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Stellingen 

1. SCP2 is betrokken bij zusterchromatiden-cohesie tot aan anafase I. 
dit proefschrift 

2. SCP2 en SCP3 stabiliseren crossovers tussen homologe chromosomen tijdens 
laat diploteen en metafase I. 

dit proefschrift 

3. Spreidpreparaten zijn niet geschikt voor nauwkeurige immunolocalisatiestudies 
wegens artefacten die ontstaan tijdens de spreidprocedure 

Schmekel et al, Exp. Cell Res. 226: 20-30 
dit proefschrift 

4. SCP2 van de rat vertoont veel structurele en mogelijk ook functionele 
overeenkomsten met Redl van gist. 

dit proefschrift 

5. Microchip array technologie maakt de bestudering van het geheel van 
complexe biochemische pathways mogelijk. Daarmee krijgt de biologie naast 
reductionistische ook holistische gereedschappen ter beschikking. 

6. De complexe wisselwerking tussen de biosfeer en de andere sferen van onze 
planeet (de geosfeer, de hydrosfeer en de atmosfeer) vertoont 
hoogstwaarschijnlijk een zelforganiserend karakter. De madeliefjesplaneet van 
James Lovelock vormt een goede aanzet voor een studie aan de cybernetische 
eigenschappen van de aarde. 

7. Aangezien de prognose voor kanker aan de cervix gerelateerd is aan het type 
human papiloma virus aanwezig in de tumor, zal DNA-diagnostiek bij deze 
vorm van kanker een belangrijke rol gaan spelen in de ontwikkeling van 
specifieke behandelingen voor de patient. 

Lombard et al, J. Clin. Oncol. 16: 2613-2619 

8. De aanstellingsduur van een OIO zou gecorreleerd moeten zijn aan de grootte 
van het eiwit dat hij/zij bestudeert. 

9. De aarde verschaft genoeg om tegemoet te komen aan ieders behoefte, maar 
niet aan ieders hebzucht. 

Gandhi 

10. Voor een goeie stelling gaat men naar de Gamma 

Stellingen behorend bij het proefschrift "SCP2, a major protein component of the axial 
elements of synaptonemal complexes" in het openbaar te verdedigen op 10 maart 1999 
door Marjolijn Schalk. 



Defeiten horen alleen maar tot de opgave, niet tot de oplossing. 

Wittgenstein 
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Chapter 1 

General introduction 



Chapter 1 

Meiosis 

Nearly all our body cells are diploid, i.e., they contain two sets of chromosomes, one 

of maternal and one of paternal origin. The gametes are exceptions to this rule, 

because they are haploid and contain only one set of chromosomes per cell. At 

fertilization, two haploid gametes fuse to form a single diploid cell, the zygote, which 

is the first cell of a new, diploid individual. Meiosis is the counterpart of fertilization 

because it marks the transition from the diploid to the haploid phase of the life cycle. It 

consists of two successive divisions, meiosis I and meiosis II, which follow a single 

round of DNA replication. Meiosis I is the reductional division by which the 

chromosome number is reduced from diploid to haploid, and meiosis II is an 

equational division (Fig. 1). The life cycles of all sexually reproducing eukaryotes 

display such an alternation of diploid and haploid generations of cells, and meiosis 

plays a provital role in the life cycle of all these organisms. The investigations 

described in this thesis make part of a research line that is focused on the events during 

meiosis I. 

After premeiotic S-phase, during the prophase of meiosis I, homologous 

chromosomes pair, and between the paired chromosomes proteinaceous structures, the 

synaptonemal complexes (SCs), are formed. Two paired chromosomes constitute a 

bivalent. In a bivalent, the non-sister chromatids of homologous chromosomes 

exchange genetic material, which results in crossovers and gene conversions. At the 

end of prophase I, SCs disassemble; during diakinesis and metaphase I, the 

homologous chromosomes remain connected at the chiasmata (see Fig. 1), which 

represent the sites where a crossover between non-sister chromatids occurred. The 

chiasmata are required to connect the homologues, while these orient themselves in the 

metaphase I spindle. In anaphase I, the chiasmata are resolved and the homologous 

chromosomes disjoin. During the second meiotic division, the sister chromatids of 

each chromosome segregate. Thus, starting with one diploid cell, the two divisions of 

meiosis result in four haploid cells. 
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Figure 1. Meiosis. Meiotic chromosome behavior is schematically represented for a cell with 
two homologous chromosomes. One round of DNA replication precedes the two meiotic 
divisions so that each chromosome consists of two chromatids when meiosis starts. 
Subsequently the homologous chromosomes pair and non-sister chromatids of homologous 
chromosomes recombine during prophase I. At metaphase I, the homologous chromosomes stay 
connected at the chiasmata so that chromosome pairs rather then individual chromosomes 
orient themselves in the spindle. At anaphase I, the chiasmata are resolved and the homologous 
chromosomes disjoin. A second meiotic division follows in which the sister chromatids 
separate (From Murray and Hunt, 1993). 
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The synaptonemal complex 

Meiotic prophase I is subdivided in several stages according to the state of assembly or 

disassembly of SCs. In leptotene, proteinaceous axes (axial elements) are formed 

along each chromosome; the two sister chromatids of each chromosome are associated 

by a single axial element. In zygotene, the axial elements of homologous 

chromosomes become connected by transverse filaments (TFs), a process called 

synapsis. In pachytene, synapsis along the length of the chromosomes is complete. 

Between the axial elements, a third longitudinal structure is formed, the central 

element (CE). The axial elements, TFs and CE, together constitute the SC (Fig. 2). In 

the context of the SC, the axial elements are also called lateral elements (LEs). During 

diplotene, the axial elements desynapse and at diakinesis the axial elements 

disassemble. In the first section of this introduction I will give an overview of the 

possible functions of the SC in chromosome pairing, recombination and segregation. 

A 

Figure 2. Structure of the synaptonemal complex. Panel A shows a schematic representation of 
the structure of the SC. Indicated are the two lateral elements (LE), the transverse filaments 
(TF) and the central element (CE), and the chromatin of the sister chromatids of each 
chromosome (resp. chr.l, chr.2, chr.3 and chr.4), which is attached in loops to the LEs. Panel B 
shows an SC in an ultrathin section of spermatocytes of Maps cribrosa (from Schmekel, 1993). 
Indicated are the lateral elements (LE), the central element (CE), the transverse filaments 
(TFs), the attachments plaque (AP) at the end of the SC and the nuclear envelope (NE). Bar 
represents 100 nm. 
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Chromosome pairing 

Since SCs are present between paired homologous chromosomes it seemed likely that 

they establish chromosome pairing. However, pairing of homologous chromosomes 

precedes SC formation (Scherthan et ai, 1992; 1996). In some organisms, 

homologous chromosomes are already paired in pre-meiotic cells (Weiner and 

Kleckner, 1994), so the SCs seem not to be required to establish chromosome pairing. 

Furthermore, at least two organisms do not display detectable SCs, but nevertheless 

perform meiosis (Egel-Mitani et al., 1982; Bahler et al., 1993). Possibly, the 

premeiotic and meiotic pairing of homologous chromosomes are established by 

unstable interactions (Kleckner and Weiner, 1993; Weiner and Kleckner, 1994), which 

are stabilized by SCs as meiosis proceeds. 

Recombination 

Meiotic recombination takes place between non-sister chromatids of homologous 

chromosomes. It is generally assumed that meiotic recombination occurs according to 

the double strand break repair model (Sun et ai, 1991; Szostak et al., 1983) (Fig. 3). 

According to this model, recombination is initiated by a double strand break (DSB) in 

a single chromatid. Resection of the 5' ends of this DSB results in two 3' single 

stranded tails. One of these tails can invade one of the chromatids of the homologous 

chromosome and as a consequence a D-loop is formed at this chromatid (Fig. 3). 

Repair synthesis is primed from the 3' end of the invading strand and the D-loop is 

enlarged. This D-loop can anneal to the complementary ssDNA tail of the invading 

chromatid and also on this chromatid repair synthesis is initiated. This model predicts 

the presence of heteroduplex DNA on the two recombining chromatids as a 

consequence of the strand invasion and annealing of the D-loop. Branch migration 

produces two Holliday junctions which can be resolved as a crossover or a non-

crossover event (gene conversion). In yeast, intermediates postulated by this model, 

like DSBs, heteroduplex DNA and Holliday junctions have been demonstrated 

(reviewed by Roeder, 1997). 
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Figure 3. The double-strand break repair model of meiotic recombination. (From Roeder, 
1997). The yeast genes that are supposed to be involved in each step are indicated. For further 
explanation see text. 
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Most of our knowledge of meiotic recombination comes from studies on 

mutants in yeast that are blocked at different steps in the meiotic recombination 

pathway (reviewed by Roeder, 1997) (Fig. 3). For example mrell and rad50 mutants 

do not form DSBs (McKee and Kleckner, 1997; Alani et al, 1990). rad50S, a specific 

allele of rad50, forms DSBs, but these are not processed, and accumulate (Alani et al, 

1990; Keeney and Kleckner, 1995). In rad51 mutants, DSBs are resected but strand 

invasion by the single stranded DNA is abolished (Shinohara et al, 1992; Nag et al., 

1995). In most yeast mutants that are affected in recombination, meiosis is arrested or 

results in non-viable spores. 

In yeast, initiation of recombination by DSB formation precedes or occurs 

concomitantly with SC formation (Padmore et al, 1991). Therefore, it seems unlikely 

that intact SCs are involved in the early steps of recombination. Recombination can 

occur independently from intact SCs as is obvious from studies with mutants that are 

defective in SC formation. For example the zipl and redl mutants in S. cerevisiae do 

not assemble SCs, but still display meiotic recombination (Sym and Roeder, 1994; 

Rockmill and Roeder, 1990). Furthermore, Schizosaccharomyces pombe and 

Aspergillus nidulans, which do not assemble SCs, perform a high level of meiotic 

recombination (Egel-Mitani et al, 1982; Munz, 1994; Kohli and Bahler, 1994; Egel, 

1995). SC formation seems even to be dependent on initiation of recombination since 

yeast mutants that are blocked in the early steps of the meiotic recombination pathway, 

like spoil and rad50, do not form SCs (Giroux et al, 1989; Alani et al, 1990). 

However, in the mei-P22 and mei-W68 mutants in Drosophila, which do not perform 

meiotic recombination, chromosomes still synapse (McKim et al, 1998). Possibly, in 

more complex genomes, synapsis is not dependent on recombination, but alternative 

mechanisms for initiation of synapsis exist. 

Although SCs seem not to be required for the initiation of recombination they 

probably influence recombination events; In the zipl mutant of Saccharomyces 

cerevisiae, in which synapsis is abolished, crossover interference is also abolished 

(Sym and Roeder, 1994). Crossover interference is the interaction between crossovers 

in adjacent chromosome regions. This interaction is possibly mediated through SCs 

(King and Mortimer, 1990). 
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Recombination nodules 

In leptotene, zygotene and pachytene, electron-dense, spherical bodies, called 

recombination nodules (RNs), are observed on unsynapsed axial elements and on the 

SCs (Carpenter, 1988). In several organisms early and late RNs can be distinguished 

on the basis of morphology and time of appearance (Carpenter, 1988). Rad51 and/or 

DMC1, which are involved in strand exchange (Sung, 1994; Nag et ah, 1995), are 

components of early RNs (Anderson et ah, 1997). The number and position of late 

RNs corresponds with the number and position of crossovers (Carpenter, 1988), thus 

these late RNs probably represent the places of crossing-over events. The position of 

recombination nodules suggests that recombination occurs in the context of SCs. 

Chromosome disjunction 

Crossing-over events result in physical connections between homologous 

chromosomes, which can be seen in metaphase I as chiasmata. These chiasmata enable 

the two paired chromosomes to orient themselves to opposite poles during metaphase 

I; thus they ensure a proper disjunction of chromosomes at anaphase I. In mutants that 

do not form chiasmata, homologous chromosomes detach from one another 

prematurely, so that they cannot orient themselves properly at metaphase I, and 

therefore do not always move to opposite poles at anaphase I. 

The axial element 

The axial elements, which are present along the chromosomes from leptotene up till 

and including diplotene, probably play an important role in most of the functions of 

SCs. Because this thesis deals with a component of the axial elements, I will focus in 

this section on the structure and function of axial elements of SCs. 

Structure of the axial elements 

Ultrastructural analysis of axial elements in rat and mouse revealed that axial elements 

contain multiple strands, which are connected by a fibrous network (del Mazo and Gil-

Alberdi, 1986; Heyting et al., 1985). The axial elements differ from the chromatid 

cores of mitotic chromosomes in that axial elements are shared by the two sister 
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chromatids of meiotic chromosomes, whereas chromatid cores are present in each 

chromatid. Furthermore, the chromatid cores in mitotic chromosomes are located in 

the center of the chromatids (Rufas et al, 1987), whereas the axial elements are 

peripherally located. However, the axial elements and the chromatid cores also share 

some features: topoisomerase II, which is a component of the cores in mitotic 

chromosomes (Earnshaw and Heck, 1985) gradually congregates onto the axial 

elements during the late stages of meiotic prophase (Moens and Earnshaw, 1989; 

Klein et al, 1992). Furthermore, detailed ultrastructural analysis of axial elements 

revealed that they consist of two main sub-elements (Comings and Okada, 1971; 

Heyting et al., 1985; Dietrich et al., 1992). Silver-stained chromatid cores are detected 

in diplotene and diakinesis at the positions where the axial elements have disappeared 

in grasshopper (Rufas et al, 1992) and in rye chromosomes (Fedotova et al, 1989). In 

electron microscope observations, these cores appeared double (Rufas et al., 1992). 

Possibly, the chromatid cores are present during meiosis and are associated through 

the axial elements. They become visible as two cores as soon as the axial elements 

disappear (Rufas et al, 1992). 

Axial elements contain several meiosis-specific proteins (Heyting et al., 1988, 

1989; Offenberg et al, 1991). In rat, two axial element components, SCP2 and SCP3, 

with relative electrophoretic mobilities (M) of respectively 190,000 and 30,000-

33,000 were identified with monoclonal antibodies (Mabs) against purified SCs 

(Heyting et al, 1987, 1989). The cDNA encoding SCP3 has been isolated and 

sequenced (Lammers et al, 1994) as also a partial cDNA encoding the hamster 

homologue of SCP3, called COR1 (Dobson et al, 1994). In yeast, two meiosis-

specific proteins, Redl and Hopl, were identified that are associated with the axial 

elements of SCs (Smith and Roeder, 1997, Hollingsworth and Byers, 1989). And in 

lily, a meiosis-specific component of axial elements was identified by means of a Mab 

(Anderson et al, 1994). 

Possible functions of axial elements include: 1. Chromatin organization. 2. Sister 

chromatid cohesion. 3. Chiasma maintenance. 4. Regulation of recombination. Each of 

these functions will be considered here. 
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Chromatin organization 

During meiosis the chromatin is organized in loops, which are attached at their base to 

the SCs. The size of the loops is species-dependent and can vary from 2 to 200 kb, 

depending on the species. Vazquez Nin et al. (1993) have shown that in meiotic 

chromosomes the DNA extends into the axial elements, while the central region of 

SCs is free of DNA. Possibly, the chromatin is organized in loops that run through the 

axial elements. The organization in loops resembles the mitotic chromatin 

organization, where loops are attached to chromosome scaffolds. In mitotic 

chromosomes, the sequences that are bound to the scaffold are called scaffold 

attachment regions (SARs). SARs are AT-rich and as a result they have a narrow 

minor groove (Nelson et al., 1987). Preparations of SCs are enriched in GT/CA 

tandem repeats and LINE and SINE sequences (Pearlman et al, 1992), so these 

sequences are possibly at the basis of meiotic chromatin loops. Whether SAR 

sequences are also at the basis of chromatin loops in meiotic prophase still has to be 

sorted out. 

Sister chromatid cohesion 

Cohesion between the sister chromatids ensures that they do not separate prematurely. 

Several hypotheses have been put forward how cohesiveness is established. Murray 

and Szostak (1985) proposed that sister chromatids are associated by DNA 

catenations, which remain from DNA replication, and that at the metaphase/anaphase 

transition, topoisomerase II is responsible for the decatenation of the intertwined sister 

chromatids. It is also possible that stable attachments between sister chromatids are 

mediated by proteins (Holloway et al., 1993). 

During meiosis sister chromatid cohesion is released in two steps; cohesion 

along the chromatid arms, which is released at the metaphase I/anaphase I transition, 

and cohesion at the centromeres, which is released at the metaphase II/anaphase II 

transition. In Drosophila, two proteins have been identified that are possibly involved 

in these two phases of sister chromatid cohesion; ord and mei-S332 (Miyazaki and 

Orr-Weaver, 1992; Goldstein, 1980). Flies which have a mutation in the ord gene are 

defected in sister chromatid cohesion during meiosis I and meiosis II as revealed by 

12 
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cytological and genetical analysis (Bickel et al., 1997). Mutations in the mei-S332 

gene cause a defect in sister chromatid cohesion in late anaphase I, which results in 

non-disjunction at meiosis II (Goldstein, 1980). Mei-S332 has been localized to the 

centromeric regions of meiotic chromosomes from prophase I until anaphase II 

(Kerrebock et al., 1995). In hamster, the localization pattern of the COR1 protein, the 

homologue of SCP3, suggests a possible role of this protein in both modes of sister 

chromatid cohesion; it is present along the axial elements between the sister 

chromatids until diplotene and at the centromeres until anaphase II (Dobson et al., 

1994; Moens and Spyropoulos, 1995). COR 1/SCP3 may act as a binding substance 

between the two chromatids, or as an inhibitor of topoisomerase II, which prevents 

decatenation of the sister chromatids along the chromosome arms until metaphase I, 

and at the centromeres until anaphase II. 

Axial element components are present between sister chromatids as long as 

cohesion along the chromatid arms exists. Therefore, a function of axial elements in 

sister chromatid cohesion seems likely. The rec8 mutant in S. pombe does not form 

axial elements and in this mutant the sister chromatids separate prematurely (Molnar et 

al., 1995). Since axial elements disappear at diakinesis, they cannot be involved in 

sister chromatid cohesion at the centromeres after anaphase I. However in 

grasshopper, strands can be detected between the two sister kinetochores by silver 

impregnation in metaphase II (Rufas et al, 1989). Such centromeric filaments were 

also observed in mouse (Tandler and Solari, 1991) and several other organisms among 

which rat (Solari and Tandler, 1991). These centromeric filaments are possibly a 

remnant of axial elements, which provide sister chromatid cohesion at the centromeres 

until anaphase II. 

Chiasma maintenance 

As mentioned above, reciprocal recombination between non-sister chromatids provides 

connections between homologous chromosomes which can be seen in metaphase I as 

chiasmata, and which ensure a proper segregation of the chromosomes at the first 

meiotic division. Mutants that are defective in recombination, display a high frequency 

of chromosome non disjunction at meiosis I. However, many mutants exist that have a 

13 
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normal or slightly reduced level of recombination but nevertheless show a high level of 

non-disjunction of homologous chromosomes. For example, in the ord mutant in 

Drosophila, crossing-over is only slightly affected, but at the first meiotic division 

both exchange and non-exchange chromosomes segregate improperly (Mason, 1976; 

Miyazaki and Orr-Weaver, 1992). As mentioned above, the ord mutant is affected in 

sister chromatid cohesion and this cohesion, distal from the chiasmata, probably 

stabilizes the chiasmata at metaphase I, as is shown in the model in Fig. 4A. It seems 

likely that axial element components that are involved in sister chromatid cohesion, 

also stabilize chiasmata; Redl is possibly a component of the axial elements in S. 

cerevisiae (Smith and Roeder, 1997). In the redl mutant axial element formation is 

abolished, and both exchange and non-exchange chromosomes missegregate at 

anaphase I (Rockmill and Roeder, 1990). 

As proposed by the alternative model in Fig. 4B, stabilization occurs by 

chiasma binders. However no possible candidate-chiasma binders have been identified 

yet (reviewed by Carpenter, 1994). 

A 
chr. 1 

i chr. 2 
c 

chr. 3 
chr. 4 

B 

Figure 4. Two models for chiasma stabilization. Shown are two homologous chromosomes, 
which are connected by a chiasma. Indicated are the four chromatids in a bivalent (resp. chr. 1, 
chr. 2, chr. 3 and chr. 4), the centromeres (c) and the chiasma. In model A, the chiasma is 
stabilized by sister chromatid cohesion (shown in gray) distal to the chiasma. In model B, the 
chiasma is stabilized by chiasma binders (shown in gray). The models are not mutually exclusive. 

