and zebra are largely found in herds, elephant are solitary 
but also aggregate into medium herds, while the kongoni are mainly solitary. Further, the 
wildebeest and zebra are migratory, coming to Mara at the end of the rainy season. This 
study shows the two migratory species to have overlapping niches. Their dietary 
requirements, however, indicate differing trophic preferences, which results in their 
sequential arrival into Mara (Delany, 1982). The zebra, preferring tall and less nutritious 
grass, move in first, and their trampling and removal make grass suitable for consumption 
by the wildebeest, which prefer short grasses with a large proportion of leaf and a small 
amount of stem (Murray, 1995). This intensive grazing stimulates growth of new plants, 
which are preferred by the last of the migrating ungulates, i.e. the Thomson gazelle 
(Gazella thomsoni). The dietary requirements of wildebeest and zebra also lead them to 
congregate into large herds as observed in this study. 

The vegetation in MMNR mainly consists of tall grasses like Themeda triandra, 
setaria sphacelata and pennisetum mezianum (Sinclair, 1975), which do not contain the 
high protein and soluble carbohydrates preferred by wildebeest. This may explain why this 
species migrates to the Siana and Loita plains, where forage has richer nutrient composition 
compared to MMNR. The apparent repulsion in habitat occupation between the resident 
kongoni and migratory species may be due to interspecies competition (Sinclair, 1995). 
However, further research is needed to confirm this hypothesis. 

3.6. Concluding remarks 
In this study, application of GIS allows the storage and analysis of wildlife data for 

both single species as well as for interaction between several species. The usefulness of GIS 
is highlighted by the ease with which we relate environmental data to both spatial and 
temporal changes in abundance. Therefore, GIS offers a useful framework for making 
precise statements about factors influencing wildlife variability. 

Currently, a deficiency of standard GIS packages is the lack of elegant and 
systematic methods to simultaneously analyse spatial and temporal changes for wildlife 
data, the reason being that most GIS software can only describe and display geographic 
data, while lacking the ability to develop new hypotheses. Combining GIS and GLM 
provides an opportunity to model the effects of environmental factors on a quantitative 
response variable like animal counts, although not as a single step procedure. This lead to a 
better understanding of spatial and temporal relationships in wildlife data as illustrated in 
this paper. This study also demonstrates how taking advantage of spatial statistical 
routines, especially in a GIS environment, can extend standard statistical procedures. 
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An issue of continuing debate is the quality of data. In general, a lot of data exists 
on different aspects of wildlife dynamics, and if the scale at which it has been collected is 
fine enough, then conversion of different layers to a suitable resolution is not a major 
problem. For purposes of monitoring abundance and distribution of wildlife, these data can 
be considered to be sufficiently reliable as long as the method of collection is standardised 
over successive surveys. Any bias and/or imprecision is assumed to remain constant, 
thereby allowing inferences to be made on trends in abundance. 

The data from DRSRS used in this study are fairly reliable, having been obtained 
through a consistent survey procedure. However, carrying out a more rigorous spatial 
analysis turns out to be far from easy. In particular, calculation of the variogram was 
unsatisfactory due to the structuring of data within transects. That is why we propose a 
measure that allows modelling of spatial dependence in a simple and straightforward way 
for wildlife data collected via transects. This is essential because once spatial distribution 
has been modelled, abundance and distribution can efficiently be monitored over time. 
Moreover, prediction of future changes becomes relevant when aspects of management are 
considered. For instance, the procedures we propose in this study may indicate at an early 
stage, where and when specific interventions have to be taken in terms of preserving 
available water and nutrient resources, or when faced with other threats like human 
encroachment. 

Sampling is one of the main causes of poor abundance estimates (Caughley, 1974; 
Thompson, 1992). Recent developments in sampling techniques such as distance sampling 
(Buckland et al., 1990) and adaptive sampling (Thomson and Seber, 1996) have been used 
to yield substantial improvements in estimation. With these techniques, using correct 
models of distribution may further help to improve sampling. For example, this study 
suggests that sampling efforts may be concentrated in sub-areas close to MMNR, where 
elephant are more likely to be found. More research is still being carried out to improve the 
sampling of dynamic populations. 

This paper demonstrates how deductive-analytical spatial modelling in GIS can be 
used to identify environmental preferences for different animal species. The procedures 
outlined here are applicable in any situation where wildlife surveys are carried out and 
indeed for any large herbivore. Although a method-sensitivity was not carried out, the 
results obtained appear consistent with what is known about the species studied. The gist of 
this paper is in highlighting how combining statistical techniques with GIS provides a 
unified way of modelling animal distribution and abundance while quantifying the 
associated uncertainty in data from wildlife resorts. 
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Abstract 
This study illustrates the use of modern statistical procedures for better wildlife 
management by addressing three key issues: determination of abundance, modelling of 
animal distributions and variability of diversity in space and time. Prior information is used 
in Markov Chain Monte Carlo (MCMC) methods to improve estimates of abundance. 
Measures of autocorrelation are included when modelling distributions of animal counts, 
and a diversity index to indicate species abundance and richness for large herbivores is 
developed. Data from the Masai Mara ecosystem are used to develop and demonstrate these 
procedures. The new abundance estimates are up to 35% more accurate than those obtained 
by existing methods. Significant temporal changes in spatial patterns are found from a 
space-time analysis of elephant counts over a 20-year period, with strong interactions over 
5 km and 6 months space and time separations, respectively. The new diversity index is 
sensitive to both high abundance and species richness and is also able to capture year to 
year variation. It indicates an overall marginal decrease in diversity for large herbivores in 
Mara. The space-time analyses and diversity index can easily be computed thereby 
providing tools for rapid decision making. 

KEYWORDS: Abundance estimation, distribution modelling, diversity measurement, Masai 
Mara ecosystem, MCMC methods, Space-time analysis. 
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4.1. Introduction 
Correct and up-to-date information on wildlife provide necessary input in any 

decision support system for effective wildlife management. Such information may include 
species abundance, functional relationships between species distribution and environmental 
factors, or changes in biodiversity. It should be derived from data obtained by wildlife 
surveys conducted with optimal sampling techniques (Khaemba and Stein, in press). 
Moreover, influence of environmental factors on spatial and temporal distribution as well 
as abundance of wildlife population dynamics is as yet only partly understood for the Masai 
Mara Ecosystem (Mara) in Kenya. 

Currently, wildlife abundance in East Africa is determined by using the Jolly II 
method (Jolly, 1969a), which interpolates sample characteristics like species density from 
data collected through systematic sampling along strip transects to larger management 
regions (Norton-Griffiths, 1978; Grunblatt, et al., 1995). Spatial dependence within 
wildlife populations is ignored and abundance estimates often have wide confidence limits. 
Moreover, these methods do not take prior information into account although this has been 
known to improve sampling and interpolation (Stein, 1994), as well as abundance 
estimation in capture-recapture studies (Brooks, 1998). On the other hand, Markov Chain 
Monte Carlo (MCMC) methods have proved to be useful in medical studies (Spiegelhalter, 
et al., 1996; Berzuini, 1996) and image analyses (Green, 1996), but have found little 
application in the analysis of strip transect data, particularly from wildlife surveys. 
For well-defined sampling units, data on wildlife and factors influencing their distribution 
can be collected easily and stored in geographic information systems (GIS). Such data can 
be subjected to spatial statistics to allow the interpolation and quantification of associated 
uncertainty (Cressie, 1993). In the recent past, several studies have investigated wildlife 
population dynamics using GIS (Walker, 1990; Pereira and Itami, 1991; Augustin, et al., 
1996; Li, et al., 1997). Most of these studies, however, have only related environmental 
factors to presence and absence of wildlife without modelling the actual observed counts. 

Conservation of wildlife diversity within an ecosystem requires an accurate 
determination of animal abundance as well as modelling changes in biodiversity over time. 
Diversity indices have been developed to capture a multidimensional concept in a single 
number, which is then used to give insight in both species abundance and richness for the 
wildlife in an ecosystem (Patil and Taillie, 1979; Magurran, 1988). Available indices, 
however, have been developed to be sensitive only to dominant or abundant species, and 
therefore, can not be used for large herbivores like the ones found in Mara, particularly 
under the framework of aerial surveys. 

Therefore, objectives of this study are threefold: 

• To investigate how prior information can improve estimates of wildlife population 
parameters. 

• To use spatial statistics in a GIS context to model abundance and distribution and 
monitor distributional changes over time. 
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• On the basis of the two previous objectives, to develop a diversity index for large 
herbivore species. 
We focus on four herbivore species: the elephant (Loxodonta africana), kongoni 

(Alcelaphus buselaphus), wildebeest (Connochaetes taurimus) and zebra {Equus burchelli). 
These have been chosen because of differences in abundance and observability as well as 
their social and migratory characteristics. Moreover, the wildebeest is considered a 
keystone species because its migratory characteristics influence many other components of 
the ecosystem, and its loss would cause a more than average change in other species 
population and dynamics (Sinclair, 1995b). 

4.2. Materials and methods 
4.2.1. Data 

Data for this study come from multi-species surveys conducted in Mara over a 20-
year period (1977-1997). During the surveys, high-winged Partenavia aircraft equipped 
with global navigation and positioning systems (GNS and GPS, respectively) are flown 
along systematic transects determined beforehand. Flying height varies between 70 m and 
152 m, with 122 m being standard, and a speed of 190 km/h is maintained. Two rear seat 
observers count the number of animals falling within strips defined on either side of the 
aircraft. Common strip widths l;e between 224 m and 304 m, and each strip is divided into 
equal subunits of 5 km in length to give distributional data. Ratio estimators are used to 
estimate animal abundance. 

Let us partition a study region of size A and containing S animal species into N 
exhaustive and non-overlapping strips. Consider xtj animals of species j occurring in the rth 
strip having an area of size a,, i = 1, 2, ..., N , j = 1, 2, ..., S. We observe a sample of n 
strips in which y,-,- animals of the JC,,- are counted The problem is to estimate the total number 
of animals of species j (tj) in the population based on sample observations. 

Define a ratio Rj as: 

" ' <4.D 
Af A 

'N 

where [ij and fiA are population means for true animal numbers of species j and areas of all 

strips, respectively. This leads to the relationship: 

HJ=RJI*A, (4-2) 

where / i , fiA and Rj are population parameters. The term Rj is estimated from sample 

values by: 
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n 

R,=—— = — , (4.3) 
v i a 
i=\ 

where y. and a are sample means for counts of animals from species j and areas of n 

observed strips, respectively. We use MCMC modelling to determine Rj. 

4.2.2. MCMC modelling 

MCMC methods are derived from Monte Carlo integration using Markov chains. 
They allow integration over high-dimensional probability distributions like the posterior 
distributions found in Bayesian analyses (Gelman, et al., 1996; Gilks, et al., 1996). 
Through algorithms like the Metropolis-Hastings or Gibbs Sampler, MCMC methods allow 
direct determination of population quantities like means or totals and corresponding 
standard errors from sample values (Geman and Geman, 1984; Gilks, et al., 1996; Brooks, 
1998). Moreover, 100(1-2^) credible intervals [cq, c\.q] are estimated for these parameters 
by setting cq and c\.q equal to the g* and (l-q)"" quantiles of the ordered statistic, 
respectively (Gilks, et al. 1996). 

In this study, we let Yj denote counts of animal of the yth species with y{j observed 
in the j'th strip. We make the following structural assumptions: 

• ytj are independent conditional on the expectation Hj and a sampling error parameter 

a2j. In particular, y$ is distributed as negative binomial with parameters ps and kj, 

which represent the probability of observing an animal and the number of successes, 

respectively. Both pj and kj are species dependent. 

• Hj is a deterministic function depending only on the expectation [iA of strip areas of 

size a, and a parameter Rj representing the population density for the 7th species. 

• Parameters Rj are drawn independently from a distribution parameterised by 

parameters nR and O2R1 , which are referred to as hyperparameters. In particular Rj ~ 

N(nR., a2
Rj). 

We require prior distributions for pj, kj, /nR and CT2R. to complete specification of the 

full probability model for each animal species. For these, we adopt priors that lead to 
standard forms of the conditional distributions, thereby allowing the use of Gibbs sampling. 

It is common to write sampling error parameters like G1RI in terms of precision, defined as 

the reciprocal of the variance (<7~\ ). With Rj thus obtained, an estimate of tj follows for 

various species through the relation £, = RjA. We use data obtained from survey 9604 for 

modelling abundance and its precision for the four animal species. We also obtain 95% 
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credible intervals by setting the lower and upper limits to the 2.5% and 97.5% quantiles, 
respectively. 

4.2.3. Space - Time modelling 

4.2.3.1. Analysis 

In this section, animal occurrence at different locations are considered as events in 
a space-time setting, where co-ordinates of subunits and a simple date provide spatial and 
temporal attributes. Proximity between events is judged by inter-event differences. For this 
analysis, we focus on elephant, which is both solitary and gregarious. We start by testing 
the null hypothesis H0 that an equal proportion of events occurs in space at each survey. 
Data from all the surveys in Mara are arranged in a two-way table where columns represent 
repeated observations over time while rows represent locations. We only consider subunits 
having one elephant or more for the analysis. 

Let E denote an event. Define 5 5 c = ^ ( ^ E)2 as the sum of squared column 

totals, SSR=^ ( ^ E)2 as the sum of squared row totals and GT=^ ^ £ a s the grand 

total of the table frequencies). The subscript on the summation indicates a sum over that 
particular term, and c and r correspond to the number of surveys and subunits where at least 
one elephant was observed, respectively. We define the Q-statistic as: 

_ ( c - l ) [ c X r ( E r £ ) 2 - ( E X £ > 2 ] = (c-l)[cSSc -GT] 

cX rX r
£-E r(£ r£)2 cGT-SSR ' 

which follows a jf distribution with c-1 degrees of freedom when H0 is true (Sokal and 
Rohlf, 1995, p.783). We compute pairwise differences and use Q to test for space-time 
independence between events. We use the Euclidean distance duv between events at 
locations lv and /„ in space and define a (decreasing) time function Tst between events at 
times ts and t, as: 

T»=—r—!• (4-5) 

e + \t,-ts\ 

where e (>0) is a small term added to avoid division by zero. 
To classify events as close or distant in both space and time, we compare several 

threshold values D and T and use them to crosstabulate duv and Ts, values into 2 x 2 tables. 
This allows use of standard contingency table analysis techniques. We test the null 
hypothesis H0 of no significant patterns in space over time in the tables. This is equivalent 
to testing for independence between space and time. 

From examination of the data, it is observed that events are likely to be correlated 
because some observations are made repeatedly at the same location over time. This is 
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taken into account by using the McNemar's test (Agresti, 1990) to test for H0- If we assume 
a bu, b12, b2h and b22 configuration for the tables, with the main diagonal (bu and b22) 

representing close and distant events in time and space, respectively, a test statistic can be 
defined by: 

^ = % ^ . (4.6) 

This follows a tf distribution with one degree of freedom under H0. 

4.2.3.2. Modelling with GIS 
For GIS modelling, data are initially summarised to assess distribution variability 

and detect extreme values in an exploratory data analysis (EDA) (Tukey, 1977). A spatial 
EDA uses point maps of observed animal counts per subunit to investigate their spatial 
distribution. Further spatial exploration concerns the study of spatial variability using 
autocorrelation to model influences of neighbouring units. These methods serve to identify 
patterns in species distribution and to establish the validity of assumptions prior to 
modelling. 

Spatial general linear modelling is applied to relate animal counts as a response 
variable to a set of environmental conditions. The Poisson distribution is used in log-linear 
modelling, after correcting for overdispersion. Consider the mixed regressive-spatial-
autoregressive specification defined by Anselin (1993) as: 

y = X0 + pWy + e. (4.7) 

Here, y is a vector of counts, Wy transforms y through a square matrix W of spatial lags and 

p is a spatial autoregressive coefficient measuring spatial autocorrelation. The matrix X 

contains observations on k exploratory variables, @ is a vector of regression coefficients and 

e is a vector of error terms. 

Neighbourhood memberships for each observation pair (yh y/, i,j= 1, 2, ..., n) is 

expressed by the matrix W such that for a binary form of W, the element Wy takes the value 

1 when observations i and j are neighbours and zero otherwise. For other non-binary forms 

of W more complex forms apply. Including Wy in the model allows assessment of the 

degree of spatial dependence while controlling for effects of other explanatory variables. A 

model containing only y and Wy results in a purely auto-regressive model, useful for 

estimating p. 

Ordinary least squares (OLS) is the most common parameter estimation method in 

regression analyses, yielding optimal estimates if appropriate assumptions are satisfied. In 

this model, however, Wy is correlated with e, leading to inferior estimation by OLS. We 

therefore use generalised least squares (GLS) under assumption of the normal distribution 

after estimating the correlation between Wy and e through residual analysis. 
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4.2.4. Diversity measurement 

Most diversity indices characterise biodiversity within an ecosystem by a single 
digit. Diversity, however, consists of two components: species richness and evenness, 
which measure the variety and relative abundance of species, respectively. Therefore, 
differences between diversity indices lie in the relative weighting given to these two 
components. 

In this study, we consider Shanon's index H' defined as H = -X/?, In Pj and 
s v . (y • — 1) " 

Simpson DSim defined as DSim - X " — ~ • The quantity 5" y,-,- = y .is the number of 
;=i y..(y..-V ,-=i 

S n 

individuals of the j'th species, ^ X ^v = v ' s t n e t o t a ' n u mber of individuals for all 
j= i >=i 

y . 
species, p, = —*-, the proportion of the jth species in the ecosystem and In denotes the 

y.. 
natural logarithm. Both indices are based on proportional species abundance. For further 

max(y ,) 
comparison, we also consider the Berger-Parker index (B-P), which is defined as 

y 

and is based on absolute abundance. It has a simple formulation but is rarely used 
(Magurran, 1988). 

