Gene hunting: molecular analysis of the chicken genome

Promotor: Dr. ir. E. W. Brascamp Hoogleraar Fokkerij en Toegepaste Genetica Wageningen Universiteit

Co-promotor: Dr. M. A. M. Groenen Universitair docent bij de leerstoelgroep Fokkerij en Genetica

NN08201, 2876

Gene hunting:

molecular analysis of the chicken genome

Richard P. M. A. Crooijmans

Proefschrift

ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 31 oktober 2000 des namiddags te half twee in de Aula.

902663

Gene hunting: molecular analysis of the chicken genome

Crooijmans, Richard (R.P.M.A.)

Doctoral dissertation, Animal Breeding and Genetics Group, Department of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.

ISBN: 90-5808-273-3

Printed by Universal Press, Veenendaal, The Netherlands Cover drawings: Ellen Meuwese, Heemstede, The Netherlands

Abstract

This dissertation describes the development of molecular tools to identify genes that are involved in production and health traits in poultry. To unravel the chicken genome, fluorescent molecular markers (microsatellite markers) were developed and optimized to perform high throughput screening of resource populations. The markers can be divided in markers located within chicken genes or ESTs (type I markers) and random markers (type II). The microsatellite markers (430) were subsequently used for the development of a highly informative comprehensive linkage map of the chicken genome. The type I markers provide the necessary links to create a comparative map between chicken and human. A further step in the analysis of the chicken genome is the construction of a physical map and the improvement of the chicken-human comparative map. Therefore a chicken Bacterial Artificial Chromosome (BAC) library was constructed with a 5.5x genome coverage and an average insert size of the BAC clones of 134 kb. Physical mapping was performed by building a BAC contig of chromosome 10 by chromosome walking. Using a bi-directional approach that utilizes the information from the chicken as well as the human genome, a detailed comparative map was obtained for chicken chromosome10 and human chromosome 15. This approach involved sample sequencing of BAC clones as well as FISH mapping. The STS markers developed for chromosome walking are currently used for the development of SNP markers, which will subsequently be used in the advanced intercross lines of the Wageningen resource population to narrow down the chromosomal regions containing the QTL. This information together with a very detailed comparative map will allow the identification of candidate genes for these particular QTL.

NN08201, 2876

Stellingen Behorende bij het proefschrift "Gene hunting: molecular analysis of the chicken genome"

- 1. Het feit dat het genoom van de kip drie maal kleiner is dan die van andere landbouwhuisdieren is een groot voordeel bij de jacht op genen.
- Microsatellietmerkers zijn tot op heden de beste merkers voor een analyse van het totale genoom
- Het kloneren van kleine stukjes DNA is een aan te leren vaardigheid, van grote stukken een kunst. (dit proefschrift)
- Er zijn minimaal zes inversies en twee deleties nodig om de genvolgorde van kip chromosoom 10 overeen te laten komen met humaan chromosoom 15. (dit proefschrift)
- Het aantal autosomale DNA segmenten dat tussen kip en mens geconserveerd is bedraagt eerder 400 dan de door Burt *et al.* voorspelde 96. (dit proefschrift, Burt et al., *Nature* 1999, 402:411-412)
- In het kader van het behoud van biodiversiteit verdient het aanbeveling de oud-Hollandse hoenderrassen te bewaren. (Crooijmans, Zeldzaam Huisdier 1998, 3:20-23)
- Multicellulaire sferoiden van humane tumorcellijnen zijn een geschikt *in vitro*-model voor therapie van humane tumoren. (Crooijmans *et al.*, *Anti Cancer Res.* 1991, 11:297-300)
- 8. Een linkage kaart is als een soort kapstok, waar je van alles aan kunt ophangen. (dit proefschrift)
- Het krijgen van kippenvel komt in een ander perspectief te staan als blijkt dat de kip meer op de mens lijkt dan we dachten. (dit proefschrift)
- 10. De ene (kippen) bank is de andere niet. (dit proefschrift)
- 11. Des te kleiner de rentabiliteit van een project des te groter het prestige. (de Betuwelijn)
- 12. Is het niet merkwaardig dat een computersysteem al verouderd kan zijn voordat de helft van de gebruikers erachter is hoe je ermee moet werken.
- Streven naar succes zonder hard te werken is trachten te oogsten waar je niet hebt gezaaid.
- 14. Wat ons land nodig heeft zijn minder mensen die in dezelfde straat wonen en meer goede buren.

31 oktober 2000, Richard Crooijmans

Voorwoord

Ik wil iedereen bedanken die een bijdrage heeft geleverd aan het tot stand komen van dit proefschrift. Natuurlijk allen werkzaam bij de Leerstoelgroep Fokkerij en Genetica onder toeziend oog van Pim en Johan. Een aantal mensen verdienen een eervolle vermelding. Allereerst geldt dit voor Martien 'mijn wetenschappelijk inspirator'. Bedankt voor alle vertrouwen, steun en geduld in de afgelopen jaren.

Tineke en Rosilde voor al jullie input. Jullie bijdrage aan de vele vele experimenten was enorm.

Mijn paranimfen: Jan voor al je goede raad en humor. Imke voor je vriendschap. En jullie beiden voor de laatste puntjes op de i.

Gerard Albers en Addie Vereijken van Nutreco B.V., dank voor de zeer goede samenwerking in al die jaren.

Verder de collega's van het lab die soms moeite hadden om me bij te houden.

Annemieke, Allerdien, Sandra, Marian, Ruth, Bart B., Bart J., Marilyn, Barbara, Danyel,

Maria, Rukiye en Bram. Ook mijn ex-labgenoten Beja, Jos, Annelies, Saskia, Tony, Pieter, Jan, Christel, Carolien, Dirk, Tino en al de studenten.

Special thanks to my friend Julia Vrebalov for her helping hand when I made the chicken BAC library at Texas A&M University, USA.

Ada en Maria voor al de goede hulp vanuit het secretariaat en Peter voor het zorgvuldig verzorgen van al mijn kopieën.

Mijn volleybal clubjes op de maandag en woensdag voor het kunnen afreageren van alle stress.

En tenslotte, Mieke voor alles.

Richard

Contents

Chapter 1	General introduction	1
Chapter 2	Microsatellite markers in poultry	15
Chapter 3	Microsatellite marker development in chicken genes and ESTs	25
Chapter 4	High throughput mapping of chicken microsatellite markers by automated fluorescent genotyping	37
Chapter 5	A comprehensive microsatellite linkage map of the chicken genome	47
Chapter 6	Two-dimensional screening of the Wageningen chicken BAC library	67
Chapter 7	The gene orders on human chromosome 15 and chicken chromosome 10 reveal multiple inter and intra chromosomal rearrangements	81
Chapter 8	High resolution mapping of QTL in a cross between broiler lines	95
Chapter 9	Future directions of Wageningen chicken research	109
Chapter 10	Summary	113
Chapter 11	Samenvatting	117
Abbreviation ke	ÿ	121
Appendix 1	Characteristics of microsatellite markers used in this study	123
List of publicati	ons related to the subject of this thesis	149
Curriculum vitae		

Chapter **I**

General introduction

1.1 The chicken Genome

The chicken genome consists of 38 pairs of autosomes and two sex chromosomes Z and W. The chromosomes (Figure 1) can be divided in two size groups, 9 cytogenetically distinguishable macrochromosomes and 30 cytogenetically indistinguishable microchromosomes. In chicken the female is the heterogametic sex (ZW) and the male is the homogametic sex (ZZ). The estimated haploid genome size of the chicken is approximately 1.2×10^9 bp (Stevens, 1986) which is small compared to the genome size in mammals (3×10^9 bp), whereas the amount of recombination is similar to that in mammals (Rodionov *et al.*, 1992). The smaller genome size is mainly due to a lower number of repeats and smaller intron sizes in chicken compared to mammals (Hughes and Hughes, 1995).

1.2 Genome Mapping

The presence of a large number of highly polymorphic sites in the genome of vertebrates has made it possible to develop many highly polymorphic DNA markers that can be used to construct linkage maps in these species. The major goal for these maps in the livestock species is to identify genes that control the expression of economically important traits. The vast majority of these traits are quantitative traits, which are controlled by a relatively large number of loci (QTLs) as well as influenced by environmental factors. If a QTL for a particular trait is closely linked to a marker, different marker alleles will appear to be associated with different levels of performance for that trait. This association, which is likely to occur within families, can be detected by statistical techniques such as regression analysis or maximum likelihood. When a complete genetic map is available and sufficient animals are analysed, any QTL with an appreciable effect on performance can be located between a pair of linked markers.

In chicken there are three reference populations used as mapping population for genetic markers (Table 1):

The Compton (C) reference population is a backcross (BC) of two partially inbred White Leghorn lines (line N and 151). These lines differ in their susceptibility to a number of diseases, but in particular, line N is resistant to salmonellosis while line 15I is highly susceptible. A subset of 56 progeny was chosen as one of the three reference populations in an international effort to produce a linkage map of the chicken genome (Bumstead and Palyga, 1992).

The second population is the East Lansing (EL) reference population which was produced by backcrossing a partially inbred Red Jungle Fowl (JF) line to a highly inbred White Leghorn (WL) line. A subset of 52 progeny was used as the international reference population.

The third population is the Wageningen resource population (WAU). This experimental population contains 10 full sib families of a cross between two extreme commercial broiler lines of Nutreco BV. The G_0 generation consisted of two broiler dam lines originating from the White Plymounth Rock breed. Unrelated G_1 animals were mated to produce 10 full sib families with an average of 46 G_2 offspring per family. A subset of this population (4 families; 191 animals) was used as a reference population for mapping new markers.

Table 1. Characteristics of the three chicken reference populations.

population	type	# of animals	max. # of informative	reference
WAU	full sib	456 G ₂	912	Groenen et al., 1998
С	backeross	56 BC1	56	Bumstead and Barrow, 1987
EL	backcross	52 BC1	52	Crittenden et al., 1993

1.3 Genetic DNA markers

Genetic DNA markers can be divided into two groups according to O'Brien and Graves (1991): the so-called type I loci (within or adjacent to known genes) and the type II loci (random DNA markers). For type I and II loci, different kind of markers have been developed over the years. Several of these markers have been used in genetic mapping of the chicken genome. Additional information about the chicken loci is available on the web sites in Wageningen, Roslin and East Lansing (address¹). The most important types of markers are described below.

1.3.1 RFLPs

Restriction fragment length polymorphisms (RFLPs; Botstein *et al.*, 1980) are caused by DNA sequence variation at restriction sites and often only detect two alleles. Often, cloned cDNA sequences are used to detect RFLPs. Bumstead and Palyga (1992) reported the first preliminary linkage map of the chicken genome based on RFLP markers.

1.3.2 VNTR

Within the genome of vertebrates many different DNA elements are found to be repeated and dispersed throughout the whole genome. Two different types of tandem repeats can be distinguished:

- Minisatellites, which are repeated sequences of 20 to 60 bp in length (Jeffreys et al., 1985). At a given locus these elements occur as direct repeats and the number of repeats varies between different alleles. In human these markers appear not at random but tend to cluster at the telomeres. Isolation and characterisation of minisatellite markers in chicken has been described by Bruford and Burk (1994) and Bruford et al. (1994). In chicken the minisatellite markers are also not distributed at random, and several linkage groups consists primarily of minisatellite markers (e.g. E26C13) (Groenen et al., 2000)
- 2. Microsatellites or simple sequence repeats are sequences that consist of a direct repeat of a mono, di, tri or tetra-nucleotides such as $(T)_n$, $(CA)_n$ or $(CAC)_n$ where n can vary from 8 to over 30. Microsatellites are very abundant in the genome of most (or all) vertebrates (Hamada *et al.*, 1982; Tautz and Renz, 1984). They are estimated

¹ <u>http://www.zod.wau.nl/vf/research/chicken; http://www.ri.bbsrc.ac.uk/chickmap</u>; http://poultry.mph.msu.edu/

to appear at least once every 10^5 bps, which means that in the genome of most vertebrates over 10⁴ and probably as many as 10⁵ microsatellites are present. This is substantially more compared to chicken where the total number of repeats is estimated to be 10 times less (Crooijmans et al., 1994; Primmer et al., 1997). As with the larger minisatellites, the number of repeats varies between different alleles (Litt and Luty, 1989; Tautz, 1989; Weber and May, 1989). A big advantage of using microsatellites as markers, is that their total length, including the flanking DNA, is short enough (70-340 bp) to make them amenable to polymerase chain reaction (PCR) amplification (Weber and May, 1989). Polymorphism is detected by separating the PCR amplified fragments on high resolution polyacrylamide gels. This typing method is faster than the conventional RFLP analysis, requires only very small amounts of DNA and is suitable for automatisation (chapter 4). Other advantages of microsatellites are: their random distribution throughout the genome, there relative ease of isolation, and the high percentage that is polymorphic. For these reasons many groups have isolated a considerable number of microsatellite markers in chicken either randomly or within genes. Although microsatellites generally have a random distribution, the microchromosomes in chicken have a relatively low concentration of CA microsatellites (Primmer et al., 1997). In total more than 800 polymorphic microsatellite markers have been mapped in chicken (Groenen et al., 2000). The chicken microsatellite markers are outlined in more detail in chapters 2 and 3.

1.3.3 RAPDs

The random amplified polymorphic DNA (RAPD) method (Williams *et al.*, 1990) uses short arbitrary primers, usually 10 bp long, one at a time to amplify random genomic fragments by PCR. The PCR products are separated on an agarose gel and the fragments are visualised with simple staining techniques. The result is a number of fragments with different lengths, and the polymorphisms are observed as the presence or absence of one of these fragments. Advantages of this method are: a large number of reactions can be conducted at one time, little input is needed for the development of the markers, and the polymorphism is easily detected. A disadvantage of RAPDs is that they are not typable as co-dominant markers because the heterozygous state is not detected. Furthermore, a problem when using this type of marker is the poor repeatability across different laboratories due to small differences in conditions used. Therefore, this method probably is most useful in crosses between two inbred lines such as in the chicken East Lansing backcross population where 65 RAPD markers have been mapped (Cheng et al., 1995; Levin et al., 1993).

1.3.4 AFLPs

The Amplified Fragment Length Polymorphism (AFLP) technique (Vos *et al.*, 1995) is a DNA fingerprinting technique based on three steps. (i) restriction of the DNA with two restriction endonucleases and ligation of oligonucleotide adaptors, (ii) pre-selective and selective amplification of sets of restriction fragments with PCR primers that have corresponding adapter- and restriction-site-sequences and flanking nucleotide(s) as their target sites, and (iii) gel analysis of the amplified fragments. These markers are useful to rapidly increase the number of markers on a linkage map. In chicken, 552 AFLPs have been mapped which are described by Knorr *et al.* (1998) and Herbergs *et al.* (1999). The major disadvantage of these markers is the fact that only 2 alleles are detected and that AFLP's are multilocus markers. Moreover, dominant or co-dominant inheritance of the marker is not always clear. Because of these disadvantages this type of marker generally is not so useful in small outbred families.

1.3.5 CR1 repeat element polymorphisms

The chicken middle repetitive CR1 element is a member of a family of non-LTR retrotransposon-like repeats, whose copy number has been estimated at around 100.000 per haploid genome (Vandergon and Reitman, 1994). Because of the genome-wide distribution and the highly polymorphic character of CR1 elements, it seemed likely that single CR1 primers could be used to generate PCR DNA fragments. Such amplification products may arise from the fortuitous location of 2 CR1 elements nearby in the genome in the forward and reverse orientation. This method is analogous to that described for mammalian *Alu* and L1 repeats (Cox *et al.*, 1991; Zietkiewicz *et al.*, 1992). Chicken CR1 repeat-element polymorphisms (47 *MSU*- markers) were typed in the East Lansing backcross population (Levin *et al.*, 1994a, b).

1.3.6 SSCPs

Single strand conformational polymorphism (SSCP) is a PCR type marker in which the difference in electrophoretic mobility of single stranded DNA on nondenaturing gels depends not only on their chain lengths but also on their conformations (Sheffield *et al.*, 1993). This method is also used in chicken, mainly for mapping of genes or monomorphic

microsatellite markers (Morisson et al., 1998; Pitel et al., 1998; Burt et al., 1999; Nanda et al., 1999).

1.3.7 ASOs

The allele specific oligo (ASO) technique is based on the PCR amplification of parts of specific genes. Sequence analysis of the cloned products from the parents of the mapping population was initially conducted to determine whether base substitutions occurred in either parent. Once the sequence polymorphism was found, a PCR protocol was designed to enable the identification of a specific allele. This alternative approach to map anchor loci was predicated on the frequent occurrence of base substitution (Neel, 1984) and indications that introns are less conserved than exons (Perler *et al.*, 1980). Already 71 genes have been mapped in chicken by using this technique (Smith *et al.*, 1996, 1997; Dodgson, unpublished results).

1.3.8 SNPs

Recently, another type of marker, the single nucleotide polymorphism (SNP), has seen an increase in its popularity mainly because of the possibility to be used on DNA chips or other high throughput systems. The classic RFLPs are in fact a subclass of SNP markers in which the mutation results in the creation or destruction of a restriction recognition site. Although this type of marker is primarily bi-allelic, its high abundance makes it very powerful. The frequency of SNPs is rather high about 1 per kb in human (Wang *et al.*, 1998). In chicken a frequency as high as 1 per 100 bp has even been observed (Vignal *et al.*, 2000). Because of their abundancy these markers have a high potential for the detailed haplotype analysis, *e.g.*, association studies (Collins *et al.*, 1996).

In Chicken, some SNP markers located within genes have already been mapped in the East Lansing reference population (Ed Smith, unpublished results).

1.4 Mapping of markers and genes

1.4.1 Genetic mapping

Two genetic loci are linked if they are inherited together in pedigrees more often than would occur by chance. Linkage maps are based on recombination frequencies (range 0-0.5) between the two pairs of loci. The observed recombination frequency is a measure for the distance between the two loci, the smaller the recombination frequency the smaller the distance between the two loci. The distance between two loci is expressed in centimorgans

General introduction

(cM), which is a function of the recombination frequency. The precise relation between the recombination frequency and distance is dependent on the mapping function used, but for small recombination frequency 1 cM generally represents a recombination frequency of 1%. The physical length that corresponds with 1 cM is highly dependent on the amount of recombination in the species involved (*e.g.*, in Arabidopsis 1cM on average is 140 kb, in human 1 cM on average is 1100 kb and in chicken 1 cM on average is approximately 340 kb). International collaborative efforts in genome mapping in chicken have resulted in a genetic map with around 1900 markers (Groenen *et al.*, 2000) and the total length of almost 4000 cM (Kosambi mapping function).

1.4.2 Physical mapping

In situ hybridisation is the most direct way to physically map genes or markers (Pardue, 1985; Korenberg et al., 1992). A cloned DNA fragment is labelled and directly hybridised to metaphase chromosomes. After hybridisation, the gene or marker is physically mapped to a specific chromosome. In chicken, this is possible for the macrochromosomes but is a problem for the microchromosomes. Although probes can be mapped to microchromosomes from a certain size class, it is not possible to unequivocally identify a particular microchromosome. A possible solution is the development of a set of chromosome specific FISH markers that can be used in two colour FISH. In this case the marker to be mapped is labelled with a particular fluorescent dye and used together with another probe of unknown chromosomal location that is labelled with another fluorescent dye. However this still requires many different hybridisations to identify the specific microchromosome. A second method is the use of a radiation hybrid panel. This is a procedure where chromosome fragments generated by lethal irradiation of donor cells are rescued by fusion with suitable recipient cells (Walter and Goodfellow, 1993). A chicken radiation hybrid panel is currently under construction (A. Vignal and A. Ponce de Leon, personal communication)

Assigning genes and markers to specific chromosomes can also be performed by using FACS (fluorescence activated cell sorter) (Bartholdi *et al.*, 1987) sorted chromosomes or by the isolation of individual chromosomes by scraping them from metaphase chromosome spreads. Both permit sorting of individual chromosomes and the construction of chromosome-specific DNA libraries. In chicken flow sorting of the chromosomes is possible but the resolution is not sufficient for the separation of the individual microchromosomes. Chromosome specific libraries of the larger macrochromosomes (1 to 4) have been made and used for the isolation of specific microsatellite markers from these chromosomes (A. Ponce de Leon unpublished).

Another way of physical mapping is contig building with large insert libraries such as Yeast Artificial Chromosome (YAC) libraries, Bacterial Artificial Chromosome (BAC) libraries and P1 derived Artificial Chromosome (PAC) libraries. In chicken, a YAC library has been described by Toye *et al.* (1997) and a BAC library by Crooijmans *et al.* (2000)(chapter 6). Screening of such libraries can either be performed by hybridisation of high-density filters or by PCR when DNA pools are available.

Genome-wise contig building can be performed with large insert clones by fingerprinting where restriction fragment comparison is used to obtain overlapping clones. This technique can also be performed on automated DNA sequencers (Gregory *et al.*, 1997). Chromosome specific contigs can be constructed by chromosome walking where large insert clones are identified from fixed starting points (mapped markers). Sequencing of the ends of the large insert clones will generate new probes for further rounds of screening. Chromosome walking in chicken is described in chapter 7.

1.4.3 Comparative Mapping

Although comparative mapping (Nadeau, 1989) is not particularly useful for mapping markers, it can give valuable information on the possible location of certain genes or candidate genes for mapped QTL. During evolution and divergence of vertebrate species, numerous recombinations and translocations have occurred. These events have lead to different number of chromosomes, and the dispersion of previously linked genes over different chromosomes, in different species. However, certain genes still are linked to one another on the same chromosome in different species. Many conserved synteny (segment homology) between chicken and man and between chicken and mouse have been observed (Burt *et al.*, 1999; Groenen *et al.*, 2000; chapter7).

1.5 The scope of this thesis

The aim of the work described in this thesis is the development of the essential tools for genome analysis in chicken needed to localise quantitative trait loci (QTL) for economically important traits and the subsequent identification of the genes underlying these QTL effects.

In order to investigate the chicken genome the development of molecular tools started with the isolation of polymorphic microsatellite markers, either random (chapter 2) or from genes/ESTs (chapter 3). Genetic mapping of a large number of microsatellite markers in a large population has to be performed efficiently. Therefore methods and techniques are optimised and standardised to perform high throughput genotyping (chapter 4). Linkage analysis of the genotyping data results in a genetic linkage map (chapter 5) which is essential for performing a QTL mapping experiment. The next step is finemapping of the QTL regions and the construction of a detailed gene map of those regions. A valuable tool towards this goal is a BAC library. The construction of a BAC library in chicken is described in chapter 6. A detailed gene map of a chicken chromosome is obtained by analysing BAC clones of chicken chromosome 10. Refining the human chromosome 15/ chicken chromosomal rearrangements (chapter 7).

References:

- Bartholdi M, Meyne J, Albright K, Luedemann M, Campbell E, Chritton D, Deaven LL, Cram LS, 1987. Chromosome sorting by flowcytometry. *Methods in Enzymology* **151**:252-267.
- Botstein D, White RL, Skolnick M, Davis RW, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *American Journal of Human Genetics* **32**:314-331.
- Bruford MN, Burke T, 1994. Minisatellite DNA markers in the chicken genome I. Distribution and abundance of minisatellites in multilocus DNA fingerprints. *Animal Genetics* **25**: 381-389.
- Bruford MN, Hanotte O, Burke T, 1994. Minisatellite DNA markers in the chicken genome II. Isolation and characterisation of minisatellite loci. *Animal Genetics* **25**:391-399.
- Bumstead N, Barrow PA, 1987. Genetics of resistance to *Salmonella typhimurium*, in newly hatched chicks. *British Poultry Science* **29**:521-530.
- Bumstead N, Palyga J, 1992. A preliminary linkage map of the chicken genome. *Genomics* 13: 690-697.
- Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, Morrice DR, Paton IR, Smith J, Windsor D, Sazanov A, Fries R, Waddington D, 1999. The dynamics of chromosome evolution in birds and mammals. *Nature* 402:411-412.
- Cheng HH, Levin J, Vallejo RL, Khatib H, Dodgson JB, Crittenden LB, Hillel J, 1995. Development of a genetic map of the chicken with markers of high utility. *Poultry Science* 74:1855-1874.
- Cox RD, Copeland NG, Jenkins NA, Lehrach H, 1991. Interspersed repetitive element polymerase chain reaction product mapping using a mouse interspecific backcross. *Genomics* 10:375-384.

- Collins A, Frezal J, Teague J, Morton NE, 1996. A metric map of humans: 23500 loci in 850 bands. Proceedings of the National Academy of Science USA 93:14771-14775.
- Crittenden LB, Provencher L, Santangelo L, Levin. I, Abplanalp H, Briles RW, Briles WE, Dodgson JB, 1993. Characterisation of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome. *Poultry Science* **72**:334-348.
- Crooijmans RPMA, van Kampen AJA, van der Poel JJ, Groenen MAM, 1994. New microsatellite markers on the linkage map of the chicken genome. *Journal of Heredity* **85**:410-413.
- Crooijmans RPMA, Vrebalov J, Dijkhof RJM, van der Poel JJ, Groenen MAM, 2000. Two-dimensional screening of the Wageningen chicken BAC library. *Mammalian Genome* 11:360-363.
- Gregory SG, Howell GR, Bentley DR, 1997. Genome mapping by fluorescent fingerprinting. *Genome Research* 7:1162-1168.
- Groenen MAM, Crooijmans RPMA, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ, 1998. A comprehensive microsatellite linkage map of the chicken genome. *Genomics* **49**:265-274.
- Groenen MAM, Cheng HH, Bumstead N, Benkel BF,Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, Ponce de Leon A, Soller M, Takahashi H, Vignal A., 2000. A consensus linkage map of the chicken genome. *Genome Research* 10:137-147.
- Hamada H, Petrino MG, Kakunaga T, 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. *Proceedings of the National Academy of Science USA* **79**: 6465-6469.
- Herbergs J, Siwek M, Crooijmans RPMA, van der Poel JJ, Groenen MAM, 1999. Multicolour fluorescent detection and mapping of AFLP markers in chicken (*Gallus domesticus*). Animal Genetics 30:274-285.
- Hughes, AL, Hughes MK, 1995. Small genomes for better flyers. Nature 377:391
- Jeffreys AJ, Wilson V, Thein SL, 1985. Hyper-variable 'minisatellite' regions in human DNA. Nature 314:67-73.
- Korenberg JR, Yang-Feng T, Schreck R. Chen XN, 1992. Using fluorescence in situ hybridisation (FISH) in genome mapping. *Trends in Biotechnology* **10**:27-32.
- Knorr C, Cheng HH, Dodgson JB, Schanfield MS, 1998. Application of AFLP markers to genome mapping in poultry. *Animal Genetics* **30**:28-35.
- Levin I, Crittenden LB, Dodgson JB, 1993. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. *Genomics* 16:224-230.
- Levin I, Crittenden LB, Dodgson JB, 1994a. Mapping DNA polymorphisms using PCR primers derived from the sequence of an avian CR1 element. *Journal of Heredity* **85**:73-78.
- Levin I, Santangelo L, Cheng HH, Crittenden LB, Dodgson JB, 1994b. An autosomal genetic linkage map of the chicken. *Journal of Heredity* **85**:79-85.
- Litt M, Luty JA. 1989. A hypervariable micosatellite revealed by *in vitro* amplification of a dinucleotide repeat within the cardiac muscle actin gene. *American Journal of Human Genetics* **44**: 397-401.

- Morisson M, Pitel F, Fillon V, Pouzadoux A, Bergé R, Zoorob R, Auffray C, Gellin J, Vignal A, 1998. Integration of chicken cytogenetic and genetic linkage maps: eighteen new polymorphic markers isolated from BAC and PAC clones. *Animal Genetics* 29:348-355.
- Nadeau JH, 1989. Maps of linkage and synteny homogolies between mouse and man. *Trends in Genetics* 5:82-86.
- Nanda I, Shan Z, Schatl M, Burt DW, Koehler M, Nothwang H-G, Grutzner F, Paton IR, Windsor D, Dunn I, Engel W, Staeheli P, Mizuno S, Haaf T, Schmid M, 1999. 300 million years of conserved synteny between chicken Z and human chromosome 9. *Nature Genetics* 21:258-259.
- Neel JV, 1984. A revised estimate of the amount of genetic variation in human proteins: implications for the distribution of DNA polymorphisms. *American Journal of Human Genetics* 36:1135-1148.
- O'Brien SJ, Graves JAM, 1991. Report on the committee on comparative genome mapping. Cytogenetics and Cell Genetics 58:1124-1151.
- Pardue ML, 1985. In situ hybridisation. In 'Nucleic acid hybridisation', Hames BD, Higgins SJ, Eds., IRL press, Oxford, England.
- Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J, 1980. The evolution of genes: the chicken preproinsulin gene. *Cell* 20:555-566.
- Pitel F, Fillon V, Heimel C, Le Fur N, El Khadir-Mounier C, Douaire M, Gellin J, Vignal A, 1998. Mapping of FASN and ACACA on two chicken microchromosmes disrupts the human 17q syntenic group well conserved in mammals. *Mammalian Genome* 9:297-300.
- Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H, 1997. Low frequency of microsatellites in the avian genome. *Genome Research* 7:471-482.
- Rodionov AV, Yu A, Myakoshina LA, Chelysheva IV, Solovei B, Gaginskaya ER, 1992. Chiasmata in the lambrush chromosomes of Gallus Gallus Domesticus: The cytogenetic study of recombination frequency and linkage map lengths. Genetika 28:53-63.
- Sheffield VS, Beck JS, Kwitek AE, Sandstrom DW, Stone EM, 1993. The sensitivity of singlestrand conformation polymorphism analysis for the detection of single base substitutions. *Genomics* 16:325-332.
- Smith EJ, Cheng HH, Vallejo RL, 1996. Mapping candidate genes: an alternative approach. *Poultry Science* **75**:642-647.
- Smith EJ, Lyons LA, Cheng HH, Suchyta SP, 1997. Comparative mapping of the chicken genome Using the East Lansing Reference population. *Poultry Science* **76**: 743-747.
- Stevens L, 1986. Gene structure and organisation in the domestic fowl (Gallus domesticus). World Poultry Science Journal 42: 232-242.
- Tautz D, Renz M, 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12:4127-4138.
- Tautz D, 1989. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Research 17:6463-6471.

- Toye AA, Schalkwyk L, Lehrach H, Bumstead N, 1997. A yeast artificial chromosome (YAC) library containing 10 haploid chicken genome equivalents. *Mammalian Genome* **8**:274-276.
- Vandergon TL, Reitman M, 1994. Evolution of chicken repeat 1 (CR1) elements: evidence for ancient subfamilies and multiple progenitors. *Molecular Biology and Evolution* **11**:886-898.
- Vignal A, Monbrin C, Thompson P, Barre-Dirie A, Burke T, Groenen M, Hillel J, Maki-Tanila A, Tixier-Boichard M, Winners K, Weigend S, 2000. Estimation of SNP frequencies in European chicken populations. Abstract 27th International Conference on Animal Genetics, ISAG.
- Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Pelemans J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. *Nucleic Acids Research* 23: 4407-4414.
- Walter MA, Goodfellow PN, 1993. Radiation hybrids: irradiation and fusion gene transfer. Trends in Genetics 9:149-356.
- Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES, 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. *Science* 280:1077-1082.
- Weber JL, May PE, 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. *American Journal of Human Genetics* 44: 388 - 396.
- Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Research* 18:6531-6535.
- Zietkiewicz E, Labuda M, Sinnett D, Glorieux FH, Labuda D, 1992. Linkage mapping by simultaneous screening of multiple polymorphic loci using Alu oligonucleotide-directed PCR. Proceedings of the National Academy of Sciences USA 89:8448-8451.

Chapter II

Microsatellite markers in poultry

Published as:

- <u>Crooijmans R.P.M.A.</u>, van Kampen A.J.A., van der Poel J.J., and Groenen M.A.M. (1993). Highly polymorphic microsatellite markers in poultry. *Animal Genetics* **24**:441-443.
- <u>Crooijmans R.P.M.A.</u>, van Kampen A.J.A., van der Poel J.J., and Groenen M.A.M. (1994). New microsatellite markers on the linkage map of the chicken genome. *Journal of Heredity* **85**:410-413.
- <u>Crooijmans R.P.M.A.</u>, van Oers P.A.M., Strijk J.A., van der Poel J.J. and Groenen M.A.M. (1996). Preliminary linkage map of the chicken (*Gallus domesticus*) genome based on microsatellite markers: 77 new markers mapped. *Poultry Science* **75**:746-754.
- <u>Crooijmans R.P.M.A.</u>, Dijkhof R.J.M., van der Poel J.J. and Groenen M.A.M. (1997). New microsatellite markers in chicken optimized for automated fluorescent Genotyping. *Animal Genetics* **28**: 427-437.

Abstract

Several research groups have been working on the development of microsatellite markers in poultry, which is outlined in this chapter. Starting with the preparation of chicken genomic libraries, microsatellite-containing clones have been isolated and sequenced. Primers were made flanking the microsatellite repeat and one of them was labelled with a fluorescent phosphoramidite either 6-FAM, HEX or TET. The PCR conditions in our laboratory have been standardised with only the annealing temperature as variable. Markers were tested for polymorphism on the parents of the East Lansing, Compton and Wageningen reference populations. A total of 372 polymorphic microsatellite markers (MCW) have been isolated in our laboratory. In addition primers were made of 91 sequences with a microsatellite repeat isolated by the group of Dr T. Burke (LEI-markers), which resulted in a further 89 polymorphic markers. Furthermore, 9 polymorphic markers isolated at the Hebrew University of Jeruzalem (HUJ-markers) have been optimised to be used under our standard conditions. The ADL markers (obtained from Dr H. Cheng), were also tested under our standard conditions which resulted in a further 174 polomorphic and 19 monomorphic markers. In total we describe 644 polymorphic microsatellite markers which resulted in an average allele number of 4.0 in our test panel. Of these 644 microsatellite markers 89% could be mapped in the Wageningen resource population, 66% in the East Lansing reference population and only 46% in the Compton reference population.

Introduction

Great variability in the number of repeats at most microsatellite loci makes them useful in genetic mapping, population genetics and in a variety of other applications. In the genomes of vertebrates over 10^4 and probably as many as 10^5 microsatellites are present (Litt and Luty, 1989; Love *et al.*, 1990; Tautz and Renz, 1984). In chicken, the number of microsatellite is 6 to 10 folds lower compared to mammals (Crooijmans *et al.*, 1993; Primmer *et al.*, 1997). The development of polymorphic DNA based markers has resulted in the development of linkage maps in farm animals over de last decade. Linkage maps for cattle (Barendse *et al.*, 1994; Bishop *et al.*, 1994; Kappes *et al.*, 1997), swine (Archibald *et al.*, 1995; Marklund *et al.*, 1996; Rohrer *et al.*, 1996), sheep (Crawford *et al.*, 1995) and chicken (Bumstead and Palyga, 1992; Cheng *et al.*, 1995; Groenen *et al.*, 1998) have been reported but compared to human these maps are still less well developed.

Given the fact that the size of the chicken genome is around 4000 cM, and based on the assumption that a polymorphic marker is needed every 10-20 cM to efficiently perform a total genome scan, at least 150-300 evenly spaced informative markers are needed for such a study. However, as not all markers will be equally informative in all populations more markers are required. For example, the heterozygosity of 17 microsatellite markers in a number of commercial broiler lines on average was 54% whereas within a number of commercial layer lines it was only 26% (Crooijmans et al., 1996b). Furthermore, the next step in QTL mapping experiments is the fine mapping of the regions containing the QTL of interest, which requires even more dense maps. Although other types of markers such as restriction fragment length polymorphism (RFLP) (Bumstead and Palyga, 1992), chicken repeat 1 elements (CR1 PCR elements) (Levin et al., 1994), random amplified polymorphic DNA (RAPD) (Levin et al., 1993) and amplified fragment length polymorphism (AFLP) (Knorr et al., 1999; Herbergs et al., 1999) can be used to increase the marker density of the chicken linkage maps, microsatellites are still the markers of choice. Fluorescent labelling of the PCR products in combination with automated fluorescent DNA fragment analysers allows data to be recorded automatically for multiple markers (Ziegle et al., 1992; Levitt et al., 1994; Reed et al., 1994) and subsequently allows easy data analysis, which is essential for large scale genotyping experiments.

In this chapter 644 polymorphic microsatellites are described, that have been optimised and used in sets of multiple microsatellites, for efficient large scale semi-automated genotyping on ABI automatic sequencers.

Materials and methods

Development of microsatellite markers. Microsatellite markers (Microsatellite Chicken Wageningen; MCW) developed in our laboratory are derived from both male and female chicken White Leghorn DNA. Chicken DNA was digested with Sau3A, partially filled in with dC and dT and ligated in the partially filled in (dG and dA) *Xho*I site of lambda Zap II vector (Stratagene, La Jolla, CA, USA). The libraries were screened with a radioactively labelled (TG)₁₃ oligonucleotide (Crooijmans *et al.*, 1993, 1994 and 1996a). Linear PCR sequencing of the positive clones was performed using either radioactive and fluorescent labelling methods. Primers, 20 to 24 nucleotides in length, were designed flanking the repeat. One primer in each pair was labelled with either one of the fluorescent phosphoramidites (6-FAM, HEX or TET), which enables the polymerase chain reaction (PCR) products to be analysed on an ABI automated sequencer (Perkin Elmer, ABI). If possible, long stretches of the same base within

the primers were avoided. We also tried to match A/T and G/C content of the primers and preferably choose a C or a G at the 3' end of the primer.

Microsatellite markers obtained from the Avian Disease and Oncology Laboratory, USA (ADL) were isolated from 4 enriched libraries (Cheng and Crittenden, 1994; Cheng *et al.* 1995). Libraries 1, 2 and 4 were screened with a labelled (TG)₁₀ oligonucleotide, and library 2 was screened with (TG)₈, (CAA) ₆ and (GGAT)₄. Primers were made with the software program Oligo (NBI). Primer pairs were synthesised for each microsatellite with the primer having the lowest melting temperature labelled with either 6-FAM, HEX, or TET fluorescent dye (Perkin Elmer).

Microsatellites isolated in Leichester, UK (LEI-markers) were obtained from an enriched library as described by Gibbs *et al.* (1995 and 1997). The library was screened with a poly (TG) oligonucleotide probe. Primers were designed with the computer program Primer v0.5 (Gibbs *et al.*, 1995 and 1997), or manually as described by Crooijmans *et al.*, 1997. Markers were labelled with one of the fluorescent dyes (6-FAM, HEX, or TET) as described above.

Microsatellite markers obtained from the Hebrew University of Jerusalem, Israel (HUJ) were derived from three genomic libraries (Khatib *et al.*, 1993). These libraries were screened with a radioactive labelled $(TG)_{10}$ oligonucleotide.

PCR and gel electrophoresis. All markers obtained were first tested on the crossbred parents of the international reference populations (backcross populations Compton (C) and East Lansing (E)) and a pooled sample of the 20 parents of the Wageningen resource population (W). The PCR reactions were performed in a total volume of 12 μ l containing 10-100 ng of genomic DNA, 1.5 mM MgCl₂, 50 mM KCl, 10 mM Tris.HCl pH=8.3, 1 mM Tetramethylammoniumchloride (TMAC), 0.1% triton X-100, 0.01% gelatin, 200 µM dNTP, 0.25 Unit Goldstar polymerase (Eurogentec S.A., Belgium), 2.3 pmoles of each primer and covered with 10 µl of mineral oil (Sigma). The PCR was performed for 5 min at 95°C and 35 cycles of 30 s at 95°C, 45 s at annealing temperature and 90 s at 72°C, followed by a final clongation step of 10 min at 72°C. The annealing temperature varied from 45°C to 60°C. The PCR amplification of each marker was tested on an ABI automated sequencer. In case of FAM or TET labelled markers, 0.05 μ l of the PCR amplification product and in case of markers labelled with HEX 0.1 µl, was used to resolve on a 6% denaturing polyacrylamide gel (Sequagel-6; National Diagnostics, Atlanta, USA). Before loading on the gel, samples were denatured for five minutes at 95°C in 3.2 µl loading buffer (which contained the GENESCAN-350 TAMRA internal standard (Perkin Elmer) and formamide (final concentration of 80%)). Loading was performed on the ABI 373A (12 cm well-to-read; loading 4 μ l) or on the ABI 377 (12 cm well-to-read; loading 1.5 μ l). When performing high throughput genotyping, PCR products of different markers (up to 21 markers) from DNA of the same animal were pooled in such a way that each marker signal on the ABI automated sequencer has a peak height of about 1000. The fragment sizes were calculated relative to the GENESCAN-350 TAMRA with the GENESCAN fragment analysis software (Perkin Elmer, ABI).

Results and Discussion

In high throughput genotyping of microsatellites on ABI automated sequencers, it is essential to be able to use the whole range of the gel (from 75 -330 bp) for all three dyes (HEX, TET and FAM) as efficiently as possible. Therefore, the main objectives in our choice for the primers for the microsatellite markers, were the expected sizes of the PCR products, in combination with the choice for the fluorescent dye. Another important objective in a high throughput semi-automated genotyping set-up is to standardise the procedure as much as possible. By using simple rules of thumb for designing the primers as described in Materials and Methods, we made primer pairs that can be used under essentially the same PCR conditions. The only variation is the primer annealing temperature during the PCR reaction (see Table 1, 2, 3, and 4; Appendix 1). For microsatellites that did perform poorly under the standard conditions one, and occasionally two, new primers were developed. Microsatellites that continued to perform badly after two rounds were discarded (data not shown).

In addition to the MCW microsatellites which were isolated and characterised in our laboratory, we also designed new primers for microsatellite sequences isolated by the laboratory of Terry Burke (Leicester University, Department of Zoology, UK), which are present in the Genbank sequence database (Table 2; Appendix 1). Finally, for the HUJ microsatellites (Khatib *et al.*, 1993) which performed poorly under our standard conditions, new primers were developed (*HUJ0001, HUJ0002, HUJ0003* and *HUJ0010*; Table 3; appendix 1). The PCR conditions for 193 ADL markers were determined in our test panel and resulted in 174 polymorphic and 19 monomorphic markers. The number of alleles observed in our test panel and the range for the allele sizes, are shown in Table 1 - 3 (Appendix 1). Because of the small size of our test panel, the number of alleles indicated should be regarded as a minimum number of alleles known to occur for that particular marker. Also for this reason we have listed the 44 monomorphic markers isolated in our laboratory (WS markers; Table 4; Appendix 1) which might be polymorphic when testing more animals or which could

Microsatellite markers in poultry

be used in the future as markers for radiation hybrid mapping. Nevertheless, the number of alleles gives a good indication for the generally more informative markers. The number of alleles in our test panel, for the 372 polymorphic MCW markers described, was on average 4.0. Of these markers 89% is polymorphic in the Wageningen resource population which is much higher than in the two international backcross populations (East Lansing, 57%; Compton 43%). Analysing the 644 polymorphic markers (MCW, LEI, ADL and HUJ), 89% can be mapped in the Wageningen population, 66% in the East Lansing population and finally 46% in the Compton population. The average number of alleles for all of these markers in our test panel is 4.0 again. The main reason for the difference between the percentage of markers informative in the three populations is the number of families used in the Wageningen resource population (10). Furthermore, the Wageningen resource population is a G_2 cross in which all 20 parents can be informative. This in contrast to both reference populations, which are back crosses between (partially) inbred lines and therefore only one of parent will be informative. The size distribution of all fluorescent chicken microsatellite markers, which work efficiently in our laboratory, is shown in Figure 1.

Figure 1. Size distribution (according to the sequenced strand) of the 3 main groups of fluorescent chicken microsatellite markers (MCW, ADL and LEI) performing well in our laboratory.

The distribution of the MCW markers is uniform over the whole 75 to 330 bp range, whereas the ADL markers (Cheng and Crittenden, 1994; Cheng *et al.*, 1995) are more designed in the 20

90 to 200 bp range. To correct for the uneven distribution of the 200 to 330 bp size range, as compared to the range of 100 to 200 bp, we designed the primers for the LEI markers mostly in the range of 200 to 330 bp. The distribution of the fluorescent dye, used within each size range for the three groups of markers, is about equal.