14 
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Regulation of recombination 

Knowledge about possible functions of axial element components in recombination 

comes from studies on yeast. In a redl mutant, the number of crossovers is decreased 

to 25% of the wild type level, whereas intrachromosomal recombination is not 

affected (Rockmill and Roeder, 1990). Because the red] mutation does not cause a 

meiotic arrest, and can even alleviate the meiotic arrest in rad51, dmcl and zipl 

mutants, Redl is possibly involved in the signaling of recombination intermediates 

(Xu et al., 1997). Redl does probably not act in the intrachromosomal pathway (Mao-

Draayer et al., 1996). This view was supported by Schwacha and Kleckner (1997) who 

showed that in a redl mutant the formation of recombination intermediates between 

homologues is reduced to 25 % of wildtype level, whereas the formation of 

recombination intermediates between sister chromatids is not affected. They concluded 

that Redl is responsible for the interhomologue bias that exists during meiosis and 

exerts its function prior or during DSB formation. Through Redl the DSBs are 

directed into the interhomologue-only pathway (Schwacha and Kleckner, 1997). 

At the time of DSB formation, SCs are not yet formed (Padmore et al., 1991). 

However, it is possible that axial element components, like Redl, are already present 

and influence DSB formation so that recombination between homologues is enhanced. 

Possibly, axial element formation is nucleated from these recombination initiation 

sites. 

In summary, the axial elements possibly are involved in the organization of the 

chromatin in loops and in sister chromatid cohesion, chiasma stabilization and in 

enhancing recombination between homologues rather than between sister chromatids. 

Aim of this thesis 

Most of our knowledge about the role of axial elements during meiosis comes from 

studies on mutants in yeast and several other organisms that are somehow disturbed in 

axial element formation (see above). Identification and analysis of individual 

components of axial elements will increase our knowledge of molecular mechanisms 

that underlie chromosome pairing and recombination. Offenberg (1993) has described 

15 
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the identification of two axial element components of SCs in rat, SCP2 and SCP3. 

This thesis focuses on SCP2. 
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Abstract. In the axial elements of synaptonemal complexes (SCs) of the rat, major 

protein components have been identified, with relative electrophoretic mobilities (Ms) 

of 30,000-33,000 and 190,000. Using monoclonal anti-SC antibodies, we isolated 

cDNA fragments which encode the 190,000 Mr component of rat SCs. The translation 

product predicted from the nucleotide sequence of the cDNA, called SCP2 (for 

synaptonemal complex protein 2), is a basic protein (pi = 8.0) with a molecular mass 

of 173 kDa. At the C-terminus, a stretch of about 50 amino acid residues is predicted 

to be capable of forming coiled coil structures. SCP2 contains two clusters of S/T-P 

motifs, which are common in DNA-binding proteins. These clusters flank the central, 

most basic part of the protein (pi = 9.5). Three of the S/T-P motifs are potential target 

sites for p34cdcl protein kinase. In addition, SCP2 has eight potential cAMP/cGMP-

dependent protein kinase target sites. The gene encoding SCP2 is transcribed 

specifically in the testis, in meiotic prophase cells. At the amino acid sequence and 

secondary structural level, SCP2 shows some similarity to the Redl protein, which is 

involved in meiotic recombination and the assembly of axial elements of SCs in yeast. 

We speculate that SCP2 is a DNA-binding protein involved in the structural organiza

tion of meiotic prophase chromosomes. 
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Introduction 

During meiotic prophase, chromosomes are arranged in an orderly manner along 

proteinaceous axes called axial elements (Von Wettstein et ah, 1984). These elements 

differ from mitotic metaphase chromatid scaffolds because 1. the two chromatids of a 

meiotic prophase chromosome share a single axial element, whereas the chromatids of 

a metaphase chromosome have each their own scaffold; 2. the major protein 

components of axial elements are meiosis-specific and thus not found in chromatid 

scaffolds (Heyting et ai, 1989); and 3. axial elements are longer than metaphase 

chromatid scaffolds, and morphologically better defined. Axial elements and 

chromatid scaffolds can both be visualized by silver impregnation techniques, at least 

in certain types of microscopical preparations of spread cells (Howell and Hsu, 1979; 

Rufas etal, 1982; Rufas etal., 1992; Earnshaw and Laemmli, 1984; Stack, 1991). 

As meiotic prophase proceeds, the axial elements are incorporated in zipperlike 

structures, called synaptonemal complexes (SCs), which keep homologous 

chromosomes in close apposition along their length (Von Wettstein et ai, 1984). 

Meiotic recombination probably initiates just before or simultaneously with axial 

element assembly, and the assembly of full length axial elements appears to depend 

upon the initiation of meiotic recombination by double-strand DNA scission, at least in 

yeast (Padmore et ai, 1991). At the end of meiotic prophase, the SCs are disassembled 

at about the same time when recombination intermediates are resolved (Schwacha and 

Kleckner, 1994), and within each homolog the two separate scaffolds of the sister 

chromatids gradually become discernable (Rufas et ai, 1992). At the sites of 

reciprocal recombination between non-sister chromatids of homologous chromosomes, 

the scaffolds of the recombined chromatids "cross over" (Rufas et ai, 1992; Stack, 

1991) to form chiasmata, which contribute to the physical connection between 

homologs. In most eukaryotes, such connections are essential for the proper 

orientation of bivalents at metaphase I. 

The relation between axial elements and sister chromatid scaffolds remains to be 

elucidated. In mitotic chromosomes, the sister chromatids do not normally share one 

axis, although single axes of a similar length as axial elements have been demonstrated 

by silver impregnation along mitotic chromosomes that were forced to condense from 
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G2 in the presence of a topoisomerase II inhibitor (Gimenez-Abian et al., 1995). 

These single G2 axes probably represent the still unseparated sister chromatid 

scaffolds. Although axial elements of SCs are morphologically more similar to these 

single G2 chromosome axes than to metaphase chromatid scaffolds, there are also 

important differences, because axial element assembly is part of normal meiotic 

chromosome behaviour and does not require cell cycle drugs and topoisomerase II 

inhibitors, and because the major protein components of axial elements are specific for 

meiotic prophase (Heyting et al., 1987, 1988, 1989; Offenberg et al., 1991). In the rat, 

these meiosis-specific components have relative electrophoretic mobilities (Ms) of 

30,000-33,000 and 190,000 (Heyting etal, 1987; 1988, 1989; Offenberg et al, 1991), 

of which the 30,000-33,000 Mt components are most probably products of a single 

gene, Scp3 (Lammers et al, 1994). In yeast, at least two candidate components of 

axial elements have been identified, namely Hopl and Redl (Hollingsworth et al, 

1990; Rockmill and Roeder, 1990; Smith and Roeder, 1997), which are also meiosis-

specific. It is possible that the axial element of a meiotic prophase chromosome is 

formed after premeiotic S-phase by association of meiosis-specific proteins with the 

still undivided chromosome scaffold (Rufas et al, 1992). Alternatively, an entirely 

meiosis-specific axial element is assembled at the beginning of meiotic prophase, 

which is replaced by the two sister chromatid scaffolds when the axial element is 

disassembled. To distinguish between these possibilities, it is necessary to characterize 

the axial element components, and analyse their interaction with chromatin, in 

particular with the special DNA-regions called SARs (scaffold attachment regions, 

Laemmli et al, 1992), by which chromatin is attached to chromatid scaffolds. 

Why meiotic prophase chromosomes should be organized on single, at least 

partially meiosis-specific axial elements is another unresolved question, although 

several suggestions have been made: it is possible that the axial elements fix the 

chromosomes in an elongated state, and enhance the exposure of relevant pairing sites 

in an ordered, longitudinal array. This could facilitate the alignment of homologous 

chromosomes (Scherthan et al, 1996). Other possible functions of axial elements 

include the inhibition of sister chromatid exchanges and/or the enhancement of 

recombination between non-sister chromatids of homologous chromosomes 

(Schwacha and Kleckner, 1994, 1996, 1997; Hollingsworth et al, 1990; Xu et al, 
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1997), the conversion of the products of interchromosomal reciprocal recombination 

into stable chiasmata that can ensure the proper orientation of bivalents at metaphase I 

(Rockmill and Roeder, 1990), and/or the generation of sister chromatid cohesiveness 

(Maguire, 1990; Dobson etal., 1994). 

In order to learn more about the nature and function(s) of meiotic axial ele-

ments/LEs, we study the composition of these structures. In this paper we describe the 

isolation and characterization of the cDNA encoding the 190,000 M component of rat 

SCs. The protein predicted from the nucleotide sequence of the cDNA, called SCP2, is 

basic (pi = 8.0) and has features of a protein which is capable of binding to the minor 

groove of AT-rich DNA. It shares these features with proteins that bind to SARs 

(Saitoh and Laemmli, 1994), including topoisomerase II (Laemmli et al, 1992; 

Mirkovitch et al., 1984), which is a major chromosome scaffold component (Earnshaw 

and Heck, 1985). We speculate that SCP2 is involved in the organization of chromatin 

during meiotic prophase, possibly by temporarily binding to SARs. 

Materials and methods 

The DDBJ/EMBL/GenBank accession number of the SCP2 cDNA sequence is 

Y08981. 

Antibodies 

The Mabs recognizing the 190,000 Mt SC protein in rat were elicited by immunization 

of mice with rat SCs as described by Offenberg etal. (1991). Of these antibodies, Mab 

IX9D5 has been described in detail by Heyting et al. (1989) and Offenberg et al. 

(1991). A polyclonal antiserum (serum 493) against amino acid residues 293 to 828 of 

the predicted translation product of the rat cDNA was prepared as follows: a 1600 bp 

Pst\ fragment of cDNA clone 5 (which encodes a major part of SCP2 of the rat, see 

below) was cloned in the pQE31 expression vector (Qiagen, Chatsworth, CA, USA). 

Expression and isolation of the translation product were performed by means of the 

Qia expressionist system (Qiagen) according to the instructions of the manufacturer. 
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Antibodies were elicited in a rabbit by eight injections of 60 |J.g fusion protein in 750 

|Xl PBS, mixed with 750 ju.1 Freund's complete adjuvant (Sigma, St. Louis, MO, USA) 

(first injection), or 750 (il Freund's incomplete adjuvant (Sigma) (all following injecti

ons). The rabbit was injected subcutaneously at two-week intervals. One week after 

the fourth and the sixth injection, 20 ml bleedings were collected from the ear-veins. 

After the eighth injection a final bleeding of 80 ml was collected. 
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Figure 1. Reaction of antibodies used in this study with SC proteins. 1.5 x 107 SCs were loaded 
per cm slot of a SDS-10% polyacrylamide gel and stained with Coomassie blue or transferred 
to nitrocellulose. The arrows indicate from top to bottom the position of the 190,000, the 
125,000 and the 30,000 and 33,000 Atf, SC proteins. Lane 1: 0.4 cm wide strip of the gel stained 
with Coomassie blue; lanes 2 to 10: immunoblot strips of the same gel incubated in Mab 
IX8B11 (2), Mab IX2G11 (3), Mab IX9D5 (4), Mab IX8F1 (5), Mab IX1H9 (6), Mab IX3E4 
(7), serum 493 (8), pre-immune serum 493 (9), control hybridoma supernatant (10). 
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Isolation ofcDNAs encoding SCP2 

For the isolation of cDNAs encoding the 190,000 SC Mr protein of the rat, we scree

ned an expression cDNA library of the rat testis (Meuwissen et al., 1992) in Xzap® 

(Stratagene, San Diego, USA) with a pool of six independently isolated Mabs, each of 

which recognizes the 190,000 Mr SC protein, following described procedures 

(Meuwissen et al, 1992). Among 3xl05 phage clones, 10 positive clones were found 

and purified. The purified clones had overlapping restriction enzyme fragment maps 

and inserts ranging in length from 1.1 to 3.9 kbp. The 5' EcoRl fragment of the longest 

clone, 3C1, was used for a secondary screening, and this yielded clone 5 with an insert 

size of 4.4 kbp. In search of rat cDNA clones extending further in the 5' direction than 

clone 5, we performed a 5' RACE experiment (Frohman et al., 1988) exactly as 

described by Van Heemst et al. (1997), using oligonucleotides complementary to the 

most 5' sequences of clone 5 as primers and total rat testis RNA as a template. This 

yielded a DNA fragment which extended 302 nucleotides further in the 5' direction 

than clone 5. We then performed new RACE experiments, using primer sets 

complementary to this DNA fragment, a higher concentration of total testis RNA, and 

higher temperatures during cDNA synthesis. PCR performed on the cDNA-fragments 

obtained at 50°C and 52°C yielded two major products in each reaction.The longest 

product of each reaction was cloned in pGEM-T (Promega, Madison, WI, USA) and 

sequenced. Both (independently obtained) RACE products had identical sequences 

which extended 32 basepairs further in the 5' direction, and contained a stopcodon in 

frame with the first ATG codon. We therefore concluded that we had isolated and 

sequenced the full-length SCP2 cDNA. 

Sequence analysis 

The insert of cDNA clone 3C1 was subcloned into the pBluescript vector SK(-) 

according to the instructions of the manufacturer (Stratagene). From both ends of the 

insert of clone 3C1 we generated unidirectional sets of deletions by partial digestion 

with exonuclease III and SI nuclease using the erase-a-base kit of Promega. In 

addition, we subcloned several restriction enzyme fragments of the independently iso

lated cDNA clone 5 in pBluescript. We determined the nucleotide sequences by the di-
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deoxy chain termination method of Sanger et al. (1977), using [oc-35S]dATP (650 

Ci/mmol; Amersham Corp., Buckinghamshire, UK), Taq polymerase (Gibco BRL 

Life Technologies, Paisley, UK or Promega) and oligonucleotide primers 

complementary to the polylinker sequences of pBluescript. The products of the RACE 

experiments (see above) were cloned into the pGEM-T vector according to the 

instructions of the supplier and sequencing reactions were performed in both directions 

from vector-specific primers, by means of the Dye Deoxy Terminator Cycle 

sequencing kit from Perkin-Elmer (Norwalk, Connecticut, USA) and the nucleotide 

sequence was analyzed on a 373A stretch 48 cm WAR DNA sequencer (Applied 

Biosystems, Inc., Foster City, CA, USA). The complete cDNA sequence encoding 

SCP2 was assembled by means of the Wisconsin GCG sequence analysis package 

(University of Wisconsin, WI, USA). 

Immunocytochemical staining 

Immunofluorescence staining of frozen sections of the rat testis was carried out as 

described by Heyting et al. (1988) and Heyting and Dietrich (1991). Ultrastructural 

localization of the antigen was performed by immunogold labeling of surface spread 

rat spermatocytes essentially as described by Moens et al. (1987) and Heyting and 

Dietrich (1991). 

RNA isolation and northern blot hybridization 

RNA was isolated from various tissues of 37-day-old rats by the GuTC/LiCl method 

of Cathala et al. (1983); poly(A)+RNA was purified by affinity chromatography on 

oligo(dT)-cellulose (Aviv and Leder, 1972). 15 ug of RNA per 0.5 cm slot was 

electrophoresed in the presence of ethidium bromide on formaldehyde/agarose gels, 

and transferred to Hybond-N* membranes (Amersham Corp.) by standard procedures 

(Sambrook et al., 1989). After transfer, we verified on the basis of ethidium bromide 

fluorescence, that all lanes on the northern blot membranes contained a similar amount 

of RNA. The membranes were washed in 3x SSC, dried and fixed with UV light (312 

nm; 200 J/m2) for two minutes. As probes for northern blot hybridization we used 

RNA transcripts of a 3' deletion clone, which had been linearized with Hindlll. 
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Transcription was performed from the T7 promotor in the presence of [a-32P]rATP 

(3000 Ci/mmole). The northern blot membranes were prehybridized in 50% 

formamide, 5x SSC, 0.1% sodiumpyrophosphate, 1% SDS, 0.2% PVP, 0.2% Ficoll, 5 

mM EDTA and 150 (ig/ml sheared herring sperm DNA for 6 hrs at 60°C. Hybridiza

tion was performed in the same mixture with 0.07 |ig/ml probe (36xl06 cpm/ug) for 

17 hrs at 60°C. Subsequently the blots were washed for 30 minutes at 65°C in succes

sively 2x SSC 0.1% SDS, lx SSC 0.1% SDS, O.lx SSC 0.1% SDS and O.lx SSC 

0.1% SDS. 

In situ hybridization 

In situ hybridization was performed on 10 u.m thick frozen sections of rat testes, as 

described by Meuwissen et al. (1992). As a probe we used RNA that was obtained by 

transcription from the T7-promoter of a linearized 3' deletion clone of clone 3C1; 

probe synthesis was performed in the presence of [ot-"S] rUTP (3000 Ci/mM, 

Amersham Corp.), as described by Meuwissen et al. (1992). After hybridization and 

washes, the slides were dipped in Ilford K5 nuclear track emulsion, exposed for 3 

weeks at 4°C, developed in Kodak developer D19, and analyzed by dark field micros

copy. 

Other procedures 

SCs were isolated as described by Heyting et al. (1985) and Heyting and Dietrich 

(1991); SDS-polyacrylamide gel electrophoresis of proteins was performed according 

to Laemmli (1970), as described by Heyting et al. (1985); immunoblotting was carried 

out according to Dunn (1986), as described by Heyting and Dietrich (1991). 

Results 

Isolation of cDNAs encoding the 190,000 Mr SC component (SCP2) of the rat 

For the isolation of cDNAs encoding the 190,000 Mt component of rat SCs, we 

screened a rat testis cDNA expression library, using a pool of six independently 

29 



Chapter 2 

isolated Mabs, which had been elicited against isolated rat SCs. On Western blots 

carrying SC proteins, each of these Mabs recognizes specifically the 190,000 Mr SC 

component, and a series of smaller fragments. We interpret the smaller fragments as 

breakdown products of the 190,000 Mr protein, because different Mabs recognize the 

same pattern of peptide bands (compare Mab IX1H9 (Fig. 1, lane 6) and IX3E4 (Fig. 

1, lane 7). Among 3xl05 recombinant phage clones, this pool of Mabs recognized 10 

clones, containing cDNA inserts of 1100 to 3900 nucleotides with overlapping restric

tion enzyme maps. In order to isolate a full-length clone, we screened the cDNA 

library with the 5' EcoRl fragment of the clone with the longest insert, clone 3C1. This 

yielded clone 5, with an insert size of 4437 bp, which extended 500 bp further in the 5' 

direction than clone 3C1. By successive RACE experiments, performed on total testis 

RNA as a template, we identified and sequenced 334 additional nucleotides at the 5' 

end. 

The nucleotide sequence of clone 3C1 and parts of the sequence of clone 5 were 

determined, and no discrepancies were found. The nucleotide sequence of the 

complete cDNA, as assembled from the sequences of clone 3C1, clone 5, and the 

products of the RACE experiments, contains a single open reading frame of 4515 

nucleotides, which encodes a 173 kDa protein consisting of 1505 amino acids (Fig. 2). 

Nucleotide 154 to 156 is assigned as the translation start codon because it is the first 

in-frame ATG codon; 135 to 133 nucleotides upstream of this ATG codon (position 19 

to 21 in Fig. 2) there is an in-frame stopcodon. 

We think that the nucleotide sequence in Fig. 2 represents the full-length cDNA 

sequence encoding the 190,000 Mr SC protein of the rat, for the following reasons: (i) 

the recombinant gene product is recognized by four of the six independently isolated 

Mabs that were used for screening (not shown), (ii) The predicted pi (8.0) is in good 

agreement with the pi (8) of the 190,000 Mt component as observed in two-dimensio

nal separations of SC proteins (Offenberg, 1993). (iii) A polyclonal antiserum, elicited 

against the translation product of part of the cDNA, serum 493, reacts specifically with 

the 190,000 Mr SC component on a Western blot, carrying SC proteins (Fig. 1), and a 

series of peptide bands, which are also recognized by two of the Mabs (compare Fig. 1 

lane 8 with lane 6 and 7), and which we interpret as breakdown products of the 

190,000 Mr SC component. 
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: GGC CCT TGC CGG CGG AGO TOG TCG CCA GOT CCC GOG TOT CCT GGC TOC AGO TGG CGC AGG TCT ACQ OQA GAC COT GOT 120 
153 

T GAT GAT GCT TTG AGA AAA AAC GAC TTC AAG CCT TTG GTG ACA CTT TTA CAA ATT GAT ATT TOT GAA GAT GTG AAG ATT 273 
D D A L R K N D F K F L V T L L Q I D I C E D V K I 4 0 

AAA TGC AGC AAA CAA TTC CTC CGC AAG TTG GAT OAC TTA ATA TGC AGO GAA CTT CAT AAA AAG G 
K C S K Q F L R K L D D L I C R E L H K K 

TTT ATA TTG GGA CAA ACT GGA CTT CAA ACC ATG ATA AAA CAA GGA TTA GTC CAA AAG ATG GTT TCC TOG TTT GAA AAT TCC AAG GAG ATT ATT CTG AST CAG CGA CAA TCA AAA Q 
F I L G Q T G L Q T M I K Q G L V Q K M V S W P E N S K E I I L S Q R C j S K 

ft TAT GAC GTC AAT GAT G 
Y D V N D E O K N Q V 

GAT TCA AGA GTG AAT TTT TGC ATT CAG CAA GAG GCT TTA AAA AAA ATG AAT TTG ATG CTT GAC AGA ATA CCT CAA GAT GCC » 
D S R V N F C I Q Q E A L K K M N L M L D R I P Q D A 

AGT AAT ATG GGA GAA AQG ATT TTA GAT GTA GGA GAT TAT GAA TTA CAG GTA GGC ATT GTG GAA OCT TTG TOT AGA ATG ACT A 
5 N M G E H I L D V G D ¥ E L g V G I V E A L C R M T 

TCA ATG GAC TTT ATT GCT AAT GCA TTT AAG AAA ATT AAA GAC TGT GAA TTT GAA ACA GAT TGC AGA ATA TTT CTC AAC TTG OTA AAC GGC ATG CTG GOT GAC AGA AGA AGO GTC TTT ACA 993 
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Figure 2. The nucleotide sequence of the cDNA encoding SCP2 and the predicted amino acid 
sequence in a single-letter code. The S/T-P motifs are double underlined. The p34c c2 kinase target 
sites are boxed. The cAMP/cGMP-dependent protein kinase target sites are underlined. The coiled 
coil domain is indicated by a large box. 
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(iv) In frozen sections of the testis, serum 493 reacts specifically with nuclei of meio-

tic prophase cells (spermatocytes): the immunofluorescence pattern in Fig. 3 is 

virtually identical to the pattern obtained with the Mabs that were used for screening 

(compare Fig. 3 of this paper with Fig. 3a in Offenberg et al.(1991)). 

a. 

