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STELLINGEN 

1. Componenten van natuurlijke landschappen kunnen realistisch worden 
gemodelleerd als een mozai'ek van scherp begrensde ruimtelijke objecten met 
gradueel varierende interne velden. 

dit proefschrift 

2. De semi-automatische interpretatie van hoge resolutie kleur-infrarood beelden 
van een duinlandschap levert een gedetailleerd en nauwkeurig mozai'ek van 
vegetatiestructuurobjecten. 

dit proefschrift 

3. De toepasbaarheid van een beeldinterpretatiemethode dient primair getoetst 
te worden aan de patroonkenmerken in een beeld in relatie tot de terrein-
kenmerken. Abusievelijk worden vaak statistische randvoorwaarden als 
uitgangspunt genomen. 

dit proefschrift 

4. Vegetatietypen - in de duinen - hebben een fuzzy karakter in ruimte en tijd. 

D.W. Roberts (1989) Fuzzy systems vegetation theory (Vegetatio 83: 71-80) 
dit proefschrift 

5. Expertkennis van complexe ecologische systemen, zoals vochtige duin-
valleien, kan adequaat worden geformaliseerd met behulp van fuzzy logica. 

dit proefschrift 

6. In de discussie over de bruikbaarheid en betrouwbaarheid van landelijke 
ecologische modellering op basis van expert-modellen - zoals DEMNAT - en 
meer procesmatige modellen - zoals SMART en MOVE - kunnen fuzzy 
modelconcepten de balans doen doorslaan in het voordeel van de eerste. 

7. Gezien het feit dat de dynamiek in de duinen vooral uit vegetatiesuccessie 
bestaat, getuigt een ecosysteemvisie onder de titel "Duinen voor de w ind" 
van een eenzijdige blik. 

M. Janssen en A. Salman (1992) Duinen voor de wind: een toekomst visie op het 
gebruik van de Nederlandse duinen als natuurgebied van internationale betekenis 
(Stichting Duinbehoud, Leiden) 

8. Digitale orthofoto's zijn een kosten-effectieve informatiebron voor landschaps-
ecologische en aanverwante karteringen. Het gebruik van deze beelden 
verdient dan ook aanbeveling. 



9. De klassieke tweedeling in veld- en bureauwerk tijdens karteringen vervaagt 
door ontwikkelingen in de informatietechnologie. Relevanter wordt het 
onderscheid tussen het observeren en vastleggen van gegevens in het terrein 
of in de virtuele werkelijkheid. 

10. Het poldermodel werkt nivellerend; ook op de ruimtelijke inrichting van 
Nederland. Bestaande kwaliteiten nemen af, terwijl er onvoldoende ruimte is 
voor offensieve planning, gericht op werkelijke kwaliteitsverbeteringen in stad 
en land. 

C.A. Louws (1999) Persoonlijke communicatie 

11. Het onderbrengen van 'GIS' op de tekenkamer van een organisatie doet geen 
recht aan de aard van het werk en leidt tot een beperkt gebruik van de 
functionaliteit. 

12. De informele - doorgaans vage - organisatiecultuur van een kennisintensieve 
organisatie is belangrijker dan de formele structuur. 

M. Weggeman (1996) Kennismanagement, inrichting en besturing van 
kennisintensieve organisaties (Scriptum) 

13. Goede typevaardigheden dragen bij aan een vlotte interactie tussen mens en 
computer. Het instellen van typeles in het basisonderwijs verdient daarom 
aanbeveling. 

14. Het heffen van statiegeld op blikjes is een eenvoudige en effectieve manier 
om van wegwerpers zoekers te maken. 

Stellingen behorende bij het proefschrift "Spatial modelling and monitoring of natural 
landscapes with cases in the Amsterdam Waterworks Dunes" van Wim Droesen. 

Roosendaal, 21 april 1999. 
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Preface 

The Amsterdam Water Supply is an innovative company. Consequently, the Amsterdam 
Water Supply was in the late 1980's one of the first companies in the sector taking 
geographic information systems and remote sensing applications into operation. 
Geographic information systems were employed to facilitate the acquisition, analysis and 
storage of massive amounts of spatio-temporal data regarding its extensive water 
catchment area. Aerial surveys were employed over the Amsterdam Waterworks Dunes to 
obtain spatial information on landscape dynamics. 

However the utilisation of these new tools and techniques gave rise to many 
research questions for which consultancy was obtained from the Department of Land 
Surveying and Remote Sensing of the Wageningen Agricultural University and the 
Department of Physical Geography of the University of Amsterdam. In due course the co
operation between these three organisations led to the definition of a PhD project of which 
the results are presented in this thesis. I gratefully acknowledge the Amsterdam Water 
Supply for their initiative and funding. 

Many people contributed to this thesis. Firstly, I want to thank my promoters. Martien 
Molenaar for his encouraging attitude as the work went along. His power of abstraction 
helped me organise seemingly complex matters. Pirn Jungerius introduced me to the 
geomorphology and pedology of the dunes. He was succeeded by Jan Sevink who 
thoroughly read and commented on drafts of the thesis. 

Next I gratefully acknowledge the colleagues of the Amsterdam Water Supply I co
operated with most intensively. The chapters 3, 4 and 5 could not have been written 
without the field data collected by Mark van Til. I also heavily profited from his expertise 
on dune vegetation. Luc Geelen co-ordinated the ecohydrological modelling of the 
Amsterdam Waterworks Dunes, the results of which are partly presented in chapter 7. 
Fortunately, my fuzzy view on this matter appeared quite evident to him. In addition Gert 
Baeyens, Ton Graveland, Theo Olsthoorn and Jacob Steinmetz supervised my work on 
behalf of the Amsterdam Water Supply. The commitment of their skills resulted in an fully 
utilised working environment and helped me to improve the quality of this thesis. 

Special thanks I owe to Dan Assendorp at the University of Amsterdam. Many of 
the concepts presented in this thesis were formed during lengthy mutual discussions. Next I 
thank Nanna Suryana Warsitakusumah, Jan Hein Loedeman, Rene van der Schans and 
Henk Schok at the Wageningen Agricultural University, Frank van der Meulen and Victor 
Witter at the University of Amsterdam, Harrie van der Hagen of the South Holland Dune 
Waterworks and all others who contributed to this thesis. 
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Riegart Moors and Susan Weightman are acknowledged for correcting the spelling and 
syntax of the manuscript. 

I intended to write a thesis worthy of note by workers in the field of geographical 
information systems, remote sensing and landscape-ecology. I trust you will find it 
interesting reading matter and will be able to apply the presented concepts to your own 
benefit. 

Roosendaal, 31 December 1998 
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1. Introduction 

1.1 Monitoring natural landscapes 

This thesis is concerned with the information supply for the manager of natural 
landscapes and in particular the role geographical information (GI) systems and remote 
sensing (RS) play in this process. Landscape management applies to those man-
induced activities which aim to direct landscape development in accordance with 
certain objectives. Landscape management includes a range of activities from 
fundamental ecological research to the design and execution of practical management 
measures (Leser, 1991). Here we are interested in the production of the information 
necessary to embark upon the planning of management measures. The information 
flow during the different phases of planning, such as scenario studies and decision 
making, and plan execution is not dealt with. Before elucidating the information 
requirements of the landscape manager, the object under study will be specified. 

A landscape is considered natural when the human effects, if present, are not 
ecologically significant to the landscape as a whole (Forman and Godron, 1986). As such a 
landscape does not have to be free from all human activity. Areas where the anthropogenic 
activities are limited to for instance extensive cattle breeding might still be considered 
natural, unlike agricultural and urban areas or areas used for forestry. 

A landscape manager is confronted with a group of key questions (Holbrook et al., 
1992, Davies et al., 1995). What are the features of interest and how significant are they? 
What is the relationship between these features in space and time and in terms of function 
and structure? How are the features changing and why? How do they relate to different 
management regimes, and, if some factor changes, what would be the implication for the 
resource and its future management? 

Consider for example the management of the Amsterdam Waterworks Dunes. 
Apart from recreation, drinking water supply and sea defence, an important function of 
the Amsterdam Waterworks Dunes is nature conservation. The significance of the dune 
area as a nature reserve is caused by the amount and the intensity of different natural 
processes (sect. 1.5). These processes concern mainly groundwater, relief, soil, 
vegetation and animal life (Bakker et al., 1979). Gradual changes and sudden 
catastrophes resulted in a complex and finely grained landscape where both sharp 
contrasts and smooth transitions occur. For instance a blow out can occur next to 
shrubs but also be enclosed by a gradient of pioneer vegetation. 
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Unmistakably, vegetation succession in the area tends towards scrub formation. Moreover, 
herbaceous vegetation locally transforms into grass vegetation due to atmospheric 
deposition (Ten Harkel and Van der Meulen, 1996) and reduced grazing activities by 
rabbits (Geelen, 1990). Grass and scrub encroachment together with former sand 
reclamation by dune managers reduced the geomorphologic activity in the area and are 
likely to nullify the finely grained landscape pattern in the long run. Dune managers are 
now counteracting these undesirable developments by reintroducing dynamics in the area 
by means of large grazing mammals (sheep and cattle) and the stimulation of blow outs 
(Ehrenburg and Baeyens, 1992). 

The managers of the Amsterdam Waterworks Dunes are in a constant need for up to 
date spatial information in order to lay out optimal management plans and to evaluate the 
effectiveness of the management measures. Landscape monitoring is the umbrella term for 
activities aiming at the generation of this information. The conceptual basis for landscape 
monitoring has to be provided by landscape ecological models, where landscape ecology is 
the study of the ecological structure, function, and change in a land area (Forman and 
Godron, 1986). Typically, landscape ecological models extend in space and time. 

1 c 
o C 

= c 
: c 

Control j 

A 
Prediction J 

A 
Explanation J 

A 
Description ) 

Figure 1.1 Four ordered objectives for landscape monitoring (the links 
symbolise a part-of relationship). 

Landscape ecological models can be classified with respect to criteria concerning 
conceptual and instrumental issues, e.g. the level of abstraction or the type of mathematics 
used (Baker, 1989). Corresponding to Chatfield (1989), the modelling objective is used to 
classify landscape ecological models into four categories (1) description, (2) explanation, 
(3) prediction and (4) control (fig. 1.1). These categories are ordered according to 
increasing capabilities. 

Descriptive modelling aims at deriving a proper representation of landscape features 
of interest in the space-time continuum. Data acquisition and inventory are the two most 
important aspects (e.g. Hope et al., 1993; Miller and Morrice, 1993), although this 
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modelling phase might involve some analysis such as cluster analysis, the characterisation 
of pattern and shape (LaGro, 1991; Pastor and Broschart, 1990) and trend estimation 
(Jakubauskas, 1989; Wildi, 1988). 

Explanatory modelling goes beyond the level of description and intends to discover 
relationships between variables in order to explain their behaviour. Statistical techniques 
like multivariate analysis (Gurnell et al., 1993) and ordination (Jongman et al., 1987) can 
be helpful in this respect. Many techniques are available for the analysis of relationships 
between variables in the space-time domain (e.g. Cressie, 1991; Legendre and Fortin, 
1989; Turner et al., 1990). Obviously, the established relationships depend upon the spatial 
entities of the underlying descriptive model (Fotheringham and Rogerson, 1993). 
Openshaw (1989) uses the term 'modifiable aerial unit problem' to indicate the difficulty of 
tuning the spatial entities to a certain analysis method. Tobler (1989) takes an opposite 
view on this problem and argues that artefacts can be rninimised by choosing appropriate 
analysis methods indifferent to changes of spatial units. 

Only when explanatory research yields a profound understanding of the relevant 
mechanisms determining landscape development, can the next phase in landscape 
modelling be undertaken, i.e. the forecasting of future events through predictive modelling. 
Consequendy, models of this type are less numerous (e.g. Rastetter, 1990; Wissel, 1991; 
Albrecht, 1992; VanDeursen, 1995). 

Finally, landscape modelling can help to control landscape development. Hereto, 
various actual and/or future aspects of the landscape are evaluated with respect to certain 
criteria. When a critical level is exceeded a management measure is induced. Obviously, 
the decision for a specific management measure depends on its predicted impact. As 
pointed out before, this thesis will not deal with the actual control or management of the 
landscape. In this thesis examples will be provided of the first three modelling types. 

Monitoring is the umbrella term for the modelling activities introduced in the previous 
section (fig. 1.1). Consequendy, monitoring can involve elements of four model types in 
any combination. The data flow in a monitoring process is handled by a monitoring 
system. A monitoring system is a set of hard- and software for the measurement, storage, 
processing and presentation of spatial and temporal data. Usually, a GI system and remote 
sensing applications form prominent parts of such a system (Haefner, 1987; Welch et al., 
1992). 

1.2 Landscape ecological modelling using GI systems and remote sensing 

In the last decade, GI systems have become a standard instrument in landscape ecological 
research (e.g. Turner and Gardner, 1990; Haines-Young et al., 1993; Johnson, 1990). A GI 
system is a set of hard and software for the storage, processing and presentation of spatial 
information. Some relevant topics dominating last years GIS-related research are the 
object-oriented approach (Oxborrow and Kemp, 1989; Molenaar, 1998), handling 
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uncertainty (Heuvelink, 1993; Lodwick et al., 1990; Veregin, 1989), aggregation and 
generalisation (Richardson, 1993) and temporal aspects (Langran, 1989). Recently the 
graphic visualisation of spatio-temporal data has become a new area of study. 

Remote sensing data have been used for a longer period. These data have been 
recognised to be an indispensable source of information for the landscape modeller. 
Initially, aerial photographs were used in an analogue form. Nowadays scanned aerial 
photographs and other digital remote sensing data such as satellite images are frequently 
used (Quattrochi and Pelletier, 1990). Consequently, landscape modellers also become 
acquainted with digital image processing techniques. These developments benefit from the 
ongoing integration of image processing techniques in GI systems. 

The availability of GI systems for a structured processing of environmental data, 
and digital image processing as a tool for spatial data acquisition opens new possibilities 
for the modelling of natural landscapes. However, the application of these techniques not 
only facilitates the construction process of a digital landscape model, but also brings about 
the need to reconsider the concepts underlying the modelling process (Haines-Young et al., 
1993). While working with GI systems ecologists often adhere to old concepts and 
working methods, whereby the digital environment is utilised but not fully exploited. 

A landscape is conventionally represented by chloropleth maps, which resulted from a 
manual photo interpretation. Although nowadays these maps are digitally stored in a GI 
system, their information content equals an analogue representation. A proper application 
of GI systems and remote sensing, however, should aim at improving the digital 
representation of a landscape, such that the analysis of these landscape data yield more 
accurate and relevant information. Digital landscape models should improve with respect 
to: 

• the degree of reality and the level of detail. Generally, a natural landscape shows 
a mosaic of continuous an discrete patterns making a representation in discrete 
spatial units only, e.g. patches and land units, rather poor. 

• the degree of subjectivity. By formalising the input of expert knowledge and image 
interpretation issues, the construction of landscape models becomes less 
subjective and repeatable. 

In order to turn these potential improvements into practice new concepts and methods 
for landscape monitoring need to be developed. The concept of a landscape (i.e. 
structure, function and change) can be subdivided into several levels of abstraction 
(fig. 1.2). Grelot cited by Kemp (1993), terms the models on the first level geographic 
models. Geographic models are conceptual models used by modellers 'as they evolve 
an understanding of the phenomenon being studied and extract its salient features from 
the background of infinite complexity in nature'. Because the studies in this report have 
a landscape-ecological character, it is more appropriate to term these types of 
conceptual models landscape-ecological (LE) models. Note, that in doing so the 
meaning of a LE-model is curtailed to conceptual modelling only. 
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Landscape r Test site 
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Figure 1.2 Process of conceptual and concrete landscape modelling. 

The second level of abstraction is represented by spatial models. Conceptual spatial 
models are formally defined sets of entities and relationships used to discretize the 
complexity of landscape-ecological reality (Goodchild et al., 1992). The entities in 
these models can be measured and the models completely specified. On the next level 
data structures describe details of specific implementations of spatial data models 
(Molenaar, 1994). Data structures and lower data layers are considered to be part of 
the instrumentation. Here we are primarily concerned with landscape-ecological 
models, spatial models and the relationship between them. 

It was argued that the spatial model has to follow from the specifications in the 
landscape-ecological model. However, in practise one works usually the other way 
around, starting from the spatial models readily implemented in commercial GI 
systems. In general these spatial models do not provide sufficient functionality to 
represent complex landscape-ecological systems satisfactorily. Moreover the creativity 
of the modeller is confined. In an ideal situation landscape modellers in search of 
appropriate analytical tools and spatial modellers lacking an ecological background 
interact to produce a seamless coupling between the two modelling steps. The latter 
situation is pursued in this thesis. 

So far only conceptual models have been dealt with. The next step is the construction of a 
concrete or digital landscape model according to the specifications originating from the 
conceptual spatial model (fig. 1.2). These specifications concern the implementation of the 
spatial model with some data structure, and the surveying and processing of the actual data. 
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1.3 Thesis objectives 

The general objective of this thesis is to develop methods for: 

1. monitoring landscape-ecological aspects of natural landscapes 
2. a by employing tailored spatial models, and 

b using digital remote sensing data. 

The first part of the general objective deals with the intended activities and the object 
under study. By monitoring is meant all those activities related to spatio-temporal 
modelling introduced in section 1.1. The intended landscape-ecological aspects of 
natural landscapes are geomorphology, hydrology, soil and vegetation and their mutual 
interaction. 

The second part of the objective specifies two conditions by which the monitoring 
process is steered in order to obtain a close resemblance between the landscape under 
study and its digital representation. The first condition concerns the definition of a spatial 
model capable of representing the complex spatio-temporal variation characteristic for 
natural landscapes. By the second condition, it is recognised that remote sensing provides 
the best practical means to derive landscape covering data on earth surface characteristics. 
Clearly, the significance of monitoring largely depends on the tuning of the spatial model 
with the information content of the remote sensing data. Practical limitations in data 
acquisition and data processing set restrictions to the digital landscape model and therefore 
have to be faced during the specification of the objectives and the definition of the 
conceptual models. This iterative search for optimal attunement, results in methods that are 
partly grafted upon the instruments. The importance of remote sensing data, however, 
justifies this procedure. 

The general objective of the thesis is given a concrete form in three more specific 
objectives proceeding from the management practice in the Amsterdam Waterworks 
Dunes. For a proper nature and hydrological management of the area the following models 
are needed: 

3.a Spatial and temporal descriptive model of the vegetation structure and areas of 
wind activity using high resolution digital CIR-photographs. 

3.b Explanatory model of the spatial distribution of plant communities using 
vegetation structural and other environmental data. 

3.c Predictive model of ecotopes in dune slacks using vegetation structural and 
environmental data and a quantitative hydrological model. 

CIR-photographs reveal details of the dune landscape concerning vegetation structure and 
wind and water erosion (Jungerius and van der Meulen, 1988). Hence, these features can 
be interpreted and captured by a descriptive model extending in space and time (3a). 
Generally, these photographs do not provide detailed information on the vegetation 
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composition. Consequently, spatial information on the species composition (3b) has to be 
explained from available information on the structure of the vegetation and other 
environmental data, like water table and relief. 

While the proposed models 3a and 3b relate to the whole dune area, the predictive 
ecohydrological model (3c) applies to dune slacks only. The central issue in the 
construction of the ecohydrological model was the formalisation of knowledge in an expert 
system. 

1.4 Thesis organisation 

The thesis starts with the introduction of some conceptual aspects of landscape 
modelling (chapt. 2). Emphasis is put on the relationship between spatial and 
landscape ecological modelling. In the subsequent four chapters these concepts are 
applied and tested. Chapter 3 and 4 deal with objective 3a of the thesis. Chapter 3 
considers the classification of the vegetation structure with digital CIR photographs 
resulting in state descriptions of the vegetation structure. Subsequently, a spatio-
temporal analysis is performed on these state descriptions to quantify landscape 
dynamics (chapt. 4). 

The estimation of the species composition using vegetation structural and 
environmental data is dealt with in chapter 5 (objective 3b). Chapter 6 deals with 
objective 3c, i.e. the construction of a predictive ecohydrological model for dune 
slacks. The thesis concludes with some remarks on the applied methods and gives 
some future perspectives for digital landscape monitoring (chapt. 7). 

1.5 Description of the test area 

The Amsterdam Waterworks Dunes border the North Sea to the west of Amsterdam 
(fig. 1.3). The area measures about 3300 ha and stretches 8 km along the coast. A 
variety of highly complex patterns express a great wealth of natural beauty in the area. 
Bakker et al. (1979) performed a hierarchical system analysis of the Dutch dunes, 
which resulted in a landscape ecological model consisting of 7 hierarchical levels (fig. 
1.4). At the top of the hierarchy each level or landscape component is primarily 
governed by processes in higher components resulting in top-down constraints, while 
the feed-back mechanisms are weak. Going down the hierarchy, the strengths of the 
top-down and bottom-up relationships become more and more equivalent. In this thesis 
emphasis is put on geomorphology, vegetation and hydrology. Therefore, these three 
landscape components are briefly described. 
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The dune landscape has been formed over the last five millennia during periods of 
eolian drift. During these periods the dunes expanded in the direction of the sea and 
existing dunes moved again. This process of periodic large-scale geomorphologic 
activity resulted in a series of landscape zones parallel to the coastline. After fixation 
of the sand by pioneer species, different vegetation types will succeed eachother. 

Figure 1.3 Topography and location of the Amsterdam Waterworks Dunes. 

The first major zone encountered starting from the coast and a foredune vegetated by 
Ammophila arenaria, is a landscape characterised by parabolic dunes. Ligustrum 
vulgare, Salix repens and low herbaceous vegetation are the main types of vegetation 
here. The next, older dune landscape can be typified by wide dune slacks and dune 
ridges with a height up to 25 m. The vegetation of this zone is dominated by 
Hippophae rhamnoides. Further inland are the oldest, more decalcified inner dunes, 
mostly vegetated by a mosaic of short grasses, dwarf scrub, Quercus robur and 
Populus spp woodland (Ehrenburg and Baeyens, 1992). Nowadays, most of the area is 
covered with vegetation. However, throughout the area spots of active wind erosion 
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occur. These blow outs come into being on places where the vegetation is degraded. In 
turn less active blow outs are fixed by vegetation (Jungerius and Van der Meulen, 
1988). 
Besides natural processes, man has also played a major role in transforming the 
landscape. By the seventeenth century, part of the area was used for agriculture 
(Geelen, 1990). Arable farming and cattle breeding continued until about 1945. Until 
recently, sand-drifts were reclaimed by planting Ammophila arenaria. The largest 
impact of man, however, concerns the hydrology of the area. 

The hydrological system is strongly affected by activities related to the 
production of drinking-water (Olsthoorn et al., 1998). In 1853, the Amsterdam Water 
Supply started to discharge groundwater from this area. Until the year 1957, the 
groundwater table dropped several meters because the amount of discharge exceeded 
the input through precipitation. From then on, prepurified river water was infiltrated 
and artificially recharged in part of the area. These man-induced changes in water 
quantity and quality had a major effect on vegetation in dune slacks which is 
associated to the phreatic surface. 

1 
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4 
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6 
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climate 

f A 
geology 

f A 
groundwater 

f A 
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Figure 1.4 Hierarchical model of a dune system consisting of seven related 
landscape components, the darker the link the stronger the 
relationship (after Bakker et al., 1979). 



2. Conceptual aspects of landscape monitoring 

The relationship between spatial modelling and landscape-ecological concepts was 
mentioned in section 1.2. It was argued that the spatial model has to follow from the 
specifications derived from the landscape ecological model. Therefore, this chapter starts 
with a short introduction of some basic landscape-ecological concepts relevant to spatial 
modelling (sect. 2.1). The subsequent sections elucidate three approaches to spatial 
modelling; fields (sect. 2.2), objects (sect. 2.3) and objects with nested fields (sect. 2.4). 
Along with the description of these three spatial models their possible application in 
modelling natural landscapes is evaluated. 

2.1 Pattern and process 

Landscapes are systems operating in the four dimensional spatio-temporal continuum 
at the earth' surface (Leser, 1991). Generally, the starting point for a system analysis is 
to distinguish between pattern and process. Accordingly, a system is defined as a 
complex unit in space and time operating systematically in a way that the integral 
configuration of pattern and process can be restored after non-destructive disturbances 
(Mueller, 1992). Forman and Godron (1986) specify the interaction between landscape 
structure (pattern) and functioning (process) as an endless feedback loop: 

'Past functioning has produced today's structure; 
today's structure produces today's functioning; 
today's functioning will produce future structure.' 

As any system, natural landscapes have some fundamental characteristics like self-
regulation, self-organisation and an inherent hierarchical structure (Mueller, 1992). 
Because the hierarchical structure of landscapes provides some major clues for specifying 
a proper spatial model, it is dealt with in more detail. 

Landscapes have an organisational structure ranging from low to high levels. Take as an 
example the following range of subsystems each operating as part of the landscape system: 
leaf, tree and woodland. These subsystems are ordered according to increasing size, life 
time and complexity. Obviously, a leaf is a subsystem of a tree and in turn a tree is a 
subsystem of woodland. The paradigm for handling the organisation underlying such 
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systems is hierarchy theory (Urban et al., 1987; O'Neill et al., 1989; Kotliar and Wiens, 
1990; Dikau, 1990). 

Hierarchically organised systems can be divided or decomposed into discrete 
functional components (holons) operating at different scales. The hierarchical paradigm 
provides guidelines for defining these functional components of a system, and defines 
ways to relate components at different levels to one another, e.g. lower-level units interact 
to generate higher-level behaviours and higher-level units control those at lower levels. 
Events at a given level have a characteristic frequency and a corresponding spatial extent. 
In general, low-level events are comparatively small and fast. Higher-level behaviours are 
larger and slower. 

A subsystem at a given hierarchical level experiences only the dynamics of other 
subsystems operating on that level. By comparison the dynamics of higher-level 
subsystems are too slow to be experienced as variable, while the dynamics of lower-level 
subsystems are to fast to be individually experienced. Hence, a system merely experiences 
the aggregated dynamics of all its subsystems. For instance the grazing of rabbits on a dune 
grassland is more easily described by the aggregated activities of all rabbits, than by 
describing the activities of each individual rabbit. When these notions are incorporated in a 
model, effectively non-equilibrium dynamics or spatial heterogeneity at one level can be 
translated to equilibrium or constancy at a higher level (Urban et al., 1987). In summary a 
hierarchical perspective brings about three strategic concerns in the description of a 
landscape (O'Neill et al., 1989): 

• detect patterns at multiple hierarchical levels and define the spatial units 
functioning on each level, 

• relate a pattern to adjacent levels, and 
• infer which processes generate the pattern. 

In spatial information processing two major approaches exist for the conceptual 
representation of hierarchical systems, the field and object respectively (Molenaar, 1998; 
Baker, 1989; Piwowar et al., 1990): 

• A (physical) field is a feature which is contiguously distributed over space and 
time. In a field the strength of the interacting forces is a function of the position 
within the field and the resulting pattern can also be expressed in terms of 
position dependent field values. Examples of terrain features with a field 
characteristic are the ground water system and the electromagnetic radiation 
emitted or reflected by the earth surface and detected by human vision and 
remote sensing techniques. 

• Contrarily the object approach assumes that the earth's surface is populated with 
spatially interacting discrete units. Each unit or object has its own behaviour. The 
pattern resulting from these processes can be expressed by the spatial 
distribution and the state of the objects. Evident objects are individual plants or 
animals, but also less tangible spatial units like plant communities and blow outs 
can be considered as objects. 

Both the field and object approach enable the combined modelling of pattern and process. 
In order to quantify the patterns and processes of a specific landscape within the 
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framework of one of the two terrain descriptions two main research strategies can be 
distinguished. Firstly, one can start from a hypothetical process description and test the 
hypothesis on gathered data. A second strategy is to gather data on the landscape structure 
and recover the underlying processes from an analysis of the data in an explorative 
research. The emphasis in this thesis is put on pattern as starting point for empirical 
explorative research on landscape development. A correct representation of a landscape in 
a pattern is therefore of primary concern. 

Spatio-temporal pattern 

The components of data on the real world are attribute, space and time. Consider a vector 
of attributes A and a spatial and temporal domain of interest, Ds and Dt respectively. Then 
A(x,t) is the value of A in the domain of interest, where x represents a variable taking 
values in Ds and t represents a variable taking values in Dt. A(x,t) is a full spatio-temporal 
pattern, when A is known for every location x4 e Ds and every moment tj e Dt. A spatial 
pattern A(xltj) provides attribute values at every location within Ds but only for one 
moment tj. Accordingly, a temporal pattern A(tlxi) holds attribute values at every time 
within D, for only one position xi. Any sufficiently large set of points A(xjtj) or A(tjlxi) 
provides a point pattern, i.e. a partial pattern description. 

The spatial domain Ds is a subarea of a metric space R„. The distance in this space 
can be defined in absolute or relative measures (e.g. Holly, 1978; Meentemeyer, 1989; 
Turner et al., 1989). In this thesis Ds is a subarea of a two dimensional euclidian space R2 

resulting from the projection of a segment of the curved real world surface. Relative space 
is created when distance is related to some functional relationship. The distance between 
two points can for instance be expressed in the effort required by an organism to travel 
between them, i.e. a non-linear transformation of euclidian space. Time adds the third 
dimension to the model space. Here chronotime is used. Time can be relative too, for 
instance when the functioning of plants is specified along the seasonal cycle. 

Unfortunately, the value of A in model space is unknown and has to be estimated. 
The approximation of A(x,t) by an estimation method M(x,t) is denoted as A(x,t). A(x,t) is 
the spatio-temporal pattern one deals with in practice. A pattern is thus created through an 
estimation method, e.g. measurement, interpolation or process modelling. Yet depending 
on this method different patterns can be derived for one attribute from a single landscape. 
Consequently, pattern is no inherent property of a landscape but a product of the 
interaction between landscape and applied methods (Wiegleb, 1989; Perez-Trejo, 1993). 

Spatio-temporal patterns A(x,t) are frequendy produced by spatio-dynamic models in the 
field of meteorology and hydrology. Examples of spatio-temporal patterns in landscape-
ecology are few (Turner and Gardner, 1990). This can be attributed to a lack of theory to 
build spatio-temporal models and practical limitations to the collection of the vast amount 
of input data usually needed (Baker, 1989). Until now, landscape-ecological modellers 
have put most effort in a proper quantification of spatial pattern A(xltj), simplifying the 
problem of spatio-temporal modelling to the quantification of a number of spatial patterns 
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in time. Hence, a spatio-temporal pattern becomes a collection of spatial patterns in time 
{A(xlti), A(xlt2), ...A(xlt„)}, where each spatial pattern represents a slice of the spatio-
temporal continuum, comparable to a temporal sequence of remote sensing images. In the 
next paragraphs the representation of spatial patterns by the field and object approach will 
be elucidated. 

2.2 Fields 

A field takes attribute values A at any position in the spatial domain Ds as a function of its 
position: 

A = f(x) Xe Ds 2.1 

Usually, the spatial variability of A is considerable and the representation of a field by an 
analytical function becomes practically impossible (Kemp, 1993). Consequently, a field is 
represented by a finite collection of discrete data captured in a data structure. For the 
representation of fields several data structures are available retaining a contiguous 
character, e.g. triangular irregular networks (TIN), contour models and rasters. 
Subsequently, the raster structure is used to represent fields, because it is the most 
comprehensive structure and remote sensing data are structured accordingly. 

2.2.1 Spatial field represented in cell-raster 

In a raster the thematic data are directly linked to position. A raster is a collection of points 
or cells which cover the terrain in a regular grid. In a point raster each raster element 
contains thematic data that refer to a point position. In a cell raster the thematic information 
refers to an area segment represented by each element, i.e. attribute values are aggregated 
over the cell. For practical reasons these cells or segments are usually square, although a 
hexagonal shape might be more appropriate to represent curved-shaped natural features. 
When a third dimension (Z or time) is added the cells become volumes, named voxells. 

It depends on the data acquisition technique and the processing of the data whether 
data in a raster represent a point or a cell. Digital images usually have a cell structure, 
where a cell is called pixel. Figure 2.1 shows the geometric definition of a cell-raster 
(Molenaar, 1998): 

• The origin of the axes along which the rows and columns will be counted. The 
origin has the coordinates (Xo, Y0). 

• The orientation of the two orthogonal axes. 
• The choice of the stepsizes dX and dY specifies the geometric resolution of the 

raster. 
• The extent of the raster is determined by the lower left corner of the lower left cell 

and upper right corner of the upper right cell, respectively (Xi, Y{) and (Xh, Yh). 
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Topology is the final geometrical aspect of a raster to be dealt with. The topology of a 
raster is based on the topologic relationships among the elements, i.e. the adjacency of the 
raster cells. Each cell has two types of neighbours. Adjacent elements in the same row and 
in the same column are called full neighbours. Cells having a common corner point with 
the central element are diagonal neighbours. From these basic topological links any 
neighbourhood can be defined. A neighbourhood can also be defined by distance and/or 
direction from a central cell, e.g. circle, rectangle and doughnut. Note that topological 
relationships refer to spatial relationships, unlike the common ecological term chorological 
(Zonneveld, 1989). Ecologists are used to term relationships that exist on a specific point, 
topological. 

Figure 2.1 Geometric definition of cell rasters (see text for explanation). 

The thematic characteristics of a raster are determined by its attributes, where each 
attribute is defined by a name, scale type and domain. A single valued raster contains 
values of only one attribute. If a raster describes two or more attributes the raster is called 
multi-valued (fig. 2.2). 

Position < Attributes 

a. Direct linking of thematic data to position in raster structure. 

Raster "l '"2 ' -""n 

CelL a,^,..^ 

b. Data model for a multi-valued raster. 

Figure 2.2 Spatial field represented by a cell raster. 
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Firstly, cell values of a raster can be obtained through systematic sampling. Although not 
completely correct, i.e. the support of the measurement is not equal to a specific grid cell 
(Lillesand and Kiefer, 1994), remote sensing imaging instruments perform a systematic 
area sampling. Systematic sampling in the terrain is very laborious and therefore rarely 
applied (Legendre and Fortin, 1989). 

Secondly, cell values can be obtained through the interpolation of a set of 
irregularly distributed sample values. Some current spatial interpolation methods are 
inverse distance weighting, triangular irregular networking (Ebner and Eder, 1992; Gold, 
1989), kriging (Delhomme, 1978; Oliver and Webster, 1990) and co-kriging (Atkinson et 
al., 1992; Dancy et al., 1986). Cressie (1991) provides methods for temporal and spatio-
temporal interpolation. 