In chicken the size range of alleles detected for a particular marker generally is smaller than the size range observed in mammals. This smaller allele range per marker makes it possible to create larger sets of markers (in chicken up to 21 markers per set) which can be run simultaneously on the automated sequencers. In conclusion, the development and optimisation of chicken microsatellie markers is performed in such a way, that they can be used efficiently in a semi-automated set up in a total genome scan.

References

- Archibald AL, Brown JF, Couperwhite S, McQueen HA, Nicholson D, Haley CS, Coppieters W, van der Weghe A, Stratil A, Wintero AK, Fredholm M, Larsen NJ, Nielsen VH, Milan D, Woloszyn N, Robic A, Dalens M, Riquet J, Gelin J, Caritez JC, Hue D, Burgaud G, Ollivier L, Bidanel JP, Vaiman M, Renard C, Gelderman H, Davoli R, Ruyter D, Verstege EJM, Groenen MAM, Davies W, Hoyheim B, Keiserud A, Andersson L, Ellegren H, Johansson M, Marklund L, Miller RJ, Anerson Dear AV, Signer E, Jeffreys AJ, 1995. The PiGMaP Consortium linkage map of the pig (Sus scrofa). *Mammalian Genome* 6:157-175.
- Barendse W, Armitage SM, Kossarek LM, Shalom A, Kirkpatrick BW, Ryan AM, Clayton D, Li L, Neibergs HL, Zhang N, Grosse WM, Weiss J, Creighton P, Mccarthy F, Ron M, Teale AJ, Fries R, Mcgraw RA, Moore SS, Georges M, Soller M, Womack JE, Hetzel DJS, 1994. A Genetic linkage map of the bovine genome. *Nature Genetics* 6: 227-235.
- Bishop MD, Kappes SM, Keele JW, Stone ST, Sunden SLF, Hawkins GA, Toldo S, Fries R, Grosz MD, Yoo J, Beattie CW, 1994. A genetic likage map for cattle. *Genetics* 136:619-639.
- Bumstead N, Palyga J, 1992. A Preliminary linkage map of the chicken genome. *Genomics* 13:690-697.
- Cheng HH, Crittenden LB 1994. Microsatellite markers for genetic mapping in the chicken. Poultry Science 73:539-546.

- Cheng HH, Levin I., Vallejo RL, Khatib H, Dodgson JB, Crittenden LB, Hillel J, 1995. Development of a genetic map of the chicken with markers of high utility. *Poultry Science* 74:1855-1874.
- Crawford A, Dodds GG, Ede AJ, Pierson CA, Montgomery GW, Garmonsway HG, Beattie AE, Davis K, Maddox JF, Kappes SW, Stone RT, Nguyen TC, Penty JM, Lord EA, Broom JE, Buitkamp J, Schwaiger W, Epplen JT, Matthew P, Matthews ME, Hulme DJ, Beh KJ, McGraw RA, Beattie CW, 1995. An autosomal genetic linkage map of the sheep genome. *Genetics* 140:703-24.
- Crooijmans RPMA, van Kampen AJA, van der Poel JJ, Groenen MAM, 1993. Highly polymorphic microsatellite markers in poultry. *Animal Genetics* **24**:441-443.
- Crooijmans RPMA, van Kampen AJA, van de Poel JJ, Groenen MAM, 1994. New microsatellite markers on the linkage map of the chicken genome. *Journal of Heredity* **85**:410-413.
- Crooijmans RPMA, van Oers PAM, Strijk JA, van der Poel JJ, Groenen MAM, 1996a. Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. *Poultry Science* **75**:746-754.
- Crooijmans RPMA, Groen AF, van Kampen AJA, van der Beek S, van der Poel JJ, Groenen MAM, 1996b. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. *Poultry Science* **75**:904-909.
- Gibbs M, Dawson D, McCamley C, Burke T, 1995. Ten novel chicken dinucleotide repeat polymorphisms. *Animal Genetics* **26**:443-449.
- Gibbs M, Dawson D, McCamley C, Wardle AF, Armour JAL, Burke T, 1997. Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats. *Animal Genetics* 28:401-417.
- Groenen MAM, Crooijmans RPMA, Veenendaal T, Cheng HH, Siwek M, van der Poel JJ, 1998. A comprehensive microsatellite linkage map of the chicken genome. *Genomics* **49**:265-274.
- Herbergs J, Siwek M, Crooijmans RPMA, van der Poel JJ, Groenen MAM, 1999. Multicolour fluorescent detection and mapping of AFLP markers in chicken (*Gallus domesticus*). *Animal Genetics* **30**:274-285.
- Kappes SM, Keele, JW, Stone RT, McGraw RA, Sonstegard TS, Smith TP, Lopez-Corrales NL, Beattie CW, 1997. A second generation linkage map of the bovine genome. *Genome Research* 7:235-249.
- Khatib H, Gelislav E, Crittenden LB, Burnstead N, Soller M, 1993. Sequence-tagged microsatellite sites as markers in chicken reference and resource populations. *Animal*

Genetics 24:355-362.

- Knorr C, Cheng HH, Dodgsen JB, 1999. Applications of AFLP markers to genome mapping in poultry. *Animal Genetics* 30:28-35.
- Litt M, Luty JA, 1989. A hypervariable micosatellite revealed by *in vitro* amplification of a Dinucleotide repeat within the cardiac muscle actin gene. *American Journal of Human Genetics* **44**:397-401.
- Levin I, Crittenden LB, Dodgson JB, 1993. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. *Genomics* 16:224-230.
- Levin I, Crittenden LB, Dodgson JB, 1994. Mapping DNA polymorphisms using PCR Primers derived from the sequence of an avian CR1 element. *Journal of Heredity* **85**:73-78.
- Levitt RC, Kiser MB, Dragwa C, Jedlicka AE, Xu J, Meyers DA, Hudson JR, 1994. Fluorescence-based resource for semiautomated genomic analyses using microsatellite markers. *Genomics* 24:361-365.
- Love JM, Knight AM, McAleer MA, Todd JA, 1990. Towards construction of a high resolution map of the mouse genome using PCR-analyzed microsatellites. *Nucleic Acids Research* 18:4123-30.
- Marklund L, Moller JM, Hoyheim B, Davies W, Fredholm M, Juneja RK; Mariani P, Coppieters W, Ellegren H, Andersson L, 1996. A comprehensive linkage map of the pig based on wild pig - Large White intercross. *Animal Genetics* 27:255-269.
- Primmer C R, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H, 1997. Low frequency of microsatellites in the avian genome. *Genome Res.* **7**:471-482.
- Reed P, Davies J, Copeman J, Bennett S, Palmer S, Pritchard L, Cough S, Kawaguchi Y, Cordell H, Balfour K, Jenkins S, Powell E, Vignal A, Todd J, 1994. Chromosomespecific microsatellite sets for fluorescence-based, semi-automated genome mapping. *Nature Genetics* 7:390-395.
- Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW, 1996. A comprehensive map of the Porcine genome. *Genome Reearch* 6:371-391.
- Tautz D, Renz M, 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12:4127-4138.
- Ziegle J, Su Y, Corcoran K, 1992 Application of automated DNA sizing technology for Genotyping microsatellite loci. *Genomics* **14**:1026-1031.

Chapter III

Microsatellite marker development in chicken genes and ESTs

Published as:

- Crooijmans R.P.M.A., van der Poel J.J. and Groenen M.A.M., (1995). Functional genes mapped on the chicken genome. *Animal Genetics* **26**:73-78.
- Ruyter-Spira C.P., <u>Crooijmans R.P.M.A.</u>, Dijkhof R.J.M., van Oers P.A.M., Strijk J.A., van der Poel J.J., and Groenen M.A.M., (1996). Development and mapping of polymorphic microsatellite markers derived from a chicken brain cDNA library *Animal Genetics* 27:227-234.
- Ruyter-Spira C.P., de Koning D.J., van der Poel J.J., <u>Crooijmans R.P.M.A.</u>, Dijkhof R.J.M., and Groenen M.A.M., (1998). Developing microsatellite markers from cDNA; a tool for adding expressed sequence tags to the genetic linkage map of the chicken. *Animal Genetics* 29(2):85-90.
- Groenen M.A.M., <u>Crooijmans R.P.M.A.</u>, Dijkhof R.J.M., Acar R., and van der Poel J.J., (1999). Extending the chicken-human comparative map by placing 15 genes on the chicken linkage map. *Animal Genetics* **30**:418-422.

Abstract

To increase the number of type I loci on the chicken linkage map, chicken genes containing microsatellite sequences based on mononucleotide repeats $[(Nn)_n, where n > 18]$, dinucleotide repeats $[(Nn)_n, where n > 8]$ and trinucleotide repeats $[(NNn)_n, where n > 7]$ were selected from the nucleotide sequence database and primers were developed to amplify the repeats. Another way of increasing the number of type I loci on the chicken map is by screening cDNA libraries for repeat containing clones. These expressed sequence tags (ESTs) are in most cases anonymous genes until homology is found with a known gene. In our laboratory we established 97 markers of which 51 are located within known genes and 46 are located within ESTs. In total 67 microsatellites representing a type I locus were mapped in one of the mapping populations. In addition, 2 genes were added to the chicken map by fluorescent in situ hybridisation. As the map position of the human homologues of the genes is known, these markers extend the comparative map between chicken and man.

Introduction

One of the main reasons for the development of genetic maps in farm animals is to locate and identify genes underlying diseases and economically important traits. The marker density of the chicken linkage map has seen a tremendous increase, and currently contains approximately 1900 loci (Groenen et al., 2000). There are two types of markers. These are the type I markers which represent genes and ESTs and the type II markers which are anonymous (O'Brien, 1991). In chicken the type II markers are primarily microsatellites and AFLPs. So far, more than 300 type I loci (genes) have been mapped on the chicken linkage map which already made it possible to identify many regions of conserved synteny between chicken and mammals (Klein et al., 1996; Burt et al., 1995; Hu et al., 1995). However, a large proportion of these type I loci are expressed sequence tags (ESTs) derived from unknown genes whose human homologues have not yet been identified. To be able to more precisely identify the conserved regions between the chicken genome and the genomes of mammalian species (man, mouse) many more type I loci are needed on the chicken map. To work towards this objective microsatellite markers have been developed known to reside within known genes whose sequence was already deposited in the public nucleotide database (Crooijmans et al., 1995; Groenen et al., 1999) and by isolating and sequencing microsatellite containing ESTs (Ruyter-Spira et al., 1996 and 1998a).

26

Materials and methods

Development of microsatellite markers. Database searches were performed for sequences of mononucleotide repeats (poly A), for dinucleotide repeats (poly TA, CA or TC) and for trinucleotide repeats (poly GCT, CGG, GAG, CTT, GCG, CTT or GCA) (Crooijmans *et al.*, 1995; Groenen *et al.*, 1999). Primers were designed on both sites adjacent to the repeat for the mononucleotide repeats larger than 18, for dinucleotide repeats larger than 8 and for trinucleotide repeats larger than 5.

A chicken brain cDNA library (Clontech) and a chicken embryonic cDNA library (Stratagene) were screened for TG repeat containing clones as described by Ruyter-Spira *et al.* (1996 and 1998a) and positive clones were sequenced. In all cases primers were made flanking the repeat, and the markers were tested for polymorphism as described according to Crooijmans *et al.* (1997).

All microsatellite markers were tested as described in chapter 2.

Reference families and linkage analysis. Linkage analysis was performed on the Wageningen population as described by Groenen et al. (1998). Markers that were not informative in this population (MCW0041, MCW0047, MCW0050, MCW0075, MCW0143, MCW0163, MCW0346, MCW0348, and MCW0353) were genotyped in the East Lansing reference or Compton reference population. Markers MCW0054, MCW0070, and MCW0072 were not polymorphic in the 4 families of the Wageningen mapping population but polymorphic in one or more families (of the six additional families) of the Wageningen resource population. Marker MCW0074, MCW0144, MCW0203, MCW0344, MCW0356, and MCW0371 although polymorphic, were not informative in any of the three chicken reference populations. The linkage analyses were performed with the CRIMAP version 2.4 (Green et al., 1990) linkage program or in case of the East Lansing data, with MAPMANAGER version 2.6 (Manly, 1993) (Groenen et al., 1998).

Fluorescent in situ hybridization. Two-colour in situ hybridisation on metaphase spreads of chicken embryo fibroblasts was performed as described previously (Ruyter-Spira et al., 1998b). Chicken bacterial artificial chromosome (BAC) clones (Crooijmans et al., 2000) isolated from WS0036 (AGC1) and MCW0356 (TPM1), were labelled with biotin-16dUTP and a BAC clone containing marker ADL0038 (mapped to linkage group E29C09W09) was labelled with digoxigenin-11-dUTP. The DNA was counter stained with DAPI.

Results and discussion

All markers isolated either from the database sequences or from cDNA libraries, that gave a reproducible clear amplification product, are listed in Table 1. When the marker is mapped in one of the reference populations, the map location in chicken and when known the map location of the human homologous gene is given. Characteristics of the markers developed as primer sequence, fluorescent dye and PCR annealing temperature are given in Table 1 and 4 (Appendix 1). The monomorphic markers (WS markers; Table 4, appendix 1) might be polymorphic in other populations and could be used in the future as markers for radiation hybrid mapping.

Marker	Gene	Accession	Chicken	Human ^c
		Number ^a	Chrom [▶]	Chrom.
MCW0041	Y-gene chicken ovalbumin family (OVY)	V00439	Chrom. 2	-
MCW0042	B-cell lymphoma 2 (BCL2)	D11381	Chrom. 2	18q21.3
MCW0043	14 k beta-galactoside-binding lectin gene (BGBL4)	D00311	Chrom. 1	-
MCW0044	Duplicated genes for histone H2A, H4 and H3 genes	X02218	Chrom. 1	-
MCW0045	Embryonic myosin heavy chain gene (MYHE)	M20006	E21E31C25W12	17pter-p11
MCW0046	Alpha-A-crystallin gene (CRYAA)	M17627	Chrom. 1	21q22.3
MCW0047	High mobility gene-14A (HMG14A)	X63083	Chrom. 4	21q22.3
MCW0048	N-myc protein gene (MYCN)	D90071	Chrom. 3	2q24.3
MCW0049	Lysosomal associated membrane protein 1 (LAMP1)	M59361	Chrom. 1	13q34
MCW0050	cDNA proto-oncogene C-SRC (SRC)	\$43620	E not linked	•
MCW0051	Vitamin-D-induced calbinding 4 28K gene (CALB1)	M33143	Chrom. 2	8p12
MCW0052	Immunoglobulin V26 and V6 gene (IGVPS)	D13439	E18C15W15	-
MCW0054	NF-kappa B p100 (NFkB)	U00111	-	
MCW0059	Phospholamban gene (PLN)	M59037	Chrom. 3	6q22.1
MCW0070	Chicken lipoprotein lipase gene (LPL)	X60547	-	8q22
MCW0071	Engrailed protein gene (EN2)	L12696	Chrom. 2	7q36
MCW0072	USIL-1 DNA	X54093	-	•
MCW0073	Heat chock factor 3 (HSF1)	L06098	E46C08W18	21pter-qter
MCW0074	Chox-4d gene for homeodomain protein (HOXD10)	D10287	-	2
MCW0075	C-ets mRNA for p54 protein (ETSB)	X13026	E not linked	1 Iq 23.3
MCW0076	Type 1 collagen alpha-1 chain mRNA (COLIAI)	M17607	E59C35W20	17q21.3
MCW0079	MAX-protein (MAX)	L12469	Chrom. 4	14q23
MCW0106	EST	L48902	Chrom. I	-
MCW0107	EST	L48906	Chrom. 1	-
MCW0108	EST homolog GTP binding protein (RAB6)	L48903	Chrom. 1	2q14-21
MCW0109	EST	L48904	Chrom. 1	-

Table 1. Microsatellites within id	dentified gene.
------------------------------------	-----------------

-Xp22.1

16p13.3 -

-18 2 -10p15 19p13.3 2cen-2q13 -14q11.2 -18p11 -

MCW0110	EST	L48908	E48C28W13W17
MCW0111	EST	L48909	Chrom. I
MCW0113	EST	L48905	Chrom. 5
MCW0141	EST	L48883	Chrom. 3
MCW0142	EST	L38882	Chrom. 2
MCW0143	EST	L48880	C33
MCW0144	EST	L48877	-
MCW0149	EST	L48895	E36C06W08
MCW0153	EST	L48885	Chrom. 2
MCW0155	EST	L48886	-
MCW0162	EST	L48891	Chrom. 3
MCW0163	EST	L48890	Chrom. 2
MCW0186	EST human Zincfinger ZFX or ZFY (ZFX/Y)	L48892	Chrom. 1
MCW0187	EST	L48899	Chrom.3
MCW0188	EST	L48897	Chrom. 1
MCW0189	EST	L48893	E46C08W18
MCW0190	EST	L48881	E36C06W08
MCW0191	EST	L48878	Chrom. 4
MCW0197	EST	L48901	E48C28W13W27
MCW0203	EST	AF030581	-
MCW0204	EST	AF030578	E53C34W16
MCW0206	EST	AF030579	Chrom, 2
MCW0216	EST	AF030586	E48C28W13W27
MCW0221	EST	G54427	-
MCW0225	Netrin-2 mRNA (NTN2)	L34550	E35C18W14
MCW0271	EST	AF030577	Chrom. 8
MCW0272	EST	AF030580	Chrom. 2
MCW0273	EST	AF030582	Chrom. 1
MCW0274	EST	AF030587	Chrom. 2
MCW0275	EST	AF030584	Chrom. 8
MCW0276	EST	AF030585	Chrom. 4
MCW0299	EST	AF030583	-
MCW0338	Zinc finger 5 protein mRNA (ZFP161)	U51641	Chrom. 2 ^d
MCW0341	Activin receptor IIB mRNA (ACVR2)	U31223	Chrom.2
MCW0344	bZIP nuclear protein MafB	D28600	
MCW0346	GATA-3 gene (GATA3)	S78786	Chrom. 1
MCW0347	Anti-mullerian hormone (AMH)	X89248	E53C34W16 ^d
MCW0348	Activin beta B mRNA (INHBB)	Z71594	Chrom. 7
MCW0349	Pineal opsin gene (PNO)	U87449	E52W19
MCW0350	T-cell receptor alpha mRNA (TCRA)	U04611	E59C35W20
MCW0351	Chicken EST; CLFEST63	D26339	Chrom. 8
MCW0353	bZIP nuclear protein MafF	D16184	Chrom. I
MCW0354	Adenylate cyclase activating polypeptide I (ADCYAP	/)U71183	Chrom. 2
MCW0355	Neurofascin gene (NRF)	Y14347	E60E04W23

Microsatellite ma	rkers in	chicken	genes	and	ES'	Ts
-------------------	----------	---------	-------	-----	-----	----

MCW0356	Alpha tropomyosin gene (<i>TPMT</i>)	X57991	E29C09W09	15q22
MCW0357	Aromatase gene (CYP19)	D50335	E29C09W09	15q21
MCW0359	c-Maf proto-oncogen (CMAF2)	D28598	E30C14W10	16
MCW0361	Homeobox protein gene (GBX2)	AF022151	Chrom. 7	2q37
MCW0362	Retinoic acid receptor beta (RARB)	X57339	Chrom. 2	3p24
MCW0366	Insulin growth factor I receptor (IGF1R)	S40818	E29C09W09	15q26.1
MCW0382	EST	AJ397960	•	-
MCW0383	EST	AJ394144	-	-
MCW0384	EST	AJ393384	-	-
MCW0385	EST	AJ393912	-	-
MCW0386	EST	AJ397995	Chrom, 1	-
WS0001	c-KIT	D13225	Chrom. 4	4 q12
WS0002	EST	G32088		-
WS0003	EST	G32089	-	-
WS0004	EST	G32090	-	-
W\$0005	EST	G32091	-	-
WS0006	EST	G31922	-	-
W\$0007	EST	G32092	-	•
WS0008	gdretm RNA	Z49898	-	-
W\$0029	EST	G32108	-	-
WS0036	Aggrecan gene (AGCI)	U83593	E29C09W09°	15q26
WS0037	Homeobox protein Chox-z mRNA	X17612	-	-
WS0039	Alpha-1 collagen type III gene (COL3A1)	M36662	Chrom. 7 ¹	2q31-q32
WS0040	GABA-A receptor gamma-2 subunit mRNA	X54944	-	5q34
WS0041	Erythroid transcription factor gene (GATA1)	M59937	-	-
WS0042	Hox1.4	X52669	-	-
WS0043	MyoD gene	L34006	-	-
WS0044	Scaffolding protein II	X80792	-	-

^a Nomenclature of the linkage groups is according to Groenen *et al.*, (2000) and refers to the original linkage groups in the East Lansing (E), Compton (C) and Wageningen (W) linkage maps. The loci for which the chromosomes are indicated in bold have been mapped using fluorescent in situ hybridisation.

^b Map location refers to the comprehensive linkage map of the chicken genome of Groenen *et al.*, (1998).

^c The location of the human genes has been derived from GDB except for those in bold which are derived from the human radiation hybrid map (Gene Map '98).

^d Previously mapped on East Lansing map by Smith and Cheng (1998).

^e Previously mapped on East Lansing map by Jones et al. (1997).

^f Mapped on the Compton map by Girard-Santosuosso et al. (1997).

We were able to map 67 of the markers on at least one of the three reference populations (Table 1), which recently have been integrated into a single consensus linkage map (Groenen et al., 2000). In addition, two markers (MCW0356 and WS0036) were used for the isolation of chicken BAC clones, which subsequently were used to add the TPM1 and AGC1 genes to linkage group E29C09W9 by fluorescent in situ hybridisation (Table 1; indicated in bold). For 35 genes the map location of their human and/or mouse homologue is known. Map locations of 31 of these genes (Figure 1; indicated in bold) identified new conserved regions or confirmed previously identified regions that are conserved between chicken and man. Three genes (LPL, HOXD10 and GABA-A) were not mapped in chicken and one gene (ETSB) was mapped in the East Lansing population but was not linked to another marker. From the 31 genes, 10 genes point towards new syntenic regions between chicken and man. The GATA-3 gene (GATA3; HSA10p15), the alpha-A-crystallin gene (CRYAA; HSA21022), and zincfinger X/Y gene (ZNX/Y; Xp22) were mapped in chicken to chromosome 1. The genes, activin receptor IIB (ACVR2; HSA2), and retinoic acid receptor beta (RARB; HSA3p24) were both mapped to chicken chromosome 4. The high mobility gene (HMG14A) is mapped in chicken to chromosome 4 and in man to HSA21q22. The gene c-Maf proto oncogen (CMAF2) did map in chicken to E30C14W10 and in man to HSA16. The anti-mullerian hormone gene (AMH) did map in chicken to E53C34W16 and in man to HSA19p13. The heat chock factor 3 gene (HSF1) did map in chicken to E46C08W018 and in man to HSA 21, and finally the T-cell receptor alpha gene (TCRA) did map in chicken to E59C35W20 and in man to HSA14q11. The GTP binding protein (RAB6) which mapped to chicken chromosome 1 is conserved in the mouse to a chromosome 9 segment (with genes Pgr and Fut4) but not conserved in man. The genes PGR and FUT4 are located in man on chromosome 11g and RAB6 on 2g14-21. The gene ETSB (C-ets mRNA for p54 protein) is mapped in the East Lansing population but not linked and this gene is mapped in man to chromosome 11q23.3 (Table 1). The gene protooncogene C-SRC (SRC) is also mapped in the East Lansing population and not linked to another marker but not mapped in man.

It has been estimated (D. W. Burt, personal communication) that at least 2000 different orthologous genes need to be mapped in chicken to be able to find at least 90% of the conserved segments between chicken and man. Currently, close to 300 genes have been mapped on the chicken linkage map (Groenen *et al.*, 2000) and more than 100 different genes have been mapped on the physical map as well, primarily by FISH (D. W. Burt, personal communication).
Microsatellite markers in chicken genes and ESTs

Þ

	Cleem	mosne 3	
	RPUE)	291912	2
	ADPRT TG922 ACTN2	1a42 1a41 1a42-a43	1 1 13
	ARHGDK	i Lópla	•
	HMXI	4p16.1	•
•	MPRI TCPI ESR VID MYB PLNI FYN GSTA2 MEI BMP ⁴ EEFIA	6q153 6q253 q26 6q254 6q24-27 6q23-3-24 6q24 6q21 6q12 6q12 6q12 6q12 6q12 6q12 6q13 6q14	17 10 10 10 10 10 10 9 9 9 9
1	EPL\$8A	19q13.2-q13-3	
	ODCI MYCN	2p25 3p24.3	12 12
	Chron	iosonie S	
	INS TH CAPAD	11p15.5 11p13.5	7
	EYR3	15g14	17
	PTAFR HTR1D	1p35-p34.3 1p36.3-p34.3	4
	BRF1	14923-24	
	HSPCALA (KB DNECL BMP4	14424 14433.3 14432.3 14433.3-ater 14423-23	12 12 12 14 14
	Chron	LOSOTHE G	
	PSAP PORSC ACTA2 SCD1	10g22.) 10g24 10g22-g24 10g23-g24	10 7 19
	Clao	marwine "	
	COL3A1 FN1 GEX2 NDUSF1 EEF1B CD28 VIL NRAMPI RPLJ7A INHEB MCM6	2q31-q32.3 2q34 2q57 2q33-34 2 2q33 2q35 2q33 2q35 2q33-37 2cm-q23 2q33-37	J 1 1 1 1 1 2
	Chre	100504DF 5	
	GLUL PLA2O2A PTG52	1 q25 1 q23-qter 1 q25-2-25-3	i
	VTG2	9p21	4
	RPL5 GOTTA JAKI DDET	1p33-p32 1p33-g34 1p32.3-p31.3 1p31.2-31.1	4
	Chromo	smar Z	
	PRLR CIHR	5p14-p13 5p14-p12	15 15
	CTSL PTCH	9p22.1-q23.2 9q22.3	3 13
	CHIDI	*q3*-g21	17
	CHRNBJ LPL	8p11.2 8p22	8
	ALDOB XPA GGYB2 ACOI	9422.3-431 9422.3 9921-p13 9pte:sefter	4

	Chron	usionar 16		
	MHC TAP2 BATS	6p21.3 6p21.3 6p21.3	17 17 17	
	RNF1	13p12		
	E30('06 W BB		
	TFRC SNON	3q26.2-aper 3q25-27	le J	►
	NCI.	2q12-qrer		►
	E\$901	19W 09		
	B2M CYPI9 TPM1 POLG AGC1 ROPIR RPL4	15q21-q22.2 15q21 15q22 15q26 15q26.1 15q26.1 15q26.1-qter 15q	2 9 7 7	
	GNEER	4q21 2	•	
	E30C1	4 <i>#</i> IN		
	(MAF2	16	8	
	HIAZ	6p21.3		
	CONE	1ºqt2-qt3		
	¥ 23E31	C25W12		
	MYH@ H3FIB FASN RACI NHE2 HLF	17 442-911 17425 17425 17421 17424 17421 17421 17422		
	E-63(*25	W 13W2"	,	
	MSX2 SPARC POU4F3 SPOCK CDX1 CAML	5q34-q35 5q31-33 5q31 5q31 5q31 5q31-33 5q32-33 5q23	13 - 18 18 18 13	
	E35C183	4.14		
►	HBA NTN2	16p13.3 16p13.3	n	
	£18C15	W15		
	CRABBI LOLCI MUFL2	22911.2 22911.2 22911.2	10	
	E:53(34)	V 16		
,	CAME	\$q21-q23	18	
	амн	19p13.3	LØ	
	E41W1~			
	RingdL ABLI RPL7A AKI CD39L: AMBP	9q34 9q34 9q3-q54 9q3-q54 9q34 9q34 9q34 9q34 9q34	2 2 2 2 2 4	
	E46C681	F -18		
	HSF1	8q24.3	15	
•	LIMK.2	22912	. I.	

E52W19) 	
ACACA CRK	17921 17913	п
CASPI	11q22.2-q22.3	5
E59C3:	FW-20	
TCRA	14q11 <i>2</i>	14
GH COLXAI SLC4AI	17912-24 17913-912 17912-921	41 11
E-19C2 ETS1 OPCML RPS23 POU2F3 APOA1	89721 11q23,3,q24 11q23,qter 11q23,3 11 11q23,3	9 9 9 9 9
F16C1TV	V22	
ARHGDIA	17924.3	
LUCA9 ARF1	3921.3 3931.2-21.1	
£60E0-	4W23	
PGAR	11դ13	•
TAX1 TNNT2	1982 1982	
F25C3)	L Intigatings, itstate	
RYR1	15311	17
E 160.13 MCL1	1421	3
E32 BMP7 HCK	20ptar-aper 20q11-q12	2 2
ES4 CDC2L1 AORN ENO1 FLOD SLC2A1	1p36 1p363-p32 1p363-p36.13 1p36-p362 1p35-pP31.3	4 4 4 4
Es.	1°p13.1	11
C24	0-27 11	

Figure 1. Comparative mapping results among chicken, man and mouse. The order of the loci is according to the linkage map described by Groenen *et al.* (2000). The second column in each linkage group shows the location of the loci on the human genetic map according to Genome Data Base (hhtp://www.gdb.org). The third column shows the map location in the mouse. Blocks of conserved synteny between chicken and man and between chicken and mouse are shaded. The genes described in this paper are indicated with arrows.

The recent localisation of QTLs for a number of different traits (Hu *et al.*, 1997; Vallejo *et al.*, 1998; Van Kaam *et al.*, 1998 and 1999a, b) on several chicken linkage groups as well as the development of chicken YAC (Toye *et al.*, 1997) and BAC (Crooijmans *et al.*, 2000) libraries has boosted the mapping of genes on many of the linkage groups in chicken. To improve the efficiency of positional cloning in these QTL studies, high resolution comparative maps are clearly needed. Adding new genes to the chicken map and thereby identifying new regions of homology between chicken and man is a first step in obtaining this goal, and can be used as an anchor point for the mapping of additional genes to selected regions of interest in chicken.

References

- Burt DW, Bumstead N, Bitgood JJ, Ponce de Leon FA, Crittenden LB, 1995. Chicken Genome mapping: a new era in avian genetics. *Trends in Genetics* 11:190-194.
- Crittenden LB, Provencher L, Santangelo I, Levin H, Abplanalp H, Briles RW, Briles WE, Dodgson JB, 1993. Characterization of a Red Jungle Fowl by White Leghorn backcross reference population for molecular mapping of the chicken genome. *Poultry Science* 72:334-348.
- Crooijmans RPMA, van der Poel, JJ, Groenen MAM, 1995. Functional genes mapped on the chicken genome. *Animal Genetics* **26**: 73-78.
- Crooijmans RPMA, Dijkhof RJM, van der Poel JJ, Groenen MAM, 1997. New microsatellite markers in chicken optimised for automated fluorescent genotyping. *Animal Genetics* 28:427-437.
- Crooijmans RPMA, Vrebalov J, Dijkhof RJM, van der Poel JJ, Groenen MAM, 2000. Two-Dimensional screening of the Wageningen chicken BAC library. *Mammalian Genome* 11:360-363.

- Girard-Santosuosso O, Bumstead N, Lantier I, Protais J, Colin P, Guillemot JF, Beaumont C, Malo D, Lantier F, 1997. Partial conservation of the mammalian NRAMP1 syntenic group on chicken chromosome 7. *Mammalian Genome* 8:614-616.
- Green P, Falls K, Crooks S, 1990. Documentation for CRI-MAP, version 2.4 Washington School of Medicine, St. Louis.
- Groenen MAM, Crooijmans RPMA, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ, 1998. A comprehensive microsatellite linkage map of the chicken genome. *Genomics* 49:265-274.
- Groenen MAM, Crooijmans RPMA, Dijkhof RJM, Acar R, van der Poel JJ, 1999. Extending the chicken-human comparative map by placing 15 genens on the chicken linkage map. Animal Genetics 30:418-422.
- Groenen MAM, Benkel B, Briles E, Bumstead N, Burt DW, Burke T, Cheng HH, Dodgson J, Lamont S, Ponce de Leon FA, Smith G, Soller M, Takahashi H, Vignal A, 2000. A consensus linkage map of the chicken genome. *Genome Research* 10:137-147.
- Hu J, Bumstead N, Burke D, Ponce de Leon FA, Skamene E, Gros P, Malo D, 1995. Genetic and physical mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) in chicken. *Mammalian Genome* 6:809-815.
- Hu J, Bumstead N, Barrow P, Sebastiani G, Olien L, Morgan K, Malo D, 1997. Resistance to Salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Research 7:693-704.
- Jones CT, Morrice DR, Paton IR, Burt DW, 1997. Gene homologs on human chromosome 15q21-q26 and a chicken microchromosome identify a new conserved segment. *Mammalian Genome* 8:436-440.
- Klein S, Morrice DR, Sang H, Crittenden LB, Burt DW, 1996. Genetic and physical mapping of the chicken IGF1 gene to chromosome 1 and conservation of syntemy with other vertebrate genomes. *Journal of Heredity* 87:10-14.
- Manly KF, 1993. A Macintosh program for storage and analysis of experimental genetic mapping data. *Mammalian Genome* **4**:303-313.
- O'Brien SJ, 1991. Mammalian genome mapping: lessons and prospects. *Current Opinion* in Genetetics and Development 1:105-111.
- Ruyter-Spira CP, Crooijmans RPMA, van Oers PAM., Strijk JA, van der Poel JJ, Groenen MAM, 1996. Development and mapping of polymorphic microsatellite markers derived from a chicken brain cDNA library. *Animal Genetics* 27:229-234.

- Ruyter-Spira CP, Koning DJ, van der Poel JJ, Crooijmans RPMA, Dijkhof RJM, Groenen MAM, 1998a. Developing microsatellite markers from cDNA; A tool for adding expressed sequence tags to the genetic linkage map of the chicken. *Animal Genetics* 29:85-90.
- Ruyter-Spira CP, de Groof AJC, van der Poel JJ, Herbergs J, Masabanda J, Fries R, Groenen MAM, 1998b. The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. *Journal of Heredity* 89:295-300.
- Smith EJ, Cheng HH, 1998. Mapping chicken genes using preferential amplification of specific alleles. *Microbial & Comparative Genomics* 3:13-20.
- Toye AA, Schalkwyk L, Lehrach H, Bumstead N, 1997. A yeast artificial chromosome (YAC) library containing 10 haploid chicken genome equivalents. *Mammalian Genome* 8:274-276.
- Vallejo RL, Bacon LD, Liu H-C, Witter RL, Hillel J, Cheng HH, 1998. Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F2 intercross chickens. *Genetics* **148**:349-360.
- Van Kaam JBCHM, van Arendonk JAM, Groenen MAM, Bovenhuis H, Vereijken ALJ, Crooijmans RPMA, van der Poel JJ, Veenendaal A, 1998. Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. *Livestock Production Sciences* 54:133-150.
- Van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ, van Arendonk JAM, 1999a. Whole genome scan in chicken for quantitative trait loci affecting growth and feed efficiency. *Poultry Science* 78:15-23.
- Van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Vereijken ALJ van Arendonk JAM, 1999b. Whole genome scan in chickens for quantitative trait loci affecting carcass traits. *Poultry Science* 78:1091-1099.

Chapter IV

High throughput mapping of chicken microsatellite markers by automated fluorescent genotyping

Abstract

Optimisation and standardisation are essential for efficient high throughput genotyping of many microsatellite markers in large populations. PCR programs and protocols, therefore, were standardised for every marker with only the annealing temperature varying. Every new marker is tested in a pooled sample of the parents of the Wageningen resource population for the amount of PCR amplification product obtained, possible background and allele size range. If a marker performs badly, adjustments are only made in the PCR annealing temperature. The marker information is subsequently used to make sets of microsatellite markers that are analysed simultaneously on an automated sequencer. Every marker set is tested on the individual parents of our resource population again to check for the amount of PCR amplification product and possible overlapping alleles of different markers with the same fluorescent dye. The amount of amplification product loaded on the automated sequencers is aimed to give a signal around 1000 to prevent read through in the other dyes. To obtain equal amounts of amplification product for the different samples DNA of high quality and equal concentrations are essential. Up till now more than 550 different microsatellite markers have been genotyped in a subset of our resource population (4 families; 196 animals also referred to as the Wageningen mapping population). A subset of these markers (286) has been genotyped in the complete Wageningen resource population (10 families; 486 animals). The number of markers mapped simultaneously in sets, varied from 8 to 21 with an average of 15. The computer programs Genescan and Genotyper were used to analyse the raw data, and finally the genotypings were checked twice for the right allele calling before entering into the database.

Introduction

The development of microsatellite markers, and marker maps in most livestock species has increased the scope of genetic mapping dramatically, making complete genome scans for the dissection of complex traits a feasible option. Microsatellite markers, because of the use of PCR in combination with the fluorescent-based automatic DNA fragment sizing technology (Applied Biosystems), are particularly well suited for the characterisation of genes involved in the more complex, economically important quantitative traits (Lander and Schork, 1994; Haley, 1995). The size of such a project and therefore the number of genotypes that is needed, made optimisation and standardisation of the techniques used essential.

Materials and methods

Mapping population. A three-generation population has been created for mapping both production and health traits in chicken. The G_1 and G_2 animals were genotyped while phenotypes were collected on the G_3 animals. The population consisted of 10 full-sib families with a total of 476 individuals (G_1 and G_2), and an G_3 generation consisting of over 18,000 animals. A subset of 4 families was used for mapping new markers to the Wageningen linkage map.

Microsatellite markers. Microsatellite markers used are described in chapter 2 and 3. Thus far, the total number of microsatellite markers developed and optimised for large scale automated fluorescent genotyping is more than 600. The majority of these markers are optimised, to be used efficiently with the automatic ABI sequencers. The PCR reactions were performed in a total volume of 12 µl containing 10 to 60 ng genomic DNA, 1.5 mM MgCl₂, 50 mM KCl, 10 mM Tris.HCl pH=8.3, 1 mM tetramethylammoniumchloride (TMAC), 0.1% Triton X-100, 0.01% gelatin, 200 µM dNTP, 0.25 Unit Goldstar polymerase (Eurogentec) and 2.3 pmoles of each primer. The PCR reaction was covered with 10 µl of mineral oil to prevent evaporation. The PCR program currently used is: 2 min at 95°C and 35 cycles of 30 s at 95°C, 30 s at optimal annealing temperature (60° to 45°C) and 30 s at 72°C, followed by a final elongation step of 3 min at 72°C. Primer development was performed manually. Where the primers exist of an equal G/C to A/T ratio, long stretches of the same base were avoided and the 3' end of the primer is either a G or a C. Microsatellites are developed in such a way that the full potential of the fluorescence-based ABI system can be used (Khatib et al., 1993; Cheng et al., 1995; Crooijmans et al., 1993, 1996 and 1997). It is essential that the size range of the microsatellites is evenly spaced over the complete range between 80 and 320 bp, for each of the three dyes (FAM, TET and HEX). Every microsatellite marker is tested on the possible heterozygote parent of the East Lansing Reference population (24000), the possible heterozygote parent of the Compton reference population (B50) and a pooled sample of the parents (20 animals) of the Wageningen resource population. The amplification products applied on the ABI gels when testing new markers was for a FAM or TET labelled marker 0.05 μ l and for the HEX labelled marker 0.1 μ l. The amount of amplification product is adjusted for each marker to get a signal on the ABI of around 1000. The allele size range of every marker obtained with the pooled sample is used to make the microsatellite sets.

Microsatellite set development. Combinations of markers with the same dye are selected without overlap of alleles according the test results of each marker on the pooled DNA sample. Overlap of alleles of different markers with a different fluorescent dye is possible. In

most cases at least a 10 bp difference between the largest allele of a marker and the smallest allele of the next marker within the same dye was used. Already known map position of markers is taken into account when selecting markers for genotyping in sets. Every microsatellite set is first tested on the 20 individual parents of the mapping population before genotyping the complete families (flow chart; Figure 1). This test is performed to adjust the amount of amplification products of each marker again to a signal of around 1000 on the ABI automated sequencers and to check that there is no overlap in size between adjacent markers of the same dye.

Fragment analysis. An internal standard (TAMRA 350) is added to every lane for size determination of the unknown fragments within the computer program Genescan (Perkin Elmer ABI). We were able to develop sets with up to 21 microsatellites that can be analysed simultaneously in a single lane of an ABI automatic sequencer. The amount of amplification product pooled from every marker is chosen in such a way that the final signal on the ABI sequencer for every marker is around 1000. A mixture of 1 to 1.5 μ l of pooled amplification products and 3 μ l loading mix (75% deionised Formamide, 10% loading dye and 12.5% Internal standard TAMRA 350 and 2.5% TAMRA labelled 70 bp PCR product) was made and denatured for 5 min at 95°C. This mixture was finally resolved on a 6% denaturing polyacrylamide gel, Sequagel-6 (National Diagnostics), using the ABI DNA sequencer.

Genotyper analysis. After sizing within Genescan the Genotyper software (Perkin Elmer, ABI) is used to define the loci included in the study. An algorithm is used for filtering out stutter peaks from the allele peaks. The software analyses all the peaks in a result file and genotypes each individual (Figure 1). Within the program, Mendelian inheritance and errors are checked twice and allele assignments are edited if required. Genotypes are then used for linkage and QTL analysis.

Figure 1. Flow chart showing the development and use of the microsatellite sets for large scale automated fluorescent genotyping in chicken. The arrow at the right side indicates the route when testing the parents.

Results and Conclusions

An experimental population was developed for the characterisation of genes involved in 6 different traits: growth, feed conversion, meat quality, malabsorption syndrome, ascites and susceptibility to salmonella. In total, over 50 different characteristics were measured for these traits. The population was produced by crossing 14 males with 14 females of two commercial broiler dam lines originating from the White Plymouth Rock breed. From the G_1 offspring, 10 males and 10 females were selected to produce the G_2 generation. In total, 456 G_2 offspring were produced. The 18,000 G_3 animals were produced in 5 or 6 batches per experiment in such a way that every male was mated with 6 females, and every female

was mated with 5 males. Furthermore, full-sib mating was avoided as much as possible. The animals were divided in 6 different groups, consisting of 2,000 or 4,000 animals respectively. Each group of animals was used for measuring one of the six different traits studied (Van Kaam et al., 1998 and 1999a, b).

So far, 284 markers have been typed in the complete population (10 families: 478 animals). Because 4 of the 10 families are also being used as a mapping population for new microsatellite markers, an additional 266 markers were typed on these 191 animals, bringing the total number of markers used to 550. The markers are distributed over sets, where the number of markers per set varied from 10 to 21, with an average of 15 (example in Table 1A). These sets are specific for the population used and therefore might not be optimal for other populations because of different allele ranges in these populations. For every set the flowchart described in Figure 1 is used to develop and optimise the set. To diminish the number of PCRs initially, multiplex PCR was performed (Table 1B). A disadvantage of multiplex PCR is the time investment to obtain combination of markers working well together. Therefore we stopped the development of multiplex PCRs after set 7. An example of an ABI 373A gel with a set consisting of 19 microsatellite markers is shown in Figure 2. Marker information is given in Table IA and IB where for each marker the fluorescent dye, the allele range for the Wageningen resource population and the amount of amplification product loaded on the gel is given.

******	(hn)	****	(hn)	White the second s	(hn)
FAM dye		TET dye		HEX dye	
Marker with	allele range	marker with	allele range	marker with	allele range
ha in 1944 a three fuelder i a i 2014 i a taoim ine fueler a star i a caeste	a a la la la cuesto contra contra contracto del	919 X 919 X 91 X 91 X 91 X 91 X 91 X 91	all all and all all and all all all all all all all all all al		
The allele range	per marker in l	bp is given for the	e Wageningen	resource panel.	

Table 1A. Microsatellite marker set I consisting of 19 markers grouped per fluorescent dye.

Marker with	allele range	marker with	allele range	marker with	allele range
FAM dye		TET dye		HEX dye	
	(bp)		(bp)	onnen men en e	(bp)
MCW0092	071-077	MCW0100	089-095	MCW0083	088-092
ADL0112	128-134	MCW0110	100-110	MCW0061	118-130
MCW0036	168-176	MCW0059	157-175	MCW0078	139-143
MCW0020	183-185	ADL0040	208-214	MCW0068	172-194
MCW0018	221-235	MCW0035	230-236	MCW0052	235-255
MCW0093	255-265	MCW0103	269-273	MCW0087	269-287
MCW0096	284-298	and the full of the local database and the second			

Table 1B. Microsatellite marker set 1. Set 1 consists of 19 markers that are amplified in 7 multiplex and 5 individual PCR reactions. The amounts of amplification reaction pooled and loaded on the gel are indicated. Finally 1.1 μ l of the pooled amplification product is put on gel of the ABI automated sequencers together with the internal standards.