Figure 3. Frozen section of rat testis after immunofluorescence staining with serum 493 
(elicited against the translation product of part of the SCP2 cDNA). (A), immunofluorescence, 
and (B), phase contrast of the same section. The centre of the micrographs shows a cross-
sectioned tubule which is in developmental stage XIII because it contains two layers of 
spermatocytes; these are in zygotene (z) and diplotene (d) (Leblond and Clermont, 1952). The 
cell layer outside the spermatocyte layers contains spermatogonia (g); the cells inside the 
spermatocyte layers are spermatids (t); between the tubules, there are interstitial cells (i). The 
upper right corner of the micrographs shows part of a stage VII to IX tubule, because it 
contains a single layer of relatively large spermatocytes; these are in mid-late pachytene (Ip) 
(Leblond and Clermont, 1952). Bar represents 150 pm. 
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(v) Within spermatocytes, serum 493 recognizes specifically the LEs of SCs, like the 

Mabs that were used for screening (Fig. 4). 

Ik 

b — c '••. • d 

Figure 4. Ultrastructural localization of the antigens of serum 493 by immunogold labeling of 
surface spread spermatocytes, (b), zygotene, (c), pachytene, and (d), diplotene spermatocytes; 
(e), immunogold labeling of the XY chromosome pair by serum 493; (a), immunogold labeling 
of a pachytene SC by Mab IX9D5, one of the monoclonal antibodies that were used for 
screening. In (a), the immunogold grains have a diameter of 5 nm, in (b) to (e) 10 nm. Bars 
represent 200 nm. The magnification in (c) to (e) is the same as in (b). 

We therefore conclude that we have cloned the cDNA encoding the 190,000 Mr 

component of the LEs of SCs, for which we propose the name SCP2 (synaptonemal 

complex protein 2). The discrepancy between the relative electrophoretic mobility of 

the 190,000 Mr SC component and the predicted molecular weight is probably due to 

the fact that SCP2 is a basic protein with a high percentage of proline residues. 

Proteins with these characteristics will migrate more slowly in SDS-polyacrylamide 

gels than can be expected on basis of their molecular weight (Hames, 1990). A similar 

discrepancy between predicted molecular weight and observed electrophoretic 
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mobility has been found for other proteins with these characteristics, for instance, the 

proline-rich protein RAP1 (Shore and Nasmyth, 1987). Searching libraries of known 

sequences by the BlastP program (Altschul et al, 1990) revealed a limited amino acid 

sequence similarity between residue 425 to 478 of SCP2 and residue 564 to 617 of the 

Redl protein of S. cerevisiae (Fig. 5), which has a role in SC-assembly and meiotic 

recombination (Rockmill and Roeder, 1990). 

SCP2 425 SQPSPVKENLIHLKEKSNLQKKLTNPLEPDNSSSQRDRKNSQDEITTPSRKKMS 478 

RED1 564 GQPPSKKQKQFHKKEKKKQQKKLTNFKPIIDVPSQDKRNLRSNAPTKPKSIKVS 617 

Figure 5. Amino acid sequence comparison of SCP2 and the Redl protein of yeast 
(Saccharomyces cerevisiae) by the BLASTP program (Altschul et al., 1990). The numbers to 
the left indicate for each protein the first amino acid where the similarity begins. Connecting 
lines indicate identical amino acid residues, and colons similar amino acid residues. 

SCP2 has features of a DNA-binding protein 

Between amino acid residues 1364 and 1499, SCP2 contains a predicted amphipathic 

a-helical domain, of which, according to the algorithm of Lupas et al. (1991), the 

stretch between residue 1386 and 1434 is capable of forming a coiled coil structure. 

According to Chou-Fasman analysis (Chou and Fasman, 1978) SCP2 is rich in (3-

turns. No other readily identifiable secondary structural motifs were found in SCP2. 

SCP2 contains several interesting small scale amino acid sequence motifs: the 

protein is enriched in S/T-P motifs, which are common in a variety of DNA-binding 

proteins (Suzuki, 1989), and allow non-sequence specific binding to DNA, presumably 

through interaction in the minor groove with the phosphodeoxyribose backbone 

(Churchill and Travers, 1991; Green et al, 1993). SCP2 has 15 of these motifs and in 

addition 40 S/T-S/T motifs, which can mimick the conformation of the S/T-P motif 

(Suzuki, 1989). The S/T-P motifs occur in two clusters (Fig. 2), which are separated 

by a hydrophilic and basic domain of the protein with a calculated pi of about 9.5. 

SCP2 has several potential protein kinase target sites, including one target site for 

p34"''2 protein kinase which fulfils the consensus K-S/T-P-X-Z (Moreno and Nurse, 
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1990), and two sites which satisfy the relaxed consensus S/T-P-X-Z (Draetta, 1990), 

and eight cAMP/cGMP-dependent protein kinase target sites (K/R-K/R-X-S/T, where 

X is any amino acid (Feramisco et al., 1980)), which are interspersed with the S/T-P 

motifs, or are located in the basic central part of the protein. Furthermore, SCP2 

contains two nuclear targeting signals (K-R/K-X-R/K, where X is any amino acid 

(Chelskyefa/., 1989)). 

The gene encoding SCP2 is transcribed specifically during meiosis 

The antigens recognized by the anti-190,000 Mr monoclonal antibodies (Heyting et al., 

1989; Offenberg et al., 1991) and the polyclonal anti-SCP2 serum (serum 493) (Fig. 3 

and Fig. 7) are found exclusively in meiotic prophase cells. Northern blot analysis, 

performed with anti-sense RNA probes derived from SCP2, revealed a single tran

script of about 4900 nucleotides in poly(A)* RNA from the testis, but not in RNA from 

other organs (Fig. 6). Within the testis, the gene encoding SCP2 is transcribed 

predominantly in meiotic prophase cells (Fig. 7). 

T K B L 

Figure 6. Transcription of the gene encoding SCP2, analysed by northern blot analysis. 15 pg 
of poly(A)* RNA from respectively, testis (T), kidney (K), brain (B), and liver (L) was layered 
per 0.5 cm wide slot of a 1% denaturing agarose gel. After electrophoresis and blotting, 
hybridization was performed with an RNA transcript of an 850 bp fragment of cDNA clone 
3C1. Bars indicate the position of the 28S (4700 nucleotides) and 18S (1900 nucleotides) 
ribosomal RNA of the rat. The arrowhead indicates the top of the gel. 
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Discussion 

Meiotic prophase chromosomes are organized in loops along proteinaceous axes, 

called axial elements, which are incorporated as lateral elements (LEs) in the tripartite 

structure of SCs. The axial elements are distinct from mitotic or meiotic metaphase 

chromosome scaffolds in that they largely consist of meiosis-specific components 

(Heyting et al., 1989). Furthermore, each axial element is shared by the two sister 

chromatids of a meiotic prophase chromosome, whereas the sister chromatids of 

mitotic or meiotic metaphase chromosomes each have their own scaffold. Elucidation 

of the relation between axial elements and chromosome scaffolds will provide insight 

into the structure of chromosomes and the mechanisms of meiotic chromosome pairing 

and crossover formation. In mammals, major protein components of axial elements 

have been identified, with Ms of 30,000, 33,000 and 190,000, respectively (Heyting et 

al, 1987, 1989). The 30,000 and 33,000 Mr components are closely related and 

probably the products of a single gene, Scp3 (Lammers et al, 1994). The 

corresponding cDNA of the rat has been cloned, and encodes a 30 kDa protein called 

SCP3 (Lammers et al., 1994); the cDNAs encoding the homologous proteins of the 

mouse (SYCP3, (Klink et al, 1997)), and of the hamster (COR1, (Dobson et al, 

1994)) have also been cloned. In this paper we describe the isolation and sequencing 

of the cDNA encoding the 190,000 Mr component of the axial elements. 

Expression of the gene encoding SCP2 

The 190,000 SC Mt component occurs exclusively in meiotic prophase nuclei, in SCs 

(Heyting et al, 1989; Offenberg et al, 1991; Dietrich et al, 1992; this paper, Fig. 3 

and 4). The experiments in this paper show that expression of Scp2 is regulated at the 

transcriptional level, because northern blot analysis of RNA from various tissues only 

revealed transcripts of the Scp2 gene in testis RNA (Fig. 6). A similar result was obtai

ned earlier with respect to two other major components of SCs, namely SCP1 

(Meuwissen et al, 1992) and SCP3 (Lammers et al, 1994). These results corroborate 

our earlier conclusion (Heyting et al., 1988; Offenberg et al, 1991) that SCs originate 

predominantly by assembly from newly synthesized components rather than by 
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rearrangement of pre-existing nuclear structures. Within the testis, Scp2 transcripts 

occurred predominantly in meiotic prophase cells, whereas a low level of transcripts 

appeared to persist in spermatids (Fig. 7). 

Figure 7. Localization of SCP2 transcripts in the testis by in situ hybridization. (A), Phase 
contrast micrograph of a transverse section of a testicular tubule in developmental stage VII to 
IX spermatocytes (mid-late pachytene; Leblond and Clermont, 1952). (B), Localization of 
SCP2 transcript in the adjacent section by in situ hybridization; a "S-Iabeled anti-sense RNA 
transcript was used as a probe. Note that the transcripts are present in the cytoplasm: nuclei are 
visible as "black holes". (C), Localization of SCP2 in the same section by indirect 
immunofluorescence staining with Mab IX1H9 as primary antibody; this antibody made part of 
the pool of anti-190,000 Mr Mabs that was used for screening of the cDNA library. Bar 
represents 50 urn. 
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We cannot exclude that the Scp2 gene is transcribed at very low levels in other organs. 

Of the SCP1 gene, low levels of transcripts have been detected in the brain by means 

of PCR (Kerr et al., 1996), although such transcripts were not detectable on northern 

blots of brain RNA (Meuwissen et al, 1992). However, we doubt whether such very 

low levels of transcription are functionally significant, because no SCP1 or SCP2 

protein has been detected in any other tissue than testis and ovary. 

Sequence and predicted secondary structure ofSCP2 

The amino acid sequence of the predicted protein SCP2 contains several motifs of 

potential interest: the protein contains three potential p34"''2 kinase target sites, which 

could be important for regulation of the assembly and disassembly of the SC: mutation 

of the CDC28 gene, which encodes the S. cerevisiae protein homologous to p34e*2, 

causes an arrest in pachytene (Shuster and Byers, 1989); it is thus possible that the 

p34c,,c2 protein kinase plays a role in the regulation of SC disassembly. The major com

ponent of the transverse filaments of SCs, SCP1, also has a potential target site for 

p34"'c2 protein kinase (Meuwissen et al, 1992). Besides the p34"'c2 kinase target sites, 

SCP2 contains eight target sites for cAMP/cGMP dependent protein kinase (Feramisco 

et al., 1980). This protein kinase is possibly also involved in the regulation of SC 

(dis)assembly: inhibition of phosphorylation of nuclear lamins by cAMP/cGMP-

dependent protein kinase plays a key role in the regulation of the disassembly of the 

nuclear lamina (Lamb et al, 1991). Furthermore, axial element component SCP3 also 

has two potential target sites for cAMP/cGMP-dependent protein kinase (Lammers et 

al., 1994). However, it still has to be sorted out whether the potential kinase target 

sites on SCP2 are actually phosphorylated in vivo, and whether this plays any role in 

the regulation of SC (dis)assembly. 

SCP2 has features of a DNA binding protein 

SCP2 shares features with several other proteins that have a function in chromatin 

organization. SCP2 has two large clusters of S/T-P and S/T-S/T motifs, which flank a 

basic domain of the protein. S/T-P and S/T-S/T motifs are common in a variety of 

DNA-binding proteins, and allow non-sequence-specific interaction with the minor 
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groove of DNA (Churchill and Travers, 1991; Green et al, 1993). Transverse filament 

proteins SCP1 of the rat (Meuwissen et al, 1992) and Zipl of yeast (Sym et al, 

1993), and meiotic chromosome core component Redl of yeast (Smith and Roeder, 

1997; Thompson and Roeder, 1989) also contain clusters of S/T-P and S/T-S/T motifs. 

Several nuclear matrix proteins also contain S/T-P clusters, for example SAF-A, a 

protein for which in vivo binding to matrix attachment DNA-regions has been proven 

(Goehring and Fackelmayer, 1997). Other nuclear matrix proteins carrying clusters of 

S/T-P motifs include mammalian nuclear matrix protein NUMA (Compton et al, 

1992; Yang et al, 1992), lamins (chicken lamin A, Bl and B2, human lamin A and C; 

Peter et al, 1989; Vorburger et al, 1989; McKeon et al, 1986; Fisher et al, 1986), 

repressor/activator site binding protein Rapl of yeast (Shore and Nasmyth, 1987), and 

topoisomerase II (Austin et al, 1993), which is found in chromosome scaffolds 

(Earnshaw and Heck, 1985). Lamin B-l (Luderus et al, 1992; 1994), Rapl (Shore and 

Nasmyth, 1987). SATB1 (Dickinson et al, 1992) and SCP1 (Meuwissen, 1997) have 

been shown to bind to DNA in vitro, although no obvious similarity with conserved 

features of DNA binding proteins could be identified in these proteins besides the S/T-

P and S/T-S/T clusters. Furthermore, Meuwissen (1997) showed that SCP1 binds to 

DNA through interaction with the minor groove, and that its DNA-binding activity is 

confined to the C-terminal domain, which contains all S/T-P and S/T-S/T motifs. In 

preliminary southwestern blot experiments, an expression product of a large part of the 

SCP2 cDNA was also capable of binding to DNA (K=3.6xl09 M1, unpublished 

experiments). However, it remains to be demonstrated that SCP2 binds to DNA in 

vivo. 

Possible functions ofSCP2 

The localization and predicted secondary structural features of SCP2 suggest that this 

protein is involved in the organization of meiotic prophase chromatin, possibly by 

temporarily binding to SARs. In detailed immunofluorescence studies (Schalk et al, in 

preparation), we found that SCP2 first assembles into short stretches of axial element, 

which fuse to form long, linear, unsynapsed axial elements, which then shorten and 

thicken as synapsis proceeds. How the assembly of linear axes is accomplished is not 
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known. It is not necessary to suppose a specific function for SCP2 in this respect, 

because chromosomes that are forced to condense from G2 in somatic cells, which do 

not contain SCP2, also develop long, linear axes (Gimenez-Abian et al, 1995). 

However, (premature) condensation from somatic G2 results in the assembly of one 

axis for each chromatid; only if condensation proceeds in the presence of a topoiso-

merase II inhibitor (ICRF), a single, undivided axis is formed for the two chromatids 

of each chromosome (Gimenez-Abian et al., 1995); upon recovery from ICRF, the 

single axis splits, the centromeric regions being separated last. It is possible that in 

meiotic prophase, SCP2 has a comparable effect as a topoisomerase II inhibitor on the 

separation of sister chromatids, by competing with topoisomerase II for binding to 

SARs. The two sister chromatids would then remain unseparated until SCP2 is 

removed, possibly by phosphorylation, and replaced by topoisomerase II, which 

gradually congregates onto the axial elements in the second half of meiotic prophase 

(Moens and earnshaw, 1989). SCP2 persists in the centromeric region during meiotic 

metaphase I (Schalk et al, in preparation), as has been described earlier for SCP3 

(COR1) (Dobson et al., 1994); such a localization would be consistent with a role of 

SCP2 in sister chromatid cohesion. The ultrastructural localization of SCP2 in the 

center of the axial element (Schalk et al., in preparation) is also consistent with such a 

role. 

One other possible clue to the function(s) of SCP2 is provided by the work on 

the yeast Redl protein. SCP2 shows a limited sequence similarity to the Redl protein 

of yeast. SCP2 and Redl are also similar in that both proteins contain many S/T-P and 

S/T-S/T motifs (Redl has 6 S/T-P motifs and 20 S/T-S/T motifs, (Thompson and 

Roeder, 1989)), and are predicted to form a short coiled-coil domain at their C-

terminus. Although there are also considerable differences (Redl has a much lower 

molecular weight and pi than SCP2), the similarities are of interest, because Redl is a 

candidate component of the axial elements of yeast SCs (Smith and Roeder, 1997). 

The Redl protein localizes to the cores of meiotic prophase chromosomes (Smith and 

Roeder, 1997). redl mutants do not assemble axial elements (Rockmill and Roeder, 

1990), and display a decreased level of meiotic chromosome pairing, heteroduplex 

formation (Nag et al, 1995), and interchromosomal gene conversion and crossing over 

(Rockmill and Roeder, 1990). Furthermore, Redl is required for the formation of 
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crossovers that can ensure a proper disjunction of homologous chromosomes at 

metaphase I (Rockmill and Roeder, 1990) and has a role in monitoring the 

recombination process (Xu et ai, 1997). The involvement in such a variety of 

processes can be understood if Redl is a structural component of the axial elements 

which interacts with several proteins that function in one or more of these processes. 

The same could be true for SCP2. The cloning of the cDNA encoding SCP2 will allow 

us to analyse this by searching for the proteins and DNA-sequences that interact with 

SCP2. 
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Abstract. SCP2 is a meiosis-specific component of the axial elements of synaptonemal 

complexes, and was originally identified in the rat. The cDNA encoding SCP2 of the 

rat (rnSCP2) has recently been isolated and sequenced. The protein contains several 

S/T-P and S/T-S/T motifs, which are supposed to contribute to DNA binding by 

interaction with the minor groove of DNA. Furthermore, rnSCP2 contains a coiled-

coil domain at its C-terminus and several potential phosphorylation sites. We isolated 

and sequenced the cDNA encoding the human SCP2 protein (hsSCP2) to study the 

conservation of these features. The predicted amino acid sequence of hsSCP2 showed 

63 % identity with rnSCP2. Several structural features and amino acid sequence 

motifs were conserved; hsSCP2 contains S/T-P motifs in the same domains as rnSCP2, 

and has a predicted coiled-coil region at its C-terminus. The hsSCP2 gene was 

assigned to human chromosome 20ql3.33 by fluorescence in situ hybridization. 
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Introduction 

Synaptonemal complexes (SCs) are proteinaceous structures, which are formed 

between homologous chromosomes during prophase I of meiosis. The formation of the 

synaptonemal complex starts in early prophase, when a single proteinaceous axial 

element is formed between the two sister chromatids of each chromosome. The 

chromatin loops of the two sister chromatids of each chromosome are connected at 

their bases to the axial elements. Later in meiotic prophase I, the axial elements of 

homologous chromosomes are connected by transverse filaments to form the 

synaptonemal complex structure; within the context of the SC, axial elements are 

called lateral elements (LEs). 

The function of axial elements and SCs is still under investigation. From studies 

in fission yeast (Schizosaccharomyces pombe) and of certain mutants of budding yeast 

(Saccharomyces cerevisiae), it has been concluded that transverse filaments are not 

indispensable to meiotic recombination and the formation of functional chiasmata 

(Egel-Mitani et al, 1982; Bahler et al, 1993; Sym et al., 1993), but that they are 

required for meiotic crossover interference (Munz, 1994; Sym and Roeder, 1994). 

Possible functions of the axial elements include the conversion of crossovers into 

functional chiasmata that contribute to the proper orientation of bivalents at metaphase 

I ( Molnar et al., 1995; Hollingsworth and Byers, 1989; Rockmill and Roeder, 1990), 

and the enhancement of recombination between homologous chromosomes rather than 

sister chromatids (Schwacha and Kleckner, 1994; Mao-Draayer et al, 1996). Two 

candidate components of yeast SCs have been identified, namely Hopl and Redl 

(Hollingsworth and Byers, 1989; Rockmill and Roeder, 1988). hopl and redl mutants 

fail to assemble axial elements, but still display 10-20% of wildtype level of crossing-

over (Hollingsworth and Byers, 1989; Rockmill and Roeder, 1990). These residual 

crossovers do not enhance the proper disjunction of homologous chromosomes 

(Rockmill and Roeder, 1990). 

