
Impacts of management measures on N₂O emissions from agricultural soils in Europe using different model approaches

Wim de Vries Hans Kros, Gert Jan Reinds, Rick Wieggers

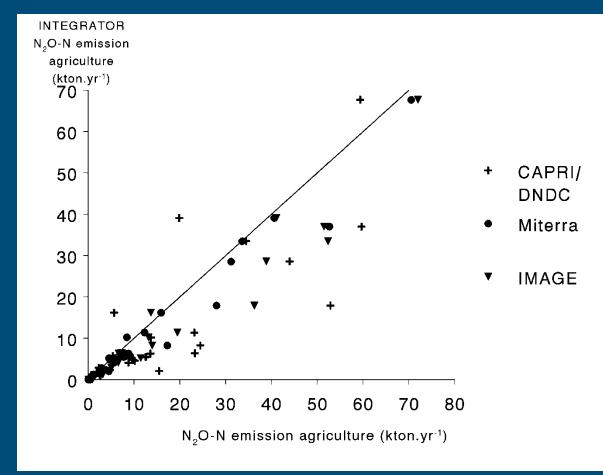
Presentation Outline

Introduction: previous work Methods used for deriving N₂O emissions (IPCC) Inference scheme Statistical model Fuzzy set model Mitigation measures Results: comparison of four methods Current situation: year 2000 Impacts of measures Conclusions

Introduction

 N₂O emissions are highly variable in space and time and large scale estimates vary relatively strongly.

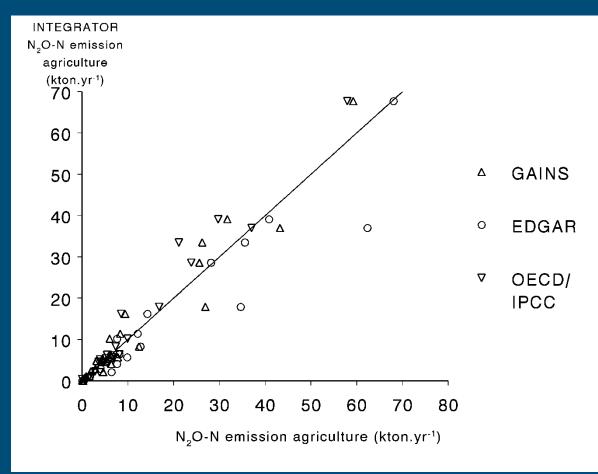
 N₂O emissions from European agriculture have been derived with many model approaches using different schematizations/spatial resolutions and input data


Examples are study De Vries et al (2011), presented at previous NCGG5 conference and study Leip et al (2011) presented at this NCGG6 conference.

N₂O emissions with different models/ schematizations

Model inputs	INTEGRATOR	CAPRI –DNDC	MITERRA	IMAGE
Resolution	NCU (ca. 40.000)	HSMU (ca. 180.000)	NUTS2 (ca. 300)	Country (27)
Animal livestock numbers	FAO database	EUROSTAT production statistics.	RAINS data (country) and CAPRI data (level)	FAO database
Nitrogen excretion factors	N excretion model scaled to GAINS data in 2000	Calculated as N input (feed, fodder) minus N output (products sold).	Country-specific N excretion rates for 8 animal categories based on GAINS model	Continental specific N excretion rates (2 in Europe) for 9 animal categories
N ₂ O emission factors	Inference scheme: Function of N source, application technique, soil type, pH, land use, precipitation	IPCC	IPCC	Statistical model: Function of crop type, fertilizer type, application technique. climate, soil pH, and CEC.

Comparison INTEGRATOR with other model approaches (CAPRI-DNDC, MITERRA and IMAGE)



Country emissions for N_2O derived with INTEGRATOR and other models for the year 2000 using different inputs and schematizations

De Vries et al. (2011)

<u>Comparison N₂O emissions INTEGRATOR with emission</u> factor approaches (GAINS, EDGAR and OECD/IPCC)

Country emissions for N_2O derived with INTEGRATOR compared with inventory methods for the year 2000 using different inputs and schematizations

De Vries et al. (2011)

Aim of this study

European wide N₂O emissions from agriculture, using four different approaches in INTEGRATOR model with similar schematization/spatial resolutions and input data (ca. 40.000 NCUs)