2.2.2 Spatial resolution and terrain features 

The spatial resolution of the cells determines the geometric precision of a raster. In ecology 
the finest level of detail in a data set is usually termed grain (Kolasa and Rollo, 1991). Note 
that the precision of a spatial data set is not specified by scale. The term (cartographic) 
scale is exclusively used for the ratio of the distance on a map to the distance in the terrain 
(Carlile et al., 1989; Milne and O'Neill, 1990; Ver Hoef et al., 1989). In studies of 
landscape patterns, data may be available at a variety of resolutions and extents. Obviously, 
this variation has an effect on the characteristics of a pattern (Turner et al., 1989; Cushnie, 
1987). Subsequently, the relationship between raster data and terrain features as a function 
of resolution is elucidated. 

The spatial resolution of digital remote sensing images divides the features in the terrain 
into two groups (Strahler et al., 1986). Features greater than a cell will appear in one or 
more cells or pixels and might thus be individually detectable. These features are named 
high resolution features. Contrarily, the features smaller than the resolution are not 
individually detectable, and termed low resolution. In the latter case a cell contains 
aggregated data from more than one feature. Ranging from coarse to fine spatial 
resolutions, i.e. changing towards smaller cell sizes, more features will turn from low to 
high resolution. When, for example, a herbaceous vegetation is observed with a spatial 
resolution of 1 metre, individual herbs and mosses are not detected. Consequently, the 
interpretation of these plants has to be performed on the community level. This also counts 
for individual tree seedlings with a crown diameter about less than one metre. Further 
growth of the tree will result in the coverage of more cells, by which it becomes a high 
resolution object and thus detectable. 

Gradual spatial variation in the composition of low resolution objects generally 
results in more or less continuously varying patterns, which are best represented as a field. 
High resolution terrain features bringing on different attribute values in a field, e.g. a 
solitary tree in a digital image, can be detected and delineated and might therefore be 
represented as an object (sect. 2.3). 
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2.2.3 Fuzzy classification 

A field is suitable to represent more or less continuously varying terrain features. By using 
a raster continuous fields become, however, discrete in the spatial domain. In the thematic 
domain continuity means that attributes take continuous values. Because crisp 
classification yields discrete attribute values this technique is not applicable to all features 
in natural landscapes. Nevertheless, landscape-ecologists frequently apply classification, 
because it is acknowledged to be a powerful technique to extract essential information 
from the background of infinite complexity. In agricultural areas where each plot is 
cropped with a single species, crisp classification is appropriate (Huising, 1993; Janssen, 
1994). In natural landscapes a continuous type of classification has to be applied to 
accommodate the quantification of gradients. A proper representation of gradients is of 
ecological importance, because these situations often possesses high natural values (Van 
Leeuwen, 1966). The notion of continuous classification can be expressed with the 
mathematical concept of fuzzy classification. 

Classification is concerned with statements like x e S, i.e. does spatial element x belong to 
thematic class S. In order to solve this decision problem the class has to be defined first of 
all. A class is defined by the properties that are characteristic for its members. These 
properties can be operationalised by a membership function. Consider for convenience a 
one dimensional membership function M defined on a continuous attribute a (fig. 2.3). In 
the classical Boolean set theory, a class is defined by a membership function, which takes 
as values only 1 or 0: 

MB(a) = 1 
MB(a) = 0 

if bi < a < b2 

if a < bi or a > b2 

2.2 

where bi and b2 are thresholds (fig. 2.3a). A membership value of 1 means "belongs to' the 
set or class, while a value of 0 means that it does not. As it is defined by precise 
boundaries, a crisp class applies to discrete features in the terrain. 

Figure 2.3 Specification of a crisp (left) and fuzzy class 'medium' (right) by a 
membership function. 
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Alternatively, fuzzy sets or fuzzy classes apply to those situations where no sharp 
distinctions in the real world can be made. This type of uncertainty with respect to class 
boundaries is called vagueness. Vagueness of a class can be expressed by allowing the 
membership function to take any value in the range of 0 to 1. Figure 2.3b shows the 
membership function of the fuzzy set 'medium' defined by a piece wise linear function: 

2.3 MF(a) = 1/(f2-f,) • (f2-a) 
MF(a)= 1 
MF(a) = -1/(f3-f2)«(f3-a) 
MF(a) = 0 

if f 1 < a < f2 

if f2 < a < f3 

if f3 < a < U 
if a < f 1 or a > U 

When the relevant attribute value is known for a spatial element, the membership value can 
be calculated which indicates the degree of membership or compatibility of this spatial 
element with a class. A membership value of 1 means full compatibility, while a value of 0 
means no resemblance. Membership values between 0 and 1 express partial compatibility. 
It is important to realise that membership values are not probabilities. One apparent 
difference with probabilities is that the summation of membership values over the classes 
not necessarily equals 1, although this is not apparent from figure 2.3b (Zimmerman, 
1985). 

The fuzziness of the class medium (eq. 2.3) is governed by the range between fi and 
f2 and f3 and f4 respectively. Obviously, the fuzziness decreases with decreasing ranges. 
Note that the class becomes crisp when the two ranges become zero. Consequently, crisp 
classification is considered to be a special case of fuzzy classification. 

Admitting partial membership implies that an element x can be compatible with more than 
one fuzzy class. Consider for example the three fuzzy ordinal classes in figure 2.3 to be 
moisture content classes defined along the variable 'depth of water table'. For spatial 
element x the fuzzy classification results in a vector of three membership values 
(0.4,0.6,0.0) for the classes low, medium and high moisture content respectively. 
Apparently, this element has nearly equal compatibility with classes low and medium 
moisture content. In the crisp case the turn over between classes is very arbitrarily 
modelled at a single depth of the water table. In the crisp case element x is classified as 
(0.0, 1.0, 0.0) indicating full compatibility with one class only. The example shows that 
fuzzy classification enables the modelling of ecological gradients through the vague turn 
over between classes. Although seemingly less precise than crisp data, fuzzy data are often 
a more adequate representation of reality (Klir and Folger, 1988). 

2.3 Spatial objects 

As opposed to the field approach, the object-structured approach applies to discrete terrain 
features (Oxborrow and Kemp, 1989). Many landscape-ecological concepts use discrete 
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spatial units to structure a landscape pattern. Kotliar and Wiens (1990) term their 
elementary units patch and define it as 'a non-linear surface area differing in appearance 
from its surroundings'. Accordingly, a patch can be delineated apart from the underlying 
processes. In case of a vegetated area patches are defined by differences in plant 
communities. In non-vegetated areas patches result from differences in environmental 
variables, e.g. lake, bare sand or stony area. 

Zonneveld (1989) introduces the term 'land unit' for 'an ecological homogeneous 
tract of land at the scale of issue'. The land unit can be considered as a subsystem with 
dynamic properties and relationships to neighbouring land units. All methods guiding the 
landscape ecologist in determining appropriate objects for the landscape under study have 
in common that the object has to be internally homogeneous in some respect and externally 
heterogeneous. Consequently, in the object approach spatial variation is modelled at the 
objects' boundary (Suryana, 1997). 

The fact that an object differs from its surroundings does not imply, however, that 
an object has no internal variability. Even more so, homogeneous objects are rarely 
observed in nature (Kotliar and Wiens, 1990). Objects homogeneous in one respect can be 
inhomogeneous in another. The internal variability or heterogeneity of an object can be 
described, though. For example tree species near the fringe of a wood might differ from the 
inner species. 

Different survey methods applied to a single landscape result in objects ranging in 
complexity and tangibility. Apparentiy, more or less sharp transitions in the terrain are a 
prerequisite for meaningful locating object boundaries, i.e. the sharper the transitions the 
less uncertainty is involved. The uncertainty related to the objects' boundary will increase 
when the changes in the terrain become more gradual. 

The ease of constructing terrain objects largely depends, therefore, on the type of 
landscape. In agricultural areas the identification of lots and the subsequent labelling with a 
single crop is a straight forward process (Janssen, 1994). Contrarily, natural landscapes 
often show a range in more or less continuous and discrete transitions causing a varying 
tangibility of the terrain objects. Under these circumstances the recognition of objects can 
be less evident, generally resulting in less accurate and inconsistent object boundaries 
(Middelkoop, 1990; Janssen, 1996). 

2.3.1 Spatial objects represented in cell raster 

In the object-structured approach the thematic and spatial data are handled separately and 
linked through an object identifier (fig. 2.4a). The object geometry can be defined either in 
a vector or raster structure (Piwowar et al., 1990). In this thesis, objects are obtained by 
applying discretisation processes to remote sensing imagery, i.e. fields represented in a 
raster structure (sect. 2.2.1). For convenience objects are represented in a raster structure 
too, preventing raster-vector conversion vice versa. 
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In a cell raster the geometry of objects is defined by linking one or more adjacent cells (or 
pixels in an image) with some characteristic in common to an object-id (fig. 2.4b) 
(Molenaar, 1994). Note, that one cell can form an object too, which means that the smallest 
object is equal to the resolution of the raster. The link between objects O and the geometry 
is made through the Part of function: PARTO[cell, O]. If a cellx,y is part of an object Oj this 
is represented by PARTO[cellx>y, OJ = 1 and PARTO[cellx>y, OJ = 0 if not. If objects are 
fuzzy in their spatial extent, this can be expressed by allowing the 'part of function not 
only to take the values 0 or 1, but to take any value 0 < PARTO[cellx,y, OJ < 1. In this 
thesis the object approach is only applied to discrete terrain features. Hence the concept of 
fuzzy objects is not applied. 

a. Linking of thematic and geometric data 
through an object identifier. 

Class A..VA 

Object-ID a,,a,,...a„ 

CelL 

b. Data model for a spatial object. 

Figure 2.4 Spatial object represented by a cell raster. 

The geometry of a spatially crisp object consists of a collection of one or more adjacent 
cells, i.e. a segment. A segment has an outer boundary and may contain one or more holes. 
Obviously, segments obtained from natural patterns usually have an irregular shape. The 
precision of the segment's boundary is determined by the spatial resolution of the raster. 

In figure 2.4 the relationship between cells and objects is specified as many to one 
(n : 1). This relationship results in mutually exclusive objects. Alternatively, a many to 
many relationship (n : m) allows cells to belong to two or more objects. For instance a cell 
might simultaneously belong to a river and road where both objects cross or to a soil and 
vegetation unit. In a many to one relationship between cells and objects these situations 
have to be modelled in separate data layers of objects. 
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Objects are defined within the framework of a classification system. Generally, an area is 
populated with sets of objects that are different, so that each set should have its own 
description structure, i.e. each set should have its own list of attributes and process 
characteristics. These sets of objects are called object classes or short classes. Hence, the 
classes are typified by the fact that the objects belonging to the same class share the same 
descriptive structure. Examples of object classes are woodland, build-up area and road. 

The relationship between an object O and a class C is made through the 
membership function M[C,0]. If an object Oj belongs to a class Ck this is represented by 
M[Ck,Oj] = 1, and M[Ck,Oi] = 0 if not (Molenaar, 1998). Uncertainty in the relationship 
between object and class is expressed by allowing the membership function to take any 
value 0 < M[Ck,Oj] < 1. In this thesis objects are not allowed to be uncertain with respect 
to their object class. Hence, the relationship between object and class is of the type many 
to one (n:l) (fig. 2.4). Again it is asserted that in uncertain situations a field description is 
more appropriate. 

By assigning an object to a class the attribute structure of the class is inherited, 
LIST(Ck) = {Ai,A2,...Ar}. Each attribute is specified by a name, scale type and domain 
defining the set of attribute values. By storing an attribute value for each attribute, an 
object is fully defined. Note that although the class of an object is crisp, the state 
description of an object can be made fuzzy by its attributes and attribute values. 

Object construction 
In this thesis, objects are constructed by applying discretisation processes to remote sensing 
images, i.e. spatial fields. This process can be divided in four phases, which largely follow 
from the definition of objects provided in the previous section: 

Object isolation by segmentation 
In this phase, an object is spatially defined and its field data are isolated. The 
delineation of an object is performed by segmentation techniques. A simple 
segmentation technique is density slicing. More advanced segmentation techniques aim 
to locate the boundaries of segments on relatively strong changes in a field. These 
techniques can be categorised in edge detection and region growing. 

Characterisation of segments by features 
In this phase, relevant features are selected, measured and stored as attribute values for 
each segment. Any feature contributing to the characterisation of a segment is valid. 
Usually, the features consider aspects of the spatial field coinciding with the segment, like 
average field values (e.g. tone in case of images) or features indicating the internal 
variability of the field, such as variance and texture. 

Assigning of object to object class 
By classification each object is assigned to a predefined object class. This can be done by 
expert judgement, for instance during visual image interpretation, or by quantitative 
classifiers, e.g. a maximum likelihood classifier. 
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Estimation of attribute values 
By assigning an object to a class the attribute structure of the class is inherited. 
Consequently a value should be stored for each attribute. 

Object dynamics 
Objects representing natural phenomena change during their life-time. Here the dynamics 
of terrain elements is represented by a sequence of state descriptions. Obviously, this is 
only meaningful when the life-time of the objects extends over several temporal resolution 
steps of the state descriptions, i.e. high resolution objects in time (sect. 2.2.2). 

The dynamics of objects is governed by four basic processes (fig. 2.5) (Forman and 
Godron, 1986; Huising, 1993; Janssen, 1994). An object comes into existence and will 
finally cease to exist. Given an observation system, the birth of an object occurs when a 
feature turns from low to a high resolution or when continuous or discrete processes alter a 
field. For instance a continuous change results from the increase in abundance of specific 
species, while fire and landslides are discrete events. Obviously, the same processes can 
cause objects to cease to exist. 

During the objects' life-time both the geometric and thematic characteristics might 
change. Thematically, an object changes with altering attribute values. For instance when 
the attribute height of a shrub is updated. A more drastic object change occurs when the 
object class is altered. For instance when a shrub exceeds a certain height and becomes a 
tree. 

Birth 

Dissolve 

Growth 

Shrink 

Movement 

Thematic 

change £> 
Figure 2.5 Basic processes of object dynamics. 

In the spatial domain the object changes either by birth, dissolve, growth, shrink and/or 
movement (fig. 2.5). These processes can result in a change of position, orientation, size or 
shape, or any combination of these, which may lead to topological changes as well (fig. 
2.6). In a lattice of dynamic objects mutual influences bring on composite processes like 
object splitting and merging. Object movement applies particularly to non sessile features 
like animals of which the dynamics is far below the temporal resolution. Therefore, 
landscape modelling is usually restricted to sessile terrain features (Aspinal, 1992). 
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2.3.2 Aggregation hierarchy 

Generally, a landscape description should consist of multiple levels of abstraction in order 
to handle its organisational complexity and hierarchic structure (sect. 2.1). In literature on 
data modelling three types of object hierarchies occur; classification, aggregation and 
association. In a classification hierarchy objects are related by 'is a' links. For instance a 
birch is a tree is a woody species. Classification operates only on thematic aspects of 
objects enabling object generalisation. Alternatively, aggregation operators act on both 
thematic and geometric aspects of objects. By aggregation, objects are related in up-ward 
direction by 'part of links. For instance a tree is part of a woodland. 

Finally, different levels of objects can be linked by association. Objects can be 
associated on any common ground, like all blow outs in a certain area. Although not 
necessary, topology can be used to define object associations. For example all parcels 
adjacent to parcel x are associated with parcel x. Usually, object associations can be 
obtained through queries and are therefore not explicitly embedded in a data model. For 
digital landscape modelling aggregation appears the most powerful operation to link 
multiple levels of abstraction. For this reason, aggregation hierarchies are studied here in 
more detail. 

Original situation 

Change in: 

No topological 
changes 

Topological 
changes 

Figure 2.6 The effect of object dynamics in a lattice (after Janssen, 1994). 

Objects on a specific hierarchical level, can be aggregated to form new composite objects 
on a next higher hierarchical level. An aggregation hierarchy shows-how composite objects 
can be build from elementary objects and how these objects can be put together to build 
more complex objects and so on, i.e. a composite object can be an elementary object for a 
next higher hierarchical level. 
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An aggregation hierarchy has a bottom-up character in the sense that starting from the 
elementary objects composite objects of increasing complexity are constructed in an 
upward direction. As stated the upward relationship in an aggregation hierarchy is called a 
'part of link. Because aggregation operators work both on the thematic and geometrical 
aspect of the elementary objects, the definition of an aggregation should consist of 
(Molenaar, 1998): 

• rules specifying the classes of the elementary objects building an aggregated 
object. These thematic rules can be refined by imposing conditions on attribute 
values. 

• rules specifying the geometric and topologic relationships among these objects. 
These geometric rules are often based on topological relationships between 
objects. 

One common geometric condition usually made is containment, i.e. the spatial extent of an 
elementary object fully falls within a composite object. Aggregations performed under this 
condition are nested (fig. 2.7). The link between an elementary object Oi and a composite 
object COj is given by a PARTCO[Oi,COj] function. This function takes the value 1 when 
the object is member of a composite object and 0 if not, bringing on a many to one (m : 1) 
relationship, i.e. composite objects are disjunct. 

Nested aggregation Non-nested aggregation 

Figure 2.7 Nested and non-nested object aggregation. 

Uncertainty in the relationship between object and composite object is expressed by 
allowing the membership function take any value 0 < PARTCO[COj,OJ < 1. This enables 
the definition of fuzzy composite objects, i.e. composite objects become not disjunct and 
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can be overlapping. For instance a shrub at the border of a woodland and herbaceous 
vegetation might belong a little bit to both. In this thesis only disjunct composite objects 
are defined. 

Now, consider the situation that the condition of containment is dropped. By dropping this 
condition, object aggregations of a more loose character can be created and the PARTCO 
function is not applicable any more. Non-nested aggregation or amalgamation allows 
different parts of an elementary object to fall within different composite objects. Figure 2.7 
might show for instance the amalgamation of the composite object woodland from clusters 
of trees. In ecology amalgamation is often used, especially as a step in object construction 
during manual image interpretation (Geelen, 1990). 

If elementary objects are combined to form a composite object, their attribute values are 
often aggregated as well. The compound objects inherit the attribute values from the 
objects of which they are composed. The desaggregation of such values is usually quite 
difficult because it can only be done if information is added in the operation, affirming 
again its bottom-up character. Therefore top-down relationships in an aggregation 
hierarchy usually do not aim at desaggregation but more at specification, originating from 
the notion that a composite object provides the context of an elementary object. Hence, in 
terms of the modelling objectives presented in section 1.1, an aggregation hierarchy 
enables both the construction of a descriptive and explanatory model through the definition 
of bottom-up and top-down relationships, respectively. 

2.3.3 Spatial objects with nested fields 

Two opposite approaches for the spatial modelling of natural landscapes have been 
introduced, the field and object respectively. Because natural landscapes often show both 
continuous and discrete variation in space and time, they are not properly represented in 
only one of the two alternatives. Consider for example a major landscape type in the test 
site, where shrubs and blow outs are distributed over a continuously varying herbaceous 
vegetation. Obviously, the shrubs and blow outs are best represented by objects, while the 
continuous character of the herbaceous vegetation should be modelled as a field. In order 
to be able to describe continuous and discrete variation simultaneously, a hybrid terrain 
description allowing the nesting of fields in spatial objects is suggested. 

Spatial object with nested field represented in cell raster 
Consider again the example vegetation of shrubs and blow outs scattered over a 
herbaceous vegetation. Obviously, three object types can be defined and constructed, i.e. 
shrub, blow out and herbaceous respectively (fig. 2.8a). By assigning an object to a class 
the attribute structure of the class is inherited. In case of internally homogeneous object 
types it is sufficient to store a single attribute value for each attribute. In case of 
heterogeneous object types the internal variation can be explicitiy quantified by storing 
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attribute values for each cell constituting the object (fig. 2.8b). By doing so a field is 
constructed within an object. In the example a single attribute value is stored for the objects 
belonging to the class shrub and blow out, while an attribute value is assigned to all 
individual cells belonging to the herbaceous objects. 

spatial objects nested field 

3 object classes: j j l j ) with nested field 

| | single attribute value 

^ ^ single attribute value 

attribute: Min 

cell size: D 

Figure 2.8 The concept of 'Spatial object with nested field' (see text for 
explanation). 

The concept of 'spatial objects with nested field is an extension of the classical object 
approach. Besides an attribute list an object class is further specified by a flag taking the 
values 'OBJECT' or "FIELD'. The flag 'OBJECT' indicates that the attribute values have to 
be stored as a single value on the object level, while the flag 'HELD' effectuates that the 
attribute values are stored at the cell level (fig. 2.9). 

There is no practical application of this hybrid approach known to the author, which is 
surprising, because many landscape-ecologists recognise the existence of both discrete and 
gradual transitions (Whittaker, 1967). Moreover there is a strong analogy between the 
approach of spatial objects with nested fields and the landscape-ecological concept of 
patches in a matrix (Forman and Godron, 1986). In this concept non-patch areas are called 
matrix when the following three criteria are met: 

• relative to the patchy area the non-patch area is more extensive, 
• the non-patch area is highly interconnected, and 
• controls many of the dynamics in the landscape. 

Consider again the example vegetation, where shrubs and blow outs form patches. Due to 
the criterium of more or less sharp boundaries around patches obviously not the whole 
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landscape has to be patch covered. In the example the rest-area or non-patch covers the 
herbaceous vegetation. This non-patch typically meets the criteria for a matrix, because it 
covers most of the area and constitutes a single area. Moreover the omnipresence of the 
herbaceous vegetation determines the conditions for the germination and growth of shrubs 
and as such controls landscape development. Obviously, the patches are best represented 
by objects, while the continuous character of the matrix should be modelled as a field. 

Class (OBJECT I FIELD)fA,.A2,..An 

Object-ID 
if OBJECT 

ai,as,...an 

Cel l , 
if FIELD 

ai.as.-an 

Figure 2.9 Data model for the representation of a spatial object with nested 
field by a cell raster. 
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3. Classification of vegetation structure from CIR-images 

3.1 Introduction 

In a monitoring system, the set of remotely sensed data should be multi-temporal. When 
the spectral data are obtained within one seasonal cycle, signature migration can be used to 
study crop growth (Van Leeuwen, 1996), to improve the accuracy of land-cover 
interpretation or to distinguish between more land-cover types (Girard, 1986). When the 
multi-temporal data extend over a time frame of several years vegetation structural 
processes can be monitored. Two broad strategies exist for the detection of land-cover 
change in multi-temporal data: 

• direct interpretation of spectral migration patterns, and 
• classification of separate dates followed by an analysis of the changes in 

interpretation results. 

The interpretation of spectral migration patterns, optionally enhanced with techniques like 
image differencing or ratioing, might yield acceptable results only if a limited number of 
dates is analysed (Mouat et al., 1993). Due to the increasing complexity of the spectral 
patterns and changes of sensor characteristics the method becomes unpractical for more 
dates, especially when meteorological conditions are different during the growing seasons 
(Milne and O'Neill, 1990). Here the more current second strategy is adopted where remote 
sensing data of different dates are separately interpreted. 

Manual aerial photo interpretation 
Initially, the Amsterdam Water Supply obtained information on vegetation and soil through 
the manual interpretation of a temporal sequence of large scale false-colour photographs 
(Ehrenburg et al., 1988; Appelman et al., 1990; Geelen, 1990). Generally, manual image 
interpretation concerns the identification and delineation of objects by hand. Of the four 
steps in object construction (sect. 2.3.1) usually only the first and third step are performed, 
i.e. the delineation and subsequent classification of more or less homogeneous areas given 
a predefined interpretation key. 

When the interpretation key is based on vegetation structural characteristics only, 
the interpretation can be performed with limited amount of fieldwork. Contrarily, manual 
image interpretation based on keys using vegetation compositional characteristics generally 
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involves a considerable amount of fieldwork in order to assign the delineated segments to 
vegetation classes (Van Dorp et al., 1985). 

Manual photo interpretation is based on the visual perception by a human 
interpreter sensitive to several interpretation features, like tone/colour, parallax, size/ 
shape, texture, shadow and context. An experienced interpreter is able to use 
combinations of these characteristics to perform the job in mono or stereo view. This 
makes manual interpretation a very robust interpretation method which can deal with 
highly complex spectral patterns and performs even well if the image quality varies 
(Lillesand and Kiefer, 1994; Schwabe, 1991). Despite these advantages, the manual 
construction of objects in a spectral field suffers from some major disadvantages: 

• Objects only represent discrete terrain features properly (sect. 2.4). 
• Due to the subjectivity of the method the consistency of the objects' geometry and 

classification is limited, especially when objects are amalgamated from lower 
order features in the image (sect. 2.3.2). 

• The spatial and thematic accuracy of the objects is generally not specified. 
• The interpretation process is not formally defined, i.e. many decisions in the 

process are performed implicitly and can not be recovered to perform the 
interpretation on new images. 

These disadvantages are emphatically manifest in temporal analysis, where many 
transitions appear to be artificial (Van Dorp et al., 1985). 

Alternatively, to area-covering image interpretation, manual photo interpretation can be 
confined to the classification of samples with a fixed support and randomly or 
systematically distributed over the image. In this approach image interpretation becomes a 
matter of designing an appropriate sampling scheme followed by a classification of the 
samples. The subjective and time consuming task of object delineation is omitted. 
Although the analysis of point samples can provide valuable information, this method is 
not often applied (Werth and Work, 1992; Kolbl and Trachsler, 1980). Obviously, an area-
covering model of terrain features is often preferred over a representation of a landscape by 
a set of sample points. 

Digital image interpretation 
Digitally stored RS data enable digital image interpretation, which is based on the 
application of pattern recognition techniques (Rosenfeld and Kak, 1982). Digital 
techniques have the potential to score better on the points listed in the previous section: 

• Both objects and fields can be constructed. 
• The interpretation rules are consistently applied over the area. 
• There are many methods to quantify the geometric and thematic accuracy of the 

interpretation results. 
• The procedure is largely formalised, although some steps might still be subject to 

subjectivity, like the selection of training areas. 
• In case of stereo images automatic elevation measurements can be performed. 
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Digital image interpretation also has some disadvantages, especially its sensitivity to 
varying image quality. Radiometric distortions resulting from shadowing effects or 
changing recording conditions usually hamper digital interpretation (Lillesand and Kiefer, 
1994). Moreover the limited number of interpretation keys generally applied, merely tone 
and texture, causes the failure of digital interpretation in situations where manual 
interpretation still yields proper results (Musick and Grover, 1991). 

Nonetheless, the monitoring system under construction applies digital interpretation 
techniques when possible. Therefore the analogue false colour aerial photographs need to 
be converted in a digital format. The production of a digital orthophoto free from 
radiometric and geometric distortions is described in appendix I. 

Digital images can be interpreted by regressing spectral data with quantitative variables 
measured in the field like biomass (Atkinson et al., 1992; Dancy et al. 1986) and vegetation 
cover (Dymond et al., 1992). Because the spectral patterns obtained from natural scenes 
and dunes in particular are very complex, classification seems a more robust interpretation 
technique. 

Unfortunately, remotely sensed data have tended to be crisply classified regardless 
of whether the vegetation exists as a well defined mosaic or as a series of continua (Wood 
and Foody, 1989). Consequendy, many classification errors can be attributed to artificial 
boundaries in an image which has gradients in reality. Crisp classification has to be treated 
with some caution in patterns of natural landscapes. Crisp classification is particularly 
suited to construct objects of different object classes, while fuzzy classification should be 
used to quantify continuous patterns, i.e. fields (Wood and Foody, 1989; Blonda et al., 
1991). 

Subsequendy, the methods of interpreting high resolution CIR-orthophoto-mosaics 
by a combination of crisp and fuzzy classification techniques will be dealt with. 

3.2 Methods 

Two radiometrically corrected colour infra-red orthophotos with a resolution of 0.25m are 
available from the test site. The images were taken in the summer of 1990 and 1995 and 
have a geometric accuracy of approximately 1.5 times the pixel size. The production of 
orthophoto-mosaics is elucidated in appendix I (fig. 3.1). 

The image interpretation starts with the definition of an object hierarchy. The objects in the 
hierarchy and their ordering result from tuning the information need on the one hand and 
practical limitations in deriving spatial information from high resolution digital CIR-
orthophotos on the other hand. 
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Figure 3.1 Transformation of analogue aerial photographs to digital 
radiometrically corrected orthophoto mosaics. 

3.2.1 Specification of object hierarchy 

The construction of objects and fields demand different classification techniques, i.e. crisp 
and fuzzy classification respectively. In turn objects of different object classes might urge 
for a specific crisp classification. For instance a texture feature enables the 
subclassification of woody vegetation up to the species level, while the use of a texture 
feature in the subclassification of herbaceous vegetation is ineffective (Bijlsma, 1993). 
Consequently, Ton et al. (1991) suggest that the construction of objects and fields from 
complex images demands a step-by-step approach, conveniendy ordered in a hierarchy. In 
a hierarchical interpretation an optimal discrimination between land cover classes is 
achieved by adapting the interpretation techniques to the specific demands of the classes on 
each node or fork in the hierarchy. Ton et al. (1991) list three more reasons to build a 
spectral land-cover recognition system on hierarchical premises: 

• Natural land-cover types have an implicit hierarchical structure. For example land 
cover is evidently subdivided in vegetated and non-vegetated cover types. In turn 
vegetated areas can be split up in wood and non-wood areas, and so on. 

• A hierarchical classification system can classify a sub-area to a certain 
hierarchical level depending on the quality of the spectral data. Due to 
meteorological differences between the recording dates the separability of 
classes varies. For instance the subclassification of non-wood in grasses and 
herbs can not always be performed. 

• Hierarchical classification offers computational advantages resulting from 
hierarchical pruning. If a land-cover type is ruled out, then no specification of that 
type need be considered. 
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Figure 3.2 depicts the land-cover hierarchy for the test site, containing 4 levels and 17 
classes. The land-cover types up to level 2 appear as discrete high resolution features (sect. 
2.2.2) in the orthophoto, like individuals or clusters of woody plants, patches of herbaceous 
vegetation, patches of blond sand, water bodies and roads. 'Blond sand' is defined as non-
vegetated sand with negligible organic matter content. Each of these discrete land-cover 
types belong to a different object class. 

Level 

0 land-cover 

1 non-vegetated vegetated 

water road blond sand woody herbaceous 

deciduous 
coniferous 
sea buckthorn 
privet/creeping willow 

hs1 thin grass/herb cover with blond sand 

hs2 intermediate herb/moss cover with grey sand 
hs3 high moss cover 
hs4 high moss and low grass cover 
hs5 high grass/herb cover with litter 

Figure 3.2 Land-cover hierarchy for the test site. 

The internal variability of two object classes is explicitly modelled, i.e. 'woody' and 
'herbaceous' respectively. The composite woody objects are desaggregated to 
elementary objects belonging to a specific species group. Four species groups are 
distinguished: deciduous, coniferous, sea buckthorn and privet/creeping willow. These 
groups had to be defined because not all different species could be distinguished by 
image interpretation. The deciduous tree species like Betula pendula, Betula pubescens 
and Quercus robur constitute one class 'deciduous', while Ligustrum vulgare and Salix 
repens had to be grouped in a single class too, i.e. privet/creeping willow. 

The variation in herbaceous vegetation is modelled as a field. The herbaceous 
vegetation in the test site consists of the following abiotic and biotic elements: blond 
and grey sand, ectorganic material, annual, biennial, perennial and clonal herbs, 
solitary, clonal and tussock forming grasses, mosses, lichens and woody plants at the 
low resolution level. These sub-pixel features occur in any possible cover combination 
throughout the area. Mostly, the composition changes continuously, although sharp 
boundaries occur too. In this continuum of herbaceous vegetation five typical cover 
types or prototypes hs are distinguished and typified by a concise description (table 
3.1). 

In the terrain some sites will show a high resemblance with only one class, 
while others have properties belonging to two or more of these classes. Typically, 
these partial memberships can be quantified in a fuzzy classification, where the 
resemblance of a site with a class is indicated by a membership value MVhs € [0,1]. 
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Hence a site is characterised by a vector of five membership values (MVhsi, MVhS2, 
MVhS3, MVhs4, MVhS5). For instance the vector (0.0, 0.6, 0,4, 0.0, 0.0) indicates that the 
site has nearly equal resemblance with hs2 and hs3 and no similarity with hsi, hs4 and 
hs5. 

Table 3.1 Description of the herbaceous structural classes (hs) (after 
Assendorp and van der Meulen, 1994). 

hs1 Thin grass/herb cover with blond sand 

Blond sand, i.e. sand with negligible amount of organic matter, has, by far, the largest 
contribution in this coverage type. It is however accompanied by pioneer plant types. 
Herbs are annual as well as biennial. Grass types are mainly solitary and clonal which 
react more or less positive to wind activity. Tussock forming grass types can be 
present. 

hs2 Intermediate herb/moss cover with grey sand 

Largest contribution to the overall coverage is by mosses who react more or less 
positive to or can sustain some geomorphologic activity. Bare grey sand, i.e. sand 
with organic matter content, has a substantial contribution to the overall coverage. 
Herbaceous plant types are annual and biennial with locally some perennials. Some 
woody plants at the sub-pixel level can occur, grasses are solitary and tussock 
forming. 

hs3 High moss cover 

A total coverage of the soil with mosses and lichens, very locally with annual and 
biennial herbs. Grasses are nearly absent. 

hs4 High moss and low grass cover 

The soil is totally covered with mosses combined with a low herbaceous vegetation. 
Herbs and grasses are mainly small though larger woody plants at the sub-resolution 
level can occur. 

hs5 High grass/herb cover with litter 

Mainly grasses and perennial or clonal herbs cover the soil completely. The herbs are 
partly woody plants at the sub pixel level. Dead ectorganic matter determines partly 
the nature of this type. 

3.2.2 Relating vegetation structural classes with spectral data 

In this thesis, classification techniques are applied to establish a relationship between 
vegetation structural classes and spectral data. Consider, firstly, the estimation of 
membership values in a fuzzy classification procedure. 