Marker (s)	amount on gel (µl)	amount pooled (µl)
MCW0083+ MCW0100	0.1	n da yan yang munaka da sa a da yan yan yang da dalahar sa alikala da sa da sa ta sa ta bakan akakan kanakan da 4
ADL0040 + MCW0103	0.04	1.5
MCW0061 + MCW0068	0.1	4
MCW0078 + MCW0052	0.29	12
MCW0093 + MCW0087	0.2	8
ADL0112 + MCW0036	0.04	1.5
MCW0018 + MCW0020	0.05	2
MCW0092	0.1	4
MCW0096	0.06	2.5
MCW0110	0.05	2
MCW0059	0.06	2.5
MCW0035	0.03	1
Total	1.12	45

After genotyping and automated allele calling with the Genotyper software v2.0 (Applied Biosystems), the genotypes were transferred to Markbase, an Oracle based database specifically designed to handle all the genotyping and trait data. From the genotype data set a genetic linkage map was constructed using the Cri-Map linkage package (Chapter 5).

The development of microsatellite sets for simultaneous automated fluorescent genotyping, has proven to be a fast and reliable method for the handling and analysis of several hundred thousands genotypings, necessary for these types of analysis. Important in such a study was the optimisation of every step and standardisation of the whole procedure. The first step starts with the choice of the size and dye of the marker to be able to use the full potential of the fluorescence based ABI system. The second step for every marker is to obtain a nice and clear PCR amplification product without background. Important in the whole set up is good quality genomic DNA with equal concentration to obtain equal signals, stored in an easy 96-well storage system. A single PCR program is performed for standardisation where only the annealing temperature is varied.

Figure 2. Image of chicken micro set 2 (19 different microsatellite markers) as detected by the ABI 373A automated sequencer. Family structure is indicated at the top where \Box = male and o = female. Marker names are indicated at the left side. Internal standard markers markers are indicated in red.

Using a single PCR buffer with a fixed amount of magnesium chloride (1.5 mM) and an enhancer (Tetramethylammonium chloride) further standardisation could be established. Finally, to perform these huge amounts of genotypes (almost 200.000) the right equipment is required. The capacity we have in our laboratory (3 ABI automated sequencers in combination with nine 96-well PCR machines) allows us to generate more than 3100 genotypes a day.

References

- Cheng HH, Levin I, Vallejo R, Khatib H, Dodgson JB, Crittenden LB and Hillel J, 1995. Development of a genetic map of the chicken with markers of high utility. *Poultry Science* 74:1855-1874.
- Crooijmans RPMA, van Kampen AJA, van der Poel JJ and Groenen MAM, 1993. Highly polymorphic microsatellite markers in poultry. *Animal Genetics* **34**:441-443.
- Crooijmans RPMA, van Oers PAM, Strijk JA, van der Poel JJ and Groenen MAM, 1996. Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. *Poultry Science* **75**:746-754.
- Crooijmans RPMA, Dijkhof RJM, van der Poel JJ, and Groenen MAM, 1997. New microsatellite markers in chicken optimized for automated fluorescent genotyping. *Animal Genetics* **28**:427-437.
- Haley CS, 1995. Livestock QTLs-bringing home the bacon? *Trends in Genetics* **11**: 488-492.
- Khatib H, Genislav E, Crittenden LB, Bumstead N, and Soller M, 1993. Sequence tagged microsatellite sites as markers in chicken reference and resource populations. *Animal Genetics* 24:355-362.
- Lander ES, and Schork NJ, 1994. Genetic dissection of complex traits. *Science* **265**:2037-2048.
- Van Kaam JBCHM, van Arendonk JAM, Groenen MAM, Bovenhuis H, Verreijken ALJ, Crooijmans RPMA, van der Poel JJ, and Veenendaal A, 1998. Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. Livestock Production Science 54:133-150.
- Van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Verreijken ALJ, van Arendonk JAM, 1999a. Whole genome scan in chicken for quantitative trait loci affecting growth and feed efficiency. *Poultry Science* **78**:15-23.

Van Kaam JBCHM, Groenen MAM, Bovenhuis H, Veenendaal A, Verreijken ALJ, van Arendonk JAM, 1999b. Whole genome scan in chicken for quantitative trait loci affecting carcass traits. *Poultry Science* 78:1091-1099.

Chapter V

A comprehensive microsatellite linkage map of the chicken genome

Martien A.M. Groenen,¹ Richard P.M.A. Crooijmans, ¹ Tineke Veenendaal, ¹ Hans H.Cheng,² Maria Siwek ¹ and Jan J. van der Poel ¹

¹Animal Breeding and Genetics group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands

² United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823, USA

Genomics (1998) 49:265-274

Abstract

A comprehensive linkage map of the chicken genome has been developed by segregation analysis of 430 microsatellite markers within a cross between two extreme broiler lines. The population used to construct the linkage map consists of 10 families with a total of 458 F2 individuals. The number of informative meioses per marker varied from 100 to 900 with an average of 400. The markers were placed into 27 autosomal linkage groups and a Zchromosome specific linkage group. In addition, 6 markers were unlinked, one of which was Z chromosome specific. The coverage within linkage groups is 3062 cM. Although, as in other species, the genetic map of the heterogametic sex (female) is shorter than the genetic map of the homogametic sex (male), the overall difference in length is small (1.15%).

Forty-five of the markers represent identified genes or ESTs. Database homology searches with the anonymous markers resulted in the identification of a further nine genes, bringing the total number of genes/ESTs on the current map to 54. The mapping of these genes led to the identification of two new regions of conserved synteny between human and chicken and confirmed other previously identified regions of conserved synteny between human and chicken. The linkage map has 210 markers in common with the linkage maps based on the East Lansing and Compton reference populations, and most of the corresponding linkage groups in the different maps can be readily aligned.

Introduction

The developments in molecular genetics in the past decade, particularly the development of microsatellite markers, has boosted the generation of genetic maps in livestock species in recent years (for a review, see Georges and Andersson, 1996). The major goal for these maps in the livestock species is to identify genes that control the expression of economically important traits. The vast majority of these traits are typical quantitative traits, which are controlled by a relatively large number of loci (QTLs) as well as being influenced by environmental factors. Several aspects regarding chickens make this species extremely well suited for experiments aimed at the localisation of QTLs, such as a short generation interval, the ability to generate large full sib pedigrees, and the ease of obtaining large quantities of DNA from the nucleated red blood cells. Furthermore, the size of the chicken genome is small (1.2×10^9 bp; Bloom *et al.*, 1993) compared to that in mammals (3×10^9 bp), whereas the amount of recombination is similar to that in mammals (Rodionov *et al.*, 1992; Burt *et al.*, 1995; this paper). Therefore, once a QTL has been mapped to a certain chromosomal region,

the actual size in basepairs that has to be examined to identify the gene itself is, on average, three fold smaller than in mammals. On the other hand, because of the large number of chicken chromosomes (2n=78) and the small size of the majority of these chromosomes (referred to as microchromosomes), it is more difficult to assign these small linkage groups to specific chromosomes, particularly because of the absence of a clear banding pattern on these microchromosomes.

In chicken, the first genetic map based completely on DNA markers, was published by Bumstead and Palyga (1992). This map, based on the Compton (C) reference population, however, consisted solely of restriction fragment length polymorphisms (RFLP) markers which are not well suited for performance of total genome scans in large populations. The second genetic map to be published (Levin *et al.*, 1993 and 1994) was based on the East Lansing (EL) reference population and consisted primarily of RFLPs, random amplified polymorphic DNA markers and chicken repeat element 1 markers. Since then, both populations have been used to map a considerable number of microsatellite markers as well (Khatib *et al.*, 1993; Crooijmans *et al.*, 1994, 1995 and 1996; Cheng and Crittenden, 1994; Cheng *et al.*, 1995; Gibbs *et al.*, 1995; Ruyter-Spira *et al.*, 1996). Nevertheless, the coverage obtained by these microsatellites is still far from complete. Also, because the sizes of both international mapping populations used to generate the linkage map are rather small (around 50 offspring each), and because both populations are back cross populations, the number of informative meioses for the markers is about 50 per population, which limits the mapping resolution of closely spaced markers.

Anonymous highly polymorphic DNA markers, also referred to as Type II markers (O'Brien, 1991), although ideal for the development of genetic linkage maps, often have the disadvantage of being species specific. To identify the corresponding chromosomal regions between different species and subsequently to be able to use the information available in the other "map-rich" species (comparative mapping), large numbers of genes (type I markers) are needed on the map as well. Currently, over 130 genes have been mapped on the East Lansing map and over 75 genes have been mapped on the Compton map.

Recently, we completed a total genome scan for the dissection of a number of different performance traits in a broiler x broiler cross (Groenen *et al.*, 1997; Van Kaam *et al.*, 1998). In total, 476 animals were typed for 284 microsatellite markers which provided the framework for a highly informative microsatellite linkage map. In addition, 191 animals were typed for an extra 146 microsatellites. Of the 430 microsatellite markers, 54 are adjacent to or within functional genes.

Materials and Methods

Wageningen resource population. In collaboration with the breeding company Euribrid B.V., an experimental population was created containing 10 full sib families of a cross between two extreme commercial broiler lines. The G_0 generation consisted of two broiler dam lines originating from the White Plymouth Rock breed. Unrelated G_1 animals were mated to produce 10 full sib families with an average of 46 G_2 offspring per family.

Analyses of microsatellite markers. The microsatellites used in the present study have been described previously (Crooijmans *et al*, 1993, 1994, 1995, 1996 and 1997; Cheng and Crittenden, 1994; Cheng *et al.*, 1995; Khatib *et al.*, 1993; Gibbs *et al.*, 1995 and 1997). PCR amplifications were carried out in 12 μ l reactions containing 25-50 ng genomic DNA, 1.5 mM MgCl₂, 50 mM KCl, 10 mM Tris-HCl (pH=8.3), 1 mM tetra-methylammonium chloride, 0.1% Triton X-100, 0.01% gelatin, 0.2 mM each dNTP, 0.25 U Goldstar polymerase (Eurogentec) and 2.3 pmol of each primer, one of which was labeled with a fluorescent dye at the 5' end. The amplification reactions were as follows: 5 min at 95°C followed by 35 cycles of 30 s 94°C, 45 s at 55°C, and 90 s at 72°C, followed by a final elongation step of 10 min at 72°C; occasionally, annealing temperatures of 45, 50 or 60°C were used. PCR amplification products for several markers were combined and analyzed simultaneously on a 6% denaturing polyacrylamide gel (sequagel-6: National Diagnostics) on

an automatic sequencer (ABI, Perkin-Elmer). Electrophoresis was performed for 3 hours on

12 cm gels, and the results were analyzed using the Genescan and Genotyper software (ABI, Perkin-Elmer).

Linkage analysis. All genotyping data were generated using an ABI automatic sequencer and analyzed with the Genescan and Genotyper software. The number of microsatellites analyzed simultaneously within one lane of the sequencer varied from 14 to 21. Binning of alleles, was performed within the Genotyper program before export to Excel. Although the genotyping and binning are performed automatically by the Genotyper software, all individual genotypes were checked by manually twice (by two different persons). In addition, (potential) typing errors detected with the CRIMAP program were rechecked within Genotyper and corrected where necessary. The data was extracted from Excel worksheets and put into the correct format for the CRIMAP linkage analysis program. Linkage analysis was performed using CRIMAP version 2.4 (Green *et al.*, 1990). Initially, a two-point linkage in which all 430 markers were analyzed against each other analysis was performed. Based upon the results from the two-point analysis, data from markers clearly belonging to the same linkage group were assembled into separate linkage-group-specific files and analyzed using the CRIMAP build option. Finally, the order of the different loci was checked using the CRIMAP flips5 function. Loci whose order relative to one another is well supported (*i.e.* any change in order reduces the lod score by 3 or more) are considered framework loci (Keats *et al.*, 1991). Subsequently, these files were used in the multipoint linkage analyses.

Results

Linkage maps. Twenty-eight linkage groups (Table 1, Figure 1) probably belonging to at least 26 of the autosomes and to the Z chromosome were defined. Six markers (ADL240, ADL281, MCW188, MCW228, MCW237, and MCW248) appeared to be unlinked to any other marker. Based upon the segregation of the alleles to the male and female offspring, one of the unlinked markers (MCW237) could be assigned to the Z chromosome. The total length of the chicken genetic map, excluding the 6 unlinked markers is about 30 Morgans (Figure 1, Table 1). The sizes for the chicken linkage maps, based upon male and female meioses and the percentage by which the male maps differ in size compared to the female maps, are also shown in Table 1. Although there were differences in length for the male and female chromosomes, these differences generally were small. Moreover, for some linkage groups, the male map was larger and for others the female map was larger, resulting in an overall difference between the male and female maps of only 1.15%.

Alignment of WAU linkage map with East Lansing/Compton consensus linkage map and assignment of linkage groups to chromosomes. Of the microsatellites used in this study, 210 were also mapped on the East Lansing/Compton linkage map, making it possible to identify the common linkage groups in both of these linkage maps (Table 1). The corresponding EL/C linkage groups could be identified for all of the WAU linkage groups except for WAU27. This small linkage group consists of only two markers MCW244 and MCW340. In addition, 2 of the 6 unlinked markers were mapped to small EL/C linkage groups (Table 2), and one marker (MCW237) is located on the Z chromosome.

Wageningen	Size	Size	Size	% difference	East Lansing
Linkage group	male	female	average	male vs female	Linkage group
WAUI	555.5	543.0	544.0	+2.3	Chromosomel
WAU2	428.0	405.6	417.9	+5.2	Chromosome2
WAU3	331.8	309.6	321.7	+6.7	Chromosome3
WAU4	241.5	261.4	247.9	-8.2	Chromosome4
WAU5	167.7	173.2	169.8	-3.3	Chromosome5
WAU6	102.1	92.2	98.5	+9.7	E11
WAU7	166.7	144.7	155.7	+13.2	Chromosome7
WAU8	77.7	77.4	77.2	+0.4	E36
WAU9	73.5	82.7	78.9	-11.4	E29
WAU10	80.6	85.8	84.5	-6.5	E30
WAUII	95.4	101.7	97.9	-6.6	Chromosome8
WAU12	48.3	48.7	47.7	-0.8	E21, E31
WAU13	55.4	47.6	51.6	+14.1	E48
WAU14	64.3	84.3	73.6	-31.2	E35
WAU15	44.1	40.6	43.1	+7.8	E18
WAU16	58.4	61.3	59.6	-5.0	E53
WAU17	38.1	50.9	45.9	-33.6	E41
WAU18	23.2	18.1	20.7	+22.0	E46
WAU19	53.5	42.3	47.8	+20.9	E52
WAU20	42.7	52.8	48.5	-23.6	ChromosomeZ
WAU21	10.1	20.1	15.2	-99.0	E49
WAU22	27.9	2.3	28.5	-	E16
WAU23	53.4	47.4	48.8	+12.6	E46
WAU24	18.4	18.6	18.9	-1.1	E11
WAU25	11.2	6.1	10.1	+45.5	E27
WAU26	24.6	24.8	24.8	-0.8	E27
WAU27	0.0	15.6	15.6	-	-
WAUZ	168.0	-	168.0	-	ChromosomeZ
TOTAL	3062.1	3026.8	3062.4	+1.15	

 Table 1. Summary Chicken Genetic linkage map.

Chapter 5

	WAU	1	
4		MCW (ex	
11		A D1.160	
10 (11) 11) 11) 12) 12) 13) 14) 14) 14) 14) 14) 14) 14) 14		HC31 MCW 288 MCW 16 <i>EELI03</i> MCW 16 <i>EELI03</i> MCW 253 MCW 253 MCW 254 HC33 MCW 254 HC33 MCW 254 MCW 264 MCW 267 EEL54 MCW 267 EEL54 USA 345	
170 170 172 173 175	\mathbf{X}	АРЕТТУ МСКГУ МСК 112 АРЕТТУ МСК / 8 ЕЕГГУ	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		UMA 344 WIA 344 WIA 344 EE171 NICW 101 EE171 ADL231 UMA 3457 ADL231 UMA 3457 ADL325 MUW 68 AD1205 MUW 68 AD1205 MUW 713 MUW 713 MU	
541 544	+	<i>NCR'107</i> MCW108	

	WA	U2	
9		,	A D1.228
1		6	AUL\$56
, 6	7		CET163 Jacc16207
22	4		AD1.343
37		1	M C W 82
42 41	N	1	MCW7I
54	N	V_{-}	AD1.270
61	N	1	161-30
6	N	V	MCW184
66	1		ADL152
13	7	1	LEIU7
47		,	MCW142
1#1	- 11	1	A DL 185
105	N	V	AD 1.199
105	7	× .	MCWIN
114	-	-	1.8186
118	A	7	ADLITE
123	-1/	\mathbb{N}^{-}	ADL217
127	-1}	\sim	NCW234
1 14	1	Κ.	MCW?74
136		· · · · ·	MCW15 ADL212
160	1	-	AD 6.257
174 180		—	CE189 MCW 62
1 80			M C W 293
347		1	M C W 19
234	-N	1	A D1.226
217	_ <u>\</u>	ĺ.	MCW34
2.87	<i>III.</i>	116	LE 194
241	W)	Ŵ	MCW 290
242	///	Ű.	MCW291
243		Ľ.	VDF181
233	1		MCW101
254	-1	1	MCW 87
154	1)	MCW 27
274	1	1	MCW137
274	1	18	#09257
274	-7/	\mathcal{X}	MCW98 MCW988
283	7]	1	LEBU
301	1	1	MC9196
340 K 340 K	-77	γ	MCW272 MCW185
316	1		N C W 234
320		ì	MC W 264
340 345	+		АРТ 164 АРТ:274
3.39		1	MCWSI
362			MCWINN
371			MCW314
170			MCW245
343 343	- 21	12	MCW382
344	Ľ	¥	1.8170
147	1	\sim	LED40
409 409	->	\leq	第11年32年 第11年32年
413	1	1	LE1104 ADI 144

WAU3				
6			MCW D	
1	-7	É.	M CW 148	
4	1	\mathbf{r}	M CW 114	
23			1.13166	
18	~		M C'W 40	
15	\geq	K	MCW156 ADL237	
4.8	1		MCWAG	
46 67	1		MCW6	
\overline{D}	1	Ľ	MCW16	
71	-7	5	M C W 207	
87	1	\downarrow	MCW124 MCW124	
113	\mathcal{N}	14	M CW 252	
	1	14	ADLIS	
113	Y	Ľ.	MCW103	
127	\mathbf{x}		MCW93	
123	N	V.	ADJ 127	
130	ス	$\overline{\mathbf{N}}$	MCW277	
134	1		LEIII8	
41 44	1	\mathbb{N}^{-}	A 121.280 M C 19 127	
147	1	N `	ADL248	
157	1/2		MCW4 MCW212	
60	4	\mathbb{N}	MCW/87	
163		[`	LETUS	
204	X	17	MCW [19 AU/ 155	
206	1	V.	MCW162	
208	Ŧ	F	LEHAI	
231	2	Ł.	利むかっつ	
1.54	-		AC 8	
272		1	MCWRI	
284	-	_	A114 (72	
291		K	MCW 69	
		1		
114	~	_	MCW141	
11			1.8.143	
122		~	M CW 261	
	W/	LU:	5	

6 LEH5 1 MCW1 14 MCW1 15 MCW1 16 LEH5 17 MCW1 18 LEH5 19 MCW1 10 MCW1 11 MCW1 12 MCW1 13 MCW1 14 MCW1 15 MCW1 16 LEH5 17 MCW1 18 MCW1 19 MCW1 10 MCW1 11 MCW2 12 MCW1 13 MCW2 14 MCW2 15 MCW2 16 AD124 16 AD125 17 MCW2 18 MCW2 19 MCW2 12 MCW2 12 MCW2 12 MCW2 12 MCW2 12	
2 MCW1 12 MCW1 14 MCW1 15 LEMS 16 LEMS 10 MCW1 11 MCW1 12 MCW1 13 MCW1 14 MCW1 15 LEMS 16 LEMS 17 MCW1 18 MCW1 19 MCW1 10 MCW1 11 MCW1 12 MCW1 13 MCW1 14 MCW1 15 MCW1 166 LEH142 171 MCW2 172 MCW1 173 MCW2 174 MCW2 175 MCW2 176 MCW2 177 MCW2 178 MCW2 179 MCW2 171 MCW2 172 MCW2 <	
12 SCCW 14 ADL2 15 LB05 16 LB05 17 MCWI 18 MCWI 19 MCWI 10 MCWI 11 MCWI 12 MCWI 13 MCWI 14 MCWI 15 MCWI 16 MCWI 17 MCWI 18 MCWI 10 MCWI 11 MCWI 12 MCWI 13 MCWI 14 MCWI 15 MCWI 165 MCWI 175 MCWI	74
14 ADL20 15 LENS 16 LENS 17 LENS 18 LENS 19 LENS 10 LENS 11 MCW1 12 MCW1 13 MCW1 14 MCW1 15 MCW1 16 LENS 17 MCW2 18 MCW2 105 LENS 106 LENS 108 ADL3 108 ADL2 109 ADL2 101 MCW2 102 MCW3 103 MCW2 104 MCW2 105 MCW2 104 MCW2 105 MCW2 104 MCW2 105 MCW2 104 MCW2	y
11 LE AD 16 LEB 15 10 LEB 15 10 LEB 15 10 LEB 15 10 MCWI 11 MCWI 12 MCWI 13 MCWI 14 MCWI 15 MCWI 16 LED 12 17 MCWI 18 MCWI 106 LED 12 116 AD 1.31 121 MCWI 135 MCWI 141 AD 1.24 155 MCWI 164 MCWI 175 MCWI 175 MCWI 175 MCWI 175 MCWI 211 AD 1.26	D
Ib LERG 10 LERG 11 MCWI 12 MCWI 13 MCWI 14 MCWI 15 MCWI 16 MCWI 17 MCWI 18 MCWI 19 LEIG 10 MCWI 11 MCWI 12 MCWI 13 MCWI 14 MCWI 15 MCWI 16 ADI.33 174 MCWI 184 ADI.24 195 MCWI 195 MCWI 195 MCWI 195 MCWI 211 ADI.29	
10 10 38 MCWI 41 MCWI 42 MCWI 43 MCWI 44 MCWI 45 MCWI 46 MCWI 47 MCWI 48 MCWI 49 EEMI 40 MCWI 45 EEMI 46 MCWI 47 MCWI 48 MCWI 49 EEMI 106 LEII41 118 ADI.24 121 MCWI 141 ADI.24 143 MCWI 144 MCWI 145 MCWI 146 MCWI 175 MCWI 175 MCWI 211 ADI.29	
33 ICCVI 10 MCWI 41 MCWI 43 MCWI 44 MCWI 45 LEIIS 74 MCWI 84 MCWI 85 MCWI 98 LEIIS 106 LEIIS 122 LEIIS 143 MCWI 154 ADL34 155 MCWI 164 ADL34 175 MCWI 176 ADL34 175 MCWI 211 ADL29	
1) MCWI 47 MCWI 48 MCWI 44 MCWI 45 MCWI 46 MCWI 47 MCWI 48 MCWI 49 MCWI 40 MCWI 41 MCWI 42 MCWI 14 MCWI 155 MCWI 164 MCWI 174 MCWI 175 MCWI 176 MCWI 177 MCWI 178 MCWI 179 MCWI 171 MCWI 172 MCWI 173 MCWI 174 MCWI 175 MCWI 174 MCWI	22
47 MCCW2 43 MCCW2 44 MCCW2 45 MCCW2 46 MCCW2 47 MCCW2 48 MCCW2 49 MCCW2 49 MCCW2 40 MCCW2 41 MCCW2 44 MCCW2 45 MCCW2 46 MCCW2 47 MCCW2 48 MCCW2 49 MCCW2 40 MCCW2 41 MCW2 42 MCCW2 43 MCCW2 44 MCL29 45 MCCW2 4012 MCW2 4012 MCCW2 4012 MCW2 4012 MCCW2	80
33 AGCW 41 AD1.31 63 LE116 64 AD1.31 65 LE116 74 RCW1 78 LE104 106 LE104 116 AD1.23 116 AD1.24 116 AD1.24 116 AD1.24 115 MCW2 121 AD1.24 125 MCW2 136 MCW2 137 MCW2 138 MCW2 214 AD1.26	40
05 ADL33 65 EERI 64 RCW3 95 EERI 96 EERI 98 EERI 106 EERI 108 EERI 108 EERI 108 EERI 108 EERI 108 EERI 108 EERI 109 EERI 108 ADL34 108 MCW3 109 MCW3 1012 MCW3 105 MCW3 106 MCW3 107 MCW3 108 ADL34 109 ADL34 1012 ADL34	
44 LEI76 71 MCW1 84 MCW1 95 LEI96 106 LEI14 118 AD124 121 LEI14 141 AD124 142 MCW1 143 MCW1 144 MCW1 145 MCW1 145 MCW1 146 MCW1 147 MCW1 148 MCW1 149 MCW1 141 MCW1 142 MCW1 143 MCW1 144 MCW1 145 MCW1 146 MCW1 147 MCW2 148 MCW2 149 MCW2 149 MCW2 141 MCW2 142 MCW2 143 MCW2 144 MCW2 145 MCW2 MCW2 MCW2 <	'
71 MCW2 83 MCW2 98 LED44 108 LED143 116 AD124 122 AD124 135 MCW2 142 AD124 155 MCW2 167 MCW2 173 MCW2 174 AD124 175 MCW2 214 AD126	
83 ACW2 98 LED4 108 LED4 118 AD126 121 MCW2 134 AD126 135 MCW2 136 AD124 137 MCW2 138 AD124 139 MCW2 130 MCW2 131 MCW2 132 MCW2 133 MCW2 134 AD120	76
95 L2394 106 LE1141 118 A01.26 121 LE1141 141 A01.26 142 MCW3 145 MCW3 164 MCW3 165 MCW3 175 MCW3 175 MCW3 176 MCW3 211 A01.29	84
106 LEI143 114 A0126 121 MCW2 141 A0126 143 A0126 144 A0126 145 A0126 146 A0126 147 A0126 148 A0126 149 A0126 141 A0126 145 MCW2 146 A0126 147 MCW1 148 A0126 149 MCW2 140 A0126	
118 AD124 121 LE122 141 ACWX 146 AD124 147 AD124 148 ACWX 149 ACWX 141 ACWX 142 ACWX 143 ACWX 144 ACWX 145 MCWX 146 ACWX 147 MCWX 175 MCWX 214 AD129	
122 144 145 145 145 145 145 145 145	6
14 MCW3 16 ADL16 162 MCW3 165 MCW3 165 MCW3 167 MCW3 172 MCW3 175 MCW3 211 ADL26	
110 AUL 20 142 AUL 20 143 AUL 20 144 AUL 20 155 MCW2 157 AUL 20 175 AUL 20 175 AUL 20 175 AUL 20 175 AUL 20 175 AUL 20 175 AUL 20 214 AUL	4
1 42 AUL29 1 55 MCW3 1 65 MCW3 1 70 MCW3 1 71 MCW3 1 72 MCW3 1 74 MCW3	
155 NGWS 155 NGWS 164 NGWS 172 MGWS 175 MGWS 211 AD120	
155 90 000 165 90 000 165 90 000 175 90 000 179 90 000 211 90 0000 211 90 000 211 90 0000 211 90 00000 211 90 0000 211 90 0000 211 90 00000 211 90 0000 211 90 000000000000000000000000000000000	
163 AD123 167 AD123 172 MCW1 175 MCW1 179 MCW2 214 AD129	
107 A02,6 172 MCW1 175 A01,24 179 MCW2 214 A0129	57
211 AD129	к 14
179 MCW2 211 AD1 20	1
211 ADI 20	
211	
11	1
245 AD1.25 248 AD1.14	5

N/	AU:	5
	F	MCW 263 LE182 A DE 247
		MC.M. MI MC.M. 193
		M C W 18 AD L J 22 M C W 214 M C W 214 M C W 214 AD L 247 AD L 247 AD L 247 AD L 147 M C W 224 M C W 224 M C W 224 M C W 247 AD C W 247 AD C W 247 M C W 247 AD L 166
		401.298

0 4 6

1**1**0 _

WAU6

ø	Τ	Γ	A D1.323
28 28 29	X	K	(.E1/96 Afr/142 MCW 176
61 71 75 76 77 78 82 85			AD 1.333 AD 1.139 HUDP12 1.8197 AD 1.30 AD 1.324 AD 1.230 M CW 259 AD 1.158 M CW 14 UP 15

53

A comprehensive linkage map

WAU8				
0 8 8 16 23 24 27			AD U191 AD U191 MCW329 LEI28 MCW135 MCW267 MCW267 MCW299 MCW297 MCW217	
52			ADL136	
67	-	~	ADL259 MC99340	
72		_	MCW134	

٦	/ .	Ú.)	
0	T	—	ADU112	
13 16 24 33 78 43		11111	LE1112 LE1103 ADL158 MCW132 ADL162 MCW35	,
65 68 71 79			AD E 231 M C W 67 AD E 38 M C W 194	

WAU11				
0 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1			MC W275 AD L 322 AF CW305 AD L 325 AD L 325 AD L 129 M CW305 M CW 158 M CW 158 M CW 160 M CW 160 AD L 154 AD L 145	
73			ADE301	
8 K	-+	<u> </u>	MCW271	
96	~		ADL218	
98	ورار معمد	L	LEI4J	

WAU12

p	<u> </u>	- MCW104
ĸ		- MCW322
15		- MCW110
26		- MCW216
31	-++	- MCW197
11	-#-	- AD1.147
45	-#-	- ADL310
\$2		• MCW213

WATTI2

Figure 1. Chicken genetic linkage map. Shown is the sex-averaged genetic linkage map with the estimated Kosambi map distances. Framework loci (loci whose order is supported by odds of at least 1000:1; Keats *et al.*, 1991) are shown in regular script and the remaining loci in italics. Expressed sequences (identified genes and ESTs) are shown in bold.

Because chromosome assignments have been made in the East Lansing linkage map for chromosomes 1 to 8 and 16, the corresponding WAU linkage groups could also be assigned to these chromosomes, except for chromosome 16 (Table 1).

Type I markers. Genetic markers within or adjacent to known genes have been classified as Type I markers (O'Brien, 1991). The inclusion of type I markers will make it possible to access the mapping information that is available in the "map-rich" species such as humans and mice. We have tried to combine the benefits of Type I and Type II (anonymous) markers by developing microsatellites known to reside within known genes and ESTs (Crooijmans *et al.*, 1995; Ruyter-Spira *et al.*, 1996; this paper). Forty-five microsatellites, mapped on our

A comprehensive linkage map

chicken genetic map fall into this class of markers (Table 3). In addition nine Type II markers showed significant sequence similarity to human sequences in the Genbank/EMBL database (Table 2). Strikingly, the homology often ends at potential splice sites or at the end of the cloned insert, strengthening the assumption that these are significant homologies not occurring merely by chance. The significance of the observed sequence homologies between some of the anonymous microsatellite markers and human sequences is further strengthened by the fact that some of them also show conservation of synteny or linkage between the human and chicken genomes (discussed below).

Table 2. Microsatellites within identified genes.

Marker	Gene	Sequence
HUJ12	Chicken smooth muscle alpha 2 actin gene (ACTA2)	genomic
MCW42	Chicken B-cell lymphoma 2 gene (BCL2)	genomic
MCW43	Chicken 14 k beta-galactoside-binding lectin gene (LGAL4)	genomic
MCW44	Chicken histone H2A, H4 and H3 gene cluster (HISA)	genomic
MCW45	Chicken embryonic myosin heavy chain gene (MYH1)	genomic
MCW46	Chicken alpha-A-crystallin gene	genomic
MCW48	Chicken N-myc gene (MYC)	genomic
MCW49	Chicken lysosomal membrane glycoprotein gene (LAMP1)	genomic
MCW51	Chicken vitamin-D-induced calbinding D 28K gene (CALB1)	genomic
MCW52	Chicken immunoglobulin gene V26 and V6 gene (IGVPS)	genomic
MCW59	Chicken cardiac phospholamban PLB gene (PLN)	genomic
MCW71	Chicken engrailed protein gene (EN2)	genomic
MCW73	Chicken heat shock factor 3 (HSPA3)	cDNA
MCW76	Chicken type I collagen alpha-1 chain (COLIA1)	cDNA
MCW225	Chicken Netrin-2	cDNA
MCW341	Chicken activin II B	cDNA
MCW349	Chicken Opsin	cDNA
MCW350	Chicken T Cell receptor alpha chain (TCRA)	cDNA

Marker		Sequence	Human
			map location
ADL163	85.3 % (163 nt) identity to human intestinal DNA replication protein	genomic	2
ADL240	71.5 % (186 nt) identity to human cosmid LUCA9	genomic	3p21
ADL298	76 % (122 nt) identity to mouse transcription factor CI	genomic	-
LEI94	83 % (115 nt) identity to human EST86460	genomic	-
MCW98	83 % (93 nt) identity to human brain neuron cytoplasmic protein 1	genomic	4p16
	(BNC1)		
MCW107	76.2 (181 nt) identity to human EST24331	cDNA	-
MCW108	77.6 % (116 nt) identity to human mRNA for GTP binding protein	cDNA	2q14-21
	(RAB6)		
MCW141	72.9 $\%$ (1050 nt) identity to human THC (similar to neuroendocrine	cDNA	-
	specific proten C)		
MCW161	78.2 % (110 nt) identity to human mRNA for KIAA0195 gene	genomic	-
MCW186	86.4~% (490 nt) identity to human ZFX (mRNA for putative	cDNA	Xp22.2-21.3
	transcription factor)		
MCW189	66.8 % (292 nt) identity to human adhesion glycoprotein Mac-1	cDNA	-
MCW227	74.5 % (137 nt) identity to human calcium/calmodulin-dependent	genomic	5q21-23
	protein kinase mRNA		
MCW247	66 % (280 nt) identity to human macrophage mannose receptor	genomic	10p13
MCW271	97 % (248 nt) identity to chicken CLFEST63 and 80 % (124 bp) identity	cDNA	-
	to human EST45964		
MCW289	100 % (38 nt) identity to chicken liver adenylosuccinate lyase mRNA	genomic	-

Table 3. Microsatellites within putative genes.

Discussion

Estimated genome coverage of the map. Microsatellite linkage maps are an essential tool in experiments designed to localise loci affecting quantitative traits. Ideally, such experiments require maps with 100% coverage in which the distance between two adjacent markers is 20 cM or less. Based upon the estimated size of 30 morgans for the chicken genome, this would require a minimum of 150-200 evenly spaced markers. To be able to make such a selection in QTL mapping experiments, many more markers need to be placed on the genetic map. The genetic map described in this paper is a step toward this goal. The 430 markers in this paper describe 28 linkage groups that contain 3062 cM (based on the Kosambi mapping function). If one assumes that each of the unlinked markers covers an additional 20 cM and that the markers at the end of the chromosomes cover an additional 10 cM, then the maximum genome coverage of the markers described in this paper is 3750 cM.

New markers that are genotyped generally exhibit linkage to the current map, indicating that most of the genome is covered by the current map. However, it is clear that some of the microchromosomes are poorly represented or not represented at all in the current map. Even if we assume that all the autosomal unlinked markers are situated on separate microchromosomes, it is clear that at least six of the microchromosomes are still missing. The uncertainty of the coverage of the microchromosomes makes it difficult to give an accurate estimate for the genome coverage of the current map. However, based upon a combined comparison between the current map with the previously estimated genome size and the EL/C map, we estimate the genome coverage to be somewhere between 90 and 95%. The poorer coverage of the microchromosome is in good agreement with the results from Primmer *et al.* (1997) who, by *in situ* labeling, showed that these chromosomes particularly have a relatively low concentration of CA microsatellites.

Although the average marker spacing of the map is only 7 cM, there are still several regions on the map where the distance between two adjacent markers is considerably larger than the preferred maximum distance of 20 cM. Particularly the ends of several of the chromosomes clearly are regions in which more markers are needed. At six positions within the linkage map the distance between two adjacent markers is still rather large namely; LEI134-MCW107 on WAU1, 38 cM; MCW222-MCW83 on WAU3, 37 cM; MCW295-ADL203 on WAU4, 34 cM; ADL203-ADL255 on WAU4, 35 cM; ADL166-ADL298 on WAU5, 36 cM; MCW285-LEI74 on WAU23, 33 cM; and MCW258-ADL273 on the Z chromosome, 35 cM. All but two of these linkages are supported by linkage between more then one pair of markers and LOD scores higher then 4. For example, ADL298 on WAU5 is linked to both MCW81 (LOD=3.03) and ADL166 (LOD=8.12). There are only two exceptions. The first exception is the region between MCW222 and MCW83 on WAU3. Here, significant linkage (LOD>3) is only found between MCW83 and MCW150 (LOD=6.61). The second exception is the region between MCW258 and ADL273 on the Z chromosome, of which the LOD score was only 2.01. Because it is known that both of these markers are located on the Z chromosomes and based on the position of ADL22, ADL201, ADL250 and MCW154 on the EL/C map, it is very likely that this LOD score represents true linkage.

It is our opinion that the mapping of more microsatellites in chicken is still needed, therefore, new marker development will continue in our laboratory and others. Unfortunately, the number of CA microsatellites is about 10 fold smaller than that found in most mammals (Crooijmans *et al.*, 1993; Primmer *et al.*, 1997). Moreover, the observed heterozygosity of the microsatellites is also on average smaller than that observed in mammals. Although, these features, together with the occurrence of the large number of microchromosomes makes the 58

goal for the ideal microsatellite map more difficult to obtain, the present map provides a good basis towards this goal.

Female versus male recombination: We have observed differences in the recombination rates between the sexes (see Table 1), but the differences are smaller than those observed in other species such as humans (Donis-Keller *et al.*, 1987) and pigs (Archibald *et al.*, 1995). If one looks at the overall difference, the length of the male map is somewhat larger than that of the female map. This would be in agreement with Haldane's prediction (Haldane, 1922) that the linkage map of the homogametic sex (male in chicken) will be larger. However, the observed overall differences between the male and female map is only 1.15%, with several of the female linkage groups actually being larger then their male counterparts. Therefore, although the observed differences in some regions clearly are significant, the overall difference observed (only 1.15%) might be caused by discrepancies in the number of informative meioses between males and females or by typing errors.

Alignment of the WAU and EL/C linkage maps. For most of the WAU linkage groups, the corresponding linkage groups in the EL/C map can be identified (see Table 1). The only exception is the small linkage group WAU22 that contains two markers. Most of the WAU and EL/C linkage groups, particularly the large and intermediate sized linkage groups (WAU1 - WAU11), have many markers in common. Therefore, these linkage groups can be accurately aligned, making it possible to use mapping data from markers mapped only in one of the three linkage maps. The smaller ones, in particular WAU14, WAU18-WAU22 and WAU25 have only one or two markers in common, and therefore make it difficult or impossible to align accurately these with their EL/C counterparts.

In three instances, we were able to connect two previously unlinked EL/C linkage groups. On the EL/C map *ADL228* and *ADL336* have been assigned to the small linkage group E56. Our data clearly show that these markers are located at one of the ends of chromosome 2 (WAU2). Similarly, *ADL298* which was assigned to the small linkage group E34, is linked in our data to *ADL166* and *MCW81*, which places this marker at one of the ends of chromosome 5 (WAU5). Finally, markers assigned to linkage groups E21 and E31 map to linkage group WAU12.

We observed only three discrepancies between the WAU and EL/C linkage maps: (1) MCW62 is mapped to chromosome 2 (WAU2), whereas it is mapped to linkage group E35 (equivalent with WAU14) on the EL/C map. In our data set MCW62 is linked to 9 different markers in that region with LOD scores as high as 38 (MCW62-LE189, LOD=38.71;

MCW62-ADL212, LOD=37.83) indicating that it has been placed correctly. (2) *MCW166* is also mapped to chromosome 2 (WAU2) whereas it is mapped to chromosome 4 (equivalent with WAU4) on the EL/C linkage map. Again, *MCW166* is linked to 6 markers in that region with LOD scores as high as 19 (*MCW166-MCW51*, LOD=19.06; *MCW166-MCW245*, LOD=9.88). (3) In our data set *MCW76* has been mapped to the autosomal linkage group WAU20, whereas it has been mapped to the Z-chromosome on the EL/C map. We observed several female F1 animals that were heterozygous for this marker, excluding the possibility that it is located on the Z-chromosome. Although it still might be possible that this marker maps to the pseudo autosomal region of the W/Z-chromosomes, we do not think this to be very likely.

Apart from these three discrepancies, the other markers that are on both maps map to the corresponding linkage groups, and are in the same order. Generally, the observed distances of the linkage groups in our map are somewhat larger than those of the EL map and smaller than those of the C map.

Type I markers. As discussed above, good microsatellite maps are essential tools in localising the QTL that are involved in complex multifactorial traits. The next step, generally, will be to try to identify potential candidate genes in the regions identified with the total genome scan. In animal genomics, comparative mapping plays an essential role toward the identification of potential candidate genes, because this makes it possible to utilise the large amount of data that are available in map-rich species such as human and mouse. Comparable to having a good microsatellite map to perform a total genome scan, for comparative mapping it is essential to have a large number of genes (type I markers) that have been mapped to be able to make a good comparison possible with the maps of other species. We tried to combine both goals by developing microsatellites from cDNA sequences (Ruyter-Spira *et al.*, 1996 and 1998) and genes present in the Genbank/EMBL sequence databases (Crooijmans *et al.*, 1995, this paper). This has resulted in mapping 18 known genes and 27 ESTs on the current map. The map location of several of these genes confirms previously identified regions of conserved synteny between human and chicken (Burt *et al.*, 1995; Klein *et al.*, 1996; Cheng 1997; Heltemes *et al.*, 1997).

For nine microsatellites that have been derived from anonymous genomic sequences, we have identified potential exons that show a high percentage of sequence similarity with identified human genes and/or ESTs (Table 3). This shows that database searches, even with anonymous genomic sequences, will aid in the potential identification of genes and thus help in the identification of common genomic regions in different species. Although care has to be taken in assigning anonymous markers as putative genes only based on sequence homology, 60

additional information can strengthen these assignments. For example, a stretch of 38 bp of the sequence of the clone of microsatellite MCW289 shows 100% sequence identity to the chicken liver adenylosuccinate lyase mRNA. This sequence identity at one site continues to the end of the cloned fragment, and at the other end it stops at a putative splice site. Another example is the homology of MCW247 with the human macrophage mannose receptor gene (MRC1). Here, 66 % sequence identity is found for two different regions on the cloned and sequenced fragment of MCW247. These two regions, which are separated by 325 bp, show homology to exons 10 and 11 of the human MRCI gene. Interestingly, the human MRCI gene is mapped to human chromosome 10p13 and is closely linked to the vimentin gene. In chicken, the vimentin gene is located on chromosome 2, closely linked to LEII17, ADLJ52 and ADL307 (Smith et al., 1997). On the WAU linkage map, these three microsatellites are located on WAU2, and all three are close linked to MCW247. This suggests that MCW247 is indeed located within the chicken homologue of the MRCI gene and that the Vimentin and MRC1 gene are syntenic in human and chicken. Other examples are microsatellites ADL163 and ADL240. Microsatellite ADL240, which is still unlinked in our data set, has been mapped to the EL linkage group E16 at 15 cM distance from the ADP-ribosylation factor 2 gene (ARF2). In human, this gene has been mapped to 3p21.1-3p21.2. Interestingly, ADL240 shows 71.5% sequence identity with a 186-nt region on a cosmid that has also been mapped to 3p21 in human. Finally, microsatellite ADL163 which shows 85.3% sequence identity with human p105MCM mRNA (intestinal DNA replication protein) is located on chicken chromosome 7 (WAU7) at a distance 20 to 30 cM from the ribosomal protein-encoding gene L37A (Nanda et al., 1996). The L37A gene is part of a region on chicken chromosome 7 that is syntenic with human chromosomal region 2q33-34. In human, the gene encoding p105MCM has also been mapped to chromosome 2.