Indices H' and DSim form a basis for formulating a new diversity index K, useful 
when the only available wildlife data come from aerial surveys. By assuming that all 
individuals in a community are sampled randomly from an infinitely large population, from 
which all species are sampled, we can apply the intraspecific encounter theory and define a 
dichotomous type diversity index (Patil and Taillie, 1979) as: 

K = j\yjiyi+1) . (4.8) 

A single species community (5=1) leads to K = 1 and as S increases, K decreases implying 
an increase in diversity with decreasing values of K. This suggests using its reciprocal as a 
more suitable diversity measure. The evenness KE of K is calculated as: 

f S\ 
KE = In — . (4.9) 

(K) 

Performance of the four indices on the present data is compared through descriptive 

statistics and a trend analysis. 
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4.3. Results and discussion 
4.3.1. Survey data 

Data for various analyses in this study come from 21 surveys conducted in Mara 
between 1977 and 1997. Such surveys are typically multi-species in nature. An example is 
survey 9604, 96 being the year of survey and the identification (ID) number 04 indicating 
this to be the fourth survey of that year. This survey was carried out in the month of August 
and 55 transects were flown at a strip width of 282 m leading to a sampling fraction of 
11.38%. Wildebeest and zebra were observed in 74.5% and 80% of the subunits, 
respectively, whereas elephant and kongoni were observed only in 21.8% and 45.5% of the 
subunits, respectively. Distribution maps of these species (Figure 4.1) confirm the high 
abundance of wildebeest and zebra. The elephant appears to prefer the Masai Mara 
National Reserve (MMNR), while kongoni were mainly observed in the middle section of 
the study region. High inter-strip variability is observed for wildebeest and zebra, with a 
range in counts of 2,105 and 852 animals for the two species, respectively. 

4.3.2. MCMC modelling 
MCMC modelling is carried out using the BUGS software, (Spielgelhalter, et al., 

1996). For animals of species,/, the following non-informative priors for hyperparameters 

Pj, kj, fij and CT~2R. are chosen from proper probability distributions with small precision in 

order to have minimal effect on the analysis (Gelman, et al., 1995). The symbol ~ means 
'distributed as' leading to the following. 

• pj ~ beta(l, 1), denoting a beta distribution with shape 1 and shape 2 parameters both 

equal to 1, 

• kj ~ unif(l, 1,000), denoting a uniform distribution with 1 and 1,000 as minimum and 

maximum values, 

• jiij ~ N(0, 106), denoting a normal distribution with mean 0 and variance 106, 

• a 2Rt ~ Ga(0.001, 1,000), denoting a gamma distribution with shape parameter 0.001 

and scale parameter 1,000. 

We use the Gibbs sampler to sample iteratively from conditional distributions starting with 
1,000 iterations and followed by another 10,000 iterations. 
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Elephant 

Figure 4.1- Point maps showing the distribution of elephant, kongoni, zebra and wildebeest as 

observed in Mara during survey 9604. 

Population parameters for the four animal species (5 = 4) are calculated using 
average values from these iterations. Population total estimates by MCMC modelling do 
not appear to differ much from those obtained by the conventional Jolly II method (Table 
4.1). The standard errors (se) estimated by MCMC are, however, much lower. For example, 
the MCMC elephant total estimate of 1,633 with se equal to 360, is 1.5 times more accurate 
than the estimate of 1,626 with se equal to 545 obtained by the Jolly II method. Further, the 
accompanying 95% credible intervals [1062, 2253] obtained by MCMC for the elephant are 
much narrower than the corresponding 95% confidence intervals [558, 2695] given by the 
Jolly II method (Table 4.1). 

This increase in accuracy is attributable to the use of prior information in 
estimation, something that the Jolly II method does not do. Indeed the main criticism of the 
Jolly II method lies in its large standard errors, which are a direct consequence of 
differences in the size of sampling units and observed counts, especially for gregarious 
species like wildebeest and zebra. These differences invalidate the assumption of a through-
the-origin regression and proportional variance, which are necessary assumptions for ratio 
estimators (Thompson, 1992). 
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Table 4.1. Descriptive statistics based on transect counts of the four animal species, results of 
MCMC modelling of the same data and corresponding results from the Jolly II method for 
comparison. 

STATISTIC Area size 

Minimum 0.71 

Median 1.41 

Mean 1.43 
Maximum 1.83 
Standard deviation 0.1 

Autocorrelation (p) 

Elephant 
0 

0 

0.35 

45 
2.64 

0.461 

VARIABLE 

Kongoni 

0 
0 

0.45 
20 
2.21 
0.194 

Wildebeest 
0 

0 

65.3 

2,105 
221.82 

0.013 

Zebra 

0 

0 
14.69 
852 

50.59 
0.019 

MCMC MODELLING RESULTS 

Density estimate (Rj) 

Standard error (/?.) 

Estimate of population total ( f . ) 

Standard error of f. 

95% credible interval 

0.25 

0.05 

1633 

360 

[1062, 
22531 

0.32 

0.07 

2128 

466 

[1384, 
29361 

46.02 

6.89 

306033 

45818 

[259842, 
3530421 

13.07 

2.62 

86915 

17396 

[73513, 
1002651 

JOLLY II METHOD RESULTS 

Estimate of population total (f •) 

Standard error of f . ) 

95% Confidence interval 

1626 

545 

[558, 
2695] 

2065 

487 

[1110, 
3019] 

299357 

52541 

[196357, 
402338] 

87067 

18746 

[50325, 
123809] 

4.3.3. Space-time modelling 

4.3.3.1. Analysis 

Large and irregular variations are observed among the 21 surveys in Mara. The 
null hypothesis of an equal proportion of events per location over surveys is tested first. In 
total, at least one elephant was observed in 237 subunits from 21 surveys (time) and 121 
locations (space). When arranged in a two-way table, the number of events per location 
ranges from 1 to 7, while the number of locations with an event ranges from 3 to 35. 
Column totals indicate a tendency for the number of events to increase with time (4 in 1977 
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and 20 in 1997). Sums of squares for rows SSR and columns SSC equal 651 and 3,927, 
respectively, while the grand total GT equals 237. These yield a Q value equal to 121.58, 
which at 20 degrees of freedoms, is highly significant (p < 0.001). This leads to rejection of 
the null hypothesis and we conclude that the proportion of events increases over time. 

To compute Wtj for each time difference, we set the term e equal to 2/30 = 0.1, 
based on duration of the shortest survey (converted to months). Several threshold values of 
Tare used: from 120 months, i.e. half the time between 1977 and 1997 (7= 1/ (0.1+120)= 
0.008), through 60, 36, 12 months to 6 months {T= 1/ (0.1+6)= 0.2). By considering half 
the range of the study region, D was similarly determined at values of 50 km, 25 km, 15 
km, 10 km and 5 km. The 27,966 possible pairs resulting from the 237 events were 
classified using these different D and T values. 

For D = 50 km and T = 120 months (Table 4.2), the sample odds ratio (OR) equals 
1.11, indicating little association between space and time (p = 0.08). Sample proportions 
Pi+ and p+1, which indicate closeness in space and time, equal 0.836 and 0.849 for 
contemporaneous and close events in space, respectively. Similarity of these two values 
support the weak association indicated by the sample OR. McNemar's zo statistic equals 
0.83, and with one df gives a p-value of 0.362, suggesting independence between space and 
time. However, for T = 6 months and D = 5 km, OR reduces to 0.69 while z0 increases to 
1,410 (p < 0.001), leading to rejection of the null hypothesis, a result in agreement with that 
found by the Q-statistic. We, therefore, conclude that space-time interaction occur for short 
time (< 6 months) and distance separations (< 5 Km), but reduces with increasing 
separation in space and time. 

4.3.3.2. Modelling with GIS 

Descriptive statistics show heavily skewed distributions for each species (Table 
4.1). In all cases, the standard deviation is much larger than the mean, pointing to 
overdispersion and invalidating the use of a Poisson distribution to model these counts. 
Low pairwise correlation for the observed animal counts (from -0.14 to 0.19) indicate that 
the four species analysed do not encourage or constrain the presence of one another. This 
lack of a strong linear relationship is illustrated in the scatter plot matrix (Figure 4.2), 
which shows animal distributions influenced by a high occurrence of zero counts. A 
referee pointed out however, that no interaction is expected at the given scale of 
observation except for highly abundant species like the zebra. Corresponding box-plots and 
stem-and-leaf plots (not shown) reveal extreme values for wildebeest and zebra but not for 
elephant and kongoni. 

Spatial autocorrelation is estimated using the pure auto-regressive model. This 
yields positive values of p indicating positive spatial autocorrelation for all four species 
(Table 4.1). Low values of p for both wildebeest and zebra emerge from their wide 
distribution (Figure 4.1). Units with high counts often surrounded units having low counts, 
thereby decreasing spatial dependence for these species. 
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Next, twelve explanatory variables (Table 3.1) are used together with the spatially-
lagged Wy variable, to determine the best model for animal counts of the four species in a 
stepwise regression procedure (Table 4.4). In all models, a positive coefficient p is 
obtained, supporting the hypothesis of spatial dependence. The coefficient does not change 
much, even in the presence of information from explanatory variables, indicating a stable 
fit. Further, most other explanatory variables become insignificant after including the 
spatial variable in the analysis, confirming the dominance of spatial autocorrelation in 
explaining the distribution of these four animal species. 

Table 4.2. Classification of the 237 events observed in Mara through all possible pairs (27,966) into 
a 2x2 table using two threshold values, D - 50 km and T = 120 months. The term duv denotes a 
Euclidean measure between events at locations /„ and l„ while Tsl denotes a time function between 
events taking place at time ts and /,. 

TSI>T 
(Contemporaneous) 

TS,<T 

(Time gap) 

Column totals 

SPACE 

dm<D 

(Close together) 

19,687 

3,783 

23,470 

dm> D 
(Far apart) 

3,704 

792 

4,496 

Row totals 

23,391 

4,575 

27,966 
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Figure 4.2. Matrix of scatter plots showing lack of linear relationships between counts of the four 
animal species and sizes of observed areas. 

4.3.4. Diversity measurement 

The four diversity indices described in section 4.2.4 are computed by considering 
all herbivore species surveyed in Mara since 1977. During these surveys, the number of 
observed species ranged from least abundant (1) to highly abundant (33,058). For 
illustration, we only report indices of six surveys (Table 4.4). We start by comparing the 
indices in an exploratory analysis. Summary statistics show little variation, suggesting a 
stable level of diversity of large herbivores in Mara during the last 20 twenty years (Table 
4.5). Broten and Said (1995) obtained similar results when studying the population of 
ungulates in the same region. 
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Table 4.3. Significant coefficients, at 5% level, for explanatory variables of auto-regressive models 

for elephant, kongoni, wildebeest and zebra. 

Variable 

Mean 

Spatial variable (Wy) 

Average Soil fertility 

Distance to river 

Distance to road 

Conservation status 

NDVI 

Elephant 

0.982 

0.771 

-0.089 

SPECIES 

Kongoni 

-1.923 

0.940 

-0.078 

0.317 

Wildebeest 

3.062 

0.275 

-0.349 

-2.412 

Zebra 

2.881 

0.039 

-0.518 

Table 4.4. Four diversity indices calculated for six surveys conducted in Mara between 1977 and 

1997. H' denotes Shanon's index, Ds,,„ represents Simpson's index, B-P stands for the Berger-Parker 

index while K is the new index developed in this study. 

SURVEY YEAR AND ID 

7701 7706 8015 

Number of species (S) 21 22 20 

Number of individuals (y..) 14,617 29,052 53,545 

8706 9003 9703 

20 20 20 

28,298 45,210 31,368 

DIVERSITY INDICES 

H' 

DSim 

B-P 

K 

0.69 

5.81 

3.11 

4.80 

0.66 

5.71 

3.33 

4.83 

0.47 

2.44 

1.62 

3.89 

0.71 

6.56 

3.82 

4.88 

0.55 

3.58 

2.15 

4.27 

0.62 

4.86 

3.21 

4.58 
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Pairwise correlation between indices show a high linear relation between the new 
K index and the two most common indices H' and DSim (r = 0.96 and r = 0.98, respectively), 
indicating that K contains joint qualities of the other two. Correlation with B-P is also high 
(r = 0.92). Index K shows no relationship with the number of species S, but similar to other 
indices, has a negative linear relation with the total number of individuals. A possible 
ecological interpretation of this observation is that larger communities are likely to be more 
diverse than small ones. 

The number of observed species appears to remain steady, although abundance 
fluctuates over time. When plotted against time, values of all indices fluctuate around a 
slight downward linear trend (4.3). These results are consistent because species count 
represents one way of measuring diversity. 

4.4. Concluding remarks 
This study shows how use of prior information in MCMC modelling can improve 

accuracy of estimates of population totals obtained from aerial wildlife surveys. By relating 
animal counts to strip areas in a generalised linear model, density parameters are well 
estimated, leading to a gain in precision of up to 35 %. 

Spatial statistics and GIS are useful to detect relations between the many variables 
measured during wildlife surveys. In this study we observe how spatial autocorrelation of 
four animal species in Mara increases for data close together in both time and space. The 
diversity index developed here shows year to year variation in diversity for large herbivore 
species, while capturing a marginal long-term decline. This result is consistent with the 
findings of De Leeuw et al (1998), who observed a downward trend in both livestock and 
wildlife from 19 Kenyan districts over a 20-year period (1977-1997). 

Data used in this study are not corrected for bias because of the tendency of bias 
correction methods to be highly site and survey specific, thereby lacking generalisation. To 
minimise bias, however, many survey agencies incorporate correction procedures in the 
sampling strategy like the use of aerial photography for animals found in herds of more 
than 10 (Grunblatt et al, 1995; Wint, 1998). Moreover, most aerial surveys are used for 
long term monitoring of wildlife, and thus emphasise consistency in the survey methods. 
All the same, De Leeuw et al. (1998) found the DRSRS data to be of good quality in their 
study on the reliability and consistency of the data. 

For a manager of a wildlife reserve, this study provides techniques that can be 
used to answer three relevant basic questions: 

How many animals are in my reserve? 

Where are they? 

Are the numbers changing with time? 
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Any efforts at management and conservation must address these questions. The 
space-time analysis and diversity measure developed in this study can easily be computed 
without need for specialised hardware and software, thereby providing tools for rapid 
decision making for such managers. 

In future, estimation can be improved further by including other auxiliary 
information e.g. from data on other explanatory variables. Similarly, use of other 
algorithms apart from the Gibbs sampler should be investigated in future research of 
MCMC methods for wildlife surveys data. 

Table 4.5. Summary statistics and pairwise correlation calculated from diversity indices defined in 
table 4.4. The statistics are based on computation of these indices for 21 surveys conducted in Mara 
from 1977 to 1997. S and N denote the number of species and individuals, respectively. 

STATISTIC 

Minimum 

Mean 

Maximum 

Std. Dev. 

S 

19 

20.77 

24 

1.01 

N 

14,617 

33,080.73 

64,053 

11,015.02 

DIVERSITY INDEX 

H' 

0.41 

0.64 

0.74 

0.08 

Dsim 

2.13 

5.33 

7.29 

1.37 

B-P 

1.49 

3.25 

5.14 

0.87 

K 

3.89 

4.66 

5.06 

0.31 

PAIRWISE CORRELATION 

S 

N 

H' 

Dsim 

B-P 

K 

1 0.17 

1 

-0.13 

-0.81 

1 

-0.01 

-0.74 

0.97 

1 

0.02 

-0.65 

0.87 

0.94 

1 

0.09 

-0.77 

0.96 

0.98 

0.92 

1 

65 



.Modelling wildlife abundance using spatial statistics. 

• ^w»»* 

A 

Shanon 
Simpson 
Berger-I'arker 
New index (K) 

A* 

•v.. 

I 7706 7801 8015 8201 820B 8207 8 6301 8307 8311 B315 8401 8408 6505 8S12 8607 8608 861S 8706 8902 9 

Survey year and ID 
3102 9103 9202 9204 9306 9402 960' 

Figure 4.3. Chart showing calculated values of the four diversity indices given in table 4.4 for data 

obtained from the 21 surveys conducted in Mara between 1977 and 1997. ID denotes the position 

among the surveys carried out that year. The chart is used to analyse trend in diversity for large 

herbivore species in this ecosystem. 
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Abstract 
Most wildlife populations exhibit clustering in their distributions. Assessment of clustering 
is important in identifying individual wildlife species by analysing their trophic 
requirements, which are related to the species spatial distribution. This assessment is, 
however, made difficult by the type of data obtained from aerial surveys. The shape and 
size of strip transects results in poor data support. GPS technology offers opportunities to 
record exact locations of observed animal groups and thereby obtain data that is amenable 
to spatial analysis. We use spatial point pattern to analyse such detailed data and explain 
observed patterns using environmental factors like vegetation type. This provides both an 
explanation of the distribution of animal species and differentiation between various 
species. Nearest neighbour distance measures like the G-statistic and AT-function classify 
observed spatial patterns as clustered, regular or completely random. Independence 
between species is tested using a multivariate extension of the AT-function. The techniques 
are illustrated with field data on six ungulates observed in an ecosystem in Kenya. Results 
indicate that spatial distribution is related to species dietary requirements. We conclude that 
spatial point pattern analysis is useful in determining and confirming species spatial 
distribution patterns. 

KEYWORDS: Complete spatial randomness, A"-function, Nearest neighbour distances, 
Spatial points pattern. 
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5.1. Introduction 
Aerial surveys of wildlife in African nature reserves distinguish between total 

counts (TCs) and sample counts (SCs) depending on whether the whole or part of a study 
region is surveyed, respectively. These surveys are routinely used to collect data on wildlife 
dynamics (Caughley, 1977; Norton-Griffiths, 1978; Krebs, 1989). Analysis of data mainly 
concentrates on changes in animal populations and the results are used to monitor trends in 
abundance and map species distribution, sometimes in relation to environmental factors like 
vegetation types (Grunblatt, etai, 1996). 

A complete spatial analysis of the data from aerial surveys of wildlife, however, is 
hampered by poor data support. The problem with the data lies in the size and shape of 
strip transects, which are common sampling units in aerial surveys (Khaemba and Stein, In 
press). Equally sized subunits, created by regular subdivisions along transects, are often 
large compared to the size of individual animals or groups, thereby creating weak relation 
between area and position. This makes it difficult to classify data from SCs of wildlife into 
any of the three common spatial data categories i.e. geostatistical, lattice or spatial point 
patterns. 