 Estimate the plausibility: Comparison with country level estimates by inverse models

 Demonstrate the difference in effect of agricultural mitigation options

Four methods for large scale N₂O estimates

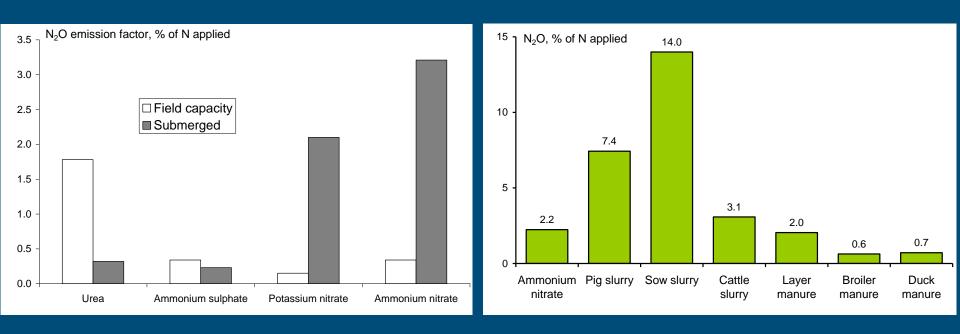
Methods for deriving N₂O emission fractions:

- Inference scheme: fractions that depend on environment, land use and management (default INTEGRATOR approach).
- Statistical model: emissions related to environmental and management factors; fractions derived from it.
- Fuzzy set method: fractions management data, vegetation- soil properties and seasonal variations of climatic drivers.

IPCC Tier 1 method: constant default emission fractions.

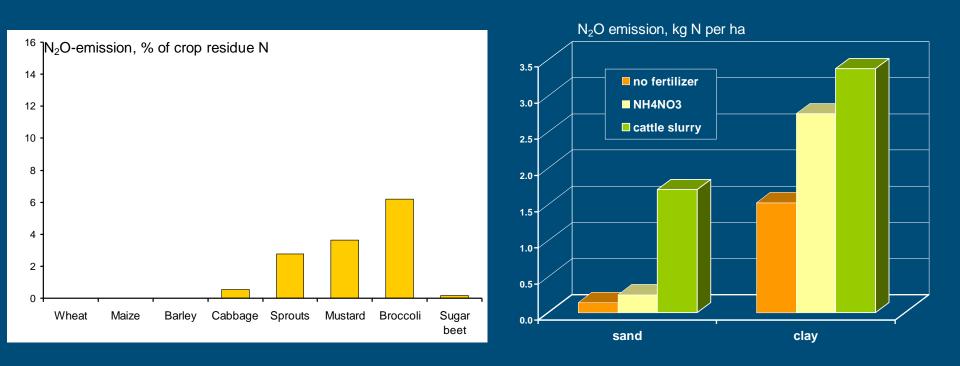
Inference scheme: INTEGRATOR approach

- Starting point is EF for fertilizer of 1% of applied N
- Two-year monitoring study in Netherlands (Velthof et al., 1996) with the following conditions:
 - Fertilized with calcium ammonium nitrate fertilizer
 - Grassland
 - Well-drained sandy soil
 - Neutral pH (> 5)
 - Average precipitation (600-900 mm/year)


Effects of nitrogen input

Sources of nitrogen:

- Mineral fertilizer: NO₃ fertilizer, NH₄ fertilizer and urea
- Manure:
 - cattle, pig and poultry
 - Manure type: solid or slurry
 - Application technique: surface or injection
- Grazing
- Biological N fixation
- Crop residues: cereals, vegetables and other crops
- Atmospheric N deposition
- Net mineralization of soil organic N


Example: effects of fertilizer and manure types

(Velthof et al., BFS, 2003)

Example: effect of crop residues and of soil type and manure type

(Van Groenigen et al., Plant & Soil. 2004)

