Ecological risk of treated ballast water: a mesocosm experiment

Andrea Sneekes, Klaas Kaag & Edwin Foekema

IMARES – Institute for Marine Resources & Ecosystem Studies

contact: andrea.sneekes@wur.nl
Outline

• Introduction
• Background of mesocosm testing
• Research questions
• Preliminary results from pilot study
• Test result summary
• Conclusions
Ecological risk of discharge ballast water that use active substances (G9)

- Modelling with MAMPEC-BW
- WET Toxicity testing with:
 - “algae”
 - “crustacean”
 - “fish”

contact: andrea.sneekes@wur.nl
Assessment factors
GESAMP 38th meeting (PNEC general)

- Lowest short-term L(E)C50 from 1-2 fresh/marine species from one or two trophic levels
- Lowest short-term L(E)C50 from 3 fresh/marine species representing three trophic levels
- Lowest short-term L(E)C50 from 3 fresh/marine species representing three trophic levels + 2 additional marine species, or 1 chronic NOEC from fresh/marine species but not algae
- 2 chronic NOEC from fresh/marine species including algae representing two trophic levels
- 3 chronic NOEC from fresh/marine species including algae representing three trophic levels

contact: andrea.sneekes@wur.nl
Assessment factors

• Experimental ecosystems
 – Realistic semi-natural conditions
 – Reduce uncertainty in extrapolation to complex multi-species studies

contact: andrea.sneekes@wur.nl
Experimental ecosystems challenges for treated ballast water

• How to discriminate between effects caused by replacement of water and effects of toxic substances?

• How predictive are toxicity test results (i.e. bioassays) for effects of treated ballast water on ecosystems?

contact: andrea.sneekes@wur.nl
Set-up of the mesocosm experiment

- Eight tanks of 5 m³ each
- Sediment layer & Water fraction
- Stable community of:
 - micro-flora
 - invertebrates
- Static systems
- Continuous aeration
- Similar water quality conditions

contact: andrea.sneekes@wur.nl
Dosing of treated ballast water

Replacement of 10% water volume by 3 types of treated ballast water

DAY -5 → BW-d5 → BW-d5 → Control

DAY -1 → BW-d1 → BW-d1 → Control

DAY 0 → BW-d0 → BW-d0 → Control

contact: andrea.sneekes@wur.nl
Chemistry at start of exposure

H₂O₂

PAA

Treatment

concentration H₂O₂ (mg/l)

concentration PAA (mg/l)

bw = discharge ballast water
mc = mesocosm +10% bw

Control
BW-d5
BW-d1
BW-d0

contact: andrea.sneekes@wur.nl
Toxicity testing

Bacteria toxicity test
10% of discharge samples

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Rotifer</th>
<th>Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BW-d5</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BW-d1</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>BW-d0</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Rotifer toxicity test
10% of discharge samples

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Rotifer</th>
<th>Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BW-d5</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BW-d1</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>BW-d0</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Algal toxicity test
10% of discharge samples

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteria</th>
<th>Rotifer</th>
<th>Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BW-d5</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>BW-d1</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>BW-d0</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Measurements & Analysis

• Water quality parameters
 – pH, oxygen, salinity, temperature, turbidity
 – TOC, DOC, POC, hardness
 – Nutrients (NH4, NO3, NO2, PO4, SiO2)
 – Weather conditions

• Zooplankton

• Phytoplankton
 – Biomass as chlorophyll-a
 – Community, periphyton

• Benthic organisms
 – Mudshrimps, lug worms,

• Invertebrates
 – Cockles, breadcrumb sponges, periwinkles, mussels

contact: andrea.sneekes@wur.nl
Phytoplankton

Total Chlorophyll-a (µg/l)

-42 -28 -14 0 14 28 42 56 70

5 10 15

Control BW-d5 BW-d1 BW-d0

daynr.

contact: andrea.sneekes@wur.nl
Zooplankton

Copepod (calanoid)

Copepod (harpacticoid)

Daynr.

Daynr.

Contact: andrea.sneekes@wur.nl
Bivalves

Bivalvia

Cockle (juveniles)

Contact: andrea.sneekes@wur.nl
Macro-invertebrates

Corophium volutator

Microdeutopus gryllotalpa

Contact: andrea.sneekes@wur.nl
Macro-invertebrates

Polydora ciliata

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>BW-d5</th>
<th>BW-d1</th>
<th>BW-d0</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

contact: andrea.sneekes@wur.nl
Summary

<table>
<thead>
<tr>
<th>Control versus →</th>
<th>BW-d5</th>
<th>BW-d1</th>
<th>BW-d0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria test</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algae test</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotifer test</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chlorophyll-a</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copepod (calanoid)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copepod (harpacticoid)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia larvae</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cockles (juveniles)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corophium volutator</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microdeutopus grylotalpa</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polydora ciliate</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halichondria panicea</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenodrilus serratus</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cockles (adults)</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligochaeta sp.</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidity</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ortho-phosphate</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arenicola marina</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact: andrea.sneekes@wur.nl
Conclusions

• How to discriminate between effects caused by replacement of water and effects of toxic substances?
 – Replacement of water with no active substances is not free from effects.
 – However, the level of toxic substances present in the treated water corresponded with the amount of effects.

• How predictive are toxicity test results (i.e. bioassays) for effects of treated ballast water on ecosystems?
 – Effects seen in bioassays are not directly copied in mesocosms.
 • results might be affected by physical characteristics like pH, oxygen, DOC, N/P.
 – However, high risk indicated by the toxicity tests corresponded with high level of disturbances of the ecosystem.

contact: andrea.sneekes@wur.nl