A possible solution is to collect data that are more suited to spatial analysis. 
Recent widespread use of global positioning systems (GPS) allows recording of 
observations of wildlife at individual geographic locations during aerial surveys (Wint, 
1998). These yield point data that can be used to model stochastic processes that generate 
observed spatial patterns. Such patterns represent locations where animals are observed and 
can be considered as spatial point patterns. When the numbers of animals are attached to 
each location, they become marked point patterns (Ripley, 1981; Diggle, 1983; Cressie, 
1993). Such data allow use of spatial point pattern analysis to classify observed point 
patterns, model spatial distribution and find explanations for it. 

Various hypotheses have been put forward to explain variations in animal 
abundance, grouping and distribution for different species. Some authors have related these 
differences to physiological process i.e. metabolic mass and feeding style, competition and 
facilitation (Prins and Olff, 1998). Jaman (1974) and Estes (1974) have hypothesised that 
African antelopes with large body size form larger groups than smaller ungulates, and that 
grazers live in larger gatherings than mixed feeders. Voeten (1999) indicates that 
abundance and distribution of animals may be related to its food requirements and the 
distribution of this food. 

Walker (1990), Buckland and Elston (1993), Augustin, Mugglestone and 
Buckland (1996) and Li, et al. (1997) have all reported carrying out some spatial analysis 
on wildlife data. A general overview on geostatistical tools useful in ecological modelling 
is found in Rossi (1992), while Steffens (1993) reports further applications of geostatistics 
on aerial wildlife data. None of these analyses, however, uses spatial point pattern analysis. 

In this study, we explore the use of spatial point pattern techniques in analysing 
wildlife data collected from a detailed aerial survey of the Laikipia district of Kenya. The 
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data were collected with the help of GPS technology and represent point measurements. We 
focus on six ungulates that are ecologically important for this ecosystem namely: Burchell's 
zebra {Equus burchelli), Grant's gazelle {Gazelle grand), Thomson's gazelle (Gazelle 
thomsoni), impala (Aepyceros melampus), kongoni (Alcelaphus buselaphus buselaphus 
cokii) and Grevy's zebra {Equus grevyi). These species can be grouped into grazers 
(Burchell's zebra, Thompson's gazelle, kongoni and Grevy's zebra) and mixed feeders 
(Grant's gazelle and impala) by their dietary requirements. Further, Burchell's zebra is the 
most abundant species, representing more than half the total population of large herbivores 
in this ecosystem (Georgiadis, 1997). We, therefore, compare its spatial point pattern to 
those of the other five species in an effort to find comparative differences or similarities 
that can be taken into considerations during multi-species surveys. Understanding the 
spatial distribution of these species will help develop better sampling designs for their 
survey. 

Further, we hypothesise that observed spatial patterns are related to both animal 
behaviour and environmental conditions. The main objective of this study is to provide 
methods and procedures to analyse point data from wildlife surveys. This is relevant 
because many wildlife species are often classified as having clustered distributions without 
any formal testing of their spatial point patterns. 

Although this study involves only a few wildlife species from a TC of a single 
ecosystem, the methods and procedures are applicable to wildlife species in other 
ecosystems where GPS has been used to record exact locations of observed species. 
Trophic differences allow generalisation of results albeit for grazers and mixed feeders. 

5.2. Materials 
Data in this study were collected from a three-day TC of Laikipia district carried 

out in September 1996. The study region was divided into 3 sections, each sub-divided into 
blocks of 200 to 500 km2 (Georgiadis, 1997). An aircraft systematically searched a block 
by flying at transects separated by a 1 km interval (Figure 5.1). Ten aircraft were used 
simultaneously to minimise survey time and reduce double counting caused by animal 
movements. Each aircraft carried a crew of pilot, front seat observer (FSO) and two rear 
seat observers (RSOs), and was assigned a fixed portion of the study region to survey per 
day. 

Whenever an animal (or group) was spotted, the aircraft deviated from its flight-
line and circled the observed animals until their exact number and geographical co
ordinates were counted and recorded by the RSOs. Co-ordinates were obtained using a 
Trimble GPS receiver. Flight paths, with all observation points for the entire study region, 
were mapped and corrected for count overlaps. This resulted in 2,381 data points over the 
whole study region, where at least one animal was observed (Figure 5.2). The observation 
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Legend 

A/Filghtlincs 
[ | Ranches 

S Study 
Unsufveyed parts of Laikipia district 

Figure 5.1. Map of the study region showing flight-lines and group ranches. Some sections of 
Laikipia district were not surveyed because of crop cultivation and human settlement. 

of one or more animals at a given location was considered as an event. To facilitate 
calculation of nearest neighbour distances during spatial point pattern analysis (Kaluzny, et 
al., 1998), we carry out all spatial point pattern analyses on a 50 by 50 km square block, 
which is the largest regular block that entirely falls within the study region. 

Although aerial surveys are known to have Sightability problems and some 
animals are likely to be missed, there is considerable movement of animals that results in 
double counting, thereby balancing some of the missed animals. Also, since the observers 
used here are very experienced, the aircraft fly at fairly low heights and the species studied 
are easily observable, we assume that nearly all groups were sighted and do not, therefore, 
correct for assess sightability. Moreover, this dataset still represents the most detailed data 
ever collected in this ecosystem using aerial surveys. 

5.3. Methods 
Spatial processes yielding observed animal counts are characterised by a simple 

stochastic model (Cressie, 1993). We represent the location of an event in a region D of the 
2-dimensional Euclidean space by s e D c 9? . A possible observation z(s) at location s is a 

71 



_Spatial point patterns for modelling wildlife distribution. 

random variable whose multivariate random field, defined by (Z(s): s 6 D], is generated 
by varying s over D. In this case, Z(s) represents an underlying spatial process, of which a 
given data set denoted by (z(s): s e D] is a single realisation. We call this realisation a 
spatial point pattern. Since both Z() and D are random, analysis of the spatial point pattern 
aims to infer parameters of the point process (model) from the observed point pattern (data) 
(Cressie, 1993). 

We start the analysis by using frequency diagrams and descriptive statistics to 
explore the data. We then map the observed spatial point patterns of the six animal species 
in the study and analyse whether each species exhibits spatial randomness, clustering or 
regularity. We test for complete spatial randomness (CSR) using the G statistic, which is 
based on distance d{ from the rth event to the nearest neighbouring event in A. Its empirical 
distribution function (EDF) is defined as: 

(5.1) G(y) = »~ 'Xi , 

where n is the number of events in A. 

LEGEND 

[ j 50 by SO Km square box for analyses 
* Observation points 

H Study area 
Unsurveyed purts of Laikipia district 

Figure 5.2. A map showing all point patterns in the study area and the 50 by 50 km square box 
selected for detailed spatial point analysis. Crosses represent a point where at least one animal was 

observed. 
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An excess of short distance neighbours indicates clustering, while regularity is 
indicated by an excess of long distance neighbours. For a formal test to assess CSR, s EDFs 
of the djS are derived from s realisations of a comparable Poisson CSR process on A. Their 
average provides a reference line, while the minimum and maximum provide an envelope 

that is used for testing in an approach that corrects for edge effects. If the G calculated from 

the data falls outside this envelope, either at short or at long distances, there is evidence 

against CSR. 
Finally, we model the underlying stochastic spatial process and estimate model 

parameters. To help fit models to observed point patterns, spatial data are reduced to 
informative descriptive statistics based on distances between events or between randomly 
sampled points in the study region and events. 

Construction of a model to describe a spatial point pattern first examines the 
underlying spatial process for stationarity and isotropy by studying its first and second-
order properties. First-order properties describe how the intensity A, defined as the mean 
number of events per unit area, varies through space. For a stationary process, A is constant 
over A. In this study, we estimate single point and local estimates of A in A using the kernel 
method, which is based on a weighted function of the points in the surrounding region of 
influence. The radius of this region of influence determines the smoothing constant (or 
bandwidth) of the kernel (Green, 1994). 

Second-order properties of spatial point process describe variation in spatial 
dependence. The K-function (Ripley, 1981; Diggle, 1983; Cressie, 1993) describes second 
order properties by capturing the spatial dependence between different regions of the point 
process. It is defined in the univariate case as: 

K(d)sEMAt d>0> (5.2) 
A 

where E denotes expectation, Mj is the number of events within a distance d of an arbitrary 
event and A represents intensity. An estimate of this function that adjusts for edge effects is 
defined for n locations (sj, s2,..., s„) of all events in A as (Ripley, 1981): 

K(d) = n'2\A\flf^wir
iId(dij) Vi*jandd>0. (5.3) 

1=1 ; = i 

The area of A is represented by \A\, d„ is the distance between the ith and 7th points, wtj is 
the proportion of the circumference of a circle with its centre at 1 but passing through j and 
lies within A. The indicator function I^dy) takes the value 1 if (dy) < d and 0 otherwise. 

A multivariate extension of spatial point patterns is defined for n spatial locations 
of p animal species events as: {s/'*: i = 1, 2, ..., p;j = 1, 2, ..., 11}. For a bivariate spatial 
point pattern, we consider two animal species (p = 2) and use distance measures to test the 
hypothesis of independence in order to classify the two spatial points patterns as positively 
or negatively dependent. For second order analysis, the ^-function is extended to its 
multivariate equivalent by the following set of functions (Diggle, 1983, p.91): 
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Kij(d) = ^ ^ - , d>0, (5.4) 

where M d' is the number of events of species j within a distance d of an arbitrary species i 

event. 
We restrict our analyses to a bivariate cross ^-function and define its estimator as: 

kn(d) = (nln2r
1\A\^Wu-

1Id(dii), d>0, (5.5) 
/=i i=\ 

where nt and n2 is the number of species 1 and species 2 events, respectively (Diggle, 1983, 
p. 107). We consider K^d) *• Kj,{d) since species i may attract species j without the 
converse being true. 

Theoretical values for K(d) and K^d) are known for several types of spatial point 
processes. For example, a homogeneous process with no spatial dependence between events 
has K(d) equal to Tid2. Clustering suggest an excess of points at short distances leading to 
K(d) > Tid2 for small d's while K(d) < Tid2 for regularly spaced patterns. We compute and 
plot the ^-function for each of the six species in this study and compare results to expected 
values under assumptions of CSR. We also compute the multivariate ^-function to test for 
interdependence between Burchell's zebra and other species. 

5.4. Results 
Abundance of the six animal species in this study ranges from 82 animals for 

Grevy zebra to 13,453 for Burchell's zebra, which also has the highest mean group size of 
30.4 animals per point of observation (Table 5.1). Although the impala is the second most 
abundant species (2,732 animals), its group size (14.8) is almost 10 units lower than that of 
the Thompson's gazelle (23.4), implying larger groups for the Thompson's gazelle. The 
kongoni and Grant's gazelle appear to be solitary species due to their small groups (8.9 and 

7.5, respectively). The Grevy's zebra is found in the smallest groups of the six species (4.6). 
Frequency curves indicate long right-tailed skewed distributions for all species 

except the Grevy's zebra (Figure 5.3). This indicates clustering in the species distributions 
and supports use of spatial statistical analyses to account for possible spatial dependence. 
Accompanying descriptive statistics show varying group sizes for all species as discussed 
for Table 5.1 above. The Grevy's zebra appears to be observed in groups of not more than 
nine animals, while Grant's gazelle were not observed in groups of more than 32 animals. 
The kongoni also occur in small groups of not more than 25 animals. However, the two 
points of 40 and 91 animals shown on the frequency curve (Figure 5.3) are atypical. These 
results should not be viewed as models of the group size distributions, which are difficult to 
model. 
74 



.Chapter 5_ 

Table 5.1. The six animal species under study, their mean group size as well as the total number of 
animals per species. 

Common name 

Burchell's zebra 

Grant's gazelle 

Thomson's gazelle 

Impala 

Kongoni 

Grevy's zebra 

SPECIES NAMES 

Abbreviation Scientific Name 

ZB 

GG 

TG 

IM 

KG 

ZG 

Equus burchelli (Gray) 

Gazelli granti (Brooke) 

Gazelli thomsoni (Gunther) 

Aepyceros melampus 
(Lichtenstein) 

Alcelaphus buselaphus cokii 
(Gunther) 
Equus grevyi (Oustalet) 

MEAN GROUP 
SIZE 

30.4 

7.5 

23.4 

14.8 

8.6 

4.6 

TOTAL 
COUNT 

13,453 

1,182 

2,639 

2,732 

755 

82 

A summary of the combined spatial point pattern of all the six animal species 
yields a bounding box with vertices of 225,3335, 274,880 and 10,032.9, 59,938.1 for the X 
and Y UTM co-ordinates, respectively and covers an area of approximately 2,470 km2 

(Table 5.2). Spatial point patterns for individual species cover different areal extents. The 
Burchell's zebra's covers the largest area of 2,464.2 km2 compared to that of the Grevy's 
zebra, which is only 1,032.9 km2, suggesting a restricted use of the habitat by the Grevy's 
zebra. 

A plot of the combined spatial pattern is fairly dense with no apparent spatial 
pattern (Figure 5.2). There is an unoccupied section in the lower left corner of the box 
corresponding to the area closest to human settlements. Evidence of clustering emerges 
from individual species point patterns (Figure 5.4). The Burchell's zebra appear to have a 
highly clustered spatial point pattern but this may be due to its high density. The other 
species are less dense but appear to have clustered patterns. Such visual assessments have 
to be tested using distance measures for confirmation. 
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Figure 5.3. Frequency curves for all the six species with minimum, maximum and 
group size inserts. 
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Table 5.2. Summary statistics for different spatial point patterns. 

SPECIES 

All six 

ZB 

GG 

TG 

IM 

KG 

ZG 

NO. OF 

POINTS 

670 

442 

158 

113 

185 

88 

18 

(225335 

(225390 

(226209 

(227779 

(225335 

(226189 

(245847 

274880) 

274809) 

274880) 

274259) 

274806) 

274691) 

273230) 

CO-ORDINATE EXTENT 

X Y 

AREA 
(km2) 

POINT 
INTENSITY 

(A) 

(10032.9,59938.1) 2472.6 0.271 

(10074.6,59938.1) 2464.2 0.179 

(10263.5,59938.1) 2417.7 0.065 

(10032.9.58592.4) 2257.1 0.050 

(10220.0,59938.1) 2459.6 0.075 

(10306.8,59515.8) 2386.7 0.037 

(21228.2.58947.5) 1032.9 0.017 

G plots for the individual point patterns of the six species indicate strong 
clustering for Thompson's gazelle and Grevy's zebra, although its points are too sparse to 
lead to firm conclusions (Figure 5.6). Plots for Burchell's zebra and Grant's gazelle are 
consistent with those expected from a CSR spatial point pattern. The other species show 
high abundance of points at short distances suggesting clustering in their patterns. 

Confirmatory assessment of CSR through simulation confirms lack of clustering 

for both Burchell's zebra and Grant's gazelle by having their G plot lie within the CSR 
envelopes most of the time (Figure 5.6). The kongoni and Grevy's zebra also appear to have 
point patterns that are randomly distributed, although their envelopes are wide, possibly due 
to sparse distribution. Thompson's gazelle and impala appear to have highly clustered 

spatial point patterns since their G plots lies outside the upper envelope for most of the 

distances. 

Single point estimates of intensities confirm the abundance of Burchell's zebra. Its 

intensity estimate (A = 0.179 points per unit area) is 66% of that of all the six species 

combined (A = 0.271) (Table 5.2). Grevy's zebra has the lowest intensity estimate (A = 

0.017), perhaps as a consequence of its rare occurrence. All other species lie in between. 
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Figure 5.4. Spatial point patterns for the six individual species under study. 

When intensities were estimated locally using the kernel method and plotted as 3-
D figures, they were all observed to vary more than is expected from random fluctuations 
(Figure 5.7). This variation results from lack of observations in the lower left section of the 
study region for all species. It may also be due to a selective use of habitats by animals. 
Further, it indicates that other factors like human settlement or different vegetation types 
may be inhibiting species occurring in some places. 

Interaction of the six animal species with vegetation shows the Burchell's zebra to 
occur in all the nine vegetation types, but being most abundant in acacia drepanalobium 
bushland (Table 5.3). It forms the largest groups in dwarf bush and grassland (41.8 animals) 
and the smallest in rocky habitats, where only 12 zebras are observed in three groups of 
four animals each. It is the only species whose group size differs significantly between 
vegetation types (p = 0.035). All species appear to prefer the acacia drepanalobium 
bushland, where all record the highest abundance with the exception of Grevy's zebra, 
which prefers open thicket. Apart from the rare Grevy's zebra, Grant's gazelle and kongoni 
form the smallest groups in all vegetation types with most having less than 10 animals. The 
Grevy's zebra evidently prefers special habitats, being absent in 3 out of the 9 vegetation 
types. 
78 



.Chapter 5_ 

a 

CO 
o 

Burchell's zebra 

DO (D 00 00 

O 

Grant's gazelle 

na, o»«°°°° ° r 

4 L t 
/ 

/ " 

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 6000 

Distance Distance 

Thompson's gazelle 

/ 

CO 0 0 oo z 
0 2000 4000 6000 8000 10000 0 

Distance 

Kongoni 

/ 

0* 
9 00 ooo# 

2000 4000 6000 8000 

Distance 

Impala 

o o « 0 00 oo o o-

2000 4000 6000 

Distance 

Grevy's zebra 

-

f° 
o 

CM 
o 8 

„ 0 ° 

\ 
| J 

\ 
3 

0 0 

5000 10000 15000 

Distance 

Figure 5.5. Plot of G to check clustering in the point patterns for the six species. 
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Figure 5.6. Plot of G with envelopes to test for CSR for the above spatial point patterns. 

When examining second order properties using the ^-function, we plot K values 
against corresponding distances and add a reference line to correspond to spatial 
randomness. For the combined spatial point pattern of all six species, the resulting function 
appears close to what is expected from a CSR process, implying that the combined 
observations of all six species in the study area does not follow a given pattern. 
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Burchell's zebra Grant's gazelle 

Thompson's gazelle Impala 

Kongoni Grevy's zebra 

Figure 5.7. 3-D images showing how intensity varies in the study area for 
each of the six species. 
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To test for CSR, we consider points with a maximum nearest neighbour distance 
of five km and add envelopes to the ^-function (Figure 5.8). Clustering is strongly 
suggested for both Thompson's gazelle and impala, whose K(d) plots lie above and outside 
the CSR envelopes. All the other species have their K(d) falling between the CSR 
envelopes suggesting lack of either clustering or regularity in their spatial point patterns. 
This may be explained for the Burchell's zebra by its high abundance and wide distribution, 
which tends to mask excesses in both short and long nearest neighbour distances. 
Envelopes for Grevy's zebra are too wide to lead to firm conclusions about its point pattern. 
This may result from its sparse spatial distribution. 