A geometrically corrected image is a field of spectral data in model space, denoted 
as S(x,y) where S is a vector of spectral bands. These remotely sensed data can be 
presented in a feature space 5 as well, where each spectral band fe) defines an axis of this 
space. When the image contains m bands, s = (s\, S2, —Sm) represents a particular point in S, 
and S = {s: s=(s\, S2, —sm)} represents the set of all possible points in the feature space. 
Because pixels take a position in S too, the feature space can be employed to estimate 
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generalised vectors of membership values. The generalised membership values in S 
establish a quantitative definition of a structural class which was previously described in a 
qualitative sense only (table 3.1). Such a quantitative class definition is called class 
extension. For a given cover type hs, the class extension Chs is given by all points having a 
membership value greater than 0 (fig. 3.3): 

chs = {s:MV>0} 3.1 

Indeed c^ is a fuzzy set defined by membership values on a collection of points, rather 
than a parametric membership function, because the parameters of the latter function are 
usually hard to estimate, if an analytical model exists at all. Due to varying recording and 
meteorological conditions during the growing season, the class extensions only count for 
the spectral data in a specific image. 

Figure 3.3 Example of a two dimensional fuzzy set quantifying the extension 
of a land cover class in spectral space. 

Alternatively, to eq 3.1 representing c^as a collection of points, this two dimensional 
fuzzy set can be expressed as a field of membership values in the feature space 
MVhs(ii,52,.im). The latter field can be used to lookup MVhs for each pixel in the image 
S(x,y), resulting in a fuzzy classified image MVhs(x,y). Note that continuous gradients 
between fuzzy herbaceous structural types in the terrain are presumed to result in 
continuous transitions between those types in the image and the feature space as well. This 
overlap between clusters of fuzzy vegetation classes in the feature space has ecological 
significance and is explicitly quantified. 

Now consider, secondly, the problem of discriminating between woody and herbaceous 
vegetation in a crisp classification procedure. Although the classes woody and herbaceous 
vegetation are mutually exclusive in the image -except for the mixed pixels- the clusters of 
both classes intent to overlap in spectral feature space. The uncertainty of assigning pixels 
on point s=(si, S2, -.sm) in the feature space to wood is expressed by a probability pw. The 
probabilities on each point s in S constitute a probability field PwC$i, S2, ...sm) providing a 
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generalised relationship between spectral data and the presence of woody vegetation. The 
estimated field can be used to look up pw for each pixel in the image S(x,y) resulting in a 
probability field in image space pw(x,y). This field provides the probability for each pixel 
to be wood. By labelling all pixels having p«, > 0.5 segments of woody vegetation are 
obtained. 

Crucial in crisp and fuzzy classification are the fields of probabilities and membership 
values in the feature space, pwCsi, si, ...sm) and MVfcCsi, $2, ...sm) respectively. Generally, 
these fields are unknown and have to be estimated, i.e. peJ.s\,S2,.--Sm) and MV^Oi,.^, ...?m). 
In the next section an estimation procedure is described. 

Estimation of class extensions in spectral feature space 
The estimation procedure consists of the following phases: selection of image samples, 
interpretation of image samples and generalisation of the samples in the feature space. 

Selection of image samples 
Consider the image S(x,y) and a corresponding two dimensional feature space S(s\,S2) (fig-
3.4). First step in the selection of image samples is the selection of samples in the feature 
space. N samples are stratified randomly obtained from the feature space. The samples 
have a circular support with a radius of 5 DN and a point of gravity 5i=(̂ i,J2)i. 

Subsequently, each image pixel is assigned to none, one or more samples, i.e. not 
the whole subarea of the feature space is sampled and samples might overlap. In the image 
space a single sample from the feature space consists of many single pixels and clusters of 
pixels distributed over the image (fig. 3.4). Note that in this way spectrally homogeneous 
samples in the image space are obtained. By averaging the s\ -values and 52- values of the 
pixels belonging to a sample, the mean sample characteristics s-r={smi^m2h are obtained. 
The latter point not necessarily coincides with the original sample centre in the feature 
space Si=(,si, ̂ 2)1-

Interpretation of image samples 
In random order each sample is successively presented to an experienced interpreter by 
overlaying the image S(x,y) with a sample. Through alternately switching on and off the 
overlay-plane the interpreter is able to perform an observation. Depending on the type of 
estimation made by the interpreter, each observation yields either a membership value 
MV0

hs(5i,52)i or a probability p°(si,S2h. Note that the subjectivity in the observations 
concerns thematic aspects only, because sample selection is performed algorithmically. 

The fact that a single sample in the feature space relates to many clusters of pixels 
in the image assures that the interpreter has several spatial contexts for each sample, which 
is an indispensable condition to reduce the subjectivity of an individual observation 
(Rosenfeld and Kak, 1982). 

36 



Mapping of vegetation structure 

Feature space Map space 

Figure 3.4 Relationship between feature space and image space; one area 
sample taken from the feature space relates to many spectrally 
homogenous clusters of pixels in the image. 

Generalisation of samples in feature space 

Next phase is the generalisation of the observations to a field of membership values 
MVhsCji,̂ ) or a probability field p^fai,^)- Take for example the generalisation of 
membership values. When the process of fuzzy observation by an expert is considered 
stochastic, an observed membership value MVV consists of a deterministic term MV'hs 
and an error term MV^: 

MV°hs(s1,S2)i = M V U S L S . ) , + MVe
hs(si,&)i 3.2 

Obviously we are interested in estimating the deterministic component. This is possible 
when the error term meets the following criteria: 

E[MV'hs(s,,S2)] = 0 
var[MV<hs(Si.S2)] = c(Si,S2) 
cov[MV'hs(Si.S2)i, MV'hs(si,S2)K] = 0 

3.3 

The first condition asserts that the error is on average zero. Secondly, the variance is 
assumed to be position dependant in the feature space. Thirdly, it is presumed that the 
covariance is zero, which means there is no relationship between the error on two feature 
space points (si,S2)i and (̂ i,J2)k- Presuming that these conditions are met, the deterministic 
trend in the fuzzy observations can be estimated at a series of points on a grid by means of 
a moving average operation. 

Remember that the sample support in the feature space is about a circle with radius 
5 DN. Hence it is reasonable to calculate the membership value on a specific position in 
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the feature space as a weighted mean from all observed membership values within a 
distance of 5 DN: 

n n 
MVe

hs(s1,^)o= lcoiMVha(suSz)i/'Lco] 

i=1 i=1 
3.4 

where weight a>i is proportional to the aerial overlap of the sample support and a circular 
area with radius 5 DN from the point to estimate. The aerial overlap between two equal 
sized circles is maximal when the circle centres coincide and decreases to zero when the 
circle centres are two times the radius apart (fig. 3.5). The variance of the membership 
values is calculated as: 

n n 
i 2 MVrar

hs(s1,%)o = Effli.(MV0
hs(Si,%)i-MVe

h8(Si,&)i)2 / E « i 
i=1 i=1 

3.5 

The variance of the membership values quantifies the uncertainty of the expert in 
estimating membership values. 

0 0.5 1 1.5 2 

Q © GD GOCO 
Distance between two circle centres (r) 

Figure 3.5 Interpolation weight w in eqs. 3.4 and 3.5 as a function of the 
distance between two circle centres. 
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3.2.3 Crisp classification of blond sand, herbaceous vegetation and wood 

In the next section the introduced classification procedure will be specified for the 
classification of the vegetation structure in the test site. 

PVI transformation 
The image classification is preceded by an image transformation. CIR-orthophotos S(x,y) 
enable the construction of a three dimensional feature space S(st, sr, sg). However, spectral 
data obtained from vegetation in the red and green band are strongly correlated (Ri99o=0.94 
and Ri995=0.93). Dropping the green band from the feature space will therefore not result 
in a significant loss of information, while classification becomes easier in a two 
dimensional feature space. 

The spectral data in the infra-red and red band obtained from a vegetated scene 
result from the combined radiation of vegetation and soil (Knipling, 1970). These spectral 
features can be transformed in two features more direcdy related to either vegetation or soil 
characteristics, i.e. the perpendicular vegetation index sp\n and the soil line SSL respectively 
(Lillesand and Kiefer, 1987). Generally, sp\n values increase with increasing biomass of the 
vegetation while SSL values indicate the brightness of the soil and therefore increase with 
decreasing soil moisture content and organic matter content (Baumgardner et al., 1985). 
Because these features have a physical meaning the interpretation of relationships in the 
feature space is simplified. Moreover, by the transformation the data of different dates 
become more compatible. The PVI-transformation consists of a rotation and an offset 
correction (after Clevers and Buiten, 1991): 

SPVI = 1/(1 + C2)2 . (Sir " S°i, - C.(Sr - S°r)) 3.6 

SSL = C2/(C + 1 f . (Sir - S°ir + (Sr - S°r)/C) 3.7 

where C is tg(a) of the soil line and s\ and s°t represent the offset in infra-red and red 
respectively (fig. 3.6UL). Usually, these are the values off the darkest pixel in the image. 
However, under-exposure of the photograph results in negative offset values. Originally, 
equations 3.6 and 3.7 were inferred for radiance values and therefore only apply to density 
values as well, if density values are linearly related to radiance values. This condition holds 
for the major part of the range in density values and is only blurred for very low and high 
density values (Philipson, 1997). The PVI-transformation of the image S(x,y) yields a 
second image SPVI(x,y), where SPVI is a vector of the two features SSL and SPVI and a 
corresponding feature space S^CSSL^PVI) (fig- 3.6UR). 

The introduced methods for the interpretation of images (sect. 3.2.2) are applied to PVI-
transformed images. The process of image interpretation holds a number of hierarchically 
ordered classification steps following from the land-cover hierarchy depicted in figure 3.2. 
On the first level vegetated and non-vegetated areas are distinguished. Because the cover 
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types road and water can be easily derived from topographic maps, the only non-vegetated 
class to be isolated in the image is Wond sand'. Hence, the isolation of blond sand is 
subject of the first interpretation step. The second step involves the subdivision of the 
vegetated area in woody and herbaceous vegetation. The third phase deals with the 
subclassification of wood into several species or species groups. The interpretation steps 
are summarised in table 3.2. 

Sir 

SeN-

* * * * 

' . A 

A. 

1 sand " S L 

Figure 3.6 Phases in the interpretation of land cover; UL PVMransformation of 
CIR-image; UR Threshold classification of blond sand; LL 
Systematic sampling of a subarea of the feature space occupied by 
woody and herbaceous vegetation; LR Random sampling of a 
subarea of the feature space occupied by herbaceous vegetation. 

Step 1 Construction of 'blond sand' objects 
The first classification step holds the isolation of pixels covered with "blond sand'. Consider 
all image pixels in the feature space (fig. 3.6UR). This cluster has a typical vermiform fold 
occupied by pixels having high values on the soil line and low PVI-values. Indeed these 
pixels are covered with blond sand. Consequendy *blond sand' pixels are conveniently 
isolated from vegetated pixels by identifying a threshold value on the soil line. 
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Step 1.1 The threshold T^d is located at the soil line value where the vermiform fold 
starts to widen due to the occurrence of pixels with higher SPVI values (fig. 3.6UR). 
Step 1.2 All image pixels with ssi.-values greater than Tsand are labelled Tjlond sand'. 
Segments of blond sand are subsequently obtained by grouping neighbouring cells of blond 
sand. 

Table 3.2 Steps in the classification of the vegetation structure. 

1 Threshold classification of blond sand 

1.1 Estimation of threshold value on soil line 

1.2 Segmentation by pixel classification 

2 Construction of woody objects 

2.1 Estimation of probability for wood in feature space 
2.2 Look-up wood probability for each image pixel 
2.3 Smoothing of probabilities in the image 
2.4 Segmentation by contextual pixel classification 
2.5 Manual subclassification to species types 
2.6 Accuracy assessment 
3 Fuzzy sub-classification of herbaceous vegetation 

3.1 Estimation of fuzzy sets in feature space 
3.2 Look-up membership values for each image pixel 
3.3 Aggregation of membership values to fuzzy measure values 
3.4 Validation with reference data 

Step 2 Construction of woody objects 
The second interpretation step involves the construction of woody objects from the 
vegetated pixels in the image, i.e. the pixels not classified as water, road or "blond sand' 
(fig. 3.2). Pixels covered with woody or herbaceous vegetation are discriminated in a crisp 
classification procedure consisting of 6 steps: 
Step 2.1 Establish a generalised relationship between spectral data in the image and 
the presence of woody vegetation through the estimation of the probability field 
pew(*sL̂ pvi) conform the procedure described in section 3.2.2. Systematically, 100 samples 
with a square support (10*10DN) were obtained from the feature space (fig. 3.6LL). 
Step 2.2 By looking up pe

w for each image pixel, the probability field pew(x,y) is 
obtained providing the probability for each pixel to be woody. 
Step 2.3 In order to reduce any noise effects in the probability field peJx,y) a 
contextual probability pe

w>c is calculated over a circular neighbourhood: 

Psw.c(x,y) = (1 -w).pew(x,y) + co.I pew(Xi,yi)/n 3.8 
i e circler 

where pe
w(Xi,yO is the probability of a cell having its point of gravity within a circular 

neighbourhood with radius r and n is the number of cells within the circle, co e [0,1] is a 
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weight, where cu=0 causes P^c to be equal to P^w, while co=\ results in a pure contextual 
probability. The optimal value for co is to be determined by a sensitivity analysis. 
Step 2.4 The probability field pe

wc(x,y) is classified by assigning all cells with pe
wc 

greater than 0.5 to woody. Segments of woody vegetation are obtained by grouping 
neighbouring woody cells. 
Step 2.5 The woody objects are manually subclassified into species or species 
groups. 
Step 2.6 The accuracy of the classification and its dependence on weight co and 
neighbourhood size is tested by a set of 1500 random reference pixels selected in the 
images of both dates. Each pixel is individually classified by visual interpretation. In order 
to quantify the intersubjectivity of the visual interpretation the reference pixels in the 1995 
image are classified by two interpreters independendy. 

3.2.4 Fuzzy sub-classification of herbaceous vegetation structure 

The third interpretation phase involves the fuzzy sub-classification of the herbaceous 
vegetation structure in 5 subclasses hi, h2, ...hs5 (table 3.1). This interpretation phase 
consists of 4 steps including validation with field samples. 
Step 3.1 Establish a generalised relationship between spectral data in the image and 
the presence of herbaceous classes through the estimation of 5 membership fields 
MVehsi...hs5(isL,ipvi) conform the procedure described in section 3.2.2. 250 samples with a 
circular support with radius 5DN were obtained from the subarea of the feature space 
populated with herbaceous pixels (fig. 3.6LR). 

A fuzzy observation consists of a vector of 5 membership values (MV°hsi, MV°hS2, 
MV°hs3, MV°hs4, MV°hs5)i. The membership values of a single observation sum to one. The 
latter condition yields complementary membership values and forces the interpreter to 
quantify the turnover between classes. 
Step 3.2 By looking up the membership values for each image pixel covered with 
herbaceous vegetation in MVe

hsi...hs5fcL,̂ pvi), the fields MVe
hsi...hS5(x,y) in image space are 

obtained. The pixels with a spectral mixture of woody and herbaceous vegetation as well 
as pixels in shadow are not classified. 
Step 3.3 In order to reduce noise and the number of unclassified pixels, the 
membership fields in image space are smoothed. Smoothing is achieved by a moving 
aggregation operator described in appendix II. Before smoothing the presence of 
herbaceous structural classes is expressed by a membership value. After the smoothing the 
resemblance of a pixel with a class hs is expressed by a fuzzy measure, i.e. pseudo-
probability Pe

hs(i'sL,«pvi) or a possibility /^SCSSL^PVI). 

Step 3.4 Fuzzy classification results of 1995 are validated with a set of reference 
data. The reference data consist of a set of 310 fuzzy observations obtained in the field 
close to the recording date. Each observation has a circular support with radius of 1 metre. 
The location of the sample centre was measured with differential GPS. 
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3.3 Results and discussion 

Blond sand classification 
Plate 1 shows objects of the class "blond sand' in a subarea of the test site obtained after a 
threshold classification of the image. A visual check revealed only some minor 
classification errors caused by shadowing effects. The estimation of the threshold value by 
different interpreters yielded a maximum deviation of 6 DN. The latter deviation resulted 
in less than 1 percent change in the area blond sand, i.e. the choice of the threshold value is 
not very critical. 

Construction of woody objects 
Plate 1 shows the results of the construction of woody objects. The classification of woody 
vegetation started with the estimation of the probability for wood in the feature space 
PewfeL,spvi) for 1990 and 1995. The latter field shows a relative small curved transition 
zone between the wood and herbaceous cluster, suggesting that the two classes can be 
more accurately classified in the 1995 image compared to the 1990 image. The accuracy 
assessment confirms this (table 3.3). The classification accuracy in the 1990 image is over 
90 percent while this is 93 percent in the 1995 image. The difference in accuracy between 
the two dates can be explained from different meteorological conditions during the 
growing season. The 1995 image is taken after a dry period causing water stress for the 
herbaceous vegetation, while woody plants are less sensitive in this respect. Contrarily, the 
1990 photos were taken after a period of sufficient rainfall and show a herbaceous 
vegetation, which spectrally interferes more with scrubs and trees. 

Table 3.3 Accuracy of wood classification as a function of neighbourhood 
weight (co) and circular neighbourhood size in pixels (r) (eq. 3.8; 
N=1500 pixels). 

year 

eo/r 

0.00 
0.25 
0.50 
0.75 
1.00 

1990 

3 

91.3 
91.0 
90.4 
88.8 
86.3 

5 

91.3 
91.0 
90.0 
87.7 
84.9 

1995 

3 

93.0 
93.3 
93.9 
93.0 
90.8 

5 

93.0 
93.4 
93.5 
92.0 
82.9 

The accuracy assessment shows further that the use of contextual information worsens the 
classification accuracy in 1990 and only increases the classification result in 1995 when 
the weight co for neighbourhood cells not exceeds 0.5. Moreover, the smallest 
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neighbourhood yields the best results. Differences in weight and the size of the 
neighbourhood not only influence the classification accuracy, but also affect the 
segmentation, i.e. the clustering of pixels classified as wood. Higher weights and greater 
sizes of the neighbourhood result on average in greater segments with smoother 
boundaries. The classification obtained with a circular neighbourhood of 0.75m and co = 
0.5 is presented in plate 1. These parameters provide a balance between the classification 
accuracy and a satisfactory segmentation of the test site. 

The intersubjective classification accuracy of two interpreters was tested and ascertained 
on 94 percent. The 6 percent of the reference pixels differently classified by two experts 
mainly consist of mixed pixels on boundaries between wood and herbaceous vegetation. 
Obviously, the classification of these pixels is arbitrary in any classification procedure. 

The classification method, presented here, out performed a supervised maximum 
likelihood classification with more than 5 percent. A proper training of a maximum 
likelihood classifier or any other classifier by the on screen selection of image samples is 
seriously hampered by the spectral variability of the cover class wood in the image space. 
Consequentiy, many usually small training samples have to be obtained to achieve 
acceptable classification results. Moreover, these samples often do not meet the statistical 
properties required by the classifier (Jeon and Landgrebe, 1992). Hence in the presence of 
high spectral variability in an image a classification procedure based on the generalisation 
of randomly selected homogeneous image samples seems more appropriate. 

Fuzzy sub-classification of herbaceous vegetation 
Plate 1 shows the fuzzy classification of the herbaceous vegetation for a subarea of the test 
site. The 5 herbaceous subclasses are modelled as fields within the object covered with 
herbaceous vegetation. The presence of a class is quantified by a pseudo-probability value. 
Conform the terrain situation the fuzzy representation of the herbaceous vegetation shows 
transitions between classes ranging from sharp boundaries to smooth gradients. 

The fuzzy classification of the herbaceous vegetation in 5 subclasses started with the 
estimation of an equal number of fuzzy sets in the feature space through the generalisation 
of fuzzy observations. Figure 3.7 shows these two dimensional fuzzy sets or fields of 
estimated membership values MVehsi...s(5sL,Jpvi) for 1990 and 1995 as well as their 
standard deviations MV^SI.^CSSL^PVI). Note that the membership values of the 5 classes 
added up should result in one, for a specific point in the feature space. The fuzzy 
observations were performed by a single expert. 

Each class occurs with a single cluster and more or less gradually passes into a 
neighbouring class. The classes hsl, hs2 and hs3 clearly have a fixed relative position in 
the feature space. Apparendy different meteorological circumstances during the growing 
season does not influence the arrangement of these clusters, unlike their size and shape. 
The cluster positions can be explained from physiognomic characteristics of the cover 
types they represent. The classes 'thin grass/herb cover with blond sand' hsl and 
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'intermediate herb/moss cover with grey sand' hs2 both have high values on the soil line. 
These classes differ in respect to their volume of green vegetation. Consequently, hsl has 
higher PVI-values. The class 'high moss cover' hs3 covers the soil to a large extent but has 
low green matter and is therefore characterised by both low PVI- and SL-values. 

Notably, the position and size of the clusters of hs4 and hs5 interchange between 
the dates. The clusters of 1995 take a position in accordance with their cover 
characteristics. The class 'high moss and low grass cover' has low SL-values and 
intermediate PVI-values, while the class 'high grass and herb cover with Utter' is expected 
to have high PVI-values. Apparendy, the deviative cluster positions in 1990 result from 
spectral migration due to different meteorological conditions during the growing season. 

hs5 
High grass 
/herb cover 
with litter 

hs4 
High moss and 
low grass cover 

hs3 
High moss 

cover 

hs2 
Intermediate 
herb/moss 

cover with grey 
sand 

hs1 
Thin grass/herb 

cover with 
blond sand 

Estimated membership values 

o 

i n 

03 

4WB&: -as 

Standard deviation of membership values 

Figure 3.7 Fuzzy sets of the herbaceous classes in the feature spaces of 1990 
and 1995; the estimated membership values MVehsi...5(sst_,Spvi) and 
standard deviation MV(B 1 . .5 (SSL,*VI) . 
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Figure 3.8 Validation of the fuzzy image classification of herbaceous structural 
types by 310 fuzzy observations in the terrain. 
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The uncertainty in fuzzy observations is restricted to the transition zones between the 
herbaceous cover types, as can be concluded from the standard deviation of the estimated 
membership values MVhsi.sCssL^pvi). Apparently the fuzzy observations have been 
consistently performed by the interpreter within the experimental set up for the 
observations, i.e. the fuzzy observation channel. The parameter setting of an observation 
channel aims at repelling subjectivity. Tests were conducted to determine the sensitivity of 
the method to 1) image sample characteristics and 2) the colour setting of the image. 

The perception of colour by a human interpreter is known to be strongly affected by 
the context of the observation (Rosenfeld and Kak, 1982). Tests revealed that a single 
image sample should consist of at least 3 but preferably many more separated subsamples 
distributed over the image. Only then an interpreter is able to generate fairly consistent 
output. The second important aspect of the observation channel is the colour setting of the 
image. It appeared, that small changes in the image colour setting did not result in different 
observations. Apparently, the observations are merely related to relative differences in 
colour rather than absolute colours, when the scene is known to the interpreter. 

A comparison of the fuzzy classification with reference data obtained in the field shows the 
validity of the image interpretation (fig. 3.8). The correlation coefficients between the field 
data and the interpretation results vary between 0.81 and 0.92. Ideally, the incidence of the 
regression lines equals one and the lines cross the origin. The validation graphs show that 
this is not the case, which is caused by 1) spectral confusion between the classes and 2) the 
higher variability of the reference data compared to the variation in the digital landscape 
model. The reduced variability in the digital landscape model results from generalisation 
processes during the interpretation of the image. 

3.4 Conclusions 

Two sets of analogue false colour aerial photographs from 1990 and 1995 were 
transformed into radiometrically corrected digital orthophoto-mosaics. The radiometric 
correction was necessary to undo the orthophoto mosaic from radiometric distortions that 
do not relate to variations in the terrain. For the interpretation of these images a supervised 
hierarchical classification method was presented. The step-by-step approach following 
from a predefined land cover hierarchy appeared suitable to deal with the complex spectral 
patterns in the images. 

Discrete landscape patterns were interpreted by crisp classification techniques 
which enable the construction of spatial objects representing vegetation and 
geomorphologic phenomena. The continuous internal variation of herbaceous vegetation 
was quantified by fuzzy classification techniques yielding a field description of the 
variability. Fuzzy classification appeared a robust and valid technique to model ecological 
gradients. 
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A comparison of the chloropleth map obtained by the manual photo interpretation and the 
digital landscape model constructed in this chapter reveals that the latter approach yields a 

• more realistic, 
• more detailed, and 
• less subjective 

representation of the complex landscape in the test site. Although the application of digital 
interpretation techniques implies a minimum input of expert knowledge, the interpretation 
results remain to some extent subjective. This holds especially true for the fuzzy 
classification results. The fuzzy classifier is trained by a set of fuzzy observations obtained 
by expert-judgement in the field or on screen. Obviously, field observations obtained close 
to the recording data should be preferred over on screen observations. The quality of these 
observations largely depends on the 

• experts' notion of the land cover classes, and 
• experts' knowledge of the scene 

Further objectivation of the method should be achieved by describing the fuzzy land 
cover classes by specimen in order to make the notion of classes exchangeable 
between experts. 

The accuracy of the fuzzy grassland mapping largely depends on the spectral 
discrimination between the classes. Consequently, the CIR-image has to be acquired at 
the time the discrimination between the classes is optimal. In order to select the 
optimal acquisition date, the process of spectral migration of classes during the 
growing season, which is related to meteorological conditions, has to be determined. It 
is recommended to perform a multi-year experiments with a field spectrometer to study 
this phenomenon. 
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4. Quantification of vegetation structural dynamics 

4.1 Introduction 

The previous chapter dealt with the specification of a measurement system for the mapping 
of vegetation structural and geomorphologic features from digital colour infra-red 
orthophotos. A multi-temporal landscape model was produced of the test site quantifying 
these terrain features. This chapter deals with the exploration of vegetation structural and 
geomorphologic dynamics from these multi-temporal data. Information on spatio-temporal 
changes provides insight into the landscape ecological processes, which is a prerequisite to 
set out an optimal nature management plan (Piotrowska, 1988; Ehrenburg et al, 1988; van 
Leeuwen and van der Maarel, 1971). 

Numerous types of analysis have been proposed to explore temporal and spatial 
landscape dynamics (Baker, 1989; Baker and Cai, 1992; Dunn et al., 1990; Johnson, 1990; 
O'Neill et al., 1989; Turner, 1990; Webster and Oliver, 1990). These methods apply to a 
set of spatial objects or fields relevant for a specific organisational level of the landscape, 
i.e. level of aggregation. The choice for a specific level of aggregation not only determines 
the ecological meaning of the objects and their level of detail, but also affects the accuracy 
of the analysis applied to these objects. The analysis should not necessarily be performed 
on the level of aggregation provided by the measurement system. Thematic and/or 
geometric inaccuracies in the data model can necessitate the aggregation of objects and 
fields provided by the measurement system to composite objects. Provided that an 
appropriate aggregation operation is applied, the temporal analysis on composite objects 
will yield more reliable results. 

The objective of this chapter is to show the potential of the multi-temporal data set 
produced in the previous chapter with respect to landscape ecological analysis. Hereto, two 
primary issues originating from the practice of any nature manager will be further 
elaborated upon: 

• Is the aerial extent of the land cover types changing and what is the turnover 
between the cover types, and 

• Is the spatial structure of the landscape changing, i.e. are the patches of discrete 
land cover types changing and to what extent does this alterthe spatial variation of 
continuous terrain elements. 
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Subsequently, the methods will be presented to answer these questions. After the 
presentation and discussion of the results, the chapter ends with some conclusions. 

4.2 Material and methods 

Starting point for the analysis of landscape dynamics is the selection of an appropriate level 
of aggregation and the specification of the objects populating this organisational level of 
the landscape. The multi-temporal data set constitutes of the dates 1990 and 1995 (plate 1) 
and will be analysed on a composite level rather than on the level of the elementary objects 
detected by the measurement system. These elementary objects have a vegetation structural 
or geomorphologic nature, such as individual or clustered occasions of trees and shrubs, 
structural aspects of the herbaceous vegetation and sandy patches (table 4.1). As noticed in 
the introduction, geometric and/or thematic inaccuracies cause that not all elementary 
objects are suitable for temporal analysis. Therefore the elementary landscape structures 
are aggregated to composite objects, i.e. complex landscape structures. 

Table 4.1 The objects and fields in the spatial model. 

level of object class 
aggregation 

attributes modelled as field 

elementary blond sand 
herbaceous 

sea buckthorn 
low scrub 
high scrub/trees 
reed 
water 

thin grass/herb cover with blond sand (hs 1) 
intermediate herb/moss cover with grey sand (hs2) 
high moss cover (hs3) 
high moss and low grass cover (hs4) 
high grass/herb cover with litter (hs5) 

composite sandy area 
matrix blond sand 

thin grass/herb cover with blond sand (hs 1) 
intermediate herb/moss cover with grey sand (hs2) 
high moss cover (hs3) 
high moss and low grass cover (hs4) 
high grass/herb cover with litter (hs5) 
sea buckthorn 
other scrub 

woodland 
reed 
water 
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Composite objects are generally more abstract and consequently less tangible compared to 
elementary objects. Five major classes of composite objects are distinguished, sandy area, 
matrix, woodland, reed and water (table 4.1). All object classes are motivated by the 
information need on behalf of the nature management in the test site. A 'sandy area' 
constitutes of one or more deflation and accumulation zones forming patches of active 
wind erosion. Due to the spatial extent of sandy areas islands of herbaceous vegetation or 
even shrubs might occur in sand-areas. Woodlands are predominandy covered with high 
shrubs and trees. Again a woodland might enclose minor patches covered with a 
herbaceous vegetation or sand. The rest-area, not covered with sandy area, woodland, reed 
and water, constitutes the matrix. Consequently, the matrix ranges from fully shrub 
covered to fully grass or sand covered. 

Subsequent to the description of the aggregation from elementary to composite objects 
(sect. 4.2.1), the calculation of temporal transitions between composite objects is 
elucidated in sect. 4.2.2. These transitions enable the answering of the first question raised 
in the introduction. The second question relates to spatial variation and dynamics. In order 
to study these landscape characteristics the concept of variography is introduced (sect. 
4.2.3). 

4.2.1 Amalgamation of composite objects 

The applied rules to construct composite objects concern a special case of aggregation, i.e. 
non-nested aggregation. In a process of non-nested aggregation or amalgamation parts of 
elementary objects can belong to different composite objects. Consequently, a composite 
object can contain parts of one or more elementary objects (sect. 2.3.2; fig. 2.7). 

The structure of the amalgamation rules is the same for the object classes woodland 
and sandy area, although the parameter settings differ. The elementary water and reed 
objects usually appear as major spatial units and need no aggregation. The process of 
amalgamation consists of seven steps: 

• The coverage of high shrubs and blond sand is aggregated by a moving average 
calculation over a circular neighbourhood with radius r„. 

• Threshold classification of high shrubs or blond sand coverage; IF cover in cell > 
Tc THEN cell belongs to segment, where Tc is the minimum percentage cover. 

• Segments are constructed by grouping adjacent cell with the same cover class. 
• The resulting segments are selected on size; IF segment area > Amin THEN 

segment is selected. 
• Subsequently, small holes in a segment are dissolved; IF hole' area < Ah THEN 

hole is dissolved. 
• Segments are selected on shape; IF maximum internal segment diameter > Dmln 

THEN segment is selected. 
• Finally, a segment is assigned to an object class. 
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The parameters for the construction of woodlands and sandy areas are established from 
general ecological practice and listed in table 4.2. The resolution of the grid with composite 
objects remains 0.25 metre. 

After the construction of the matrix its internal variability is modelled as a field. 
The presence of 8 cover types, i.e. sand, hsl, hs2, ..hs5, sea buckthorn and other shrubs, is 
expressed by a probability value and calculated by a moving average operation over a 
circular neighbourhood with a radius of 1.50 meter. This results in a probability vector 
(Psand, Phsl> Phs2» Phs3. Phs4, Phs5, Pbuckthorn, Polher_scnib)(i,j) for e ach Cell (i,j). 

Table 42 Parameters for aggregating woodland and sandy area objects from 
vegetation elements (see text for explanation). 

Object class r„(m) Tc(%) Aminfnrr) M m ) Dmi„(m) 

woodland 50 65 500 125 25 
sandy area 5 65 50 12.5 2.5 

4.2.2 Calculation of temporal transitions 

The composite objects are used to analyse the vegetation structural and geomorphologic 
dynamics in the test-site. Firstly, the interaction between the objects is quantified. Because 
the object classes are crisp, the transitions are described in a discrete state space. Secondly, 
the internal dynamics of the matrix, quantified by a multi-valued field, is explored in a 
multivariate continuous state space (Baker, 1989). 

Discrete state space 
The transition of cells in univariate discrete state space can be generalised by a transition 
probability distribution or transition matrix. The term transition probability distribution is 
preferred over transition matrix in order to avoid confusion with the term matrix introduced 
for a specific object class. A transition probability distribution provides the transition 
probabilities p(cCk,to-CCm) between the five composite classes cc e {sandy area, matrix, 
woodland, reed, water} over a discrete time interval between to and ti. When the transition 
probability p(cCk,to.ccm) is divided by the marginal probability p(cCk,to), the conditional 
probability pCcĉ ilcciyo) is obtained, providing the probability for cci on ti given the 
presence of cck on to. This approach is commonly applied in order to describe the dynamics 
of objects and changes between chloropleth maps of two or more dates (Lippe et al., 1985; 
Van Dorp et al., 1985; Jacobs and Sties, 1995). 

Continuous state space 
The internal variability of the matrix is quantified by 8 probability values, indicating the 
presence of an equal number of vegetation structural cover types. These matrix data can be 
presented in continuous state space, where each axis is defined by a cover type and 
measured in probability values. Each point or cell in the matrix takes a position in this 
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space p = (psand, Phsi, Phs2. Phs3, Phs4, Phs5. Pbudohom, Pother_soub) on to and ti. A change in site 
characteristics between the two dates results in a translation of the cell in the feature space 
(fig. 4.1). For each point p on to and ti the general translation probability P(ptilpto) can be 
calculated from the data set. The set of all transitions having a probability value greater 
than O, provide the succession sp for that point (fig. 4.1): 

sp = {p:P>0} 4.1 

The succession sp (eq. 4.1) is conveniently parameterised with a centroid and standard 
deviation in all dimensions. 

P(RIIPB) 

"5 
O 
c 
© ....._, - _ _ 
jg gggp « max 

presence of hS; 

Figure 4.1 Example of vegetation succession in 2-dimensional feature space 
(see text for explanation). 