The structure of the SC has been largely conserved among eukaryotes and it 

seems likely that at least part of the functions of SCs have also been conserved. At the 

level of individual SC-proteins however, there are as yet little indications of 
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evolutionary conservation: SC-components have not only been identified in yeast, but 

also in rodents (Heyting et al., 1987, 1989; Smith and Benavente, 1992; Chen et al, 

1992; Dobson et al., 1994) and in lily (Anderson et al., 1994). cDNAs encoding 

components of rodent SCs have now been cloned and sequenced, namely a component 

of the lateral elements, called SCP3 (COR1) (Lammers et al, 1994; Dobson et al, 

1994) and a component of the transverse filaments, called SCP1 (SYN1) (Meuwissen 

et al., 1992; Dobson et al, 1994). At the amino acid sequence level, these proteins do 

not display homology to any of the yeast SC-components, although SCP1 shows some 

structural similarities to Zipl, a putative component of transverse filaments of yeast 

SCs ( Sym et al, 1993; Sym and Roeder, 1994, 1995). It is possible that SCP1 is 

funtionally homologous to Zipl (Meuwissen et al., 1992). 

Recently, we isolated and sequenced the cDNA encoding the Mr 190,000 

component of the axial elements of rat SCs (rnSCP2) (Offenberg et al., 1998). The 

predicted amino acid sequence has some interesting structural and small scale amino 

acid sequence motifs; rnSCP2 contains several S/T-P and S/T-S/T motifs, which are 

localized in two clusters, and which might be involved in DNA-binding (Suzuki, 

1989). Furthermore, rnSCP2 contains a coiled-coil region at its C-terminus and it has 

several potential phosphorylation sites (Offenberg et al., 1998). It shares the structural 

features with the Redl protein of yeast (Thompson and Roeder, 1989). Furthermore, 

rnSCP2 and Redl share a small region of amino acid sequence similarity (Offenberg et 

al., 1998). Possibly, rnSCP2 and Redl are homologous proteins, or at least functional 

homologues. In order to learn more about the amino acid sequence conservation of 

SCP2, and the possible homology of SCP2 to Redl of yeast, we also isolated and 

sequenced the human SCP2 cDNA. The results show that SCP2 is not a very 

conserved protein, and that there are no indications for amino acid sequence homology 

between hsSCP2 and Redl of yeast. However it is possible that rnSCP2 and hsSCP2 

have a similar function as the Redl protein, since the organization of structural 

features within the proteins is similar. 
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Materials and methods 

Isolation and sequence analysis of human cDNA clones encoding the rat SCP2 

homologue 

For the isolation of cDNA encoding the human homologue of SCP2, we screened 

5xl05 recombinant phage of a human testis cDNA library in A-gtlO (Huynh et al., 

1985) (Clontech Laboratories Inc., Palo Alto, CA, USA, HL 1161a), using a 5' 

terminal fragment of 750 bp and a 3' terminal fragment of 730 bp of rnSCP2 cDNA as 

probes. Screening with the 5' probe yielded 3 positive clones, with inserts of 1.1, 1.2 

and 2.1 kb respectively. Screening with the 3' probe yielded one clone with an insert 

of 2.5 kb. Restriction enzyme fragments of the 1.1 and 2.1 kb inserts of the 5' cDNA 

clones and of the 2.5 kb insert of the 3' cDNA clone were subcloned into the 

pBluescript SK(+) vector (Stratagene Inc., San Diego, CA, USA). We obtained the 

middle part of the human cDNA by means of PCR on the XgtlO library, using primers 

derived from the 2.1 kb insert of the 5' cDNA clone and the 2.5 kb insert of the 3' 

cDNA clone: 2x10* plaque-forming units of the human cDNA library were 

resuspended in 75 JLLI deionized water and heated for 5 minutes at 70°C. Subsequently 

the sample was adjusted to 1.5 mM MgCl2, 0.2 mM dNTPs and 50 pmol of each 

primer and 2.5 units Taq polymerase (Pharmacia Biotech, Uppsala, Sweden) were 

added. The sample was incubated according to the following schedule: 1 cycle: 5 

minutes 94°C; 30 cycles: 1 minute 94°C, 2 minutes 51°C, 3 minutes 72°C; 1 cycle: 1 

minute 94°C, 2 minutes 51°C, 15 minutes 72°C. Subsequently, we took 25 ^1 of the 

PCR-reaction mixture and added 1 u.1 of 1 mM dATP, 0.5 p.1 of a 10 mM dNTP 

mixture, 5 units T4 polynucleotide kinase (Gibco BRL Life Technologies, Paisley, 

UK) and 5 units T4 DNA polymerase (Gibco BRL), and incubated for 20 minutes at 

room temperature. This fragment was then subcloned into the pBluescript SK(+) 

vector (Stratagene). We amplified the 5' end of the 1.2 kb insert of the 5' cDNA clone 

by PCR, using a primer derived from the 2.1 kb cDNA insert and a A.gtl0 vector-

specific primer. The PCR reaction was performed on isolated X.gtl0 phage DNA 

containing the desired cDNA sequence, in reaction buffer which contained 1.5 mM 

MgCl2, 0.2 mM dNTPs, 20 pmol of each primer and 2.5 units of Taq polymerase 
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(Goldstar DNA polymerase, Eurogentec, Seraing, Belgium), according to the 

following schedule: 1 cycle: 1 minute 94°C; 30 cycles: 20 seconds 94°C, 20 seconds 

51°C, 1 minute 72°C; 1 cycle: 20 seconds 94°C, 20 seconds 51°C, 15 minutes 72°C. 

The obtained product was subcloned into the pGEM-T vector (Promega, Madison, 

Wisconsin, USA). We obtained fragments of the human cDNA extending further in 

the 5' direction by PCR on 1250 ng of isolated XgtlO library DNA, using a 5'-oriented 

primer derived from the human cDNA and a 3'-oriented primer derived from rnSCP2 

cDNA, which contained the first ATG startcodon. The PCR-reaction was performed as 

described above. In order to obtain cDNA fragments that extend beyond the first ATG, 

a linear PCR was performed on 1250 ng isolated A,gtl0 DNA with a primer derived 

from the human SCP2 cDNA followed by a PCR with a nested human cDNA-specific 

primer in combination with a .̂gtlO vector-specific primer. PCR products of the above 

described experiments were cloned into the pGEM-T vector (Promega). We performed 

sequencing reactions on the resulting clones, using the Dye Deoxy Terminator Cycle 

sequencing kit from Perkin-Elmer (Norwalk, Connecticut, USA) and determined the 

nucleotide sequence on a 373A stretch 48 cm WAR DNA sequencer (Applied 

Biosystems, Inc., Foster City, CA, USA). The obtained sequences were assembled by 

means of the University of Wisconsin GCG sequence analysis package (University of 

Wisconsin, WI, USA). Sequence similarity searches of the Genbank, EMBL, 

Swissprot and PIR data bases were carried out with BLASTX, BLASTN and 

TBLASTN (Altschul et al., 1997). Amino acid sequence alignments were determined 

by means of the Pile-Up program (GCG software package) and the results were 

presented in the Boxshade program. The EMBL accession number of the complete 

hsSCP2 cDNA sequence is Y08982. 

Fluorescence in situ hybridization analysis 

A genomic PAC clone (Ioannou et al., 1994), containing the hsSCP2 gene was 

isolated by screening a human PAC library (library RPCI1, 3-5 Human PAC0, 

constructed by Ioannou and de Jong, Roswell Park Cancer Institute, Buffalo, New 

York, was obtained from the Resource Center Primary Database of the German 

Human Genome Project, Berlin-Charlottenburg, Germany) with a pool of five hsSCP2 
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cDNA clones, which together cover most of the hsSCP2 coding sequence. The 

presence of the hsSCP2 gene on the PAC clone was confirmed by two Southern blot 

hybridizations with two non-overlapping hsSCP2 cDNA probes (not shown). 

Fluorescence in situ hybridization was performed with the PAC DNA on human 

metaphase chromosomes according to standard protocols (Hoovers et al., 1992). A 

chromosome 20-specific alpha satellite probe, pBS20Z (Baldini et al., 1992) was used 

as centromeric probe to recognize chromosome 20. Probes were labeled with biotin 

and detected with avidin-FITC (Vector, Burlingame, CA, USA). Counterstaining of 

the chromosomes was performed with propidium iodide. 

Results 

Isolation and Sequencing of Human SCP2 cDNAs 

For the isolation of cDNA encoding the human homologue of mSCP2, we screened 

5xl05 recombinant phage of a human testis cDNA library in A,gt 10, using a 5' and a 3' 

terminal fragment of rnSCP2 cDNA as probes. Screening with the 5' probe yielded 3 

clones with inserts of 1.1, 1.2 and 2.1 kb respectively. Screening with the 3' probe 

yielded one clone with an insert of 2.5 kb. Restriction enzyme fragments of the 1.1 

and 2.1 kb 5' cDNA clones and the 2.5 kb 3' cDNA clone were subcloned into the 

pBluescript SK(+) vector and sequenced. The missing middle part of the human cDNA 

was obtained by means of PCR on the library, with the use of two oligonucleotides 

homologous to the 2.1 kb insert of the 5'cDNA clone and the 2.5 kb insert of the 

3'cDNA clone as primers (see Materials and methods). The thus obtained cDNA 

fragments displayed nucleotide sequence homology with rnSCP2 cDNA, although 

some discrepancies were found between the 5' end of the 1.1 and 2.1 kb cDNA inserts; 

the 2.1 kb insert contained an Alu repeat at its 5' terminus, which probably resulted 

from a ligation of independent fragments during the construction of the library. The 5' 

end of the 1.1 kb insert showed a sudden drop in nucleotide sequence homology to 

rnSCP2 cDNA and we supposed that this insert was also a scrambled clone, generated 

during the construction of the library. The 5' end of the remaining human 5' cDNA 
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clone, with an insert of 1.2 kb, was amplified by PCR and subcloned into the pGEM-T 

vector. The 5' end of the 1.2 kb insert showed a considerable level (77 %) of 

nucleotide sequence homology to rnSCP2 cDNA. Since this clone did not cover the 

position of the first ATG codon of rnSCP2 cDNA, we performed a series of PCR 

experiments on the A.gtlO library (see Materials and methods), and identified and 

sequenced 49 additional nucleotides at the 5' end, which contained an in-frame ATG 

startcodon at the same position as in rnSCP2 cDNA. We did not obtain longer cDNA 

fragments by PCR on the library, using more 5' positioned primers. We believe that 

the isolated cDNA fragments together cover the complete human SCP2 cDNA, 

because they cover the positions of both the start- and the stopcodon in rnSCP2 cDNA. 

The complete sequence (Fig. 1) was assembled from the sequences of the PCR 

products and the cDNA subclones; it contains an open reading frame of 4593 

nucleotides, encoding a protein of 1530 amino acids, called hsSCP2, with a predicted 

molecular weight of 176 kDa and a pi of 8.9. 

Comparison ofhsSCP2 and rnSCP2 

The overall homology between the predicted amino acid sequence of hsSCP2 and 

rnSCP2 is 63 % (Fig. 2).The homology is especially high at the N-terminus where 

amino acid residues 1-441 of hsSCP2 and rnSCP2 show 81% of amino acid identity. 

Homology is considerably lower in the rest of the protein where some regions show 

only 50% of identity. The highly conserved N-terminal part of hsSCP2 does not 

contain any obvious structural motifs. hsSCP2 contains 14 S/T-P motifs and 36 S/T-

S/T motifs (Fig. 1). These motifs are enriched in DNA-binding proteins (Suzuki, 

1989). The S/T-P and S/T-S/T motifs form fi-turns, which can interact with the minor 

groove of DNA (Suzuki, 1989). These DNA-binding motifs have also been found in 

rnSCP2 (Offenberg et al., 1998). Eight of the 15 S/T-P motifs and 18 of the 40 S/T-

S/T motifs in rat are conserved in human (Fig. 3A and B). Three S/T-S/T motifs in rat 

are S/T-P motifs in human, and one S/T-P motif in rat is an S/T-S/T motif in human 

(Fig. 3A). Although only half of the motifs in hsSCP2 appear at exactly corresponding 

positions in rnSCP2, the organization of these motifs in two clusters is similar in rat 

and human (Fig. 3). The region between these clusters is very basic, with a pi of 9.6 in 
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hsSCP2 and 9.5 in rnSCP2. hsSCP2 contains two potential p34c''c2 kinase target sites, 

namely at amino acid residue 472 and 994 (consensus S/T-P-X-Z (Draetta, 1990)), 

whereas rnSCP2 has three such sites; one of these is found at a conserved position in 

hsSCP2 (a.a. residue 471). Furthermore, hsSCP2 contains four potential cAMP/cGMP 

dependent phosphorylation sites (consensus R/K(2)-X-S/T (Feramisco et al, 1980)) 

(Fig. 1) of which three are found at the corresponding position in rat. rnSCP2 has six 

potential tyrosine kinase phosphorylation sites (a.a. residue 206, 230, 231, 365, 720, 

1076) (consensus (R/K-X(2)-D/E-X(3)-Y (Cooper et al, 1984)), of which three are 

conserved in human (a.a. residue 206, 365, 731). Both rnSCP2 and hsSCP2s contain 

two nuclear targeting signals (a.a. residue 250 and 956 in rnSCP2 and a.a. residue 250 

and 810 in hsSCP2) (consensus K-R/K-X-R/K (Chelsky and Jonak, 1989)). At the C-

terminus, hsSCP2 contains a region which is predicted to be capable of forming 

coiled-coil structures (Lupas et al, 1991), at the corresponding position as the coiled-

coil region in rnSCP2 (residue 1386 to 1434), eventhough the homology in this region 

is only 50%. 
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Figure 1. Nucleotide sequence and predicted amino acid sequence of hsSCP2. The predicted translation 
product is shown below the nucleotide sequence. The S/T-P motifs are double underlined. The potential 
p34"fr̂  p r o t e m k i n a s e target sites are boxed. The putative cAMP/cGMP-dependent protein kinase target 
sites are underlined. 
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Figure 2. Amino acid sequence alignment of hsSCP2 and rnSCP2. Amino acid sequence 
alignment was determined by means of the Pile-Up program (GCG software package, 
University of Wisconsin, WI, USA) and the results are presented in the Boxshade program. 
Identical amino acids are highlighted in black, functionally conserved amino acids are 
highlighted in gray. Conserved amino acids are taken as follows: M,V,I,L and F,Y,W and 
H,R,K and D,E and N,Q and G,A and T,S. 
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Figure 3. Comparison of the position of the S/T-P and S/T-S/T motifs in SCP2 of rat and 
human. (A) Position of the S/T-P motifs in hsSCP2 and rnSCP2; only those S/T-S/T motifs are 
shown for which an S/T-P motif is present at the exactly corresponding position of the 
homologous protein. (B) Position of the S/T-S/T motifs in hsSCP2 and rnSCP2. 

Homology with other proteins 

Screening of databases with the hsSCP2 cDNA sequence revealed three ESTS from a 

human testis cDNA library, one EST from a heart and four ESTs from a placenta 

cDNA library, which represented part of the hsSCP2 cDNA. No homology to other 

proteins than rnSCP2 was detected. 
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Chromosomal Localization of the Human SCP2 Gene 

The human SCP2 gene was localized by fluorescence in situ hybridization (Fig. 4). A 

genomic PAC clone, containing the hsSCP2 gene, and a centromere-specific probe, 

which recognizes chromosome 20 (pBS20Z) (Baldini et al., 1992), were used as 

probes. Ten metaphases with two signals on both chromosomes were analysed and the 

hsSCP2 gene was assigned to chromosome 20ql3.33. 

Figure 4. Localization of the human SCP2 gene to chromosome 20ql3.33. Metaphase 
chromosomes from human lymphocytes were hybridized with a mixture of two biotin labeled 
probes: a PAC clone, containing the hsSCP2 gene and a human centromeric probe specific for 
chromosome 20, pBS20Z (Baldini et al, 1992). The probes were detected with avidin-FITC. 
The chromosomes were counterstained with propidium iodide. 

59 



Chapter 3 

Discussion 

In this paper we describe the isolation of cDNA fragments which together encode the 

human homologue of rnSCP2. The overall amino acid identity between hsSCP2 and 

rnSCP2 is 63%. The most conserved domain of the protein is the N-terminal part 

(81% amino acid identity); other parts in the protein display a much lower level of 

homology (50-65%). The conserved N-terminal part contains no obvious secondary 

structures or small-scale amino acid motifs. Possibly, this part of the protein is 

involved in specific protein-protein interactions. hsSCP2 contains numerous structural 

features and amino acid sequence motifs in the rest of the protein, of which several 

have been conserved between hsSCP2 and rnSCP2. 

Comparison of SCP2 from human and rat 

hsSCP2 and rnSCP2 both contain several S/T-P and S/T-S/T motifs. The S/T-P motifs 

are thought to form (3-turns which contribute to DNA-binding through interaction with 

the minor groove, preferably of AT-rich DNA (Suzuki, 1989; Churchill and Suzuki, 

1989). S/T-S/T motifs can mimick the conformation of the S/T-P motifs (Suzuki, 

1989). Both in hsSCP2 and rnSCP2, the S/T-P motifs are organized in two clusters 

(Fig. 3A); the clustering of S/T-S/T motifs is less pronounced (Fig. 3B), although 

these sequences are rare in the N-terminal domain outside the S/T-P clusters. Half of 

the S/T-P motifs and S/T-S/T sequences in hsSCP2 appear at corresponding positions 

in rnSCP2. Three S/T-P motifs in human are S/T-S/T motifs in rat, and one S/T-P 

motif in rat is an S/T-S/T motif in human (Fig. 3A). Thus, although the exact number 

and position of S/T-P motifs is not well-conserved in SCP2, their organization in two 

clusters is similar in human and rat. Meuwissen et al. (1997) reached a similar 

conclusion with respect to SCP1, a transverse filament protein of SCs with one cluster 

of S/T-P and S/T-S/T sequences in its C-terminal domain (Meuwissen et al., 1992). 

S/T-P motifs often flank a specific DNA-recognizing structure (Suzuki, 1989). The 

two clusters of S/T-P motifs in rnSCP2 and hsSCP2 surround a very basic region. It is 

possible that the clusters with S/T-P motifs bind to DNA in a non-specific way and 

that this basic region is responsible for strong DNA binding, possibly to specific 

sequences. 
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Two of the S/T-P motifs in hsSCP2 are also potential target sites for p34c,fc2 

kinase; one of these sites has been conserved in rat. It is possible that these sites are 

important for the regulation of the assembly and disassembly of SCs (discussed in 

Offenberg et al., 1998). Four cAMP/cGMP dependent phosphorylation sites are 

dispersed throughout hsSCP2. The position of three of these sites is conserved 

between rat and human. These sites are possibly also important for the regulation of 

SC (dis)assembly by phosphorylation. Furthermore, hsSCP2 contains three tyrosine 

kinase sites, which are conserved between rat and human. Recently, a meiosis-specific 

protein-tyrosine phosphatase was identified (Ohsugi et al., 1997), which possibly plays 

an important role in the regulation of meiosis by (de)phosphorylation of certain 

proteins. SCP1, the major protein component of the transverse filaments of SCs also 

contains such a potential tyrosine kinase target site, which has been conserved in 

human, rat and mouse (Meuwissen et al., 1997; Meuwissen et al., 1992; Sage et al., 

1995). 

Both hsSCP2 and rnSCP2 contain a domain at their C-terminus which is 

predicted to be capable of forming a coiled-coil structure (Lupas et al., 1991). 

Although the homology in this region is low (50% amino acid identity), the position of 

this coiled-coil domain in hsSCP2 corresponds with that of the coiled-coil domain in 

rnSCP2. It is possible that SCP2 interacts with other proteins or with itself through this 

domain. 

Apart from differences at the end of some cDNA clones, which we interpret as 

cloning artefacts, the screening and PCR experiments yielded only one type of cDNA 

clones with homology to rnSCP2. Although the amino acid identity between hsSCP2 

and rnSCP2 is not very high, we think that we have isolated the functional homologue 

of rnSCP2 because the organization of several structural motifs within hsSCP2 is 

identical to rnSCP2, and no other human cDNAs were detected by screening or by 

PCR. 

Expression of the hsSCP2 gene 

Screening of databases with hsSCP2 cDNA sequence revealed ESTs from a human 

testis cDNA library, but also from a human heart and a human placenta library. The 

identified ESTs were fully identical to the hsSCP2 cDNA. Offenberg et al. (1998) 
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analyzed the transcription of the rnSCP2 gene by northern blotting and in situ 

hybridization. On northern blots, SCP2 transcripts were only detected in mRNA from 

testis, and in situ hybridization showed that the rnSCP2 gene was transcribed 

predominantly in meiotic cells (spermatocytes), although some SCP2 transcripts were 

detected in spermatids. Possibly, the ESTs identified in cDNA libraries of human heart 

and placenta result from very low levels of transcription of the SCP2 gene. A similar 

situation was encountered with respect to the rnSCPl gene: SCP1 transcripts could be 

detected in mouse brain tissue by means of PCR (Kerr et al., 1996) although northern 

blotting revealed no SCP1 transcripts in this tissue (Meuwissen et al., 1992). 