Results from the /^-function multivariate analysis do not reveal strong attraction 
between most species (Figure 5.9). However, Grevy's zebra appear to have an excess of 
large nearest neighbour distances with Thompson's gazelle and kongoni, suggesting 
inhibition between these two species and Grevy's zebra. 

Burchell's zebra Grant's gazelle 

400 600 800 1000 1200 1400 1600 1800 

Distance 

Thompson's gazelle 

400 600 800 1000 1200 1400 1600 
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Impala 

400 600 800 1000 1200 1400 1600 
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400 600 800 1000 1200 1400 1600 1800 
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1000 2000 3000 4000 5000 
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Figure 5.8. ^-functions for spatial point patterns of individual species with envelopes to test for 
CSR. 
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Figure 5.9. Multi-variate ^-functions for spatial point patterns of some pairs of the six species. In all 

cases, the darker line corresponds to a spatial point pattern expected from a CSR process. 

5.5. Discussion 
This study illustrates that point data collected from aerial surveys of wildlife can 

effectively be used to determine species spatial distribution patterns. The patterns may be 
regular, clustered or random depending on effects of different factors like feeding habits, 
habitat preference, predator avoidance or human interference. Since it is not sufficient to 
determine clustering in species point patterns by mere visual assessment, there is need to 
use other objective procedures and techniques. 

The study further shows that G plots and CRS simulation techniques are effective 
in determining and confirming species distribution patterns. Of the six species studied here, 
results show that all have clustered distributions with the exception of Burchell's zebra and 
Grant's gazelle, which indicates possible spatial dependence on factors other than what was 
analysed. 
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Further, results also confirm the hypothesis of species spatial distribution being 
related to trophic requirements. For example Burchell's zebra, which has a large body and 
is a grazer, occurs in large groups and appears to be distributed in relation to its food 
distribution (Table 5.3). However, one would expect the Grevy's zebra to also occur in 
large groups but this was not the case in this study. Perhaps this is because the species is 
rare and under threat. Moreover, the Grevy's zebra inhabits arid and semi-arid (xeric) 
environments and is exclusively a grazer, subsisting on low quality forage and generally 
surviving without water for up to 4 days (Ginberg, 1985, 1988; Rowen, 1992). It prefers 
grassy dwarf shrubland and dwarf shrubby grasslands (Stelfox and Ngatia, 1979, 1980; 
Churcher, 1982), and has a fluid intraspecific association (Klingel, 1974; Ginsberg, 1988), 
grouping into mares and foals, bachelor herds and mixed groups, which do not stay together 
for long periods of time (Wargute and Said, 1996). 

On the other hand, mixed feeders like the impala occurred in moderate groups 
while Grant's gazelle, which is a small antelope, occurred in small groups. These patterns 
are explained by the fact that small-bodied animal species need higher quality diet than 
their larger counterparts. These high quality food items (e.g. leaves and fruits) preferred by 
mixed feeders are generally more dispersed than low quality food items like grass, which 
are selected by grazers (Voeten, 1999). 

In their study on dietary components of ungulates in the Mara, Hansen et al. 
(1985) reported that the Grant's gazelle consumed more than 50% shrub and/or forbs, while 
impala's overall diet consisted of about 50% grasses and 'grass likes'. Other ungulates i.e. 
Thomson's gazelle, kongoni and Burchell's zebra were clearly grazers, consuming more 
than 50% grasses. Within grazers, some species have certain dietary similarities and 
preferences. In a study conducted in the Mara, high diet similarities were observed between 
kongoni and Thomson's gazelle (Hansen, et al., 1985). 

Intensities of distribution of different species appear to vary in the study area 
(Figure 5.7). This may be related to the distribution of food or vegetation types among other 
factors. For example because grasslands are distributed throughout the study block, 
Burchell's zebra, which are grazers, are also widely distributed. However, impala and 
Thomson's gazelle, which are mixed feeders, appear to be restricted or clustered in shrubby 
grassland vegetation. 

Apart from providing a method to analyse data collected through the use of GPS, 
this study also investigates the relationship between observed spatial distribution and 
dietary preferences in relation to different vegetation (habitat) types. By relating abundance 
and distribution to different vegetation types this study provides an opportunity to classify 
animal species into different categories according to their feeding behaviour and habitat 
preference. The results could also help in explaining differences in distribution intensities 
and group sizes among different species. In areas where land allocation, wildlife cropping 
or hunting is undertaken on periodic basis, information on wildlife abundance and 
distribution patterns is essential for designating cropping and hunting areas. 
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It should be noted, however, that it was not possible to rigorously model group 
size because of the long right tails in species distributions. Further, the social structure of 
most animal species is very complex with non-dominant males often being in separate 
herds, causing changes in the composition of herds during mating seasons (Steffens, 1993). 
The herds may also spread out during grazing, leading to aerial surveys reporting several 
smaller groups that actually belong to the same herd. Therefore, spatial point pattern 
analyses techniques should be used together with ground observations. 

5.6. Conclusions 
The following conclusions can be drawn from this study: 

1. Differences in abundance and spatial distribution of animal species are related to their 
food requirements as well as how food availability is distributed in the area. 

2. Spatial statistical techniques like G plots and ^-functions have great potential in 
studying factors influencing abundance from wildlife data collected with GPS. They 
allow one to estimate spatial distribution of animals and to generate information that is 
necessary for management of wildlife populations. 

3. This study provides a rapid and cost effective method of assessing species patterns, 
thereby providing timely and necessary information for management of ecosystems 
where animal harvesting is practised. 
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CHAPTER 6* 

Comparison of wildlife sampling procedures 

This chapter is based on Khaemba, W. M., Stein, A. and Rasch, D. (Submitted). An 
empirically simulated investigation and validation of sampling 
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.Comparison of wildlife sampling procedures. 

Abstract 
This chapter reports a comparison of the distribution, sampling and estimation of 
abundance for two animal species in a Kenyan ecosystem through an intensive simulation 
in a geographic information system (GIS). It investigates two sampling designs commonly 
used in wildlife surveys: systematic and random sampling designs. It compares their 
performance to an adaptive sampling design through their root mean square errors (RMSE) 
at three increasing sampling intensities. Simulation is based on data collected on a prior 
survey conducted in the study area in which geographical locations of all observed animals 
were recorded. This provides more detailed data than what is usually collected from 
transect surveys. The study further assesses the impact of sampling designs and intensities 
on estimates of population parameters. Estimates of precision increase with increasing 
sampling intensity, while no significant differences are observed between random and 
systematic estimates. An increase in precision is demonstrated for the adaptive design, 
thereby validating the use of this design for sampling clustered populations. The study 
illustrates that statistical can be complemented with GIS techniques to offer greater insight 
in the dynamics of wildlife populations. 
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6.1. Introduction 
Accurate and up-to date information on the size and distribution of animal 

populations is crucial for conservation and proper management of tropical savannah 
ecosystems. Such information can be obtained rapidly and at low costs through airborne 
surveys (Norton-Griffiths, 1978; Wint, 1998). However, because of the diversity and high 
mobility of animals, and also due to various forms of observer bias, results from these 
surveys tend to be inaccurate and sometimes unreliable (Caughley, 1974; Smith, 1981). A 
rigorous analysis of such inaccuracies using field tests is not possible because the sampling 
methods used are also subject to similar biases. This leaves simulation as a viable option to 
investigate and validate different sampling techniques used in aerial surveys of wildlife. 

Simulation allows the study of systems that are expensive, difficult or impossible 
to observe in the field (Robinson, 1994). It also allows replication where only one 
realisation would have been possible, thereby giving the investigator more control when 
considering different scenarios. Furthermore, the rapid development in computer 
technology has made it possible to run several thousands of replications within a fairly 
short time. 

Simulation has been used to study various phenomena. For example, Haile and 
Weidhaas (1977) used simulation to study mosquito population dynamics. Onyeanusi 
(1986) used simulation to study the impact of tourists driving off designated roads in 
wildlife reserves, while Norton and Williams (1992) used simulation to model species 
habitat for nature conservation. Recently, a simulation study has been used to propose an 
improved sampling strategy for surveys of wildlife populations in a similar ecosystem 
(Khaemba and Stein, in review). 

This study aims to investigate two sampling strategies commonly used in aerial 
surveys i.e. random and systematic sampling designs, and compare their performance to 
that of an adaptive sampling design at equivalent sampling intensities. The investigation is 
conducted through a simulation of the distribution of animals under a GIS environment. 
The simulation is based on data collected in Laikipia district of Kenya. The study focuses 
on two key wildlife species, namely the elephant (Loxodonta africana) and the Burchell's 
zebra (Equus burchelli) because of their influence on the ecosystem. The elephant migrates 
seasonally to the neighbouring Samburu district (Thouless, 1995), thereby posing great 
danger to agricultural crop in the two districts. On the other hand, the zebra constitutes half 
of the wild herbivores found in this ecosystem (Georgiadis, 1997). Moreover, the two 
species are easy to observe and a vast amount of literature and data exist on their behaviour 
to allow easy simulation of their dynamics. Data on which the simulation is based was 
obtained from a detailed airborne survey of the study area. 

By simulating observed patterns of animals, it is possible to carry out empirical 
research on the sampling of wildlife populations for this ecosystem. It is also possible to 
investigate the effects of different sampling designs and intensities on estimates of 
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abundance and precision. Thus, the study proposes a faster and cost effective procedure for 
validating methods used in aerial surveys of wildlife. 

6.2. Materials and methods 
6.2.7. Study area 

Laikipia district in Kenya covers an area of approximately 9,700 km2, 33% of 
which contains little or no animals at all due to intense human settlement (Figure 6.1). Most 
of the district lies to the north of the Equator between latitudes 0° 17'S and 0° 45'N and 
longitudes 36° 15'E and 37° 20'E. It lies on a plateau with an altitude that varies gently 
from 1,600 m to 2,300 m above sea level, yielding a gentle to slightly undulating 
topography in most places. It is bounded in the Southwest by Mount Kenya, the highest 
mountain in the country, as well as the Aberdare ranges, leading to the highest elevation 
being in the Southwest while the lowest is found in the Northwest (Ojwang', 2000). 

N 

A 

Legend 
• Observed elephant or zebra 

I I Study area 

Unsurveyed area due to human settlement 

Figure 6.1. Map showing the study area in Laikipia district as well as the area not surveyed due to 

human settlement. Dots indicate points where an elephant or zebra was observed. 
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Mount Kenya and the Aberdare ranges are major catchments for perennial 
tributaries of Ewaso Ng'iro river - the main river whose basin drains most of the Laikipia 
plateau. These tributaries are crucial for the arid and semi-arid lowlands, where most 
streams dry during the larger part of the year. Other sources of water include shallow 
waterholes and boreholes sunk in the ground (Berger, 1989). 

Three annual rainy seasons can be distinguished in this area: The long rains 
(March - May), middle rains (June - August) and the short rains (October - December). The 
average annual rainfall varies between 400 mm and 750 mm, with the highest being 
recorded on the foots of Mount Kenya and the Aberdare ranges (Brown and Cocheme, 
1973). Annual potential evapotranspiration is high, rising to between 1,800 mm and 2,000 
mm. Annual variation in air temperature is very low with an average of approximately 
17.5°C and a daily amplitude of 1.4°C, which is affected by the high altitude (Berger, 
1989). The district is composed of areas of unpredictable rainfall most of the year making is 
suitable only for ranching and wildlife farming (Georgiadis, 1997). 

6.2.2. Data 

Since this is an area of wildlife farming, a lot of data has been collected to monitor 
abundance and distribution of the various wildlife species found here. Data is commonly 
obtained through regular surveys conducted using the SRF method (see section 2.3). This 
leads to observations being concentrated along strip transects systematically covering the 
study area and may not allow modelling of the spatial distribution of different wildlife 
species. For this study, however, more detailed data that allows the modelling of observed 
spatial patterns is available. These data were collected from a detailed survey conducted in 
Laikipia district in September 1996, which resulted in 2,381 data points over the whole 
study area where at least one animal was observed. 

Laikipia ecosystem is home to more than 13 species of wild herbivores with a total 
number of about 70,000 animals. The most abundant of these is the zebra, which accounts 
for about half of the total population. It is also the most widely distributed species being 
found in almost all vegetation types, although it is known to favour open grassland and 
avoids drier areas with less 500 mm mean annual rainfall (Haltenorth and Diller, 1996). 
Another ecologically interesting species in this area is the elephant, of which there are over 
3,000 animals. It occurs in several habitats but prefers woodlands and thickets and is 
mainly found in the central and southern part of Laikipia district. However, it seasonally 
migrates for long distances (sometimes up to 500 km) in search of newly blooming growth 
and fruiting plants (Thouless, 1995; Haltenorth and Diller, 1996). 

Other available data include vegetation cover types and structure. More than 50% 
of the vegetation cover types found in Laikipia belong to plant communities dominated by 
acacia species whose undergrowth mainly consists of several useful grass species and 
herbaceous layers (Ojwang', 2000). Pratt and Gwynne (1977) classified these communities 
as bushland and shrubland. Other vegetation types include grasslands and shrubby 
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grassland (approximately 25%) and forests and woodlands (approximately 13%). Data on 
precipitation, evapotranspiration, drainage, human settlement, agricultural activities, water 
availability, slope, height and aspect were also available. 

6.2.3. Sampling designs in aerial surveys 

Both stratified random sampling (SRS) and systematic sampling (SS) are 
applicable designs for aerial surveys of wildlife populations using strip transects (Jolly, 
1969a; Caughley, 1977; Cochran, 1977; Smith, 1981; Thompson, 1992). With SRS, a 
sample of size n out of a total of N transects in the population is selected without 
replacement. This yields an inclusion probability of n = n/N for any transect, making each 
transect equally likely to be selected into the sample. The total survey area A and that of 
each transect a, (i = 1, 2 , . . . , AO are known. 

For SS, the N transects are numbered from I to N and an integer r is chosen such 
that N = rn. An initial transect is randomly chosen from the first r transects in the 
population and thereafter, every rth transect is selected. Since N is generally not an integral 
multiple of r, systematic samples obtained from the same finite population may vary in 
size. An improvement treats the N transects as being arranged round a circle and takes r to 
be the nearest integer to Nln (see Cochran, 1977, p. 206). Here, the first transect is 
randomly selected from integers between 1 and N, after which every rth transect is included 
in the sample until the required sample size n is obtained. This results in an equal inclusion 
probability for all transects in the population. 

A modification of SS known as systematic reconnaissance flights (SRF) has been 
adopted as a sampling design for most aerial surveys in the tropics because of its low cost 
per sampled unit compared to other sampling methods (Norton-Griffiths, 1978; Steffens, 
1993; Grunblatt, et al., 1996; Ottichilo, 2000). Systematic flight lines, placed in an East-
West direction in the study area, define transects for this design. The transects are generally 
separated by distances of 2.5 km, 5 km or 10 km, depending on the sampling intensity 
desired. Intensity is defined as the sampled area versus area of the whole study area, which 
is equivalent to ratio of the number n of transects in the sample to the total number N of 
transects in the whole study area. Common sampling intensities lie between 3% for a low-
resolution survey and 15% for a high-resolution survey (Grunblatt, et al., 1996). The 
method also allows collection of environmental data to be used for explaining observed 
animal distributions and for long-term monitoring purposes (Norton-Griffiths, 1978). 

Estimation of population parameters for all designs is through the Jolly II 
procedure (Jolly, 1969a). If we let yt represent observed animals in the ith transect of area 
a,-, an estimate of the population density D is given by 
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n 

0 = - T — • (61) 

This leads to an estimate of the population total Y given by Y} = D • A and a variance 

estimate equal to: 

Var(K,) = 
N(N-n)'' " 

n(n-l) v , - = i 

Zy,2 + D 22 a |
2 -2D2, ( - a , (6.2) 

For the adaptive sampling design, an initial sample of size n is selected using SRS. 

A condition C={y: y > 3} is defined for some constant 8 and the number of animals y 

observed in the transect to determine whether neighbouring transects to those in the initial 

sample will be added to the sample or not. The constant <5 is calculated individually for each 

species based on data from previous surveys in the same or similar region. For sequentially 

numbered transects Tt.h Tb Ti+i, C determines if 7",./ and Ti+1 are observed. This yields k0 

observed networks (k0 <n, since the sample consists of distinct transects). The ith transect 

in the kth network contains yik animals and has an area equal to aik (i = 1, 2, ..., tk, k = 1, 2, 

..., kg). Thus, the density Dk of animals in the £th network is estimated by 

•k 

i=1 

2°tt 
Dk =

Jf • (6-3) 

Since the design deliberately selects transects with high abundance, D is 

overestimated by (3). This is corrected by multiplying Dk by a weight wk, which equals the 

a t proportion contributed by the kth network to the total sample area i.e. wk = -r-*—, where 

* = i 

the term ak denotes the area of all transects found in network k and ^ w
k = 1. An improved 

t=i 

estimate of D is obtained by averaging over all k0 networks by 

lDk-wk 

D = H . (6.4) 
k Ko 

An estimate of Y is given by Y = D • A with an approximate variance equal to 
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Vdr{Y)=K{f-k^y,-D-a,)\ (6.5) 

where y.k equals the number of animals observed in network k (k = 1,2, ...,k0) and K is an 
estimate of the total number of networks in the population, obtained through a probabilistic 
derivation. Derivation and use of the above designs in wildlife surveys are treated in greater 
detail by Khaemba and Stein (In review). 

6.2.4. Modelling and simulation 
Three distinct stages of the simulation are envisaged. First, the study area, its 

boundary and topographical features are modelled through GIS based on available 
geographical data. The resulting terrain model remains fixed throughout the simulation. 
Second, distributions of the two selected wildlife species are generated according to a 
spatial model of observed patterns in the study area. For each generated point, a probability 
of an animal occurring at that point is calculated from a logistic model derived from 
explanatory variables observed in the study area resulting in some points being discarded. 
The remaining ones are overlaid on the terrain model obtained above to represent a 
distribution of animals in the terrain. The third stage involves simulating strip transects over 
the terrain to represent an aircraft flying over the study area. Observations falling within the 
strip transects are recorded and the data analysed to obtain estimates of population 
parameters. The procedure is replicated 100 times per species for the different sampling 
designs and intensities. 