Concluding remarks. The linkage maps of the chicken chromosomes described in this paper, because of the large number of informative meioses involved, will be the basis for a high-resolution map in chicken that will be an effective tool for the QTL-mapping experiments in chicken currently under way. Furthermore, the results of the sequence database searches, clearly indicate that the analysis of random sequences in combination with comparative mapping can be very efficient tools for using information from species with gene dense maps (particularly human) in genome research on species with less well developed maps. Particularly, this kind of analysis will be of great value in the identification of potential candidate genes for the QTL identified in the QTL-mapping experiments currently being analyzed.

Note. The linkage maps described in this paper, the two-point recombination distances, and lod scores are available through our Web site: http://www.zod.wau.nl/vf.

Information regarding the markers used is also available on the same web site. An alignment of the WAU linkage maps with the other linkage maps in chicken (EL, C) and with the chicken physical map will become available through the web site of the Roslin Institute, Edinburgh (http://www.ri.bbsrc.ac.uk/genome_mapping.html).

Acknowledgements

The authors acknowledge financial support from Euribrid B.V., Boxmeer, The Netherlands. We also thank Dr. F.A. Ponce de Leon for the chromosome 1 specific UMA markers.

References

- Archibald A.L., Brown J.F., Couperwhite S., Mcqueen H.A., Nicholson D., Haley C.S.,
 Coppieters W., van der Weghe A., Stratil A., Wintero A.K., Fredholm M., Larsen N.J., Nielsen V.H., Milan D., Woloszyn N., Robic A., Dalens M., Riquet J., Gelin J.,
 Caritez J.C., Hue D., Burgaud G., Ollivier L., Bidanel J.P., Vaiman M., Renard C.,
 Gelderman H., Davoli R., Ruyter D., Verstege E.J.M., Groenen M.A.M., Davies W.,
 Hoyheim B., Keiserud A., Andersson L., Ellegren H., Johansson M., Marklund L.,
 Miller R.J., Anerson Dear A.V., Signer E. & Jeffreys A.J. (1995) The PiGMaP
 Consortium linkage map of the pig (Sus scrofa). *Mammalian Genome* 6:157-175.
- Bloom, S. E., Delaney, M. E. and Muscarella, D. E. (1993) in "Manipulation of the avian genome (R. J. Etches and A. M. V. Gibbins, eds) pp. 39-59, CRC Press.
- Bumstead, N. and Palyga, J. (1992). A Preliminary linkage map of the chicken genome. Genomics 13:690-697.
- Burt, D. W., Bumstead, N., Bitgood, J. J., Ponce de Leon, F. A. and Crittenden, L. B. (1995) Chicken genome mapping: a new era in avian genetics. *Trends in Genetics* 11:190-194
- Cheng, H. H. and Crittenden, L. B. (1994) Microsatellite markers for genetic mapping in the chicken. *Poultry Science* 73: 539-546.
- Cheng, H. H., Levin, I., Vallejo, R. L., Khatib, H., Dodgson, J. B., Crittenden, L. B. and Hillel, J. (1995) Development of a genetic map of the chicken with markers of high utility. *Poultry Science* 74:1855-1874.
- Cheng, H.H. (1997). Mapping the chicken genome. Poultry Science 76:1101-1107.

- Crooijmans R. P. M. A., van Kampen, A. J. A., van der Poel, J. J. and Groenen, M. A. M. (1993) Highly polymorphic microsatellite markers in poultry. *Animal Genetics* 24: 441-443.
- Crooijmans R. P. M. A., van Kampen, A. J. A., van der Poel, J. J. and Groenen, M. A. M. (1994) New microsatellite markers on the linkage map of the chicken genome. *Journal of Heredity* 85:410-413.
- Crooijmans R. P. M. A., van der Poel, J. J. and Groenen, M. A. M. (1995) Functional genes mapped on the chicken genome. *Animal Genetics* 26:73-78.
- Crooijmans R. P. M. A., van Oers, P. A. M, Strijk, J. A., van der Poel, J. J. and Groenen, M. A. M. (1996) Preliminary linkage map of the chicken (Gallus domesticus) genome based on microsatellite markers: 77 new markers mapped. *Poultry Science* 75:746-754.
- Crooijmans R. P. M. A., Dijkhof, R. J. M., van der Poel, J. J. and Groenen, M. A. M. (1997) New microsatellite markers in chicken optimised for automated fluorescent genotyping. *Animal Genetics* 28:427-437.
- Donis-Keller, H., Green, P., Helms, C., Cartinhour, S., Weiffenbach, B., Stephens, K., Keith, T.P., Bowden, D.W., Smith, D.R., Lander, E.S., Botstein, D., Akots, G., Rediker, K.S., Gravius, T., Brown, V.A., Rising, M.B., Parker, C., Powers, J.A., Watt, D.E., Kauffman, E.R., Bricker, A., Phipps, P., Muller-Kahle, H., Fulton, T.R., Ng, S., Schumm, J.W., Braman, J.C., Knowlton, R.G., Barker, D.F., Crooks, S.M., Lincoln, S.E., Daly, M.J. and Abrahamson, J. (1987) A genetic linkage map of the human genome. *Cell* 51:319-337.
- Georges, M. and Andersson, L. (1996) Livestock genomics comes of age. *Genome Research* 6:907-921.
- Gibbs M., Dawson, D., McCamley, C. and Burke, T. (1995) Ten novel chicken dinucleotide repeat polymorphisms. *Animal Genetics* 26:443-449.
- Gibbs M., Dawson, D., McCamley, C., Wardle, A.F., Armour, J.A.L., and Burke T. (1997) Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats. *Animal Genetics* 28:401-417.
- Green, P., Falls, K. and Crooks, S. (1990) Documentation for CRI-MAP, version 2.4 Washington School of Medicine, St. Louis.
- Groenen, M. A. M., Crooijmans, R. P. M. A., Veenendaal, A., van Kaam, J. B. C. H. M, Vereijken, A. L. J., van Arendonk, J. A. M. and van der Poel, J. J. (1997) QTL mapping in chicken using a three generation full sib family structure of an extreme broiler x broiler cross. *Animal Biotechnology* 8:41-46.

- Haldane, J.B.S. (1922) Sex ratio and unisexual sterility in hybrid animals. *Journal of Genetics* 12:101-109.
- Heltemes, L. M., Tuggle, C.K. and Lamont, S.J. (1997) Isolation and mapping of two chicken POU family genes and the identification of a syntenic group with human and mouse. *Animal Genetics* 28:346-350.
- Keats, B. J. B., Sherman, S. L., Morton, N. E., Robson, E. B., Buetow, K. H., Cartwright, P. E, Chakravarti, A., Francke, U., Green, P. P., and Ott, J. (1991) Guidelines for human linkage maps; an international system for human linkage maps (ISLM, 1990). *Genomics* 9:557-560.
- Khatib H., Gelislav, E., Crittenden, L. B., Bumstead, N. and Soller, M. (1993) Sequencetagged microsatellite sites as markers in chicken reference and resource populations. *Animal Genetics* 24:355-362.
- Klein, S., Morrice, D.R., Sang, H., Crittenden, L.B. and Burt, D.W. (1996) Genetic and physical mapping of the chicken IGF1 gene to chromosome 1 and conservation of synteny with other vertebrate genomes. *Journal of Heredity* 8:710-14.
- Levin, I., Crittenden, L.B. and Dodgsen, J.B. (1993) Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. *Genomics* 16:224-230
- Levin, I., Santagelo, L., Cheng, H., Crittenden, L.B. and Dodgsen, J.B. (1994) An autosomal genetic linkage map of the chicken. *Journal of Heredity* 85:79-85.
- Nanda, I., Tanaka, T. and Schmid, M. (1996) The intron-containing ribosomal proteinencoding genes L5, L7a and L37a are unlinked in chickens. *Gene* 170: 159-164
- O'Brien, S. J. (1991) Mammalian genome mapping: lessons and prospects. *Current Opinion Genetic Dev.* 1:105-111.
- Primmer, C. R., Raudsepp, T., Chowdhary, B. P., Moller, A. P. and Ellegren, H. (1997) Low frequency of microsatellites in the avian genome. *Genome Research* 7:471-482.
- Rodionov, A. V., Myakoshina, Y. A., Chelysheva, L. A., Solovei, I. V. and Gaginskaya, E.
 R.(1992) Chiasmata in the lambrush chromosomes of *Gallus Gallus Domesticus*: The cytogenetic study of recombination frequency and linkage map lengths. *Genetika* 28:53-63.
- Ruyter-Spira C. P., Crooijmans, R. P. M. A., van Oers, P. A. M., Strijk, J. A., van der Poel, J. J. and Groenen, M. A. M. (1996) Development and mapping of polymorphic microsatellite markers derived from a chicken brain cDNA library. *Animal Genetics* 27:229-234.

- Ruyter-Spira, C.P., de Koning, D.J., van der Poel, J.J., Crooijmans, R.P.M.A., Dijkhof,
 R.J.M., and Groenen, M.A.M. (1998) Developing microsatellies from cDNA: A tool for adding expressed sequence tags to the genetic linkage map of the chicken.
 Animal Genetics 29(2):85-90.
- Smith, E.J., Lyons, L.A., Cheng, H.H. and Suchyta, S.P. (1997) Comparative mapping of the chicken genome using the East Lansing reference population. *Poultry Science* 76: 743-747.
- Van Kaam, J. B. C. H. M., van Arendonk, J. A. M., Groenen, M. A. M., Bovenhuis, H.,
 Vereijken, A. L. J., Crooijmans, R. P. M. A., van der Poel, J. J., and Veenendaal, A. (1998) Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. *Livestock Production Sciences* 54:133-150.

Chapter VI

Two-dimensional screening of the Wageningen chicken BAC library

Richard P.M.A. Crooijmans¹, JuliaVrebalov², Rosilde J.M. Dijkhof¹, Jan J. van der Poel¹, Martien A.M. Groenen¹

¹ Animal Breeding and Genetics group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands

² Department of Horticultural Sciences and Crop Biotechnology centre, Texas A&M University, College Station, TX, USA

Mammalian Genome (2000) 11:360-363

Abstract

We have constructed a Bacterial Artificial Chromosome (BAC) library that provides 5.5fold redundant coverage of the chicken genome. The library was made by cloning partial HindIII digested high-molecular-weight (HMW) DNA of a female White Leghorn chicken into the HindIII site of the vector pECBAC1. Several modifications of standard protocols were necessary to clone efficiently large partial *HindIII* DNA fragments. The library consists of 49,920 clones arranged in 130 384-well plates. An average insert size of 134 kb was estimated from the analysis of 152 randomly selected BAC clones. The average number of NotI restriction sites per clone was 0.77. After individual growth, DNA was isolated of the pooled clones of each 384-well plate, and subsequently DNA of each plate was isolated from the individual row and column pools. Screening of the Wageningen chicken BAC library was performed by two-dimensional PCR with 125 microsatellite markers. For 124 markers at least one BAC clone was obtained. FISH experiments of 108 BAC clones revealed chimerism in less than 1%. The number of different BAC clones per marker present in the BAC library was examined for 35 markers which resulted in a total of 167 different BAC clones. Per marker the number of BAC clones varied from 1 to 11, with an average of 4.77. The chicken BAC library constitutes an invaluable tool for positional cloning and for comparative mapping studies.

Introduction

To systematically analyze complex genomes, various large insert libraries are needed. Two host systems have been developed for this purpose: *Saccharomyces cerevisiae* and *Escherichia coli*. Large DNA molecules (100-2000 kbp) can be introduced and propagated in the form of yeast artificial chromosomes (YACs) in *S. cerevisiae* (Burke *et al.*, 1987). The large insert cloning systems developed in *E. coli* such as bacteriophage P1 derivates (Sternberg 1990), bacterial artificial chromosomes (BAC, Shizuya *et al.*, 1992), and P1 derived artificial chromosomes (PAC, Ioannou *et al.*, 1994) can adopt DNA fragments of 80-350 kb. YACs are efficient in covering large physical areas and are, therefore, easier to make contigs. However, the YAC system has a low cloning efficiency, a high incidence of chimeric clones (Neil *et al.*, 1990; Anderson 1993), instability of insert DNA, and it is difficult to separate donor from host DNA. The BAC/PAC cloning systems do not show these disadvantages. Furthermore, BAC DNA is amenable for direct sequencing of the insert ends, offering a further advantage compared to YACs in building contigs. 68 Consequently, many BAC and PAC libraries are currently available in human (Shizuya et al.,, 1992; Kim et al.,, 1996; Asakawa et al.,, 1997; Osoegawa et al.,, 1998) and other model organisms (Osoegawa et al.,, 1998). Genome mapping efforts to identify genes controlling quantitative traits are currently in progress in all major farm animals including chicken (Groenen et al.,, 1998; Van Kaam et al.,, 1998). For these reasons BAC/PAC and YAC libraries have been constructed for cattle (Cai et al.,, 1995; Libert et al.,, 1993), pig (Rogel-Gaillard et al.,, 1997; Al-Bayati et al.,, 1999), goat (Schibler et al.,, 1998), sheep (Vaiman et al.,, 1999) and chicken (Toye et al.,, 1997; Zoorob et al.,, 1996; Zimmer and Verrinder-Gibbins 1997). Although chicken PAC/BAC libraries have been described previously (Zoorob et al.,, 1996; Zimmer and Verrinder-Gibbins 1997), these libraries are not publicly available. Furthermore, the BAC library described by Zimmer and Verrinder-Gibbins (1997) had a limited number of clones that resulted in very low genome coverage. For these reasons, we constructed a chicken BAC library with a high genome coverage that

is used in physical mapping and as a key resource in positional cloning. In this paper we present the construction, characterization, and two-dimensional PCR screening of the Wageningen chicken BAC library.

Materials and Methods

Preparation of high-molecular-weight DNA. High-molecular-weight (HMW) DNA was prepared from blood of a female White Leghorn chicken embedded in agarose microbeads according to Zhang *et al.*,, (1994). One ml of fresh EDTA blood was mixed with 9 ml HB buffer (10 mM Tris-HCl, 10 mM EDTA, 80 mM KCL, 500 mM sucrose, 1 mM spermine, 1 mM spermidine, 0.15% beta-mercaptoethanol, and 0.5% triton X-100, pH=9.4) and heated to 40 °C, together with 10 ml of 1% LMP agarose and 40 ml light mineral oil (Sigma) both pre-warmed at 40 °C. This mixture was transferred into 200 ml cold HB buffer and stirred on ice for 20 min at maximum speed on a stirrer. Microbeads were centrifuged at 3000 rpm and washed twice with cold HB buffer. Microbeads were incubated in lysis buffer (0.5 M EDTA, 1% sarcosyl and 1 mg/ml proteinase K) at 50 °C for 48 h. The beads were washed three times in cold TE and incubated in TE with 40 μ g/ml PMSF (phenyl methyl sulphonyl fluoride) for 1h at 50 °C to inactivate the proteinase K and finally washed four times 30 min in TE on ice. For partial digestion, 50 μ l of beads were equilibrated on ice twice for 40 min with *Hind*III restriction buffer and 30 min with *Hind*III restriction buffer and 0.5 U of
restriction enzyme *Hin*dIII (BRL-Life Technologies). Partial digestion was carried out for 5 min at 37 °C and stopped with 1/10 volume of 0.5 *M* EDTA pH 8.0.

Size selection of genomic chicken DNA. Pulsed field gel electrophoresis (PFGE) was carried out on a 0.8% low melting point (LMP) agarose gel in 0.5 x TBE (45 mM Tris, 45 mM Trisborate, 1 mM EDTA). Multiple digestions (30) were pooled and loaded on the gel. Large DNA fragments were selected by three rounds of size selection separated on a 0.8%LMP agarose (FMC, Rockland, Me) in 0.5 TBE. PFGE (CHEF mapper; Bio-Rad) was conducted for 20 h at 11 °C, 4V/cm, 90 s switch time at 120 degree angle. The regions of the gel containing 150-300 and 300-450 kb fragments were excised and stored in storage buffer (10 mM Tris, 25 mM EDTA, 0.3 mM spermine, 0.75 mM spermidine and 125 mM NaCl) until the next loading. Before the second electrophoresis under the same conditions, the excess of water of the excised agarose plug was carefully removed with tissue to concentrate the DNA and melted at 65 °C. The region of the gel containing 125-400 kb fragments was excised and treated the same way as described after the first size selection. The third sizing PFGE was conducted for 10 h, 10 °C, 160 V/cm, 3s switch time at 120 degree angle on a 0.9% LMP agarose gel in 0.5 TBE. The agarose plug with the congested DNA band of the PFGE gel around 150 kb was excised and concentrated as described above. The agarose plug was melted and incubated with Agarase (1U/100 μ l) before ligation.

Vector preparation. The vector pECBAC1 was prepared as described by Frijters *et al.*, (1997). The *Hind*III site was used for cloning purposes.

Construction of the BAC library. The ligation was carried out with 90 ng of large HindIII genomic fragments with 9 ng HindIII-digested and dephosphorylated pECBAC1 vector in 1x ligase buffer with 2U T4 DNA ligase (USB) overnight at 16 °C. The ligation reaction was transformed into electrocompetent ElectroMAX DH10B cells (Gibco BRL) (1 μ l of ligation product with 20 μ l cells), with a Cell- Porator system (Gibco BRL) following the manufacturer's protocol (350 V, capacitance: 330 μ F, Impedance: low ohms, charge rate: fast, voltage booster resistance: 4,000 ohms). Subsequently cells were plated on LB agar containing 12.5 μ g/ml chloramphenicol (Cm), 0.5 mM X-GAL, and 40 μ g/ml IPTG. White recombinant BAC clones were picked directly in 384 well plates (Nunc) containing LB freezing medium [LB, 36 mM K₂HPO₄, 13.2 mM KH₂PO₄, 1.7 mM sodium citrate, 0.4mM

MgSO₄, 6.8 mM (NH₄)₂SO₄, 4.4% (vol/vol) glycerol] with 12.5 μ g/ml Cm and grown overnight, at 37°C. Three copies were made from every plate with a 384-pin replicator (NUNC), grown overnight and stored at -80 °C. Individual BAC clones were isolated from 4-ml cultures grown overnight in LB with 12.5 μ g/ml Cm using an alkaline lysis procedure (Sambrook *et al.*, 1989). The DNA pellet was dissolved in 40 μ l TE, and 10 μ l DNA was digested with 5U *Not*I (Gibco BRL) for at least 3 h at 37 °C. Insert sizes were analyzed on a 1% agarose gel in 0.5 TBE (runtime 15 h, 6 V/cm, switch time ramping from 5 to 15 s, and reorientation angle of 120 degree at 11 °C).

Screening of the BAC library. Screening was performed either by hybridization or by PCR. For screening by hybridization, high-density filters were made by double spotting four 384well plates onto sterile Hybond N+ filters (Amersham), with a BioMEK 2000 workstation (Beckman). Low-density filters were made by manually spotting of 288 BAC clones onto Hybond N+ filters. These filters were hybridized with a radioactive end-labeled probe (TG)₁₃ to detect repeats. Positive BAC clones were digested with *SAU3A* and cloned into the *Bam*HI site of pBluescript. From each ligation reaction, between 150 and 300 white transformants were picked in 384-well plates and grown overnight at 37 °C in LB freezing media with Ampicilin 50 μ g/ml and stored at -80 °C. Subclones were sequenced with the M13 forward and reverse primers on an ABI automated sequencer 373/377 (Perkin-Elmer), and primers were designed. Markers were tested for polymorphism as described by Crooijmans *et al.*, (1997) and mapped, if possible, in the Wageningen resource population (Groenen *et al.*, 1998).

Screening by PCR was performed by a two-dimensional PCR screening method. Each clone from a 384-well micro titer plate was cultured in 700 μ l LB + 12.5 μ g/ml Cm overnight at 37 °C in four 96-well deep-well refill blocks (Micronic). In total, 49,920 BAC clones were cultured individually. For each 384-well plate, DNA was isolated of i) the whole plate (400 μ l culture of each clone), ii) individual rows A to P (150 μ l culture of each clone), and iii) individual columns 1 to 24 (150 μ l per clone). BAC DNA was isolated according to Sambrook *et al.*, (1989) and dissolved in 100 μ l TE. Identification of particular BAC clones was done in a two-stage PCR process and analyzed on a 1.5% agarose gel. The first step was the identification of the 384-well plate pool containing the microsatellite repeat by PCR, followed by PCR screening of the individual row and column pools of that particularly plate. To confirm the purity of the positive BAC clone, each BAC

clone was plated on LB, 1.5% agar, 12.5 μ g/ml Cm, 40 μ g/ml X-GAL, and 40 μ g/ml IPTG. Two single colonies were picked from the plate with a sterile toothpick and streaked into a well of a 96-well plate. Each clone was dissolved in 6 μ l water, and colony PCR was performed in 12 μ l as described by Crooijmans *et al.*, (1997) and analyzed on a 1.5% agarose gel in 0.5 TBE. The pure positive BAC clones were finally stored individually at -80 °C. Both random microsatellite markers from each WAU linkage group (Groenen *et al.*, 1998) and microsatellite markers located at the ends of the linkage groups were selected. At least 3 markers were used in case of the large linkage groups. The PCR consisted of 6 μ l of DNA (2000 times diluted in TE) in a total of 12 μ l as described by Crooijmans *et al.*, (1997).

Fluorescent In Situ Hybridization (FISH). Miniprep DNA of 49 random picked BAC clones and 59 BAC clones with known map location were used in FISH experiments to evaluate the degree of chimerism of the library. BAC DNA was either labelled by random priming with biotin-16-dUTP or with digoxigenin-11-dUTP on chicken metaphases derived from a chicken primary fibroblast cell culture (Ruyter-Spira *et al.*, 1998; Morisson *et al.*, 1998).

Results

Construction and evaluation of the library. The library was constructed from two independent ligations from zones 150-300 kb and 300-450 kb. In total 116 electroporations were performed to make the chicken BAC library. In total, 49,920 BAC clones were individually picked and arrayed in 130 384-well microtiter plates. A total of 152 BAC clones was sized after *NotI* digestion by PFGE, giving an average insert size of 134 kb (Figure 1). The insert size of the BAC clones was examined in the range of 50-255 kb. Non- recombinant BAC clones were not observed. Assuming the chicken genome size of 1200 Mb, the BAC library represents 5.57 genome equivalents. The occurrence of *NotI* sites within the 152 BAC clones ranged from 0 to 4 with an estimated average of 0.77 *NotI* sites occur once every 174 kb in the chicken genome. In Situ hybridization of 108 different BAC clones (49 random and 59 with known genetic map location) on chicken metaphase spreads showed specific chromosome location for 107 BAC clones; only one BAC clone identified two different chromosomes (unpublished results; A Vignal, personal communications).

72

Figure 1. Randomly selected *Not*I-digested BAC clones analyzed after Pulse Field Gel Electrophoresis (PFGE) on a CHEF mapper (Bio-Rad). All BAC clones showed the vector band except the clone in lane 21, which was not digested. Flanking lanes are Low Ranger Marker PFG from New England Biolabs.

Occurrence of microsatellite repeats in BAC clones. The presence of (TG) repeats within the BAC clones was tested by spotting 288 BAC clones on a Hybond N+ membrane filter. Treated filters were hybridized with a ³² P-labeled (TG)₁₃ probe. A total of 82 BAC clones gave a positive signal (29%), indicating that (TG) repeats in chicken occur once every 470 kb. 24 BAC clones giving a very strong signal were subcloned in pBluescript. From ten BAC clones, the (TG) positive subclones were recovered and sequenced. The number of repeats in these clones varied from 5 to 22. The sequence of two of the clones was already present in the database, and these appeared to be identical to marker UMA1.019 (mapped to chromosome 1) and to marker MCW247 (mapped to chromosome 2). Primers were designed for three loci, and one could be mapped on the chicken linkage map (MCW360; chromosome 2). One primer pair did not amplify any product and one microsatellite was monomorphic.

Two-dimensional PCR screening of the BAC library with microsatellite markers. BAC clones were pooled to facilitate screening by PCR. The two-step PCR screening was performed for 125 markers, mostly microsatellite markers that have been mapped on the

Chicken BAC library

chicken linkage map previously. The screening strategy is described in Figure 2 with an example of the screening results for marker MCW219. At least three markers from every linkage group, including markers from both ends, were used to identify at least one BAC clone per marker. BAC clones could be identified for all markers except for MCW076 (T cell receptor alpha gene), which is equivalent to a success rate of 99.2%. For 35 markers, all BAC clones were isolated from the library, which resulted in 167 different BAC clones. The number of BAC clones per marker varied from 1 to 11, with an average of 4.77. Specific information regarding these BAC clones and the markers are listed on our chicken genome mapping site Http://www.zod.wau.nl/vf/.

(A) Two-dimensional PCR screening strategy. For details, see Materials and Methods. (B) PCR screening of marker MCW219 in the row and column pools of plate 1. PCR products were separated on a 1.5% agarose gel and stained with ethidium bromide. The coordinates of the MCW219-positive BAC clone in the 384-well plate number 1 is D2. P+ is the positive plate pool (1), - is the negative control (TE) and g is genomic DNA of a White Leghorn chicken.

Discussion

We have generated a 5.57-genome equivalent BAC library of a female White Leghorn chicken, using partial HindIII digested DNA. By using a female chicken, we included the two different sex chromosomes Z and W. The average insert size of 134 kb was obtained after modification and adjustment of protocols to obtain large, partially digested HindIII DNA fragments. One of the major problems in the purification of large DNA fragments is the contamination of small DNA fragments of around 50 kb which are trapped between the larger DNA molecules. These trapped fragments will transform with much greater efficiency, and as a result the average insert size of the library will drop drastically. Our digestion conditions did have optima at much lower concentrations of reagents and shorter incubation times than those reported for the preparation of other BAC libraries. Compared with the protocols described by Cai et al., (1995), Zimmer and Verrinder-Gibbins (1997), Schibler et al., (1998) and Vaiman et al., (1999), the digestion time was only 5 minutes instead of 20 minutes and the amount of enzyme (0.5 U per 50 μ l of agarose beads) was less by a factor of 4 to 10. This is probably due to the purity of our HMW chicken DNA. The digestion results of HMW DNA in agarose beads are very good, and the ease of working with agarose beads is preferable to agarose plugs. Microbeads were preferred over plugs because the use of beads increases the surface area surrounding the tissue sample by approximately 1000-fold, thereby allowing for a more efficient and rapid diffusion of chemicals and enzymes into and out of the agarose beads.

The next step of optimization concerns the PFGE conditions and the number of runs. The one-size selection protocol (Schibler *et al.*, 1998; Vaiman *et al.*, 1999) and the two-step size selection protocols used by Cai *et al.*, (1995); Zimmer and Verrinder Gibbins (1997), and Frijters *et al.*, (1997) could not eliminate the small 50-kb fragments from the large fragments sufficiently. The major problem of using a three-size selection protocol, however, is the concentration and the amount of DNA left after the last sizing. The concentration should be high enough (at least 0.8 $ng/\mu l$), and a total amount of DNA of at least 40 ng is needed for the construction of a library. This problem was solved by drying the excess of liquid from the excised gelband every time after sizing and before loading on the new PFGE gel. The last PFGE is a very important step to obtain the compressed band containing the DNA fragments. Furthermore, a 2- or 3-s pulse in the last electrophoresis is preferable to a 5-s pulse. Using these modifications, the three-step sizing protocol allowed us to obtain the large sized fragments with a DNA concentration of 1-2 $ng/\mu l$. Although the excised fragments were estimated to be between 150 and 250 kb in length, the final

insert size was on average 134 kb, which is probably owing to overloading of the HMW DNA compared with the HMW markers. The overestimation of fragment sizes has consistently been observed during the construction of other BAC libraries (Wang *et al.*, 1995; Woo *et al.*, 1994 and Frijters *et al.*, 1997).

In the 152 chicken BAC clones analyzed, NotI sites occur on average at a frequency of 0.77 per BAC within the cloned fragment. This is much higher than the goat BAC library (Schibler et al., 1998) and sheep BAC library (Vaiman et al., 1999), where the frequency of NotI sites was respectively 0.45 and 0.43. The cattle BAC library (Cai et al., 1995) did have a frequency is 0.22 NotI sites (32 BAC clones tested). These frequencies indicate that the G/C content in chicken is 1.5 to 2 times higher than goat and cattle. The chicken BAC clones described by Zimmer and Verrinder-Gibbins (1997) observed only a limited number of clones with internal NotI sites, which is contrary to our observations. A possible explanation for this observed discrepancy is that the BAC clones described by Zimmer and Verrinder-Gibbins (1997) might be due to incomplete digestion. This is further supported by the absence of vector fragments after NotI digestion and PFGE. This would also explain the average insert size of 390 kb of their library which might therefore be overestimated.

Screening of the Wageningen chicken BAC library can be performed either by hybridization on high-density filters or by PCR. The two-dimensional PCR screening is much more efficient and faster. In total, 125 markers were used to screen the BAC library, of which 124 did yield at least one positive clone. No BAC clones were obtained after screening the BAC library with microsatellite marker (MCW76), which is equivalent to a failure rate of 0.8%. This value is much lower than the cattle BAC library (Cai et al., 1995), where 1 out of 33 markers (3%) failed, and the sheep BAC library (Vaiman et al., 1999), where 4 out of 77 microsatellite markers failed to detect a BAC clone. Similar results were obtained with the goat BAC library (Schibler et al., 1998) where 1 out of 166 markers (0.6%) failed to detect a BAC clone. The representation of the chicken genome in our BAC library of around 99.2% is in agreement with the calculated representation of 99.6% for a library of a size equivalent to 5.5 times the genome (Clarke and Carbon, 1976). For the 35 markers, the average number of BAC clones per marker is 4.77, which is close to the estimated 5.5 times coverage of the library. Moreover, no empty clones were detected, and one possible chimeric clone out of 108 different BAC clones (0.9%) was found, which makes our library very powerful. The amount of chimerism is much lower than that of the chicken YAC library (Toye et al., 1997).

As reported by Morrison *et al.*, (1998), the development of new microsatellite (CA) markers from randomly selected BAC clones is feasible but very time consuming. From the

screening results with a radioactive labeled probe $(TG)_{13}$, resulting in 82 positive clones out of 288, we estimated the occurrence of approximately 2400 (TG) repeats within the chicken genome. From this the frequency of a (TG) repeat is expected approximately every 500 kb in the chicken genome, which is approximately tenfold less than in mammalian species (Primmer *et al.*, 1997).

In conclusion, our chicken BAC library with 5.57 genome equivalents represents a powerful tool for genome analysis, particularly in combination with the two-dimensional PCR screening, and is accessible for other researchers. The chicken BAC library described in this paper will play an important central role in further research: i) Study of chromosomal regions where a QTL is located after a total genome scan by making contigs of the regions. ii) Performing comparative mapping by sequence scanning of mapped BAC clones, followed by sequence comparison (BLAST search) with other species. iii) Alignment of the linkage and physical maps of the chicken, by isolating BAC clones of mapped markers for every linkage group (including markers from both ends) and mapping of these by FISH on the physical map. iv) Obtaining the genomic sequences of specific genes.

The Wageningen chicken BAC library is available for research, and high-density filters can be obtained either at the UK HGMP Resource Centre in Cambridge or at the Department of Crop and Soil of the Texas A&M University USA. For screening of the library by PCR, contact R.P.M.A. Crooijmans (e-mail richard.crooijmans@alg.vf.wag-ur.nl) or M.A.M. Groenen (e-mail martien.groenen@alg.vf.wag-ur.nl) or visit our Webpage at Http://www/zod.wau.nl/vf/.

Acknowledgments

We want to thank the Texas A&M BAC center (director Dr. H.B. Zhang) of the Texas A&M University and Dr. M.C.J. van Bruggen (Department of Nephrology, University hospital of Nijmegen) for helping to construct the chicken BAC library. pECBAC1 was kindly provided by Dr. R.W. Michelmore, Department of Vegetable Crops, University of California, Davis, CA 95616, USA. We also thank A. Veenendaal and B. Buitenhuis for technical support and Dr. B. Harlizius for critical reading of the manuscript. We gratefully acknowledge financial support by the Netherlands Organization for Scientific Research (grant R 89-115) and the Dutch foundation "Fonds Landbouw Export-bureau 1916/1918".

References

Al-Bayati H, Duscher S, Kollers S, Rettenberger G, Fries R, Brenig B, (1999)
 Construction and characterization of a P1-derived artificial chromosome (PAC)
 library covering 3.2 genome equivalents and cytogenetical assignment of six type
 I and type II loci, Mamm. Genome 10, 569-572

Anderson C, (1993) Genome shortcut leads to problems [news]. Science 259, 1684-1687

- Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N, (1997) Human BAC library: construction and rapid screening. Gene 191, 69-79
- Burke DT, Carle GF, Olsen MV, (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806-812
- Cai L, Taylor JF, Wing RA, Gallagher DS, Woo S-S, Davis SK, (1995) Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29, 413-425
- Clarke L, Carbon J, (1976) A colony bank containing synthetic Col E1 hybrid plasmids representative of the entire E coli genome. Cell 9, 91-99
- Crooijmans RPMA, Dijkhof RJM, van der Poel JJ, Groenen MAM, (1997) New microsatellite markers in chicken optimized for automated fluorescent genotyping. Anim. Genet. 28, 427-437
- Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Sizuya H, Chen C, Batzer MA, de Jong PJ, (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84-89
- Frijters ACJ, Zhang Z, van Damme M, Wang G-L, Ronald PC, Michelmore RW, (1997) Construction of a bacterial artificial chromosome library containing large EcoR1 and HindIII genomic fragments of lettuce. Theor Appl Genet 94, 390-399
- Groenen MAM, Crooijmans RPMA, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ, (1998) A comprehensive microsatellite linkage map of the chicken genome. Genomics 49, 265-274
- Kim U-J, Birren BW, Slepak T, Mancino V, Boysen C, Kang H-L, Simon MI, Shizuya H, (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213-218

- Libert F, Lefort A, Okimoto R, Womack J, Georges M, (1993) Construction of a bovine genomic library of large yeast artificial chromosome clones. Genomics 18, 270-276
- Morrison M, Pitel F, Fillon V, Pouzadoux A, Bergé R, Vit JP, Zoorob R, Aufray C,
 Gellin J, Vignal A, (1998) Integration of chicken cytogenetic and genetic maps:
 18 new polymorphic markers isolated from BAC and PAC clones. Anim. Genet.
 29, 348-355
- Neil DL, Vilasante A, Fisher RB, Vetrie D, Cox B, Tyler-Smith C, (1990) Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors. Nucleic Acids Res. 18, 1421-1428
- Osoegawa K, Woon PY, Zhao B, Frengen E, Tateno M, Catanese JJ, de Jong PJ, (1998) An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52: 1-8
- Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H, (1997) Low frequency of microsatellites in the avian genome. Genome Res. 7, 471-482
- Rogel-Gaillard C, Bourgenaux N, Save JC, Renard C, Coullin P, Pinton P, Yerle M, Vaiman M, Chardon P, (1997) Construction of a swine YAC library allowing an efficient recovery of unique and centromeric repeated sequences. Mamm. Genome 8, 186-193
- Ruyter-Spira CP, de Groot AJC, van der Poel JJ, Herbergs J, Masabanda J, Fries R, Groenen MAM, (1998) The HMG1-C gene is a likely candidate for the autosomal dwarf locus in the chicken. J. Heredity 89, 295-300
- Sambrook J, Fritsch EF, Maniatis T, (1989) Molecular cloning, a laboratory manual. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY
- Schibler L, Vainman D, Oustry A, Guinec N, Dangy-Caye A-L, Billault A, Cribiu EP, (1998) Construction and extensive characterization of a goat Bacterial Artificial Chromosome library with threefold genome coverage. Mamm. Genome 9, 119-124
- Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiri Y, Simon M, (1992) Cloning and stable maintenance of 300-kilobases-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89, 8794-8797
- Sternberg N, (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87, 103-107

- Toye AA, Schalkwyk L, Lehrach H, Bumstead N, (1997) A Yeast Artificial Chromosome (YAC) library containing 10 haploid chicken genome equivalents. Mamm. Genome 8, 274-276
- Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D, Oustry-Vaiman A, Soravito C, Cribiu EP, (1999) Construction and characterization of a sheep BAC library of three genome equivalents. Mamm. Genome 10, 585-587
- Van Kaam JBCHM, van Arendonk JAM, Groenen MAM, Bovenhuis H, Vereijken ALJ, Crooijmans RPMA, van der Poel JJ, Veenendaal A, (1998) Whole genome scan for quantitative trait loci affecting body weight in chicken using a three generation design. Livest. Prod. Sci. 54, 133-150
- Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC, (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J. 7, 525-533
- Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA, (1994) Construction and characterization of a bacterial artificial chromosome library of *Sorghum bicolor*. Nucl. Acids Res 22, 4922-2931
- Zhang HB, Zhao X, Ding X, Paterson AH, Wing RA, (1994) Preparation of megabasesized DNA from plant nuclei. Plant J. 7, 175-184
- Zimmer R, Verrinder Gibbins AM, (1997) Construction and characterization of a largefragment chicken bacterial artificial chromosome library. Genomics 42, 217-226
- Zoorob R, Billault A, Severac V, Fillon V, Vignal A, Auffray C, (1996) Two chicken genomic libraries in the PAC and BAC cloning system: Organization and chracterization. Anim. Genet. 27(Suppl. 2), 69

The gene orders on human chromosome 15 and chicken chromosome 10 reveal multiple inter and intra chromosomal rearrangements

Richard P.M.A. Crooijmans¹, Rosilde J.M. Dijkhof¹, Tineke Veenendaal¹, Jan J. van der Poel¹, Rob Nichols² and Martien A.M. Groenen¹

¹ Animal Breeding and Genetics group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands

² Department of Genetics, Case Western Reserve University, 10900 Euclid. Ave., Cleveland, OH 44106 USA

Submitted for publication

Abstract

Mapping, sequencing and ordering specific chicken BACs improved the comparative map of *Homo sapiens* chromosome 15 (HSA15) to the homologous regions in chicken with more than 100 genes and/or ESTs. A comparison of HSA15 to chicken identifies four conserved chromosomal segments between the two species. In chicken these segments are located on chromosome 1 (GGA1), GGA 5 and GGA10 (two segments). Although also four conserved segments are observed between HSA15 and mouse, only 1 of the underlying rearrangements is located at the same position as in chicken, indicating that this is a rearrangement that occurred after divergence of the rodent an the primate lineages.

A comparison of GGA10 with HSA15 identified 10 conserved segments, indicating the occurrence of at least 8 intrachromosomal rearrangements, which seems to have occurred in the bird lineage during evolution after separation of the birds and mammals. Computer simulations indicate that at least 7 inversions and two translocations have occurred during separation of these chromosomes in chicken and man during evolution.

Introduction

In mammals comparative gene-mapping projects have lead to a comparative physical map for 28 species from eight mammalian orders already in the early nineties (1). Comprehensive maps of mice and human containing a large number of mapped genes proved to be an efficient way to identify relevant genes in livestock such as the muscular hypertrophy gene in cattle (2-4). Much effort is made by sequencing and mapping genes and ESTs in farm animals to improve the comparative maps but so far the resolution is relatively low (5). In most cases the more dramatic evolutionary rearrangements can be identified, but subtle internal rearrangements often remain uncertain or undetected. By comparing the human and mouse maps in more detail many of the syntenically homologous regions appear to be interrupted by insertions, transpositions, deletions, inversions, and other types of rearrangements (6). The chromosomal reconstruction of the ancestor of all primates, suggests that 18-20 human chromosomes have remained unchanged during evolution and the rest have but a single exchange (7). Different exchanges have occurred in the lineages leading to distinct primate families and genera. Based on 223 genes mapped in chicken the predicted number of autosomal conserved fragments between chicken and human is 96 and for the chicken-mouse comparison this number is 152 (8). This number appears to be much smaller than would be predicted based on the time of separation between the avian and mammal species some 300 Myr ago.

Although a small improvement of the chicken-human comparative map has been realized by mapping genes in chicken, both by cytogenetics (9) and by linkage analysis within the reference families (10), further progress has been relatively low. To obtain a high-density comparative map, regional mapping of sufficient numbers of coding sequences in the species of interest has to be performed. The recent construction of arrayed genomic libraries of large insert clones such as BACs for many species including chicken (11) are powerful tools to perform comparative and physical mapping. Large insert clones are used as cytogenetic probes and for direct sequencing and therefore useful in screening for orthologous genes. So far, only 8 genes, that are located on human chromosome 15, have been mapped in chicken. Seven of these genes map to chicken chromosome 10, whereas the *RYR3* gene maps to chromosome 5 (10, 12-13).

In this study, we describe the generation of the first detailed comparative map between human chromosome HSA15, its mouse counterparts on chromosomes Mmu7, Mmu2 and Mmu9 and the homologous regions on the three chicken chromosomes GGA10, GGA5 and GGA1, by the identification and mapping of almost 100 genes in chicken. These results indicate the occurrence of multiple inter and intra chromosomal rearrangements during evolution between these chromosomes of the two species.

Materials and methods

Chicken chromosome 10 BAC clones. The BAC library was screened for all microsatellite markers and genes located on chicken chromosome 10 (former linkage group E29C09W09) by two-dimensional PCR (11). All the BAC clones from each of the markers were identified and one BAC clone per marker was selected for both BAC-end sequencing and shotgun sequencing. The BAC-end sequences were used to design specific STS markers for chromosome walking.

BAC-end sequencing. BAC DNA was isolated with REAL Prep 96 plasmid kit (Qiagen), or as described by Crooijmans et al. (11), and dissolved in 32 μ l 5 mM Tris-HCl pH=8.0. PCR sequencing was performed in 40 μ l by using 16 μ l of BAC DNA, 8 μ l Half Big Dye terminator (Genpak Ltd), 8 μ l Big Dye Terminator Rrmix (Perkin-Elmer) and 8 μ l of M13 forward or M13 reverse sequence primer (10 pmol/ μ l). The amplification reactions were as follows: 5 min 96°C followed by 45 cycles of 30 s 96°C, 20 s 50°C, 4 min 60°C. The amplification product was precipitated with isopropanol and finally dissolved in 3 μ l 83%

de-ionized formamide and 17% loading buffer (Perkin-Elmer). The sequences were analyzed on a 4.75 % Long Ranger Gel (FMC) on an automated sequencer ABI377, (Perkin-Elmer). Electrophoresis was performed for 7 h on 36 cm gels and the results were analyzed using sequence software (ABI, Perkin-Elmer).

Sample sequencing of BACs. EcoRI digested BAC DNA was ligated into the EcoR1 site of pTZ18R and transformed to DH5 α . Twelve subclones per BAC clone were selected and plasmid DNA was isolated (Qiaprep 96 miniprep kit; Qiagen). The PCR sequence reaction was performed in 10 μ l with 200-500 ng plasmid DNA, 2 μ l of Half Big Dye terminator (Genpak Ltd), 2 μ l Big Dye Terminator Rrmix (Perkin-Elmer) and 1 μ l of M13 forward or M13 reverse sequence primer (0.8 pmol/ μ l). PCR was performed according to the manufacturers specifications, and the excess dye terminator was removed by precipitation with isopropanol. Sequence reactions were analyzed on a 96 well 36 cm 4.75 % denaturing Long Ranger Gel (FMC) according to ABI (Perkin Elmer). All sequences obtained were first analyzed with PREGAP4 of the STADEN software package. Sequences were cleared from vector sequence, Ecoli sequences and bad sequences. The resulting sequences were compared finally with sequences deposited in the public databases using the network BLAST client software of the NCBI (blastcl3)

Fluorescent in situ hybridization (FISH). Two-color FISH was performed according to Trask et al. (15). NotI digested BAC DNA was labeled by random priming either with biotin-16-dUTP or with digoxigenin-11-dUTP (Boehringer Mannheim) (15). The BAC clones used as FISH markers to identify the specific chromosome are for GGA10: BAC bw016D10 from marker ADL0038 and BAC bw008K20 from marker MCW0228, for GGA5: BAC bw009B13 from marker ADL0298 and BAC bw037H20 from marker MCW0263 and for GGA1: BAC bw038E08 from marker MCW0107 and BAC bw030P07 from marker MCW0248.