Emission factors inference scheme

Source N input	Sa	nd	Clay		Peat	
	Grass	Arable	Grass	Arable	Grass	Arable
Nitrate based fertilizer	1.00	0.50	1.50	0.75	2.00	1.00
Urea based fertilizer	0.50	0.40	0.75	0.60	1.00	0.80
Pig slurry low NH₃ application	0.75	1.13	1.13	1.69	1.50	2.25
Pig slurry surface-applied	0.50	0.75	0.75	1.13	1.00	1.50
Cattle slurry low NH ₃ application	0.50	0.75	0.75	1.13	1.00	1.50
Cattle slurry surface-applied	0.33	0.50	0.50	0.75	0.67	1.00
Solid manure, poultry manure	0.17	0.25	0.25	0.38	0.33	0.50
Atmospheric deposition	0.38	0.30	0.56	0.45	0.75	0.60
Mineralization	0.38	0.30	0.56	0.45	2.60	2.60

Lesschen et al. (2011)

IMAGE approach: emiss	Constant N Application rate per kg N ha ⁻¹	-1.5160 0.0038	
	Soil organic C content <1 1-3 >3 Soil pH <5.5 5.5-7.3 >7.3 Texture Coarse Medium Fine Climate Temp_C Temp_C Temp_O S-Trop. Trop. Crop type Cereals Grass Legume Other W-Rice None Length of experiment Per year (> 300 days)		$\begin{array}{c} 0\\ 0.0526\\ 0.6334\\ 0\\ -0.0693\\ -0.4836\\ 0\\ -0.1528\\ 0.4312\\ 0\\ 0.0226\\ 0.6117\\ -0.3022\\ 0\\ 0\\ -0.3502\\ 0.3783\\ 0.4420\\ -0.8850\\ 0.5870\\ 1.9910\\ \end{array}$
-			

ALTERRA WAGENINGEN UR

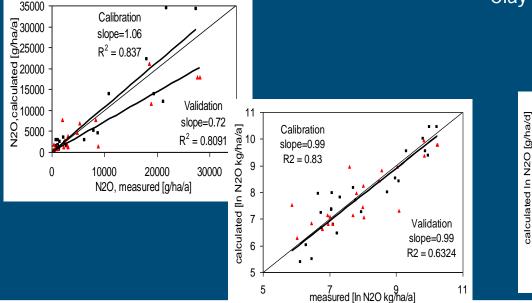
Stehfest and Bouwman (2006)

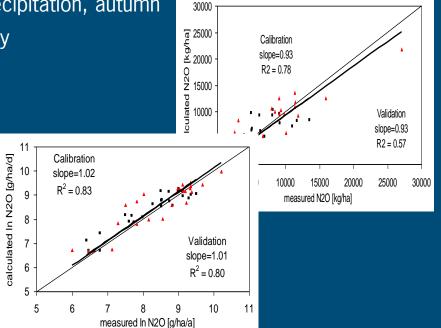
Fuzzy logic approach: Fuzzy set method

- N₂O emissions are based on the annual Fuzzy logic model from Dechow and Freibauer (2011)
- Predicts annual emissions with factors of annual resolution
- Training data set consisted of 162 (cropland) and 88 (grassland) extracted from the Stehfest & Bouwman data base.

Fuzzy set method

Grassland


Factors:


- Fertilisation amount
- pH, SOM
- Precipitation, summer
 - Temperature, summer

Cropland

Factors:

- Fertilisation amount and type
- pH, SOM
- Mean number of frost days
- Precipitation, autumn
- Clay

Dechow and Freibauer (2011)

Comparison of models on large data set

Stehfest and Bouwman (2006) data set

- Total of 1372 N₂O measurements
- 1137 measurements for agriculture in temperate zones
- 352 measurements including N₂O emission from control plot without N input (INTEGRATOR and IPCC approach of corrected N₂O EF).
- Limiting dataset to 133 sites for which factors in the inference framework were available
- Comparison observed EF with calculated N₂O emission factor for each sites based on:
 - INTEGRATOR inference approach
 - IMAGE empirical relation by Stehfest and Bouwman (2006)
 - IPCC 1% EF

Validation of N₂O emission factors

Approach	Average RMSE difference		Pearson correlation	
Inference scheme	0.76	1.46	0.243	
Statistical model	0.91	1.59	0.093	
IPCC tier 1 method	0.87	1.49	-	
Fuzzy set model	-	-	(0.67-0.85)	

Lesschen et al. (2011)

Evaluated Measures

- Balanced fertilization
- 2 Maximum amount of animal manure
- 3 Change fertilizer type (urea substitution)
- 4 Manure incorporation
- 5 Reduced protein content feed
- 6 Restoration peat soils (histosols)
- 7 All 6 measures