GIS modelling of the terrain starts by delimiting the boundary of Laikipia to serve 
as a background upon which all simulation takes place. All existing data on terrain, 
vegetation type, drainage patterns and other landscape features are stored in the same 
geographical database making it easy to apply GIS techniques. Buffers are created at 
varying distances of 0.5, 1, 2, 5, 10 and 15 km from permanent rivers and other water 
sources like boreholes, as well as points of cultivation and human settlement. These buffers 
are overlaid on other landscape features and topographical characteristics like aspect, 
elevation, height, slope, climatic and vegetation data to define a complex GIS terrain 
model. 

Based on data from explanatory variables observed in the study area, a functional 
model is derived using stepwise logistic regression to indicate probabilities of an animal 

occurring at a given location. For p explanatory variables, the probability Jl0 of observing 

an animal is given by 
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exp(P0+Pix1+P2x2+... + Ppxp) 
n = , (D-O) 

1 + exp(ft, + /?,*, + j32*2 +... + /J * ) 

where*;, *2, • •-, •*,, and ft, /?i, /?2, ..., PPrepresent p explanatory variables and corresponding 

regression parameters and exp denotes an exponent to the power of the natural logarithm. 

The 16 classes of vegetation are converted into 15 dummy variables to yield a variable for 

each class. The model is derived for the two animal species and is kept constant during the 

survey period. 

Distributions of the two animal species in this study are simulated as spatial 

patterns following a clustered distribution. One way of simulating such a distribution is 

through a Straus process conditioned on the number n of observed points in a given area 

(Cressie, 1993, p. 676). The simulation is implemented in S-Plus© (Mathsoft, 1999) and is 

based on data from the survey of September 1996. The dynamics of each species are 

simulated so as to reflect real life situations. For example, differences in distance between 

groups of animals are incorporated in the simulation of the two wildlife species. Assuming 

the co-ordinate of a point where an animal has been observed falls at the centre of a shadow 

cast by a light shining directly above that animal, then the distance between two zebras will 

be smaller than between two elephants. 

Resulting co-ordinates are used as input to create a point coverage in Arc Info© 

(ESRI, 1997), where each point represents occurrence of an animal. The coverage is 

overlaid with the terrain model from which the functional model is used to determine the 

probability of an animal occurring at each point. Points with probability less than 0.3 are 

considered unsuitable habitats and are discarded from the database. This yields a terrain 

with a known number of animals distributed on it. Sampling and abundance estimation can 

now be carried out. 

In simulating an aircraft flying above locations of animals in the above terrain, a 

rectangular grid is defined to cover the whole study area. Horizontal lines separated by 2.5 

km are systematically drawn on the grid to represent flight lines. Strips observed by the left 

and right observers during actual surveys (width dL= 141m and dR = 141m, respectively), 

are obtained by buffering either side of the flight lines. These buffers are separated by a 

distance dB = 250 m, corresponding to the blind spot under the aircraft (Figure 6.2). 

Combining the left and right strips yields a strip transect of width W equal to dL + dR = 282 

m and commonly employed for aerial surveys. The strip transects are clipped using the 

boundary of the study area to yield n transects of unequal lengths. Sampling intensity is 

varied for the systematic design by changing the interval between transects from 2.5 km to 

5 km and finally to 10 km. Thus corresponding to common values used for surveys in this 

study area (Grunblatt et al., 1996). 
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Figure 6.2. The figure shows buffering of grid lines to produce two transects (i and i+1) for a small 
section of the study area. The blind spot below the aircraft is indicated as well as the area searched by 

both left and right observers during surveys. Points at which animals are observed are also shown. 

To locate sampling units for the random design, a vertical baseline is drawn in the 
middle of a grid covering the study area. This baseline is then divided into sections of the 
same length as the strip width W - 282 m and labelled 1, 2, ..., N to represent the total 
number of transects covering the whole study area. A random number generator is used to 
select n random numbers between 1 and N. Transects are placed at the location of these 
points along the baseline at right angles to yield samples of size n. These are overlaid with 
the data layer containing animal co-ordinates on the terrain model and points falling within 
transects are recorded as observed animals. 

The implementation of random and systematic sampling designs is easy because 
sample transects are defined in advance, allowing them to be overlaid with simulated 
animal distributions. For the adaptive design, however, the final sample is not known at the 
start of the survey since it changes through observed patterns in the field. A modification 
to the selection procedure is to define an initial random sample of a small sample size. This 
size depends on several factors e.g. the precision required, available resources etc., but it 
could be 40% of the n used in the above designs. Define all possible transects in the study 
area and overlay this design with distributed animals in the terrain noting transects from the 
initial sample. Check condition C for this small number of transects, adding their 
neighbours to the sample if they fulfil C. For those neighbours that fulfil C, observe their 
neighbours too. Repeat the procedure until no more neighbours meet condition C. 
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Estimates of population parameters are obtained using the Jolly II method as 
described in section 2.3 for all designs. Since the correct number of animals in the study 
area is known during simulation, the root mean square error (RMSE) is calculated to give a 
measure of precision and allow comparisons between designs. 

6.3. Results 
Thirteen variables were used in this study to explain the distribution and presence 

of elephant and zebra. The variables ranged from those related to human habitation like 
presence of settlement, cultivation and water to vegetation cover, terrain variables like 
slope, height, aspect and variables related to rainfall like precipitation, evapotranspiration 
and temperature (Table 6.1). Sixteen different vegetation classes are distinguishable in the 
study area (Table 6.2). The high occurrence of observation points in acacia drepanobila 
bushland for both elephant and zebra suggests a preference of this vegetation class as a 
habitat for these two species. The zebra appears to prefer grassland as well, while the 
elephant favours open acacia brevispica thickets. From the results, these two species appear 
to be selective in their habitat preference. 

Table 6.1. Variable used in the study, their names, descriptions and abbreviations. 

VARIABLE ABBREVIATION 

Presence or absence of water Water 
Presence or absence of human settlement Settlement 
Presence or absence of cultivation Cultivation 

Vegetation class (see table 6.2 ) Veg 
Slope (levels 1-7) Slope 
Height (m) Height 

Aspect (levels 1-8) Aspect 
Annual precipitation (mm) ANNPRE 
Annual potential evapotranspiration (mm) ANNPET 

Ratio of ANNPRE and ANNPET (ratio) ANNPPE 

Annual extreme temperature (°C) ANNXT 

Annual instantaneous temperature (°C) ANNIT 

Annual maximum extreme temperature (°C) ANNMAXXT 

Annual minimum instantaneous temperature (°C) ANNMINIT 
Correlation between explanatory variables and presence of both elephant and 

zebra is minimal with the highest observed value of -0.2 being between presence of zebra 
and human settlement. This suggests a negative relation between occurrence of zebra and 
that of human beings. The elephant shows even weaker correlation, perhaps because of its 
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sparse distribution in the study area. Climatic variables show strong correlation among 
themselves suggesting the use of only a few for modelling. In particular, the variable 
measuring annual potential evapotranspiration (ANNPET) appears to adequately explain 
the effects of other climatic variables. Slight changes in height appear to cause major 
changes in temperature and precipitation as indicated by high correlation between these 
variables. This may be an influence of the two mountain ranges in the study area. 

Table 6.2. The distribution of elephant and zebra in different vegetation classes found in Laikipia. 
Ratio gives the proportion of points where each species was observed in relation to the points where 
the same species was observed in the whole study area. 

Code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Vegetation class 

Urban 

Small scale cropland complex 

Upland / riverine forest 

Plantation forest 

Degenerate dry upland forest 

Leafy upland bush 

Leafy bushland and thicket 

Acacia drepanobila bushland 

Acacia seyal bushland 

Dwarf bush and grassland 

Grassland 

Open acacia brevispica thicket 

Acacia mellifera bushland 

Mpala scarpline vegetation 

Bare rock, kopjes and escarpment 

Water bodies and wetlands 

Elephant 

Observations Ratio 

0 

0 

5 

1 

0 

1 

27 

44 

4 

14 

27 

33 

4 

0 

0 

0 

0 

0 

0.03 

0.01 

0 

0.01 

0.17 

0.28 

0.03 

0.09 

0.17 

0.21 

0.03 

0 

0 

0 

Zebra 

Observations Ratio 

0 

1 

6 

11 

0 

3 

48 

403 

89 

55 

336 

30 

37 

6 

4 

3 

0 

0.001 

0.01 

0.01 

0 

0.003 

0.05 

0.39 

0.09 

0.05 

0.33 

0.03 

0.04 

0.01 

0.004 

0.003 

(Adapted from Ojwang', 2000) 

An attempt to reduce dimensionality in the data through a principal component 
analysis (PCA) was not very successful since 15 principle components (PCs) were required 
to explain 80% of sample variability or more instead of the acceptable, two or three PCs. 
Modelling the probability of observing an animal was carried out using actual variable 
values. Variables related to human presence and vegetation cover were significant in 
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modelling the probability of observing elephant and zebra (Table 6.3). Height, slope and 

evapotranspiration were also significant in determining the probability of observing zebra. 

Table 6.3. Significant variables and their coefficients from the logistic regression analysis for 
modelling the probability of observing elephant and zebra, based on data from past surveys. 

VARIABLE 

COEFFICIENTS 
Elephant 

(/?2=0.63) 
-4.58 

-1.16 
2.09 
4.13 

-7.18 
3.97 

-6.24 
3.36 

-0.90 
1.36 
0.60 
0.66 
0.44 
0.19 
0.07 
0.26 
0.07 
0.19 
0.01 

-0.45 
-0.39 
-0.29 

{R1 

Zebra 
= 0.71) 

13.08 
-1.62 
1.24 

-1.06 
-2.03 
4.21 

-1.70 
0.51 

' 0.84 
0.56 
0.62 
0.50 
0.15 
0.23 
0.19 
0.21 
0.14 

-0.02 
0.01 
0.02 
0.07 
0.06 

-0.01 
0.0007 
-0.008 

Constant 
Presence of water within 2 km (WT2K) 
Presence of water within 5 km (WT5K) 
Presence of water within 10 km (WT10K) 
Presence of human settlement within 500 m (ST500) 
Presence of human settlement within 5 km (ST5K) 
Presence of cultivation within 500 m (CT500) 
Within urban areas 
Small scale cropland complex 
Upland / riverine forest 
Plantation forest 
Degenerate dry upland forest 
Leafy upland bush 
Leafy bushland and thicket 
Acacia drepanobila bushland 
Acacia seyal bushland 
Dwarf bush and grassland 
Grassland 
Open acacia brevispica thicket 
Acacia mellifera bushland (Arid zone) 
Mpala scarpline vegetation 
Bare rock, kopjes and escarpment 
Slope 
Height 
Annual potential evapotranspiration (ANNPET) 

Based on the sign of coefficients from the stepwise logistic regression, the 
presence of water, human settlement and cultivation appear to negatively influence the 
presence of both elephant and zebra at short distances. However, as distance increases, we 
notice the probability of observing both species increasing too. In particular, the three 
variables positively influence the presence of both animals at 5 km. The situation is 
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reversed at 10 km, where a positive coefficient (4.13) suggests an increase in the 
probability of observing the elephant as opposed to that of observing the zebra, which has a 
negative coefficient (ft = -1.06). 

To study the effect of vegetation, its 16 levels were modelled as dummy variables 
(Hosmer and Lemeshow, 1989). The variable appears to have a strong influence on the 
presence of both elephant and zebra by having all its levels being significant in models for 
both species. The negative coefficient of grassland for zebra is a surprising result, 
especially if one considers the fact that 33% of observed zebra were found in this 
vegetation type, making it the second most favourite vegetation type for the zebra. 

Results from the simulation are summarised by intensity (%), estimate of the 

population total (YE) and the root mean square error (RMSE) of YEfor each sampling 

design. The results indicate consistent and similar estimates of the true population totals 
for all three sampling designs (Table 6.4). Although the population estimates for the 
adaptive design appear similar to those of the other two designs, they are more precise for 
both species. In general there is no difference in precision for both systematic and random 
designs. A gain in precision is observed with increasing intensity in almost all cases. 

6.4. Discussion 
The logistic models obtained yield results that are consistent with the ecology of 

the two animal species. For instance it is known that both elephant and zebra are water 
dependent species, with the elephant requiring daily drinking and the zebra not being able 
to go for more than three days without water (Haltenorth and Diller, 1996). This explains 
why both species have higher probabilities of being observed within 5 km of water points 
(Table 6.3). The negative influence at 2 km for both species can be explained by the fact 
that these same water points are also available for use by livestock, which creates 
competition with human beings. At further distances (i.e. 10 km), only the elephant 
predominates since it can walk for long distances compared to the zebra, which are 
generally found within 4 km of water points (Ottichilo, 2000). 

There is further evidence of conflict for the use of habitat between man and beast 
in the variables measuring presence of settlement and cultivation. At short distances (0.5 
km), both variables impact negatively on the presence of both animal species. However, 
their effect changes to a positive value as distance increases, showing a higher probability 
of animals occurring further from human settlements. This is bound to be a major topic of 
discussion in the near future for Laikipia district. Evidence already exists that the area 
occupied by wildlife in this area is reducing, mainly due to fragmentation caused by human 
resettlement (Georgiadis, 1997). Another impact of human encroachment is isolation of the 
ecosystem by surrounding wildlife areas with cultivated farms and excluding wildlife. This 
is particularly harmful for seasonally migrating species like the elephant and zebra. 
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Table 6.4. Summary of simulations giving the population estimates YE, Yz and the root mean 

square errors RMSE( YE) and RMSE( Yz) for the elephant and zebra, respectively. Results are given 

for three mean sampling intensities 3.27%, 6.54% and 12.75% for systematic and random sampling 
designs, while for the adaptive design, intensity averaged 3.19%, 6.58% and 13.21%. 

SPECIES/STATISTICS 

Elephant (K= 3495) Zebra (Y= 33073) 

Design 

Systematic 

Random 

Adaptive 

Intensity (%) 

3.27 

6.34 

12.75 

3.27 

6.34 

12.75 

3.19 

6.58 

13.21 

YE 

3408 

3499 

3410 

3296 

3329 

3385 

3476 

3493 

3468 

RMSE(K£) 

594 

391 

272 

593 

617 

280 

483 

278 

169 

Yz 

32981 

33750 

33859 

32782 

32913 

33092 

33081 

33205 

34016 

RMSE( Yz) 

9183 

6702 

3849 

10829 

6973 

3566 

6219 

4229 

2531 

Slope, height and annual potential evapotranspiration appear to affect only the 
presence of the zebra and not the elephant. Since the probability of observing an animal 
varies with its location and topographical feature of the study area, visibility is corrected for 
each species by values derived from the literature (Pollock and Kendall, 1987; Wint, 1998). 
The cut-off value used to accept a point as a suitable habitat is set to 0.3 because of weak 
correlation between the presence of the two species and variables influencing the 
distribution, as well as to account for other important variables not considered in model 
building. 

Summaries of the 100 simulations per species validate known behaviour of the 
sampling designs used. For instance, an increase in sampling intensity leads to 
improvement in precision. However, this study shows that for clustered populations, the 
gain in precision may be marginal and should be weighed against the increase in cost 
accompanying increased sampling intensity. 

Although there is a general gain in precision when using the adaptive sampling design, 
its implementation is difficult even under a simulation situation. Two possible sources of 
difficulty include: 
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• A clear definition of neighbouring units in transect sampling, and 
• The choice of criteria for including neighbouring units in the sample, mainly due 

to great variation in transect counts for clustered populations. 

Simulation studies like this are useful to determine this criteria. For this study area, the 
median was the most consistent statistic to use as a criterion for the widely distributed zebra 
but not the elephant, which needed observations of two or more animals before sampling 
the neighbouring transects. Using the median transect count as criterion helps to avoid the 
influence of clustering. However, this may not possible in situations where no prior 
information exists. Furthermore, defining a different condition C for different animal 
species poses difficulties for multi-species surveys. 

The increased difficulty associated with implementing the adaptive sampling 
design has to be carefully considered, with respect to the gain in precision, when adopting 
this sampling design for regular surveys of the tropical savannahs. This is pertinent, 
especially if one notes that many surveys are for monitoring purposes, where emphasis is 
on the study of trends in abundance as opposed to accurate one-off abundance estimates. In 
such cases, standardisation of current sampling strategies to ensure consistent results may 
be a cheaper option. There are situations, however, where a survey with high precision is 
important. Laikipia is one area where wildlife farming is undertaken, mainly on private 
ranches. Income is generated on these farms through wildlife utilisation such as cropping or 
fee-paying hunting. For these farmers, precise estimates are crucial and this is where the 
adaptive design is useful. 

The aspect of visibility bias and correction factors is not treated in detail in this 
study. However, failure to see some of the animals during the survey is corrected by 
adjusting observed counts using proportions from the literature (Pollock and Kendall, 1987; 
Krebs, 1989; Wint, 1998). This is standard procedure in the absence of correction factors 
for animal species in the study area. 

Populations are simulated as being independent of each other and interaction 
between the two animal species is not considered in this study. This is partly due to the 
knowledge that several animal species may generally occur in the same area but still be 
separated in terms of habitat requirements (Voeten and Prins, 1999). Furthermore, the 
distribution of herbivores in African ecosystems is modulated by resource partitioning and 
water requirements (Lamprey, 1963; Bell, 1970; Western, 1975; Voeten and Prins, 1999). 
Considering other none-competition variables that influence animal distribution like 
climatic conditions, relief and human settlement may eliminate this interaction. In any case, 
elephant and zebra are not generally known to compete for the same habitat since the 
elephant is both a grazer and a browser while the zebra is strictly a grazer (MacNoughton 
and Gorgiadis, 1986; Prins and Douglas-Hamilton, 1990). 
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The simulation in this study is based on a more detailed dataset collected from a 
previous survey conducted in ecosystem. This gives more information and allows a more 
complete modelling of the dynamics of the two animal species under study. Although the 
observations are obtained within a narrow temporal window, they still provide a 
representative picture of the spatial pattern. Consequently, simulations can only be as good 
as the data on which they are based. In this study, data on variables that are known to 
influence the distribution of elephant and zebra are used to build a suitability model. In 
particular, the logistic models only used data on variables collected during the survey, 
ignoring others that may have a greater influence on the distribution of these two species 
but were not observed. This is a common problem in modelling and is related to the fact 
that no single correct model exists for a given data set (Hosmer and Lemeshow, 1989; 
Burnham and Anderson, 1998). In this study, however, reasonable R2 values (0.63 and 0.71 
for elephant and zebra, respectively; Table 6.3) are obtained allowing us to treat both 
models as parsimonious. 