Results and discussion

Comparative mapping is a powerful tool to utilize the existing knowledge of a species with detailed mapping information such as man and mouse, in species with less well developed maps. We have used this approach for a detailed characterization of chicken chromosome 10 (GGA10) by using a bi-directional approach, starting to build up the comparative map from GGA10 as well as from the identified homologous region in man.

In chicken, 29 loci have been mapped to GGA10 consisting of 20 microsatellite markers, 8 genes and one EST (10, 12-13). These markers were used in the 2-dimensional PCR

screening of our chicken BAC library (11). The BAC clones isolated were subjected to both end sequencing and sample sequencing. End sequencing enabled the development of STS markers for chromosome walking, whereas the sample sequencing provided information on the gene content of some of the BACs. Of the 8 genes mapped to GGA10 seven have a homologue in human that has been mapped to chromosome 15 (HSA15). The other gene (GNRHR) is located on human chromosome 4. Furthermore another gene known to be located on HSA15 (RYR3) has been mapped to chicken chromosome 5. Therefore, genes known to be located on HSA15 (16) were selected and used to identify homologous chicken genes whose sequences were present in the public nucleotide databases. Sequences of 36 chicken genes were selected from the database and primers were designed to screen the chicken BAC library.

Table 1. Characteristics of markers developed in chicke	n genes
---	---------

gene	Chicken	accession	PCR	forward primer	reverse primer
	map	number	size		
	location		(bp)		
GABRB3	GGAI	X54243	238	TGAGGTTATGGACAATGTAAC	TTACCAGTGTAACTCTATCAC
UBE3A	GGAI	AJ399379	100	TTTGTCAATCTGTATGCTGAC	AAGGAGATTCATTGGTCACC
ACTC	GGA5	M10607	227	GAACTCCTCCGTCATTGTAC	ACCTAACATGTCCACATCAC
RAD51	GGA5	L09655	173	TGTTCAAATGCTGGCCGAGG	TCAAGCATGTGGTCCTCTGG
THBSI	GGA5	U76994	153	CTGGCAATATGTCTACAATG	TCTGTCTCCTGGTTGTTATC
CAPN3	GGA5	D38028	408	TCTGAACTGTGGAAGTCAGAG	TCAATGTTACAGAGAATGCAG
TYRO3	GGA5	U70045	232	ATTTCCTACTACCCAACGCTG	GCGCTTCCCAGGCAGTTACAG
CHRNA7	GGA10	X68586	128	AAGGAGAGTTCCAAAGGAAG	ATCCATGATCTGCATGAGGC
CKMTI	GGA10	X96403	171	AGCTGGTGATAGACGGTGT	GGCGCATTGATGGCATAAGC
ANX2	GGA10	X53334	191	AATCGAGCCGCCATGCAAAC	AGGCATCCTCAACAAGCACG
FBNI	GGA10	U88872	273	GATGAATGTGTGCTGAACACG	CATGTTCTGCCAACAGGTACC
CRABPI	GGA10	Y12243	230	TTGGTGACCTCAAGCTCTGC	CAGTTCTCCTCTTACCCTGC
AGC1	GGA10	U83593	202	AGTGGCAGCTAATGTGGTCTG	TCTTCTTTGCTATCTCCAGAG
TPM1	GGA10	X57991	211	ATATAGGCATTTTCCACGGTC	CTCACTGATATGGCCTTTCC
NR2F2	GGA10	U00697	167	GTATGTTAGGAGCCAGTATC	CAGACAGTAACATATCCCTG
NEO1	GGA10	U07644	250	CTTAGCCTTGGAACACAAGG	TCTTTCCTTTTGTCTGGATGC
SCK	GGA10	M85039	111	GAGTGCCTTATCCGAGAATC	TCTTCATCACCTCGTAGACG
MEF2A	GGA10	AJ010072	119	TTGTAGCAGCAGAGCAGTAG	CCATGCACCCTCTGCAATAG
CYPIIA	GGA10	D49803	125	CCAGTTGGTCCCAGCTTGG	CAGAGCAAATCAGAGGCGAAG
MYOIE	GGA10	X70400	172	CAACGGCAGCGCCAAACTGC	TGTTTGCAAAGCAGCATCGAC
NTRK3	GGA10	S74248	170	AAACTCAAGTGCCTGCTACAC	TGTAACAGCAGCGTCTTTCTG
MYO5A	GGA10	X67251	316	AATCTCGAAGCAGATGATCAG	CAATGACAGCATCACACTCAG

		, control , c		Minu GENE/EST RH(GB4) Minu	7 HS9176 122	- TLE3 236 -		Z COROZB ZZ	2 KNSL5 230 -	- NEO1 -	CYPIIA 245 9		9 RCN2 258	9 PSTPIPI 258 .	- CRABPI	9 CHRNA5 261 9	- NAPTB 285 7	9 HOMER-2B 286 -	- AL/9/030 200	9 AGCI 307 7	9 POLG 307	- NTRK3 308 7	- IQGAP1 310 -	9 NR2F2 - 7	9 IGFIR - 7	- MEF2A	- P47LBC	- AI565363 -	- ALDH6 338
	RH(GB4)	57 75		RH(GB4)	•	145	64	154	156	157	151	, 150	165	165	ı	•	168	206	607	210	212	215	218		ı	219	,	•	221
	GENE/EST	HS4986 CHRNA7		GENE/EST	CKMTI	TP53BP1	// FORVIN	BZM	FBNI	DUT	TRIPIS		MYOSA	CYP19	ADTE	MYO1E	USP8	Aa001763	1XN2	PPIR	TPM1	TRIP4	RPL4	ANX2	RORA	MADH6	A1044960	AA354468	Hs6048
HSA15		7 7 11 2				13.1	3.5	15.3	Mmu 14				2 1 1 2	1:17 c 1 c		,	1.77 666	22.31	22.32 77 22		different 74.7	is chicken 27.5 24.3	H map position. 52.5	e location in mouse 25.2	icated in bold are 2.0.0	or FISH. The other 20.1	nkage or are	is of specific 20.2	-)) C'07
GGAI	GENE/EST RH(GB4) M	GABRB3 - UBE3A 20 OCA2 -	HERC2 45			GGAS			GENE/EST KH(GB4) N					TVDO2		- ICAUN				Figure 1, Homologs of genes at manued to human chromosome	are mapped in chicken to three	chromosomes. The homologous	genes are ordered by human RH	When known, the chromosome	is given as well. The genes indi-	mapped in chicken by two-color	genes are mapped by genetic lin	identified by sequence analysis	BAC clones.

Gene order HSA15 and GGA10

86

For 22 genes we were able to isolate at least one BAC clone which was subsequently used in two-color *FISH* to map the genes in chicken (Table 1; Figure 1, indicated in bold). The precise map location of the genes mapped to chromosome 10 by *FISH* is not known because of the small size of this microchromosome and the absence of a clear banding pattern. However based on the map location in human and mouse and based on the known map location of other genes mapped on GGA10 we can predict the map location for some of these genes on this chicken chromosome. For example, the gene *CKMT1* is mapped by *FISH* to GGA10 and has a HSA15 map location of 39.5-50.8 cM and 145 cR. A sequence derived from a BAC of marker ADL0112 identified the gene *TP53BP1* that is mapped in human to almost the same position. Therefore we expect the *CKMT1* gene is located in chicken close to marker ADL0112.

The BAC clones that were mapped to GGA10 by FISH were also used as starting points for chromosome walking. The approach outlined above has resulted thus far in the development of more than 240 STS markers and the isolation of more than 570 different BAC clones, corresponding with a chromosome coverage of almost 40%. The number of BAC clones per marker varied from 1 to 12 with an average of 4.9 BACs per marker that is in good agreement with the estimated 5.5 times genome coverage of the library of (11).

Seventy different BAC clones derived from GGA10 were selected and used for sample sequencing. All sequences obtained from the BAC-end sequencing and the sample sequencing were compared with sequences in the nucleotide databases (BLAST). In most cases the observed homology to human genes was unambiguous and often several different exons of the same gene were identified. More difficulties occur when homology is detected with several genes belonging to a gene family. This occurred after shotgun sequencing of a BAC clone derived from marker ABR0012 mapped to GGA10. Gene identity was found with transducin-like enhancer protein family *TLE1*, *TLE2* and *TLE3*. *TLE1* is located on HSA9; *TLE2* on HSA19 and *TLE3* is located on HSA15 (15q; 70.1-71.3 cM; 236 cR). According to the gene identity and human chromosome location of the TLE gene family, we assume *TLE3* is located on GGA10.

The sequence results together with the genes mapped by FISH revealed sequence identity to almost 100 human, mouse, rat and chicken genes and ESTs. Several genes and ESTs have not been mapped in human yet, such as the epsilon adaptin gene (*ADTE*). This gene, found after sample sequencing of a BAC clone of marker MCW0357 (*CYP19*), belongs to the adaptin family. Of this family the beta 1, delta and gamma are mapped to human chromosome 22, 19 and 16 respectively. Besides homology found with genes mapped to HSA15, occasionally sequence homology was observed with human genes that

map to other human chromosomes. For example, the gene *HK1* maps to HSA10, *GNRHR* to HSA4 and the gene *TLN* to HSA9. These observed homologies may either indicate the presence of gene families of which one member has not yet been mapped to HSA15 or they might indicate the presence of small regions of homology to other human chromosomes. However, in the latter case one would expect that more genes from those regions would have been identified in the current study. This is further strengthened by the fact that for the three genes that are located on different human chromosomes, on the same BAC clone a gene has been identified that does map to HSA15.

The human chromosome 15-chicken comparative map consists of 67 genes and ESTs and is shown in Figure 1. The genes that are located in man on chromosome 15, are located in chicken in 4 regions of conserved synteny on three different chromosomes; GGA1, GGA5 and GGA10. The majority of these genes however are mapped in chicken to chromosome 10. In mice also four conserved chromosome segments are observed in the order Mmu7, Mmu2, Mmu9 and Mmu7. In an attempt to reconstruct a common ancestor of man, mouse and chicken three time nodules in evolution have been described (8). The first time nodule is 300 Myr ago, when birds diverged from mammals, the second one 100 Myr ago, when the mouse diverged, and finally, 65 Myr ago, where the common ancestor of the primates lived. The reconstructed ancestor of all primates has a chromosome 6 that consisted of a rather unchanged human chromosome 15 and chromosome 14 (7). This reconstructed chromosome is based on the comparison of chromosome paints of primates, where gene order of the conserved segments was not considered. The comparison of HSA15 to chicken and mouse chromosomes indicates the occurrence of three interchromosomal rearrangements (interCR) during evolution (Figure 2). Only one of these rearrangements appears to be at the same location in chicken and mouse, indicating that this translocation occurred in the lineage leading to man after the mouse and human lineages diverged, between 100 and 65 Myr ago. The other two interchromosomal rearrangements in chicken involving the segments on GGA1-GGA10 and GGA5-GGA10 probably have occurred before the man and mouse lineages diverged, either in a predecessor of mammals or in the chicken lineage. In mouse, the other two interCR between the segments on Mmu2-Mmu9 and Mmu9-Mmu7 probably have occurred within the mouse lineage during evolution starting 100 Myr ago.

Figure 2. Comparative map of Homo sapiens chromosome 15 (HSA15) to chicken (Gallus gallus; GGA) and mouse (Mus musculus; Mmu). For every chromosome segment at least one gene is indicated. The chromosome segment order for chicken chromosome 10 is given in brackets. Positions of interchromosomal rearrangements (interCR) and intrachromosomal rearrangements (intraCR) are indicated by a dotted line.

Gene order HSA15 and GGA10

A more detailed comparison of the conserved chromosome segments between chicken chromosome 10 and human chromosome 15 reveals a much more scattered picture (Figure 2) than predicted by Burt et al. (8). In total 56 homologous genes and ESTs have been mapped to both chromosomes of these two species. The estimated size and order of the conserved gene segments in both species as shown in Figure 2 is based on a combination of genetic mapping, chromosome walking results and radiation hybrid (RH) mapping. The exact gene order will only be known when a complete BAC contig is available for both species. We can identify at least 10 segments, which is the minimum number of conserved segments between GGA10 and HSA15. The number of genes per segment varies from 1 (segment 2 and 10) to 7 (segment 3). This scattered picture clearly unfolded from the sequencing results of a chicken BAC clone identified with marker MCW0228. Gene identity with sequences of this BAC clone was found with the family of the S-cyclophilin like genes of which the cyclophillin B (PPIB) located on human chromosome 15 (50.8-58.8 cM; 209 cR) shows the highest homology. In addition to this gene, gene identity with sequences of the same BAC clone was found with four other human genes (B2M, RPS17, SNXI, and NAPTB), two mouse genes (Ckgl and Cpeb) and one rat gene (Casein kinase 1 gamma 1 like gene). The map location of the human genes is scattered over HSA15 (154 cR to 285 cR).

By comparing the chromosome segment order of GGA10 (Figure 2, segment order in chicken between brackets) to human chromosome HSA15 at least 8 intrachromosomal rearrangements can be identified that took place during evolution. Assuming that the most likely intra-chromosomal recombination events probably are inversions, we designed a simple computer program that started with the segment order in man and calculated the minimum number of inversion needed to obtain the chromosomal segment order obtained in chicken. In addition to the two translocations of chromosomal segments to GGA1 and GGA5, the minimum number of inversions is 7 where different routes are possible to reach these observed order (Figure 3). One of these chromosomal segment orders might be the order of genes belonging to the common ancestor of human and birds. However, information from other species is needed to unequivocally address this point. Based upon the rates of chromosomal change observed in mammals, one can calculate that the number of conserved segments between chicken and man would be in the order of 100-600. Based on the comparative mapping data of 223 genes, Burt et al. (8) suggested that the number of conserved segments between chicken and man would be in the lower part of this range. However, our data on the detailed comparison between human chromosome 15 and chicken indicates that this probably is an underestimate and that the number of conserved

Other minimum possible routes to obtain the gene order from HSA15 to GGA10 are:

4-7, 1-B, 1-5, 2-9, 8-4, 6-3, 6-1
 2-9, 1-B, 1-5, 6-3, 9-7, 4-7, 4-8
 6-8, 1-B, 1-5, 3-8, 2-7, 4-3, 2-9
 4-7, 1-B, 6-9, 1-8, 2-6, 8-6, 9-1

Figure 3. The minimum number of inversion events between human chromosome 15 and chicken chromosome 10. The two translocations are indicated, where segment A will finally be part of GGA1 and segment B of GGA5. Segment order in both species is derived as shown in Figure 2. Segment numbers 1, 2, and 3 in chicken are derived from one BAC contig where the order is not exactly known. The same is true for segments 9 and 10 that are derived from a single chicken BAC clone.

segments could be as high as 400.

In this paper, we clearly demonstrate the importance of high gene densities in comparative mapping to be able to identify both inter and intra chromosomal rearrangements. Eventually, the development of complete physical maps, either as BAC contig or even as the complete sequence, will further aid in the detailed reconstruction of rearrangements during evolution, which resulted in the chromosomes in the different species as we know them today. A detailed comparative map, as described in this paper, will be of high value in the identification and further characterization of candidate genes in QTL studies in chicken, as well as in the analysis of complex traits in man.

Acknowledgements

We thank Dr N. Bumstead for providing the cDNA sequence of marker COM0101 and RPLIB.

References

- 1. O' Brien, S. J. & Marshall Graves, J.A. (1991) Cytogenet. Cell Genet. 58, 1124-1151
- Grobet, L., Martin, L. J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., et al. (1997) Nature Genet. 17, 71-74.
- 3. Kambadur, R., Sharma, M., Smith, T. P. & Bass, J. J. (1997) Genome Res. 7, 910-916.
- 4. McPherron, A. C. & Lee, S. J. (1997) Proc. Natl. Acad. Sci. 94, 12457-12461.
- O'Brien, S. J., Menotti-Raymond, M., Murphy, W. J., Nash, W. G., Wienberg, J., Stanyon, R., Copeland, N. G., Jenkins, N. A., Womack, J. E. & Marshall Graves, J. A. (1999) Science 286, 458-481.
- 6. Carver, E. A. & Stubbs, L., (1997) Genome Res. 7, 1123-1137.
- 7. O'Brien, S. J. & Stanyon, R. (1999) Nature 402, 365-366.
- Burt, D. W., Bruley, C., Dunn, I. C., Jones, C. T., Ramage, A., Law, A. S., Morrice, D. R., Paton, I. R., Smith, J., Winsor, D., Sazanov, A., Fries, R. & Waddington, D. (1999) *Nature* 402, 411-413.
- Suzuki, T., Kurosali, T., Shimada, K., Kansaku, N., Kuhnlein, U., Zadworny, D., Agata, K., Hashimoto, A., Koide, M., Takata M., et al. (1999) Cytogenet. Cell Genet. 87, 22-26.

- Groenen, M. A. M., Cheng, H. H., Bumstead, N., Benkel, B., Briles, E., Burt, D. W., Burke, T., Crittenden, L. B., Dodgson, J., Hillel, J., et al. (2000) Genome Res. 10, 137-147.
- Crooijmans, R. P. M. A., Vrebalov, J., Dijkhof, R. J. M., van der Poel, J. J. & Gröenen, M. A. M. (2000) *Mamm. Genome* 11, 360-363.
- Morton, C. C., Christian, S. L., Donlon, T. A., Driscoll, D. J., Fink, J. K., Gabriel, J. M., Gotway, G., Greally, J. M., Hitchins, M. P., Howard, H. C., et al. (1999) Cytogenet. Cell Genet. 84, 11-21.
- Jones, C. T., Morrice, D. R., Paton, I. R. & Burt, D. W. (1997) Mamm. Genome 8, 436-440.
- Groenen, M. A. M., Crooijmans, R. P.M.A., Dijkhof, R. J. M., Acar, R. & van der Poel, J. J. (1999) Anim. Genet. 30, 418-422.
- 15. Trask, B. J., Massa, H., Kenwrick, S. & Gitschier, J. (1991) Am. J. Hum. Genet. 48, 1-15.
- Ruyter-Spira, C. P., de Groot, A. J. C., van der Poel, J. J., Herbergs, J., Masabanda, J., Frics, R. & Groenen, M. A. M. (1998) *J. Hered.* 89, 295-300.

High resolution mapping of QTL in a cross between broiler lines

Martien A.M. Groenen, Richard P.M.A. Crooijmans and Henk Bovenhuis

Animal Breeding and Genetics group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands

Submitted for publication

Abstract

An advanced intercross line (AIL) has been produced from a cross between broiler lines for the fine mapping of quantitative trait loci for production and health traits. Although, the original description of an AIL is based on a cross between two inbred lines, the basic concept can also be used for fine mapping of QTL in a cross between two different lines. However in that case a sufficiently large number of markers is needed to be able to identify the original different haplotypes. This requirement can be met by the development of marker dense SNP maps. To reach this objective, we started to develop complete BAC contigs for 6 regions of the chicken genome together comprising approximately 10% of the genome. Our strategy is based on a bi-directional approach, using loci from the existing chicken linkage map as well as loci that have been selected based upon the available human-chicken comparative mapping information.

Introduction

The development of a large number of highly informative genetic markers and the development of a highly informative linkage map in chicken (Groenen et al. 2000) has initiated a large number of studies aimed at the localization of genes involved in monogenic (Ruyter-Spira et al. 1997, 1998; Pitel et al. 2000) as well as quantitative traits (Van Kaam et al. 1998, 1999a, 1999b; Valleio et al. 1998, Zhu et al. 2000). For mapping quantitative trait loci (QTL), like the mouse, the chicken is particularly useful because it has a relatively short generation interval and large number of offspring can be generated from a single pair of parents. Another feature makes the chicken even a better model for the identification of QTL; the relatively small size of its genome (one third that of mammals) and the relatively high rate of recombination (the size of the genetic map is 3800 cM). Although, an increasing number of QTL mapping studies has been described or are in progress, the mapping resolution of the OTLs in such studies is still low, generally being in the order of 20 to 30 cM. For the high resolution mapping of these QTLs several strategies have been described such as the generation of backcross pedigrees, the production of recombinant inbred lines or congenic lines and advanced intercross lines (AIL, Darvasi and Soller, 1995). A detailed description of different fine mapping techniques and their advantages and disadvantages has been described by Darvasi (1998). In our initial QTL mapping experiment we have used a full-sib/half-sib design for the analysis of a large number of different traits including growth, fatness, amount of breast meat, and resistance to salmonella infections, mal-absorption syndrome and ascites

(Groenen *et al.* 1997; Van Kaam *et al.* 1998 and 1999a,b). Because of the large number of different traits and the complexity of several of the traits, we decided that, for fine mapping, it would be most efficient to produce an AIL. This AIL is based on the families, where the most important QTLs, as detected in the original cross, were segregating. Although, the original description of an AIL is based on a cross between two inbred lines, the basic concept can also be used for fine mapping of QTL in a cross between two outbred lines. However in that case a sufficiently large number of markers is needed to be able to identify the original different haplotypes. This requirement can be met by the development of marker dense SNP maps.

Material and methods

Mapping population. The Wageningen QTL mapping population (Groenen *et al.* 1997) is based on a cross between two broiler dam lines originating from the White Plymouth Rock breed. The breeding and measurements of all the animals from this cross are done by the Dutch breeding company Nutreco. Based on the results of the QTL analysis within the F_1 - F_3 generation, F_2 animals were selected from the families in which the QTLs were segregating and used for further breeding. The number of animals produced in the $F_0 - F_7$ generations that are used for the AIL and the number of animals that were used for the phenotypic measurements are shown in Table 1. The F_7 and F_8 generations are currently being produced.

Generation	Number of animals:	Number of animals:
	Breeding	QTL analysis
F ₀	30	
Fι	20	
F ₂	71	456
F_3	105	18,000
F ₄	122	
F_5	93	
F_6	108	
F_7	127	3,000
F_8	100	1,500

Table 1. Number of animals used for breeding, genotyping and phenotyping.

High resolution mapping

Markers. A detailed description of all individual loci that have been mapped on the consensus chicken linkage map (Groenen *et al.* 2000) including those used for the QTL analysis of our broiler cross is available at the web site of the Animal Breeding and Genetics Group in Wageningen and East Lansing ¹.

Screening of the BAC library. For building the BAC contigs, BAC clones are isolated from the Wageningen BAC library (Crooijmans *et al.* 2000) by a two-dimensional PCR screening method. The first step is the identification by PCR of the 384-well plate pool containing the marker, followed by PCR screening of the individual row and column pools of that plate. To confirm the purity of the positive BAC clone, the clones are plated and two single individual colonies are picked and colony PCR is performed. The pure positive BAC clones are finally stored individually at -80 °C. A more detailed description of the two-dimensional PCR screening can be found in Crooijmans *et al.* (2000)

Fluorescent In Situ Hybridization (FISH). Miniprep DNA of selected BAC clones is used in FISH experiments to evaluate the map location of these clones. BAC DNA is either labelled by random priming with biotin-16-dUTP or with digoxigenin-11-dUTP on chicken metaphases derived from a chicken primary fibroblast cell culture (Ruyter-Spira *et al.* 1998; Morisson *et al.* 1998).

Results and discussion

The use of AIL in an outbred cross. In order to decrease the length of the confidence interval Darvasi and Soller (1995) introduced the Advanced Intercross Line (AIL). An AIL starts of with a cross between two inbred lines. The experiment continues from the F_2 by randomly intercrossing the individuals in each generation to produce an $F_3,...,F_t$. In this way recombination events, that are required for fine mapping QTL, are accumulated over generations. Individuals in generations between F_2 and F_t are not typed and phenotypic data is only collected in the F_2 and in F_t . As is illustrated in Figure 1 generating an AIL can lead to a considerable reduction of the confidence interval for QTL location. For a QTL with an effect of $0.3\sigma_P$ the 95% confidence interval is expected to reduce from 33 cM in the F_2 to 8 cM in the F_8 .

http://poultry.mph.msu.edu/

http://www.zod.wau.nl/vf/research/chicken/frame_chicken.html;

Figure 1. The approximate 95% confidence interval for QTL location as a function of the AIL generation for a sample size of 500 (Darvasi and Soller, 1995).

It is clear that this type of design cannot be applied to all species. A short generation interval is a prerequisite and therefore AIL could be applied to e.g. mice or chickens. Another potential problem is the effect of random fluctuations due to small effective population size.

In the original paper by Darvasi and Soller (1995) it is assumed that AIL is used within a cross between two inbred lines and that the two alleles of a polymorphic marker are specific for each of the two lines. However, because we are using AIL within an outbred cross, marker alleles are not fixed within the lines used and the same alleles can occur in the two starting populations.

When, as originally proposed, AIL is used within a cross of two inbred lines there would be two marker alleles, two QTL alleles and complete linkage disequilibrium in the F_1 . In such a situation the expected marker contrast $(M^1M^1-M^2M^2)$ can be modelled easily as a function of the generation number and the recombination fraction between the marker and the QTL ($t \ge 2$):

$$\mu_{M^{1}M^{1}} - \mu_{M^{2}M^{2}} = 2(1 - 2\theta)(1 - \theta)^{(t-2)} a$$

where t is the generation number, a is the additive QTL effect and θ is the recombination fraction between the marker and the QTL.

Figure 2 graphically illustrates this relation. Simulation using the actual pedigree of our broiler cross resulted in contrasts that agree closely with predicted contrasts. Based on these calculations we can calculate the number of required markers in order to retrieve a certain fraction of the maximum genotype contrast, *i.e.* the contrast we would get if we would have a marker right on top of the QTL (Table 2).

Figure 2. Relation between the expected marker contrast of an AIL depending upon the distance between the marker and the QTL. The position of the QTL is indicated at location 25.

Table 2 shows that in order to pick up 93% of the maximum contrast of a QTL located in a region with a length of 40 cM we would need to have 20 markers in that region. How many markers we actually need to put in this region obviously depends upon the size of the QTL effect and variance of the trait.

% of maximum contrast	Every x cM a marker required
93	2
81	6
71	10
62	14
51	20

 Table 2. Maximum QTL genotype contrast versus marker density.

If 71% of the genotype contrast gives us 90% power than we might do with 4 markers in that region. It is good to realise that for actual power calculations not only the expected marker contrast but also the variance of the contrast is important. This variance will depend upon the number of individuals that are typed.

It is obvious that the present experiment is not a cross between inbred lines. Consequently the expected amount of linkage disequilibrium will be lower. For such a situation the contrast of the marker genotypes can be written as (for generation number $t \ge 2$):

$$\mu_{M^{1}M^{1}} - \mu_{M^{2}M^{2}} = \left[\frac{2 \Delta_{M} \Delta_{O}}{4 xy}\right] (1 - 2\theta)(1 - \theta)^{(1-2)} a$$

where,

х

y

 Δ_{M} = difference in marker allele frequency between both lines;

 Δ_Q = difference in QTL allele frequency between both lines;

= marker allele frequency averaged over both lines;

= QTL allele frequency averaged over both lines.

This formula can be used to calculate contrasts for all sorts of scenario's. What is important to realise is that the contrast reduces rapidly if the situation starts to differ from a cross between inbred lines, *e.g.* if frequencies of marker and QTL alleles are 0.1 in one line and 0.9 in the other (instead of 0 and 1 as for inbred lines) we get only 64% of the contrast for inbred lines. Similar as for a cross between inbred lines, a strategy to fine map QTLs could be to determine marker contrasts in the F_2 and in the F_7 using an across family analysis. In the F_7 this marker contrast is expected to be reduced by a factor $(1-\theta)^5$. Subsequently, the power can be calculated of significantly detecting this contrast in an across family analysis. However, are there genetic markers in our cross between lines that show in the F_2 a significant effect in an across family analysis? At present, only a limited number of markers have been typed on F_2 individuals for the interesting chromosomal regions. As part of this strategy, the F_2 individuals

High resolution mapping

could be typed for additional genetic markers: more markers will decrease the expected average recombination fraction between the marker and the QTL and with more markers it becomes more likely that there will be linkage disequilibrium between the marker and the QTL.

Instead of looking at single markers, this approach can also be used if specific haplotypes can be characterised in the F_2 that are associated with the positive QTL alleles. In order to be able to identify these specific and unique haplotypes one might need to perform additional typings on the F_2 population. Once identified, those haplotypes should also give significant effects in an across family analysis of F_2 individuals. For example in the F_2 the haplotype 111-120-140-180 might be significantly associated with an effect. In the F_7 this specific haplotype is not likely to be associated but a smaller haplotype might still be, *e.g.*, 120-140. However, as is illustrated, marker contrast rapidly decrease for situations were the lines used are not completely inbred, which makes it difficult to significantly detect associations in an across family analysis.

Alternatively, we could produce an F_7 consisting of a number of full sib (FS) families. Subsequently, a within family analysis could be performed. As such this does not make much sense because this within family analysis does not help us to fine map the QTL, *i.e.*, the reason for which the F_7 is produced. However, a combination of within and across family analysis could be performed, which would identify haplotypes with positive effects. By lining up the haplotypes with an effect in the F_7 and haplotypes with an effect in the F_2 , small IBD regions that cause the effect can be identified.

When performing a within FS family analysis, the variance of the marker contrast (in an across family analysis that is performed later on) will be increased if a limited number of F_6 individuals are selected as parents for the next generations. For example, for 5 FS families only 10 parents are selected. Just by chance certain allelic configurations might be present in this parents that will greatly affect the association between marker and QTL. However, if 40 FS families are selected this chance effect only plays a minor role. To reduce this effect and to eliminate the probability that the QTLs are not segregating in the families produced, we are currently producing 40 FS F_7 families consisting of, on average, 75 offspring each.

Required marker densities in relation to type I errors. An important aspect of the analysis will be the possibility to discriminate F_1 and F_7 haplotypes as being identical by descent (IBD) rather then identical by state (IBS). We therefore need to know what the probability of a type I error is at a given marker density, *i.e.* the probability that based on the IBS of

the haplotypes it is falsely concluded that a chromosomal region is IBD. The type I error in relation to the number of markers and number of alleles per marker for our pedigree is shown in Figure 3. The analysis of the F_7 population most likely will be done by a combination of microsatellite and SNP markers, which means that the average number of alleles per marker probably will be around 3. Given the fact that not all markers will be informative in all animals, we probably will need around 10 markers for the analysis of a particular fragment of a given size.

Figure 3. Type I error as a function of the marker density and the number of alleles per marker.

The other important variable we need to take into account is the fraction of the F_7 haplotypes that can be identified as IBD to F_2 haplotypes, i.e. the power. It is clear that a smaller fragment has a higher power because a smaller fragment is not likely to be recombined. For example, in the situation where we have 10 markers in a 10 cM region the power is only 0.688, whereas for 10 markers in a 2.5 cM region the power is 0.905.

As DNA from all animals in the experiment are collected, the possibility is left open to type all individuals in the experiment (F_1 till F_7) for the identified regions. This data can be analysed using a full-pedigree analysis using methods as described by Bink and Van Arendonk (1999). This will provide further power to identify the QTLs.

High resolution physical mapping of target regions. From the calculations described in the previous section, it is clear that a high marker density is needed for the IBD analysis of the haplotypes segregating in the F_7 generation. The number of markers that eventually are needed depends on the number of alleles and thus on the type of marker used (*i.e.* microsatellites or SNPs) and on the required power to identify a certain fragment as being IBD. However, to be able to analyse the F_7 population, a marker density of at least one marker every 1 cM will be desirable. The current average density of the linkage map is only one marker every 2 cM and there are many regions for which this number is much larger. Furthermore, if we consider only the microsatellites, this density even drops to 5 cM. Given the relatively low number of microsatellites in the chicken genome, efforts to increase the microsatellite density of the regions currently being studied. As an alternative approach we decided to specifically target the marker development to the regions where a QTL had been mapped in the original F_2 population. This strategy is part of a larger effort to develop a high-resolution comparative map between chicken and man for these regions.

To reach these objectives, we decided to develop complete BAC contigs for 6 regions of the chicken genome together comprising approximately 10% of the genome. Our strategy is based on a bi-directional strategy, using information from the existing chicken linkage map and on the available human-chicken comparative mapping information. The first step is, the isolation of all the BAC clones for all available markers on the linkage map for these particular regions by a two-dimensional PCR screening approach (see material and methods). At the same time, all chicken genes with available sequence information in Genbank are identified, whose human homologue has been mapped to the corresponding region on the human map. After developing specific PCR primers for these chicken genes, these are also used to isolate all the corresponding chicken BACs. To check whether these genes are indeed located in the regions being studied, one BAC for each gene is mapped in chicken using FISH. Subsequently, for each marker or gene, one BAC is selected as a starting point for chromosome walking. These BACs are used for direct end sequencing, and the resulting sequences are used for the development of new STS markers, which subsequently are used to screen the BAC library for additional overlapping BAC clones. A summary of the results obtained so far is shown in Table 3.

To increase the chicken-human comparative map, selected BACs are subjected to subcloning and sample sequencing. Approximately 10% of the BAC insert is sequenced (single read) and the sequences are used to identify potential genes by BLAST homology searching. This has resulted already in the mapping of over 130 genes and ESTs in these regions (Table 3).

Chromosomal	Size	Markers	BACs	STSs	Genes	Estimated			
location	(cM)	on linkage	isolated	developed	identified	coverage			
		map				(%)			
GGA8 (qtel)	30	12	104	44	10	20			
E29C09W09	120	41	550	212	75	30			
E18W15	71	19	101	34	8	10			
E53C34W16	75	20	144	57	21	20			
E49C20W21	58	16	49	12	9	5			
E48C28W13W27	74	33	53	19	7	5			

Table 3. Summary of physical mapping in chicken.

The approach as outlined above also produces a wealth of information that enables us to increase the marker density in these regions dramatically. First of all; the sample sequencing also identifies many different microsatellites (CA, GA, A, TA). Interestingly, even most of the CA repeats detected so far have not been described before. Secondly, the STSs developed from the end sequences of the BACs for chromosome walking can easily be used for the development of SNP markers. The number of SNPs in the chicken genome appears to be relatively high (1 every 100 bp; Vignal *et al.* 2000). This observation and the fact that the average size of the STS fragments is 200 bp, indicates that sequencing these STS fragments from the original two broiler populations will result in a large number of SNPs. A further source of potential SNP markers is the sequences from the subclones produced for the sample sequencing. Several of these fragments are homologous to chicken EST sequences present in the database and the sequences from our fragments. Although, a number of these differences probably can be attributed to sequencing errors, many will be true SNPs.

It is clear that much work still has to be done before being able to efficiently analyse the F_7 population. However, given the molecular resources currently available in chicken and the amount of data being generated in a short time, we are confident that the approach outlined above will enable us to map the QTL originally found in our F_2 population at a high resolution within the next two years.

References

- Bink, M.C.A.M., and J.A.M. van Arendonk, 1999. Detection of quantitative trait loci in outbred populations with incomplete marker data. *Genetics* **151**:409-420
- Crooijmans, R.P.M.A., Vrebalov, J., Dijkhof, R.J.M., van der Poel, J.J., and M.A.M., Groenen, 2000. Two-dimensional screening of the Wageningen chicken BAC library. *Mammalian Genome*, **11**:360-363
- Darvasi, A., and M., Soller, 1995. Advanced Intercross Lines, an experimental population for fine genetic mapping. *Genetics* 141:1199-1207
- Darvasi, A., 1998. Experimental strategies for the genetic dissection of complex traits in animal models. *Nature Genetics* 18:19-24
- Groenen, M.A.M., R.P.M.A. Crooijmans, T. Veenendaal, J.B.C.H.M. van Kaam, A.L.J. Vereijken, J.A.M. van Arendonk, and J.J. van der Poel, 1997. QTL mapping in chicken using a three generation full sib family structure of an extreme broiler x broiler cross. *Animal Biotechnology* 8:41-46
- Groenen, M.A.M., H.H. Cheng, N. Bumstead, B. Benkel, E. Briles, D.W. Burt, T. Burke, J. Dodgson, J. Hillel, S. Lamont, F.A. Ponce de Leon, G. Smith, M. Soller, H. Takahashi, and A. Vignal, 2000. A consensus linkage map of the chicken genome. *Genome Research* 10:137-147
- Morrison, M., F. Pitel, V. Fillon, A. Pouzadoux, R. Bergé, J.P. Vit, R. Zoorob, C. Aufray,
 J. Gellin, and A. Vignal, 1998. Integration of chicken cytogenetic and genetic maps:
 18 new polymorphic markers isolated from BAC and PAC clones. *Animal Genetics* 29:348-355
- Pitel, F., R. Bergé, G. Coquerelle, R.P.M.A. Crooijmans, M.A.M. Groenen, A. Vignal, and M. Tixier-Boichard, 2000. Mapping the naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers. *Genet. Sel. Evol.* 32: 73-86
- Ruyter-Spira, C.P., Z.L. Gu, J.J. van der Poel, and M.A.M. Groenen, 1997. Bulked segregant analysis using microsatellites: mapping of the dominant white locus in chicken. Poultry Science **76**:386-391
- Ruyter-Spira, C.P., A.J.C. de Groof, J.J. van der Poel, J. Herbergs, J. Masabanda, R. Fries and M.A.M. Groenen, 1998. The HMGI-C gene is a likely candidate for the autosomal dwarf locus in the chicken. *Journal of Heredity* 89:295-300
- Vallejo, R.L., L.D. Bacon, H-C. Liu, R.L. Witter, M.A.M. Groenen, J. Hillel and H.H. Cheng, 1998. Genetic mapping of quantitative trait loci affecting susceptibility to Marek's disease virus induced tumors in F2 intercross chickens. *Genetics* 148:349-360
- Van Kaam, J.B.C.H.M., J.A.M. van Arendonk, M.A.M. Groenen, H. Bovenhuis, A.L.J. Verreijken, R.P.M.A. Crooijmans, J.J. van der Poel, and A. Veenendaal, 1998.
 Whole genome scan for quantitative trait loci affecting body weight in chickens using a three generation design. *Livestock Production Science* 54:133-150
- Van Kaam, J.B.C.H.M., M.A.M. Groenen, H. Bovenhuis, A. Veenendaal, A.L.J.
 Vereijken, and J.A.M. van Arendonk, 1999a. Whole genome scan in chickens for quantitative trait loci affecting growth and feed efficiency. *Poultry Science* 78:15-23
- Van Kaam, J.B.C.H.M., M.A.M. Groenen, H. Bovenhuis, A. Veenendaal, A.L.J.
 Vereijken, and J.A.M. van Arendonk, 1999b. Whole genome scan in chickens for quantitative trait loci affecting carcass traits. *Poultry Science* 78:1091-1099
- Vignal, A., C. Monbrun, P. Thomson, A. Barre-Dirie, T. Burke, M. Groenen, J. Hillel, A. Maki-Tanila, M. Tixier-Boichard, K. Wimmers, and S. Weigend, 2000. Estimation of SNP frequencies in European chicken populations. Abstract 27th International Conference on Animal Genetics, ISAG
- Zhu, J., H.S. Lillehoj, P.C. Allen, C-H. Yun, D. Pollock, M. Sadjadi, and M.G. Emara, 2000. Analysis of disease resistance associated parameters in broiler chickens challenged with Eimeria maxima. *Poultry Science*, in press

Future directions of Wageningen chicken research

Future directions of research

The isolation and mapping of DNA markers either random or within genes and ESTs in chicken has resulted in a consensus linkage map of the chicken genome (Groenen *et al.*, 2000). Almost 1900 loci are defined and ordered on 50 linkage groups. Of these linkage groups, 10 have been assigned to a specific chromosome (GGA1-8, GGAZ, and GGA16). BAC clones from markers for each of the individual linkage groups are used in two-colour *FISH* to assign the other linkage groups to chromosomes and this has allowed the assignment of another 22 linkage groups to chromosomes 9 to 31 (V. Fillon, RPMA Crooijmans, A. Vignal and MAM Groenen; unpublished results). Identification of all the chromosomes will be possible in the near future with a set of FISH markers.

Moving forward from the chicken genetic map to the physical map, the Wageningen chicken BAC library is an essential tool. This physical mapping can be performed either chromosome-wise or genome-wise.

Physical mapping of a single chromosome can be performed with the bi-directional approach as described in chapter 8. Chromosome walking starts with the BAC clones isolated from previously mapped markers. By BAC-end sequencing, new STS markers are generated which subsequently are used for screening of the BAC library.

Furthermore, specific BAC clones are used for shotgun sequencing to generate sequences that can be used to identify homologous genes in man (BLAST). Where a syntenic region is identified, all known human genes of this region can also be used to identify homologous sequences in chicken. These sequences are used to design specific PCR primers for the identification and isolation of BAC clones that subsequently can be used to map these genes in chicken by *FISH*. This will generate a detailed human-chicken comparative map and new starting points for chromosome walking.

Although this approach has allowed us to obtain BAC contigs for large regions of specific chromosomes, eventually a more general approach directed towards the construction of a BAC contig covering the complete chicken genome, will be more efficient. Fingerprinting of BAC clones is such a technique for genome-wise physical mapping. Briefly, DNA is isolated from all individual BAC clones (50000 in the case of the Wageningen chicken BAC library), which is then digested with a restriction enzyme followed by the analysis of the resulting fragments by electrophoresis. With this fingerprinting technique, contigs can be build by identification of sharing equally sized fragments. The contigs can be assigned to chromosomes with BAC clones isolated from the markers for each of the individual linkage groups. When the complete contig of the chicken genome is available, the next step will subsequently be sequencing of the complete chicken genome by one of the major sequencing centres. The chicken is a world wide model organism for studying genes that

will justify sequencing of the complete genome. Moreover, the human sequencing project will be ready soon and therefore other species will follow.

A total genome scan to identify quantitative trait loci (QTL) for production and health traits already has been performed which has resulted in the identification of many regions containing QTL for a number of different traits. Fine mapping of the QTL regions, is the next essential step for the identification of the genes for these traits. The fine mapping procedure that will be used in our laboratory is described in chapter 8. The advanced intercross line (AIL) technique has originally been designed for inbred lines. Although this method will also be applicable to outbred populations, such as a our broiler x broiler cross, the analysis of this material is far from trivial, and needs further statistical consideration. The F_7 - F_8 generation (40 families) will first be typed with microsatellite markers to perform a QTL analysis within families, followed by an identity by decent (IBD) analysis with a high density of SNP markers from the QTL regions of the animals where an effect is shown. In chicken, SNPs occur with a rather high frequency, I every 100bp (Vignal et al., 2000). These SNP markers are currently being developed from the STS markers that were obtained after BAC end sequencing. This fine mapping technique in combination with the high-density comparative map obtained with the BAC sequences and the complete chicken BAC contig should make it possible to identify candidate genes.

One of the relatively neglected features in molecular genome analysis is bioinformatics. Generating vast amounts of data (sequences, BACs) makes it essential to order and store this data in a convenient way. Towards this end we have implemented an AceDB database for the chicken genome mapping data (ChickAce) which will be made available through our website (<u>http://www.zod.wau.nl/vf/research/chicken</u>).

References

- Vignal, A., Monbrin, C., Thompson, P., Barre-Dirie, A., Burke, T., Groenen, M., Hillel, J., Maki-Tanila, A., Tixier-Boichard, M., Winners, K., and S. Weigend, 2000. Estimation of SNP frequencies in European chicken populations. Abstract 27th International Conference on Animal Genetics, ISAG
- Groenen, M.A.M., Cheng, H.H., Bumstead, N., Benkel, B., Briles, E., Burt, D.W., Burke, T., Dodgson, J., Hillel, J., Lamont, S., Ponce de Leon, F.A., Smith, G., Soller, M., Takahashi, H., and A. Vignal, 2000. A consensus linkage map of the chicken genome. Genome Research 10:137-147

Summary

Summary

Molecular unravelling of the chicken genome to identify genes that are involved in production and health traits is on the way. The tools essential towards this goal are described in this thesis. We started with the development of a large number of DNA markers in chicken analogous to similar initiatives in mammals. Two types of markers can be distinguished, the so-called type I loci (with or adjacent to known genes) and the type II loci (random DNA markers). The majority of the markers developed in chicken are type II markers. All markers are mapped, when polymorphic, in at least one of the three reference populations (East Lansing, Compton or Wageningen) which has resulted in a consensus linkage map of the chicken genome with more than 1900 markers. Assignment of the linkage groups to chromosomes is in progress. In chicken this was easily performed for the macrochromosomes but is complicated for the microchromosomes. The development of large insert libraries will enable to solve this problem. The large insert libraries can subsequently be used for physical mapping and as a further tool in comparative mapping.