Soil nutrient management

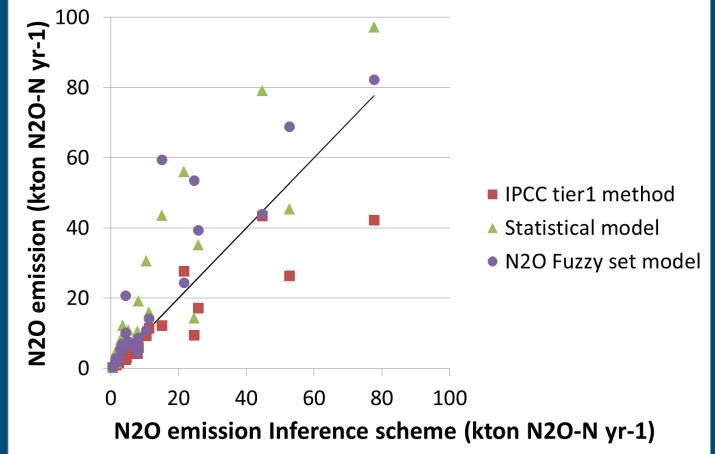
- **1.** Balanced fertilization
 - \rightarrow Lower N input
- 2. Maximum amount of animal manure
 - \rightarrow Lower manure N input
 - → Sometimes compensated by higher fertilizer N input
- 3. Urea substitution by NO₃ fertilizers
 - → Lower NH₃ emissions
 - \rightarrow Higher N₂O emission in inference scheme and fuzzy set.
- 4. Manure incorporation
 - \rightarrow Lower NH₃ emissions
 - \rightarrow Higher N₂O emission in inference scheme

Livestock and land management

5. Reduced protein content of feed

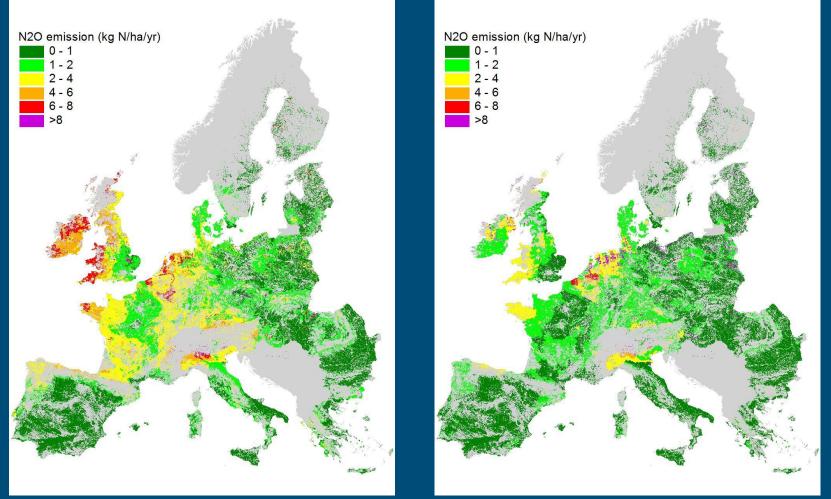
- Reduction in N excretion:
 - 15% for cattle
 - 20% for pigs
 - 20% for laying hens and 10% for other poultry
- \rightarrow Lower N input
- 6. Restoration histosols
 - Mean groundwater level \rightarrow 10 cm
 - → Lower C and N mineralization (EF for N min. only included in INTEGRATOR inference scheme)
 - No fertilizer application
 - \rightarrow Lower N input

Results



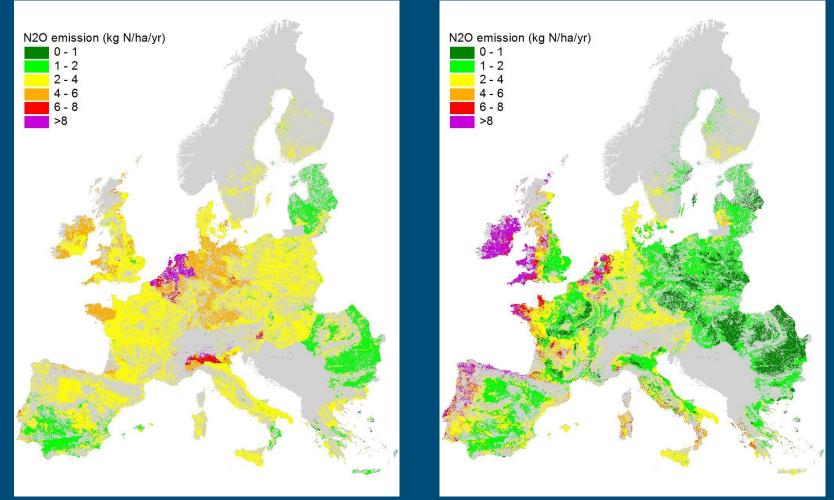
<u>Comparison N₂O emissions at EU 27 scale for</u> the year 2000 for four model approaches

