Uncertainties in N and GHG fluxes from agro-ecosystems in Europe

Hans Kros, Gerard Heuvelink, Gert Jan Reinds, Jan Peter Lesschen, Vicky Ioanidi, and Wim de Vries

Introduction

- The UA/UQ of INTEGRATOR
- Results
 - Uncertainty at European and National scale
 - Uncertainty contribution of parameter groups
 - Robustness analysis
- Conclusions

Introduction

Aim INTEGRATOR

• The INTEGRATOR model predicts European wide high resolution estimate of N and GHG fluxes with the associated uncertainties.

Objective study

- Analyse how uncertainties in model inputs and model parameters propagate to model outputs, focusing on uncertainties in:
 - continuous model inputs (livestock, N fertilizer, soil properties)
 - model parameters
- neglecting uncertainties in scenario related model inputs (climate and land cover) and in categorical data (e.g. soil type, drainage status)

The INTEGRATOR model and UQ/UA boundaries

Included uncertainty sources

Soil properties:

- soil physical data: texture
- soil chemical data: pH, carbon content and nitrogen content (C/N ratio).

Model parameters:

- Livestock excretion data: Animal nrs, Excretion fac, Housing fac
- Housing emission data: Emission frac (NH₃, N₂O, NO_x)
- Nitrogen input data: Manure/fert application data, Ndep, Nfix, Nmin
- Nitrogen uptake data: Yield, N contents, NUE
- Soil emission data: Emission frac (NH₃, N₂O, NO_x)
- Leaching and runoff data: leaching frac, runoff frac

Assignment of uncertainties

For each model parameter we define at NCU level:

- Distribution type (normal, lognormal)
- Coefficient of variation for normal distribution and standard deviation for lognormal distribution
- Minimum and maximum level
- Cross correlation between certain parameters (at NCU level) when they exist (limited)
- Spatial correlation ..

Spatial correlation

Common geostatistical procedure: semi-variograms and cross variograms.

- not an easy task since data are not available
- Chosen for a more pragmatic solution
- Assumption 1: parameters are constant within an aggregated spatial unit. In INTEGRATOR we distinguish:
 - NCU
 - NUTS2/3
 - Country
- Assumption 2: Degree of spatial correlation is determined by the correlation between parameters in different spatial units:
 - NCUs within the same NUTS2/3 region (ρ_{NCU})
 - NUTS2/3 regions within the same country (p_{NUTS2/3})
 - Countries within Europe (ρ_{Country})

Robustness analyses (CV/SD)

 Since the information on the assigned CVs or SDs are rather uncertain we also apply perform a robustness analysis by using three uncertainty scenarios (Optimistic (O), Reference (R) and Pessimistic (P)).

Class of CV or SD	O pt (O)	Ref (R)	Pes (P)
Low (L)	0.05	0.10	0.15
Moderate (M)	0.10	0.25	0.30
H igh (H)	0.40	0.50	0.60

¹⁾ Only in case of parameters which are defined as fraction

Robustness analyses (spatial correlation)

Class of correlation	O pt (O)	Ref (R)	Pes (P)
Perfect (P)	1	1	1
High (H)	0.8	0.85	0.9
Moderate (M)	0.3	0.5	0.7
Low (L)	0.1	0.2	0.3
None (N)	0	0	0

Example of uncertainty assigment

Parameter	Code ¹⁾	Distribution ²	CV	SD	Min	Max	Unit	ρ_{NCU}	ρ _{NUTS}	ρ _{country}
Livestock excretion data										
 N excretion rates, dairy cattle 	Nexf_ca	Normal	М		0	inf	kg N / head	Р	Н	М
Housing emission data										
 — NH₃ emission fraction from housing systems 	fNemhs_NH3	Normal	М		0	1	-	Р	Н	М
 N₂O emission fraction from housing systems (liquid) 	fNemhsl_N20	Lognormal		М	-inf	0	-	Р	Н	М
Nitrogen input data										
— National fertilizer N inputs	tNfe	Normal	L		0	inf	ton N / countr y	Р	Р	М
Soil emission data			М		0	inf				
 — NH₃ emission factors from soil systems for all manure types 	fNemap_NH3	Normal	М		0	1	-	М	М	L
 N₂O emission fractions from soil inputs ⁴⁾ 	fNemsi_N20	Normal	М		0	1	-	L	L	L
 Ratio between NO_x and N₂O emission fractions ⁵⁾ 	rNON20	Lognormal		0.75	-inf	0	-	М	L	L
Leaching and runoff data							-			
 N leaching fractions from the soil 	fNle	Normal	М		0	1	-	М	М	L
 N leaching fractions from stored manure 	flems	Normal	Н		0	1	-	Р	Н	М

In total 57 parameters

Application of the UQ/UA procedure

- Perform *1000* drawings from the (multivariate) normally distributed or log-transformed process parameters while taking into account cross-correlations and spatial correlations.
- Back-transform simulated values for log-transformed process parameters (e.g. those that are log normally distributed)
- Read realizations by INTEGRATOR and perform MC runs
- Analyse results

Uncertainty in N and GHG fluxes for the EU27

Uncertainty for the EU27 due the input uncertainty in generic, national, NUTS2/3 and NCU parameters in the European average outputs for the year 2000

Model output	Mean	SD	P05	P50	P95	CV	
		Kg N or CH₄ ha⁻¹ yr⁻¹					
CH _{4 em}	45.8	4.7	38.3	45.8	53.7	0.10	
N ₂ O _{em}	5.4	0.9	3.9	5.3	7.2	0.17	
NO _{x em}	4.2	1.0	2.7	4.2	6.0	0.24	
NH _{3 em}	16.4	2.1	13.1	16.3	20.3	0.13	
N _{le gw}	7.5	2.6	4.0	7.2	12.2	0.34	
N _{le sw}	18.0	4.9	10.8	17.6	27.0	0.27	

Uncertainty in N and GHG fluxes for the EU27

N fluxes

GHG fluxes

Uncertainty in the European averaged outputs for the year 2000

Uncertainty in N₂O and NH₃ emission per country

The 90% prediction of the N₂O emission per NCU in 2000

95% perc

The 90% prediction of the N_{le sw} per NCU in 2000

95% perc

Uncertainty contribution of various inputs

Robustness Analysis

- Effect of scenarios:
 - optimistic (Opt)
 - reference (Ref)
 - pessimistic (Pes)

• on the overall mean and CV in the European average

Conclusions

- Uncertainty varies from 10-35% and increases in direction: CH_{4em} , $NH_{3em} < N_2O_{em}$, $NO_{xem} < N_{le gw/sw}$, N_{2em}
- Uncertainty for Europe as a whole is smaller as per country.
- Uncertainty contribution is mainly determined by:
 NH_{3, em}
 excretion, inputs
 inputs, housing emission fractions
 inputs, leaching fractions
- Robustness analysis shows a significant uncertainty in the uncertainty assessment (-30% vs 70%)