4.2.3 Description of spatial variability by variography 

The spatial variability of objects can be quantified by their size and shape, as well as their 
topological relationships. The spatial structure of fields can be explored by texture features 
(Nellis and Briggs, 1989; Haralick, 1979), pattern indices (O'Neill et al., 1988) and various 
tests for the presence of spatial autocorrelation (Legendre and Fortin, 1989; Webster and 
Oliver, 1990). The central tool in geostatistics is the semi-variogram, which is a graphical 
representation of the spatial variability in a set of data (Lacaze et al., 1994). Here the semi-
variogram is used to describe the internal variability of the matrix and the variation in the 
herbaceous vegetation in particular. 

Compared to autocorrelation the analysis of spatial dependence with a semi-
variogram can be made using weaker conditions of stationarity (Oliver and Webster, 1986; 
Curran, 1988; Woodcock et al., 1988). The basic assumption is that the difference in value 
of a variable observed at two positions only depends on the distance between sampled 
points and their orientation. 
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The semi-variance y(h) is defined as half the expected squared difference between sample 
values phs separated by a given lag or distance h, 

2y(h) = E[Ph,(J4) - Phs(x*/1)]2 4.2 

where phs is the probability for a specific herbaceous type hs e HS. The semi-variance at a 
given lag h is estimated as the average of the squared differences between all observations, 
i.e. cells in case of grid data, separated by the lag, 

N(h) 
y(h) = 1/2N(/7) X [PhsM - Phs(w-/>)f 4.3 

*=1 

where N(h) is the number of pairs of observations at lag h. Only the cells having p^ greater 
than 0.1 are involved in order to eliminate differences in semi-variance between the 
herbaceous structural classes originating from differences in aerial presence. 

When the semi-variance is plotted against the distance, the experimental semi-variogram is 
obtained (fig. 4.2). The shape of a semi-variogram may take many forms, which can be 
related to a theoretical model, e.g. linear, spherical or exponential. Here the exponential 
model is applied to calculate the theoretical semi-variance, 

-K/7) = c[1 - d'"*] 4.4 

where c is the asymptote, and r is the distance parameter controlling the spatial extent of 
the function. The model parameters are estimated by least square regression. 

A semi-variogram applies to the univariate case. Hence, the overall structural variation of 
the 5 herbaceous cover types needs to be reduced to a single variable, in order to enable the 
calculation of the semi-variance. Therefore, equation 4.3 is adapted to 

N(h) 

>)X [ 
A=1 hs e HS 

y{h) = 1/2N(/7) X [ Xabs(phs(x,)-phs(x^))/2]2 4.5 

In eq. 4.5 the variation in the herbaceous vegetation ranges between 0 for two identical 
points at distance h to 1 for two points that show no similarity at all. 
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4.3 Results and discussion 

Construction of composite objects 
Plate 2 shows both the elementary and deduced composite objects in a subarea of the test 
site. Woodland consists predominantly of high shrubs. Li the test site wooded areas usually 
occur on moist or wet locations in valleys and on the north slopes of dunes. Mostly these 
locations have relatively sharp boundaries justifying woodlands to be represented as 
discrete objects. This does not always apply to sandy areas. Sandy areas form major areas 
of active wind erosion and consist of deflation and accumulation zones. While the 
deflation zone generally shows clear boundaries this is not necessarily the case for 
accumulation zones. Because accumulation zones have a more or less gradual boundary, 
one might argue that occasionally the representation of sandy areas as spatially fuzzy 
objects or field is more appropriate. 

The composite object type matrix occupies most of the remaining area. The matrix 
ranges from almost fully scrub covered to purely herbaceous vegetation or sand, although 
small patches of high shrubs and trees might belong to the matrix too. The internal spatial 
variability of matrix objects is modelled as a field. Plate 2 shows the probability fields of 
the matrix subtypes. Note, that the presence of shrubs in these probability fields is a 
smooth representation of the elementary scrub objects (plate 1). 

Lag (m) 

Figure 4.2 Experimental (.:.) and theoretical exponential (—) semi-variogram, 
where C is the assymptote and r measures the spatial extent of the 
function (eq. 4.4). 

The amalgamation of composite objects from the measured elementary objects was 
primarily motivated to increase the stability and accuracy of objects on a level of 
aggregation relevant for ecological analysis in space and time. Consider a landscape 
consisting of a well-defined mosaic of patches. If the size of these patches is well over the 
spatial resolution of the measurement system and the patch characteristics can be easily 
distinguished by the system, there is no need for aggregation (Puech, 1994). The necessity 
grows with increasing complexity of the landscape considering the size of the landscape 
elements as well as their characteristics in relation to the geometric characteristics and 
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discriminative capabilities of the measurement system. Buckthorn scrubs in the test site 
provide a typical example of elementary objects that need to be aggregated before a 
temporal analysis is performed, as will be shown in the next section. 

Besides considerations regarding the accuracy of the digital landscape model, the 
necessity to mark off different levels of aggregation should be motivated by landscape 
ecological perspectives as well (Pickett et al., 1989; Kotiiar and Wiens, 1990). With a 
measurement system based on the semi-automatic interpretation of high resolution colour 
infra-red imagery (chapter 3), a dune landscape can be described in rather small elements. 
Consequently, one has much flexibility to construct complex elements on a higher level of 
landscape organisation. Digital landscape models obtained by the manual interpretation of 
the same colour infra-red photographs do not provide this flexibility. 

For practical reasons manual image interpretation yields a less detailed terrain description, 
because amalgamation is an implicit aspect of the mapping process. For example areas 
with a certain minimum shrub cover are delineated and labelled scrub while the areas with 
low shrub cover are called 'open vegetation' (Geelen, 1990). Unfortunately the process of 
amalgamation during manual image interpretation is primarily guided by practical 
constraints, while it should be directed by ecological perspectives. High resolution 
mapping systems provide the possibility to create an infinite number of views on the data 
model for analysis. Indeed, the presented composite objects in this section is only one 
possible view. Many other views are possible and although the applied rules of 
amalgamation have a subjective nature, the rules are formalised and therefore 
systematically employed over the whole test site and repeatable. 

Dynamics of discrete landscape features 
In a subarea of the test site a grazing experiment was conducted. Table 4.3 summarises the 
changes in aerial extent of the cover types that have occurred since the introduction of 
cattle. The main trends are the reduction of buckthorn shrubs and a decrease of the area 
grassland, i.e. herbaceous vegetation, in favour of the cover type sand. Ecologists are quite 
familiar with the quantification of vegetation dynamics by means of transition matrices 
between chloropleth maps (van Dorp et al., 1985). With the help of a GI system these 
statistics are easily obtained as well as aerial estimates of land cover changes. 

However, thematic and/or geometric inaccuracies in the data model can yield 
erroneous analysis results. Consider for example the transitions calculated from the 
elementary objects in the data model (table 4.3a). The transition between buckthorn and 
grassland is improbably high, i.e. P=0.50. Buckthorn scrub frequently occurs in the test-site 
and ranges from dense to very open. In the digital landscape model the latter type appears 
as a minority of buckthorn cells scattered over a herbaceous vegetation (plate 1). Primarily 
the geometric accuracy of 1.5 times the cell size contributes to the erroneous turnover 
between buckthorn and grassland. In this case a temporal analysis should clearly not be 
applied on the level of aggregation provided by the measurement system, but on a higher 
level of aggregation at which the geometric accuracy plays a lesser role. 
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Table 4.3 Transition matrices of the elementary and composite objects in 
1990 and 1995 of a subarea with cattle grazing, where p(hs90,hs95) 
is the joint probability and p(hs95lhs90) indicates the conditional 
probability. 

A. Elementary objects 

p(hs90,hs95) 
hs90 

sand 
grassland 
buckthorn 
low shrubs 
high shrubs 
reed 
water 

p(hs95) 

p(hs95lhs90) 
hs90 

sand 
grassland 
buckthorn 
low shrubs 
high shrubs 
reed 
water 

sand 

0.031 
0.027 
0.000 
0.000 
0.000 
0.000 
0.000 

0.058 

sand 

0.78 
0.05 
0.00 
0.00 
0.00 
0.00 
0.00 

grass
land 

0.009 
0.447 
0.025 
0.004 
0.016 
0.000 
0.000 

0.502 

grass
land 

0.21 
0.85 
0.50 
0.21 
0.05 
0.00 
0.00 

buck
thorn 

0.000 
0.020 
0.020 
0.001 
0.000 
0.000 
0.000 

0.041 

buck
thorn 

0.00 
0.04 
0.41 
0.03 
0.00 
0.00 
0.00 

hs95 
low 

shrubs 

0.000 
0.006 
0.000 
0.015 
0.000 
0.000 
0.000 

0.022 

hs95 
low 

shrubs 

0.00 
0.01 
0.01 
0.71 
0.00 
0.00 
0.00 

high 
shrubs 

0.000 
0.024 
0.004 
0.001 
0.314 
0.001 
0.000 

0.344 

high 
shrubs 

0.00 
0.05 
0.09 
0.05 
0.95 
0.08 
0.00 

reed 

0.000 
0.000 
0.000 
0.000 
0.000 
0.004 
0.001 

0.005 

reed 

0.00 
0.00 
0.00 
0.00 
0.00 
0.58 
0.03 

water 

0.000 
0.000 
0.000 
0.000 
0.000 
0.003 
0.026 

0.028 

water 

0.00 
0.00 
0.00 
0.00 
0.00 
0.34 
0.97 

p(hs90) 

0.040 
0.524 
0.050 
0.021 
0.331 
0.008 
0.027 

1.000 

B. Composite objects 

p(hs90,hs95) 
hs90 

sandy area 
matrix 
woodland 
reed 
water 

p(hs95) 

p(hs95lhs90) 
hs90 

sandy area 
matrix 
woodland 
reed 
water 

sandy 
area 

0.030 
0.028 
0.000 
0.000 
0.000 

0.058 

sandy 
area 

0.77 
0.05 
0.00 
0.00 
0.00 

matrix 

0.009 
0.540 
0.016 
0.000 
0.000 

0.565 

matrix 

0.23 
0.91 
0.05 
0.00 
0.00 

hs95 
wood
land 

0.000 
0.028 
0.315 
0.001 
0.000 

0.343 

hs95 
wood
land 

0.00 
0.05 
0.95 
0.08 
0.00 

reed 

0.000 
0.000 
0.000 
0.004 
0.001 

0.005 

reed 

0.00 
0.00 
0.00 
0.58 
0.03 

water 

0.000 
0.000 
0.000 
0.003 
0.026 

0.028 

water 

0.00 
0.00 
0.00 
0.34 
0.97 

p(hs90) 

0.039 
0.596 
0.330 
0.008 
0.027 

1.000 
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Now consider the transition matrix calculated over the composite objects (table 4.3b) 
Although the composite object types provide less specific information, the aggregated data 
yield more accurate transition probabilities, which is reflected by a low percentage of 
unlikely transitions between cover types. The distinguished transition of reed into water 
and vice versa is caused by varying water levels in the water pans occurring throughout the 
test site and cattle grazing. 

The conditional probabilities in table 4.3 can be used to predict a future state CC2 on t2, 
when it can be assumed that p(cci>tilcco,to) equals p(cc2,t2lcci,ti). This assumptions asserts 
that when a system is in a certain state, there exists a fixed probability that it will be in 
some certain state at the next time step. If the transition probabilities are constant through 
time, a system is called homogeneous or stationary, and the transition probability 
distribution is qualified as a Markov model (Davis, 1986). 

Most natural systems are, however, constantly changing and do not meet the 
condition of stationarity. Even the number of states might vary, i.e. new system states can 
arise and present states might evade. An other objection against the application of Markov 
models are spatial dependencies in the functioning of a landscape. The Markovian 
assumption implies that changes at a certain point are independent of the changes at 
neighbouring points. Again this is a rather unrealistic assumption. Consequently, the 
application of a transition probability distribution is valid to describe transitions in the past 
and should be carefully applied to predict future states (Lippe et al., 1985, Usher, 1981; 
Turner, 1987). 

Apart from the turnover between cover types, vegetation dynamics affect the spatial 
configuration of the landscape. The spatial variability of discrete spatial units is governed 
by the change in size and shape of the objects as well as their mutual topological 
relationships (sect. 2.3). A simple and robust indicator of changes in fragmentation and 
whimsicality of objects is the total boundary length in an area of interest. The length of the 
boundary between composite objects increased with 12 percent in five years. Apparently 
the number of transition zones and gradient situations has increased within the analysed 
time window 

The development of buckthorn shrubs also shows a remarkable trend. Figure 4.3 
shows the change in occurrence of this shrub type as a function of the density of the scrub. 
The presence of open buckthorn scrub, i.e. density less than 60 percent, is reduced by 20 
percent, while the extent of dense buckthorn scrub increased with 5 percent. The latter 
trend might be attributed to the fact that cattle hardly accesses buckthorn scrub when the 
density is over 70 percent. The latter example clearly shows the wealth of detail captured 
by the landscape model. Many other types of spatial analysis can be performed to reveal 
this information. 
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Density of Buckthorn shrub (%) 

Figure 4.3 Change of aerial extent of buckthorn shrubs between 1990 and 
1995 in relationship with shrub density. 

Dynamics of herbaceous vegetation in matrix 

This section focusses on the spatio-temporal dynamics of the herbaceous structural cover 
types within the matrix. The presence of herbaceous structural types, also indicated with 
grassland types, is quantified for each grid cell in the matrix by a vector of five pseudo-
probability values (phsi, Phs2, ••• Phss). Consider the presence of herbaceous structural types 
in the test site ordered by pseudo-probability values, where each cell with a certain pseudo-
probability value adds 0.0625 m2 (=0.25*0.25m2) to the cumulated area (fig. 4.4). All 
herbaceous types occupy relatively big areas with low pseudo-probability values. The 
presence of a grassland decreases sharply with increasing pseudo-probability values. The 
closer the pseudo-probability value is to one, the more typical is the appearance of a cover 
type. A cell is typically assigned to a class when the pseudo-probability is greater than 
0.75. The grassland types hs2, hs3 and hs5 cover considerable areas in their typical 
appearance. The typical cover of the types hsl and hs4 is rare in the test site. 
Consequendy, these cover types mostly appear in combination with other grassland types. 

By multiplying the pseudo-probability value with the cell size, the substantial area 
of a herbaceous cover type within a cell is obtained. Accumulation of the latter variable 
over the test site results in a curve shaped line crossing the origin of the graphs in figure 
4.4. The area below the curve quantifies the total presence of a class in the test site. 
Although low pseudo-probability values occur very frequently, their contribution to the 
total presence of a herbaceous type is small. The contribution of typical grasslands to the 
total area is modest as well, because the area with high probability values is relatively 
small. 

During the five years of grazing by cattle the presence of three grassland types has 
reduced (fig. 4.4LR). Reduction of the presence of cover type hs5 was one of the 
objectives of the grazing experiment. The area of two herbaceous types has increased. 
Grassland type hsl shows the biggest increase. This cover type profits from the increase of 
active wind erosion in the test site. Also the total area of grassland type hs2 has increased, 
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Figure 4.4 The distribution of the pseudo-probabilities of each grassland type 
in the test site in 1990 and 1995. 
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although the typical appearance of hs2 decreased strongly. Except for hsl, all cover types 
show a decrease of area covered with their typical appearance. Apparendy the variation in 
the herbaceous vegetation structure is reduced. The down-shift of pseudo-probability 
values might be caused by grazing and trampling by cattle. Conclusions on the effect of 
cattle on the landscape dynamics can not be drawn because data on a reference site without 
cattle are lacking. 

Turnover between cover types 
Now the turnover between the classes is considered. As the grassland in the matrix is 
quantified by a quintuple valued field of pseudo-probabilities (phsi,Phs2, — Phss), each cell 
takes a position in a five dimensional feature space where the axes are measured by 
pseudo-probability values. Temporal changes in composition are best quantified by a 
translation in this feature space. The translation or migration of several grassland 
compositions is presented in table 4.4. Note that in this section the term migration relates to 
changes in the presence of vegetation classes and not to a spatial process. 

Firstly the migration of typical grasslands between 1990 and 1995 is calculated. As stated 
before a grid cell is considered to be typically assigned to a grassland type when the 
pseudo-probability value is higher than 0.75. Cells meeting this condition in 1990 are 
selected and a generalised vector of pseudo-probability values is derived for 1990 and 1995 
respectively. For instance typical cover type hs3 migrated from (0.04, 0.08, 0.87, 0.01, 
0,00) in 1990 to (0.04, 0.32, 0.46, 0.15, 0.03) in 1995. The difference between the vectors 
provides the translation vector (0.00, 0.24, -0.41, 0.14, 0.03) indicating a major shift 
towards hs2 and a smaller shift to hs4 at the expense of hs3. In the scheme of vegetation 
succession, the turnover between hs3 and hs2 is a process of regression, while the shift of 
hs3 to hs4 is a progressive change. The translation distances in table 4.4, i.e. the Euclidean 
distances in the continuous state space, show that the typical grassland cover of the types 
hs2, hs3 and hs4 have changed twice as much compared to the cover types hsl and hs5. 

Also the dynamics of some grassland combinations is analysed. Four intermediate 
grassland types are considered. An intermediate cover type is located between two typical 
grassland types and therefore takes a position in the features space half way the two 
classes. The intermediate types are characterised by cells having a pseudo-probability 
values greater than 0.35 for two types simultaneously. For instance the intermediate 
grassland type of cover types hs4 and hs5 is generalised to (0.00, 0.04, 0.05, 0.46, 0.45). 
Within a time interval of 5 years this intermediate type migrated over a distance of 0.30 to 
(0.05, 0.22, 0.12, 0.29, 0.32), which means a regression of hs4 and hs5 primarily towards 
hs2. 

All calculated translations seem plausible and therefore confirm the validity of the data 
model. The temporal changes have been analysed in a prospective view from 1990. 
Obviously it is also possible to perform a retrospective analysis starting from 1995. In a 
retrospective analysis the history of a certain cover type can be explored. 
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Table 4.4 Turnover of herbaceous structural cover types between 1990 and 
1995 (see text for explanation). 
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Spatial structure of the matrix 
Finally the effect of vegetation dynamics on the spatial structure of the matrix is described. 
The spatial structure of the continuously varying matrix is recognised with variograms. 
Figure 4.5 depicts the variograms for the five distinguished herbaceous cover types. 
Because the variograms approach their maximum value asymptotically, the exponential 
function (eq. 4.4) fits to the experimental data. The exponential curve is governed by two 
parameters C and r, often denoted sill and range respectively. In case the variogram is 
derived from cell values in a field, the sill is equal to the variance of these field values and 
is therefore a proper parameter for the magnitude of variation in the area of interest. The 
range is the distance within which grid cells are spatially independent (Jongman et al., 
1987). The presence of the sill and a constant variance at lags greater than the range means 
that cells separated by distances greater than the range can be treated as being statistically 
independent. This implies that the sample spacing is too large to resolve any structure 
anymore. 

Three grassland types show a relatively high sill. Two cover types have a low sill value 
resulting from a lack of area with high probability values as was observed from the 
distribution of pseudo-probability values (fig. 4.5). From the reduction of high pseudo-
probability values in this distribution it became apparent that the variation in the test site 
has levelled. This change in the matrix causes a decrease of the sills of four cover types. 
Betweenl990 and 1995 the sills of these four grassland types are reduced between 44 
percent for class hs2 and 11 percent for hs5. Only hsl shows an increase of the variability 
with 37 percent. Note that in 1990 the sill of hs2 was nearly triple the sill of hsl and that 
the sill of both cover types have become nearly equal in 1995. 

The ecological scale within the matrix is reduced testifying the decrease in range of 
all grassland types. This reduction ranges between 48 percent for class hs3 to 1 percent for 
hs5. The variogram calculated over all cover types simultaneously (fig. 4.5LR) shows that 
the spatial dependency in the matrix has reduced from 14.0 to 10.1 meter, which is a 
reduction with 27 percent. The overall variogram shows a reduction of the variability 
within the matrix with 20 percent. 

Semi-variograms are frequently applied to determine the spatial structure in remotely 
sensed images (Woodcock et al., 1988; Simmons et al., 1992). In these cases the variogram 
is calculated from digital numbers or reflectance values in a spectral band. This approach 
can be helpful to recognise different spatial structures within a single image. However, the 
method is not suited to quantify temporal changes, because seasonal and yearly changes in 
vegetation cover are likely to disturb the variogram. By calculating- the variogram from the 
interpretation result this and other irrelevant variation in the image has been removed 
allowing the comparison of the variograms in time. Moreover the variogram is directly 
related to a specific ecological variable, e.g. vegetation cover type, providing the spatial 
structure of the phenomenon of interest. Variograms calculated from spectral data are 
indirectly related to ecological features and are therefore more complicated to interpret. 

65 



Chapter 4 

0,12-

0,10-

0,08-

0,06-

0,02-

C 

hs1: 

I 
I 
I 
I 

^ 
) 

Thin grass/herb cover 
with blond sand 

layo 
—-=-=-•= 1995 

S - * — - • — — • — " 

5 10 15 20 
Lag (m) 

hs2: Intermediate herb/moss cover 
with grey sand 

15 20 
Lag (m) 

hs3: High moss cover 

0,14 

15 20 
Lag (m) 

hs4: High moss and low grass 
cover 

0,14 

0,12 

0,10 

0,08 

0,06 

0,04 

0,02 

0,00 

. I 

. I 

. I 

. I 
I 

> 

- A — « = • — • " . . 

r s r ^ - - _©=" -«—-< r 

10 15 20 
Lag (m) 

hs5: High grass/herb cover 
with litter 

hs1..5: Overall 

<D 

•2 0,08-
(11 
.? 0,06-
| 0,04-

0,02-

1 
| 
1 

r ' 
i 
1 ' • 

_ _ - 0 - - - < > 

15 20 
Lag (m) 

40 50 
Lag (m) 

Figure 4.5 Variograms of the herbaceous cover types in the test site in 1990 
and 1995 with sill and range indicated. 
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4.4 Conclusions 

This chapter provided a selection of methods to quantify the spatial and temporal dynamics 
captured by the high resolution digital landscape model produced in chapter 3. The first 
analysis step of the utmost importance was the definition of an appropriate level of 
aggregation for the analysis of landscape dynamics. The construction of a specific 
landscape organisational level with its corresponding spatial objects needs to be motivated 
by ecological considerations under the constraint of minimising errors in the analysis 
results. These errors are caused by geometric and/or thematic inaccuracies present in any 
digital landscape model. The analysis of landscape dynamics should therefore not 
unthinkingly be performed on the level of aggregation provided by a measurement system. 
Amalgamation or non-nested aggregation is a robust and flexible operator to turn 
elementary objects provided by a measurement system to composite objects on a higher 
organisational landscape level. 

The vegetation structural dynamics captured by the composite level of the digital landscape 
model is described in several ways. The methods were distinguished for discrete and 
continuous terrain features and aimed at disclosing the wealth of information captured by 
the landscape model. The level of detail in the landscape model allows a landscape 
manager to obtain detailed information that can not be obtained from current chloropleth 
maps. Important trends in aerial extent of classes and the turnover, as well as the spatial 
structure of the landscape, are more precisely quantified. 

The methods presented in this chapter have a descriptive nature. It was not intended to 
explore the landscape model for the processes causing the landscape dynamics that have 
been observed. The progress in spatio-temporal landscape modelling has been slowed 
down by a lack op sufficiently detailed and reliable data. High resolution remote sensing 
images and dedicated image interpretation techniques can overcome this problem and 
allow for the generation of reliable spatio-temporal data models with sufficient detail. 
Operational monitoring systems can now provide the necessary data to boost explorative 
research by landscape ecologists and the development of spatial dynamic models on a 
longer term. 
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5. Mapping of fuzzy community types from environmental data 

5.1 Introduction 

This chapter deals with the mapping of the vegetation community types of the vegetation 
complex matrix. The notion of vegetation complexes was introduced in the previous 
chapter, where vegetation complexes were constructed from vegetation structural features 
obtained by the semi-automatic interpretation of digital CIR-orthophotos. The 
classification of structural aspects of natural vegetation in remote sensing images usually 
yields fairly accurate results (Belward et al., 1990; Foody, 1992), while the classification of 
vegetation composition, i.e. vegetation communities, is generally less accurate, even when 
high resolution imagery is used (Treitz et al., 1992). Attempts to improve the accuracy of 
mapping the vegetation communities can be categorised in two approaches. 

Firsdy, improvements can be achieved by increasing the explanatory power of the 
applied model. For example additionally to spectral data the process of image classification 
can be strengthened by the use of contextual information (Gurney and Townshend, 1983; 
Jeon and Landgrebe, 1992), environmental data (Satterwhite et al., 1984; Davis and Goetz, 
1990) and/or knowledge (Plumb, 1993; Blonda et al., 1991; Mckeown et al., 1985). 

A second approach to improve the accuracy of classifying vegetation communities 
is to alter the characteristics of these communities. This strategy aims at a better tuning of 
the community characteristics with the information content in an image. This can be 
achieved by stressing the abundant and relatively tall species during the construction of 
vegetation communities. While remotely sensed images contain mainly aggregated data of 
the vegetation canopy, rare and small species contribute less to the spectral data in an 
image. Consequently, vegetation communities can only match image data properly, if the 
discrimination of vegetation communities is primarily governed by abundant and relatively 
tall species, because these species primarily determine the spectral reflectance of the 
vegetation. 

Emphasis on abundant species is one possibility to obtain better resemblance between 
vegetation communities and image characteristics. Secondly, more realistic vegetation 
communities are obtained by giving vegetation communities a more or less continuous 
character. Too often vegetation communities are defined as crisp clusters regardless of 
whether the vegetation exists as well defined mosaic or as a series of continua (Wood and 
Foody, 1989). Consequendy, many classification errors can be attributed to artificial 
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boundaries in the data where in reality gradients exist. Again it is asserted, that generally 
vegetation communities have more or less fuzzy characteristics. Therefore, crisp 
classification should be treated with some caution in patterns of natural landscapes 
(Roberts, 1987; 1989). 

These introductory considerations are incorporated in the methods for the fuzzy 
classification and mapping of vegetation communities presented in the next section. After 
the presentation of the results the chapter will end with some conclusions. 

5.2 Material and methods 

The construction of a landscape model with five different composite object types was 
described in chapter 4, i.e. sandy-area, matrix, woodland, reed and water. Because sandy-
area and water are considered to be bare and reed is occupied by a single vegetation 
community type, only the matrix and woodland accommodate several vegetation 
community types. It is presumed that the vegetation composition of the latter two object 
classes is significandy different and that vegetation communities occurring in the matrix 
and woodland are mutually exclusive. Consequently, two exclusive sets of community 
types are defined for the object classes woodland and matrix respectively. Note that the 
exclusivity of community types provides an ecological justification for the recognition of 
the two object classes, i.e. woodland and matrix. In this section, the mapping of the 
vegetation community types in the matrix is elaborated. 

Map of 
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structural 
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/ random \ 
\ vegetat ion/ 
Xsampl ing/ 

Set of relevees 

=c 
Fuzzy 

classifi
cation 

^Estimatior\ 
(of communityY^-

.p resence/ 

Map of / 
vegetation / 

communities/ 

X 
Set of fuzzy 
vegetation 

communities 

Figure 5.1 Procedure for the mapping of fuzzy vegetation communities. 
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Starting point for the mapping of vegetation community types is the landscape model or 
map with the composite objects in the test site (fig. 5.1). The production of the latter map 
was described in chapter 4. This map is used to perform a stratified random sampling of 
the vegetation composition in the matrix, where the strata are derived from differences in 
the internal vegetation structure of the matrix. The sampling of the vegetation composition 
yields a set of relevees. From this data set a set of fuzzy vegetation communities is 
constructed by means of fuzzy classification. Subsequently, the fuzzy vegetation 
communities and the map of the matrix objects is inputted to an estimation procedure for 
the mapping of vegetation communities. The latter modelling step results in a map of fuzzy 
vegetation communities. The major steps in the making of a map of vegetation 
communities can be summarised as follows: 

• Stratified random sampling of the vegetation composition. 
• Fuzzy classification of the herbaceous vegetation composition (sect. 5.2.1). 
• Estimation of herbaceous community presence (sect. 5.2.2). 
• Testing and sensitivity analysis (sect. 5.2.3). 

Stratified random sampling of the vegetation composition 
The spatial variability of the vegetation composition is not constant over the test site. Some 
herbaceous structural types are species rich while other types are constituted from a limited 
number of species. In order to rninimise the sample size, i.e. the number of relevees, 
stratified random sampling is adopted, where structural characteristics of the herbaceous 
vegetation are used to stratify the area (Kenkel et al., 1989; Bunce et al., 1983). 

Within a stratum the sample locations are randomly selected. The sample size for 
each stratum type depends on the variation in vegetation composition. The herbaceous 
structural classes showing much variation are sampled more intensively. Furthermore, the 
sample support is dependent on the stratum type. The square sample areas measure 4, 9 
and 25m for moss, herb/grass and scrub vegetation respectively (Den Held and Den Held, 
1983; Curran and Williamson, 1986). The abundance of a species vsp is scored in 
percentage cover. 

When the set of relevees is used to estimate statistical parameters for the test site, the 
relevees need to be weighted in order to correct for the differences in sample density 
between the strata. The correction factor or weight cOhs for a stratum type is calculated as: 

o>« = pA(hs)/pR(hs) 5.1 

where pA(hs) and pR(hs) are the probability for herbaceous structural class hs in the test site 
A and in the set of relevees R and hs e {hsi, hs2, ...hss, Buckthorn, Other_shrubs} 
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5.2.1 Fuzzy classification of herbaceous vegetation composition 

Consider a conceptual vegetation space V constructed from the data in the set of relevees 
R. Let each species Vi in R define an axis of this space, with each axis scaled according to 
the measure of abundance. When R contains M species, v = (vi, V2, ...vm) represents a 
particular point in V, and V= {v : v=(vi, V2, ...vm)} represents the set of all possible points. 
Clustering techniques accomplish a partitioning of this space in a user defined number of 
clusters C by means of a membership function. Hence the relationship between a particular 
species composition v and a herbaceous community type he € {hci, hc2, ...hcc} is made 
through the membership function M[hc,v]. If species composition vJ belongs to class he 
this is represented by M[hc,vj] = 1, and M[hc,vJ] = 0 if not. A two valued membership 
function brings on a crisp partitioning of V in non-overlapping subareas. Obviously, a crisp 
partitioning is only valid if no uncertainty is involved in this relationship. 

Uncertainty in the relationship between species composition and community class 
is expressed by allowing the membership function to take any value 0 < M[hc,vJ] < 1 
enabling the quantification of partial membership. Partial membership results in 
overlapping or fuzzy clusters in V. The definition of fuzzy clusters usually provides a more 
realistic representation of real world vegetation patterns, because these patterns often bear 
a continuous character (Roberts, 1989). 

The fuzzy clustering methods described in this section are compiled from the 
methods presented by Marsili-Libelli (1991) and Feoli and Zuccarello (1991). Fuzzy 
clustering techniques usually start from the notion of cluster centroids v *" which are 
considered as prototypes of a cluster or class he. A centroid provides the species 
composition that the typical constituent of that cluster should have. Between the cluster 
centroids gradients of membership occur. Hence the construction of class centroids is of 
primary concern. 

Li order to obtain cluster centroids the relevees R are grouped in C crisp classes he e HC 
by two-way indicator species cluster analysis (TWTNSPAN) (Hill, 1979; Jongman et al., 
1987). The analysis is performed with more or less standard parameter setting and extra 
weight for abundant species (Treitz et al., 1992). Subsequently, the set of class centroids 
{vhc I he = hcl, hc2, ...hcc} is obtained by averaging the vegetation data of all relevees 
belonging to a specific class. 

Now the resemblance of species composition v* in relevee ij with prototype v1" is 
calculated as a function of the (dis)similarity between the two. A current dissimilarity 
measure is the Euclidean distance (Jongman et al., 1987): 

m 
D2hc,i = X [ ^ C i - ^ 2 5.2 

i=1 

where M is the number of species. 
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When the distances between v" and all prototypes are calculated {D2^ I hc=hci,hc2,...hcc}, 
the membership value for class he is calculated as (Marsili-Libelli, 1991): 

MV M = 1 5.3 
XtDhc/DhcjT 

he e HC 

where the exponent a determines the incidence of the membership function. When a—> oo 
the classification becomes crisp. Smaller values of a result in smoother membership 
functions and thus in fuzzier membership values. For oc=0 the classification is maximally 
fuzzy and all membership values are equal. By applying eq. 5.3 to each prototype a vector 
of C membership values (MVhci, MVhc2, ...MVhcC)j is obtained by which the fuzzy 
classification of relevee r, is completed. The membership values in a single vector sum to 
unity. 

5.2.2 Estimation of matrix community presence 

In the previous section the presence of vegetation community types on a specific site was 
obtained by fuzzy classifying species abundance data to a vector of membership values. In 
case the species composition of a site is not described by a relevee, the presence of 
vegetation community types has to be estimated by means of an explanatory model. The 
latter model is based on the relationship between vegetation community types and their site 
characteristics described by environmental variables. These relationships are obtained from 
the generalisation of fuzzy vegetation community data and environmental data in the set of 
relevees R. The generalisation can be established within a probabilistic or possibilistic 
mathematical framework, where the strength of the relationship between certain site 
characteristics and a vegetation community type he is expressed by a (pseudo-)probability 
Phc or possibility p^ value. In case of fuzzy vegetation mapping, the vegetation 
composition is quantified by a vector of C probability values (phci, Phc2, —Phcc) or 
possibility values (phci, Phci, —Phcc). The choice for either of the two fuzzy measures 
determines the semantic interpretation of the membership values and the manner of 
calculating with membership values. 

The estimation of vegetation communities is performed in three steps. Firstly, the presence 
of herbaceous community types is explained from the detailed fuzzy data on herbaceous 
structural features. The second step involves the estimation of the presence of vegetation 
communities by means of other environmental variables, like percentage shrub cover, 
depth of the water table, potential sunlight and organic matter content and acidity of the 
soil. The third and final step involves the combination of the estimations obtained in step 1 
and 2 in an overall estimation of matrix community presence. 

The estimation accuracy of vegetation communities is likely to improve when 
besides herbaceous structural information other environmental conditions are taken into 
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account. For instance a single herbaceous vegetation structure present on different 
environmental conditions might accommodate different community types, e.g. a 'high 
grass/herb cover with litter' in a dune slack has another species composition than the same 
structural class on the north slope of a dune. Subsequently the three phases in the 
estimation of vegetation communities are elucidated. 