Model	N ₂ O _{em} (kton N ₂ O-N)	N ₂ O _{em} (kg N ₂ O-N ha ⁻¹)
Inference scheme	350	1.80
Statistical model	541	2.78
Fuzzy set model	495	2.55
IPCC tier 1 method	247	1.27



<u>Comparison N₂O emissions per country for the</u> four model approaches for the year 2000

Calculated N₂O emission with inference and IPCC method



Inference scheme

IPCC tier 1 method

Calculated N₂O emission with statistical and fuzzy model

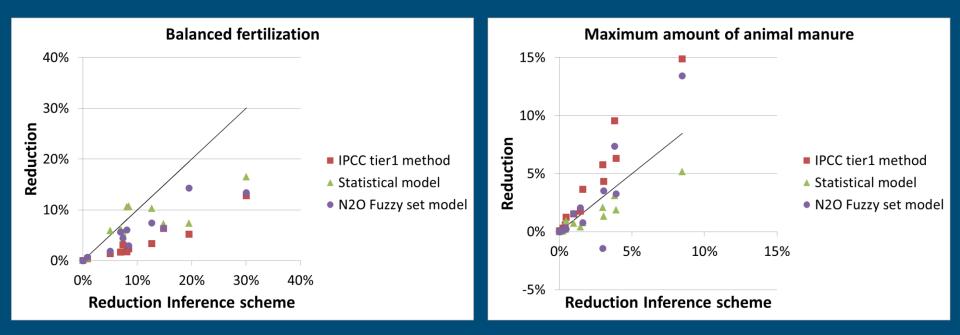
Statistical model

Fuzzy set model

Comparison different model approaches with inverse model results

Results 5 regions in year 2000: (kton N₂O-N)

Model	Germany	Poland	France	Benelux	UK+IRE
Inference scheme	45	22	78	20	77
Statistical model	79	56	97	25	60
Fuzzy set model	44	24	82	23	122
IPCC tier 1 method	43	28	42	17	36
Inverse modelling	55	29	61	13	37


Response to various mitigation measures

Relative reduction in N₂O emission (%) for EU27: 4 methods

Measure	Inference scheme	Statistical model	Fuzzy scheme	IPCC Tier 1
1. Balanced fertilization	3.60	3.51	2.90	1.29
2. Max amount animal manure	1.17	0.57	1.21	2.13
3. Manure incorporation	-1.12	0.0	0.0	0.0
4. Urea substitution	-1.37	0.0	-0.55	0.0
5. Reduced protein content feed	1.12	0.72	0.19	2.94
6. Restoration histosols	6.75	1.13	0.48	0.62
All measures	10.58	5.08	5.34	6.34

Comparison measures different model approaches

Comparison measures different model approaches

Reduced protein content feed Restoration histosols 5% 50% 40% 3% Reduction 30% Reduction 2% 1% IPCC tier1 method IPCC tier1 method 20% ▲ Statistical model Statistical model -3% -1% 1% 3% 5% • N2O Fuzzy set model N2O Fuzzy set model 10% -3% 0% 0% 30% 50% 10% 20% 40% -5% **Reduction Inference scheme Reduction Inference scheme**

Conclusions

- N₂O emissions derived with different approaches in one model, using same schematization and input data, are more deviating than using them in different models with different schematization and input data. Coarse resolution levels out differences.
- IPCC tier 1 method gives closest results to inverse model results followed by INTEGRATOR inference scheme. Other models give too high results
- Model approach largely affects calculated effectiveness of emission reduction approaches.

Questions?

© Wageningen UR