Comparison with the RED] protein 

In BLASTP sequence alignments, a small domain of rnSCP2 displayed some amino 

acid sequence homology to the yeast Redl protein; this similarity was of interest 

because Redl is a putative component of the lateral elements of SCs in S. cerevisiae 

(Smith and Roeder, 1997). Like rnSCP2 and hsSCP2, Redl contains a domain at its C-

terminus, which can form a coiled-coil structure (Lupas et al., 1991). Furthermore 

Redl contains six S/T-P motifs and 19 S/T-S/T sequences dispersed throughout the 

protein and several potential phosphorylation sites. However, in alignments of 

rnSCP2, hsSCP2 and Redl by MACAW (Schuler et al, 1991) this similarity did not 

sustain. Eventhough no amino acid homology between Redl and hsSCP2 was 

detected, it is very suggestive that several structural features of SCP2 are also found in 

Redl, and that the organization of structural features is similar in SCP2 and Redl. 

Possibly, this organization is more important for the function of the proteins than the 

amino acid sequence. Because the organization of structural motifs within Red! and 

SCP2 is comparable, we think it is still possible that these proteins are at least partially 

functionally homologous. 

In yeast, the Redl protein promotes interchromosomal recombination and 

enhances the formation of functional chiasmata. A defect in Redl leads to a decrease 

of crossing-over frequency (10% of wildtype) and only 1% spore-viability due to 

chromosome nondisjunction at anaphase I (Rockmill and Roeder, 1990). Since Redl 

and SCP2 possibly share some functions and SCP2 makes part of meiotic prophase 

chromosomes, defects in SCP2 will probably cause meiotic chromosome 
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nondisjunction and infertility. By fluorescence in situ hybridization hsSCP2 was 

assigned to chromosome 20q 13.33 (Fig. 4). As yet no infertility problems are known 

to be correlated with chromosomal abnormalities in this chromosomal area, but the 

localization of SCP2 offers some prospects for further research. 
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Abstract. SCP2 and SCP3 are major protein components of the lateral elements (LEs) of 

synaptonemal complexes (SCs) of the rat, with molecular masses of 173 kDa and 30 kDa. 

In this paper we perform a detailed immunocytochemical comparison of the localization of 

SCP2 and SCP3 within SCs at the EM level. The ultrastructural localization of SCP2 and 

SCP3 was analyzed by immunogold labeling of two types of preparations, namely surface-

spread spermatocytes and ultrathin sections of Lowicryl-embedded testicular tissue of the 

rat. For each of the antisera used, the distribution of immunogold label over SCs in 

surface-spread spermatocytes differed significantly from the distribution of label on 

sections. We attributed this difference to artifacts caused by the surface-spreading 

technique, and therefore we relied on sections for the precise localization of epitopes. On 

sections, the distributions of label obtained with two antisera against non-overlapping, 

widely separated fragments of SCP2 did not differ significantly. There was a small but 

significant difference between the labeling pattern obtained with an anti-SCP3 serum and 

the pattern obtained with either of the two antisera against fragments of SCP2; although 

for all three antisera the peak of the immunogold label coincided with the center of the LE, 

the distributions of label obtained with the antisera against fragments of SCP2 were 

asymmetrical, with a shoulder at the inner side of the LE, whereas the distribution of label 

obtained with anti-SCP3 antibodies was symmetrical. Furthermore, we observed fuzzy 

connections between the LEs, which were labeled by anti-SCP2 but not anti-SCP3 

antibodies. It is possible that labeling of these "fuzzy bridges" caused the shoulder in the 

gold label distributions obtained with anti-SCP2 antibodies. 
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Introduction 

Ultrastructural studies of meiotic prophase cells have revealed zipper-like, 

proteinaceous structures, the synaptonemal complexes (SCs), between paired 

homologous chromosomes (Moses, 1968). The formation of SCs starts at the leptotene 

stage of prophase I, when single protein axes are laid along the two sister chromatids 

of each chromosome. At zygotene, the axial elements of two homologous 

chromosomes are connected by transverse filaments (TFs) and a central element is 

formed on these TFs. These axial elements, transverse filaments and central element 

together form the tripartite structure of the SC. Within the context of the tripartite SC, 

the axial elements are called lateral elements (LEs). At pachytene, the formation of 

SCs is complete and homologous chromosomes are connected by SCs along their 

entire length. At diplotene, the SCs fall apart, but the homologous chromosomes 

remain connected at the chiasmata, which result from reciprocal exchanges between 

non-sister chromatids. At metaphase I, the SC is no longer ultrastructurally 

recognizable, and at anaphase I the homologous chromosomes segregate. 

In the rat, four major protein components of SCs have been identified, with 

relative electrophoretic mobilities (Ms) of 30,000-33,000, 125,000 and 190,000 

(Heyting et ai, 1989). In this paper we focus on the 30,000-33,000 and 190,000 Mr SC 

proteins. The 30,000-33,000 Mr proteins are closely related, and are most probably 

products of a single gene, SCP3 (Lammers et ai, 1994). The cDNA encoding the 

190,000 Mr component of rat SCs has recently been cloned and sequenced (Offenberg 

et ai, 1998); it encodes a 173 kDa protein, called SCP2, which has features of a 

protein which can bind to DNA, particularly to AT-rich sequences. In surface-spread 

preparations of spermatocytes and oocytes, SCP2 and SCP3 have both been localized 

to the axial elements, within and outside tripartite segments of SCs, from leptotene up 

till and including the diplotene stage of meiotic prophase (Heyting et ai, 1987, 1989; 

Moens etal., 1987; Offenberg etal., 1991; Dietrich et ai, 1992a). 

The functions of axial element components are still under investigation. On the 

basis of immunofluorescence studies, Dobson et al. (1994) proposed that SCP3 

(COR1) has a role in the regulation of sister chromatid cohesion, because this protein 
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persists in the chromosome arms until metaphase I, and in the centromeric region until 

anaphase II. 

The localization of SCP2 and SCP3 to the axial elements was confirmed 

ultrastructurally by immunogold labeling of agar filtrates and surface spreads of 

spermatocytes (Heyting ef al, 1987, 1989; Offenbergef al, 1991; Moens et al, 1987; 

Dobson et al, 1994) and oocytes (Dietrich et al, 1992a). However, the results were 

not unambiguous in all respects. Moens et al. (1987) performed immunogold labeling 

of surface-spread rat and mouse spermatocytes, using a monoclonal anti-SCP3 

antibody, and found most of the label on the LEs, with the peak of the distribution of 

gold label above the center of the LEs. This would be consistent with a role of SCP3 

in sister chromatid cohesion. However, Dobson et al. (1994), using a polyclonal 

antiserum against the hamster homologue of SCP3 (COR1) on surface-spread hamster 

spermatocytes, reported a broad distribution of gold label around the LEs, with the 

peak of the label outside the LEs. That would suggest that SCP3 is not an axial 

element component, but a component of a subfraction of the chromatin that is attached 

to the LEs. Immunogold labeling of surface-spread spermatocytes with anti-SCP2 

antibodies also produced a broad distribution of label around the LEs, rather than a 

narrow distribution on top of the LEs (Heyting et al., 1989; Offenberg et al, 1998). 

One possible explanation for this is, that small variations in the spreading technique 

may influence the localization of SC proteins, and thus the distribution of immunogold 

label (see also discussion in Schmekel et al, 1996). 

For several reasons the precise localization and orientation of SCP2 and SCP3 

within the SCs is of interest. First, it is important to make a distinction between 

structural components of LEs and LE-associated proteins. Components of the LEs 

contribute to the structure of the LE and would therefore show a narrow colocalization 

with the LE. They do not (re)distribute from/to the chromatin before or after prophase 

I. Components that are just associated with the LE are expected to be loosely 

organized around the LE and to be redistributed over the chromatin when the SC 

assembles and/or disassembles. Second, a precise colocalization of SCP2 and SCP3 

would suggest that these proteins interact in vivo, whereas a different localization 

would provide clues to distinguish between possible functions of these two proteins. 

Third, the orientation of these proteins within SCs is of interest, particularly of SCP2, 
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which is a large protein; analysis of its orientation by immunogold labeling with 

antibodies against widely separated domains should be feasible. We compared the 

precise localization of SCP2 and SCP3 within SCs by immunogold labeling, using 

monoclonal and polyclonal antibodies against SCP2 and SCP3. The experiments were 

performed on surface-spread spermatocytes, for comparison with earlier work 

(Heyting et al, 1987, 1989; Offenberg et al, 1991; Moens et al, 1987; Dobson et al, 

1994), and on ultrathin sections of Lowicryl-embedded material. Schmekel et al. 

(1996) argue that Lowicryl sections allow a more precise localization of epitopes 

relative to SC substructures than surface spreads; in spreads, the surface morphology 

can influence the distribution of immunogold label, whereas in Lowicryl sections the 

surface is smooth (Stierhof et al, 1986) and will not affect the distribution. 

Furthermore, masking of epitopes can occur in spreads, while immunogold labeling of 

Lowicryl sections is a surface labeling, with all epitopes on the surface being equally 

accessible to antibodies. The harsh conditions of the surface spreading procedure (SDS 

and DNase I treatment) might affect the structure of the SC whereas gross 

rearrangements are less likely to occur in Lowicryl sections. On sections, we 

furthermore analyzed whether SCP2 has a fixed orientation within LEs, using two 

antisera elicited against widely separated domains of the protein. 

We found a considerable discrepancy between the immunogold labeling patterns 

of surface spreads and of sections. On sections, the peaks of immunogold label 

obtained with anti-SCP2 or anti-SCP3 antibodies always coincided with the center of 

the LE. We found a small but significant difference between the immunogold labeling 

patterns obtained with anti-SCP2 and anti-SCP3 antibodies. The experiments did not 

provide evidence for a fixed orientation of SCP2 molecules within LEs. 
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Materials and methods 

Antibodies 

For the preparation of antisera against fragments of SCP2, we subcloned two 

fragments of SCP2 cDNA, which encode amino acid residues 293-828 (fragment P) 

and amino acid residues 1236-1505 (fragment D) of SCP2 (Fig. 1). The fragments 

were subcloned in PQE31 (Qiagen, Chatsworth, CA), in frame with an ATG 

startcodon and 6 successive histidine codons on this vector. E.coli SGI3009 cells 

(Qiagen) were transformed with the resulting construct. Synthesis of the fusion 

proteins encoded by these constructs was induced by addition of isopropyl-P-D-

thiogalactopyranoside (IPTG) to a culture of transformed cells. The fusion proteins 

were purified from bacterial cell lysates by affinity chromatography on nickel columns 

according to the instructions of the supplier of the columns (Qiagen) and dialyzed 

against PBS (140 mM NaCl, 10 mM sodium phosphate pH 7.3). Both fragment P and 

fragment D precipitated during the dialysis. Antisera against SCP2 fragments P and D 

were elicited by immunization of rabbits; 60 ug of fusion protein was injected 

subcutaneously and intramuscularly at 2-week intervals. For the first injection, the 

antigen was mixed 1:1 with complete Freund's adjuvant (Sigma, St. Louis, MO, 

USA); for all later injections it was mixed with incomplete Freund's adjuvant. 20 ml 

bleedings were collected from the ear-veins at 4-week intervals, starting 1 week after 

the fourth injection. We thus obtained serum 493 (anti-SCP2 fragment P antiserum; 

further indicated as anti-P) and serum 509 (anti-SCP2 fragment D antiserum; further 

indicated as anti-D). We affinity-purified the anti-P antibodies from serum 493 using 

strips of Western blots containing full-length fragment P by a procedure described 

earlier (Lammers et al., 1994). The mouse monoclonal antibodies (Mabs) II52F10 and 

IX9D5 were elicited and prepared as described by Offenberg et al. (1991); they are 

described in detail by Heyting et al. (1989) and Offenberg et al. (1991). Polyclonal 

antiserum 175 was elicited by immunization of a rabbit with whole SCs from rat. The 

serum recognizes predominantly the Mr 30,000 and 33,000 SC components (SCP3) 

(Lammers et al., 1994) and will therefore be further indicated as anti-SCP3 serum. We 

purified anti-SCP3 antibodies from this serum by affinity chromatography on columns 
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carrying the full-length translation product of SCP3 cDNA (Lammers et al., 1994), by 

a protocol adapted from Harlow and Lane (1988). The columns were washed with 0.1 

M NaH2P04/Na2HP04 pH 7.0 (NaPi) supplemented with 0.01% (wt./vol.) NaN, and 

blocked with 10% goat control serum in 0.1 M NaPi, 0.01% NaN,. Subsequently, the 

antiserum, diluted 1:10 in 0.1 M NaPi, 0.01 % NaN,, was loaded onto the columns and 

allowed to bind overnight at room temperature. After extensive washes with 0.1 M 

NaPi, 0.01% NaN,, bound antibodies were eluted from the columns with 0.1 M 

glycine-HCl pH 2.5, 0.01% NaN,. Fractions were collected and neutralized with 

l/10th volume of 1 M Na2HP04. Serum 493 and 509 were depleted from the anti-

SCP2 fragment P or anti-SCP2 fragment D antibodies by affinity chromatography on 

columns carrying SCP2 fragments P or D. 

Immunogold labeling 

Cell suspensions from rat testes were prepared and processed for surface spreading as 

described before (Moens et al., 1987); the surface spreading includes treatment of the 

surface spread cells with DNAse I and SDS (0.1%). For the preparation of ultrathin 

sections, rat testicular tissue was fixed and embedded in Lowicryl Kl 1M as previously 

described (Dietrich et al., 1992b), and 70 nm thick sections were cut on a Reichert 

Ultracut E microtome. Immunogold labeling of the surface spreads and sections was 

performed according to described procedures (Moens et al., 1987; Schmekel et al, 

1996). We used the following dilutions of antibodies: IX9D5 and II52F10, 1:1; serum 

175 (anti-SCP3), 1:1000; serum 493 (anti-P), 1:100; serum 509 (anti-D), 1:50; the 

affinity-purified anti-SCP3 antibodies, 1:20; the affinity-purified anti-P antibodies, 

1:1. The preimmune sera and the depleted sera (described above) were used in the 

same dilution as the immune sera. Incubations of surface spreads with the preimmune 

sera and of sections with the preimmune sera and the depleted sera gave some 

background labeling although no concentration of label above the SCs was observed. 

Goat-anti-rabbit antibodies conjugated to 10-nm gold particles and goat anti-mouse 

antibodies conjugated to 5-nm gold particles were used as secondary antibodies and 

were diluted according to the instructions of the supplier (Amersham, 

Buckinghamshire, UK). After immunogold labeling, the preparations were contrasted 

with uranyl acetate and lead citrate (Heyting and Dietrich, 1991). Specimens were 
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photographed in a Philips EM 420 electron microscope operated at 80 kV at 15000 or 

18000 X magnification. 

Analysis of the immunogold labeling patterns 

We compared the immunogold labeling pattern on pachytene SCs in spreads with the 

labeling of synapsed SC segments in sections. In the sections, cells with incompletely 

synapsed SCs were excluded from the comparison. The immunogold labeling patterns 

were analyzed as follows: grains were collected within an area corresponding to 3 LE-

LE distances (one LE-LE distance is the distance between the centers of the LEs at the 

position of the grain) with the SC in the center. The position of the grain was defined 

as its distance to the center of the nearest LE, divided by one LE-LE distance. If the 

grain was between the centers of the LEs, the relative distance was given a positive 

value; if the grain was outside the centers of the LEs, the distance was given a negative 

value. The distances were expressed in units comprising 1 /20th of the LE-LE 

distance. We did not discriminate between left and right LE since the two alternate at 

every twist of the SC. We performed the measurements on electron micrographs which 

were digitized by means of a CCD camera, using a Quantimet 15 QUIN 2.0 program 

(Leica, Cambridge, UK). The distributions of gold grains were compared by the 

Kolmogorow-Smirnow two-sample test and the statistical software package SPSS, 

version 7.5. 

Other procedures 

SDS-polyacrylamide gel electrophoresis of proteins (Laemmli, 1970; Hey ting et al, 

1985) and Western blotting (Heyting and Dietrich, 1991; Dunn, 1986) were performed 

according to described procedures. 
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Results 

Antibodies 

Fig. 1 shows an immunoblot analysis of the antibodies used in this study. 
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Figure 1 a-p. Immunoblot analysis of antibodies used in this study, a, strip of a preparative 
polyacrylamide-SDS gel, which is loaded with 2 x 10 ' SCs/cm slot (about 3 |ig protein) 
.stained with Coomassie blue; b-h, strips of an immunoblot of the same gel as shown in a; i, 
strip of a preparative polyacrylamide-SDS gel, which is loaded with 0.1 ug of SCP2 fragment 
P/cm slot, stained with Coomassie blue; j-1, strips of an immunoblot of the same gel as shown 
in i; p, strip of a preparative polyacrylamide-SDS gel, which is loaded with 0.5 |ig of SCP2 
fragment D/cm slot, stained with Coomassie blue; m-o, strips of an immunoblot of the same gel 
as shown in p; The strips were incubated in the following antibodies or antisera; b, Mab 
II52F10 (anti-SCP3); c, anti-SCP3 serum (serum 175); d, anti-SCP3 antibodies, affinity-
purified from serum 175; e, Mab IX9D5 (anti-SCP2); f, j and m, anti-P serum (serum 493); g, 
k and n, anti-P antibodies, affinity-purified from serum 493; h, 1 and o, anti-D serum (serum 
509). For lanes a-h, the positions of SCP2 (M, 190,000) and SCP3 (M, 30,000-33,000) are 
indicated by horizontal bars. For lanes i-1, the position of the full-length fragment P is indicated 
by a horizontal bar. For lanes m-p, the position of the full-length fragment D is indicated by a 
horizontal bar. 
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Mab II52F10, serum 175, and an affinity-purified fraction from serum 175 were used to 

label the Mr 30,000-33,0000 SC-components. Because these proteins are most probably 

products of a single gene, SCP3 (Lammers et al, 1994), these antibodies will further be 

designated as anti-SCP3 antibodies. On Western blots of SC-proteins, serum 175 

recognizes predominantly the Mt 30,000-33,000 SC components, and more weakly a M 

125,000 component, called SCP1 (Meuwissen et al, 1992), some M 65,000 SC proteins 

and a Mr 190,000 SC component (Fig. lc). Mab II52F10 and an affinity-purified fraction 

from serum 175 recognize exclusively the M 30,000-33,000 SC components; most 

importantly, they do not recognize the Mr 190,000 component (Fig. 1 b and d). The full-

length cDNA encoding the Mr 190,000 SC protein has recently been cloned (Offenberg et 

al, 1998); it encodes a 173 kDa protein called SCP2. For the immunogold labeling of 

SCP2, we prepared two antisera against non-overlapping fragments of SCP2, called 

fragment P and fragment D (bottom of Fig. 1). On western blots of SCs, the anti-P serum 

binds to SCP2 and to a series of more rapidly migrating peptides which we interpret as 

proteolytic breakdown products of SCP2 (Fig. If), because affinity-purified anti-P 

antibodies from this serum and two monoclonal anti-SCP2 antibodies display exactly the 

same reaction pattern on western blots of SC proteins (Fig. lg and Offenberg et al, 1998). 

The anti-D serum also binds specifically to SCP2 on western blots of SC proteins (Fig. lh). 

Fig. 1 furthermore shows that the anti-D serum does not crossreact with fragment P of 

SCP2 (Fig. 11). Unexpectedly, the anti-P antiserum and also the affinity-purified anti-P 

antibodies crossreact with fragment D (Fig. 1 m and n). Depletion of the anti-P serum on a 

column carrying fragment P not only eliminated the reactivity of the serum with fragment 

P, but also with fragment D (not shown). Apparently, fragment P and D share some 

epitope(s). For the detection of SCP2 we further used a mouse monoclonal antibody, Mab 

IX9D5, which has been described before (Heyting et al, 1989; Offenberg et al, 1991). 

This antibody does not recognize fragments P or D on Western blots (not shown); on 

immunoblots of SC-proteins it specifically recognizes the Mr 190,000 SC-component (lane 

le). 
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Immune/localization experiments 

At the light microscopic level, the labeling pattern obtained with anti-P serum on testicular 

sections or agar filtrates of lysed spermatocytes is indistinguishable from the pattern 

obtained with Mab IX9D5 (Heyting et al, 1989; Offenberg et al, 1991; Offenberg et al, 

1998): the anti-P serum labels specifically spermatocyte nuclei, and within these nuclei 

both paired and unpaired segments of SCs (Offenberg et al, 1998). Anti-SCP3 antibodies 

produce a similar labeling pattern in light microscopic preparations (Heyting et al, 1987, 

1989; Moens etal, 1987; Offenberg etal, 1991). 