Step 1: Estimation of vegetation community presence from herbaceous structural data 

Consider the estimation of vegetation community presence from herbaceous structural 
data. Because the values of both the dependent and explanatory variable are nominal, the 
relationship between the vegetation community classes and the herbaceous structural 
classes can be quantified by a joint probability distribution. A joint probability p(hc,hs) 
quantifies the concurrence of vegetation community class he € HC and herbaceous 
structural class hs e HS. The joint probability distribution is calculated from the 
membership values MV(hc) and probability values p(hs), which are available for each 
relevee. From the joint probability distribution conditional probabilities p(hclhs) can be 
derived, providing the probability of a vegetation community he given a herbaceous 
structural class hs. 

The overall probability of vegetation community he on a location xy is calculated 
from the conditional probabilities (p(hclhs)!hs e HS) and the presence of the herbaceous 
structural classes p(hs)xy: 

ps(hc)xy = 1 p(hs)xy. p(hclhs). C 5.4 
hse HS 

where C is a normalisation factor making the probabilities of all vegetation community 
types on a single site sum to unity. Appendix n elucidates the calculation of the conditional 
probabilities p(hclhs) from fuzzy vegetation data. 

Alternatively, the relationship between vegetation community types and herbaceous 
structural types is established by a joint possibility distribution. The joint possibility 
distribution is also calculated from the membership values MV(hc) and possibilities p(hs), 
which are available for each relevee. From this distribution conditional possibilities 
/?(hclhs) can be derived (appendix U), providing the possibility of a vegetation community 
he given a herbaceous structural class hs. The possibilistic counterpart for estimating the 
presence of a herbaceous community type on location xy is: 

ps(hc)xy = MAX [MINWhsJxy, p(hclhs)]. C 5.5 
hse HS 

where the MAX and MIN functions are the standard combinational OR and AND 
operators in possibility theory (Klir and Folger, 1988) and C is a normalisation factor. 
Through normalisation the maximum possibility for one of the vegetation communities 
becomes one. 
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Step 2: Estimation of vegetation community presence from environmental data 
Secondly, the presence of vegetation community types is estimated from their correlation 
with other environmental variables of which a spatial data set is available. The following 
variables were available from the test site: buckthorn shrub cover, cover by other shrubs, 
depth of the water table, potential sunlight. Note that shrub cover is regarded as an 
environmental variable, because scrub affects the micro climate of the herbaceous 
vegetation. The general relationship between these continuous variables and a vegetation 
community type is established by an environmental amplitude. 

Consider an environmental space E, where each environmental attribute (ed in the data set 
defines an axis in this space. Each axis is scaled according to the measure for that 
environmental attribute. Each site occupies a particular point in this space determined by 
its environmental characteristics. When the data set contains m environmental variables, 
the vector e = {e\, e2, —em) represents a particular point in E and E = {e: e=(e\, ei, ...em)} 
represents the set of all possible points. 

Each community type occupies a subset of the environmental space, known as its 
environmental amplitude (abc), where the environmental characteristics are suitable for its 
appearance. For a given community type the amplitude is given by all points having a 
probability or possibility greater than 0: 

aphc = {e :p>0}ora p
h c = {e :p>0} 5.6 

The environmental amplitudes of vegetation community classes have to be established 
from observations by regression analysis (Jongman et al., 1987) or interpolation techniques 
like kriging and trend surfaces. Here the method of weighted averaging is adopted because 
of its simplicity. The probability of a community class he on a specific location in the 
environmental space is calculated as a weighted mean from all observations within a 
distance R: 

pe(hc) = X «>.(*. p(hc) r. C 5.7 
rsR 

where cos is a weight for the stratum and the weight cor relates to the distance between the 
observation p(hc)r r e R and interpolation point e and C is a normalisation factor. In a 
sensitivity analysis the optimum value of R is determined. After the calculation of the 
environmental amplitude aV. the probability pe(hc)xy of a vegetation community type he 
for a site xy is easily looked up. 
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Alternatively, the possibility value is calculated as a weighted generalised means (Klir and 
Folger, 1988): 

pe(hc) = ( X o>.(*.p(hc)rP )1/p. C 5.8 
r e R 

where [5=1 implies the calculation of the weighted mean, i.e. eq. 5.8 equals eq. 5.7 and P~> 
°° implies the application of the MAX-operator, which is the standard possibilistic OR 
operator. Through normalisation the maximum possibility value for one of the vegetation 
communities on a location in the environmental space becomes one. The possibility 
pe(hc)xy for a specific grid cell xy is obtained by looking up the possibility in the 
environmental amplitude aV. 

Step 3: Overall estimation 
The separately derived probabilities for a specific vegetation community type obtained 
from herbaceous structural data ps(hc)xy and other environmental data pe(hc)xy, are 
combined to yield an overall probability: 

p(hc)xy = ps(hc)xy. pe(hc)„,. C 5.9 

where C is a normalisation factor making the probabilities of all vegetation communities on 
a single site sum to unity. By applying these calculations to each grid cell in the matrix the 
probability fields (phc(x,y) ! he e HC) are obtained providing a probability map of 
vegetation communities in the matrix. Alternatively, the combined possibility for he is 
obtained as: 

p(hc)xy = MAX Iffihcfo, pe(hc)xy]. C 5.10 

where C is a normalisation factor setting the maximum possibility value for one of the 
vegetation communities to one. By applying these calculations to each grid cell the 
possibility fields (piJx,y)! he e HC) are obtained providing a possibility map of vegetation 
communities. 

5.2.3 Testing and sensitivity analysis 

A set of 263 relevees was gathered in the summer of 1990. The position of each relevee 
was marked on a photograph enabling an accurate determination of its position on the 
digital orthophoto. The 100 most common species in the set of relevees were selected for 
further analysis. 

First step in the mapping process is the selection of an optimal degree of fuzziness 
for the vegetation types. The degree of fuzziness of the classification can be adapted by 
changing parameter a in eq. 5.3. Appendix HI describes a Monte Carlo analysis enabling 
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the determination of an optimal degree of fuzziness. After the calibration of the estimation 
procedure with the optimal degree of fuzziness, the estimated presence of matrix 
communities is validated with the 'leaf-one-out'-method. The explanatory quality of the 
models is expressed by the coefficient of determination (Jongman et al., 1987), 

Ft2 = 1 - (residual sum of squares / total sum of squares) 5.11 

This statistic quantifies the fraction of variance accounted for by the model. 

5.3 Results and discussion 

Fuzzy vegetation communities 
The first step in the fuzzy classification of relevees is the construction of vegetation 
community prototypes. In a standard clustering procedure the maximum number of 
prototypes or vegetation communities was set to 17. These 17 community types provide a 
proper categorisation of the variety in vegetation composition throughout the test site. A 
short description of the vegetation types is presented in table 5.1. The types range from 
pioneer and moss vegetation to grassland and scrub. Most vegetation types indicate 
specific abiotic site conditions, like moisture content and acidity (Schaminee et al, 1996). 

The second step in the fuzzy classification procedure involves the optimisation of the 
degree of vagueness for the fuzzy vegetation communities. Figure 5.2 shows the 
explanatory power of the fuzzy classification as a function of vagueness. In case of 
maximum fuzziness, i.e. a = 0, the membership values for all vegetation communities are 
equal, i.e. MVhc = 1/Ncommunities. In this case the explanatory power of the fuzzy 
classification is minimal. An increase of explanatory power is achieved by decreasing the 
degree of fuzziness. A maximum coefficient of determination (R2 = 0.73) is reached at 
oc=8. After this point a reduction in fuzziness results in a decrease of the coefficient of 
determination. When a—> °° the classification becomes crisp, which results in a vector of 
membership values with a single one and zero for all other community types. For the 
subsequent analysis a was set to 8. 

Table IV. 1 shows the calculated vectors of membership values for the relevees. The 
maximum value in a vector of membership values provides a good indication for the 
vagueness of the classification of a relevee. Relevees with a high membership value, 
i.e. > 0.75, are primarily assigned to a single class. The higher the maximum 
membership value the crisper a relevee is assigned to this class, indicating that the 
relevee resembles primarily one vegetation community. A low maximum membership 
value, i.e. < 0.25, indicates a vague classification, because the relevee shows 
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Table 5.1 Description of the vegetation community types (he) and 
herbaceous structural classes (hs). Between brackets the 
vegetation community according to Westhoff and Den Held (1969) 
and Schaminee et al. (1996) is indicated. 

Vegetation community types 

hc1 Dense scrub of Ligustrum vulgare (Hippophao-Ligustretum) 
hc2 Open scrub of Salix repens and Ligustrum vulgare, mainly on slopes with a 

northern exposition (Taraxacc-Galietum fragarietosum) 
hc3 Open scrub of Ligustrum vulgare (Taraxacc-Galietum cladonietosum) 
hc4 Dense scrub of Ligustrum vulgare and Hippophae rhamnoides (Hippophao-

Ligustretum) 
hc5 Dense scrub of Hippophae rhamnoides (Hippophao-Sambucetum) 
hc6 Hippophae rhamnoides and Festuca rubra covered with fresh sand 
hc7 Ammophila arenaria covered with fresh sand (Elymo-Ammophiletum arenariae) 
hc8 Very open moss vegetation with Tortula ruralis var. ruraliformis on calcareous 

soil (Phleo-Tortuletum typicum) 
hc9 Open moss vegetation with Tortula ruralis var. ruraliformis on calcareous soil 

(Phleo-Tortuletum typicum) 
hc10 Dense moss vegetation with Tortula ruralis var. ruraliformis on calcareous soil 

(Phleo-Tortuletum cladonietosum) 
hc11 Dense moss vegetation dominated by Dicranum scoparium or Campylopus 

intro-flexus on decalcified soil (frame community Dicranum scoparium -
[Koelerio - Corynephoretea] or derivate community Campylopus introflexus -
[Koelerio - Corynephoretea]) 

hc12 Dense moss vegetation with Hypnum cupressiforme and Cladonia spp. on 
slightly decalcified soil (Phleo-Tortuletum cladonietosum and Taraxacc-Galietum 
cladonietosum) 

hd 3 Dune meadow with Agrostis spp. and Galium verum on decalcified soil 
(Festucc-Galietum cladonietosum) 

hd 4 Dune meadow with Rubus ceasius and Dicranum scoparium on slightly 
decalcified soil (Taraxacc-Galietum veri) 

hc15 Dune meadow with Cladonia spp and Calamagrostis epigejos on calcareous 
soil (Taraxaco-Galietum veri) 

hc16 High grass vegetation with Holcus lanatus and phreatophytes (frame 
community Holcus lanatus - [Molinio - Arrhenateretea]) 

hc17 High grass vegetation dominated by Calamagrostis epigejos and Carex arenaria 
(frame community Calamagrostis epigejos - [Koelerio - Corynephoretea]) 

Herbaceous structural classes (see table 3.1) 

hs1 Thin grass/herb cover with blond sand 
hs2 Intermediate herb/moss cover with grey sand 
hs3 High moss cover 
hs4 High moss and low grass cover 
hs5 High grass/herb cover with litter 

resemblance with several vegetation communities. The distribution of the maximum 
membership values is presented in figure 5.3. Forty percent of the relevees has a maximum 
value higher than 0.75 in the vector of membership values. Hence all these relevees show a 
strong resemblance with only one community type. Relevees with a lower maximum 
membership value effectively represent gradient situations between one or more vegetation 
community. 

78 



Mapping of fuzzy vegetation types 

30 40 
alpha 

Figure 5.2 The explanatory power of fuzzy classification of vegetation 
communities in function of the degree of vagueness quantified by a 
in eq. 5.3. 

The introduction of vagueness in the classification of vegetation communities enables the 
quantification of continuous turnover between communities, which results in a better 
correlation between the vector of membership values and the species composition 
compared to crisp classification. Although classification involves the reduction of the 
dimensionality of the feature space from the number of species to the number of classes, 
the loss of information is minimised by introducing a certain degree of vagueness (Roberts, 
1989). 
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Categories of membership values 

Figure 5.3 The degree of vagueness of fuzzy vegetation classification 
indicated by the distribution of the maximum values of 180 
membership vectors (a = 8). 
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Relationship between fuzzy vegetation communities and herbaceous structural classes 
Conditional probabilities provide the relationship between vegetation communities and 
herbaceous structural types (table 5.2a). Some of the vegetation communities show a 
preference for a single herbaceous structural type. For instance high grass vegetation 
dominated by Calamagrostis epigejos hen, only occurs when the herbaceous structure 
consists of high grass/herb with litter I1S5. Community type, Ammophila arenaria covered 
with fresh sand hc7, is primarily related to thin grass/herb cover with blond sand hsi. Other 
community types show preference for two herbaceous structural types, like hcg and hcg. 
Although, the conditional probabilities properly describe the general relationships between 
17 vegetation communities and 5 herbaceous structural types, the supernumeracy of the 
vegetation communities and the fact that many of the community types relate to 2 or more 
structural types, cause overall low probability values. Obviously, this will hamper the 
suitability of this statistic for the mapping of vegetation communities from vegetation 
structural data. 

The conditional possibilities do not show the clear trends in the relationship between 
communities and structural types as could be detected in the probabilistic framework (table 
5.2b). This effect can be attributed to the fact that the possibilistic generalisation operators, 
i.e. MTN and MAX, are rather sensitive to outliers in a data set (De Gruyter and 
McBratney, 1990). Vegetation data typically show much variation. When aiming at the 
detection of general relationships in vegetation data the applied generalisation method 
needs to be rather insensitive to oudiers. Obviously, in such cases a probability measure is 
preferred over a possibility measure. 

Environmental amplitudes 
Out of the four spatial variables that were available of the test site only the buckthorn shrub 
cover and the coverage of other shurbs, primarily privet and willow, correlated well with 
the community types. The spatial variables depth of water table and potential sunlight did 
not produce proper amplitudes for any community type. 

In particular the community types with more than 10 percent shrub cover show a 
clear amplitude in the two dimensional environmental space measure by the percentage 
cover of buckthorn and privet/willow (fig. 5.4). The amplitudes of community types hci 
through hc6 reflect the abundance of the two shrub types. The amplitudes of dense shrub of 
Ligustrum vulgare hci and Hippophae rhamnoides hcs are located at high values of the 
corresponding environmental variables. Between these extreme clusters the community 
types with less dense shrub cover and scrub densely populated by both shrub species hc4 
are positioned in the environmental space. The environmental amplitudes expressed by 
probability values provide more specific information compared to the amplitudes 
quantified by possibility values. Again this is caused by the sensitivity of possibilistic 
generalisation operators to outliers in a data set. 
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Table 5.2 The relationship between herbaceous structural classes hs and 
herbaceous community classes he (263 relevees). 

A. Conditional probabilities 

he 

hc1 
hc2 
hc3 
hc4 
hc5 
hc6 
hc7 
hc8 
hc9 
hc10 
hc11 
hc12 
hc13 
hc14 
hc15 
hc16 
hc17 

hs1 
0.01 
0.01 
0.03 
0.01 
0.01 
0.09 
0.22 
0.29 
0.25 
0.03 
0.00 
0.04 
0.00 
0.01 
0.01 
0.00 
0.00 

hs2 
0.07 
0.02 
0.07 
0.01 
0.03 
0.02 
0.03 
0.20 
0.20 
0.18 
0.03 
0.10 
0.01 
0.02 
0.01 
0.01 
0.01 

p(hclhs) 
hs3 
0.06 
0.06 
0.13 
0.06 
0.12 
0.00 
0.00 
0.05 
0.04 
0.03 
0.10 
0.21 
0.06 
0.03 
0.04 
0.01 
0.00 

hs4 
0.07 
0.08 
0.14 
0.06 
0.12 
0.00 
0.01 
0.03 
0.04 
0.01 
0.03 
0.12 
0.07 
0.10 
0.06 
0.02 
0.03 

hs5 
0.09 
0.07 
0.17 
0.07 
0.11 
0.01 
0.03 
0.02 
0.03 
0.01 
0.01 
0.05 
0.03 
0.04 
0.02 
0.08 
0.15 

P(hc) 

0.06 
0.06 
0.12 
0.05 
0.09 
0.02 
0.04 
0.09 
0.09 
0.05 
0.04 
0.12 
0.04 
0.04 
0.03 
0.03 
0.04 

B. Conditional possibilities 

he 

h d 
hc2 
hc3 
hc4 
hc5 
hc6 
hc7 
hc8 
hc9 
hc10 
hc11 
hc12 
hc13 
hc14 
hc15 
hc16 
hc17 

hs1 
0.07 
0.04 
0.13 
0.04 
0.04 
0.22 
0.31 
0.71 
0.62 
0.16 
0.00 
0.20 
0.02 
0.02 
0.02 
0.01 
0.01 

hs2 
0.31 
0.16 
0.38 
0.09 
0.20 
0.13 
0.20 
0.73 
0.69 
0.56 
0.22 
0.58 
0.09 
0.07 
0.11 
0.02 
0.02 

p(hc!hs) 
hs3 
0.36 
0.38 
0.78 
0.33 
0.60 
0.04 
0.04 
0.40 
0.36 
0.16 
0.40 
1.00 
0.36 
0.16 
0.24 
0.13 
0.09 

hs4 
0.38 
0.42 
0.73 
0.31 
0.58 
0.02 
0.07 
0.24 
0.29 
0.07 
0.24 
0.69 
0.38 
0.36 
0.29 
0.20 
0.29 

hs5 
0.40 
0.36 
0.80 
0.33 
0.56 
0.07 
0.18 
0.18 
0.20 
0.04 
0.11 
0.49 
0.20 
0.29 
0.20 
0.38 
0.49 

P(hc) 

0.40 
0.42 
0.80 
0.33 
0.60 
0.22 
0.31 
0.73 
0.69 
0.56 
0.40 
1.00 
0.38 
0.36 
0.29 
0.38 
0.49 

Mapping of fuzzy vegetation communities 
The calculated conditional probabilities are used to estimate the presence of vegetation 
communities throughout the test site, i.e. the mapping of vegetation communities. As 
expected, only the vegetation community types having a strong correlation with a specific 
explanatory variable are mapped with a satisfying accuracy (table 5.3). This is particularly 
the case for dense scrub of Ligustrum vulgare hcl and dense scrub of Hippophae 
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rhamnoides hc5. The probability fields of these two community types are presented in 
figure 5.5. None of the herbaceous community types are mapped with an adequate 
accuracy, which is not surprising because a single herbaceous structural type 
accommodates generally 2 or 3 vegetation community types. Although the introduced 
mapping procedure does not yield an accurate estimation of the presence of a vegetation 
community on a specific location, the method is unbiased and therefore yields more 
accurate aerial estimates of vegetation communities in a test site given a point data set and 
a spatial model of the herbaceous structure of the vegetation. 

hc1. Dense shrub of 
Llgustrum vulgare 

50 100 

Hippophae cover (%) 

100 

I 

hc4. Dense shrub of 
Ligustrum vulgare and 
Hippophae rhamnoides 

probability 
1 

50 100 

Hippophae cover (%) 

Figure 5.4 Examples of two dimensional environmental amplitudes of 
vegetation communities he dominated by shrubs. 

Table 5.3 Validation of the estimated presence of vegetation communities he, 
where R2 is the coefficient of determination and Em is the average 
estimation error (N = 263 relevees). 

He 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 all 
"R5 0.63 0.31 0.35 0.34 0.57 0.36 0.26 0.21 0.23 0.18 0.24 0.22 0.18 0.21 0.19 0.16 0.28 0.27 
Em 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.02 0.00 0.00 

Clearly the presence of vegetation communities can not be explained accurately from 
vegetation structural data only. Although several vegetation communities occur in single 
herbaceous structural types, they usually exist under different abiotic site conditions. The 
mapping of vegetation communities is likely to improve when besides biotic site 
characteristics also abiotic site conditions are incorporated in the model. The description of 
the vegetation communities (table 5.1) shows that for instance the acidity of the soil is a 
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discriminating variable. However, soil characteristics like acidity have to be mapped in the 
field. Consequently, the construction of a detailed spatial data model of soil characteristics 
is a laborious and expensive task and it seems more efficient and practical to employ any 
available survey capacity in aid of vegetation mapping by means of manual photo-
interpretation. 

probability 

sandy area 
and woodland 

scale 1:5000 

Figure 5.5 Estimated presence of two herbaceous community types 
expressed by probability. 

5.4 Conclusions 

Many landscape ecological processes can be monitored with a multi-temporal map of the 
vegetation structure. Also for the planning of many management measures a detailed map 
of the vegetation structure, conveniendy obtained by the semi-automatic interpretation of 
high resolution imagery, is sufficient. However, the monitoring of developments in 
vegetation composition can not be performed with these maps. For this purpose a nature 
manager generally applies a temporal set of relevees obtained from permanent plots 
(Austin, 1981). Although the latter data set is suitable to analyse point processes, the nature 
of the data is not appropriate for the spatial analysis of vegetation dynamics. The objective 
of this chapter was to provide and test methods to link up spatial data on vegetation 
structure with a set of point data on vegetation composition, in order to obtain a digital 
spatial data model of the vegetation composition expressed by vegetation communities. 
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As was stated in the introductory section of this chapter an accurate procedure for the 
automatic mapping of vegetation communities from environmental variables requires a 
fine-tuned definition of the vegetation communities and a powerful explanatory model. 
The first condition was met by applying the concept of fuzzy vegetation communities. The 
vegetation community types were fine-tuned by assigning abundant species extra weight in 
the construction of the fuzzy community types and by optimising the degree of fuzziness. 
Fuzzy classification of the vegetation allows for the quantification of continuous turnover 
between community types. After the optimisation of the degree of vagueness the fuzzy 
community types show a closer resemblance with the vegetation abundance data in the 
relevees compared to the classical crisp classes. Therefore it can be concluded that 
vegetation communities in the dunes have a fuzzy nature. 

The second objective, i.e. the construction of the explanatory model, was not successfully 
met. The generalised relationship between vegetation community types and herbaceous 
structural data was quantified by conditional probabilities and environmental amplitudes. 
Although these statistics provide a proper insight in the many to many relationship between 
the two data sets, an accurate map of the vegetation communities could not be produced. 
Clearly, vegetation structural data are not sufficient to map the vegetation composition in 
the dunes. Additional information regarding the abiotic site characteristics seem 
indispensible to improve the explanatory power of the model. However, maps with soils 
characteristics can only be obtained by a field survey and when doing fieldwork the direct 
mapping of vegetation communities is obviously more practical. Fieldwork seems 
indispensible for the accurate mapping of vegetation communities in the dunes, unless 
community types can be mapped with hyperspectral images. It is recommended to test the 
applicability of these images for the mapping of vegetation types in the dunes. 
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6. Fuzzy ecohydrological modelling of dune slacks 

6.1 Introduction 

Drinking-water production and nature conservation are the main functions of the 
Amsterdam Waterworks Dunes (sect. 1.5). Traditionally water production is the most 
important of the two. This often resulted in hydrological management operations 
which conflicted with nature's interest, especially in dune slacks. Since the start of the 
water production in 1850 many of the dune slacks are desiccated and lost their specific 
ecological values. Nowadays less than one percent of the area is moist were it used to 
be approximately 30 percent. 

However, for some time now, the ecological functions have been revalued and 
have become more equivalent to the function of drinking-water production 
necessitating a redistribution of the resources in the area. In order to support deliberate 
decision making in hydrological and ecological management, the Amsterdam Water 
Supply conducted an ecohydrological study in the area. Central to this study was the 
construction of an ecohydrological model, by which the impact of the hydrological 
management on ecological values was studied. In scenario studies the possibilities to 
regenerate former dune slacks by reduction or reallocation of groundwater catchment 
should be tested, if necessary supported by nature management. 

Existing ecohydrological models can be categorised in deterministic (Gremmen et al., 
1990; Witte, 1998), statistical (Barendregt and Wassen, 1989), mathematical and 
expert models (Guerrin, 1991) quantifying species or ecotope behaviour on a local or 
regional scale. A review of ecohydrological models available in the Netherlands is 
given by Van der Veen (1994). At the start of the project, no ecohydrological model 
was calibrated for both young and old dune slacks, while data to do so were lacking. 
Despite a lack of data, experts gained some adequate knowledge about the 
ecohydrological system and it was decided to formalise this knowledge in a logical 
expert model. 

This chapter describes a fuzzy ecohydrological expert model ECOMOD. The model 
estimates the major ecotope parameters, i.e. vegetation structure, moisture content, 
nutrient availability and acidity of the soil, from some easy to measure biotic and 
abiotic input variables. Although ECOMOD is an explanatory model, it can be used to 
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predict future ecotopes by inputting predicted input variables. 
ECOMOD is build with concepts from fuzzy mathematics. Fuzzy mathematics 

provides a mathematical framework which is more closely related to human reasoning 
compared to the classical Boolean set theory (Klir and Folger, 1988; Zimmermann, 
1985). The application of fuzzy classification and fuzzy reasoning in ecology enables 
the modelling of ecological gradients in terms of continuously varying class 
combinations (sect. 2.2.3.) (e.g. Burrough, 1989; Bosserman and Ragade, 1982; 
Kollias and Voliotis, 1991; Salski, 1992). Wang et al. (1990) showed that fuzzy 
inference models can be easily implemented with standard functionality of GI systems. 

The next section describes the construction of ECOMOD. ECOMOD is 
implemented with ARC/GRID and ARC Macro Language. By sensitivity analysis the 
significance of the model for ecohydrological scenario studies is tested. 

6.2 Material and methods 

After the goal definition, the creation of a fuzzy knowledge-based model generally 
involves the following development stages (after Salski, 1992): 

• determination of the model structure (sect. 6.2.1) 
• formulation of knowledge representation (sect. 6.2.2) 
• definition of inference rules (sect. 6.2.3) 
• defuzzification (sect. 6.2.4) 
• calibration and sensitivity analysis (sect 6.2.5) 

6.2.1 General model structure 

The structure of ECOMOD is taken from Koerselman et al. (1992) and depicted in 
figure 6.1, showing the model in- and output as well as its submodels. The model input 
consists of some relatively easy to measure and/or to estimate variables (table 6.1) 
(Stevers et al., 1987). The water table is predicted by a quantitative hydrological model 
steered by a hydrological management scenario (Olsthoorn, 1998). The other input 
variables are prepared from elevation, soil and vegetation structural data and the nature 
management measures as specified by a management scenario. The implemented 
management measures are 'no action' (which is the default), mowing, sod cutting and 
topsoil removal. The effect of the latter three measures is quantified by a change in site 
conditions. For instance mowing causes the vegetation structure to be 'mowed 
herbaceous', while sod cutting and topsoil removal have effect on the organic matter 
content and acidity of the soil, the relief and vegetation structure. Neither the 
specification of the hydrological and management scenario, nor the preparation of the 
input variables is a part of the functionality of ECOMOD. 
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Figure 6.1 Diagram of ECOMOD. 

The model output consists of four variables; vegetation structure VS, moisture content 
MC, nutrient availability NA and acidity AC (table 6.1). These four variables are 
chosen to enable a rough discrimination between different ecotope types. Moisture 
content and nutrient availability are highly discriminating attributes because together 
with light they form the primary production factors for vegetation. The irradiance is 
not used as a variable for it is on average spatially constant in more or less flat 
landscapes. The acidity is added to the feature space for it affects the species 
composition, as does the vegetation structure. 

The variable 'vegetation structure' takes nominal values. The abiotic output variables 
take ordered values. For instance the variable moisture content takes the values dry, 
moist, wet and open water. For a specific site ECOMOD quantifies the strength of the 
relationship of the site characteristics with each class by a membership value. Because 
four ordinal moisture content classes are distinguished, the moisture content of a 
specific terrain element (i,j) is represented by a vector of four membership values 
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Table 6.1 The input and output of ECOMOD. The quantitative variables are 
specified by dimension. For a fuzzy variable a vector of 
membership values MV with class label is given. 

variable dimension or membership vector 

INPUT 

springtime water table m 
terrain height m 
acidity pH 
organic mass kg/m2 

vegetation structure {My^^<-i MST*, MV"™"*1, MVshnl>) 

OUTPUT 

vegetation structure (MVf«baceoUS| Msr>^i MV™0™6", M V ^ ) 

moisture content ( M V * My™**, MV™8", MV0"8"W3ter) 
nutrient availability (M\r»°"9*c« , ,* :, MV*ifcc*ophte MV™«*ophte ^ m , ^ ^ v p ^ t ^ 
acidity (MV3*1, MV"8"1"1, M V31**18) 

MCOJ) - (MVdry, MVmoist, MVwet, MVopen water)MC
(iij). For instance, the vector 

(0.0,0.4,0.6,0.0)MC
(ij) means that the site has nearly equal resemblance with the classes 

'moist' and 'wet' and no resemblance with the classes 'dry' and 'open water'. For each 
output variable a vector of membership values is produced. Hence, ECOMOD 
expresses the ecohydrological conditions of a site in four vectors of membership 
values, i.e. 

VS(i,) = (M V*18*3080118, MVrou9h, MV™""*, M V * * ) ™ i) 6.1 
MC(i,), = (MV*, MV™, MV™61, MVopenwa,8r)MC

(i,j) 
NA/ (MVW a y o l i 9 0 ' r O p h l C Myoligotrophic j^ymesotrophic (y)yeu, raPh ic |v]\/hW ,8 , , raPhie)NA.... 

ACdj, = (M V3*, MV"6""31, M O ^ J I 

Note that the vegetation structure type 'mowed' is distinguished from the general type 
'herbaceous'. This enables ECOMOD to infer a specific nutrient availability for this 
cover type. 

The four output vectors of ECOMOD can be used to construct ecotope types, 
where an ecotope type is characterised by a unique combination of four classes, one 
from each output variable. For example an ecotope is characterised as 'herbaceous, 
moist, mesotrophic and alkaline'. 

Two major submodels of ECOMOD process the input data to four output vectors of 
membership values (fig. 6.1): 

• fuzzification of quantitative variables to the fuzzy variables moisture content MC, 
acidity AC and organic matter content OM 

• inference of the nutrient availability NA and the vegetation structure VS 
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The first submodel transforms quantitative input variables to fuzzy data. This 
transformation is called fuzzification and yields a vector of membership values. The 
moisture content MC is calculated as a function of the depth of the water table and the 
organic matter content of the soil, 

MC = f(relief - water table, organic mass) 6.2 

The acidity AC is modelled as a function of the soil pH and the moisture content, 

AC = f(pH, MC) 6.3 

where the groundwater in the study area is presumed to be alkaline. The final 
fuzzification step is the calculation of the organic matter content OM as a function of 
organic mass in the topsoil, 

OM = f(organic mass) 6.4 

Subsequently, the three fuzzy variables together with the vegetation structure are fed in 
to a second submodel to infer the nutrient availability of the soil and the disturbance of 
the vegetation. The nutrient availability NA is derived as, 

NA = f(VS, MC, AC, OM) 6.5 

Sudden changes in the hydrological management might have an effect on the moisture 
content and acidity of the soil. In turn these changes in soil conditions disturb the 
vegetation. For instance a herbaceous vegetation might be covered with a growth of 
tangled species. The vegetation structure VS on time ti, i.e. to + 5-10 years, is inferred 
from the vegetation structure and organic matter content on to as well as the change in 
moisture content and acidity of the soil between dates to and ti 

VSM = f(VS,0, MCto, MCH AC,, OMB) 6.6 

The general structure of ECOMOD is captured by the equations in this section. In the 
next sections these functions are specified. The specification process falls apart in the 
formulation of expert knowledge (sect. 6.2.2) and the processing of this knowledge 
through the definition of inference rules (sect. 6.2.3). 

6.2.2 Fuzzy knowledge representation 

The input of expert knowledge concerns (1) the specification of the fuzzy variables, 
moisture content, acidity and organic matter content, enabling the fuzzification of 
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quantitative variables and (2) the specification of decision rules enabling the inference 
of nutrient availability and vegetation disturbance. The set of decision rules is 
conveniently ordered in a fuzzy relation. Subsequently, the concepts of fuzzy variables 
and fuzzy relations are elucidated. 

Definition of fuzzy variables 

As explained in the previous section, the variables moisture content, acidity and 
organic matter content consist of some ordered classes. By defining a membership 
function for each class a variable is specified. For instance the variable organic matter 
content OM is represented by three ordinal classes, sandy, moderate humus, humus, 
defined along the quantitative variable 'organic matter' (fig. 6.2). The membership 
function of the class sandy is denoted as MFsandy(a). The variable OM is thus defined 
by three membership functions, one for each class: 

OM = {MF*"*(a), Mrode ra !ehun ,us(a), MFh™(a)} 6.7 

Because a membership function is allowed to take any value 0 < MF(a) ^ 1, these 
membership functions specify fuzzy classes or fuzzy sets. Variables defined by several 
ordinal fuzzy sets are called fuzzy variables (Klir and Folger, 1988). 

Organic matter content 

Figure 6.2 Fuzzy variable representing organic matter content. 

The fuzzy sets of the fuzzy variables organic matter content and acidity are defined 
along a single variable. The fuzzy variable moisture content, however, is defined along 
two variables, i.e. depth of the water table A and the organic mass in the soil B. 
Consequendy, the fuzzy sets of the fuzzy variable moisture content become two 
dimensional, 

MC = {MF*y(a,b), MFmois,(a,b), MFwet(a,b), M F ^ ^ a . b ) } 6.8 

In ECOMOD piece wise linear membership functions (eq. 2.3) are implemented. The 
parameters of a membership function are estimated by six experts independently under 
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the condition that overlapping membership functions sum to one. A mean and standard 
deviation is calculated for each parameter. These statistics quantify the uncertainty in 
the fuzzy class definitions. 

Definition of fuzzy relations (sets of decision rules) 

The nutrient availability in sandy dunes is largely governed by processes depending on 
the following four variables: vegetation structure, moisture content, acidity and 
nutrient supply captured by the organic matter (Koerselman et al., 1992; Beckhoven, 
1995). ECOMOD applies decision rules to infer the nutrient availability. Consider the 
following decision rule: 

IF MVhe*aceous=1 and MV*y=1 and M V ^ I and MVhumous=1 THEN 6.9 
Mv^ i go , rop , , l c=0.58 and MV"l9O,rophlc=0.17 and M\res*ophlc=0.23 and 
M\T,,raphlc=0.02 and MVh*ertrop,"c=0 

A combination of four classes, i.e. one from each fuzzy variable, provides the 
condition for which the conclusion holds. The conclusion consists of a vector of 5 
membership values, where the membership grade indicates the strength of association 
between the conditional classes and the hypothetical nutrient availability class. By 
defining a decision rule for every possible combination of conditional classes, all 
hypothetical nutrient availability states are specified. The set of all decision rules is 
conveniently represented by a fuzzy relation. 