6.5. Conclusions 
The following conclusions can be drawn from this study: 

• Data collected by a detailed survey provides a better basis for simulating animal 

dynamics allowing an investigation of different sampling designs. 

• Population estimates obtained by the three sampling designs; random, systematic and 

adaptive do not differ significantly from each other. 

• Estimates of precision from the adaptive design are higher than from the other two 

designs, which don't differ from each other. 

• Presence of man has a negative impact on the presence of the two animal species. 

• Common statistical techniques can be combined with GIS to gain more insight into the 

dynamics of wildlife populations. 
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CHAPTER 7* 

An introductory treatment of decision making 
on statistical procedures used in wildlife 

management 

This chapter differs markedly from the previous five chapters by not being a fully-fledged 

treatment of a topic but an introduction to decision making. 



.Introduction to decision making in sampling procedures. 

Abstract 
This study outlines some preliminary techniques useful in evaluating several sampling 
designs applicable in wildlife surveys. It introduces the multi-criteria evaluation method 
and applies it in assessing the performance of simple random sampling, systematic 
sampling and adaptive sampling designs. The study outlines how the choice of one of these 
sampling designs is affected by the importance we place on each criterion in terms of 
weights. The study also develops criterion scores that show to what degree sampling 
designs meet the given criteria. Illustrations are carried out using results of an analysis 
performed in an earlier chapter (chapter 6). The adaptive design is indicated to be the 
preferred design in eight out of twelve scenarios. However, the systematic sampling design 
also performs reasonably well and is actually found to be better in surveys that do not put 
much emphasis on precision as well as modelling of clustering in the population. Simple 
random sampling design is found to be the least preferable in all situations. In general, the 
final decision depends on the degree of importance placed on different criteria. 
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7.1. Introduction 
The study of biological populations often requires an estimate of population 

density (D) or its size (Y). These parameters are commonly obtained through sampling 
procedures using aerial surveys. Due to mobility of wildlife populations, several sampling 
designs yield estimates of varying precision. Further, more data on wildlife populations are 
collected in space and time and their proper analysis requires appropriate statistical 
treatment. With an increasing number of possible statistical techniques that can be applied 
in a given situation, wildlife managers must weigh the advantages and disadvantages of 
adopting one statistical procedure over another, with considerations such as economics in 
mind. For example, selection of the right sampling and analysis design can result in 
significant savings in cost (Caughley, 1977; Norton-Griffiths, 1978; Thompson, 1992; 
Buckland, et al, 1993). 

This study distinguishes two levels of decision making. Decisions made on the 
selection of appropriate wildlife management options and those made on the selection of 
appropriate statistical procedures for wildlife data collection and analysis. An explanation 
of the relationship between the two levels is briefly outlined below. 

Wildlife management involves looking after a wildlife population, where a 
population is defined as a group of coexisting individuals of the same species or type 
(Caughley and Sinclair, 1994). This management can either be manipulative or custodial. In 
manipulative management, something is done to the population or its habitat in order to 
change its size, while in custodial management, external influences on the population and 
its habitat are minimised with the prime aim of maintaining the population as it is. 
Custodial management is appropriate for protected areas where ecological processes 
determine the dynamics of the system (Caughley and Sinclair, 1994). However, its 
effectiveness in resolving conflicts between park managers and local communities is 
increasingly being questioned (Amuyunzu and Bijl, 1996; Mungatana, 1999). 

Irrespective of the type of management, four options are distinguished in the 
management of a given wildlife population. 

• To increase the wildlife population 

• To decrease the wildlife population (culling) 

• To harvest it in a sustainable manner (cropping) 

• Do nothing to the population but monitor it from time to time (Laissez-faire). 

These lead to three decisions that a wildlife manager needs to make from time to time in the 

course of managing a wildlife population. 

• What is the desired management goal? 

• What management option is appropriate? 

• What method (action) is needed to best achieve the chosen option? 
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However, before a manager is in a position to make a decision on whether to 
increase, decrease, harvest or leave a wildlife population as it is, he needs to have 
information on the abundance and distribution on the population. Such information can 
only be obtained accurately, reliably and timely by application of proper statistical methods 
for data gathering and analysis. For wildlife management, this reduces to the choice of a 
suitable sampling strategy. 

Further, in making wildlife management decisions, it is advantageous to outline all 
steps taken before arriving at the final decision. Wildlife managers must rely on their 
professional knowledge as well as advice sought from other professionals like system 
ecologists, statisticians, economists etc., for input on appropriate and acceptable procedures 
to adopt. 

Statistical procedures have been used to support decision making in water 
resources (Walsh, 1993) or for smart farming (Stein and Van Groenigen, 1997). Amuyunzu 
and Bijl (1996) also integrated remote sensing and GIS in management decision support for 
managing the elephant, while Gorte (1996) used GIS to develop a statistical decision 
analysis for remotely sensed imagery. 

The aim of this study is to introduce preliminary aspects on a framework for 
deciding on which design to apply in sampling wildlife populations using aerial surveys so 
as to obtain reliable estimates of abundance. The study focuses on situations where wildlife 
managers have to decide on the better sampling procedure to adopt given several 
alternatives. Quantitative and qualitative criteria are defined to differentiate the effect of 
adopting one of these designs. A number of hypothetical scenarios are outlined for different 
perspectives i.e. importance attributed to different criteria in order to illustrate the way each 
scenario leads to a different solution. The analysis is based on data collected in actual 
surveys of wildlife in Kenya. 

7.2. Materials and methods 
7.2.7. Decision making process 

A decision is a specific commitment to action, usually in conjunction with a 
commitment of resources (Janssen, 1996). A decision making process is a set of actions and 
dynamic factors that begin with the identification of a stimuli for action (problem) and ends 
with a specific commitment to action (solution). Decision makers are individuals or groups 
of individuals who, directly or indirectly, provide value judgements or opinions on the 
decision process necessary to define and choose between alternative courses of action. 

The decision making process can be thought of as a series of interrelated activities 
that lead to making a choice from a wide range of alternatives (Nyabenge, 1998). Several 
authors have broken this process into the intelligence, design and choice phases, which 
correspond to answers to the questions: What is the problem? What are the available 
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alternatives? Which is the best alternative? (Sharifi and Keulen, 1994; Janssen, 1996; 
Nyabenge, 1998). 

In this study we focus on the third phase to help us select the best sampling design 
suitable for aerial surveys. We assume that any individual or group of individuals who have 
the mandate to carry out any of the four management options listed in section 7.1 for 
purposes of managing a designated wildlife population is a decision maker. 

In general, the decision analysis in wildlife management must outline and assess 
the benefits resulting from making the right decision versus the penalties of getting it wrong 
(Voogd, 1983). This may take the form of examining social, political, biological and 
economic considerations and assigning them due weights. Different wildlife managers will 
assign different priorities to various possible criteria used to examine different statistical 
methods. We do not, however, carry out this pay-off table analysis in this study. 

A suitable tool that inventories, classifies, analyses and conveniently arranges 
available information concerning different choice-possibilities is the multicriteria 
evaluation methods, which starts from a finite number of explicitly formulated criteria 
(Voogd, 1983). A basic feature of this method is the construction of a matrix that outlines a 
set of choice-possibilities that are evaluated against a set of criteria (Figure 7.1). 

Development of an evaluation matrix in wildlife management involves a choice of 
alternative statistical methods with choice-possibilities representing different sampling 
designs while criteria represent standards by which these methods are judged. 

CHOICE POSSIBILITIES 
B 

04 a 
H 

u 

l 
2 
3. 

A" 

Criterion scores 

Adapted from Voogd, (1983) 

Figure 7.1. An evaluation matrix used in multicriteria evaluation methods for P choice possibilities 
that are evaluated using K evaluation criteria. 
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7.2.2. Sampling designs 

Three common sampling designs suitable for aerial surveys of wildlife are simple 
random sampling (SRS), systematic reconnaissance flights (SRF) and adaptive sampling 
(AdS). With SRS, samples of size n out of a total of N units in the population, are selected 
with an equal inclusion probabilities of n = n/N, while SRF is a modification of systematic 
sampling, where transects are chosen at regular intervals. With AdS, an initial sample of 
size n„ is selected by means of SRS and a condition C={y: y > c] is defined, for some 
constant c and a number y of observed animals in the transect, to determine whether 
transects neighbouring those in the initial sample will be added to the sample or not. These 
designs are defined and described in greater detail in chapter 2 of this thesis and their 
performance compared in chapter 6. 

7.2.3. An evaluation matrix for wildlife management 
In setting up an evaluation matrix, the three sampling designs represent three 

choice-possibilities for a wildlife manager. Criteria for this matrix are derived from 
information requirements of wildlife managers. Wildlife management requires reliable 
information on numbers, dynamics and movements of wildlife population within a clearly 
demarcated area. Such information is obtained with considerations of cost and precision, 
leading to three level 1 criteria that can be used to assess the three sampling designs listed 
above i.e. Precision, Cost and Information output. 

Sample size, stratification and ability of the sampling design to adjust to observed 
population patterns influence precision, while two types of costs can be distinguished, i.e. 
fixed costs and variable costs. The type of information obtained from a survey should lead 
to proper modelling of the distribution and movements of wildlife under study. These can 
be measured in the ability of the different sampling designs to identify areas of high species 
diversity, to be understood by people using the results, to provide data to quantify species 
interaction and to identify trends over time. These represent level 2 criteria. Level 1 criteria 
provide an objective way evaluate the three sampling designs, all of which are repeatable. 

The next step in defining the evaluation matrix is to determine a set of criterion 
scores, which determine to what degree a choice probability fulfils a certain objective 
(criteria). Criterion scores are often derived by means of a thorough investigation like an 
impact or effect analysis. They may also be obtained from intuitive estimation leading to 
qualitative rankings. This study assumes the latter approach for defining most of the 
criterion scores. 

Based on results of chapter 6, sampling intensities for the three sampling designs 
(Table 6.4) are used as quantitative criterion scores for sample size. A higher sampling 
intensity implies larger sample and a subsequently higher precision. Fixed costs are 
estimated based on planning costs, personnel costs and the cost of processing information 
from the observed data. Variable costs include costs of going to and from the study area, 
costs for moving from one sampling unit to another and the cost of observing the sample. 
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Scores for both types of cost are ranked as low (3), medium (2) and high (1). Other scores 
in the evaluation matrix are derived as binary scores to indicate the capability of the 
sampling design to meet the desired objective. 

The final definition in the evaluation matrix is to assign weights to each main 
criterion (level 1) and subcriteria (levels 2, 3, ..., k) so as to reflect the importance attached 
to each criterion by decision makers. These will vary from manager to manager and are 
often dictated by the main objective of the survey. The weights at each level must sum up 
to 1 (100%) as a way of standardisation. 

In order to arrive at a complete evaluation of the three sampling designs, a 
weighted summation evaluation procedure is followed, whereby criterion scores are 
multiplied by the corresponding criterion weights and then summed for each design. Other 
arithmetic procedures exist but may not have the simplicity that weighted summation has 
(Voogd, 1983). To eliminate the effect of scale, criteria scores are often standardised by 
dividing each score by the maximum score for every criterion. 

7.3. Results 
To illustrate use of the evaluation matrix, consider an example where a survey is 

carried out to estimate the total number of animals in a given study area with some 
consideration on the cost of the survey. A manager in charge of such a survey may attach 
more importance on precision by assigning it a weight of 0.5 and less importance on the 
type of information obtained from the survey by assigning it a weight of 0.2. Since weights 
commonly have to add to 1, the remaining 0.3 goes towards the cost criteria. Within 
precision, the number of sampled units (sample size) may be considered to be of greater 
influence on precision than stratification. The manager also knows that there many 
clustered species in the population and would give a higher weight to a design with the 
ability to adjust sampling based on observed patterns. He therefore assigns the weights 0.6, 
0.1 and 0.3 to correspond to sample size, stratification and accounting for clustering, 
respectively. Further, there is no reason to consider variable costs as more important than 
fixed costs and thus an equal weight of 0.5 is assigned to both. The same applies to the 
information output types, with each being assigned an equal weight of 0.25. 

We consider the lowest sampling intensities given for each design in table 6.4 and 
obtain the evaluation matrix in table 7.1. The problem is to assess how each sampling 
design is likely to achieve the stated objectives by assigning it scores according to its 
importance. Most criterion scores are binary with 0 for no and 1 for yes. All scores are 
standardised by dividing them with the maximum value per criterion. For this 
configuration, the weighted summation evaluation procedure yields the following appraisal 
scores: 

SRS: 0.5*0.5*1 + 0.5*0.1*1 + 0 + 0.3*0.5*1 + 0.3*0.5*0.667 + 0.2*0.25*1*1 = 0.60 

113 



.Introduction to decision making in sampling procedures_ 

SRF: 0.5*0.5*1 + 0.5*0.1*1 + 0 + 0.3*0.5*1 + 0.3*0.5*1 + 0.2*0.25*1*3 = 0.75 
AdS: 0.5*0.5*.976 + 0 +0.5*0.4*1 + 0.3*0.5*.5 + 0.3*0.5*333 + 0.2*0.25*1*3 = 0.72. 

These indicate SRF to be a better design for the given weight configuration and 
sampling intensity. Next, the level 1 weights were fixed at 0.5, 0.3 and 0.2 for precision, 
cost and information output respectively, while level 2 weights of sample size, stratification 
and clustering were varied. At some stage, SRF was observed to be better than Ads (Table 
7.2). Similar observation was made when the situation was reversed and level 1 weights 
were varied. 

Table 7.1. An evaluation matrix to examine possible sampling designs i.e. Simple Random (SRS), 
Systematic Reconnaissance (SRF) and Adaptive sampling (AdS) against management objectives in 
the sampling wildlife populations. Raw scores are given in brackets where necessary. 

Level 1 
weights 

0.5 

0.3 

0.2 

Sampling 

Criteria and respective level 2 weights 

Precision 

0.5 
0.1 
0.4 

Cost 
0.5 

0.5 

- Sample size 
- Allows stratification 

- Adjusts to observed patterns 

- Fixed costs 

- Variable costs 

Information output 
0.25 

0.25 

0.25 

0.25 

- Identify species diversity 

- Easy to understand 
- Identify species interaction 

- Capture trends 

designs 

SRS 

1 (3.27) 
1 

0 

1(2) 

0.667 (2) 

0 
1 

0 

0 

SRF 

1 (3.27) 

1 
0 

1(2) 
1(3) 

1 
1 

0 
1 

AdS 

0.976(3.19) 

0 
1 

0.5(1) 

0.333(1) 

1 
0 

1 
1 

For fixed level 1 weights and low priority for stratification, AdS appears to 
decrease in importance with a decrease in the weight on the criterion on the ability to use 
information observed in the sample. 

On the other hand, when level 2 weights were varied for fixed effects of level 2 
criteria, AdS was preferable for surveys where cost was not of great importance, while SRF 
appeared important in surveys where precision and the type of information output were not 
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heavily weighted (Table 7.3). Both AdS and SRF performed well in a situation where all 
three were equally weighted with evaluation scores of 0.69 and 0.70, respectively. SRS had 
the lowest appraisal scores in all situations. 

Table 7.2. Level 1 weights are fixed at 0.5, 0.3, 0.2 for precision, cost and information output, 
respectively, while only those corresponding to sample size, stratification and ability to detect 
clustering are varied. 

Design 

SRS 
SRF 
AdS 

.2..1..7 

0.45 
0.55 
0.67 

.3, .1, .6 

0.49 
0.59 

0.70 

Level 1 Weights 

.4, .1,.5 

0.54 
0.64 

0.72 

.5, .1, .4 

0.59 
0.69 
0.73 

.6, . 1 ,3 

0.64 
0.73 
0.74 

.7, .1,.2 

0.69 
0.79 
0.73 

Table 7.3. The weights corresponding to sample size, stratification and ability to detect clustering 
are fixed at 0.5, 0.1, 0.4, respectively, while weights for precision, cost and information output are 
varied. 

Level 2 weights 

Design .5, .1, .4 .4, .1, .5 .5, 3 , .2 3 5 , 3 5 , 3 .5, .4, .1 .1, .5, .4 

SRS 
SRF 
AdS 

0.47 

0.59 

0.79 

0.44 
0.58 

0.78 

0.59 
0.69 
0.73 

0.57 
0.70 
0.69 

0.65 
0.74 
0.69 

0.57 
0.76 
0.60 

7.4. Concluding remarks 
In this study, we develop a preliminary multi-criteria evaluation procedure that can 

be used to distinguish between three sampling designs. We identify appropriate criteria by 
which this can be done, derive criterion scores and choose weights to illustrate the method 
with results from a previous analysis. We use a weighted summation evaluation, but other 
procedures are also applicable. 

There is need to develop methods by which wildlife managers can assess 
performance of different statistical procedures. The whole success of wildlife surveys rests 
on the correct application of sampling techniques. There is a running debate in the survey 
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literature on the advantages and disadvantages of both simple random and systematic 
sampling (Jolly, 1981; Norton-Griffiths, 1981). Addition of a third sampling design would 
make the debate complex and thus the need to an objective method to of choosing one 
design over the others. 

Although the subjective method of choosing weights might appear a disadvantage 
at first, this is actually where the strength of the method lies. The fact that different decision 
makers can choose different values, allows them to explore several scenarios and see the 
results of their choices (Voogd, 1983). 

However, there is still room to improve the determination of criterion scores. This 
study mainly adopted binary scores to outline the methods. In the presence of other 
information or data, quantitative scores may be assumed. It is also possible to extend the 
number of criteria from the current three to any number that a wildlife manager desires 
leading to a straightforward extension of the method. Indeed for other choice-possibilities, 
it may be relevant to take political, economic and cultural considerations into account. 