Choice of preparational technique 

To compare the ultrastructural localization of SCP2 and SCP3, we performed immunogold 

labeling experiments on two types of preparations: surface-spread spermatocytes and 

ultrathin sections of Lowicryl-embedded testicular tissue of the rat. Surface spreads had 

been used in earlier experiments by us (Heyting et al, 1987, 1989; Moens et al, 1987; 

Offenberg et al., 1991; Dietrich et al, 1992a) and others (Dobson et al, 1994); large 

numbers of cells can be analyzed relatively easily in these preparations, and the intensity of 

immunogold labeling is usually high. However, the risk of artifacts is also high for these 

preparations, because the spreading technique involves the use of DNAse I and SDS 

(Moens et al, 1987). Furthermore, as Schmekel et al. (1996) have argued, the surface 

morphology of spreads may affect the immunogold distribution and epitope masking may 

occur. We therefore also performed immunogold labeling of ultrathin sections of 

Lowicryl-embedded paraformaldehyde-fixed testicular tissue. 

The results obtained on surface-spreads are presented in Fig. 2, and the results 

obtained on sections in Fig. 3. Anti-SCP3 and anti-P were applied both to surface-spreads 

and to sections. The immunogold distributions obtained with these antisera on sections 

differ significantly from those on spreads (Fig. 4 and Table 1). For both antisera the 

distributions of label are much broader on spreads than on sections; on spreads, the 

immunogold distributions show a dip at the position of the center of the LE, whereas such 

a dip is almost absent in the distributions obtained on sections (Fig. 4). 
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Figure 2 a-f. Ultrastructural localization of SCP3 and fragment P of SCP2 by indirect 
immunogold labeling of surface-spread spermatocytes of the rat. a,b and c, double-labeling 
performed with rabbit anti-SCP3 serum (serum 175) and mouse Mab IX9D5 (anti-SCP2) as 
primary antibodies; d,e and f, double-labeling performed with mouse Mab II52F10 (anti-SCP3) 
and anti-P serum (serum 493) as primary antibodies. As secondary antibodies were used: goat 
anti-rabbit IgG, conjugated to 10 nm gold, and goat-anti-mouse IgG, conjugated to 5 nm gold. 
a and d, zygotene; b and e pachytene; c and f diplotene. Arrow indicates a "bridge" between 
the LEs, which is labeled by anti-SCP2. The magnifications for a, b and c are similar. The 
magnifications for d, e and fare similar. Bars represent 200 nm. 
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Figure 3 a-f. Ultrastructural localization of SCP3 and the fragments P and D of SCP2 bv 
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Table 1. Comparison of the distributions of gold grains on surface spreads with those on 
sections after immunogold labeling with anti-SCP3 or anti-SCP2 serum. 

Antiserum Surface spreads vs. sections" 

Anti-SCP3 P<0.001 
(serum 175) 
Anti-P P<0.001 
(serum 493) 

"The distributions of gold grains were compared by the Kolmogorow-Smirnow two-sample test 
(see Materials and methods). 

We think that the surface-spreading technique affects the structure of the LEs, and causes 

their broadening. The width of the LE as seen with electron-dense stains was in surface-

spread preparations indeed wider (about 80 nm) than in sections (about 50 nm), whereas 

the width of the SC (center LE-center LE) is narrower in spreads (about 145 nm) than in 

sections (about 175 nm). Because gross morphological rearrangements are less likely to 

occur in fixed and embedded material, we relied on sections for the precise localization of 

epitopes, eventhough the level of labeling was lower in this type of preparation. 

Comparison of the localization ofSCP2 and SCP3 in surface spreads 

Although surface-spreads are not useful for the precise localization of epitopes, we 

performed double-labeling experiments on these preparations, as a first screen for gross 

differences (if any) in the localization of SCP2 and SCP3 (Fig. 2). On sections, such 

experiments were not possible, because we could not combine gold labels of different 

sizes; 5 nm gold grains could not be identified with certainty within the structure of a 

section, while the level of labeling with 15 nm gold grain was too low, presumably because 

of steric hindrance. 

We did not observe any obvious differences between SCP2 and SCP3 in these 

double-labeling experiments with one possible exception: some gold grains of the anti-

SCP2 label were localized in the central region. These grains occurred in groups, which 

partly or entirely spanned the central region (see arrow Fig. 2c). In some instances fuzzy 

bridges were visible underneath these grains. Although some anti-SCP3 gold grains were 

observed in the central region, these did not occur in clusters as seen after labeling with 

anti-SCP2. 
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Figure 4 A-D. Distributions of immunogold label over SCs in surface spreads of rat 
spermatocytes (A, B), and ultrathin sections of Lowicryl-embedded testicular tissue (C, D). 
Anti-SCP3 serum (serum 175) (A, C) or anti-P serum (serum 493) (B, D) were used as primary 
antibodies and goat-anti rabbit IgG conjugated to 10 nm gold as secondary antibody. One unit 
on the horizontal axis represents 1/20 th of the distance between the centers of the LEs at the 
site of the grain. To correlate the obtained distributions with the structure of the SC, we 
mirrored the distributions relative to the center of the CE (indicated by the small vertical bar on 
the horizontal axis). The vertical axis represents the percentage of total grains in each class of 
the original, unmirrored distribution. The bars below the horizontal axis represent the position 
of the LE as defined by uranyl acetate/lead citrate staining, n represents the number of grains 
including the background in the original, unmirrored distribution. 
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Localization ofSCP2 and SCP3 on sections 

Figs. 3 and 5 show the immunolocalization of SCP2 and SCP3 on sections. Anti-SCP3 and 

the two anti-SCP2 sera (anti-P and anti-D) produced narrow distributions of gold grains, 

with the peaks positioned at the center of the LE (Fig. 5). This narrow colocalization with 

the LE strongly suggests that SCP2 and SCP3 are structural components of the LEs, rather 

than components of SC-associated chromatin. The distribution of anti-SCP3 label was 

virtually symmetrical (Fig. 5A), whereas both distributions of anti-SCP2 label (from anti-P 

and anti-D), had a shoulder at the inner side of the LE (see arrows in Fig. 5B and 5C). The 

differences between the distribution of anti-SCP3 label and either of the two distributions 

of anti-SCP2 label were significant (Table 2). The distributions of anti-P and anti-D label 

did not differ significantly from each other (Table 2). Thus our data do not provide 

evidence for a fixed orientation of SCP2 molecules within LEs. However, it is possible that 

the crossreactivity of anti-P antibodies with fragment D has hampered the detection of a 

small difference (if any) between the localization of fragment P and D. In sections labeled 

with anti-P or anti-D, we found some examples of groups of grains, which bridged the 

central region and appeared to label some fuzzy connections between the LEs (see arrows 

Fig. 3e and 3h). Such bridges were not observed after labeling with anti-SCP3. 

Table 2. Comparison of the distributions of immunogold grains obtained with anti-SCP3, anti-
P or anti-D antibodies". 

Comparison P-value5' 

anti-SCP3!' vs anti-P" P<0.001 

anti-SCP3!) vs anti-D4> P<0.05 

anti-P" vs anti-D4) not significant 

"experiments performed on Lowicryl-embedded sections 
2) affinity-purified antibodies from serum 175 
"affinity-purified antibodies from serum 493 
" serum 507 (see Materials and methods) 
"The distributions of gold grains were compared by the Kolmogorow-Smirnow two-sample test 
(see Materials and methods). 

82 



Localization of SCP2 and SCP3 within SCs 

LE LE 

Figure 5 A-C. Distributions of immunogold label over SCs in ultrathin sections of Lowicryl-
embedded testicular tissue obtained after labeling with anti-SCP3 antibodies, affinity-purified 
from serum 175 (A), anti-P antibodies, affinity-purified from serum 493 (B), or anti-D serum 
(serum 509) (C). The arrows in B and C indicate the shoulder in the distribution at the inner side 
of the LE. The arrow in Fig 5A, at the same position as the arrows in Fig 5B and 5C, indicates 
that this shoulder is absent in this distribution. For further explanation, see legends Fig. 4. 
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Discussion 

Preparational techniques 

We performed immunogold labeling experiments on surface-spread spermatocytes and 

ultrathin sections of Lowicryl-embedded testicular tissue of the rat to define the 

localization and organization of SCP2 and SCP3 within SCs. Our experiments 

revealed a dramatic difference between the immunogold distribution on surface 

spreads and sections with both anti-SCP2 and anti-SCP3 sera; the distribution of 

immunogold over the LEs was much broader on spreads than on sections and the 

distribution on spreads showed a dip at the center of the LE, which was almost absent 

in sections. A similar difference was observed before with antibodies against another 

SC-component, SCP1 (Schmekel et al, 1996). We attributed the broad distribution of 

anti-SCP2 and anti-SCP3 label in spreads to structural changes in the SC caused by the 

surface-spreading technique. Surface-spreading is a harsh technique which includes 

the use of SDS and DNase I (Moens et al, 1987) and may cause deformation of the 

SC; the LEs in spreads, as detected by uranyl-acetate, were much broader than in 

sections whereas the width of the SC was smaller in spreads than in sections. Possibly, 

the surface morphology of spreads and the masking of epitopes in spreads also 

influenced the distribution of the immunogold grains over the SCs (see discussion 

Schmekel et al, 1996), and caused a dip in the gold label distribution at the center of 

the LE. 

The possible effects of the spreading technique and the surface morphology of 

spreads on the immunogold distribution, might also explain the variations in 

immunogold distribution as observed for SCP3; Moens et al. (1987), applying a 

monoclonal anti-SCP3 antibody to surface spreads, found an immunogold distribution 

with a peak at the center of the LE; Dobson et al. (1994), performing immunogold 

labeling of COR1 (the hamster homologue of SCP3) in surface spreads, found that the 

immunogold label was widely distributed over the LE with a peak at the outer edge of 

the LE, whereas we found a broad distribution of anti-SCP3 label over the LE, with a 

dip at the center of the LE (Fig. 4, this paper). In all these studies surface spreading 

was performed according to Moens et al (1987), with the exception that Dobson et 

al. (1994) did not use SDS. The differences in the results are probably created by 
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small variations in the spreading procedure. Liu et al. (1996) analyzed the 

ultrastructural localization of SCP3 in cryosections of isolated mouse spermatocytes 

which were fixed with methanol/acetone. They found most of the immunogold label at 

the inner side of the LE. In order to minimize preparational artifacts, we fixed 

testicular tissue rather than isolated cells in paraformaldehyde/glutaraldehyde, and 

embedded the tissue in Lowicryl before sectioning. Although shrinkage can occur 

during fixation and embedding in Lowicryl (Luther, 1992; Braunfeld, 1994), this 

technique will probably reduce the chance of gross rearrangements or deformations of 

SCs. Lowicryl sections have a flat surface, so that the surface morphology will not 

influence the labeling pattern. Furthermore, immunogold labeling of Lowicryl sections 

is essentially a surface labeling, so that the labeling intensity is proportional to the 

amount of epitope at the surface. Because of this surface labeling it is unlikely that 

differences in accessibility of epitopes within SCs will influence the distribution of 

label on Lowicryl sections (see discussion in Schmekel et al, 1996). We therefore 

think that distribution of immunogold label on Lowicryl sections provides the best 

estimation of the position of SCP2 and SCP3 epitopes within SCs. 

Localization of SCP2 and SCP3 within the LE 

Since immunogold labeling of both SCP2 and SCP3 produces a narrow distribution of 

label on the LE in sections it seems likely that SCP2 and SCP3 are structural 

components of the LEs rather than SC-associated proteins. Possible functions of LEs 

include anchoring of chromatin loops to the SC (Weith and Traut, 1980), generation of 

sister chromatid cohesiveness (Maguire, 1990; Dobson et al., 1994), conversion of 

recombination intermediates into stable chiasmata (Rockmill and Roeder, 1990), and 

inhibition of sister chromatid exchange and/or promotion of recombination between 

non-sister strands (Hollingsworth et al., 1990; Schwacha and Kleckner, 1997; Xu et 

al, 1997); probably SCP2 and SCP3 have a role in at least one of these processes. 

The distribution for SCP2 has a shoulder at the inner side of the LE whereas the 

distribution for SCP3 is symmetrical (Fig. 5) This shoulder can be explained by the 

"bridges" between the LEs, which were found in both spread preparations and sections 

and were labeled by anti-SCP2 but not by anti-SCP3 (Fig. 2 and 3). Vazquez Nin et 

al., (1993) showed by immunogold labeling experiments with anti-DNA antibodies 
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that DNA is located within the LE, but not within the central region of SCs, with the 

exception of DNA threads, which spanned the central region. Since SCP2 has features 

of a DNA-binding protein (Schalk, unpublished observations), it is possible that it 

interacts with these DNA threads and that this shows up in our preparations as bridges 

between the LEs. Although we did not find clear examples of bridges that were 

labeled by SCP3, we cannot exclude that these structures also contain SCP3; in 

spreads, the distribution of label over the LEs is so broad that many grains cover the 

central region, and immunogold labeled bridges are difficult to discern. In sections, the 

intensity of labeling is lower, so that immunogold labeled bridges are easily missed. 

To summarize, we observed bridges consisting of fuzzy material between the LEs, 

which are labeled by anti-SCP2; whether these structures also contain SCP3, still has 

to be sorted out. If these bridges contain SCP2 only, this might account for the 

shoulder in the immunogold distribution of SCP2 but not SCP3. Thus, it is possible 

that SCP2 is not only a structural component of the LE, but also a component of these 

bridges within the central region. Alternatively, SCP2 is more often located at the 

inner side of the LE, for instance because it interacts with transverse filament proteins. 
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Abstract. SCP2 and SCP3 are major protein components of the axial elements of 

synaptonemal complexes of the rat. In this paper we analyze the localization of SCP2 

and SCP3 in successive stages of meiosis by immunofluorescence double labeling, 

using combinations of monoclonal (Mabs) and polyclonal (Pabs) antibodies against 

these proteins. SCP2 and SCP3 colocalized in most stages of meiotic prophase I, 

although some differences were observed: (I) in pachytene, axial cores ofXY bivalents 

are labeled more intensely by anti-SCP3 than by anti-SCP2 antibodies. (2) In all 

stages of prophase I, we found aggregates of SCP3, but not ofSCP2 outside the SCs. 

(3) SCP2 gradually disappears after metaphase I, whereas SCP3 persists longer in 

late meiotic cells. In part of the diplotene bivalents, we found that the desynapsing 

axial elements remained connected by one or two thin fibers, which were labeled by 

anti-SCP2 and anti-SCP3 antibodies. The cohesin proteins SMC1 and SMC3, which 

we recently localized along the axial elements of SCs (Eijpe et al., in preparation), 

were also found along these connections. This indicates that these connections could 

represent sites of crossing-over. In late diplotene, when the axial elements 

disintegrate, small amounts of SCP2 and SCP3 are retained along the chromosome 

arms, where they persist until metaphase I. Furthermore, during late diplotene, SCP2 

and SCP3 concentrate at the centromeres, where SCP2 persists until at least 

metaphase I, and SCP3 until anaphase II. These immunolocalization patterns support 

the hypotheses that axial elements have a regulatory role in meiotic sister chromatid 

cohesion and contribute to the formation of functional chiasmata. 
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Introduction 

Meiotic chromosome pairing and recombination are accompanied by the formation of 

synaptonemal complexes (SCs), which are assembled between homologous 

chromosomes during the prophase of the first meiotic division. Meiotic prophase I can 

be subdivided in stages according to the state of (dis)assembly of the SCs. During 

leptotene, a single axial element is formed along each chromosome, which is shared by 

the two sister chromatids. Zygotene starts when axial elements of homologous 

chromosomes start to pair and are connected ("synapsed") by transverse filaments. In 

pachytene, the axial elements of homologous chromosomes are synapsed along their 

length, and in diplotene and diakinesis the SCs are disassembled. In rat and mouse, the 

transverse filaments disappear first, so that full-length desynapsed axial elements 

remain, which fall apart during late diplotene and diakinesis (Heyting and Dietrich, 

1992). 

Figure 1 A-X. Immunolocalization of SCP2 and SCP3 in successive stages of meiosis. A triple 
labeling was performed on dry-down preparations of rat spermatocytes with Mab II52F10 (anti-
SCP3), serum 493 (anti-SCP2) and a CREST serum (anti-kinetochores). The antibodies were 
detected with respectively goat-anti-mouse-Texas Red, goat-anti-rabbit-AMCA and goat-anti-
human-FITC. The left two panels represent the unmerged images for SCP3 (red) and SCP2 
(blue), the right panel represents the merged images for SCP3, SCP2 and the CREST antigen 
(green). A,B,C, early zygotene; D,E,F, zygotene; G,H,I, early pachytene; J,K,L, late pachytene; 
M,N,0, diplotene; P,Q,R, late diplotene/diakinesis; S,T,U, diakinesis/metaphase I; V,W,X, 
metaphase I. Arrows in panel M, N, P and Q indicate connections between desynapsed axial 
elements, which are labeled by anti-SCP2 and anti-SCP3. Arrowhead in panel P and Q indicates 
converging axial elements, without a connection at that position. Arrows in panel S and T 
indicate the XY axes. Bars represent 10 \im. 
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The origin of axial elements and their roles in meiosis are still under investigation. So 

far, two axial element proteins have been identified in the rat, namely 30,000 - 33,000 

Mr components, which are products of a single gene called SCP3, (Heyting et al, 

1987, Lammers et al, 1994), and a 190,000 Mr component encoded by a gene called 

SCP2 (Heyting et al, 1989; Offenberg et al, 1991, 1998). The SCP2 and SCP3 

proteins make part of the axial elements of synapsed and unsynapsed segments of SCs 

from leptotene up to and including diplotene (Heyting et al, 1987, 1989; Offenberg et 

al, 1991, 1998; Dietrich et al, 1992). Immunogold labeling of sections of Lowicryl-

embedded tissue showed that in pachytene, SCP2 and SCP3 are both localized within 

the axial elements as defined by uranyl acetate staining (Schalk et al, 1998). Dobson 

et al. (1994) have analyzed the localization of the hamster protein homologous to 

SCP3 (COR1) in later stages than diplotene by immunofluorescence labeling of 

surface-spread spermatocytes. They found that SCP3 (COR1) concentrates at the 

centromeres during diakinesis and metaphase I and persists there until anaphase II; 

along the chromosome arms, it is retained in small amounts until anaphase I. The 

localization of SCP2 in later stages of meiosis had not yet been established. 

SCP2 and SCP3, which are major protein components of axial elements, are 

expressed exclusively in meiosis (Offenberg et al, 1991, 1998; Lammers et al, 1994). 

Axial elements are thus not derived from pre-existing chromatin-supporting structures 

in the nucleus, but consist largely or entirely of newly synthesized, meiosis-specific 

components. Recently, we found that the SMC1 and SMC3 proteins, which are 

involved in mitotic sister chromatid cohesion and chromosome condensation, are 

localized in a characteristic "beads-on-a-string" arrangement along, but not within the 

axial elements of SCs (Eijpe et al, in preparation). Most likely these rows of beads 

mark the chromosomal axes before they have divided into the two sister chromatid 

axes. That would set the chromosomal axes apart from the axial elements of SCs 

(Rufas et al, 1992), and strongly suggests that meiotic sister chromatid cohesion is at 

least co-mediated by SMC1 and SMC3. It is possible however, that components of the 

axial elements of SCs influence the extent and duration of meiotic sister chromatid 

cohesion. Dobson et al. (1994) proposed on the basis of the localization of SCP3 

(COR1) during meiosis I and II, that this protein contributes to the cohesion of sister 
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kinetochores and sister chromatid arms during meiosis. 

Other possible functions that have been proposed for axial elements include the 

creation of a bias for reciprocal recombination between homologous chromosomes 

rather than sister chromatids (Schwacha and Kleckner, 1997), the monitoring of the 

meiotic recombination process (Xu et al., 1997) and the production of meiotic 

crossovers in such a way that they can be converted into stable chiasmata (Rockmill 

and Roeder, 1990). It is possible that different axial element components are involved 

in different combinations of such functions. 

In this paper, we compare the localization of SCP2 and SCP3 throughout 

meiosis by immunofluorescence double-labeling experiments; a difference in 

localization could be indicative of a difference in function. However, we found an 

almost complete colocalization of the two proteins along the length of the axial 

elements until diplotene and at the centromeres after diplotene. After metaphase I, 

SCP2 disappears from the centromeres, whereas SCP3 does not. In part of the 

bivalents in diplotene cells we found thin connections between the separating axial 

elements, which contained both SCP2 and SCP3. SMC1 and SMC3 were localized in 

dots along these connections. Possibly, these connections represent sites of crossing-

over. 

We hypothesize that SCP2 and SCP3 both have a regulatory role in meiotic 

sister chromatid cohesion, and that they stabilize certain recombination intermediates 

until diplotene. 
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Figure 2. Immunolocalization of SCP2 and SCP3 in anaphase II. A triple labeling was 
performed on dry-down preparations of rat spermatocytes with Mab II52F10 (anti-SCP3), 
serum 493 (anti-SCP2) and CREST (anti-centromeres). The antibodies were detected with 
respectively goat-anti-mouse Texas Red, goat-anti-rabbit-AMCA and goat-anti-human-FITC. 
The left panels represent the merged images for SCP3 (red) and CREST (green), the right 
panels represent the unmerged image for SCP2 (blue). Panel A and B show two closely 
associated anaphase II nuclei, panel C and D show one anaphase II nucleus. Bar represents 10 
um. 
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Figure 3. Examples of SCP2 and SCP3-containing connections between axial elements in late 
diplotene. Double labeling of dry-down preparations of rat spermatocytes with Mab II52F10 
(anti-SCP3) and serum 493 (anti-SCP2). The antibodies were detected with goat-anti-mouse-
Texas Red and goat-anti-rabbit-AMCA. The left panels (A, C, E, G, I and K) show the 
localization of SCP3 (red), and the right panels (B, D, F, H, J and L) show the localization of 
SCP2 (blue). Bar represents 10 um. 