The fuzzy relation describing the relationship between conditional classes and nutrient 
availability classes RNA(VS,MC,AC,OM,NA) is a subset of the Cartesian product of 
the five distinguished fuzzy variables, 

R^VS.MCACOC.NA) c (VS<g>MC®AC®OC)<g>NA 6.10 

The subset of the Cartesian product is defined by a membership function, such that a 
membership value is given for a nutrient availability class na under the presence of 
four conditional classes (vs,mc,ac,oc): 

0 < MV^nalvs.mcac.oc) < 1 6.11 

In the fuzzy relation the variable vegetation structure VS is simplified to 3 classes, i.e. 
herbaceous, mowed and scrub. No decisions rules have been specified for 'open water'. 
Making all variables have three ordinal classes except for nutrient availability having 5 
classes. Thus the fuzzy relation contains 405 (=3*3*3*3*5) ordered 5-tuples consisting 
of 5 classes and a membership value. Again the membership values are estimated by 6 
experts. From these six independent values a mean membership value and a standard 
deviation is calculated. The latter statistic quantifies the intersubjective uncertainty. 
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Note that the intension of a nutrient availability class is not defined, i.e. the classes are 
not specified by a membership function along a quantitative variable. The nutrient 
availability classes therefore have a qualitative nature (Guerrin, 1991), contrarily to for 
instance the moisture content classes which are quantified by a membership function. 
If needed, the membership function of nutrient availability classes can be defined 
along a quantitative variable, like biomass production. 

Next to the definition of a fuzzy relation enabling the inference of the nutrient 
availability, a second fuzzy relation is defined by which the vegetation structure is 
predicted after a change in soil moisture content. The fuzzy relation describing the 
relationship between conditional classes and the future vegetation structure 
R (VSto,MCto,MCti,ACto,OMto,VSti) is a subset of the Cartesian product of the six 
distinguished fuzzy variables, 

Rvs(VSto,MCt0>MCi,ACro,OMK,,VSti) c (VS,o®MC^®MGi®ACK)®OMlo)®VSti 6.12 

Again, the subset of the Cartesian product is defined by a membership function, such 
that a membership value is given for a vegetation structural class vsti under the 
presence of five conditional classes (vsto,mcto,mcti,acto,omto): 

0 < MVRvs(vstilvsto,mcto,mcti,acto,omto) < 1 6.13 

The membership values are estimated by 6 experts independently, from which the 
mean and standard deviation are calculated. 

6.2.3 Fuzzification and inference 

Now that the expert knowledge is formalised in the membership functions of fuzzy sets 
and fuzzy relations respectively, the fuzzy operations can be defined for the processing 
of quantitative input variables to the output vectors of membership values. 

Fuzzification of moisture content, acidity and organic matter content 
First step is the fuzzification of the attribute values of the input variables 'depth of the 
water table' (m), acidity (pH) and organic mass (kg/m2) for a specific terrain element 
(i,j). By calculating the membership values for each fuzzy variable, three vectors of 
membership values are obtained, i.e. (MVdTy, MVmoist, MVwet, MVopen wa,er)MC(i,j), 
(MVacid, MVneu,ral, MVk,Bne)AC

0j) and (MVsandy, MVmoderate humus, MVhumus)0M
(ij). These 

vectors of membership values together with the decision rules, represented by the 
fuzzy relation RNA(VS,MC,AC,OM,NA), are used to infer the nutrient availability. The 
process of inference consists of the following 4 steps. 
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Inference of nutrient availability 
Step 1:A membership value is calculated for the joint occurrence of the conditional 
classes in a terrain element (i,j). This so called joint membership value is equal to the 
minimum membership value associated with each conditional class. The minimum 
operator is the standard fuzzy equivalent for the Boolean intersection operator AND. 
The formula for one specific class combination is: 

MV(vs,mc,ac,oc)(i,i) = MIN[MVV8
(i,|),MVmc

(i,j),MVac
(i,j),MV00

(i,,)] 6.14 

where vs, mc, ac and oc stand for one of the classes of a fuzzy variable. By calculating 
eq. 6.14 for all class combinations the following fuzzy relation is obtained, 

R(VS,MC,AC,OC)(M) c VS®MC®AC®OC 6.15 

which defines a subset of the Cartesian product on the fuzzy variables VS, MC, AC 
and OC. The latter fuzzy relation provides a complete specification of the site 
characteristics of element (i,j). Note that fuzzy relations can be interpreted as fuzzy 
sets in product space, enabling the integration of the two concepts (Zimmermann, 
1985). 

Step 2: The relation produced in step 1 provides the input for the decision rules 
concerning the nutrient availability. A join of the latter relation with the fuzzy relation 
RNA combines the fuzzy data of a specific terrain element with the nutrient availability: 

R(VS,MC,AC,OC,NA)(,j, = R(VS,MC,AC,OC)fl,D * R^VS.MCAC.OCNA) 6.16 

The join is performed under the condition that the class combination is equal in both 
relations. Again the joint membership value is obtained by the minimum operator, 

MV(vs,mc,ac,oc,na)(i,j) = MIN[MV(vs,mc,ac,oc)(i,j),MVRw(vs,mc,ac,oc,na)] 6.17 

By calculating eq. 6.17 for all class combinations the fuzzy relation in eq. 6.16 is 
obtained. 

Step 3: By projecting R(VS,MC,AC,OC,NA)(ij) on the nutrient availability a fuzzy 
relation is obtained representing all possible nutrient availability classes and their 
membership values for a specific terrain element: 

R(NA)(ij) = [R(VS,MC,AC,OC,NA)(i,i) i (NA)] 6.18 

The membership function is derived by a fuzzy union operator, which is equivalent to 
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the Boolean OR. The marginal membership value is obtained by taking the maximum 
value: 

MV(na)(i,j)= MAX [MV(i,j)(vs,mc,ac,oc,na)] 6.19 
vseVS mceMC aceAC oceOC 

Step 4: Finally the membership values in R(NA)(ij) are normalised and the relation is 
rewritten to a vector of 5 membership values (MVvery •a**"*"*, MV°lis°,roPhk, 
MVmesotrophic j^yeutrophic Myhypertrophic^A . ̂  J J ^ ^ m e m b e r s h i p v a l u e s m m g fr^ 

vector sum to one, as do the membership values of the other fuzzy variables. By 
performing step 4 the inference of the nutrient availability for a specific terrain 
element is completed. 

Inference of vegetation structure 

Additionally to the soil characteristics, vegetation structure and depth of the water 
table on a reference date to, the inference of the vegetation structure requires the 
ground water table at a date 5 years later ti. Both water tables are estimated by a 
hydrological model and fuzzified, yielding MC,o and MQi. When all fuzzy input 
variables are prepared the inference of the vegetation structure on time ti follows a 
procedure similar to the inference of the nutrient availability. In four steps the future 
vegetation structure expressed by (MVherbaceou\ MVrough, MVm0Wed, MVshrub)vstl

(i,j) is 
derived from the fuzzy relation Rvs(VSto,MCto,MCti,ACto,OMl0,VSti) and the required 
input variables. 

Construction of ecotopes 
From the fuzzy data on vegetation structure, moisture content, nutrient availability and 
acidity, ecotope types can be constructed. The construction process holds the 
calculation of the cooccurence of the classes of the four mentioned variables. By 
aggregation a membership function is derived, which defines a subset of the Cartesian 
product on the fuzzy variables VS, MC, NA and AC. The result thus being a fuzzy 
relation, 

R(VS,MC,NA,AC)(ij) c VS®MC®NA«AC 6.20 

The joint membership value is obtained by the standard fuzzy intersection operator. 
The formula for one specific class combination is: 

MV(vs,mc,na,ac)(i,i) = MIN[MVV8(i,j),M\rc
(i,j),MVni(i,,),MVac(i.|)] 6.21 

By calculating eq. 6.21 for each class combination the fuzzy relation in eq 6.20 is 
obtained. Note that the model possibly outputs more than one ecotope type for a single 
site. 
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6.2.4 Defuzzification 

ECOMOD yields a 15 dimensional fuzzy data model. Each axis of this space is 
defined by a single class of one of the four fuzzy variables, i.e. 4 vegetation structural 
classes, 3 moisture content classes, 5 nutrient availability classes and 3 acidity classes. 
The scale of the axes is measured by membership values. The construction of ecotope 
types in the previous section, is an example of creating a specific view on this data 
model by employing all its dimensions. However for some applications such a 
complex view on the data set is not needed and a synoptic view on the fuzzy data 
model might satisfy the information demand. For instance for visualisation (Hootsman 
and van der Wei, 1993). Synopsis can be obtained by reducing the dimensionality of 
the data model by defuzzification. 

Consider for example a vector of membership values (0.14, 0.42, 0.29, 0.13, 
0.02) indicating the nutrient availability of a specific site. This vector can be 
graphically presented along an ratio scale, where the ratio values, 0, 1, 2, 3, and 4 
indicate the respective nutrient availability classes (fig. 6.3). Provided that it is 
justified to arrange the membership values along a ratio scale, the overall nutrient 
availability status can be expressed by the point of gravity (von Altrock, 1991). In this 
case the point of gravity measures 1.47, indicating that the nutrient availability is in 
between oligotrophic and mesotrophic. Although the nutrient availability is still 
expressed by continuous attribute values, the dimensionality of the nutrient availability 
vector is reduced to one and it is not possible to speak of fuzzy data any more. 
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Figure 6.3 Defuzzification of a vector of membership values for nutrient 
availability by calculating a point of gravity along an ordinal scale. 
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6.2.5 Sensitivity analysis 

A synthetic data set is used to run ECOMOD systematically for all realistic abiotic site 
conditions and test the behaviour of the model. This data set contains all realistic 
abiotic site conditions represented by the variables 'depth of water table', acidity and 
organic matter content for herbaceous sites. Monte Carlo analysis is employed to trace 
the propagation of errors through the model. The Monte Carlo method generates the 
distribution of the output membership values by repeatedly running the model with 
input attribute values and model parameters, that are randomly sampled from their 
probability distribution (Manly, 1991; Heuvelink, 1993). When the number of runs is 
sufficiently large the distribution of the output membership values approximates the 
true distribution of the membership values. Though computationally intensive, the 
Monte Carlo method is easily implemented and generally applicable to error 
propagation type of problems in GI systems (Heuvelink, 1993). 

The Monte Carlo analysis can take both the uncertainty in model parameters 
and input variables into account. It is presumed that the input variables are 
uncorrelated and that the probability distributions are normally distributed. Also the 
model parameters are presumed to be normally distributed. Thousand runs were 
performed for each analysis, generating a massive amount of data. Thousand 
membership values are calculated for each output class and each grid cell. By 
calculating summary statistics the distribution of these values can be described 
(Heuvelink, 1993). Alternatively the membership values in a distribution are 
aggregated conform a method proposed by Klir and Folger (1988) (appendix IT). By 
the aggregation process the thousand vectors of membership values are aggregated to a 
single vector of pseudo-probability values. When used in Monte Carlo mode, 
ECOMOD outputs for vectors of pseudo-probabilities to expresses the ecohydrological 
conditions of a site and eq. 6.1 becomes: 

\ / o /^herbaceous ^ rough „mowed Kshnjb\VS « n o 

VS(i,|) = (p , P ,P ,P ) (i,j) 6.22 
k*r* / « * y -.moist „wet „open watervMC 
MC(l,j) = (p ', p , p , p*** ) (i,i) 
MA _ /^wryoligotrophic oligotrophic mesotrophic eulrophic h )̂ertrophiCvNA 
INM(i.i> - I P > P • P • P > P I (i.i) 
A ^ / „add „ neutral _allcaline\AC 
AC ( i,i) = ( p . P . P ) 0.J) 

6.3 Results and discussion 

The formalisation of expert knowledge not only requires an appropriate mathematical 
framework to enable the representation and processing of this knowledge, but also 
suitable methods for the extraction of knowledge from experts. Expert knowledge is 
needed to structure the model and to create a knowledge base. While the mathematical 
specification of the model is usually not the bottleneck, the process of knowledge 
extraction can bring about serious difficulties (Hoffman, 1987; Lundberg, 1989). This 
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is particularly the case when the requirements for the knowledge base are not clearly 
specified. Due to its simple systematic model structure, the knowledge base of 
ECOMOD is fully specified by a set of membership functions. Therefore, a complete 
knowledge base is obtained by estimating the parameters of these functions. 

Estimated membership functions 
The calibration of ECOMOD for dune slacks is performed by a panel of 6 experts, 
who estimated the parameters of seperate linear membership functions. The 
membership functions of the fuzzy variables moisture content, acidity and organic 
matter content are presented in figure 6.4. The turn-over between two adjacent fuzzy 
classes is governed by the location of the cross-over point and the incidence of the 
membership functions. The incidence of the function, quantified by the range of 
overlap between the classes, determines the fuzziness of the transition. The wider the 
range, the more gradual the transition between classes becomes. The overlap can vary 
between classes of one fuzzy variable. For example, the separation between the 
moisture content classes dry and moist is more vague than the distinction between the 
classes moist and wet. 

The Boolean equivalent of fuzzy classes is defined by exact class boundaries at 
a cross-over point. The turn-over between Boolean classes is abrupt and does not 
reflect the vagueness the experts seem to agree upon. Although there is agreement on 
the presence of vagueness between classes, the experts not always agree on the 
magnitude of the range of overlap as well as the location of the cross-over point. The 
uncertainty with respect to cross-over point and the incidence of a membership 
function is quantified by a standard deviation (fig. 6.4). 

The team of experts was also consulted to estimate the membership function values 
related to the set of decision rules providing the relationship between site conditions, 
indicated by a combination of input classes, and their hypothetical nutrient availability 
status. Appendix V contains a listing of all decision rules. The decision rules are not 
equally fuzzy, i.e. for some soil conditions rather crisp judgements are obtained while 
other site characteristics yield rather vague decision rules. For example the nutrient 
availability of a dry, sandy and neutral soil is relatively sharp indicated by the 
following vector of membership values (0.17, 0.66, 0.17, 0, 0). This qualification does 
not apply to a soil with moist, very humus and acid characteristics, yielding a vague 
vector of membership values (0.00, 0.28, 0.22, 0.15, 0.18). 

The membership values of a vague vector generally have a high standard 
deviation. Obviously, high standard deviations result from conflicting judgements 
produced by the experts. While each individual expert generally produced fairly crisp 
decision rules, much of the fuzziness proceeds from the aggregation of knowledge of 
several experts. The vagueness of decision rules as quantified by vectors of 
membership values provide an overall quantification of the inherent vagueness of the 
system and the intersubjectivity between experts. 
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Figure 6.4 The estimated membership functions of the fuzzy sets used by 
ECOMOD. The function parameters are presented by mean and 
standard deviation. 
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The direct estimation of membership functions and/or membership function values 
given an a priori membership function is known as the semantic import model 
(Burrough, 1989). This approach is permitted when experts have a proper impression 
of the system they want to model. In particular they need to have a common notion of 
the distinguished classes in the model. By calculating the statistics of a set of 
parameters produced by a panel of experts an intersubjectively calibrated model is 
obtained. Because available knowledge is used, the semantic import of knowledge is a 
cheap and flexible method. The use of expert knowledge is flexible because there is no 
need for season dependent and time consuming field observations. 

Sensitivity analysis 
Central to ECOMOD is the explanation of the nutrient availability in the soil from soil 
moisture content, acidity, organic matter content and vegetation structure. ECOMOD 
outputs a vector of 5 pseudo-probabilities, i.e. one pseudo-probability for each nutrient 
availability class. Plate 3 shows the sensitivity of the estimated nutrient availability 
status for uncertainty in model parameters and input data. The model was run four 
times with a different input, these are: 

• Mean parameters for membership functions and mean values for abiotic input. 
• Normally distributed parameters for membership functions and mean values for 

abiotic input. 
• Mean parameters for membership functions and normally distributed values for 

abiotic input. 
• Normally distributed parameters for membership functions and normally 

distributed values for abiotic input. 

Firstly, consider the uncertainty captured by the estimated membership functions in the 
model (run 1). Pseudo-probability values greater than 0.7 for a single class indicate a 
fairly certain estimation of the nutrient availability status. This is the case for 
dry/acid/sandy and moist/neutral/humus sites. For some abiotic conditions the model 
yields a vector with low pseudo-probability values indicating a high level of 
uncertainty. For instance very humus sites induce low probability values for the 
nutrient availability classes. Abiotic gradients between moisture content and/or acidity 
classes also result in uncertain estimations for the nutrient availability. 

Secondly, the uncertainty in the parameters of the model is taken into account (run 2). 
The uncertainty related to the definition of fuzzy sets is restricted to the abiotic 
gradient situations. Variation in fuzzy sets cause wider and more gradual transition 
zones between the classes of the fuzzy variables moisture content, acidity and organic 
matter content. In case of abiotic gradients this results in smoothed pseudo-probability 
values for the nutrient availability classes. Uncertainty in the decision rules, i.e. the 
fuzzy relation, has no noticeable effect on the estimated nutrient availability status. 
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The third run shows the sensitivity of the nutrient availability model to uncertainty of 
the input parameters, i.e. the depth of water table, acidity and organic matter content of 
the soil (plate 3). For each variable a realistic mapping accuracy is adopted. In fact 
variation of an abiotic variable and variation in the turn-over point between fuzzy 
classes both have the same effect on the estimated pseudo-probabilities for the nutrient 
availability classes. For instance the depth of the water table is estimated with a 
standard deviation of 0.21 m, which is in the same order of magnitude of the standard 
deviation of the turn-over point between the classes dry/moist and moist/wet, however, 
more than twice the standard deviation of the turn-over point between the classes 
'open water' and wet. For the latter classes uncertainty related to the abiotic input 
variables has more effect on the estimated nutrient availability than the uncertainty 
related to the model parameters. The uncertainty related to the mapped organic matter 
content is more than four times the uncertainty related to the definition of the organic 
matter content classes, i.e. standard deviation of 2.1 and 0.5 kg/m2. The acidity (pH) of 
the soil can be estimated with an accuracy of 0.7 which is equal to the uncertainty 
related to the definition of the acidity classes. Compared to the model parameters, the 
input variables impose more uncertainty to the estimated pseudo-probability values for 
the nutrient availability classes as can be concluded from the results of run 2 and 3. 

Finally, the overall uncertainty is calculated (run 4). Clearly the model output is not 
very specific any more and measures of fuzziness or ambiguity would give high values 
(Hootsman and van de Wei, 1993). In most situations the highest pseudo-probability 
value for a nutrient availability class does not exceed 0.50, indicating the high 
fuzziness of the output. Apparently, the estimated pseudo-probabilities are rather 
sensitive to the uncertainty in model parameters and input data. 

Besides pseudo-probability values for each nutrient availability class, ECOMOD 
produces a defuzzified nutrient availability status. Defuzzification of the vector of 5 
probability values yields the overall nutrient availability status of a site quantified by a 
point of gravity measured along a ratio scale. The overall nutrient availability status is 
plotted beyond the pseudo-probability values in plate 3. The defuzzified nutrient 
availability provides a convenient synoptic view on the general trends in the model 
output. Although the output is defuzzified, the nutrient availability status is expressed 
by a continuous measure. Moreover the output is obtained through fuzzy model 
calculations and inference, which is more appropriate than Boolean modelling. 

Now consider the effect of increasing uncertainty on the overall nutrient 
availability status (fig. 6.5). Because the distribution of the differences in nutrient 
availability between the model runs is symmetric, adding uncertainty to the model does 
not result in a systematic shift in the estimated nutrient availability status. More than 
97 percent of the sites show a deviation equal or smaller than 0.3 times the class width 
between the overall nutrient availability resulting from the first run of the model and 
the forth run with maximum uncertainty. The maximum deviation with a width of half 
a class, occurs on very few sites. 
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Brun4 - runl 
Drun4- run2 
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Difference in overall nutrient availability 
(pseudo-probability) 

Figure 6.5 Distribution of the differences in overall nutrient availabilty between 
the four runs of ECOMOD. 

Apparently, the defuzzified nutrient availability status is not very sensitive to 
uncertainty related to model parameters and input variables. Hence the synoptic view 
on the model results obtained by defuzzification allows you to discard these 
uncertainties. This is an economical option as it saves computing time. If one is 
primarily interested in the pseudo-probability for a specific class, then all sources of 
uncertainty have to be taken into account in a Monte Carlo analysis. 

Application of ECOMOD in scenario studies 
The Amsterdam Water Supply applies ECOMOD to study the impact of different 
hydrological management scenarios on the ecohydrological value of the Amsterdam 
Waterworks Dunes. Plate 4 shows the present ecohydrological status of a single dune 
slack in the test site. The soil variables are mapped by block kriging of point samples. 
The water table is estimated by a hydrological model. Only in a small part of the slack 
the topsoil is affected by ground water resulting in soil moisture conditions ranging 
from dry to moist. Large parts of the slack are dissicated. 

Typically two successive runs of ECOMOD are needed to quantify future 
ecohydrological site characteristics. The first run predicts the future site characteristics 
resulting from a hydrological management scenario (fig. 6.1). The output of this run is 
used to analyse the effect of changes in the depth of the water table on the vegetation 
structure and soil characteristics. The latter analysis results in the planning of nature 
management measures to counteract undesired developments like the succession 
towards species poor rough vegetation types and high nutrient availability levels. The 
second run of ECOMOD takes both the hydrological and nature management scenario 
into account resulting in deliberated future ecohydrological site conditions. 
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Plate 4 presents the future characteristics of the dune slack after reallocation of the 
water production in the area. The latter measure results in a raise of the groundwater 
level which creates locally wet soil conditions and open water. These changes in the 
hydrological situation bring about some disturbance of the vegetation causing the 
herbaceous vegetation to develop into rough vegetation types. These impacts are 
counteracted by planning the nature management measures mowing and sod cutting. 
By sod cutting the organic matter content is reduced and the vegetation removed. 
Mowing of grasslands prevents the accumulation of biomass and litter. 

The fuzzy data model generated by ECOMOD is the starting point for ecological 
analysis and scenario evaluation. By querying the data model many views can be 
created. In the previous section the data model was analysed to optimise the allocation 
of nature management measures. Scenarios can be evaluated by viewing on the impact 
of differences in management. This evaluation is performed by aggregating the 
ecohydrological variables to ecotope types. The development of two ecotope types is 
presented in figure 6.6. Both ecotope types represent high ecological values. The 
planned management measures will result in a significant increase in the presence of 
these types. If required the changes in aerial extent of the different ecotope types can 
be valued by rating each ecotope type according to its ecological significance. 

Dry, neutral and eutrophic soil 
covered with grass- and shrubland 

Wet, neutral and oligotrophic soil 
covered with grass- and shrubland 

Dry, neutral and eutrophic soil 
covered with miscellaneous 
vegetation structural types 

Wet, neutral and oligotrophic soil covered 
with pioneer vegetation and water 

Figure 6.6 Change in the presence of two ecotope types in a dune slack after 
modifying the hydrological and nature management (see plate 4). 
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6.4 Conclusions 

This chapter dealt with the specification of the fuzzy ecohydrological expert model 
ECOMOD. The model was calibrated for dune slacks by a team of experts. These 
experts estimated the parameters of the continuous membership functions that quantify 
the fuzzy classes and fuzzy relations constituting the model. Unlike the sharp turn-over 
between crisp classes, the turn-over between fuzzy classes can be made more or less 
vague. Experts apply vagueness or fuzziness in order to quantify continuous turnover 
between classes and to quantify the uncertainty related to their knowledge (Bosserman 
and Ragade, 1982; Salski, 1992). 

The definition of fuzzy classes usually resembles much better the experts' 
perception of the character of data. As stated before, the fuzziness or vagueness seems 
to proceed from the graduality and complexity of ecological processes. By adapting the 
degree of fuzziness of the classes experts are able to express both aspects 
simultaneously. Crisp data do not reflect either of the two. Although seemingly less 
precise than crisp data, fuzzy data are in fact a more adequate representation of reality 
(Klir and Folger, 1988). Consequently, membership functions obtained by interviewing 
experts should not primarily be judged as subjective and weak components of the 
model, but more as a proper solution to express the inherent uncertainty related to 
expert knowledge. 

Fuzzy expert models like ECOMOD enable the robust modelling of complex 
systems even in the case of relatively little data. These models are particularly suited 
for scenario studies and can be integrated with decision support systems. ECOMOD is 
a generic ecohydrological model that can be adapted and calibrated for other 
hydrological systems as well. 
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The general objective of this thesis was to develop methods for the monitoring of 
landscape-ecological aspects of natural landscapes (sect. 1.3). Two aspects of landscape 
monitoring were studied in depth. First, the emphasis was put on the definition of 
customised spatial models. A spatial model specifies the structure of the digital landscape 
model and should be suited for a realistic digital representation of complex landscape 
patterns (chapt. 2). When a proper spatial model is defined for a landscape of interest, the 
definition of a measurement system is a second concern. A measurement system has to 
provide the data necessary for the construction of the digital landscape model. It was the 
objective of this thesis to obtain the spatial data through the automatic interpretation of 
digital aerial images (chapt. 3). 

In order to test the proposed methods for landscape monitoring three cases were 
researched. These cases originated from the management practice in the Amsterdam 
Waterworks Dunes. The results are used to underpin the nature management and 
hydrological management of the area. 

The first case concerned the definition of a measurement system based on the semi
automatic interpretation of high resolution digital CIR-photographs, by which a spatio-
temporal model of the vegetation structure in the test site is constructed (chapt. 3 and 4). 
Secondly, methods for the specification of vegetation structural data to vegetation 
compositional data were proposed and tested (chapt. 5). The latter case aimed at the semi
automatic production of a digital vegetation map. Thirdly, an ecohydrological expert model 
was described enabling the prediction of ecotope changes in dune slacks (chapt. 6). This 
chapter describes the general conclusions proceeding from the case studies, as well as 
recommendations for future research. 

7.1 General conclusions 

1 The concept of spatial objects with nested fields enables realistic spatio-temporal 
modelling of natural landscapes 
Generally, a pattern obtained from natural landscapes consists of both discrete and 
continuous phenomena. Discrete features are best represented by spatial objects, while 
continuous terrain characteristics should be modelled as a field. The concept of spatial 
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objects with nested fields integrates the two concepts conveniently, providing full flexibili
ty in spatio-temporal modelling. The concept was implemented by means of a cell raster. 

Spatial objects with nested fields are defined in two phases. Firstly, the mosaic of 
spatial objects is specified representing the discrete landscape features. Secondly, the 
internal variability of the spatial objects is quantified as a field. Obviously, the latter phase 
is optional, i.e. not all spatial objects show an internal variation. Spatial models build from 
objects with an optionally defined nested field provide a much better representation of 
reality compared to the current digital chlorophleth maps as the latter maps allow the 
representation of discrete terrain features only. 

2 Step-by-step interpretation of high resolution CIR-images by crisp and fuzzy 
classification techniques yields detailed measurements on land cover 
Starting point for the interpretation of complex images is a land cover hierarchy. This 
hierarchy reflects the ordering of composite and elementary cover types in a top-down tree 
structure. Each specification of a cover type to subtypes requires a tailor made classifier. 
Crisp classification techniques are applied to segment a site in discrete objects representing 
vegetation structural and geomorphologic terrain characteristics. Subsequendy, continuous 
internal variation of objects is quantified by fuzzy classification techniques. The fuzzy 
classifier is trained with fuzzy observations performed by an experienced interpreter. 
Although these observations have a subjective nature, the degree of subjectivity can be 
minimised by training experts with specimen. 

The step-by-step, semi-automatic interpretation of high resolution imagery yielded 
more detailed information (both spatially and thematically) compared to manual 
interpretation. For the automated procedure the level of detail is related to the pixel size, 
while the level of detail in manually derived objects is restricted by labour costs and a 
minimum mapping unit. 

3 Amalgamation is a proper operator to obtain aggregated objects populating higher 
organisational levels of a landscape 
Landscapes can be modelled as hierarchical systems consisting of several linked 
organisational levels. Each level is populated with specific object types. The construction 
of a multi-level digital landscape model is not only relevant from an ecological perspective. 
Multi-level modelling is also a prerequisite for the linking of data from measurement 
systems operating on different spatial or temporal scales. Consider for example the 
coupling of vegetation structural data with a set of relevees (chapt. 5). The first data set 
consists of (elementary) objects obtained by image interpretation while the relevees are 
observed in the field. The elementary objects needed to be aggregated to composite objects 
whereupon a proper correlation the vegetation structural data with vegetation 
compositional data could be performed. 

In topographical mapping aggregation is generally performed under the condition 
that the elementary objects are nested in the composite object. This condition is often too 
strict in landscape ecological modelling because objects representing natural features might 
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have whimsical shapes. Dropping the condition of containment results in non-nested 
aggregation or amalgamation. An elementary object can be partially linked to two or more 
composite objects trough amalgamation, providing the flexibility needed to represent 
natural features realistically. 

4 Vegetation types in the dunes have a fuzzy nature 
Clustering and classification are accepted techniques to extract general information from 
the background of infinite complexity. The clustering of vegetation compositional data 
present in a set of relevees results in a set of vegetation types. The current crisp clustering 
or classification techniques start from the presumption of sharp thematic boundaries 
between these types. Alternatively, fuzzy classification starts from a gradual turnover 
between vegetation types. In cases where the transition between community types are 
predominantly vague, fuzzy vegetation communities represent the actual species composi
tion better than the classical crisp vegetation types. This is the case for dune vegetation. 

5 The mapping of dune vegetation types requires extensive fieldwork 
Spectral data in high resolution images primarily reveal information on abundant species. 
Consequently, these images are more suited for the mapping of vegetation structural 
features than for the spatial modelling of vegetation composition. In chapter 5 a method 
was presented for the specification of vegetation structural data to vegetation classes. 
However, this approach did not yield an accurate vegetation map, because most vegetation 
structural and community types show a many to many relationship. Only the vegetation 
types having a strong correlation with a single structural type were properly mapped. 

Apparently, the accurate mapping of vegetation classes requires additional 
explanatory variables besides vegetation structural data. These are for example abiotic site 
characteristics, like soil acidity and organic matter content, and succession history. The 
mapping of these variables requires, however, extensive fieldwork. Therefore, it may be 
better to map the vegetation directly in the field than indirectly through explanatory 
modelling or to employ fieldwork in aid of a manual photo-interpretation. 

6 Expert knowledge about complex ecological systems, like dune slacks, is 
adequately formalised by means of fuzzy sets. 
The application of GI systems in landscape ecological research forces ecologists to 
structure their methods and knowledge in formal models. On behalf of the ecohydrological 
modelling of dune slacks an expert model was compiled (chapt. 6). The knowledge of 
experts is formalised in a set of classes and decision rules. Experts apply vagueness or 
fuzziness in order to quantify continuous turnover between classes and to quantify the 
uncertainty related to their knowledge Due to the complexity of ecological systems, 
expert knowledge is to some extent incomplete and uncertain. Fuzzy sets allow an expert 
to express this uncertainty by adapting the degree of vagueness of the class boundaries. 
The fuzzy ecohydrological model reproduced the expert knowledge satisfactorily and was 
successfully applied for scenario studies. 
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7.2 Perspectives and recommendations 

The evolution of landscape ecological monitoring systems towards operational tools for 
landscape management is steered by technical innovations as well as a deeper 
understanding of landscape ecological processes. In this section the development of 
monitoring systems in the near future is described primarily from a technical perspective. 
Three major perspectives will be illuminated: 

• Growing availability of high resolution imagery especially from commercial 
satellite systems. 

• Increasing efficiency of ecological fieldwork due to portable Gl systems in 
combination with satellite positioning systems (GPS). 

• Increasing functionality of Gl systems with respect to handling of time series, 
dynamic modelling and visualisation. 

Images are the major data source for landscape monitoring systems. For large scale 
mapping purposes airborne images are generally preferred over satellite data because of 
their higher spatial resolution. The resolution of airborne scans or digital orthophotos 
typically ranges from 0.1 to 1 m. The expenses for airborne remote sensing data are 
however substantial, which prevents landscape managers from the creation of time series 
with a high temporal resolution, e.g. images with a time interval less than 5 years. Further 
automation of the production of orthophoto mosaics by means of digital cameras, 
automatic aerotriangulation and improved radiometric correction techniques will however 
further improve the quality of airborne imagery and reduce production costs. 

Satellite systems generally provide multiple images of a site per year for less costs. 
However, bad weather conditions might prevent the satellite to acquire an image within the 
required seasonal time window. Although considerably cheaper than aerial images, the 
maximum resolution of current multi-spectral satellite images is 15 m or less and therefore 
not sufficient for large scale vegetation mapping. The next generation earth observation 
satellites, scheduled to be launched by the end of 1998, will acquire images with 
extraordinary resolutions of 3 meter in the CIR up to 1 meter in panchromatic mode. With 
respect to spatial resolution these images can compete with airborne data for many 
mapping purposes. These developments in airborne and space-borne remote sensing will 
result in a growing availability of high resolution images. Landscape managers can benefit 
from this supply of images to collect time series with short intervals. 

Next to the growing availability of images, portable Gl systems running on pen-computers 
are presently having a major impact on landscape ecological practice. Both with respect to 
hard- and software powerful systems are presently available. These systems allow one to 
take spatial data sets in the field for analysis and manipulation on the spot. Raster data 
including images can be displayed and overlaid with vector data. The fitness of portable Gl 
systems for fieldwork even increases through the coupling with GPS functionality, which 
enables real time positioning with an accuracy of 5 to 0.5m depending on the GPS 
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solution. Real time positioning is used to display a cursor in the map or image and make 
the map automatically scroll over the display. 

The combined use of portable GI systems with GPS equipment provides fascinating 
possibilities for the set up of ecological fieldwork. The system can be used to generate 
sample locations for the collection of field data or to select test-sites and guide you to the 
selected spot. Field data can be immediately tested and evaluated for completeness, size 
and number. Furthermore a portable GI system can be helpfull for the validation of the 
output of ecological models, for the inspection of a reserve or to mark off the extension of 
nature management measures. All these opportunities and many more will contribute to 
more efficient ecological fieldwork. 

The final perspective concerns the functionality of GI systems. Being a central tool for 
monitoring systems, GI systems should provide proper tools for the storage, analysis and 
visualisation of time series. An aspect of data storage is the functionality to trace the life 
cycle of objects through the definition of multi-temporal spatial objects. Generic tools for 
dynamic modelling and modelling of error propagation are needed as well as 4D 
visualisation techniques for the virtual viewing of a digital landscape model. Many of these 
functions are available yet, however, still have to be integrated with commercially available 
GI systems. In order to serve the fast growing market for environmental monitoring 
extension of GI functionality is a prerequisite. 