The results of the analysis show that neither systematic nor the adaptive design is 
superior in all cases. This is consistent with our expectation because whereas the adaptive 
design is well suited for surveys of clustered species, it may not work very well for other 
species. A choice between the two must, therefore, be made with a clear purpose in mind. 

In conclusion, decisions made in wildlife management would benefit a lot from a 
well formulated decision analysis process. This must outline the available alternatives to 
choose from and a list of several criteria by which the alternatives will be judged. Three 
such criteria, precision, cost and type of information obtained were able to select between 
simple random sampling, systematic sampling and an adaptive sampling design, with 
adaptive and systematic sampling designs consistently doing better that simple random 
sampling. 
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Conclusions and Recommendations 

8.1. Conclusions 
This study deals with different aspects of obtaining efficient, reliable and timely 

information from surveys of wildlife populations. It is based on data obtained from surveys 
conducted in Masai Mara and Laikipia Ecosystems in Kenya. The major objective of 
estimating wildlife abundance and modelling wildlife distribution serves as a common 
thread. This concluding chapter gives the main conclusions of the study. The research 
questions posed and answered in different chapters of the thesis are related to the main 
question of improving information obtained from wildlife surveys for better management of 
wildlife populations. 

This chapter outlines the main objectives of the study as formulated in section 1.3 and 
checks these against summaries of research findings. It concludes by giving 
recommendations for further research. 

Is Objective: To investigate current wildlife sampling procedures and propose an 
improvement. 

This study investigated and discussed advantages and disadvantages of two common 
sampling designs in wildlife surveys: simple random sampling and a modified systematic 
sampling design known as systematic reconnaissance flights. It proposed an adaptive 
sampling design as an alternative that takes clustering of wildlife populations into account 
and uses criteria on observed animal counts to maximise sampling information. 

Common sampling designs are defined such that animals observed outside sampling 
units during the survey are not counted. Although this gives unbiased estimates, it is a 
waste of sampled information. A pragmatic approach is to use an adaptive design that 
responds to changes in distribution caused by stochastic processes leading to the observed 
wildlife patterns. Such an improvement is obtained from the developed adaptive design, 
which takes clustering in distribution of wildlife into account (section 2.2.4). Unbiased 
estimators for both the univariate and multivariate case are developed 

The adaptive sampling method gives estimates with lower standard errors than those 
obtained by the commonly used systematic sampling design for both univariate and 
multivariate cases. It is also more efficient than the other design, showing a decrease in 
standard error of up to 37% for some species. Further, it uses information from observed 
patterns, thereby utilising more sample information. The adaptive sampling method 
performs better for clustered and highly abundant species as well as for sparse populations. 
Extension to a multivariate setting does not substantially improve estimates but leads to 
more efficient data use. 
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,nd 2 Objective: To model wildlife abundance and distribution using statistical techniques 

and geographic information system (GIS). 

Most data from wildlife surveys are stored in geographic information systems (GIS), 
allowing the use of GIS techniques to combine layers of information. Generalised linear 
modelling (GLM) is used in a GIS to model abundance and distribution of wildlife in space 
and time, focusing on the distribution of elephant during nine successive surveys. Their 
temporal and spatial distribution is related to 12 environmental variables. A principal 
component analysis identifies five principle components, thereby reducing dimensionality 
in the data. The number of variables explaining elephant abundance is subject to large 
variations during successive surveys with a minimum of four and maximum of eight 
variables. In general, variables related to the protected reserve have more influence on 
elephant abundance. 

A simple distance measure that calculates spatial correlation and quantifies clustering 
for different animal species is developed for wildlife data obtained from aerial surveys. The 
procedure is illustrated by data on elephant, kongoni, wildebeest and zebra and it is able to 
capture clustering in wildebeest and zebra distributions, which have over 20 times more 
observations falling within short distances compared to the other two species. 

Lack of an elegant and systematic method to simultaneously analyse spatial and 
temporal changes for wildlife data is a major deficiency in standard GIS packages. The 
cause is that most GIS software can only describe and display geographic data, while 
lacking the ability to develop new hypotheses. Use of GLM in a GIS allows to model 
effects of environmental factors on a quantitative response variable like animal counts. 
This chapter demonstrates how to take advantage of spatial statistical routines, especially in 
a GIS environment. Extension standard statistical procedures may therefore lead to a better 
understanding of spatial and temporal relationships in wildlife populations. 

3r Objective: To use spatio-temporal procedures to model changes in wildlife populations 
in space and time. 

A manager of a wildlife population needs tools and techniques that can be used to 
answer the following three relevant basic questions: 

• How many animals are in my reserve? 

• Where are they? 

• Are their numbers changing with time? 

These questions concern estimation of abundance and modelling of the spatial distribution. 

The second and third questions require statistical techniques to model changes in wildlife 
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populations in space and time. The study shows how using prior information in Markov 
Chains Monte Carlo (MCMC) modelling improves precision for estimates of population 
totals obtained from aerial wildlife surveys. As an extension of the previous chapter, animal 
counts are related to the area of observed strip transects in a generalised linear model for 
better estimation of animal density. This leads to a gain in precision of up to 35 % in 
estimating elephant abundance (Table 4.1). 

Such an increase in precision is not possible with the Jolly II method, which is now a 
standard tool for estimation. Indeed the main criticism of the Jolly II method are its large 
standard errors, which are a direct consequence of differences in sizes of sampling units and 
observed counts, especially for gregarious species like wildebeest and zebra. These 
differences invalidate the assumption of a through-the-origin regression and proportional 
variance, which are necessary assumptions for ratio estimators like the Jolly II. 

Space-time interactions by means of modelling autocorrelation are assessed before 
estimating effects of environmental variables on observed counts. The space-time analysis 
reveals significant changes in the spatial patterns of elephant counts over a 20-year period. 
Strong interactions are observed within 5 km and 6 months space and time separations, 
respectively (Table 4.2), while spatial dependence accounts for significant variation in 
modelling observed counts of wildlife species. Therefore, it should always be taken into 
account when modelling animal abundance. 

A diversity index is developed that is suitable for aerial surveys of large herbivores. 
This index is sensitive to both high abundance and species richness and is also able to 
capture year to year variation in diversity. It indicates an overall marginal decrease in 
diversity for large herbivores in the Masai Mara ecosystem. Both the space-time analyses 
and diversity index are easy to compute and therefore provide simple tools for rapid 
decision making as far as trends in wildlife populations are concerned. 

4 Objective: To model wildlife distribution using spatial point patterns. 

A more detailed data set, in which exact geographical locations of groups of animal 
have been recorded, is available from a second study area. This is used to model spatial 
point patterns of six ungulates in the area. Differences in abundance and spatial distribution 
of wildlife species are related to their food requirements and how this is distributed. 
Interaction between species is generally not strong as shown by the X statistic and the 
multivariate /^-function. Spatial point pattern analysis exists that can be very useful to study 
factors influencing spatial and temporal distribution of animals and in generating 
information necessary for management of wildlife populations. The use of these techniques, 
however, depend on the availability of better data than currently available from aerial 
surveys and calls for an increase in the use of GPS technology during collection of animal 
and environmental data. Spatial point pattern analysis provides a tool that can be used to 
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study wildlife species grouping and relate this to food availability. Such information is 
useful for designating cropping and hunting areas in areas practising consumptive 
utilisation. 

5 Objective: To compare performance of proposed sampling procedures to established 

sampling strategies. 

A simulation study compares performance of the conventional random and systematic 
designs to the proposed adaptive design. Based on observed spatial patterns, the distribution 
of animals is simulated under a GIS, where it is related to other environmental variables 
like vegetation type to build a statistical model that predicts the presence of a wildlife 
species. The resultant spatial patterns are then sampled using the different sampling designs 
and the data analysed. This is repeated 100 times for two key species, the elephant and 
zebra. Mean of population total estimates are compared and performance of each design is 
compared, at different sampling intensities, by means of the root mean squared error 
(RMSE). 

Human presence has a negative impact on the presence of the elephant and zebra in 
this ecosystem. Population estimates obtained by the three sampling designs do not differ 
significantly from each other. Estimates of precision for the adaptive design is higher than 
that of the other two designs, thereby validating the use of adaptive sampling design for 
sampling clustered population. Common statistical techniques can be therefore be used in a 
GIS to gain more insight into the dynamics of wildlife populations. This works well with 
the availability of data collected by a detailed survey, which provides a better basis for 
simulating animal dynamics. 

To help a wildlife manager choose between different sampling techniques and other 
statistical methods clear steps must be provided to choose a particular method. This study 
describes different scenarios encountered when making a decision related to the adoption of 
a statistical procedure useful in the management of wildlife. In particular, selection of a 
suitable sampling design and the analysis of subsequent data can result in significant 
savings in cost. 

8.2. Recommendations 

This thesis presents an adaptive sampling design as an improvement over the 
conventional systematic reconnaissance flights. The development of the sampling strategy 
is treated in somewhat greater detail for the univariate case as opposed to the multivariate 
case. This extension to the multivariate case is one area that would benefit from further 
research. Another related area of future research relates to the definition of criteria that 
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determine when to sample neighbouring units. In the validation analyses of chapter 6, it is 
observed that different criteria may be appropriate for different wildlife species. This 
presents a drawback, especially for multi-species surveys, which are common in the tropics. 
More research needs to be carried out to determine standard criteria for certain species 
grouping. Finally, there is urgent need to carry out detailed field tests to quantify various 
sources and forms of observer bias in wildlife surveys. It is hoped that this thesis presents a 
useful step towards the integration of statistical developments and ecology for the 
improvement of wildlife management. 
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.English Summary. 

Current methods of obtaining information on wildlife populations are based on monitoring 
programmes using periodic surveys. In most cases aerial techniques are applied. Reported 
numbers are, however, often biased and imprecise, making it difficult to use this 
information for management purposes. This thesis develops suitable statistical procedures 
to improve sampling of wildlife populations. It investigates survey and analysis procedures 
and proposes improvements and modifications to existing methods. Data analysed in the 
study originate two study areas in Kenya: Masai Mara National Reserve and Laikipia 
ecosystem. 

Chapter 1 gives a general introduction to the thesis. It formulates the motivation, 
objectives and scope of the research. 

Chapter 2 investigates different current sampling designs in aerial surveys, with 
particular focus on systematic and stratified random sampling. Sampling error is a major 
cause of biased and imprecise estimates of population parameters. Occurrence of several 
wildlife species in herds violates common assumptions in current sampling methods. This 
chapter investigates and discusses advantages and disadvantages of two common sampling 
designs in wildlife surveys: simple random sampling and a modified systematic sampling 
design known as systematic reconnaissance flights (SRF). It proposes an adaptive sampling 
design as an alternative that takes clustering of wildlife populations into account and uses 
criteria on observed animal counts to maximise sampling information. For such 
populations, the adaptive design is found to be more efficient than the common designs, 
showing a decrease in the standard error of up to 37%. The comparison focuses on three 
animal species of varying social behaviour: the elephant (Loxodonta africana), kongoni 
{Alcelaphus buselaphus) and wildebeest (Connochaetes taurimus). 

Chapter 3 integrates generalised linear modelling with geographic information 
systems to model abundance and distribution of wildlife in space and time. The chapter 
focuses on the distribution of elephant during nine successive surveys. It analyses their 
temporal and spatial distribution and relates these to 12 environmental variables using 
generalised linear modelling. A principal component analysis identifies five principle 
components, thereby reducing dimensionality in the data. The number of variables 
explaining elephant abundance is subject to large variations during successive surveys with 
a minimum of four and maximum of eight variables. In general, variables related to the 
protected reserve have more influence on elephant abundance. This chapter also develops a 
simple distance measure to calculate spatial correlation for wildlife data obtained through 
aerial surveys by quantifying clustering for different animal species. The procedure is 
illustrated by data on elephant, kongoni, wildebeest and zebra (Equus burchelli). The 
measure captures clustering in the wildebeest and zebra, which have over 20 times more 
observations within short distances compared to the other two species. 

Chapter 4 introduces more modern statistical procedures and applies them for better 
management of wildlife by addressing three key issues: determination of abundance, 
modelling of animal distributions and variability of diversity in both space and time. Prior 
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information is incorporated in Markov Chain Monte Carlo (MCMC) methods and used to 
improve estimates of abundance. The new abundance estimates are up to 35% more 
accurate when compared to those obtained by the common Jolly II method. Modelling 
distribution is improved by developing a simple space-time procedure within a 
geographical information system, which includes modelling of autocorrelation in wildlife 
counts. Significant temporal changes in spatial patterns are found from a space-time 
analysis of elephant counts over a 20-year period, with strong interactions over 5 km and 6 
months space and time separations, respectively. Spatial dependence is found to account for 
most variation when modelling species distribution. The chapter further proposes a 
diversity index suitable for monitoring changes in trend of large herbivores and based on 
transect data. The index is sensitive to both high abundance and species richness and is able 
to capture year to year variation. It indicates an overall marginal decrease in large herbivore 
diversity for in the Masai Mara ecosystem. The diversity index is easy be compute, thereby 
providing a handy tool for rapid decision making. 

Wildlife populations exhibit clustering in their distributions that is difficult to assess 
quantitatively by analysing transect data obtained from aerial surveys. Chapter 5 looks at 
this issue and analyses different clustering behaviour and characterises them using spatial 
point patterns analysis. This is made possible by the availability of a detailed data set, 
which gives geographic positions of each observed group of animals, leading to data that is 
amenable to spatial point pattern analysis. Nearest neighbour distance measures like the G-
statistic and ^-function are used to classify observed patterns as clustered, regular or 
completely random to correspond to three types of social behaviour, i.e. animals found in 
large herds, animals found in small to medium herds and solitary animals. Independence 
between species is tested using a multivariate extension of the AT-function. Results show 
that spatial point patterns from Thomson's gazelle (Gazelle thomsoni) and impala 
(Aepyceros melampus) come from strongly clustered populations. Clustering is explained 
for different wildlife species by relating observed patterns to environmental factors like 
vegetation type. This chapter demonstrates spatial point pattern analysis to be useful in 
determining and confirming species distribution patterns. 

In chapter 6 once more takes advantage of the detailed data set to develop a procedure 
that combines statistical simulation techniques and GIS to compare performance of the two 
common sampling designs, random and systematic, to the adaptive design. The intensive 
simulation in a GIS compares distribution, sampling and estimation of abundance. The 
chapter further assesses impact of sampling designs and intensities on estimates of 
population parameters from the three designs. Performance is compared by means of the 
root mean square errors at three increasing sampling intensities. Results show an increase in 
precision of estimates with increasing sampling intensity, while no significant differences 
are observed between estimates obtained with the two common sampling designs. The 
study demonstrates an increase in precision for the adaptive design, thereby stressing the 
importance of using such designs when sampling clustered populations. 
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A brief outline is given in chapter 7 to aid a wildlife manager choose between 
different spatio-temporal techniques and other statistical methods introduced in earlier 
chapters of the thesis. This short chapter describes different scenarios encountered when 
making decisions related to the statistical aspects of wildlife management. This is made 
relevant by the fact that more and more data are collected in space and time and their proper 
analysis requires appropriate statistical attention. Selection of the right design and analysis 
method can result in significant savings in cost. 

In summary, this research shows that ecology can largely benefit from application of 
appropriate statistical techniques. In particular, estimation of population parameters like 
population size needs sound sampling strategies, while assumptions for each sampling 
design need to be carefully studied. Use of detailed data proved to be an important 
improvement in understanding spatial distribution of wildlife. This study suggests that it is 
better to first model spatial and temporal dependence, which is known to exist for many 
biological populations, before carrying out more detailed analysis. In general, this thesis 
shows that several existing techniques useful for studying dynamic populations can be 
extended and improved to provide tools that improve the information obtained from 
wildlife surveys. 

In conclusion, the following are main findings of this research: 
• An adaptive sampling strategy as presented in this thesis is an extension to current 

sampling strategies that allows to sample clustered wildlife populations. 
• Modelling of spatial dependence for individual wildlife species improves estimation of 

wildlife abundance. 
• Modelling of spatial distributions of wildlife benefits from a further integration of 

statistical techniques in geographical information systems. 

• An extension of current statistical methods with procedures to analyse spatio-temporal 
data allows assessing changes in wildlife populations in space and time. 

• A simple diversity index as developed in this study shows a marginal decrease in 
diversity of large herbivores in the Masai Mara ecosystem. 

• Data that are currently being collected by aerial transects are usually not sufficient for a 
rigorous statistical analysis. A higher resolution, in particular recording of individual 
animal locations, is necessary to model spatial distributions of wildlife using spatial 
point pattern analysis. If a spatial point pattern analysis is carried out, detailed 
information about the ecology of different species becomes available. 
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Dit proefschrift richt zich het ontwikkelen van statistische procedures om het waarnemen 
van wild te verbeteren. Gangbare methodes om informatie in te winnen maken gebruik van 
monitoring programma's gebaseerd op periodieke inventarisaties. Meestal worden hierbij 
luchtopnames gebruikt. Waarnemingen en tellingen zijn echter vaak onzuiver. Dit maakt het 
moeilijk om ze te gebruiken voor beleid en beheer. In dit proefschrift onderzoek ik de 
procedures voor waarneming en analyse en stel ik verbeteringen en veranderingen voor op 
bestaande methodes. De gegevens komen uit het Masai Mara natuurpark in Kenia. 

Hoofdstuk 1 geeft een algemene inleiding op het proefschrift. Het formuleert de motivatie, 
het doel en reikwijdte van de studie. 

Hoofdstuk 2 onderzoekt verschillende gangbare bemonsteringsstrategieen die gebruikt 
worden bij luchtopnames, in het bijzonder systematisch bemonsteren en gestratificeerd 
willekeurig bemonsteren. De monsterfout is een belangrijke bron voor onzuivere en 
onnauwkeurige schattingen van parameters die de populatie beschrijven. Bovendien komen 
verschillende soorten wilde dieren in kuddes voor. Dit komt niet overeen met noodzakelijke 
aannames die in gangbare bemonsteringsstrategieen gemaakt moeten worden. Het hoofdstuk 
onderzoekt en bediscussieert voor- en nadelen van twee gangbare bemonsteringsstrategieen in 
wild observaties: enkelvoudige willekeurige bemonstering en een modificatie op de 
systematische strategic die we kennen als systematische herkenningsvluchten. Het presenteert 
een alternatieve strategic die kuddevorming in beschouwing neemt en die criteria gebruikt om 
aantallen waargenomen dieren te maximaliseren bij het verzamelen van informatie. Voor 
dergelijke populaties is dit schema efficienter dan gangbare schema's, in die zin dat de 
standaardfout afneemt met waardes tot 37%. De vergelijking is gebaseerd op drie soorten: 
olifanten (Loxodonta africana), kongoni's (Alcelaphus buselaphus) en gnoes (Connochaetes 
taurimus). Deze hebben alle een verschillende sociaal gedrag. 