Figure 4. Immunolocalization of SMC 1 and SCP2 in late diplotene SCs. A double labeling was 
performed on agar filtrates of lysed spermatocytes with anti-SMCl Mab and serum 493 (anti-
SCP2). The antibodies were detected with respectively goat-anti-mouse-FITC and goat-anti-
rabbit-Texas Red. The left panels (A, C, E, G, I and K) represent the merged images for SMC1 
(green) and SCP2 (red); the right panels (B, D, F, H, J and L) represent the unmerged images for 
SCP2. Bar represents 4 um. 

97 



Chapter 5 

Materials and methods 

Antibodies 

Polyclonal antiserum 493 was raised in a rabbit against an expression product of a 

fragment of the rat SCP2 cDNA, it has been described by Offenberg et al. (1998). 

Polyclonal antiserum 175 was elicited by immunization of a rabbit with rat whole SCs 

as has been described by Lammers et al. (1994). It recognizes predominantly the 

30,000 and 33,000 Mr SC components (SCP3). The mouse monoclonal antibodies 

(Mabs) II52F10 and IX1H9 were elicited and isolated as described by Offenberg et al. 

(1991); they are described in detail by Heyting et al. (1987; 1989) and Offenberg et al. 

(1991). On Western blots, Mab II52F10 recognizes the 30,000 and 33,000 Mt SC 

components (SCP3), and Mab IX1H9 the 190,000 Mt SC component (SCP2). For 

labeling of kinetochores, we used a human autoimmune serum from a patient with 

CREST (calcinosis, Raynaud syndrome, esophageal dismobility, sclerodactyly, and 

telangiectasia) syndrome; this serum reacts with kinetochore proteins and has been 

described by Moens et al. (1987). For labeling of the SMC1 and SMC3 proteins we 

used two monoclonal antibodies, which were raised against bovine SMC1 and SMC3, 

and have been described by Eijpe et al. (in preparation). 

Preparation of spreads and agar filtrates 

Spreads of rat spermatocytes were prepared by the dry-down technique of Speed 

(1982), as modified by Peters et al. (1997). Agar filtrates of lysed spermatocytes were 

prepared as described by Heyting and Dietrich (1991). 

Immunofluorescence labeling 

Immunofluorescence labeling of dry-down preparations and agar filtrates was 

performed as described by Heyting and Dietrich (1991). The slides were mounted in 

Vecta Shield (Vector Laboratories Inc., Burlingame, CA, USA). The Mabs were 

diluted 1:1; serum 175 (anti-SCP3) 1:500; serum 493 (anti-SCP2) 1:400; CREST-

serum 1:1000. Goat-anti-rabbit Immunoglobuline G (IgG) conjugated with 

aminomethylcoumarin acetate (AMCA) (Vector) or Texas Red (Jackson 
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ImmunoResearch laboratories, Pennsylvania, USA), goat-anti-mouse IgG conjugated 

with Texas Red (Jackson) or fluorescein isothiocyanate (FITC) (Jackson) and goat-

anti-human IgG conjugated with FITC (Jackson) were used as secondary antibodies 

and were diluted according to the instructions of the suppliers. As a negative control 

for the Mabs, dry-down preparations of rat spermatocytes were incubated with the 

secondary antibodies only. As a control for serum 175 and 493 we used the 

preimmune sera in the same dilutions as the corresponding sera, and immune-depleted 

serum fractions. Furthermore, we incubated the slides with Mabs as primary antibodies 

and subsequently with goat-anti-rabbit-AMCA or goat-anti-human-FITC as secondary 

antibodies as a control on cross-reactivity of the secondary antibodies. Similarly, we 

checked the goat-anti-human-FITC and goat-anti-mouse-Texas Red conjugates for 

cross-reactivity with the rabbit polyclonal antibodies and the goat-anti-mouse-Texas 

Red and goat-anti-rabbit-AMCA conjugates for cross-reactivity with the human 

CREST antibodies. The goat-anti-human-FITC displayed some cross-reactivity with 

rabbit serum 175. The crossreacting antibodies were depleted from the goat-anti-

human-FITC by affinity chromatography on a column carrying Igs from serum 175 

(Harlow and Lane, 1988). 

Microscopy 

Spread preparations were examined with a Zeiss Axioplan research microscope 

equipped with epifluorescence illumination and Plan-Neofluar optics. Selected images 

were directly photographed on a 400 ISO color negative film using single band-pass 

emission filters (for DAPI, FITC and Texas Red fluorescence) with separated 

excitation filters. Negatives were scanned at high resolution and their computer images 

were processed and combined using the Adobe Photoshop software package. 
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Results 

For immunolocalization of SCP2 and SCP3 in successive stages of meiosis we used 

dry-down spread-preparations of spermatocytes of the rat (see Materials and methods). 

Most stages of meiosis are preserved by this procedure (Peters et al, 1997). We 

performed double-labeling experiments on dry-down preparations using combinations 

of monoclonal (Mabs) and polyclonal (Pabs) antibodies against SCP2 and SCP3. Mab 

II52F10 (anti-SCP3) and serum 175 (anti-SCP3) produced identical labeling patterns 

(not shown). The patterns obtained with Mab IX1H9 (anti-SCP2) and serum 493 (anti-

SCP2) were almost identical, except that Mab IX1H9 hardly reacted with the axial 

cores of the XY bivalent, whereas serum 493 produced a clear signal. 

SCP2 and SCP3 colocalized along the length of the axial elements until diplotene 

The earliest leptotene/zygotene cells that we could identify contained axial element 

fragments, which were labeled by anti-SCP2 and anti-SCP3 (not shown). In these 

cells, we could not identify synapsed segments. Furthermore, we found several nuclei 

with long thin axial elements, which stained with both anti-SCP2 and anti-SCP3. 

These nuclei also contained very short synapsed or aligned segments (Fig. 1A-C). In 

pachytene (Fig. 1 G-L) and diplotene (Fig. 1 M-O), SCP2 and SCP3 were present 

along the length of the axial elements. 

Fig. 1 D-F show a nucleus in mid-zygotene with an aggregate containing SCP3 

but not SCP2. Such SCP3-containing aggregates were found in all stages of meiosis 

(Fig. IP and S). Fig. 1 G-I show an early pachytene nucleus and Fig. 1 J-L a late 

pachytene nucleus. In these nuclei the axial elements of the XY bivalents are not 

paired and are therefore easily recognized. The axial elements of the XY bivalent do 

not pair until early pachytene and separate again in late pachytene (Joseph and 

Chandley, 1984). Although the labeling of the axial elements of the autosomes with 

anti-SCP2 and anti-SCP3 was identical, the axial elements of the XY bivalent were 

stained more intensely with anti-SCP3 than with anti-SCP2 (Fig. 1 G-L). 

SCP2 and SCP3 accumulate at the centromeres during diplotene/diakinesis 

SCP2 and SCP3 concentrated at the centromeres in diplotene when the SCs desynapse, 

as can be seen in Fig. 1 M-O. In late diplotene/diakinesis, as the axial elements fall 
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apart, SCP2 and SCP3 further concentrated between the kinetochores (Fig. 1P-R) and 

in diakinesis/metaphase I, SCP2 and SCP3 were mainly present at the centromeres, 

although small amounts of SCP2 and SCP3 were retained along the chromosome arms 

(Fig. 1S-U). In the nucleus in Fig. 1S-U (see arrow) the axes of the XY bivalent are 

still heavily labeled by anti-SCP2 and anti-SCP3 antibodies. In metaphase I, almost all 

SCP2 and SCP3 material had disappeared from the chromosome arms and SCP2 and 

SCP3 were retained at the 42 centromeric dots (Fig. 1V-X). 

We observed several nuclei that contained more than 21 and less than 42 

centromeric dots (Fig 2 A and C). The only stages in which between 21 and 42 

centromeric dots are to be expected, are leptotene, zygotene, diplotene and anaphase 

II. Since no axial elements were present in the nuclei in Fig. 2 A-D we interpreted 

them as anaphase II nuclei in which the centromeric dots represent the dividing or still 

undivided sister centromeres. In most cases SCP3 was present between two 

centromeric dots or adjacent to a single dot. However, we also observed centromeric 

dots with no SCP3 in the vicinity. In these anaphase II nuclei, immunofluorescence for 

SCP2 was very faint. If SCP2 was detectable, it colocalized with SCP3 (Fig. 2D). In 

some instances the whole nucleus was diffusely labeled by anti-SCP2 (Fig 2B and D). 

We interpreted small nuclei with 21 kinetochore dots as spermatid nuclei. 

Many of these nuclei contained aggregates of SCP3, some of which were associated 

with kinetochores. Some spermatids contained small amounts of SCP2, which 

colocalized with SCP3 (not shown), but in most spermatids SCP2 was not detectable. 

SCP2 and SCP3 are present on connections between the axial elements in late 

diplotene 

In diplotene nuclei with almost completely desynapsed axial elements, some of the 

bivalents displayed one or two connections between the axial elements, which were 

labeled both by anti-SCP2 and anti-SCP3 (Fig 1 M-0 and Fig. 3). To study whether 

chromatin is organized along these connections, we performed double-labeling 

experiments with anti-SMCl or anti-SMC3 antibodies and anti-SCP2 or anti-SCP3 

antibodies. SMC1 and SMC3 are cohesins, which play a role in sister chromatid 

cohesion during the mitotic cell cycle (Michaelis et al., 1997). During meiosis, SMC1 

and SMC3 are localized in dots along the axial elements (Eijpe et al., in preparation). 
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Fig. 4 shows that the SMC1 and SMC3 proteins are also present along the connections. 

Possibly, these connections represent the sites of crossing-over. 

In diplotene/diakinesis, the possible sites of chiasmata could be recognized by 

the convergence of the remnants of the axial elements (Fig. 1P-R). However, only at 

part of these positions we found connections containing SCP2 and SCP3 (see arrow in 

Fig. 1Q). This is in agreement with observations of Dobson et al. (1994) and Moens 

and Spyropoulos (1995) who found no SCP3 (COR1) between the converging axial 

elements in late diplotene/diakinesis. 

Discussion 

A possible role for SCP2 in sister chromatid cohesion and chiasma stabilization 

We performed immunofluorescence double-labeling of spermatocytes, using 

combinations of Mabs and Pabs against SCP2 and SCP3, in order to compare in detail 

the localization of these two axial element components in all successive stages of 

meiosis. SCP2 and SCP3 colocalized in most stages of meiosis. They were present all 

along the axial elements from leptotene unto and including diplotene. During diplotene 

SCP2 and SCP3 concentrate at the centromeres. In diakinesis, as the axial elements 

fall apart, both proteins further concentrate at the centromeres and small amounts of 

SCP2 and SCP3 are retained along the chromosome arms. A similar localization 

pattern has been observed earlier for COR1 (Dobson et al. 1994), the hamster 

homologue of SCP3. Dobson et al. (1994) argued that SCP3 (COR1) stabilizes 

chiasmata at metaphase I by providing sister chromatid cohesion along the 

chromosomal axes, distal to the chiasmata. From our observations we conclude that 

not only SCP3 but also SCP2 could play such a role in sister chromatid cohesion and 

chiasma stabilization. 

SCP2 gradually disappears from the centromeres after metaphase I, whereas 

COR1 (SCP3) is retained at the centromeres until anaphase II (Dobson et al, 1994; 

this paper). Possibly, SCP2 exerts its function until metaphase I, while SCP3 holds the 

sister chromatids together at the centromeres until anaphase II, when the sister 

kinetochores separate. However, it is also possible that remnants of SCP3 aggregate at 

the centromeres after metaphase I, but are not functional anymore. This is supported 
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by the fact that aggregates containing SCP3 also occur in spermatids; many of these 

aggregates still colocalized with centromeric dots, although cannot have a role in sister 

chromatid cohesion anymore. 

Differences between the localization patterns ofSCP2 and SCP3 

Besides the persistence of SCP3 in later meiotic stages than SCP2, we observed some 

other differences between the localization patterns of SCP2 and SCP3. Aggregates of 

SCP3 within the nucleus are present in most stages of meiosis, while this is not 

observed for SCP2. The SCP3 aggregates have also been observed in female meiosis 

of rat (Dietrich et al., 1992), in preleptotene stages of mouse (Scherthan et al., 1996) 

and in hamster spermatocytes (Dobson et al, 1994). The aggregates are not present in 

every nucleus, but it is possible that they are easily washed away during the spreading 

procedure. We think that these aggregates contain excess of SCP3 and have no 

function. 

Another difference between the immunolocalization of SCP2 and SCP3 shows 

up in XY bivalents: anti-SCP3 labels the axial elements of pachytene XY bivalents 

more intensely than anti-SCP2. Joseph and Chandley (1984) observed that prior to 

pairing, the X and Y axes are very thick and more darkly stained compared with 

uranyl acetate than autosomes. On completion of synapsis at mid pachytene, the 

unpaired axis of X remains thick, whereas the Y axis is much thinner (Joseph and 

Chandley, 1984). Possibly, the thickening of the XY axes is accompanied by an 

increase in the amount of SCP3 but not SCP2 on these axes. 

Connections between desynapsed axial elements in late diplotene 

In late diplotene, we found cross connections between desynapsed axial elements. 

Although such connections were found in only part of the bivalents, we think that they 

could represent the sites of crossing-over. First, remnants of such cross connections 

can be seen in some diakinesis bivalents at sites of convergence of the two 

homologues (Fig. 1P-R). Such sites of convergence are supposed to represent the sites 

of chiasmata (Moens and Spyropoulos, 1995). Second, foci containing SMC1 and 

SMC3 are localized on these connections. SMC1 and SMC3 are involved in mitotic 

sister chromatid cohesion, and because they are localized along the axial elements of 
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SCs (Eijpe et al., in preparation), they are probably also involved in meiotic sister 

chromatid cohesion. Presumably, SMC1 and SMC3 mark the chromatid axes, which 

would mean that the chromatid axes follow the cross connections between desynapsed 

axial elements. As has been pointed out by several authors (Rockmill and Roeder, 

1990; Engebrecht et al., 1990), a crossover at the DNA-level is not sufficient to create 

a functional chiasma that can keep homologous chromosomes together in the 

metaphase I spindle. The continuity of the recombined chromatids must also be 

restored at the level of the chromatid axes. We hypothesize that axial element 

components like SCP2 and SCP3 temporarily stabilize crossovers at the DNA level, 

and guide the axes of the recombining chromatids, so that these axes are also cross-

connected. As soon as this has been accomplished, the SCP2 and SCP3 containing 

cross connections are no longer required and disappear. That would explain why these 

cross connections are not seen in all bivalents. 
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Discussion 

SCP2 is a 173 kDa component of the axial elements of synaptonemal complexes (SCs) 

of the rat. Fig. 1 shows a schematic representation of the organization of structural 

features within SCP2 among which the two domains with S/T-P motifs, which are 

common in DNA-binding proteins. SCP2 is present along the axial elements from 

leptotene up to and including diplotene. During diplotene, SCP2 concentrates at the 

centromeres where it persists until at least anaphase I. Furthermore, small amounts of 

SCP2 are retained along the chromatid arms until metaphase I. On the basis of the 

localization pattern of SCP2 we proposed that SCP2 is involved in sister chromatid 

cohesion and chiasma stabilization (chapter 5). In late diplotene, we found connections 

between the axial elements that contained SCP2. We presented arguments that these 

connections represent the sites of crossing-over (chapter 5). In this chapter we propose 

a model for the relationship between chromatid axes and axial elements of SCs and we 

speculate about possible functions of axial elements. 

N l^^ff 
1505 

MM Domain with S/T-P motifs 

M I Coiled-coil domain 

[ p34e c protein kinase target site 

| cAMP/cGMP-dependent protein kinase target site 

Figure 1. Schematic representation of SCP2 of the rat. Shown are the coiled-coil domain at the 
C-terminus, the two domains with S/T-P motifs (DNA-binding motifs), the p34c*~ kinase target 
sites and the cAMP/cGMP-dependent protein kinase target sites. 
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Relationship between axial elements and chromatid axes 

The axial elements differ in several respects from the chromatid axes that are observed 

along the chromatids in mitotic chromosomes (also mentioned in chapter 2); l.The 

two chromatids of a meiotic prophase chromosome share a single axial element, 

whereas the chromatids of a metaphase chromosome each have their own scaffold; 2. 

The major protein components of axial elements are meiosis-specific and thus not 

found in chromatid scaffolds (Heyting et al., 1989); 3. Axial elements are longer than 

metaphase chromatid axes and morphologically better defined. 

However, chromatid axes and axial elements also share some features; 1. Axial 

elements and chromatid axes can both be visualized by silver-staining (Fletcher, 1979; 

Howell and Hsu, 1979) 2.Topoisomerase II (Topo II), which is a major component of 

the chromatid axes (Berrios et al., 1985; Earnshaw and Heck., 1985; Gasser et al, 

1986), is also present along the axial elements (Moens and Earnshaw, 1989; Klein et 

al., 1992), particularly in later stages of meiotic prophase. 3. Furthermore, SMC1 and 

SMC3, which are present along the chromatid axes in mitotic chromosomes (Losada et 

al., 1998) are localized in dots along the axial elements (Eijpe et al., in preparation). 4. 

Chromatid axes are observed during meiosis, in diplotene/diakinesis, when the axial 

elements have disappeared (Rufas et al., 1992). Rufas et al. (1992) proposed that the 

chromatid axes are not replaced by the axial elements at the onset of meiosis, but that 

they are present during meiotic prophase in close association with the axial elements. 

Several researchers have observed that the axial elements consist of multiple 

strands (Heyting et al., 1985; Dietrich et al, 1992; Comings and Okada, 1971; del 

Mazo and Gil-Alberdi, 1986). del Mazo and Gil-Alberdi (1986) proposed that the 

multiple strands within the axial element are clustered into two sub axial elements, 

each of which is connected with one of the two sister chromatids. Taking into account 

that the axial elements consist of two sub axial elements, we think that the chromatid 

axes and axial elements are organized as shown in Fig. 2. According to this model, one 

sub-axial element and one chromatid axis are present along each sister chromatid. The 

two sub-axial elements of one chromosome are tightly associated. The components of 

the chromatid axes can still fulfill their functions during meiosis. However, we think 

that these functions are influenced by the axial elements; 
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SMC1/SMC3 \ . 

Figure 2. Schematic representation of the organization of the chromatid axes and axial 
elements within meiotic chromosomes (adapted from Rufas et al., 1992). Shown are the 
chromatin of the two sister chromatids (chr.l and chr.2), the chromatid axes (ca), the axial 
element (ae) and subunits, containing SMC1 and SMC3. 
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Topo II, which is a component of the chromatid axes, is probably involved in the 

organization of the chromatin in loops on the chromosome scaffold. The organization 

of the chromatin in loops separates the DNA in domains, which can behave 

independently with respect to gene expression. The bases of the loops are called 

scaffold attachment regions (SARs) and are AT-rich. Topo II, which is a DNA-

binding protein, indeed binds preferentially to SAR-DNA in competition experiments 

(Adachi et al., 1989). The organization of the chromatin in meiotic chromosomes 

resembles the organization of mitotic chromosomes (reviewed by Moens and 

Pearlman, 1988). The main differences between mitotic and meiotic chromosomes is 

that in mitotic chromosomes the looped domains are more tightly packaged (Saitoh 

and Laemmli, 1994), whereas in prophase I of meiosis, the chromosomal loops are 

organized in a linear array. SCP2 and Topo II both contain S/T-P motifs, which can 

interact with the minor grooves of AT-rich DNA, for example SAR-DNA. Possibly, 

SCP2 can compete with Topo II for binding sites on the DNA and inhibit the function 

of Topo II. Hereby condensation of the DNA can be prevented and the linear 

packaging of chromatin loops is maintained during meiosis. This is probably necessary 

to establish homologue recognition, chromosome pairing and recombination. 