Considering the above mentioned perspectives and the general conclusions in section 
7.1, research is recommended on the following topics: 

1 Complementary use of digital orthophotos and high resolution satellite images for 
vegetation mapping 
In the market segment of high resolution images the digital orthophoto has to compete with 
satellite images in the near future. CIR-orthophotos having a typical resolution of 25 cm 
are very suitable for the accurate delineation of discrete terrain features and the modelling 
of continuous phenomena. CIR satellite images will soon have a 2.5 meter resolution 
making these images particularly suited to map gradual changes in the terrain. The 
resolution is not sufficient to map small discrete terrain features accurately. Assuming that 
the cost of images is inversely related to the resolution, satellite images will be less costly. 
Therefore these images afford landscape managers to build up series with a higher 
temporal frequency as they were used to. 

Ideally a landscape monitoring system is fuelled each year with an image acquired 
in the optimal time window. This high frequency is needed to obtain a better insight into 
the yearly variation in the vegetation due to different meteorological conditions or for 
instance differences in grazing pressure. It is known that this yearly variation primarily 
causes changes in the manifestation of the herbaceous vegetation in terrain and image. 
Woody species are less sensitive to seasonal changes. Moreover, these discrete patterns are 
less dynamic in time. Satellite images with a year interval enable to study the migration of 
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Chapter 7 

the herbaceous classes through the feature space. 
The higher frequency of satellite images will increase the accuracy of the modelling 

of herbaceous vegetation in the matrix. High resolution orthophotos remain necessary for 
the accurate mapping of discrete phenomena like shrubs and sand patches. By evaluating 
the costs and benefits of both image types the optimal mixture of airborne and space-borne 
images for landscape monitoring has to be determined. 

2 Further objectification of fuzzy image classification 
The increasing availability of high resolution images urges for reliable and efficient 
interpretation procedures. From the methods presented in this thesis, the fuzzy 
interpretation of the herbaceous vegetation structure is most vulnerable to subjectivity, 
because the fuzzy classifier was calibrated by fuzzy observations obtained by on screen 
image interpretation. Although the approach appeared valid after referencing with field 
observations, it is obvious that calibration of the classifier by means of fuzzy field 
observations will contribute to the objectification of the approach. 

The sampling scheme for the fieldwork can either be based on the spectral variation 
in the image or the variation in vegetation structure in the field. If images are available 
shortly after the acquisition of the data, the selection of reference samples can be 
performed on image characteristics. The image with the indicated sample sites can be 
viewed in the field with portable GI system allowing the fuzzy observations to be 
performed in the field. This approach garantees that the spectral variability in the image is 
sampled adequately. 

Alternatively, the sampling strategy starts from the variation in the test site. Several 
sampling strategies can be applied, like random or stratified random sampling and 
sampling along transects. The merits of these strategies should be analysed and evaluated. 

Standardisation and specification of the definition of the fuzzy classes will also contribute 
to further objectification of fuzzy image interpretation. This can be achieved by building a 
library of specimens. Each specimen consists of a fuzzy field observation including a 
vector of membership values, the position of the sample, some meta data like the name of 
the interpreter and the date, and a digital photograph of the scene. When the database with 
digital specimen is stored in a multimedia portable GI system, the interpreter is able to 
consult and query the library on the spot. 

3 Integration of in- and outdoor computer-aided vegetation mapping 
One of the conclusions in this thesis is that the mapping of dune vegetation requires 
extensive fieldwork. Fieldwork is needed to acquire sufficient expert knowledge about the 
vegetation in the test site prior to manual photo-interpretation or fieldwork is needed to 
carry out the vegetation mapping in the field. Subsequently, an outline for computer-aided 
vegetation mapping is provided, which is dedicated to sites with a complex vegetation 
pattern, like the dunes. The proposed method of vegetation mapping consists of four major 
steps. 
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Conclusions and recommendations 

Firstly, the area is stratified in several major discrete object types by means of semi
automatic image interpretation. Each object type is populated with a specific set of 
vegetation communities. In a dune area the composite objects 'sandy area', matrix, 
woodland and water can act as strata. Secondly, the strata are systematically subdivided in 
quadrants measuring for instance 250*25Qm2 or 100*100m2. The third step involves the 
estimation of the presence of vegetation types in each quadrant, where the presence of 
each vegetation type is quantified by a membership value. By applying quadrants in stead 
of delineated spatial units, the emphasis in the process of vegetation mapping resides on 
thematic aspects of mapping rather than on the subjective task of delineating patches. The 
forth and final step involves the validation of the vegetation map with a set of reference 
data. 

The estimation of the presence of each vegetation community in all quadrants, i.e. the 
estimation of a vector of pseudo-probabilities for each quadrant, is obviously the biggest 
task in the proposed method. These pseudo-probability values have be obtained by on 
screen image interpretation. When equipped with a portable GI system and GPS-
positioning, a interpreter is free to alternate between indoor and outdoor mapping activities 
and pursue an optimal mapping strategy. 

4 Implementation of the concept of spatial objects with nested field in GI systems 
In this thesis the concept of spatial objects with nested fields was introduced to facilitate a 
realistic digital representation of natural landscapes. In the presented case study these 
spatial objects were constructed with standard functionality of raster GI systems. Although 
many GI systems provide data models for the representation of spatial objects in a vector 
format, these systems lack a dedicated data model for the efficient storage of spatial object 
types in raster format. This is particularly the case in the temporal domain, where raster 
data structures lack the functionality to represent spatial objects in time. Consequently, it is 
not possible to trace the life cycle of individual objects, like shrubs, woodlands and blow 
outs. Information that is needed landscape ecologists to obtain a detailed view on 
landscape dynamics and the underlying processes. It is recommended to investigate the 
feasibility of implementing the concept of spatial objects with nested field in a GI system. 

5 Development of dynamic landscape ecological models 
Only few dynamic landscape ecological models have been developed in the past. This is 
not because the mathematical tools to structure the model are lacking, but more because the 
massive amount of spatio-temporal data needed to calibrate and validate the model could 
not be obtained economically. Presently, this restraint is removed as reliable monitoring 
systems based on high resolution images and semi-automatic interpretation techniques can 
be configured for less costs. From a landscape ecological perspective the development of 
dynamic landscape models with predictive capabilities is very important because reliable 
predictions on landscape development will help nature managers to turn from a reactive to 
a proactive management strategy. 
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Abstract 

Droesen, W.J., 1999. Spatial modelling and monitoring of natural landscapes; with 
cases in the Amsterdam Waterworks Dunes. PhD thesis, Wageningen Agricultural 
University, Wageningen, the Netherlands. 
The utilisation of geographic information systems and digital image processing 
techniques for the construction of digital landscape models necessitate for a 
reconsideration of the classical concepts for landscape ecological mapping. In this 
thesis, some methods are presented for the spatial modelling and monitoring of natural 
landscapes based upon digital workflow information. 
In spatial information processing, two major approaches for the conceptual 
representation of spatial features are distinguished, the field and spatial object 
respectively. A field is a feature which is contiguously distributed over space and time. 
The object approach, on the contrary, assumes that the earth's surface is populated 
with spatially interacting discrete units. Because natural landscapes often show both 
continuous and discrete variation in space and time, a hybrid terrain description is 
proposed, denoted as 'spatial object with nested field'. In this hybrid approach the 
discrete landscape patterns are described by spatial objects, while the internal spatial 
variability within an spatial object is represented by a field. 
Classification is applied during the construction of the spatial objects and nested fields, 
because it is acknowledged to be a powerful technique to extract essential information 
from the background of infinite complexity. Crisp classification yields discrete 
attribute values and is therefore suitable for the definition and construction of spatial 
objects. The representation of continuously varying terrain features requires a 
continuous type of classification, i.e. fuzzy classification. Throughout this thesis, fuzzy 
classification is applied to construct fields. 
The concepts for spatial modelling, that were introduced above, were used in three 
cases resulting from the landscape management practice in the Amsterdam Waterworks 
Dunes: 

Spatio-temporal mapping of the vegetation structure from high resolution CIR-images 
Two radiometrically corrected, digital colour infrared orthophotos from the summer of 
1990 and 1995 with a resolution of 0.25 metre were semi-automatically interpreted. 
Crisp and fuzzy classification techniques were applied to construct the spatial objects 
and their nested fields, representing the vegetation structure of the test site. Compared 
to manual photo-interpretation, the semi-automatic interpretation of vegetation 
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structure results in a more realistic, more detailed and less subjective digital 
representation of the landscape. 
Subsequently, the vegetation structural dynamics were explored on the basis of this 
multi-temporal data set. Methods are presented to answer two primary questions 
relevant to nature managers, regarding the turnover between cover types and the 
changes in the spatial structure. It appeared necessary to aggregate the spatial objects 
provided by the image interpretation to composite objects prior to the spatio-temporal 
analysis, because thematic and geometric inaccuracies in the data can yield faulty 
analysis results. 

Estimation of the spatial distribution of vegetation communities from environmental data 
In addition to information about vegetation structural dynamics, there is a need for 
information on changes in the vegetation composition. This information can be provided 
by a multi-temporal map of vegetation communities. An experiment was conducted to 
estimate the presence of vegetation communities from environmental data, including 
vegetation structural data. 
A reliable procedure for the automatic mapping of vegetation communities from 
environmental data requires a fine tuned definition of the vegetation communities and a 
powerful explanatory model. The first condition was met by applying the concept of fuzzy 
vegetation communities. After the optimisation of the degree of vagueness, the fuzzy 
vegetation community types show a closer resemblance with the vegetation abundance data 
in the relevees compared to the classical crisp vegetation classes. The second objective, i.e. 
the construction of a powerful explanatory model, was not successfully achieved. Clearly, 
vegetation structural data are not sufficient to map the vegetation composition in dunes. 
Additional information regarding some abiotic site characteristics seem indispensable to 
improve the explanatory power of the model. 

Fuzzy ecohydrological expert modelling of dune slacks 

The thesis also describes the fuzzy ecohydrological expert model ECOMOD. The 
model predicts the primary parameters for the specification of ecotopes, i.e. vegetation 
structure, moisture content, nutrient availability and acidity of the soil. ECOMOD is 
calibrated for dune slacks by a team of experts. These experts estimated the parameters 
of the membership functions that quantify the fuzzy classes and fuzzy relations 
constituting the model. Experts apply vagueness or fuzziness in order to quantify the 
continuous turnover between classes and to quantify the uncertainty related to their 
knowledge. Therefore, fuzzy expert models like ECOMOD enable the robust 
modelling of complex systems, even if relatively little data is available. Models like 
this are particularly suited for scenario studies. ECOMOD is a generic ecohydrological 
model that can be adapted and calibrated for other ecohydrological systems. 

Keywords: geo-information, digital landscape models, monitoring, landscape ecology, 
ecohydrology, vegetation, remote sensing, image processing, fuzzy logic. 
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Samenvatting 

Droesen, W.J., 1999, Ruimtelijke modellering en monitoring van natuurlijke 
landschappen; met voorbeelden uit de Amsterdamse Waterleidingduinen. Dissertatie, 
Landbouwuniversiteit Wageningen. 
Een geografisch informatiesysteem in combinatie met automatische beeldverwerkings-
technieken biedt producenten van digitale landschapsmodellen naast het gemak van 
een digitale werkomgeving ook de uitdaging maximaal gebruik te maken van de 
mogelijkheden die deze technieken in zich hebben. In dit proefschrift worden enkele 
concepten beschreven voor het ruimtelijk modelleren en monitoren van natuurlijke 
landschappen met als doel een meer realistische en betrouwbare weergave van het 
landschap te creeren dan met behulp van traditionele werkwijzen. 

In de informatietechnologie worden twee conceptuele benaderingen onderscheiden 
voor het representeren van ruimtelijke fenomenen: het ruimtelijk object en het veld. 
Beide benaderingen maken het mogelijk ruimtelijke patronen en processen in hun 
onderlinge samenhang te modelleren. Een veld is een ruimtelijke eenheid die onder 
invloed van een stelsel van krachten min of meer continu varieert in ruimte en tijd. De 
objectbenadering gaat uit van scherp begrensde eenheden met onderlinge interactie. 
Omdat natuurlijke landschappen veelal bestaan uit een combinatie van continue en 
discontinue patronen is een van de beschrijvingsvormen meestal niet afdoende voor het 
maken van een realistisch landschapsmodel. In dit proefschrift wordt de hybride 
terrein-beschrijving 'ruimtelijk object met intern veld' gei'ntroduceerd. Met deze 
aanpak worden discontinue patronen gerepresenteerd als ruimtelijke objecten, terwijl 
de ruimtelijke variatie binnen een object desgewenst kan worden weergegeven als een 
veld. 

Voor het construeren van de ruimtelijke objecten en velden uit digitale beelden wordt 
in de landschapsecologie veelvuldig gebruikgemaakt van classificatie. Zo ook in dit 
proefschrift. De klassieke vormen van classificatie gaan uit van scherpe klassegrenzen 
en zijn daarom geschikt voor het construeren van ruimtelijke objecten. De representatie 
van gradueel varierende terreinkenmerken door middel van een veld vergt echter een 
continue vorm van classificatie. Daartoe wordt in dit proefschrift gebruik gemaakt van 
'fuzzy' classificatie. 
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De gei'ntroduceerde concepten voor het modelleren van natuurlijke landschappen zijn 
in drie voorbeeldsituaties toegepast. Deze voorbeelden komen voort uit de praktijk van 
het landschapsbeheer in de Amsterdamse Waterleidingduinen. 

Temporele kartering van de vegetatiestructuur met behulp van kleur-infrarood beelden 
De vegetatiestructuur in de zomer van 1990 en 1995 is semi-automatisch 
gei'nterpreteerd van twee digitale, radiometrisch gecorrigeerde, kleur-infrarood 
orthofotomozaieken met een resolutie van 0.25 meter. Een hierarchische ordening van 
vegetatiestructuurtypen vormt hierbij het uitgangspunt. De beelden zijn stapsgewijs 
geinterpreteerd door de hierarchie van bovenaf door te werken en bij iedere splitsing 
van een samengesteld structuurtype naar meerdere enkelvoudige structuurtypes een 
toegesneden classificatiemethode te gebruiken. Daarbij zijn de ruimtelijke objecten 
geconstrueerd door middel van klassieke classificatietechnieken en de velden door 
middel van fuzzy classificatie. In vergelijking met de handmatige interpretatie van de 
beelden resulteert de semi-automatische interpretatie in een realistischer, 
gedetailleerder en minder subjectieve weergave van de vegetatiestructuur. 
De geproduceerde bestanden zijn vervolgens gebruikt voor het kwantificeren van 
veranderingen in de vegetatiestructuur tussen 1990 en 1995. Methoden worden 
gepresenteerd ten einde informatie te verkrijgen over de temporele overgangen tussen 
de vegetatiestructuurtypen en de veranderingen in de ruimtelijke structuur van de 
vegetatie. Voorafgaande aan deze analyses zijn de objecten door middel van 
amalgamatie geaggregeerd naar samengestelde objecten. Aggregatie is noodzakelijk, 
omdat thematische en geometrische onnauwkeurigheden in het landschapsmodel in 
sommige gevallen aanleiding geven tot foutieve analyseresultaten. 

Kartering van fuzzy vegetatietypen met behulp van standplaatskenmerken 
Veel vragen die voortkomen uit het landschapsbeheer kunnen worden beantwoord met 
informatie over de statische en dynamische eigenschappen van de vegetatiestructuur. 
Voor sommige toepassingen is echter informatie over de soortensamenstelling van de 
vegetatie noodzakelijk. Deze informatie wordt doorgaans verkregen uit een tijdreeks 
van vegetatiekaarten, waarop het voorkomen van vegetatietypen is aangegeven. 
Vegetatiekaarten kunnen echter niet betrouwbaar worden geproduceerd door een semi-
automatische interpretatie van kleur-infrarood beelden. Daarom is een experiment 
uitgevoerd om het voorkomen van vegetatietypen automatisch te schatten met behulp 
van standplaatsfactoren. 
Een betrouwbare procedure voor de automatische kartering van vegetatietypen met 
behulp van standplaatsfactoren moet zijn gebaseerd op een afgewogen definitie van de 
vegetatietypen en een verklarend model met een hoge nauwkeurigheid. Aan de eerste 
voorwaarde is in dit onderzoek voldaan door het concept van fuzzy oftewel vage 
vegetatietypen te hanteren. Na de optimalisering van de mate van vaagheid van de 
vegetatietypen, geven de fuzzy vegetatietypen een meer nauwkeurige weergave van de 
presentie van plantensoorten in vergelijking met de klassieke vegetatietypen. 
Klaarblijkelijk hebben duinvegetatietypen een fuzzy karakter. De tweede conditie, 

118 



Samenvatting 

zijnde de constructie van een betrouwbaar verklarend model, is niet succesvol bereikt. 
Naast vegetatiestructuurgegevens is additionele standplaatsinformatie nodig zoals 
bodem- en grondwaterkenmerken. Voor het karteren van deze variabelen is veldwerk 
noodzakelijk en het is dan ook praktischer dit veldwerk te benutten voor de kartering 
van de vegetatie. 

Fuzzy ecohydrologisch expert model voor duinvalleien 
In dit proefschrift wordt het fuzzy ecohydrologisch expertmodel ECOMOD 
beschreven. Het model voorspelt de belangrijkste parameters voor het specificeren van 
ecotopen, te weten de vegetatiestructuur, het bodemvochtgehalte, de beschikbaarheid 
van voedingsstoffen en de zuurgraad van de bodem. ECOMOD is door een team van 
deskundigen gekalibreerd voor duinvalleien. De experts hebben de parameters geschat 
van de fuzzy klassen en de eigenschappen van de beslisregels in het model. De experts 
gebruiken de mate van vaagheid in de definitie van klassen ten einde geleidelijke 
overgangen tussen de klassen te kunnen kwantificeren alsmede de onzekerheid van hun 
kennis uit te drukken. Daardoor zijn fuzzy expertmodellen zoals ECOMOD goed 
bruikbaar voor complexe ecologische systemen, zelfs als weinig gegevens voorhanden 
zijn. Het type model leent zich uitstekend voor scenario-studies. ECOMOD is een 
generiek ecohydrologisch model dat kan worden aangepast en gekalibreerd voor 
andere ecohydrologische systemen. 

Geografische informatiesystemen in combinatie met beeldverwerkingstechnieken 
bieden legio mogelijkheden voor het monitoren van natuurlijke landschappen. De 
gepresenteerde methoden kunnen een bijdrage leveren aan de verdere operationalise-
ring van landschapsmonitoringsystemen tot betrouwbare instrumenten voor land-
schapsbeheer. Aanvullend onderzoek dient gericht te zijn op de objectivering van 
fuzzy beeldinterpretatietechnieken, het bepalen van het effect van seizoensinvloeden 
op de kwaliteit van het landschapsmodel en het gebruik van veldcomputers en 
satellietplaatsbepaling ten behoeve van vegetatiekartering. Zodra operationele 
monitoringsystemen tijdreeksen met ruimtelijke informatie beginnen te leveren, dient 
de ontwikkeling van dynamische landschapsmodellen verder ter hand te worden 
genomen, zodat op termijn monitoringsystemen het landschap kunnen gaan 
voorspellen. 
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Appendix I. Production of digital orthophoto mosaics 

Systematic aerial photo surveys of the test site (sect. 1.5) are performed almost every 
decade since 1938. In 1979 panchromatic photography was replaced by false-colour 
photography and the survey interval was reduced to five years. Comparably to true colour 
film the sensitivity of the dyes in false colour film is shifted from red, green and blue 
radiation to infra-red, red and green radiation respectively. The photographs taken in the 
summer of 1990 and 1995 (scale 1:5000) are used for orthophoto production. Photographs 
are taken from two runs with an in strip forward overlap of 60 percent and 20 percent 
overlap between the strips. However, the latter overlap varies considerably due to poor 
navigation. 

A typical list of processing steps in the transformation of analogue photographs to 
digital orthophotos is scanning, radiometric correction, geometric correction and mosaicing 
(fig. 4.1). Before the photographs are scanned the spatial resolution of the final orthophoto 
is to be determined. Although the pixel size is primarily suggested by the intentional 
application of the orthophoto, practical constraints, especially storage capacity and 
processing facilities, set a practical limit to the minimum pixel size. When choosing an 
initial pixel size one has to consider that it is easy to resample an image to coarser 
resolutions, while the reverse operation is usually not possible (Cushnie, 1987; Woodcock 
and Strahler, 1987). Here an orthophoto is produced with a 0.5 metre resolution, supposing 
to provide sufficient detail and a manageable data volume. 

Scanning 

Diapositive film is digitised by measuring the density D in spectral band A e {infra
red, red, green} on sample location i,j in the photograph: 

Dxi| = -log(TAii) 1.1 

where T is the fraction of incident light transmitted by the film. The scanner (AGFA-
horizon) linearly rescales the density values between 0 and 3 to 8 bit digital numbers (DN). 
The density is measured on 600 dots per inch (DPI) in photographs with a scale 1:5000 
resulting in digital photos with a 0.21 metre resolution (during the geometric correction the 
image is resampled to a 0.25 metre resolution). Both the geometric and radiometric 
precision of the scanner amply exceed the precision of the digital photograph. 
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Appendix I 

Radiometric correction 
Density variations in a photograph are not solely related to variations in terrain conditions. 
Factors influencing the density variation having nothing to do with the actual terrain 
characteristics are termed extraneous effects (Lillesand and Kiefer, 1987). Extraneous 
effects are of two general types: geometric and atmospheric. The magnitude of geometric 
factors varies structurally over the image while atmospheric effects are constant throughout 
the image. Obviously, these effects prevent false colour photographs from an accurate 
quantitative interpretation (Barnsley, 1984; Wardley et al., 1987). 

Clevers and Van Stokkom (1992) present a method to undo false colour 
photographs from all extraneous effects in order to derive reflectance factors. However, the 
method requires some information on camera and film characteristics and reference 
measurements in the field, which are usually not available. For classification purposes 
relative differences in density, which can be attributed to differences in the terrain, suffice. 
The latter is achieved by removing geometric deviations in density. Lillesand and Kiefer 
(1987) enumerate some important geometric effects influencing film density: 

• light fall-off caused by a geometrically based decrease in illumination at the film 
plane with increasing distance from the centre of the photograph. 

• differential scattering by the atmosphere. 
• non-lambertian reflection by natural objects. 
• differential shading caused by relief in the vegetation cover, especially shrubs and 

trees. 

Contrarily to the first two effects which are indifferent to terrain cover, the latter two 
factors are dependent on the terrain surface characteristics. Consequently, corrected density 
values Dc are obtained by applying the following model: 

D KAij = DkAii-CkJjj 1.2 

where C is a correction factor, k e {l,2,...,n} is a land-cover type. The application of the 
model provides a paradox, because a land cover classification has to be available, while the 
radiometric correction is performed to be able to classify the land-cover properly. To 
overcome this dilemma the correction factor is estimated for a single land-cover type (1) 
with an intermediate response to geometric effects and subsequently applied to all land 
cover types: 

D ;UJ = Dxi|.Cwj 1.3 

The single correction factor for all geometric effects is calculated as the ratio of the mean 
density Dm for this class in the image and the density on a specific location in the image: 

CWi = Dm„/Dw) 1.4 
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Orthophoto production 

Due to an intermediate surface roughness compared to mosses and shrubs, herbaceous 
vegetation is the land cover type with intermediate radiometric deviations and selected to 
estimate the correction factor (Barnsley, 1984). The herbaceous vegetation was extensively 
sampled throughout several photographs except for the angular points where vignetting 
effects occur. The data from different photographs were merged in a single set. The latter 
set was used to fit a two dimensional second order polynomial function by least square 
regression: 

Du(ij) = aox + aui + a&] + 03/ + adj + asj2 1.5 

The result of eq. 1.5 is subsequently used to calculate the correction factor in eq. 1.4. Due to 
a lack of reference data no quantitative evaluation of the radiometric accuracy has been 
performed. However, a visual check of the orthophoto after mosaicing revealed only some 
minor local deviations at stitches. 

Now structural deviations in density values are removed, only local deviation in density 
values occur caused by variations in illuminarion due to relief, i.e. slope and orientation 
(Leprieur et al., 1988). Band ratioing is a simple and frequently used method to reduce 
shading effects (Holben and Justice, 1981). However, band ratioing reduces the effective 
number of bands, which can be disadvantageous for its interpretation. Alternatively, 
radiance modelling can be applied (Ahmad et al., 1992; Justice et al., 1981). The 
application of this technique is not possible without an accurate digital model of the terrain 
height. The available height model was not sufficiently accurate. Hence the produced 
orthophotos show density variations resulting from relief. Because the aerial photographs 
are always recorded in the mid summer just before noon, these deviations and therefore 
eventual misinterpretations occur on the same spots. 

Geometric correction 
The geometric transformation of images with a central projection to orthogonal images is a 
standard technique nowadays (Grensdoerffer and Bill, 1994). In order to perform this 
correction the position and orientation of the camera need to be known to re-establish the 
central projection. Furthermore a digital terrain model is needed to correct the image 
distortions caused by relief displacement. When both the projection parameters and digital 
terrain model are available, terrain positions can be calculated from image coordinates. 

In practice, the position and orientation of the camera are usually not known and 
have to be estimated through the analysis of a number of ground control points of which 
both the image and terrain coordinates are available. At least three ground control points 
are needed per image, but preferably many more. When it is not possible to gather enough 
ground control points per image the projection parameters have to be re-established by an 
aerotriangulation (Philipson, 1997). The latter was the case for the test data. 

During the geometric correction the pixels in photo coordinates are resampled to 
pixels in terrain coordinates with a resolution of 0.25 metre. Cubic convolution was 
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applied as resampling method. Finally, the geometrically rectified images are mosaiced by 
using the central part of each image resulting in a field S(x,y), where S is a vector of three 
spectral bands, ŝ , sr and sg respectively. The geometric accuracy is calculated using 15 
ground control points. The RMS-error ranges between 0.31 and 0.39 metre for both years, 
which is approximately 1.5 times the pixel size. 
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Appendix II. Aggregation of fuzzy data 

The aggregation of fuzzy data is dealt with by Klir and Folger (1988). Consider for 
example the aggregation of a set of five vectors of membership values I describing the 
presence of herbaceous structural classes hs e {hsl, hs2,... hs5}(table HI). First step is the 
calculation of a pseudo-frequency N(hs) for each state of the aggregate. Since values of 
N(hs) need not be whole numbers, it is better not to use the term frequency. In order to 
accomplish that each vector contributes equally to the pseudo-frequencies the membership 
values of a single vector have to sum to one. If not so, the membership values have to be 
normalised in this sense. The pseudo-frequency for each state or class is calculated by the 
formula: 

N(hs)= LMVhs(i) 11.1 

where the sum is taken over five membership values. Subsequently, the pseudo-frequencies 
are used to estimate the value of a fuzzy measure indicating the strength of the relationship 
between the aggregate and a class. Two fuzzy measures are considered, the possibility p 
and pseudo-probability p respectively. When the pseudo-frequency distribution (N(hs) I hs 
e HS) is normalised a possibility distribution is obtained: 

p(hs) = N(hs) II.2 
max N(z) 
zeHS 

Alternatively, the pseudo-probability distribution is calculated by dividing a pseudo-
frequency by the sum of all pseudo-frequencies: 

p(hs) = N(hs) II.3 
E N(z) 

zeHS 

The relationship between a possibility distribution and probability distribution is that 
the possibility equals 1 where the probability is at a maximum and the possibility 
equals 0 where the probability is 0. The sum of the possibility values does not equal 1, 
unlike the sum of the probability values. 
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Note that the link between the concept of fuzzy sets and fuzzy measures is effectuated 
by the pseudo-frequency distribution. Consequently, the choice for one of the fuzzy 
measures determines how the membership values are interpreted, i.e. a possibilistic or 
probabilistic context. The choice for one of the two fuzzy measures should be based on 
the perception of the data. 

Table 11.1 Aggregation of five vectors of membership values to a pseudo-
frequency distribution N(hs), possibility distribution p(hs) and 
pseudo-probability distribution p(hs), where hs indicates a 
herbaceous structural class. 

hs 

hsi 
hs2 

hs3 

hS4 
hs5 

MV(1) 

0.2 
0.8 
0.0 
0.0 
0.0 

MV(2) 

0.0 
0.3 
0.6 
0.1 
0.0 

MV(3) 

0.5 
0.1 
0.4 
0.0 
0.0 

MV(4) 

0.0 
1.0 
0.0 
0.0 
0.0 

MV(5) 

0.0 
0.0 
0.7 
0.3 
0.0 

N(hs) 

0.7 
2.2 
1.7 
0.4 
0.0 

P(hs) 

0.32 
1.00 
0.77 
0.18 
0.00 

P(hs) 

0.14 
0.44 
0.34 
0.08 
0.00 

134 



Appendix III. Statistics from fuzzy vegetation data 

Section 5.2.2 dealt with the specification of herbaceous structural data to vegetation 
community data. The relationship between herbaceous structural classes and community 
types was established by conditional statistics. The relationship between a herbaceous 
community type he e HC and a herbaceous structural class hs e HS was established by a 
conditional probability p(hclhs) and a conditional possibility p(hclhs). This appendix 
elucidates the calculation of the latter statistics from fuzzy vegetation data. 

Conditional probability p(hclhs) 
The conditional (pseudo-)probability p(hclhs) is obtained from a joint pseudo-probability 
distribution (p(hc,hs)lhc e HC, hs e HS) which in turn results from the joint pseudo-
frequency distribution (N(hc,hs)lhc e HC, hs e HS). A pseudo-frequency is obtained by 
aggregating data on vegetation community classes and herbaceous structural types 
available on the N locations of the relevees: 

N(hc,hs) = £ co,. MV(hc),. p(hs), 111.1 
i=1 

where p(hs) is the pseudo-probability for a herbaceous structural class (chapt. 3), MV(hc) 
is the membership value for a vegetation class (sect 5.2.1) and co is a weight for the stratum 
of relevee i. Next, the pseudo-probability distribution is calculated by dividing a pseudo-
frequency by the sum of all pseudo-frequencies: 

p(hc,hs) = N(hc.hs) 111.2 
£ £ N(hc,hs) 

hceHC hseHS 

Subsequently, conditional pseudo-probabilities are obtained by: 

p(hclhs) = p(hc,hs)/p(hs) 111.3 

where p(hs) is the marginal pseudo-probability. 
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Conditional possibility p(hclhs) 
Alternatively, the relationship between herbaceous structural types and vegetation 
community classes is estimated within the framework of possibility theory. In the latter 
approach a conditional possibility p(hclhs) is obtained from the joint possibility distribution 
(p(hc,hs) I he e HC, hs e HS), which in turn is calculated from the joint pseudo-frequency 
distribution (N(hc,hs) I he e HC, hs e HS). A pseudo-frequency is acquired by aggregating 
data on vegetation communities and herbaceous structural data available on the N locations 
of the relevees: 

n 
N(hc,hs) = £ G>I . MIN [ MV"(hc)i,p(hs)i] 111.4 

i=1 

where the minimum operator is the standard function in possibility theory to perform the 
combinational AND. p(hs) is the possibility of a herbaceous structural class (chapt. 3), 
MVn(hc) is the membership value for a vegetation community class (sect 5.2.1) and co is 
the weight for the stratum of relevee i. Because the possibility values for the herbaceous 
structural classes are normalised it is reasonable to demand that the membership values are 
normalised too: 

MV(hc) = MWhc) 111.5 
MAX MV(hc) 
hceHC 

When the joint pseudo-frequency distribution is normalised a possibility distribution is 
obtained: 

p(hc,hs) = N(hc.hs) 111.6 
MAX [ MAX N(hc,hs)] 
hceHC hseHS 

Subsequently, conditional possibilities are calculated by (Nguyen, 1978): 

pfliclhs) = f p(hc,hs) if p(hc) < p(hs) 111.7 
I p(hc,hs). p(hc)/p(hs) otherwise 

where p(hc) and/?(hs) are marginal possibilities andp(hc)//?(hs) is a normalisation factor. 
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Appendix IV. Optimising the fuzziness of vegetation types 

By fuzzy vegetation classification a relevee j , i.e. a vector of species abundance data 
(vi,V2,...vm)j is turned into a vector of membership values (MV^MViKa,...MV^, where 
each membership value indicates the resemblance of the relevee with a vegetation class he. 
Ideally, this vector of membership values allows for an accurate estimation of the species 
abundance data from which the membership values were derived. This means that the 
inverse calculation of species abundance data from membership values should result in a 
species composition similar to the original abundance data. 

This inverse process of fuzzification is called defuzzification and the accuracy of 
defuzzification is dependant on the degree of fuzziness applied to the community classes. 
The optimum degree of vagueness, governed by a in eq. 5.3, is somewhere between total 
fuzziness (o?=0) for which the explanatory quality is very low and the crisp case (oc=»°) 
(see fig. 5.2). 

Equation 5.3 for fuzzy classification can not be inverted to perform the defuzzification. 
Therefore Monte Carlo analysis is applied to estimate the explanatory quality of fuzzy 
classification. The procedure is presented in pseudo code in figure IV. 1. Central to the 
procedure is the simulation of a species composition (vi,v2,...vm)sim and subsequent fuzzy 
classification of the simulated abundance data (MVhci.MVhtf, ••MV|KC)

sim. 
The simulated vector of membership values is compared with the membership 

vectors (MVhci,MVhc2,-MVbcC)
r derived from real abundance data in the set of relevees R. 

If the two vectors of membership values resemble, the difference between the simulated 
species composition vsm> and the relevee data vr indicates the accuracy of the process of 
defuzzification. After performing a sufficiently large number of simulations the coefficient 
of determination is calculated from the observed differences quantifying the explanatory 
power of the fuzzy classification. Tests revealed that a number of 20,000 runs is 
sufficiently large. 

Problem in this approach is the effect of outliers on the estimation accuracy. The 
simulation of species abundance data might yield outliers, i.e. vegetation compositions that 
hardly occur in reality. The effect of outliers or extragrades in fuzzy classification has been 
extensively dealt with by De Grayter and McBratney (1990). They suggest to reduce the 
effect of outliers by accommodating them in a special class. The membership value for the 
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outlier class for a particular vegetation composition v in vegetation space Vis calculated as: 

MVouate^Nocc/10 IV.1 
= 1 whenNocc>=10 

where Nocc is the number of relevees in V occurring within a specific distance from v. 