In chapter 2 the isolation of highly polymorphic random microsatellite markers is described. These type II loci are also present abundantly in chicken although the frequency is considerably lower than in mammals. Different chicken genomic libraries were made and screened for (CA) repeats. Microsatellite containing clones were sequenced and primers were made flanking the microsatellite repeat, where one of the primers was fluorescently labelled to enable semi-automated genotyping. Special emphasis in the development of the marker was put on the fragment size, fluorescent dye and optimal PCR annealing temperature of the markers. In total, 372 polymorphic microsatellite markers have been developed in our laboratory. Markers developed by other groups (ADL, LEI and HUJ markers) have been tested under our standard conditions. The characteristics of the 644 polymorphic markers are described (372 MCW markers; 174 ADL markers; 89 LEI markers and 9 HUJ markers).

In chapter 3 markers are described which were developed from microsatellites known to be located within chicken genes or ESTs. These type I loci are very important for comparative mapping. Chicken cDNA libraries were screened for (CA) repeats as described in chapter 2. Moreover, chicken sequences from the nucleotide sequence databases containing a microsatellite repeat (either mono, di and tri nucleotide repeats) were selected. Primer development and testing of these markers yielded 97 markers (51 located within a known gene and 46 within an EST) of which 67 were mapped in at least one of the chicken reference populations. The human map location of 31 genes out of the 67 mapped genes/ESTs is known which resulted in the identification of 10 new conserved regions whereas the others confirmed previously identified regions that are conserved between chicken and man.

Microsatellite markers are particularly well suited for total genome scans to identify genes involved in production and health traits because of the use of PCR in combination with fluorescent based semi-automated fragment sizing. In **chapter 4** we describe the method to develop sets of microsatellite markers that can be analysed simultaneously in a single lane of an ABI automated sequencer. Combinations of markers with the same fluorescent dye are selected without overlap of alleles. The amount of PCR amplification product of each marker in the sets should not exceed the signal of approximately 1000 on the ABI automated sequencers because of possible read-through. Careful testing of each set will speed up the genotyping. The number of microsatellite markers per set varied from 8 till 21 with an average of 15. In our set-up, a genotyping capacity is possible of almost 3100 genotypes a day.

A comprehensive linkage map of the chicken genome has been developed by segregation analysis of 430 microsatellite markers within a cross between two extreme broiler lines (chapter 5). Of the 430 mapped markers, 54 markers are genes or ESTs that identified new regions of conserved synteny or confirmed previously identified conserved region between human and chicken. The average number of informative meioses for the 430 markers is 400. The markers were placed into 27 autosomal linkage groups and a Zchromosome-specific linkage group. Alignment of the three different linkage maps is possible in most cases due to the 210 markers that are in common. The coverage within the linkage groups is 3062 cM. Including the 6 unlinked markers and the markers at the end of each linkage group, the maximum coverage is 3750 cM. The difference in length of the genetic map between the heterogametic sex (female) and the homogametic sex (male) is small.

In chapter 6 the construction of the Wageningen chicken Bacterial Artificial Chromosome (BAC) library is described. Partial digested high-molecular-weight DNA of a White Leghorn chicken is cloned into the vector pECBAC1. Almost 50000 clones are individually picked in 130 384-well representing 5.5 genome equivalents. The average insert size of the BAC clones is 134 kb. Screening of the BAC library can be performed either by 2-dimensional PCR as well as by hybridisation on high-density filters. The BAC library provides an essential tool for physical and comparative mapping.

The comparative map of human chromosome 15 with chicken and mouse is described in **chapter 7.** BAC clones have been isolated from markers mapped to GGA10 and from chicken genes homologous with genes mapped to HSA15. To obtain the chromosomal

Summary

location of a particular gene in chicken, a BAC clone was used to map that gene by FISH. In total almost 100 genes or ESTs were identified. Human chromosome 15 has conserved synteny with chicken chromosomal segments from 3 different chromosomes in the order GGA1, GGA10, GGA5, GGA10. In mouse conserved synteny was observed with Mmu2, 7, and 9. For chicken chromosome 10 at least 10 syntenic regions were identified which were scattered over human chromosome 15. These results show three inter chromosomal rearrangements and at least 9 intra chromosomal rearrangements have occurred. At least 7 inversions and 2 translocations are necessary to obtain the conserved gene segments in order on human chromosome 15 and chicken chromosome 10.

In chapter 8 the use of advanced intercross lines to narrow down the QTL regions is described. The Wageningen QTL mapping population has been used to generate an F_7 - F_8 population. In these 40 full sib F_7 families a QTL experiment will be performed only for the QTL regions to detect the families where the QTL is still segregating. Fine mapping of the positive families will be performed with SNP markers. These SNP markers are developed from the STS markers obtained by chromosome walking. Identification of specific SNP haplotypes associated with the quantitative trait from the F_7 generation and comparing these with the specific SNP haplotypes in the F_2 will narrow down the QTL region.

Samenvatting

Samenvatting

In dit proefschrift is een start gemaakt met het ontrafelen van het erfelijk materiaal van de kip. Dit erfelijk materiaal is opgeslagen als DNA op chromosomen. In het totaal heeft de kip 39 paar chromosomen waarop alle genen zijn gelegen. Een aantal van deze genen zijn verantwoordelijk voor productie- en gezondheidskenmerken. De kenmerken waarnaar onderzoek wordt gedaan binnen onze leerstoelgroep zijn die kenmerken waar meerdere genen bij betrokken zijn (de "Quantitaive Trait Loci"; QTL). Voor het opsporen van deze genen bij de kip is het noodzakelijk om het genoom in kaart te brengen. Hiervoor zijn in de loop der jaren een aantal moleculaire technieken ontwikkeld welke in dit proefschrift beschreven worden. Begonnen is met het ontwikkelen van genetische merkers voor de kip. Een merker kan in een gen liggen (type I merker) of op een willekeurige plaats op het genoom (type II merker). In hoofdstuk 2 en 3 werden beide type merkers opgespoord in de vorm van microsatelliet merkers. De microsatelliet bestaat in de meeste gevallen uit een repeterende (CA) sequentie die vaak en verspreid over het genoom voorkomt. Deze repeterende sequenties werden opgespoord door genomische en cDNA banken te screenen met een (TG)₁₃ probe. Van de positieve klonen werd de basenvolgorde (DNA sequentie) bepaald. Een PCR merker werd ontwikkeld door in de sequentie, flankerend aan de gerepeteerde sequentie (repeat), primers te maken. Aan één van de primers was een fluorescerende kleurstof gekoppeld zodat de PCR merker geanalyseerd kon worden op een automatische sequencer. In het totaal zijn in ons laboratorium 374 polymorfe merkers ontwikkeld. Deze merkers worden, samen met 270 merkers die door ander groepen ontwikkeld zijn, in dit proefschrift nader gekarakteriseerd en beschreven. Het merendeel van deze merkers is getypeerd in tenminste één van de drie zogenaamde referentie populaties die beschreven zijn in hoofdstuk 1. Er zijn 97 merkers ontwikkeld uit genen waarvan er uiteindelijk 67 geplaatst konden worden op de genetische kaart van de kip.

Doordat de fluorescerende merkers gebruikt worden in een PCR reactie en de analyse van de PCR producten tamelijk vergaand geautomatiseerd is, zijn de microsatelliet merkers uitermate geschikt voor het opsporen van genen welke een rol spelen bij productie- en gezondheidskenmerken. In hoofdstuk 4 wordt het gebruik van sets bestaande uit microsatelliet merkers beschreven die gelijktijdig op een ABI sequencer geanalyseerd kunnen worden. Het is van belang dat de microsatelliet sets zorgvuldig samengesteld zijn. Zo mag er geen overlap zijn van allelen van merkers met dezelfde fluorescerende kleurstof en het signaal op de automatische ABI sequencer moet ongeveer 1000 zijn. Binnen ons laboratorium is het momenteel mogelijk om 3100 genotyperingen per dag uit te voeren. De genotyperingen uitgevoerd op de Wageningen referentie populatie, welke bestaat uit 10

families met in totaal 486 dieren (F_1 en F_2), zijn gebruikt om een genetische kaart van de

kip te maken. Dit wordt beschreven in hoofdstuk 5. In het totaal zijn er 430 merkers gebruikt, waarvan 54 van het type I (genen). Van deze 54 genen is tevens de locatie bij de mens bekend waardoor het mogelijk was om nieuwe geconserveerde chromosoom-segmenten te identificeren en reeds bekende te bevestigen. De 430 merkers zijn op de koppelingskaart van de kip geplaatst in 27 autosomale koppelingsgroepen en een Z-chromosoom specifieke koppelingsgroep. De lengte van de koppelingskaart wordt geschat op 3062 cM.

In hoofdstuk 6 wordt een kippen "Bacterial Artificial Chromosome" (BAC) bank beschreven. De BAC bank is een verzameling van zeer grote stukken DNA van de kip welke gekloneerd zijn in een bacterie. In het totaal zijn er 50000 klonen afzonderlijk opgeslagen wat betekent dat het genoom 5.5 keer gekloneerd is. De gemiddelde lengte van de BAC klonen is 134 kb. Doordat er DNA is geïsoleerd van gepoolde BAC klonen is het mogelijk om deze BAC bank zeer effectief te screenen met behulp van 2-dimensionale PCR. Met behulp van de BAC bank kan een fysische kaart gemaakt worden. Door BAC klonen te sequencen en de verkregen sequenties te vergelijken met die van de mens is het mogelijk om een zeer gedetailleerde vergelijkende kaart te maken. Een voorbeeld van een zeer gedetailleerde vergelijkende kaart is beschreven in hoofdstuk 7. Deze vergelijkende kaart is gemaakt door humaan chromosoom 15 te vergelijken met chromosomen van de kip en de muis. Hierbij werd gebruik gemaakt van een tweerichtingsaanpak waarbij gestart wordt bij zowel de kip als de mens. Startend bij de kip werd de kippen BAC bank gescreend met merkers die afkomstig zijn van chromosoom 10. De geïdentificeerde BAC klonen werden vervolgens gebruikt om een reeks van overlappende klonen (contig) te maken en om sequenties te genereren die vergeleken konden worden met die van de mens en de muis. Uitgaande van de mens, werden sequenties van genen welke op humaan chromosoom 15 liggen, vergeleken met alle sequenties van de kip die in de database aanwezig waren. Wanneer er homologie gevonden werd met een kippensequentie werden voor deze sequentie primers gemaakt. Hierdoor konden 22 homologe genen geïdentificeerd worden. Voor deze genen werd de BAC bank gescreend en de opgespoorde BAC klonen werden met FISH gecontroleerd of deze werkelijk op het te verwachte kippenchromosoom lagen. Door deze tweezijdige benadering zijn bij de kip in het totaal meer dan 100 genen gevonden. Het bleek dat humaan chromosoom 15 homologie heeft met segmenten van chromosoom 1 en 5 en het gehele chromosoom 10 van de kip. Wanneer we de genvolgorde van humaan chromosoom 15 vergelijken met die van chromosoom 10 van de kip blijkt deze behoorlijk verschillend. Om de genvolgorde van

deze twee chromosomen overeen te laten komen zijn minimaal 7 inversies en twee translocaties noodzakelijk.

In de QTL studie (verder niet beschreven in dit proefschrift) zijn een aantal chromosoomsegmenten gevonden die betrokken zijn bij een bepaald kenmerk. Aangezien deze segmenten nog veel te groot zijn zal de in hoofdstuk 8 beschreven techniek van "advanced intercross" lijnen toegepast worden. Hierbij wordt gebruik gemaakt van de QTL populatie die doorgekruist is en waarvan momenteel 40 families gemaakt worden van generatie F_7 . In deze families zal eerst een QTL experiment uitgevoerd worden om die families te identificeren waarin het QTL nog segregeert. Hierna zullen deze families met een zeer veel voorkomende merker, de SNP merker (single nucleotide polymorphism), getypeerd worden. Deze SNP merkers kunnen ontwikkeld worden uit de BAC sequenties die beschreven zijn in hoofdstuk 7. De resultaten verkregen met deze SNP merkers zijn te combineren tot zogenaamde "SNP haplotypes". Door de SNP haplotypes geassocieerd met het QTL uit generatie F_7 te vergelijken met de SNP haplotypes uit de F_2 generatie zal het mogelijk moeten zijn om het QTL gebied te verkleinen.

Abbreviation Key

- ABR National Institute of Agrobiological Resources, Kannondai, Japan
- ADL Avian Disease and Oncology Laboratory, Michigan State University, East Lansing, USA
- BAC Bacterial Artificial Chromosome
- COM Compton laboratory, Institute for Animal Health, Compton, UK
- EST Expressed Sequence Tag
- FISH Fluorescent In Situ Hybridization
- GGA Gallus gallus
- HSA Homio sapiens
- HUJ Hebrew University of Jerusalem
- LEI University of Leicester, Leicester, UK
- MCW Microsatellite Chicken Wageningen
- PCR Polymerase Chain Reaction
- QTL Quantitative Trait Loci
- SNP Single Nucleotide Polymorphism
- UMA University of Massachusetts, Amherst, USA
- WAU Wageningen university, Wageningen, The Netherlands
- WS Wageningen Sequence tag
- YAC Yeast Artificial Chromosome

Table 1.	Characteristics MCW markers	124
Table 2.	Characteristics LEI markers	136
Table 3.	Characteristics HUJ markers	139
Table 4.	Characteristics WS markers	139
Table 5.	Characteristics ADL markers	141

Table 1. Characteristics of new polymorphic microsatellite markers (MCW markers).

Marker	Dye	Length ² (BP)	Forward primer	Reverse primer	PCR	All. ⁴	Pop. ⁵	Acc. No. ⁶
MCW001	FAM	156-168	TGTCACAGTGGGGTCATGGACA	ACACGTCCTGTGTTCACATGCCTGT	55	(77)	CE	L40034
MCW0002	FAM	147-149	TCCAGAGACAGTTGCTCCACATTC	GCAAGTTAGTTATTGTAGGGGCTC	55	7	с U	L40041
MCW0003	FAM	143-149	CCTAAACATAGCAATGAGGATAAC	ATTCAGTTCCTTAAAGTTCTTGGG	55	4	U U	L40036
MCW0004	FAM	149-199	GGATTACAGCACCTGAAGCCACTA	AAACCAGCCATGGGTGCAGATTGG	55	4	EW	L40038
MCW0005	FAM	189-259	ACCTCCTGCTGGCAAATAAATTGC	TCACTITAGCTCCATCAGGATTCA	55	4	CEW	L40039
MCW0006	FAM	231-241	AGAAACTACTGAGAAAGCCATGCA	CACAAGTTACAATAATGAACTTG	55	Ч	CEW	L40037
MCW0007	FAM	313-349	AGCAAAGAAGTGTTCTCTGTTCAT	ACCCTGCAAACTGGAAGGGTCTCA	50	4	ĊEW	G54469
MCW0009	FAM	162-174	ATGCCTGCAGTTCATGCTGCATCA	TGCACAATATGACTGGTGACTTCC	20	en.	EW	G31931
MCW0010	TET	003-109	CTGTAGAATTACAGAAATACA	TAGTACAAGAATCTAGTGTTAAAA	55	Ś	EW	L40047
MCW0011	FAM	117-119	TAAATTTATCTTTGAAAATGCCT	GAGAAACATGTATTTCAATTATTC	20	3	A	G31932
MCW0013	FAM	161-169	TTGTTCCATCTACTGGGATTGGTT	GCTGAGCATTAAACGAAATGGATG	50	4	ç	
MCW0014	FAM	164-187	AAATATTGGCTCTAGGAACTGTC	ACCGGAAATGAAGGTAAGACTAGC	55	4	EW	L40040
MCW0016	FAM	164-187	ATGGCGCAGAAGGCAAAGCGATAT	TGGCTTCTGAAGCAGTTGCTATGG	55	4	EW	L40041
MCW0017	FAM	160-178	CAATAGGGTTTCCATGTAACCAGC	CAGCTACTTAGAGGAAGCCAAACC	55	4	CW	L40044
MCW0018	FAM	199-221	GGAATTTGAACACCTGAGATTTCC	CACTATGTITATGGCAAACTCCTG	55	Ś	EW	L40067
MCW0019	FAM	114-148	CCCAGATTGATTTCATCATTCAAG	GCATCTCCTCTACAGCCATGAA	50	Ś	٨	G31933
MCW0020	FAM	183-189	TCTTCTTTGACATGAATTGGCA	GCAAGGAAGATTTTGTACAAAATC	55	4	EW	L40055
MCW0021	FAM	222-228	GGACCTCTCAGCAGTGCCATAATA	GATGAACTCCTTGGATTTGTCCCA	55	7	CEW	G31900
MCW0022	FAM	129-185	CATGATTCTGTGAATCAGCCCTGA	TTCCAGTCACAAGAGCGATGCTTG	50	Ś	×	G31934
MCW0023	FAM	156-168	TAAAGCTGAGCCTGGGGGAACCTAA	ATCCATTTACTGTCAAGTGAAACAG	55	ŝ	EW	L40065
MCW0024	FAM	146-150	TTTGCAGCTTGCAGAAGATGCGG	ATTTCTGCTGGTGAGGATCACGTG	45	ę	8	G31935
MCW0025	HEX	271-283	ATTGCTGGAGCTCACAGTGCT	ATCGCTCTCAGCTTGCATGTA	55	4	с U	L43632
MCW0026	TET	215-228	CAAGAGCITAAGTAGTTAGCTC	TGCTATTGGGTTCTCTGTAAACCTC	50	4	Ë	L43633
MCW0027	HEX	123-155	AAACAGTTGCGGTGAAAGCCTG	AACTCCAAGATAATCTGATAACTG	50	9	×	G31936
MCW0028	FAM	150-180	TCCTCTTCACTTGTAATTACA	TAATGTTTCCTTAAGAACTTAGTT	50	ę	×	G31937
MCW0029	ΠET	149-194	CATGCAATTCAGGACCGTGCA	GTGGACACCCATTTGTACCCTATG	55	9	CEW	L43634
MCW0030	FAM	110-153	AGAGTGTTGTCAGTAAGAC	TTTGCTATCATAGCTGGAAGAGCT	55	~	CEW	L40050

l																																
140066	1 43672	G31938	L43674	L40059	L43675	L43676	L43677	L43678	G31939	V00439	D11381	D00311	X02218	M20006	M17627	X63083	D90071	M59361	S43620	M33143	DI3439	G31940	L43673	G31941	L40057	M59037	G31942	L43679	L43680	G31943	G31944	L43681
FW	CEW	CEW	EW	ΕW	EW	ΕW	CEW	CW	CEW	U	CEW	EW	W	EW	W	E	CW	CEW	ш	CEW	EW	N	EW	W	CEW	CEW	EW	EW	EW	¥	M	S
۱۲	5	· vo	ŝ	ŝ	÷	ŝ	ι,	Ş	ŝ	m	٢	ŝ	9	ŝ	e	4	Ś	Ŷ	4	ŝ	'n	ŝ	4	2	4	Q	2	4	6	Ŷ	ę	Ś
55	5	48	55	55	55	50	50	55	55	55	50	50	50	55	55	55	55	55	50	55	55	55	50	50	55	55	55	55	55	55	50	55
TACAGCCATACAGGACTCATTAAC	TCATTACTAGTACAATCAAGATGG	AAAACAACAACACCTATATACAG	TGTCCTTCCAATTACATTCATGGG	TIGCTICATTICTAGTCTCCAGTT	TGTCTTCAGTAGGACTAGTGATAC	GAAGCTCACATGACACTGCGAAA	ACTTATAAGAACTAACCACTGACA	ACATTTGTCTAATGGTACTGTTAC	ACTCAAAAATGTGGTAGAATATAG	CCAGATTCTCAATAACAATGGCAG	GGCATCGCACCGTTAAGTTACACC	CACCAAGTAGACGAAAACACATTT	ACAGTGGCTCAGTGGGAAGTGACC	GAAAGAAAACTGACACTGTGACT	GATCGTAGTGGTCTTTTCCAACCT	AATGGAACGCCGAACTCGCGTGCA	AAGGAGGAACGCACCGCACCTTCT	TCCCCAACCCGCGGGGGGGGGGCGCTAT	GCAGCATCGCGCAGCACCGCGGAT	TCATGGAGGTGCTGGTACAAAGAC	GAGGTTAGTGCATCAGTTGTACCT	GTITIGCATTGTCTACAGCTCCTTG	AGTGAAGGAGACTCCACAGCCTCT	CATCAACCCAGTATGCCTTCTGGA	TAGCATTTTCTCCCAATGACTCCGG	AACTCCTATTGTGCAGCAGCTTAT	AGGCCTGACTGGCTCAGAAGGCAA	TTTCATGCTAAGCCGATCTAGGTC	GCACTTCAATCTTTCCATGTACAT	GGCTCCAAAGCTTGTTCTTAGCT	TCTCAGCACTACAAAATACACAGG	CAGGCATTACTTCAATAACGAGGC
ATACACCATGTAGACCCCTGT	AAGTTCCTTGTACAATTGTTA	GGTGATAGGCTACAGAAGCTTACA	TGCACGCACTTACATACTTAGAGA	CAGAAACATTTGGACTTGGCTT	CCTCATGTGAAGCATCTTTTCATA	ACCGGTGCCATCAATTACCTATTA	GCAGTAGAGACTGAACATTGGGAC	CATTGGACTGAGATGTCACTGCAG	ACCGAAATTGAGCAGAAGTTA	CCCAATGTGCTTGAATAACTTGGG	CCGAAGCATCAAAGCGTCGCGTTC	TGACTACTTTGATACGCATGGAGA	AGTCCGAGCTCTTGCTCGCCTCATA	CCAAAGGAAACAAATACTATACGA	ATGAGACCACTTGTTGCCTCAAGG	GGATTACGGCCGTTTGTGCACAAA	CGTATAGGAGGGTTTCTGCAGGGA	AGCGGCGTTGAGTGAGAGGAGCGA	GGTGTCCGCACCCCGGAGCTTCTT	GGAACAAGCTCTTTCTTCTTCCCG	ATGGCTAATAGCAGATGACACCTG	TITIGTAGTTACCTGGTACTGA	TGGTAACCTCTAACCTTGACG	AGACCAGTCCATGACCTCTCA	GGGCACACAGAGAGAGACACCA	AAGTGCCTTTGCTATCCTGATTGG	CCAGCAGGTAAAAGCCGACTCTGC	ACCTGTATAGTGCACTGCTGATGG	ATACTATCAGTAGCATATTATACC	GAAACCAGTAAAGCTTCTTAC	CTTCAAGAGCCATAGGTGGTCT	TCAGCAACAGAAGTGAAGGGGCAAT
080-110	73-314	192-284	227-245	227-233	141-153	155-159	138-163	111-123	135-150	144-160	202-220	134-154	135-148	145-151	150-158	100-107	165-201	116-127	260-272	060-790	229-258	186-195	175-207	152-157	185-286	158-172	206-224	108-128	125-169	134-153	144-150	100-110
TET	FAM	FAM	FAM	TET	FAM	FAM	FAM	FAM	TET	FAM	FAM	FAM	FAM	НЕХ	TET	HEX	НЕХ	НЕХ	НЕХ	TET	НЕХ	TET	TET	TET	TET	TET	FAM	HEX	TET	HEX	HEX	TET
MCW031	MCW0032	MCW0033	MCW0034	MCW0035	MCW0036	MCW0037	MCW0038	MCW0039	MCW0040	MCW0041	MCW0042	MCW0043	MCW0044	MCW0045	MCW0046	MCW0047	MCW0048	MCW0049	MCW0050	MCW0051	MCW0052	MCW0055	MCW0056	MCW0057	MCW0058	MCW0059	MCW0060	MCW0061	MCW0062	MCW0063	MCW0064	MCW0065

L43682	G31945	L43683	L43684	L12696	X54093	L06098	D10287	X13026	M17607	L43685	L43686	L12469	L40045	L43636	G31946	G31947	G54426	G31948	G31949	L40062	G31950	L 4 3639	G31951	G31952	G31953	L40063	L40060	L40046	L40053	L40074	G31954	G31955
CEW	CEW	CEW	CEW	W	×	CEW		U	EW	CW	CEW	CEW	EW	EW	W	W	CW	W	CEW	EW	W	CW		W	M	EW	EW	CW	EW	CEW	EW	NO.
S	3	S	4	ŝ	7	9	7	2	S	4	ŝ	S	4	ŝ	2	4	Ś	Ċ	L	6	9	ç.	Ċ	'n	ŝ	7	٢	7	Ś	Ċ	9	"
50	55	55	55	55	50	55	55	55	55	50	50	55	55	55	50	50	50	50	55	55	55	55	55	50	55	55	55	55	55	55	55	¥
GGCCTTGAGATTTCATTCAGAGAC	GAGATGTAGTGCCACATTCCGAC	GAGAAGCTTGAACCTACCAGTCTT	ATTGCTTCAGCAAGCATGGGAGGA	GCGCTCGTTCGGTCCTTATTTTAA	AAAGGACATCTAACTTCAAAACAG	AGGGTGCTGAGAGCTGCCAATGTC	TGGCCAAGGGTACGCGCTTACAGC	ATTCCAACCAGAAGTTTGACTCGC	ATTATTACTCTCTCTCTCTCACGCG	ATCTAAGAGGCAGTGATTACCACC	TAGCATATGAGTGTACTGAGCTTC	AAGCTGTCCTTGATGTGGTCCCGC	CCTGTATGTGGAATTACTTCTC	CTITTGATGCCTCTCCATTTC	TACATITICAGAAGGAATGTTGC	CTGATTTGCAGCTTGGCTGAG	GGTATCAGGGCTTCTGAAACA	AGCAGGAGAGAGCTGCAGTA	CTCAGGCAGTTCTCAAGAACA	TCCAATCCTAGAAGTGTTATG	AAGCAGGAGAGAGCTGCAGT	CCTTCAACTTAAAACATTATAGAG	TGTTCCACCTACTCATTACTG	GATCGCAAAACGCCTTTGTG	TCATGTGTTCCTGTACGTATG	GCACAGCCTTTTGACATGTAC	TTCATAGCTTGAATTGCATAGC	AGAACATTAGGTACTACAGTTC	TGGTCTTCCAGTCTATGGTAG	CGATGGTCGTAATTCTCACGT	GATCTGGGGACACTGTCTGCA	
CTGGAATCACTGTTGTGGGACTT	GCACTACTGTGTGCTGCAGTTT	CCTCACTGTGTAGTGTGGTAGTCA	GCACTCGAGAAAACTTCCTGCG	TGGCGTTATTTCAAAACGACCGTA	TAAACTGACTTCACTACTCAGCAT	TATTTCACCCACGGGGGGGGGGGGGATAC	GCCAATTGCTCGTTGGAGTATCAG	CGTCAAGCCAGATGCTGATGAGTG	GCTCCGGACCATGAATTTGGCATT	CACAGAATTTAAATTGATTACT	CCACACGGAGAGGAGAGGAGAGGTCT	TOCTACGGGGGGCTGTGATGCATTC	GTTGCTGAGAGCCTGGTGCAG	GATCTITAAGGGGAAAGATAT	GCCTTTCACCCATCTTACTGT	TTTGAAGGGATGCTGCATGCA	GTGCAGTTATATGAAGTCTCTC	AGCAAAACATGCCTTCAGAGC	ATTICTGCAGCCAACTTGGAG	TTGCAAATGAACGTATCATGC	CAAAACATGCCTTCAGAGCAAC	GATCCITCTTCCTCTCTCTG	CTTTGTGTTTCCAAAGCACTC	GATCCTCCATGAATACAGGTT	TCTTTTTGTTGTTGTTGCTT	GGAGCTGGTATTTGTCCTAAG	GATCAAAACATGAGAGAGAGAGAG	ATCTAATAGTTTTGCTACCATC	GGAGAGCATCTGCCTTCCTAG	GGCTGCTTTGTGCTCTTCG	CTGAATGGGTTAATATGTTTATG	
110-136	175-184	171-193	159-168	104-108	661-161	156-166	122-124	170-180	121-134	157-162	131-137	260-284	112-134	100-118	066-093	087-118	272-282	270-290	272-287	280-306	281-311	107-122	270-272	071-075	254-265	077-095	072-091	182-313	263-309	260-262	279-310	
нғх	TET	HEX	HEX	FAM	THT	HEX	FAM	FAM	TET	HEX	HEX	НЕХ	HEX	HEX	НЕХ	НЕХ	FAM	FAM	НЕХ	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	FAM	TET	TET	
MCW0066	MCW0067	MCW0068	MCW0069	MCW0071	MCW0072	MCW0073	MCW0074	MCW0075	MCW0076	MCW0077	MCW0078	MCW0079	MCW0081	MCW0082	MCW0083	MCW0084	MCW0085	MCW0086	MCW0087	MCW0088	MCW0089	MCW0090	MCW0091	MCW0092	MCW003	MCW0094	MCW0095	MCW0096	MCW0097	MCW0098	MCW0099	

149	73	956	40	Ξ	02	8	03	<u>ð</u>	08	60	80	05	41	176	87	157	42	43	4	106	358	545	959	990	961	646	902	<i>LL</i> (962	547	10
1400	L400	G315	L436	G321	/ L489	L489	L489	L489	L489	L489	/ L400	L489	/ L436	/ L400	L436	/ G315	L436	/ L436	/ L436	<u>6</u>	G315	L436	0313	<u>G315</u>	GIE	L436	0315	L400	5160	L436	1436
δ	EW	W	EW	EW	CEW	EW	3	EW	EW	ΕW	CEV	¥	CEV	CEV	ΕW	CEV	Э	CEV	CEV	×	CW	EW	¥	¥	¥	CW	X	≩	EW	CW	ð S
۶	4	4	S	2	9	Ś	9	80	00	4	7	2	1	ŝ	0	Ś	0	S	8	7	9	4	0	ŝ	m	9	4	4	61	7	~
55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55
CCATATTCTGTTAGAAAGTAGAG	TGTTAAAACCAAAATCTATCAGG	TTTCCTAACTGGATGCTTCTG	AGACTTGCACAGCTGTGACC	TCTCAGTAAGGCTTGGCACTC	GCAGCATTCAGTGGGGATAAT	TCTGCTTACCTCAACTGACA	ATAATGAAGACACCGACATT	CTATCAATTTATTCTGCCTT	TCAGAGCAGTACGCCGTGGT	ATGTCCACTTGTCAATGATG	GATCACTAAGGTCCCTTTCAA	GAAGTGGTGTCATCAAGGAC	GCGTTGAAGTAGTGCTTCCG	GCAGTGTGTCTGACTAGCTCT	AGGCCAAAGATGAGACACCTG	AGGGAGATGTCAGGGTGTTCG	CAATTTACTCAGAGATGCAGTG	GATCTGTGTCTGGCATTGTGT	ATTCCTGGGTGCTAATTTACC	CTACGTGTGTTTTGACAGCTGG	AGATGCACAGGCAGAGCTCCA	GCCTGATGTAAGAAGGGATGA	CCTFGCAACATTACCTTCAGC	AAGAGCGAGATAAAGTTGTAG	TGGTGTACAGCACAGGCAACA	GAGTTCAGCAGGAATGGGATG	CTGATGAAAAATTGTCCAAGTAG	CCACTTGAATGAAGCACCTAC	AGGTGAGCAGGGAGTATCTTC	TTGCAGTTGTAAAGGTGTAGC	ATCTTCTCCGCGCGTTTTTCCAG
GTTTGTTTGCATCTGTAGTCTG	AACACAGAACTGTTGGAATGG	AACTGCGTTGAGGGGGGAATGC	TAGCACAACTCAAGCTGTGAG	CTTGTTCTATTCTTCAGTGGC	GGCAACTAAGTTGTGGACTG	GAACAGAACTCTGTTTACTG	GTCTCGTGGAGATGATCTAT	TGATTCACTTGATGGTCGAG	CATCTGTGTTACTGTCACAG	GCTCCATGTGAAGTGGTTTA	ATCTCTCTGCCCATGTTTCAG	AGTGTATCCAGCCCACACTT	AGCAAACTGCTCAGTGCTGTG	ATACCAACATCTGCCTCTGAC	GTATTTGAGTCTCAACAGCTC	GTCTCGGACCTCTCTTACCAG	ATGATGAAGCATTTAGTCTAAG	TGTGCTGCTCCACAGGCCAG	CTATGTAAGCTTGAATCTTCA	ATGGATAGGGGTAACTGTTGC	TCCTTTGGAGCACGGAGGAAC	CCACTAGAAAGAACATCCTC	GACTAGATGCTATGTCTTCAC	GATCATCCTTCATTTTTTCTTTA	ACAGAGGAAGCCTGAATGAGT	TGCAATAAGAGAAGGTAAGGTC	CACATCCTTCTTAGCAGTCAC	ATTTGGTGAACACAAACCTGC	AAAGCAGTTTTAGACTTGCTC	GTTGCTGATTCTAAGGCAGGC	ϫͲϫϫϾͲϫϾϪϾϪϾ
072-570	227-239	269-274	191-208	255-261	125-129	113-121	601-160	131-159	100-118	102-110	263-277	100-102	261-293	252-260	287-289	213-236	166-168	118-180	270-284	207-212	267-277	084-094	259-266	068-080	129-164	229-245	170-176	108-118	256-258	195-217	116-130
TFT	TET	TET	TET	TET	HEX	HEX	TET	TET	TET	HEX	HEX	HEX	TET	HEX	TET	HEX	TET	TET	TET	HEX	HEX	TET	HEX	TET	HEX	HEX	HEX	HEX	НЕХ	HEX	FAM
MCW0101	MCW0102	MCW0103	MCW0104	MCW0105	MCW0106	MCW0107	MCW0108	MCW0109	MCW0110	MCW0111	MCW0112	MCW0113	MCW0114	MCW0115	MCW0116	MCW0117	MCW0118	MCW0119	MCW0120	MCW0121	MCW0122	MCW0123	MCW0124	MCW0125	MCW0126	MCW0127	MCW0128	MCW0129	MCW0130	MCW0131	MCW0132

				والالالا المتعادين والمتعادين والمتعادين والمتعادين والمتعادية والمتعادية والمتعادية والمتعادي والمتعادية والمعالية				
MCW0134	TET	260-284	GGAGACTTCATTGTGTAGCAC	ACCAAAGGCTGGGGGGTCAAC	55	6	EW	L43650
MCW0135	TET	124-150	ATATGCTGCAGAGGGCAGTAG	CATGTTCTGCATTATTGCTCC	55	2	CEW	L43652
MCW0136	TET	140-167	CACAGTCTTTGCTTGGAGTG	GCTTTAGTTCATGTGAGACTA	55	~	щ	L43653
MCW0137	TET	244-258	GATCACTTTCCCTTAGGAAGG	TTCATTCTGCTGACTCTCCTG	55	9	CEW	L43654
MCW0139	TET	172-168	TCTGCCACACTTCATTTATA	AAGTAGTTGCTACTGTACTTG	55	ŝ	CW	L43655
MCW0140	TET	260-262	GACCAAGAATTTCACAGAAAT	TCTGCAGTTTGAAGGTCTGAT	55	7	A	G31963
MCW0141	TET	255-259	GTATGAGTATAGCTGTATTG	CTGAAAGATCTAAGCTTTGT	55	ę	EW	L48883
MCW0142	TET	160-890	GTCTAAAGAAATACACATAC	CTGAAAGATCTAAGCTITGT	55	ŝ	¥	L48882
MCW0143	TET	100-105	ATCTGTTGCACACTCATTGC	TACTGAGCATTGTGCATGCG	55	~	ပ	L48880
MCW0144	TET	160-680	TGGCGTAACCTCCTGCTGCT	GCAGCCGAACTGTTTTGGCA	55	7		L48877
MCW0145	TET	164-212	ACTITATTCTCCAAATTTGGCT	AAACACAATGGCAACGGAAA	55	×	CEW	L43656
MCW0146	TET	164-169	CCGTGTGGTGAACAACGATGA	CAAATCTGCCCTGACGTCAGC	55	ŝ	3	G31903
MCW0147	FAM	116-178	GATCCATTTATAAGACCCCA	CCTGGTTTGCCAATACACTTG	55	œ	ш	L43657
MCW0148	FAM	098-108	TTGCCAGGTCAGGACTACAGT	TCACTCTGTAGCTTTTTTGC	55	ŝ	W	G31964
MCW0149	FAM	074-106	ACTCCTACAACAGCATACAT	TGCAATTAAAGGAGTAACCT	55	٢	EW	L48895
MCW0150	HEX	227-235	TCCTGACTGAAATGGTACAGC	CATGAAAACCTITTGCCCTCAG	55	ŝ	МО	L43658
MCW0151	HEX	255-269	CATGCTGTGATACTACAATTCC	AACATCCTGGAGTTTGGGGAAG	55	ŝ	EW	G31965
MCW0152	HEX	224-229	GAGGTATTTCTCAGAACTTCC	CAAACTATTAGTTCTTCAGCTG	55	m	M	G31904
MCW0153	FAM	073-075	ACTGCCTGATGTAAACAAGT	CATATGGAAATGGCGCAGCT	55	6	M	L48885
MCW0154	FAM	171-193	GATCTGTTTTATCACACACAC	CCATTTCCTTTGTTATCAGGC	55	9	EW	L43659
MCW0155	TET	136-138	GGTTAGTAATGTTCCTCATC	AGACATCAATGAGTCAGTCA	55	3	¥	L48886
MCW0156	HEX	242-300	TCTGTAACATTITTCCTTTTGTG	TTAATGTGGCAGACTCAAAGG	50	ŝ	M	G31966
MCW0157	HEX	291-301	GTGTGATGTAGGCCAGATGTC	GTGCTGCATTCTGCCAATAGG	55	e	CEW	L43660
MCW0158	FAM	164-224	GATCCATTTATAAAGACCCCAC	TTCAATACTCCTTTGTAAAGCA	55	œ	EW	L43661
MCW0159	FAM	076-081	AGGAGACTATCCAGGACTAGC	CTATAAGGATGCCAAATGAA	55	7		G31967
MCW0160	FAM	208-226	GATCTTCTTGGTTTGGAAACC	AACAGCATCCATCACTGCATG	55	4	EW	L43662
MCW0161	FAM	221-227	TACAAATTCCTGAGACAGATG	GTAGACATTGAGGAATTGCTG	55	7	3	G31968
MCW0162	FAM	076-085	TCATCTCCAGACCTGGCCTG	GCATTTACATTGTAACAACT	55	0	CEW	L48891
MCW0163	FAM	100-102	GAAGTGTGTTCTACAGTCTG	ATAGGCATTGTTAATGTACC	55	Ч	с О	L48890
MCW0164	FAM	241-248	TTGGTTCTGACTGGAAGTACA	ATCAGAATATACTGTAGAACAG	55	÷	Ņ	G31905
MCW0165	FAM	118-120	CAGACATGCATGCCCAGATGA	GATCCAGTCCTGCAGGCTGC	55	6	ы	L43663
MCW0166	HEX	194-210	GATCAGAAAGAACTGGAACTG	AGGAGTTAGTTGAACCAGAAC	55	2	EW	L43664
MCW0167	HEX	095-120	GATCCCAAAACAAATGCACAC	CTTACATGAGTGCTATCTGCT	55	4	EW	L43665

X FAN				~		2	
č					1	r 1	
HEX	092-096	GATCCCACTTGTTAAGAAGTG	CCTGACCTTACTGAGCTTGGA	55	ŝ	EW	L43667
HEX	263-287	TTGTGAAACTCACAGCAGCTG	TTATAGCAGGCTGGCCTGAAG	55	7	EW	L43688
HEX	217-230	CACATCATAAATCAGAGTTGCC	TAATATTCAGCCATCAGGACC	55	ŝ	CEW	C31969
HEX	299-305	GGAGGTTTAGCTTAGACTGAG	CAGCCTGAGATAGCACGTATC	55	7		G31970
HEX	250-273	TICAAGCTGCTTAGAGGTTCC	TCTTGTTAGCCAGGCTGAAAG	55	5	×	G31906
HEX	261-278	TGGACTTAACACTGCTATTGC	CTCTCTACCTTGGAGGGCTGA	55	7	W	G31907
HEX	262-264	GATCATAATAAGTATAATGCTG	GTGTTTCTATTCACATAAGCC	55	7	υ	G31908
HEX	257-270	AAAGAGAAGTATAAAACATGCC	TCCATTCTTGGCAGTGCATAG	55	4	¥	G31971
TET	293-316	TTAAAACTGTGTCCATGTAAGC	GTAGAACATGAACACTCTACC	55	6 0	3	G31972
TET	076-096	ACTGGAATTTTAGGGCAACAG	AACTGTTAGCTAATATGACCTG	55	ŝ	ΕW	L43668
TET	239-246	ATCTGGCTTCCAGGGCAGCT	TTAGACACTAAATCAGCATGAG	55	4	EW	G31973
TET	071-088	GATCACATCACGTTAATTTT	GGTGGAGAAAGTGAAAGAC	55	ŝ	CEW	L43669
TET	249-255	GATCTCCAGAGGTCCTTTCC	GTGATGTTGAACACTGCAGTC	55	ŝ	EW	L43670
TET	291-301	AATGTGCTTTGACCTCCTACC	CATGCCTTATGATTGCAGATG	50	ŝ	CW	L43671
TET	290-311	ATCCCAGTGTCGAGTATCCGA	TGAGATTTACTGGAGCCTGCC	55	m	W	G31974
TET	240-293	CATTTGATACITACTGAAGCAC	CAAGTCCGGAACTAGTGATGT	55	9	W	G31975
TET	200-226	GATCTACTGTCATTTTAGTTT	TGAATAGATTTCAGTGAGTGC	55	ŝ	CEW	G31976
HEX	117-132	ATCTAGTTTGGACAAGTTAC	CTAACTTATTTCAGTCAAAT	55	S	EW	L48899
HEX	177-183	GTGACAGCGGCAGAGATGGA	CGCACAGCCCCACTCGCACA	50	7	EW	L48897
HEX	110-124	CACGACCTITGCACGTCTAT	CCGAGCGCGTGTGGTGCATG	55	3	CW	L48893
HEX	060-105	GTGATCATTTCTACATGCAG	ACAACAGAACTAAACAAATA	55	4	CEW	L48881
TET	202-232	TGTAATCAGCATTTAATAGA	AGGCAAACAGTTGTGAAACT	55	4	EW	L48878
TET	302-317	TATTCAATAGAGTTACGCTGTC	ATTACGTCTGCACCAGTACAG	55	9	CEW	G31977
HEX	162-170	GAACAGAAATAATCATTGGAGA	TCAGTAGGGACTGCTCTGAAC	55	4	EW	G31909
HEX	185-214	TCTGAAGTAGAGTAAAGGCAG	GAATAGCACAGTGTCTGCTGG	55	ы	×	G31978
TET	192-200	ATACTTGAAGAAAACTAAACTTC	GATCAGTGTTGCAGATTTTGG	55	9	с С	G31979
TET	093-112	GTGCTGCTGGGTTTAACCTA	CTCACACGCGCACATACTTA	55	9	CEW	L48901
HEX	264-267	GATCTTTGCTACCATCCACTG	ACCCATCTGGTTGGACTATGC	55	6	EW	G31980
TET	282-286	ACCATGTGGAATTCAGAGAGG	CCAAAGATAAGTAGCCATAGG	55	m	M	G31981
TET	241-263	GAGACATTGCAAATACTCAGC	TAGTCAGGGAGTTCAGGAAGG	55	m	M	G31982
TET	302-312	ATGTGAAGGCCTTCCAAATCC	AACCTTCACAGAAAGCTCATG	50	4	CEW	G31983
TET	305-307	TGTGAACGTGGAGGTACCATC	AACATATGGCTCCACAGCCTC	55	6	EW	G31984