Hoofdstuk 3 integreert het gegeneraliseerde lineaire model in een geografisch informatie 
systeem ten einde het voorkomen en de verspreiding van olifanten in ruimte en tijd te 
modelleren. Het concentreert zich op hun verspreiding gedurende negen opeenvolgende 
inventarisaties. Hun ruimtelijke en temporele verspreiding wordt gekoppeld aan 12 
omgevingsvariabelen met behulp van statistische methoden. Een hoofdcomponentenanalyse 
identificeerde 5 hoofdcomponenten, waarbij de dimensie van de ruimte waarin de gegevens 
voorkomen duidelijk is gereduceerd. Het aantal variabelen is overigens sterk wisselend 
gedurende opeenvolgende inventarisatie, met een minimum van 4 en een maximum van 8 
variabelen. In het algemeen zijn variabelen die het beschermde gebied beschrijven het sterkst 
gekoppeld aan het beschrijven van voorkomen van de olifanten. Het hoofdstuk gaat dan verder 
met het ontwikkelen van een eenvoudige afstandsmaat om ruimtelijke correlatie te meten. Voor 
wilde dieren die met luchtopnames worden waargenomen gebeurt dit door kuddevorming van 
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verschillende soorten te kwantificeren. De procedures zijn toegepast op olifanten, kongoni's, 
gnoes en zebra's (Equus burchelli). Kuddevorming van zowel gnoes als zebra's is met succes 
gemodelleerd. Deze dieren kennen tot 20 keer zoveel waarnemingen op korte afstand als de 
twee andere onderzochte diersoorten. 

Hoofdstuk 4 introduceert moderne statistische procedures en past die toe voor beheer en 
beleid, met daarbij aandacht voor het kwantificeren van het voorkomen van soorten, het 
modelleren van verdelingen en voor het kwantificeren van variabiliteit in ruimte en tijd. 
Voorinformatie kan worden meegenomen als gebruik gemaakt wordt van Markov Chain Monte 
Carlo methoden. Schattingen voor het voorkomen van soorten worden hiermee verbeterd. Deze 
zijn 35% nauwkeuriger dan die worden verkregen met de gangbare Jolly-II procedure. Het 
modelleren van de verdeling in ruimte en tijd wordt verbeterd via een eenvoudige procedure 
waarbij variatie in ruimte en tijd in een geografisch informatie systeem worden gemodelleerd en 
autocorrelaties worden meegenomen. Significante temporele veranderingen in ruimtelijke 
patronen zijn aangetroffen in een ruimte-tijds analyse van tellingen aan olifanten gedurende een 
20-jarige periode met sterke interacties over afstanden tot 5 km in de ruimte en intervallen tot 6 
maanden in de tijd. Ruimtelijke afhankelijkheid neemt de meeste variatie voor haar rekening bij 
het modelleren van verdeling der soorten. Het hoofdstuk stelt voorts een diversiteitindex voor 
die geschikt is voor het monitoren van veranderingen in langjarige trends van grote herbivoren. 
Deze is gebaseerd op 1-dimensionale transect gegevens. De index is gevoelig voor hoge 
waarden voor het voorkomen van soorten en voor soortenrijkdom en is in staat de jaarlijkse 
variatie te kwantificeren. Het laat zien dat er een geringe afname is in de diversiteit van grote 
herbivoren in het Masai Mara ecosysteem. De diversiteitindex kan eenvoudig worden berekend 
en is daarmee een geschikt gereedschap voor het ondersteunen van het maken van snelle 
beslissingen in ruimte en tijd. 

Populaties van wilde dieren kunnen clustering vertonen in hun verdeling. Deze clustering 
is vaak moeilijk kwantitatief vast te stellen als gegevens worden gebruikt die via luchtopnames 
worden verkregen. Hoofdstuk 5 analyseert en kwantificeert verschillend gedrag in clustering en 
karakteriseert dit via het gebruik van procedures uit de punt-patroon analyse. Dit is mogelijk 
geworden doordat een gegevens bestand beschikbaar kwam met zeer gedetailleerde informatie 
over de geografische posities van iedere waargenomen groep dieren. Deze gegevens lijken 
daarom sterk op een puntpatroon. Maten gebaseerd op de kortste afstand tussen (clusters van) 
dieren zoals de G- en de ^-functie worden gebruikt om waargenomen patronen te classificeren 
als geclusterd, regelmatig of totaal willekeurig. Dit correspondeert dan met drie vormen van 
sociaal gedrag: dieren die voorkomen in grote kuddes, dieren die voorkomen in kleine tot 
middelgrote kuddes en solitaire dieren. Onafhankelijkheid tussen soorten is getoetst met een 
multivariate uitbreiding van de ^-functie en met de X2 toets. Resultaten laten zien dat 
ruimtelijke patronen van de Thomson gazelle (Gazelle thomsoni) en de impala {Aepyceros 
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melampus) afkomstig zijn van sterk geclusterde populaties. Clustering kan verklaard worden 
voor de verschillende soorten wild door de waargenomen patronen te koppelen aan 
omgevingsfactoren, zoals het type vegetatie. Dit hoofdstuk laat zien dat een analyse van 
ruimtelijke punt patronen nuttig is bij het bepalen en bevestigen van verdelingspatronen van 
verschillende wildsoorten. 

In hoofdstuk 6 maak ik nog eens gebruik van het gedetailleerde gegevens bestand en 
gebruik dat om een procedure te ontwikkelen die statistische methoden koppelt aan een 
geografisch informatie systeem om de kwaliteit te vergelijken tussen twee gangbare 
bemonsteringsstrategieen en de adaptieve strategic die in hoofdstuk 2 werd gepresenteerd. Ik 
rapporteer een vergelijking van de verdeling bemonstering en schatting van het voorkomen van 
wild door middel van een intensieve simulatie in een geografisch informatie systeem. De 
kwaliteit van het functioneren van twee gangbare bemonsteringsstrategieen t.o.v. de adaptieve 
strategic wordt gemeten via de wortel uit de gekwadrateerde verschillen tussen gemeten en 
gemodelleerde waarden bij drie bemonsteringsdichtende. Het hoofdstuk meet voorts de invloed 
van een bemonsteringsstrategie en dichtheden van voorkomen op schattingen van populatie 
parameters die met de drie strategieen verkregen worden. De simulatie laat een toename zien 
van de nauwkeurigheid van de schattingen met toenemende bemonsteringsintensiteit, terwijl 
geen significante verschillen bestaan tussen de schattingen die met gangbare 
schattingsprocedures worden verkregen. De simulatie laat verder een toename zien in de 
precisie van de schattingen als de adaptieve strategic gebruikt wordt, waarbij de kwaliteit voor 
het gebruiken van deze strategic nog eens wordt onderschreven voor het bemonsteren van 
geclusterde populaties van wilde dieren. 

In hoofdstuk 7 geef ik een kort overzicht dat een beheerder van een wildreservaat ten 
dienste kan zijn om te kiezen tussen verschillende ruimtelijk en temporele technieken en andere 
statistische methoden die eerder in het proefschrift behandeld zijn. Het hoofdstuk beschrijft 
verschillende scenario's die gebruikt kunnen worden als een beslissing moet worden genomen 
die betrekking heeft op de statistische aspecten van wildbeheer. De motivatie is dat steeds meer 
gegevens beschikbaar komen in ruimte en tijd en dat een goede analyse hiervoor de juiste 
statistische aandacht moet krijgen. Een keuze voor de juiste bemonsteringsstrategie en de juiste 
analyse methode resulteert in een aanzienlijke besparing van kosten. 

Samengevat laat dit onderzoek zien dat ecologie in hoge mate baat kan vinden bij het 
toepassen van de juiste statistische procedures. In het bijzonder wordt het nut getoond van het 
gebruik van geschikte bemonsteringsstrategieen voor het schatten van populatie parameters 
zoals de omvang van een populatie. De aannames die bij iedere strategic gemaakt worden 
moeten zorgvuldig getoetst worden. Een nuttige aanwijzing is verder om eerst de ruimtelijke en 
temporele variatie te modelleren die in veel biologische populaties aanwezig is. Tenslotte is het 
van groot belang om zo nauwkeurig mogelijke gegevens te verzamelen die door een zo klein 
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mogelijke aggregatie een zo groot mogelijke betrouwbaarheid hebben. Dit proefschrift met de 
studie naar dynamische populaties in een natuurreservaat in Afrika laat zien dat verschillende 
technieken bestaan die kunnen worden uitgebreid en verbeterd om de gereedschappen te geven 
die de informatie uit luchtopnames van wildpopulaties kunnen verbeteren. 

De belangrijkste resultaten van dit onderzoek zijn: 

• Een adaptieve bemonsteringsstrategie zoals gepresenteerd in dit proefschrift vormt een 
uitbreiding op bestaande bemonsteringsstrategieen voor wild om geclusterde populaties te 
kunnen bemonsteren. 

• Het modelleren van ruimtelijke afhankelijkheid binnen individuele soorten wild komt ten 
goede aan het schatten van de totale populatie. 

• Het modelleren van ruimtelijke verdelingen van wild profiteert van een verdere integratie 
van statistische technieken in geografische informatie systemen. 

• Een uitbreiding van gangbare statistische methoden met procedures voor het analyseren 
van spatio-temporele gegevens maakt het mogelijk om veranderingen in wildpopulaties te 
modelleren in ruimte en tijd. 

• Een eenvoudige diversiteitindex, die in dit proefschrift wordt gepresenteerd laat zien dat er 
een geringe afname is in de diversiteit van grote herbivoren in het Masai Mara ecosysteem. 

• Gegevens zoals die standaard via vluchttransecten worden verzameld zijn als regel 
onvoldoende om een gedegen statistische analyse mee uit te voeren. Een betere resolutie, 
met name registratie van individuele dieren, is nodig om verdelingen van wild te 
modelleren met behulp van ruimtelijke punt-patronen. 
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Ms. M. Fandino Lozano 
(Colombia) 

Mr. B. Toxopeus (ITC 
staff) 

Ms. Wang Yiman (China) 

Ms. Asun Saldana-Lopez 
(Spain) 

Mr. T. Ceccarelli (Italy) 

Mr. Peng Wanning 
(China) 

Ms. C. Lawas 
(Phihppines) 

Ms. W. Bijker (ITC staff) 

Mr. A. Farshad (ITC staff) 

Mr. B. Orlic (Serbia) 

Mr. Y. Bishr (Egypt) 
Mr. Zhang Xiangmin 
(China) 
Mr. R. Gens (Germany) 

Mr. J. Turkstra (ITC staff) 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1996 

1997 

1997 

1997 

1997 

1997 

1997 

1997 

1997 

1997 

1998 

1998 

1998 

Mr. C. Cassells (UK) | 1998 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

90-6164-120-9 

90-9009-284-6 

90-6164-115-2 

90-6164-117-9 

90-6164-116-0 

90-6164-122-5 

90-6164-123-3 

90-9009-775-9 

90-6164-119-5 

90-407-1385-5 

90-6164-129-2 

90-6164-126-8 

90-6164-131-4 

90-6164-133-0 

90-6164-135-7 

90-6164-134-9 

90-6164-137-3 

90-6164-139-X 

90-6164-142-X 

90-6164-140-3 

90-6164-141-1 

90-6164-144-6 

90-6164-155-1 

90-6164-147-0 

51 | NA 

Development of a Computerized Aid to Integrated Land 
Use Planning (CAILUP) at regional level in irrigated 
areas: a case study for the Quan Lo Phung Hiep region in 
the Mekong Delta, Vietnam 
The management of spatio-temporal data in a national 
geographic information system 
Modelling Spatial and Temporal Variations in Rainfall-
Triggered Landslides: the integration of hydrologic 
models, slope stability models and GIS for the hazard 
donation of rainfall-triggered landslides with examples 
from Manizales, Colombia 
Modelling settlement patterns for metropolitan regions: 
inputs from remote sensing 
Modern spatial planning practice as supported by the 
multi-applicable tools of remote sensing and GIS: the 
Syrian case 
Integrated modelling for 3D GIS 
Optimization modelling of a river-aquifer system with 
technical interventions: a case study for the Huangshui 
river and the coastal aquifer, Shandong, China 
Surveys: informatie als norm: een verkenning van de 
institutionalisering van dorp - surveys in Thailand en op 
de Filippijnen 
GIS-based hydrological modelling of alluvial regions: 
using the example of the Kisafold, Hungary 
A Robust and Adaptive Matching Procedure for 
Automatic Modelling of Terrain Relief 
A Framework of Ecological Evaluation oriented at the 
Establishment and Management of Protected Areas: a 
case study of the Santuario de Iguaque, Colombia 
ISM : an Interactive Spatial and temporal Modelling 
system as a tool in ecosystem management: with two 
:ase studies : Cibodas biosphere reserve, West Java 
Indonesia : Amboseli biosphere reserve, Kajiado district, 
Central Southern Kenya 
Satellite SAR imagery for topographic mapping of tidal 
flat areas in the Dutch Wadden Sea 
Complexity of soils and Soilscape patterns on the 
jouthern slopes of the Ayllon Range, central Spain: a GIS 
assisted modelling approach 
Towards a planning support system for communal areas 
in the Zambezi valley, Zimbabwe; a multi-criteria 
evaluation linking farm household analysis, land 
evaluation and geographic information systems 

Automated generalization in GIS 

The Resource Users' Knowledge, the neglected input in 
^and resource management: the case of the Kankanaey 
armers in Benguet, Philippines 
Radar for rain forest: A monitoring system for land cover 
Change in the Colombian Amazon 
Analysis of integrated land and water management 
iractices within different agricultural systems under 
semi-arid conditions of Iran and evaluation of their 
sustainability 
*redicting subsurface conditions for geotechnical 
modelling 
Semantic Aspects of Interoperable GIS 
Coal fires in Northwest China: detection, monitoring and 
prediction using remote sensing data 
Quality assessment of SAR interferometric data 
Jrban development and geographical information: spatial 
and temporal patterns of urban development and land 
values using integrated geo-data, Villaviciencia, 
Colombia 
dermal modelling of underground coal fires in northern 
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.Completed Ph.D. studies at ITC_ 

Mr. M. Naseri (Iran) 
Mr. B.G.H. Gorte (ITC 
staff) 
Mr. Tenalem Ayenew 
(Ethiopia) 
Mr. Wang Donggen 
(China) 

Ms. M. Bastidas de 
Calderon (Venezuela) 

Mr. A. Moameni (Iran) 

Mr. J.W. van Groenigen 
(The Netherlands) 
Ms. Cheng Tao (China) 

Mr. Piotr Wolski (Poland) 

Mr. B. Acharya (Nepal) 

Mr. Ali Akbar Abkar 
(Iran) 

Mr. T. Yanuariadi 
(Indonesia) 
Mr. Mohamed Abu Bakr 
(Sudan) 

Ms. M. Eleveld (The 
Netherlands) 

Ms. Yang Hong 
(China) 
Mr. Felix Mainam 
(Cameroon) 
Mr. Mahmoud Bakr 
(Egypt) 
Ms. S. Zlatanova 
(Bulgaria) 
Mr. Wilber K. Ottichilo 
(Kenya) 
Mr. Nuri Kaymakci 
(Turkey) 

Ms. Rhodora Gonzalez 
(Philippines) 

Mr. Ernst Schetselaar 
(ITC staff) 

1998 

1998 

1998 

1998 

1998 

1999 

1999 

1999 

1999 

1999 

1999 

1999 

1999 

1999 

1999 

1999 

2000 

2000 

2000 

2000 

2000 

2000 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

NA 

90-6164-157-8 

90-6164-158-6 

90-6864-551-7 

NA 

NA 

90-6164-156-X 

90-6164-164-0 

90-6164-165-9 

90-6164-168-3 

90-6164-169-1 

90-5808-082-X 

90-6164-170-5 

90-6461-166-7 

90-6164-172-1 

90-6164-179-9 

90-6164-176-4 

90-6164-178-0 

90-5808-197-4 

90-6164-181-0 

90-5808-246-6 

90-6164-180-2 

China 
Monitoring soil salinization, Iran 

Probabilistic Segmentation of Remotely Sensed Images 

The hydrological system of the lake district basin, central 
main Ethiopian rift 

Conjoint approaches to developing activity-based models 

Environmental fragility and vulnerability of Amazonian 
landscapes and ecosystems in the middle Orinoco river 
basin, Venezuela 
Soil quality changes under long-term wheat cultivation in 
the Marvdasht plain, South-Central Iran 
Constrained optimisation of spatial sampling: a 
^eostatistical approach 
A process-oriented data model for fuzzy spatial objects 
Application of reservoir modelling to hydrotopes 
identified by remote sensing 

Forest biodiversity assessment: A spatial analysis of tree 
species diversity in Nepal. 

Likelihood-based segmentation and classification of 
remotely sensed images 

Sustainable Land Allocation: GIS-based decision support 
for industrial forest plantation development in Indonesia 
An Integrated Agro-Economic and Agro-Ecological 
Framework for Land Use Planning and Policy Analysis 
Exploring coastal morphodynamics of Ameland (The 
Netherlands) with remote sensing monitoring techniques 
and dynamic modelling in GIS 

Imaging Spectrometry for Hydrocarbon Microseepage 

Modelling soil erodibility in the semiarid zone of 
Cameroon 
A Stochastic Inverse-Management Approach to 
Groundwater Quality 

3D GIS for Urban Development 

Wildlife Dynamics: An Analysis of Change in the Masai 
Mara Ecosystem 
Tectono-stratigraphical Evolution of the Cankori Basin 
(Central Anatolia, Turkey) 
Platforms and Terraces: Bridging participation and GIS 
in joint-learning for watershed management with the 
[fugaos of the Philippines 
Integrated analyses of granite-gneiss terrain from field 
md multisource remotely sensed data. A case study from 
he Canadian Shield 
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