/* set the degree of f uzziness 
seta 

I* fuzzy classification of relevees 
DOfor Nrelevees 

take species composition (vi, v2, ...VNsp)r of relevee r e R 
calculate membership of outlier class Mvroutiier 

IFMVr
outller<1 

calculate membership vegetation communities (MVhd, MVhc2,- MVhoc)r 

correct for outlier membership (MVhd, MVhc2,... MVhcc, MVoutiier)r 

endlF 
endDO 

I* Monte Carlo analysis 
DOfor Nruns 

I* fuzzy classification of simulated species composition 
simulate species composition (vi, v2, ...VNSP)8"" 
calculate membership of outlier class Mvroutiier 
IFMV9"n

oullier<1 
calculate membership vegetation communities (MVhd, MVhc2,- MVhcc)8"11 

correct for outlier membership (MVhd, MVhc2,... MVhcc, MVoutlier)8",, 

endlF 
I* compare simulated membership values with relevee membership values 
DOfor Nrelevees 

IF all MNT'V > MVhc he e HC 
fuzzy characteristics of simulated species composition and 

relevee data resemble 
add simulated abundance (vi, v2, ...VNSP)8"11 to statistics 

for relevee r; (vu v2, ...vnSp)r
mean_s«n 

endlF 
endDO 

endDO 

I* calculate summary statistic 
calculate coefficient of determination from (v1f v2, ...VNsp)r and (vi, v2, ...VNsp)rmean_sim where r e R 

Figure IV.1 Procedure in pseudo code for the estimation of the explanatory 
power of fuzzy vegetation classification. 
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Fuzziness of vegetation types 

Table IV.1 Membership values obtained by the fuzzy classification of 263 
relevees, where the bold membership values indicate the 
vegetation community he assigned to a relevee in a crisp 
clustering. 

Relevee 

19 
199 
27 
103 
29 
59 
61 
101 
148 
149 
157 
158 
163 
178 
181 
183 
210 
211 
218 
239 
253 
167 
200 
226 
252 
245 
51 
12 
32 
36 
54 
28 
43 
44 
53 
52 
92 
112 
115 
117 
4 
5 
8 
14 
25 
33 
39 
50 
73 
79 
83 
87 
95 
98 
99 
114 
3 
6 
11 
18 
58 

hd 
0.14 

0.83 

0.30 

0.7$ 

0.41 

0.9S 
0.75 

0.98 

0.92 

0.98 

0.97 

1.00 

0.86 

1.00 

0.99 
1.00 

1.00 

1.00 

1.00 

1.00 

0.99 

0.86 

0.77 

0.79 

0.82 
0.04 

0.07 

0.11 
0.38 

0.04 

0.08 

0.05 

0.09 

0.06 

0.14 

0.04 

0.00 

0.01 

0.01 

0.01 

0.02 

0.03 

0.02 

0.01 

0.01 

0.11 

0.01 
0.03 

0.01 
0.04 

0.04 

0.05 

0.02 

0.03 

0.02 

0.03 

0.01 

0.01 

0.02 

0.05 

0.08 

hc2 
0.18 

0.01 
0.20 

0.02 
0.21 

0.01 

0.04 
0.00 

0.02 
0.01 

0.01 

0.00 

0.07 

0.00 

0.00 

0.00 

0.00 

o.oo 
o.oo 
0.00 

0.00 

0.07 

0.05 
0.04 

0.06 

0.02 

0.43 

0.54 

0.27 
0.71 

0.67 
0.85 

0.44 
0.52 

0.49 

0.38 
0.00 

0.01 
0.01 

0.01 

0.03 

0.03 

0.02 

0.04 

0.06 

0.20 

0.10 

0.24 

0.02 
0.09 

0.17 

0.07 
0.04 
0.09 

0.03 

0.03 

0.02 
0.01 

0.02 

0.12 

0.06 

ho3 
0.02 

0.00 

0.02 
0.00 

0.01 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.01 
0.05 

0.03 

0.01 

0.01 

0.01 

0.01 

0.00 

0.02 
0.01 

0.01 

0.01 

0.91 

0.85 

0.69 
0.78 

0.67 

0.17 
0.02 

0.01 

0.01 
0.04 

0.01 
0.02 

0.01 

0.02 

0.03 

0.02 

0.03 

0.01 

0.02 

0.08 

0.12 

0.01 

0.04 

0.02 

0.01 

hc4 
0.31 

0.01 

0.06 

0.02 

0.11 

0.00 

0.01 
0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.01 

0.01 

0.20 

0.05 
0.02 

0.07 
0.04 

0.03 

0.12 

0.04 

0.06 

0.37 

0.01 

0.01 

0.01 

0.01 

0.04 

0.04 

0.11 

0.32 

0.82 
0.25 

0.76 
0.50 

0.81 

0.68 

0.52 

0.57 

0.34 

0.70 

0.12 
0.06 

0.04 

0.03 

0.02 

0.16 

0.09 

hc5 
0.05 

0.02 
0.13 
0.13 

0.11 

0.01 

0.04 
0.01 

0.03 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
0.02 

0.03 

0.03 
0.02 

0.04 

0.06 

0.05 

0.04 

0.03 

0.04 
0.02 

0.07 
0.03 

0.03 

0.02 

0.01 

0.02 

0.02 
0.02 

0.07 
0.09 

0.19 

0.10 

0.03 

0.12 

0.03 

0.04 

0.03 

0.03 

0.03 
0.08 
0.09 

0.04 

0.16 

0.21 

0.60 

0.35 

0.54 

0.48 

0.33 

hc6 
0.05 

0.02 

0.05 

0.02 
0.03 

0.01 
0.05 

0.00 

0.01 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.01 

0.01 

0.02 

0.01 
0.02 

0.04 

0.08 

0.06 

0.04 

0.05 

0.02 

0.08 

0.15 

0.06 

0.04 

0.00 

0.00 

0.00 

0.01 

0.02 

0.02 

0.07 

0.04 

0.01 
0.06 

0.02 
0.04 

0.02 

0.04 

0.04 

0.03 

0.05 

0.02 

0.05 

0.03 

0.02 

0.03 

0.02 

0.03 

0.12 

hc7 
0.09 

0.03 

0.03 

0.02 

0.02 

0.00 

0.03 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.00 

0.02 
0.02 

0.02 

0.02 
0.01 

0.01 

0.01 

0.03 

0.02 

0.02 

0.04 

0.01 

0.01 
0.01 

0.01 

0.02 

0.04 

0.27 

0.35 

0.03 

0.05 

0.03 
0.02 

0.07 

0.05 

0.06 

0.10 

0.24 

0.05 

0.36 

0.05 

0.03 

0.42 

0.02 

0.03 

0.09 

hc8 
0.04 

0.05 

0.02 
0.01 

0.02 

0.01 

0.04 
0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 
0.01 

0.08 
0.02 

0.01 

0.02 
0.01 

0.01 

0.00 
0.01 
0.01 

0.02 

0.02 

0.01 

0.01 

0.02 
0.02 

0.02 

0.09 

0.08 

0.05 
0.01 

0.02 

0.01 

0.01 

0.01 

0.01 

0.02 

0.03 

0.05 

0.02 

0.10 

0.05 

0.02 

0.09 

0.06 

0.02 

0.05 

ho9 
0.02 

0.01 

0.03 

0.00 
0.01 

0.00 
0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.01 

0.02 

0.02 

0.01 

0.16 

0.02 

0.01 
0.03 

0.01 

0.01 

0.00 

0.01 

0.01 

0.02 

0.01 

0.01 

0.02 

0.06 

0.03 

0.02 

0.09 

0.03 

0.01 

0.00 
0.02 

0.00 
0.01 

0.00 

0.01 

0.01 
0.01 

0.02 

0.01 

0.02 

0.06 

0.02 
0.01 

0.06 

0.01 

0.02 

hc10 

0.03 

0.01 

0.03 

0.01 

0.02 

0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.03 

0.03 

0.02 

0.25 

0.02 

0.01 

0.03 

0.01 

0.01 
0.00 

0.02 
0.01 

0.03 

0.01 

0.02 

0.02 

0.11 
0.04 

0.03 

0.11 

0.03 

0.01 

0.00 

0.02 

0.00 

0.01 

0.00 

0.01 

0.02 

0.01 

0.02 
0.01 

0.03 

0.08 

0.03 

0.01 

0.08 

0.02 

0.02 

hc11 

0.01 

0.00 

0.01 
0.00 

0.01 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.02 
0.01 

0.01 

0.01 

0.01 

0.01 

0.00 
0.01 

0.01 

0.01 

0.01 

0.00 
0.01 

0.01 

0.01 

0.01 

0.03 
0.02 

0.01 

0.00 
0.01 

0.00 
0.01 

0.00 

0.00 
0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.01 

0.01 

hc12 

0.02 

0.00 

0.03 

0.00 

0.02 

0.00 

0.01 
0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.02 
0.01 

0.05 

0.03 

0.05 

0.06 

0.03 

0.03 

0.01 
0.03 

0.08 

0.04 

0.02 

0.00 

0.01 

0.01 
0.01 

0.02 

0.04 

0.03 

0.01 

0.00 

0.04 

0.01 

0.02 

0.00 

0.01 

0.02 

0.01 

0.02 

0.01 

0.01 

0.03 

0.02 
0.01 

0.02 

0.02 

0.04 

ho13 

0.01 

0.00 

0.01 
0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.00 

0.01 

0.01 

0.01 

0.01 

0.00 

0.00 

0.00 

0.01 

0.01 

0.02 

0.02 

0.01 

0.00 
0.01 

0.00 
0.01 

0.00 

0.00 

0.01 

0.01 

0.01 

0.00 

0.01 

0.02 

0.01 

0.01 

0.01 

0.01 

0.02 

hc14 

0.01 

0.00 

0.02 

0.00 

0.01 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.01 

0.03 
0.01 

0.01 

0.01 

0.01 

0.01 

0.00 

0.02 

0.03 

0.03 
0.01 

0.00 

0.01 

0.01 
0.01 

0.01 

0.04 
0.02 

0.01 

0.00 
0.01 

0.00 
0.01 

0.00 
0.00 

0.01 
0.01 

0.01 

0.00 

0.01 

0.03 
0.01 

0.01 

0.02 

0.01 

0.02 

hc15 

0.02 

0.00 

0.02 
0.00 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 
0.01 

0.16 

0.01 

0.01 

0.02 

0.01 

0.01 

0.00 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.02 

0.02 

0.01 

0.04 

0.02 

0.01 

0.00 

0.02 

0.00 
0.01 

0.00 

0.00 

0.01 

0.01 

0.01 

0.01 

0.01 

0.03 

0.01 

0.00 

0.02 

0.01 

0.01 

hc16 

0.01 

0.00 

0.02 
0.00 

0.01 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.01 

0.04 

0.01 

0.01 

0.01 

0.01 
0.01 

0.00 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 
0.01 

0.01 

0.10 

0.03 

0.01 

0.00 

0.02 

0.00 

0.01 

0.00 

0.00 

0.01 
0.01 

0.02 

0.00 

0.01 

0.11 

0.02 
0.00 

0.03 

0.01 

0.01 

hc17 

0.01 

0.00 
0.02 

0.00 

0.01 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.02 
0.01 

0.01 

0.01 

0.01 

0.01 

0.00 
0.01 

0.01 
0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.05 

0.04 

0.01 

0.00 
0.02 

0.00 
0.01 

0.00 

0.00 
0.01 

0.01 

0.03 

0.00 

0.02 
0.09 

0.02 

0.01 

0.02 
0.01 

0.02 
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Appendix 

65 
75 
88 
89 
91 
96 
97 
100 
102 
104 
105 
106 
109 
147 
161 
222 
230 
231 
232 
23 
37 
38 
40 
56 
57 
69 
77 
78 
84 
86 
160 
215 
216 
229 
135 
1 
9 
10 
21 
22 
35 
46 
47 
60 
66 
71 
85 
94 
150 
151 
166 
170 
177 
179 
198 
236 
243 
254 
257 
110 
111 
173 
203 
206 
221 
223 
234 
235 
260 

IV 

0.01 

0.06 
0.02 

0.05 

0.02 
0.01 

0.02 

0.05 

0.05 

0.04 

0.03 

0.03 
0.02 

0.13 

0.04 

0.06 
0.01 

0.09 

0.02 

0.01 

0.05 

0.04 

0.04 

0.05 

0.01 

0.02 

0.03 

0.01 

0.02 
0.02 

0.03 

0.02 

0.03 

0.02 
0.04 

0.02 
0.02 

0.00 

0.01 
0.03 

0.01 

0.01 
0.02 

0.01 
0.01 

0.01 
0.02 

0.01 

0.01 

0.01 
0.03 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 
0.00 

0.01 

0.02 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.05 
0.02 

0.06 

0.02 

0.01 

0.02 

0.07 

0.02 

0.02 

0.01 

0.02 

0.04 
0.03 

0.02 

0.04 

0.02 

0.08 

0.02 

0.01 

0.36 
0.24 

0.06 

0.03 
0.02 

0.04 

0.14 

0.01 

0.15 

0.02 

0.04 
0.04 

0.03 

0.03 
0.11 

0.04 

0.02 
0.01 

0.02 
0.07 

0.01 

0.02 
0.05 

0.01 

0.03 

0.01 

0.02 
0.01 

0.01 

0.01 

0.04 
0.01 

0.01 

0.01 

0.00 

0.00 

0.00 

0.01 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.04 

0.02 

0.03 

0.01 

0.03 

0.01 

0.02 

0.02 
0.01 

0.01 

0.01 

0.01 

0.03 

0.01 

0.01 

0.01 

0.00 
0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.00 
0.00 

0.01 

0.00 

0.01 

0.00 

0.01 
0.02 

0.02 
0.01 

0.04 

0.02 

0.02 

0.00 

0.01 
0.10 
0.01 

0.00 

0.02 

0.01 
0.04 

0.01 

0.01 

0.01 
0.00 

0.01 

0.02 

0.00 

0.00 

0.01 

0.00 

0.00 

0.00 

0.01 

0.00 

0.02 

0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.07 
0.02 

0.15 

0.02 
0.01 

0.06 

0.04 

0.01 

0.02 

0.01 

0.01 

0.03 
0.01 

0.03 

0.02 

0.02 
0.08 

0.02 

0.02 
0.09 

0.05 

0.11 

0.02 

0.01 

0.01 

0.02 

0.00 

0.05 

0.01 

0.04 
0.04 

0.02 

0.03 

0.07 

0.32 

0.18 

0.03 

0.10 
0.16 

0.02 

0.02 
0.27 

0.07 

0.26 

0.01 

0.14 
0.02 

0.01 

0.01 

0.14 

0.02 
0.03 

0.06 

0.01 

0.00 

0.01 

0.01 

0.00 

0.01 

0.04 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.68 

0.12 

0.47 

0.57 

0.49 

0.80 

0.09 

0.47 

0.83 

0.65 

0.85 

0.87 

0.41 

0.72 
0.50 

0.51 
0.16 

0.36 

0.13 
0.05 

0.07 

0.04 

0.05 

0.03 

0.02 
0.01 

0.02 

0.01 

0.03 
0.02 

0.15 
0.06 

0.04 
0.10 

0.10 

0.04 

0.05 

0.02 
0.10 

0.06 
0.02 

0.03 

0.06 

0.04 

0.03 

0.02 
0.07 

0.02 

0.04 

0.03 

0.04 

0.03 

0.05 

0.03 

0.03 

0.00 

0.02 

0.03 

0.00 

0.04 

0.09 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.01 

0.15 

0.02 
0.04 

0.02 

0.01 

0.16 

0.08 

0.01 
0.09 

0.01 

0.01 
0.03 

0.02 

0.05 

0.03 

0.20 

0.07 

0.22 

0.20 

0.13 

0.29 

0.35 

0.42 

0.77 

0.79 
0.55 

0.86 

0.58 

0.85 

0.37 

0.31 

0.31 
0.36 

0.09 
0.03 

0.04 

0.01 
0.03 
0.06 

0.17 

0.21 
0.06 
0.04 

0.02 

0.11 
0.05 

0.02 

0.07 
0.04 

0.05 

0.05 

0.06 

0.02 
0.04 

0.00 

0.02 

0.20 

0.00 

0.01 

0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.02 

0.10 
0.02 

0.06 

0.03 
0.01 

0.16 

0.02 

0.01 

0.05 

0.01 

0.01 

0.03 

0.01 

0.16 

0.02 

0.43 
0.17 

0.14 

0.14 

0.06 

0.03 

0.18 

0.08 

0.05 

0.02 

0.02 

0.01 

0.03 

0.02 

0.20 

0.16 

0.08 
0.16 

0.05 

0.35 

0.49 

0.86 

0.60 

0.32 
0.26 

0.49 

0.31 

0.66 
0.41 

0.39 

0.51 

0.55 

0.59 

0.42 

0.43 

0.80 

0.76 

0.80 

0.78 
0.02 

0.35 

0.32 

0.02 

0.06 

0.13 

0.00 

0.01 

0.00 

0.01 

0.01 

0.00 

0.02 

0.00 

0.03 

0.05 
0.08 

0.02 

0.03 

0.02 

0.04 

0.02 

0.01 

0.06 

0.01 

0.01 
0.06 
0.01 

0.13 

0.03 

0.05 

0.04 

0.05 

0.04 

0.04 

0.02 
0.04 

0.06 

0.01 

0.01 

0.01 

0.00 

0.01 

0.01 

0.06 
0.07 

0.10 

0.03 

0.04 

0.06 

0.06 

0.04 

0.07 

0.05 
0.08 

0.05 

0.07 

0.09 
0.10 

0.14 

0.08 

0.26 

0.14 

0.17 

0.10 

0.05 

0.04 
0.05 

0.08 

0.95 

0.51 

0.06 

0.97 

0.73 

0.49 

0.99 

0.97 

1.00 

0.94 

0.96 

0.99 
0.95 

1.00 

0.04 

0.03 

0.07 

0.01 

0.05 

0.02 

0.02 
0.02 

0.01 

0.01 

0.02 
0.01 

0.07 

0.01 

0.01 

0.05 
0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.00 

0.00 

0.01 

0.00 

0.01 
0.00 

0.01 

0.03 

0.04 

0.02 

0.05 

0.02 

0.02 

0.00 

0.01 
0.02 

0.02 

0.01 

0.02 
0.01 

0.02 

0.02 

0.01 
0.02 

0.01 

0.04 

0.02 
0.00 

0.00 

0.00 

0.01 

0.00 

0.01 

0.01 

0.00 

0.03 

0.03 

0.00 

0.00 

0.00 

0.01 
0.01 

0.00 

0.00 

0.00 

0.06 

0.03 
0.09 

0.01 

0.06 

0.04 

0.02 

0.02 

0.02 
0.01 

0.02 

0.01 
0.08 

0.01 

0.02 

0.05 

0.01 

0.02 
0.02 

0.02 

0.02 
0.02 

0.02 

0.02 
0.00 

0.00 

0.01 

0.00 

0.01 

0.00 

0.02 

0.03 
0.06 

0.02 
0.06 

0.02 

0.02 

0.01 

0.01 

0.02 
0.03 

0.01 

0.02 

0.01 

0.02 
0.03 

0.02 

0.03 

0.02 

0.04 

0.03 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.00 

0.03 

0.04 

0.00 

0.00 

0.00 

0.03 

0.02 

0.00 

0.01 

0.00 

0.01 

0.02 

0.02 
0.00 

0.02 

0.01 
0.03 

0.01 
0.00 

0.01 
0.00 

0.00 

0.02 
0.00 

0.01 
0.03 

0.01 
0.01 

0.03 

0.02 
0.01 

0.01 

0.02 

0.02 

0.00 

0.00 

0.01 

0.00 

0.01 

0.00 

0.01 
0.03 

0.03 

0.02 

0.03 

0.01 

0.01 

0.00 

0.01 
0.01 

0.04 

0.01 

0.01 

0.01 

0.01 

0.04 

0.01 
0.01 

0.02 

0.15 
0.01 

0.00 

0.00 
0.00 

0.01 

0.00 

0.01 

0.03 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.06 

0.03 

0.01 

0.03 

0.01 

0.06 

0.07 

0.01 

0.02 

0.01 

0.01 

0.04 
0.02 

0.01 

0.09 

0.02 

0.02 

0.08 

0.29 

0.08 

0.15 

0.04 

0.09 

0.06 
0.05 

0.12 

0.08 

0.06 

0.04 

0.04 

0.06 

0.08 

0.06 

0.10 
0.01 

0.01 

0.00 
0.01 

0.03 

0.07 

0.07 

0.02 
0.01 

0.01 

0.04 

0.01 
0.01 

0.04 

0.03 

0.02 
0.01 

0.01 

0.01 

0.01 

0.00 

0.01 

0.06 

0.00 

0.01 

0.02 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.04 
0.01 

0.00 

0.02 

0.00 

0.13 

0.02 

0.00 

0.01 

0.00 

0.00 

0.02 

0.00 

0.01 

0.01 

0.02 
0.01 

0.07 

0.06 

0.02 

0.02 

0.03 

0.04 

0.02 

0.01 

0.02 

0.01 

0.02 

0.01 

0.01 
0.04 

0.03 

0.04 

0.03 

0.01 

0.01 

0.00 

0.01 
0.01 

0.08 

0.04 

0.01 

0.01 
0.01 

0.06 

0.01 

0.01 

0.02 

0.02 

0.01 
0.00 

0.01 
0.00 

0.01 
0.00 

0.01 
0.07 

0.00 

0.01 

0.01 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.02 
0.02 

0.00 

0.03 

0.01 

0.06 

0.03 

0.00 
0.01 

0.01 

0.00 
0.04 

0.00 

0.01 

0.02 
0.02 

0.01 

0.16 

0.07 

0.02 

0.03 
0.03 

0.06 
0.01 

0.01 

0.02 

0.01 

0.02 
0.01 

0.01 

0.05 

0.04 

0.07 
0.05 

0.01 

0.01 

0.00 

0.01 
0.01 

0.08 

0.03 

0.01 

0.01 

0.01 

0.06 
0.01 

0.01 

0.02 

0.01 

0.01 

0.00 

0.01 

0.00 

0.01 

0.00 

0.00 

0.14 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.02 

0.02 

0.02 

0.00 

0.02 
0.01 

0.01 

0.01 

0.01 

0.00 

0.01 

0.00 

0.02 

0.01 

0.01 

0.02 

0.01 
0.01 

0.01 

0.01 

0.02 

0.02 
0.01 

0.01 

0.00 

0.00 

0.01 

0.00 

0.01 

0.00 

0.01 
0.02 

0.03 

0.01 

0.04 

0.01 

0.01 

0.00 

0.01 

0.02 

0.02 

0.01 

0.01 

0.01 
0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.00 

0.00 

0.00 

0.00 

0.00 

0.02 

0.01 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.03 

0.03 

0.04 

0.00 

0.04 

0.02 

0.04 

0.02 

0.01 

0.00 

0.01 

0.00 

0.04 
0.00 

0.00 
0.01 

0.00 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.02 

0.00 
0.00 

0.01 

0.00 

0.01 

0.00 

0.01 

0.02 

0.03 

0.01 

0.05 

0.02 
0.02 

0.00 

0.01 
0.02 

0.03 

0.00 
0.01 

0.01 

0.01 

0.02 

0.01 
0.01 

0.00 

0.01 

0.02 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.02 

0.14 
0.02 

0.00 

0.10 

0.02 

0.06 

0.03 

0.01 

0.01 

0.01 

0.00 

0.03 

0.00 

0.01 

0.01 

0.00 
0.01 

0.01 

0.03 

0.01 

0.02 
0.01 

0.03 

0.01 

0.00 

0.01 

0.00 

0.01 

0.00 

0.01 
0.02 

0.05 

0.01 

0.04 

0.01 

0.01 

0.00 
0.01 

0.01 

0.05 

0.01 

0.02 
0.01 

0.01 

0.03 

0.01 
0.01 

0.00 

0.01 

0.02 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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Fuzziness of vegetation types 

55 
136 
138 
107 
171 
172 
233 
224 
16 
45 
68 
31 
139 
140 
145 
152 
159 
164 
174 
176 
213 
228 
242 
186 
193 
195 
201 
202 
248 
249 
255 
256 
128 
146 
175 
187 
121 
122 
124 
125 
130 
132 
191 
192 
214 
188 
15 
17 
26 
42 
49 
76 
82 
134 
24 
30 
48 
62 
72 
182 
189 
212 
217 
143 
13 
41 
74 
81 
126 

0.03 

0.03 

0.03 

0.02 

0.00 

0.00 
0.00 

0.04 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.01 

0.02 

0.02 

0.08 

0.02 

0.03 

0.00 

0.05 

0.01 

0.01 

0.03 

0.01 

0.01 

0.01 
0.01 

0.01 

0.00 

0.01 

0.03 

0.01 
0.00 

0.00 

0.00 

0.00 

0.02 

0.02 

0.03 

0.02 

0.00 

0.00 

0.00 

0.02 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 
0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.00 

0.00 

0.02 

0.03 

0.04 

0.03 

0.06 

0.01 

0.07 

0.01 

0.02 

0.04 

0.02 

0.01 

0.01 

0.01 

0.01 

0.00 

0.01 

0.02 

0.01 

0.00 

0.00 

0.00 

0.01 

0.07 

0.05 

0.04 

0.03 

0.00 

0.00 

o.oo 
0.04 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.01 

0.00 
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67 
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241 
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262 
258 
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196 
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263 
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184 
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0.97 
0.45 

0.87 

0.35 

0.66 
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0.03 
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0.11 
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Appendix V. Fuzzy decision rules for nutrient availability 

Table V.1 Listing of the fuzzy relation R (Chapter 6). The fuzzy relation 
contains the set of decision rules for the inference of the nutrient 
availability given specific abiotic site conditions and specific 
vegetation structure. The mean membership value MV"1 and the 
standard deviation MV8 are calculated from the estimations made 
by 6 experts. 

moisture 

dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 
dry 

acidity 

acid 
acid 
acid 
add 
add 
add 
add 
add 
add 
acid 
add 
acid 
add 
acid 
add 

neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 

soil characteristics 
organic 
matter 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 
very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 
very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 

nutrient 
availability 

very oligotrophy 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 

grassland 

MVm 
73 
25 

2 
0 
0 
0 

32 
44 
24 

0 
2 

40 
8 

22 
12 
17 
67 
17 
0 
0 
0 
5 

52 
22 

5 
0 

12 
35 
18 
18 
5 

55 
37 

3 
0 
0 
3 

30 
43 

7 
0 
0 

vegetation structure 

MVs 
31 
28 

4 
0 
0 
0 

44 
37 
25 

0 
4 

44 
10 
40 
29 

5 
12 
10 
0 
0 
0 
8 

35 
19 
12 
0 

20 
40 
27 
33 

8 
24 
21 

8 
0 
0 
8 

30 
29 
16 
0 
0 

mowed 
grassland 

MVm 
73 
25 

2 
0 
0 
8 

44 
48 

0 
0 

22 
37 
17 
23 

2 
17 
67 
17 
0 
0 

12 
15 
60 
13 
0 

10 
13 
38 
32 

7 
5 

55 
37 

3 
0 
0 
7 

62 
32 

0 
0 
0 

vIVs 
31 
28 

4 
0 
0 
9 

23 
29 

0 
0 

31 
34 
10 
37 

4 
5 

12 
10 
0 
0 

29 
12 
33 
12 
0 

25 
10 
29 
33 
12 
8 

24 
21 

8 
0 
0 

16 
10 
18 
0 
0 
0 

shrubland 

MVm 
98 

2 
0 
0 
0 

52 
48 

0 
0 
0 

58 
17 
23 

2 
0 

83 
17 
0 
0 
0 

27 
60 
13 
0 
0 

23 
38 
32 

7 
0 

60 
37 

3 
0 
0 
7 

62 
32 

0 
0 
0 

37 

MVs 
31 

4 
0 
0 
0 

39 
29 

0 
0 
0 

31 
10 
37 

4 
0 
9 

10 
0 
0 
0 

20 
33 
12 
0 
0 

17 
29 
33 
12 
0 

16 
21 

8 
0 
0 

16 
10 
18 
0 
0 
0 

32 
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Appendix V 
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wet 
wet 
wet 
wet 
wet 
wet 
wet 
wet 
wet 
wet 
wet 
wet 

alkaline 
alkaline 
alkaline 

acid 
acid 
acid 
add 
add 
add 
add 
add 
add 
add 
add 
add 
add 
add 
add 

neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
neutral 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
alkaline 
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neutral 
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very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 
very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 
very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 
very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 
humus 
humus 
humus 
humus 

very humus 
very humus 
very humus 
very humus 
very humus 

sandy 
sandy 
sandy 
sandy 
sandy 
humus 

mesotrophic 
eutrophic 

hypertrophic 
very oligotrophy 

oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 
oligotrophic 
mesotrophic 

eutrophic 
hypertrophic 

very oligotrophic 

33 
20 
30 
43 
48 

8 
0 
0 
0 

37 
28 
13 
5 
0 

28 
22 
15 
18 
0 

48 
45 

3 
0 
0 
0 

37 
40 

7 
0 
3 

28 
20 
32 

2 
43 
47 

8 
0 
0 
0 

25 
48 
10 
0 
0 

27 
23 
33 
60 
40 

0 
0 
0 
0 
7 

57 
20 

0 
0 

27 
32 
15 
10 
13 
57 
28 

2 
0 
0 

38 
19 
47 
33 
27 
13 
0 
0 
0 

41 
20 
21 
12 
0 

31 
24 
25 
30 

0 
27 
24 

8 
0 
0 
0 

30 
23 
16 
0 
8 

34 
27 
49 

4 
29 
22 
13 
0 
0 
0 

25 
30 
25 

0 
0 

35 
32 
52 
29 
29 

0 
0 
0 
0 

16 
32 
22 

0 
0 

41 
38 
24 
25 
15 
24 
28 

4 
0 
0 

37 
47 
17 
43 
48 

8 
0 
0 
8 

38 
45 

8 
0 
5 

33 
32 
22 

8 
3 

48 
45 

3 
0 
0 
3 

63 
33 

0 
0 

12 
33 
37 
18 
2 

43 
47 

8 
0 
0 
0 

50 
50 

0 
0 
0 

23 
50 
27 
60 
40 

0 
0 
0 

12 
57 
32 

0 
0 
8 

47 
35 
10 
0 

13 
57 
28 

2 
0 
0 

32 
16 
27 
33 
27 
13 
0 
0 

13 
26 
32 
13 
0 
8 

37 
32 
33 
13 
8 

27 
24 

8 
0 
0 
8 
8 

10 
0 
0 

20 
27 
24 
30 

4 
29 
22 
13 
0 
0 
0 

27 
27 

0 
0 
0 

30 
25 
35 
29 
29 

0 
0 
0 

20 
14 
22 

0 
0 

13 
31 
28 
25 

0 
15 
24 
28 

4 
0 
0 

47 
17 
0 

92 
8 
0 
0 
0 

47 
45 

8 
0 
0 

38 
32 
22 

8 
0 

52 
45 

3 
0 
0 
3 

63 
33 

0 
0 

12 
33 
37 
18 
0 

45 
47 

8 
0 
0 
0 

50 
50 

0 
0 
0 

23 
50 
27 

0 
100 

0 
0 
0 
0 

68 
32 

0 
0 
0 

55 
35 
10 
0 
0 

70 
28 

2 
0 
0 

12 

16 
27 

0 
30 
13 
0 
0 
0 

20 
32 
13 
0 
0 

23 
32 
33 
13 
0 

18 
24 

8 
0 
0 
8 
8 

10 
0 
0 

20 
27 
24 
30 

0 
17 
22 
13 
0 
0 
0 

27 
27 

0 
0 
0 

30 
25 
35 

0 
29 

0 
0 
0 
0 

17 
22 

0 
0 
0 

22 
28 
25 

0 
0 

20 
28 

4 
0 
0 
8 
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Decision rules for nutrient availability 
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15 
5 

52 
40 

3 
0 
0 
0 

33 
43 

7 
0 
0 
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Plates 

1990 

1995 

Plate 1 Colour infrared orthophotos of a subarea of the test site in 1990 
and 1995 (scale 1:4000). 
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1990 

1995 

Plate 1 Elementery vegetation structural objects with the nested field of 
grassland subtype hs1 Thin herb/grass cover with blond sand' in 
the test site in 1990 and 1995 (scale 1:4000; legend on page 155). 

150 



1990 

u- A ^ •;•• a* ' "'-•• t ' w -

Plates 

1995 

Plate 1 Elementery vegetation structural objects with the nested field of 
grassland subtype hs2 Intermediate herb/moss cover with grey 
sand' in the test site in 1990 and 1995 (legend on page 155). 
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1990 

1995 

Plate 1 Elementary vegetation structural objects with the nested field of 
grassland subtype hs3 High moss cover' in the test site in 1990 
and 1995 (scale 1:4000; legend on page 155). 
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Plates 

1990 

1995 

Plate 1 Elementery vegetation structural objects with the nested field of 
grassland subtype hs4 'High moss cover and low grass cover' in 
the test site in 1990 and 1995 (scale 1:4000; legend on page 155). 
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1990 

1995 

Plate 1 Elementery vegetation structural objects with the nested field of 
grassland subtype hs5 High grass/herb cover with litter' in the test 
site in 1990 and 1995 (scale 1:4000; legend on page 155). 
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Plates 

Legend of plate 1. 

Blond sand 

1 

Grassland types hs,, hs2... hs5 

(in probability) 

Sea buckthorn 

Low scrubs 

High scrubs and trees 

Legend of plate 2. 

Sandy area 

1 

Matrix types (in probability) 

Woodland 
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1990 

1995 

Plate 2 Composite vegetation structural objects with the nested field of 
matrix subtype 'Blond sand' in the test site in 1990 and 1995 (scale 
1:4000; legend on page 155). 
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Plates 

1990 

1995 

Plate 2 Composite vegetation structural objects with the nested field of 
matrix subtype hs2 Intermediate herb/moss cover with grey sand' 
in the test site in 1990 and 1995 (scale 1:4000; legend on page 155). 
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1990 

1995 

Plate 2 Composite vegetation structural objects with the nested field of 
matrix subtype 'Sea buckthorn' in the test site in 1990 and 1995 
(scale 1:4000; legend on page 155). 
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Plates 

1990 

1995 

Plate 2 Composite vegetation structural objects with the nested field of 
matrix subtype 'Scrubs and trees' in the test site in 1990 and 1995 
(scale 1:4000; legend on page 155). 
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