MCW0203	TET	183-187	CTGTTGTAATGATAGAGAGC	CTGTTCACGTCTAGTCCCCG	55	5	۹.	F030581
MCW0204	TET	096-108	AGATTCGTGCAAGCGCTGCTG	TCAACTAATGGCACAACCGTG	55	4 EV	۲ ۸	F030578
MCW0205	HEX	282-290	GATCCTGACCCAGAGGACC	TCTTTGAGGAAGACCAGGTGG	55	4 CE	No No	31985
MCW0206	HEX	226-235	CTTGACAGTGATGCATTAAAT	ACATCTAGAATTGACTGTTC	55	4 EV	۸ ۷	F030579
MCW0207	FAM	278-284	GATCCTTACAGCCTGCAATGC	ATACTGTTGGAAGATGTATGCG	55	4 EV	~	01616
MCW0208	НЕХ	228-239	TGACACCCAGATGCAGCAATC	TACATGACTGAGAGGCTGGTG	55	3 G	0 0	11616
MCW0209	НЕХ	190-229	CAAGGATAAAGAGCAGCTGCC	ACCAGAGGTGGTGGCCATAG	55	4 CI	N N N	331986
MCW0210	TET	153-186	TGCCACTTTCTGCCAGCTAAG	CAATGATATCCACTGCATGAG	55	4 E	~	31987
MCW0211	FAM	224-256	GATCCAGGCTGAAAAACAC	AACAGGGCATGGGAGCCAC	60	6 W	Ű	131988
MCW0212	НЕХ	188-210	AAACCTTGAGAGCCATCTAG	GTGATTTCCCTTTTCAGTGAC	55	S CI	N N	331989
MCW0213	FAM	293-311	CTGTTCACTTTAAGGACATGO	GACAAGTCAACAACTTGCCAG	55	5 CI	N N	131990
MCW0214	FAM	274-291	CAACAGTAACCATACATCTGC	TACCTGGATTCTTTCATCAGG	55	5 W	0	31991
MCW0215	FAM	288-296	CCTAAGGCTACAATTAGACTG	GAGTGGCTCTTTCTACCAAGG	55	2 W	0	131992
MCW0217	FAM	153-174	GATCTTTCTGGAACAGATTTC	CIGCACTTGGTTCAGGTTCTG	50	4 W	Û	131912
MCW0218	FAM	258-281	TCCCTAGGCAAACCTGCTTAC	AAGACCCCACAACTTGACTTG	55	5 EV	~	131993
MCW0219	FAM	227-241	CCACAGCTATAAATGCTATAGC	GACATGACTTACTGAAAACTAG	55	4 EV	∨ ×	331994
MCW0220	FAM	251-261	TTGAATGCCTCCACAGCAGCA	GAGGACTGCTGTAACAATTACC	55	4 C	ں ہ	331995
MCW0221	НЕХ	172-180	CTATAGGGACGCACAGCATG	TCGCCCACTGTAGCCCTGAG	55	3 W	Ű	54427
MCW0222	FAM	221-225	GCAGTTACATTGAAATGATTCC	TTCTCAAAACACCTAGAAGAC	55	3 W	Ű	331996
MCW0223	FAM	178-188	TCCAGAGATAGTCTGTAGTGC	AGCACGTACAGCAGTGTTGCT	55	4 CI	N N	331997
MCW0224	TET	291-301	ATTACCTITCTTCATTAACGCC	TTCATAGACTTGAGCGAGGAC	55	4 CI	N M M	331913
MCW0225	FAM	176-186	AACGGACTCTTCTGTCTATAG	TGCTTTGCTCCTCATTAAGG	55	5 W	Ξ	34550
MCW0226	FAM	297-310	ACTTATCTGGCTTGCTCTCAG	GTCTCTCTAACCATCCTAAGC	55	3 W	Ű	331998
MCW0227	FAM	242-260	CAAGTTTGCCCACATGGACAG	CGTGGTGGCATTAGTGGG	55	5 W	Ű	31914
MCW0228	TET	222-251	GATCTCTGCATTACAAGCATG	TTGCTGACCTGCTCATGCAAG	55	6 CI	M M M	331999
MCW0229	TET	086-092	AGCGATGATTGTAATCAATGG	TCAGCTCGGCCGTCGCTC	55	3	×	332000
MCW0230	FAM	281-298	TGCACAGAGCCAAGCTGCTTC	GATCCTCTGATGGCTGCCG	55	2 W	Ű	32001
MCW0231	FAM	266-272	CITTCTGAAATTCACAAATGTAG	AITCCTTTCTGTGCTTCTCAC	55	4 CI	с п	i32002
MCW0233	TET	208-218	TCCAGCAGTAAGTATAGCTGC	TGTTAGCTGCAGGGTATTAGC	55	3 W	0	331915
MCW0234	TET	262-269	GAAGCTTTGAAACTAGCCAGC	AGAAGCTAGTTGCTGAAAGGC	55	3	×	132003
MCW0235	НЕХ	190-196	CTGTGACAATTAACTCTCCAG	AATTCTCAGGTAAACTGGAGC	55	0 3	° ≈	332004
MCW0236	НЕХ	310-330	GATCCTACAGCCTCTGAGTC	TTTCGAAAAGAAGCTGCCTGG	50	5 CI	S N∂	332005
MCW0237	TET	196-234	ACTGCTGGAGTTTGCCTGTC	TGAGAGTTGCCTCTGTCACC	55	5 W		32006

MCW0238	FAM	187-217	GATCAAGGATACACACAC	CTATGCTTAGTGTCACCAGC	55	5	EW	G32007
MCW0239	FAM	158-170	GGTAATAACAGGAAGTGTTCG	CATCAAATGGTGTGCATCTGG	55	ч Ч	CEW	G32008
MCW0240	FAM	172-197	CAAAACCGGTGTCACCTACTG	GGTTATTTCTTCAGTGACTTCC	55	∞	CEW	G32009
MCW0241	FAM	272-278	AACCAGTTTGTTAACATCAGC	ATTGGAGTTGGTACCATACTC	55	m	N	G32010
MCW0242	FAM	154-158	GAAGCTGATATTACCCAAGAC	AGACATTCAAATGGTCACTGG	55	m	CEW	G31916
MCW0243	FAM	193-232	GGCTATCTGCTTGGCAATAGG	ATAGTTGAATAAATTACAGATGG	55	4	CEW	G32011
MCW0244	FAM	166-174	CAGCTCCATGGAGTCCTGATG	TCACATGGGAGCATCCCGATG	55	m	Ň	G32012
MCW0245	FAM	284-290	ATCTATGGCCACCTCAAACTG	GATCTGTGCTGAACACAGCAG	33	7	8	G32013
MCW0246	TET	230-238	TCATAAGGCAGAGAAATTCATC	TITICCATTICAGACAACAAGGC	55	4	CW	G32014
MCW0247	TET	200-212	CITCACATGCTCCACITGATG	AGTGACTATACTTCTTCACGG	55	m	CEW	G32015
MCW0248	TET	216-225	GTTGTTCAAAGAAGAGGATGCATG	TTGCATTAACTGGGGCACTTTC	55	4	EW	G32016
MCW0249	TET	245-260	ATCCGAATCCTGTAACTGATG	TGCATGGAAATCCATCAGCAC	55	2	3	G32017
MCW0250	TET	228-238	CAGAATTTAGAGACTGTCTAC	ATACGGTAGCTCTGTTGCAAG	55	4	CEW	G32018
MCW0251	HEX	175-177	GCCACTTTGAGTCATACATCG	TTCCCACATCACTTTAAGCAC	50	7	EW	G32019
MCW0252	TET	254-296	CTGCTCAAGCCCATCAAATGG	CGATAACATCTGACACTGCC	55	en E	CW	G32020
MCW0253	HEX	202-232	ATCAACAGGAACCAGTTTCTG	CTATAGCCATAAGGACTCAAG	\$	2	ں د	G32021
MCW0254	TET	115-121	GAACCAATGAAAGCGAGATGC	GTGTTCAAAATGCTGAGAAGTG	55	- m	CEW	G32022
MCW0255	TET	167-173	CATTTTACAGTGTCTCGATTC	GAACAGCAAATTCCATTAACAG	55	с П	EW	G32023
MCW0256	TET	169-181	GATGGGGCACTGTGGGTCC	TGGTTTCCATCAAGCAGTTCC	55	4	CEW	G32024
MCW0257	TET	288-301	AGTCCATCATCAGATGCTTGC	TCTTGAGTGATTCTGTAGAGG	55	4	CEW	G32025
MCW0258	FAM	141-162	TTCTTAGTCCTTGCCAGAGGC	CTGCAGGAGGATGTGTCCTAG	55	ς ε	EW	G32026
MCW0259	FAM	299-313	GATCTTGAACTATTTCAAACTTG	TAATTTAAGTTCAGTTCAGTACC	55	-1	Ω	G32027
MCW0260	FAM	173-194	ATCTGCCTTCTGCCAGACAG	TTGTCATTGCTCCTCTGATGG	55	ŝ	CW	G32028
MCW0261	FAM	245-257	GTAGTAGCAGCTACACCAGAG	GAGCAGTTCATATGAAGTGCAG	55	4	EW	G32029
MCW0262	НЕХ	065-076	GATCCAGGCTTTAAGAAGAGG	GATCTTGTACATGCCAGCAC	55	4	EW	G32030
MCW0263	НЕХ	240-254	TGTTCAAACATAAGGGCGTTC	ACTTCTCTTGGAGAACACTG	55	4	CW	G32031
MCW0264	HEX	227-241	AGACTGAGTCACACTCGTAAG	CTTACTTTTCACGACAGAAGC	55	ŝ	CEW	G32032
MCW0265	HEX	130-137	GATCCTTCTTGCATGCATT	ATCACTGACATCACTGTGTAG	55	2	A	G32033
MCW0266	HEX	165-181	GATCCCCATGCGCACAC	TTGCTACACTTCCACCTTTGG	55	4	3	G32034
MCW0267	FAM	263-284	CTTTGCTCCTTTCACTCCTGG	TGAGCGAGTTTTGCAATGGAG	\$	ŝ	CEW	G32035
MCW0268	HEX	180-182	TICAGGTICTGGTCTGTTTGG	AGTGAACGCTATTCCTTAGG	55	7	СE	G32036
MCW0269	HEX	196-207	GATCCAAAACACAACCTTTT	GATCCTTCATTTGAACTAAATG	55	Ś	EW	G31917
MCW0270	НЕХ	198-217	TCCACAGAGATTTCAGGCTAC	ATAGCCCATCAGACTCTAGC	55	4	CEW	G32037

Arusuar	AF030580	AF030582	AF030587	AF030584	AF030585	G32038	G32039	G31918	G32040	G32041	G32042	G32043	G31919	G31920	G32044	G32045	G32046	G32047	G32048	G32049	G32050	G32051	G32052	G32053	G32054	G32055	AF030583	G32056	G32057	G32058	G32059	G32060
N LEX	S	EW	W	CEW	CEW	EW	EW	EW	EW	CEW	EW	X	EW	ΕW	SC	CW	CEW	W	CW	EW	CEW	EW	ΕW	СW	EW		υ	CEW	CEW	X	¥	CEW
4	~ ,	(1	٣,	~	4	ŝ	~	2	9	e	5	2	4	~1	ę	6 7	Ś	2	4	•••	6 73	Ĵ	Ś	2	4	e	6 1	ŝ	4	6 1)	6 0	4
 ŝ	55	55	50	55	55	50	50	55	55	45	50	50	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	\$	55	55	55	55
ACACIAACAACICGIIIAIG	ACTCAGAGCCACTTAGCTGC	CAGCACCCACATCAAGATCC	GATGTACCAGTGCCTCAGCG	AAACCGACTTCGATACC	ATTTCTGTTAGAAGCAGCTGC	GAACTGATAACTAGCAGGTAG	TAATGGGATCGTCATAAGTGC	GCITCCAGGTGAGTCTTATTC	AGCCCATAACCAAGGCATCTG	AGTATTTCACTAGTGAACTACC	TTTCTGTGAATGCTGACTGAG	GCCTTAGGAAAACTCCTAAGG	TATGACATAATCCACGCTGAG	AATGGCTATTGCAGCCCAGAC	TTGCACCAGCGCTGCAAACTG	GGTACTGTCACCAGAATGAGC	GATCCTTCCTTCACTGG	GATCTTCTGATTTTTTGTTATCTG	CTGTTCCTGCTAATGAGAAAC	CAGCAGATGGGGGCTGAGAG	GGAGAAGACTGAGGAGAAATC	CITCTCTAGATGTCCACTACC	TATGTATGCACGCAGATATCC	GCACTACAATGCTGTCACTGC	ACTTCACTGCAGGGTGGTGAG	GATCCAGCCTGTCCAAATCC	TGAAGGAAAGGTGAGTGAGAG	TGTGCACATTTCTCTGCTGAC	AGGGTGAGAGGTAACAAGTGC	GATCCCTTGTCGGGCCGG	CTGCTCAAGCCCATCAAATGG	TTGTTACAAGGTCTTCTGGAG
GITGCTLAAAGCALICIGI	CTCAGGTTCCAGCTGATGC	TGITATGCCATTGCTTITAG	TCATGTAATGTAACCTCTGC	TITITICGAGTITCTGCAG	ACTCTGAGTGGAATTACCTG	ACAAGTAGAACTTGGTGAGTG	CTACCTTCTTTCCTGCATTG	GCTCTTTGGAAGCATAAATGC	CGCCTCTATCGTTATGGTAAG	GATCCTAAGGTTCTACTACAG	GATCCTAAATATTTTAATTAACAC	CAGAGCTGGATTGGTGTCAAG	AGTTGGAGGTTATATTACGGG	GATCCCTGCTGTTGTTTCATC	GCCGTGTGACATCAGTGCTC	GATCTGCTTCTCTGCCCCATG	TAGTGCAGAAGACAAGGCAG	ATTCAACATTTGCTTTCGGTAG	ATCTAAGAGGCAGTGATTACC	GGAGGCTCTGGGTGTTCC	GATCATCCATGCAGATATCGT	ACTGAACAGAAACAGTCTTCC	ATCACTACAGAACACCCTCTC	GTAATCCTGCACAATCCCTGC	TGCCAAACATGACCTCCAGTC	AACACTGACACGAATAAGGCC	TGTTTGGAATTGTAAACTGC	CAGAGAAACGTGCATGTGGAC	GGAGAGAGACAACTGTATTC	CGCTGGCGTCAGGCAGTC	AGCCGATAACATCTGACACTG	TCAGTATGAGAGCTTCTCAAG
196-212	135-145	176-181	161-165	147-151	218-239	257-269	234-253	94-96	268-296	287-308	112-155	238-246	176-194	198-204	237-258	118-122	217-234	190-202	183-191	94-130	224-232	306-317	94-107	245-249	288-303	133-153	096-102	123-130	266-284	134-138	290-296	284-296
TET	TET	TET	TET	TET	TET	TET	TET	TET	TET	НЕХ	HEX	TET	TET	FAM	TET	TET	TET	TET	TET	НЕХ	TET	НЕХ	НЕХ	HEX	НЕХ	TET	HEX	FAM	FAM	FAM	FAM	FAM
MCW0271	MCW0272	MCW0273	MCW0274	MCW0275	MCW0276	MCW0277	MCW0278	MCW0279	MCW0281	MCW0282	MCW0283	MCW0284	MCW0285	MCW0286	MCW0287	MCW0288	MCW0289	MCW0290	MCW0291	MCW0292	MCW0293	MCW0294	MCW0295	MCW0296	MCW0297	MCW0298	MCW0299	MCW0300	MCW0301	MCW0302	MCW0303	MCW0304

MCW0305 7	Т Т Т	896-851	TTAGAAACAAGCAGGAGTTG	ΤιΑΓΑΤΓΤΤΓΓΑ ΔΑΓΓΑΓΑΓΓ	55	0	CEW	G32061
MCW0306 F	IFX I	33-167	ATGTACTTTCTGGATGCAGC	TGTTAAGGTATTTCTCTATCAACC	55		CEW	G32062
MCW0307 F	AM I	72-178	AATGCTGTATTTCAATAAGTGG	GAATACCACAATCCATGAAGC	55	ŝ	EW	G32063
MCW0308 7	ET 2	201-207	AACTCTCAACCATGAGTCTAC	ACAGCCATTCTCACTTTCTGC	55	7	ЕW	G32064
MCW0309 F	HEX 3	258-280	TTTCCATCCTGGAAATAATGG	TGCCATTCTTCATCCTGAATG	55	7	CW	G32065
MCW0310 F	AM 3	18-320	CCAACTAGGTGGAGGAACTTC	GATCCCAGGTAGGGCTGGAAG	55	2	EW	G32066
MCW0311 F	AM 2	250-266	TTAGCATGCTTCTCCTGGCAG	CACTGTGTACTGAAGTGGCTC	55	6 0	W	G32067
MCW0312 7	TET 2	17-221	TITGTTCGGGATTAAGCITGG	CCTAAATCAGGATGTTTGGAC	55	7	EW	G32068
MCW0313 F	HEX 3	126-252	GATCTGCTGGCAAACTTT	TCTCTCAGCCTCATAAACTAG	55	9	CEW	G32069
MCW0314 7	TET	278-284	GCCAGGCTACACCTCTTCTAG	GTTGGTATGATGGTATGATGC	55	6 1	EW	G32070
MCW0315 F	AM 2	250-266	GATCCAAGCCTGGAAGTATG	TGATGCTGGAGGCAAACATC	55	4	M	G32071
MCW0316 F	I MA	168-182	TCTTACTTTCTGTGCACAGTG	AAAGGTCTTAGGAGATGAACC	55	7	ΕW	G32072
MCW0317 E	IEX I	135-257	ACTTGTTGGCTGCTTGAGATG	ATGCATGCATTCACAGAAAGC	55	Ś	CEW	G32073
MCW0318 F	2 MA ⁵	204-224	TGAGCTGCCCTATTTTGCTG	TTCCCTITTCTCACCAGTGC	55	6	ш	G32074
MCW0319 7	TET 1	78-180	ATCTGTCATGAAGACCTACAG	ATGATGTCTCCTAACAGTCAC	50	7		G32075
MCW0320 F	I MA	11-69	CACAGGCAAAGGGCCTAAAG	GATCATCCTAGAGTTTAGCCC	50	4	CW	G32076
MCW0321 F	I MA	115-117	GCTCACATTCTACCGTCCC	CTCAAGAGACCAGCCACCAC	55	7	щ	G32077
MCW0322 F	3 MM	256-258	GATCTCCCTAGCTACAAACC	CITCCGCCTTCTTGAGAGTC	55	7	W	G32078
MCW0323 E	HEX I	10-114	TGAATTCTCTCGGCTTCCATC	GAAATGGTACAGTGCAGTTGG	55	e	W	G32079
MCW0324 7	ET 2	179-285	ACCAGAAATCTAACACCAACG	AGGCTTTGCTCTGGTGTCAG	55	m	CEW	G32080
MCW0325 F	I MN	54-160	CTCCTGGACTGGAAAACCAG	GAGCTGCTGTGCACATATGG	55	r î	W	G32081
MCW0326 7	TET 1	11-173	GATCTTGAGAGAGGCGCAC	ACTTCATAGAAGGCAGACATG	55	7	CE	G31921
MCW0327 F	I WE:	93-203	GTCCTTGCCATGTATTGACTG	CAGCACTAAGTGGCTGACATC	55	4	EW	G32082
MCW0328 7	TET 2	255-267	ATGGAAACAGATGGAGCTGGC	CTCCAATCCCAGGCTCCAAC	55	7	CW	G32083
MCW0329 F	AM 2	368-312	CATTGAAGGCAGTCTGCTGC	CAAAGGGGGGGGGGATTGAAGG	55	4	CEW	G32084
MCW0330 F	AM 2	360-290	TGGACCTCATCAGTCTGACAG	AATGTTCTCATAGAGTTCCTGC	55	4	EW	G32085
MCW0331 F	3 MA	:16-222	CAGAGCAGCTGGAGATGTAAAG	AGAGGGTAAGAAATCCTGCTG	55	m	EW	G32086
MCW0332 F	AM 1	97-201	TGGGTTTGCAACGGGACATAG	GAACAATGGTGAGAGCACTGC	55	7	CW	G32087
MCW0333 1	TET 2	201-207	TAACAAGGTGGAGACCAGAAG	TCTCACCTITTGTGTGAATGC	55	4	CEW	G54427
MCW0334 F	I WV	62-192	ACAGTACGCAACAAATTCCAG	ATCCCTCCATGAAGACCACAG	55	4	CEW	G54462
MCW0335 7	ET	33-135	GATCTCAGGTGCAGCTGCC	ATCITACCTCTTCAGAGCTAG	55	5	щ	G54429
MCW0336 F	S MA	:42-266	CATGCAGACAGCAGCTCCC	GATGAAGTAAATGGGAATGCG	55	ŝ	CEW	G54430
MCW0337 F	HEX I	04-106	CCTGCCAGTATACTCTGTCAG	ACCAGCTGCAAATCTCTTAGG	50	2	M	G54431

1151641	G54432	G54433	U31223	G54434		D28600	G54463	S78786	X89248	Z71594	U87449	U04611	D26339	G54464	D16184	U71183	Y14347	X57991	D50335	G54465	D28598	AF022151	X57339				S40818				AL023516	AL023516
CEW	; ;	CEW	EW	CEW	W	с С	¥	EW	M	X	A	EW	CEW	EW	ш	CW	CΜ	CW	EW	CEW	CEW	CEW	CEW	ЕW	CEW	CEW	EW	CEW	CEW	CEW	W	
و	5	ŝ	4	4	4	7	Ś	4	ę	2	ę	6	2	S	7	ŝ	e	7	ę	4	4	7	3	1	9	9	9	6	4	6	2	7
55	55	55	55	55	55	55	55	60	60	S 5	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	55	50	50	20	20	50	20
TUGGTUTAAATGTATAUUAAU	AATGCTGCAGTAGCACAGTAG	CACCGATTGTAGCGGAACATC	TTTTCTCGCGAAGGAGCAGCG	CTCATTACTAAACCCATAAACC	CATTAAGGTTTGTCATTACCG	GCTTTGCACGGGGGGGTTTTCTC	CCITACTGGAGCTGTTAGGTG	TGAAAGTGCTTGATCGGATCC	CACAGCGCTGCAGCAACTGC	TGACTTCCTGCGCTCATGTCC	AAGCCTCCTCTTTATAAGCC	AGTGTTGCTCAATTCAGACAG	GAGTAGGGCTTAGGAAGTAAG	CCAGGTCCTCCAGCGTGATG	ACTGTGTTAGCATCCCCTCG	CGGTCGTTCCGTCACTTTGG	CACATACTGGAGATCCTGAGC	CTCACTGATATGGCCTTTCC	GCATGCCTCTAGTGTTAGTAC	AGCGGTGAGAGCGGGAAGC	CTTGAATACCGTCACCTGAAG	CTCGCAGAGCCGCGTTGAG	ACTTCAGACATTCCTAACACC	CTCAGATGTTTGTACGGTGAC	ATCACCCTATCACATCG	GATCCCTCTGCACACGGG	AAGTGCCGTACGGTTGAAC	TCTACTAAAGTAGCTGCAAGG	CCTTAGTTACCAACACATCAG	ATGTTGGTGACTTGGTGTAAG	TCCCACCTCATCATGCATTCC	CTGCTCCGAGCTGTAATCCTG
GTTACTACAGOCAATTOCATO	GTGAACCCAACCTGAACCAG	ATTATCTGATGCATCAGCTGG	ACAGAGCACGGCCAAAGTCAG	AAGAGAATCATGGAGTGGGAG	AGACCATGCCCAGAGACTCTG	CTGCGCTGCGAATCACAGCT	GTCCTACGATAATCCACTAGG	TGCTCCTTTCAGAAAGAATGC	GCTTCCAGATGAGCTCCATGG	CAGTTTGTGGACTCTTGGACAC	GATTAAATGAGGCAGAAGGC	CAGCATTCTGCTCATTTAGC	GTAAAGGCTCTTTACAAACGG	GTAGGACAGTGCTGGAGCAG	AGGACACATACTGTAAGTCAG	GCTGCCGTGCGTAGTCCTG	TTGACCTGCACCGTCAATGG	ATATAGGCALTTTCCACGGTC	GATAGTCCATGGTCACGTTTG	CGGATAGAGTAGAGCTCAGAG	TGATGATGGCTTAGGACAACG	ACCACAACGCTGAATTCGTGC	CATACGAAAATTTCTTGGTCC	ACTTCCTCAAGGAAGCATCAG	GCGGTGAAGGGAGATGTCAG	GATCGCTTCCCCGGAGCG	ATTCATGGGGCACACAGTTG	CAAGTACGTCTACACAGTA	TACAAACAATCCTGTCAGAAG	GAGGATCATGCTTTCCAGAAC	GAAAGAGGAGAGAGTAGTTCACG	TTTCATGCCATCCTAAGATGG
715-277	116-129	179-185	216-226	144-175	203-211	198-200	230-240	137-156	270-290	199-201	188-198	168-174	150-167	150-178	222-228	120-122	261-271	211-250	210-218	138-146	234-249	121-131	153-157	161-195	170-200	132-166	181-212	282-295	213-241	183-221	182-193	202-211
EAM	TET	HEX	TET	FAM	НЕХ	HEX	НЕХ	FAM	TET	FAM	TET	TET	FAM	FAM	TET	HEX	TET	TET	TET	TET	TET	TET	НЕХ	FAM	FAM	НЕХ	FAM	TET	НЕХ	FAM	TET	HEX
MC320238	MCW0339	MCW0340	MCW0341	MCW0342	MCW0343	MCW0344	MCW0345	MCW0346	MCW0347	MCW0348	MCW0349	MCW0350	MCW0351	MCW0352	MCW0353	MCW0354	MCW0355	MCW0356	MCW0357	MCW0358	MCW0359	MCW0361	MCW0362	MCW0363	MCW0364	MCW0365	MCW0366	MCW0367	MCW0368	MCW0369	MCW0370	MCW0371

										AJ397960	AJ394144	AJ394484	AJ393912	AJ397995
EW	EW	EW	Ŵ	EW	CEW	CEW	υ	CW	EW	CW	CEW	W	¥	CEW
4	ŝ	S	7	4	m	4	Ś	ŝ	2	4	2	Ч	7	γ
50	50	50	55	55	55	55	55	55	55	50	<u>8</u>	50	8	8
GCTGCAGAAACTAGCCATTG	ACTITTCAGCCTTAGCTAGG	GTAAGAGCCATGTGCAGTAC	TGGGATACAAGAATCTCAACATG	CTITTATCATCTCTCTAAGTG	ATAAGAGCCCACTTCATTTGG	AGCTTTTGCAGGCTTTGTTTGG	TAGTTTGCAACCCACTGCAAC	GTAGTCATTTTGGCTGTTAGG	ACCTTCTGCTGCAGAATTTGG	AGGCAACTTAAACTACTCAG	GAAAACGCGCAGCAGAGTGG	AAAGTGTATGTTGCCCTGCAC	TGTATCTAAAAAATGTTAATGCTG	TGGAAATCTCTGAGCATCTGC
ACTTGAATGTGAAGGCACTC	AAGCTTAGCTGGGGGGAAAAA	AAGCTTCTAGATGTAAATAC	GCCATCAAAGTATGATTTGGC	GCTTGATGGCTCTTTGCACA	GATCCCTCAAGATTTGTTAGC	GATGATGTTTTCAAATACACC	AATCAATTGTGCATCAGTTAGG	ATAAGAGCCCACTTCATTTGG	AGGACAATTCTACAAAGATGAAC	TAGAATACTGACGTTTCATTGG	GTAATTCTCACGTACTGAGAC	CTTGGACAGGTGCAAGAGGAC	TACTGCCAGTGTTTTTGAAGG	TAGGCTTGGCTCATTTGTTGC
196-202	160-172	180-192	184-190	275-287	261-268	87-91	127-133	277-301	123-125	101-130	149-160	168-177	163-165	180-194
FAM	FAM	TET	HEX	FAM	TET	FAM	TET	TET	TET	FAM	FAM	HEX	HEX	TET
MCW0372	MCW0373	MCW0374	MCW0375	MCW0376	MCW0377	MCW0378	MCW0379	MCW0380	MCW0381	MCW0382	MCW0383	MCW0384	MCW0385	MCW0386

Table 2. Characteristics of chicken microsatellite markers derived from sequences from Genbank (LEI markers).

Marker	Dye	Length ² (bp)	Forward primer	Reverse primer	PCR ³	All. ⁴	Pop. ⁵	Acc. No.*
LE10028	FAM	224-252	CATCAGAGTCTGCCTGCAGTG	AACTCTTGGAAGACAGTGAC	55	٢	CEW	X83979
LEI0029	TET	220-240	TGAGAAGGATGTCCTACTATC	CCTCAAGTATGATCATCTGG	55	e	W	X83982
LE10043	TET	106-120	GGCCATTAGGACCCGGTTGG	CCTCCAAACCTCTGAGAAAGC	55	4	EW	X78623
LE10044	HEX	176-207	CTGGACGTATGAATCCCTGAG	GAAGGTGGCTGCTGGAGGAAC	55	7	EW	X78624
LE10062	FAM	81-113	TTCATTTCCACGTGGAGTGAC	GGAGCTGTCATCCACTCTTGG	55	7	CEW	X82792
LE10063	HEX	206-290	ATCACTGTGTACCTGAGGCC	AGGTCTTCAAGTGCACACCTG	55	1	EW	X82797
LE10064	HEX	295-304	TGGTTGTCTCAATACAACGTC	CTGTAAGGTTTTCTCAGAAACAG	55	6	CEW	X82808
LE10066	FAM	299-313	GATCAGATGCATCCAAAGTTC	GAAGCAGGAAAATAGAAAGGC	55	6	CW	X82813
LE10067	FAM	250-264	GATCAAACGTGCGTGGTGGTG	TGTTGCTTCTCGCAGTGAAGC	55	6	CW	X82862
LE10068	FAM	173-199	GTGCAGAAAGACAAGGCAGTC	AGCAGGTAAAGAGGCTACAGG	55	ŝ	CEW	X82867
LE10069	HEX	249-271	ACTGGGGCTGAGCACTGCTC	GATCTGCAGCTTCTGGAGCG	55	ŝ	EW	X82868
LEI0070	HEX	185-223	TGCGGAGAGCAATTAGTCTGC	GGAAACAATCACTGCCTCG	55	9	CEW	X82869
LEI0071	HEX	281-330	TCAGGTTAGTCTGACCATTGC	TGAGTGTAAGATTGCTAATGGA	55	7	CEW	X82814
LEI0072	FAM	84-100	TAAGCTGACATTCACCACCAG	GACTCTTTCAGTACATACTGG	50	Ś	S Q	X82815
LE10073	HEX	163-221	CCATATCATTTGTCAAGCACC	AATTCCTGACCTCCATGATAC	55	8	CEW	X82871
LEI0074	FAM	303-315	AAACGTCTGCCTTCATGCGAG	CATCAATTAGAGCGAAGCCTC	55	ŝ	CEW	X82861
LEI0075	FAM	226-259	CTATGCTATCATTGAAACACAGC	ATCCAGTGCGTGTCTGGTCAG	55	ŝ	EW	X82794
LE10076	HEX	254-280	GATCTGAATTTCTCGTTCATCC	CACAGCAGACCTTCACCTGAC	55	ŝ	EW	X82801
LEI0077	НЕХ	161-190	CTTGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AAACAAGGAGGGATTACCTCC	55	4	CEW	X82788
LEI0079	FAM	200-234	AGGCTCCTGAATGAATGCATC	TCATTATCCTTGTGTGAAACTG	55	S	CEW	X83242
LE10080	HEX	191-211	GTTAGAGCCATACAGAAACTTC	ATCACACAAGCTTTCTTCCTG	55	~	CEW	X82863
LE10081	TET	218-260	ACTTACCTTITCTTAGCTACTG	GATCCTTTCAATGCTCATGCT	55	ŝ	EW	X83249
LE00182	HEX	253-280	TATCCATACAGTACCCTCCTG	CCTTAGCTGGCTCAGTGGATG	55	ŝ	EW	X83251
LE10083	FAM	193-238	CAAAACCCTCACACCCATTGC	TGTATTGCTTCAGCTCTACTG	55	4	CEW	X83248
LEI0084	НЕХ	219-231	TCTGAAGGTCACGCCTGACTG	CGTTGTCGCATGTTCTCGATG	55	4	CEW	X85514
LEI0085	HEX	259-273	GATCCAAAGGATGAAGTGCC	CCACTTCTCTGTCAGCTGTC	55	Ś	EW	X82800
1.EI0086	HEX	233-285	GATCAGATATGAGGTGCACAG	GCCCTAGAAGCTGTACTTGTG	55	S	C	X82795

,	_	
	×	
٠	ĩ	
1	σ	
	q	
	e	
	0	
	Ċ,	
	2	

LE10087	HEX	265-304	AGTACTAATGCAACACCCAG	AAACTICTACCTATGTAGCC	55	9	CW	X83245
LE10088	НЕХ	253-277	TGATTCACTTGATGGTCGAGG	GATCTAATGTGGAATGCCTGA	55	٢	CEW	X82816
LEI0089	НЕХ	180-198	GATCCAGGTGGCTCTAACACG	TTAGCTCCTGCTTGTCACTGC	55	5	CEW	X83239
LE10090	TET	210-218	TAGTGCAGCCCTATGGAGCG	GGTGAGTGTGCGTTACACGC	55	÷	EW	X83250
LEI0091	TET	238-264	TCTTGGATACCAGTGAGAACC	ATCACCTTCATTAGACACTGC	55	9	W	X83244
LEI0092	TET	164-212	GATCTACATTTGTGCAGTGTC	TCCITGGTCTGACTCTCCATG	55	7	CEW	X82810
LE10093	TET	245-256	TCCTTGAAGTATTCCAAAGCTC	GTGCCCAGTCTTATAGCTAGC	55	4	CEW	X83260
LE10094	TET	253-285	GATCTCACCAGTATGAGCTGC	TCTCACACTGTAACACAGTGC	55	5	CW	X83246
LE10096	FAM	228-246	GATCAGATTGGTTCCCTGTG	TGGGTGAAGTTTCCTCGTAG	55	7	X	X83257
LE10097	TET	292-304	TCCTCAGAGCATGAAGAAGCC	AATAGTGACAGCTCTTTCTGC	55	1	CEW	X83259
LE10098	FAM	156-170	CAGTTAGCAGAGATTTTCCTAC	TGCCACTGATGCTGTCACTG	55	9	CEW	X82860
LEI0099	FAM	115-131	GATCTGGCAGAACAGAAACAG	ATATTTCACACCTGACCTGCG	55	4	CW	X83237
LEI0100	FAM	242-274	ATGTAATCAGCAAGTGCCTGG	TTCAGAGGCACTGACTGAATG	55	7		X82859
LEI0101	FAM	268-292	CCAGCTTCAGTGGCTGTGAAG	AGTCCTATCTTAGCCTGCTCC	55	7	CEW	X82805
LEI0103	FAM	225-251	GCCAGTTGCAGTCTATGTCTG	TGCCAATTTCAGCTTAGCTATG	55	4	CEW	X82796
LEI0104	TET	223-234	GATCTAGTGGTGCATGTCCC	CTCCACGTGCAAAGCAGCCA	55	4	CEW	X83240
LEI0106	FAM	289-300	AAACCTTCAAATGGTTAAAATGC	GTCAGCATGACAGCAGCTGAG	55	e	EW	X82854
LEI0107	HEX	208-230	ATCATTGCTACACCATGGTTC	GCTGCTCAGAAGCATCTGTGC	55	4	CEW	X83253
LEI0108	FAM	223-231	AGTTCAAGGTTGCAAGATGTG	TACATGCCATACTAGTCCTTC	55	4	CEW	X85517
LEI0112	FAM	271-305	GGGAACATACAGGGTGCTGCT	TATCATACCAGCGCAGCTCTG	55	9	CW	X82789
LEI0115	НЕХ	273-292	CCAAAATGACTACTTCCACCG	TAATACTGCCCTAGATTATGTC	55	4	CW	X85529
LEI0117	FAM	192-217	CGCTGCTCAGCGTGAATAGG	ACAGATGCCCACGACGAAAG	55	4	CEW	X85539
LEI0118	FAM	16-79	AAGACCAATGGGAGCAAATCC	GOCTAAACAGCCATTTGTACC	55	m	с U	X85540
LEI0120	FAM	278-316	CGTAACACATGCAACTCAATG	TTAGAATGAAAAGGCTGTTCC	55	9	CEW	X85511
LEI0121	FAM	263-280	TTGACGTCCTGGATAGATTAC	ATTATCCAGAACTAACATCAAC	55	ę	EW	X84436
LEI0122	НЕХ	289-300	AATCCCTATAGAACTTTGTGC	GATCTTACTGGATTACCATTC	55	9	EW	X85533
LEI0123	FAM	253-283	TCTTCCACCAAGTTGGGCATG	TTTTCCTAGAGGCTTGCTGAC	55	4	M	X82790
LEI0124	FAM	74-79	ACACATGCATGTACCCTCGCC	CCTGATGACTCAGTTAGAGCC	55	0	EW	X82793
LEI0125	НЕХ	265-275	GTTAGGCATCCTGTTTCTTCC	CTGTTGTCTTCCTGCAGTGCT	55	3	EW	X82798
LEI0126	НЕХ	189-231	GTCAGAGGAAGGAAGATACATC	CTAACTACAATGCTGGAATGC	60	x	CEW	X82799
LEI0127	HEX	217-249	CATAGAAATCAGGAAATTGATGC	GTCAACTTTAGTAAGAACTGC	55	9	EW	X82804
LEI0128	HEX	165-272	TCTCCAGTAATACACATGGTG	CAAACTCAGAGCTAAGTCTAG	55	S	CW	X82806
LEI0130	HEX	248-273	CITAGGTCCTTACTTGTCTCC	TTCTCAGCAGACATGATTGGC	55	9	E	X82809
137		,						

LEI0131	FAM	183-191	GATCCAGTACAGACGGGCAG	TGTGCATGAAATGAGTGACTG	55	5		X82855
LE10132	FAM	241-243	CCTCTCAAATGAAGCGCTCAG	ACACTTTCAGGACGTGGTCAC	60	6	¥	X82856
LEI0133	HEX	269	GTGAGTAATTATGCACACGCG	CAAAGAGGAGAGCTCAGCAG	55	J		X82857
LEI0134	HEX	294-298	ACATTCAAGCCCTGACTCAGC	AATTTCCTGCACGTCCAGCTG	55	÷	CW	X82858
LEI0135	FAM	134-145	CACAATGAAGGATGAATAGTGC	AATTCACAGTTACACCTGAGG	55	0	X	X82864
LEI0136	FAM	160-280	CATTIGTAACAAGTGCACGTG	TCAGCTCTCCTAGACCTAGTG	55	0	CEW	X82865
LEI0137	FAM	193-197	AATTCAGCAGCTGTATAGAGG	ATCCAGCCTGTAAACCGTTAG	55	7	EW	X82866
LEI0138	НЕХ	961-16	CTCCTAGTTAAGTGCTAGTGG	TTGTTTGGTTGGTTTGCTCCG	55	ξ	щ	X82870
LEI0139	HEX	265-273	ACATTTGAGATGAAGCTTGCC	GGTATCTAGTGCATATGATGC	55	ŝ	CW	X82872
LE[0141	TET	226-250	CGCATTTGATGCATAACACATG	AAGGCAAACTCAGCTGGAACG	55	Ś	X	X83235
LEI0143	FAM	263-275	GATCAATGAGTGCCGGGGAGAG	CGGAGGTGATACGGATGGAG	55	m	Ŵ	X83238
LEI0144	TET	261-275	GATCAGTTATCAATGGCTGGC	CACTGAGGTCTTCTAGATGAG	55	4	CEW	X83243
LEI0145	HEX	296-326	CTGTTCATCTTCCTCTCAGTC	GATCTTGAATATAGACCTTGG	55	6	EW	X83252
LEI0146	TET	258-276	TCAAGCCACCAAAGTGCTTGG	GATCACTCTGCTCATAGCAGT	55	ŝ	CEW	X83254
LEI0147	HEX	263-273	TCAGGCCTCTTGAACTCAGG	GCTATTAAGATACCTCAGCTC	55	4	CEW	X83256
LEI0148	TET	299-307	GATCAATCTGCATGCAGACTG	AGACCTATGTGGCTGGGAAAG	55	ŝ	¥	X83258
LE[0149	FAM	160-240	ACTGTCTATATAGCCTCTTAG	TTCTATTGGAAGTCTACATGG	55	Ś	CEW	X83261
LE[0155	FAM	101-113	GTACGTGTAGCTCGGCTCACC	GTCCGTGCATGGCTCCGCTC	55	S	EW	X85516
LEI0158	FAM	90-104	ATTGTTATCTCCAGAGAGGAC	GTCCTTGATGAATTGGTTAGC	55	÷	W	X85520
LEI0160	FAM	248-254	CAAAGTAATCAGCTTGTGCTAC	CATTTCCACCGCATTGAGCAG	55	4	CEW	X85523
LEI0161	HEX	90-100	CAGCCTTTTCAAGCTTGCTGC	GTTCACTTTAGACATGAATCGG	55	4	CEW	X85524
LEI0162	FAM	193-223	TAATGCTTTCATTTCCTCAGC	CAAATACCTTCTTCTGCATC	55	ŝ	EW	X85525
LEI0163	FAM	189-207	ACTTGGGCATACTCTTGTTGC	CTGCAGGTACCGTGAGATGTG	55	Ē	EW	X85527
LEI0164	HEX	205-211	TTCGCTTTCACTTGCTGCCAG	TATCGGAATGCAAGATGACAC	55	6	M	X85528
LE10166	HEX	254-267	AAGCAAGTGCTGGCTGTGCTC	TCCTGCCCTTAGCTACGCAC	55	Ś	EW	X85531
LEI0168	TET	209-212	ATCTAGATGACCCTTGAGGTC	GATCTGTGTTGTAGATATCTAAAG	55	7	X	X85534
LEI0169	FAM	236-253	TIGCTIGTTIGCTGCCTITTAG	ACAGTGTAGCATGGACAACAG	55	m	CEW	X85535
LEI0171	НЕХ	350-365	GAGTGTAGACAGTAGTGTATC	CTCAGGGCACCATTITICACTG	55	ŝ	щ	X85538
LEI0173	HEX	278	TGGAGTATCTATGCTATGGTC	TGTTAAGGATATGAGCCACAG	55	-		X85542
LEI0174	TET	230-263	ATCATACATGTTCTAGGGCTG	AAAGGGCATTCCCGCATGAG	55	4	EW	X85543
LEI0320	FAM	270-280	CTGCATGGATTGCTGCTCTC	GCTATCATGCCATACTGAATC	55	4		X83984

Table 3. Characteristics of HUJ markers.

Marker	Dye	Length ² (bp)	Forward primer ⁷	Reverse primer ⁷	PCR ³	All.4	Pop. ⁵	Acc. No.
HUJ0001	TET	151-180	CCATCCGCTTATACAGAGCACA	ccctttgttaacacctactgca	55	œ	CEW	L05542
HUJ0002	FAM	124-142	CATCTCACAGAGCAGCAGTG	gaatectggatgtcaaagee	55	6	CEW	L10228
HUJ0003	FAM	147-182	GACAGCAAGGATTAACCTGAG	GTCTTGGAGACTGTTAGTTGG	55	œ	EW	L05590
HUJ0005	TET	114-119	tecettecaaccettacagt	aaaagcaacacgaataacagat	55	б	CW	L10231
HUJ0006	FAM	107-117	ggaacatgtagacaaaagca	agcagtccatttcacagcca	55	÷	EW	L10294
HUJ0007	TET	152-156	cataaactaaagteteaacae	ttottecacacatettgcta	55	S	EW	H93646
0100fUH	HEX	249-255	cltgctgacggtgcactcag	GCAGTCACAAGCATAGCAGG	55	4	CW	J02714
HUJ0011	TET	123-130	gttggcgctccggaccagga	ctctctctgtcacgcgttgg	55	4	EW	J00836
HUJ0012	TET	120-140	gictcalgctalgagagtgg	cctctggttgaatcagtctg	55	2	CEW	M13756
								L

Table 4. Characteristics of monomorphic chicken microsatellite markers.