Topo II furthermore decatenates interlocked DNA strands after replication. This 

decatenation occurs at the metaphase-anaphase transition during mitosis. Murray and 

Szostak (1985) proposed that the catenation is required for the maintenance of the 

association of the sister chromatids until this stage. SMC1 and SMC3 are involved in 

sister chromatid cohesion during mitosis (Michaelis et al., 1997). They constitute 

complexes that hold the sister chromatids together (Michaelis et al., 1997). At the 

metaphase-anaphase transition, SMC1 and SMC3 are replaced by SMC2 and SMC4 

(Losada et al., 1998), which are required for chromatin condensation (Hirano and 

Mitchison, 1994). The sister chromatid cohesion during meiosis differs from sister 

chromatid cohesion during mitosis. In mitosis, the sister chromatid arms and the sister 

centromeres lose their cohesion almost simultaneously, at the metaphase-anaphase 

transition. In meiosis, however, the chromatid arms lose their cohesion at the 

metaphase I - anaphase I transition, whereas the cohesion between the sister 

centromeres is not lost before the metaphase II-anaphase II transition. Since SCP2 and 

SCP3 are present at the places where sister chromatid cohesion is required, it seems 
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likely that these proteins are involved in the regulation of the sister chromatid 

cohesion. Possibly, these proteins influence the behavior of SMC1 and SMC3 at these 

places (chapter 5). For instance, it is possible that SCP2 and/or SCP3 prevent SMC2 

and SMC4 to replace SMC1 and SMC3. I therefore expect many interactions between 

components of the axial elements and the chromatid axes. In order to learn more about 

the relationship between axial elements and chromatid axes these interactions should 

be analyzed. 

Possible roles of axial element components in recombination 

Recombination between homologous chromosomes is a meiosis-specific phenomenon. 

Intact axial elements are probably not required for recombination since the redl 

mutant of S. cerevisiae does not assemble axial elements, but still displays high levels 

of interhomologue recombination (Rockmill and Roeder, 1990). However, it seems 

likely that the axial elements influence the interhomologue recombination. For 

example, the Redl protein contributes to the meiotic bias for interhomologue 

recombination (Schwacha and Kleckner, 1997), and has a role in monitoring the 

progress of the meiotic recombination process (Xu et ai, 1997). In late diplotene, we 

found fibrous connections between the axial elements, which contained SCP2 and 

SCP3. SMC1 and SMC3 are also present on these connections, which probably means 

that the chromatid axes follow these connections. Therefore we think that these 

connections represent the sites of crossing-over (chapter 5). I propose that SCP2 

establishes the continuity of the chromatid axes at the position of the crossing-overs. 

Possibly, this is accomplished as shown in the model in Fig. 3. 

Figure 3. Schematic representation of the behavior of axial elements and chromatid axes at the 
position of a homologous recombination event. Chr.l and chr. 2 represent the two sister 
chromatids of a chromosome, chr.3 and chr.4 represent the two sister chromatids of the 
homologous chromosome. In this diagram chr. 2 and chr. 3 recombine. A. A double strand 
break (DSB) in chromatid 2 is brought to the chromatid axis (ca). At this position sister 
chromatid cohesion, established by SMC1 and SMC3 complexes, is released (asterisk). B. The 
DNA-strands of the broken chromatid invade an homologous chromatid; this has two 
consequences: (i) sister chromatid cohesion is locally lost in the invaded chromatid (asterisk), 
and (ii) the recombining DNA-strands pull the locally detached chromatid axes/axial element 
halves into the central region of the SC (in B this is shown for one of the two chromatids). C. 
The chromatid axes and axial elements of the recombining chromatids are crosswise connected 
whereby continuity of the axes of the recombined chromatids is established. 
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In this figure the successive events that occur at the position of a crossover are drawn; 

Recombination is initiated by a DSB and we think that this DSB is brought somehow 

to the axial element (Fig. 3A). At the position of the DSB, sister chromatid cohesion, 

presumably established by the SMC1 and SMC3 proteins, is temporarily released (Fig. 

3A). Next, the protruding 3' end of the DSB can invade a non-sister chromatid of the 

homologous chromosome. At the site of invasion, sister chromatid cohesion would 

also be lost (Fig. 3B). Probably, together with the invading DNA strand, part of the 

chromatid axis and the axial element "halves" of the recombining chromatids are 

pulled into the central region. The chromatid axis and the axial element of the 

invading strand can then make a connection with the chromatid axis and the axial 

element of the invaded strand (Fig. 3C). This ensures that the continuity of the 

chromatid axes is re-established at the sites of crossover before resolution of the 

chiasmata at anaphase I. 

Furthermore, it is possible that the connections also stabilize the recombination 

intermediates between homologues. Thereby they would provide a bias towards 

recombination with the homologue rather than the sister chromatid. In this way, SCP2 

possibly enhances interhomologue recombination, as has been found for Redl in S. 

cerevisiae (Schwacha and Kleckner, 1997). 

Are the functions of the axial elements regulated by phosphorylation ? 

SCP2 contains several potential phosphorylation sites. Some of these sites are found in 

one of the two domains with DNA-binding motifs (Fig. 1). The p34c<fc2 protein kinase 

target sites are also S/T-P motifs. Phosphorylation of these motifs causes loss of a 

crucial hydrogen bond that is required for stabilization of the (i-turn structure of the 

S/T-P motif (Churchill and Travers, 1991). Possibly, DNA-binding activities of SCP2 

are influenced by phosphorylation so that during meiosis disassembly of the axial 

elements and condensation of the chromatin can be regulated by phosphorylation, like 

in mitosis. 

Phosphorylation sites are also found in other SC components; SCP1, which is a 

component of the transverse filaments in rat (Meuwissen et al., 1992), contains one 

p34c*2 protein kinase target site. SCP3, which is a component of the axial elements of 
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SCs in rat, contains two potential target sites for cAMP/cGMP-dependent protein 

kinase (Lammers et al., 1994). Other evidence that phosphorylation is possibly 

involved in the regulation of SC disassembly comes from observations in yeast: A 

mutation in CDC28, which is the S. cerevisiae homologue of p34c c\ causes an arrest in 

pachytene (Davidow and Beyers, 1984). 

SCP3 is phosphorylated in vivo. In early pachytene, one phosphate group is 

added to the protein (Lammers et al., 1995). This change in phosphorylation of SCP3 

correlates in time with the thickening of the axial elements between zygotene/early 

pachytene and mid pachytene (Dietrich and de Boer, 1983). Lammers et al. (1995) 

speculate that in the first half of meiotic prophase the axial elements of SCs have a 

role in the prevention of recombination between sister chromatids and that later in 

prophase, when initiation of recombination has stopped and DNA-DNA interactions 

between homologous non-sister chromatids have been established, this control has to 

be relaxed to make the sister chromatid available as a template for the repair of those 

initiated recombination events, for which there was no template on the homologous 

chromosomes. 

Evolutionary conservation of the axial elements 

Axial element components seem not to be very conserved; attempts to isolate proteins 

homologous to SCP2 in organisms like S. cerevisiae, A. nidulans and C. elegans have 

failed (unpublished results). Analysis of the cDNA encoding the human SCP2 

(hsSCP2), revealed that the amino acid sequence of SCP2 is not very conserved (63% 

amino acid identity) between rat and human. However, the organization of the 

structural domains within the proteins is similar (chapter 3). Therefore we think that 

SCP2 has an important structural function within the axial elements. We think that 

SCP2 maintains the structural integrity of the chromosomes, and influences chromatin 

organization, sister chromatid cohesion and recombination. 
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Summary 

Synaptonemal complexes (SCs) are ladderlike protein structures, which are formed 

between homologous chromosomes during the prophase of the first meiotic division. 

SCs consist of two axial elements, one along each chromosome, and transverse 

filaments (TFs), which connect the axial elements. On the TFs, between the axial 

elements, there is a third longitudinal structure, the central element (CE). Possible 

functions of the axial elements include organization of the chromatin in loops, 

providing sister chromatid cohesion, stabilization of chiasmata and regulation of 

recombination. These possible functions are explained in chapter 1. In axial elements 

of SCs of rat, two major protein components have been identified, named SCP2 and 

SCP3, with relative electrophoretic mobilities (Mr) of 190,000 and 30,000-33,000. 

This study mainly focused on the analysis of the function of SCP2. 

In chapter 2 we describe how we isolated and sequenced the cDNA encoding 

SCP2 of the rat (rnSCP2). The protein predicted from the nucleotide sequence is basic 

and has a mass of 173 kDa. At the C-terminus, SCP2 contains a region which is 

predicted to be capable of forming a coiled-coil structure. Furthermore, SCP2 contains 

two clusters of S/T-P motifs, which are common in DNA-binding proteins, and several 

potential phosphorylation sites. The SCP2 gene is expressed predominantly in meiotic 

prophase cells. 

In order to identify conserved domains within SCP2, we isolated and analyzed 

the human SCP2 cDNA (hsSCP2). This is described in chapter 3. Although there is 

only 63% identity at the amino acid level between hsSCP2 and rnSCP2, several 

structural features and amino acid sequence motifs are conserved; hsSCP2 contains 

S/T-P motifs, which are commonly found in DNA-binding proteins, in the same 

domains as rnSCP2 and has a predicted coiled-coil region at its C-terminus. The 

structural organization of hsSCP2 and rnSCP2 resembles the structural organization of 

Redl, a protein component of the axial elements in S. cerevisiae. We speculate that 

Redl and SCP2 are functional homologues. The hsSCP2 gene was assigned to 

chromosome 20q 13.33 by fluorescence in situ hybridization. 
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The ultrastructural organization of SCP2 and SCP3 within SCs was analyzed by 

immunogold labeling of surface-spread spermatocytes and sections of testicular tissue 

as described in chapter 4. The immunogold-labeling patterns of spreads and sections 

differed significantly and we attributed this difference to artifacts, caused by the 

surface-spreading technique. Therefore we relied on sections for the precise 

localization of SCP2 and SCP3. The immunogold-label distribution of anti-SCP2 and 

anti-SCP3 antibodies coincided with the axial elements and therefore we conclude that 

both SCP2 and SCP3 are structural components of the axial elements. The distribution 

of anti-SCP2 label had a shoulder at the innerside of the axial element, which was not 

observed with the anti-SCP3 label. Because we observed fuzzy connections between 

the axial elements that were labeled by anti-SCP2 but not anti-SCP3 antibodies, we 

attributed the shoulder in the gold label distribution of anti-SCP2 antibodies to the 

labeling of these connections. 

To study the localization of SCP2 and SCP3 in successive stages of meiosis, we 

performed immunofluorescence labeling of dry-down spread preparations of 

spermatocytes with anti-SCP2 and anti-SCP3 antibodies (chapter 5). SCP2 and SCP3 

colocalize along the axial elements from leptotene up till and including diplotene. 

After diplotene, SCP2 and SCP3 concentrate at the centromeres and small amounts of 

SCP2 and SCP3 are retained along the chromosome arms until metaphase I. From 

these results we conclude that both SCP2 and SCP3 are involved in sister chromatid 

cohesion and chiasma stabilization. SCP2 and SCP3 are furthermore present on 

connections between desynapsed axial elements in late diplotene. SMC1 and SMC3, 

which are involved in sister chromatid cohesion during mitosis, and are present in dots 

along the axial elements during meiosis, are also present along these connections. We 

think that these connections represent the sites of crossing-over and that they stabilize 

recombination intermediates between homologous chromosomes, and ensure the 

continuity of the cores of recombining chromatids. 

In chapter 6 we consider possible functions of SCP2 and of axial elements. 
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Samenvatting 

Synaptonemale complexen (SCs) zijn eiwitstructuren die worden gevormd tussen de 

gepaarde homologe chromosomen tijdens de meiose. Het SC bestaat uit twee axiale 

elementen, een langs elk chromosoom, en transversale filamenten, die de axiale 

elementen verbinden. Een derde langwerpige structuur, het centrale element, bevindt 

zich in het midden van het SC, evenwijdig aan de axiale elementen. Mogelijke functies 

van het axiale element zijn organisatie van het chromatine in loops, waarborgen van 

zuster chromatide cohesie, stabilisatie van chiasmata en regulatie van recombinatie. 

Deze mogelijke functies worden besproken in hoofdstuk 1. In de axiale elementen van 

SCs van de rat zijn twee componenten gei'dentificeerd, SCP2 en SCP3, met relatieve 

electrophoretische mobiliteiten (Mr) van 190,000 en 30,000-33,000. Deze studie richt 

zich voornamelijk op de analyse van de functie van SCP2. 

In hoofdstuk 2 beschrijven we hoe het cDNA dat codeert voor SCP2 van de rat 

(rnSCP2) is gei'soleerd en geanalyseerd. Het rnSCP2 cDNA codeert voor een basisch 

eiwit met een molecuul gewicht van 173 kDa. Aan de C-terminus bevat SCP2 een 

gebied dat mogelijk een coiled-coil structuur kan vormen. Verder bevat het SCP2-

eiwit twee clusters met S/T-P motieven, die veel worden aangetroffen bij DNA-

bindende eiwitten, en verschillende mogelijke phosphorylerings sites. Het SCP2 gen 

komt voornamelijk tot expressie in meiotische profase cellen. 

Met de bedoeling om geconserveerde domeinen in SCP2 te identificeren hebben 

wij het humane SCP2 cDNA (hsSCP2) gei'soleerd en geanalyseerd. Dit staat 

beschreven in hoofdstuk 3. De aminozuursequenties van hsSCP2 en rnSCP2 vertonen 

slechts 63% homologie. Toch zijn verschillende voorspelde structurele eigenschappen 

en aminozuur sequenties geconserveerd; hsSCP2 bevat S/T-P motieven in dezelfde 

domeinen als rnSCP2 en aan de C-terminus van het eiwit bevindt zich een coiled-coil 

domein. De structurele organisatie van hsSCP2 en rnSCP2 vertoont overeenkomsten 

met de structurele organisatie van Redl, een eiwit dat onderdeel uitmaakt van de 

axiale elementen in S. cerevisiae. Wij vermoeden dat Redl en SCP2 functionele 

homologen zijn. Het hsSCP2 gen bevindt zich op chromosoom 20ql3.33, zoals 

gebleken is uit fluorescentie in situ hybridisatie. 
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De ultrastructurele organisatie van SCP2 en SCP3 in het SC is geanalyseerd door 

middel van immunogoud labeling van oppervlakte-gespreide spermatocyten en coupes 

van testis weefsel, zoals beschreven in hoofdstuk 4. Er was een aanzienlijk verschil 

tussen de verdelingen van immunogoud op SCs in spreidpreparaten en in coupes. 

Waarschijnlijk werd dit verschil veroorzaakt door artefacten, ontstaan tijdens de 

oppervlakte-spreiding van spermatocyten. Daarom zijn wij uitgegaan van de resultaten 

op coupes voor de preciese localisatie van SCP2 en SCP3. In coupes vielen de 

immunogoud verdelingen verkregen met anti-SCP2 en anti-SCP3 antilichamen samen 

met de structuur van het axiale element en beide eiwitten maken dus hoogst 

waarschijnlijk deel uit van het axiale element. De verdeling van het anti-SCP2 label 

vertoonde een schouder aan de binnenzijde van het axiale element, terwijl dit niet het 

geval was voor het anti-SCP3 label. Omdat we tussen de axiale elementen 

dwarsverbindingen waarnamen die gelabeld waren met anti-SCP2, maar niet met anti-

SCP3 antilichamen veronderstellen wij dat de schouder in de immunogoud verdeling 

van anti-SCP2 is toe te schrijven aan de labeling van deze dwarsverbindingen. 

Door middel van immunofluorescentie labeling van dry-down preparaten van 

spermatocyten hebben we de localisatie van SCP2 en SCP3 in opeenvolgende stadia 

van de meiose bestudeerd (hoofdstuk 5). Beide eiwitten colocaliseren met de axiale 

elementen van leptoteen tot en met diploteen. Na diploteen concentreren SCP2 en 

SCP3 zich op de centromeren terwijl kleine hoeveelheden SCP2 en SCP3 achter 

blijven langs de chromosoom armen tot aan metaphase I. Uit deze resultaten hebben 

wij geconcludeerd dat zowel SCP2 als SCP3 mogelijk betrokken zijn bij zuster 

chromatide cohesie en chiasma stabilisatie. SCP2 en SCP3 zijn verder ook aanwezig 

op dwarsverbindingen tussen de gedesynapste axiale elementen in laat diploteen. 

SMC1 en SMC3, die betrokken zijn bij zuster chromatide cohesie in mitose en tevens 

aanwezig zijn langs de axiale elementen in meiose, bevinden zich ook langs deze 

verbindingen. Wij denken dat deze verbindingen de posities van crossovers aangeven 

en dat ze recombinatie intermediairen tussen homologe chromosomen stabiliseren en 

de continuiteit van de assen van recombinerende chromatiden waarborgen. 

In hoofdstuk 6 beschouwen wij mogelijke functies van SCP2 en van axiale 

elementen. 
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Nawoord 

He, he, de klus is geklaard. Rest mij nog slechts het schrijven van de laatste twee 

bladzijden van mijn proefschrift. En dat is eigenlijk wel de meest plezierige klus: het 

bedanken van alle mensen die mij hebben geholpen bij het tot stand komen van dit 

boekje. 

Als eerste wil ik graag Christa Heyting bedanken, mijn promotor die mij de 

mogelijkheid heeft geboden om dit promotieonderzoek uit te voeren. Christa, bedankt 

voor je dagelijkse begeleiding en voor de bemoedigende woorden als het af en toe eens 

tegen zat en bedankt voor het zeer zorgvuldig nakijken van dit manuscript. 

Op het lab werd ik vaak bijgestaan door Hildo Offenberg. Toch handig, zo'n collega 

die Maniatis van buiten kent! Hildo, je was altijd bereid om te helpen en voor elk 

probleem wist jij wel weer een oplossing! Ik heb je collegialiteit altijd erg 

gewaardeerd. Nog bedankt voor die laatste 32 nucleotiden!! 

Mirjam, als jij niet had geholpen met het uitvoeren van talloze immuunincubaties en 

antilichaam zuiveringen dan had dit onderzoek nog wel wat jaartjes langer geduurd. 

Bedankt voor je hulp en veel succes in de toekomst. 

Ralph en Hans waren tijdens een groot deel van mijn OIO-tijd lotgenoten in zware 

tijden. Want promoveren valt niet altijd mee. Maar samen met jullie was het een 

gezellige tijd! En Hans, kijk jij ook zo uit naar 11 maart? 

Lorrie Anderson and Karin Schmekel, I enjoyed our time on the lab together very 

much. I hope we will meet again in the near future! 

Wolfgang, thanks for a lot of helpful suggestions and being a nice colleague. 

Maureen, slechts korte tijd heb ik samen met jou op het lab gestaan. Toch prijken een 

aantal van jouw plaatjes nu ook in dit proefschrift. Ik wens je veel succes met het 

vervolg van je promotie. En het is even wennen, maar Wageningen is echt net zo leuk 

als Amsterdam! 

Erik Peters, Miriam Nijland en Bas Janssen, jullie hebben als student een bijdrage 

geleverd aan dit onderzoek. Bedankt voor jullie inzet. 
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Ik kan onmogelijk alle collega's van Erfelijkheidsleer bij naam noemen. Ik wil 

eenieder van jullie die op welke wijze dan ook heeft bijgedragen aan mijn onderzoek 

hartelijk bedanken. In het bijzonder wil ik nog even Hans de Jong noemen voor zijn 

hulp bij lastige computer-, statistieke- en imaging-problemen. 

Een deel van mijn onderzoek heb ik uitgevoerd op de vakgroep Antropogenetica van 

het AMC in Amsterdam. Axel Dietrich, bedankt dat ik ruim zes maanden bij je op het 

lab heb kunnen werken. Het heeft mijn promotie een heel andere wending gegeven. 

Bedankt voor de goede samenwerking! Agnes Vink, bedankt voor je geduldige 

instructies voor het werken met de electronen-microscoop. Dankzij jou heb ik geleerd 

dat cytologic eigenlijk heel erg leuk is. 

Jan Hoovers en Nancy Groot, bedankt voor jullie bijdrage aan hoofdstuk 3. 

Magda Usmany, Douwe Zuidema, en Just Vlak van de vakgroep Virologie in 

Wageningen hebben mij geholpen bij het (op de valreep) full-length tot expressie 

brengen van SCP2 via het bacoluvirus. Helaas zijn de resultaten hiervan niet 

opgenomen in dit proefschrift, maar ze vormen een basis voor vervolgonderzoek. 

Bedankt voor jullie hulp! 

Naast werken bestaat er ook nog een ander leven. 

Pa en Ma, jullie hebben me daar gelukkig vaak genoeg aan herinnerd. Bedankt voor 

jullie steun en vertrouwen. 

Johan, Monique, Gijs, Corrie, Sylvia, Wim, Maaike, Bertjan, Giedo, Mirjam, Jeroen en 

Monique, bedankt voor jullie belangstelling. 

Inge, bedankt dat ik voor een dag jouw "aanstaande" mag lenen! 

Elisabeth, Onno, Bert, Karin en Nathalie, de gezellige maaltijden samen waren vaak 

een welkome afleiding tussen al het gestress door! 

Belinda, Monique, Arie, Anita, Erik en Nathalie, he he, kunnen we eindelijk over iets 

anders praten! Marnix, zet hem op! 

Eelco, bedankt voor het ontwerpen van de omslag van dit proefschrift. Bedankt voor 

de kopjes koffie en warme maaltijden die je voor me maakte terwijl ik achter de 

computer zat. Maar bovenal: Bedankt voor wie je bent! 

Onno en Klaaseric, bedankt dat jullie op 10 maart aan mijn zijde willen staan! 
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Van September 1993 tot februari 1998 verrichtte zij promotieonderzoek als 
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Medisch Centrum te Amsterdam in de periode februari 1996 tot en met augustus 1996. 
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