Marker	Dye	Length ² (bp)	Forward primer	Reverse primer	PCR ³	Acc. No.6
WS0001	FAM	304	TAGTAAATGCGTCAAGAGGA	CAGCCTCATATCTGCCTCCA	55	D13225
WS0002	HEX	110	TTCTCGAGGCTCAGAGATAG	TGCCACCCAGCTCCAGAATT	55	G32088
WS0003	HEX	112	GTGCAATGGGCCTGTTAG	TCCCAACACCCCTACGT	55	G32089
WS0004	HEX	175	TCCACATCCTTCCAGAAACA	TCGTGTATCAGGGGGCGAAATG	55	G32090
WS0005	TET	123	CITAAGCTTGGAAGTTATTAGG	GCATTTTGGTGCCTGCCACG	55	G32091
WS0006	TET	125	TTTGCACGATCTTGTGCAAG	GATTCCTTGGTAACAAGCTG	55	G31922
WS0007	HEX	125	AGTGTTCTCCAATTTGTTCT	CTTACTCCCAGGATCTACTC	55	G32092
WS0008	FAM	113	GATTGGCTTCGTTCAGACAAG	CATGCATTTACTAGATTCTAGC	55	Z49898
WS0009	HEX	94	GAGTTCACTTGGTCAATGGGT	TCATTAGCCTTAGCCTTATC	50	G32093
WS0010	TET	238	GATCAATGCTGATTGCACTTC	TGTTGCACTGCATACTGTGAC	55	G32094
WS0011	HEX	274	GATCTAAACTCAGCCAGAGTG	CTCCAGGTGATGTCTCACCAG	55	G32095

Appendix 1

WS0012	FAM	774	TGGCTGACGTGGGGGCTGTTGG	GAGCAGTACTCCAAACGCTTC	55	G32096
WS0013	HEX	286	GATCTCCTTTATGTCAGATT	ATTAGATTCCTGGTAGTTCTG	55	G32097
WS0014	TET	165	GATCTTAATGGAAAAGGAAAAAC	GATCAGGCGTCAAACTTAGCT	55	G32098
WS0015	HEX	289	TGCTGCCCTCTACTGAAAC	CCAATTITICCATCCCTCGATG	55	G31923
WS0016	НЕХ	231	TCCCCTAGACTAACCTAATGG	CCACAGGACTGAACAAGACTC	55	G32099
W\$0017	HEX	289	AGACTITGACTTGCGAAACCG	ATTCTGTTTTGATTCCTGATGC	55	G32100
WS0018	НЕХ	240	CATCAAATCCTCCATTACTGG	GATGGTCATCATAGACACCAG	55	G31924
WS0019	НЕХ	116	GATCTTAGCTTTCAAAAGGC	CAAGAGTAATTTCCTAGCTCAC	55	G32101
WS0020	HEX	200	GATCATCCTTCTTGCCACCAC	CGTACTGCTTAGCATCATACC	55	G32102
WS0021	FAM	113	TTCAGTCTCAAGAGTGATTGC	TAAATCACATTTTCAACAGCAAC	55	G31925
WS0022	FAM	236	CCTAATTAGACTTTGACCTCC	TAGCAGAAAGCAAGGCAGCC	55	G32103
WS0023	НЕХ	115	CTCATACAGACCTCCTGGAAC	GTAATATCCACTAACCGTTGG	55	G31926
WS0024	FAM	184	ACAGATATGTTTCATCCAGAG	CCAATCAGTGCTATCACTTTG	55	G32104
WS0025	НЕХ	170	CCAGAGAACATTITGTCTAGG	ATCAGCCTAACCACACCACTC	55	G32105
WS0026	TET	261	TTCTCCTGTGCAGTATTTCCG	CGCTTCGTCCTTTCATTGGTAC	55	G32106
WS0027	FAM	266	ATGGGCTTGGTGGCAAGAATG	AAACTGTGCTCCCAAAGTCTG	55	G31927
WS0028	FAM	252	CTAATGGAGGCTCTACATCTG	TTACCCAAGAGCTATGAGCTG	55	G32107
WS0029	HEX	152	AAAATGATGTGCCAGCATCAG	AGGTAGCGTAGAGATGTAGC	50	G32108
WS0030	FAM	218	AGTGCCACAAATTCAACTAGC	AATCTTTAGCTGGAGAACTCC	55	
WS0031	НЕХ	271	AAGGCTATGAATGTGAACATG	GATCTTGACTCACCTAAAAC	50	G31928
WS0032	FAM	149	GATCAGCTCACATATGAGTG	GCTAATAAATCAGGAAGCGGG	55	G31929
WS0033	HEX	281	TTAACGTTCTGGGTGTGTGTACC	TCAATAACAGCTCCTGCCTCC	55	G31930
WS0034	TET	240	CACGGGCTTCTTTTCTGAAG	AATAATGCTGACAGTAGCCTC	55	G32109
WS0035	TET	281	GATCCAGAGGTGAAATTTACAC	CCATGAACCAGGTAAGTACAG	55	G32110
WS0036	TET	202	AGTGGCAGCTAATGTGGTC	TCTTCTTTGCTATCTCCAGAG	55	U83593
WS0037	HEX	123	TGATCAAAACGAGCTCATGG	TTCACGAAACAGGAAAACGAG	55	X17612
WS0039	TET	170	TACGCGCTCTAAGCTTGAATC	GCTTCATGTTGAATCTGCAAC	55	M36662
WS0040	HEX	300	GACTGTTTTTATTCTGTG AGTG	CCTCTTGGTTGCAGATGGATC	55	X54944
WS0041	FAM	260	GGGCCTGAAAGAAAAGGAAG	GGTCATCGGTGGGTTTAATGG	55	M59937
WS0042	TET	235	TCGCCCCTGCCAAATTTTGG	CCCTCCTTCCATTTCCTGATC	55	X52669
WS0043	TET	261	AGGCGTAGGGCAGTACTAAT	GTCCCAGGAACCATCTGATTC	55	L34006
WS0044	TET	184	ATGACTCAAACATTCTGTGC	TTCATCACACTGCATGGCTCC	55	X80792

Table 5. Characteristics of microsatellite ADL markers.

Marker	dye	length ²	Forward primer	Reverse primer	PCR	AII. ⁴	Pop	Acc. No ^o
ADL0018			TTGCAGGTCCCTCCCATACA	GCACACCTTCCTCATCCCCC				L23886
ADL0019			TGCTGCCTAGACCAGTTCAA	TCTGCTGGGATTATGTGTCA				L23887
ADL0020	TET	88	GCACTCAAAGGAAAACAAAT	TAGATAAAATCCTTCCCTT	55	-		L23888
ADL0021	НЕХ	165-180	GCTGGTCGCTTTGCTCTGAA	GCTTAGCCTCATCTCTTGTA	55	61	CE	L23894
ADL0022	HEX	144-165	GCATCAGAGGAAGAAGGAAA	GGTCAAGGAAATCATAGAAA	55	4	ΕW	L23899
ADL0023	FAM	167-171	CTTCTATCCT6GGCTTCTGA	CCTGGCTGTGTATGTGTTGC	55	4	CEW	L23905
ADL0024	FAM	145-151	TGAAGCAAAAACCCAGCAAG	GTTCCATTACAGAGTGAGGT	55	۳ì	CEW	L23906
ADL0032	HEX	112-116	ACTCATNGGTGCTGTGGGGCT	CTCGCTGTTCTTGCTGCTCC	50	5	ш	L23907
ADL0034	HEX	117-143	AACCTAAAACTCCTGCTGC	GGGAACCTGTGGGGCTGAAAG	55	6	CEW	L23908
ADL0036	НЕХ	294-304	GTTTGGCTTACATTTATTAT	TTTTTAGGAGTTATTTGACA	55	Ś	щ	L23911
ADL0037	TET	180-182	ATGCCCCAAATCTCAACTCT	TCTCTAAAATCCAGCCCTAA	50	61	ပ	L23912
ADL0038	TET	139-150	TCGCCTGTCAACTCTTACCC	AGACATTCTCTAATCATTCC	55	6	CEW	L23916
ADL0039	TET	152-156	GCTACAACGCTTCAAACCTG	ACAAACAAACCAAAAAACCT	50	7	EW	L23917
ADL0040	TET	207-215	TTTCCCCAGATTTACAACTT	GCCAGTGATACTCCAGCAGC	60	ę	W	L23919
ADL0102	FAM	01-160	TTCCACCTTTCTTTTTATT	GCTCCACTCCCTTCTAACCC	48	ŝ	CEW	G01547
ADL0105	HEX	235-237	CATTCCGTGCTCAACTTCAA	CCCAAACGCTGCTCTTGCTG	50	7	щ	G01553
ADL0106	TET	160-162	CATTCTCTGATTCTGCCTTT	AACTCCTGGTGTGCTACAAA	45	4		G01550
ADL0111	НЕХ	125-135	CCTTCCTGACCTTCCACTTC	CCACAAAAATACCCACCATC	55	4	CEW	G01724
ADL0114	FAM	165-185	GGCTCATAACTACCTTTTTT	GCTCTACATTCCTTCAGTCA	50	ŝ	EW	G01726
ADL0117	FAM	174-190	TCTTGTTTTCCTTTTGTTGT	GCATACGGCTCCTTCAGTTG	55	ŝ	ដ៍	G01728
ADL0118	FAM	161-165	GATCACTCTTAGATGCCACA	AGAGAGGGGTTACAAGGCTG	50	ŝ	EW	G01729
ADL0120	FAM	155	GCATTCCAACTCCCCTTTGG	ACCAGATATAACAGTCCTCT	55	-		G01731
ADL0121	FAM	121-140	CTGGAACAAGAGGGGCTTTGC	GGATGTGAAAAATCTCCTGG	55	S	CEW	G01732
ADL0122	FAM	230-236	TGAAATACCAAGGCATCTGT	TGGCTAAGAAAGTGGAACTG	55	7	ш	G01733
ADL0123	HEX	105-128	GCTGTGTCAAGATTAGAATCAC	AACAATGAAAAACACTACCTGA	48	4	¥	G01557
	and the second se							

ADI 0124 F	FAM	254-278 ATGCGTTACAAGGTNGGAGG	ATATGATGACTGGAGGTTTT	50	۴	CEW	G01734
ADL0125 1	FAM	130-144 TAAACGGGGGAATGTTAGGCA	TGGAAATAAATAGAAGGCA	55	4	ć	G01558
ADL0127 1	HEX	147-151 GAACCAGCAATTATATTAAATA	TTAACACAAAAGAACCAGGCAG	50	ŝ	CW	G01736
ADL0132 1	НЕХ	184-190 GCTGTTTCTAAGCCATCTTC	CCACTTGGAAGTAATCTCCT	50	7	ц	G01740
ADL0134 1	FAM	112-124 TTCCATAAGCCATCAATCAG	TTTTCCTCTCCCTCCATTTT	55	ę	E	G01754
ADL0136 1	НЕХ	148-154 TGTCAAGCCCATCGTATCAC	CCACCTCCTTCTCCTGTTCA	50	5	CW	G01561
ADL0138 1	FAM	114-126 GCTTCAGGAACTATTTACAT	CTTTAGAGATTATGCCAGTA	50	9	EW	G01563
ADL0142 1	HEX	233-237 CAGCCAATAGGGATAAAGC	CTGTAGATGCCAAGGAGTGC	55	e	EW	G01567
ADL0143 1	НЕХ	156-172 CCTGTCTCTGGTCTTTATCC	AGTTTACTTCCTTTTTCTTGC	55	4	CEW	G01568
ADL0144 7	TET	163-210 TCAGAAAAAGGAAAACAAAA	TTATCACCAAGTCAGCCATC	55	ŝ	CEW	G01569
ADL0145 1	НЕХ	118-148 CGTGGTGTTGTGTGTATCATTT	CTCTTTTGCAGTCCTCCTAC	50	S	CEW	G01570
ADL0146 1	FAM	150-166 GACCTGCATTGTCAGTGACC	TGCTTCCTACCCATTCTCCT	55	Ś	CEW	G01571
ADL0147 1	TET	214-220 CTGGTGAATGAGAAGCGATG	GCTGCGGCAATAAACTCCCT	55	б	EW	G01572
ADL0148 1	FAM	136-162 AAAGCTCAGAAAAGCACACC	CCCATGNATGTCAAAGACC	55	ŝ	CEW	G01573
ADL0149 7	TET	218-222 ATAGCATACACCCAGCCACC	GAATAAGAATGTTNCCCTGC	50	S	CEW	G01574
ADL0150 7	TET	148-162 ATGCCAAGCATTACAGAAGC	CCTGCAGCACCTTTATCTCT	55	S	CEW	G01575
ADL0152 7	TET	175-185 AGATTAGTGCAGATCATCCA	TGTTTTGCCATTTCAGAAGC	55	ŝ	EW	G01577
ADL0154]	TET	130-166 GCTGCCACCTTCAAAACCTG	CTCACCATCTCATTCTTCAT	55	9	CEW	G01579
ADL0155 7	TET	107-109 GGTCCGACTGAAAGCATTAT	TTAAGACTGAAGCCAACCAG	55	7	с С	G01742
ADL0157 1	TET	138-161 CTCTGTCAGGAAGGGGTGTA	GTGCCTGTCCTCTGTTTCAT	50	S	CEW	G01581
ADL0158 1	НЕХ	189-216 TGGCATGGTTGAGGAATACA	TAGGTGCTGCACTGGAAATC	55	4	CEW	G01582
ADL0159 7	TET	109-121 GCCATTATTTTTCCCTGTGT	CTCCCCANAGTCATTAGCAG	55	÷	CEW	G01583
ADL0160 1	TET	125-129 TGGCAGAAATAAGGCAGTGC	ATTCATCGCTGGCATCTTGC	55	ŝ	CEW	G01584
ADL0161 7	TET	130-140 TGGAACTTTTCCCTATGTTA	AAGGAGTCAATTGTAGCACA	50	ŝ	CEW	G01585
ADL0163 F	HEX	168-178 TGTGTAGCCTACAGGATTGC	AGCCAAAATGGAGGTTCTGG	50	4	M	G01587
ADL0164 1	TET	197-210 GGTAGCATGAACAAGCATC	TCCTCAGGCCTTTCAACATA	55	e	CW	G01743
ADL0166 1	TET	136-156 TGCCAGCCCGTAATCATAGG	AAGCACCACGACCCAATCTA	55	4	CEW	G01588
ADL0167 7	TET	169-177 AACTTCCTCTTGGTTGATAA	CTGTTTAGCCTCCCTCATAA	55	ŝ	CEW	G01589
ADL0168 7	TET	107-117 TAAGAAATAAAAATCAAAGC	ACGAAGTGGGTGTCAGTGTT	50	7	ы	G01589
ADL0169 1	НЕХ	097-119 CCACACCAAACTGCTTCATA	ATTCCGCCTCCCCATTAGTG	50	Ś	CEW	G01591
ADL0170 1	HEX	127-131 CAATGAGGATAACAAAACAA	CAGTTCCTTAAAGTTCTTGG	50	6	CW	G01592
ADL0171 7	TET	092-107 ACAGGATTCTTGAGATTTTT	GGTCTTAGCAGTGTTTGTTT	55	2	ш	G01593
ADL0172 1	HEX	134-160 CCCTACAACAAGAGGGGGGG	CTATGGAATAAAATGGAAAT	ŝ	4	ΕW	G01594

ADL0174	TET	174-178	CCTCTTTTTCCTGGTGCCCT	GCCTAAGTGGACAACGCAGC	50	ŝ	¢.	G01596
VDL0176	FAM	186-196	TTGTGGATTCTGGTGGTAGC	TTCTCCCGTAACACTCGTCA	55	4	CEW	G01598
ADL0177	TET	152-158	TGGGTGCGAGTGTGCGTGAG	TGGGAAAGCGGAGAAAAATC	55	7	CEW	G01599
ADL0178	FAM	127	AACAAAGACACACTCGGTAT	GGAATCATCTTGCCTGGATA	55	_		G01600
VDL0179	НЕХ	132-136	CCCAGAGGAGGGCAGGATGT	AGACGTGGGCACAAGCACAC	55	ŝ	EW	G01601
ADL0180	TET	132-146	ACCAGAGCATCTACTGAAGA	AAACCTGGAAATGAAAGCAT	55	7	CEW	G01602
ADL0181	НЕХ	180-184	CCAGTGAAATTCATCCTTTT	CAATCTTTTGTGGGGGTATGG	50	ŝ	EW	G01603
ADL0183	FAM	103-111	TTGTGAAGTGGATAAGATGA	ACAGAAATGGAAAGCGAGAC	55	4	CEW	G01605
ADL0184	FAM	131-139	GCCTCCTCACCCACAAAACC	TCAGTAACACCACGAATGCC	50	Ś	EW+bg	G01606
ADL0185	TET	128-150	CATGGCAGCTGACTCCAGAT	AGCGTTACCTGTTCGTTTGC	55	٢	CEW	G01607
ADL0186	HEX	147	GAGTGCTGCCTTCAAGTATC	ACCCAAGAATTGCTCTGATG	55	-		G01745
ADL0187	TEJ	088-105	AATTGTTTGTTTACGCTTCT	GCTGGTGGCACAGATGAGAG	50	ŝ	CEW	G01608
ADL0188	TET	152-156	CACTTCCAGTATTAACGTGA	GTGGACACAATGAGTTCCTC	55	ŝ	W	G01609
ADL0190	НЕХ	208-222	GGCTCTGCCACGTCCCACTC	TGGTACCGTGTGTTTCAACT	45	÷ n	ΕW	G01611
ADL0191	НЕХ	138-146	TCAGCTCTTCAGGCAAAAAG	AACTTGGACCACAAATCTTAT	50	4	EW	G01612
ADL0192	НЕХ	137-150	AAAGGAAAGCCTATGTGAAT	AAAGCACCAAGCGAGATACA	50	m	EW	G01613
ADL0193	TET	122-150	TGCTAGGAGGGGGGGGGGTTTTGC	TGTGCACATGATTCAGAAGG	50	ŝ	CEW	G01614
ADL0194	TET	200-222	ATTITGTGTGTGGGGATTAT	GCCITGATTGCTGTTATTAC	55	4	M	G01615
ADL0195	FAM	118-130	TTGAGACCAGAACAGGAAAT	CAAACGCAGGCAGGAAGCAG	55	m	M	G01616
ADL0196	НЕХ	111	TGTGTAGCAAAAGAGCAAGC	TGATGAAGGATGATGACAGC	50	-		G01617
ADL0197	TET	102	TTTTCTGGTTTTCTTTGGAA	TCTAACAGGGGAAGGTATGC	50	-		G01618
ADL0198	НЕХ	117-124	TGCTTTTGGTCCTTCCTTCG	GCTAATATTGCTGCTTCTGC	55	4	CEW	G01619
ADL0199	FAM	158-174	GACGAAGCAAGAGCAAAGC	ACAAAGCCAGAGGGAAACATC	55	ŝ	EW	G01620
ADL/0200	FAM	127-137	TGATGGACTGGAATAGTGTA	ACAGGAAATTGTGCTGGATT	55	4	EW	G01621
ADL0201	НЕХ	138-144	GCTGAGGATTCAGATAAGAC	AATGGCTGACGTTTCACAGC	55	2	CEW	G01622
ADL0202	НЕХ	243-261	CTGCTTGTTCTTCCCCTTCA	CTCTGCTCTCTGTGCCTCAA	55	v	CEW	G01746
ADL0203	TET	176-196	ACCCTCCCCATCTCACTGC	GCTCCACCACTGCTCGTGTG	55	٢	CEW	G01623
ADL0204	TET	211	TTCGGTACCGTGTGTTTCAA	TCTCCAGCCGTTTCCCTCAT	50	_		G01628
ADL0205	TET	124	AAGTGCAAAGAACATTGACT	ATCTTCAGCGTCCTCTGTGT	55	_		G01625
ADL0206	TET	104-136	TTTCTATCCTTCATCTCCAG	AGACATCCTGCTTTCTCGTG	55	9	EW	G01626
ADL0207	TET	183-197	ATTITGGGCTGCCTCTGAGA	TATGCAATGGCGAAGCAAGC	55	۳	M	G01627
ADL0209	TET	136-170	Gettagetecetectecag	TCACTCCAGCTTGAGACAGG	55	4	CEW	G01629
ADL0210	FAM	124-147	ACAGGAGGATAGTCACACAT	GCCAAAAGATGAATGAGTA	55	S	EW	G01630

ADL0211 TET	105-123	TITGGTGGTAGAAAGACAC	TGTAGCTTAGCCTCATCTCT	55	5	CEW	G01631
ADL0212 FAM	101-114	TTCCTCGCTAAACTATGCTG	TITCAAAGTGCCCTCACAC	55	4	EW	G01632
ADL0213 FAM	104-118	AATTGGAGTTGAGTTTTGAT	CCCCATCTTCATTCACCTC	55	Ś	CEW	G01633
ADL0214 HEX	110-116	CTGTTAACCCACCCGCATCG	AGCAGNCGGCCAGCATTTGG	50	ŝ	EW	G01634
ADL0215 FAM	170	AGATCCATTTTCTTCATAGA	GGAATCATTTTCTTTCATAC	55	1		G01635
ADL0216 FAM	240	TTTATTCTTTCCCACTTTTGG	TTGGACAGTCTAGCAGCTGGTC	50	-		G01636
ADL0217 HEX	148-162	TCTACTTCGTTGGAGTGTCA	GGAAAACAGAGGAGAAATGG	55	S	ΕW	G01637
ADL0218 FAM	168-171	TGGAAGAGAAAGGCTAAAAC	GGATTCGGTGACTATGTTGC	50	7	W	G01638
ADL0219 HEX	102-112	AATATGTTACACTGCCATTT	GGACCAAGAATCTGTTCCAG	50	4	CEW	G01639
ADL0221 FAM	105-109	GTGTGCCCGTAATCCTGTAT	GTTCCAATGCCCCCTAATGC	55	ę		G01641
ADL0223 HEX	190-214	CCTCGAGTCTGAGAACACTT	AGATTGGCTGTAGGCTCTGT	50	ŝ	СW	G01643
ADL0226 FAM	186-198	ACAGGCTGGGGGGGAGAAATCC	AGCTGCGGAACACAATGACG	55	ŝ	M	G01646
ADL0227 TET	172-174	AATAGCGCTTGCTCATTTTT	GCAGGGATAAACTGGCTGAT	50	7	E+bg	G01647
ADL0228 TET	086-113	CCGTTTTTCTTTTCCTGATG	AGCCCTTGGGCACTTAGCAG	55	4	EW	G01648
ADL0229 FAM	72	AAGATGCAAAGTTTTCAAA	AAATGCCTTACAGAGTGTGG	55	1		G01649
ADL0230 FAM	105-120	GCCAAATAGTAATCCACTGC	TCGCTCTTGCCATTGTAAGT	55	1	CEW	G01650
ADL0231 FAM	102-140	ACTATTAGCCTGGGGGGGGGGGC	AAGGAAACAAAGAGAAATCC	55	9	EW	G01651
ADL0232 HEX	134-141	AATCGACGCGCTGAAAATGA	GCAGGGGGCTCCATAGTGTC	55	ę	СE	G01652
ADL0233 FAM	103-118	GCCCTTTAAACCCAAGACTC	GGGGGAAAGGATGCTTAGC	55	9	CEW	G01653
ADL0234 HEX	161-165	CCCTGGGGCTCCCTCAGCAC	CTGGACGCGTGAAAAGTTC	50	3	EW	G01654
ADL0235 FAM	136-156	TCATTCTTCTAACACCACT	AAACCAGAAAGCAAAATACA	50	ñ	EW	G01655
ADL0236 FAM	126-134	CTGGTTGTCAGTTGAAGGAC	ATAAGGTGGTGAGCAGCACT	55	4	EW	G01656
ADL0237 TET	136-154	GCTTGTGCCTAAGAATGAAC	TGTATGGAGTCTCAGCAAAT	55	4	CEW	G01657
ADL0238 FAM	161-163	AAACCCAAACAAAAGCAGAC	GCTCCTCATAAGCAAAATGC	55	7	M	G01658
ADL0239 TET	175	GAAAAGCAGAGCAGTGTCT	GTGATGGGAAAATCTTCAGG	55	-		G01659
ADL0240 TET	120-130	ACCTGGGAGATTGGATTCAA	CGTCCCGTCCTGANTGTTTG	50	ŝ	EW	G01660
ADL0241 FAM	205-221	AAATAGCATGGCAAATCAT	CAGATGCATCAGCACAGAAA	55	9	CW	G01661
ADL0242 FAM	141-145	GACCTGCCCACTTTTGGAAA	TATCTCCCCCTCCCCTCTCC	55	7	M	G01662
ADL0243 HEX	121-153	TCTGTGCCTATGTATTTTTA	GCATCTITITICTCCTGTTTA	50	ŝ	CEW	G01663
ADL0244 FAM	142-157	AGGGTCTGAAGAGAGGGGGTGTT	GCAAGATGCAAAGAGATTTC	55	ŝ	EW	G01664
ADL0245 HEX	110-140	ACAAGGGTGGTGCTTAGTCC	AAGTGAAACCAGGAAACGAT	50	er,	M	G01665
ADL0246 TET	149-171	GCAGGCTGATAGAAAAATGC	CTGCAAGCTGCTCTGGTATT	55	Ś	CEW	G01666
ADL0247 HEX	165-171	CTCTTGTTGTCTGTCTTGTG	TGCATGTTGTCAGTTTTCAG	55	4	EW	G01667

ADL0248 H	ΙEX	125-156 AGCCAGTAAAGGTAAAATGC	TTTCCAGCCTCTGTATCCAA	55	5	EW	G01668
ADL0249 F.	'AM	135-149 TGTTCCTGTGACATCTCTGT	TACTTGCTTGTGGCTGTTGT	55	c I	έM	G01669
ADL0250 H	HEX	164-168 AAGCCGTACTGAGAAGCACT	CAGGCACAGTAGAAAAGAAC	55	сı		G01670
ADL0251 F	ΜA	123-127 TTTGGCTTAGGGTGATGCTG	CGTGCTCCACACAGGAATGT	55	c 1	M	G01671
ADL0252 T	ET	182-193 AGCTCAGCCTCGGATACCTG	GTGAAGGGGTCTCTCCTCTG	50	ŝ	CEW+bg	G01672
ADL0253 H	ΉEX	124-148 GCTGTTTTGTCGGCAATAGC	CCCGTATACAGTAACTCTGA	55	4	CEW	G01673
ADL0254 F.	WV:	131-153 CAGCGTGGAAGCAATAAATG	CACTCATCCCACACCACTG	55	1	CW	G01674
ADL0255 F.	MΜ	106-116 GGGTATTGGTCTTCAAAATG	GTAAGGCCTTCCTCTTCTT	55	ŝ	EW	G01675
ADL0256 T	EI	124 CCTAAAATGCAGACAGAAGC	ACAAACGCAGTCATCAAAGG	55	-		G01676
ADL0257 H	ΗEX	167-197 ATCTTGAAACCTCACAAAGC	TCTTCCAACCTATTTTTAGT	55	9	EW	G01677
ADL0258 F.	AM:	168-178 TCATTTCAGCTCACATTTTA	TTTTCAGGTTGTCTGGTTGC	55	ŝ	CEW	G01678
ADL0259 T	ΈT	112-146 GTAATGGAGGATGCTCAGGT	CTCATTGCAGAGGAAGTTCT	55	Ś	M	G01679
ADL0260 H	łEX	118-144 ATCAGCCCATCCCAGTATCG	GGAGCTGTCATCCACTCTTG	55	9	CEW	G01680
ADL0261 F.	'AM	158 TGCTCGCAGCGTGATAAGC	CCCCGTGCACAGAACCAAGC	55	-		G01681
ADL0262 F.	WY:	106-110 GTGCAGACACAGAGGGAAAG	TCACATGCACACAGAGATGC	55	en	CEW	G01682
ADL0263 T	ΈT	136-150 AGAGTCAGAAAGTGGGAAGG	NCTGTTCGGTTGGTTGTTGG	55	Ś	CW+bg	G01683
ADL0265 F.	AM	168-192 GCCTTCTGAAGGTAAGTAGC	TGTCAGCAGAGCAGCAATAC	55	9	EW+bg	G01685
ADL0266 H	JEX	109-136 GTGGCATTCAGGCAGAGCAG	AATGCATTGCAGGATGTATG	55	Ś	CEW	G01686
ADL0267 F.	AM	105-119 AAACCTCGATCAGGAAGCAT	GTTATTCAAAGCCCCACCAC	55	en i	щ	G01687
ADL0268 T	ET	105-117 CTCCACCCCTCTCAGAACTA	CAACTTCCCATCTACCTACT	55	Ś	EW	G01688
ADL0269 H	IEX	137 CGTATTCGTGACATCCTTTT	CCACACTCGCCCTACAGAGG	55	-		G01689
ADL0270 H	JEX	091-125 TGGGGTTGGGTTGGTTTTTA	CCCTGGCAGTTGGTTATTCT	55	9	CEW	G01690
ADL0271 F.	ΆM	137-144 ATGAATGAAACCCATCTAAC	TCATCAGAAGCCCAAGCACA	55	2	W	G01691
ADL0272 T	ET	168-176 TATGGTAAGGTGAGCAAACC	GGGAAAGCTATGAAAGATTT	55	Ч	ш	G01692
ADL0273 T.	ET	139-146 GCCATACATGACAATAGAGG	TGGTAGATGCTGAGAGGTGT	55	ŝ	CW	G01693
ADL0274 H	ΊEΧ	153-174 GCAGCCCTTCTTGTAATGG	GGAAAACAGCCAAATCAGG	55	4	CE	G01694
ADL0275 F.	έAM	292-287 CCAAACCAAAGAAGCAATAC	AGGGAGAAGACAGGGAAGTT	50	6 73	EW	G01695
ADL0276 T	ET	185 CAGTTTCTCCTACTTATCCA	TGTGCTATCATTGTCTACCC	55	-		G01696
ADL0277 F.	AM.	123 CCGCCAAGGTGATGCTGTTC	GGGAGTGGGGTTGTCAGACC	55	-		G01697
ADL0278 F.	'AM	112-122 CCAGCAGTCTACCTTCCTAT	TGTCATCCAAGAACAGTGTG	55	4	EW	G01698
ADL0279 T	E	097-117 CATGGCTGTTGCTTTACATA	GTGAACCCCAATGCTCTCG	55	Ś	EW	G01699
ADL0280 F.	YM:	170-180 CCCTATAGCACAGCAGTCC	GGAACCTCAGCCTTGACATT	55	4	CW+bg	G01700
ADL0281 H	ЦX	164-184 GAAGAGGTGGAATGGACTGC	ATGCCCTCAGCAAAGTGTTG	55	4	EW+bg	G01701
145							
Appendix I

A DI 0282	TET	104-174	TGTTCGCGAAAGTCCTCTC	CGGCGATACAGCTGGTTCC	55	~	CEW+ho	G01702
ADL0283	HEX	125	GCAGATTTCCTTTATTACC	ATTICTATTICACAGAATTG	8.9%	· —		G01747
ADL0284	HEX	128-149	CAGAGTTCATCCGCCACTGC	CCTCCCCACTAACATTGGAA	55	Ś	CEW	G01703
ADL0285	TET	154-160	CTTCCAATCCTGACTGTAAG	TGATCTTGAAAAATCCACTT	55	2	CEW	G01704
ADL0286	TET	114-124	GAAGTGAAGAGTTGGAGACG	GCTAGATGCTGGCTGAATAA	55	e	CW	G01705
ADL0287	TET	123-138	TGGTGATAGGCTACAGAAGC	CCCCACCACCCTACAAACAC	55	ŝ	CEW+bg	G01706
ADL0288	FAM	150-160	AAACTTGCCTCCCAACATT	ATCCCCCCCGCGTAATACTTAT	55	4	CEW	G01707
ADL0289	TET	168-178	ATGCTATCTTAGAGGTGCTC	AATTGAAATCACTTTGCTCA	55	ŝ	EW	G01708
ADL0290	FAM	168-195	AAAGGCCAGGATGGATTTTC	CCCACCGGTCAGCACGAAGG	55	4	CEW+bg	G01748
ADL0292	FAM	120-126	CCAAATCAGGCAAAACTTCT	AAATGGCCTAAGGATGAGGA	55	4	EW	G01710
ADL0293	TET	112-121	GTAATCTAGAAACCCCATCT	ACATACCGCAGTCTTTGTTC	55	4	EW	G01711
ADL0294	FAM	138	TGCACGCAAGCAGGAGAAAA	CAGCAGAGTGGGGGTCACCTC	55	-		G01712
ADL0295	HEX	145	GAGAAATGCCCCTCCCTTCA	TCTCCC66CTCT66CGTT6C	55	-		G01749
ADL0297	FAM	106	ACCCATCTAGGCACCTTGTG	TTCCCTGCTCACCAGGTC	55	-		G01750
ADL0298	FAM	100-120	CAAGGCTGGGATTGATGAAA	TGGCGTGTGGGTTTACAAAA	55	ŝ	CEW	G01714
ADL0299	FAM	159-161	GTCTAGGCCCCTTGCCAAAC	CCACCCCATGTTCAGGTCA	55	7	EW	G01751
ADL0300	FAM	160-180	TTTCCATGCAAGGNTAGGTG	CTGAAGGCATTCTCAAGGAG	55	Ś	CE	G01715
ADL0301	FAM	128-136	TCCTCCTGAAGTCCTTACA	GGATGCGTTTGTGAAGTTTG	55	m	CW	G01716
ADL0302	TET	105-109	GGGGAGGCAGGTTGGAGCAG	CCCAGGGTCAGCAAAGAGCA	50	~	ш	G01717
ADL0304	FAM	141-163	GGGGAGGAACTCTGGAAATG	CCTCATGCTTCGTGCTTTTT	55	Ś	CEW	G01719
ADL0306	FAM	118-137	GTTACTGTATCTTGGCTCAT	TCAGTITGACTTTCCTTCAT	55	ŝ	EW	G01721
ADL0307	FAM	209-224	GCTGCTTAACTAAATGTTTG	CAAGCGNCACTGACCCTGTC	55	4	EW	G01752
ADL0308	FAM	160-165	CCTCTGAATGTCTGAATGAC	GGATGACTCCTTGGCAACAC	55	r)	CEW	G01722
ADL0309	HEX	106-125	CCCCAGTACTGCTTCCTCAG	TGTGGCTGCACTTCCCAATA	55	4	CEW	G16078
ADL0310	НЕХ	137-149	GTCTCTGGATCTCCTCTTCG	TGCACACTTCCCACTACAGG	50	4	EW	G16079
ADL0311	TET	188-207	GAGGAAATTGAAGCGTAAT	TAGACCAGGTGGACCCAGAG	55	ŝ	EW	G16080
ADL0312	HEX	152-157	AAGCTGGAACTTGAAGAAGA	TCAGGAGGGTTGGAGGTGTG	50	ŝ	CEW	G16081
ADL0313	HEX	132-156	AGCCACACAGNAGCGTCTCC	ACTGGCAGCCATTGAAGGAC	55	4	IJ	G16082
ADL0314	НЕХ	182-185	CCCCATAATTCTTTCAGTGC	CATCCAATGCAGACAGGACA	55	5	EW	G16083
ADL0315	TET	250-252	TCCTTGGGCAGTAGTTTCAA	CTCCCATGTTGCTTCTTTAG	<u>55</u>	r 1	EW	G16117
ADL0317	TET	188-206	AGTTGGTTTCAGCCATCCAT	CCCAGAGCACACTGTCACTG	55	Ś	EW	G16085
ADL0319	TET	112-116	AACGCTGTCAACCACTGTGT	TTGGCTTTCAAGGTTATGTG	55	7	EW	G16118
ADL0320	TET	116-138	AGGGGTTATTGCTGCTCTGC	GTCCTCAGTGTGCCCAAATGC	55	~	CEW	G16087

146

Appendix I

	And in case of the local division of the loc	And the support of th					
ADL0370	FAM	194-200	ACAGATATCAAACTTCCAAG	AATATCTATGCTGAAATGTG	55		EW
ADL/0371	FAM	160-175	AAATAGGTTCTCCCAATCAC	AATCATGGAAGACTGCTTTC	55	5	EW
ADL0372	FAM	160-171	CGCCCCCGTTTACTGATTTG	GGCGCCGTTCAAGGAAGCAC	55	4	EW
ADL0373	FAM	161-174	TGTCCTTTCTCTGTCCTTCC	TAATTCCTGCACTCGTCTTG	55	ŝ	CEW
ADL0375	FAM	113-117			50	ŝ	CW
ADL0376	FAM	176-188	GCCCCACGGAGATGGAACAC	CCTGCCCTGCTGCTGGAACT	55	4	CEW
ADL0377	FAM	137-144	ATATTCTGGGGGGCATCTGTG	GTAGGGATCCGTAGTTTTTG	55	4	EW

¹ Phorescent amidite dye attached to the 5' end of the forward primer, which allows for detection on the Applied Biosystems 373/37 DNA sequences.

²Fragment length of the alleles found after PCR in our test panel according to the ABI genescan-350 standard.

³⁷The optimal annealing temperature in the PCR reaction.

⁴The number of alleles found in our test panel.

⁵ Polymorphism found in the different populations used: C = Compton reference population, E = East Lansing reference population and W = Wageningen resource population.

⁶Genbank accession number.

² Primer sequences in capital have been redesigned to improve the performance of the microsatellite marker on the automated sequencers, the other primers have been described by

Khatib et al. (1993).

List of publications related to the subject

- <u>Crooijmans R.P.M.A.</u>, A.J.A. van Kampen, J.J. van der Poel, and M.A.M. Groenen (1993). Highly polymorphic microsatellite markers in poultry. *Animal Genetics* **24**:441-443.
- <u>Crooijmans R.P.M.A.</u>, A.J.A. van Kampen, J.J. van der Poel, and M.A.M. Groenen (1994). New microsatellite markers on the linkage map of the chicken genome. *Journal of Heredity* **85**:410-413.
- Crooijmans R.P.M.A., J.J. van der Poel, and M.A.M. Groenen (1995). Functional genes mapped on the chicken genome. *Animal Genetics* **26**:73-78.
- <u>Crooijmans R.P.M.A.</u>, P.A.M. van Oers, J.A. Strijk, J.J. van der Poel and M.A.M. Groenen (1996). Preliminary linkage map of the chicken (*Gallus domesticus*) genome based on microsatellite markers: 77 new markers mapped. *Poultry Science* **75**:746-754.
- <u>Crooijmans R.P.M.A.</u>, A.F. Groen, A.J.A. van Kampen, S. van der Beek, J.J. van der Poel, and M.A.M. Groenen (1996). Microsatellite polymorphism in commercial broiler and layer lines esimated using pooled blood samples. *Poultry Science* **75**:904-909.
- Ruyter-Spira C.P., <u>R.P.M.A. Crooijmans</u>, R.P.M. Dijkhof, P.A.M. van Oers, J.A. Strijk, J.J.van der Poel, and M.A.M. Groenen (1996). Development and mapping of polymorphic microsatellite markers derived from a chicken brain cDNA library *Animal Genetics* 27:227-234.
- Liu Z., <u>R.P.M.A. Crooijmans</u>, J.J. van der Poel, and M.A.M. Groenen (1996). Use of chciken microsatellite markers in turkey: a pessimistic view. *Animal Genetics* **27**:191-193.
- <u>Crooijmans R.P.M.A.</u>, V.A.F. Bierbooms, J. Komen, J.J. van der Poel, and M.A.M. Groenen (1997). Microsatellite markers in common carp (*Cyprinus carpio* L.). Animal *Genetics* **28**:129-134.
- <u>Crooijmans R.P.M.A.</u>, R.J.M. Dijkhof, J.J. van der Poel, and M.A.M. Groenen (1997). New microsatellite markers in chicken optimized for automated fluorescent genotyping. *Animal Genetics* **28**:427-437.
- Ruyter-Spira C.P., D.J. de Koning, J.J.van der Poel, <u>R.P.M.A. Crooijmans</u>, R.J.M. Dijkhof, and M.A.M. Groenen (1998). Developing microsatellite markers from cDNA; a tool for adding expressed sequence tags to the genetic linkage map of the chicken. *Animal Genetics* 29(2):85-90.

- Groenen M.A.M., <u>R.P.M.A. Crooijmans</u>, A. Veenendaal, H.H. Cheng, M. Siwek, and J.J. van der Poel (1998). A comprehensive microsatellite linkage map of the chicken genome. *Genomics* 49:265-274.
- Van Kaam J.B.C.H.M., J.A.M. van Arendonk, M.A.M. Groenen, H. Bovenhuis, A.L.J. Vereijken, <u>R.P.M.A. Crooijmans</u>, J.J. van der Poel, and A. Veenendaal (1998). *Livestock Production Science* 54:133-150.
- Groenen M.A.M., <u>R.P.M.A. Crooijmans</u>, R.J.M. Dijkhof, R. Acar, and J.J. van der Poel (1999). Extending the chicken-human comparative map by placing 15 genes on the chicken linkage map. *Animal Genetics* **30**:418-422.
- Herbergs J., M. Siwek, <u>R.P.M.A. Crooijmans</u>, J.J. van der Poel, and M.A.M. Groenen (1999). Multicolour fluorescent detection and mapping of AFLP markers in chicken (*Gallus domesticus*). Animal Genetics **30**:274-285.
- <u>Crooijmans R.P.M.A.</u>, J. Vrebalov, R.J.M. Dijkhof, J.J. van der Poel, and M.A.M. Groenen (2000). Two-dimensional screening of the Wageningen chicken BAC library. *Mammalian Genome* **11**:360-363.
- Pitel F., R. Bergé, G. Coquerelle, <u>R.P.M.A. Crooijmans</u>, M.A.M. Groenen, A. Vignal, and M. Tixier-Boichard (2000). Mapping the naked neck (NA) and polydactyly (PO) mutants of the chicken with microsatellite molecular markers. *Genet. Sel. Evol.* 32:73-86.
- Schmid M., I. Nanda, M. Guttenbach, C. Steinlein, H. Hoehn, M. Schartl, T. Haaf, S.
 Weigend, R. Fries, J-M. Buerstedde, K. Wimmers, D.W. Burt, J. Smith, S. A'Hara,
 A. Law, D.K. Griffin, N. Bumstead, J. Kaufman, P.A. Thomson, T.A. Burke,
 M.A.M. Groenen, <u>R.P.M.A. Crooijmans</u>, A. Vignal, V. Filion, M. Morisson, F. Pitel
 M. Tixier-Boichard, K. Ladjali-Mohammedi, J. Hillel, A. Mäki-Tanila, H.H. Cheng,
 M.E. Delany, J. Burnside, and S. Mizuno (2000). First report on chicken genes and
 chromosomes. *Cytogenetics and Cell Genetics*, in press.
- <u>Crooijmans R.P.M.A.</u>, R.J.M. Dijkhof, A. Veenendaal, J.J. van der Poel, R. Nichols, and M.A.M. Groenen (2000). The gene order on human chromosome 15 and chicken chromosome 10 reveal multiple inter and intra chromosomal rearrangements. Submitted for publication.
- Groenen M.A.M., <u>R.P.M.A. Crooijmans</u>, and H. Bovenhuis (2000). High resolution mapping of QTL in a cross between broiler lines. Submitted for publication.

Curriculum Vitae

Richardus Petrus Martinus Arnoldus (Richard) Crooijmans werd op 30 juni 1964 geboren te Bakel en Milheeze. In 1980 behaalde hij het MAVO diploma aan de Bernard Alfrink MAVO te Deurne. In 1982 behaalde hij het HAVO diploma aan het Peelland College te Deurne. Aansluitend studeerde hij biochemie aan de Hogere Laboratoriumschool te Oss. Vanaf 1986 werkte hij als onderzoeksmedewerker op de afdeling Radiotherapie van het Academisch Ziekenhuis Nijmegen. Vanaf juni 1990 is hij werkzaam bij de leerstoelgroep Fokkerij en Genetica van Wageningen Universiteit alwaar hij, vanaf 1995, als onderzoeker in opleiding het in dit proefschrift beschreven onderzoek verrichtte. Per 1 november 2000 is hij werkzaam als universitair docent bij bovengenoemde leerstoelgroep.